Science.gov

Sample records for lunar cold traps

  1. Lunar Cold Trap Contamination by Landing Vehicles

    NASA Technical Reports Server (NTRS)

    Shipley, Scott T.; Metzger, Philip T.; Lane, John E.

    2014-01-01

    Tools have been developed to model and simulate the effects of lunar landing vehicles on the lunar environment (Metzger, 2011), mostly addressing the effects of regolith erosion by rocket plumes and the fate of the ejected lunar soil particles (Metzger, 2010). These tools are being applied at KSC to predict ejecta from the upcoming Google Lunar X-Prize Landers and how they may damage the historic Apollo landing sites. The emerging interest in lunar mining poses a threat of contamination to pristine craters at the lunar poles, which act as "cold traps" for water and may harbor other valuable minerals Crider and Vondrak (2002). The KSC Granular Mechanics and Regolith Operations Lab tools have been expanded to address the probability for contamination of these pristine "cold trap" craters.

  2. Modeling the Stability of Volatile Deposits in Lunar Cold Traps

    NASA Technical Reports Server (NTRS)

    Crider, D. H.; Vondrak, R. R.

    2002-01-01

    There are several mechanisms acting at the cold traps that can alter the inventory of volatiles there. Primarily, the lunar surface is bombarded by meteoroids which impact, melt, process, and redistribute the regolith. Further, solar wind and magnetospheric ion fluxes are allowed limited access onto the regions in permanent shadow. Also, although cold traps are in the permanent shadow of the Sun, there is a small flux of radiation incident on the regions from interstellar sources. We investigate the effects of these space weathering processes on a deposit of volatiles in a lunar cold trap through simulations. We simulate the development of a column of material near the surface of the Moon resulting from space weathering. This simulation treats a column of material at a lunar cold trap and focuses on the hydrogen content of the column. We model space weathering processes on several time and spatial scales to simulate the constant rain of micrometeoroids as well as sporadic larger impactors occurring near the cold traps to determine the retention efficiency of the cold traps. We perform the Monte Carlo simulation over many columns of material to determine the expectation value for hydrogen content of the top few meters of soil for comparison with Lunar Prospector neutron data.

  3. Lunar Polar Cold Traps: Spatial Distribution and Temperatures

    NASA Astrophysics Data System (ADS)

    Paige, David A.; Siegler, M.; Lawrence, D. J.

    2006-09-01

    We have developed a ray-tracing and radiosity model that can accurately calculate lunar surface and subsurface temperatures for arbitrary topography. Using available digital elevation models for the lunar north and south polar regions derived from Clementine laser altimeter and image data, as well as ground-based radar data, we have calculated lunar surface and subsurface temperatures at 2 km resolution that include full effects of indirect solar and infrared radiation due to topography. We compare our thermal model results with maps of epithermal neutron flux measured by Lunar Prospector. When we use the ray tracing and thermal model to account for the effects of temperature and topography on the neutron measurements, our results show that the majority of the moon's polar cold traps are not filled with water ice.

  4. Diviner lunar radiometer observations of cold traps in the moon's south polar region

    USGS Publications Warehouse

    Paige, D.A.; Siegler, M.A.; Zhang, J.A.; Hayne, P.O.; Foote, E.J.; Bennett, K.A.; Vasavada, A.R.; Greenhagen, B.T.; Schofield, J.T.; McCleese, D.J.; Foote, M.C.; DeJong, E.; Bills, B.G.; Hartford, W.; Murray, B.C.; Allen, C.C.; Snook, K.; Soderblom, L.A.; Calcutt, S.; Taylor, F.W.; Bowles, N.E.; Bandfield, J.L.; Elphic, R.; Ghent, R.; Glotch, T.D.; Wyatt, M.B.; Lucey, P.G.

    2010-01-01

    Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies.

  5. History of the Inner Solar System According to the Lunar Cold Traps

    NASA Astrophysics Data System (ADS)

    Crider, D. H.; Stubbs, T. J.; Vondrak, R. R.

    2006-12-01

    There are regions near the poles of the Moon that are permanently shaded from the Sun's light, are extremely cold (T < 100 K), and may harbor frozen volatiles over geologic timescales. Thus, the contents of the cold traps act as a record of the history of volatiles in the Solar System in the neighborhood of Earth. By taking core samples within the regions of permanent shadow, one can study the inventory of volatiles on the Moon for as long as that region has been shaded from sunlight, which is typically about 2-3 Gyr. There is no other record currently known to extend as far back in time for determining the volatile inventory in the vicinity of the Earth. There are two potential sources of water on the Moon: (1) episodic cometary impacts; and (2) steady production from chemical interactions between solar wind protons and oxygen in the lunar regolith. Water from these sources can migrate through the lunar exosphere to the cold traps. However, the two sources would produce very different stratigraphy in the cold traps, even after they are modified by space weathering processes. After a cometary impact, there would be a relatively pure water ice deposit in the cold traps. The varying contents and total number of ice layers will be indicative of the composition, size distribution, and impact frequency of comets on the Moon. Since the Moon has neither a significant atmosphere nor a global magnetic field, the solar wind flow is able to impinge directly on the lunar surface. Most of the incident hydrogen is lost from the Moon in steady state; however, the interaction can produce water vapor. The molecules can hop on ballistic trajectories around the Moon before being lost by photodissociation or photoionization. A small fraction of the water (4%) is able to reach the cold trap of the permanently shadowed regions before being lost from the Moon. This water can accumulate and get mixed in with the regolith over geologic timescales, holding information about the migration

  6. COLD TRAPS

    DOEpatents

    Thompson, W.I.

    1958-09-30

    A cold trap is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the trap, so that the trap may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the trap. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.

  7. COLD TRAP

    DOEpatents

    Milleron, N.

    1963-03-12

    An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

  8. Liquid metal cold trap

    DOEpatents

    Hundal, Rolv

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal being provided with a hole between the incoming impure liquid metal and purified outgoing liquid metal which acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly.

  9. Radial cold trap

    DOEpatents

    Grundy, Brian R.

    1981-01-01

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume.

  10. Radial cold trap

    DOEpatents

    Grundy, B.R.

    1981-09-29

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume. 2 figs.

  11. Robotic Subsurface Analyzer and Sample Handler for Resource Reconnaissance and Preliminary Site Assessment for ISRU Activities at the Lunar Cold Traps

    NASA Technical Reports Server (NTRS)

    Gorevan, S. P.; Wilson, J.; Bartlett, P.; Powderly, J.; Lawrence, D.; Elphic, R.; Mungas, G.; McCullough, E.; Stoker, C.; Cannon, H.

    2004-01-01

    Since the 1960s, claims have been made that water ice deposits should exist in permanently shadowed craters near both lunar poles. Recent interpretations of data from the Lunar Prospector-Neutron Spectrometer (LP- NS) confirm that significant concentrations of hydrogen exist, probably in the form of water ice, in the permanently shadowed polar cold traps. Yet, due to the large spatial resolution (45-60 Ian) of the LP-NS measurements relative to these shadowed craters (approx.5-25 km), these data offer little certainty regarding the precise location, form or distribution of these deposits. Even less is known about how such deposits of water ice might effect lunar regolith physical properties relevant to mining, excavation, water extraction and construction. These uncertainties will need to be addressed in order to validate fundamental lunar In Situ Resource Utilization (ISRU) precepts by 2011. Given the importance of the in situ utilization of water and other resources to the future of space exploration a need arises for the advanced deployment of a robotic and reconfigurable system for physical properties and resource reconnaissance. Based on a collection of high-TRL. designs, the Subsurface Analyzer and Sample Handler (SASH) addresses these needs, particularly determining the location and form of water ice and the physical properties of regolith. SASH would be capable of: (1) subsurface access via drilling, on the order of 3-10 meters into both competent targets (ice, rock) and regolith, (2) down-hole analysis through drill string embedded instrumentation and sensors (Neutron Spectrometer and Microscopic Imager), enabling water ice identification and physical properties measurements; (3) core and unconsolidated sample acquisition from rock and regolith; (4) sample handling and processing, with minimized contamination, sample containerization and delivery to a modular instrument payload. This system would be designed with three mission enabling goals, including: (1

  12. Moist Climates with an Ineffective Cold Trap

    NASA Astrophysics Data System (ADS)

    Ding, F.; Pierrehumbert, R.

    2016-12-01

    The tropopause of the Earth's atmosphere behaves as a cold trap, limiting the water vapor transport from the humid sea surface to the dry regions in the atmosphere including both the upper atmosphere and the highly sub-saturated places in the free troposphere. It is hypothesized that during some period of time on Earth, the cold trap mechanism would become less effective, due to either a reduced nitrogen inventory in the atmosphere or high surface temperatures. An ineffective cold trap favors a moist upper atmosphere and will lead to rapid water loss by the ultraviolet photodissociation, which was well studied in one-dimensional models. However, the effect of an ineffective cold trap on 3D climates has not yet received much attention. Here we explore the 3D effect with an idealized general circulation model especially designed for studying condensible-rich atmospheres. We consider two scenarios based on the orbital configuration of the planet. (a) With Earth's orbital parameters, sub-saturation in the free troposphere is difficult to be produced by large-scale atmospheric flows, which implies that an ineffective cold trap also favors the onset of the runaway greenhouse. (b) For synchronous-rotating planets, water vapor is easier to be transported to the nightside, building up an atmosphere with similar column water mass as the dayside. For extrasolar habitable planets detections around M dwarfs in the future, if the water vapor contrast between the day and night side could be provided by the phase-resolved emission spectra, the contrast might be useful as a constraint for evaluating the mass of the non-condensible components in the atmosphere.

  13. Plasmonic trapping potentials for cold atoms

    NASA Astrophysics Data System (ADS)

    Mildner, Matthias; Horrer, Andreas; Fleischer, Monika; Zimmermann, Claus; Slama, Sebastian

    2018-07-01

    This paper reports on conceptual and experimental work towards the realization of plasmonic surface traps for cold atoms. The trapping mechanism is based on the combination of a repulsive and an attractive potential generated by evanescent light waves that are plasmonically enhanced. The strength of enhancement can be locally manipulated via the thickness of a metal nanolayer deposited on top of a dielectric substrate. Thus, in principle the trapping geometry can be predefined by the metal layer design. We present simulations of a plasmonic lattice potential using a gold grating with sinusoidally modulated thickness. Experimentally, a first plasmonic test structure is presented and characterized. Furthermore, the surface potential landscape is detected by reflecting ultracold atom clouds from the test structure revealing the influence of both evanescent waves. A parameter range is identified where stable traps can be expected.

  14. Trapping cold ground state argon atoms.

    PubMed

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  15. Near-Resonant Imaging of Trapped Cold Atomic Samples

    PubMed Central

    You, L.; Lewenstein, Maciej

    1996-01-01

    We study the formation of diffraction patterns in the near-resonant imaging of trapped cold atomic samples. We show that the spatial imaging can provide detailed information on the trapped atomic clouds. PMID:27805110

  16. Magnetic trapping of cold bromine atoms.

    PubMed

    Rennick, C J; Lam, J; Doherty, W G; Softley, T P

    2014-01-17

    Magnetic trapping of bromine atoms at temperatures in the millikelvin regime is demonstrated for the first time. The atoms are produced by photodissociation of Br2 molecules in a molecular beam. The lab-frame velocity of Br atoms is controlled by the wavelength and polarization of the photodissociation laser. Careful selection of the wavelength results in one of the pair of atoms having sufficient velocity to exactly cancel that of the parent molecule, and it remains stationary in the lab frame. A trap is formed at the null point between two opposing neodymium permanent magnets. Dissociation of molecules at the field minimum results in the slowest fraction of photofragments remaining trapped. After the ballistic escape of the fastest atoms, the trapped slow atoms are lost only by elastic collisions with the chamber background gas. The measured loss rate is consistent with estimates of the total cross section for only those collisions transferring sufficient kinetic energy to overcome the trapping potential.

  17. Dark optical lattice of ring traps for cold atoms

    NASA Astrophysics Data System (ADS)

    Courtade, Emmanuel; Houde, Olivier; Clément, Jean-François; Verkerk, Philippe; Hennequin, Daniel

    2006-09-01

    We propose an optical lattice for cold atoms made of a one-dimensional stack of dark ring traps. It is obtained through the interference pattern of a standard Gaussian beam with a counterpropagating hollow beam obtained using a setup with two conical lenses. The traps of the resulting lattice are characterized by a high confinement and a filling rate much larger than unity, even if loaded with cold atoms from a magneto-optical trap. We have implemented this system experimentally, and demonstrated its feasibility. Applications in statistical physics, quantum computing, and Bose-Einstein condensate dynamics are conceivable.

  18. Cold Atom Source Containing Multiple Magneto-Optical Traps

    NASA Technical Reports Server (NTRS)

    Ramirez-Serrano, Jaime; Kohel, James; Kellogg, James; Lim, Lawrence; Yu, Nan; Maleki, Lute

    2007-01-01

    An apparatus that serves as a source of a cold beam of atoms contains multiple two-dimensional (2D) magneto-optical traps (MOTs). (Cold beams of atoms are used in atomic clocks and in diverse scientific experiments and applications.) The multiple-2D-MOT design of this cold atom source stands in contrast to single-2D-MOT designs of prior cold atom sources of the same type. The advantages afforded by the present design are that this apparatus is smaller than prior designs.

  19. Trapped noble gases indicate lunar origin for Antarctic meteorite

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Johnson, P.

    1983-01-01

    The isotopic abundances of the noble gases (He, Ne, Ar, Kr, Xe) are reported for Antarctic ALHA 81005. It contains solar wind-implanted gases whose absolute and relative concentrations are quite similar to lunar regolith samples but not to other meteorites. ALHA 81005 also contains a large excess Ar-40 component which is identical to the component in lunar fines implanted from the lunar atmosphere. Large concentrations of cosmogenic Ne-21, Kr-82, and Xe-126 in ALHA 81005 indicate a total cosmic ray exposure age of at least 200 million years. The noble gas data alone are strong evidence for a lunar origin of this meteorite.

  20. Martian (and Cold Region Lunar) Soil Mechanics Considerations

    NASA Astrophysics Data System (ADS)

    Chua, Koon Meng; Johnson, Stewart W.

    1998-01-01

    The exploration of Mars has generated a lot of interest in recent years. With the completion of the Pathfinder Mission and the commencement of detailed mapping by Mars Global Surveyor, the possibility of an inhabited outpost on the planet is becoming more realistic. In spite of the upbeat mood, human exploration of Mars is still many years in the future. Additionally, the earliest return of any martian soil samples will probably not be until 2008. So why the discussion about martian soil mechanics when there are no returned soil samples on hand to examine? In view of the lack of samples, the basis of this or any discussion at this time must necessarily be one that involves conjecture, but not without the advantage of our knowledge of regolith mechanics of the Moon and soil mechanics on Earth. The objective of this presentation/discussion is fourfold: (1) Review some basic engineering-related information about Mars that may be of interest to engineers, and scientists - including characteristics of water and C02 at low temperature; (2) review and bring together principles of soil mechanics pertinent to studying and predicting how martian soil may behave, including the morphology and physical characteristics of coarse-grained and fine-grained soils (including clays), the characteristics of collapsing soils, potentials and factors that affect migration of water in unfrozen and freezing/frozen soils, and the strength and stiffness characteristics of soils at cold temperatures; (3) discuss some preliminary results of engineering experiments performed with frozen lunar soil simulants, JSC-1, in the laboratory that show the response to temperature change with and without water, effects of water on the strength and stiffness at ambient and at below freezing temperatures; and (4) discuss engineering studies that could be performed prior to human exploration and engineering research to be performed alongside future scientific missions to that planet.

  1. How Cold are the Floors of Lunar Polar Shadowed Craters?

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell W.

    2010-01-01

    Almost five decades ago Watson, et al, [1] speculated that molecules of volatile species might accumulate within the cryogenic environments of permanently shadowed polar craters. The subject was largely a scientific curiosity until recently. In the mid-1980's, people began to seriously discuss the feasibility of long-term or permanent human settlement of the Moon. Given that the Moon was known be missing the compounds need to support life and that importing volatiles from Earth is prohibitively expensive, lunar colonists were pictured as processing the putative polar volatiles. A bistatic radar experiment performed with the Clementine spacecraft was interpreted to suggest the presence of large quantities of ice at some polar locations. [2] The neutron spectrometer aboard the Lunar Prospector spacecraft reported high concentrations of hydrogen in the polar regolith, [3] and some interpretations of the data set pointed to very high concentrations in permanently shadowed craters. The reformulation of civilian space policy in 2004, known as the Vision for Space Exploration, emphasized lunar exploration with eye toward development of economic returns from cislunar space and long-tern human presence on the Moon. The theme of finding lunar resources was an impetus for the inclusion of the Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter. Preliminary results from Diviner report an unexpectedly low temperature down to 35K in the depths of some craters. [4

  2. Cold-trapped organic compounds at the poles of the Moon and Mercury: Implications for origins

    NASA Astrophysics Data System (ADS)

    Zhang, Jo Ann; Paige, David A.

    2009-08-01

    We have calculated evaporation rates for a range of organic compounds that may be cold-trapped at the poles of the Moon and Mercury. Organics vary widely in their volatilities and thus can be stable to evaporation at higher and lower temperatures than water. The detection of cold-trapped organics would point to volatile delivery by impacts, as comets and asteroids are the only plausible sources for organic molecules. The characterization of cold-trapped organics on both bodies may provide constraints on the thermal evolution of cold traps over time and the history of volatiles in the inner solar system.

  3. Stick-slip nanofriction in cold-ion traps

    NASA Astrophysics Data System (ADS)

    Mandelli, Davide; Vanossi, Andrea; Tosatti, Erio

    2013-03-01

    Trapped cold ions are known to form linear or planar zigzag chains, helices or clusters depending on trapping conditions. They may be forced to slide over a laser induced corrugated potential, a mimick of sliding friction. We present MD simulations of an incommensurate 101 ions chain sliding subject to an external electric field. As expected with increasing corrugation, we observe the transition from a smooth-sliding, highly lubric regime to a strongly dissipative stick-slip regime. Owing to inhomogeneity the dynamics shows features reminiscent of macroscopic frictional behaviors. While the chain extremities are pinned, the incommensurate central part is initially free to slide. The onset of global sliding is preceded by precursor events consisting of partial slips of chain portions further from the center. We also look for frictional anomalies expected for the chain sliding across the linear-zigzag structural phase transition. Although the chain is too short for a proper critical behavior, the sliding friction displays a frank rise near the transition, due to opening of a new dissipative channel via excitations of transverse modes. Research partly sponsored by Sinergia Project CRSII2 136287/1.

  4. Precision Spectroscopy on Single Cold Trapped Molecular Nitrogen Ions

    NASA Astrophysics Data System (ADS)

    Hegi, Gregor; Najafian, Kaveh; Germann, Matthias; Sergachev, Ilia; Willitsch, Stefan

    2016-06-01

    The ability to precisely control and manipulate single cold trapped particles has enabled spectroscopic studies on narrow transitions of ions at unprecedented levels of precision. This has opened up a wide range of applications, from tests of fundamental physical concepts, e.g., possible time-variations of fundamental constants, to new and improved frequency standards. So far most of these experiments have concentrated on atomic ions. Recently, however, attention has also been focused on molecular species, and molecular nitrogen ions have been identified as promising candidates for testing a possible time-variation of the proton/electron mass ratio. Here, we report progress towards precision-spectroscopic studies on dipole-forbidden vibrational transitions in single trapped N2+ ions. Our approach relies on the state-selective generation of single N2+ ions, subsequent infrared excitation using high intensity, narrow-band quantum-cascade lasers and a quantum-logic scheme for non-destructive state readout. We also characterize processes limiting the state lifetimes in our experiment, which impair the measurement fidelity. P. O. Schmidt et. al., Science 309 (2005), 749. M. Kajita et. al., Phys. Rev. A 89 (2014), 032509 M. Germann , X. Tong, S. Willitsch, Nature Physics 10 (2014), 820. X. Tong, A. Winney, S. Willitsch, Phys. Rev. Lett. 105 (2010), 143001

  5. Constraining Lunar Cold Spot Properties Using Eclipse and Twilight Temperature Behavior

    NASA Astrophysics Data System (ADS)

    Powell, T. M.; Greenhagen, B. T.; Hayne, P. O.; Bandfield, J. L.

    2016-12-01

    Thermal mapping of the nighttime lunar surface by the Diviner instrument on the Lunar Reconnaissance Orbiter (LRO) has revealed anomalous "cold spot" regions surrounding young impact craters. These regions typically show 5-10K lower nighttime temperatures than background regolith. Previous modeling has shown that cold spot regions can be explained by a "fluffing-up" of the top centimeters of regolith, resulting in a layer of lower-density, highly-insulating material (Bandfield et al., 2014). The thickness of this layer is characterized by the H-parameter, which describes the rate of density increase with depth (Vasavada et al., 2012). Contrary to expectations, new Diviner and ground-based telescopic data have revealed that these cold spot regions remain warmer than typical lunar regolith during eclipses and for a short twilight period at the beginning of lunar night (Hayne et al., 2015). These events act on much shorter timescales than the full diurnal day-night cycle, and the surface temperature response is sensitive to the properties of the top few millimeters of regolith. Thermal modeling in this study shows that this behavior can be explained by a profile with higher surface density and higher H-parameter relative to typical regolith. This results in a relative increase in thermal inertia in the top few millimeters of regolith, but decreased thermal inertia at centimeter depth scales. Best-fit surface density and H-parameter values are consistent with the temperature behavior observed during diurnal night as well as early twilight and eclipse scenarios. We interpret this behavior to indicate the presence of small rocks at the surface deposited by granular flow mixing during cold spot formation. This study also shows that eclipse and twilight data can be used as an important constraint in determining the thermophysical properties of lunar regolith. References: Bandfield, et al. (2014), Icarus, 231, 221-231. Hayne, et al. (2015), In Lunar and Planetary Science

  6. Method and apparatus for regenerating cold traps within liquid-metal systems

    DOEpatents

    McKee, Jr., John M.

    1976-01-01

    Oxide and hydride impurities of a liquid metal such as sodium are removed from a cold trap by heating to a temperature at which the metal hydroxide is stable in a molten state. The partial pressure of hydrogen within the system is measured to determine if excess hydride or oxide is present. Excess hydride is removed by venting hydrogen gas while excess oxide can be converted to molten hydroxide through the addition of hydrogen. The resulting, molten hydroxide is drained from the trap which is then returned to service at cold trap temperatures within the liquid-metal system.

  7. Evidence for Surface and Subsurface Ice Inside Micro Cold-Traps on Mercury's North Pole

    NASA Technical Reports Server (NTRS)

    Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.

    2017-01-01

    The small obliquity of Mercury causes topographic depressions located near its poles to cast persistent shadows. Many [1, 9, 15] have shown these permanently shadowed regions (PSRs) may trap water ice for geologic time periods inside cold-traps. More recently, direct evidence for the presence of water ice deposits inside craters was remotely sensed in RADAR [5] and visible imagery [3]. Albedo measurements (reflectence at 1064 nm) obtained by the MErcury Space ENviroment GEochemistry and Ranging Laser Altimeter (MLA) found unusually bright and dark areas next to Mercury's north pole [7]. Using a thermal illumination model, Paige et al. [8] found the bright deposits are correlated with surface cold-traps, and the dark deposits are correlated with subsurface cold-traps. They suggested these anomalous deposits were brought to the surface by comets and were processed by the magnetospheric radiation flux, removing hydrogen and mixing C-N-O-S atoms to form a variety of molecules which will darken with time. Here we use a thermal illumination model to find the link between the cold-trap area fraction of a rough surface and its albedo. Using this link and the measurements obtained by MESSENGER we derive a surface and a subsurface ice distribution map on Mercury's north pole below the MESSENGER spatial resolution, approximately 500 m. We find a large fraction of the polar ice on Mercury resides inside micro cold-traps (of scales 10 - 100 m) distributed along the inter-crater terrain.

  8. Lunar Obliquity History Revisited

    NASA Astrophysics Data System (ADS)

    Siegler, M.; Bills, B.; Paige, D.

    2007-12-01

    In preparation for a LRO (Lunar Reconnaissance Orbiter) related study of possible lunar polar volatiles, we re- examined the lunar orbital and rotational history, with primary focus on the obliquity history of the Moon. Though broad models have been made of lunar obliquity, a cohesive obliquity history was not found. We report on a new model of lunar obliquity including secular changes in inclination of the lunar orbit, tidal dissipation, lunar moments of inertia, and details for periods outside of the stable configurations known as Cassini states. For planets, the obliquity, or angle between the spin and orbit poles, is the dominant control on incident solar radiation. For planetary satellites, the radiation pattern can be more complex, as it depends on the mutual inclinations of three poles; the satellite spin and orbit poles, and the planetary heliocentric orbit pole. Presently, the lunar spin pole and orbit pole co-precess about the ecliptic pole, in a stable situation known as a Cassini state. As a result, permanently shadowed regions near the poles are expected to exist and act as cold traps, retaining water or other volatiles delivered to the surface by comets, solar wind, or via outgassing of the lunar interior. However, tidally driven secular changes in the lunar semimajor axis cause changes in precession rates of the spin and orbit poles, and thereby alter or destabilize the Cassini states. Only one prograde Cassini state exists at present (state 2). In the standard Cassini state model of Ward [1975], two other such states would have existed in the past (states 1 and 4) with the Moon starting in the low obliquity state 1, and remaining there until states 1 and 4 merged and disappear, at roughly half the present Earth-Moon distance. At that point, the Moon transitioned into the currently occupied state 2, and briefly attained very high obliquity values during the transition, and then stayed in state 2 until the present. If correct, this model implies that

  9. Single-beam, dark toroidal optical traps for cold atoms

    NASA Astrophysics Data System (ADS)

    Fatemi, Fredrik K.; Olson, Spencer E.; Bashkansky, Mark; Dutton, Zachary; Terraciano, Matthew

    2007-02-01

    We demonstrate the generation of single-beam dark toroidal optical intensity distributions, which are of interest for neutral atom storage and atom interferometry. We demonstrate experimentally and numerically optical potentials that contain a ring-shaped intensity minimum, bounded in all directions by higher intensity. We use a spatial light modulator to alter the phase of an incident laser beam, and analyze the resulting optical propagation characteristics. For small toroidal traps (< 50 μm diameter), we find an optimal superposition of Laguerre-Gaussian modes that allows the formation of single-beam toroidal traps. We generate larger toroidal bottle traps by focusing hollow beams with toroidal lenses imprinted onto the spatial light modulator.

  10. Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, D. H.; Mittal, S.; Dagenais, M.; Rolston, S. L.

    2013-04-01

    An integrated optical dipole trap uses two-color (red and blue-detuned) traveling evanescent wave fields for trapping cold neutral atoms. To achieve longitudinal confinement, we propose using an integrated optical waveguide coupler, which provides a potential gradient along the beam propagation direction sufficient to confine atoms. This integrated optical dipole trap can support an atomic ensemble with a large optical depth due to its small mode area. Its quasi-TE0 waveguide mode has an advantage over the HE11 mode of a nanofiber, with little inhomogeneous Zeeman broadening at the trapping region. The longitudinal confinement eliminates the need for a one dimensional optical lattice, reducing collisional blockaded atomic loading, potentially producing larger ensembles. The waveguide trap allows for scalability and integrability with nano-fabrication technology. We analyze the potential performance of such integrated atom traps.

  11. A model of optical trapping cold atoms using a metallic nano wire with surface plasmon effect

    NASA Astrophysics Data System (ADS)

    Thi Phuong Lan, Nguyen; Thi Nga, Do; Viet, Nguyen Ai

    2016-06-01

    In this work, we construct a new model of optical trapping cold atoms with a metallic nano wire by using surface plasmon effect generated by strong field of laser beams. Using the skin effect, we send a strong oscillated electromagnetic filed through the surface of a metallic nano wire. The local field generated by evanescent effect creates an effective attractive potential near the surface of metallic nano wires. The consideration of some possible boundary and frequency conditions might lead to non-trivial bound state solution for a cold atom. We discus also the case of the laser reflection optical trap with shell-core design, and compare our model with another recent schemes of cold atom optical traps using optical fibers and carbon nanotubes.

  12. Measurements of trap dynamics of cold OH molecules using resonance-enhanced multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Gray, John M.; Bossert, Jason A.; Shyur, Yomay; Lewandowski, H. J.

    2017-08-01

    Trapping cold, chemically important molecules with electromagnetic fields is a useful technique to study small molecules and their interactions. Traps provide long interaction times, which are needed to precisely examine these low-density molecular samples. However, the trapping fields lead to nonuniform molecular density distributions in these systems. Therefore, it is important to be able to experimentally characterize the spatial density distribution in the trap. Ionizing molecules at different locations in the trap using resonance-enhanced multiphoton ionization (REMPI) and detecting the resulting ions can be used to probe the density distribution even at the low density present in these experiments because of the extremely high efficiency of detection. Until recently, one of the most chemically important molecules, OH, did not have a convenient REMPI scheme identified. Here, we use a newly developed 1 +1' REMPI scheme to detect trapped cold OH molecules. We use this capability to measure the trap dynamics of the central density of the cloud and the density distribution. These types of measurements can be used to optimize loading of molecules into traps, as well as to help characterize the energy distribution, which is critical knowledge for interpreting molecular collision experiments.

  13. Selection of Environmentally Friendly Solvents for the Extravehicular Mobility Unit Secondary Oxygen Pack Cold Trap Testing

    NASA Technical Reports Server (NTRS)

    Steele, John; Chullen, Cinda; Morenz, Jesse; Stephenson, Curtis

    2010-01-01

    Freon-113(TradeMark) has been used as a chemistry lab sampling solvent at NASA/JSC for EMU (extravehicular Mobility Unit) SOP (Secondary Oxygen Pack) oxygen testing Cold Traps utilized at the USA (United Space Alliance) Houston facility. Similar testing has occurred at the HSWL (Hamilton Sundstrand Windsor Locks) facility. A NASA Executive Order bans the procurement of all ODS (ozone depleting substances), including Freon-113 by the end of 2009. In order to comply with NASA direction, HSWL began evaluating viable solvents to replace Freon-113 . The study and testing effort to find Freon-113 replacements used for Cold Trap sampling is the subject of this paper. Test results have shown HFE-7100 (a 3M fluorinated ether) to be an adequate replacement for Freon-113 as a solvent to remove and measure the non-volatile residue collected in a Cold Trap during oxygen testing. Furthermore, S-316 (a Horiba Instruments Inc. high molecular weight, non-ODS chlorofluorocarbon) was found to be an adequate replacement for Freon-113 as a solvent to reconstitute non-volatile residue removed from a Cold Trap during oxygen testing for subsequent HC (hydrocarbon) analysis via FTIR (Fourier Transform Infrared Spectroscopy).

  14. Development and Analysis of Cold Trap for Use in Fission Surface Power-Primary Test Circuit

    NASA Technical Reports Server (NTRS)

    Wolfe, T. M.; Dervan, C. A.; Pearson, J. B.; Godfroy, T. J.

    2012-01-01

    The design and analysis of a cold trap proposed for use in the purification of circulated eutectic sodium potassium (NaK-78) loops is presented. The cold trap is designed to be incorporated into the Fission Surface Power-Primary Test Circuit (FSP-PTC), which incorporates a pumped NaK loop to simulate in-space nuclear reactor-based technology using non-nuclear test methodology as developed by the Early Flight Fission-Test Facility. The FSP-PTC provides a test circuit for the development of fission surface power technology. This system operates at temperatures that would be similar to those found in a reactor (500-800 K). By dropping the operating temperature of a specified percentage of NaK flow through a bypass containing a forced circulation cold trap, the NaK purity level can be increased by precipitating oxides from the NaK and capturing them within the cold trap. This would prevent recirculation of these oxides back through the system, which may help prevent corrosion.

  15. Synthetic dimensions for cold atoms from shaking a harmonic trap

    NASA Astrophysics Data System (ADS)

    Price, Hannah M.; Ozawa, Tomoki; Goldman, Nathan

    2017-02-01

    We introduce a simple scheme to implement synthetic dimensions in ultracold atomic gases, which only requires two basic and ubiquitous ingredients: the harmonic trap, which confines the atoms, combined with a periodic shaking. In our approach, standard harmonic oscillator eigenstates are reinterpreted as lattice sites along a synthetic dimension, while the coupling between these lattice sites is controlled by the applied time modulation. The phase of this modulation enters as a complex hopping phase, leading straightforwardly to an artificial magnetic field upon adding a second dimension. We show that this artificial gauge field has important consequences, such as the counterintuitive reduction of average energy under resonant driving, or the realization of quantum Hall physics. Our approach offers significant advantages over previous implementations of synthetic dimensions, providing an intriguing route towards higher-dimensional topological physics and strongly-correlated states.

  16. Reply to 'Comment on 'Quantum time-of-flight distribution for cold trapped atoms''

    SciTech Connect

    Ali, Md. Manirul; Home, Dipankar; Pan, Alok K.

    2008-02-15

    In their comment Gomes et al. [Phys. Rev. A 77, 026101 (2008)] have questioned the possibility of empirically testable differences existing between the semiclassical time of flight distribution for cold trapped atoms and a quantum distribution discussed by us recently [Ali et al., Phys. Rev. A 75, 042110 (2007).]. We argue that their criticism is based on a semiclassical treatment having restricted applicability for a particular trapping potential. Their claim does not preclude, in general, the possibility of differences between the semiclassical calculations and fully quantum results for the arrival time distribution of freely falling atoms.

  17. Reply to ``Comment on `Quantum time-of-flight distribution for cold trapped atoms' ''

    NASA Astrophysics Data System (ADS)

    Ali, Md. Manirul; Home, Dipankar; Majumdar, A. S.; Pan, Alok K.

    2008-02-01

    In their comment Gomes [Phys. Rev. A 77, 026101 (2008)] have questioned the possibility of empirically testable differences existing between the semiclassical time of flight distribution for cold trapped atoms and a quantum distribution discussed by us recently [Ali , Phys. Rev. A 75, 042110 (2007).]. We argue that their criticism is based on a semiclassical treatment having restricted applicability for a particular trapping potential. Their claim does not preclude, in general, the possibility of differences between the semiclassical calculations and fully quantum results for the arrival time distribution of freely falling atoms.

  18. Integrated Optical Dipole Trap for Cold Neutral Atoms with an Optical Waveguide Coupler

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, D. H.; Mittal, S.; Meng, Y.; Dagenais, M.; Rolston, S. L.

    2013-05-01

    Using an optical waveguide, an integrated optical dipole trap uses two-color (red and blue-detuned) traveling evanescent wave fields for trapping cold neutral atoms. To achieve longitudinal confinement, we propose using an integrated optical waveguide coupler, which provides a potential gradient along the beam propagation direction sufficient to confine atoms. This integrated optical dipole trap can support an atomic ensemble with a large optical depth due to its small mode area. Its quasi-TE0 waveguide mode has an advantage over the HE11 mode of a nanofiber, with little inhomogeneous Zeeman broadening at the trapping region. The longitudinal confinement eliminates the need for a 1D optical lattice, reducing collisional blockaded atomic loading, potentially producing larger ensembles. The waveguide trap allows for scalability and integrability with nano-fabrication technology. We analyze the potential performance of such integrated atom traps and present current research progress towards a fiber-coupled silicon nitride optical waveguide integrable with atom chips. Work is supported by the ARO Atomtronics MURI. Work is supported by the ARO Atomtronics MURI.

  19. The formation of Charon's red poles from seasonally cold-trapped volatiles

    NASA Astrophysics Data System (ADS)

    Grundy, W. M.; Cruikshank, D. P.; Gladstone, G. R.; Howett, C. J. A.; Lauer, T. R.; Spencer, J. R.; Summers, M. E.; Buie, M. W.; Earle, A. M.; Ennico, K.; Parker, J. Wm.; Porter, S. B.; Singer, K. N.; Stern, S. A.; Verbiscer, A. J.; Beyer, R. A.; Binzel, R. P.; Buratti, B. J.; Cook, J. C.; Dalle Ore, C. M.; Olin, C. B.; Parker, A. H.; Protopapa, S.; Quirico, E.; Retherford, K. D.; Robbins, S. J.; Schmitt, B.; Stansberry, J. A.; Umurhan, O. M.; Weaver, H. A.; Young, L. A.; Zangari, A. M.; Bray, V. J.; Cheng, A. F.; McKinnon, W. B.; McNutt, R. L.; Morre, J. M.; Nimmo, F.; Reuter, D. C.; Schenk, P. M.; New Horizons Science Team; Stern, S. A.; Bagenal, F.; Ennico, K.; Gladstone, G. R.; Grundy, W. M.; McKinnon, W. B.; Moore, J. M.; Olkin, C. B.; Spencer, J. R.; Weaver, H. A.; Young, L. A.; Andert, T.; Barnouin, O.; Beyer, R. A.; Binzel, R. P.; Bird, M.; Bray, V. J.; Brozovic, M.; Buie, M. W.; Buratti, B. J.; Cheng, A. F.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earler, A. M.; Elliott, H. A.; Greathouse, T. K.; Hahn, M.; Hamilton, D. P.; Hill, M. E.; Hinson, D. P.; Hofgartner, J.; Horányi, M.; Howard, A. D.; Howett, C. J. A.; Jennings, D. E.; Kammer, J. A.; Kollmann, P.; Lauer, T. R.; Lavvas, P.; Linscott, I. R. Lisse, C. M.; Lunsford, A. W.; McComas, D. J.; McNutt, R. L., Jr.; Mutchler, M.; Nimmo, F.; Nunez, J. I.; Paetzold, M.; Parker, A. H.; Parker, J. Wm.; Philippe, S.; Piquette, M.; Porter, S. B.; Protopapa, S.; Quirico, E.; Reitsema, H. J.; Reuter, D. C.; Robbins, S. J.; Roberts, J. H.; Runyon, K.; Schenk, P. M.; Schindhelm, E.; Schmitt, B.; Showalter, M. R.; Singer, K. N.; Stansberry, J. A.; Steffl, A. J.; Strobel, D. F.; Stryk, T.; Summers, M. E.; Szalay, J. R.; Throop, H. B.; Tsang, C. C. C.; Tyler, G. L.; Umurhan, O. M.; Verbiscer, A. J.; Versteeg, M. H.; Weigle, G. E., II; White, O. L.; Woods, W. W.; Young, E. F.; Zangari, A. M.

    2016-11-01

    A unique feature of Pluto's large satellite Charon is its dark red northern polar cap. Similar colours on Pluto's surface have been attributed to tholin-like organic macromolecules produced by energetic radiation processing of hydrocarbons. The polar location on Charon implicates the temperature extremes that result from Charon's high obliquity and long seasons in the production of this material. The escape of Pluto's atmosphere provides a potential feedstock for a complex chemistry. Gas from Pluto that is transiently cold-trapped and processed at Charon's winter pole was proposed as an explanation for the dark coloration on the basis of an image of Charon's northern hemisphere, but not modelled quantitatively. Here we report images of the southern hemisphere illuminated by Pluto-shine and also images taken during the approach phase that show the northern polar cap over a range of longitudes. We model the surface thermal environment on Charon and the supply and temporary cold-trapping of material escaping from Pluto, as well as the photolytic processing of this material into more complex and less volatile molecules while cold-trapped. The model results are consistent with the proposed mechanism for producing the observed colour pattern on Charon.

  20. The Formation of Charon's Red Poles from Seasonally Cold-Trapped Volatiles

    NASA Technical Reports Server (NTRS)

    Grundy, W. M.; Cruikshank, D. P.; Gladstone, D. R.; Howett, C. J. A.; Lauer, T. R.; Spencer, J. R.; Summers, M. E.; Buie, M. W.; Earle, A. M.; Ennico, K.; hide

    2016-01-01

    A unique feature of Plutos large satellite Charon is its dark red northern polar cap. Similar colours on Plutos surface have been attributed to tholin-like organic macromolecules produced by energetic radiation processing of hydrocarbons. The polar location on Charon implicates the temperature extremes that result from Charons high obliquity and long seasons in the production of this material. The escape of Pluto's atmosphere provides a potential feedstock for a complex chemistry. Gas from Pluto that is transiently cold-trapped and processed at Charon's winter pole was proposed as an explanation for the dark coloration on the basis of an image of Charon's northern hemisphere, but not modelled quantitatively. Here we report images of the southern hemisphere illuminated by Pluto-shine and also images taken during the approach phase that show the northern polar cap over a range of longitudes. We model the surface thermal environment on Charon and the supply and temporary cold-trapping of material escaping from Pluto, as well as the photolytic processing of this material into more complex and less volatile molecules while cold-trapped. The model results are consistent with the proposed mechanism for producing the observed colour pattern on Charon.

  1. The formation of Charon's red poles from seasonally cold-trapped volatiles.

    PubMed

    Grundy, W M; Cruikshank, D P; Gladstone, G R; Howett, C J A; Lauer, T R; Spencer, J R; Summers, M E; Buie, M W; Earle, A M; Ennico, K; Parker, J Wm; Porter, S B; Singer, K N; Stern, S A; Verbiscer, A J; Beyer, R A; Binzel, R P; Buratti, B J; Cook, J C; Dalle Ore, C M; Olkin, C B; Parker, A H; Protopapa, S; Quirico, E; Retherford, K D; Robbins, S J; Schmitt, B; Stansberry, J A; Umurhan, O M; Weaver, H A; Young, L A; Zangari, A M; Bray, V J; Cheng, A F; McKinnon, W B; McNutt, R L; Moore, J M; Nimmo, F; Reuter, D C; Schenk, P M

    2016-11-03

    A unique feature of Pluto's large satellite Charon is its dark red northern polar cap. Similar colours on Pluto's surface have been attributed to tholin-like organic macromolecules produced by energetic radiation processing of hydrocarbons. The polar location on Charon implicates the temperature extremes that result from Charon's high obliquity and long seasons in the production of this material. The escape of Pluto's atmosphere provides a potential feedstock for a complex chemistry. Gas from Pluto that is transiently cold-trapped and processed at Charon's winter pole was proposed as an explanation for the dark coloration on the basis of an image of Charon's northern hemisphere, but not modelled quantitatively. Here we report images of the southern hemisphere illuminated by Pluto-shine and also images taken during the approach phase that show the northern polar cap over a range of longitudes. We model the surface thermal environment on Charon and the supply and temporary cold-trapping of material escaping from Pluto, as well as the photolytic processing of this material into more complex and less volatile molecules while cold-trapped. The model results are consistent with the proposed mechanism for producing the observed colour pattern on Charon.

  2. Atmospheric H2O2 measurement: comparison of cold trap method with impinger bubbling method

    NASA Technical Reports Server (NTRS)

    Sakugawa, H.; Kaplan, I. R.

    1987-01-01

    Collection of atmospheric H2O2 was performed by a cold trap method using dry ice-acetone as the refrigerant. The air was drawn by a pump into a glass gas trap immersed in the dry ice-acetone slush in a dewar flask at a flow rate of 2.5 l min-1 for approximately 2 h. Collection efficiency was > 99% and negligible interferences by O3, SO2 or organic matter with the collected H2O2 in the trap were observed. This method was compared with the air impinger bubbling method which has been previously described (Kok et al., 1978a, b, Envir. Sci. Technol. 12, 1072-1080). The measured total peroxide (H2O2 + organic peroxide) values in a series of aim samples collected by the impinger bubbling method (0.06-3.7 ppb) were always higher than those obtained by the cold trap method (0.02-1.2 ppb). Laboratory experiments suggest that the difference in values between the two methods probably results from the aqueous phase generation of H2O2 and organic peroxide in the impinger solution by a reaction of atmospheric O3 with olefinic and aromatic compounds. If these O3-organic compound reactions which occur in the impinger also occur in aqueous droplets in the atmosphere, the process could be very important for aqueous phase generation of H2O2 in clouds and rainwater.

  3. Cold Trap Dismantling and Sodium Removal at a Fast Breeder Reactor - 12327

    SciTech Connect

    Graf, A.; Petrick, H.; Stutz, U.

    2012-07-01

    The first German prototype Fast Breeder Nuclear Reactor (KNK) is currently being dismantled after being the only operating Fast Breeder-type reactor in Germany. As this reactor type used sodium as a coolant in its primary and secondary circuit, seven cold traps containing various amounts of partially activated sodium needed to be disposed of as part of the dismantling. The resulting combined difficulties of radioactive contamination and high chemical reactivity were handled by treating the cold traps differently depending on their size and the amount of sodium contained inside. Six small cold traps were processed onsite by cutting them up intomore » small parts using a band saw under a protective atmosphere. The sodium was then converted to sodium hydroxide by using water. The remaining large cold trap could not be handled in the same way due to its dimensions (2.9 m x 1.1 m) and the declared amount of sodium inside (1,700 kg). It was therefore manually dismantled inside a large box filled with a protective atmosphere, while the resulting pieces were packaged for later burning in a special facility. The experiences gained by KNK during this process may be advantageous for future dismantling projects in similar sodium-cooled reactors worldwide. The dismantling of a prototype fast breeder reactor provides the challenge not only to dismantle radioactive materials but also to handle sodium-contaminated or sodium-containing components. The treatment of sodium requires additional equipment and installations to ensure a safe handling. Since it is not permitted to bring sodium into a repository, all sodium has to be neutralized either through a controlled reaction with water or by incinerating. The resulting components can be disposed of as normal radioactive waste with no further conditions. The handling of sodium needs skilled and experienced workers to minimize the inherent risks. And the example of the disposal of the large KNK cold trap shows the interaction with

  4. Lunar exospheric argon modeling

    NASA Astrophysics Data System (ADS)

    Grava, Cesare; Chaufray, J.-Y.; Retherford, K. D.; Gladstone, G. R.; Greathouse, T. K.; Hurley, D. M.; Hodges, R. R.; Bayless, A. J.; Cook, J. C.; Stern, S. A.

    2015-07-01

    Argon is one of the few known constituents of the lunar exosphere. The surface-based mass spectrometer Lunar Atmosphere Composition Experiment (LACE) deployed during the Apollo 17 mission first detected argon, and its study is among the subjects of the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and Lunar Atmospheric and Dust Environment Explorer (LADEE) mission investigations. We performed a detailed Monte Carlo simulation of neutral atomic argon that we use to better understand its transport and storage across the lunar surface. We took into account several loss processes: ionization by solar photons, charge-exchange with solar protons, and cold trapping as computed by recent LRO/Lunar Orbiter Laser Altimeter (LOLA) mapping of Permanently Shaded Regions (PSRs). Recycling of photo-ions and solar radiation acceleration are also considered. We report that (i) contrary to previous assumptions, charge exchange is a loss process as efficient as photo-ionization, (ii) the PSR cold-trapping flux is comparable to the ionization flux (photo-ionization and charge-exchange), and (iii) solar radiation pressure has negligible effect on the argon density, as expected. We determine that the release of 2.6 × 1028 atoms on top of a pre-existing argon exosphere is required to explain the maximum amount of argon measured by LACE. The total number of atoms (1.0 × 1029) corresponds to ∼6700 kg of argon, 30% of which (∼1900 kg) may be stored in the cold traps after 120 days in the absence of space weathering processes. The required population is consistent with the amount of argon that can be released during a High Frequency Teleseismic (HFT) Event, i.e. a big, rare and localized moonquake, although we show that LACE could not distinguish between a localized and a global event. The density of argon measured at the time of LACE appears to have originated from no less than four such episodic events. Finally, we show that the extent of the PSRs that trap

  5. Laboratory experiments to investigate sublimation rates of water ice in nighttime lunar regolith

    NASA Astrophysics Data System (ADS)

    Piquette, Marcus; Horányi, Mihály; Stern, S. Alan

    2017-09-01

    The existence of water ice on the lunar surface has been a long-standing topic with implications for both lunar science and in-situ resource utilization (ISRU). Cold traps on the lunar surface may have conditions necessary to retain water ice, but no laboratory experiments have been conducted to verify modeling results. We present an experiment testing the ability to thermally control bulk samples of lunar regolith simulant mixed with water ice under vacuum in an effort to constrain sublimation rates. The simulant used was JSC-1A lunar regolith simulant developed by NASA's Johnson Space Center. Samples with varying ratios of water ice and JSC-1A regolith simulant, totally about 1 kg, were placed under vacuum and cooled to 100 K to simulate conditions in lunar cold traps. The resulting sublimation of water ice over an approximately five-day period was measured by comparing the mass of the samples before and after the experimental run. Our results indicate that water ice in lunar cold traps is stable on timescales comparable to the lunar night, and should continue to be studied as possible resources for future utilization. This experiment also gauges the efficacy of the synthetic lunar atmosphere mission (SLAM) as a low-cost water resupply mission to lunar outposts.

  6. Measurement of the Neutron Lifetime with Ultra-cold Neutrons Stored in a Magneto-gravitational Trap

    NASA Astrophysics Data System (ADS)

    Ezhov, V. F.; Andreev, A. Z.; Ban, G.; Bazarov, B. A.; Geltenbort, P.; Glushkov, A. G.; Knyazkov, V. A.; Kovrizhnykh, N. A.; Krygin, G. B.; Naviliat-Cuncic, O.; Ryabov, V. L.

    2018-05-01

    We report a measurement of the neutron lifetime using ultra-cold neutrons stored in a magneto-gravitational trap made of permanent magnets. Neutrons surviving in the trap after fixed storage times have been counted and the trap losses have continuously been monitored during storage by detecting neutrons leaking from the trap. The value of the neutron lifetime resulting from this measurement is τ n = (878.3 ± 1.6stat ± 1.0syst) s. A unique feature of this experiment is the monitoring of leaking neutrons providing a robust control of the main systematic loss.

  7. The tropopause cold trap in the Australian Monsoon during STEP/AMEX 1987

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.

    1993-01-01

    The relationship between deep convection and tropopause cold trap conditions is examined for the tropical northern Australia region during the 1986-87 summer monsoon season, emphasizing the Australia Monsoon Experiment (AMEX) period when the NASA Stratosphere-Troposphere Exchange Project (STEP) was being conducted. The factors related to the spatial and temporal variability of the cold point potential temperature (CPPT) are investigated. A framework is developed for describing the relationships among surface average equivalent potential temperature in the surface layer (AEPTSL) the height of deep convection, and stratosphere-troposphere exchange. The time-mean pattern of convection, large-scale circulation, and surface AEPTSL in the Australian monsoon and the evolution of the convective environment during the monsoon period and the extended transition season which preceded it are described. The time-mean fields of cold point level variables are examined and the statistical relationships between mean CPPT, surface AEPTSL, and deep convection are described. Day-to-day variations of CPPT are examined in terms of these time mean relationships.

  8. Constraints on Transport and Emplacement Mechanisms of Labile Fractions in Lunar Cold Traps

    NASA Technical Reports Server (NTRS)

    Rickman, D.; Gertsch, L.

    2014-01-01

    Sustaining the scientific exploration of the Solar System will require a significant proportion of the necessary fuels and propellants, as well as other bulk commodities, to be produced from local raw materials [1]. The viability of mineral production depends on the ability to locate and characterize mineable deposits of the necessary feedstocks. This requires, among other things, a workable understanding of the mechanisms by which such deposits form, which is the subject of Economic Geology. Multiple deposition scenarios are possible for labile materials on the Moon. This paper suggests labile fractions moved diffusely through space; deposits may grow richer with depth until low porosity rock; lateral transport is likely to have occurred with the regolith, at least for short distances; crystalline ice may not exist; the constituent phases could be extremely complex. At present we can constrain the sources only mildly; once on the Moon, the transport mechanisms inherently mix and therefore obscure the origins. However, the importance of expanding our understanding of ore-forming processes on the Moon behooves us to make the attempt. Thus begins a time of new inquiry for Economic Geology.

  9. Črna Jama as a cold air trap cave within Postojna Cave, Slovenia

    NASA Astrophysics Data System (ADS)

    Šebela, Stanka; Turk, Janez

    2017-10-01

    Črna Jama is the coldest section of cave within the Postojna Cave System. Mean annual air temperatures at the Črna Jama 2 site are 5.6 °C (2015) and 5.7 °C (2016), and at the Črna Jama 3 site 7.1 °C (2015) and 7.2 (2016), whereas the mean external air temperature was 10.3 °C (2015) and 10.0 °C (2016). In Lepe Jame, the passage most heavily visited by tourists, the mean cave-air temperature is 10.7 °C (2014-2017). Črna Jama exhibits winter and summer temperature regimes. During warm periods (Tcave < Tout), it acts as a cold air trap, exchanging no air with the outside atmosphere. Under such conditions the cave-air temperature shows no short-term diurnal temperature oscillations. Cave-air temperature is significantly stable and affected only by elevation of the groundwater table, which is associated with precipitation. During cold periods (Tcave > Tout), ventilation takes place and dense, cold, outside air sinks into Črna Jama because of the favourable cave entrance morphology. Recent Črna Jama air temperature data (2014-2017) indicate a < 0.5 °C higher temperature than that recorded in historical data since 1933. Črna Jama is the most appropriate place within the Postojna Cave System to study long-term climatic changes. There are hardly any tourist visits to the cave, and human impacts on the cave climate are essentially reduced.

  10. Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Morgan, T.; Chin, G.

    2007-08-01

    NASA's Lunar Reconnaissance Orbiter (LRO) plans to launch in October 2008 with a companion secondary impactor mission, LCROSS, as the inaugural missions for the Exploration System Mission Directorate. LRO is a pathfinder whose objective is to obtain the needed information to prepare for eventual human return to the Moon. LRO will undertake at least one baseline year of operation with additional extended mission phase sponsored by NASA's Science Mission Directorate. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions; Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources; Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration; Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits; Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only

  11. The influence of moonlight and lunar periodicity on the efficacy of CDC light trap in sampling Phlebotomus (Larroussius) orientalis Parrot, 1936 and other Phlebotomus sandflies (Diptera: Psychodidae) in Ethiopia.

    PubMed

    Gebresilassie, Araya; Yared, Solomon; Aklilu, Essayas; Kirstein, Oscar David; Moncaz, Aviad; Tekie, Habte; Balkew, Meshesha; Warburg, Alon; Hailu, Asrat; Gebre-Michael, Teshome

    2015-02-15

    Phlebotomus orientalis is the main sandfly vector of visceral leishmaniasis in the north and northwest of Ethiopia. CDC light traps and sticky traps are commonly used for monitoring sandfly populations. However, their trapping efficiency is greatly influenced by various environmental factors including moonlight and lunar periodicity. In view of that, the current study assessed the effect of moonlight and lunar periodicity on the performance of light traps in collecting P. orientalis. Trapping of P. orientalis and other Phlebotomus spp. was conducted for 7 months between December 2012 and June 2013 using CDC light traps and sticky traps from peri-domestic and agricultural fields. Throughout the trapping periods, collections of sandfly specimens were carried out for 4 nights per month, totaling 28 trapping nights that coincided with the four lunar phases (viz., first quarter, third quarter, new and full moon) distributed in each month. In total, 13,533 sandflies of eight Phlebotomus species (P. orientalis, P. bergeroti, P. rodhaini, P. duboscqi, P. papatasi, P. martini, P. lesleyae and P. heischi) were recorded. The predominant species was P. orientalis in both trapping sites and by both methods of collection in all lunar phases. A significant difference (P < 0.05) was observed in the mean numbers of P. orientalis and other Phlebotomus spp. caught by CDC light traps among the four lunar phases. The highest mean number (231.13 ± 36.27 flies/trap/night) of P. orientalis was collected during the new moon phases, when the moonlight is absent. Fewer sandflies were attracted to light traps during a full moon. However, the number of P. orientalis and the other Phlebotomus spp. from sticky traps did not differ in their density among the four lunar phases (P = 0.122). Results of the current study demonstrated that the attraction and trapping efficiency of CDC light traps is largely influenced by the presence moonlight, especially during a full moon. Therefore

  12. Feasibility and Definition of a Lunar Polar Volatiles Prospecting Mission

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer; Elphic, Richard; Colaprete, Anthony; Fong, Terry; Pedersen, Liam; Beyer, Ross; Cockrell, James

    2012-01-01

    The recent Lunar Crater Observing and Sensing Satellite (LCROSS) mission has provided evidence for significant amounts of cold trapped volatiles in Cabeus crater near the Moon's south pole. Moreover, LRO/Diviner measurements of extremely cold lunar polar surface temperatures imply that volatiles can be stable outside or areas of strict permanent shadows. These discoveries suggest that orbital neutron spectrometer data point to extensive deposits at both lunar poles. The physical state, composition and distribution of these volatiles are key scientific issues that relate to source and emplacement mechanisms. These issues are also important for enabling lunar in situ resource utilization (ISRU). An assessment of the feasibility of cold-trapped volatile ISRU requires a priori information regarding the location, form, quantity, and potential for extraction of available resources. A robotic mission to a mostly shadowed but briefly .unlit location with suitable environmental conditions (e.g. short periods of oblique sunlight and subsurface cryogenic temperatures which permit volatile trapping) can help answer these scientific and exploration questions. Key parameters must be defined in order to identify suitable landing sites, plan surface operations, and achieve mission success. To address this need, we have conducted an initial study for a lunar polar volatile prospecting mission, assuming the use of a solar-powered robotic lander and rover. Here we present the mission concept, goals and objectives, and landing site selection analysis for a short-duration, landed, solar-powered mission to a potential hydrogen volatile-rich site.

