NASA Astrophysics Data System (ADS)
Goswami, J. N.
2012-07-01
The beginning of this century ushered a new era in lunar exploration. It started with the Smart-1 mission, launched in 2003, that was followed in quick succession by Kaguya, Change-1, Chandrayaan-1, LRO, LCROSS, Change-2 and the most recent GRAIL mission, launched in late 2011. Results obtained by these missions have strengthened some of the existing postulates of lunar evolution, such as the global magma hypothesis, questioned many of our earlier views on moon and generated renewed interest in laboratory studies of lunar samples. Moon can no longer be considered as a bone-dry object. Signatures of hydroxyl and water molecules were found at high latitude lunar regions by Chandrayaan-1 mission and LCROSS mission detected water in the plume generated by a planned impact on a permanently shadowed lunar polar site. Laboratory studies confirmed presence of hydroxyl as a structural component in minerals present in lunar rocks. The permanently shadowed regions turned out to be some of the coldest place in the solar system and could potentially host surface/sub-surface water ice and frozen volatiles. New results obtained by these missions suggest the presence of previously unidentified lunar rock types, young volcanic and tectonic activities, layering within the top kilometre of the lunar surface and the possibility that moon host a very tenuous exosphere. Interesting new features of solar wind interactions with the lunar surface and localized lunar magnetic field have also been delineated. The ongoing effort to reconstruct the new face of the moon will get a boost from results from the GRAIL mission on gravity anomalies and from other upcoming missions, LADEE, Chandrayaan-2, Luna Resource and Luna Glob. A general overview of our current ideas of lunar evolution will be presented along with a preview of upcoming efforts to better understand our closest neighbour in space.
Chandrayaan-2: India's First Soft-landing Mission to Moon
NASA Astrophysics Data System (ADS)
Mylswamy, Annadurai; Krishnan, A.; Alex, T. K.; Rama Murali, G. K.
2012-07-01
The first Indian planetary mission to moon, Chandrayaan-1, launched on 22nd October, 2008 with a suite of Indian and International payloads on board, collected very significant data over its mission duration of close to one year. Important new findings from this mission include, discovery of hydroxyl and water molecule in sunlit lunar surface region around the poles, exposure of large anorthositic blocks confirming the global lunar magma hypothesis, signature of sub surface ice layers in permanently shadowed regions near the lunar north pole, evidence for a new refractory rock type, mapping of reflected lunar neutral atoms and identification of mini-magnetosphere, possible signature of water molecule in lunar exosphere, preserved lava tube that may provide site for future human habitation and radiation dose en-route and around the moon. Chandrayaan-2:, The success of Chandrayaan-1 orbiter mission provided impetus to implement the second approved Indian mission to moon, Chandrayaan-2, with an Orbiter-Lander-Rover configuration. The enhanced capabilities will enable addressing some of the questions raised by the results obtained from the Chandrayaan-1 and other recent lunar missions and also to enhance our understanding of origin and evolution of the moon. The orbiter that will carry payloads to further probe the morphological, mineralogical and chemical properties of the lunar surface material through remote sensing observations in X-ray, visible, infra-red and microwave regions. The Lander-Rover system will enable in-depth studies of a specific lunar location and probe various physical properties of the moon. The Chandrayaan-2 mission will be collaboration between Indian Space Research Organization (ISRO) and the Federal Space Agency of Russia. ISRO will be responsible for the Launch Vehicle, the Orbiter and the Rover while the Lander will be provided by Russia. Initial work to realize the different elements of the mission is currently in progress in both countries. Mission Elements:, On board segment of Chandrayaan-2 mission consists of a lunar Orbiter and a lunar Lander-Rover. The orbiter for Chandrayaan-2 mission is similar to that of Chandrayaan-1 from structural and propulsion aspects. Based on a study of various mission management and trajectory options, such as, separation of the Lander-Rover module in Earth Parking Orbit (EPO) or in lunar transfer trajectory (LTT) or in lunar polar orbit (LPO), the option of separating of this module at LTT, after required midcourse corrections, was selected as this offers an optimum mass and overall mission management advantage. The orbiter propulsion system will be used to transfer Orbiter-Lander-Rover composite from EPO to LTT. On reaching LTT, the Lander-Rover module will be separated from the orbiter module. The Lander-Rover and Orbiter modules are configured with individual propulsion and housekeeping systems. The indigenously developed Geostationary Satellite Launch Vehicle GSLV (Mk-II) will be used for this mission. The most critical aspect of its feasibility was an accurate evaluation of the scope for taking a 3200kg lift off mass into EPO. A Lander-Rover mass of 1270kg (including the propellant for soft landing) will provide sufficient margin for such a lift off within the capability of flight proven GSLV (Mk-II) for the EPO. Mission Scenario: ,GSLV (Mk-II) will launch the Lunar Orbiter coupled to the Lunar Lander-Rover into EPO (170 x 16980 km) following which the Orbiter will boost the orbit from EPO to LTT where the two modules will be separated. Both of them will make their independent journey towards moon and reach lunar polar orbit independently. The orbiter module will be initially placed in a circular polar orbit (200km) and the Lander-Rover module descends towards the lunar surface. After landing, a motorized rover with robotic arm and scientific instruments would be released on to the lunar surface. Although the exact landing location is yet to be finalized, a high latitude location is preferred from scientific interest. Multiple communication links involving Rover-Lander-Earth, Orbiter-Earth and Rover-Orbiter will be implemented. Scientific Payloads:, The scientific payloads on orbiter include a Terrain Mapping Camera (TMC-2), an Imaging Infra-Red Spectrometer (IIRS), a Dual Band (L&S-Band) Synthetic Aperture Radar (SAR), a Collimated Large Area Soft x-ray Spectrometer (CLASS), and a Chandra's Atmospheric Composition Explorer(ChACE-2). TMC with two cameras will provide 3D imaging and DEM, while the IIRS will cover the 0.8-5 micron region at high spectral resolution using a grating spectrograph coupled to an active cooler based MCT array detector. It will provide information on mineral composition and detect OH and H2O and also measure thermal emission from the lunar surface. CLASS is an improved version of C1XS flown on Chandrayaan-1 and will employ swept charge detector (SCD) for detection of X-rays from lunar surface during solar flares.ChACE-2 is a modified version of ChACE-1, one of the instruments on Moon Impact Probe (MIP) that provided hints for the presence of water molecule in lunar exosphere. The Synthetic Aperture Radar will include both L (1.25 GHz) and S (2.5 GHz) bands with selectable resolution of up to a few meters. A radiating patch arrangement is designed for the integrated L-band and S-band antenna. There will be two payloads on the Rover: an Alpha Particle induced X-ray Spectrometer (APXS) and a Laser Induced Breakdown Spectroscopy (LIBS) for studies of chemical composition and volatiles present in lunar surface material near the landing site. The Lander Craft will have suite of instruments to study both physical and chemical properties of the landing site. It will have direct communication link to Earth Stations. The Lander will also act as the relay for communication with the Rover. The design and development of the various mission elements as well as of the scientific payloads are currently in progress both in India and Russia. Preliminary Design Reviews of the Mission elements are also completed.
Science data archives of Indian Space Research Organisation (ISRO): Chandrayaan-1
NASA Astrophysics Data System (ADS)
Gopala Krishna, Barla; Singh Nain, Jagjeet; Moorthi, Manthira
The Indian Space Research Organisation (ISRO) has started a new initiative to launch dedicated scientific satellites earmarked for planetary exploration, astronomical observation and space sciences. The Chandrayaan-1 mission to Moon is one of the approved missions of this new initiative. The basic objective of the Chandrayaan-1 mission, scheduled for launch in mid 2008, is photoselenological and chemical mapping of the Moon with better spatial and spectral resolution. Consistent with this scientific objective, the following baseline payloads are included in this mission: (i) Terrain mapping stereo camera (TMC) with 20 km swath (400-900 nm band) for 3D imaging of lunar surface at a spatial resolution of 5m. (ii) Hyper Spectral Imager in the 400- 920 nm band with 64 channels and spatial resolution of 80m (20 km swath) for mineralogical mapping. (iii) High-energy X-ray (30-270 keV) spectrometer having a footprint of 40 km for study of volatile transport on Moon and (iv) Laser ranging instrument with vertical resolution of 5m. ISRO offered opportunity to the international scientific community to participate in Chandrayaan- 1 mission and six payloads that complement the basic objective of the Chandrayaan-1 mission have been selected and included in this mission viz., (i) a miniature imaging radar instrument (Mini-SAR) from APL, NASA to look for presence of ice in the polar region, (ii) a near infrared spectrometer (SIR-2) from Max Plank Institute, Germany, (iii) a Moon Mineralogy Mapper (M3) from JPL, NASA for mineralogical mapping in the infra-red regions (0.7 - 3.0 micron), (iv) a sub-keV atom reflecting analyzer (SARA) from Sweden, India, Switzerland and Japan for detection of low energy neutral atoms emanated from the lunar surface,(v) a radiation dose monitor (RADOM) from Bulgaria for monitoring energetic particle flux in the lunar environment and (vi) a collimated low energy (1-10keV) X-ray spectrometer (C1XS) with a field of view of 20 km for chemical mapping of the lunar surface from RAL, UK. Science data from the Chandrayaan-1 instruments is planned to be archived by combined efforts from all the instrument and Payload Operations Centre (POC) teams, the Indian Space Science Data Centre (ISSDC), the Chandrayaan-1 Spacecraft Control Centre (SCC). Chandrayaan-1 Science Data Archive (CSDA) is planned at ISSDC is the primary data center for the payload data archives of Indian Space Science Missions. This data center is responsible for the Ingest, Archive, and Dissemination of the payload and related ancillary data for Space Science missions like Chandrayaan-1. The archiving process includes the design, generation, validation and transfer of the data archive. The archive will include raw and reduced data, calibration data, auxiliary data, higher-level derived data products, documentation and software. The CSDA will make use of the well-proven archive standards of the Planetary Data System (PDS) and planned to follow IPDA guidelines. This is to comply with the global standards for long term preservation of the data, maintain their usability and facilitate scientific community with the high quality data for their analysis. The primary users of this facility will be the principal investigators of the science payloads initially till the lock-in period. After this, the data will be made accessible to scientists from other institutions and also to the general public. The raw payload data received through the data reception stations is further processed to generate Level-0 and Level-1 data products, which are stored in the CSDA for subsequent dissemination. According to the well documented Chandrayaan-1 archive plan agreed by the experiment teams, the data collection period is decided to be six months. The first data delivery to long term archive of CSDA after peer review is expected to be eighteen months after launch. At present, Experimenter to Archive ICDs of the instrument data are under the process of review.
The Moon mineralogy mapper (M3) on Chandrayaan-1
Pieters, C.M.; Boardman, J.; Buratti, B.; Chatterjee, A.; Clark, R.; Glavich, T.; Green, R.; Head, J.; Isaacson, P.; Malaret, E.; McCord, T.; Mustard, J.; Petro, N.; Runyon, C.; Staid, M.; Sunshine, J.; Taylor, L.; Tompkins, S.; Varanasi, P.; White, M.
2009-01-01
The Moon Mineralogy Mapper (M3) is a NASA-supported guest instrument on ISRO's remote sensing mission to Moon, Chandrayaan-1. The M3 is an imaging spectrometer that operates from the visible into the near-infrared (0.42-3.0 ??m) where highly diagnostic mineral absorption bands occur. Over the course of the mission M3 will provide low resolution spectroscopic data for the entire lunar surface at 140 m/pixel (86 spectral channels) to be used as a base-map and high spectral resolution science data (80 m/pixel; 260 spectral channels) for 25-50% of the surface. The detailed mineral assessment of different lunar terrains provided by M3 is principal information needed for understanding the geologic evolution of the lunar crust and lays the foundation for focused future in-depth exploration of the Moon.
SMART-1 technology, scientific results and heritage for future space missions
NASA Astrophysics Data System (ADS)
Foing, B. H.; Racca, G.; Marini, A.; Koschny, D.; Frew, D.; Grieger, B.; Camino-Ramos, O.; Josset, J. L.; Grande, M.; Smart-1 Science; Technology Working Team
2018-02-01
ESA's SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone; 3) most fuel effective mission (60 L of Xenon) and longest travel (13 months) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the International Lunar Exploration Working Group (ILEWG) in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang' E1 and future international lunar exploration. We review SMART-1 highlights and new results that are relevant to the preparation for future lunar exploration. The technology and methods had impact on space research and applications. Recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of illumination, 4) radio observations and science from the Moon, 5) support to future missions, 6) identifying and characterising sites for exploration and exploitation. On these respective topics, we discuss recent SMART-1 results and challenges. We also discuss the use of SMART-1 publications library. The SMART-1 archive observations have been used to support the goals of ILEWG. SMART-1 has been useful to prepare for Kaguya, Chandrayaan-1, Chang'E 1, the US Lunar Reconnaissance Orbiter, the LCROSS impact, future lunar landers and upcoming missions, and to contribute towards objectives of the Moon Village and future exploration.
The eXtra Small Analyzer for Neutrals (XSAN) instrument on-board of the Lunar-Glob lander
NASA Astrophysics Data System (ADS)
Wieser, Martin; Barabash, Stas
A large fraction of up to 20 precent of the solar wind impinging onto the lunar surface is reflected back to space as energetic neutral atoms. The SARA instrument on the Chandrayaan-1 mission provided a comprehensive coverage of the lunar surface of this interaction by mapping it from a 100 - 200 km orbit. The micro-physics of this reflection process is unexplored however. With the eXtra Small Analyzer for Neutrals instrument (XSAN) placed on the Lunar-Glob lander, we will directly investigate the production process of energetic neutral atoms from a vantage point of only meters from the surface for the first time. The XSAN design is based on the Solar Wind Monitor (SWIM) family of instruments originally flown on the Indian Chandrayaan-1 mission and with derivatives built e.g. for ESA's BepiColombo Mission to Mercury or for Phobos-Grunt. XSAN extends the functionality of this instrument family by adding a neutral atom to ion conversion surface in its entrance system. This will make it possible to measure detailed energy spectra and mass composition of the energetic neutral atoms originating from the lunar surface. We present an overview of the XSAN instrument and its science and report on latest developments.
Lunar Cartography: Progress in the 2000S and Prospects for the 2010S
NASA Astrophysics Data System (ADS)
Kirk, R. L.; Archinal, B. A.; Gaddis, L. R.; Rosiek, M. R.
2012-08-01
The first decade of the 21st century has seen a new golden age of lunar exploration, with more missions than in any decade since the 1960's and many more nations participating than at any time in the past. We have previously summarized the history of lunar mapping and described the lunar missions planned for the 2000's (Kirk et al., 2006, 2007, 2008). Here we report on the outcome of lunar missions of this decade, the data gathered, the cartographic work accomplished and what remains to be done, and what is known about mission plans for the coming decade. Four missions of lunar orbital reconnaissance were launched and completed in the decade 2001-2010: SMART-1 (European Space Agency), SELENE/Kaguya (Japan), Chang'e-1 (China), and Chandrayaan-1 (India). In addition, the Lunar Reconnaissance Orbiter or LRO (USA) is in an extended mission, and Chang'e-2 (China) operated in lunar orbit in 2010-2011. All these spacecraft have incorporated cameras capable of providing basic data for lunar mapping, and all but SMART-1 carried laser altimeters. Chang'e-1, Chang'e-2, Kaguya, and Chandrayaan-1 carried pushbroom stereo cameras intended for stereo mapping at scales of 120, 10, 10, and 5 m/pixel respectively, and LRO is obtaining global stereo imaging at 100 m/pixel with its Wide Angle Camera (WAC) and hundreds of targeted stereo observations at 0.5 m/pixel with its Narrow Angle Camera (NAC). Chandrayaan-1 and LRO carried polarimetric synthetic aperture radars capable of 75 m/pixel and (LRO only) 7.5 m/pixel imaging even in shadowed areas, and most missions carried spectrometers and imaging spectrometers whose lower resolution data are urgently in need of coregistration with other datasets and correction for topographic and illumination effects. The volume of data obtained is staggering. As one example, the LRO laser altimeter, LOLA, has so far made more than 5.5 billion elevation measurements, and the LRO Camera (LROC) system has returned more than 1.3 million archived image products comprising over 220 Terabytes of image data. The processing of controlled map products from these data is as yet relatively limited. A substantial portion of the LOLA altimetry data have been subjected to a global crossover analysis, and local crossover analyses of Chang'e-1 LAM altimetry have also been performed. LRO NAC stereo digital topographic models (DTMs) and orthomosaics of numerous sites of interest have been prepared based on control to LOLA data, and production of controlled mosaics and DTMs from Mini-RF radar images has begun. Many useful datasets (e.g., DTMs from LRO WAC images and Kaguya Terrain Camera images) are currently uncontrolled. Making controlled, orthorectified map products is obviously a high priority for lunar cartography, and scientific use of the vast multinational set of lunar data now available will be most productive if all observations can be integrated into a single reference frame. To achieve this goal, the key steps required are (a) joint registration and reconciliation of the laser altimeter data from multiple missions, in order to provide the best current reference frame for other products; (b) registration of image datasets (including spectral images and radar, as well as monoscopic and stereo optical images) to one another and the topographic surface from altimetry by bundle adjustment; (c) derivation of higher density topographic models than the altimetry provides, based on the stereo images registered to the altimetric data; and (d) orthorectification and mosaicking of the various datasets based on the dense and consistent topographic model resulting from the previous steps. In the final step, the dense and consistent topographic data will be especially useful for correcting spectrophotometric observations to facilitate mapping of geologic and mineralogic features. We emphasize that, as desirable as short term progress may seem, making mosaics before controlling observations, and controlling observations before a single coordinate reference frame is agreed upon by all participants, are counterproductive and will result in a collection of map products that do not align with one another and thus will not be fully usable for correlative scientific studies. Only a few lunar orbital missions performing remote sensing are projected for the decade 2011-2020. These include the possible further extension of the LRO mission; NASA's GRAIL mission, which is making precise measurements of the lunar gravity field that will likely improve the cartographic accuracy of data from other missions, and the Chandrayaan-2/Luna Resurs mission planned by India and Russia, which includes an orbital remote sensing component. A larger number of surface missions are being discussed for the current decade, including the lander/rover component of Chandrayaan-2/Luna Resurs, Chang'e-3 (China), SELENE-2 (Japan), and privately funded missions inspired by the Google Lunar X-Prize. The US Lunar Precursor Robotic Program was discontinued in 2010, leaving NASA with no immediate plans for robotic or human exploration of the lunar surface, though the MoonRise sample return mission might be reproposed in the future. If the cadence of missions cannot be continued, the desired sequel to the decade of lunar mapping missions 2001-2010 should be a decade of detailed and increasingly multinational analysis of lunar data from 2011 onward.
2008-10-22
SRIHARIKOTA, India – The Indian Space Research Organization, or ISRO, launches its robotic Chandrayaan-1 rocket with two NASA instruments aboard on India's maiden moon voyage to map the lunar surface. The Moon Mineralogy Mapper will assess mineral resources, and the Miniature Synthetic Aperture Radar, or Mini-SAR, will map the polar regions and look for ice deposits. Data from the two instruments will contribute to NASA's increased understanding of the lunar environment as it implements the nation's space exploration policy, which calls for robotic and human missions to the moon. In addition to the two science instruments, NASA will provide space communications support to Chandrayaan-1. The primary location for the NASA ground tracking station will be at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md. Photo credit: NASA
NASA Astrophysics Data System (ADS)
Walker, T. E.; Smith, D. R.
2012-07-01
The Chandrayaan-1 X-ray Spectrometer (C1XS) was launched onboard the Indian Space Research Organisation (ISRO) Chandrayaan-1 lunar mission in October 2008. The instrument consisted of 24 swept-charge device silicon X-ray detectors providing a total collecting area of ~24 cm2, corresponding to a 14° field of view (FWHM), with the ability to measure X-rays from 0.8 - 10 keV. During the 10 months the spacecraft was located in orbit around the Moon a number of solar flare X-ray events were detected, along with calibration data from X-ray sources housed inside the movable door of the instrument. This paper presents a further study of the degradation in spectral resolution of the measured X-ray calibration lines, adding a final calibration point towards the end of mission lifetime to the known results from the midpoint of the mission, giving a more detailed analysis of the extent of the radiation damage. The radiation environment the detectors were subjected to is discussed in light of the actual radiation damage effects on the spectral resolution observed in flight.
Solar Wind Monitoring with SWIM-SARA Onboard Chandrayaan-1
NASA Astrophysics Data System (ADS)
Bhardwaj, A.; Barabash, S.; Sridharan, R.; Wieser, M.; Dhanya, M. B.; Futaana, Y.; Asamura, K.; Kazama, Y.; McCann, D.; Varier, S.; Vijayakumar, E.; Mohankumar, S. V.; Raghavendra, K. V.; Kurian, T.; Thampi, R. S.; Andersson, H.; Svensson, J.; Karlsson, S.; Fischer, J.; Holmstrom, M.; Wurz, P.; Lundin, R.
The SARA experiment aboard the Indian lunar mission Chandrayaan-1 consists of two instruments: Chandrayaan-1 Energetic Neutral Analyzer (CENA) and the SolarWind Monitor (SWIM). CENA will provide measurements of low energy neutral atoms sputtered from lunar surface in the 0.01-3.3 keV energy range by the impact of solar wind ions. SWIM will monitor the solar wind flux precipitating onto the lunar surface and in the vicinity of moon. SWIM is basically an ion-mass analyzer providing energy-per-charge and number density of solar wind ions in the energy range 0.01-15 keV. It has sufficient mass resolution to resolve H+ , He++, He+, O++, O+, and >20 amu, with energy resolution 7% and angular resolution 4:5° × 22:5. The viewing angle of the instrument is 9° × 180°.Mechanically, SWIM consists of a sensor and an electronic board that includes high voltage supply and sensor electronics. The sensor part consists of an electrostatic deflector to analyze the arrival angle of the ions, cylindrical electrostatic analyzer for energy analysis, and the time-of-flight system for particle velocity determination. The total size of SWIM is slightly larger than a credit card and has a mass of 500 g.
Chandrayaan-2 dual-frequency SAR: Further investigation into lunar water and regolith
NASA Astrophysics Data System (ADS)
Putrevu, Deepak; Das, Anup; Vachhani, J. G.; Trivedi, Sanjay; Misra, Tapan
2016-01-01
The Space Applications Centre (SAC), one of the major centers of the Indian Space Research Organization (ISRO), is developing a high resolution, dual-frequency Synthetic Aperture Radar as a science payload on Chandrayaan-2, ISRO's second moon mission. With this instrument, ISRO aims to further the ongoing studies of the data from S-band MiniSAR onboard Chandrayaan-1 (India) and the MiniRF of Lunar Reconnaissance Orbiter (USA). The SAR instrument has been configured to operate with both L- and S-bands, sharing a common antenna. The S-band SAR will provide continuity to the MiniSAR data, whereas L-band is expected to provide deeper penetration of the lunar regolith. The system will have a selectable slant-range resolution from 2 m to 75 m, along with standalone (L or S) and simultaneous (L and S) modes of imaging. Various features of the instrument like hybrid and full-polarimetry, a wide range of imaging incidence angles (∼10° to ∼35°) and the high spatial resolution will greatly enhance our understanding of surface properties especially in the polar regions of the Moon. The system will also help in resolving some of the ambiguities in interpreting high values of Circular Polarization Ratio (CPR) observed in MiniSAR data. The added information from full-polarimetric data will allow greater confidence in the results derived particularly in detecting the presence (and estimating the quantity) of water-ice in the polar craters. Being a planetary mission, the L&S-band SAR for Chandrayaan-2 faced stringent limits on mass, power and data rate (15 kg, 100 W and 160 Mbps respectively), irrespective of any of the planned modes of operation. This necessitated large-scale miniaturization, extensive use of on-board processing, and devices and techniques to conserve power. This paper discusses the scientific objectives which drive the requirement of a lunar SAR mission and presents the configuration of the instrument, along with a description of a number of features of the system, designed to meet the science goals with optimum resources.
Lunar Exploration Missions Since 2006
NASA Technical Reports Server (NTRS)
Lawrence, S. J. (Editor); Gaddis, L. R.; Joy, K. H.; Petro, N. E.
2017-01-01
The announcement of the Vision for Space Exploration in 2004 sparked a resurgence in lunar missions worldwide. Since the publication of the first "New Views of the Moon" volume, as of 2017 there have been 11 science-focused missions to the Moon. Each of these missions explored different aspects of the Moon's geology, environment, and resource potential. The results from this flotilla of missions have revolutionized lunar science, and resulted in a profoundly new emerging understanding of the Moon. The New Views of the Moon II initiative itself, which is designed to engage the large and vibrant lunar science community to integrate the results of these missions into new consensus viewpoints, is a direct outcome of this impressive array of missions. The "Lunar Exploration Missions Since 2006" chapter will "set the stage" for the rest of the volume, introducing the planetary community at large to the diverse array of missions that have explored the Moon in the last decade. Content: This chapter will encompass the following missions: Kaguya; ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun); Chang’e-1; Chandrayaan-1; Moon Impact Probe; Lunar Reconnaissance Orbiter (LRO); Lunar Crater Observation Sensing Satellite (LCROSS); Chang’e-2; Gravity Recovery and Interior Laboratory (GRAIL); Lunar Atmosphere and Dust Environment Explorer (LADEE); Chang’e-3.
Surface chemistry of the Moon: New views from Chandrayaan-1 X-ray Spectrometer and future potentials
NASA Astrophysics Data System (ADS)
Narendranath, Shyama; Athiray, Subramania; Parameswaran, Sreekumar; Grande, Manuel
2015-04-01
X-ray remote sensing is an established technique for chemical mapping of atmosphere-less inner solar system bodies. Chandrayaan-1 X-ray Spectrometer (C1XS) [Grande et al, 2009], on-board the first Indian lunar mission Chandrayaan-1 [Bhandari et al, 2004], was flown with the objective [Crawford et al, 2009] of globally mapping the abundances of the major rock-forming elements Mg, Al, Si, Ca ,Ti and Fe with a spatial resolution of 25 km on the lunar surface. The instrument was developed by the Rutherford Appleton Laboratory (RAL), UK in collaboration with the Indian Space Research Organization (ISRO). X-ray fluorescence (XRF) observations measure the abundance irrespective of the mineral structure. XRF spectral analysis can uniquely identify and quantify elemental signatures from all commonly occurring elements. C1XS is one of the first instruments to unambiguously map the abundance of elements from Na to Fe at scales of tens of kilometers. Because of the exceptionally low solar activity in 2009, the strongest solar flare observed was of C3 class and hence global mapping could not be achieved. However from the available coverage of ~ 5%, we have determined elemental abundances accurately through a detailed calibration of the instrument and inversion methodology [Narendranath et al, 2010; Athiray et al, 2013]. The end-to-end capacity to derive independent and accurate global surface chemical abundances using x-ray signatures was clearly demonstrated with C1XS. We present results from a comprehensive analysis of all data from C1XS with emphasis on the new finding of enhanced sodium in the southern lunar highlands that suggests possible new lithologies [Narendranath et al, 2011; Athiray et al, 2014]. It is generally believed that lunar highlands are mainly composed of plagioclase feldspar with lower amounts of the mafic minerals. Plagioclase in lunar samples have been found to have an anorthite content as high as An98 with the average highlands estimated to be An95. Lower anorthite content (as low as An70) plagioclase grains have been found in lunar samples but is much rarer. C1XS measurements especially of Na, Al and Ca reveal larger regions of low An than previously thought of. We provide evidence for this from quantitative estimates of elemental abundances. Further, we present the development of Chandrayaan-2 Large Area Soft x-ray Spectrometer (CLASS) [Narendranath et al, 2014] to be flown on the second Indian lunar mission (~2018) which would continue from where C1XS left off but with a greater sensitivity and better spatial resolution.