  13. Microwave Extraction of Water from Lunar Regolith Simulant

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William

    2007-01-01

    Nearly a decade ago the DOD Clementine lunar orbital mission obtained data indicating that the permanently shaded regions at the lunar poles may have permanently frozen water in the lunar soil. Currently NASA's Robotic Lunar Exploration Program, RLEP-2, is planned to land at the lunar pole to determine if water is present. The detection and extraction of water from the permanently frozen permafrost is an important goal for NASA. Extraction of water from lunar permafrost has a high priority in the In-Situ Resource Utilization, ISRU, community for human life support and as a fuel. The use of microwave processing would permit the extraction of water without the need to dig, drill, or excavate the lunar surface. Microwave heating of regolith is potentially faster and more efficient than any other heating methods due to the very low thermal conductivity of the lunar regolith. Also, microwaves can penetrate into the soil permitting water removal from deep below the lunar surface. A cryogenic vacuum test facility was developed for evaluating the use of microwave heating and water extraction from a lunar regolith permafrost simulant. Water is obtained in a cryogenic cold trap even with soil conditions below 0 C. The results of microwave extraction of water experiments will be presented.

  14. Extraction of Water from Lunar Permafrost

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William

    2009-01-01

    Remote sensing indicates the presence of hydrogen rich regions associated with the lunar poles. The logical hypothesis is that there is cryogenically trapped water ice located in craters at the lunar poles. Some of the craters have been in permanent darkness for a billion years. The presence of water at the poles as well as other scientific advantages of a polar base, have influenced NASA plans for the lunar outpost. The lunar outpost has water and oxygen requirements on the order of 1 ton per year scaling up to as much as 5 tons per year. Microwave heating of the frozen permafrost has unique advantages for water extraction. Proof of principle experiments have successfully demonstrated that microwaves will couple to the cryogenic soil in a vacuum and the sublimed water vapor can be successfully captured on a cold trap. Dielectric property measurements of lunar soil simulant have been measured. Microwave absorption and attenuation in lunar soil simulant has been correlated with measured dielectric properties. Future work will be discussed.

  15. Observational estimation of the 'cold trap' dehydration in the tropical tropopause layer: The water vapor match

    NASA Astrophysics Data System (ADS)

    Inai, Y.; Hasebe, F.; Fujiwara, M.; Shiotani, M.; Nishi, N.; Ogino, S.; Voemel, H.

    2008-12-01

    Stratospheric water vapor is controlled by the degree of dehydration the air parcels experienced on their entry into the stratosphere. The dehydration takes place in the tropical tropopause layer (TTL) over the western Pacific, where the air parcels are exposed to the lowest temperature during horizontal advection (cold trap hypothesis (Holton and Gettelman, 2001; Hatsushika and Yamazaki, 2003)). While, simplified treatment of the dehydration processes combined with trajectories reproduce water vapor variations reasonably well (Fueglistaler et al., 2005), extreme super saturation has been often observed in the TTL (Peter et al., 2006). Thus observational data are needed to quantify the efficiency of dehydration. We have been conducting the project Soundings of Ozone and Water in the Equatorial Region (SOWER) using chilled-mirror hygrometers in the western Pacific. Hasebe et al. (2007) suggested that the water content in the observed air parcels on many occasions was about twice as much as that expected from the minimum saturation mixing ratio during horizontal advection prior to sonde observation. To make this argument more quantitative, however, it is necessary to estimate the changed amount of water vapor by repeated observation of the same air parcel, the water vapor match. The match pairs are sought from the SOWER campaign network observations with the use of isentropic trajectories. For those pairs identified, extensive screening procedures are performed to verify the representativeness of the air parcel and to check possible water injection by deep convection. The match pairs are rejected when the sonde-observed temperature does not agree with spatio-temporary interpolated temperature of the ECMWF analysis field within a reasonable range, or the ozone mixing ratio is not conserved between the paired observations. Among those survived, we sought the cases which showed statistically significant dehydration. We estimated the ratios of the water mixing ratio

  16. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    PubMed

    Fuente, Asunción; Baruteau, Clément; Neri, Roberto; Carmona, Andrés; Agúndez, Marcelino; Goicoechea, Javier R; Bachiller, Rafael; Cernicharo, José; Berné, Olivier

    2017-09-01

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0".58×0".78 ≈ 80×110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.

  17. Communication: Fourier-transform infrared probing of remarkable quantities of gas trapped in cold homogeneously nucleated nanodroplets.

    PubMed

    Uras-Aytemiz, Nevin; Devlin, J Paul

    2013-07-14

    Studies of catalyzed all-vapor gas-hydrate formation on a sub-second timescale have been extended with a special focus on liquid-droplet compositions at the instant of hydrate crystallization. This focus has been enabled by inclusion of methanol in the all-vapor mixture. This slows droplet to gas-hydrate conversion near 200 K to a time scale suited for standard FTIR sampling. Such droplet data are sought as a guide to ongoing efforts to reduce the amount of guest catalyst required for instant formation of the gas hydrates. For the same reason, all-vapor sampling has also been extended to the generation of long-lived liquid droplets with reduced or no water content. Observations of single-solvent droplets show that surprising quantities of gas molecules are trapped during rapid droplet growth. For example, CO2 is trapped at levels near 50 mol. % in droplets of acetone, tetrahydrofuran, or trimethylene oxide formed under CO2 pressures of several Torr in a cold-chamber at 170 K. Less but significant amounts of gas are trapped at higher temperatures, or in methanol or water-methanol droplets. The droplet metastability appears to commonly lead to formation of bubbles larger than the original nanodroplets. Besides serving as a guide for the all-vapor gas-hydrate studies, the semiquantitative evidence of extensive trapping of gases is expected to have a role in future studies of atmospheric aerosols.

  18. Communication: Fourier-transform infrared probing of remarkable quantities of gas trapped in cold homogeneously nucleated nanodroplets

    NASA Astrophysics Data System (ADS)

    Uras-Aytemiz, Nevin; Devlin, J. Paul

    2013-07-01

    Studies of catalyzed all-vapor gas-hydrate formation on a sub-second timescale have been extended with a special focus on liquid-droplet compositions at the instant of hydrate crystallization. This focus has been enabled by inclusion of methanol in the all-vapor mixture. This slows droplet to gas-hydrate conversion near 200 K to a time scale suited for standard FTIR sampling. Such droplet data are sought as a guide to ongoing efforts to reduce the amount of guest catalyst required for instant formation of the gas hydrates. For the same reason, all-vapor sampling has also been extended to the generation of long-lived liquid droplets with reduced or no water content. Observations of single-solvent droplets show that surprising quantities of gas molecules are trapped during rapid droplet growth. For example, CO2 is trapped at levels near 50 mol. % in droplets of acetone, tetrahydrofuran, or trimethylene oxide formed under CO2 pressures of several Torr in a cold-chamber at 170 K. Less but significant amounts of gas are trapped at higher temperatures, or in methanol or water-methanol droplets. The droplet metastability appears to commonly lead to formation of bubbles larger than the original nanodroplets. Besides serving as a guide for the all-vapor gas-hydrate studies, the semiquantitative evidence of extensive trapping of gases is expected to have a role in future studies of atmospheric aerosols.

  19. Elemental Mercury Diffusion Processes and Concentration at the Lunar Poles

    NASA Technical Reports Server (NTRS)

    Moxley, Frederick; Killen, Rosemary M.; Hurley, Dana M.

    2011-01-01

    In 2009, the Lyman Alpha Mapping Project (LAMP) spectrograph onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft made the first detection of element mercury (Hg) vapor in the lunar exosphere after the Lunar Crater Observing and Sensing Satellite (LCROSS) Centaur rocket impacted into the Cabeus crater in the southern polar region of the Moon. The lunar regolith core samples from the Apollo missions determined that Hg had a devolatilized pattern with a concentration gradient increasing with depth, in addition to a layered pattern suggesting multiple episodes of burial and volatile loss. Hg migration on the lunar surface resulted in cold trapping at the poles. We have modeled the rate at which indigenous Hg is lost from the regolith through diffusion out of lunar grains. We secondly modeled the migration of Hg vapor in the exosphere and estimated the rate of cold-trapping at the poles using a Monte Carlo technique. The Hg vapor may be lost from the exosphere via ionization, Jeans escape, or re-impact into the surface causing reabsorption.

  20. 3D mixing in hot Jupiters atmospheres. I. Application to the day/night cold trap in HD 209458b

    NASA Astrophysics Data System (ADS)

    Parmentier, Vivien; Showman, Adam P.; Lian, Yuan

    2013-10-01

    Context. Hot Jupiters exhibit atmospheric temperatures ranging from hundreds to thousands of Kelvin. Because of their large day-night temperature differences, condensable species that are stable in the gas phase on the dayside - such as TiO and silicates - may condense and gravitationally settle on the nightside. Atmospheric circulation may counterbalance this tendency to gravitationally settle. This three-dimensional (3D) mixing of condensable species has not previously been studied for hot Jupiters, yet it is crucial to assess the existence and distribution of TiO and silicates in the atmospheres of these planets. Aims: We investigate the strength of the nightside cold trap in hot Jupiters atmospheres by investigating the mechanisms and strength of the vertical mixing in these stably stratified atmospheres. We apply our model to the particular case of TiO to address the question of whether TiO can exist at low pressure in sufficient abundances to produce stratospheric thermal inversions despite the nightside cold trap. Methods: We modeled the 3D circulation of HD 209458b including passive (i.e. radiatively inactive) tracers that advect with the 3D flow, with a source and sink term on the nightside to represent their condensation into haze particles and their gravitational settling. Results: We show that global advection patterns produce strong vertical mixing that can keep condensable species aloft as long as they are trapped in particles of sizes of a few microns or less on the nightside. We show that vertical mixing results not from small-scale convection but from the large-scale circulation driven by the day-night heating contrast. Although this vertical mixing is not diffusive in any rigorous sense, a comparison of our results with idealized diffusion models allows a rough estimate of the effective vertical eddy diffusivities in these atmospheres. The parametrization Kzz=5 × 104/ Pbar m2s-1, valid from ~1 bar to a few μbar, can be used in 1D models of HD

  1. Innovative techniques for the production of energetic radicals for lunar processing including cold plasma processing of local planetary ores

    NASA Technical Reports Server (NTRS)

    Bullard, D.; Lynch, D. C.

    1992-01-01

    Hydrogen reduction of ilmenite has been studied by a number of investigators as a potential means for recovery of oxygen from lunar soil. Interest in this process has always rested with the simplicity of the flow diagram and the utilization of established technology. Effective utilization of hydrogen in the reduction process at temperatures of 1200 C and below has always been disappointing and, as such, has led other investigators to focus attention on other systems. Effective utilization of hydrogen in the reduction of ilmenite can be significantly enhanced in the presence of a non-equilibrium hydrogen plasma. Ilmenite at solid specimen temperatures of 600 C to 970 C were reacted in a hydrogen plasma. Those experiments revealed that hydrogen utilization can be significantly enhanced. At a specimen temperature of 850 C the fraction of H2 reacted was 24 percent compared to the 7 percent theoretical limit calculated with thermodynamic theory for the same temperature. An added advantage for a hydrogen plasma involves further reduction of TiO2. Reduction of the iron oxide in ilmenite yields TiO2 and metallic iron as by products. Titanium forms a number of oxides including TiO, Ti2O3, Ti3O5 and the Magneli oxides (Ti4O7 to Ti50O99). In conventional processing of ilmenite with hydrogen it is possible to reduce TiO2 to Ti7O13 within approximately an hour, but with poor utilization of hydrogen on the order of one mole of H2 per thousand. In the cold or non-equilibrium plasma TiO2 can be rapidly reduced to Ti2O3 with hydrogen utilization exceeding 10 percent. Based on design considerations of the plasma reactor greater utilization of the hydrogen in the reduction of TiO2 is possible.

  2. Auto-metasomatism of the western lunar highlands: Result of closed system fractionation and mobilization of a KREEPy trapped liquid

    NASA Technical Reports Server (NTRS)

    Shervais, John W.; Vetter, Scott K.

    1993-01-01

    The discovery of REE-rich phosphates (dominantly whitlockite) in pristine, non-mare rocks of the western lunar nearside (Apollo 14, Apollo 12, and most recently, Apollo 17) has created a paradox for lunar petrologists. These phases are found in feldspar-rich cumulates of both the Mg-suite and the Alkali suite, which differ significantly in their mineral chemistries and major element compositions. Despite the differences in host rock compositions, whitlockites in both suites have similar compositions, with LREE concentrations around 21,000 to 37,000 x chondrite. Simple modeling of possible parent magma compositions using the experimental whitlockite/liquid partition coefficients of Dickinson and Hess show that these REE concentrations are too high to form from normal lunar magmas, even those characterized as 'urKREEP.'

  3. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    SciTech Connect

    Fuente, Asunción; Bachiller, Rafael; Baruteau, Clément

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0.″58 × 0.″78 ≈ 80 × 110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthalmore » variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.« less

  4. Rotational spectroscopy of cold and trapped molecular ions in the Lamb-Dicke regime

    NASA Astrophysics Data System (ADS)

    Alighanbari, S.; Hansen, M. G.; Korobov, V. I.; Schiller, S.

    2018-06-01

    Sympathetic cooling of trapped ions has been established as a powerful technique for the manipulation of non-laser-coolable ions1-4. For molecular ions, it promises vastly enhanced spectroscopic resolution and accuracy. However, this potential remains untapped so far, with the best resolution achieved being not better than 5 × 10-8 fractionally, due to residual Doppler broadening being present in ion clusters even at the lowest achievable translational temperatures5. Here we introduce a general and accessible approach that enables Doppler-free rotational spectroscopy. It makes use of the strong radial spatial confinement of molecular ions when trapped and crystallized in a linear quadrupole trap, providing the Lamb-Dicke regime for rotational transitions. We achieve a linewidth of 1 × 10-9 fractionally and 1.3 kHz absolute, an improvement of ≃50-fold over the previous highest resolution in rotational spectroscopy. As an application, we demonstrate the most precise test of ab initio molecular theory and the most accurate (1.3 × 10-9) determination of the proton mass using molecular spectroscopy. The results represent the long overdue extension of Doppler-free microwave spectroscopy of laser-cooled atomic ion clusters6 to higher spectroscopy frequencies and to molecules. This approach enables a wide range of high-accuracy measurements on molecules, both on rotational and, as we project, vibrational transitions.

  5. Feasibility and Definition of a Limited-Scale Lunar Polar Volatiles Prospecting Mission

    NASA Astrophysics Data System (ADS)

    Heldmann, J. L.; Elphic, R. C.; Colaprete, A.; Beyer, R. A.; Fong, T.; Cockrell, J.; Pedersen, L.

    2011-12-01

    The recent Lunar Crater Observing and Sensing Satellite (LCROSS) mission has provided evidence for significant amounts of cold-trapped volatiles in Cabeus crater near the Moon's south pole. Moreover, LRO/Diviner measurements of extremely cold lunar polar surface temperatures imply that volatiles can be stable outside of areas of strict permanent shadow. These discoveries hint at potentially extensive near-surface deposits at both lunar poles. The physical state, composition and distribution of these volatiles are key scientific issues that relate to source and emplacement mechanisms. These issues are also important for enabling lunar in situ resource utilization (ISRU). An assessment of the feasibility of cold-trapped volatile ISRU requires a priori information regarding the location, form, quantity, and potential for extraction of available resources. A small robotic mission to a persistently shadowed but briefly sunlit location with suitable environmental conditions (e.g., short periods of oblique sunlight and subsurface cryogenic temperatures which permit volatile trapping) can help answer these scientific and exploration questions. Key parameters must be defined in order to identify suitable landing sites, plan surface operations, and achieve mission success. To address this need, we have conducted an initial study for a lunar polar volatile prospecting mission, assuming the use of a solar-powered robotic lander and rover. Here we present the mission concept, goals and objectives, and landing site selection analysis for a short-duration, landed, solar-powered mission to a volatile-rich site.

  6. Energy efficient of ethanol recovery in pervaporation membrane bioreactor with mechanical vapor compression eliminating the cold traps.

    PubMed

    Fan, Senqing; Xiao, Zeyi; Li, Minghai

    2016-07-01

    An energy efficient pervaporation membrane bioreactor with mechanical vapor compression was developed for ethanol recovery during the process of fermentation coupled with pervaporation. Part of the permeate vapor at the membrane downstream under the vacuum condition was condensed by running water at the first condenser and the non-condensed vapor enriched with ethanol was compressed to the atmospheric pressure and pumped into the second condenser, where the vapor was easily condensed into a liquid by air. Three runs of fermentation-pervaporation experiment have been carried out lasting for 192h, 264h and 360h respectively. Complete vapor recovery validated the novel pervaporation membrane bioreactor. The total flux of the polydimethylsiloxane (PDMS) membrane was in the range of 350gm(-2)h(-1) and 600gm(-2)h(-1). Compared with the traditional cold traps condensation, mechanical vapor compression behaved a dominant energy saving feature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Spectroscopy of the three-photon laser excitation of cold Rubidium Rydberg atoms in a magneto-optical trap

    SciTech Connect

    Entin, V. M.; Yakshina, E. A.; Tretyakov, D. B.

    2013-05-15

    The spectra of the three-photon laser excitation 5S{sub 1/2} {yields} 5P{sub 3/2} {yields} 6S{sub 1/2}nP of cold Rb Rydberg atoms in an operating magneto-optical trap based on continuous single-frequency lasers at each stage are studied. These spectra contain two partly overlapping peaks of different amplitudes, which correspond to coherent three-photon excitation and incoherent three-step excitation due to the presence of two different ways of excitation through the dressed states of intermediate levels. A four-level theoretical model based on optical Bloch equations is developed to analyze these spectra. Good agreement between the experimental and calculated data is achieved by introducing additionalmore » decay of optical coherence induced by a finite laser line width and other broadening sources (stray electromagnetic fields, residual Doppler broadening, interatomic interactions) into the model.« less

  8. Evidence for Atmospheric Cold-trap Processes in the Noninverted Emission Spectrum of Kepler-13Ab Using HST /WFC3

    SciTech Connect

    Beatty, Thomas G.; Zhao, Ming; Gilliland, Ronald L.

    We observed two eclipses of the Kepler-13A planetary system, on UT 2014 April 28 and UT 2014 October 13, in the near-infrared using Wide Field Camera 3 on the Hubble Space Telescope . By using the nearby binary stars Kepler-13BC as a reference, we were able to create a differential light curve for Kepler-13A that had little of the systematics typically present in HST /WFC3 spectrophotometry. We measure a broadband (1.1–1.65 μ m) eclipse depth of 734 ± 28 ppm and are able to measure the emission spectrum of the planet at R  ≈ 50 with an average precision of 70 ppm. Wemore » find that Kepler-13Ab possesses a noninverted, monotonically decreasing vertical temperature profile. We exclude an isothermal profile and an inverted profile at more than 3 σ . We also find that the dayside emission of Kepler-13Ab appears generally similar to an isolated M7 brown dwarf at a similar effective temperature. Due to the relatively high mass and surface gravity of Kepler-13Ab, we suggest that the apparent lack of an inversion is due to cold-trap processes in the planet’s atmosphere. Using a toy model for where cold traps should inhibit inversions, as well as observations of other planets in this temperature range with measured emission spectra, we argue that with more detailed modeling and more observations we may be able to place useful constraints on the size of condensates on the daysides of hot Jupiters.« less

  9. Optimizing the performance of catalytic traps for hydrocarbon abatement during the cold-start of a gasoline engine.

    PubMed

    Puértolas, B; Navlani-García, M; García, T; Navarro, M V; Lozano-Castelló, D; Cazorla-Amorós, D

    2014-08-30

    A key target to reduce current hydrocarbon emissions from vehicular exhaust is to improve their abatement under cold-start conditions. Herein, we demonstrate the potential of factorial analysis to design a highly efficient catalytic trap. The impact of the synthesis conditions on the preparation of copper-loaded ZSM-5 is clearly revealed by XRD, N2 sorption, FTIR, NH3-TPD, SEM and TEM. A high concentration of copper nitrate precursor in the synthesis improves the removal of hydrocarbons, providing both strong adsorption sites for hydrocarbon retention at low temperature and copper oxide nanoparticles for full hydrocarbon catalytic combustion at high temperature. The use of copper acetate precursor leads to a more homogeneous dispersion of copper oxide nanoparticles also providing enough catalytic sites for the total oxidation of hydrocarbons released from the adsorption sites, although lower copper loadings are achieved. Thus, synthesis conditions leading to high copper loadings jointly with highly dispersed copper oxide nanoparticles would result in an exceptional catalytic trap able to reach superior hydrocarbon abatement under highly demanding operational conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Velocity fluctuations of a heavy particle interacting with a hot and cold gas: Applications to molecular ion traps

    NASA Astrophysics Data System (ADS)

    Vaca, Christian; Bruinsma, Robijn; Levine, Alex J.

    2014-03-01

    Understanding the stochastic motion of a heavy particle in a gas of lighter ones is a classic problem in statistical mechanics. Alkemade, MacDonald, and Van Kampen (AMvK) analyzed this problem in one dimension, computing the velocity distribution function of the heavy particle in a perturbation expansion using the ratio of mass of the light to the heavy particle as a small parameter. Novel tests of this theory are now being provided by modern molecular ion traps [arXiv:1310.5190]. In such experiments, the heavy molecular ion interacts with a cold gas used for sympathetic cooling and low density hot gasses that leak into the system. Thus, the heavy ion is maintained in a complex nonequilibrium state due to its interactions with the hot and cold gasses. In this talk, we present an extension of the AMvK model appropriate to these experiments. Using new analytic and computational techniques, we explore the time-dependent velocity distribution function of the molecular ion interacting with the gasses including higher order perturbative corrections necessary to discuss the case in which the ion's mass is not significantly larger than that of the other two species. Using this analysis we address the experimental observation of non-Gaussian velocity distributions of the heavy ions.

  11. Effect of Coulomb interaction on time of flight of cold antiprotons launched from an ion trap

    NASA Technical Reports Server (NTRS)

    Camp, J. B.; Witteborn, F. C.

    1993-01-01

    Time-of-flight spectra for Maxwell-Boltzman (MB) distributions of antiprotons initially held in an ion trap and detected after being launched through a 50-cm-long shielding drift tube have been calculated. The distributions used are of temperature 0.4-40 K, cubic length 0.003-3.0 cm, and number 10-100 particles. The mutual Coulomb repulsion of the particles causes a reduction in the number of late arrival particles expected from the MB velocity distribution. The Coulomb energy is not equally divided among the particles during the expansion. The energy is transferred preferentially to the outer particles so that the reduction in the number of slow particles is not necessarily large. The reduction factor is found to be greater than unity when the potential energy of the trapped ions is greater than about 5 percent of the ions' kinetic energy and is about 2 for the launch parameters of the Los Alamos antiproton gravity experiment.

  12. The science of the lunar poles

    NASA Astrophysics Data System (ADS)

    Lucey, P. G.

    2011-12-01

    It was the great geochemist Harold Urey who first called attention to peculiar conditions at the poles of the Moon where the very small inclination of the lunar spin axis with respect to the sun causes craters and other depressions to be permanently shaded from sunlight allowing very low temperatures. Urey suggested that the expected low temperature surfaces could cold trap and collect any vapors that might transiently pass through the lunar environment. Urey's notion has led to studies of the poles as a new research area in lunar science. The conditions and science of the poles are utterly unlike those of the familiar Moon of Neil Armstrong, and the study of the poles is similar to our understanding of the Moon itself at the dawn of the space age, with possibilities outweighing current understanding. Broadly, we can treat the poles as a dynamic system of input, transport, trapping, and loss. Volatile sources range from continuous, including solar wind, the Earth's polar fountain and micrometeorites, to episodic, including comets and wet asteroids, to nearly unique events including late lunar outgassing and passage through giant molecular clouds. The lunar exosphere transports volatiles to the poles, complicated by major perturbances to the atmosphere by volatile-rich sources. Trapping includes cold trapping, but also in situ creation of more refractory species such as organics, clathrates and water-bearing minerals, as well as sequester by regolith overturn or burial by larger impacts. Finally, volatiles are lost to space by ionization and sweeping. Spacecraft results have greatly added to the understanding of the polar system. Temperatures have been precisely measured by LRO, and thermal models now allow determination of temperature over the long evolution of the lunar orbit, and show very significant changes in temperature and temperature distribution with time and depth. Polar topography is revealed in detail by Selene and LRO laser altimeters while direct

  13. NH2- in a cold ion trap with He buffer gas: Ab initio quantum modeling of the interaction potential and of state-changing multichannel dynamics

    NASA Astrophysics Data System (ADS)

    Hernández Vera, Mario; Yurtsever, Ersin; Wester, Roland; Gianturco, Franco A.

    2018-05-01

    We present an extensive range of accurate ab initio calculations, which map in detail the spatial electronic potential energy surface that describes the interaction between the molecular anion NH2 - (1A1) in its ground electronic state and the He atom. The time-independent close-coupling method is employed to generate the corresponding rotationally inelastic cross sections, and then the state-changing rates over a range of temperatures from 10 to 30 K, which is expected to realistically represent the experimental trapping conditions for this ion in a radio frequency ion trap filled with helium buffer gas. The overall evolutionary kinetics of the rotational level population involving the molecular anion in the cold trap is also modelled during a photodetachment experiment and analyzed using the computed rates. The present results clearly indicate the possibility of selectively detecting differences in behavior between the ortho- and para-anions undergoing photodetachment in the trap.

  14. Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Hayne, P. O.; Banazadeh, P.; Baker, J. D.; Staehle, R. L.; Paine, C..; Paige, D. A.

    2014-01-01

    Water ice and other volatiles may be located in the Moon's polar regions, with sufficient quantities for in situ extraction and utilization by future human and robotic missions. Evidence from orbiting spacecraft and the LCROSS impactor suggests the presence of surface and/or nearsurface volatiles, including water ice. These deposits are of interest to human exploration to understand their potential for use by astronauts. Understanding the composition, quantity, distribution, and form of water/H species and other volatiles associated with lunar cold traps is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits could also reveal important information about the delivery of water to the Earth- Moon system, so are of scientific interest. The scientific exploration of the lunar polar regions was one of the key recommendations of the Planetary Science Decadal Survey. In order to address NASA's SKGs, the Advanced Exploration Systems (AES) program selected three lowcost 6-U CubeSat missions for launch as secondary payloads on the first test flight (EM1) of the Space Launch System (SLS) scheduled for 2017. The Lunar Flashlight mission was selected as one of these missions, specifically to address the SKG associated with lunar volatiles. Development of the Lunar Flashlight CubeSat concept leverages JPL's Interplanetary Nano- Spacecraft Pathfinder In Relevant Environment (INSPIRE) mission, MSFC's intimate knowledge of the Space Launch System and EM-1 mission, small business development of solar sail and electric propulsion hardware, and JPL experience with specialized miniature sensors. The goal of Lunar Flashlight is to determine the presence or absence of exposed water ice and its physical state, and map its concentration at the kilometer scale within the permanently shadowed regions of the lunar south pole. After being ejected in cislunar space by SLS, Lunar Flashlight deploys its solar panels and solar sail and maneuvers

  15. Lunar polar ice deposits: scientific and utilization objectives of the Lunar Ice Discovery Mission proposal.

    PubMed

    Duke, Michael B

    2002-03-01

    The Clementine mission has revived interest in the possibility that ice exists in shadowed craters near the lunar poles. Theoretically, the problem is complex, with several possible sources of water (meteoroid, asteroid, comet impact), several possible loss mechanisms (impact vaporization, sputtering, photoionization), and burial by meteorite impact. Opinions of modelers have ranged from no ice to several times 10(16) g of ice in the cold traps. Clementine bistatic radar data have been interpreted in favor of the presence of ice, while Arecibo radar data do not confirm its presence. The Lunar Prospector mission, planned to be flown in the fall of 1997, could gather new evidence for the existence of ice. If ice is present, both scientific and utilitarian objectives would be addressed by a lunar polar rover, such as that proposed to the NASA Discovery program, but not selected. The lunar polar rover remains the best way to understand the distribution and characteristics of lunar polar ice. c2002 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  16. NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)

    NASA Technical Reports Server (NTRS)

    Elphic, Richard; Delory, Gregory; Colaprete, Anthony; Horanyi, Mihaly; Mahaffy, Paul; Hine, Butler; McClard, Steven; Grayzeck, Edwin; Boroson, Don

    2011-01-01

    Nearly 40 years have passed since the last Apollo missions investigated the mysteries of the lunar atmosphere and the question of levitated lunar dust. The most important questions remain: what is the composition, structure and variability of the tenuous lunar exosphere? What are its origins, transport mechanisms, and loss processes? Is lofted lunar dust the cause of the horizon glow observed by the Surveyor missions and Apollo astronauts? How does such levitated dust arise and move, what is its density, and what is its ultimate fate? The US National Academy of Sciences/National Research Council decadal surveys and the recent "Scientific Context for Exploration of the Moon" (SCEM) reports have identified studies of the pristine state of the lunar atmosphere and dust environment as among the leading priorities for future lunar science missions. These measurements have become particularly important since recent observations by the Lunar Crater Observation and Sensing Satellite (LCROSS) mission point to significant amounts of water and other volatiles sequestered within polar lunar cold traps. Moreover Chandrayaan/M3, EPOXI and Cassini/VIMS have identified molecular water and hydroxyl on lunar surface regolith grains. Variability in concentration suggests these species are likely to be present in the exosphere, and thus constitute a source for the cold traps. NASA s Lunar Atmosphere and Dust Environment Explorer (LADEE) is currently under development to address these goals. LADEE will determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. LADEE will also determine whether dust is present in the lunar exosphere, and reveal its sources and variability. LADEE s results are relevant to surface boundary exospheres and dust processes throughout the solar system, will address questions regarding the origin and evolution of lunar volatiles, and will have

  17. Simulations of Water Migration in the Lunar Exosphere

    NASA Astrophysics Data System (ADS)

    Hurley, D.; Benna, M.; Mahaffy, P. R.; Elphic, R. C.; Goldstein, D. B.

    2014-12-01

    We perform modeling and analysis of water in the lunar exosphere. There were two controlled experiments of water interactions with the surface of the Moon observed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) Neutral Mass Spectrometer (NMS). The Chang'e 3 landing on the Moon on 14 Dec 2013 putatively sprayed ~120 kg of water on the surface on the Moon at a mid-morning local time. Observations by LADEE near the noon meridian on six of the orbits in the 24 hours following the landing constrain the propagation of water vapor. Further, on 4 Apr 2014, LADEE's Orbital Maintenance Manuever (OMM) #21 sprayed the surface of the Moon with an estimated 0.73 kg of water in the pre-dawn sector. Observations of this maneuver and later in the day constrain the adsorption and release at dawn of adsorbed materials. Using the Chang'e 3 exhaust plume and LADEE's OMM-21 as control experiments, we set limits to the adsorption and thermalization of water with lunar regolith. This enables us to predict the efficiency of the migration of water as a delivery mechanism to the lunar poles. Then we simulate the migration of water through the lunar exosphere using the rate of sporadic inputs from meteoritic sources (Benna et al., this session). Simulations predict the amount of water adsorbed to the surface of the Moon and the effective delivery rate to the lunar polar cold traps.

  18. Integration of Lunar Polar Remote-Sensing Data Sets: Evidence for Ice at the Lunar South Pole

    NASA Technical Reports Server (NTRS)

    Nozette, Stewart; Spudis, Paul D.; Robinson, Mark S.; Bussey, D. B. J.; Lichtenberg, Chris; Bonner, Robert

    2001-01-01

    In order to investigate the feasibility of ice deposits at the lunar south pole, we have integrated all relevant lunar polar data sets. These include illumination data, Arecibo ground-based monostatic radar data, newly processed Clementine bistatic radar data, and Lunar Prospector neutron spectrometer measurements. The possibility that the lunar poles harbor ice deposits has important implications not only as a natural resource for future human lunar activity but also as a record of inner solar system volatiles (e.g., comets and asteroids) over the past billion years or more. We find that the epithermal neutron flux anomalies, measured by Lunar Prospector, are coincident with permanently shadowed regions at the lunar south pole, particularly those associated with Shackleton crater. Furthermore, these areas also correlate with the beta=0 circular polarization ratio (CPR) enhancements revealed by new processing of Clementine bistatic radar echoes, which in turn are colocated with areas of anomalous high CPR observed by Arecibo Observatory on the lower, Sun-shadowed wall of Shackleton crater. Estimates of the extent of high CPR from Arecibo Observatory and Clementine bistatic radar data independently suggest that approximately 10 square kilometers of ice may be present on the inner Earth-facing wall of Shackleton crater. None of the experiments that obtained the data presented here were ideally suited for definitively identifying ice in lunar polar regions. By assessing the relative merits of all available data, we find that it is plausible that ice does occur in cold traps at the lunar south pole and that future missions with instruments specifically designed to investigate these anomalies are worthy.

  19. Lunar Simulation in the Lunar Dust Adhesion Bell Jar

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Sechkar, Edward A.

    2007-01-01

    The Lunar Dust Adhesion Bell Jar has been assembled at the NASA Glenn Research Center to provide a high fidelity lunar simulation facility to test the interactions of lunar dust and lunar dust simulant with candidate aerospace materials and coatings. It has a sophisticated design which enables it to treat dust in a way that will remove adsorbed gases and create a chemically reactive surface. It can simulate the vacuum, thermal, and radiation environments of the Moon, including proximate areas of illuminated heat and extremely cold shadow. It is expected to be a valuable tool in the development of dust repellant and cleaning technologies for lunar surface systems.

  20. Lunar volatiles: balancing science and resource development

    NASA Astrophysics Data System (ADS)

    Crider, Dana

    In the context of human exploration of the moon, the volatiles postulated to exist at the lunar poles have value as resources as well as scientific significance. Once sustained human operations commence on the moon, society will move from a paradigm in which examination of planetary materials has been unconstrained to one where use of those materials will support habitability and further exploration. A framework for the scientific investigation of lunar volatiles that allows for eventual economic exploitation can guide both activities and resolve the conflicts that will inevitably develop if the postulated lunar volatiles prove to be both extant and accessible. Scientific constraints on the framework include characterization at both poles of the isotopes, elements, and molecules in the volatiles, their relative and absolute abundances, and their horizontal and vertical distribution. A subset of this data is necessary in order to assess, develop, and initiate resource exploitation. In addition, the scientific record of volatiles in the cold traps can be contaminated by the cold-trapping of migrating volatiles released from operations elsewhere on the moon even if the indigenous, cold-trapped volatiles are not utilized. Possible decision points defining the transition from science-dominated to exploitation-dominated use include technology limits in the 70K environment, evolving science priorities (funding), and the resolution of major science issues. Inputs to policy development include any North vs. South Pole differences in volatile characteristics and the suitability of the volatiles to enable further scientific exploration of the moon. In the absence of national sovereignty on the moon, enforcement of any framework is an open question, particularly if science and commercial interests are in competition. The framework, processes, and precedent set by how we as a society choose to handle the scientific bounty and resource promise of lunar volatiles may eventually

  1. Extraction of Water from Polar Lunar Permafrost with Microwaves - Dielectric Property Measurements

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William

    2009-01-01

    Remote sensing indicates the presence of hydrogen rich regions associated with the lunar poles. The logical hypothesis is that there is cryogenically trapped water ice located in craters at the lunar poles. Some of the craters have been in permanent darkness for a billion years. The presence of water at the poles as well as other scientific advantages of a polar base, have influenced NASA plans for the lunar outpost. The lunar outpost has water and oxygen requirements on the order of 1 ton per year scaling up to as much as 10 tons per year. Microwave heating of the frozen permafrost has unique advantages for water extraction. Proof of principle experiments have successfully demonstrated that microwaves will couple to the cryogenic soil in a vacuum and the sublimed water vapor can be successfully captured on a cold trap. The dielectric properties of lunar soil will determine the hardware requirements for extraction processes. Microwave frequency dielectric property measurements of lunar soil simulant have been measured.

  2. Lunar Sulfur Capture System

    NASA Technical Reports Server (NTRS)

    Berggren, Mark; Zubrin, Robert; Bostwick-White, Emily

    2013-01-01

    The Lunar Sulfur Capture System (LSCS) protects in situ resource utilization (ISRU) hardware from corrosion, and reduces contaminant levels in water condensed for electrolysis. The LSCS uses a lunar soil sorbent to trap over 98 percent of sulfur gases and about two-thirds of halide gases evolved during hydrogen reduction of lunar soils. LSCS soil sorbent is based on lunar minerals containing iron and calcium compounds that trap sulfur and halide gas contaminants in a fixed-bed reactor held at temperatures between 250 and 400 C, allowing moisture produced during reduction to pass through in vapor phase. Small amounts of Earth-based polishing sorbents consisting of zinc oxide and sodium aluminate are used to reduce contaminant concentrations to one ppm or less. The preferred LSCS configuration employs lunar soil beneficiation to boost concentrations of reactive sorbent minerals. Lunar soils contain sulfur in concentrations of about 0.1 percent, and halogen compounds including chlorine and fluorine in concentrations of about 0.01 percent. These contaminants are released as gases such as H2S, COS, CS2,HCl, and HF during thermal ISRU processing with hydrogen or other reducing gases. Removal of contaminant gases is required during ISRU processing to prevent hardware corrosion, electrolyzer damage, and catalyst poisoning. The use of Earth-supplied, single-use consumables to entirely remove contaminants at the levels existing in lunar soils would make many ISRU processes unattractive due to the large mass of consumables relative to the mass of oxygen produced. The LSCS concept of using a primary sorbent prepared from lunar soil was identified as a method by which the majority of contaminants could be removed from process gas streams, thereby substantially reducing the required mass of Earth-supplied consumables. The LSCS takes advantage of minerals containing iron and calcium compounds that are present in lunar soil to trap sulfur and halide gases in a fixedbed reactor

  3. Cold trap dehydration in the Tropical Tropopause Layer characterised by SOWER chilled-mirror hygrometer network data in the Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Hasebe, F.; Inai, Y.; Shiotani, M.; Fujiwara, M.; Vömel, H.; Nishi, N.; Ogino, S.-Y.; Shibata, T.; Iwasaki, S.; Komala, N.; Peter, T.; Oltmans, S. J.

    2013-04-01

    A network of balloon-borne radiosonde observations employing chilled-mirror hygrometers for water and electrochemical concentration cells for ozone has been operated since the late 1990s in the Tropical Pacific to capture the evolution of dehydration of air parcels advected quasi-horizontally in the Tropical Tropopause Layer (TTL). The analysis of this dataset is made on isentropes taking advantage of the conservative properties of tracers moving adiabatically. The existence of ice particles is diagnosed by lidars simultaneously operated with sonde flights. Characteristics of the TTL dehydration are presented on the basis of individual soundings and statistical features. Supersaturations close to 80% in relative humidity with respect to ice (RHice) have been observed in subvisible cirrus clouds located near the cold point tropopause at extremely low temperatures around 180 K. Although further observational evidence is needed to confirm the credibility of such high values of RHice, the evolution of TTL dehydration is evident from the data in isentropic scatter plots between the sonde-observed mixing ratio (OMR) and the minimum saturation mixing ratio (SMRmin) along the back trajectories associated with the observed air mass. Supersaturation exceeding the critical value of homogeneous ice nucleation (OMR > 1.6 × SMRmin) is frequently observed on the 360 and 365 K surfaces indicating that cold trap dehydration is in progress in the TTL. The near correspondence between the two (OMR ~ SMRmin) at 380 K on the other hand implies that this surface is not sufficiently cold for the advected air parcels to be dehydrated. Above 380 K, cold trap dehydration would scarcely function while some moistening occurs before the air parcels reach the lowermost stratosphere at around 400 K where OMR is generally smaller than SMRmin.

  4. Limits to the lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Morgan, T. H.; Shemansky, D. E.

    1991-01-01

    Apollo UV spectrometer experiment set limits on the density of oxygen of less than 500/cu cm, and the Apollo Lunar Atmospheric Composition Experiment data imply a value less than 50/cu cm above the subsolar point. These limits are surprisingly small relative to the measured value for sodium. A simple consideration of sources and sinks predicts significantly greater densities of oxygen. It is possible but doubtful that the Apollo measurements occurred during an epoch in which source rates were small. A preferential loss process for oxygen on the darkside of the moon is considered in which ionization by electron capture in surface collisions leads to escape through acceleration in the local electric field. Cold trapping in permanently shadowed regions as a net sink is considered and discounted, but the episodic nature of cometary insertion may allow formation of ice layers which act as a stabilized source of OH. On the basis of an assumed meteoroid impact source, a possible emission brightness of 50 R in the OH(A - X)(0,0) band above the lunar bright limb is predicted.

  5. Limits to the lunar atmosphere

    NASA Astrophysics Data System (ADS)

    Morgan, T. H.; Shemansky, D. E.

    1991-02-01

    Apollo UV spectrometer experiment set limits on the density of oxygen of less than 500/cu cm, and the Apollo Lunar Atmospheric Composition Experiment data imply a value less than 50/cu cm above the subsolar point. These limits are surprisingly small relative to the measured value for sodium. A simple consideration of sources and sinks predicts significantly greater densities of oxygen. It is possible but doubtful that the Apollo measurements occurred during an epoch in which source rates were small. A preferential loss process for oxygen on the darkside of the moon is considered in which ionization by electron capture in surface collisions leads to escape through acceleration in the local electric field. Cold trapping in permanently shadowed regions as a net sink is considered and discounted, but the episodic nature of cometary insertion may allow formation of ice layers which act as a stabilized source of OH. On the basis of an assumed meteoroid impact source, a possible emission brightness of 50 R in the OH(A - X)(0,0) band above the lunar bright limb is predicted.

  6. Effects of Orbital Evolution on Lunar Ice Stability

    NASA Astrophysics Data System (ADS)

    Siegler, M. A.; Bills, B. G.; Paige, D. A.

    2010-12-01

    Permanently shadowed regions of the Moon have complex thermal histories that influence their ability to act as traps for water ice. Though many areas are now cold enough that surface water ice would be stable from sublimation losses for billions of years, this has not always been the case. Here we examine the effects of the long term orbital and rotational evolution of the Moon on polar thermal history, volatile stability and mobility. Using data from the Diviner Lunar Radiometer, aboard the Lunar Reconnaissance Orbiter, we validate models of the current temperature in the lunar polar region. This model includes the effects of topography, scattering, re-radiation, and regolith thermal properties. Then, integrating the effects of tidal torques backward from the present, we reconstruct past orbital and rotational states and use them as input to the thermal model to estimate the thermal environment of the distant lunar past. The rate of tidal evolution of the lunar orbit is quite uncertain, thus use orbital semimajor axis as independent variable, rather than time, in the reconstruction. The orbital integration results in a high obliquity period which occurred when the Moon was at about half its present distance from the Earth. This period, which caused half a year of direct sunlight on the polar region, is due to a transition between two Cassini States, spin-orbit configurations resulting from internal dissipation within the Moon. Since this event, the tilt of the Moon (with respect to the ecliptic) has slowly decreased to the current 1.54 degree. Prior to this transition, due to the relatively small Earth-Moon distance, large amplitude variations in the inclination of the orbital plain were also important. We examine the stability of polar volatiles in response to the evolving lunar orbit, and apply simple models to describe when in the Moon’s history supplied volatiles would have been most likely to be buried by thermal diffusion. When temperatures are much below

  7. Forest filter effect versus cold trapping effect on the altitudinal distribution of PCBs: a case study of Mt. Gongga, eastern Tibetan Plateau.

    PubMed

    Liu, Xin; Li, Jun; Zheng, Qian; Bing, Haijian; Zhang, Ruijie; Wang, Yan; Luo, Chunling; Liu, Xiang; Wu, Yanhong; Pan, Suhong; Zhang, Gan

    2014-12-16

    Mountains are observed to preferentially accumulate persistent organic pollutants (POPs) at higher altitude due to the cold condensation effect. Forest soils characterized by high organic carbon are important for terrestrial storage of POPs. To investigate the dominant factor controlling the altitudinal distribution of POPs in mountainous areas, we measured concentrations of polychlorinated biphenyls (PCBs) in different environmental matrices (soil, moss, and air) from nine elevations on the eastern slope of Mt. Gongga, the highest mountain in Sichuan Province on the Tibetan Plateau. The concentrations of 24 measured PCBs ranged from 41 to 510 pg/g dry weight (dw) (mean: 260 pg/g dw) in the O-horizon soil, 280 to 1200 pg/g dw (mean: 740 pg/g dw) in moss, and 33 to 60 pg/m(3) (mean: 47 pg/m(3)) in air. Soil organic carbon was a key determinant explaining 75% of the variation in concentration along the altitudinal gradient. Across all of the sampling sites, the average contribution of the forest filter effect (FFE) was greater than that of the mountain cold trapping effect based on principal components analysis and multiple linear regression. Our results deviate from the thermodynamic theory involving cold condensation at high altitudes of mountain areas and highlight the importance of the FFE.

  8. Vegetation and Cold Trapping Modulating Elevation-dependent Distribution of Trace Metals in Soils of a High Mountain in Eastern Tibetan Plateau

    PubMed Central

    Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong

    2016-01-01

    Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport. PMID:27052807

  9. Vegetation and Cold Trapping Modulating Elevation-dependent Distribution of Trace Metals in Soils of a High Mountain in Eastern Tibetan Plateau.

    PubMed

    Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong

    2016-04-07

    Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport.

  10. Drill System Development for the Lunar Subsurface Exploration

    NASA Astrophysics Data System (ADS)

    Zacny, Kris; Davis, Kiel; Paulsen, Gale; Roberts, Dustyn; Wilson, Jack; Hernandez, Wilson

    Reaching the cold traps at the lunar poles and directly sensing the subsurface regolith is a primary goal of lunar exploration, especially as a means of prospecting for future In Situ Resource Utilization efforts. As part of the development of a lunar drill capable of reaching a depth of two meters or more, Honeybee Robotics has built a laboratory drill system with a total linear stroke of 1 meter, capability to produce as much as 45 N-m of torque at a rotational speed of 200 rpm, and a capability of delivering maximum downforce of 1000 N. Since this is a test-bed, the motors were purposely chosen to be relative large to provide ample power to the drill system (the Apollo drill was a 500 Watt drill, i.e. not small in current standards). In addition, the drill is capable of using three different drilling modes: rotary, rotary percussive and percussive. The frequency of percussive impact can be varied if needed while rotational speed can be held constant. An integral part of this test bed is a vacuum chamber that is currently being constructed. The drill test-bed is used for analyzing various drilling modes and testing different drill bit and auger systems under low pressure conditions and in lunar regolith simulant. The results of the tests are used to develop final lunar drill design as well as efficient drilling protocols. The drill was also designed to accommodate a downhole neutron spectrometer for measuring the amount of hydrated material in the area surrounding the borehole, as well as downhole temperature sensors, accelerometers, and electrical properties tester. The presentation will include history of lunar drilling, challenges of drilling on the Moon, a description of the drill and chamber as well as preliminary drilling test results conducted in the ice-bound lunar regolith simulant with a variety of drill bits and augers systems.

  11. Lunar Analog

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.

    2009-01-01

    In this viewgraph presentation, a ground-based lunar analog is developed for the return of manned space flight to the Moon. The contents include: 1) Digital Astronaut; 2) Bed Design; 3) Lunar Analog Feasibility Study; 4) Preliminary Data; 5) Pre-pilot Study; 6) Selection of Stockings; 7) Lunar Analog Pilot Study; 8) Bed Design for Lunar Analog Pilot.

  12. Direct Solar Wind Proton Access into Permanently Shadowed Lunar Polar Craters

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.

    2011-01-01

    Recent analyses of Lunar Prospector neutron spectrometer (LPNS) data have suggested that high abundances of hydrogen exist within cold traps at the lunar poles, and it has often been assumed that hydrogen-bearing volatiles sequestered in permanent shadow are topographically shielded from sputtering by solar wind protons. However, recent simulation results are presented showing that solar wind protons clearly access the floor of an idealized, shadowed lunar crater through a combination of thermal and ambipolar processes, in effect creating a plasma "miniwake". These simulations are the first to model the mini-wake environment in two spatial dimensions with a self-consistent lunar surface-plasma interaction. Progress is reported on constraining the nonzero particle fluxes and energies incident on kilometer-scale shadowed topography, such as a small crater embedded within a larger one. The importance of direct solar wind proton bombardment is discussed within the context of understanding the stability and inventory of hydrogen-bearing volatiles in shadow at the lunar poles. The support of the National Lunar Science institute, the DREAM institute, LPROPS, and the NASA Postdoctoral Program at NASA Goddard Space Flight Center administered by ORAU are gratefully acknowledged.

  13. Lunar Resources

    NASA Technical Reports Server (NTRS)

    Edmunson, Jennifer

    2010-01-01

    This slide presentation reviews the lunar resources that we know are available for human use while exploration of the moon. Some of the lunar resources that are available for use are minerals, sunlight, solar wind, water and water ice, rocks and regolith. The locations for some of the lunar resouces and temperatures are reviewed. The Lunar CRater Observation and Sensing Satellite (LCROSS) mission, and its findings are reviewed. There is also discussion about water retention in Permament Shadowed Regions of the Moon. There is also discussion about the Rock types on the lunar surface. There is also discussion of the lunar regolith, the type and the usages that we can have from it.

  14. Advantages of a Lunar Cryogenic Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Burke, James; Kaltenegger, Lisa

    2017-04-01

    ESA and collaborating agencies are preparing to establish a Moon Village at a south polar site. Robotic precursor missions will include resource prospecting in permanently shadowed cold traps. The environment there is favorable for infrared and millimeter-wave astronomy. In this paper we examine the evolutionary development of a cryogenic observatory, beginning with small telescopes robotically installed and operated in conjunction with prospecting precursor missions, and continuing into later phases supported from the Moon Village. Relay communications into and out of the cold traps may be shared or else provided by dedicated links. Candidate locations can be selected with the help of data from the Lunar Reconnaissance Orbiter. The first telescope will be primarily a proof-of-concept demonstrator but it can have scientific and applications uses too, supplementing other space-based survey instruments observing astrophysical objects and potentially hazardous asteroids and comets. A south polar site sees only half or the sky but that half includes the galactic center and many other interesting targets. The telescopes can stare at any object for as long as desired, providing monitoring capabilities for transiting or radial velocity planet searches, like NASA's TESS mission. In addition such telescopes are opening the prospect of gathering spectroscopic data on exoplanet atmospheres and cool stars - from UV information to assess the activity of a star to VIS to IR spectral data of the atmosphere and even atmospheric biosignatures. Preliminary design of the first telescope might be funded under a NASA call for lunar science payload concepts. An important additional product can be educational and outreach uses of the observatory, especially for the benefit of people in the developing world who can do southern hemisphere follow-up observations.

  15. A lunar polar expedition

    NASA Technical Reports Server (NTRS)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-01-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  16. A conformational study of protonated noradrenaline by UV-UV and IR dip double resonance laser spectroscopy combined with an electrospray and a cold ion trap method.

    PubMed

    Wako, Hiromichi; Ishiuchi, Shun-Ichi; Kato, Daichi; Féraud, Géraldine; Dedonder-Lardeux, Claude; Jouvet, Christophe; Fujii, Masaaki

    2017-05-03

    The conformer-selected ultraviolet (UV) and infrared (IR) spectra of protonated noradrenaline were measured using an electrospray/cryogenic ion trap technique combined with photo-dissociation spectroscopy. By comparing the UV photo dissociation (UVPD) spectra with the UV-UV hole burning (HB) spectra, it was found that five conformers coexist under ultra-cold conditions. Based on the spectral features of the IR dip spectra of each conformer, two different conformations on the amine side chain were identified. Three conformers (group I) were assigned to folded and others (group II) to extended structures by comparing the observed IR spectra with the calculated ones. Observation of the significantly less-stable extended conformers strongly suggests that the extended structures are dominant in solution and are detected in the gas phase by kinetic trapping. The conformers in each group are assignable to rotamers of OH orientations in the catechol ring. By comparing the UV-UV HB spectra and the calculated Franck-Condon spectra obtained by harmonic vibrational analysis of the S 1 state, with the aid of relative stabilization energies of each conformer in the S 0 state, the absolute orientations of catechol OHs of the observed five conformers were successfully determined. It was found that the 0-0 transition of one folded conformer is red-shifted by about 1000 cm -1 from the others. The significant red-shift was explained by a large contribution of the πσ* state to S 1 in the conformer in which an oxygen atom of the meta-OH group is close to the ammonium group.

  17. Cold column trapping-cloud point extraction coupled to high performance liquid chromatography for preconcentration and determination of curcumin in human urine.

    PubMed

    Rahimi, Marzieh; Hashemi, Payman; Nazari, Fariba

    2014-05-15

    A cold column trapping-cloud point extraction (CCT-CPE) method coupled to high performance liquid chromatography (HPLC) was developed for preconcentration and determination of curcumin in human urine. A nonionic surfactant, Triton X-100, was used as the extraction medium. In the proposed method, a low surfactant concentration of 0.4% v/v and a short heating time of only 2min at 70°C were sufficient for quantitative extraction of the analyte. For the separation of the extraction phase, the resulted cloudy solution was passed through a packed trapping column that was cooled to 0 °C. The temperature of the CCT column was then increased to 25°C and the surfactant rich phase was desorbed with 400μL ethanol to be directly injected into HPLC for the analysis. The effects of different variables such as pH, surfactant concentration, cloud point temperature and time were investigated and optimum conditions were established by a central composite design (response surface) method. A limit of detection of 0.066mgL(-1) curcumin and a linear range of 0.22-100mgL(-1) with a determination coefficient of 0.9998 were obtained for the method. The average recovery and relative standard deviation for six replicated analysis were 101.0% and 2.77%, respectively. The CCT-CPE technique was faster than a conventional CPE method requiring a lower concentration of the surfactant and lower temperatures with no need for the centrifugation. The proposed method was successfully applied to the analysis of curcumin in human urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Lunar History

    NASA Technical Reports Server (NTRS)

    Edmunson, Jennifer E.

    2009-01-01

    This section of the workshop describes the history of the moon, and offers explanations for the importance of understanding lunar history for engineers and users of lunar simulants. Included are summaries of the initial impact that is currently in favor as explaining the moon's formation, the crust generation, the creation of craters by impactors, the era of the lunar cataclysm, which some believe effected the evolution of life on earth, the nature of lunar impacts, crater morphology, which includes pictures of lunar craters that show the different types of craters, more recent events include effect of micrometeorites, solar wind, radiation and generation of agglutinates. Also included is a glossary of terms.

  19. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu.

    PubMed

    Uchiyama, Hidefumi; Zhao, Qing-Li; Hassan, Mariame Ali; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2015-01-01

    Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an

  20. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu

    PubMed Central

    Uchiyama, Hidefumi; Zhao, Qing-Li; Hassan, Mariame Ali; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2015-01-01

    Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an

  1. South Pole Hydrogen Distribution for Present Lunar Conditions: Implications for Past Impacts

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Paige, D. A.; Siegler, M. A.; Vasavada, A. R.; Eke, V. R.; Teodoro, L. F. A.; Lawrence, D. J.

    2010-01-01

    It has been known since the Lunar Prospector mission that the poles of the Moon evidently harbor enhanced concentrations of hydrogen [1,2]. The physical and chemical form of the hydrogen has been much debated. Using imagery from Clementine it was possible to roughly estimate permanently-shadowed regions (PSRs), and to perform image reconstructions of the Lunar Prospector epithermal neutron flux maps [3,4]. The hydrogen concentrations resulting from these reconstructions were consistent with a few weight percent water ice in selected locations. With the LCROSS impact, we now know that hydrogen in the form of ice does exist in lunar polar cold traps [5]. Armed with this information, and new data from LRO/Diviner, we can examine whether the pre-sent-day distribution of hydrogen in the form of water ice is consistent with a past large impact that delivered a large mass of volatiles to the lunar surface. These volatiles, mixed with solid impact ejecta, would then be lost from locations having high mean temperatures but would otherwise remain trapped in locations with sufficiently low mean annual temperatures [6]. The time scales for loss would depend on the location-dependent temperatures as well as impact history.

  2. Lunar studies

    NASA Technical Reports Server (NTRS)

    Gold, T.

    1979-01-01

    Experimental and theoretical research, concerning lunar surface processes and the nature, origin and derivation of the lunar surface cover, conducted during the period of February 1, 1971 through January 31, 1976 is presented. The principle research involved were: (1) electrostatic dust motion and transport process; (2) seismology properties of fine rock powders in lunar conditions; (3) surface processes that darken the lunar soil and affect the surface chemical properties of the soil grains; (4) laser simulation of micrometeorite impacts (estimation of the erosion rate caused by the microemeteorite flux); (5) the exposure history of the lunar regolith; and (6) destruction of amino acids by exposure to a simulation of the solar wind at the lunar surface. Research papers are presented which cover these general topics.

  3. A geochemical assessment of possible lunar ore formation

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Colson, Russell O.; Vaniman, David

    1991-01-01

    The Moon apparently formed without appreciable water or other relatively volatile materials. Interior concentrations of water or other volatile substances appear to be extremely low. On Earth, water is important to the genesis of nearly all types of ores. Thus, some have reasoned that only abundant elements would occur in ore concentrations. The definition and recognition of ores on the Moon challenge the imaginations and the terrestrial perceptions of ore bodies. Lunar ores included solar-wind soaked soils, which contain abundant but dilute H, C, N, and noble gases (including He-3). Oxygen must be mined; soils contain approximately 45 percent (wt). Mainstream processes of rock formation concentrated Si, Mg, Al, Fe, and Ca, and possibly Ti and Cr. The highland surface contains approximately 70 percent (wt) feldspar (mainly CaAl2Si2O8), which can be separated from some highland soils. Small fragments of dunite were collected; dunite may occur in walls and central peaks of some craters. Theoretical extensions of observations of lunar samples suggest that the Moon may have produced ores of trace elements. Some small fragments have trace-element concentrations 10(exp 4) times higher than the lunar average, indicating that effective geochemical separations occurred; processes included fractional crystallization, silicate immiscibility, vaporization and condensation, and sulfide metamorphism. Operations of these processes acting on indigenous materials and on meteoritic material in the regolith could have produced ores. Infalling carbonaceous meteorites and comets have added water and hydrocarbons that may have been cold-trapped. Vesicles in basalts, pyroclastic beads, and reported transient events suggest gag emission from the lunar interior; such gas might concentrate and transport rare elements. Large impacts may disperse ores or produce them through deposition of heat at depth and by vaporization and subsequent condensation. The main problem in assessing lunar

  4. The lunar thermal ice pump

    SciTech Connect

    Schorghofer, Norbert; Aharonson, Oded, E-mail: norbert@hawaii.edu

    2014-06-20

    It has long been suggested that water ice can exist in extremely cold regions near the lunar poles, where sublimation loss is negligible. The geographic distribution of H-bearing regolith shows only a partial or ambiguous correlation with permanently shadowed areas, thus suggesting that another mechanism may contribute to locally enhancing water concentrations. We show that under suitable conditions, water molecules can be pumped down into the regolith by day-night temperature cycles, leading to an enrichment of H{sub 2}O in excess of the surface concentration. Ideal conditions for pumping are estimated and found to occur where the mean surface temperature ismore » below 105 K and the peak surface temperature is above 120 K. These conditions complement those of the classical cold traps that are roughly defined by peak temperatures lower than 120 K. On the present-day Moon, an estimated 0.8% of the global surface area experiences such temperature variations. Typically, pumping occurs on pole-facing slopes in small areas, but within a few degrees of each pole the equator-facing slopes are preferred. Although pumping of water molecules is expected over cumulatively large areas, the absolute yield of this pump is low; at best, a few percent of the H{sub 2}O delivered to the surface could have accumulated in the near-surface layer in this way. The amount of ice increases with vapor diffusivity and is thus higher in the regolith with large pore spaces.« less

  5. Hidden in the Neutrons: Physical Evidence for Lunar True Polar Wander

    NASA Astrophysics Data System (ADS)

    Keane, J. T.; Siegler, M. A.; Miller, R. S.; Laneuville, M.; Paige, D. A.; Matsuyama, I.; Lawrence, D. J.; Crotts, A.; Poston, M.

    2015-12-01

    Airless bodies like the Moon are time capsules of planetary and solar system evolution. Lunar polar ices, in particular, record a history of volatile delivery, orbital dynamics, and solar system chemistry. However, despite two decades of orbital geochemistry measurements, the observed abundances and spatial distribution of lunar polar volatiles (likely water ice, as inferred by epithermal neutron deficits) remain unexplained. The observed deposits do not correlate with measured surface temperatures or thermal models of ice stability and are notably asymmetric about the lunar poles, with the peak abundance offset from the present-day pole by 5°. Here we show, for the first time, that polar volatile deposits at the North and South pole are antipodal, displaced equally from each each pole along opposite longitudes. These off-polar volatiles likely represent fossilized cold-traps, formed when the moon had a different spin pole. Reorientation of the Moon from this paleopole to the present pole (i.e. true polar wander) altered the locations of cold-traps and resulted in the asymmetric, but antipodal, polar hydrogen distribution. Since true polar wander results from changes in the distribution of mass within a planet, the direction and magnitude of this wander can be used to constrain the evolution of the lunar interior. We find a causal link between this paleopole and the unique thermal evolution of the nearside Procellarum KREEP Terrane (PKT). Radiogenic heating within this province not only resulted major mare volcanism, but also altered the Moon's moments of inertia. We use a combination of analytical, and numerical 3-D thermochemical convection models to show that the evolution of the PKT naturally produces the correct direction and magnitude of polar wander (albeit early in lunar history, when the PKT was most active). This work provides a self-consistent explanation for the spatial distribution of lunar polar volatiles and opens a deeper connection to the

  6. Lunar horticulture.

    NASA Technical Reports Server (NTRS)

    Walkinshaw, C. H.

    1971-01-01

    Discussion of the role that lunar horticulture may fulfill in helping establish the life support system of an earth-independent lunar colony. Such a system is expected to be a hybrid between systems which depend on lunar horticulture and those which depend upon the chemical reclamation of metabolic waste and its resynthesis into nutrients and water. The feasibility of this approach has been established at several laboratories. Plants grow well under reduced pressures and with oxygen concentrations of less than 1% of the total pressure. The carbon dioxide collected from the lunar base personnel should provide sufficient gas pressure (approx. 100 mm Hg) for growing the plants.

  7. Lunar Flashlight

    NASA Technical Reports Server (NTRS)

    Baker, John; Cohen, Barbara; Walden, Amy

    2015-01-01

    The Lunar Flashlight is a Jet Propulsion Laboratory project, with NASA Marshall Space Flight Center (MSFC) serving as the principal investigator and providing the solar sail propulsion system. The goal of Lunar Flashlight is to determine the presence and abundance of exposed lunar water ice within permanently shadowed regions (PSRs) at the lunar south pole, and to map its concentration at the 1-2 kilometer scale to support future exploration and use. After being ejected in cis-lunar space by the launch vehicle, Lunar Flashlight deploys solar panels and an 85-square-meter solar sail and maneuvers into a low-energy transfer to lunar orbit. The solar sail and attitude control system work to bring the satellite into an elliptical polar orbit, spiraling down over a period of 18 months to a perilune of 30-10 kilometers above the south pole for data collection. Lunar Flashlight uses its solar sail to shine reflected sunlight onto the lunar surface, measuring surface reflectance with a four-filter point spectrometer. The spectrometer measures water ice absorption features (1.5, 1.95 microns) and the continuum between them (1.1, 1.9 microns). The ratios of water ice bands to the continuum will provide a measure of the abundance of surface frost and its variability across PSRs. Water ice abundance will be correlated with other data from previous missions, such as the Lunar Reconnaissance Orbiter and Lunar Crater Observation and Sensing Satellite, to provide future human and robotic explorers with a map of potential resources. The mission is enabled by the use of an 85-square-meter solar sail being developed by MSFC.

  8. Lunar Riometry

    NASA Astrophysics Data System (ADS)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Burns, J. O.; Kasper, J. C.

    2011-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent and its behavior over time, including modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the peak plasma density of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of nanometer- to micron-scale dust. The LUNAR consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  9. Lunar cement

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  10. Lunar magma transport phenomena

    NASA Technical Reports Server (NTRS)

    Spera, Frank J.

    1992-01-01

    An outline of magma transport theory relevant to the evolution of a possible Lunar Magma Ocean and the origin and transport history of the later phase of mare basaltic volcanism is presented. A simple model is proposed to evaluate the extent of fractionation as magma traverses the cold lunar lithosphere. If Apollo green glasses are primitive and have not undergone significant fractionation en route to the surface, then mean ascent rates of 10 m/s and cracks of widths greater than 40 m are indicated. Lunar tephra and vesiculated basalts suggest that a volatile component plays a role in eruption dynamics. The predominant vapor species appear to be CO CO2, and COS. Near the lunar surface, the vapor fraction expands enormously and vapor internal energy is converted to mixture kinetic energy with the concomitant high-speed ejection of vapor and pyroclasts to form lunary fire fountain deposits such as the Apollo 17 orange and black glasses and Apollo 15 green glass.

  11. Steam trap monitor

    DOEpatents

    Ryan, M.J.

    1987-05-04

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

  12. Design and characterization of a low cost CubeSat multi-band optical receiver to map water ice on the lunar surface for the Lunar Flashlight mission

    NASA Astrophysics Data System (ADS)

    Vinckier, Quentin; Crabtree, Karlton; Paine, Christopher G.; Hayne, Paul O.; Sellar, Glenn R.

    2017-08-01

    Lunar Flashlight is an innovative NASA CubeSat mission dedicated to mapping water ice in the permanently shadowed regions of the Moon, which may act as cold traps for volatiles. To this end, a multi-band reflectometer will be sent to orbit the Moon. This instrument consists of an optical receiver aligned with four lasers, each of which emits sequentially at a different wavelength in the near-infrared between 1 μm and 2 μm. The receiver measures the laser light reflected from the lunar surface; continuum/absorption band ratios are then analyzed to quantify water ice in the illuminated spot. Here, we present the current state of the optical receiver design. To optimize the optical signal-to-noise ratio, we have designed the receiver so as to maximize the laser signal collected, while minimizing the stray light reaching the detector from solarilluminated areas of the lunar surface outside the field-of-view, taking into account the complex lunar topography. Characterization plans are also discussed. This highly mass- and volume-constrained mission will demonstrate several firsts, including being one of the first CubeSats performing science measurements beyond low Earth orbit.

  13. Synodic and Semiannual Oscillations of Argon-40 in the Lunar Exosphere

    NASA Technical Reports Server (NTRS)

    Hodges, R. Richard, Jr.; Mahaffy, Paul R.

    2016-01-01

    The neutral mass spectrometer on the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft collected a trove of exospheric data, including a set of high-quality measurements of radiogenic Ar-40 over a period of 142 days. Data synthesis studies, using well-established exosphere simulation tools, show that the LADEE argon data are consistent with an exosphere-regolith interaction that is dominated by adsorption and that the desorption process generates the Armand distribution of exit velocities. The synthesis work has uncovered an apparent semiannual oscillation of argon that is consistent with temporal sequestration in the seasonal cold traps created at the poles by the obliquity of the Moon. In addition, the LADEE data provide new insight into the pristine nature of lunar regolith, its spatially varying sorption properties, and the influence of sorption processes on the synodic oscillation of the argon exosphere.

  14. Lunar and Planetary Science XXXV: Viewing the Lunar Interior Through Titanium-Colored Glasses

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session"Viewing the Lunar Interior Through Titanium-Colored Glasses" included the following reports:Consequences of High Crystallinity for the Evolution of the Lunar Magma Ocean: Trapped Plagioclase; Low Abundances of Highly Siderophile Elements in the Lunar Mantle: Evidence for Prolonged Late Accretion; Fast Anorthite Dissolution Rates in Lunar Picritic Melts: Petrologic Implications; Searching the Moon for Aluminous Mare Basalts Using Compositional Remote-Sensing Constraints II: Detailed analysis of ROIs; Origin of Lunar High Titanium Ultramafic Glasses: A Hybridized Source?; Ilmenite Solubility in Lunar Basalts as a Function of Temperature and Pressure: Implications for Petrogenesis; Garnet in the Lunar Mantle: Further Evidence from Volcanic Glasses; Preliminary High Pressure Phase Relations of Apollo 15 Green C Glass: Assessment of the Role of Garnet; Oxygen Fugacity of Mare Basalts and the Lunar Mantle. Application of a New Microscale Oxybarometer Based on the Valence State of Vanadium; A Model for the Origin of the Dark Ring at Orientale Basin; Petrology and Geochemistry of LAP 02 205: A New Low-Ti Mare-Basalt Meteorite; Thorium and Samarium in Lunar Pyroclastic Glasses: Insights into the Composition of the Lunar Mantle and Basaltic Magmatism on the Moon; and Eu2+ and REE3+ Diffusion in Enstatite, Diopside, Anorthite, and a Silicate Melt: A Database for Understanding Kinetic Fractionation of REE in the Lunar Mantle and Crust.

  15. Experiment LEND of the NASA Lunar Reconnaissance Orbiter for high-resolution mapping of neutron emission of the Moon.

    PubMed

    Mitrofanov, I G; Sanin, A B; Golovin, D V; Litvak, M L; Konovalov, A A; Kozyrev, A S; Malakhov, A V; Mokrousov, M I; Tretyakov, V I; Troshin, V S; Uvarov, V N; Varenikov, A B; Vostrukhin, A A; Shevchenko, V V; Shvetsov, V N; Krylov, A R; Timoshenko, G N; Bobrovnitsky, Y I; Tomilina, T M; Grebennikov, A S; Kazakov, L L; Sagdeev, R Z; Milikh, G N; Bartels, A; Chin, G; Floyd, S; Garvin, J; Keller, J; McClanahan, T; Trombka, J; Boynton, W; Harshman, K; Starr, R; Evans, L

    2008-08-01

    The scientific objectives of neutron mapping of the Moon are presented as 3 investigation tasks of NASA's Lunar Reconnaissance Orbiter mission. Two tasks focus on mapping hydrogen content over the entire Moon and on testing the presence of water-ice deposits at the bottom of permanently shadowed craters at the lunar poles. The third task corresponds to the determination of neutron contribution to the total radiation dose at an altitude of 50 km above the Moon. We show that the Lunar Exploration Neutron Detector (LEND) will be capable of carrying out all 3 investigations. The design concept of LEND is presented together with results of numerical simulations of the instrument's sensitivity for hydrogen detection. The sensitivity of LEND is shown to be characterized by a hydrogen detection limit of about 100 ppm for a polar reference area with a radius of 5 km. If the presence of ice deposits in polar "cold traps" is confirmed, a unique record of many millions of years of lunar history would be obtained, by which the history of lunar impacts could be discerned from the layers of water ice and dust. Future applications of a LEND-type instrument for Mars orbital observations are also discussed.

  16. Depth and Horizontal Distribution of Volatiles in Lunar Permanently Shadowed Regions

    NASA Astrophysics Data System (ADS)

    Hurley, D. M.; Bussey, B.; Lawrence, D. J.; Gladstone, R.; Elphic, R. C.; Vondrak, R. R.

    2011-12-01

    Neutron spectroscopy from Lunar Prospector returned data consistent with the presence of water ice in the near-subsurface of the Moon in permanently shadowed regions (PSRs) at low spatial resolution. Clementine and ground-based radar returned tantalizing, but inconclusive evidence of ice in lunar PSRs. Later, Mini-RF on Chandrayaan-1 and LRO detected a signature consistent with water ice in some polar craters on the Moon, but not all PSRs. Similarly, LEND on LRO detected a heterogeneous distribution of hydrogen among lunar PSRs. In addition, LAMP on LRO detected FUV spectra consistent with a heterogeneous distribution of frost on the surface of permanently shadowed regions. Yet the weakest spectral feature from LAMP was associated with the crater with the strongest hydrogen feature from LEND. The impact of LCROSS into Cabeus released water and other volatiles, but abundances were higher than the background amounts detected by neutron spectroscopy implying heterogeneity within that PSR. Data from any one instrument taken alone would lead one to a different conclusion about the distribution of volatiles than data taken from any other single instrument. Although the data from different instrumentation can seem to be disparate, the apparent discrepancy results from the different fields of view and sensitivities of the detection techniques. The complementary nature of these data can be exploited to provide a multi-dimensional view of volatiles in lunar PSRs. We apply a Monte Carlo model to describe the retention and redistribution of volatiles within lunar cold traps. The model runs constrain the coherence of volatile deposits with depth, area, and time, which allows us to examine how a given volatile distribution would appear to remote sensing experiments. This provides a big picture framework for integrating the observations of volatiles on the surface and at depth at the poles of the Moon with the goal of finding a distribution of volatiles in lunar PSRs consistent

  17. Searching for water at the south pole of the Moon with a lunar impactor

    NASA Astrophysics Data System (ADS)

    Banerdt, B.; Alkalai, L.

    The idea that water on the Moon s surface would eventually migrate to the lunar poles and be cold-trapped there indefinitely was first proposed in the 1960 s and subsequent modeling has generally confirmed this possibility The existence of such polar water deposits is critical for planning future lunar exploration and it has important implications for lunar science as well However observations from the Earth and orbiting spacecraft have not been able to categorically confirm or deny the existence of ice in permanently shadowed depressions at the lunar poles The next generation of orbiters such as LRO Chandrayaan and SELENE while making important observations will be capable only of providing circumstantial evidence of water and its concentration and the challenges of landing and operating a spacecraft in the extreme conditions of permanent night are considerable We have studied a low-cost alternative approach similar to NASA s Deep Impact mission for enabling a direct detection of the existence of water in the upper few meters of the lunar subsurface Our mission uses a 1000-kg spacecraft to impact the lunar surface at 2 5-3 km sec from a geocentric trajectory This impact will excavate a crater 20 meters in diameter ejecting over 50 cubic meters of regolith Assuming a few volume percent water this ejecta would include several metric tons of ice Spectral evidence for water may be found across the electromagnetic spectrum from microwave and infrared to ultraviolet This could be derived from the immediate impact flash vapor produced through secondary

  18. Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; McKellip, Rodney; Brannon, David P.; Underwood, Lauren; Russell, Kristen J.

    2007-01-01

    In polar regions of the Moon, some areas within craters are permanently shadowed from solar illumination and can reach temperatures of 100 K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50 K in many cases. Observed temperatures suggest that these regions could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high-vacuum cryogenic environments, which in their current state could support cryogenic applications. Besides ice stores, the unique conditions at the lunar poles harbor an environment that provides an opportunity to reduce the power, weight, and total mass that needs to be carried from the Earth to the Moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few manmade augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist. Our analysis reveals that lightweight thermal shielding within shaded craters could create an environment several Kelvin above absolute zero. The temperature ranges of both naturally shaded and thermally augmented craters could enable the long-term storage of most gases, low-temperature superconductors for large magnetic fields, devices and advanced high-speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were used to facilitate the operation of near

  19. Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments

    NASA Astrophysics Data System (ADS)

    Ryan, R. E.; McKellip, R. C.; Brannon, D. P.; Underwood, L. W.; Russell, K. J.

    2007-12-01

    In polar regions of the Moon, there are areas within craters that are permanently shadowed from solar illumination, which can reach temperatures of 100K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50K in many cases. Temperatures observed in theses regions suggest that they could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high vacuum cryogenic environments, which in their current state could support cryogenic applications. The unique conditions at the lunar poles, besides ice stores, harbor an environment that provides an opportunity to reduce the power, weight and total mass that needs to be carried from the Earth to the moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few man-made augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist there. Our analysis reveals that lightweight thermal shielding, within shaded craters, could create an environment several Kelvin above absolute zero. The temperature ranges of naturally shaded craters and thermally augmented ones could enable the long-term storage of most gases, low temperature superconductors for large magnetic fields, devices and advanced high speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were to be used

  20. The Discharging of Roving Objects in the Lunar Polar Regions

    NASA Technical Reports Server (NTRS)

    Jackson, T. L.; Farrell, W. M.; Killen, R. M.; Delory, G. T.; Halekas, J. S.; Stubbs, T. B.

    2012-01-01

    In 2007, the National Academy of Sciences identified the lunar polar regions as special environments: very cold locations where resources can be trapped and accumulated. These accumulated resources not only provide a natural reservoir for human explorers, but their very presence may provide a history of lunar impact events and possibly an indication of ongoing surface reactive chemistry. The recent LCROSS impacts confirm that polar crater floors are rich in material including approx 5%wt of water. An integral part of the special lunar polar environment is the solar wind plasma. Solar wind protons and electrons propagate outward from the Sun, and at the Moon's position have a nominal density of 5 el/cubic cm, flow speed of 400 km/sec, and temperature of 10 eV (approx. equal 116000K). At the sub-solar point, the flow of this plasma is effectively vertically incident at the surface. However, at the poles and along the lunar terminator region, the flow is effectively horizontal over the surface. As recently described, in these regions, local topography has a significant effect on the solar wind flow. Specifically, as the solar wind passes over topographic features like polar mountains and craters, the plasma flow is obstructed and creates a distinct plasma void in the downstream region behind the obstacle. An ion sonic wake structure forms behind the obstacle, not unlike that which forms behind a space shuttle. In the downstream region where flow is obstructed, the faster moving solar wind electrons move into the void region ahead of the more massive ions, thereby creating an ambipolar electric field pointing into the void region. This electric field then deflects ion trajectories into the void region by acting as a vertical inward force that draws ions to the surface. This solar wind 'orographic' effect is somewhat analogous to that occurring with terrestrial mountains. However, in the solar wind, the ambipolar E-field operating in the collision less plasma replaces

  1. Scaled Lunar Module Jet Erosion Experiments

    NASA Technical Reports Server (NTRS)

    Land, Norman S.; Scholl, Harland F.

    1966-01-01

    An experimental research program was conducted on the erosion of particulate surfaces by a jet exhaust. These experiments were scaled to represent the lunar module (LM) during landing. A conical cold-gas nozzle simulating the lunar module nozzle was utilized. The investigation was conducted within a large vacuum chamber by using gravel or glass beads as a simulated soil. The effects of thrust, descent speed, nozzle terminal height, particle size on crater size, and visibility during jet erosion were determined.

  2. Lunar Magnetism.

    NASA Astrophysics Data System (ADS)

    Fuller, M.

    2008-05-01

    Models of lunar magnetism need to explain (1) strong Natural Remanent Magnetization (NRM), as indicated by IRMs normalization in some of the returned Apollo samples with ages from about 3.9Ae to 3.65Ae, (2) magnetic anomalies antipodal to the young basins of a similar age, (3) the absence of major magnetic anomalies over these same basins, (4) the presence of central anomalies over some Nectarian and PreNectarian basins, and finally (5) strong fields with scale lengths of homogeneity of the order of kms, or less, found over the Cayley Formations and similar material. Observations (1), (2) and (4) have frequently been taken to require the presence of a lunar dynamo. However, if there had been a lunar dynamo at this time, why are there so few samples that carry an unequivocal strong NRM appropriate for TRM in the proposed dynamo fields. It is also an uncomfortable coincidence that the dynamo appears to cease to give strong fields close to the end of the time of heavy bombardment. Given these difficulties with the lunar dynamo model, it is worth reexamining other possible explanations of lunar magnetism. The obvious candidate is impact related shock magnetization, which already appears to provide an explanation for the magnetization of 62235, a key sample with strong magnetization. Hood's model accounts for the antipodal anomalies, while the observations at Vredefort may account for the anomalies over central peaks and uplifted ring structures in major basins. The question that remains is whether all of the observed lunar magnetization can be explained by impact related magnetization, or whether a dynamo is still required.

  3. Lunar Eclipse

    NASA Image and Video Library

    2003-11-09

    In this lunar eclipse viewed from Merritt Island, Fla., the full moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere. This light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through - when it does, it is called a lunar eclipse.

  4. Limits on the Abundance and Burial Depth of Lunar Polar Ice

    NASA Technical Reports Server (NTRS)

    Elphic, Richard C.; Paige, David A.; Siegler, Matthew A.; Vasavada, Ashwin R.; Teodoro, Luis A.; Eke, Vincent R.

    2012-01-01

    The Diviner imaging radiometer experiment aboard the Lunar Reconnaissance Orbiter has revealed that surface temperatures in parts of the lunar polar regions are among the lowest in the solar system. Moreover, modeling of these Diviner data using realistic thermal conductivity profiles for lunar regolith and topography-based illumination has been done, with surprising results. Large expanses of circum-polar terrain appear to have near-subsurface temperatures well below 110K, despite receiving episodic low-angle solar illumination [Paige et al., 2010]. These subsurface cold traps could provide areally extensive reservoirs of volatiles. Here we examine the limits to abundance and burial depth of putative volatiles, based on the signature they would create for orbital thermal and epithermal neutrons. Epithermals alone are not sufficient to break the abundance-depth ambiguity, while thermal neutrons provide an independent constraint on the problem. The subsurface cold traps are so large that even modest abundances, well below that inferred from LCROSS observations, would produce readily detectable signatures in the Lunar Prospector neutron spectrometer data [Colaprete et al., 2010]. Specifically, we forward-model the thermal and epithermal neutron leakage flux that would be observed for various ice concentrations, given the depth at which ice stability begins. The LCROSS results point to a water-equivalent hydrogen abundance (WEH) in excess of 10 wt%, when all hydrogenous species are added together (except for H2, detected by LAMP on LRO [Gladstone et al., 2010]). When such an ice abundance is placed in a layer below the stability depth of Paige et al., the epithermal and thermal neutron leakage fluxes are vastly reduced and very much at odds with orbital observations. So clearly an environment that is conducive to cold trapping is necessary but not sufficient for the presence of volatiles such as water. We present the limits on the abundances that are indeed consistent

  5. Lunar and Planetary Science Conference, 11th, Houston, TX, March 17-21, 1980, Proceedings. Volume 3 - Physical processes

    NASA Technical Reports Server (NTRS)

    Merrill, R. B.

    1980-01-01

    Geophysical investigations are discussed, taking into account laboratory measurements, planetary measurements, and structural implications and models. Impact processes are also examined. Experimental studies are considered along with aspects of crater morphology and frequency, and models theory. Volcanic-tectonic processes are investigated and topics related to the study of planetary atmospheres are examined. Attention is given to shallow moonquakes, the focal mechanism of deep moonquakes, lunar polar wandering, the search for an intrinsic magnetic field of Venus, the early global melting of the terrestrial planets, the first few hundred years of evolution of a moon of fission origin, the control of crater morphology by gravity and target type, crater peaks in Mercurian craters, lunar cold traps and their influence on argon-40, and solar wind sputtering effects in the atmospheres of Mars and Venus.

  6. Lunar cement and lunar concrete

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1991-01-01

    Results of a study to investigate methods of producing cements from lunar materials are presented. A chemical process and a differential volatilization process to enrich lime content in selected lunar materials were identified. One new cement made from lime and anorthite developed compressive strengths of 39 Mpa (5500 psi) for 1 inch paste cubes. The second, a hypothetical composition based on differential volatilization of basalt, formed a mineral glass which was activated with an alkaline additive. The 1 inch paste cubes, cured at 100C and 100 percent humidity, developed compressive strengths in excess of 49 Mpa (7100 psi). Also discussed are tests made with Apollo 16 lunar soil and an ongoing investigation of a proposed dry mix/steam injection procedure for casting concrete on the Moon.

  7. RESOLVE: Bridge between early lunar ISRU and science objectives

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Sanders, G.; Larson, W.; Johnson, K.

    2007-08-01

    and make direct measurements. With this in mind, NASA initiated development of a payload named RESOLVE (Regolith & Environment Science and Oxygen & Lunar Volatile Extraction) that could be flown to the lunar poles and answer the questions surrounding the hydrogen: what's its form? how much is there? how deep or distributed is it? To do this, RESOLVE will use a drill to take a 1-2 meter core sample, crush and heat sample segments of the core in an oven and monitor the amount and type of volatile gases that evolve with a gas chromatograph (GC). RESOLVE will also selectively capture both hydrogen gas and water as a secondary method of quantification. A specialized camera that is coupled with a Raman spectrometer will allow core samples to be microscopically examined while also determining its mineral composition and possible water content before heating. Because RESOLVE is aimed at demonstrating capabilities and techniques that might be later used for ISRU, a multi-use oven is utilized with the ability to produce oxygen using the hydrogen reduction method. SCIENCE BENEFITS: In the process of answering the hydrogen question, the RESOLVE instrument suite will provide data that can address a number of other scientific questions and debate issues, especially the sources of volatiles and reactions that might take place in cold traps. It should be noted that the original instrument suite for RESOLVE was selected to accomplish the largest number of ISRU and science objectives as possible within the limited funding available. Complementary instruments are noted when additional science objectives can be accomplished. Incorporation of these new instruments into RESOLVE and potential partnerships is an area of near-term interest. Sources of Volatiles: The main proposed sources are episodic comet impacts, moreor- less continuous micrometeorite (both comet and asteroidal) impacts, solar wind bombardment, occasional volcanic emissions from the interior, and episodic delivery of

  8. Lunar philosophers.

    PubMed

    Fara, Patricia

    2007-03-01

    A close associate of the Lunar Society, Joseph Wright of Derby painted several industrial and scientific scenes. This article (part of the Science in the Industrial Revolution series) shows how two of his works - featuring an orrery and an alchemist - reveal the ideas and aspirations of the provincial philosophers who made up the Society.

  9. Lunar Seismology

    ERIC Educational Resources Information Center

    Latham, Gary V.

    1973-01-01

    Summarizes major findings from the passive seismic experiment on the Moon with the Apollo seismic network illustrated in a map. Concludes that human beings may have discovered something very basic about the physics of planetary interiors because of the affirmation of the presence of a warm'' lunar interior. (CC)

  10. Lunar oasis

    NASA Technical Reports Server (NTRS)

    Duke, Michael B.; Niehoff, John

    1989-01-01

    The 'lunar oasis' emphasizes development toward self-sufficiency in order to reduce dependence on the earth for resupply, and to enable expansion utilizing indigeneous resources. The oasis phase includes: (1) habitation and work facilities for 10 people, (2) capability for extraction of volatile consumables (H2O, O2, N2, etc.) from indigenous resources for resupply of losses and filling of reservoirs, and (3) a highly closed life support system, including food production. In the consolidation phase, the base grows from 10 to 30 crewmembers. Lunar resources are used for expanding the lunar foothold, including construction of habitats, extraction of metals for the fabrication of products for maintenance and repair, and expansion of the power system. The strategy does not produce propellants for space transportation. A 10-year scenario is laid out, which contains all elements needed to allow the base to enter a self-expanding utilization phase. Three lunar missions yer year, two cargo missions and one crew flight, are required. At the end of a decade, the base is producing more than it requires for its continued support, although it is unlikely to be completely self-sufficient.

  11. A Miniature Mineralogical Instrument for In-Situ Characterization of Ices and Hydrous Minerals at the Lunar Poles

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Blake, D.; Vaniman, D.; Bish, D.; Chipera, S.; Collins, S. A.

    2002-01-01

    Lunar missions over the past few years have provided new evidence that water may be present at the lunar poles in the form of cold-trapped ice deposits, thereby rekindling interest in sampling the polar regions. Robotic landers fitted with mineralogical instrumentation for in-situ analyses could provide unequivocal answers on the presence of crystalline water ice and/or hydrous minerals at the lunar poles. Data from Lunar Prospector suggest that any surface exploration of the lunar poles should include the capability to drill to depths of more than 40 cm. Limited data on the lunar geotherm indicate temperatures of approximately 245-255 K at regolith depths of 40 cm, within a range where water may exist in the liquid state as brine. A relevant terrestrial analog occurs in Antarctica, where the zeolite mineral chabazite has been found at the boundary between ice-free and ice-cemented regolith horizons, and precipitation from a regolith brine is indicated. Soluble halogens and sulfur in the lunar regolith could provide comparable brine chemistry in an analogous setting. Regolith samples collected by a drilling device could be readily analyzed by CheMin, a mineralogical instrument that combines X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques to simultaneously characterize the chemical and mineralogical compositions of granular or powdered samples. CheMin can unambiguously determine not only the presence of hydrous alteration phases such as clays or zeolites, but it can also identify the structural variants or types of clay or zeolite present (e.g., well-ordered versus poorly ordered smectite; chabazite versus phillipsite). In addition, CheMin can readily measure the abundances of key elements that may occur in lunar minerals (Na, Mg, Al, Si, K, Ca, Fe) as well as the likely constituents of lunar brines (F, Cl, S). Finally, if coring and analysis are done during the lunar night or in permanent shadow, CheMin can provide information on the chemistry and

  12. Steam trap monitor

    DOEpatents

    Ryan, Michael J.

    1988-01-01

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

  13. Ice in the lunar polar regions

    NASA Technical Reports Server (NTRS)

    Arnold, J. R.

    1979-01-01

    The idea that ice and other trapped volatiles exist in permanently shadowed regions near the lunar poles was proposed by Watson, Murray, and Brown (1961). It is reexamined in the present paper, in the light of the vast increase of lunar knowledge. The stability of the traps and the trapping mechanism are verified. Four potential sources of lunar H2O, namely (1) solar wind reduction of Fe in the regolith, (2) H2O-containing meteoroids, (3) cometary impact, and (4) (the least certain) degassing of the interior, can supply amounts of trapped H2O estimated in the range of 10 to the 16th to 10 to the 17th g. Two important destructive mechanisms have been identified: photodissociation of H2O molecules adsorbed on the sunlit surface and sputtering or decomposition of trapped H2O by solar wind particles. The effect of impact gardening is mainly protective. The question of the presence of H2O in the traps remains open; it can be settled by experiment.

  14. Lunar Missions and Datasets

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2009-01-01

    There are two slide presentations contained in this document. The first reviews the lunar missions from Surveyor, Galileo, Clementine, the Lunar Prospector, to upcoming lunar missions, Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation & Sensing Satellite (LCROSS), Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS), Gravity Recovery and Interior Laboratory (GRAIL), Lunar Atmosphere, Dust and Environment Explorer (LADEE), ILN and a possible Robotic sample return mission. The information that the missions about the moon is reviewed. The second set of slides reviews the lunar meteorites, and the importance of lunar meteorites to adding to our understanding of the moon.

  15. Lunar Base Sitting

    NASA Technical Reports Server (NTRS)

    Staehle, Robert L.; Burke, James D.; Snyder, Gerald C.; Dowling, Richard; Spudis, Paul D.

    1993-01-01

    Speculation with regard to a permanent lunar base has been with us since Robert Goddard was working on the first liquid-fueled rockets in the 1920's. With the infusion of data from the Apollo Moon flights, a once speculative area of space exploration has become an exciting possibility. A Moon base is not only a very real possibility, but is probably a critical element in the continuation of our piloted space program. This article, originally drafted by World Space Foundation volunteers in conjuction with various academic and research groups, examines some of the strategies involved in selecting an appropriate site for such a lunar base. Site selection involves a number of complex variables, including raw materials for possible rocket propellant generation, hot an cold cycles, view of the sky (for astronomical considerations, among others), geological makeup of the region, and more. This article summarizes the key base siting considerations and suggests some alternatives. Availability of specific resources, including energy and certain minerals, is critical to success.

  16. Lunar Base Sitting

    NASA Astrophysics Data System (ADS)

    Staehle, Robert L.; Burke, James D.; Snyder, Gerald C.; Dowling, Richard; Spudis, Paul D.

    1993-12-01

    Speculation with regard to a permanent lunar base has been with us since Robert Goddard was working on the first liquid-fueled rockets in the 1920's. With the infusion of data from the Apollo Moon flights, a once speculative area of space exploration has become an exciting possibility. A Moon base is not only a very real possibility, but is probably a critical element in the continuation of our piloted space program. This article, originally drafted by World Space Foundation volunteers in conjuction with various academic and research groups, examines some of the strategies involved in selecting an appropriate site for such a lunar base. Site selection involves a number of complex variables, including raw materials for possible rocket propellant generation, hot an cold cycles, view of the sky (for astronomical considerations, among others), geological makeup of the region, and more. This article summarizes the key base siting considerations and suggests some alternatives. Availability of specific resources, including energy and certain minerals, is critical to success.

  17. Laboratory studies of magnetic anomaly effects on electric potential distributions near the lunar surface

    NASA Astrophysics Data System (ADS)

    Wang, X.; Robertson, S. H.; Horanyi, M.; NASA Lunar Science Institute: Colorado CenterLunar Dust; Atmospheric Studies

    2011-12-01

    The Moon does not have a global magnetic field, unlike the Earth, rather it has strong crustal magnetic anomalies. Data from Lunar Prospector and SELENE (Kaguya) observed strong interactions between the solar wind and these localized magnetic fields. In the laboratory, a configuration of a horseshoe permanent magnet below an insulating surface is used as an analogue of lunar crustal magnetic anomalies. Plasmas are created above the surface by a hot filament discharge. Potential distributions are measured with an emissive probe and show complex spatial structures. In our experiments, electrons are magnetized with gyro-radii r smaller than the distance from the surface d (r < d) and ions are un-magnetized with r > d. Unlike negative charging on surfaces with no magnetic fields, the surface potential at the center of the magnetic dipole is found close to the plasma bulk potential. The surface charging is dominated by the cold unmagnetized ions, while the electrons are shielded away. A potential minimum is formed between the center of the surface and the bulk plasma, most likely caused by the trapped electrons between the two magnetic mirrors at the cusps. The value of the potential minimum with respect to the bulk plasma potential decreases with increasing plasma density and neutral pressure, indicating that the mirror-trapped electrons are scattered by electron-electron and electron-neutral collisions. The potential at the two cusps are found to be more negative due to the electrons following the magnetic field lines onto the surface.

  18. The Lunar Mapping and Modeling Project

    NASA Astrophysics Data System (ADS)

    Noble, S. K.; Nall, M. E.; French, R. A.; Muery, K. G.

    2009-12-01

    The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The information provided through LMMP will assist CxP in: planning tasks in the areas of landing site evaluation and selection, design and placement of landers and other stationary assets, design of rovers and other mobile assets, developing terrain-relative navigation (TRN) capabilities, and assessment and planning of science traverses. The project draws on expertise from several NASA and non-NASA organizations (MSFC, ARC, GSFC, JPL, CRREL - US Army Cold Regions Research and Engineering Laboratory, and the USGS). LMMP will utilize data predominately from the Lunar Reconnaissance Orbiter, but also historical and international lunar mission data (e.g. Apollo, Lunar Orbiter, Kaguya, Chandrayaan-1), as available and appropriate, to meet Constellation’s data needs. LMMP will provide access to this data through a single intuitive and easy to use NASA portal that transparently accesses appropriately sanctioned portions of the widely dispersed and distributed collections of lunar data, products and tools. Two visualization systems are being developed, a web-based system called Lunar Mapper, and a desktop client, ILIADS, which will be downloadable from the LMMP portal. LMMP will provide such products as local and regional imagery and DEMs, hazard assessment maps, lighting and gravity models, and resource maps. We are working closely with the LRO team to prevent duplication of efforts and to ensure the highest quality data products. While Constellation is our primary customer, LMMP is striving to be as useful as possible to the lunar science community, the lunar

  19. Lunar sulfur

    NASA Technical Reports Server (NTRS)

    Kuck, David L.

    1991-01-01

    Ideas introduced by Vaniman, Pettit and Heiken in their 1988 Uses of Lunar Sulfur are expanded. Particular attention is given to uses of SO2 as a mineral-dressing fluid. Also introduced is the concept of using sulfide-based concrete as an alternative to the sulfur-based concretes proposed by Leonard and Johnson. Sulfur is abundant in high-Ti mare basalts, which range from 0.16 to 0.27 pct. by weight. Terrestrial basalts with 0.15 pct. S are rare. For oxygen recovery, sulfur must be driven off with other volatiles from ilmenite concentrates, before reduction. Troilite (FeS) may be oxidized to magnetite (Fe3O4) and SO2 gas, by burning concentrates in oxygen within a magnetic field, to further oxidize ilmenite before regrinding the magnetic reconcentration. SO2 is liquid at -20 C, the mean temperature underground on the Moon, at a minimum of 0.6 atm pressure. By using liquid SO2 as a mineral dressing fluid, all the techniques of terrestrial mineral separation become available for lunar ores and concentrates. Combination of sulfur and iron in an exothermic reaction, to form iron sulfides, may be used to cement grains of other minerals into an anhydrous iron-sulfide concrete. A sulfur-iron-aggregate mixture may be heated to the ignition temperature of iron with sulfur to make a concrete shape. The best iron, sulfur, and aggregate ratios need to be experimentally established. The iron and sulfur will be by-products of oxygen production from lunar minerals.

  20. Lunar sulfur

    NASA Astrophysics Data System (ADS)

    Kuck, David L.

    Ideas introduced by Vaniman, Pettit and Heiken in their 1988 Uses of Lunar Sulfur are expanded. Particular attention is given to uses of SO2 as a mineral-dressing fluid. Also introduced is the concept of using sulfide-based concrete as an alternative to the sulfur-based concretes proposed by Leonard and Johnson. Sulfur is abundant in high-Ti mare basalts, which range from 0.16 to 0.27 pct. by weight. Terrestrial basalts with 0.15 pct. S are rare. For oxygen recovery, sulfur must be driven off with other volatiles from ilmenite concentrates, before reduction. Troilite (FeS) may be oxidized to magnetite (Fe3O4) and SO2 gas, by burning concentrates in oxygen within a magnetic field, to further oxidize ilmenite before regrinding the magnetic reconcentration. SO2 is liquid at -20 C, the mean temperature underground on the Moon, at a minimum of 0.6 atm pressure. By using liquid SO2 as a mineral dressing fluid, all the techniques of terrestrial mineral separation become available for lunar ores and concentrates. Combination of sulfur and iron in an exothermic reaction, to form iron sulfides, may be used to cement grains of other minerals into an anhydrous iron-sulfide concrete. A sulfur-iron-aggregate mixture may be heated to the ignition temperature of iron with sulfur to make a concrete shape. The best iron, sulfur, and aggregate ratios need to be experimentally established. The iron and sulfur will be by-products of oxygen production from lunar minerals.

  1. Hydrogen at the Lunar Terminator

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Chin, G.; Sagdeev, R. Z.; Mitrofanov, I. G.; Boynton, W. V.; Evans, L. G.; Litvak, M. L.; McClanahan, T. P.; Sanin, A. B.; Starr, R. D.; Su, J. J.

    2015-10-01

    Suppression of the Moon's naturally occurring epithermal neutron leakage flux near the equatorial dawn terminator is consistent with the presence of diurnally varying quantities of hydrogen in the regolith with maximum concentration on the day side of the dawn terminator. This flux suppression has been observed using the Lunar Exploration Neutron Detector (LEND) on the polar-orbiting Lunar Reconnaissance Orbiter (LRO). The chemical form of hydrogen is not determined, but other remote sensing methods and elemental availability suggest water. The observed variability is interpreted as frost collecting in or on the cold nightside surface, thermally desorbing in sunlight during the lunar morning,and migrating away from the warm subsolar region across the nearby terminator to return to the lunar surface. The maximum concentration, averaged over the upper ~1m of regolith to which neutron detection is sensitive,is estimated to be 0.0125±0.0022 weight-percent water-equivalent hydrogen (wt% WEH), yielding an accumulation of 190±30 ml recoverable water per square meter of regolith at each dawn. The source of hydrogen (water) must be in equilibrium with losses due to solar photolysis and escape. A chemical recycling process or self-shielding from solar UV must be assumed in order to bring the loss rate down to compatibility with possible sources, including solar wind or micrometeoroid delivery of hydrogen, which require near-complete retention of hydrogen,or outgassing of primordial volatiles, for which a plausible supply rate requires significantly less retention efficiency.

  2. Photometric Lunar Surface Reconstruction

    NASA Technical Reports Server (NTRS)

    Nefian, Ara V.; Alexandrov, Oleg; Morattlo, Zachary; Kim, Taemin; Beyer, Ross A.

    2013-01-01

    Accurate photometric reconstruction of the Lunar surface is important in the context of upcoming NASA robotic missions to the Moon and in giving a more accurate understanding of the Lunar soil composition. This paper describes a novel approach for joint estimation of Lunar albedo, camera exposure time, and photometric parameters that utilizes an accurate Lunar-Lambertian reflectance model and previously derived Lunar topography of the area visualized during the Apollo missions. The method introduced here is used in creating the largest Lunar albedo map (16% of the Lunar surface) at the resolution of 10 meters/pixel.

  3. Lunar lander conceptual design

    NASA Technical Reports Server (NTRS)

    Lee, Joo Ahn; Carini, John; Choi, Andrew; Dillman, Robert; Griffin, Sean J.; Hanneman, Susan; Mamplata, Caesar; Stanton, Edward

    1989-01-01

    A conceptual design is presented of a Lunar Lander, which can be the primary vehicle to transport the equipment necessary to establish a surface lunar base, the crew that will man the base, and the raw materials which the Lunar Station will process. A Lunar Lander will be needed to operate in the regime between the lunar surface and low lunar orbit (LLO), up to 200 km. This lander is intended for the establishment and operation of a manned surface base on the moon and for the support of the Lunar Space Station. The lander will be able to fulfill the requirements of 3 basic missions: A mission dedicated to delivering maximum payload for setting up the initial lunar base; Multiple missions between LLO and lunar surface dedicated to crew rotation; and Multiple missions dedicated to cargo shipments within the regime of lunar surface and LLO. A complete set of structural specifications is given.

  4. Lunar surface vehicle model competition

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During Fall and Winter quarters, Georgia Tech's School of Mechanical Engineering students designed machines and devices related to Lunar Base construction tasks. These include joint projects with Textile Engineering students. Topics studied included lunar environment simulator via drop tower technology, lunar rated fasteners, lunar habitat shelter, design of a lunar surface trenching machine, lunar support system, lunar worksite illumination (daytime), lunar regolith bagging system, sunlight diffusing tent for lunar worksite, service apparatus for lunar launch vehicles, lunar communication/power cables and teleoperated deployment machine, lunar regolith bag collection and emplacement device, soil stabilization mat for lunar launch/landing site, lunar rated fastening systems for robotic implementation, lunar surface cable/conduit and automated deployment system, lunar regolith bagging system, and lunar rated fasteners and fastening systems. A special topics team of five Spring quarter students designed and constructed a remotely controlled crane implement for the SKITTER model.

  5. Astronaut Charles Conrad uses lunar equipment conveyer at Lunar Module

    NASA Image and Video Library

    1969-11-19

    Astronaut Charles Conrad Jr., commander, uses the lunar equipment conveyer (LEC) at the Lunar Module during the Apollo 12 extravehicular activity on the lunar surface. This photograph was taken by Astronaut Alan L. Bean, lunar module pilot.

  6. Lunar Paleomagnetism

    NASA Astrophysics Data System (ADS)

    Fuller, M.; Weiss, B. P.

    2013-05-01

    We have completed a reanalysis of the old Apollo paleomagnetic data using modern techniques of analysis and presentation. The principal result from the mare basalts is that several samples, such as 10020, 10017, 10049, and 70215 appear to be carrying primary natural remanent magnetization (NRM) acquired on the Moon as they cooled initially on the lunar surface, but in almost every case alternating field (AF) demagnetization was not carried out to strong enough fields to isolate this primary magnetization properly. When modern measurements are available, the agreement between old Apollo era data and new data is strikingly good. It also appears that the fields recorded by the basalts of Apollo 11 and Apollo 17 are stronger than those recorded by Apollo 12 and Apollo 15 basalts. Indeed it is not clear that any reliable records have come from these younger samples. The histories of breccias are more complicated than those of mare basalts and their NRM is harder to interpret. For regolith breccias, interpretations are complicated because of their strong superparamagnetic components and their complex, polymict lithologies. It would be unwise to use these samples for paleointensity estimates unless one can be sure that the NRM was entirely acquired as TRM during cooling after the shock event, as may be the case for 15498. In contrast, the melt rock and melt breccias, which include samples formed at high temperatures far above the Curie point of any magnetic carriers, have an excellent chance of recording lunar fields faithfully as they cool. This cooling may have taken place in a melt pool in a simple crater, or in a melt layer in a complex crater. Such samples would then have been excavated and deposited in the regolith and some appear to have recorded strong fields, but more work needs to be done to test this suggestion. Other melt rocks and melt breccias have had more complicated histories and appear to have been deposited in ejecta blankets, where final cooling took

  7. Radiation and Plasma Environments for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Edwards, David L.; Altstatt, Richard L.; Diekmann, Anne M.; Blackwell, William C., Jr.; Harine, Katherine J.

    2006-01-01

    Space system design for lunar orbit and extended operations on the lunar surface requires analysis of potential system vulnerabilities to plasma and radiation environments to minimize anomalies and assure that environmental failures do not occur during the mission. Individual environments include the trapped particles in Earth s radiation belts, solar energetic particles and galactic cosmic rays, plasma environments encountered in transit to the moon and on the lunar surface (solar wind, terrestrial magnetosheath and magnetotail, and lunar photoelectrons), and solar ultraviolet and extreme ultraviolet photons. These are the plasma and radiation environments which contribute to a variety of effects on space systems including total ionizing dose and dose rate effects in electronics, degradation of materials in the space environment, and charging of spacecraft and lunar dust. This paper provides a survey of the relevant charged particle and photon environments of importance to lunar mission design ranging from the lowest (approx.few 10 s eV) photoelectron energies to the highest (approx.GeV) cosmic ray energies.

  8. Lunar orbiting prospector

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.

  9. Lunar resources: Toward living off the lunar land

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Colson, Russell O.

    1990-01-01

    The following topics are addressed: (1) lunar resources and surface conditions; (2) guidelines for early lunar technologies; (3) the lunar farm; (4) the lunar filling station; (5) lunar construction materials; (6) the lunar power company; (7) the electrolysis of molten silicate as a means of producing oxygen and metals for use on the Moon and in near-Earth space.

  10. Robust Exploration and Commercial Missions to the Moon Using LANTR Propulsion and In-Situ Propellants Derived From Lunar Polar Ice (LPI) Deposits

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.

    2017-01-01

    Since the 1960s, scientists have conjectured that water icecould survive in the cold, permanently shadowed craters located at the Moons poles Clementine (1994), Lunar Prospector (1998),Chandrayaan-1 (2008), and Lunar Reconnaissance Orbiter (LRO) and Lunar CRater Observation and Sensing Satellite(LCROSS) (2009) lunar probes have provided data indicating the existence of large quantities of water ice at the lunar poles The Mini-SAR onboard Chandrayaan-1discovered more than 40 permanently shadowed craters near the lunar north pole that are thought to contain 600 million metric tons of water ice. Using neutron spectrometer data, the Lunar Prospector science team estimated a water ice content (1.5 +-0.8 wt in the regolith) found in the Moons polar cold trap sand estimated the total amount of water at both poles at 2 billion metric tons Using Mini-RF and spectrometry data, the LRO LCROSS science team estimated the water ice content in the regolith in the south polar region to be 5.6 +-2.9 wt. On the basis of the above scientific data, it appears that the water ice content can vary from 1-10 wt and the total quantity of LPI at both poles can range from 600 million to 2 billion metric tons NTP offers significant benefits for lunar missions and can take advantage of the leverage provided from using LDPs when they become available by transitioning to LANTR propulsion. LANTR provides a variablethrust and Isp capability, shortens burn times and extends engine life, and allows bipropellant operation The combination of LANTR and LDP has performance capability equivalent to that of a hypothetical gaseousfuel core NTR (effective Isp 1575 s) and can lead to a robust LTS with unique mission capabilities that include short transit time crewed cargo transports and routine commuter flights to the Moon The biggest challenge to making this vision a reality will be the production of increasing amounts of LDP andthe development of propellant depots in LEO, LLO and LPO. An industry

  11. Lunar Flashlight and Other Lunar Cubesats

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara

    2017-01-01

    Water is a human-exploitable resource. Lunar Flashlight is a Cubesat mission to detect and map lunar surface ice in permanently-shadowed regions of the lunar south pole. EM-1 will carry 13 Cubesat-class missions to further smallsat science and exploration capabilities; much room to infuse LEO cubesat methodology, models, and technology. Exploring the value of concurrent measurements to measure dynamical processes of water sources and sinks.

  12. Genesis lunar outpost: An evolutionary lunar habitat

    NASA Technical Reports Server (NTRS)

    Moore, Gary T. (Compiler); Baschiera, Dino; Fieber, Joe; Moths, Janis

    1990-01-01

    Students at the University of Wisconsin-Milwaukee Department of Agriculture undertook a series of studies of lunar habitats during the 1989 to 1990 academic year. Undergraduate students from architecture and mechanical and structural engineering with backgrounds in interior design, biology and construction technology were involved in a seminar in the fall semester followed by a design studio in the spring. The studies resulted in three design alternatives for lunar habitation and an integrated design for an early stage lunar outpost.

  13. The Lunar Mapping and Modeling Project

    NASA Technical Reports Server (NTRS)

    Noble, Sarah; French, Raymond; Nall, Mark; Muery, Kimberly

    2009-01-01

    LMMP was initiated in 2007 to help in making the anticipated results of the LRO spacecraft useful and accessible to Constellation. The LMMP is managing and developing a suite of lunar mapping and modeling tools and products that support the Constellation Program (CxP) and other lunar exploration activities. In addition to the LRO Principal Investigators, relevant activities and expertise that had already been funded by NASA was identified at ARC, CRREL (Army Cold Regions Research & Engineering Laboratory), GSFC, JPL, & USGS. LMMP is a cost capped, design-to-cost project (Project budget was established prior to obtaining Constellation needs)

  14. Cold Stress

    MedlinePlus

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  15. Fluid inclusions in jadeitite and jadeite-rich rock from serpentinite mélanges in northern Hispaniola: Trapped ambient fluids in a cold subduction channel

    NASA Astrophysics Data System (ADS)

    Kawamoto, Tatsuhiko; Hertwig, Andreas; Schertl, Hans-Peter; Maresch, Walter V.

    2018-05-01

    Freezing-point depression was measured in aqueous fluid inclusions to determine salinities in six samples of jadeitite and jadeite-rich rock from the Jagua Clara serpentinite mélange of the Rio San Juan Complex, Dominican Republic. The mélange represents a fossil subduction-zone channel from a cold, mature subduction zone with a geothermal gradient of 6 °C/km. One hundred and twenty-five determinations of salinity in primary inclusions hosted in jadeite, quartz, apatite and lawsonite range between extremes of 1.2 and 8.7, but yield a well-defined mean of 4.5 ± 1.1 wt% (±1 s.d.) NaCl equiv, slightly higher than mean seawater (3.5 wt%). In one sample, eight additional fluid inclusions in quartz aligned along grain boundaries yield slightly lower values of 2.7 ± 1.3 wt% NaCl equiv. Homogenization temperatures were also measured for 47 fluid inclusions in two samples, but primary entrapment densities are not preserved. It is significant that the suite includes two types of samples: those precipitated directly from an aqueous fluid as well as examples of metasomatic replacement of a pre-existing magmatic rock. Nevertheless, the results indicate identical salinity for both types and suggest a much stronger genetic link between the two types of jadeitite and jadeite-rich rock than has previously been assumed. Based on the results of conductivity measurements in modern subduction zones, we envision a pervasive fluid in the subduction channel that evolved from salinity levels lower than those in sea-water up to the measured values due to on-going but largely completed serpentinization in the subduction channel. The present data represent a reference marker for the subduction channel of the Rio San Juan intra-oceanic subduction zone at 30-50 km depth and after 50-60 Myr of operation.

  16. Lunar Crustal History Recorded in Lunar Anorthosites

    NASA Technical Reports Server (NTRS)

    Nyquist, Laurence E.; Shih, C.-Y.; Reese, D.; Park, J.; Bogard. D.; Garrison, D.; Yamaguchi, A.

    2010-01-01

    Anorthosites occur ubiquitously within the lunar crust at depths of 3-30 km in apparent confirmation of the Lunar Magma Ocean (LMO) hypothesis. We have dated lunar anorthosite 67075, a Feldspathic Fragmental Breccia (FFB) collected near the rim of North Ray Crater by the Sm-Nd and Rb-Sr techniques. We also have dated an anorthositic white clast (WC) in lunar meteorite Dhofar 908 by the Ar-39-Ar-40 technique and measured whole rock (WR) Sm-Nd data for a companion sample. We discuss the significance of the ages determined for these and other anorthosites for the early magmatic and bombardment history of the moon.

  17. Lunar & Planetary Science Conference.

    ERIC Educational Resources Information Center

    Warner, Jeffrey L.; And Others

    1982-01-01

    Summaries of different topics discussed at the Lunar and Planetary Science Conference are presented to provide updated information to nonplanetologists. Some topics include Venus, isotopes, chondrites, creation science, cosmic dust, cratering, moons and rings, igneous rocks, and lunar soil. (DC)

  18. Critical Robotic Lunar Missions

    NASA Astrophysics Data System (ADS)

    Plescia, J. B.

    2018-04-01

    Perhaps the most critical missions to understanding lunar history are in situ dating and network missions. These would constrain the volcanic and thermal history and interior structure. These data would better constrain lunar evolution models.

  19. Endogenous Lunar Volatiles

    NASA Astrophysics Data System (ADS)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Anand, M.; Boyce, J. W.; Burney, D.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Klima, R. L.; Magna, T.; Ni, P.; Steenstra, E.; Tartèse, R.; Vander Kaaden, K. E.

    2018-04-01

    This abstract discusses numerous outstanding questions on the topic of endogenous lunar volatiles that will need to be addressed in the coming years. Although substantial insights into endogenous lunar volatiles have been gained, more work remains.

  20. Mapping Lunar Highlands

    NASA Image and Video Library

    2012-12-05

    This graphic depicting the bulk density of the lunar highlands on the near and far sides of the moon was generated using gravity data from NASA GRAIL mission and topography data from NASA Lunar Reconnaissance Orbiter.