Selection and Characterization of Landing Sites for Chandrayaan-2 Lander
NASA Astrophysics Data System (ADS)
Gopala Krishna, Barla; Amitabh, Amitabh; Srinivasan, T. P.; Karidhal, Ritu; Nagesh, G.; Manjusha, N.
2016-07-01
Indian Space Research Organisation has planned the second mission to moon known as Chandrayaan-2, which consists of an Orbiter, a Lander and a Rover. This will be the first soft landing mission of India on lunar surface. The Orbiter, Lander and Rover individually will carry scientific payloads that enhance the scientific objectives of Chandrayaan-2. The Lander soft lands on the lunar surface and subsequently Lander & Rover will carry on with the payload activities on the moon surface. Landing Site identification based on the scientific and engineering constrains of lander plays an important role in success of a mission. The Lander poses some constraints because of its engineering design for the selection of the landing site and on the other hand the landing site / region imparts some constrain on the Lander. The various constraints that have to be considered for the study of the landing site are Local slope, Sun illumination during mission life, Radio communication with the Earth, Global slope towards equator, Boulders size, Crater density and boulder distribution. This paper describes the characterization activities of the different landing locations which have been studied for Chandrayaan-2 Lander. The sites have been studied both in the South Polar and North Polar regions of the moon on the near side. The Engineering Constraints at the sites due to the Lander, Factors that affect mission life (i.e. illumination at the location), Factors influencing communication to earth (i.e. RF visibility) & Shadow movements have been studied at these locations and zones that are favourable for landing have been short listed. This paper gives methodology of these studies along with the results of the characteristics of all the sites and the recommendations for further action in finalizing the landing area.
NASA Technical Reports Server (NTRS)
Neal, C. R.; Lawrence, S. J.
2017-01-01
There have been 11 missions to the Moon this century, 10 of which have been orbital, from 5 different space agencies. China became the third country to successfully soft-land on the Moon in 2013, and the second to successfully remotely operate a rover on the lunar surface. We now have significant global datasets that, coupled with the 1990s Clementine and Lunar Prospector missions, show that the sample collection is not representative of the lithologies present on the Moon. The M3 data from the Indian Chandrayaan-1 mission have identified lithologies that are not present/under-represented in the sample collection. LRO datasets show that volcanism could be as young as 100 Ma and that significant felsic complexes exist within the lunar crust. A multi-decadal sample return campaign is the next logical step in advancing our understanding of lunar origin and evolution and Solar System processes.
Planetary Data Archiving Activities of ISRO
NASA Astrophysics Data System (ADS)
Gopala Krishna, Barla; D, Rao J.; Thakkar, Navita; Prashar, Ajay; Manthira Moorthi, S.
ISRO has launched its first planetary mission to moon viz., Chandrayaan-1 on October 22, 2008. This mission carried eleven instruments; a wealth of science data has been collected during its mission life (November 2008 to August 2009), which is archived at Indian Space Science Data Centre (ISSDC). The data centre ISSDC is responsible for the Ingest, storage, processing, Archive, and dissemination of the payload and related ancillary data in addition to real-time spacecraft operations support. ISSDC is designed to provide high computation power, large storage and hosting a variety of applications necessary to support all the planetary and space science missions of ISRO. State-of-the-art architecture of ISSDC provides the facility to ingest the raw payload data of all the science payloads of the science satellites in automatic manner, processes raw data and generates payload specific processed outputs, generate higher level products and disseminates the data sets to principal investigators, guest observers, payload operations centres (POC) and to general public. The data archive makes use of the well-proven archive standards of the Planetary Data System (PDS). The long term Archive for five payloads of Chandrayaan-1 data viz., TMC, HySI, SARA, M3 and MiniSAR is released from ISSDC on19th April 2013 (http://www.issdc.gov.in) to the users. Additionally DEMs generated from possible passes of Chandrayaan-1 TMC stereo data and sample map sheets of Lunar Atlas are also archived and released from ISSDC along with the LTA. Mars Orbiter Mission (MOM) is the recent planetary mission launched on October 22, 2013; currently enroute to MARS, carrying five instruments (http://www.isro.org) viz., Mars Color Camera (MCC) to map various morphological features on Mars with varying resolution and scales using the unique elliptical orbit, Methane Sensor for Mars (MSM) to measure total column of methane in the Martian atmosphere, Thermal Infrared Imaging Spectrometer (TIS) to map surface composition & mineralogy of mars, Mars Exospheric Neutral Composition Analyser (MENCA) to study the composition and density of the Martian neutral atmosphere and Lyman Alpha Photometer (LAP) to investigate the loss process of water in Martian atmosphere, towards fulfilling the mission objectives. Active archive created in PDS for some of the instrument data during the earth phase of the mission is being analysed by the PIs. The Mars science data from the onboard instruments is expected during September 2014. The next planetary mission planned to moon is Chandrayaan-2 which consists of an orbiter having five instruments (http://www.isro.org) viz, (i) Imaging IR Spectrometer (IIRS) for mineral mapping, (ii) TMC-2 for topographic mapping, (iii) MiniSAR to detect water ice in the permanently shadowed regions on the Lunar poles, up to a depth of a few meters, (iv) Large Area Soft X-ray spectrometer (CLASS) & Solar X-ray Monitor (XSM) for mapping the major elements present on the lunar surface and (v)Neutral Mass Spectrometer (ChACE2) to carry out a detailed study of the lunar exosphere towards moon exploration; a rover for some specific experiments and a Lander for technology experiment and demonstration. The data is planned to be archived in PDS standards.
Lunar Exploration Insights Recognized from Chandrayaan-1 M3 Imaging Spectrometer
NASA Astrophysics Data System (ADS)
Pieters, Carle; Green, Robert O.; Boardman, Joseph
2016-07-01
One of the most important lessons learned from the renaissance of lunar exploration over the last decade is that new discoveries and surprises occur with every new mission to the Moon. Although the color of the Moon had been measured using Earth-based telescopes even before Apollo, modern instruments sent to orbit the Moon provide a scope of inquiry unimaginable during the last century. Spacecraft have now been successfully sent to the Moon by six different space agencies from around the world and the number is growing. The Indian Chandrayaan- 1 spacecraft carried a suite of indigenous instruments as well as several guest instruments from other countries, including the Moon Mineralogy Mapper (M-cube) supplied by NASA. Even though Chandrayaan's lifetime in orbit was shortened by technical constraints, M3 provided a taste of the power of near-infrared imaging spectroscopy used for science and exploration at the Moon. Contrary to expectations, the lunar surface was discovered to be hydrated, which is now known to result from solar wind H combining with O of rocks and soil. Surficial hydration was found to be pervasive across the Moon and the limited data hint at both local concentrations and temporal variations. The prime objective of M3 was to characterize lunar mineralogy in a spatial context. Working in tandem with related instruments on JAXA's SELENE, M3 readily recognized and mapped known minerals from mare and highland terrains (pyroxenes, olivine) at high resolution, but also detected diagnostic properties of crystalline plagioclase which, when mapped across a spatial context, enabled the unambiguous identification of a massive crustal layer of plagioclase that clearly resulted from an early magma ocean. An additional surprise came with the discovery of a new rock type on the Moon that had not been recognized in samples returned by Apollo and Luna: a Mg-rich spinel anorthosite associated with material excavated from some of the greatest lunar depths. In addition to the sophisticated science queries enabled by M3 data, a growing list of prime lunar targets is identified for the next generation of sample return missions to the Moon.
Automatic Extraction of Planetary Image Features
NASA Technical Reports Server (NTRS)
Troglio, G.; LeMoigne, J.; Moser, G.; Serpico, S. B.; Benediktsson, J. A.
2009-01-01
With the launch of several Lunar missions such as the Lunar Reconnaissance Orbiter (LRO) and Chandrayaan-1, a large amount of Lunar images will be acquired and will need to be analyzed. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to Lunar data that often present low contrast and uneven illumination characteristics. In this paper, we propose a new method for the extraction of Lunar features (that can be generalized to other planetary images), based on the combination of several image processing techniques, a watershed segmentation and the generalized Hough Transform. This feature extraction has many applications, among which image registration.
Energetic Neutral Atom Imaging of the Lunar Poles and Night-Side
NASA Astrophysics Data System (ADS)
Vorburger, Audrey; Wurz, Peter; Barabash, Stas; Wieser, Martin; Futaana, Yoshifumi; Bhardwaj, Anil; Dhanya, Mb; Asamura, Kazushi
2016-04-01
So far all reported scientific results derived from measurements of the Chandrayaan-1 Energetic Neutral Analyzer (CENA) on board the Indian lunar mission Chandrayaan-1 focused on the sun-lit part of the Moon. Here, for the first time, we present the analysis of the Moon - solar wind interaction in Energetic Neutral Atoms (ENAs) from measurements over the poles and the night-side of the Moon. The Moon, not being protected by a global magnetic field or an atmosphere, is constantly bombarded by solar wind ions. Until recently, it was tacitly assumed that the solar wind ions that impinge onto the lunar surface are almost completely absorbed ( < 1% reflection) by the lunar surface (e.g. Crider and Vondrak [Adv. Space Res., 2002]; Feldman et al. [J. Geophys. Res., 2000]). However, recent observations conducted by the two ENA sensors of NASA's Interstellar Boundary Explorer and by Chandrayaan-1/CENA showed an average global energetic neutral atom (ENA) albedo of 10% - 20% (e.g. McComas et al. [Geophys. Res. Lett., 2009], Wieser et al. [Planet. Space Sci., 2009], Vorburger et al. [J. Geophys. Res., 2013]). In the past 6 years, several studies have closely investigated this solar wind - lunar surface interaction from various viewpoints. The main findings of these studies include (1) the dependency of the hydrogen reflection ratio on the local crustal magnetic fields (e.g., Wieser et al. [Geophys. Res. Lett. ,2010] and Vorburger et al. [J. Geophys. Res., 2012]), (2) the determination of the energy spectra of backscattered neutralized solar wind protons (Futaana et al. [J. Geophys. Res., 2012]) (3) the use of the spectra shape to remotely define an electric potential above a lunar magnetic anomaly (Futaana et al. [Geophys. Res. Lett., 2012]), (4) the favouring of backscattering over forward-scattering of impinging solar wind hydrogen particles (Vorburger et al. [Geophys. Res. Lett., 2011]), (5) the first-ever measurements of sputtered lunar oxygen (Vorburger et al. [J. Geophys. Res., 2012]), (6) the first-ever observation of backscattered solar wind helium (Vorburger et al. [J. Geophys. Res., 2012]), and (7) the determination of the scattering properties of backscattered solar wind hydrogen measured when the Moon transversed Earth's magneto-sheath (Lue et al. [J. Geophys. Res., 2016]). All findings above are based on measurements from the sun-lit side of the Moon's surface, where solar wind particles can impinge freely onto the lunar surface. On the night-side, in contrast, a large scale wake structure is formed as a result of the high absorption of solar wind plasma on the lunar day-side. Very recent ion measurements of Chandrayaan-1's Solar Wind Monitor (SWIM) have revealed the presence of protons in the near-lunar wake, though (Dhanya et al., [Icarus 2016 (submitted)]). The presence of protons in the near lunar wake implies that there is also some sort of solar wind - lunar surface interaction on the lunar night-side. A complete analysis of this interaction will be presented herein.
The Hyper Spectral Imager Instrument on Chandrayaan-1
NASA Astrophysics Data System (ADS)
Kiran Kumar, A. S.; Roy Chowdhury, A.; Murali, K. R.; Sarkar, S. S.; Joshi, S. R.; Mehta, S.; Dave, A. B.; Shah, K. J.; Banerjee, A.; Mathew, K.; Sharma, B. N.
2009-03-01
The Hyperspectral imager on Chandrayaan-1 provides images of lunar surface with a spatial resolution of 80 meters in 64 contiguous spectral bands in visible and near infrared regions for mineralogical mapping.
ILEWG report and discussion on Lunar Science and Exploration
NASA Astrophysics Data System (ADS)
Foing, Bernard
2015-04-01
The EGU PS2.2 session "Lunar Science and Exploration" will include oral papers and posters, and a series of discussions. Members of ILEWG International Lunar Exploration Working Group will debate: - Recent lunar results: geochemistry, geophysics in the context of open - Celebrating the lunar legacy of pioneers Gerhard Neukum, Colin Pillinger and Manfred Fuchs planetary science and exploration - Latest results from LADEE and Chang'e 3/4 - Synthesis of results from SMART-1, Kaguya, Chang-E1 and Chang-E2, Chandrayaan-1, Lunar Reconnaissance Orbiter and LCROSS impactor, Artemis and GRAIL - Goals and Status of missions under preparation: orbiters, Luna-Glob, Google Lunar X Prize, Luna Resurs, Chang'E 5, Future landers, Lunar sample return - Precursor missions, instruments and investigations for landers, rovers, sample return, and human cis-lunar activities and human lunar sorties - Preparation: databases, instruments, terrestrial field campaigns - The future international lunar exploration programme towards ILEWG roadmap of a global robotic village and permanent international lunar base - The proposals for an International Lunar Decade and International Lunar Research Parks - Strategic Knowledge Gaps, and key science Goals relevant to Human Lunar Global Exploration Lunar science and exploration are developing further with new and exciting missions being developed by China, the US, Japan, India, Russia, Korea and Europe, and with the perspective of robotic and human exploration. The session will include invited and contributed talks as well as a panel discussion and interactive posters with short oral introduction.