  1. LUNAR SAMPLES - APOLLO 11

    NASA Image and Video Library

    1969-08-03

    S69-40749 (July 1969) --- Dr. Grant Heikan, MSC and a Lunar Sample Preliminary Examination Team member, examines lunar material in a sieve from the bulk sample container which was opened in the Biopreparation Laboratory of the Lunar Receiving Laboratory. The samples were collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity on July 20, 1969.

  2. Lunar Landing Walking Simulator

    NASA Image and Video Library

    1965-09-03

    Lunar Landing Walking Simulator: Researchers at Langley study the ability of astronauts to walk, run and perform other tasks required during lunar exploration. The Reduced Gravity Simulator gave researchers the opportunity to look at the effects of one-sixth normal gravity on self-locomotion. Several Apollo astronauts practiced lunar waling at the facility.

  3. Solar lunar power

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1994-01-01

    Current and projected technology is assessed for photovoltaic power for a lunar base. The following topics are discussed: requirements for power during the lunar day and night; solar cell efficiencies, specific power, temperature sensitivity, and availability; storage options for the lunar night; array and system integration; the potential for in situ production of photovoltaic arrays and storage medium.

  4. Lunar Module Communications

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael A.

    2009-01-01

    This slide presentation reviews the Apollo lunar module communications. It describes several changes in terminology from the Apollo era to more recent terms. It reviews: (1) Lunar Module Antennas and Functions (2). Earth Line of Sight Communications Links (3) No Earth Line of Sight Communications Links (4) Lunar Surface Communications Links (5) Signal-Processing Assembly (6) Instrumentation System (7) Some Communications Problems Encountered

  5. Lunar sample analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1978-01-01

    Flameless atomic abosrption, X-ray photoemission spectroscopy, ferromagnetic resonance, scanning electron microscopy, and Moessbauer spectroscopy were used to investigate the evolution of the lunar regolith, the transport of volatile trace metals, and the surface composition of lunar samples. The development of a model for lunar volcanic eruptions is also discussed.

  6. Robotic Lunar Lander Development Project Status

    NASA Technical Reports Server (NTRS)

    Hammond, Monica; Bassler, Julie; Morse, Brian

    2010-01-01

    This slide presentation reviews the status of the development of a robotic lunar lander. The goal of the project is to perform engineering tests and risk reduction activities to support the development of a small lunar lander for lunar surface science. This includes: (1) risk reduction for the flight of the robotic lander, (i.e., testing and analyzing various phase of the project); (2) the incremental development for the design of the robotic lander, which is to demonstrate autonomous, controlled descent and landing on airless bodies, and design of thruster configuration for 1/6th of the gravity of earth; (3) cold gas test article in flight demonstration testing; (4) warm gas testing of the robotic lander design; (5) develop and test landing algorithms; (6) validate the algorithms through analysis and test; and (7) tests of the flight propulsion system.

  7. Optical trapping

    PubMed Central

    Neuman, Keir C.; Block, Steven M.

    2006-01-01

    Since their invention just over 20 years ago, optical traps have emerged as a powerful tool with broad-reaching applications in biology and physics. Capabilities have evolved from simple manipulation to the application of calibrated forces on—and the measurement of nanometer-level displacements of—optically trapped objects. We review progress in the development of optical trapping apparatus, including instrument design considerations, position detection schemes and calibration techniques, with an emphasis on recent advances. We conclude with a brief summary of innovative optical trapping configurations and applications. PMID:16878180

  8. Robotic Lunar Lander Development Status

    NASA Technical Reports Server (NTRS)

    Ballard, Benjamin; Cohen, Barbara A.; McGee, Timothy; Reed, Cheryl

    2012-01-01

    NASA Marshall Space Flight Center and John Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed.

  9. The lunar quarantine program

    NASA Technical Reports Server (NTRS)

    Johnston, R. S.; Mason, J. A.; Wooley, B. C.; Mccollum, G. W.; Mieszkuc, B. J.

    1974-01-01

    The lunar quarantine program was designed to ensure that return of lunar material represented no threat to the public health, to agriculture, or to other living resources. It established definitely that no life exists on the moon. The crews of the three lunar quarantine missions, Apollo 11, 12, and 14, experienced no health problems as a result of their exposure to lunar samples. Plants and animals also showed no adverse effects. Stringent quarantine was terminated after Apollo 14, but lunar samples continued to be protected to guarantee that scientists would receive uncontaminated materials for study.

  10. Our Lunar Destiny: Creating a Lunar Economy

    NASA Astrophysics Data System (ADS)

    Rohwer, Christopher J.

    2000-01-01

    "Our Lunar Destiny: Creating a Lunar Economy" supports a vision of people moving freely and economically between the earth and the Moon in an expansive space and lunar economy. It makes the economic case for the creation of a lunar space economy and projects the business plan that will make the venture an economic success. In addition, this paper argues that this vision can be created and sustained only by private enterprise and the legal right of private property in space and on the Moon. Finally, this paper advocates the use of lunar land grants as the key to unleashing the needed capital and the economic power of private enterprise in the creation of a 21st century lunar space economy. It is clear that the history of our United States economic system proves the value of private property rights in the creation of any new economy. It also teaches us that the successful development of new frontiers-those that provide economic opportunity for freedom-loving people-are frontiers that encourage, respect and protect the possession of private property and the fruits of labor and industry. Any new 21st century space and lunar economy should therefore be founded on this same principle.

  11. New Lunar Paleointensity Measurements, Ancient Lunar Dynamo or Lunar Dud?

    NASA Astrophysics Data System (ADS)

    Lawrence, K. P.; Johnson, C. L.; Tauxe, L.; Gee, J. S.

    2007-12-01

    We analyze published and new paleointensity data from Apollo samples to reexamine the hypothesis of an early (3.9 to 3.6 Ga) lunar dynamo. Our new paleointensity experiments on four Apollo samples use modern absolute and relative measurement techniques. Our samples (60015, 76535, 72215, 62235) have ages ranging from 3.3 to 4.2 Ga, bracketing the putative period of a lunar dynamo. Samples 60015 (anorthosite) and 76535 (troctolite) failed during absolute paleointensity experiments, using the IZZI-modified Thellier-Thellier method. Samples 72215 and 62235 recorded a complicated, multi-component magnetic history that includes a low temperature (< 500°C) component with a high intensity (~90 μT), and a high temperature (> 500°C) component with a low intensity (~2 μT). These two samples were also subjected to a relative paleointensity experiment (sIRM), from which neither provided unambiguous evidence for a thermal origin of the recorded remanent magnetization. We found similar multi-component behavior in several published experiments on lunar samples. We test and present several magnetization scenarios in an attempt to explain the complex magnetization recorded in lunar samples. Specifically, an overprint from exposure to a small magnetic field (i.e. IRM) results in multi-component behavior (similar to lunar sample results), from which we could not recover the correct magnitude of the original TRM. The non-unique interpretation of these multi-component results combined with IRM (isothermal remanent magnetization) contamination during Apollo sample return ( Strangway et al., 1973), indicates that techniques incapable of distinguishing between single- and multi-component records (e.g., sIRM), cannot be reliably used to infer magnetic conditions of the early Moon. In light of these new experiments and a thorough reevaluation of existing paleointensity measurements, we conclude that there is a paucity of lunar samples that demonstrate a primary thermal remanent

  12. Constraints on the Volatile Distribution Within Shackleton Crater at the Lunar South Pole

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.; Head, James W.; Smith, David E.; Neumann, Gregory A.; Mazarico, Erwan; Torrence, Mark H.; Aharonson, Oded; Tye, Alexander R.; Fassett, Caleb I.; Rosenburg, Margaret A.; hide

    2012-01-01

    Shackleton crater is nearly coincident with the Moon's south pole. Its interior receives almost no direct sunlight and is a perennial cold trap, making Shackleton a promising candidate location in which to seek sequestered volatiles. However, previous orbital and Earth-based radar mapping and orbital optical imaging have yielded conflicting interpretations about the existence of volatiles. Here we present observations from the Lunar Orbiter Laser Altimeter on board the Lunar Reconnaissance Orbiter, revealing Shackleton to be an ancient, unusually well-preserved simple crater whose interior walls are fresher than its floor and rim. Shackleton floor deposits are nearly the same age as the rim, suggesting that little floor deposition has occurred since the crater formed more than three billion years ago. At a wavelength of 1,064 nanometres, the floor of Shackleton is brighter than the surrounding terrain and the interiors of nearby craters, but not as bright as the interior walls. The combined observations are explicable primarily by downslope movement of regolith on the walls exposing fresher underlying material. The relatively brighter crater floor is most simply explained by decreased space weathering due to shadowing, but a one-micrometre-thick layer containing about 20 per cent surficial ice is an alternative possibility.

  13. Analysis of Solar-Heated Thermal Wadis to Support Extended-Duration Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Gokoglu, S.; Sacksteder, K.; Wegeng, R.; Suzuki, N.

    2011-01-01

    The realization of the renewed exploration of the moon presents many technical challenges; among them is the survival of lunar-surface assets during periods of darkness when the lunar environment is very cold. Thermal wadis are engineered sources of stored solar energy using modified lunar regolith as a thermal storage mass that can supply energy to protect lightweight robotic rovers or other assets during the lunar night. This paper describes an analysis of the performance of thermal wadis based on the known solar illumination of the moon and estimates of producible thermal properties of modified lunar regolith. Analysis has been performed for the lunar equatorial region and for a potential outpost location near the lunar south pole. The calculations indicate that thermal wadis can provide the desired thermal energy and temperature control for the survival of rovers or other equipment during periods of darkness.

  14. Analysis of Solar-Heated Thermal Wadis to Support Extended-Duration Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Gokoglu, S. A.; Sacksteder, K. R.; Wegeng, R.; Suzuki, N.

    2011-01-01

    The realization of the renewed exploration of the Moon presents many technical challenges; among them is the survival of lunar-surface assets during periods of darkness when the lunar environment is very cold. Thermal wadis are engineered sources of stored solar energy using modified lunar regolith as a thermal storage mass that can supply energy to protect lightweight robotic rovers or other assets during the lunar night. This paper describes an analysis of the performance of thermal wadis based on the known solar illumination of the Moon and estimates of producible thermal properties of modified lunar regolith. Analysis has been performed for the lunar equatorial region and for a potential outpost location near the Lunar South Pole. The calculations indicate that thermal wadis can provide the desired thermal energy and temperature control for the survival of rovers or other equipment during periods of darkness.

  15. Lunar Prospector Extended Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Beckman, Mark; Lozier, David; Galal, Ken

    1999-01-01

    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector (LP) as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning and

  16. Lunar Prospector Extended Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Beckman, Mark; Lozier, David; Galal, Ken

    1999-01-01

    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning, and

  17. Lunar Prospector Extended Mission

    NASA Astrophysics Data System (ADS)

    Folta, David; Beckman, Mark; Lozier, David; Galal, Ken

    1999-05-01

    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector (LP) as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning and

  18. Orbital studies of lunar magnetism

    NASA Technical Reports Server (NTRS)

    Mcleod, M. G.; Coleman, P. J., Jr.

    1982-01-01

    Limitations of present lunar magnetic maps are considered. Optimal processing of satellite derived magnetic anomaly data is also considered. Studies of coastal and core geomagnetism are discussed. Lunar remanent and induced lunar magnetization are included.

  19. A primer in lunar geology

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Schultz, P. H. (Editor)

    1974-01-01

    Primary topics in lunar geology range from the evolution of the solar system to lunar photointerpretation, impact crater formation, and sampling to analyses on various Apollo lunar landing site geomorphologies.

  20. Lunar based massdriver applications

    NASA Astrophysics Data System (ADS)

    Ehresmann, Manfred; Gabrielli, Roland Atonius; Herdrich, Georg; Laufer, René

    2017-05-01

    The results of a lunar massdriver mission and system analysis are discussed and show a strong case for a permanent lunar settlement with a site near the lunar equator. A modular massdriver concept is introduced, which uses multiple acceleration modules to be able to launch large masses into a trajectory that is able to reach Earth. An orbital mechanics analysis concludes that the launch site will be in the Oceanus Procellarum a flat, Titanium rich lunar mare area. It is further shown that the bulk of massdriver components can be manufactured by collecting lunar minerals, which are broken down into its constituting elements. The mass to orbit transfer rates of massdriver case study are significant and can vary between 1.8 kt and 3.3 megatons per year depending on the available power. Thus a lunar massdriver would act as a catalyst for any space based activities and a game changer for the scale of feasible space projects.

  1. Thermal electric vapor trap arrangement and method

    DOEpatents

    Alger, Terry

    1988-01-01

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself.

  2. Thermal electric vapor trap arrangement and method

    DOEpatents

    Alger, T.

    1988-03-15

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself. 4 figs.

  3. Lunar Dust 101

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2008-01-01

    Largely due to rock and soil samples returned during the Apollo program, much has been learned about the composition and properties of lunar regolith. Although, for the most part, the mineral composition resembles terrestrial minerals, the characteristics of the lunar environment have led to very different weathering processes. These result in substantial differences in the particle shapes, particle size distributions, and surface chemistry. These differences lead to non-intuitive adhesion, abrasion, and possible health properties that will pose challenges to future lunar missions. An overview of lunar dust composition and properties will be given with a particular emphasis on possible health effects.

  4. Lunar surface magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Colburn, D. S.; Schubert, G.

    1972-01-01

    The Apollo 16 lunar surface magnetometer (LSM) activation completed the network installation of magnetic observatories on the lunar surface and initiated simultaneous measurements of the global response of the moon to large-scale solar and terrestrial magnetic fields. Fossil remanent magnetic fields have been measured at nine locations on the lunar surface, including the Apollo 16 LSM site in the Descartes highlands area. This fossil record indicates the possible existence of an ancient lunar dynamo or a solar or terrestrial field much stronger than exists at present. The experimental technique and operation of the LSM are described and the results obtained are discussed.

  5. Lunar Reconnaissance Orbiter Lunar Workshops for Educators

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Hsu, B. C.; Hessen, K.; Bleacher, L.

    2012-12-01

    The Lunar Workshops for Educators (LWEs) are a series of weeklong professional development workshops, accompanied by quarterly follow-up sessions, designed to educate and inspire grade 6-12 science teachers, sponsored by the Lunar Reconnaissance Orbiter (LRO). Participants learn about lunar science and exploration, gain tools to help address common student misconceptions about the Moon, find out about the latest research results from LRO scientists, work with data from LRO and other lunar missions, and learn how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks and through authentic research experiences. LWEs are held around the country, primarily in locations underserved with respect to NASA workshops. Where possible, workshops also include tours of science facilities or field trips intended to help participants better understand mission operations or geologic processes relevant to the Moon. Scientist and engineer involvement is a central tenant of the LWEs. LRO scientists and engineers, as well as scientists working on other lunar missions, present their research or activities to the workshop participants and answer questions about lunar science and exploration. This interaction with the scientists and engineers is consistently ranked by the LWE participants as one of the most interesting and inspiring components of the workshops. Evaluation results from the 2010 and 2011 workshops, as well as preliminary analysis of survey responses from 2012 participants, demonstrated an improved understanding of lunar science concepts among LWE participants in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and effectively share LRO data with students. Teachers reported increased confidence in helping students conduct research using lunar data, and learned about programs that would allow their students to make authentic

  6. Future Exploration of the South Pole as Enabled by the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Speyerer, E. J.; Lawrence, S. J.; Stopar, J.

    2016-12-01

    The Lunar Reconnaissance Orbiter (LRO) launched in 2009 to collect the dataset required for future surface missions and to answer key questions about the lunar surface environment. In the first seven years of operations, the Lunar Reconnaissance Orbiter Camera (LROC) acquired over a million images of the lunar surface and collected key stereo observations for the production of meter-scale digital terrain models. Due to the configuration of the LRO orbit, LROC and the other onboard instruments have the opportunity to acquire observations at or near the poles every two hours. The lunar south polar region is an area of interest for future surface missions due to the benign thermal environment and areas of near-continuous illumination. These persistently illuminated regions are also adjacent to permanently shadowed areas (e.g. floors of craters and local depressions) that are of interest to both scientists and engineers prospecting for cold-trapped volatiles on or near the surface for future in situ resource utilization. Using a terramechanics model based on surface properties derived during the Apollo and Luna missions, we evaluated the accessibility of different science targets and the optimal traverse paths for a given set of waypoints. Assuming a rover that relies primarily on solar power, we identified a traverse that would keep the rover illuminated for 94.43% of the year between 1 January 2021 and 31 December 2021. Throughout this year-long period, the longest eclipse endured by the rover would last only 101 hours and the rover would move a total of 22.11 km with an average speed of 2.5 m/hr (max speed=30 m/hr). During this time the rover would be able to explore a variety of targets along the connecting ridge between Shackleton and de Gerlache craters. In addition to the southern polar regions, we are also examining traverses around other key exploration sites such as Marius Hills, Ina-D, Rima Parry, and the Mairan Domes in efforts to aid future mission

  7. Future Exploration of the South Pole as Enabled by the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Speyerer, Emerson J.; Lawrence, Samuel J.; Stopar, Julie

    2016-01-01

    The Lunar Reconnaissance Orbiter (LRO) launched in 2009 to collect the dataset required for future surface missions and to answer key questions about the lunar surface environment. In the first seven years of operations, the Lunar Reconnaissance Orbiter Camera (LROC) acquired over a million images of the lunar surface and collected key stereo observations for the production of meter-scale digital terrain models. Due to the configuration of the LRO orbit, LROC and the other onboard instruments have the opportunity to acquire observations at or near the poles every two hours. The lunar south polar region is an area of interest for future surface missions due to the benign thermal environment and areas of near-continuous illumination. These persistently illuminated regions are also adjacent to permanently shadowed areas (e.g. floors of craters and local depressions) that are of interest to both scientists and engineers prospecting for cold-trapped volatiles on or near the surface for future in situ resource utilization. Using a terramechanics model based on surface properties derived during the Apollo and Luna missions, we evaluated the accessibility of different science targets and the optimal traverse paths for a given set of waypoints. Assuming a rover that relies primarily on solar power, we identified a traverse that would keep the rover illuminated for 94.43% of the year between 1 January 2021 and 31 December 2021. Throughout this year-long period, the longest eclipse endured by the rover would last only 101 hours and the rover would move a total of 22.11 km with an average speed of 2.5 m/hr (max speed=30 m/hr). During this time the rover would be able to explore a variety of targets along the connecting ridge between Shackleton and de Gerlache craters. In addition to the southern polar regions, we are also examining traverses around other key exploration sites such as Marius Hills, Ina-D, Rima Parry, and the Mairan Domes in efforts to aid future mission

  8. Albedo of Permanently Shadowed Regions of the Lunar Poles

    NASA Astrophysics Data System (ADS)

    Riner, M. A.; Lucey, P. G.; Bussey, B.; Cahill, J. T.; McGovern, A.

    2012-12-01

    Due to the slight tilt in the Moon's spin axis, some topographic depressions near the lunar poles experience permanent shadow and may serve as cold traps, harboring water ice and/or other volatile compounds [1]. Permanently shadowed regions (PSRs) provide an opportunity toward understanding the amount, nature and transport of volatiles on the Moon and may also be a potential resource for human exploration. While many different data sets have suggested the presence of water ice in PSRs near the lunar poles many questions remain. For example, ice does not appear to be uniformly distributed across identified PSRs. More work is needed to understand the distribution of ice in PSRs and how delivery and retention mechanisms influence the distribution. The active illumination of the Lunar Orbiter Laser Altimeter (LOLA) provides a unique contribution toward exploration PSR exploration. While LOLA is principally a laser altimeter used for quantitative topography and related cartographic and geodetic applications [2], LOLA also measures the intensity and width of the return laser pulse (1064 nm) from the surface. Here we use a global mosaic (4 pixels per degree) of LOLA albedo data corrected for instrumental drift, irregular variations, and calibrated to normal albedo using local equatorial measurements of normal albedo obtained by the Kaguya Multiband Imager [3]. Recent work using LOLA albedo shows the floor of Shackleton crater, near the lunar south pole, is brighter than the surrounding terrain (and the interior of nearby craters) at 1064 nm [4]. This albedo difference may be due to decreased space weathering due to shadowing from the Sun or to a 1 μm thick layer with 20% water ice a the surface of the crater floor [4]. Here we use LOLA dayside reflectance measurements to examine the albedo of PSRs catalogued by [5] derived from illumination modeling of a hybrid 100 m/pixel LOLA-LROC digital terrain model (DTM) up to 83° north and south latitudes. The upper latitude

  9. Lunar mass spectrometer test program

    NASA Technical Reports Server (NTRS)

    Torney, F. L.; Dobrott, J. R.

    1972-01-01

    The procedures are described along with results obtained in a test program conducted to demonstrate the performance of a candidate lunar mass spectrometer. The instrument was designed to sample and measure gases believed to exist in the lunar atmosphere at the surface. The subject instrument consists of a cold cathode ion source, a small quadrupole mass analyzer and an off axis electron multiplier ion counting detector. The major program emphasis was placed on demonstrating instrument resolution, sensitivity and S/N ratio over the mass range 0-150 amu and over a partial pressure range from 10 to the minus 9th power to 10 to the minus 13th power torr. Ultrahigh vacuum tests were conducted and the minimum detectable partial pressure for neon, argon, krypton and xenon was successfully determined for the spectrometer using isotopes of these gases. With the exception of neon, the minimum detectable partial pressure is approximately 4 x 10 to the minus 14th power torr for the above gases.

  10. Microcraters on lunar samples

    NASA Technical Reports Server (NTRS)

    Fechtig, H.; Gentner, W.; Hartung, J. B.; Nagel, K.; Neukum, G.; Schneider, E.; Storzer, D.

    1977-01-01

    The lunar microcrater phenomenology is described. The morphology of the lunar craters is in almost all aspects simulated in laboratory experiments in the diameter range from less than 1 nu to several millimeters and up to 60 km/s impact velocity. An empirically derived formula is given for the conversion of crater diameters into projectile diameters and masses for given impact velocities and projectile and target densities. The production size frequency distribution for lunar craters in the crater size range from approximately 1 nu to several millimeters in diameter is derived from various microcrater measurements within a factor of up to 5. Particle track exposure age measurements for a variety of lunar samples have been performed. They allow the conversion of the lunar crater size frequency production distributions into particle fluxes. The development of crater populations on lunar rocks under self-destruction by subsequent meteoroid impacts and crater overlap is discussed and theoretically described. Erosion rates on lunar rocks on the order of several millimeters per 10 yr are calculated. Chemical investigations of the glass linings of lunar craters yield clear evidence of admixture of projectile material only in one case, where the remnants of an iron-nickel micrometeorite have been identified.

  11. A baseline lunar mine

    NASA Technical Reports Server (NTRS)

    Gertsch, Richard E.

    1992-01-01

    A models lunar mining method is proposed that illustrates the problems to be expected in lunar mining and how they might be solved. While the method is quite feasible, it is, more importantly, a useful baseline system against which to test other, possible better, methods. Our study group proposed the slusher to stimulate discussion of how a lunar mining operation might be successfully accomplished. Critics of the slusher system were invited to propose better methods. The group noted that while nonterrestrial mining has been a vital part of past space manufacturing proposals, no one has proposed a lunar mining system in any real detail. The group considered it essential that the design of actual, workable, and specific lunar mining methods begin immediately. Based on an earlier proposal, the method is a three-drum slusher, also known as a cable-operated drag scraper. Its terrestrial application is quite limited, as it is relatively inefficient and inflexible. The method usually finds use in underwater mining from the shore and in moving small amounts of ore underground. When lunar mining scales up, the lunarized slusher will be replaced by more efficient, high-volume methods. Other aspects of lunar mining are discussed.

  12. Lunar Soil Particle Separator

    NASA Technical Reports Server (NTRS)

    Berggren, Mark

    2010-01-01

    The Lunar Soil Particle Separator (LSPS) beneficiates soil prior to in situ resource utilization (ISRU). It can improve ISRU oxygen yield by boosting the concentration of ilmenite, or other iron-oxide-bearing materials found in lunar soils, which can substantially reduce hydrogen reduction reactor size, as well as drastically decreasing the power input required for soil heating

  13. Astronaut Alan Bean deploys Lunar Surface Magnetometer on lunar surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, deploys the Lunar Surface Magnetometer (LSM) during the first Apollo 12 extravehicular activity on the Moon. The LSM is a component of the Apollo Lunar Surface Experiments Package (ALSEP). The Lunar Module can be seen in the left background.

  14. Apollo 9 Lunar Module in lunar landing configuration

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module, in a lunar landing configuration, as photographed form the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on the Lunar Module 'Spider' has been deployed. Note Lunar Module's upper hatch and docking tunnel.

  15. Astronaut Alan Bean deploys Lunar Surface Magnetometer on lunar surface

    NASA Image and Video Library

    1969-11-19

    Astronaut Alan L. Bean, lunar module pilot, deploys the Lunar Surface Magnetometer (LSM) during the first Apollo 12 extravehicular activity on the Moon. The LSM is a component of the Apollo Lunar Surface Experiments Package (ALSEP). The Lunar Module can be seen in the left background.

  16. Apollo 17 Lunar Surface Experiment: Lunar Ejecta and Meteorites Experiment

    NASA Image and Video Library

    1972-11-30

    S72-37257 (November 1972) --- The Lunar Ejecta and Meteorites Experiment (S-202), one of the experiments of the Apollo Lunar Surface Experiments Package which will be carried on the Apollo 17 lunar landing mission. The purpose of this experiment is to measure the physical parameters of primary and secondary particles impacting the lunar surface.

  17. Narrow-field imaging of the lunar sodium exosphere

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan; Flynn, Brian C.

    1995-01-01

    We present the first results of a new technique for imaging the lunar Na atmosphere. The technique employs high resolution, a narrow bandpass, and specific observing geometry to suppress scattered light and image lunar atmospheric Na I emission down to approximately 50 km altitude. Analysis of four latitudinally dispersed images shows that the lunar Na atmosphere exhibits intersting latitudinal and radial dependencies. Application of a simple Maxwellian collisionless exosphere model indicates that: (1) at least two thermal populations are required to adequately fit the soldium's radial intensity behavior, and (2) the fractional abundances and temperatures of the two components vary systematically with latitude. We conclude that both cold (barometric) and hot (suprathermal) Na may coexist in the lunar atmosphere, either as distinct components or as elements of a continuum of populations ranging in temperature from the local surface temperature up to or exceeding escape energies.

  18. Design of a device to remove lunar dust from space suits for the proposed lunar base

    NASA Technical Reports Server (NTRS)

    Harrington, David; Havens, Jack; Hester, Daniel

    1990-01-01

    The National Aeronautics and Space Administration plans to begin construction of a lunar base soon after the turn of the century. During the Apollo missions, lunar dust proved to be a problem because the dust adhered to all exposed material surfaces. Since lunar dust will be a problem during the establishment and operation of this base, the need exists for a device to remove the dust from space suits before the astronauts enter clean environments. The physical properties of lunar dust were characterized and energy methods for removing the dust were identified. Eight alternate designs were developed to remove the dust. The final design uses a brush and gas jet to remove the dust. The brush bristles are made from Kevlar fibers and the gas jet uses pressurized carbon dioxide from a portable tank. A throttling valve allows variable gas flow. Also, the tank is insulated with Kapton and electrically heated to prevent condensation of the carbon dioxide when the tank is exposed to the cold (- 240 F) lunar night.

  19. Lunar Balance and Locomotion

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2008-01-01

    Balance control and locomotor patterns were altered in Apollo crewmembers on the lunar surface, owing, presumably, to a combination of sensory-motor adaptation during transit and lunar surface operations, decreased environmental affordances associated with the reduced gravity, and restricted joint mobility as well as altered center-of-gravity caused by the EVA pressure suits. Dr. Paloski will discuss these factors, as well as the potential human and mission impacts of falls and malcoordination during planned lunar sortie and outpost missions. Learning objectives: What are the potential impacts of postural instabilities on the lunar surface? CME question: What factors affect balance control and gait stability on the moon? Answer: Sensory-motor adaptation to the lunar environment, reduced mechanical and visual affordances, and altered biomechanics caused by the EVA suit.

  20. Lunar Lava Tube Sensing

    NASA Technical Reports Server (NTRS)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  1. Indigenous lunar construction materials

    NASA Technical Reports Server (NTRS)

    Rogers, Wayne; Sture, Stein

    1991-01-01

    The objectives are the following: to investigate the feasibility of the use of local lunar resources for construction of a lunar base structure; to develop a material processing method and integrate the method with design and construction of a pressurized habitation structure; to estimate specifications of the support equipment necessary for material processing and construction; and to provide parameters for systems models of lunar base constructions, supply, and operations. The topics are presented in viewgraph form and include the following: comparison of various lunar structures; guidelines for material processing methods; cast lunar regolith; examples of cast basalt components; cast regolith process; processing equipment; mechanical properties of cast basalt; material properties and structural design; and future work.

  2. Lunar Science from Lunar Laser Ranging

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2013-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, tidal Love number k2, and moment of inertia differences. There is weaker sensitivity to flattening of the core/mantle boundary (CMB) and fluid core moment of inertia. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to variations in lunar rotation, orientation and tidal displacements. Past solutions using the LLR data have given results for Love numbers plus dissipation due to solid-body tides and fluid core. Detection of the fluid core polar minus equatorial moment of inertia difference due to CMB flattening is weakly significant. This strengthens the case for a fluid lunar core. Future approaches are considered to detect a solid inner core.

  3. Highly Oxidizing Surface Radicals in Lunar Dust

    NASA Astrophysics Data System (ADS)

    Kulahci, I.; Freund, F. T.; Bose, M.; Loftus, D. J.

    2007-12-01

    Lunar rocks are generally believed to be very "dry" with little or no evidence for hydroxyl as indicators of traces of dissolved H2O. The absence of hydroxyl, however, is not a sure sign of the absence of dissolved H2O. The reason is that hydroxyl pairs in the structure of host minerals, O3X-OH HO-XO3, with X=Si4+, Al3+ etc., tend to undergo an electronic rearrangement (redox conversion) in the course of which two oxygen anions are oxidized from the 2- to the 1- valence, forming a peroxy link, O3X-OO-XO3, plus an H2 molecule. If the H2 molecules diffuse out (which they are expected to do from lunar rocks and lunar fines over the course of 4 Gyrs), the peroxy links remain as the only "memory" of a former solute H2O content. Hard UV causes peroxy links to dissociate. In the process an electron from a neighboring O2- jumps into the broken peroxy bond. This is equivalent to forming an O-, e.g. a defect electron in the oxygen anion sublattice. Such defect electrons, also known as positive holes or pholes for short, represent highly mobile charge carriers. When trapped at the surface of dust grains, these charge carriers turn into highly reactive, highly oxidizing O- radicals, which are of concern because of their toxicity when lunar dust is inhaled by astronauts. We propose a device to measure the UV-activation of peroxy links by dusting lunar fines onto a polyethylene base plate with Au electrodes sputtered onto both ends and an ammeter connecting the two electrodes. One end of the dust layer will be exposed to the ambient UV radiation, while the remainder will be shaded. During the lunar night no current is expected to flow between the two Au electrodes. During passage through the night-day terminator, a current is expected to flow between the Au electrodes carried by defect electrons activated in the irradiated portion of the dust layer. Such a current would be an indicator that lunar fines and, by implication, lunar rocks contain peroxy links as a memory of a former

  4. When did the lunar core dynamo cease?

    NASA Astrophysics Data System (ADS)

    Tikoo, S. M.; Weiss, B. P.; Shuster, D. L.; Fuller, M.

    2013-12-01

    Remanent magnetization in the lunar crust and in returned Apollo samples has long suggested that the Moon formed a metallic core and an ancient dynamo magnetic field. Recent paleomagnetic investigations of lunar samples demonstrate that the Moon had a core dynamo which produced ~30-110 μT surface fields between at least 4.2 and 3.56 billion years ago (Ga). Tikoo et al. (1) recently found that the field declined to below several μT by 3.19 Ga. However, given that even values of a few μT are at the upper end of the intensities predicted by dynamo theory for this late in lunar history, it remains uncertain when the lunar dynamo actually ceased completely. Determining this requires a young lunar rock with extraordinarily high magnetic recording fidelity. With this goal, we are conducting a new analysis of young regolith breccia 15498. Although the breccia's age is currently uncertain, the presence of Apollo 15-type mare basalt clasts provides an upper limit constraint of ~3.3 Ga, while trapped Ar data suggest a lithification age of ~1.3 Ga. In stark contrast to the multidomain character of virtually all lunar crystalline rocks, the magnetic carriers in 15498 are on average pseudo-single domain to superparamagnetic, indicating that the sample should provide high-fidelity paleointensity records. A previous alternating field (AF) and thermal demagnetization study of 15498 by Gose et al. (2) observed that the sample carries stable remanent magnetization which persists to unblocking temperatures of at least 650°C. Using a modified Thellier technique, they reported a paleointensity of 2 μT. Although this value may have been influenced by spurious remanence acquired during pretreatment with AF demagnetization, our results confirm the presence of an extremely stable (blocked to coercivities >290 mT) magnetization in the glassy matrix. We also found that this magnetization is largely unidirectional across mutually oriented subsamples. The cooling timescale of this rock (~1

  5. Preliminary Mapping of Permanently Shadowed and Sunlit Regions Using the Lunar Reconnaissance Orbiter Camera (LROC)

    NASA Astrophysics Data System (ADS)

    Speyerer, E.; Koeber, S.; Robinson, M. S.

    2010-12-01

    The spin axis of the Moon is tilted by only 1.5° (compared with the Earth's 23.5°), leaving some areas near the poles in permanent shadow while other nearby regions remain sunlit for a majority of the year. Theory, radar data, neutron measurements, and Lunar CRater Observation and Sensing Satellite (LCROSS) observations suggest that volatiles may be present in the cold traps created inside these permanently shadowed regions. While areas of near permanent illumination are prime locations for future lunar outposts due to benign thermal conditions and near constant solar power. The Lunar Reconnaissance Orbiter (LRO) has two imaging systems that provide medium and high resolution views of the poles. During almost every orbit the LROC Wide Angle Camera (WAC) acquires images at 100 m/pixel of the polar region (80° to 90° north and south latitude). In addition, the LROC Narrow Angle Camera (NAC) targets selected regions of interest at 0.7 to 1.5 m/pixel [Robinson et al., 2010]. During the first 11 months of the nominal mission, LROC acquired almost 6,000 WAC images and over 7,300 NAC images of the polar region (i.e., within 2° of pole). By analyzing this time series of WAC and NAC images, regions of permanent shadow and permanent, or near-permanent illumination can be quantified. The LROC Team is producing several reduced data products that graphically illustrate the illumination conditions of the polar regions. Illumination movie sequences are being produced that show how the lighting conditions change over a calendar year. Each frame of the movie sequence is a polar stereographic projected WAC image showing the lighting conditions at that moment. With the WAC’s wide field of view (~100 km at an altitude of 50 km), each frame has repeat coverage between 88° and 90° at each pole. The same WAC images are also being used to develop multi-temporal illumination maps that show the percent each 100 m × 100 m area is illuminated over a period of time. These maps are

  6. Lunar Influences on Human Aggression.

    ERIC Educational Resources Information Center

    Russell, Gordon W.; Dua, Manjula

    1983-01-01

    Used league records of all Canadian hockey games (N=426) played during a season to test a lunar-aggression hypothesis. Despite the use of multiple measures of lunar phase and interpersonal aggression, support for lunar influence was not forthcoming. Supplemental data revealed that beliefs in lunar influence are fairly common. (JAC)

  7. Lunar Flashlight: Illuminating the Lunar South Pole

    NASA Technical Reports Server (NTRS)

    Hayne, P. O.; Greenhagen,, B. T.; Paige, D. A.; Camacho, J. M.; Cohen, B. A.; Sellar, G.; Reiter, J.

    2016-01-01

    Recent reflectance data from LRO instruments suggest water ice and other volatiles may be present on the surface in lunar permanentlyshadowed regions, though the detection is not yet definitive. Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar permanently shadowed regions (PSRs) is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits are also scientifically interesting, having the potential to reveal important information about the delivery of water to the Earth- Moon system.

  8. Cold Urticaria

    MedlinePlus

    ... severe reactions. For some people with this condition, swimming in cold water could lead to very low ... generally occur with full skin exposure, such as swimming in cold water. Such a reaction could lead ...

  9. Common cold

    MedlinePlus

    ... treatments have been tried for colds, such as vitamin C, zinc supplements, and echinacea. Talk to your health ... Accessed February 1, 2017. Hemila H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane ...

  10. Recovery of Missing Apollo Lunar ALSEP Data

    NASA Astrophysics Data System (ADS)

    Taylor, P. T.; Nagihara, S.; Nakamura, Y.; Williams, D. R.; Kiefer, W. S.

    2016-12-01

    Apollo astronauts on missions 12, 14, 15, 16, and 17 installed instruments on the lunar surface, the Apollo Lunar Surface Experiment Package (ALSEP). The last astronauts departed from the Moon in December 1972; however ALSEP instruments continued to send data until 1977. These long-term in-situ data, along with data from orbital satellites launched from the Command Module, are some of the best information on the Moon's environment, surface and interior. Much of these data were archived at the now NASA Space Science Data Coordinated Archive (NSSDCA) in the 70's and 80's, but some were never submitted. This is particularly true of the ALSEP data returned autonomously after the last Apollo astronauts departed. The data that were archived were generally on microfilm, microfiche, or magnetic tape in now obsolete formats, making them difficult to use. Some of the documentation and metadata are insufficient for current use. The Lunar Data Node at Goddard Space Flight Center, under the auspices of the Planetary Data System (PDS) Geosciences Node, is attempting to collect and restore the original data that were never archived, in addition to much of the archived data that were on media and in formats that are outmoded. 440 original data archival tapes for the ALSEP experiments were found at the Washington National Records Center. We have recently completed extraction of binary files from these tapes filling a number of gaps in the current ALSEP data collection at NSSDCA. Some of these experiments include: Solar Wind Spectrometer (Apollo12, 15); Cold Cathode Ion Gage (14, 15); Heat Flow (15, 17); Dust Detector (11, 12, 14, 15); Lunar Ejecta and Meteorites (17); Lunar Atmosphere composition Experiment (17); Suprathermal Ion Detector (12, 14, 15); Lunar Surface Magnetometer (12,15, 16). The purpose of the Lunar Data Project is to take data collections already archived at the NSSDCA and prepare them for archive through PDS, and to locate lunar data that were never archived into

  11. Mobile Lunar Base Concepts

    NASA Astrophysics Data System (ADS)

    Cohen, Marc M.

    2004-02-01

    This paper describes three innovative concepts for a mobile lunar base. These concept combine design research for habitat architecture, mobility systems, habitability, radiation protection, human factors, and living and working environments on the lunar surface. The mobile lunar base presents several key advantages over conventional static base notions. These advantages concern landing zone safety, the requirement to move modules over the lunar surface, and the ability to stage mobile reconnaissance with effective systemic redundancy. All of these concerns lead to the consideration of a mobile walking habitat module and base design. The key issues involve landing zone safety, the ability to transport habitat modules across the surface, and providing reliability and redundancy to exploration traverses in pressurized vehicles. With self-ambulating lunar base modules, it will be feasible to have each module separate itself from its retro-rocket thruster unit, and walk five to ten km away from the LZ to a pre-selected site. These mobile modules can operate in an autonomous or teleoperated mode to navigate the lunar surface. At the site of the base, the mobile modules can combine together; make pressure port connections among themselves, to create a multi-module pressurized lunar base.

  12. Lunar Water Resource Demonstration

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  13. Lunar transportation system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  14. Copernicus: Lunar surface mapper

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.; Anderson, Shaun D.

    1992-01-01

    The Utah State University (USU) 1991-92 Space Systems Design Team has designed a Lunar Surface Mapper (LSM) to parallel the development of the NASA Office of Exploration lunar initiatives. USU students named the LSM 'Copernicus' after the 16th century Polish astronomer, for whom the large lunar crater on the face of the moon was also named. The top level requirements for the Copernicus LSM are to produce a digital map of the lunar surface with an overall resolution of 12 meters (39.4 ft). It will also identify specified local surface features/areas to be mapped at higher resolutions by follow-on missions. The mapping operation will be conducted from a 300 km (186 mi) lunar-polar orbit. Although the entire surface should be mapped within six months, the spacecraft design lifetime will exceed one year with sufficient propellant planned for orbit maintenance in the anomalous lunar gravity field. The Copernicus LSM is a small satellite capable of reaching lunar orbit following launch on a Conestoga launch vehicle which is capable of placing 410 kg (900 lb) into translunar orbit. Upon orbital insertion, the spacecraft will weigh approximately 233 kg (513 lb). This rather severe mass constraint has insured attention to component/subsystem size and mass, and prevented 'requirements creep.' Transmission of data will be via line-of-sight to an earth-based receiving system.

  15. Lunar transportation system

    NASA Astrophysics Data System (ADS)

    1993-07-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  16. Lunar seismicity and tectonics

    NASA Technical Reports Server (NTRS)

    Lammlein, D. R.

    1977-01-01

    Results are presented for an analysis of all moonquake data obtained by the Apollo seismic stations during the period from November 1969 to May 1974 and a preliminary analysis of critical data obtained in the interval from May 1974 to May 1975. More accurate locations are found for previously located moonquakes, and additional sources are located. Consideration is given to the sources of natural seismic signals, lunar seismic activity, moonquake periodicities, tidal periodicities in moonquake activity, hypocentral locations and occurrence characteristics of deep and shallow moonquakes, lunar tidal control over moonquakes, lunar tectonism, the locations of moonquake belts, and the dynamics of the lunar interior. It is concluded that: (1) moonquakes are distributed in several major belts of global extent that coincide with regions of the youngest and most intense volcanic and tectonic activity; (2) lunar tides control both the small quakes occurring at great depth and the larger quakes occurring near the surface; (3) the moon has a much thicker lithosphere than earth; (4) a single tectonic mechanism may account for all lunar seismic activity; and (5) lunar tidal stresses are an efficient triggering mechanism for moonquakes.

  17. The Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2009-01-01

    A thick layer of regolith, fragmental and unconsolidated rock material, covers the entire lunar surface. This layer is the result of the continuous impact of meteoroids large and small and the steady bombardment of charged particles from the sun and stars. The regolith is generally about 4-5 m thick in mare regions and 10-15 m in highland areas (McKay et al., 1991) and contains all sizes of material from large boulders to sub-micron dust particles. Below the regolith is a region of large blocks of material, large-scale ejecta and brecciated bedrock, often referred to as the "megaregolith". Lunar soil is a term often used interchangeably with regolith, however, soil is defined as the subcentimeter fraction of the regolith (in practice though, soil generally refers to the submillimeter fraction of the regolith). Lunar dust has been defined in many ways by different researchers, but generally refers to only the very finest fractions of the soil, less than approx.10 or 20 microns. Lunar soil can be a misleading term, as lunar "soil" bears little in common with terrestrial soils. Lunar soil contains no organic matter and is not formed through biologic or chemical means as terrestrial soils are, but strictly through mechanical comminution from meteoroids and interaction with the solar wind and other energetic particles. Lunar soils are also not exposed to the wind and water that shapes the Earth. As a consequence, in contrast to terrestrial soils, lunar soils are not sorted in any way, by size, shape, or chemistry. Finally, without wind and water to wear down the edges, lunar soil grains tend to be sharp with fresh fractured surfaces.

  18. Lunar Rotation and the Lunar Interior

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.; Dickey, J. O.

    2003-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/ solid-mantle boundary, and tidal Love number k2. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) and fluid core moment of inertia. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core plus Love number. Past detection of CMB flattening has been marginal but is improving, while direct detection of the core moment has not yet been achieved. Three decades of Lunar Laser Ranging (LLR) data are analyzed using a weighted least-squares approach. The lunar solution parameters include dissipation at the fluid-core/solid-mantle boundary, tidal dissipation, dissipation-related coefficients for rotation and orientation terms, potential Love number k2, a correction to the constant term in the tilt of the equator to the ecliptic which is meant to approximate the influence of core-mantle boundary flattening, and displacement Love numbers h2 and l2. Several solutions, with different combinations of solution parameters and constraints, are considered.

  19. Lunar portable magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Sonett, C. P.; Dubois, R. L.; Simmons, G.

    1972-01-01

    The purpose of the Apollo 16 lunar portable magnetometer (LPM) experiment is to measure the permanent magnetic field at different geological sites on the lunar surface. The LPM field measurements are a vector sum of the steady remanent field from the lunar crust and of the time-varying ambient fields. The remanent magnetic fields measured in the Descartes region are the largest extraterrestrial fields yet measured in situ. These measurements show for the first time that the Descartes highlands have a stronger remanent magnetization than do the mare regions of the previous Apollo landing sites. The experimental technique used in the LPM experiment is described and the preliminary results obtained are discussed.

  20. The lunar hopping transporter

    NASA Technical Reports Server (NTRS)

    Degner, R.; Kaplan, M. H.; Manning, J.; Meetin, R.; Pasternack, S.; Peterson, S.; Seifert, H.

    1971-01-01

    Research on several aspects of lunar transport using the hopping mode is reported. Hopping exploits the weak lunar gravity, permits fuel economy because of partial recompression of propellant gas on landing, and does not require a continuous smooth surface for operation. Three questions critical to the design of a lunar hopping vehicle are addressed directly in this report: (1) the tolerance of a human pilot for repeated accelerations; (2) means for controlling vehicle attitude during ballistic flight; and (3) means of propulsion. In addition, a small scale terrestrial demonstrator built to confirm feasibility of the proposed operational mode is described, along with results of preliminary study of unmanned hoppers for moon exploration.

  1. Lunar Samples - Apollo 12

    NASA Image and Video Library

    1969-11-26

    S69-60294 (26 Nov. 1969) --- One of the first views of the Apollo 12 lunar rocks is this photograph of the open sample return container. The large rock is approximately 7 1/2 inches across and is larger than any rock brought back to Earth by the crew of the Apollo 11 lunar landing mission. Two of the rocks in the first container are crystalline and generally lighter in color than those returned on the first lunar landing. The rocks in this box are medium charcoal brown/gray in color.

  2. Lunar rated fasteners

    NASA Technical Reports Server (NTRS)

    Gupton, Lindsey; Hyde, Steve; Mckillip, Dan; Player, Bryan; Smith, Greg

    1988-01-01

    A catalog of fasteners is presented for a variety of applications to be used in a lunar environment. The fastening applications targeted include: covers, panels, hatches, bearings, wheels, gears, pulleys, anchors for the lunar surface and structural fasteners (general duty preloadable). The robotic installation and removal of each fastener is presented along with a discussion of failure modes. Structural performance data is tabulated for various configurations. Potential materials for the space environment are presented along with recommendations of appropriate solid film lubricants. Three original fastener designs were found suitable for the lunar environment. A structural analysis is presented for each original design.

  3. Lunar regolith bagging system

    NASA Technical Reports Server (NTRS)

    Cannon, Reuben; Henninger, Scott; Levandoski, Mark; Perkins, Jim; Pitchon, Jack; Swats, Robin; Wessels, Roger

    1990-01-01

    A design of a lunar regolith bag and bagging system is described. The bags of regolith are to be used for construction applications on the lunar surface. The machine is designed to be used in conjunction with the lunar SKITTER currently under development. The bags for this system are 1 cu ft volume and are made from a fiberglass composite weave. The machinery is constructed mostly from a boron/aluminum composite. The machine can fill 120 bags per hour and work for 8 hours a day. The man hours to machine hours ratio to operate the machine is .5/8.

  4. Volatile Analyzer for Lunar Polar Missions

    NASA Technical Reports Server (NTRS)

    Gibons, Everett K.; Pillinger, Colin T.; McKay, David S.; Waugh, Lester J.

    2011-01-01

    One of the major questions remaining for the future exploration of the Moon by humans concerns the presence of volatiles on our nearest neighbor in space. Observational studies, and investigations involving returned lunar samples and using robotic spacecraft infer the existence of volatile compounds particularly water [1]. It seems very likely that a volatile component will be concentrated at the poles in circumstances where low-temperatures exist to provide cryogenic traps. However, the full inventory of species, their concentration and their origin and sources are unknown. Of particular importance is whether abundances are sufficient to act as a resource of consumables for future lunar expeditions especially if a long-term base involving humans is to be established. To address some of these issues requires a lander designed specifically for operation at a high-lunar latitude. A vital part of the payload needs to be a volatile analyzer such as the Gas Analysis Package specifically designed for identification quantification of volatile substances and collecting information which will allow the origin of these volatiles to be identified [1]. The equipment included, particularly the gas analyzer, must be capable of operation in the extreme environmental conditions to be encountered. No accurate information yet exists regarding volatile concentration even for sites closer to the lunar equator (because of contamination). In this respect it will be important to understand (and thus limit) contamination of the lunar surface by extraneous material contributed from a variety of sources. The only data for the concentrations of volatiles at the poles comes from orbiting spacecraft and whilst the levels at high latitudes may be greater than at the equator, the volatile analyzer package under consideration will be designed to operate at the highest specifications possible and in a way that does not compromise the data.

  5. Lunar and Planetary Science XXXV: Lunar Rocks from Outer Space

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The following topics were discussed: Mineralogy and Petrology of Unbrecciated Lunar Basaltic Meteorite LAP 02205; LAP02205 Lunar Meteorite: Lunar Mare Basalt with Similarities to the Apollo 12 Ilmenite Basalt; Mineral Chemistry of LaPaz Ice Field 02205 - A New Lunar Basalt; Petrography of Lunar Meteorite LAP 02205, a New Low-Ti Basalt Possibly Launch Paired with NWA 032; KREEP-rich Basaltic Magmatism: Diversity of Composition and Consistency of Age; Mineralogy of Yamato 983885 Lunar Polymict Breccia with Alkali-rich and Mg-rich Rocks; Ar-Ar Studies of Dhofar Clast-rich Feldspathic Highland Meteorites: 025, 026, 280, 303; Can Granulite Metamorphic Conditions Reset 40Ar-39Ar Ages in Lunar Rocks? [#1009] A Ferroan Gabbronorite Clast in Lunar Meteorite ALHA81005: Major and Trace Element Composition, and Origin; Petrography of Lunar Meteorite PCA02007, a New Feldspathic Regolith Breccia; and Troilite Formed by Sulfurization: A Crystal Structure of Synthetic Analogue

  6. Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution

    NASA Astrophysics Data System (ADS)

    Khan, A.; Connolly, J. A. D.; Pommier, A.; Noir, J.

    2014-10-01

    Analysis of lunar laser ranging and seismic data has yielded evidence that has been interpreted to indicate a molten zone in the lowermost mantle overlying a fluid core. Such a zone provides strong constraints on models of lunar thermal evolution. Here we determine thermochemical and physical structure of the deep Moon by inverting lunar geophysical data (mean mass and moment of inertia, tidal Love number, and electromagnetic sounding data) in combination with phase-equilibrium computations. Specifically, we assess whether a molten layer is required by the geophysical data. The main conclusion drawn from this study is that a region with high dissipation located deep within the Moon is required to explain the geophysical data. This region is located within the mantle where the solidus is crossed at a depth of ˜1200 km (≥1600°C). Inverted compositions for the partially molten layer (150-200 km thick) are enriched in FeO and TiO2 relative to the surrounding mantle. The melt phase is neutrally buoyant at pressures of ˜4.5-4.6 GPa but contains less TiO2 (<15 wt %) than the Ti-rich (˜16 wt %) melts that produced a set of high-density primitive lunar magmas (density of 3.4 g/cm3). Melt densities computed here range from 3.25 to 3.45 g/cm3 bracketing the density of lunar magmas with moderate-to-high TiO2 contents. Our results are consistent with a model of lunar evolution in which the cumulate pile formed from crystallization of the magma ocean as it overturned, trapping heat-producing elements in the lower mantle.

  7. Ripple Trap

    NASA Technical Reports Server (NTRS)

    2006-01-01

    3 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the margin of a lava flow on a cratered plain in the Athabasca Vallis region of Mars. Remarkably, the cratered plain in this scene is essentially free of bright, windblown ripples. Conversely, the lava flow apparently acted as a trap for windblown materials, illustrated by the presence of the light-toned, wave-like texture over much of the flow. That the lava flow surface trapped windblown sand and granules better than the cratered plain indicates that the flow surface has a rougher texture at a scale too small to resolve in this image.

    Location near: 10.7oN, 204.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  8. Lunar outpost agriculture

    NASA Technical Reports Server (NTRS)

    Hossner, Lloyd R.; Ming, Douglas W.; Henninger, Donald L.; Allen, Earl R.

    1991-01-01

    The development of a CELSS for a lunar outpost is discussed. It is estimated that a lunar outpost life support system with a crew of four that produces food would break even in terms of mass and cost to deliver the system to the lunar surface after 2.5 years when compared to the cost of resupply from earth. A brief review is made of research on life support systems and NASA projects for evaluating CELSS components. The use of on-site materials for propellants, construction materials, and agriculture is evaluated, and the use of microbes for waste decomposition and stabilization of ecological balance is touched upon. Areas for further investigation include the behavior of organisms in microgravity, genetic alteration, gas exchange capabilities of organisms, integration of biological and physicochemical components, and automation. The development stages leading to lunar deployment are outlined.

  9. The Lunar Dust Pendulum

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.

    2011-01-01

    Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lunar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however, the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.

  10. Lunar robotic maintenance module

    NASA Technical Reports Server (NTRS)

    Ayres, Michael L.

    1988-01-01

    A design for a robotic maintenance module that will assist a mobile 100-meter lunar drill is introduced. The design considers the following areas of interest: the atmospheric conditions, actuator systems, power supply, material selection, weight, cooling system and operation.

  11. Lunar & Planetary Science, 11.

    ERIC Educational Resources Information Center

    Geotimes, 1980

    1980-01-01

    Presents a summary of each paper presented at the Lunar and Planetary Science Conference at the Johnson Space Center, Houston in March 1980. Topics relate to Venus, Jupiter, Mars, asteroids, meteorites, regoliths, achondrites, remote sensing, and cratering studies. (SA)

  12. Lunar Capabilities Roadmap

    NASA Astrophysics Data System (ADS)

    Kramer, G. Y.; Lawrence, D. J.; Neal, C. R.; Clark, P. E.; Green, R. O.; Horanyi, M.; Johnson, M. D.; Kelso, R. M.; Sultana, M.; Thompson, D. R.

    2016-11-01

    A Lunar Capabilities Roadmap (LCR) is required to highlight capabilities critical for science and exploration of the Moon as well as beyond. The LCR will focus mainly on capabilities with examples of specific technologies to satisfy those needs.

  13. Lunar sample contracts

    NASA Technical Reports Server (NTRS)

    Walker, R. M.

    1974-01-01

    The major scientific accomplishments through 1971 are reported for the particle track studies of lunar samples. Results are discussed of nuclear track measurements by optical and electron microscopy, thermoluminescence, X-ray diffraction, and differential thermal analysis.

  14. Lunar Prospector: overview.

    PubMed

    Binder, A B

    1998-09-04

    Lunar Prospector is providing a global map of the composition of the moon and analyzing the moon's gravity and magnetic fields. It has been in a polar orbit around the moon since 16 January 1998. Neutron flux data show that there is abundant H, and hence probably abundant water ice, in the lunar polar regions. Gamma-ray and neutron data reveal the distribution of Fe, Ti, and other major and trace elements on the moon. The data delineate the global distributions of a key trace element-rich component of lunar materials called KREEP and of the major rock types. Magnetic mapping shows that the lunar magnetic fields are strong antipodal to Mare Imbrium and Mare Serenitatis and has discovered the smallest known magnetosphere, magnetosheath, and bow shock complex in the solar system. Gravity mapping has delineated seven new gravity anomalies and shown that the moon has a small Fe-rich core of about 300 km radius.

  15. Technologies for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Indyk, S.

    2017-10-01

    Honeybee Robotics, with its partners, developed numerous technologies for lunar exploration. Most of these technologies are at high TRL and have been designed for small landers, rovers, as well as astronauts. This abstract presents several of these technologies.

  16. LUNAR SAMPLES - APOLLO XI

    NASA Image and Video Library

    1969-07-27

    S69-45002 (26 July 1969) --- A close-up view of the lunar rocks contained in the first Apollo 11 sample return container. The rock box was opened for the first time in the Vacuum Laboratory of the Manned Spacecraft Center’s Lunar Receiving Laboratory, Building 37, at 3:55 p.m. (CDT), Saturday, July 26, 1969. The gloved hand gives an indication of size. This box also contained the Solar Wind Composition experiment (not shown) and two core tubes for subsurface samples (not shown). These lunar samples were collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity on July 20, 1969.

  17. Trapped atoms along nanophotonic resonators

    NASA Astrophysics Data System (ADS)

    Fields, Brian; Kim, May; Chang, Tzu-Han; Hung, Chen-Lung

    2017-04-01

    Many-body systems subject to long-range interactions have remained a very challenging topic experimentally. Ultracold atoms trapped in extreme proximity to the surface of nanophotonic structures provides a dynamic system combining the strong atom-atom interactions mediated by guided mode photons with the exquisite control implemented with trapped atom systems. The hybrid system promises pair-wise tunability of long-range interactions between atomic pseudo spins, allowing studies of quantum magnetism extending far beyond nearest neighbor interactions. In this talk, we will discuss our current status developing high quality nanophotonic ring resonators, engineered on CMOS compatible optical chips with integrated nanostructures that, in combination with a side illuminating beam, can realize stable atom traps approximately 100nm above the surface. We will report on our progress towards loading arrays of cold atoms near the surface of these structures and studying atom-atom interaction mediated by photons with high cooperativity.