Proceedings of the 40th Lunar and Planetary Science Conference
NASA Technical Reports Server (NTRS)
2009-01-01
The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology; Seek Out and Explore: Upcoming and Future Missions; Mars: Early History and Impact Processes; Mars Analogs II: Chemical and Spectral; Achondrites and their Parent Bodies; and Planning for Future Exploration of the Moon The poster sessions were: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1; LRO and LCROSS; Geophysical Analysis of the Lunar Surface and Interior; Remote Observation and Geologic Mapping of the Lunar Surface; Lunar Spectroscopy; Venus Geology, Geophysics, Mapping, and Sampling; Planetary Differentiation; Bunburra and Buzzard Coulee: Recent Meteorite Falls; Meteorites: Terrestrial History; CAIs and Chondrules: Records of Early Solar System Processes; Volatile and Organic Compounds in Chondrites; Crashing Chondrites: Impact, Shock, and Melting; Ureilite Studies; Petrology and Mineralogy of the SNC Meteorites; Martian Meteorites; Phoenix Landing Site: Perchlorate and Other Tasty Treats; Mars Polar Atmospheres and Climate Modeling; Mars Polar Investigations; Mars Near-Surface Ice; Mars: A Volatile-Rich Planet; Mars: Geochemistry and Alteration Processes; Martian Phyllosilicates: Identification, Formation, and Alteration; Astrobiology; Instrument Concepts, Systems, and Probes for Investigating Rocks and Regolith; Seeing is Believing: UV, VIS, IR, X- and Gamma-Ray Camera and Spectrometer Instruments; Up Close and Personal: In Situ Analysis with Laser-Induced Breakdown Spectroscopy and Mass Spectrometry; Jupiter and Inscrutable Io; Tantalizing Titan; Enigmatic Enceladus and Intriguing Iapetus; Icy Satellites: Cryptic Craters; Icy Satellites: Gelid Geology/Geophysics; Icy Satellites: Cool Chemistry and Spectacular Spectroscopy; Asteroids and Comets; Comet Wild 2: Mineralogy and More; Hypervelocity Impacts: Stardust Models, LDEF, and ISPE; Presolar Grains; Early Nebular Processes: Models and Isotopes; Solar Wind and Genesis: Measurements and Interpretation; Education and Public Outreach; Mercury; Pursuing Lunar Exploration; Sources and Eruptionf Lunar Basalts; Chemical and Physical Properties of the Lunar Regolith; Lunar Dust and Transient Surface Phenomena; Lunar Databases and Data Restoration; Meteoritic Samples of the Moon; Chondrites, Their Clasts, and Alteration; Achondrites: Primitive and Not So Primitive; Iron Meteorites; Meteorite Methodology; Antarctic Micrometeorites; HEDs and Vesta; Dust Formation and Transformation; Interstellar Organic Matter; Early Solar System Chronology; Comparative Planetology; Impacts I: Models and Experiments; Impacts II: Craters and Ejecta; Mars: Volcanism; Mars: Tectonics and Dynamics; Martian Stratigraphy: Understanding the Geologic History of Mars Through the Sedimentary Rock Record; Mars: Valleys and Valley Networks; Mars: Aqueous Processes in Valles Marineris and the Southern Highlands; Mars: Aqueous Geomorphology; Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Remote Sensing; Mars: Geologic Mapping, Photogrammetry, and Cratering; Martian Mineralogy: Constraints from Missions and Laboratory Investigations; Mars Analogs: Chemical and Physical; Mars Analogs: Sulfates and Sulfides; Missions: Approaches, Architectures, Analogs, and Actualities; Not Just Skin Deep: Electron Microscopy, Heat Flow, Radar, and Seismology Instruments and Planetary Data Systems, Techniques, and Interpretation.
Exploring the Mineralogy of the Moon with M3
NASA Technical Reports Server (NTRS)
Pieters, C. M.; Boardman, J.; Buratti, B.; Clark, R.; Green, R.; Head, J. W. III; McCord, T. B.; Mustard, J.; Runyon, C.; Staid, M.
2006-01-01
From the initial era or lunar exploration, we have learned that many processes active on the early Moon are common to most terrestrial planets, including the record of early and late impact bombardment. Since most major geologic activity ceased on the Moon approx. 3 Gy ago, the Moon's surface provides a record of the earliest era of terrestrial planet evolution. The type and composition of minerals that comprise a planetary surface are a direct result of the initial composition and subsequent thermal and physical processing. Lunar mineralogy seen today is thus a direct record of the early evolution of the lunar crust and subsequent geologic processes. Specifically, the distribution and concentration of specific minerals is closely tied to magma ocean products, lenses of intruded or remelted plutons, basaltic volcanism and fire-fountaining, and any process (e.g. cratering) that might redistribute or transform primary and secondary lunar crustal materials. The Moon Mineralogy Mapper (M3, or "m-cube") is a state-of-the-art imaging spectrometer that will fly on Chandrayaan-1, the Indian Space Research Organization (ISRO) mission to be launched late 2007 to early 2008. M3 is one of several foreign instruments chosen by ISRO to be flown on Chandrayaan-1 to complement the strong ISRO payload package. M3 was selected through a peer-review process as part of NASA s Discovery Program. It is under the oversight of PI Carle Pieters at Brown University and is being built by an experienced team at the Jet Propulsion Laboratory. Data analysis and calibration are carried out by a highly qualified and knowledgeable Science Team. To characterize diagnostic properties of lunar minerals, M3 acquires high spectral resolution reflectance data from 700 to 3000 nm (optional to 430 nm). M3 operates as a pushbroom spectrometer with a slit oriented orthogonal to the S/C orbital motion. Measurements are obtained simultaneously for 640 cross track spatial elements and 261 spectral elements. This translates to 70 m/pixel spatial resolution from a nominal 100 km polar orbit for Chandrayaan-1 . The primary science goal of M3 is to characterize and map lunar surface mineralogy in the context of its geologic evolution as outlined above. This translates into several sub-topics that focus on exploring the mineral character of the highland crust, characterizing the diversity basaltic volcanism, and identifying potential volatile concentrations near the poles. The primary exploration goal is to assess and map lunar mineral resources at high spatial resolution to support planning for future, targeted missions.
India plans to land near moon's south pole
NASA Astrophysics Data System (ADS)
Bagla, Pallava
2018-02-01
Sometime this summer, an Indian spacecraft orbiting over the moon's far side will release a lander. The craft will ease to a soft landing just after lunar sunrise on an ancient, table-flat plain about 600 kilometers from the south pole. There, it will unleash a rover into territory never before explored at the surface. That's the ambitious vision for India's second voyage to the moon in a decade, due to launch in the coming weeks. If Chandrayaan-2 is successful, it will pave the way for even more ambitious Indian missions, such as landings on Mars and an asteroid, as well as a Venus probe. Lunar scientists have much at stake, too. Chandrayaan-2 will collect data on the moon's thin envelope of plasma, as well as isotopes such as helium-3, a potential fuel for future fusion energy reactors. And it will follow up on a stunning discovery by India's first lunar foray, which found water molecules on the moon in 2009.
The Lunar Mapping and Modeling Project Update
NASA Technical Reports Server (NTRS)
Noble, S.; French, R.; Nall, M.; Muery, K.
2010-01-01
The Lunar Mapping and Modeling Project (LMMP) is managing the development of a suite of lunar mapping and modeling tools and data products that support lunar exploration activities, including the planning, design, development, test, and operations associated with crewed and/or robotic operations on the lunar surface. In addition, LMMP should prove to be a convenient and useful tool for scientific analysis and for education and public outreach (E/PO) activities. LMMP will utilize data predominately from the Lunar Reconnaissance Orbiter, but also historical and international lunar mission data (e.g. Lunar Prospector, Clementine, Apollo, Lunar Orbiter, Kaguya, and Chandrayaan-1) as available and appropriate. LMMP will provide such products as image mosaics, DEMs, hazard assessment maps, temperature maps, lighting maps and models, gravity models, and resource maps. We are working closely with the LRO team to prevent duplication of efforts and ensure the highest quality data products. A beta version of the LMMP software was released for limited distribution in December 2009, with the public release of version 1 expected in the Fall of 2010.
NASA Astrophysics Data System (ADS)
Upendra Bhatt, Megha; Mall, Urs; Bugiolacchi, Roberto; Bhattacharya, Satadru
2010-05-01
The impact basins on lunar surface act as a window into the lunar interior and allow investigations of the composition of lower crust and upper mantle. Mare Moscoviense is one of the oldest impact basins on the far side of the Moon. We report on our preliminary analysis conducted in the central region of Mare Moscoviense using the near-infrared spectrometer, SIR-2 data in combination with the Hyperspectral Imager (HySI) data from the Chandrayaan-1 mission. SIR-2 is a compact, monolithic grating type point spectrometer which collected data with high spatial resolution (~200 m) and spectral resolution (6 nm) at wavelengths between 0.93 to 2.41 µm. The Indian HySI instrument mapped the lunar surface in the spectral range of 0.42 to 0.96 µm in 64 contiguous bands with a spectral bandwidth ~20 nm and spatial resolution of 80 m. We will explain the method of combining the response of SIR-2 and HySI to get a complete spectral coverage from 0.42-2.40 µm with high spatial and spectral resolution. We compare average reflectance spectra for spatially, spectrally and compositionally varying areas with the published literature.
NASA Technical Reports Server (NTRS)
Halekas, J. S.; Angelopoulos, V.; Sibeck, D. G.; Khurana, K. K.; Russell, C. T.; Delory, G. T.; Farrell, W. M.; McFadden, J. P.; Bonnell, J. W.; Larson, D.;
2011-01-01
We present observations from the first passage through the lunar plasma wake by one of two spacecraft comprising ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun), a new lunar mission that re-tasks two of five probes from the THEMIS magnetospheric mission. On Feb 13, 2010, ARTEMIS probe P1 passed through the wake at 3.5 lunar radii downstream from the Moon, in a region between those explored by Wind and the Lunar Prospector, Kaguya, Chandrayaan, and Chang'E missions. ARTEMIS observed interpenetrating proton, alpha particle, and electron populations refilling the wake along magnetic field lines from both flanks. The characteristics of these distributions match expectations from self-similar models of plasma expansion into vacuum, with an asymmetric character likely driven by a combination of a tilted interplanetary magnetic field and an anisotropic incident solar wind electron population. On this flyby, ARTEMIS provided unprecedented measurements of the interpenetrating beams of both electrons and ions naturally produced by the filtration and acceleration effects of electric fields set up during the refilling process. ARTEMIS also measured electrostatic oscillations closely correlated with counter-streaming electron beams in the wake, as previously hypothesized but never before directly measured. These observations demonstrate the capability of the comprehensively instrumented ARTEMIS spacecraft and the potential for new lunar science from this unique two spacecraft constellation.
NASA Technical Reports Server (NTRS)
Halekas, J. S.; Angelopoulos, V.; Sibeck, D. G.; Khurana, K. K.; Russell, C. T.; Delory, G. T.; Farrell, W. M.; McFadden, J. P.; Bonnell, J. W.; Larson, D.;
2014-01-01
We present observations from the first passage through the lunar plasma wake by one of two spacecraft comprising ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun), a new lunar mission that re-tasks two of five probes from the THEMIS magnetospheric mission. On Feb 13, 2010, ARTEMIS probe P1 passed through the wake at approximately 3.5 lunar radii downstream from the Moon, in a region between those explored by Wind and the Lunar Prospector, Kaguya, Chandrayaan, and Chang'E missions. ARTEMIS observed interpenetrating proton, alpha particle, and electron populations refilling the wake along magnetic field lines from both flanks. The characteristics of these distributions match expectations from self-similar models of plasma expansion into vacuum, with an asymmetric character likely driven by a combination of a tilted interplanetary magnetic field and an anisotropic incident solar wind electron population. On this flyby, ARTEMIS provided unprecedented measurements of the interpenetrating beams of both electrons and ions naturally produced by the filtration and acceleration effects of electric fields set up during the refilling process. ARTEMIS also measured electrostatic oscillations closely correlated with counter-streaming electron beams in the wake, as previously hypothesized but never before directly measured. These observations demonstrate the capability of the comprehensively instrumented ARTEMIS spacecraft and the potential for new lunar science from this unique two spacecraft constellation.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.
2017-01-01
Since the 1960s, scientists have conjectured that water icecould survive in the cold, permanently shadowed craters located at the Moons poles Clementine (1994), Lunar Prospector (1998),Chandrayaan-1 (2008), and Lunar Reconnaissance Orbiter (LRO) and Lunar CRater Observation and Sensing Satellite(LCROSS) (2009) lunar probes have provided data indicating the existence of large quantities of water ice at the lunar poles The Mini-SAR onboard Chandrayaan-1discovered more than 40 permanently shadowed craters near the lunar north pole that are thought to contain 600 million metric tons of water ice. Using neutron spectrometer data, the Lunar Prospector science team estimated a water ice content (1.5 +-0.8 wt in the regolith) found in the Moons polar cold trap sand estimated the total amount of water at both poles at 2 billion metric tons Using Mini-RF and spectrometry data, the LRO LCROSS science team estimated the water ice content in the regolith in the south polar region to be 5.6 +-2.9 wt. On the basis of the above scientific data, it appears that the water ice content can vary from 1-10 wt and the total quantity of LPI at both poles can range from 600 million to 2 billion metric tons NTP offers significant benefits for lunar missions and can take advantage of the leverage provided from using LDPs when they become available by transitioning to LANTR propulsion. LANTR provides a variablethrust and Isp capability, shortens burn times and extends engine life, and allows bipropellant operation The combination of LANTR and LDP has performance capability equivalent to that of a hypothetical gaseousfuel core NTR (effective Isp 1575 s) and can lead to a robust LTS with unique mission capabilities that include short transit time crewed cargo transports and routine commuter flights to the Moon The biggest challenge to making this vision a reality will be the production of increasing amounts of LDP andthe development of propellant depots in LEO, LLO and LPO. An industry-operated, privately financed venture, with NASA as its initial customer, might provide a possible blueprint for future development and operation With industry interested in developing cislunar space and commerce, and competitive forces at work, the timeline for developing this capability could well be accelerated, quicker than any of us can imagine, and just the beginning of things to come.
Lunar Mapping and Modeling Project
NASA Technical Reports Server (NTRS)
Noble, Sarah K.; French, Raymond; Nall,Mark; Muery, Kimberly
2009-01-01
The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The project draws on expertise from several NASA and non-NASA organizations (MSFC, ARC, GSFC, JPL, CRREL and USGS). LMMP will utilize data predominately from the Lunar Reconnaissance Orbiter, but also historical and international lunar mission data (e.g. Apollo, Lunar Orbiter, Kaguya, Chandrayaan-1), as available and appropriate, to meet Constellation s data needs. LMMP will provide access to this data through a single, common, intuitive and easy to use NASA portal that transparently accesses appropriately sanctioned portions of the widely dispersed and distributed collections of lunar data, products and tools. LMMP will provide such products as DEMs, hazard assessment maps, lighting maps and models, gravity models, and resource maps. We are working closely with the LRO team to prevent duplication of efforts and ensure the highest quality data products. While Constellation is our primary customer, LMMP is striving to be as useful as possible to the lunar science community, the lunar education and public outreach (E/PO) community, and anyone else interested in accessing or utilizing lunar data.
Planetary Data Archiving Activities in Indian Space Research Organisation (isro)
NASA Astrophysics Data System (ADS)
Gopala Krishna, Barla; Srivastava, Pradeep Kumar
The Indian Space Research Organisation (ISRO) has launched its first planetary mission to Moon viz., Chandrayaan-1 on October 22, 2008. The basic objectives of the Chandrayaan-1 mission are photoselenological and chemical mapping of the Moon with improved spatial and spectral resolution. The payloads in this mission are: (i) Terrain mapping stereo camera (TMC) with 20km swath (400-900 nm band) for 3D imaging of lunar surface at a spatial resolution of 5m (ii) Hyper Spectral Imager (HySI) in the 400-920 nm band with 64 channels and spatial resolution of 80m (20km swath) for mineralogical mapping (iii) High-energy X-ray (30-270 keV) spectrometer having a footprint of 40km for study of volatile transport on Moon and (iv) Laser ranging instrument with vertical resolution of 5m (v) Miniature imaging radar instrument (Mini-SAR) from APL, NASA to look for presence of ice in the polar region (vi) Near infrared spectrometer (SIR-2) from Max Plank Institute, Germany (vii)Moon Mineralogy Mapper (M3) from JPL, NASA for mineralogical mapping in the infra-red regions (0.7 -3.0 micron) (viii) Sub-keV Atom Reflecting Analyzer (SARA) from Sweden, India and Japan for detection of low energy neutral atoms emanated from the lunar surface (ix) Radiation Dose Monitor (RADOM) from Bulgaria for monitoring energetic particle flux in the lunar environment and (x) Collimated low energy (1-10keV) X-ray spectrometer (C1XS) with a field of view of 20km for chemical mapping of the lunar surface from RAL, UK. A wealth of data has been collected (November 2008 to August 2009) from the above instru-ments during the mission life of Chandrayaan-1 and the science data from these instruments is being archived at Indian Space Science Data Centre (ISSDC). ISRO Science Data Archive (ISDA) identified at ISSDC is the primary data archive for the payload data of current and future Indian space science missions. The data center (ISSDC) is responsible for the Ingest, Archive, and Dissemination of the payload and related ancillary data. The archive includes raw and reduced data, calibration data, auxiliary data, higher-level derived data products, documentation and software. The ISDA makes use of the well-proven archive standards of the Planetary Data System (PDS) and planning to follow IPDA guidelines. This is to comply with the global standards for long term preservation of the data to maintain the usability and facilitate scientific community with the high quality data for their analysis. The data deliveries from various instruments are already started to ISSDC. The science archives received from MiniSAR and M3 are peer reviewed by the host organizations and hence no further reviews planned at ISSDC. For the other instrument data archives, peer reviews are planned at ISSDC, for which the activity will start during April 2010. A pre review has already been carried out for certain instrument data sets and currently the review comments are being incorporated. The data for the first normal phase operation (November 2008 to February 2009) is planned to be made available (through long term archive) sometime during August 2010 to the users. However the data is already available to the PI teams in the PDS standard, for analysis and use in the instrument cross calibration. Chandrayaan-2 is the next planetary mission to Moon from ISRO in future (which will carry rovers; expected to give a good amount of science data, which is also planned to be archived in ISSDC for dissemination.
Probing Gravity with Next Generation Lunar Laser Ranging
NASA Astrophysics Data System (ADS)
Martini, Manuele; Dell'Agnello, Simone
Lunar and satellite laser ranging (LLR/SLR) are consolidated techniques which provide a precise, and at the same time, cost-effective method to determine the orbits of the Moon and of satellites equipped with laser retroreflectors with respect to the International Celestial Reference System. We describe the precision tests of general relativity and of new theories of gravity that can be performed with second-generation LLR payloads on the surface of the Moon (NASA/ASI MoonLIGHT project), and with SLR/LLR payloads deployed on spacecraft in the Earth-Moon system. A new wave of lunar exploration and lunar science started in 2007-2008 with the launch of three missions (Chang'e by China, Kaguya by Japan, Chandrayaan by India), missions in preparation (LCROSS, LRO, GRAIL/LADEE by NASA) and other proposed missions (like MAGIA in Italy). This research activity will be greatly enhanced by the future robotic deployment of a lunar geophysics network (LGN) on the surface of the Moon. A scientific concept of the latter is the International Lunar Network (ILN, see http://iln.arc.nasa.gov/). The LLR retroreflector payload developed by a US-Italy team described here and under space qualification at the National Laboratories of Frascati (LNF) is the optimum candidate for the LGN, which will be populated in the future by any lunar landing mission.
NASA Astrophysics Data System (ADS)
Banerjee, D.; Gasnault, O.
2008-07-01
The primary aim of the high-energy X-ray spectrometer (HEX) experiment on the Chandrayaan-1 mission to the Moon is to characterize the movement of volatiles on the lunar surface through the detection of the 46.5 keV line from 210Pb, a decay product of 222Rn. An important consideration for design and operation of HEX is to estimate the continuum background signal expected from the lunar surface, as well as its dependence on solar activity and lunar composition. We have developed a Monte Carlo code utilizing Geant4 for simulating the interaction of cosmic rays in the lunar regolith, and we estimated the variation in the continuum background in the energy region of interest for various lunar compositions. Dependence of the continuum background on solar activity was also evaluated considering ferroan anorthositic (FAN) composition. Our results suggest the viability of inferring lithologic characteristics of planetary surfaces based on a study of low-energy gamma ray emission.
NASA Astrophysics Data System (ADS)
Kailasam Madathil, Ambili; Bhardwaj, Anil; Choudhary, Raj Kumar
2016-07-01
Using Chandrayaan-1 communication link between orbiter and ground (S-band frequency), the presence of ionosphere at Moon has been explored using Radio Occultation technique. Results obtained from the observations conducted between July 30 and August 14, 2009 show evidence for a possible existence of the Ionosphere at Moon. A few seconds before the occultation of Chandrayaan-1 radio signals, extra fluctuation in the rate of change of difference between the theoretically estimated Doppler and observed Doppler was observed. The fluctuation was more pronounced when the probing radio waves were crossing through the day-night terminator. Using standard onion-peeling technique to invert the phase changes in radio signals to the refractivity of the medium, we estimated the bending angle and hence the electron density profiles for the Lunar medium. The estimated electron density near the Lunar surface was of the order of 400 - 1000 cm ^{-3} which decreased monotonically with increasing altitude till about 40 km above the surface where it became negligible. The observed electron density was compared with the results from a model which was developed based on CHACE measurements abroad Moon Impact Probe of Chandrayaan-I. The model included the photo chemical reactions and solar wind interactions of the lunar plasma. We propose that the ionosphere over Moon could have molecular origin with H _{2}O ^{+},CO_{2} ^{+} and H_{3}O ^{+} as dominant ions.
Introduction to EGU session "Lunar Science and Exploration Towards Moon Village"
NASA Astrophysics Data System (ADS)
Foing, Bernard
2017-04-01
The EGU PS2.2 session "Lunar Science and Exploration" Towards Moon Village" will address: - Recent lunar results: geochemistry, geophysics in the context of open planetary science and exploration - Synthesis of results from SMART-1, Kaguya, Chang'e 1, 2 and 3, Chandrayaan-1, LCROSS, LADEE, Lunar Reconnaissance Orbiter and, Artemis and GRAIL - Goals and Status of missions under preparation: orbiters, Luna-Glob, Google Lunar X Prize, Luna Resurs polar lander, SLIM, Chandrayaan2, Chang'E 4 & 5, Lunar Resource Prospector, Future landers, Lunar sample return missions - Precursor missions, instruments and investigations for landers, rovers, sample return, and human cis-lunar activities and human lunar surface sorties - Preparation for International Lunar Decade: databases, instruments, missions, terrestrial field campaigns, support studies - ILEWG and Global Exploration roadmaps towards a global robotic/human Moon village - Strategic Knowledge Gaps, and key science Goals relevant to Lunar Global Exploration Lunar science and exploration are developing further with new and exciting missions being developed by China, the US, Japan, India, Russia, Korea and Europe, and with new stakeholders. The Moon Village is an open concept proposed by ESA DG with the goal of a sustainable human and robotic presence on the lunar surface as an ensemble where multiple users can carry out multiple activities. Multiple goals of the Moon Village include planetary science, life sciences, astronomy, fundamental research, resources utilisation, human spaceflight, peaceful cooperation, economical development, inspiration, training and capacity building. ESA director general has revitalized and enhanced the original concept of MoonVillage discussed in the last decade. Space exploration builds on international collaboration. COSPAR and its ILEWG International Lunar Exploration Working Group (created in 1994) have fostered collaboration between lunar missions [4-8]. A flotilla of lunar orbiters has flown in the last international lunar decade (SMART-1, Kaguya, Chang'Eal1 &2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE). Chinese Chang'E 3 lander and Yutu rover, and upcoming 2017 other landers from 2017 (GLXP, Chang'E 4 & 5, SLIM, Luna , LRP) will constitute a Robotic Village on the Moon. A number of MoonVillage talks and/or interactive jam sessions have been conducted at International workshops and symposia 2016. Moon Village Workshops were held at ESA centres: they were held with senior experts as well as Young ESA professionals to discuss general topics and specific issues ( habitat design, technology, science and precursor missions; public and stakeholder engagement) . Many workshops were complemented with ILEWG EuroMoonMars simulation campaigns. Moon Village Workshops or Jam sessions were also conducted at international symposia or in collaboration with specific universities or institutes. The PS2.2 session will include invited and contributed talks as well as a panel discussion and interactive posters with short oral introduction. Acknowledgements We thank Prof J. Woerner (ESA DG) for energizing the concept of MoonVillage. We thank co-conveners of MoonVillage Workshops and ILEWG EuroMoonMars field campaigns in 2016 (including C. Jonglez, V.Guinet, M.Monnerie, A. Kleinschneider, A. Kapoglou, A. Kolodziejczyk, M. Harasymczuk, I. Schlacht, C. Heinicke, D. Esser, M.Grulich, T. Siruguet, H.Vos, M.Mirino, D.Sokolsky, J.Blamont) and participants to these events. We thank A.Cowley, C. Haigneré, P. Messina, G. Ortega, S.Cristoforetti, ESA colleagues involved in MoonVillage related activities. We thank colleagues from ILEWG, Young Lunar Explorers, the International Lunar Decade Group, the Moon Village Association and Moon Village Support Groups and "MoonVillagers" at large. [1] Jan Wörner, Driving #MoonVillage http://www.iafastro.org/events/iac/iac-2015/plenaryprogramme/the-moon-a-continent-and-a-gateway-for-ourfuture/ (IAC 2015, Jerusalem); [2]http://www.iafastro.org/events/iac/iac2016/globalnetworking-forum/making-the-moon-village-and-marsjourney-accessible-and-affordable-for-all/ (IAC 2016) ; [3] B. Foing et al , Highlights from Moon Village Workshop, held at ESTEC in December 2015, http://www.hou.usra.edu/meetings/lpsc2016/pdf/2719.pdf, http://www.hou.usra.edu/meetings/lpsc2016/pdf/2798.pdf [4] P. Ehrenfreund et al. "Toward a Global Space Exploration Program: A Stepping Stone Approach" (Advances in Space Research, 49, n°1, January 2012), prepared by COSPAR Panel on Exploration (PEX) [5] http://www.lpi.usra.edu/leag/GER_2011.pdf; [6] http://sci.esa.int/ilewg/47170-gluc-iceum11- beijing-2010lunar-declaration/; [7] http://www.lpi.usra.edu/meetings/leagilewg2008/ [8] http://sci.esa.int/ilewg/41506-iceum9-sorrento- 2007-lunar-declaration/ [9] National Research Council (2007), The Scientific Context for Exploration of the Moon [10] P. Ehrenfreund , B.H. Foing, A. Cellino Editors, The Moon and Near Earth Objects), Advances in Space Research, Volume 37, Issue 1, pp 1-192, 2006 [11] http://sci.esa.int/ilewg/38863-iceum8-beijing- 2006declaration/ [12] W. Huntress, D. Stetson, R. Farquhar, J. Zimmerman, B. Clark, W. O'Neil, R. Bourke& B. Foing,'The next steps in exploring deep space - A cosmic study by the IAA', Acta Astronautica, Vol 58, Issues 6-7, 2006, p302-377 [13]http://sci.esa.int/ilewg/38178-iceum7-toronto-2005-declaration/ [14] H. Balsiger et al. Eds, International Lunar Workshop, 1994 May 31-June 3, Beatenberg, Switzerland. Proceedings. Ed. European Space Agency, 1994. ESA-SP-1170 [15] R.M. Bonnet et al, 'Mission to the Moon, Europe's Priorities for Scientific Exploration and Utilisation of the Moon', European Space Agency, ESA SP-1150, June 1992 [16] http://www.iafastro.org/events/iaf-spring-meetings/spring-meetings-2016/ [17] https://www.spacesymposium.org/ [18] http://www.egu2016.eu/ http://meetingorganizer.copernicus.org/EGU2016/session/20378 [19] https://els2016.arc.nasa.gov/ [20] https://nesf2016.arc.nasa.gov/ [21] https://www.cospar-assembly.org/abstractcd/COSPAR-16/ [22] https://www.iac2016.org/, [23] http://www.hou.usra.edu/meetings/leag2016/presentations/ [24] http://newworlds2016.space/ [25] http://www.stx.ox.ac.uk/happ/events/history-moon [26] https://www.cranfield.ac.uk/events/events-2016/manufacturing-2075#
Cartography for lunar exploration: 2008 status and mission plans
Kirk, R.L.; Archinal, B.A.; Gaddis, L.R.; Rosiek, M.R.; Chen, Jun; Jiang, Jie; Nayak, Shailesh
2008-01-01
The initial spacecraft exploration of the Moon in the 1960s-70s yielded extensive data, primarily in the form of film and television images, which were used to produce a large number of hardcopy maps by conventional techniques. A second era of exploration, beginning in the early 1990s, has produced digital data including global multispectral imagery and altimetry, from which a new generation of digital map products tied to a rapidly evolving global control network has been made. Efforts are also underway to scan the earlier hardcopy maps for online distribution and to digitize the film images so that modern processing techniques can be used to make high-resolution digital terrain models (DTMs) and image mosaics consistent with the current global control. The pace of lunar exploration is accelerating dramatically, with as many as eight new missions already launched or planned for the current decade. These missions, of which the most important for cartography are SMART-1 (Europe), Kaguya/SELENE (Japan), Chang'e-1 (China), Chandrayaan-1 (India), and Lunar Reconnaissance Orbiter (USA), will return a volume of data exceeding that of all previous lunar and planetary missions combined. Framing and scanner camera images, including multispectral and stereo data, hyperspectral images, synthetic aperture radar (SAR) images, and laser altimetry will all be collected, including, in most cases, multiple data sets of each type. Substantial advances in international standardization and cooperation, development of new and more efficient data processing methods, and availability of resources for processing and archiving will all be needed if the next generation of missions are to fulfill their potential for high-precision mapping of the Moon in support of subsequent exploration and scientific investigation.