  18. Preparation of translationally cold neutral molecules.

    PubMed

    Di Domenicantonio, Giulia; Bertsche, Benjamin; Osterwalder, Andreas

    2011-01-01

    Efforts at EPFL to obtain translationally cold neutral molecules are described. Active deceleration of polar molecules is performed by confining the molecules in moving three-dimensional electrostatic traps, and by appropriately choosing the velocity of those traps. Alternatively, cold molecules can be obtained by velocity filtering. Here, the velocity of the molecules is not changed, but instead the cold molecules are extracted from a thermal sample by using the competition between the electrostatic force and the centrifugal force inside a bent electrostatic guide for polar molecules.

  19. Symmetry breaking in linear multipole traps

    NASA Astrophysics Data System (ADS)

    Pedregosa-Gutierrez, J.; Champenois, C.; Kamsap, M. R.; Hagel, G.; Houssin, M.; Knoop, M.

    2018-03-01

    Radiofrequency multipole traps have been used for some decades in cold collision experiments and are gaining interest for precision spectroscopy due to their low micromotion contribution and the predicted unusual cold-ion structures. However, the experimental realisation is not yet fully controlled, and open questions in the operation of these devices remain. We present experimental observations of symmetry breaking of the trapping potential in a macroscopic octupole trap with laser-cooled ions. Numerical simulations have been performed in order to explain the appearance of additional local potential minima and be able to control them in a next step. We characterise these additional potential minima, in particular with respect to their position, their potential depth and their probability of population as a function of the radial and angular displacement of the trapping rods.

  20. Lunar sample analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1983-01-01

    The evolution of the lunar regolith under solar wind and micrometeorite bombardment is discussed as well as the size distribution of ultrafine iron in lunar soil. The most important characteristics of complex graphite, sulfide, arsenide, palladium, and platinum mineralization in a pegmatoid pyroxenite of the Stillwater Complex in Montana are examined. Oblique reflected light micrographs and backscattered electron SEM images of the graphite associations are included.

  1. Lunar Polar Coring Lander

    NASA Technical Reports Server (NTRS)

    Angell, David; Bealmear, David; Benarroche, Patrice; Henry, Alan; Hudson, Raymond; Rivellini, Tommaso; Tolmachoff, Alex

    1990-01-01

    Plans to build a lunar base are presently being studied with a number of considerations. One of the most important considerations is qualifying the presence of water on the Moon. The existence of water on the Moon implies that future lunar settlements may be able to use this resource to produce things such as drinking water and rocket fuel. Due to the very high cost of transporting these materials to the Moon, in situ production could save billions of dollars in operating costs of the lunar base. Scientists have suggested that the polar regions of the Moon may contain some amounts of water ice in the regolith. Six possible mission scenarios are suggested which would allow lunar polar soil samples to be collected for analysis. The options presented are: remote sensing satellite, two unmanned robotic lunar coring missions (one is a sample return and one is a data return only), two combined manned and robotic polar coring missions, and one fully manned core retrieval mission. One of the combined manned and robotic missions has been singled out for detailed analysis. This mission proposes sending at least three unmanned robotic landers to the lunar pole to take core samples as deep as 15 meters. Upon successful completion of the coring operations, a manned mission would be sent to retrieve the samples and perform extensive experiments of the polar region. Man's first step in returning to the Moon is recommended to investigate the issue of lunar polar water. The potential benefits of lunar water more than warrant sending either astronauts, robots or both to the Moon before any permanent facility is constructed.

  2. Lunar Commercialization Workshop

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2008-01-01

    This slide presentation describes the goals and rules of the workshop on Lunar Commercialization. The goal of the workshop is to explore the viability of using public-private partnerships to open the new space frontier. The bulk of the workshop was a team competition to create a innovative business plan for the commercialization of the moon. The public private partnership concept is reviewed, and the open architecture as an infrastructure for potential external cooperation. Some possible lunar commercialization elements are reviewed.

  3. The Lunar Dust Environment

    NASA Astrophysics Data System (ADS)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  4. Building Strategic Capabilities for Sustained Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Landgraf, M.; Hufenbach, B.; Houdou, B.

    2016-11-01

    We discuss a lunar exploration architecture that addresses the strategic objective of providing access to the lunar surface. This access enables the most exciting part of the lunar exploration: building a sustained infrastructure on the lunar surface.

  5. Beneficiation of lunar ilmenite

    NASA Technical Reports Server (NTRS)

    Ruiz, Joaquin

    1991-01-01

    One of the most important commodities lacking in the moon is free oxygen which is required for life and used extensively for propellent. Free oxygen, however, can be obtained by liberating it from the oxides and silicates that form the lunar rocks and regolith. Ilmenite (FeTiO3) is considered one of the leading candidates for production of oxygen because it can be reduced with a reasonable amount of energy and it is an abundant mineral in the lunar regolith and many mare basalts. In order to obtain oxygen from ilmenite, a method must be developed to beneficiate ilmenite from lunar material. Two possible techniques are electrostatic or magnetic methods. Both methods have complications because lunar ilmenite completely lacks Fe(3+). Magnetic methods were tested on eucrite meteorites, which are a good chemical simulant for low Ti mare basalts. The ilmenite yields in the experiments were always very low and the eucrite had to be crushed to xxxx. These data suggest that magnetic separation of ilmenite from fine grain lunar basalts would not be cost effective. Presently, experiments are being performed with electrostatic separators, and lunar regolith is being waited for so that simulants do not have to be employed.

  6. Lunar Sample Compendium

    NASA Technical Reports Server (NTRS)

    Meyer, Charles

    2005-01-01

    The purpose of the Lunar Sample Compendium will be to inform scientists, astronauts and the public about the various lunar samples that have been returned from the Moon. This Compendium will be organized rock by rock in the manor of a catalog, but will not be as comprehensive, nor as complete, as the various lunar sample catalogs that are available. Likewise, this Compendium will not duplicate the various excellent books and reviews on the subject of lunar samples (Cadogen 1981, Heiken et al. 1991, Papike et al. 1998, Warren 2003, Eugster 2003). However, it is thought that an online Compendium, such as this, will prove useful to scientists proposing to study individual lunar samples and should help provide backup information for lunar sample displays. This Compendium will allow easy access to the scientific literature by briefly summarizing the significant findings of each rock along with the documentation of where the detailed scientific data are to be found. In general, discussion and interpretation of the results is left to the formal reviews found in the scientific literature. An advantage of this Compendium will be that it can be updated, expanded and corrected as need be.

  7. The Lunar Orbital Prospector

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.; Cantrell, James N.; Mccurdy, Greg

    1992-01-01

    The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.

  8. Lunar preform manufacturing

    NASA Technical Reports Server (NTRS)

    Leong, Gregory N.; Nease, Sandra; Lager, Vicky; Yaghjian, Raffy; Waller, Chris

    1992-01-01

    A design for a machine to produce hollow, continuous fiber-reinforced composite rods of lunar glass and a liquid crystalline matrix using the pultrusion process is presented. The glass fiber will be produced from the lunar surface, with the machine and matrix being transported to the moon. The process is adaptable to the low gravity and near-vacuum environment of the moon through the use of a thermoplastic matrix in fiber form as it enters the pultrusion process. With a power consumption of 5 kW, the proposed machine will run unmanned continuously in fourteen-day cycles, matching the length of lunar days. A number of dies could be included that would allow the machine to produce rods of varying diameter, I-beams, angles, and other structural members. These members could then be used for construction on the lunar surface or transported for use in orbit. The benefits of this proposal are in the savings in weight of the cargo each lunar mission would carry. The supply of glass on the moon is effectively endless, so enough rods would have to be produced to justify its transportation, operation, and capital cost. This should not be difficult as weight on lunar mission is at a premium.

  9. Lunar Orbit Anomaly

    NASA Astrophysics Data System (ADS)

    Riofrio, L.

    2012-12-01

    Independent experiments show a large anomaly in measurements of lunar orbital evolution, with applications to cosmology and the speed of light. The Moon has long been known to be slowly drifting farther from Earth due to tidal forces. The Lunar Laser Ranging Experiment (LLRE) indicates the Moon's semimajor axis increasing at 3.82 ± .07 cm/yr, anomalously high. If the Moon were today gaining angular momentum at this rate, it would have coincided with Earth less than 2 Gyr ago. Study of tidal rhythmites indicates a rate of 2.9 ± 0.6 cm/yr. Historical eclipse observations independently measure a recession rate of 2.82 ± .08 cm/yr. Detailed numerical simulation of lunar orbital evolution predicts 2.91 cm/yr. LLRE differs from three independent experiments by over12 sigma. A cosmology where speed of light c is related to time t by GM=tc^3 has been suggested to predict the redshifts of Type Ia supernovae, and a 4.507034% proportion of baryonic matter. If c were changing in the amount predicted, lunar orbital distance would appear to increase by an additional 0.935 cm/yr. An anomaly in the lunar orbit may be precisely calculated, shedding light on puzzles of 'dark energy'. In Planck units this cosmology may be summarized as M=R=t.Lunar Recession Rate;

  10. Lunar atmospheric composition experiment

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1975-01-01

    Apollo 17 carried a miniature mass spectrometer, called the Lunar Atmospheric Composition Experiment (LACE), to the moon as part of the Apollo Lunar Surface Experiments Package (ALSEP) to study the composition and variations in the lunar atmosphere. The instrument was successfully deployed in the Taurus-Littrow Valley with its entrance aperture oriented upward to intercept and measure the downward flux of gases at the lunar surface. During the ten lunations that the LACE operated, it produced a large base of data on the lunar atmosphere, mainly collected at night time. It was found that thermal escape is the most rapid loss mechanism for hydrogen and helium. For heavier gases, photoionization followed by acceleration through the solar wind electric field accounted for most of the loss. The dominant gases on the moosn were argon and helium, and models formed for their distribution are described in detail. It is concluded that most of the helium in the lunar atmosphere is of solar wind origin, and that there also exist very small amounts of methane, ammonia, and carbon dioxide.

  11. Toward a Unified View of the Moon's Polar Volatiles from the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Hayne, Paul

    2016-04-01

    Although the scientific basis for the possibility of water and other volatiles in the cold traps of the lunar polar regions was developed in the 1960's and '70's [1,2], only recently have the data become available to test the theories in detail. Furthermore, comparisons with other planetary bodies, particularly Mercury, have revealed surprising differences that may point to inconsistencies or holes in our understanding of the basic processes involving volatiles on airless bodies [3]. Addressing these gaps in understanding is critical to the future exploration of the Moon, for which water is an important scientific and engineering resource [4]. Launched in 2009, NASA's Lunar Reconnaissance Orbiter (LRO) has been acquiring data from lunar orbit for more than six years. All seven of the remote sensing instruments on the payload have now contributed significantly to advancing understanding of volatiles on the Moon. Here we present results from these investigations, and discuss attempts to synthesize the disparate information to create a self-consistent model for lunar volatiles. In addition to the LRO data, we must take into account results from earlier missions [5,6], ground-based telescopes [7], and sample analyses [8]. The results from these inter-comparisons show that water is likely available in useful quantities, but key additional measurements may be required to resolve remaining uncertainties. [1] Watson, K., Murray, B. C., & Brown, H. (1961), J. Geophys. Res., 66(9), 3033-3045. [2] Arnold, J. R. (1979), J. Geophys. Res. (1978-2012), 84(B10), 5659-5668. [3] Paige, D. A., Siegler, M. A., Harmon, J. K., Neumann, G. A., Mazarico, E. M., Smith, D. E., ... & Solomon, S. C. (2013), Science, 339(6117), 300-303. [4] Hayne, P. O., et al. (2014), Keck Inst. Space Studies Report. [5] Nozette, S., Lichtenberg, C. L., Spudis, P., Bonner, R., Ort, W., Malaret, E., ... & Shoemaker, E. M. (1996), Science, 274(5292), 1495-1498. [6] Pieters, C. M., Goswami, J. N., Clark, R. N

  12. Chemical processing of lunar materials

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.; Waldron, R. D.

    1979-01-01

    The paper highlights recent work on the general problem of processing lunar materials. The discussion covers lunar source materials, refined products, motivations for using lunar materials, and general considerations for a lunar or space processing plant. Attention is given to chemical processing through various techniques, including electrolysis of molten silicates, carbothermic/silicothermic reduction, carbo-chlorination process, NaOH basic-leach process, and HF acid-leach process. Several options for chemical processing of lunar materials are well within the state of the art of applied chemistry and chemical engineering to begin development based on the extensive knowledge of lunar materials.

  13. Cold plate

    DOEpatents

    Marroquin, Christopher M.; O'Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  14. Trapped antihydrogen.

    PubMed

    Andresen, G B; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; el Nasr, S Seif; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2010-12-02

    Antimatter was first predicted in 1931, by Dirac. Work with high-energy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature's fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 10(14) for the frequency of the 1s-to-2s transition), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen could also be used to study the gravitational behaviour of antimatter. However, so far experiments have produced antihydrogen that is not confined, precluding detailed study of its structure. Here we demonstrate trapping of antihydrogen atoms. From the interaction of about 10(7) antiprotons and 7 × 10(8) positrons, we observed 38 annihilation events consistent with the controlled release of trapped antihydrogen from our magnetic trap; the measured background is 1.4 ± 1.4 events. This result opens the door to precision measurements on anti-atoms, which can soon be subjected to the same techniques as developed for hydrogen.

  15. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  16. Apollo 9 Lunar Module in lunar landing configuration

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module, in a lunar landing configuration, as photographed form the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on the 'Spider' has been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the 'Spider' were Astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot.

  17. Apollo 9 Lunar Module in lunar landing configuration

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module, in a lunar landing configuration, as photographed form the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The Lunar Module 'Spider' is flying upside down in relation to the earth below. The landing gear on the 'Spider' had been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads.

  18. Chlorine in Lunar Basalts

    NASA Technical Reports Server (NTRS)

    Barnes, J. J.; Anand, M.; Franchi, I. A.

    2017-01-01

    In the context of the lunar magma ocean (LMO) model, it is anticipated that chlorine (and other volatiles) should have been concentrated in the late-stage LMO residual melts (i.e., the dregs enriched in incompatible elements such as K, REEs, and P, collectively called KREEP, and in its primitive form - urKREEP, [1]), given its incompatibility in mafic minerals like olivine and pyroxene, which were the dominant phases that crystallized early in the cumulate pile of the LMO (e.g., [2]). When compared to chondritic meteorites and terrestrial rocks (e.g., [3-4]), lunar samples often display heavy chlorine isotope compositions [5-9]. Boyce et al. [8] found a correlation between delta Cl-37 (sub Ap) and bulk-rock incompatible trace elements (ITEs) in lunar basalts, and used this to propose that early degassing of Cl (likely as metal chlorides) from the LMO led to progressive enrichment in remaining LMO melt in Cl-37over Cl-35- the early degassing model. Barnes et al. [9] suggested that relatively late degassing of chlorine from urKREEP (to yield delta Cl-37 (sub urKREEP greater than +25 per mille) followed by variable mixing between KREEPy melts and mantle cumulates (characterized by delta Cl-370 per mille) could explain the majority of Cl isotope data from igneous lunar samples. In order to better understand the processes involved in giving rise to the heavy chlorine isotope compositions of lunar samples, we have performed an in situ study of chlorine isotopes and abundances of volatiles in lunar apatite from a diverse suite of lunar basalts spanning a range of geochemical types.

  19. Electronic circuit provides automatic level control for liquid nitrogen traps

    NASA Technical Reports Server (NTRS)

    Turvy, R. R.

    1968-01-01

    Electronic circuit, based on the principle of increased thermistor resistance corresponding to decreases in temperature provides an automatic level control for liquid nitrogen cold traps. The electronically controlled apparatus is practically service-free, requiring only occasional reliability checks.

  20. Lunar regolith and structure mechanics

    NASA Technical Reports Server (NTRS)

    Barnes, Frank; Ko, Hon-Yim; Sture, Stein; Carter, Tyrone R.; Evenson, Kraig A.; Nathan, Mark P.; Perkins, Steve W.

    1991-01-01

    The topics are presented in viewgraph form and include the following: modeling of regolith-structure interaction in extraterrestrial constructed facilities; densification of lunar soil simulant; and vibration assisted penetration of lunar soil simulant.

  1. The Future Lunar Flora Colony

    NASA Astrophysics Data System (ADS)

    Goel, E. G.; Guven, U. G.

    2017-10-01

    A constructional design for the primary establishment for a lunar colony using the micrometeorite rich soil is proposed. It highlights the potential of lunar regolith combined with Earth technology for water and oxygen for human outposts on the Moon.

  2. Lunar geophysics, geodesy, and dynamics

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Dickey, J. O.

    2002-01-01

    Experience with the dynamics and data analyses for earth and moon reveals both similarities and differences. Analysis of Lunar Laser Ranging (LLR) data provides information on the lunar orbit, rotation, solid-body tides, and retroreflector locations.

  3. Catalog of lunar mission data

    NASA Technical Reports Server (NTRS)

    Mantel, E. J. (Editor); Miller, E. R. (Editor)

    1977-01-01

    Several series of spacecraft were developed, designed, built and launched to determine different characteristics of the lunar surface and environment for a manned landing. Both unmanned and manned spacecrafts, spacecraft equipment and lunar missions are documented.

  4. 'On-line' analyses of simulated solar wind implantations of terrestrial analogs of lunar materials

    NASA Technical Reports Server (NTRS)

    Blanford, G. E.; Bergesen, P.; Moeller, W.; Maurette, M.; Monart, B.

    1986-01-01

    In connection with the establishment of a lunar base, it would be necessary to provide water, and the feasibility to obtain water from solar wind (SW) implanted lunar soils has been considered. In this context, a project involving the examination of materials under conditions of simulated SW irradiation has been initiated. A description is presented of initial results on oligoclase, ilmenite, and simulated lunar glass (SLG). Attention is given to the reaction chamber, the target materials, the saturation concentrations, aspects of water release, depth profiles, thermal release, effects from helium-3 preimplants, mechanisms of possible water release related to direct emission and thermal release, and lunar soil components enriched in trapped SW hydrogen. It is found that ilmenite stores about twice as much deuterium as the other target materials. However, it is unknown whether the small enrichment factor will be sufficient to make the material a potential source of lunar water.

  5. High pre-eruptive water contents preserved in lunar melt inclusions.

    PubMed

    Hauri, Erik H; Weinreich, Thomas; Saal, Alberto E; Rutherford, Malcolm C; Van Orman, James A

    2011-07-08

    The Moon has long been thought to be highly depleted in volatiles such as water, and indeed published direct measurements of water in lunar volcanic glasses have never exceeded 50 parts per million (ppm). Here, we report in situ measurements of water in lunar melt inclusions; these samples of primitive lunar magma, by virtue of being trapped within olivine crystals before volcanic eruption, did not experience posteruptive degassing. The lunar melt inclusions contain 615 to 1410 ppm water and high correlated amounts of fluorine (50 to 78 ppm), sulfur (612 to 877 ppm), and chlorine (1.5 to 3.0 ppm). These volatile contents are very similar to primitive terrestrial mid-ocean ridge basalts and indicate that some parts of the lunar interior contain as much water as Earth's upper mantle.

  6. Rydberg Excitation of a Single Trapped Ion.

    PubMed

    Feldker, T; Bachor, P; Stappel, M; Kolbe, D; Gerritsma, R; Walz, J; Schmidt-Kaler, F

    2015-10-23

    We demonstrate excitation of a single trapped cold (40)Ca(+) ion to Rydberg levels by laser radiation in the vacuum ultraviolet at a wavelength of 122 nm. Observed resonances are identified as 3d(2)D(3/2) to 51F, 52F and 3d(2)D(5/2) to 64F. We model the line shape and our results imply a large state-dependent coupling to the trapping potential. Rydberg ions are of great interest for future applications in quantum computing and simulation, in which large dipolar interactions are combined with the superb experimental control offered by Paul traps.

  7. Lunar Exploration Orbiter (LEO)

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Spohn, T.; Hiesinger, H.; Jessberger, E. K.; Neukum, G.; Oberst, J.; Helbert, J.; Christensen, U.; Keller, H. U.; Mall, U.; Böhnhardt, H.; Hartogh, P.; Glassmeier, K.-H.; Auster, H.-U.; Moreira, A.; Werner, M.; Pätzold, M.; Palme, H.; Wimmer-Schweingruber, R.; Mandea, M.; Lesur, V.; Häusler, B.; Hördt, A.; Eichentopf, K.; Hauber, E.; Hoffmann, H.; Köhler, U.; Kührt, E.; Michaelis, H.; Pauer, M.; Sohl, F.; Denk, T.; van Gasselt, S.

    2007-08-01

    The Moon is an integral part of the Earth-Moon system, it is a witness to more than 4.5 b. y. of solar system history, and it is the only planetary body except Earth for which we have samples from known locations. The Moon is our closest companion and can easily be reached from Earth at any time, even with a relatively modest financial budget. Consequently, the Moon was the first logical step in the exploration of our solar system before we pursued more distant targets such as Mars and beyond. The vast amount of knowledge gained from the Apollo and other lunar missions of the late 1960's and early 1970's demonstrates how valuable the Moon is for the understanding of our planetary system. Even today, the Moon remains an extremely interesting target scientifically and technologically, as ever since, new data have helped to address some of our questions about the Earth-Moon system, many questions remained. Therefore, returning to the Moon is the critical stepping-stone to further exploring our immediate planetary neighborhood. In this concept study, we present scientific and technological arguments for a national German lunar mission, the Lunar Explorations Orbiter (LEO). Numerous space-faring nations have realized and identified the unique opportunities related to lunar exploration and have planned missions to the Moon within the next few years. Among these missions, LEO will be unique, because it will globally explore the Moon in unprecedented spatial and spectral resolution. LEO will significantly improve our understanding of the lunar surface composition, surface ages, mineralogy, physical properties, interior, thermal history, gravity field, regolith structure, and magnetic field. The Lunar Explorations Orbiter will carry an entire suite of innovative, complementary technologies, including high-resolution camera systems, several spectrometers that cover previously unexplored parts of the electromagnetic spectrum over a broad range of wavelengths, microwave and

  8. A lunar transportation system

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Due to large amounts of oxygen required for space travel, a method of mining, transporting, and storing this oxygen in space would facilitate further space exploration. The following project deals specifically with the methods for transporting liquid oxygen from the lunar surface to the Lunar Orbit (LO) space station, and then to the Lower Earth Orbit (LEO) space station. Two vehicles were designed for operation between the LEO and LO space stations. The first of these vehicles is an aerobraked design vehicle. The Aerobrake Orbital Transfer Vehicle (OTV) is capable of transporting 5000 lbm of payload to LO while returning to LEO with 60,000 lbm of liquid oxygen, and thus meet mission requirements. The second vehicle can deliver 18,000 lbm of payload to LO and is capable of bringing 60,000 lbm of liquid oxygen back to LEO. A lunar landing vehicle was also designed for operation between LO and the established moon base. The use of an electromagnetic railgun as a method for launching the lunar lander was also investigated. The feasibility of the railgun is doubtful at this time. A system of spheres was also designed for proper storing and transporting of the liquid oxygen. The system assumes a safe means for transferring the liquid oxygen from tank to tank is operational. A sophisticated life support system was developed for both the OTV and the lunar lander. This system focuses on such factors as the vehicle environment, waste management, water requirements, food requirements, and oxygen requirements.

  9. Lunar Extravehicular Activity Program

    NASA Technical Reports Server (NTRS)

    Heartsill, Amy Ellison

    2006-01-01

    Extravehicular Activity (EVA) has proven an invaluable tool for space exploration since the inception of the space program. There are situations in which the best means to evaluate, observe, explore and potentially troubleshoot space systems are accomplished by direct human intervention. EVA provides this unique capability. There are many aspects of the technology required to enable a "miniature spaceship" to support individuals in a hostile environment in order to accomplish these tasks. This includes not only the space suit assembly itself, but the tools, design interfaces of equipment on which EVA must work and the specific vehicles required to support transfer of humans between habitation areas and the external world. This lunar mission program will require EVA support in three primary areas. The first of these areas include Orbital stage EVA or micro-gravity EVA which includes both Low Earth Orbit (LEO), transfer and Lunar Orbit EVA. The second area is Lunar Lander EVA capability, which is lunar surface EVA and carries slightly different requirements from micro-gravity EVA. The third and final area is Lunar Habitat based surface EVA, which is the final system supporting a long-term presence on the moon.

  10. Lunar preform manufacturing

    NASA Technical Reports Server (NTRS)

    Leong, Gregory N.; Nease, Sandra; Lager, Vicky; Yaghjian, Raffy; Waller, Chris; Dorrity, J. Lewis

    1992-01-01

    A design for a machine to produce hollow, continuous fiber reinforced composite rods of lunar glass and a liquid crystalline matrix using the pultrusion process is presented. The glass fiber will be produced from the lunar surface, with the machine and matrix being transported to the moon. The process is adaptable to the low gravity and near-vacuum environment of the moon through the use of a thermoplastic matrix in fiber form as it enters the pultrusion process. With a power consumption of 5k W, the proposed machine will run continuously, unmanned in fourteen day cycles, matching the length of moon days. A number of dies could be included that would allow the machine to produce rods of varying diameter, I-beams, angles, and other structural members. These members could then be used for construction on the lunar surface or transported for use in orbit. The benefits of this proposal are in the savings in weight of the cargo each lunar mission would carry. The supply of glass on the moon is effectively endless, so enough rods would have to be produced to justify its transportation, operation, and capital cost. This should not be difficult as weight on lunar mission is at a premium.

  11. Lunar power systems

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The findings of a study on the feasibility of several methods of providing electrical power for a permanently manned lunar base are provided. Two fundamentally different methods for lunar electrical power generation are considered. One is the use of a small nuclear reactor and the other is the conversion of solar energy to electricity. The baseline goal was to initially provide 300 kW of power with growth capability to one megawatt and eventually to 10 megawatts. A detailed, day by day scenario for the establishment, build-up, and operational activity of the lunar base is presented. Also presented is a conceptual approach to a supporting transportation system which identifies the number, type, and deployment of transportation vehicles required to support the base. An approach to the use of solar cells in the lunar environment was developed. There are a number of heat engines which are applicable to solar/electric conversions, and these are examined. Several approaches to energy storage which were used by the electric power utilities were examined and those which could be used at a lunar base were identified.

  12. Common Cold

    MedlinePlus

    ... cure for the common cold. But there are treatments that can make you feel better while you wait for the cold to go away on its own: Getting plenty of rest Drinking fluids Gargling with warm salt water Using cough drops or throat sprays Taking over-the-counter pain ...

  13. Apollo lunar surface experiments package

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Developments in the ALSEP program are reported. A summary of the status for the total ALSEP program is included. Other areas discussed include: (1) status of Apollo 16 (array D) and Apollo 17 (array E), (2) lunar seismic profiling experiment, (3) lunar ejecta and meteorites experiment, and (4) lunar mass spectrometer experiments.

  14. Lunar and Vesta Web Portals

    NASA Astrophysics Data System (ADS)

    Law, E.; JPL Luna Mapping; Modeling Project Team

    2015-06-01

    The Lunar Mapping and Modeling Project offers Lunar Mapping and Modeling Portal (http://lmmp.nasa.gov) and Vesta Trek Portal (http://vestatrek.jpl.nasa.gov) providing interactive visualization and analysis tools to enable users to access mapped Lunar and Vesta data products.

  15. Lunar Mapping and Modeling Project

    NASA Technical Reports Server (NTRS)

    Noble, Sarah K.; French, Raymond; Nall,Mark; Muery, Kimberly

    2009-01-01

    The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The project draws on expertise from several NASA and non-NASA organizations (MSFC, ARC, GSFC, JPL, CRREL and USGS). LMMP will utilize data predominately from the Lunar Reconnaissance Orbiter, but also historical and international lunar mission data (e.g. Apollo, Lunar Orbiter, Kaguya, Chandrayaan-1), as available and appropriate, to meet Constellation s data needs. LMMP will provide access to this data through a single, common, intuitive and easy to use NASA portal that transparently accesses appropriately sanctioned portions of the widely dispersed and distributed collections of lunar data, products and tools. LMMP will provide such products as DEMs, hazard assessment maps, lighting maps and models, gravity models, and resource maps. We are working closely with the LRO team to prevent duplication of efforts and ensure the highest quality data products. While Constellation is our primary customer, LMMP is striving to be as useful as possible to the lunar science community, the lunar education and public outreach (E/PO) community, and anyone else interested in accessing or utilizing lunar data.

  16. Apollo 9 Lunar Module in lunar landing configuration

    NASA Image and Video Library

    1969-03-07

    AS09-21-3199 (7 March 1969) --- Excellent view of the Apollo 9 Lunar Module, "Spider," in a lunar landing configuration, as photographed from the Command and Service Modules on the fifth day of the Apollo 9 Earth-orbital mission. The landing gear on the "Spider" has been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the "Spider" were astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module, "Gumdrop," while the other two astronauts checked out the Lunar Module.

  17. Apollo 9 Lunar Module in lunar landing configuration

    NASA Image and Video Library

    1969-03-07

    AS09-21-3212 (7 March 1969) --- A view of the Apollo 9 Lunar Module (LM), "Spider", in a lunar landing configuration, as photographed from the Command and Service Modules (CSM) on the fifth day of the Apollo 9 Earth-orbital mission. The landing gear on the "Spider" has been deployed. Lunar surface probes (sensors) extend out from landing gear foot pads. Inside the "Spider" were astronauts James A. McDivitt, Apollo 9 commander, and Russell L. Schweickart, lunar module pilot. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module (CM), "Gumdrop", while the other two astronauts checked out the Lunar Module.

  18. Lunar crane hook

    NASA Technical Reports Server (NTRS)

    Cash, John Wilson, III; Cone, Alan E.; Garolera, Frank J.; German, David; Lindabury, David Peter; Luckado, Marshall Cleveland; Murphey, Craig; Rowell, John Bryan; Wilkinson, Brad

    1988-01-01

    The base and ball hook system is an attachment that is designed to be used on the lunar surface as an improved alternative to the common crane hook and eye system. The design proposed uses an omni-directional ball hook and base to overcome the design problems associated with a conventional crane hook. The base and ball hook is not sensitive to cable twist which would render a robotic lunar crane useless since there is little atmospheric resistance to dampen the motion of an oscillating member. The symmetric characteristics of the ball hook and base eliminates manual placement of the ball hook into the base; commonly associated with the typical hook and eye stem. The major advantage of the base and ball hook system is it's ease of couple and uncouple modes that are advantages during unmanned robotic lunar missions.

  19. The Lunar Dust Pendulum

    NASA Technical Reports Server (NTRS)

    Kuntz, Kip; Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.

    2011-01-01

    Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lnnar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however. the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.

  20. Lunar sample analysis

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.

    1975-01-01

    Previous studies have shown that very small amounts of absorbed volatiles only removed by outgassing in high vacuum and elevated temperatures-drastically increase the internal friction in terrestrial analogs of lunar basalt. Recently room temperature Q values as high as 2000 were achieved by thorough outgassing procedures in 10 to the 8th power torr. Results are presented on Q measurements for lunar rock 70215.85, along with some data on the effect on Q of a variety of gases. Data show that substantially greater increases in Q are obtainable in a lunar rock sample than in the terrestrial analog samples studied, and that in addition to H2O other gases also can make non-negligible contributions to the internal friction.

  1. Lunar lander conceptual design

    NASA Technical Reports Server (NTRS)

    Stecklein, J. M.; Petro, A. J.; Stump, W. R.; Adorjan, A. S.; Chambers, T. V.; Donofrio, M.; Hirasaki, J. K.; Morris, O. G.; Nudd, G.; Rawlings, R. P.

    1992-01-01

    This paper is a first look at the problems of building a lunar lander to support a small lunar surface base. A series of trade studies was performed to define the lander. The initial trades concerned choosing number of stages, payload mass, parking orbit altitude, and propellant type. Other important trades and issues included plane change capability, propellant loading and maintenance location, and reusability considerations. Given a rough baseline, the systems were then reviewed. A conceptual design was then produced. The process was carried through only one iteration. Many more iterations are needed. A transportation system using reusable, aerobraked orbital transfer vehicles (OTV's) is assumed. These OTV's are assumed to be based and maintained at a low Earth orbit (LEO) space station, optimized for transportation functions. Single- and two-stage OTV stacks are considered. The OTV's make the translunar injection (TLI), lunar orbit insertion (LOI), and trans-Earth injection (TEI) burns, as well as midcourse and perigee raise maneuvers.

  2. Lunar Sample Compendium

    NASA Technical Reports Server (NTRS)

    Meyer, C.

    2009-01-01

    The Lunar Sample Compendium is a succinct summary of what has been learned from the study of Apollo and Luna samples of the Moon. Basic information is compiled, sample-by-sample, in the form of an advanced catalog in order to provide a basic description of each sample. Information presented is carefully attributed to the original source publication, thus the Compendium also serves as a ready access to the now vast scientific literature pertaining to lunar smples. The Lunar Sample Compendium is a work in progress (and may always be). Future plans include: adding sections on additional samples, adding new thin section photomicrographs, replacing the faded photographs with newly digitized photos from the original negatives, attempting to correct the age data using modern decay constants, adding references to each section, and adding an internal search engine.

  3. Concrete lunar base investigation

    NASA Technical Reports Server (NTRS)

    Lin, T. D.; Senseny, Jonathan A.; Arp, Larry D.; Lindbergh, Charles

    1992-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar base subjected to 1-atm internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design (1) during construction, (2) under pressurization, and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the airtightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the Moon.

  4. The lunar apatite paradox.

    PubMed

    Boyce, J W; Tomlinson, S M; McCubbin, F M; Greenwood, J P; Treiman, A H

    2014-04-25

    Recent discoveries of water-rich lunar apatite are more consistent with the hydrous magmas of Earth than the otherwise volatile-depleted rocks of the Moon. Paradoxically, this requires H-rich minerals to form in rocks that are otherwise nearly anhydrous. We modeled existing data from the literature, finding that nominally anhydrous minerals do not sufficiently fractionate H from F and Cl to generate H-rich apatite. Hydrous apatites are explained as the products of apatite-induced low magmatic fluorine, which increases the H/F ratio in melt and apatite. Mare basalts may contain hydrogen-rich apatite, but lunar magmas were most likely poor in hydrogen, in agreement with the volatile depletion that is both observed in lunar rocks and required for canonical giant-impact models of the formation of the Moon.

  5. Concrete lunar base investigation

    NASA Technical Reports Server (NTRS)

    Lin, T. D.; Senseney, Jonathan A.; Arp, Larry Dean; Lindbergh, Charles

    1989-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar based subjected to one atmosphere internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design: (1) during construction; (2) under pressurization; and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the air-tightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the moon.

  6. Lunar Regolith Excavation Competition

    NASA Technical Reports Server (NTRS)

    Liles, Cassandra

    2009-01-01

    The Lunar Regolith Excavation Competition is a new competition that needs graphics, logos, rules, as well as an arena. Although this is the first year of the competition, the competition is modeled after an existing competition, the Centennial Lunar Excavator Challenge. This competition however is aimed at college students. This makes the challenge identifying key aspects of the original competition and modeling them to fit into an easier task, and creating exciting advertisement that helps encourage participation. By using a youth focus group, young insight, as well as guiding advice from experts in the field, hopefully an arena can be designed and built, rules can be molded and created to fit, and alluring graphics can be printed to bring about a successful first year of the Lunar Regolith Excavation Competition.

  7. Space Solar Power Technology for Lunar Polar Applications

    NASA Technical Reports Server (NTRS)

    Henley, Mark W.; Howell, Joe T.

    2004-01-01

    The technology for Laser-Photo-Voltaic Wireless Power Transistor (Laser-PV WPT) is being developed for lunar polar applications by Boeing and NASA Marshall Space Center. A lunar polar mission could demonstrate and validate Laser-PV WPT and other SSP technologies, while enabling access to cold, permanently shadowed craters that are believed to contain ice. Crater may hold frozen water and other volatiles deposited over billion of years, recording prior impact event on the moon (and Earth). A photo-voltaic-powered rover could use sunlight, when available, and laser light, when required, to explore a wide range of lunar terrain. The National Research Council recently found that a mission to the moon's south pole-Aitkir basin has priority for space science

  8. The Lunar Polesitter

    NASA Technical Reports Server (NTRS)

    West, John L.

    2008-01-01

    Here-to-fore, sailcraft mission and system studies have focused on sailcraft applications in support of NASA's science missions and, in a few studies, on the needs of other federal agencies such as the National Oceanic and Atmospheric Administration (NOAA) and Department of Defense (DoD). These studies have identified numerous promising applications for solar sails, leading NASA to support proposal efforts for three NASA New Millennium Program (NMP) flight demonstration opportunities (the Space Technology-5, -7, and -9 opportunities) as well as an extensive three-year ground development program in FY 2003-2005 sponsored by the NASA In-Space Propulsion Technology (ISPT) Program. What has not been done to date, however, is to investigate how the technology might also benefit the nation's (and NASA's) emerging interest in the Human Exploration Initiative (HEI). This paper reports on the first effort to address this shortfall in mission applications studies in support of HEI: the use of solar-sail-propelled Lunar Polesitter spacecraft which make use of the natural properties of the Earth-Moon L2 point and solar sail propulsion to enable their positioning near the Lunar poles to serve as communications relay stations. Suitably positioned, such spacecraft enable continuous communications to and from the Earth from any point on the lunar far side. The paper shows that a viable sailcraft system design exists permitting station-keeping of a Lunar Polesitter relay station at 40 Lunar radii from the Moon in the anti-Earth direction, displaced 6-8 Lunar radii below the Earth- Moon plane.

  9. Endogenous Lunar Volatiles

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Boyce, J. W.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Magna, T.; Ni, P.; Tartese, R.; hide

    2017-01-01

    The chapter will begin with an introduction that defines magmatic volatiles (e.g., H, F, Cl, S) versus geochemical volatiles (e.g., K, Rb, Zn). We will discuss our approach of understanding both types of volatiles in lunar samples and lay the ground work for how we will determine the overall volatile budget of the Moon. We will then discuss the importance of endogenous volatiles in shaping the "Newer Views of the Moon", specifically how endogenous volatiles feed forward into processes such as the origin of the Moon, magmatic differentiation, volcanism, and secondary processes during surface and crustal interactions. After the introduction, we will include a re-view/synthesis on the current state of 1) apatite compositions (volatile abundances and isotopic compositions); 2) nominally anhydrous mineral phases (moderately to highly volatile); 3) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar pyroclastic glass beads; 4) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar basalts; 5) volatile (moderately to highly volatile) abundances in and isotopic compositions of melt inclusions; and finally 6) experimental constraints on mineral-melt partitioning of moderately to highly volatile elements under lunar conditions. We anticipate that each section will summarize results since 2007 and focus on new results published since the 2015 Am Min review paper on lunar volatiles [9]. The next section will discuss how to use sample abundances of volatiles to understand the source region and potential caveats in estimating source abundances of volatiles. The following section will include our best estimates of volatile abundances and isotopic compositions (where permitted by available data) for each volatile element of interest in a number of important lunar reservoirs, including the crust, mantle, KREEP, and bulk Moon. The final section of the chapter will focus upon future work, outstanding questions

  10. Insolation Effects on Lunar Hydrogen: Observation from the LRO LEND and LOLA Instruments

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Harshman, K.; Livak, M. M.; Malakhov, A.; hide

    2011-01-01

    The Moon's polar permanent shadow regions (PSR) have long been considered the unique repository for volatile Hydrogen (H) Largely, this was due to the extreme and persistently cold environment that has been maintained over eons of lunar history. However, recent discoveries indicate that the H picture may be more complex than thc PSR hypothesis suggests. Observations by the Lunar Exploration Neutron Detect (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) indicate some H concentrations lie outside PSR. Similarly, observations from Chandraayan-l's M3 and Deep Impact's EPOXI near infra-red observations indicate diurnal cycling of volatile H in lower latitudes. These results suggest other geophysical phenomena may also play a role in the Lunar Hydrogen budget. In this presentation we review the techniques and results from the recent high latitude analysis and apply similar techniques to equatorial regions. Results from our low latitude analysis will be reported. We discuss interpretations and implications for Lunar Hydrogen studies

  11. Lunar Roving Vehicle photographed against lunar background during EVA

    NASA Image and Video Library

    1971-08-01

    AS15-88-11901 (31 July-2 Aug. 1971) --- The Lunar Roving Vehicle (LRV) is photographed alone against the desolate lunar background during the third Apollo 15 lunar surface extravehicular activity (EVA) at the Hadley-Apennine landing site. This view is looking north. The west edge of Mount Hadley is at the upper right edge of the picture. Mount Hadley rises approximately 4,500 meters (about 4,765 feet) above the plain. The most distant lunar feature visible is approximately 25 kilometers (about 15.5 statute miles) away. While astronauts David R. Scott, commander; and James B. Irwin, lunar module pilot, descended in the Lunar Module (LM) "Falcon" to explore the moon, astronaut Alfred M. Worden, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  12. Lunar Samples - Apollo 12

    NASA Image and Video Library

    1969-11-28

    S69-60354 (29 Nov. 1969) --- A scientist's gloved hand holds one of the numerous rock samples brought back to Earth from the Apollo 12 lunar landing mission. The rocks are under thorough examination in the Manned Spacecraft Center's (MSC) Lunar Receiving Laboratory (LRL). This sample is a highly shattered basaltic rock with a thin black-glass coating on five of its six sides. Glass fills fractures and cements the rock together. The rock appears to have been shattered and thrown out by a meteorite impact explosion and coated with molten rock material before the rock fell to the surface.

  13. Lunar Hydrospheric Explorer (HYDROX)

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Paschalidis, N.; Sittler, E. C., Jr.; Jones, S. L.; Stubbs, T. J.; Sarantos, M.; Khurana, K. K.; Angelopoulos, V.; Jordan, A. P.; Schwadron, N. A.

    2015-01-01

    The Lunar Hydrospheric Explorer (HYDROX) is a 6U CubeSat designed to further confirm the existence of lunar exospheric water, and to determine source processes and surface sites, through ion mass spectrometer measurements of water group (O+, OH+, H2O+) and related ions at energy charge up to 2 keV/e. and mass/charge 1-40amu/e. HYDROX would follow up on the now-concluded exospheric compositional measurements by the Neutral Mass Spectrometer on the NASA LADEE mission and on other remote sensing surface and exospheric measurements (LADEE,LRO, etc.).

  14. NASA's Robotic Lunar Lander Development Program

    NASA Technical Reports Server (NTRS)

    Ballard, Benjamin W.; Reed, Cheryl L. B.; Artis, David; Cole, Tim; Eng, Doug S.; Kubota, Sanae; Lafferty, Paul; McGee, Timothy; Morese, Brian J.; Chavers, Gregory; hide

    2012-01-01

    NASA Marshall Space Flight Center and the Johns Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed.

  15. Hydrogen and fluorine in the surfaces of lunar samples

    NASA Technical Reports Server (NTRS)

    Leich, D. A.; Goldberg, R. H.; Burnett, D. S.; Tombrello, T. A.

    1974-01-01

    The resonant nuclear reaction F-19 (p, alpha gamma)0-16 has been used to perform depth sensitive analyses for both fluorine and hydrogen in lunar samples. The resonance at 0.83 MeV (center-of-mass) in this reaction has been applied to the measurement of the distribution of trapped solar protons in lunar samples to depths of about 1/2 micrometer. These results are interpreted in terms of terrestrial H2O surface contamination and a redistribution of the implanted solar H which has been influenced by heavy radiation damage in the surface region. Results are also presented for an experiment to test the penetration of H2O into laboratory glass samples which have been irradiated with 0-16 to simulate the radiation damaged surfaces of lunar glasses. Fluorine determinations have been performed in a 1 pm surface layer on lunar samples using the same F-19 alpha gamma)0-16 resonance. The data are discussed from the standpoint of lunar fluorine and Teflon contamination.

  16. Analysis of Solar-Heated Thermal Wadis to Support Extended-Duration Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Wegeng, R. S.; Gokoglu, S. A.; Suzuki, N. H.; Sacksteder, K. R.

    2010-01-01

    The realization of the renewed exploration of the Moon presents many technical challenges; among them is the survival of lunar surface assets during periods of darkness when the lunar environment is very cold. Thermal wadis are engineered sources of stored solar energy using modified lunar regolith as a thermal storage mass that can enable the operation of lightweight robotic rovers or other assets in cold, dark environments without incurring potential mass, cost, and risk penalties associated with various onboard sources of thermal energy. Thermal wadi-assisted lunar rovers can conduct a variety of long-duration missions including exploration site surveys; teleoperated, crew-directed, or autonomous scientific expeditions; and logistics support for crewed exploration. This paper describes a thermal analysis of thermal wadi performance based on the known solar illumination of the moon and estimates of producible thermal properties of modified lunar regolith. Analysis was performed for the lunar equatorial region and for a potential Outpost location near the lunar south pole. The results are presented in some detail in the paper and indicate that thermal wadis can provide the desired thermal energy reserve, with significant margin, for the survival of rovers or other equipment during periods of darkness.

  17. Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Khan, A.; Connolly, J. A.; Pommier, A.

    2013-12-01

    Analysis of lunar seismic and lunar laser ranging data has yielded evidence that has been interpreted to indicate a molten zone in the lower-most mantle and/or the outer core of the Moon. Such a zone would provide strong constraints on models of the thermal evolution of the Moon. Here we invert lunar geophysical data in combination with phase-equilibrium modeling to derive information about the thermo-chemical and physical structure of the deep lunar interior. Specifically, we assess whether a molten layer is required by the geophysical data and, if so, its likely composition and physical properties (e.g., density and seismic wave speeds). The data considered are mean mass and moment of inertia, second-degree tidal Love number, and frequency-dependent electromagnetic sounding data. The main conclusion drawn from this study is that a region with high dissipation located deep within the Moon is indeed required to explain the geophysical data. If this dissipative region is located within the mantle, then the solidus is crossed at a depth of ~1200 km (>1600 deg C). The apparent absence of far-side deep moonquakes (DMQs) is supporting evidence for a highly dissipative layer. Inverted compositions for the partially molten layer (typically 100--200 km thick) are enriched in FeO and TiO2 relative to the surrounding mantle. While the melt phase in >95 % of inverted models is neutrally buoyant at pressures of ~4.5--4.6 GPa, the melt contains less TiO2 (>~4 wt %) than the Ti-rich (~16 wt % TiO2) melts that produced a set of high-density primitive lunar magmas (~3.4 g/ccm). Melt densities computed here range from 3.3 to 3.4 g/ccm bracketing the density of lunar magmas with moderate-to-high TiO2 contents. Our results are consistent with a model of lunar evolution in which the cumulate pile formed from crystallization of the magma ocean as it overturned, trapping heat-producing elements in the lower mantle.

  18. Lunar map showing traverse plans for Apollo 14 lunar landing mission

    NASA Image and Video Library

    1970-09-01

    This lunar map shows the traverse plans for the Apollo 14 lunar landing mission. Areas marked include Lunar module landing site, areas for the Apollo Lunar Surface Experiment Package (ALSEP) and areas for gathering of core samples.

  19. Lunar Module 4 moved for mating with Lunar Module Adapter at KSC

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Lunar Module 4 being moved for mating with the Spacecraft Lunar Module Adapter in the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building. Lunar module 4 will be flown on the Apollo 10 (Spacecraft 106/Saturn 505) lunar orbit mission.

  20. The Sooner Lunar Schooner: Lunar engineering education

    NASA Astrophysics Data System (ADS)

    Miller, D. P.; Hougen, D. F.; Shirley, D.

    2003-06-01

    The Sooner Lunar Schooner is a multi-disciplinary ongoing project at the University of Oklahoma to plan, design, prototype, cost and (when funds become available) build/contract and fly a robotic mission to the Moon. The goal of the flight will be to explore a small section of the Moon; conduct a materials analysis of the materials left there by an Apollo mission thirty years earlier; and to perform a selenographic survey of areas that were too distant or considered too dangerous to be done by the Apollo crew. The goal of the Sooner Lunar Schooner Project is to improve the science and engineering educations of the hundreds of undergraduate and graduate students working on the project. The participants, while primarily from engineering and physics, will also include representatives from business, art, journalism, law and education. This project ties together numerous existing research programs at the University, and provides a framework for the creation of many new research proposals. The authors were excited and motivated by the Apollo missions to the Moon. When we asked what we could do to similarly motivate students we realized that nothing is as exciting as going to the Moon. The students seem to agree.

  1. The Sooner Lunar Schooner: Lunar Engineering Education

    NASA Astrophysics Data System (ADS)

    Miller, D.; Hougen, D.; Shirley, D.

    The Sooner Lunar Schooner is a multi-disciplinary ongoing project at the University of Oklahoma to plan, design, prototype, cost and (when funds become available) build/contract and fly a robotic mission to the Moon. The goal of the flight will be to explore the Hadley Rille site; conduct a materials analysis of the materials left there by Apollo 15 thirty years earlier; and to perform a selenographic survey of the parts of the Rille that were considered too dangerous to be explored by the Apollo 15 crew. The goal of the Sooner Lunar Schooner Project is to improve the science and engineering educations of the hundreds of undergraduate and graduate students working on the project. The participants, while primarily from engineering and physics, will also include representatives from business, art, journalism, law and education. This project ties together numerous existing research programs at the University, and provides a framework for the creation of many new research proposals. When we asked what we could do to motivate students the way the authors were excited and motivated by the Apollo missions to the Moon, we realized that nothing is as exciting as going to the Moon, as is going to the Moo n. The students seem to agree.

  2. Lunar near-surface structure

    NASA Technical Reports Server (NTRS)

    Cooper, M. R.; Kovach, R. L.; Watkins, J. S.

    1974-01-01

    Seismic refraction data obtained at the Apollo 14, 16, and 17 landing sites permit a compressional wave velocity profile of the lunar near surface to be derived. Beneath the regolith at the Apollo 14 Fra Mauro site and the Apollo 16 Descartes site is material with a seismic velocity of about 300 m/sec, believed to be brecciated material or impact-derived debris. Considerable detail is known about the velocity structure at the Apollo 17 Taurus-Littrow site. Seismic velocities of 100, 327, 495, 960, and 4700 m/sec are observed. The depth to the top of the 4700-m/sec material is 1385 m, compatible with gravity estimates for the thickness of mare basaltic flows, which fill the Taurus-Littrow valley. The observed magnitude of the velocity change with depth and the implied steep velocity-depth gradient of more than 2 km/sec/km are much larger than have been observed on compaction experiments on granular materials and preclude simple cold compaction of a fine-grained rock powder to thicknesses of the order of kilometers.

  3. Cold intolerance

    MedlinePlus

    Some causes of cold intolerance are: Anemia Anorexia nervosa Blood vessel problems, such as Raynaud phenomenon Chronic severe illness General poor health Underactive thyroid ( hypothyroidism ) Problem with the hypothalamus (a part ...

  4. Lunar construction utility vehicle

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The lunar construction utility vehicle (LCUV) is an all-purpose construction vehicle which will aid in the robotic assembly of a lunar outpost. The LCUV will have the following capabilities: (1) must be self supporting including repairs; (2) must offload itself from a lunar lander; (3) must be telerobotic and semi-autonomous; (4) must be able to transport one space station common module; (5) must allow for man-rated operation; and (6) must be able to move lunar regolith for site preparation. This study recommends the use of an elastic tracked vehicle. Detailed material analyses of most of the LCUV components were accomplished. The body frame, made of pinned truss elements, was stress analyzed using NASTRAN. A track connection system was developed; however, kinematic and stress analyses are still required. This design recommends the use of hydrogen-oxygen fuel cells for power. Thermal control has proven to be a problem which may be the most challenging technically. A tentative solution has been proposed which utilizes an onboard and towable radiator. Detailed study of the heat dissipation requirements is needed to finalize radiator sizing. Preliminary work on a man-rated cabin has begun; however, this is not required during the first mission phase of the LCUV. Finally, still in the conceptual phases, are the communication, navigation and mechanical arm systems.

  5. Lunar surface gravimeter experiment

    NASA Technical Reports Server (NTRS)

    Giganti, J. J.; Larson, J. V.; Richard, J. P.; Tobias, R. L.; Weber, J.

    1977-01-01

    The lunar surface gravimeter used the moon as an instrumented antenna to search for gravitational waves predicted by Einstein's general theory of relativity. Tidal deformation of the moon was measured. Gravitational radiation is a channel that is capable of giving information about the structure and evolution of the universe.

  6. A Lunar Chronology

    ERIC Educational Resources Information Center

    Schaeffer, Oliver A.

    1973-01-01

    Discusses methods used in determination of absolute isotopic ages for the returned lunar material, including the uranium-lead, rubidium-strontium, and argon 40-argon 39 ratio methods. Indicates that there would exist a basin-forming bombardment period for the Moon extending over at least 300 million years. (CC)

  7. Lunar Phases Planisphere

    ERIC Educational Resources Information Center

    Shawl, Stephen J.

    2010-01-01

    This paper describes a lunar phases planisphere with which a user can answer questions about the rising and setting times of the Moon as well as questions about where the Moon will be at a given phase and time. The article contains figures that can be photocopied to make the planisphere. (Contains 2 figures.)

  8. Lunar troilite: Crystallography

    USGS Publications Warehouse

    Evans, H.T.

    1970-01-01

    Fine, euhedral crystals of troilite from lunar sample 10050 show a hexagonal habit consistent with the high-temperature NiAs-type structure. Complete three-dimensional counter intensity data have been measured and used to confirm and refine Bertaut's proposed low-temperature crystal structure.

  9. Lunar permafrost - Dielectric identification.

    NASA Technical Reports Server (NTRS)

    Alvarez, R.

    1973-01-01

    A simulator of lunar permafrost at 100 K exhibits a dielectric relaxation centered at approximately 300 hertz. If permafrost exists in the moon between 100 and 213 K, it should present a relaxation peak at approximately 300 hertz. For temperatures up to 263 K it may go up to 20 kilohertz.

  10. Extended duration lunar lander

    NASA Technical Reports Server (NTRS)

    Babic, Nikola; Carter, Matt; Cosper, Donna; Garza, David; Gonzalez, Eloy; Goodine, David; Hirst, Edward; Li, Ray; Lindsey, Martin; Ng, Tony

    1993-01-01

    Selenium Technologies has been conducting preliminary design work on a manned lunar lander for use in NASA's First Lunar Outpost (FLO) program. The resulting lander is designed to carry a crew of four astronauts to a prepositioned habitat on the lunar surface, remain on the lunar surface for up to 45 days while the crew is living in the habitat, then return the crew to earth via direct reentry and land recovery. Should the need arise, the crew can manually guide the lander to a safe lunar landing site, and live in the lander for up to ten days on the surface. Also, an abort to earth is available during any segment of the mission. The main propulsion system consists of a cluster of four modified Pratt and Whitney RL10 rocket engines that use liquid methane (LCH4) and liquid oxygen (LOX). Four engines are used to provide redundancy and a satisfactory engine out capability. Differences between the new propulsion system and the original system include slightly smaller engine size and lower thrust per engine, although specific impulse remains the same despite the smaller size. Concerns over nozzle ground clearance and engine reliability, as well as more information from Pratt and Whitney, brought about this change. The power system consists of a combination of regenerative fuel cells and solar arrays. While the lander is in flight to or from the moon, or during the lunar night, fuel cells provide all electrical power. During the lunar day, solar arrays are deployed to provide electrical power for the lander as well as electrolyzers, which separate some water back into hydrogen and oxygen for later use by the fuel cells. Total storage requirements for oxygen, hydrogen, and water are 61 kg, 551 kg, and 360 kg, respectively. The lander is a stage-and-a-half design with descent propellant, cargo, and landing gear contained in the descent stage, and the main propulsion system, ascent propellant, and crew module contained in the ascent stage. The primary structure for both

  11. Indigenous lunar construction materials

    NASA Technical Reports Server (NTRS)

    Rogers, Wayne P.; Sture, Stein

    1991-01-01

    The utilization of local resources for the construction and operation of a lunar base can significantly reduce the cost of transporting materials and supplies from Earth. The feasibility of processing lunar regolith to form construction materials and structural components is investigated. A preliminary review of potential processing methods such as sintering, hot-pressing, liquification, and cast basalt techniques, was completed. The processing method proposed is a variation on the cast basalt technique. It involves liquification of the regolith at 1200-1300 C, casting the liquid into a form, and controlled cooling. While the process temperature is higher than that for sintering or hot-pressing (1000-1100 C), this method is expected to yield a true engineering material with low variability in properties, high strength, and the potential to form large structural components. A scenario for this processing method was integrated with a design for a representative lunar base structure and potential construction techniques. The lunar shelter design is for a modular, segmented, pressurized, hemispherical dome which could serve as habitation and laboratory space. Based on this design, estimates of requirements for power, processing equipment, and construction equipment were made. This proposed combination of material processing method, structural design, and support requirements will help to establish the feasibility of lunar base construction using indigenous materials. Future work will refine the steps of the processing method. Specific areas where more information is needed are: furnace characteristics in vacuum; heat transfer during liquification; viscosity, pouring and forming behavior of molten regolith; design of high temperature forms; heat transfer during cooling; recrystallization of basalt; and refinement of estimates of elastic moduli, compressive and tensile strength, thermal expansion coefficient, thermal conductivity, and heat capacity. The preliminary

  12. A One-Piece Lunar Regolith Bag Garage Prototype

    NASA Technical Reports Server (NTRS)

    Smithers, G. A.; Nehls, M. K.; Hovater, M. A.; Evans, S. W.; Miller, J. S.; Broughton, R. M., Jr.; Beale, D.; Kilinc-Balci, F.