ESA SMART-1 mission: results and lessons for future lunar exploration
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
We review ESA’s SMART-1 highlights and legacy 10 years after launch. We discuss lessons for future lunar exploration and upcoming missions. The SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone with demonstration for future deep space missions such as BepiColombo; 3) most fuel effective mission (60 litres of Xenon) and longest travel (13 month) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer ; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the ILEWG/COSPAR International Lunar Exploration Working Group in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang’ E1-2-3 and near-future landers, sample return and human lunar missions. The SMART-1 technology legacy is applicable to application geostationary missions and deep space missions using solar electric propulsion. The SMART-1 archive observations have been used to support scientific research and prepare subsequent lunar missions. Most recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of illumination, 4) observations and science from the Moon, 5) support to future missions, 6) identifying and characterising sites for exploration and exploitation. These results and legacy are relevant to the preparation for future missions, in particular in the frame of collaboration between Russia and ESA on upcoming landers and on a polar sample return. Also the results contribute to the preparation for a global robotic village and international lunar bases (consistent with ILEWG, COSPAR and Global Space Exploration roadmaps). Link: http://sci.esa.int/smart-1/ References and citations: http://scholar.google.nl/scholar?&q=smart-1+moon *We acknowledge ESA, member states, industry and institutes for their contribution, and the members of SMART-1 Teams: G.Racca and SMART-1 Project Team, O. Camino and SMART-1 Operations Team, D. Frew and SMART-1 STOC, B.H. Foing and STWT, B. Grieger, D. Koschny, J.-L. Josset, S. Beauvivre, M. Ellouzi, S. Peters, A. Borst, E. Martellato, M. Almeida, J.Volp, D. Heather, M. Grande, J. Huovelin, H.U. Keller, U. Mall, A. Nathues, A. Malkki, W. Schmidt, G. Noci, Z. Sodnik, B. Kellett, P. Pinet, S. Chevrel, P. Cerroni, M.C. de Sanctis, M.A. Barucci, S. Erard, D. Despan, K. Muinonen, V. Shevchenko, Y. Shkuratov, P. McMannamon, P. Ehrenfreund, C. Veillet, M. Burchell, other Co-Investigators, associated scientists, collaborators, students and colleagues
2009-09-24
Data from NASA Moon Mineralogy Mapper instrument on the Indian Space Research Organization Chandrayaan-1 spacecraft reveal subtle and previously unknown lunar diversity and features. Animation available at the Photojournal.
ESA SMART-1 mission: review of results and legacy 10 years after launch
NASA Astrophysics Data System (ADS)
Foing, Bernard
2014-05-01
We review ESA's SMART-1 highlights and legacy 10 years after launch. The SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone with demonstration for future deep space missions such as BepiColombo; 3) most fuel effective mission (60 litres of Xenon) and longest travel (13 month) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer ; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the ILEWG/COSPAR International Lunar Exploration Working Group in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang'E1-2-3 and near-future landers, sample return and human lunar missions. The SMART-1 technology legacy is applicable to geostationary satellites and deep space missions using solar electric propulsion. The SMART-1 archive observations have been used to support scientific research and prepare subsequent lunar missions and exploration. Most recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of illumination, 4) observations and science from the Moon, 5) support to future missions, 6) identifying and characterising sites for exploration and exploitation. This legacy is relevant to the preparation for future orbiters, landers, sample return, a global robotic village, human missions and international lunar bases (consistent with ILEWG, COSPAR and Global Space Exploration roadmaps). Link: http://sci.esa.int/smart-1/ References and citations: http://scholar.google.nl/scholar?&q=smart-1+moon **We acknowledge ESA, member states, industry and institutes for their contribution, and the members of SMART-1 Teams: G.Racca and SMART-1 Project Team, O. Camino and SMART-1 Operations Team, D. Frew and SMART-1 STOC, B.H. Foing and STWT, B. Grieger, D. Koschny, J.-L. Josset, S. Beauvivre, M. Ellouzi, S. Peters, A. Borst, E. Martellato, M. Almeida, J.Volp, D. Heather, M. Grande, J. Huovelin, H.U. Keller, U. Mall, A. Nathues, A. Malkki, W. Schmidt, G. Noci, Z. Sodnik, B. Kellett, P. Pinet, S. Chevrel, P. Cerroni, M.C. de Sanctis, M.A. Barucci, S. Erard, D. Despan, K. Muinonen, V. Shevchenko, Y. Shkuratov, P. McMannamon, P. Ehrenfreund, C. Veillet, M. Burchell, other Co-Investigators, associated scientists, collaborators, students and colleagues.
Peak-ring structure and kinematics from a multi-disciplinary study of the Schrödinger impact basin
Kring, David A.; Kramer, Georgiana Y.; Collins, Gareth S.; Potter, Ross W. K.; Chandnani, Mitali
2016-01-01
The Schrödinger basin on the lunar farside is ∼320 km in diameter and the best-preserved peak-ring basin of its size in the Earth–Moon system. Here we present spectral and photogeologic analyses of data from the Moon Mineralogy Mapper instrument on the Chandrayaan-1 spacecraft and the Lunar Reconnaissance Orbiter Camera (LROC) on the LRO spacecraft, which indicates the peak ring is composed of anorthositic, noritic and troctolitic lithologies that were juxtaposed by several cross-cutting faults during peak-ring formation. Hydrocode simulations indicate the lithologies were uplifted from depths up to 30 km, representing the crust of the lunar farside. Through combining geological and remote-sensing observations with numerical modelling, we show that a Displaced Structural Uplift model is best for peak rings, including that in the K–T Chicxulub impact crater on Earth. These results may help guide sample selection in lunar sample return missions that are being studied for the multi-agency International Space Exploration Coordination Group. PMID:27762265
From the Moon: Bringing Space Science to Diverse Audiences
NASA Astrophysics Data System (ADS)
Runyon, C. J.; Hall, C.; Joyner, E.; Meyer, H. M.; M3 Science; E/PO Team
2011-12-01
NASA's Apollo missions held a place in the mindset of many Americans - we dared to go someplace where humans had never set foot, a place unknown and beyond our imaginations. These early NASA missions and discoveries resulted in an enhanced public understanding of the Moon. Now, with the human element so far removed from space exploration, students must rely on textbooks, TV's, and computers to build their understanding of our Moon. However, NASA educational materials about the Moon are stale and out-of-date. In addition, they do not effectively address 21st Century Skills, an essential for today's classrooms. Here, we present a three-part model for developing opportunities in lunar science education professional development that is replicable and sustainable and integrates NASA mission-derived data (e.g., Moon Mineralogy Mapper (M3)/Chandrayaan-1). I) With the return of high resolution/high spatial data from M3/Chandrayaan-1, we can now better explore and understand the compositional variations on the lunar surface. Data and analysis techniques from the imaging spectrometer are incorporated into the M3 Educator's Guide: Seeing the Moon in a New Light. The guide includes an array of activities and lessons to help educators and students understand how NASA is currently exploring the Moon. The guide integrates NASA maps and data into the interactive lessons, bringing the excitement of scientific exploration and discovery into the classroom. II) Utilizing the M3 Educator's Guide as well as educational activities from more current NASA lunar missions, we offer two sustained professional development opportunities for educators to explore the Moon through interactive and creative strategies. 1) Geology of the Moon, an online course offered through Montana State University's National Teacher Enhancement Network, is a 3-credit graduate course. 2) Fly Me to the Moon, offered through the College of Charleston's Office of Professional Development in Education, is a two-hour graduate credit course. Through these courses, teachers from a variety of disciplines and grade levels journey to the Moon, exploring NASA's historic and current missions and data. As both of these courses are primarily online, we incorporate interactive ways for educators to explore and communicate their ideas. Through a series of scaffolded webquests, educators work through inquiry-oriented lessons to gather information and data directly through the Internet. The webquests allow students to freely explore, motivating them to investigate open-ended questions and enhance their self-learning process. III) To address more diverse audiences, a unique partnership among the College of Charleston's School of Science and Math and the School of the Arts will showcase a two-year celebration of lunar observations and analyses. From the Moon: Mapping and Exploration will open in November, 2011. From the Moon: Mysteries and Myths exhibit at the Halsey Gallery of Art in Charleston, SC will open in Fall, 2013. Patrons will explore one-of-a-kind artifacts, as well as early observations from Galileo to current observations from ongoing NASA lunar missions. Both exhibits will be paired with tactile activities, lesson plans and professional development opportunities.
Thermal vacuum test of space equipment: tests of SIR-2 instrument Chandrayaan-1 mission
NASA Astrophysics Data System (ADS)
Sitek, P.
2008-11-01
We describe the reasons of proceeding Thermal-Vacuum tests for space electronic. We will answer on following questions: why teams are doing TV tests, what kind of phases should be simulated, which situations are the most critical during TV tests, what kind of results should be expected, which errors can be detect. As an example, will be shown TV-test of SIR-2 instrument for Chandrayaan-1 moon mission.
SMART-1 Results and Lessons for Future Exploration
NASA Astrophysics Data System (ADS)
Foing, B. H.