    2007-01-01

    Shelter structures on the moon, even in early phases of exploration, should incorporate lunar materials as much as possible. This Technical Memorandum details the design and construction of a prototype for a one-piece regolith bag unpressurized garage concept and a materials testing program to investigate six candidate fabrics to learn how they might perform in the lunar environment. The conceptualization was that a lightweight fabric form be launched from Earth and landed on the lunar surface to be robotically filled with raw lunar regolith. Regolith bag fabric candidates included: Vectran(TM), Nextel(TM), Gore PTFE Fabric(TM), Zylon(TM), Twaron(TM), and Nomex(TM). Tensile (including post radiation exposure), fold, abrasion, and hypervelocity impact testing were performed under ambient conditions, and also performed under cold and elevated temperatures. In some cases, Johnson Space Center lunar simulant (JSC-1) was used in conjunction with testing. A series of preliminary structures was constructed during final prototype design based on the principles of the classic masonry arch. The prototype was constructed of Kevlar(TM) and filled with vermiculite. The structure is free-standing, but has not yet been load tested. Future plans would be to construct higher fidelity prototypes and to conduct appropriate tests of the structure.

  13. A One-Piece Lunar Regolith-Bag Garage Prototype

    NASA Technical Reports Server (NTRS)

    Smithers, Gweneth A.; Nehls, Mary K.; Hovater, Mary A.; Evans, Steven W.; Miller, J. Scott; Broughton, Roy M., Jr.; Beale, David; Killinc-Balci, Fatma

    2006-01-01

    Shelter structures on the moon, even in early phases of exploration, should incorporate lunar materials as much as possible. We designed and constructed a prototype for a one-piece regolith-bag unpressurized garage concept, and, in parallel, we conducted a materials testing program to investigate six candidate fabrics to learn how they might perform in the lunar environment. In our concept, a lightweight fabric form is launched from Earth to be landed on the lunar surface and robotically filled with raw lunar regolith. In the materials testing program, regolith-bag fabric candidates included: VectranTM, NextelTM, Gore PTFE FabricTM, ZylonTM TwaronTM and NomexTM. Tensile (including post radiation exposure), fold, abrasion, and hypervelocity impact testing were performed under ambient conditions, and, within our current means, we also performed these tests under cold and elevated temperatures. In some cases, lunar simulant (JSC-1) was used in conjunction with testing. Our ambition is to continuously refine our testing to reach lunar environmental conditions to the extent possible. A series of preliminary structures were constructed during design of the final prototype. Design is based on the principles of the classic masonry arch. The prototype was constructed of KevlarTM and filled with vermiculite (fairly close to the weight of lunar regolith on the moon). The structure is free-standing, but has not yet been load tested. Our plan for the future would be to construct higher fidelty mockups with each iteration, and to conduct appropriate tests of the structure.

  14. A One-Piece Lunar Regolith-Bag Garage Prototype

    NASA Technical Reports Server (NTRS)

    Smithers, Gweneth A.; Nehls, Mary K.; Hovater, Mary A.; Evans, Steven W.; Miller, J. Scott; Broughton, Roy M.; Beale, David; Killing-Balci, Fatma

    2007-01-01

    Shelter structures on the moon, even in early phases of exploration, should incorporate lunar materials as much as possible. We designed and constructed a prototype for a one-piece regolith-bag unpressurized garage concept, and, in parallel, we conducted a materials testing program to investigate six candidate fabrics to learn how they might perform in the lunar environment. In our concept, a lightweight fabric form is launched from Earth to be landed on the lunar surface and robotically filled with raw lunar regolith. In the materials testing program, regolith-bag fabric candidates included: Vectran(TM), Nextel(TM), Gore PTFE Fabric(TM), Zylon(TM), Twaron(TM), and Nomex(TM). Tensile (including post radiation exposure), fold, abrasion, and hypervelocity impact testing were performed under ambient conditions, and, within our current means, we also performed these tests under cold and elevated temperatures. In some cases, lunar simulant (JSC-1) was used in conjunction with testing. Our ambition is to continuously refine our testing to reach lunar environmental conditions to the extent possible. A series of preliminary structures were constructed during design of the final prototype. Design is based on the principles of the classic masonry arch. The prototype was constructed of Kevlar(TM) and filled with vermiculite (fairly close to the weight of lunar regolith on the moon). The structure is free-standing, but has not yet been load tested. Our plan for the future would be to construct higher fidelity mockups with each iteration, and to conduct appropriate tests of the structure.

  15. Lunar soil properties and soil mechanics

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Houston, W. N.; Hovland, H. J.

    1972-01-01

    The study to identify and define recognizable fabrics in lunar soil in order to determine the history of the lunar regolith in different locations is reported. The fabric of simulated lunar soil, and lunar soil samples are discussed along with the behavior of simulated lunar soil under dynamic and static loading. The planned research is also included.

  16. Wire and Cable Cold Bending Test

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  17. Lunar Dust: Characterization and Mitigation

    NASA Technical Reports Server (NTRS)

    Hyatt. Mark J.; Feighery, John

    2007-01-01

    Lunar dust is a ubiquitous phenomenon which must be explicitly addressed during upcoming human lunar exploration missions. Near term plans to revisit the moon as a stepping stone for further exploration of Mars, and beyond, places a primary emphasis on characterization and mitigation of lunar dust. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it's potentially harmful effects on exploration systems. The same hold true for assessing the risk it may pose for toxicological health problems if inhaled. This paper presents the current perspective and implementation of dust knowledge management and integration, and mitigation technology development activities within NASA's Exploration Technology Development Program. This work is presented within the context of the Constellation Program's Integrated Lunar Dust Management Strategy. This work further outlines the scientific basis for lunar dust behavior, it's characteristics and potential effects, and surveys several potential strategies for its control and mitigation both for lunar surface operations and within the working volumes of a lunar outpost. The paper also presents a perspective on lessons learned from Apollo and forensics engineering studies of Apollo hardware.

  18. The International Lunar Decade Declaration

    NASA Astrophysics Data System (ADS)

    Beldavs, V.; Foing, B.; Bland, D.; Crisafulli, J.

    2015-10-01

    The International Lunar Decade Declaration was discussed at the conference held November 9-13, 2014 in Hawaii "The Next Giant Leap: Leveraging Lunar Assets for Sustainable Pathways to Space" - http://2014giantleap.aerospacehawaii.info/ and accepted by a core group that forms the International Lunar Decade Working Group (ILDWG) that is seeking to make the proposed global event and decade long process a reality. The Declaration will be updated from time to time by members of the ILDWreflecting new knowledge and fresh perspectives that bear on building a global consortium with a mission to progress from lunar exploration to the transformation of the Moon into a wealth gene rating platform for the expansion of humankind into the solar system. When key organizations have endorsed the idea and joined the effort the text of the Declaration will be considered final. An earlier International Lunar Decade proposal was issued at the 8th ICEUM Conference in 2006 in Beijing together with 13 specific initiatives for lunar exploration[1,2,3]. These initiatives have been largely implemented with coordination among the different space agencies involved provided by the International Lunar Exploration Working Group[2,3]. The Second International Lunar Decade from 2015 reflects current trends towards increasing involvement of commercial firms in space, particularly seeking opportunities beyond low Earth orbit. The central vision of the International Lunar Decade is to build the foundations for a sustainable space economy through international collaboration concurrently addressing Lunar exploration and building a shared knowledge base;Policy development that enables collabo rative research and development leading to lunar mining and industrial and commercial development;Infrastructure on the Moon and in cislunar space (communications, transport, energy systems, way-stations, other) that reduces costs, lowers risks and speeds up the time to profitable operations;Enabling technologies

  19. The Lunar Quest Program and the International Lunar Network (ILN)

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2009-01-01

    The Lunar and Planetary Science group at Marshall provides core capabilities to support the Agency's lunar exploration goals. ILN Anchor Nodes are currently in development by MSFC and APL under the Lunar Quest Program at MSFC. The Science objectives of the network are to understand the interior structure and composition of the moon. Pre-phase A engineering assessments are complete, showing a design that can achieve the science requirements, either on their own (if 4 launched) or in concert with international partners. Risk reduction activities are ongoing. The Lunar Quest Program is a Science-based program with the following goals: a) Fly small/medium science missions to accomplish key science goals; b) Build a strong lunar science community; c) Provide opportunities to demonstrate new technologies; and d) Where possible, help ESMD and SOMG goals and enhance presence of science in the implementation of the VSE. The Lunar Quest Program will be guided by recommendations from community reports.

  20. Lunar Thermal Wadis and Exploration Rovers: Outpost Productivity and Participatory Exploration

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt; Wegeng, Robert; Suzuki, Nantel

    2009-01-01

    The presentation introduces the concept of a thermal wadi, an engineered source of thermal energy that can be created using native material on the moon or elsewhere to store solar energy for use by various lunar surface assets to survive the extremely cold environment of the lunar night. A principal benefit of this approach to energy storage is the low mass requirement for transportation from Earth derived from the use of the lunar soil, or regolith, as the energy storage medium. The presentation includes a summary of the results of a feasibility study involving the numerical modeling of the performance of a thermal wadi including a manufactured thermal mass, a solar energy reflector, a nighttime thermal energy reflector and a lunar surface rover. The feasibility study shows that sufficient thermal energy can be stored using unconcentrated solar flux to keep a lunar surface rover sufficiently warm throughout a 354 hour lunar night at the lunar equator, and that similar approaches can be used to sustain surface assets during shorter dark periods that occur at the lunar poles. The presentation includes descriptions of a compact lunar rover concept that could be used to manufacture a thermal wadi and could alternatively be used to conduct a variety of high-value tasks on the lunar surface. Such rovers can be produced more easily because the capability for surviving the lunar night is offloaded to the thermal wadi infrastructure. The presentation also includes several concepts for operational scenarios that could be implemented on the moon using the thermal wadi and compact rover concepts in which multiple affordable rovers, operated by multiple terrestrial organizations, can conduct resource prospecting and human exploration site preparation tasks.

  1. Understanding the Reactivity of Lunar Dust for Future Lunar Missions

    NASA Technical Reports Server (NTRS)

    Wallace, W. T.; Jeevarajan, A. S.; Taylor, L. A.

    2010-01-01

    Fluorescence and EPR can be used to measure the reactivity of lunar soil. Lunar soil is highly activated by grinding. Reactivity is dependent upon soil maturity and locale. Maturity is based on the amount of nanophase iron (np-Fe) in a soil relative to the total iron (FeO). Lunar soil activity ia a direct function of the amount of np-Fe present. Reactive soil can be "deactivated" by humid atmosphere.

  2. Lunar crane system

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.

    1991-01-01

    In many lunar construction scenarios, mechanical cranes in some form will be indispensible in moving large masses around with various degrees of fine positioning. While thorough experience exists in the use of terrestrial cranes new thinking is required about the design of cranes to be used in extraterrestrial construction. The primary driving force for this new thinking is the need to automate the crane system so that space cranes can be operated as telerobotic machines with a large number of automatic capabilities. This is true because in extraterrestrial construction human resources will need to be critically rationed. The design problems of mechanisms and control systems for a lunar crane must deal with at least two areas of performance. First, the automated crane must be capable of maneuvering a large mass, so that when the mass arrives at the target position there are only small vibrations. Secondly, any residue vibrations must be automatically damped out and a fine positioning must be achieved. For extraterrestrial use there are additional challenges to a crane design - for example, to design a crane system so that it can be transformed for other construction uses. This initial project in crane design does not address such additional issues, although they may be the subject of future CSC research. To date the Center has designed and analyzed many mechanisms. The fundamental problem of trade-offs between passively stabilizing the load and actively controlling the load by actuators was extensively studied. The capability of 3D dynamics modeling now exists for such studies. A scaled model of a lunar crane was set up and it has been most fruitful in providing basic understanding of lunar cranes. Due to an interesting scaling match-up, this scaled model exhibits the load vibration frequencies one would expect in the real lunar case. Using the analytical results achieved to date, a laboratory crane system is now being developed as a test bed for verifying a wide

  3. Petrology of lunar rocks and implication to lunar evolution

    NASA Technical Reports Server (NTRS)

    Ridley, W. I.

    1976-01-01

    Recent advances in lunar petrology, based on studies of lunar rock samples available through the Apollo program, are reviewed. Samples of bedrock from both maria and terra have been collected where micrometeorite impact penetrated the regolith and brought bedrock to the surface, but no in situ cores have been taken. Lunar petrogenesis and lunar thermal history supported by studies of the rock sample are discussed and a tentative evolutionary scenario is constructed. Mare basalts, terra assemblages of breccias, soils, rocks, and regolith are subjected to elemental analysis, mineralogical analysis, trace content analysis, with studies of texture, ages and isotopic composition. Probable sources of mare basalts are indicated.

  4. Lunar bases and space activities of the 21st century

    NASA Technical Reports Server (NTRS)

    Mendell, W. W. (Editor)

    1985-01-01

    The present conference gives attention to such major aspects of lunar colonization as lunar base concepts, lunar transportation, lunar science research activities, moon-based astronomical researches, lunar architectural construction, lunar materials and processes, lunar oxygen production, life support and health maintenance in lunar bases, societal aspects of lunar colonization, and the prospects for Mars colonization. Specific discussions are presented concerning the role of nuclear energy in lunar development, achromatic trajectories and the industrial scale transport of lunar resources, advanced geologic exploration from a lunar base, geophysical investigations of the moon, moon-based astronomical interferometry, the irradiation of the moon by particles, cement-based composites for lunar base construction, electrostatic concentration of lunar soil minerals, microwave processing of lunar materials, a parametric analysis of lunar oxygen production, hydrogen from lunar regolith fines, metabolic support for a lunar base, past and future Soviet lunar exploration, and the use of the moons of Mars as sources of water for lunar bases.

  5. Lunar ash flows - Isothermal approximation.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  6. Lunar Surface Properties from Diviner Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Hayne, Paul; Paige, David; Greenhagen, Benjamin; Bandfield, Joshua; Siegler, Matthew; Lucey, Paul

    2015-04-01

    The thermal behavior of planetary bodies can reveal information about fundamental processes shaping their surfaces and interiors. Diviner [1] has been mapping the Moon's diurnal temperatures since the Lunar Reconnaissance Orbiter (LRO) arrived in 2009, yielding new insights into regolith formation [2, 3], the distribution of volatiles [4, 5], lunar volcanism [6, 7, 8], and impact processes [9]. The Moon's cooling during eclipse provides complementary information on the physical properties of the uppermost surface layer, which can be used to further investigate these and other processes. We used data from Diviner's seven thermal infrared spectral channels to measure surface temperatures before, during and after the 8 Oct., 2014 eclipse. In its standard nadir-pushbroom mode, Diviner maps surface temperatures in a ~6-km swath with a spatial resolution of ~250 m. Using Diviner's independent scanning capability [11], we also targeted two regions of interest on sequential orbits to create a time series of thermal observations: 1) Kepler crater (-38°E, 8°N) and 2) an unnamed nighttime "cold spot" (-33.3°E, 3°N). Pre-eclipse surface temperatures in these regions were ~380 K. As a relatively young Copernican-aged impact crater, Kepler was selected to investigate the abundance and size distribution of rocks in the ejecta and interior. Lunar nighttime "cold spots" are anomalous features around very young impact craters, extending for up to hundreds of crater radii, notable for their low temperatures in the Diviner nighttime data [9]. Although their origins are not fully explained, they are likely the result of in-situ disruption and decompression of regolith during the impact process. The selected cold spot (one of hundreds or even thousands on the lunar surface) was located with good viewing ge- ometry from LRO, and had a diameter of ~10 km surrounding a crater < 1 km in diameter. At Kepler crater, we observed dramatic differences in the amount of cooling related to the

  7. Stabilization of lunar core samples

    NASA Technical Reports Server (NTRS)

    Nagle, J. S.; Duke, M. B.

    1974-01-01

    Processing of lunar cores includes: (1) careful dissection for study of loose fines, and (2) stabilization of the residue by peeling and impregnation. The newly developed technique for preparing thin peels of lunar cores requires application of the methacrylate adhesive to a backing strip, before taking the peel. To ensure complete impregnation of the very fine, dry lunar soil, the low-viscosity epoxy, Araldite 506, is gently flowed onto the core, under vacuum.

  8. Apollo lunar descent guidance

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1974-01-01

    Apollo lunar-descent guidance transfers the Lunar Module from a near-circular orbit to touchdown, traversing a 17 deg central angle and a 15 km altitude in 11 min. A group of interactive programs in an onboard computer guide the descent, controlling altitude and the descent propulsion system throttle. A ground-based program pre-computes guidance targets. The concepts involved in this guidance are described. Explicit and implicit guidance are discussed, guidance equations are derived, and the earlier Apollo explicit equation is shown to be an inferior special case of the later implicit equation. Interactive guidance, by which the two-man crew selects a landing site in favorable terrain and directs the trajectory there, is discussed. Interactive terminal-descent guidance enables the crew to control the essentially vertical descent rate in order to land in minimum time with safe contact speed. The altitude maneuver routine uses concepts that make gimbal lock inherently impossible.

  9. Lunar surface magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Sonett, C. P.

    1972-01-01

    The Apollo 15 lunar-surface magnetometer (LSM) is one of a network of magnetometers that have been deployed on the moon to study intrinsic remanent magnetic fields and global magnetic response of the moon to large-scale solar and terrestrial magnetic fields. From these field measurements, properties of the lunar interior such as magnetic permeability, electrical conductivity, and temperature can be calculated. In addition, correlation with solar-wind-spectrometer data allows study of the the solar-wind plasma interaction with the moon and, in turn, investigation of the resulting absorption of gases and accretion of an ionosphere. These physical parameters and processes determined from magnetometer measurements must be accounted for by comprehensive theories of origin and evolution of the moon and solar system.

  10. Lunar Health Monitor (LHM)

    NASA Technical Reports Server (NTRS)

    Lisy, Frederick J.

    2015-01-01

    Orbital Research, Inc., has developed a low-profile, wearable sensor suite for monitoring astronaut health in both intravehicular and extravehicular activities. The Lunar Health Monitor measures respiration, body temperature, electrocardiogram (EKG) heart rate, and other cardiac functions. Orbital Research's dry recording electrode is central to the innovation and can be incorporated into garments, eliminating the need for conductive pastes, adhesives, or gels. The patented dry recording electrode has been approved by the U.S. Food and Drug Administration. The LHM is easily worn under flight gear or with civilian clothing, making the system completely versatile for applications where continuous physiological monitoring is needed. During Phase II, Orbital Research developed a second-generation LHM that allows sensor customization for specific monitoring applications and anatomical constraints. Evaluations included graded exercise tests, lunar mission task simulations, functional battery tests, and resting measures. The LHM represents the successful integration of sensors into a wearable platform to capture long-duration and ambulatory physiological markers.

  11. Lunar Core and Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  12. A lunar space station

    NASA Technical Reports Server (NTRS)

    Trinh, LU; Merrow, Mark; Coons, Russ; Iezzi, Gabrielle; Palarz, Howard M.; Nguyen, Marc H.; Spitzer, Mike; Cubbage, Sam

    1989-01-01

    A concept for a space station to be placed in low lunar orbit in support of the eventual establishment of a permanent moon base is proposed. This space station would have several functions: (1) a complete support facility for the maintenance of the permanent moon base and its population; (2) an orbital docking area to facilitate the ferrying of materials and personnel to and from Earth; (3) a zero gravity factory using lunar raw materials to grow superior GaAs crystals for use in semiconductors and mass produce inexpensive fiber glass; and (4) a space garden for the benefit of the air food cycles. The mission scenario, design requirements, and technology needs and developments are included as part of the proposal.

  13. Mobile continuous lunar excavation

    NASA Technical Reports Server (NTRS)

    Paterson, John L.

    1992-01-01

    A novel approach to the concept of lunar mining and the use of in situ oxygen, metallics, and ceramics is presented. The EVA time required to set up, relocate, and maintain equipment, as well as the cost per pound of shipping the mining and processing equipment to the moon are considered. The proposed soil fracturing/loading mechanisms are all based loosely on using the Apollo Lunar Roving Vehicle (LRV) Frame. All use motor driven tracks for mobility in the forward/reverse and left/right direction. All mechanisms employ the concept of rototillers which are attached to a gantry which, through the use of motor-driven lead screws, provide the rototillers with an up/down capability. A self-reactant excavator, a local mass enhanced excavator, and a soil reactant excavator are illustrated.

  14. Investigations of lunar materials

    NASA Technical Reports Server (NTRS)

    Comstock, G. M.; Fvwaraye, A. O.; Fleischer, R. L.; Hart, H. R., Jr.

    1972-01-01

    The investigations were directed at determining the radiation history and surface chronology of lunar materials using the etched particle track technique. The major lunar materials studied are the igneous rocks and double core from Apollo 12, the breccia and soil samples from Apollo 14, and the core samples from Luna 16. In the course of this work two new and potentially important observations were made: (1) Cosmic ray-induced spallation-recoil tracks were identified. The density of such tracks, when compared with the density of tracks induced by a known flux of accelerator protons, yields the time of exposure of a sample within the top meter or two of moon's surface. (2) Natural, fine scale plastic deformation was found to have fragmented pre-existing charged particle tracks, allowing the dating of the mechanical event causing the deformation.

  15. Apollo 11 lunar sample

    NASA Image and Video Library

    2009-06-24

    ISS020-E-14200 (FOR RELEASE 21 JULY 2009) --- A moon rock brought to Earth by Apollo 11, humans? first landing on the moon in July 1969, is shown as it floats aboard the International Space Station. Part of Earth can be seen through the window. The 3.6 billion year-old lunar sample was flown to the station aboard Space Shuttle mission STS-119 in April 2009 in honor of the July 2009 40th anniversary of the historic first moon landing. The rock, lunar sample 10072, was flown to the station to serve as a symbol of the nation?s resolve to continue the exploration of space. It will be returned on shuttle mission STS-128 to be publicly displayed.

  16. Apollo 11 lunar sample

    NASA Image and Video Library

    2009-06-24

    ISS020-E-014193 (FOR RELEASE 21 JULY 2009) --- A moon rock brought to Earth by Apollo 11, humans? first landing on the moon in July 1969, is shown as it floats aboard the International Space Station. Part of Earth can be seen through the window. The 3.6 billion year-old lunar sample was flown to the station aboard Space Shuttle mission STS-119 in April 2009 in honor of the July 2009 40th anniversary of the historic first moon landing. The rock, lunar sample 10072, was flown to the station to serve as a symbol of the nation?s resolve to continue the exploration of space. It will be returned on shuttle mission STS-128 to be publicly displayed.

  17. Apollo 11 lunar sample

    NASA Image and Video Library

    2009-06-24

    ISS020-E-14196 (FOR RELEASE 21 JULY 2009) --- A moon rock brought to Earth by Apollo 11, humans? first landing on the moon in July 1969, is shown as it floats aboard the International Space Station. Part of Earth can be seen through the window. The 3.6 billion year-old lunar sample was flown to the station aboard Space Shuttle mission STS-119 in April 2009 in honor of the July 2009 40th anniversary of the historic first moon landing. The rock, lunar sample 10072, was flown to the station to serve as a symbol of the nation?s resolve to continue the exploration of space. It will be returned on shuttle mission STS-128 to be publicly displayed.

  18. Lunar hand tools

    NASA Technical Reports Server (NTRS)

    Bentz, Karl F.; Coleman, Robert D.; Dubnik, Kathy; Marshall, William S.; Mcentee, Amy; Na, Sae H.; Patton, Scott G.; West, Michael C.

    1987-01-01

    Tools useful for operations and maintenance tasks on the lunar surface were determined and designed. Primary constraints are the lunar environment, the astronaut's space suit and the strength limits of the astronaut on the moon. A multipurpose rotary motion tool and a collapsible tool carrier were designed. For the rotary tool, a brushless motor and controls were specified, a material for the housing was chosen, bearings and lubrication were recommended and a planetary reduction gear attachment was designed. The tool carrier was designed primarily for ease of access to the tools and fasteners. A material was selected and structural analysis was performed on the carrier. Recommendations were made about the limitations of human performance and about possible attachments to the torque driver.

  19. Lunar material transport vehicle

    NASA Technical Reports Server (NTRS)

    Fisher, Charles D.; Lyons, Douglas; Wilkins, W. Allen, Jr.; Whitehead, Harry C., Jr.

    1988-01-01

    The proposed vehicle, the Lunar Material Transport Vehicle (LMTV), has a mission objective of efficient lunar soil material transport. The LMTV was designed to meet a required set of performance specifications while operating under a given set of constraints. The LMTV is essentially an articulated steering, double-ended dump truck. The vehicle moves on four wheels and has two identical chassis halves. Each half consists of a chassis frame, a material bucket, two wheels with integral curvilinear synchronous motors, a fuel cell and battery arrangement, an electromechanically actuated dumping mechanism, and a powerful microprocessor. The vehicle, as designed, is capable of transporting up to 200 cu ft of material over a one mile round trip per hour. The LMTV is capable of being operated from a variety of sources. The vehicle has been designed as simply as possible with attention also given to secondary usage of components.

  20. Lunar base initiative 1992

    NASA Astrophysics Data System (ADS)

    Koelle, H. H.

    The return to the Moon is no longer a question of yes or no, but a question of when and how. The first landing of a human being on the lunar surface in 1969 was a purely national effort of the U.S.A. Building a lunar base and operating it in the next century is rather a task for all nations of this planet, even if one nation could do it alone. However, there are several alternatives to carry out such a program and these will and should be debated during the next years on an urgent basis. To do this, one has to take into account not only the historical accomplishments and the present trends of cooperation in space programs, but also recent geopolitical developments as well as the frame of reference established by international law. The case for an International Lunar Base (ILB) has been presented to the International Academy of Astronautics on 11 October 1987 by the IAA Ad Hoc Committee "Return-to-the-Moon". This draft of a position paper was subsequently published in Acta Astronautica Vol. 17, No. 5, (pp. 463-489) with the request of public debate particularly by the members of the Academy. Some 80 Academicians responded to this invitation by the President of the Academy and voiced their opinions on the questions and issues raised by this draft of a position paper. This led to a refinement of the arguments and assumptions made and it is now possible to prepare an improved position paper proposing concrete steps which may lead to an ILB. An issue of this proportion must start with a discussion of goals and objectives to be arranged in some kind of a ranked order. It also has to take note of the limitations existing at any time by the availability of suitable space transportation systems. These will determine the acquisition date and rate of growth of a lunar base. The logistics system will also greatly influence the base characteristics and layout. The availability of heavy lift launch vehicles would simplify the task and allow to concentrate the construction

  1. Adhesion of Lunar Dust

    NASA Astrophysics Data System (ADS)

    Walton, Otis R.

    2007-04-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  2. International Lunar Decade Status

    NASA Astrophysics Data System (ADS)

    Beldavs, VZ; Crisafulli, J.; Dunlop, D.; Foing, B.

    2017-09-01

    The International Lunar Decade is a global decadal event designed to provide a framework for strategically directed international cooperation for permanent return to the Moon. To be launched July 20, 2019, the 50th anniversary of the giant leap for mankind marked by Neil Armstrong's first step on the Moon, the ILD launch will include events around the world to celebrate space exploration, science, and the expansion of humanity into the Solar System. The ILD framework links lunar exploration and space sciences with the development of enabling technologies, infrastructure, means of financing, laws and policies aimed at lowering the costs and risks of venturing into space. Dramatically reduced costs will broaden the range of opportunities available in space and widen access to space for more states, companies and people worldwide. The ILD is intended to bring about the efflorescence of commercial business based on space resources from the Moon, asteroids, comets and other bodies in the Solar System.

  3. Two wheeled lunar dumptruck

    NASA Technical Reports Server (NTRS)

    Brus, Michael R.; Haleblain, Ray; Hernandez, Tomas L.; Jensen, Paul E.; Kraynick, Ronald L.; Langley, Stan J.; Shuman, Alan G.

    1988-01-01

    The design of a two wheel bulk material transport vehicle is described in detail. The design consists of a modified cylindrical bowl, two independently controlled direct drive motors, and two deformable wheels. The bowl has a carrying capacity of 2.8 m (100 ft) and is constructed of aluminum. The low speed, high HP motors are directly connected to the wheels, thus yielding only two moving parts. The wheels, specifically designed for lunar applications, utilize the chevron tread pattern for optimum traction. The vehicle is maneuvered by varying the relative angular velocities of the wheels. The bulk material being transported is unloaded by utilizing the motors to oscillate the bowl back and forth to a height at which dumping is achieved. The analytical models were tested using a scaled prototype of the lunar transport vehicle. The experimental data correlated well with theoretical predictions. Thus, the design established provides a feasible alternative for the handling of bulk material on the moon.

  4. The Lunar Sample Compendium

    NASA Technical Reports Server (NTRS)

    Meyer, Charles

    2009-01-01

    The Lunar Sample Compendium is a succinct summary of the data obtained from 40 years of study of Apollo and Luna samples of the Moon. Basic petrographic, chemical and age information is compiled, sample-by-sample, in the form of an advanced catalog in order to provide a basic description of each sample. The LSC can be found online using Google. The initial allocation of lunar samples was done sparingly, because it was realized that scientific techniques would improve over the years and new questions would be formulated. The LSC is important because it enables scientists to select samples within the context of the work that has already been done and facilitates better review of proposed allocations. It also provides back up material for public displays, captures information found only in abstracts, grey literature and curatorial databases and serves as a ready access to the now-vast scientific literature.

  5. Lunar regolith densification

    NASA Technical Reports Server (NTRS)

    Ko, Hon-Yim; Sture, Stein

    1991-01-01

    Core tube samples of the lunar regolith obtained during the Apollo missions showed a rapid increase in the density of the regolith with depth. Various hypotheses have been proposed for the possible cause of this phenomenon, including the densification of the loose regolith material by repeated shaking from the seismic tremors which have been found to occur at regular monthly intervals when the moon and earth are closest to one another. A test bed was designed to study regolith densification. This test bed uses Minnesota Lunar Simulant (MLS) to conduct shaking experiments in the geotechnical centrifuge with an inflight shake table system. By reproducing realistic in-situ regolith properties, the experiment also serves to test penetrator concepts. The shake table system was designed and used for simulation experiments to study effects of earthquakes on terrestrial soil structures. It is mounted on a 15 g-ton geotechnical centrifuge in which the self-weight induced stresses are replicated by testing an n-th scale model in a gravity field which is n times larger than Earth's gravity. A similar concept applies when dealing with lunar prototypes, where the gravity ratio required for proper simulation of lunar gravity effects is that between the centrifugal acceleration and the lunar gravity. Records of lunar seismic tremors, or moonquakes, were obtained. While these records are being prepared for use as the input data to drive the shake table system, records from the El Centro earthquake of 1940 are being used to perform preliminary tests, using a soil container which was previously used for earthquake studies. This container has a laminar construction, with the layers free to slide on each other, so that the soil motion during the simulated earthquake will not be constrained by the otherwise rigid boundaries. The soil model is prepared by pluviating the MLS from a hopper into the laminar container to a depth of 6 in. The container is mounted on the shake table and the

  6. Adhesion of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.

    2007-01-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  7. Generalized Software Architecture Applied to the Continuous Lunar Water Separation Process and the Lunar Greenhouse Amplifier

    NASA Technical Reports Server (NTRS)

    Perusich, Stephen; Moos, Thomas; Muscatello, Anthony

    2011-01-01

    This innovation provides the user with autonomous on-screen monitoring, embedded computations, and tabulated output for two new processes. The software was originally written for the Continuous Lunar Water Separation Process (CLWSP), but was found to be general enough to be applicable to the Lunar Greenhouse Amplifier (LGA) as well, with minor alterations. The resultant program should have general applicability to many laboratory processes (see figure). The objective for these programs was to create a software application that would provide both autonomous monitoring and data storage, along with manual manipulation. The software also allows operators the ability to input experimental changes and comments in real time without modifying the code itself. Common process elements, such as thermocouples, pressure transducers, and relative humidity sensors, are easily incorporated into the program in various configurations, along with specialized devices such as photodiode sensors. The goal of the CLWSP research project is to design, build, and test a new method to continuously separate, capture, and quantify water from a gas stream. The application is any In-Situ Resource Utilization (ISRU) process that desires to extract or produce water from lunar or planetary regolith. The present work is aimed at circumventing current problems and ultimately producing a system capable of continuous operation at moderate temperatures that can be scaled over a large capacity range depending on the ISRU process. The goal of the LGA research project is to design, build, and test a new type of greenhouse that could be used on the moon or Mars. The LGA uses super greenhouse gases (SGGs) to absorb long-wavelength radiation, thus creating a highly efficient greenhouse at a future lunar or Mars outpost. Silica-based glass, although highly efficient at trapping heat, is heavy, fragile, and not suitable for space greenhouse applications. Plastics are much lighter and resilient, but are not

  8. LADEE in Lunar Orbit

    NASA Image and Video Library

    2013-09-04

    An artist's concept showing the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is seen orbiting the moon as it prepares to fire its maneuvering thrusters to maintain a safe orbital altitude. Credit: NASA Ames / Dana Berry ----- What is LADEE? The Lunar Atmosphere and Dust Environment Explorer (LADEE) is designed to study the Moon's thin exosphere and the lunar dust environment. An "exosphere" is an atmosphere that is so thin and tenuous that molecules don't collide with each other. Studying the Moon's exosphere will help scientists understand other planetary bodies with exospheres too, like Mercury and some of Jupiter's bigger moons. The orbiter will determine the density, composition and temporal and spatial variability of the Moon's exosphere to help us understand where the species in the exosphere come from and the role of the solar wind, lunar surface and interior, and meteoric infall as sources. The mission will also examine the density and temporal and spatial variability of dust particles that may get lofted into the atmosphere. The mission also will test several new technologies, including a modular spacecraft bus that may reduce the cost of future deep space missions and demonstrate two-way high rate laser communication for the first time from the Moon. LADEE now is ready to launch when the window opens on Sept. 6, 2013. Read more: www.nasa.gov/ladee NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Lunar base siting

    NASA Technical Reports Server (NTRS)

    Staehle, Robert L.; Dowling, Richard

    1991-01-01

    As with any planetary body, the lunar surface is quite heterogeneous. There are widely dispersed sites of particular interest for known and potential resource availability, selenology, and lunar observatories. Discriminating characteristics include solar illumination, view of earth, local topography, engineering properties of the regolith and certain geological features, and local mineralogy and petrology. Space vehicle arrival and departure trajectories constitute a minor consideration. Over time, a variety of base sites will be developed serving different purposes. Resource-driven sites may see the fastest growth during the first decades of lunar development, but selection of the most favorable sites is likely to be driven by suitability for a combination of activities. As on earth, later development may be driven by geographical advantages of surface transportation routes. With the availability of near-constant sunlight for power generation, as well as permanently shadowed areas at cryogenic temperatures, polar sites are attractive because they require substantially less earth-launched mass and lower equipment complexity for an initial permanent base. Discovery of accessible volatiles reservoirs, either in the form of polar permafrost or gas reservoirs at other locations, would dramatically increase the attractiveness of any site from a logistical support and selenological point of view. Amid such speculation, no reliable evidence of such volatiles exist. More reliable evidence exists for areas of certain mineral concentrations, such as ilmenite, which could form a feedstock for some proposed resource extraction schemes. While tentative selections of advantageous base sites are made, new data from lunar polar orbiters and the Galileo polar flybys would be very helpful.

  10. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base.

  11. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1992-01-01

    Feasibility of using concrete for lunar base construction was discussed recently without relevant data for the effects of vacuum on concrete. Our experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the Moon are provided in this paper, along with specific conclusions from the existing database.

  12. Lunar Impact Flash Locations

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Kupferschmidt, L.; Feldman, J.

    2015-01-01

    A bright impact flash detected by the NASA Lunar Impact Monitoring Program in March 2013 brought into focus the importance of determining the impact flash location. A process for locating the impact flash, and presumably its associated crater, was developed using commercially available software tools. The process was successfully applied to the March 2013 impact flash and put into production on an additional 300 impact flashes. The goal today: provide a description of the geolocation technique developed.

  13. First lunar outpost

    NASA Technical Reports Server (NTRS)

    Andino, Aureo F.; Silva, Daniel; Ortiz, Nelson; Alvarez, Omar; Colon, Julio A.; Colon, Myrelle; Diaz, Alicia; Escobar, Xochiquetzal Y.; Garcia, Alberto; Gonzalez, Isabel C.

    1992-01-01

    Design and research efforts at the University of Puerto Rico have focused on the evaluation and refinement of the Habitability Criteria for a prolonged human presence in space during the last four years. Living quarters for a Mars mission and a third generation lunar base concept were proposed. This academic year, 1991-92, work on further refinement of the habitability criteria and design of partial gravity furniture was carried on. During the first semester, design alternatives for furniture necessary in a habitat design optimized for lunar and Martian environments were developed. Designs are based on recent research data from lunar and Mars gravity simulations, and current NASA standards. Artifacts will be submitted to NASA architects to be tested in KC-135 flights. Test findings will be submitted for incorporation in future updates to NASA habitat design standards. Second semester work was aimed at integrating these findings into the First Lunar Outpost (FLO), a mission scenario currently being considered by NASA. The mission consists of a manned return to the moon by crews of four astronauts for periods of 45 days. The major hardware components of the mission are as follows: (1) a Crew Module for the delivery of the crew and their supplies, and (2) the Habitat Module, which will arrive on the Moon unmanned. Our design efforts concentrated on this Habitat Module and on application of habitability criteria. Different geometries for the pressure vessel and their impact on the interior architecture were studied. Upon the selection of a geometry, a more detailed analysis of the interior design was performed, taking into consideration the reduced gravity, and the protection against radiation, micrometeorites, and the extreme temperature variation. A proposal for a FLO was submitted by the students, consisting essentially of a 24-feet (7.3 m.) by 35-feet (10.67 m) high vertical cylinder with work areas, crew quarters, galley, wardroom, leisure facilities, health

  14. Uses of lunar sulfur

    NASA Technical Reports Server (NTRS)

    Vaniman, D.; Pettit, D.; Heiken, G.

    1992-01-01

    Sulfur and sulfur compounds have a wide range of applications for their fluid, electrical, chemical, and biochemical properties. Although known abundances on the Moon are limited (approximately 0.1 percent in mare soils), sulfur is relatively extractable by heating. Coproduction of sulfur during oxygen extraction from ilmenite-rich mare soils could yield sulfur in masses up to 10 percent of the mass of oxygen produced. Sulfur deserves serious consideration as a lunar resource.

  15. Density of the lunar interior.

    NASA Technical Reports Server (NTRS)

    Gast, P. W.; Giuli, R. T.

    1972-01-01

    It is attempted to derive the constraints that can be placed on the density of the lunar interior. The moment of inertia of the moon and its mean density are being considered in the investigation together with the mass and density of the lunar crust that have been inferred from the seismic refraction data recorded by the passive seismometer. The calculations presented show that the density of the lunar interior can easily approach values as high as 3.5 for a fraction of the lunar mass which lies in the range from 1/2 to 2/3.

  16. Possibilities of lunar polar orbiter

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Nagatomo, M.

    This paper describes the concept of a lunar polar orbiter (LPO), which will map the surface of the moon, especially its polar region and the far side, and send precise images of various wave lengths to earth. The primary purpose of the LPO is to identify global and local structures of lunar resources and topography and to search for a suitable site for the manned lunar base projected for next century. The concept of the LPO is based on the H-II rocket (which has a launch capability to send a rover/lander of one metric ton to the lunar surface) and earth observation technology of Japan.

  17. PHOTO MICROGRAPH - LUNAR SAMPE 10022

    NASA Image and Video Library

    1969-08-28

    S69-47900 (September 1969) --- This is a photo micrograph of lunar sample 10022. Magnification one inch equals one-tenth millimeter. The light blue and white mineral is plagioclase. The black is ilmenite, and the blue and/or green and/or orange and/or yellow and/or red mineral is pyroxene. The large pyroxene is a phenocryst that had been partially resorbed. The lunar samples collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during the Apollo 11 lunar landing mission have been subjected to extensive tests and examinations at the Manned Spacecraft Center’s Lunar Receiving Laboratory.

  18. Lunar Prospector Data Archives

    NASA Astrophysics Data System (ADS)

    Guinness, Edward A.; Binder, Alan B.

    1998-01-01

    The Lunar Prospector (LP) is operating in a 100-km circular polar orbit around the Moon. The LP project's one-year primary mission began in January 1998. A six-month extended mission in a lower orbit is also possible. LP has five science instruments, housed on three booms: a gamma-ray spectrometer, a neutron spectrometer, an alpha-particle spectrometer, a magnetometer, and an electron reflectometer. In addition, a gravity experiment uses Doppler tracking data to derive gravity measurements. The major science objectives of LP are to determine the Moon's surface abundance of selected elements, to map the gravity and magnetic fields, to search for surface ice deposits, and to determine the locations of gas release events. The Geosciences Node of the NASA's Planetary Data System (PDS) is providing a lead role in working with the Lunar Prospector project to produce and distribute a series of archives of LP data. The Geosciences Node is developing a Web-based system to provide services for searching and browsing through the LP data archives, and for distributing the data electronically or on CDs. This system will also provide links to other relevant lunar datasets, such as Clementine image mosaics and telescopic and laboratory spectral reflectance data.

  19. Lunar Samples - Apollo 17

    NASA Image and Video Library

    1972-12-27

    S72-56362 (27 Dec. 1972) --- Scientist-astronaut Harrison H. "Jack" Schmitt (facing camera), Apollo 17 lunar module pilot, was one of the first to look at the sample of "orange" soil which was brought back from the Taurus-Littrow landing site by the Apollo 17 crewmen. Schmitt discovered the material at Shorty Crater during the second Apollo 17 extravehicular activity (EVA). The "orange" sample, which was opened Wednesday, Dec. 27, 1972, is in the bag on a weighing platform in the sealed nitrogen cabinet in the upstairs processing line in the Lunar Receiving Laboratory at the Manned Spacecraft Center. Just before, the sample was removed from one of the bolt-top cans visible to the left in the cabinet. The first reaction of Schmitt was "It doesn't look the same." Most of the geologists and staff viewing the sample agreed that it was more tan and brown than orange. Closer comparison with color charts showed that the sample had a definite orange cast, according the MSC geology branch Chief William Phinney. After closer investigation and sieving, it was discovered that the orange color was caused by very fine spheres and fragments of orange glass in the midst of darker colored, larger grain material. Earlier in the day the "orange" soil was taken from the Apollo Lunar Sample Return Container No. 2 and placed in the bolt-top can (as was all the material in the ALSRC "rock box").

  20. Modeling lunar volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1978-01-01

    Simple physical arguments are used to show that basaltic volcanos on different planetary bodies would fountain to the same height if the mole fraction of gas in the magma scaled with the acceleration of gravity. It is suggested that the actual eruption velocities and fountain heights are controlled by the velocities of sound in the two phase gas/liquid flows. These velocities are in turn determined by the gas contents in the magma. Predicted characteristics of Hawaiian volcanos are in excellent accord with observations. Assuming that the only gas in lunar volcano is the CO which would be produced if the observed Fe metal in lunar basalts resulted from graphite reduction, lunar volcanos would fountain vigorously, but not as spectacularly as their terrestrial counterparts. The volatile trace metals, halogens, and sulfur released would be transported over the entire moon by the transient atmosphere. Orange and black glass type pyroclastic materials would be transported in sufficient amounts to produce the observed dark mantle deposits.

  1. The lunar interior

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Kovach, R. L.

    1972-01-01

    The compressional velocities are estimated for materials in the lunar interior and compared with lunar seismic results. The lower crust has velocities appropriate for basalts or anorthosites. The high velocities associated with the uppermost mantle imply high densities and a change in composition to a lighter assemblage at depths of the order of 120 km. Calcium and aluminum are probably important components of the upper mantle and are deficient in the lower mantle. Much of the moon may have accreted from material similar in composition to eucrites. The important mineral of the upper mantle is garnet; possible accessory minerals are kyanite, spinel, and rutile. If the seismic results stand up, the high velocity layer in the moon is more likely to be a high pressure form of anorthosite than eclogite, pyroxenite, or dunite. The thickness of the layer is of the order of 50 km. Cosmic abundances can be maintained if the lower mantle is ferromagnesium silicate with minimal amounts of calcium and aluminum. Achondrites such as eucrites and howardites have more of the required characteristics of the lunar interior than carbonaceous chondrites. A density inversion in the moon is a strong possibility.

  2. Religion and Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Pop, V.

    1969: The Eagle lands on the Moon. A moment that would not only mark the highest scientific achievement of all times, but would also have significant religious impli- cations. While the island of Bali lodges a protest at the United Nations against the US for desecrating a sacred place, Hopi Indians celebrate the fulfilment of an ancient prophecy that would reveal the "truth of the Sacred Ways". The plaque fastened to the Eagle - "We Came in Peace for All Mankind" would have contained the words "under God" as directed by the US president, if not for an assistant administrator at NASA that did not want to offend any religion. In the same time, Buzz Aldrin takes the Holy Communion on the Moon, and a Bible is left there by another Apollo mission - not long after the crew of Apollo 8 reads a passage from Genesis while circling the Moon. 1998: Navajo Indians lodge a protest with NASA for placing human ashes aboard the Lunar Prospector, as the Moon is a sacred place in their religion. Past, present and fu- ture exploration of the Moon has significant religious and spiritual implications that, while not widely known, are nonetheless important. Is lunar exploration a divine duty, or a sacrilege? This article will feature and thoroughly analyse the examples quoted above, as well as other facts, as for instance the plans of establishing lunar cemeteries - welcomed by some religions, and opposed by others.

  3. Lunar rover navigation concepts

    NASA Astrophysics Data System (ADS)

    Burke, James D.

    1993-01-01

    With regard to the navigation of mobile lunar vehicles on the surface, candidate techniques are reviewed and progress of simulations and experiments made up to now are described. Progress that can be made through precursor investigations on Earth is considered. In the early seventies the problem was examined in a series of relevant tests made in the California desert. Meanwhile, Apollo rovers made short exploratory sorties and robotic Lunokhods traveled over modest distances on the Moon. In these early missions some of the required methods were demonstrated. The navigation problem for a lunar traverse can be viewed in three parts: to determine the starting point with enough accuracy to enable the desired mission; to determine the event sequence required to reach the site of each traverse objective; and to redetermine actual positions enroute. The navigator's first tool is a map made from overhead imagery. The Moon was almost completely photographed at moderate resolution by spacecraft launched in the sixties, but that data set provides imprecise topographic and selenodetic information. Therefore, more advanced orbital missions are now proposed as part of a resumed lunar exploration program. With the mapping coverage expected from such orbiters, it will be possible to use a combination of visual landmark navigation and external radio and optical references (Earth and Sun) to achieve accurate surface navigation almost everywhere on the near side of the Moon. On the far side and in permanently dark polar areas, there are interesting exploration targets where additional techniques will have to be used.

  4. Lunar crescent visibility

    NASA Technical Reports Server (NTRS)

    Doggett, Leroy E.; Schaefer, Bradley E.

    1994-01-01

    We report the results of five Moonwatches, in which more than 2000 observers throughout North America attempted to sight the thin lunar crescent. For each Moonwatch we were able to determine the position of the Lunar Date Line (LDL), the line along which a normal observer has a 50% probability of spotting the Moon. The observational LDLs were then compared with predicted LDLs derived from crescent visibility prediction algorithms. We find that ancient and medieval rules are higly unreliable. More recent empirical criteria, based on the relative altitude and azimuth of the Moon at the time of sunset, have a reasonable accuracy, with the best specific formulation being due to Yallop. The modern theoretical model by Schaefer (based on the physiology of the human eye and the local observing conditions) is found to have the least systematic error, the least average error, and the least maximum error of all models tested. Analysis of the observations also provided information about atmospheric, optical and human factors that affect the observations. We show that observational lunar calendars have a natural bias to begin early.

  5. Lunar Observer Laser Altimeter observations for lunar base site selection

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Bufton, Jack L.

    1992-01-01

    One of the critical datasets for optimal selection of future lunar landing sites is local- to regional-scale topography. Lunar base site selection will require such data for both engineering and scientific operations purposes. The Lunar Geoscience Orbiter or Lunar Observer is the ideal precursory science mission from which to obtain this required information. We suggest that a simple laser altimeter instrument could be employed to measure local-scale slopes, heights, and depths of lunar surface features important to lunar base planning and design. For this reason, we have designed and are currently constructing a breadboard of a Lunar Observer Laser Altimeter (LOLA) instrument capable of acquiring contiguous-footprint topographic profiles with both 30-m and 300-m along-track resolution. This instrument meets all the severe weight, power, size, and data rate limitations imposed by Observer-class spacecraft. In addition, LOLA would be capable of measuring the within-footprint vertical roughness of the lunar surface, and the 1.06-micron relative surface reflectivity at normal incidence. We have used airborne laser altimeter data for a few representative lunar analog landforms to simulate and analyze LOLA performance in a 100-km lunar orbit. We demonstrate that this system in its highest resolution mode (30-m diameter footprints) would quantify the topography of all but the very smallest lunar landforms. At its global mapping resolution (300-m diameter footprints), LOLA would establish the topographic context for lunar landing site selection by providing the basis for constructing a 1-2 km spatial resolution global, geodetic topographic grid that would contain a high density of observations (e.g., approximately 1000 observations per each 1 deg by 1 deg cell at the lunar equator). The high spatial and vertical resolution measurements made with a LOLA-class instrument on a precursory Lunar Observer would be highly synergistic with high-resolution imaging datasets, and

  6. Antihydrogen Trapped in the ALPHA Experiment

    ScienceCinema

    Bowe, Paul David

    2017-12-18

    In 2010 the ALPHA collaboration succeeded in trapping antihydrogen atoms for the first time.[i] Stored antihydrogen promises to be a unique tool for making high precision measurements of the structure of this first anti-atom. Achieving this milestone presented several substantial experimental challenges and this talk will describe how they were overcome. The unique design features of the ALPHA apparatus will be explained. These allow a high intensity positron source and an antiproton imaging detector similar to the one used in the ATHENA[iii] experiment to be combined with an innovative magnet design of the anti-atom trap. This seeks to minimise the perturbations to trapped charged particles which may cause particle loss and heating[iv]. The diagnostic techniques used to measure the diameter, number, density, and temperatures of both plasmas will be presented as will the methods developed to actively compress and cool of both plasma species to sizes and temperatures [v],[vi], [vii] where trapping attempts with a reasonable chance of success can be tried. The results of the successful trapping experiments will be outlined as well as some subsequent experiments to improve the trapping rate and storage time. [i] 'Trapped antihydrogen' G.B. Andresen et al., Nature 468, 673 (2010) [ii]'A Magnetic Trap for Antihydrogen Confinement' W. Bertsche et al., Nucl. Instr. Meth. Phys. Res. A566, 746 (2006) [iii] Production and detection of cold antihydrogen atoms M.Amoretti et al., Nature 419, 456 (2002). [iv]' Antihydrogen formation dynamics in a multipolar neutral anti-atom trap' G.B. Andresen et al., Phys. Lett. B 685, 141 (2010) [v]' Evaporative Cooling of Antiprotons to Cryogenic Temperatures', G.B. Andresen et al. Phys. Rev. Lett 105, 013003 (2010) [vi]'Compression of Antiproton Clouds for Antihydrogen Trapping' G. B. Andresen et al. Phys. Rev. Lett 100, 203401 (2008) [vii] 'Autoresonant Excitation of Antiproton Plasmas' G.B. Andresen et al., Phys. Rev. Lett. 106, 025002

  7. Project COLD.

    ERIC Educational Resources Information Center

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  8. Active Solid State Dosimetry for Lunar EVA

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.; Chen, Liang-Yu.

    2006-01-01

    The primary threat to astronauts from space radiation is high-energy charged particles, such as electrons, protons, alpha and heavier particles, originating from galactic cosmic radiation (GCR), solar particle events (SPEs) and trapped radiation belts in Earth orbit. There is also the added threat of secondary neutrons generated as the space radiation interacts with atmosphere, soil and structural materials.[1] For Lunar exploration missions, the habitats and transfer vehicles are expected to provide shielding from standard background radiation. Unfortunately, the Lunar Extravehicular Activity (EVA) suit is not expected to afford such shielding. Astronauts need to be aware of potentially hazardous conditions in their immediate area on EVA before a health and hardware risk arises. These conditions would include fluctuations of the local radiation field due to changes in the space radiation field and unknown variations in the local surface composition. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.[2

  9. Workshop on Past and Present Solar Radiation: The Record in Meteoritic and Lunar Regolith Material

    NASA Technical Reports Server (NTRS)

    Pepin, R. O. (Compiler); Mckay, D. S. (Compiler)

    1986-01-01

    The principal question addressed in the workshop was the extent to which asteroidal and lunar regoliths have collected and preserved, in meteoritic regolith breccias and in lunar soils and regolith breccias, a record of the flux, energy, and compositional history of the solar wind and solar flares. Six central discussion topics were identified. They are: (1)Trapped solar wind and flare gases, tracks, and micrometeorite pits in regolith components; (2)Comparison between lunar regolith breccias, meteoritic regolith breccias, and the lunar soil; (3)The special role of regolith breccias and the challenge of dating their times of compaction; (4)Implications of the data for the flux and compositional history of solar particle emission, composition, and physical mechanisms in the solar source regions, and the composition of the early nebula; (5)How and to what extent have records of incident radiation been altered in various types of grains; (6)Future research directions

  10. Recent Lunar Magnetism

    NASA Astrophysics Data System (ADS)

    Buz, J.; Weiss, B. P.; Garrick-Bethell, I.

    2010-12-01

    Although the Moon today does not have a core dynamo magnetic field [1], paleomagnetic analyses of Apollo samples and spacecraft magnetometry measurements of the lunar crust show magnetization and suggest there were magnetic fields on the Moon > 3 billion years ago [2]. It is unclear whether this magnetization is the product of an ancient core dynamo or that of impact-generated plasmas [3,4,5]. A key way to distinguish between these two hypotheses is to conduct paleomagnetic analyses of lunar impact glasses that formed after any putative core dynamo. Here we present a paleomagnetic study of Apollo 12 basalt 12017. This sample consists of a 3.2 billion year old basalt covered by ~9000 year old impact glass [6,7,8]. We have found that both the rock and glass are magnetized, but in widely divergent directions. The intensity of the fields which magnetized the rock and glass were 40 μT and 1 μT, respectively. Given the near certain absence of a lunar dynamo 9000 years ago, we have two hypotheses to explain the magnetization of the glass: magnetization by an impact-generated field and magnetization by magnetic fields generated by the rock underneath. The long cooling time of the glass (~10 s) relative to that expected for impact-generated field (milliseconds) suggests that impact-generated magnetization is highly improbable. We are currently modeling the magnetic fields of the underlying rock in order to determine whether it had sufficient strength and appropriate orientation to explain the magnetization of the glass. Initial calculations suggest that this is possible. [1] Russell et al., JGR, 79, 1105-1109, 1974 [2] Garrick-Bethell et al., Science,323, 356-359, 2009 [3] Wieczorek et al., Reviews in Mineralogy and Geochemistry, 60, 221-364, 2006 [4] Crawford and Schultz, International Journal of Impact Engineering, 23, 169-180, 1999 [5] Hood and Artemieva, Icarus, 193, 485-502, 2007 [6] Horn et al., Meteoritical Society, 417-418, 1975 [7] Morrisson et al., Proceedings

  11. Lunar Dust Mitigation Technology Development

    NASA Technical Reports Server (NTRS)

    Hyatt, Mark J.; Deluane, Paul B.

    2008-01-01

    NASA s plans for implementing the Vision for Space Exploration include returning to the moon as a stepping stone for further exploration of Mars, and beyond. Dust on the lunar surface has a ubiquitous presence which must be explicitly addressed during upcoming human lunar exploration missions. While the operational challenges attributable to dust during the Apollo missions did not prove critical, the comparatively long duration of impending missions presents a different challenge. Near term plans to revisit the moon places a primary emphasis on characterization and mitigation of lunar dust. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it s potentially harmful effects on exploration systems. This paper presents the current perspective and implementation of dust knowledge management and integration, and mitigation technology development activities within NASA s Exploration Technology Development Program. This work is presented within the context of the Constellation Program s Integrated Lunar Dust Management Strategy. The Lunar Dust Mitigation Technology Development project has been implemented within the ETDP. Project scope and plans will be presented, along with a a perspective on lessons learned from Apollo and forensics engineering studies of Apollo hardware. This paper further outlines the scientific basis for lunar dust behavior, it s characteristics and potential effects, and surveys several potential strategies for its control and mitigation both for lunar surface operations and within the working volumes of a lunar outpost.

  12. Lunar and Planetary Science Conference, 18th, Houston, TX, Mar. 16-20, 1987, Proceedings

    NASA Technical Reports Server (NTRS)

    Ryder, Graham (Editor)

    1988-01-01

    Papers on lunar and planetary science are presented, including petrogenesis and chemistry of lunar samples, geology and petrogenesis of the Apollo 15 landing site, lunar geology and applications, cratering records and cratering effects, differentiated meteorites, chondritic meteorites and asteroids, extraterrestrial grains, Venus, Mars, and icy satellites. The importance of lunar granite and KREEP in very high potassium basalt petrogenesis, indentifying parent plutonic rocks from lunar breccia and soil fragments, glasses in ancient and young Apollo 16 regolith breccias, the formation of the Imbrium basin, the chemistry and petrology of the Apennine Front, lunar mare ridges, studies of Rima Mozart, electromagnetic energy applications in lunar resource mining and construction, detecting a periodic signal in the terrestrial cratering record, and a search for water on the moon, are among the topics discussed. Other topics include the bidirectional reflectance properties of Fe-Ni meteorites, the nature and origin of C-rich ordinary chondrites and chondritic clasts, the dehydration kinetics of shocked serpentine, characteristics of Greenland Fe/Ni cosmic grains, electron microscopy of a hydrated interplanetary dust particle, trapping Ne, Ar, Kr, and Xe in Si2O3 smokes, gossans on Mars, and a model of the porous structure of icy satellites.

  13. Investigation of the daytime lunar atmosphere for lunar synthesis program

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1976-01-01

    Synthesis studies of the daytime lunar atmoshere were directed toward improved understanding of fundamental lunar atmospheric dynamics and the relationship of the detectable atmosphere to physical processes of the lunar surface and interior. The primary source of data is the Apollo 17 lunar surface mass spectrometer. The Ar40 is radiogenic and its escape rate from the lunar atmosphere requires release of a significant fraction (about 8%) of the argon produced from the decay of K40 within the moon. Furthermore the process of argon release from the solid moon is time varying and related to seismic activity. Most of the helium on the moon is due to release of implanted solar wind alpha particles from the regolith.

  14. REFLECTED CHARGED PARTICLE POPULATIONS AROUND DIPOLAR LUNAR MAGNETIC ANOMALIES

    SciTech Connect

    Deca, Jan; Divin, Andrey

    2016-10-01

    In this work we analyze and compare the reflected particle populations for both a horizontal and a vertical dipole model embedded in the lunar surface, representing the solar wind interaction with two different lunar magnetic anomaly (LMA) structures. Using the 3D full-kinetic electromagnetic code iPic3D, in combination with a test-particle approach to generate particle trajectories, we focus on the ion and electron dynamics. Whereas the vertical model electrostatically reflects ions upward under both near-parallel and near-perpendicular angles with respect to the lunar surface, the horizontal model only has a significant shallow component. Characterizing the electron dynamics, we find that themore » interplay of the mini-magnetosphere electric and magnetic fields is capable of temporarily trapping low-energy electrons and possibly ejecting them upstream. Our results are in agreement with recent high-resolution observations. Low- to medium-altitude ion and electron observations might be excellent indicators to complement orbital magnetic field measurements and better uncover the underlying magnetic field structure. The latter is of particular importance in defining the correlation between LMAs and lunar swirls, and further testing the solar wind shielding hypothesis for albedo markings due to space weathering. Observing more reflected ions does not necessarily point to the existence of a mini-magnetosphere.« less

  15. Exposure history of the lunar meteorite, Elephant Moraine 87521

    NASA Technical Reports Server (NTRS)

    Vogt, S.; Herzog, G. F.; Eugster, O.; Michel, TH.; Niedermann, S.; Kraehenbuhl, U.; Middleton, R.; Dezfouly-Arjomandy, B.; Fink, D.; Klein, J.

    1993-01-01

    We report the noble gas concentrations and the Al-26, Be-10, Cl-36, and Ca-41 activities of the Antarctic lunar meteorite Elephant Moraine 87521. Although the actual exposure history of the meteorite may have been more complex, the following model history accounts satisfactorily for the cosmogenic nuclide data: A first stage of lunar irradiation for about 1 Ma at a depth of 1-5 g/sq cm followed, not necessarily directly, by a second one for 26 Ma at about 565 g/sq cm; launch from the moon less than 0.1 Ma ago; and arrival on earth 15-50 ka ago. The small concentration of trapped gases shows that except for some material that may have been introduced at the moment of launch, EET 87521 spent less than 1 Ma at a lunar depth less than 1 g/sq cm. EET 87521 has a K/Ar age in the range 3.0-3.4 Ga, which is typical for lunar mare basalts.

  16. Formation of the lunar helium corona and atmosphere

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1977-01-01

    Helium is one of the dominant gases of the lunar atmosphere. Its presence is easily identified in data from the mass spectrometer at the Apollo 17 landing site. The major part of these data was obtained in lunar nighttime, where helium concentration reaches the maximum of its diurnal cyclic variation. The large night to day concentration ratio agrees with the basic theory of exospheric lateral transport reported by Hodges and Johnson (1968). A reasonable fraction of atmospheric helium atoms has a velocity in excess of the gravitational escape velocity. The result is a short average lifetime and a tenuous helium atmosphere. A description is presented of an investigation which shows that the atmosphere of the moon has two distinct components including low energy atoms, which are gravitationally bound in trajectories that intersect the lunar surface, and higher energy atoms, which are trapped in satellite orbits. The total helium abundance in the lunar corona is shown to be about 1.3 times 10 to the 30th power atoms.

  17. Reflected Charged Particle Populations around Dipolar Lunar Magnetic Anomalies

    NASA Astrophysics Data System (ADS)

    Deca, Jan; Divin, Andrey

    2016-10-01

    In this work we analyze and compare the reflected particle populations for both a horizontal and a vertical dipole model embedded in the lunar surface, representing the solar wind interaction with two different lunar magnetic anomaly (LMA) structures. Using the 3D full-kinetic electromagnetic code iPic3D, in combination with a test-particle approach to generate particle trajectories, we focus on the ion and electron dynamics. Whereas the vertical model electrostatically reflects ions upward under both near-parallel and near-perpendicular angles with respect to the lunar surface, the horizontal model only has a significant shallow component. Characterizing the electron dynamics, we find that the interplay of the mini-magnetosphere electric and magnetic fields is capable of temporarily trapping low-energy electrons and possibly ejecting them upstream. Our results are in agreement with recent high-resolution observations. Low- to medium-altitude ion and electron observations might be excellent indicators to complement orbital magnetic field measurements and better uncover the underlying magnetic field structure. The latter is of particular importance in defining the correlation between LMAs and lunar swirls, and further testing the solar wind shielding hypothesis for albedo markings due to space weathering. Observing more reflected ions does not necessarily point to the existence of a mini-magnetosphere.

  18. Thermal control on the lunar surface

    NASA Technical Reports Server (NTRS)

    Walker, Sherry T.; Alexander, Reginald A.; Tucker, Stephen P.

    1995-01-01

    For a mission to the Moon which lasts more than a few days, thermal control is a challenging problem because of the Moon's wide temperature swings and long day and night periods. During the lunar day it is difficult to reject heat temperatures low enough to be comfortable for either humans or electronic components, while excessive heat loss can damage unprotected equipment at night. Fluid systems can readily be designed to operate at either the hot or cold temperature extreme but it is more difficult to accomodate both extermes within the same system. Special consideration should be given to sensitive systems, such as optics and humans, and systems that generate large amounts of waste heat, such as lunar bases or manufacturing facilities. Passive thermal control systems such as covers, shades and optical coatings can be used to mitigate the temperature swings experienced by components. For more precise thermal control active systems such as heaters or heat pumps are required although they require more power than passive systems.

  19. The Lunar Configurable Array Telescope (LCAT)

    NASA Astrophysics Data System (ADS)

    Meinel, Aden B.; Meinel, Marjorie P.

    1990-01-01

    changing science objectives. The two main technical disadvantages of the Moon are: 1) its gravity field; and 2) direct Sun and Earth light. The gravity term is manageable. It also appears to be feasible to shield the telescope from direct sun and Earth light and from scattering from nearby lunar terrain. Thermal disturbances to the telescope also appear to be manageable by proper shielding, enabling the telescope to become as cold as if it were at a lunar pole crater. If these conditions are met, the telescope could be at a logistically convenient location near the Lunar Outpost. We want to address a concept that is significantly different from those presented in the preliminary communications from Garth Illingworth in order to help fill in the matrix of possibilities. This option, moreover, is of special interest to JPL and could be an area where JPL can contribute in future studies.

  20. A circularly polarized optical dipole trap and other developments in laser trapping of atoms

    NASA Astrophysics Data System (ADS)

    Corwin, Kristan Lee

    Several innovations in laser trapping and cooling of alkali atoms are described. These topics share a common motivation to develop techniques for efficiently manipulating cold atoms. Such advances facilitate sensitive precision measurements such as parity non- conservation and 8-decay asymmetry in large trapped samples, even when only small quantities of the desired species are available. First, a cold, bright beam of Rb atoms is extracted from a magneto-optical trap (MOT) using a very simple technique. This beam has a flux of 5 × 109 atoms/s and a velocity of 14 m/s, and up to 70% of the atoms in the MOT were transferred to the atomic beam. Next, a highly efficient MOT for radioactive atoms is described, in which more than 50% of 221Fr atoms contained in a vapor cell are loaded into a MOT. Measurements were also made of the 221Fr 7 2P1/2 and 7 2P3/2 energies and hyperfine constants. To perform these experiments, two schemes for stabilizing the frequency of the light from a diode laser were developed and are described in detail. Finally, a new type of trap is described and a powerful cooling technique is demonstrated. The circularly polarized optical dipole trap provides large samples of highly spin-polarized atoms, suitable for many applications. Physical processes that govern the transfer of large numbers of atoms into the trap are described, and spin-polarization is measured to be 98(1)%. In addition, the trap breaks the degeneracy of the atomic spin states much like a magnetic trap does. This allows for RF and microwave cooling via both forced evaporation and a Sisyphus mechanism. Preliminary application of these techniques to the atoms in the circularly polarized dipole trap has successfully decreased the temperature by a factor of 4 while simultaneously increasing phase space density.

  1. Lunar lander ground support system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The design of the Lunar Lander Ground Support System (LLGSS) is examined. The basic design time line is around 2010 to 2030 and is referred to as a second generation system, as lunar bases and equipment would have been present. Present plans for lunar colonization call for a phased return of personnel and materials to the moons's surface. During settlement of lunar bases, the lunar lander is stationary in a very hostile environment and would have to be in a state of readiness for use in case of an emergency. Cargo and personnel would have to be removed from the lander and transported to a safe environment at the lunar base. An integrated system is required to perform these functions. These needs are addressed which center around the design of a lunar lander servicing system. The servicing system could perform several servicing functions to the lander in addition to cargo servicing. The following were considered: (1) reliquify hydrogen boiloff; (2) supply power; and (3) remove or add heat as necessary. The final design incorporates both original designs and existing vehicles and equipment on the surface of the moon at the time considered. The importance of commonality is foremost in the design of any lunar machinery.

  2. Lunar Reconnaissance Orbiter Artist Concept

    NASA Image and Video Library

    2008-07-24

    Artist rendering of the Lunar Reconnaissance Orbiter LRO, above the moon. LRO carries seven instruments that make comprehensive remote sensing observations of the moon and measurements of the lunar radiation environment. The LRO mission is managed by NASA Goddard for the Science Mission Directorate at NASA Headquarters in Washington. http://photojournal.jpl.nasa.gov/catalog/PIA18163

  3. REE Partitioning in Lunar Minerals

    NASA Technical Reports Server (NTRS)

    Rapp, J. F.; Lapen, T. J.; Draper, D. S.

    2015-01-01

    Rare earth elements (REE) are an extremely useful tool in modeling lunar magmatic processes. Here we present the first experimentally derived plagioclase/melt partition coefficients in lunar compositions covering the entire suite of REE. Positive europium anomalies are ubiquitous in the plagioclase-rich rocks of the lunar highlands, and complementary negative Eu anomalies are found in most lunar basalts. These features are taken as evidence of a large-scale differentiation event, with crystallization of a global-scale lunar magma ocean (LMO) resulting in a plagioclase flotation crust and a mafic lunar interior from which mare basalts were subsequently derived. However, the extent of the Eu anomaly in lunar rocks is variable. Fagan and Neal [1] reported highly anorthitic plagioclase grains in lunar impact melt rock 60635,19 that displayed negative Eu anomalies as well as the more usual positive anomalies. Indeed some grains in the sample are reported to display both positive and negative anomalies. Judging from cathodoluminescence images, these anomalies do not appear to be associated with crystal overgrowths or zones.

  4. Apollo 11 Lunar Science Conference

    ERIC Educational Resources Information Center

    Cochran, Wendell

    1970-01-01

    Report of a conference called to discuss the findings of 142 scientists from their investigations of samples of lunar rock and soil brought back by the Apollo 11 mission. Significant findings reported include the age and composition of the lunar samples, and the absence of water and organic matter. Much discussed was the origin and structure of…

  5. Early Operations Flight Correlation of the Lunar Laser Communications Demonstration (LLCD) on the Lunar Atmosphere and Dust Environment Explorer (LADEE)

    NASA Technical Reports Server (NTRS)

    Peabody, Hume; Yang, Kan; Nguyen, Daniel; Cornwell, Donald

    2015-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) mission launched on September 7, 2013 with a one month cruise before lunar insertion. The LADEE spacecraft is a power limited, octagonal, composite bus structure with solar panels on all eight sides with four vertical segments per side and 2 panels dedicated to instruments. One of these panels has the Lunar Laser Communications Demonstration (LLCD), which represents a furthering of the laser communications technology demonstration proved out by the Lunar Reconnaissance Orbiter (LRO). LLCD increases the bandwidth of communication to and from the moon with less mass and power than LROs technology demonstrator. The LLCD Modem and Controller boxes are mounted to an internal cruciform composite panel and have no dedicated radiator. The thermal design relies on power cycling of the boxes and radiation of waste heat to the inside of the panels, which then reject the heat when facing cold space. The LADEE mission includes a slow roll and numerous attitudes to accommodate the challenging thermal requirements for all the instruments on board. During the cruise phase, the internal Modem and Controller avionics for LLCD were warmer than predicted by more than modeling uncertainty would suggest. This caused concern that if the boxes were considerably warmer than expected while off, they would also be warmer when operating and could limit the operational time when in lunar orbit. The thermal group at Goddard Space Flight Center evaluated the models and design for these critical avionics for LLCD. Upon receipt of the spacecraft models and audit was performed and data was collected from the flight telemetry to perform a sanity check of the models and to correlate to flight where possible. This paper describes the efforts to correlate the model to flight data and to predict the thermal performance when in lunar orbit and presents some lessons learned.

  6. Electrostatic Characterization of Lunar Dust

    NASA Technical Reports Server (NTRS)

    2008-01-01

    To ensure the safety and success of future lunar exploration missions, it is important to measure the toxicity of the lunar dust and its electrostatic properties. The electrostatic properties of lunar dust govern its behavior, from how the dust is deposited in an astronaut s lungs to how it contaminates equipment surfaces. NASA has identified the threat caused by lunar dust as one of the top two problems that need to be solved before returning to the Moon. To understand the electrostatic nature of lunar dust, NASA must answer the following questions: (1) how much charge can accumulate on the dust? (2) how long will the charge remain? and (3) can the dust be removed? These questions can be answered by measuring the electrostatic properties of the dust: its volume resistivity, charge decay, charge-to-mass ratio or chargeability, and dielectric properties.

  7. Lunar lander ground support system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This year's project, like the previous Aerospace Group's project, involves a lunar transportation system. The basic time line will be the years 2010-2030 and will be referred to as a second generation system, as lunar bases would be present. The project design completed this year is referred to as the Lunar Lander Ground Support System (LLGSS). The area chosen for analysis encompasses a great number of vehicles and personnel. The design of certain elements of the overall lunar mission are complete projects in themselves. For this reason the project chosen for the Senior Aerospace Design is the design of specific servicing vehicles and additions or modifications to existing vehicles for the area of concern involving servicing and maintenance of the lunar lander while on the surface.

  8. Lunar Regolith Particle Shape Analysis

    NASA Technical Reports Server (NTRS)

    Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer

    2013-01-01

    Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.

  9. Organics in APOLLO Lunar Samples

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Allton, J. H.

    2007-01-01

    One of many unknowns prior to the Apollo landings concerned the possibility of life, its remains, or its organic precursors on the surface of the Moon. While the existence of lunar organisms was considered highly unlikely, a program of biological quarantine and testing for the astronauts, the Apollo Command Modules, and the lunar rock and soil samples, was instituted in the Lunar Receiving Laboratory (LRL). No conclusive evidence of lunar organisms, was detected and the quarantine program was ended after Apollo 14. Analyses for organic compounds were also con-ducted. Considerable effort was expended, during lunar surface operations and in the LRL, to minimize and quantify organic contamination. Post-Apollo curatorial operations and cleaning minimize contamination from particulates, oxygen, and water but no longer specifically address organic contamination. The organic compounds measured in Apollo samples are generally consistent with known sources of contamination.

  10. Coping with Cold Sores

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Cold Sores KidsHealth / For Kids / Cold Sores What's in ... sore." What's that? Adam wondered. What Is a Cold Sore? Cold sores are small blisters that is ...

  11. Lunar Daylight Exploration

    NASA Technical Reports Server (NTRS)

    Griffin, Brand Norman

    2010-01-01

    With 1 rover, 2 astronauts and 3 days, the Apollo 17 Mission covered over 30 km, setup 10 scientific experiments and returned 110 kg of samples. This is a lot of science in a short time and the inspiration for a barebones, return-to-the-Moon strategy called Daylight Exploration. The Daylight Exploration approach poses an answer to the question, What could the Apollo crew have done with more time and today s robotics? In contrast to more ambitious and expensive strategies that create outposts then rely on pressurized rovers to drive to the science sites, Daylight Exploration is a low-overhead approach conceived to land near the scientific site, conduct Apollo-like exploration then leave before the sun goes down. A key motivation behind Daylight Exploration is cost reduction, but it does not come at the expense of scientific exploration. As a goal, Daylight Exploration provides access to the top 10 science sites by using the best capabilities of human and robotic exploration. Most science sites are within an equatorial band of 26 degrees latitude and on the Moon, at the equator, the day is 14 Earth days long; even more important, the lunar night is 14 days long. Human missions are constrained to 12 days because the energy storage systems required to operate during the lunar night adds mass, complexity and cost. In addition, short missions are beneficial because they require fewer consumables, do not require an airlock, reduce radiation exposure, minimize the dwell-time for the ascent and orbiting propulsion systems and allow a low-mass, campout accommodations. Key to Daylight Exploration is the use of piloted rovers used as tele-operated science platforms. Rovers are launched before or with the crew, and continue to operate between crew visits analyzing and collecting samples during the lunar daylight

  12. Lunar Commercial Mining Logistics

    NASA Astrophysics Data System (ADS)

    Kistler, Walter P.; Citron, Bob; Taylor, Thomas C.

    2008-01-01

    Innovative commercial logistics is required for supporting lunar resource recovery operations and assisting larger consortiums in lunar mining, base operations, camp consumables and the future commercial sales of propellant over the next 50 years. To assist in lowering overall development costs, ``reuse'' innovation is suggested in reusing modified LTS in-space hardware for use on the moon's surface, developing product lines for recovered gases, regolith construction materials, surface logistics services, and other services as they evolve, (Kistler, Citron and Taylor, 2005) Surface logistics architecture is designed to have sustainable growth over 50 years, financed by private sector partners and capable of cargo transportation in both directions in support of lunar development and resource recovery development. The author's perspective on the importance of logistics is based on five years experience at remote sites on Earth, where remote base supply chain logistics didn't always work, (Taylor, 1975a). The planning and control of the flow of goods and materials to and from the moon's surface may be the most complicated logistics challenges yet to be attempted. Affordability is tied to the innovation and ingenuity used to keep the transportation and surface operations costs as low as practical. Eleven innovations are proposed and discussed by an entrepreneurial commercial space startup team that has had success in introducing commercial space innovation and reducing the cost of space operations in the past. This logistics architecture offers NASA and other exploring nations a commercial alternative for non-essential cargo. Five transportation technologies and eleven surface innovations create the logistics transportation system discussed.

  13. Lunar Circular Structure Classification from Chang 'e 2 High Resolution Lunar Images with Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Zeng, X. G.; Liu, J. J.; Zuo, W.; Chen, W. L.; Liu, Y. X.

    2018-04-01

    Circular structures are widely distributed around the lunar surface. The most typical of them could be lunar impact crater, lunar dome, et.al. In this approach, we are trying to use the Convolutional Neural Network to classify the lunar circular structures from the lunar images.

  14. Lunar architecture and urbanism

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent

    1992-09-01

    Human civilization and architecture have defined each other for over 5000 years on Earth. Even in the novel environment of space, persistent issues of human urbanism will eclipse, within a historically short time, the technical challenges of space settlement that dominate our current view. By adding modern topics in space engineering, planetology, life support, human factors, material invention, and conservation to their already renaissance array of expertise, urban designers can responsibly apply ancient, proven standards to the exciting new opportunities afforded by space. Inescapable facts about the Moon set real boundaries within which tenable lunar urbanism and its component architecture must eventually develop.

  15. Precambrian Lunar Volcanic Protolife

    PubMed Central

    Green, Jack

    2009-01-01

    Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated. PMID:19582224

  16. NASA Lunar Impact Monitoring

    NASA Technical Reports Server (NTRS)

    Suggs, Robert M.; Moser, D. E.

    2015-01-01

    The MSFC lunar impact monitoring program began in 2006 in support of environment definition for the Constellation (return to Moon) program. Work continued by the Meteoroid Environment Office after Constellation cancellation. Over 330 impacts have been recorded. A paper published in Icarus reported on the first 5 years of observations and 126 calibrated flashes. Icarus: http://www.sciencedirect.com/science/article/pii/S0019103514002243; ArXiv: http://arxiv.org/abs/1404.6458 A NASA Technical Memorandum on flash locations is in press

  17. Lunar architecture and urbanism

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1992-01-01

    Human civilization and architecture have defined each other for over 5000 years on Earth. Even in the novel environment of space, persistent issues of human urbanism will eclipse, within a historically short time, the technical challenges of space settlement that dominate our current view. By adding modern topics in space engineering, planetology, life support, human factors, material invention, and conservation to their already renaissance array of expertise, urban designers can responsibly apply ancient, proven standards to the exciting new opportunities afforded by space. Inescapable facts about the Moon set real boundaries within which tenable lunar urbanism and its component architecture must eventually develop.

  18. Two-Phase Thermal Switching System for a Small, Extended Duration Lunar Surface Science Platform

    NASA Technical Reports Server (NTRS)

    Bugby, David C.; Farmer, Jeffery T.; OConnor, Brian F.; Wirzburger, Melissa J.; Abel, Elisabeth D.; Stouffer, Chuck J.

    2010-01-01

    This paper describes a novel thermal control system for the Warm Electronics Box (WEB) on board a small lunar surface lander intended to support science activities anywhere on the lunar surface for an extended duration of up to 6 years. Virtually all lander electronics, which collectively dissipate about 60 W in the reference mission, are contained within the WEB. These devices must be maintained below 323 K (with a goal of 303 K) during the nearly 15-earth-day lunar day, when surface temperatures can reach 390K, and above 263 K during the nearly 15-earth-day lunar night, when surface temperatures can reach 100K. Because of the large temperature swing from lunar day-to-night, a novel thermal switching system was required that would be able to provide high conductance from WEB to radiator(s) during the hot lunar day and low (or negligible) conductance during the cold lunar night. The concept that was developed consists of ammonia variable conductance heat pipes (VCHPs) to collect heat from WEB components and a polymer wick propylene loop heat pipe (LHP) to transport the collected heat to the radiator(s). The VCHPs autonomously maximize transport when the WEB is warm and autonomously shut down when the WEB gets cold. The LHP autonomously shuts down when the VCHPs shut down. When the environment transitions from lunar night to day, the VCHPs and LHP autonomously turn back on. Out of 26 analyzed systems, this novel arrangement was able to best achieve the combined goals of zero control power, autonomous operation, long life, low complexity, low T, and landed tilt tolerance.

  19. Resource Prospector Propulsion Cold Flow Test

    NASA Technical Reports Server (NTRS)

    Williams, Hunter; Pederson, Kevin; Dervan, Melanie; Holt, Kimberly; Jernigan, Frankie; Trinh, Huu; Flores, Sam

    2014-01-01

    For the past year, NASA Marshall Space Flight Center and Johnson Space Center have been working on a government version of a lunar lander design for the Resource Prospector Mission. A propulsion cold flow test system, representing an early flight design of the propulsion system, has been fabricated. The primary objective of the cold flow test is to simulate the Resource Prospector propulsion system operation through water flow testing and obtain data for anchoring analytical models. This effort will also provide an opportunity to develop a propulsion system mockup to examine hardware integration to a flight structure. This paper will report the work progress of the propulsion cold flow test system development and test preparation. At the time this paper is written, the initial waterhammer testing is underway. The initial assessment of the test data suggests that the results are as expected and have a similar trend with the pretest prediction. The test results will be reported in a future conference.

  20. Understanding the Reactivity of Lunar Dust for Future Lunar Missions

    NASA Technical Reports Server (NTRS)

    Wallace, William; Taylor, L. A.; Jeevarajan, Antony

    2009-01-01

    During the Apollo missions, dust was found to cause numerous problems for various instruments and systems. Additionally, the dust may have caused momentary health issues for some of the astronauts. Therefore, the plan to resume robotic and manned missions to the Moon in the next decade has led to a renewed interest in the properties of lunar dust, ranging from geological to chemical to toxicological. An important property to understand is the reactivity of the dust particles. Due to the lack of an atmosphere on the Moon, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to activate the soil, or produce reactive surface species. On the Moon, these species can be maintained for millennia without oxygen or water vapor present to satisfy the broken bonds. Unfortunately, the Apollo dust samples that were returned to Earth were inadvertently exposed to the atmosphere, causing them to lose their reactive characteristics. In order to aid in the preparation of mitigation techniques prior to returning to the Moon, we measured the ability of lunar dust, lunar dust simulant, and quartz samples to produce hydroxyl radicals in solution[1]. As a first approximation of meteorite impacts on the lunar surface, we ground samples using a mortar and pestle. Our initial studies showed that all three test materials (lunar dust (62241), lunar dust simulant (JSC-1Avf), and quartz) produced hydroxyl radicals after grinding and mixing with water. However, the radical production of the ground lunar dust was approximately 10-fold and 3-fold greater than quartz and JSC-1 Avf, respectively. These reactivity differences between the different samples did not correlate with differences in specific surface area. The increased reactivity produced for the quartz by grinding was attributed to the presence of silicon- or oxygen-based radicals on the surface, as had been seen previously[2]. These radicals may also

  1. Problem of nature of inert gases in lunar surface material

    NASA Technical Reports Server (NTRS)

    Levskiy, L. K.

    1974-01-01

    The origin of isotopes of inert gases in lunar surface material was investigated from the standpoint of the isotopic two-component status of inert gases in the solar system. Helium and neon represent the solar wind component, while krypton and xenon are planetary gases. Type A gases are trapped by the material of the regolith in the early stages of the existence of the solar system and were brought to the lunar surface together with dust. The material of the regolith therefore cannot be considered as the product of the erosion of the crystalline rocks of the moon and in this sense are extralunar. The regolith material containing type A gases must be identified with the high temperature minerals of the carbonaceous chondrites.

  2. Solar-wind interactions - Nature and composition of lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Mukherjee, N. R.

    1975-01-01

    The nature and composition of the lunar atmosphere are examined on the basis of solar-wind interactions, and the nature of the species in the trapped-gas layer is discussed using results of theoretical and experimental investigations. It is shown that the moon has a highly tenuous atmosphere consisting of various species derived from five sources: solar-wind interaction products, cosmic-ray interaction products, effects of meteoritic impacts, planetary degassing, and radioactive-decay products. Atmospheric concentrations are determined for those species derived from solar-wind protons, alpha particles, and oxygen ions. Carbon chemistry is briefly discussed, and difficulties encountered in attempts to determine quantitatively the concentrations of molecular oxygen, atomic oxygen, carbon monoxide, carbon dioxide, and methane are noted. The calculated concentrations are shown to be in good agreement with observations by the Apollo 17 lunar-surface mass spectrometer and orbital UV spectrometer.

  3. Lunar and Planetary Science XXXVI, Part 2

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Topics covered include: Ringwoodite-olivine assemblages in Dhofar L6 melt veins; Amorphization of forsterite grains due to high energy heavy ion irradiation: Implications for grain processing in ISM; Validation of AUTODYN in replicating large-scale planetary impact events; A network of geophysical observatories for mars; Modelling catastrophic floods on the surface of mars; Impact into coarse grained spheres; The diderot meteorite: The second chassignite; Galileo global color mosaics of Io; Ganymede's sulci on global and regional scales; and The cold traps near the south pole of the moon.

  4. Hydrogen Distribution in the Lunar Polar Regions

    NASA Technical Reports Server (NTRS)

    Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Bakhtin, B. N.; Bodnarik, J. G.; Boynton, W. V.; Chin, G.; Evans, L. G.; Harshmann, K.; Fedosov, F.; hide

    2016-01-01

    We present a method of conversion of the lunar neutron counting rate measured by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) instrument collimated neutron detectors, to water equivalent hydrogen (WEH) in the top approximately 1 m layer of lunar regolith. Polar maps of the Moon’s inferred hydrogen abundance are presented and discussed.

  5. NASA Planetary Astronomy Lunar Atmospheric Imaging Study

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1996-01-01

    Authors have conducted a program of research focused on studies of the lunar atmosphere. Also present preliminary results of an ongoing effort to determine the degree that metal abundances in the lunar atmosphere are stoichiometric, that is, reflective of the lunar surface composition. We make the first-ever mid-ultraviolet spectroscopic search for emission from the lunar atmosphere.

  6. Lunar Topography: Results from the Lunar Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Neumann, Gregory; Smith, David E.; Zuber, Maria T.; Mazarico, Erwan

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO) has been operating nearly continuously since July 2009, accumulating over 6 billion measurements from more than 2 billion in-orbit laser shots. LRO's near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, with full coverage at the equator from more than 12000 orbital tracks averaging less than 1 km in spacing at the equator. LRO has obtained a global geodetic model of the lunar topography with 50-meter horizontal and 1-m radial accuracy in a lunar center-of-mass coordinate system, with profiles of topography at 20-m horizontal resolution, and 0.1-m vertical precision. LOLA also provides measurements of reflectivity and surface roughness down to its 5-m laser spot size. With these data LOLA has measured the shape of all lunar craters 20 km and larger. In the proposed extended mission commencing late in 2012, LOLA will concentrate observations in the Southern Hemisphere, improving the density of the polar coverage to nearly 10-m pixel resolution and accuracy to better than 20 m total position error. Uses for these data include mission planning and targeting, illumination studies, geodetic control of images, as well as lunar geology and geophysics. Further improvements in geodetic accuracy are anticipated from the use of re ned gravity fields after the successful completion of the Gravity Recovery and Interior Laboratory (GRAIL) mission in 2012.

  7. Advances in Lunar Science and Observational Opportunities

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer

    2012-01-01

    Lunar science is currently undergoing a renaissance as our understanding of our Moon continues to evolve given new data from multiple lunar mission and new analyses. This talk will overview NASA's recent and future lunar missions to explain the scientific questions addressed by missions such as the Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation and Sensing Satellite (LCROSS), Gravity Recovery and Interior Laboratory (Grail), Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS), and the Lunar Atmosphere and Dust Environment Explorer (LADEE). The talk will also overview opportunities for participatory exploration whereby professional and amateur astronomers are encouraged to participate in lunar exploration in conjunction with NASA.

  8. Sympathetic cooling of nanospheres with cold atoms

    NASA Astrophysics Data System (ADS)

    Montoya, Cris; Witherspoon, Apryl; Ranjit, Gambhir; Casey, Kirsten; Kitching, John; Geraci, Andrew

    2016-05-01

    Ground state cooling of mesoscopic mechanical structures could enable new hybrid quantum systems where mechanical oscillators act as transducers. Such systems could provide coupling between photons, spins and charges via phonons. It has recently been shown theoretically that optically trapped dielectric nanospheres could reach the ground state via sympathetic cooling with trapped cold atoms. This technique can be beneficial in cases where cryogenic operation of the oscillator is not practical. We describe experimental advances towards coupling an optically levitated dielectric nanosphere to a gas of cold Rubidium atoms. The sphere and the cold atoms are in separate vacuum chambers and are coupled using a one-dimensional optical lattice. This work is partially supported by NSF, Grant Nos. PHY-1205994,PHY-1506431.

  9. Sorption vacuum trap

    NASA Technical Reports Server (NTRS)

    Barrington, A. E.; Caruso, A. J.

    1970-01-01

    Modified sorption trap for use in high vacuum systems contains provisions for online regeneration of sorbent material. Trap is so constructed that it has a number of encapsulated resistance heaters and a valving and pumping device for removing gases from heated sorbing material. Excessive downtime is eliminated with this trap.

  10. Searching for Lunar Water: The Lunar Volatile Resources Analysis Package

    NASA Technical Reports Server (NTRS)

    Morse, A. D.; Barber, S. J.; Dewar, K. R.; Pillinger, J. M.; Sheridan, S.; Wright, I, P.; Gibson, E. K.; Merrifield, J. A.; Howe, C. J.; Waugh, L. J.; hide

    2012-01-01

    The ESA Lunar Lander has been conceived to demonstrate an autonomous landing capability. Once safely on the Moon the scientific payload will conduct investigations aimed at preparing the way for human exploration. As part of the provisional payload an instrument known as The Lunar Volatile Resources Analysis Package (L-VRAP) will analyse surface and exospheric volatiles. The presence and abundance of lunar water is an important consideration for ISRU (In Situ Resource Utilisation) since this is likely to be part of a strategy for supporting long-term human exploration of the Moon.

  11. Apollo 9 Lunar Module in lunar landing configuration

    NASA Image and Video Library

    1969-03-07

    AS09-21-3181 (7 March 1969) --- A View of the Apollo 9 Lunar Module (LM), "Spider," in a lunar lading configuration, as photographed from the Command and Service Modules (CSM) on the fifth day of the Apollo 9 Earth-orbital mission. The landing gear on the "Spider" has been deployed. Inside the "Spider" were astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module (CM), "Gumdrop," while the other two astronauts checked out the LM.

  12. Lunar Crustal History from Isotopic Studies of Lunar Anorthosites

    NASA Technical Reports Server (NTRS)

    Nyquist, Laurence E.; Shih, C.-Y.; Bogard, D. D.; Yamaguchi, A.

    2010-01-01

    Anorthosites occur ubiquitously within the lunar crust at depths of approx.3-30 km in apparent confirmation of the Lunar Magma Ocean (LMO) hypothesis. [1]. We will present recent chronological studies of anorthosites [2] that are relevant both to the LMO hypothesis and also to the lunar cataclysm hypothesis. Old (approx.4.4 Ga) Sm-Nd ages have been determined for some Apollo 16 anorthosites, and primitive initial Sr-87/Sr-86 ratios have been measured for several, but well-defined Rb-Sr ages concordant with the Sm-Nd ages have not been determined until now. Lunar anorthosite 67075, a Feldspathic Fragmental Breccia (FFB) collected near the rim of North Ray Crater, has concordant Sm-Nd and Rb-Sr ages of 4.47+/-0.07 Ga and 4.49+/-0.07 Ga, respectively. Initial Nd-143/Nd-144 determined from the Sm-Nd isochron corresponds to E(sub Nd,CHUR) = 0.3+/-0.5 compared to a Chondritic Uniform Reservoir, or E(sub Nd,HEDPB) = -0.6+/-0.5 compared to the initial Nd-143/Nd-144 of the HED Parent Body [3]. Lunar anorthosites tend to have E(sub Nd) > 0 when compared to CHUR, apparently inconsistent with derivation from a single lunar magma ocean. Although E(sub Nd) < 0 for some anorthosites, if lunar initial Nd-143/Nd-144 is taken equal to HEDR for the HED parent body [3], enough variability remains among the anorthosite data alone to suggest that lunar anorthosites do not derive from a single source, i.e., they are not all products of the LMO. An anorthositic clast from desert meteorite Dhofar 908 has an Ar-39-Ar-40 age of 4.42+/-0.04 Ga, the same as the 4.36-4.41+/-0.035 Ga Ar-39-Ar-40 age of anorthositic clast Y-86032,116 in Antarctic meteorite Yamato- 86032 [3,4]. Conclusions: (i) Lunar anorthosites come from diverse sources. Orbital geochemical studies confirm variability in lunar crustal composition [1, 5]. We suggest that the variability extends to anorthosites alone as shown by the Sm-Nd data (Fig. 2) and the existence of magnesian anorthosites (MAN, [6]) and "An93 anorthosites

  13. Lunar deep drill apparatus

    NASA Technical Reports Server (NTRS)

    Harvey, Jill (Editor)

    1989-01-01

    A self contained, mobile drilling and coring system was designed to operate on the Lunar surface and be controlled remotely from earth. The system uses SKITTER (Spatial Kinematic Inertial Translatory Tripod Extremity Robot) as its foundation and produces Lunar core samples two meters long and fifty millimeters in diameter. The drill bit used for this is composed of 30 per carat diamonds in a sintered tungsten carbide matrix. To drill up to 50 m depths, the bit assembly will be attached to a drill string made from 2 m rods which will be carried in racks on SKITTER. Rotary power for drilling will be supplied by a Curvo-Synchronous motor. SKITTER is to support this system through a hexagonal shaped structure which will contain the drill motor and the power supply. A micro-coring drill will be used to remove a preliminary sample 5 mm in diameter and 20 mm long from the side of the core. This whole system is to be controlled from earth. This is carried out by a continuously monitoring PLC onboard the drill rig. A touch screen control console allows the operator on earth to monitor the progress of the operation and intervene if necessary.

  14. Establishing lunar resource viability

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Fisackerly, R.; Houdou, B.

    2016-11-01

    Recent research has highlighted the potential of lunar resources as an important element of space exploration but their viability has not been demonstrated. Establishing whether or not they can be considered in future plans is a multidisciplinary effort, requiring scientific expertise and delivering scientific results. To this end various space agencies and private entities are looking to lunar resources, extracted and processed in situ, as a potentially game changing element in future space architectures, with the potential to increase scale and reduce cost. However, before any decisions can be made on the inclusion of resources in exploration roadmaps or future scenarios some big questions need to be answered about the viability of different resource deposits and the processes for extraction and utilisation. The missions and measurements that will be required to answer these questions, and which are being prepared by agencies and others, can only be performed through the engagement and support of the science community. In answering questions about resources, data and knowledge will be generated that is of fundamental scientific importance. In supporting resource prospecting missions the science community will de facto generate new scientific knowledge. Science enables exploration and exploration enables science.

  15. Lunar Regolith Bagging System

    NASA Technical Reports Server (NTRS)

    Brown, Sebrina; Lundberg, Kimberly; Mcgarity, Ginger; Silverman, Philip

    1990-01-01

    A regolith container to be used as a fundamental building block in radiation protection of a habitable lunar base was designed. Parameters for the container are its: size, shape, material, and structural design. Also, a machine was designed to fill the regolith container which is capable of grasping and opening an empty container, filling it, closing it when full, and depositing it on the surface of the Moon. The simple design will bag lunar soil in a relatively short amount of time, with a low equipment weight, and with moving parts distanced from the dirt. The bags are made out of Kevlar 149 with a fabric weight of 6 oz. per square yard. All machine parts are composed of aluminum 6061-T6. Assuming that the vehicle runs at 7 km/hr for 8 hours a day, the machine will bag the necessary 450 cu m of soil in about 12 days. The total mass of the bags and the machine to be shipped to the Moon will be 687 kg. The cost of shipping this weight will be $6.23 million.

  16. Lunar and Planetary Geology

    NASA Astrophysics Data System (ADS)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  17. Possible lunar ores

    NASA Technical Reports Server (NTRS)

    Gillett, Stephen L.

    1991-01-01

    Despite the conventional wisdom that there are no lunar ores, geochemical considerations suggest that local concentrations of useful rare elements exist on the Moon in spite of its extreme dryness. The Moon underwent protracted igneous activity in its history, and certain magmatic processes can concentrate incompatible elements even if anhydrous. Such processes include: (1) separation of a magma into immiscible liquid phases (depending on composition, these could be silicate-silicate, silicate-oxide, silicate-sulfide, or silicate-salt); (2) cumulate deposits in layered igneous intrusions; and (3) concentrations of rare, refractory, lithophile elements (e.g., Be, Li, Zr) in highly differentiated, silica-rich magmas, as in the lunar granites. Terrestrial mining experience indicates that the single most important characteristic of a potential ore is its concentration of the desire element. The utility of a planet as a resource base is that the welter of interacting processes over geologic time can concentrate rare element automatically. This advantage is squandered if adequate exploration for ores is not first carried out.

  18. Lunar base heat pump

    NASA Technical Reports Server (NTRS)

    Goldman, Jeffrey H.; Tetreault, R.; Fischbach, D.; Walker, D.

    1994-01-01

    A heat pump is a device which elevates the temperature of a heat flow by a means of an energy input. By doing this, the heat pump can cause heat to transfer faster from a warm region to a cool region, or it can cause heat to flow from a cool region to a warmer region. The second case is the one which finds vast commercial applications such as air conditioning, heating, and refrigeration. Aerospace applications of heat pumps include both cases. The NASA Johnson Space Center is currently developing a Life Support Systems Integration Facility (LSSIF, previously SIRF) to provide system-level integration, operational test experience, and performance data that will enable NASA to develop flight-certified hardware for future planetary missions. A high lift heat pump is a significant part of the TCS hardware development associated with the LSSIF. The high lift heat pump program discussed here is being performed in three phases. In Phase 1, the objective is to develop heat pump concepts for a lunar base, a lunar lander, and for a ground development unit for the SIRF. In Phase 2, the design of the SIRF ground test unit is being performed, including identification and evaluation of safety and reliability issues. In Phase 3, the SIRF unit will be manufactured, tested, and delivered to the NASA Johnson Space Center.

  19. Pressurized Lunar Rover (PLR)

    NASA Technical Reports Server (NTRS)

    Creel, Kenneth; Frampton, Jeffrey; Honaker, David; Mcclure, Kerry; Zeinali, Mazyar; Bhardwaj, Manoj; Bulsara, Vatsal; Kokan, David; Shariff, Shaun; Svarverud, Eric

    1992-01-01

    The objective of this project was to design a manned pressurized lunar rover (PLR) for long-range transportation and for exploration of the lunar surface. The vehicle must be capable of operating on a 14-day mission, traveling within a radius of 500 km during a lunar day or within a 50-km radius during a lunar night. The vehicle must accommodate a nominal crew of four, support two 28-hour EVA's, and in case of emergency, support a crew of six when near the lunar base. A nominal speed of ten km/hr and capability of towing a trailer with a mass of two mt are required. Two preliminary designs have been developed by two independent student teams. The PLR 1 design proposes a seven meter long cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, lighting, robotic arms, tools, and equipment for exploratory experiments. The rover uses a simple mobility system with six wheels on the main vehicle and two on the trailer. The nonpressurized trailer contains a modular radioisotope thermoelectric generator (RTG) supplying 6.5 kW continuous power. A secondary energy storage for short-term peak power needs is provided by a bank of lithium-sulfur dioxide batteries. The life support system is partly a regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center allowing the center to be used as a safe haven during solar flares. The PLR 1 has a total mass of 6197 kg. It has a top speed of 18 km/hr and is capable of towing three metric tons, in addition to the RTG trailer. The PLR 2 configuration consists of two four-meter diameter, cylindrical hulls which are passively connected by a flexible passageway, resulting in the overall vehicle length of 11 m. The vehicle is driven by eight independently suspended wheels. The dual-cylinder concept allows articulated as well as double

  20. Pressurized Lunar Rover (PLR)

    NASA Astrophysics Data System (ADS)

    Creel, Kenneth; Frampton, Jeffrey; Honaker, David; McClure, Kerry; Zeinali, Mazyar; Bhardwaj, Manoj; Bulsara, Vatsal; Kokan, David; Shariff, Shaun; Svarverud, Eric

    The objective of this project was to design a manned pressurized lunar rover (PLR) for long-range transportation and for exploration of the lunar surface. The vehicle must be capable of operating on a 14-day mission, traveling within a radius of 500 km during a lunar day or within a 50-km radius during a lunar night. The vehicle must accommodate a nominal crew of four, support two 28-hour EVA's, and in case of emergency, support a crew of six when near the lunar base. A nominal speed of ten km/hr and capability of towing a trailer with a mass of two mt are required. Two preliminary designs have been developed by two independent student teams. The PLR 1 design proposes a seven meter long cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, lighting, robotic arms, tools, and equipment for exploratory experiments. The rover uses a simple mobility system with six wheels on the main vehicle and two on the trailer. The nonpressurized trailer contains a modular radioisotope thermoelectric generator (RTG) supplying 6.5 kW continuous power. A secondary energy storage for short-term peak power needs is provided by a bank of lithium-sulfur dioxide batteries. The life support system is partly a regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center allowing the center to be used as a safe haven during solar flares. The PLR 1 has a total mass of 6197 kg. It has a top speed of 18 km/hr and is capable of towing three metric tons, in addition to the RTG trailer. The PLR 2 configuration consists of two four-meter diameter, cylindrical hulls which are passively connected by a flexible passageway, resulting in the overall vehicle length of 11 m. The vehicle is driven by eight independently suspended wheels. The dual-cylinder concept allows articulated as well as double

  1. Astronaut John Young photographed collecting lunar samples

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, is photographed collecting lunar samples near North Ray crater during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This picture was taken by Astronaut Charles M. Duke Jr., lunar module pilot. Young is using the lunar surface rake and a set of tongs. The Lunar Roving Vehicle is parked in the field of large boulders in the background.

  2. Lunar cartographic dossier, volume 1

    NASA Technical Reports Server (NTRS)

    Schimerman, L. A. (Editor)

    1975-01-01

    The dossier is designed to provide an up to date summary of the extent and quality of cartographic information as well as describing materials available to support lunar scientific investigation and study. It covers the specific photographic, selenodetic and cartographic data considered to be of continuing significance to users of lunar cartographic information. Historical background data is included. Descriptive and evaluative information is presented concerning lunar maps, photomaps and photo mosaics. Discussion comprises identification of series or individual sheet characteristics, control basis, source materials and compilation methodology used. The global, regional and local selenodetic control are described which were produced for lunar feature location in support of lunar mapping or positional study. Further discussion covers the fundamental basis for each control system, number of points produced, techniques employed and evaluated accuracy. Although lunar photography is an informational source rather than a cartographic product, a photography section was included to facilitate correlation to the mapping and control works described. Description of lunar photographic systems, photography and photo support data are presented from a cartographic-photogrammetric viewpoint with commentary on cartographic applications.

  3. Electromagnetic launch of lunar material

    NASA Technical Reports Server (NTRS)

    Snow, William R.; Kolm, Henry H.

    1992-01-01

    Lunar soil can become a source of relatively inexpensive oxygen propellant for vehicles going from low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) and beyond. This lunar oxygen could replace the oxygen propellant that, in current plans for these missions, is launched from the Earth's surface and amounts to approximately 75 percent of the total mass. The reason for considering the use of oxygen produced on the Moon is that the cost for the energy needed to transport things from the lunar surface to LEO is approximately 5 percent the cost from the surface of the Earth to LEO. Electromagnetic launchers, in particular the superconducting quenchgun, provide a method of getting this lunar oxygen off the lunar surface at minimal cost. This cost savings comes from the fact that the superconducting quenchgun gets its launch energy from locally supplied, solar- or nuclear-generated electrical power. We present a preliminary design to show the main features and components of a lunar-based superconducting quenchgun for use in launching 1-ton containers of liquid oxygen, one every 2 hours. At this rate, nearly 4400 tons of liquid oxygen would be launched into low lunar orbit in a year.

  4. Lunar Exploration Missions Since 2006

    NASA Technical Reports Server (NTRS)

    Lawrence, S. J. (Editor); Gaddis, L. R.; Joy, K. H.; Petro, N. E.

    2017-01-01

    The announcement of the Vision for Space Exploration in 2004 sparked a resurgence in lunar missions worldwide. Since the publication of the first "New Views of the Moon" volume, as of 2017 there have been 11 science-focused missions to the Moon. Each of these missions explored different aspects of the Moon's geology, environment, and resource potential. The results from this flotilla of missions have revolutionized lunar science, and resulted in a profoundly new emerging understanding of the Moon. The New Views of the Moon II initiative itself, which is designed to engage the large and vibrant lunar science community to integrate the results of these missions into new consensus viewpoints, is a direct outcome of this impressive array of missions. The "Lunar Exploration Missions Since 2006" chapter will "set the stage" for the rest of the volume, introducing the planetary community at large to the diverse array of missions that have explored the Moon in the last decade. Content: This chapter will encompass the following missions: Kaguya; ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun); Chang’e-1; Chandrayaan-1; Moon Impact Probe; Lunar Reconnaissance Orbiter (LRO); Lunar Crater Observation Sensing Satellite (LCROSS); Chang’e-2; Gravity Recovery and Interior Laboratory (GRAIL); Lunar Atmosphere and Dust Environment Explorer (LADEE); Chang’e-3.

  5. Research on lunar and planet development and utilization

    NASA Astrophysics Data System (ADS)

    Iwata, Tsutomu; Etou, Takao; Imai, Ryouichi; Oota, Kazuo; Kaneko, Yutaka; Maeda, Toshihide; Takano, Yutaka

    1992-08-01

    Status of the study on unmanned and manned lunar missions, unmanned Mars missions, lunar resource development and utilization missions, remote sensing exploration missions, survey and review to elucidate the problems of research and development for lunar resource development and utilization, and the techniques and equipment for lunar and planet exploration are presented. Following items were studied respectively: (1) spacecraft systems for unmanned lunar missions, such as lunar observation satellites, lunar landing vehicles, lunar surface rovers, lunar surface hoppers, and lunar sample retrieval; (2) spacecraft systems for manned lunar missions, such as manned lunar bases, lunar surface operation robots, lunar surface experiment systems, manned lunar take-off and landing vehicles, and lunar freight transportation ships; (3) spacecraft systems for Mars missions, such as Mars satellites, Phobos and Deimos sample retrieval vehicles, Mars landing explorers, Mars rovers, Mars sample retrieval; (4) lunar resource development and utilization; and (5) remote sensing exploration technologies.

  6. High-Grading Lunar Samples

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Sellar, Glenn; Nunez, Jorge; Mosie, Andrea; Schwarz, Carol; Parker, Terry; Winterhalter, Daniel; Farmer, Jack

    2009-01-01

    Astronauts on long-duration lunar missions will need the capability to high-grade their samples to select the highest value samples for transport to Earth and to leave others on the Moon. We are supporting studies to define the necessary and sufficient measurements and techniques for high-grading samples at a lunar outpost. A glovebox, dedicated to testing instruments and techniques for high-grading samples, is in operation at the JSC Lunar Experiment Laboratory. A reference suite of lunar rocks and soils, spanning the full compositional range found in the Apollo collection, is available for testing in this laboratory. Thin sections of these samples are available for direct comparison. The Lunar Sample Compendium, on-line at http://www-curator.jsc.nasa.gov/lunar/compendium.cfm, summarizes previous analyses of these samples. The laboratory, sample suite, and Compendium are available to the lunar research and exploration community. In the first test of possible instruments for lunar sample high-grading, we imaged 18 lunar rocks and four soils from the reference suite using the Multispectral Microscopic Imager (MMI) developed by Arizona State University and JPL (see Farmer et. al. abstract). The MMI is a fixed-focus digital imaging system with a resolution of 62.5 microns/pixel, a field size of 40 x 32 mm, and a depth-of-field of approximately 5 mm. Samples are illuminated sequentially by 21 light emitting diodes in discrete wavelengths spanning the visible to shortwave infrared. Measurements of reflectance standards and background allow calibration to absolute reflectance. ENVI-based software is used to produce spectra for specific minerals as well as multi-spectral images of rock textures.

  7. Design of a Day/Night Lunar Rover

    NASA Astrophysics Data System (ADS)

    Berkelman, Peter; Easudes, Jesse; Martin, Martin C.; Rollins, Eric; Silberman, Jack; Chen, Mei; Hancock, John; Mor, Andrew B.; Sharf, Alex; Warren, Tom; Bapna, Deepak

    1995-06-01

    The pair of lunar rovers discussed in this report will return video and state data to various ventures, including theme park and marketing concerns, science agencies, and educational institutions. The greatest challenge accepted by the design team was to enable operations throughout the extremely cold and dark lunar night, an unprecedented goal in planetary exploration. This is achieved through the use of the emerging technology of Alkali Metal Thermal to Electric Converters (AMTEC), provided with heat from a innovative beta-decay heat source, Krypton-85 gas. Although previous space missions have returned still images, our design will convey panoramic video from a ring of cameras around the rover. A six-wheel rocker bogie mechanism is implemented to propel the rover. The rovers will also provide the ability to safeguard their operation to allow untrained members of the general public to drive the vehicle. Additionally, scientific exploration and educational outreach will be supported with a user operable, steerable and zoomable camera.

  8. LUNAR SAMPLES - APOLLO 11 - MSC

    NASA Image and Video Library

    1969-07-28

    S69-45025 (27 July 1969) --- This is the first lunar sample that was photographed in detail in the Lunar Receiving Laboratory at the Manned Spacecraft Center. The photograph shows a granular, fine-grained, mafic (iron magnesium rich) rock. At this early stage of the examination, this rock appears similar to several igneous rock types found on Earth. The scale is printed backwards due to the photographic configuration in the Vacuum Chamber. The sample number is 10003. This rock was among the samples collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity on July 20, 1969.

  9. LUNAR SAMPLES - APOLLO XI - MSC

    NASA Image and Video Library

    1969-07-28

    S69-45009 (27 July 1969) --- This is the first lunar sample that was photographed in detail in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC). The photograph shows a granular, fine-grained, mafic (iron magnesium rich) rock. At this early stage of the examination, this rock appears similar to several igneous rock types found on Earth. The scale is printed backwards due to the photographic configuration in the Vacuum Chamber. The sample number is 10003. This rock was among the samples collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity (EVA) on July 20, 1969.

  10. Tests of the lunar hypothesis

    NASA Technical Reports Server (NTRS)

    Taylor, S. R.

    1984-01-01

    The concept that the Moon was fissioned from the Earth after core separation is the most readily testable hypothesis of lunar origin, since direct comparisons of lunar and terrestrial compositions can be made. Differences found in such comparisons introduce so many ad hoc adjustments to the fission hypothesis that it becomes untestable. Further constraints may be obtained from attempting to date the volatile-refractory element fractionation. The combination of chemical and isotopic problems suggests that the fission hypothesis is no longer viable, and separate terrestrial and lunar accretion from a population of fractionated precursor planetesimals provides a more reasonable explanation.

  11. Space Weathering of Lunar Rocks

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2012-01-01

    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  12. Development of a lunar infrastructure

    NASA Technical Reports Server (NTRS)

    Burke, J. D.

    1988-01-01

    The problem of building an infrastructure on the moon is discussed, assuming that earth-to-moon and moon-to-earth transport will be available. The sequence of events which would occur in the process of building an infrastructure is examined. The human needs which must be met on a lunar base are discussed, including minimal life support, quality of life, and growth stages. The technology available to meet these needs is reviewed and further research in fields related to a lunar base, such as the study of the moon's polar regions and the limits of lunar agriculture, is recommended.

  13. Lunar science - The Apollo legacy

    NASA Technical Reports Server (NTRS)

    Burnett, D. S.

    1975-01-01

    The progress made in answering a list of fundamental lunar problems is considered, taking into account the nature of the differences in highlands and mare materials, the chemical composition of the moon, the density and internal structure of the moon, and the state of evolution of the moon. Attention is also given to a number of unanticipated results provided by lunar science. Findings concerning an ancient paleomagnetic field are discussed along with the characteristics of exotic components in the regolith, fundamental material differences observed in lunar surface layers, microcraters, and questions regarding an enhanced iron emission in solar flares.

  14. Lunar Module 4 moved for mating with Lunar Module Adapter at KSC

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Lunar Module 4 in the Kennedy Space Center's Manned Spacecraft Operations Bldg being moved into position for mating with Spacecraft Lunar Module Adapter (SLA) 13 (17809);Lunar Module 4 being moved for mating with the Spacecraft Lunar Module Adapter in the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building. Lunar module 4 will be flown on the Apollo 10 (Spacecraft 106/Saturn 505) lunar orbit mission (17810).