2009-04-01
We summarise SMART-1 lunar highlights relevant for future lunar exploration. SMART-1 has been useful in the preparation of Selene Kaguya, the Indian lunar mission Chandrayaan-1, Chinese Chang'E 1 , the US Lunar Reconnaissance Orbiter, LCROSS, and subsequent lunar landers (Google Lunar X-prize, International Lunar Network, Moon-NEXT, cargo and manned landers). SMART-1 is contributing to prepare the next steps for exploration: survey of resources, search for ice, monitoring polar illumination, and mapping of sites for potential landings, international robotic villages and for future human activities and lunar bases. Overview of SMART-1 mission and payload: SMART-1 is the first in the programme of ESA's Small Missions for Advanced Research and Technology [1,2,3]. Its first objective has been achieved to demonstrate Solar Electric Primary Propulsion (SEP) for future Cornerstones (such as Bepi-Colombo) and to test new technologies for spacecraft and instruments. The SMART-1 spacecraft has been launched on 27 Sept. 2003, as an Ariane-5 auxiliary passenger and injected in GTO Geostationary Transfer Orbit. The SMART-1 spacecraft reached on 15 March 2005 a lunar orbit 400-3000 km for a nominal science period of six months, with 1 year extension until impact on 3 September 2006. SMART-1 science payload, with a total mass of some 19 kg, featured many innovative instruments and advanced technologies [1], with a miniaturised high-resolution camera (AMIE) for lunar surface imaging, a near-infrared point-spectrometer (SIR) for lunar mineralogy investigation, and a very compact X-ray spectrometer (D-CIXS) [4-6] for fluorescence spectroscopy and imagery of the Moon's sur-face elemental composition. The payload also included two plasma experiments: SPEDE (Spacecraft Potential, Electron and Dust Experiment) and EPDP (Electric propulsion diagnostic Package), an experiment (KaTE) that demonstrated deep-space telemetry and telecommand communications in the X and Ka-bands, a radio-science experiment (RSIS), a deep space optical link (Laser-Link Experiment), using the ESA Optical Ground station in Tenerife, and the validation of a system of autonomous navigation (OBAN) based on image processing. SMART-1 lunar science and exploration results: A package of three multiband mapping instruments has performed science and exploration at the Moon. AMIE (Advanced-Moon micro-Imager Experiment). AMIE is a miniature high resolution (35 m pixel at 350 km perilune height) camera, equipped with a fixed panchromatic and 3-colour filter, for Moon topography and imaging support to other experiments [7,10,11]. The micro camera AMIE has provided high-resolution CCD images of selected lunar areas. It included filters deposited on the CCD in white light + three filters for colour analyses, with bands at 750 nm, 900 nm and 950 nm (measuring the absorption of pyroxene and olivine). Lunar North polar maps and South pole repeated high resolution images have been obtained, giving a monitoring of illumination to map potential sites relevant for future exploration . AMIE images provided a geological context for SIR and D-CIXS data, and colour or multi-phase angle complement. AMIE has been used to map sites of interest in the South Pole -Aitken basin relevant to the study of cataclysm bombardment, and to preview future sites for sampling return. SMART-1 studied also volcanic processes, and the coupling between impacts and volcanism. D-CIXS (Demonstration of a Compact Imaging X-ray Spectrometer). DCIXS is based on novel detector and filter/collimator technologies, and has performing the first lunar X-ray fluorescence global mapping in the 0.5-10 keV range [4,5,9], in order to map the lunar elemental composition. It was supported in its operation by XSM (X-ray Solar Monitor) which also moni-tored coronal X-ray emission and solar flares [6]. For instance, D-CIXS measurements of Si, Mg, Al, Si, Ca & Fe lines at 1.25, 1.49, 1.74, 3.7 & 6.4 keV, were made over North of Mare Crisium during the 15 Jan 2005 solar flare, permitting the first detection of Calcium from lunar orbit [9]. Bulk crustal composition has bearing on theories of origin and evolution of the Moon. D-CIXS produced the first global measurements of the lunar surface in X-ray fluorescence (XRF), elemental abundances of Mg, Al and Si (and Fe when solar activity permitted) across the whole Moon. The South Pole-Aitken Basin (SPA) and large lunar impact basins have been also measured with D-CIXS. D-CIXS has been improved for the C1XS instrument adapted to ISRO Chandrayaan-1. SIR (Smart-1 Infra-Red Spectrometer). SIR has been operating in the 0.9-2.6 μm wavelength range and carrying out mineralogical survey of the lunar crust. SIR had high enough spectral resolution to separate the pyroxene and olivine signatures in lunar soils. SIR data with spatial resolution as good as 400 m permitted to distinguish units on central peaks, walls, rims and ejecta blankets of large impact craters, allowing for stratigraphic studies of the lunar crust. SIR has been improved for the Chandrayaan-1 SIR2 instrument. SMART-1 overall planetary science: SMART-1 science investigations included studies of the chemical composition of the Moon, of geophysical processes (volcanism, tectonics, cratering, erosion, deposition of ices and volatiles) for comparative planetology, and high resolution studies in preparation for future steps of lunar exploration. The mission addressed several topics such as the accretional processes that led to the formation of rocky planets, and the origin and evolution of the Earth-Moon system [8]. SMART-1 operations and coordination: The Experiments have been run according to illumination and altitude conditions during the nominal science phase of 6-months and 1 yr extension, in elliptical Moon orbit. The planning and co-ordination of the Technology and science experiments operations was carried out at ESA/ESTEC (SMART-1 STOC). The data archiving is based on the PDS (Planetary Data System) Standard. The SMART-1 observations have been coordinated with follow-up missions. References: [1] Foing, B. et al (2001) Earth Moon Planets, 85, 523 . [2] Racca, G.D. et al. (2002) Earth Moon Planets, 85, 379. [3] Racca, G.D. et al. (2002) P&SS, 50, 1323. [4] Grande, M. et al. (2003) P&SS, 51, 427. [5] Dunkin, S. et al. (2003) P&SS, 51, 435. [6] Huovelin, J. et al. (2002) P&SS, 50, 1345. [7] Shkuratov, Y. et al (2003) JGRE 108, E4, 1. [8] Foing, B.H. et al (2003) Adv. Space Res., 31, 2323. [9] Grande, M. et al (2007) P&SS 55, 494. [10] Pinet, P. et al (2005) P&SS, 53, 1309. [11] Josset J.L. et al (2006) Adv Space Res, 37, 14. [12] Foing B.H. et al (2006) Adv Space Res, 37, 6. Links: http://sci.esa.int/smart-1/, http://sci.esa.int/ilewg/
Moon Mineralogy Mapper: Unlocking the Mysteries of the Moon
NASA Technical Reports Server (NTRS)
Runyon, Cassandra
2006-01-01
Moon Mineralogy Mapper (M3) is a state-of-the-art high spectral resolution imaging spectrometer that will characterize and map the mineral composition of the Moon. The M3 instrument will be flown on Chandrayaan-I, the Indian Space Research Organization (ISRO) mission to be launched in March 2008. The Moon is a cornerstone to understanding early solar system processes. M3 high-resolution compositional maps will dramatically improve our understanding about the early evolution of the terrestrial planets and will provide an assessment of lunar resources at high spatial resolution.
The Lunar Mapping and Modeling Project
NASA Astrophysics Data System (ADS)
Noble, S. K.; Nall, M. E.; French, R. A.; Muery, K. G.
2009-12-01
The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The information provided through LMMP will assist CxP in: planning tasks in the areas of landing site evaluation and selection, design and placement of landers and other stationary assets, design of rovers and other mobile assets, developing terrain-relative navigation (TRN) capabilities, and assessment and planning of science traverses. The project draws on expertise from several NASA and non-NASA organizations (MSFC, ARC, GSFC, JPL, CRREL - US Army Cold Regions Research and Engineering Laboratory, and the USGS). LMMP will utilize data predominately from the Lunar Reconnaissance Orbiter, but also historical and international lunar mission data (e.g. Apollo, Lunar Orbiter, Kaguya, Chandrayaan-1), as available and appropriate, to meet Constellation’s data needs. LMMP will provide access to this data through a single intuitive and easy to use NASA portal that transparently accesses appropriately sanctioned portions of the widely dispersed and distributed collections of lunar data, products and tools. Two visualization systems are being developed, a web-based system called Lunar Mapper, and a desktop client, ILIADS, which will be downloadable from the LMMP portal. LMMP will provide such products as local and regional imagery and DEMs, hazard assessment maps, lighting and gravity models, and resource maps. We are working closely with the LRO team to prevent duplication of efforts and to ensure the highest quality data products. While Constellation is our primary customer, LMMP is striving to be as useful as possible to the lunar science community, the lunar commercial community, the lunar education and public outreach (E/PO) community, and anyone else interested in accessing or utilizing lunar data. A beta version of the portal and visualization systems is expected to be released in late 2009, with a version 1 release planned for early 2011.
NASA Astrophysics Data System (ADS)
Ehrenfreund, Pascale; Foing, Bernard
2014-05-01
In response to the growing importance of space exploration, the objectives of the COSPAR Panel on Exploration (PEX) are to provide high quality, independent science input to support the development of a global space exploration program while working to safeguard the scientific assets of solar system bodies. PEX engages with COSPAR Commissions and Panels, science foundations, IAA, IAF, UN bodies, and IISL to support in particular national and international space exploration working groups and the new era of planetary exploration. COSPAR's input, as gathered by PEX, is intended to express the consensus view of the international scientific community and should ultimately provide a series of guidelines to support future space exploration activities and cooperative efforts, leading to outstanding scientific discoveries, opportunities for innovation, strategic partnerships, technology progression, and inspiration for people of all ages and cultures worldwide. We shall focus on the lunar exploration aspects, where the COSPAR PEX is building on previous COSPAR, ILEWG and community conferences. An updated COSPAR PEX report is published and available online (Ehrenfreund P. et al, COSPAR planetary exploration panel report, http://www.gwu.edu/~spi/assets/COSPAR_PEX2012.pdf). We celebrate 20 years after the 1st International Conference on Exploration and Utilisation of the Moon at Beatenberg in June 1994. The International Lunar Exploration Working Group (ILEWG) was established the year after in April 1995 at an EGS meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon (http://sci.esa.int/ilewg/ ). It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and exploration information about the Moon. We present the GLUC/ICEUM11 declaration (with emphasis on Science and exploration; Technologies and resources, Infrastructures and human aspects; Moon, Space, Society and Young Explorers) (http://sci.esa.int/iceum11). We give a report on ongoing relevant ILEWG community activities. We discuss how lunar missions SMART-1, Kaguya, Chang'E1&2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE, Chang'E3 and upcoming missions contribute to lunar exploration objectives & roadmap.
A Sustainable Architecture for Lunar Resource Prospecting from an EML-based Exploration Platform
NASA Astrophysics Data System (ADS)
Klaus, K.; Post, K.; Lawrence, S. J.
2012-12-01
Introduction - We present a point of departure architecture for prospecting for Lunar Resources from an Exploration Platform at the Earth - Moon Lagrange points. Included in our study are launch vehicle, cis-lunar transportation architecture, habitat requirements and utilization, lander/rover concepts and sample return. Different transfer design techniques can be explored by mission designers, testing various propulsive systems, maneuvers, rendezvous, and other in-space and surface operations. Understanding the availability of high and low energy trajectory transfer options opens up the possibility of exploring the human and logistics support mission design space and deriving solutions never before contemplated. For sample return missions from the lunar surface, low-energy transfers could be utilized between EML platform and the surface as well as return of samples to EML-based spacecraft. Human Habitation at the Exploration Platform - Telerobotic and telepresence capabilities are considered by the agency to be "grand challenges" for space technology. While human visits to the lunar surface provide optimal opportunities for field geologic exploration, on-orbit telerobotics may provide attractive early opportunities for geologic exploration, resource prospecting, and other precursor activities in advance of human exploration campaigns and ISRU processing. The Exploration Platform provides a perfect port for a small lander which could be refueled and used for multiple missions including sample return. The EVA and robotic capabilities of the EML Exploration Platform allow the lander to be serviced both internally and externally, based on operational requirements. The placement of the platform at an EML point allows the lander to access any site on the lunar surface, thus providing the global lunar surface access that is commonly understood to be required in order to enable a robust lunar exploration program. Designing the sample return lander for low-energy trajectories would reduce the overall mass and potentially increase the sample return mass. The Initial Lunar Mission -Building upon Apollo sample investigations, the recent results of the LRO/LCROSS, international missions such as Chandrayaan-1, and legacy missions including Lunar Prospector, and Clementine, among the most important science and exploration goals is surface prospecting for lunar resources and to provide ground truth for orbital observations. Being able to constrain resource production potential will allow us to estimate the prospect for reducing the size of payloads launched from Earth required for Solar System exploration. Flight opportunities for something like the NASA RESOLVE instrument suite to areas of high science and exploration interest could be used to refine and improve future Exploration architectures, reducing the outlays required for cis-lunar operations. Summary - EML points are excellent for placement of a semi-permanent human-tended Exploration Platform both in the near term, while providing important infrastructure and deep-space experience that will be built upon to gradually increase long-term operational capabilities.
NASA Astrophysics Data System (ADS)
Sitek, P.; Vilenius, E.; Mall, U.
2008-01-01
We describe the performance evaluation of a sample of InGaAs detectors from which the best unit had to be selected for the flight model of the SIR-2 NIR-spectrometer to be flown on the Chandrayaan-1 mission in 2008.
Radargrammetry on three planets
Kirk, R.L.; Howington-Kraus, E.; Chen, Jun; Jiang, Jie; Nayak, Shailesh
2008-01-01
Synthetic Aperture Radar (SAR) can provide useful images in situations where passive optical imaging cannot, either because the microwaves used can penetrate atmospheric clouds, because active imaging can "see in the dark," or both. We have participated in the NASA Magellan mission to Venus in the 1990s and the current NASA-ESA Cassini-Huygens mission to Saturn and Titan, which have used SAR to see through the clouds of Venus and Titan, respectively, and have developed software and techniques for the production of digital topographic models (DTMs) from radar stereopairs. We are currently preparing for similar radargrammetric analysis of data from the Mini-RF instrument to be carried to the Moon on both the ISRO Chandrayaan-1 and NASA Lunar Reconnaissance Orbiter (LRO) missions later in 2008. These instruments are intended to image the permanently shadowed areas at the lunar poles and even see below the surface to detect possible water ice deposits. In this paper, we describe our approach to radargrammetric topographic mapping, based on the use of the USGS ISIS software system to ingest and prepare data, and the commercial stereoanalysis software SOCET SET (® BAE Systems), augmented with custom sensor models we have implemented, for DTM production and editing. We describe the commonalities and differences between the various data sets, and some of the lessons learned, both radargrammetric and geoscientific.
Geological features and evolution history of Sinus Iridum, the Moon
NASA Astrophysics Data System (ADS)
Qiao, Le; Xiao, Long; Zhao, Jiannan; Huang, Qian; Haruyama, Junichi
2014-10-01
The Sinus Iridum region is one of the important candidate landing areas for the future Chinese lunar robotic and human missions. Considering its flat topography, abundant geomorphic features and complex evolutionary history, this region shows great significance to both lunar science and landing exploration, including powered descent, surface trafficability and in-situ exploration. First, we use Lunar Reconnaissance Orbiter (LRO) Altimeter (LOLA) and Camera (LROC) data to characterize regional topographic and geomorphological features within Sinus Iridum, e.g., wrinkle ridges and sinuous rilles. Then, we deduce the iron and titanium content for the mare surface using the Clementine ultraviolet-visible (UVVIS) data and generate mineral absorption features using the Chandrayaan-1 Moon Mineralogy Mapper (M3) spectrometer data. Later, we date the mare surface using crater size-frequency distribution (CSFD) method. CSFD measurements show that this region has experienced four major lava infilling events with model ages ranging from 3.32 Ga to 2.50 Ga. The regional magmatic activities evolved from Imbrian-aged low-titanium to Eratosthenian-aged medium-titanium. The inner Sinus Iridum is mainly composed of pyroxene-rich basalts with olivine abundance increasing with time, while the surrounding highlands have a feldspar-dominated composition. In the northern wall of Sinus Iridum, some potential olivine-rich materials directly excavated from the lunar mantle are visible. The Sinus Iridum region is an ideal target for future landing exploration, we propose two candidate landing sites for the future Chinese robotic and human missions.