  15. Implications of Lunar Prospector Data for Lunar Geophysics

    NASA Technical Reports Server (NTRS)

    Zuber, Maria

    2003-01-01

    Research is sumamrized in the following areas: The Asymmetric Thermal Evolution of the Moon; Magma Transport Process on the Moon;The Composition and Origin of the Deep Lunar Crust;The Redistribution of Thorium on the Moon's Surface.

  16. The capture of lunar materials in low lunar orbit

    NASA Technical Reports Server (NTRS)

    Floyd, M. A.

    1981-01-01

    A scenario is presented for the retrieval of lunar materials sent into lunar orbit to be used as raw materials in space manufacturing operations. The proposal is based on the launch of material from the lunar surface by an electromagnetic mass driver and the capture of this material in low lunar orbit by a fleet of mass catchers which ferry the material to processing facilities when full. Material trajectories are analyzed using the two-body equations of motion, and intercept requirements and the sensitivity of the system to launch errors are determined. The present scenario is shown to be superior to scenarios that place a single mass catcher at the L2 libration point due to increased operations flexibility, decreased mass driver performance requirements and centralized catcher servicing.

  17. Lunar igneous rocks and the nature of the lunar interior

    NASA Technical Reports Server (NTRS)

    Hays, J. F.; Walker, D.

    1974-01-01

    Lunar igneous rocks are interpreted, which can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Terra rocks, though intensely brecciated, reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 gy. Melting of ilmenite-free olivine pyroxenites at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.

  18. Lunar igneous rocks and the nature of the lunar interior

    NASA Technical Reports Server (NTRS)

    Hays, J. F.; Walker, D.

    1977-01-01

    Lunar igneous rocks, properly interpreted, can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Though intensely brecciated, terra rocks reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 Gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 Gy. Melting of ilmenite-free olivine pyroxenites (also cumulates?) at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 Gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.

  19. Observations of Lunar Swirls by the Diviner Lunar Radiometer Experiment

    NASA Technical Reports Server (NTRS)

    Glotch, T. D.; Greenhagen, B. T.; Lucey, P. G.; Bandfield, J. L.; Hayne, Paul O.; Allen, Carlton C.; Elphic, Richard C.; Paige, D. A.

    2012-01-01

    The presence of anomalous, high albedo markings on the lunar surface has been known since the Apollo era. These features, collectively known as lunar swirls, occur on both the mare and highlands. Some swirls are associated with the antipodes of major impact basins, while all are associated with magnetic field anomalies of varying strength. Three mechanisms have been proposed for the formation of the swirls: (1) solar wind standoff due to the presence of magnetic fields, (2) micrometeoroid or comet swarms impacting and disturbing the lunar surface, revealing unweathered regolith, and (3) transport and deposition of fine-grained feldspathic material. Diviner s unique capabilities to determine silicate composition and degree of space weathering of the lunar surface, in addition to its capabilities to determine thermophysical properties from night-time temperature measurements, make it an ideal instrument to examine the swirls and help differentiate among the three proposed formation mechanisms.

  20. Lunar surface operations. Volume 4: Lunar rover trailer

    NASA Technical Reports Server (NTRS)

    Shields, William; Feteih, Salah; Hollis, Patrick

    1993-01-01

    The purpose of the project was to design a lunar rover trailer for exploration missions. The trailer was designed to carry cargo such as lunar geological samples, mining equipment and personnel. It is designed to operate in both day and night lunar environments. It is also designed to operate with a maximum load of 7000 kilograms. The trailer has a ground clearance of 1.0 meters and can travel over obstacles 0.75 meters high at an incline of 45 degrees. It can be transported to the moon fully assembled using any heavy lift vehicle with a storage compartment diameter of 5.0 meters. The trailer has been designed to meet or exceed the performance of any perceivable lunar vehicle.

  1. Redistribution of Lunar Polar Water to Mid-latitudes and its Role in Forming an OH veneer - Revisited

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Killen, R. M.; Hurley, D. M.; Hodges, R. R.; Halekas, J. S.; Delory, G. T.

    2012-01-01

    We suggest that energization processes like ion sputtering and impact vaporization can eject/release polar water molecules residing within lunar cold trapped regions with sufficient velocity to allow their redistribution to mid-latitudes. We consider the possibility that these polar-ejected molecules can be an additional (but not dominant) contribution to the water/OH veneer observed as a 3 micron absorption feature at mid-latitudes by Chandrayaan-I, Cassini, and EPOXI. Taking the conservative case that polar water is ejected only from the floor of polar craters with an 0.1 % icy regolith then overall source rates are near 10(exp 18) H20s/s. This outflow amounts to approx 10(exp -7) kg/s of water to be ejected from each pole and is a water source rate that is 10(exp .5 lower than the overall exospheric source rate for all species. Hence, the out-flowing polar water is a perturbation in the overall exosphere composition & dynamics. This polar water 'fountain' model may not fully account for the relatively high concentrations in the mid-latitude water veneer observed in the IR (approx 10-1000 ppm). However, it may account for some part of the veneer. We note that the polar water fountain source rates scale linearly with ice concentration, and larger mass fractions of polar crater water should provide correspondingly larger fractions of water emission out of the poles which then 'spills' on to mid-latitude surfaces.

  2. CIS-lunar space infrastructure lunar technologies: Executive summary

    NASA Technical Reports Server (NTRS)

    Faller, W.; Hoehn, A.; Johnson, S.; Moos, P.; Wiltberger, N.

    1989-01-01

    Technologies necessary for the creation of a cis-Lunar infrastructure, namely: (1) automation and robotics; (2) life support systems; (3) fluid management; (4) propulsion; and (5) rotating technologies, are explored. The technological focal point is on the development of automated and robotic systems for the implementation of a Lunar Oasis produced by Automation and Robotics (LOAR). Under direction from the NASA Office of Exploration, automation and robotics were extensively utilized as an initiating stage in the return to the Moon. A pair of autonomous rovers, modular in design and built from interchangeable and specialized components, is proposed. Utilizing a buddy system, these rovers will be able to support each other and to enhance their individual capabilities. One rover primarily explores and maps while the second rover tests the feasibility of various materials-processing techniques. The automated missions emphasize availability and potential uses of Lunar resources, and the deployment and operations of the LOAR program. An experimental bio-volume is put into place as the precursor to a Lunar environmentally controlled life support system. The bio-volume will determine the reproduction, growth and production characteristics of various life forms housed on the Lunar surface. Physicochemical regenerative technologies and stored resources will be used to buffer biological disturbances of the bio-volume environment. The in situ Lunar resources will be both tested and used within this bio-volume. Second phase development on the Lunar surface calls for manned operations. Repairs and re-configuration of the initial framework will ensue. An autonomously-initiated manned Lunar oasis can become an essential component of the United States space program.

  3. Decelerating and Trapping Large Polar Molecules.

    PubMed

    Patterson, David

    2016-11-18

    Manipulating the motion of large polyatomic molecules, such as benzonitrile (C 6 H 5 CN), presents significant difficulties compared to the manipulation of diatomic molecules. Although recent impressive results have demonstrated manipulation, trapping, and cooling of molecules as large as CH 3 F, no general technique for trapping such molecules has been demonstrated, and cold neutral molecules larger than 5 atoms have not been trapped (M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, G. Rempe, Nature 2012, 491, 570-573). In particular, extending Stark deceleration and electrostatic trapping to such species remains challenging. Here, we propose to combine a novel "asymmetric doublet state" Stark decelerator with recently demonstrated slow, cold, buffer-gas-cooled beams of closed-shell volatile molecules to realize a general system for decelerating and trapping samples of a broad range of volatile neutral polar prolate asymmetric top molecules. The technique is applicable to most stable volatile molecules in the 100-500 AMU range, and would be capable of producing trapped samples in a single rotational state and at a motional temperature of hundreds of mK. Such samples would immediately allow for spectroscopy of unprecedented resolution, and extensions would allow for further cooling and direct observation of slow intramolecular processes such as vibrational relaxation and Hertz-level tunneling dynamics. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Pressurized Lunar Rover

    NASA Technical Reports Server (NTRS)

    Creel, Kenneth; Frampton, Jeffrey; Honaker, David; Mcclure, Kerry; Zeinali, Mazyar

    1992-01-01

    The pressurized lunar rover (PLR) consists of a 7 m long, 3 m diameter cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, directional lighting, cameras, and equipment for exploratory experiments. The PLR shell is constructed of a layered carbon-fiber/foam composite. The rover has six 1.5 m diameter wheels on the main body and two 1.5 m diameter wheels on the trailer. The wheels are constructed of composites and flex to increase traction and shock absorption. The wheels are each attached to a double A-arm aluminum suspension, which allows each wheel 1 m of vertical motion. In conjunction with a 0.75 m ground clearance, the suspension aids the rover in negotiating the uneven lunar terrain. The 15 N-m torque brushless electric motors are mounted with harmonic drive units inside each of the wheels. The rover is steered by electrically varying the speeds of the wheels on either side of the rover. The PLR trailer contains a radiosotope thermoelectric generator providing 6.7 kW. A secondary back-up energy storage system for short-term high-power needs is provided by a bank of batteries. The trailer can be detached to facilitate docking of the main body with the lunar base via an airlock located in the rear of the PLR. The airlock is also used for EVA operation during missions. Life support is a partly regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center. The water absorbs any damaging radiation, allowing the command center to be used as a safe haven during solar flares. Guidance, navigation, and control are supplied by a strapdown inertial measurement unit that works with the on-board computer. Star mappers provide periodic error correction. The PLR is capable of voice, video, and data transmission. It is equipped with two 5 W X-band transponder

  5. Lunar Reconnaissance Orbiter Lunar Workshops for Educators, Year 1 Report

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Hsu, B. C.; Bleacher, L.; Shaner, A. J.; Dalton, H.

    2011-12-01

    This past summer, the Lunar Reconnaissance Orbiter (LRO) sponsored a series of weeklong professional development workshops designed to educate and inspire grade 6-12 science teachers: the Lunar Workshops for Educators. Participants learned about lunar science and exploration, gained tools to help address common student misconceptions about the Moon, heard some of the latest research results from LRO scientists, worked with LRO data, and learned how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks. Where possible, the workshops also included tours of science facilities or field trips intended to help the teachers better understand mission operations or geologic processes relevant to the Moon. The workshops were very successful. Participants demonstrated an improved understanding of lunar science concepts in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and productively share data from LRO with their students and provide them with authentic research experiences. Participant feedback on workshop surveys was also enthusiastically positive. 5 additional Lunar Workshops for Educators will be held around the country in the summer of 2012. For more information and to register, visit http://lunar.gsfc.nasa.gov/lwe/index.html.

  6. Low-energy Lunar Trajectories with Lunar Flybys

    NASA Astrophysics Data System (ADS)

    Wei, B. W.; Li, Y. S.

    2017-09-01

    The low-energy lunar trajectories with lunar flybys are investigated in the Sun-Earth-Moon bicircular problem (BCP). Accordingly, the characteristics of the distribution of trajectories in the phase space are summarized. To begin with, by using invariant manifolds of the BCP system, the low-energy lunar trajectories with lunar flybys are sought based on the BCP model. Secondly, through the treating time as an augmented dimension in the phase space of nonautonomous system, the state space map that reveals the distribution of these lunar trajectories in the phase space is given. As a result, it is become clear that low-energy lunar trajectories exist in families, and every moment of a Sun-Earth-Moon synodic period can be the departure date. Finally, the changing rule of departure impulse, midcourse impulse at Poincaré section, transfer duration, and system energy of different families are analyzed. Consequently, the impulse optimal family and transfer duration optimal family are obtained respectively.

  7. Searching for Water Ice at the Lunar North Pole Using High-Resolution Images and Radar

    NASA Technical Reports Server (NTRS)

    Mitchell, J. L.; Lawrence, S. J.; Robinson, M. S.; Speyerer, E. J.; Denevi, B. W.

    2017-01-01

    Permanently shadowed regions (PSRs) at the lunar poles are potential reservoirs of frozen volatiles, and are therefore high-priority exploration targets. PSRs trap water and other volatiles because their annual maximum temperatures (40-100K) are lower than the sublimation temperatures of these species (i.e. H2O approx.104K). Previous studies using various remote sensing techniques have not been able to definitively characterize the distribution or abundance of ice in lunar PSRs. The purpose of this study is to search for signs of ice in PSRs using two complimentary remote sensing techniques: radar and visible images.

  8. Small Cold Temperature Instrument Packages

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Feng, S.; Brigham, D.; Beaman, B.

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system with ultra low temperature ultra low power electronics components and power supplies now under development into a 'cold temperature surface operational' version of a planetary surface instrument package. We are already in the process of developing a lower power lower temperature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package. We build on our previous work to develop strategies for incorporating Ultra Low Temperature/Ultra Low Power (ULT/ULP) electronics, lower voltage power supplies, as well as innovative thermal design concepts for instrument packages. Cryotesting has indicated that our small Si RHBD CMOS chips can deliver >80% of room temperature performance at 40K (nominal minimum lunar surface temperature). We leverage collaborations, past and current, with the JPL battery development program to increase power system efficiency in extreme environments. We harness advances in MOSFET technology that provide lower voltage thresholds for power switching circuits incorporated into our low voltage power supply concept. Conventional power conversion has a lower efficiency. Our low power circuit concept based on 'synchronous rectification' could produce stable voltages as low as 0.6 V with 85% efficiency. Our distributed micro-battery-based power supply concept incorporates cold temperature power supplies operating with a 4 V or 8 V battery. This work will allow us to provide guidelines for applying the low temperature, low power system approaches generically to the widest range of surface instruments.

  9. Light-Emitting Diode (LED) Traps Improve the Light-Trapping of Anopheline Mosquitoes.

    PubMed

    Costa-Neta, B M; da Silva, A A; Brito, J M; Moraes, J L P; Rebêlo, J M M; Silva, F S

    2017-11-07

    Numerous advantages over the standard incandescent lamp favor the use of light-emitting diodes (LEDs) as an alternative and inexpensive light source for sampling medically important insects in surveillance studies. Previously published studies examined the response of mosquitoes to different wavelengths, but data on anopheline mosquito LED attraction are limited. Center for Disease Control and Prevention-type light traps were modified by replacing the standard incandescent lamp with 5-mm LEDs, one emitting at 520 nm (green) and the other at 470 nm (blue). To test the influence of moon luminosity on LED catches, the experiments were conducted during the four lunar phases during each month of the study period. A total of 1,845 specimens representing eight anopheline species were collected. Anopheles (Nyssorhynchus) evansae (35.2%) was the most frequently collected, followed by An. (Nys.) triannulatus (21.9%), An. (Nys.) goeldii (12.9%), and An. (Nys.) argyritarsis (11.5%). The green LED was the most attractive light source, accounting for 43.3% of the individuals collected, followed by the blue (31.8%) and control (24.9%) lights. The LED traps were significantly more attractive than the control, independent of the lunar phase. Light trapping of anopheline mosquitoes was more efficient when the standard incandescent lamp was replaced with LEDs, regardless of the moon phase. The efficiency of LEDs improves light trapping results, and it is suggested that the use of LEDs as an attractant for anopheline mosquitoes should be taken into consideration when sampling anopheline mosquitoes. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. The lunar dynamo.

    PubMed

    Weiss, Benjamin P; Tikoo, Sonia M

    2014-12-05

    The inductive generation of magnetic fields in fluid planetary interiors is known as the dynamo process. Although the Moon today has no global magnetic field, it has been known since the Apollo era that the lunar rocks and crust are magnetized. Until recently, it was unclear whether this magnetization was the product of a core dynamo or fields generated externally to the Moon. New laboratory and spacecraft measurements strongly indicate that much of this magnetization is the product of an ancient core dynamo. The dynamo field persisted from at least 4.25 to 3.56 billion years ago (Ga), with an intensity reaching that of the present Earth. The field then declined by at least an order of magnitude by ∼3.3 Ga. The mechanisms for sustaining such an intense and long-lived dynamo are uncertain but may include mechanical stirring by the mantle and core crystallization. Copyright © 2014, American Association for the Advancement of Science.

  11. The lunar dynamo

    NASA Astrophysics Data System (ADS)

    Weiss, Benjamin P.; Tikoo, Sonia M.

    2014-12-01

    The inductive generation of magnetic fields in fluid planetary interiors is known as the dynamo process. Although the Moon today has no global magnetic field, it has been known since the Apollo era that the lunar rocks and crust are magnetized. Until recently, it was unclear whether this magnetization was the product of a core dynamo or fields generated externally to the Moon. New laboratory and spacecraft measurements strongly indicate that much of this magnetization is the product of an ancient core dynamo. The dynamo field persisted from at least 4.25 to 3.56 billion years ago (Ga), with an intensity reaching that of the present Earth. The field then declined by at least an order of magnitude by ∼3.3 Ga. The mechanisms for sustaining such an intense and long-lived dynamo are uncertain but may include mechanical stirring by the mantle and core crystallization.

  12. Electrochemistry of lunar rocks

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. J.; Haskin, L. A.

    1979-01-01

    Electrolysis of silicate melts has been shown to be an effective means of producing metals from common silicate materials. No fluxing agents need be added to the melts. From solution in melts of diopside (CaMgSi2O6) composition, the elements Si, Ti, Ni, and Fe have been reduced to their metallic states. Platinum is a satisfactory anode material, but other cathode materials are needed. Electrolysis of compositional analogs of lunar rocks initially produces iron metal at the cathode and oxygen gas at the anode. Utilizing mainly heat and electricity which are readily available from sunlight, direct electrolysis is capable of producing useful metals from common feedstocks without the need for expendable chemicals. This simple process and the products obtained from it deserve further study for use in materials processing in space.

  13. Restoration of Apollo Data for Future Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Schultz, Alfred B.; Williams, D. R.; Hills, H. K.

    2007-10-01

    The Lunar Data Project (LDP) at NASA's National Space Science Data Center (NSSDC) is retrieving and restoring relevant, scientifically important Apollo data into accessible digital form for use by researchers and mission planners. Much of the Apollo data housed at the NSSDC are in forms which are not readily usable, such as microfilm, hardcopy, and magnetic tapes written using machine representations of computers no longer in use. The LDP has prioritized these data based on scientific and engineering value and level of effort required and is in the process of restoring these data collections. In association with the Planetary Data System (PDS), the restored data are converted into standard format and subject to a data peer review before ingestion into PDS. The Apollo 12 and 15 Solar Wind Spectrometer data have been restored and are awaiting data review. The Apollo 14 and 15 ALSEP Cold Cathode Ion Gage data have been scanned, the Apollo 14 Dust, Thermal, and Radiation Engineering Measurements data are in the process of being scanned, and the Apollo 14 Charged Particle Lunar Environment Experiment data have been retrieved from magnetic tape. An optical character recognition software to produce digital tables of the scanned data, where appropriate, is under development. These data represent some of the only long-term lunar surface environment information that exists. We will report on our progress. Metadata, ancillary information to aid in the use and understanding of the data, will be included in these online data collections. These cover complete descriptions of the data sets, formats, processing history, relevant references and contacts, and instrument descriptions. Restored data and associated metadata are posted online and easily accessible to interested users. The data sets and more information on the LDP can be found at nssdc.gsfc.nasa.gov/planetary/lunar/lunar_data/

  14. Evaluations of lunar regolith simulants

    NASA Astrophysics Data System (ADS)

    Taylor, Lawrence A.; Pieters, Carle M.; Britt, Daniel

    2016-07-01

    Apollo lunar regolith samples are not available in quantity for engineering studies with In-Situ Resource Utilization (ISRU). Therefore, with expectation of a return to the Moon, dozens of regolith (soil) simulants have been developed, to some extent a result of inefficient distribution of NASA-sanctioned simulants. In this paper, we review many of these simulants, with evaluations of their short-comings. In 2010, the NAC-PSS committee instructed the Lunar Exploration Advisory Group (LEAG) and CAPTEM (the NASA committee recommending on the appropriations of Apollo samples) to report on the status of lunar regolith simulants. This report is reviewed here-in, along with a list of the plethora of lunar regolith simulants and references. In addition, and importantly, a special, unique Apollo 17 soil sample (70050) discussed, which has many of the properties sought for ISRU studies, should be available in reasonable amounts for ISRU studies.

  15. NASA Lunar Regolith Simulant Program

    NASA Technical Reports Server (NTRS)

    Edmunson, J.; Betts, W.; Rickman, D.; McLemore, C.; Fikes, J.; Stoeser, D.; Wilson, S.; Schrader, C.

    2010-01-01

    Lunar regolith simulant production is absolutely critical to returning man to the Moon. Regolith simulant is used to test hardware exposed to the lunar surface environment, simulate health risks to astronauts, practice in situ resource utilization (ISRU) techniques, and evaluate dust mitigation strategies. Lunar regolith simulant design, production process, and management is a cooperative venture between members of the NASA Marshall Space Flight Center (MSFC) and the U.S. Geological Survey (USGS). The MSFC simulant team is a satellite of the Dust group based at Glenn Research Center. The goals of the cooperative group are to (1) reproduce characteristics of lunar regolith using simulants, (2) produce simulants as cheaply as possible, (3) produce simulants in the amount needed, and (4) produce simulants to meet users? schedules.

  16. First oxygen from lunar basalt

    NASA Technical Reports Server (NTRS)

    Gibson, M. A.; Knudsen, C. W.; Brueneman, D. J.; Kanamori, H.; Ness, R. O.; Sharp, L. L.; Brekke, D. W.; Allen, C. C.; Morris, R. V.; Keller, L. P.

    1993-01-01

    The Carbotek/Shimizu process to produce oxygen from lunar soils has been successfully demonstrated on actual lunar samples in laboratory facilities at Carbotek with Shimizu funding and support. Apollo sample 70035 containing approximately 25 percent ilmenite (FeTiO3) was used in seven separate reactions with hydrogen varying temperature and pressure: FeTiO3 + H2 yields Fe + TiO2 + H2O. The experiments gave extremely encouraging results as all ilmenite was reduced in every experiment. The lunar ilmenite was found to be about twice as reactive as terrestrial ilmenite samples. Analytical techniques of the lunar and terrestrial ilmenite experiments performed by NASA Johnson Space Center include iron Mossbauer spectroscopy (FeMS), optical microscopy, SEM, TEM, and XRD. The Energy and Environmental Research Center at the University of North Dakota performed three SEM techniques (point count method, morphology determination, elemental mapping), XRD, and optical microscopy.

  17. Thermodynamics of lunar ilmenite reduction

    NASA Technical Reports Server (NTRS)

    Altenberg, B. H.; Franklin, H. A.; Jones, C. H.

    1993-01-01

    With the prospect of returning to the moon, the development of a lunar occupation would fulfill one of the goals of the Space Exploration Initiative (SEI) of the late 1980's. Processing lunar resources into useful products, such as liquid oxygen for fuel and life support, would be one of many aspects of an active lunar base. ilmenite (FeTiO3) is found on the lunar surface and can be used as a feed stock to produce oxygen. Understanding the various ilmenite-reduction reactions elucidates many processing options. Defining the thermodynamic chemical behavior at equilibrium under various conditions of temperature and pressures can be helpful in specifying optimal operating conditions. Differences between a previous theoretical analysis and experimentally determined results has sparked interest in trying to understand the effect of operating pressure on the hydrogen-reduction-of-ilmenite reaction. Various aspects of this reduction reaction are discussed.

  18. Lunar Sample Quarantine & Sample Curation

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.

    2000-01-01

    The main goal of this presentation is to discuss some of the responsibility of the lunar sample quarantine project. The responsibilities are: flying the mission safely, and on schedule, protect the Earth from biohazard, and preserve scientific integrity of samples.

  19. Research Review: I. Lunar Geology

    ERIC Educational Resources Information Center

    Jacobsen, Sally

    1972-01-01

    An interview with a scientist associated with the lunar rock analysis program in which discoveries concerning the moon and their contribution to the understanding of the origins of the earth-moon system are discussed. (Author/AL)

  20. GENESIS 2: Advanced lunar outpost

    NASA Technical Reports Server (NTRS)

    Moore, Gary T.

    1991-01-01

    Advanced, second-generation lunar habitats for astronauts and mission specialists working on the Moon are investigated. The work was based on design constraints set forth in previous publications. Design recommendations are based on environmental response to the lunar environment, habitability, safety, near-term technology, replaceability and modularity, and suitability for NASA lunar research missions in the early 21st century. Scientists, engineers, and architects from NASA/JSC, Wisconsin aeronautical industry, and area universities gave technical input and offered critiques at design reviews throughout the process. The recommended design uses a lunar lava tube, with construction using a combination of Space Station Freedom-derived modules and lightweight Kevlar-laminate inflatables. The outpost includes research laboratories and biotron, crew quarters and support facility, mission control, health maintenance facility, and related areas for functional and psychological requirements. Furniture, specialized equipment, and lighting are included in the design analysis.

  1. LUNAR SAMPLES - APOLLO 17 - #7605500

    NASA Image and Video Library

    1973-01-01

    S73-15713 (January 1973) --- A close-up view of Apollo 17 lunar rock sample No. 76055 being studied and analyzed in the Lunar Receiving Laboratory at the Manned Spacecraft Center. This tan-gray irregular, rounded breccia was among many lunar samples brought back from the Taurus-Littrow landing site by the Apollo 17 crew. The rock measures 18 x 20 x 25 centimeters (7.09 x 7.87 x 9.84 inches) and weighs 6,389 grams (14.2554 pounds). The rock was collected from the south side of the lunar roving vehicle while the Apollo 17 astronauts were at Station 7 (base of North Massif).

  2. Lunar Regolith Figures of Merit

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Scjrader. Cjrostoam; Jpe (zer. Jams); Fourroux, Kathy

    2009-01-01

    This viewgraph presentation reviews the lunar regolith figures of merit. The contents include: 1) A quick review of Figures-of-Merit (FoM); 2) Software Implementation of FoM Algorithms; and 3) Demonstration of the Software.

  3. Lunar site characterization and mining

    NASA Technical Reports Server (NTRS)

    Glass, Charles E.

    1992-01-01

    Lunar mining requirements do not appear to be excessively demanding in terms of volume of material processed. It seems clear, however, that the labor-intensive practices that characterize terrestrial mining will not suffice at the low-gravity, hard-vacuum, and inaccessible sites on the Moon. New research efforts are needed in three important areas: (1) to develop high-speed, high-resolution through-rock vision systems that will permit more detailed and efficient mine site investigation and characterization; (2) to investigate the impact of lunar conditions on our ability to convert conventional mining and exploration equipment to lunar prototypes; and (3) to develop telerobotic or fully robotic mining systems for operations on the Moon and other bodies in the inner solar system. Other aspects of lunar site characterization and mining are discussed.

  4. Grain orientation in lunar soil

    NASA Technical Reports Server (NTRS)

    Mahmood, A.; Mitchell, J. K.; Carrier, W. D., III

    1974-01-01

    Orientation of lunar soil particles in a vertical plane, as seen in the radiographs of core tubes was characterized by preparing orientation diagrams for the different stratigraphic units. Radiographs of double-core drive tubes 64001/64002, 60009/60010, and 60013/60014 were used. The orientation results reinforced the stratigraphic differences. Another source of fabric data was the laboratory-deposited sample 14163,148. The artificial deposition results showed that the grain arrangements were dependent upon the method of deposition. These results from lunar soil and other data from a crushed basalt simulant can be a basis for the inference that lunar soil grain orientation and properties are useful in interpreting lunar surface history.

  5. Lunar Exploration. Resources in Technology.

    ERIC Educational Resources Information Center

    Ritz, John M.

    1995-01-01

    Offers information about lunar exploration, the telescope, and space travel. Suggests that landing on the moon and returning to Earth is one of the most significant technological accomplishments. Includes a student quiz, outcomes, and references. (JOW)

  6. Design of lunar base observatories

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.

    1988-01-01

    Several recently suggested concepts for conducting astronomy from a lunar base are cited. Then, the process and sequence of events that will be required to design an observatory to be emplaced on the Moon are examined.

  7. Lunar orbital mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Lord, W. P.

    1971-01-01

    The design, development, manufacture, test and calibration of five lunar orbital mass spectrometers with the four associated ground support equipment test sets are discussed. A mass spectrometer was installed in the Apollo 15 and one in the Apollo 16 Scientific Instrument Module within the Service Module. The Apollo 15 mass spectrometer was operated with collection of 38 hours of mass spectra data during lunar orbit and 50 hours of data were collected during transearth coast. The Apollo 16 mass spectrometer was operated with collection of 76 hours of mass spectra data during lunar orbit. However, the Apollo 16 mass spectrometer was ejected into lunar orbit upon malfunction of spacecraft boom system just prior to transearth insection and no transearth coast data was possible.

  8. Lunar Tire Close-up

    NASA Image and Video Library

    2017-02-23

    This is a close-up of an exact replica of the Apollo-era Lunar Roving Vehicle Wheel, of which twelve originals still rest on the surface of the Moon. The tire was designed to flex under load, without air, and was formed from a mesh of plated piano wire. Metal straps were hand riveted onto the mesh to reduce sinking into loose lunar soils. These replica wheels were tested in NASA Glenn's SLOPE Lab to establish a baseline for future improvements.

  9. Lunar soils grain size catalog

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    1993-01-01

    This catalog compiles every available grain size distribution for Apollo surface soils, trench samples, cores, and Luna 24 soils. Original laboratory data are tabled, and cumulative weight distribution curves and histograms are plotted. Standard statistical parameters are calculated using the method of moments. Photos and location comments describe the sample environment and geological setting. This catalog can help researchers describe the geotechnical conditions and site variability of the lunar surface essential to the design of a lunar base.

  10. Rover concepts for lunar exploration

    NASA Technical Reports Server (NTRS)

    Connolly, John F.

    1993-01-01

    The paper describes the requirements and design concepts developed for the First Lunar Outpost (FLO) and the follow-on lunar missions by the Human Planet Surface Project Office at the Johnson Space Center, which include inputs from scientists, technologists, operators, personnel, astronauts, mission designers, and program managers. Particular attention is given to the requirements common to all rover concepts, the precursor robotic missions, the FLO scenario and capabilities, and the FLO evolution.

  11. Glass and ceramics. [lunar resources

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.

    1992-01-01

    A variety of glasses and ceramics can be produced from bulk lunar materials or from separated components. Glassy products include sintered regolith, quenched molten basalt, and transparent glass formed from fused plagioclase. No research has been carried out on lunar material or close simulants, so properties are not known in detail; however, common glass technologies such as molding and spinning seem feasible. Possible methods for producing glass and ceramic materials are discussed along with some potential uses of the resulting products.

  12. Cislunar space infrastructure: Lunar technologies

    NASA Technical Reports Server (NTRS)

    Faller, W.; Hoehn, A.; Johnson, S.; Moos, P.; Wiltberger, N.

    1989-01-01

    Continuing its emphasis on the creation of a cisluar infrastructure as an appropriate and cost-effective method of space exploration and development, the University of Colorado explores the technologies necessary for the creation of such an infrastructure, namely (1) automation and robotics; (2) life support systems; (3) fluid management; (4) propulsion; and (5) rotating technologes. The technological focal point is on the development of automated and robotic systems for the implementation of a Lunar Oasis produced by automation and robotics (LOARS). Under direction from the NASA Office of Exploration, automation and robotics have been extensively utilized as an initiating stage in the return to the Moon. A pair of autonomous rovers, modular in design and built from interchangeable and specialized components, is proposed. Utilizing a 'buddy system', these rovers will be able to support each other and to enhance their individual capabilities. One rover primarily explores and maps while the second rover tests the feasibility of various materials-processing techniques. The automated missions emphasize availability and potential uses of lunar resources and the deployment and operations of the LOAR program. An experimental bio-volume is put into place as the precursor to a Lunar Environmentally Controlled Life Support System. The bio-volume will determine the reproduction, growth and production characteristics of various life forms housed on the lunar surface. Physiochemical regenerative technologies and stored resources will be used to buffer biological disturbances of the bio-volume environment. The in situ lunar resources will be both tested and used within this bio-volume. Second phase development on the lunar surface calls for manned operations. Repairs and reconfiguration of the initial framework will ensue. An autonomously initiated, manned Lunar Oasis can become an essential component of the United States space program. The Lunar Oasis will provide support to

  13. Lunar Water Resource Demonstration (LWRD)

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.

    2009-01-01

    Lunar Water Resource Demonstration (LWRD) is part of RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). RESOLVE is an ISRU ground demonstration: (1) A rover to explore a permanently shadowed crater at the south or north pole of the Moon (2) Drill core samples down to 1 meter (3) Heat the core samples to 150C (4) Analyze gases and capture water and/or hydrogen evolved (5) Use hydrogen reduction to extract oxygen from regolith

  14. Dielectric properties of lunar surface

    NASA Astrophysics Data System (ADS)

    Yushkova, O. V.; Kibardina, I. N.

    2017-03-01

    Measurements of the dielectric characteristics of lunar soil samples are analyzed in the context of dielectric theory. It has been shown that the real component of the dielectric permittivity and the loss tangent of rocks greatly depend on the frequency of the interacting electromagnetic field and the soil temperature. It follows from the analysis that one should take into account diurnal variations in the lunar surface temperature when interpreting the radar-sounding results, especially for the gigahertz radio range.

  15. LUNAR SAMPLES - APOLLO XI - MSC

    NASA Image and Video Library

    1969-08-03

    S69-40740 (July 1969) --- Dr. Ross Taylor (seated), Australian National University, and John Allen, Brown and Root-Northrop technician, review preliminary data from the optical emission spectrograph in the Spectrographic Laboratory of the Physical-Chemical Test Laboratory. Tests were being conducted on lunar surface material collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity on July 20, 1969.

  16. Cooling an Optically Trapped Ultracold Fermi Gas by Periodical Driving.

    PubMed

    Li, Jiaming; de Melo, Leonardo F; Luo, Le

    2017-03-30

    We present a cooling method for a cold Fermi gas by parametrically driving atomic motions in a crossed-beam optical dipole trap (ODT). Our method employs the anharmonicity of the ODT, in which the hotter atoms at the edge of the trap feel the anharmonic components of the trapping potential, while the colder atoms in the center of the trap feel the harmonic one. By modulating the trap depth with frequencies that are resonant with the anharmonic components, we selectively excite the hotter atoms out of the trap while keeping the colder atoms in the trap, generating parametric cooling. This experimental protocol starts with a magneto-optical trap (MOT) that is loaded by a Zeeman slower. The precooled atoms in the MOT are then transferred to an ODT, and a bias magnetic field is applied to create an interacting Fermi gas. We then lower the trapping potential to prepare a cold Fermi gas near the degenerate temperature. After that, we sweep the magnetic field to the noninteracting regime of the Fermi gas, in which the parametric cooling can be manifested by modulating the intensity of the optical trapping beams. We find that the parametric cooling effect strongly depends on the modulation frequencies and amplitudes. With the optimized frequency and amplitude, we measure the dependence of the cloud energy on the modulation time. We observe that the cloud energy is changed in an anisotropic way, where the energy of the axial direction is significantly reduced by parametric driving. The cooling effect is limited to the axial direction because the dominant anharmonicity of the crossed-beam ODT is along the axial direction. Finally, we propose to extend this protocol for the trapping potentials of large anharmonicity in all directions, which provides a promising scheme for cooling quantum gases using external driving.

  17. LADEE Propulsion System Cold Flow Test

    NASA Technical Reports Server (NTRS)

    Williams, Jonathan Hunter; Chapman, Jack M.; Trinh, Hau, P.; Bell, James H.

    2013-01-01

    Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA mission that will orbit the Moon. Its main objective is to characterize the atmosphere and lunar dust environment. The spacecraft development is being led by NASA Ames Research Center and scheduled for launch in 2013. The LADEE spacecraft will be operated with a bi-propellant hypergolic propulsion system using MMH and NTO as the fuel and oxidizer, respectively. The propulsion system utilizes flight-proven hardware on major components. The propulsion layout is composed of one 100-lbf main thruster and four 5-lbf RCS thrusters. The propellants are stored in four tanks (two parallel-connected tanks per propellant component). The propellants will be pressurized by regulated helium. A simulated propulsion system has been built for conducting cold flow test series to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes, such as system priming, waterhammer, and crucial mission duty cycles. Propellant drainage differential between propellant tanks will also be assessed. Since the oxidizer feed line system has a higher flow demand than the fuel system does, the cold flow test focuses on the oxidizer system. The objective of the cold flow test is to simulate the LADEE propulsion fluid flow operation through water cold flow test and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. The test activities, including the simulated propulsion test article, cold flow test, and analytical modeling, are being performed at NASA Marshall Space Flight Center. At the time of the abstract submission, the test article checkout is being performed. The test series will be completed by November, 2012

  18. Magnetization of the Lunar Crust

    NASA Technical Reports Server (NTRS)

    Carley, R. A.; Whaler, K. A.; Purucker, M. E.; Halekas, J. S.

    2012-01-01

    Magnetic fields measured by the satellite Lunar Prospector show large scale features resulting from remanently magnetized crust. Vector data synthesized at satellite altitude from a spherical harmonic model of the lunar crustal field, and the radial component of the magnetometer data, have been used to produce spatially continuous global magnetization models for the lunar crust. The magnetization is expressed in terms of localized basis functions, with a magnetization solution selected having the smallest root-mean square magnetization for a given fit to the data, controlled by a damping parameter. Suites of magnetization models for layers with thicknesses between 10 and 50 km are able to reproduce much of the input data, with global misfits of less than 0.5 nT (within the uncertainties of the data), and some surface field estimates. The magnetization distributions show robust magnitudes for a range of model thicknesses and damping parameters, however the magnetization direction is unconstrained. These global models suggest that magnetized sources of the lunar crust can be represented by a 30 km thick magnetized layer. Average magnetization values in magnetized regions are 30-40 mA/m, similar to the measured magnetizations of the Apollo samples and significantly weaker than crustal magnetizations for Mars and the Earth. These are the first global magnetization models for the Moon, providing lower bounds on the magnitude of lunar crustal magnetization in the absence of multiple sample returns, and can be used to predict the crustal contribution to the lunar magnetic field at a particular location.

  19. Lunar surface mine feasibility study

    NASA Astrophysics Data System (ADS)

    Blair, Brad R.

    This paper describes a lunar surface mine, and demonstrates the economic feasibility of mining oxygen from the moon. The mine will be at the Apollo 16 landing site. Mine design issues include pit size and shape, excavation equipment, muck transport, and processing requirements. The final mine design will be driven by production requirements, and constrained by the lunar environment. This mining scenario assumes the presence of an operating lunar base. Lunar base personnel will set-up a and run the mine. The goal of producing lunar oxygen is to reduce dependence on fuel shipped from Earth. Thus, the lunar base is the customer for the finished product. The perspective of this paper is that of a mining contractor who must produce a specific product at a remote location, pay local labor, and sell the product to an onsite captive market. To make a profit, it must be less costly to build and ship specialized equipment to the site, and pay high labor and operating costs, than to export the product directly to the site.

  20. Lunar Navigation Architecture Design Considerations

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  1. Trap style influences wild pig behavior and trapping success

    USGS Publications Warehouse

    Williams, B.L.; Holtfreter, R.W.; Ditchkoff, S.S.; Grand, J.B.

    2011-01-01

    Despite the efforts of many natural resource professionals, wild pig (Sus scrofa) populations are expanding in many areas of the world. Although many creative techniques for controlling pig populations are being explored, trapping has been and still is themost commonly usedmethod of population control formany public and private land managers. We conducted an observational study to examine the efficiency of 2 frequently used trap styles: a small, portable box-style trap and a larger, semi-permanent, corral-style trap.We used game cameras to examine patterns of trap entry by wild pigs around each style of trap, and we conducted a trapping session to compare trapping success between trap styles. Adult female and juvenile wild pigs entered both styles of trap more readily than did adult males, and adult males seemed particularly averse to entering box traps. Less than 10% of adult male visits to box traps resulted in entries, easily the least percentage of any class at any style of trap. Adult females entered corral traps approximately 2.2 times more often per visit than box traps and re-entered corral traps >2 times more frequently. Juveniles entered and reentered both box and corral traps at similar rates. Overall (all-class) entry-per-visit rates at corral traps (0.71) were nearly double that of box traps (0.37). Subsequent trapping data supported these preliminary entry data; the capture rate for corral traps was >4 times that of box traps. Our data suggest that corral traps are temporally and economically superior to box traps with respect to efficiency; that is, corral traps effectively trap more pigs per trap night at a lower cost per pig than do box traps. ?? 2011 The Wildlife Society.

  2. Trap efficiency of reservoirs

    USGS Publications Warehouse

    Brune, Gunnar M.

    1953-01-01

    Forty-four records of reservoir trap efficiency and the factors affecting trap efficiency are analyzed. The capacity-inflow (C/I) ratio is found to offer a much closer correlation with trap efficiency than the capacity-watershed (C/W) ratio heretofore widely used. It appears likely from the cases studied that accurate timing of venting or sluicing operations to intercept gravity underflows can treble or quadruple the amount of sediment discharged from a reservoir. Desilting basins, because of their shape and method of operation, may have trap efficiencies above 90 pct even with very low C/I ratios.Semi-dry reservoirs with high C/I ratios, like John Martin Reservoir, may have trap efficiencies as low as 60 pct. Truly “dry” reservoirs, such as those in the Miami Conservancy District, probably have trap efficiencies in the 10 to 40 pct range, depending upon C/I ratio

  3. Microfabricated ion trap array

    DOEpatents

    Blain, Matthew G [Albuquerque, NM; Fleming, James G [Albuquerque, NM

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  4. Ecological and evolutionary traps

    USGS Publications Warehouse

    Schlaepfer, Martin A.; Runge, M.C.; Sherman, P.W.

    2002-01-01

    Organisms often rely on environmental cues to make behavioral and life-history decisions. However, in environments that have been altered suddenly by humans, formerly reliable cues might no longer be associated with adaptive outcomes. In such cases, organisms can become 'trapped' by their evolutionary responses to the cues and experience reduced survival or reproduction. Ecological traps occur when organisms make poor habitat choices based on cues that correlated formerly with habitat quality. Ecological traps are part of a broader phenomenon, evolutionary traps, involving a dissociation between cues that organisms use to make any behavioral or life-history decision and outcomes normally associated with that decision. A trap can lead to extinction if a population falls below a critical size threshold before adaptation to the novel environment occurs. Conservation and management protocols must be designed in light of, rather than in spite of, the behavioral mechanisms and evolutionary history of populations and species to avoid 'trapping' them.

  5. Altair Lunar Lander Development Status: Enabling Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Laurini, Kathleen C.; Connolly, John F.

    2009-01-01

    As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a "minimum functionality" approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicle's safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to began Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. NASA intends to continue to seek industry involvement in project formulation activities. This paper will update the international coimmunity on the status of the Altair Project as it addresses the challenges of project formulation, including optinuzing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.

  6. Altair Lunar Lander Development Status: Enabling Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Laurini, Kathleen C.; Connolly, John F.

    2009-01-01

    As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a minimum functionality approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicles safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to begin Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. A blended NASA-industry team will continue to refine the lander configuration and mature the vehicle design over the next few years. This paper will update the international community on the status of the Altair Project as it addresses the challenges of project formulation, including optimizing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.

  7. Extreme Access & Lunar Ice Mining in Permanently Shadowed Craters Project

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.

    2014-01-01

    Results from the recent LCROSS mission in 2010, indicate that H2O ice and other useful volatiles such as CO, He, and N are present in the permanently shadowed craters at the poles of the moon. However, the extreme topography and steep slopes of the crater walls make access a significant challenge. In addition temperatures have been measured at 40K (-233 C) so quick access and exit is desirable before the mining robot cold soaks. The Global Exploration Roadmap lists extreme access as a necessary technology for Lunar Exploration.

  8. LRO-LAMP Observations of Illumination Conditions in the Lunar South Pole

    NASA Astrophysics Data System (ADS)

    Mandt, K.; Greathouse, T. K.; Retherford, K. D.; Mazarico, E.; Gladstone, R.; Liu, Y.; Hendrix, A.; Hurley, D.; Lemelin, M.; Patterson, G. W.; Bowman-Cisneros, E.

    2016-12-01

    The south pole of the Moon is an area of great interest for space exploration and scientific research, because many low-lying regions are permanently shaded while adjacent topographic highs experience near constant sunlight. The lack of direct sunlight in permanently shaded regions (PSRs) provides cold enough conditions for them to potentially trap and retain large quantities of volatiles in their soils, while the locations that receive extended periods of sunlight could provide a reliable source of solar energy and relatively stable temperature conditions. Illumination conditions at the lunar south pole vary diurnally and seasonally, but on different timescales than days and seasons on the Earth. The most important advancements in understanding illumination conditions at the poles are provided by topographic mapping and illumination modeling. These efforts have provided estimates of the extent of PSRs and the percent of time that sunlit peaks are illuminated. They also help to constrain the thermal balance of the PSRs based on other sources of illumination. However, comparing model results with spacecraft observations can help to validate the models and provides ground truth for planning future exploration efforts. We have developed a new method for observing illumination conditions at the south pole using data taken by the LRO Lyman Alpha Mapping Project (LAMP), a far ultraviolet (FUV) imaging spectrograph. LAMP produces maps of the albedo of the upper 25-100 nm of lunar regolith using measurements of the brightness of reflected light relative to known light sources in daytime and nighttime conditions. Nighttime observations have been used previously to determine the abundance of surface frost within the PSRs and the surface porosity of regolith within the PSRs. The maps that have been used for these studies excluded scattered sunlight by restricting observations to nighttime conditions when the solar zenith angle is greater than 91°. However, by producing maps

  9. Regarding the Possible Generation of a Lunar Nightside Exo-Ionosphere

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Halekas, J. S.; Stubbs, T. J.; Delory, G. T.; Killen, R. M.; Hartle, R. E.; Collier, M. R.

    2011-01-01

    The non-condensing neutral helium exosphere is at its most concentrated levels on the cold lunar nightside. We show herein that these He atoms are susceptible to impact ionization from primary and secondary electrons flowing in the vicinity of the negatively-charged nightside lunar surface. The secondary electron beams are a relatively recent discovery and are found to be emitted from the nightside surface at energies consistent with the negative surface potential. The effect is to create an electron impact-created ionosphere in nightside regions. possibly especially potent within polar craters.

  10. International manned lunar base - Beginning the 21st century in space

    NASA Astrophysics Data System (ADS)

    Smith, Harlan J.; Gurshtejn, Aleksandr A.; Mendell, Wendell

    An evaluation is made of requirements for, and advantages in, the creation of a manned lunar base whose functions emphasize astronomical investigations. These astronomical studies would be able to capitalize on the lunar environment's ultrahigh vacuum, highly stable surface, dark and cold sky, low-G, absence of wind, isolation from terrestrial 'noise', locally usable ceramic raw materials, and large radiotelescope dish-supporting hemispherical craters. Large telescope structures would be nearly free of the gravity and wind loads that complicate their design on earth.

  11. Lunar and Planetary Science XXXVI, Part 14

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Destruction of Presolar Silicates by Aqueous Alteration Observed in Murchison CM2 Chondrite. Generation of Chondrule Forming Shock Waves in Solar Nebula by X-Ray Flares. TEM and NanoSIMS Study of Hydrated/Anhydrous Phase Mixed IDPs: Cometary or Asteroidal Origin? Inflight Calibration of Asteroid Multiband Imaging Camera Onboard Hayabusa: Preliminary Results. Corundum and Corundum-Hibonite Grains Discovered by Cathodoluminescence in the Matrix of Acfer 094 Meteorite. Spatial Extent of a Deep Moonquake Nest A Preliminary Report of Reexamination. Modal Abundances of Carbon in Ureilites: Implications for the Petrogenesis of Ureilites. Trapped Noble Gas Components and Exposure History of the Enstatite Chondrite ALH84206. Deep-seated Crustal Material in Dhofar Lunar Meteorites: Evidence from Pyroxene Chemistry. Numerical Investigations of Kuiper Belt Binaries. Dust Devils on Mars: Effects of Surface Roughness on Particle Threshold. Hecates Tholus, Mars: Nighttime Aeolian Activity Suggested by Thermal Images and Mesoscale Atmospheric Model Simulations. Are the Apollo 14 High-Al Basalts Really Impact Melts? Garnet in the Lunar Mantle: Further Evidence from Volcanic Glass Beads. The Earth/Mars Dichotomy in Mg/Si and Al/Si Ratios: Is It Real? Dissecting the Polar Asymmetry in the Non-Condensable Gas Enhancement on Mars: A Numerical Modeling Study. Cassini VIMS Preliminary Exploration of Titan s Surface Hemispheric Albedo Dichotomy. An Improved Instrument for Investigating Planetary Regolith Microstructure. Isotopic Composition of Oxygen in Lunar Zircons Preliminary Design of Visualization Tool for Hayabusa Operation. Size and Shape Distributions of Chondrules and Metal Grains Revealed by X-Ray Computed Tomography Data. Properties of Permanently Shadowed Regolith. Landslides in Interior Layered Deposits, Valles Marineris, Mars: Effects of Water and Ground Shaking on Slope Stability. Mars: Recent and Episodic Volcanic, Hydrothermal, and Glacial

  12. Cold symptoms (image)

    MedlinePlus

    Colds are caused by a virus and can occur year-round. The common cold generally involves a runny nose, nasal congestion, and ... symptoms include sore throat, cough, and headache. A cold usually lasts about 7 days, with perhaps a ...

  13. Vitamin C and colds

    MedlinePlus

    Colds and vitamin C ... is that vitamin C can cure the common cold . However, research about this claim is conflicting. Although ... vitamin C may help reduce how long a cold lasts. They do not protect against getting a ...

  14. Colds and flus - antibiotics

    MedlinePlus

    Antibiotics - colds and flu ... treat infections that are caused by a virus. Colds and flu are caused by viruses. If you ... J, Ericson K, Werner S. Treatment of the common cold in children and adults. Am Fam Physician. 2012; ...

  15. Local condensate depletion at trap center under strong interactions

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Yukalova, E. P.

    2018-04-01

    Cold trapped Bose-condensed atoms, interacting via hard-sphere repulsive potentials are considered. Simple mean-field approximations show that the condensate distribution inside a harmonic trap always has the shape of a hump with the maximum condensate density occurring at the trap center. However, Monte Carlo simulations at high density and strong interactions display the condensate depletion at the trap center. The explanation of this effect of local condensate depletion at trap center is suggested in the frame of self-consistent theory of Bose-condensed systems. The depletion is shown to be due to the existence of the anomalous average that takes into account pair correlations and appears in systems with broken gauge symmetry.

  16. Lunar Quest in Second Life, Lunar Exploration Island, Phase II

    NASA Astrophysics Data System (ADS)

    Ireton, F. M.; Day, B. H.; Mitchell, B.; Hsu, B. C.

    2010-12-01

    Linden Lab’s Second Life is a virtual 3D metaverse created by users. At any one time there may be 40,000-50,000 users on line. Users develop a persona and are seen on screen as a human figure or avatar. Avatars move through Second Life by walking, flying, or teleporting. Users form communities or groups of mutual interest such as music, computer graphics, and education. These groups communicate via e-mail, voice, and text within Second Life. Information on downloading the Second Life browser and joining can be found on the Second Life website: www.secondlife.com. This poster details Phase II in the development of Lunar Exploration Island (LEI) located in Second Life. Phase I LEI highlighted NASA’s LRO/LCROSS mission. Avatars enter LEI via teleportation arriving at a hall of flight housing interactive exhibits on the LRO/ LCROSS missions including full size models of the two spacecraft and launch vehicle. Storyboards with information about the missions interpret the exhibits while links to external websites provide further information on the mission, both spacecraft’s instrument suites, and related EPO. Other lunar related activities such as My Moon and NLSI EPO programs. A special exhibit was designed for International Observe the Moon Night activities with links to websites for further information. The sim includes several sites for meetings, a conference stage to host talks, and a screen for viewing NASATV coverage of mission and other televised events. In Phase II exhibits are updated to reflect on-going lunar exploration highlights, discoveries, and future missions. A new section of LEI has been developed to showcase NASA’s Lunar Quest program. A new exhibit hall with Lunar Quest information has been designed and is being populated with Lunar Quest information, spacecraft models (LADEE is in place) and kiosks. A two stage interactive demonstration illustrates lunar phases with static and 3-D stations. As NASA’s Lunar Quest program matures further

  17. Lunar Meteorites: A Global Geochemical Dataset

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.; Joy, K. H.; Arai, T.; Gross, J.; Korotev, R. L.; McCubbin, F. M.

    2017-01-01

    To date, the world's meteorite collections contain over 260 lunar meteorite stones representing at least 120 different lunar meteorites. Additionally, there are 20-30 as yet unnamed stones currently in the process of being classified. Collectively these lunar meteorites likely represent 40-50 distinct sampling locations from random locations on the Moon. Although the exact provenance of each individual lunar meteorite is unknown, collectively the lunar meteorites represent the best global average of the lunar crust. The Apollo sites are all within or near the Procellarum KREEP Terrane (PKT), thus lithologies from the PKT are overrepresented in the Apollo sample suite. Nearly all of the lithologies present in the Apollo sample suite are found within the lunar meteorites (high-Ti basalts are a notable exception), and the lunar meteorites contain several lithologies not present in the Apollo sample suite (e.g., magnesian anorthosite). This chapter will not be a sample-by-sample summary of each individual lunar meteorite. Rather, the chapter will summarize the different types of lunar meteorites and their relative abundances, comparing and contrasting the lunar meteorite sample suite with the Apollo sample suite. This chapter will act as one of the introductory chapters to the volume, introducing lunar samples in general and setting the stage for more detailed discussions in later more specialized chapters. The chapter will begin with a description of how lunar meteorites are ejected from the Moon, how deep samples are being excavated from, what the likely pairing relationships are among the lunar meteorite samples, and how the lunar meteorites can help to constrain the impactor flux in the inner solar system. There will be a discussion of the biases inherent to the lunar meteorite sample suite in terms of underrepresented lithologies or regions of the Moon, and an examination of the contamination and limitations of lunar meteorites due to terrestrial weathering. The

  18. A new quasi-thermal trap model for solar flare hard X-ray bursts - An electrostatic trap model

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.; Emslie, A. G.

    1988-01-01

    A new quasi-thermal trap model of solar flare hard X-ray bursts is presented. The new model utilizes the trapping ability of a magnetic mirror and a magnetic field-aligned electrostatic potential produced by differences in anisotropies of the electron and ion distribution function. It is demonstrated that this potential can, together with the magnetic mirror itself, effectively confine electrons in a trap, thereby enhancing their bremsstrahlung yield per electron. This analysis makes even more untenable models involving precipitation of the bremsstrahlung-producing electrons onto a cold target.

  19. Precision Lunar Laser Ranging For Lunar and Gravitational Science

    NASA Technical Reports Server (NTRS)

    Merkowitz, S. M.; Arnold, D.; Dabney, P. W.; Livas, J. C.; McGarry, J. F.; Neumann, G. A.; Zagwodzki, T. W.

    2008-01-01

    Laser ranging to retroreflector arrays placed on the lunar surface by the Apollo astronauts and the Soviet Lunar missions over the past 39 years have dramatically increased our understanding of gravitational physics along with Earth and Moon geophysics, geodesy, and dynamics. Significant advances in these areas will require placing modern retroreflectors and/or active laser ranging systems at new locations on the lunar surface. Ranging to new locations will enable better measurements of the lunar librations, aiding in our understanding of the interior structure of the moon. More precise range measurements will allow us to study effects that are too small to be observed by the current capabilities as well as enabling more stringent tests of Einstein's theory of General Relativity. Setting up retroreflectors was a key part of the Apollo missions so it is natural to ask if future lunar missions should include them as well. The Apollo retroreflectors are still being used today, and nearly 40 years of ranging data has been invaluable for scientific as well as other studies such as orbital dynamics. However, the available retroreflectors all lie within 26 degrees latitude of the equator, and the most useful ones within 24 degrees longitude of the sub-earth meridian. This clustering weakens their geometrical strength.

  20. A small scale lunar launcher for early lunar material utilization

    NASA Technical Reports Server (NTRS)

    Snow, W. R.; Kubby, J. A.; Dunbar, R. S.

    1981-01-01

    A system for the launching of lunar derived oxygen or raw materials into low lunar orbit or to L2 for transfer to low earth orbit is presented. The system described is a greatly simplified version of the conventional and sophisticated approach suggested by O'Neill using mass drivers with recirculating buckets. An electromagnetic accelerator is located on the lunar surface which launches 125 kg 'smart' containers of liquid oxygen or raw materials into a transfer orbit. Upon reaching apolune a kick motor is fired to circularize the orbit at 100 km altitude or L2. These containers are collected and their payloads transferred to a tanker OTV. The empty containers then have their kick motors refurbished and then are returned to the launcher site on the lunar surface for reuse. Initial launch capability is designed for about 500T of liquid oxygen delivered to low earth orbit per year with upgrading to higher levels, delivery of lunar soil for shielding, or raw materials for processing given the demand.