Radiation exposure in the moon environment
NASA Astrophysics Data System (ADS)
Reitz, Guenther; Berger, Thomas; Matthiae, Daniel
2012-12-01
During a stay on the moon humans are exposed to elevated radiation levels due to the lack of substantial atmospheric and magnetic shielding compared to the Earth's surface. The absence of magnetic and atmospheric shielding allows cosmic rays of all energies to impinge on the lunar surface. Beside the continuous exposure to galactic cosmic rays (GCR), which increases the risk of cancer mortality, exposure through particles emitted in sudden nonpredictable solar particle events (SPE) may occur. SPEs show an enormous variability in particle flux and energy spectra and have the potential to expose space crew to life threatening doses. On Earth, the contribution to the annual terrestrial dose of natural ionizing radiation of 2.4 mSv by cosmic radiation is about 1/6, whereas the annual exposure caused by GCR on the lunar surface is roughly 380 mSv (solar minimum) and 110 mSv (solar maximum). The analysis of worst case scenarios has indicated that SPE may lead to an exposure of about 1 Sv. The only efficient measure to reduce radiation exposure is the provision of radiation shelters. Measurements on the lunar surface performed during the Apollo missions cover only a small energy band for thermal neutrons and are not sufficient to estimate the exposure. Very recently some data were added by the Radiation Dose Monitoring (RADOM) instrument operated during the Indian Chandrayaan Mission and the Cosmic Ray Telescope (CRaTER) instrument of the NASA LRO (Lunar Reconnaisance Orbiter) mission. These measurements need to be complemented by surface measurements. Models and simulations that exist describe the approximate radiation exposure in space and on the lunar surface. The knowledge on the radiation exposure at the lunar surface is exclusively based on calculations applying radiation transport codes in combination with environmental models. Own calculations are presented using Monte-Carlo simulations to calculate the radiation environment on the moon and organ doses on the surface of the moon for an astronaut in an EVA suit and are compared with measurements. Since it is necessary to verify/validate such calculations with measurement on the lunar surface, a description is given of a radiation detector for future detailed surface measurements. This device is proposed for the ESA Lunar Lander Mission and is capable to characterize the radiation field concerning particle fluencies, dose rates and energy transfer spectra for ionizing particles and to measure the dose contribution of secondary neutrons.
Archive & Data Management Activities for ISRO Science Archives
NASA Astrophysics Data System (ADS)
Thakkar, Navita; Moorthi, Manthira; Gopala Krishna, Barla; Prashar, Ajay; Srinivasan, T. P.
2012-07-01
ISRO has kept a step ahead by extending remote sensing missions to planetary and astronomical exploration. It has started with Chandrayaan-1 and successfully completed the moon imaging during its life time in the orbit. Now, in future ISRO is planning to launch Chandrayaan-2 (next moon mission), Mars Mission and Astronomical mission ASTROSAT. All these missions are characterized by the need to receive process, archive and disseminate the acquired science data to the user community for analysis and scientific use. All these science missions will last for a few months to a few years but the data received are required to be archived, interoperable and requires a seamless access to the user community for the future. ISRO has laid out definite plans to archive these data sets in specified standards and develop relevant access tools to be able to serve the user community. To achieve this goal, a Data Center is set up at Bangalore called Indian Space Science Data Center (ISSDC). This is the custodian of all the data sets of the current and future science missions of ISRO . Chandrayaan-1 is the first among the planetary missions launched/to be launched by ISRO and we had taken the challenge and developed a system for data archival and dissemination of the payload data received. For Chandrayaan-1 the data collected from all the instruments are processed and is archived in the archive layer in the Planetary Data System (PDS 3.0) standards, through the automated pipeline. But the dataset once stored is of no use unless it is made public, which requires a Web-based dissemination system that can be accessible to all the planetary scientists/data users working in this field. Towards this, a Web- based Browse and Dissemination system has been developed, wherein users can register and search for their area of Interest and view the data archived for TMC & HYSI with relevant Browse chips and Metadata of the data. Users can also order the data and get it on their desktop in the PDS. For other AO payloads users can view the metadata and the data is available through FTP site. This same archival and dissemination strategy will be extended for the next moon mission Chandrayaan-2. ASTROSAT is going to be the first multi-wavelength astronomical mission for which the data is archived at ISSDC. It consists of five astronomical payloads that would allow simultaneous multi-wavelengths observations from X-ray to Ultra-Violet (UV) of astronomical objects. It is planned to archive the data sets in FITS. The archive of the ASTROSAT will be done in the Archive Layer at ISSDC. The Browse of the Archive will be available through the ISDA (Indian Science Data Archive) web site. The Browse will be IVOA compliant with a search mechanism using VOTable. The data will be available to the users only on request basis via a FTP site after the lock in period is over. It is planned that the Level2 pipeline software and various modules for processing the data sets will be also available on the web site. This paper, describes the archival procedure of Chandrayaan-1 and archive plan for the ASTROSAT, Chandrayaan-2 and other future mission of ISRO including the discussion on data management activities.
Lunar International Science Coordination/Calibration Targets
NASA Technical Reports Server (NTRS)
Head, J. W.; Issacson, P.; Petro, N.; Runyon, C.; Ohtake, M.; Foing, B.; Grande, M.
2007-01-01
A new era of international lunar exploration has begun and will expand over the next four years with data acquired from at least four sophisticated remote sensing missions: KAGUYA (SELENE) [Japan], Chang'E [China], Chandrayaan-l [India], and LRO [United States]. It is recognized that this combined activity at the Moon with modern sophisticated sensors wi II provide unprecedented new information about the Moon and will dramatically improve our understanding of Earth's nearest neighbor. It is anticipated that the blooming of scientific exploration of the Moon by nations involved in space activities will seed and foster peaceful international coordination and cooperation that will benefit all. Summarized here are eight Lunar International Science Coordination/Calibration Targets (L-ISCT) that are intended to a) allow cross-calibration of diverse multi-national instruments and b) provide a focus for training young scientists about a range of lunar science issues. The targets, discussed at several scientific forums, were selected for coordinated science and instrument calibration of orbital data. All instrument teams are encouraged to participate in a coordinated activity of early-release data that will improve calibration and validation of data across independent and diverse instruments.
Searching for water at the south pole of the Moon with a lunar impactor
NASA Astrophysics Data System (ADS)
Banerdt, B.; Alkalai, L.
The idea that water on the Moon s surface would eventually migrate to the lunar poles and be cold-trapped there indefinitely was first proposed in the 1960 s and subsequent modeling has generally confirmed this possibility The existence of such polar water deposits is critical for planning future lunar exploration and it has important implications for lunar science as well However observations from the Earth and orbiting spacecraft have not been able to categorically confirm or deny the existence of ice in permanently shadowed depressions at the lunar poles The next generation of orbiters such as LRO Chandrayaan and SELENE while making important observations will be capable only of providing circumstantial evidence of water and its concentration and the challenges of landing and operating a spacecraft in the extreme conditions of permanent night are considerable We have studied a low-cost alternative approach similar to NASA s Deep Impact mission for enabling a direct detection of the existence of water in the upper few meters of the lunar subsurface Our mission uses a 1000-kg spacecraft to impact the lunar surface at 2 5-3 km sec from a geocentric trajectory This impact will excavate a crater 20 meters in diameter ejecting over 50 cubic meters of regolith Assuming a few volume percent water this ejecta would include several metric tons of ice Spectral evidence for water may be found across the electromagnetic spectrum from microwave and infrared to ultraviolet This could be derived from the immediate impact flash vapor produced through secondary
Potential Lunar In-Situ Resource Utilization Experiments and Mission Scenarios
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.
2010-01-01
The extraction and use of resources on the Moon, known as In-Situ Resource Utilization (ISRU), can potentially reduce the cost and risk of human lunar exploration while also increasing science achieved. By not having to bring all of the shielding and mission consumables from Earth and being able to make products on the Moon, missions may require less mass to accomplish the same objectives, carry more science equipment, go to more sites of exploration, and/or provide options to recover from failures not possible with delivery of spares and consumables from Earth alone. The concept of lunar ISRU has been considered and studied for decades, and scientists and engineers were theorizing and even testing concepts for how to extract oxygen from lunar soil even before the Apollo 11 mission to the Moon. There are four main areas where ISRU can significantly impact how human missions to the Moon will be performed: mission consumable production, civil engineering and construction, energy production, storage, and transfer, and manufacturing and repair. The area that has the greatest impact on mission mass, hardware design and selection, and mission architecture is mission consumable production, in particular, the ability to make propellants, life support consumables, and fuel cell reagents. Mission consumable production allows for refueling and reuse of spacecraft, increasing power production and storage, and increased capabilities and failure tolerance for crew life support. The other three areas allow for decreased mission risk due to radiation and plume damage, alternative power systems, and failure recover capabilities while also enabling infrastructure growth over Earth delivered assets. However, while lunar ISRU has significant potential for mass, cost, and risk reduction for human lunar missions, it has never been demonstrated before in space. To demonstrate that ISRU can meet mission needs and to increase confidence in incorporating ISRU capabilities into mission architectures, terrestrial laboratory and analog field testing along with robotic precursor missions are required. A stepwise approach with international collaboration is recommended. The first step is to understand the resources available through orbital and surface exploration missions. Resources of particular interest are hydrogen, hydroxyl, water, and other polar volatile resources recently measured by Chandrayaan, Lunar Reconnaissance Orbiter (LRO), and the Lunar Crater Observation and Sensing Satellite (LCROSS). The second step is to demonstrate critical aspects of ISRU systems to prove ISRU is feasible under lunar environmental and resource conditions (ex. subscale oxygen extraction from regolith). The third step is to perform integrated missions with ISRU and other connected systems, such as power, consumable storage, surface mobility, and life support at a relevant mission scale to demonstrate ISRU capabilities as well as the critical interfaces with other exploration systems. If possible, the mission should demonstrate the use of ISRU products (ex. in a rocket engine or fuel cell). This dress rehearsal mission would be the final step before full implementation of ISRU into human missions, and may be performed during human lunar exploration activities. This stepwise approach is the most conservative approach, and may only be possible with international cooperation due to the limited number of robotic missions each nation/space agency can perform within their budget.
NASA Astrophysics Data System (ADS)
Harada, Yuki; Futaana, Yoshifumi; Barabash, Stas; Wieser, Martin; Wurz, Peter; Bhardwaj, Anil; Asamura, Kazushi; Saito, Yoshifumi; Yokota, Shoichiro; Tsunakawa, Hideo; Machida, Shinobu
2014-05-01
We present the observations of energetic neutral atoms (ENAs) produced at the lunar surface in the Earth's magnetotail. When the Moon was located in the terrestrial plasma sheet, Chandrayaan-1 Energetic Neutrals Analyzer (CENA) detected hydrogen ENAs from the Moon. Analysis of the data from CENA together with the Solar Wind Monitor (SWIM) onboard Chandrayaan-1 reveals the characteristic energy of the observed ENA energy spectrum (the e-folding energy of the distribution function) ˜100 eV and the ENA backscattering ratio (defined as the ratio of upward ENA flux to downward proton flux) <˜0.1. These characteristics are similar to those of the backscattered ENAs in the solar wind, suggesting that CENA detected plasma sheet particles backscattered as ENAs from the lunar surface. The observed ENA backscattering ratio in the plasma sheet exhibits no significant difference in the Southern Hemisphere, where a large and strong magnetized region exists, compared with that in the Northern Hemisphere. This is contrary to the CENA observations in the solar wind, when the backscattering ratio drops by ˜50% in the Southern Hemisphere. Our analysis and test particle simulations suggest that magnetic shielding of the lunar surface in the plasma sheet is less effective than in the solar wind due to the broad velocity distributions of the plasma sheet protons.
NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)
NASA Technical Reports Server (NTRS)
Elphic, Richard; Delory, Gregory; Colaprete, Anthony; Horanyi, Mihaly; Mahaffy, Paul; Hine, Butler; McClard, Steven; Grayzeck, Edwin; Boroson, Don
2011-01-01
Nearly 40 years have passed since the last Apollo missions investigated the mysteries of the lunar atmosphere and the question of levitated lunar dust. The most important questions remain: what is the composition, structure and variability of the tenuous lunar exosphere? What are its origins, transport mechanisms, and loss processes? Is lofted lunar dust the cause of the horizon glow observed by the Surveyor missions and Apollo astronauts? How does such levitated dust arise and move, what is its density, and what is its ultimate fate? The US National Academy of Sciences/National Research Council decadal surveys and the recent "Scientific Context for Exploration of the Moon" (SCEM) reports have identified studies of the pristine state of the lunar atmosphere and dust environment as among the leading priorities for future lunar science missions. These measurements have become particularly important since recent observations by the Lunar Crater Observation and Sensing Satellite (LCROSS) mission point to significant amounts of water and other volatiles sequestered within polar lunar cold traps. Moreover Chandrayaan/M3, EPOXI and Cassini/VIMS have identified molecular water and hydroxyl on lunar surface regolith grains. Variability in concentration suggests these species are likely to be present in the exosphere, and thus constitute a source for the cold traps. NASA s Lunar Atmosphere and Dust Environment Explorer (LADEE) is currently under development to address these goals. LADEE will determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. LADEE will also determine whether dust is present in the lunar exosphere, and reveal its sources and variability. LADEE s results are relevant to surface boundary exospheres and dust processes throughout the solar system, will address questions regarding the origin and evolution of lunar volatiles, and will have implications for future exploration activities. LADEE will be the first mission based on the Ames Common Bus design. LADEE employs a high heritage instrument payload: a Neutral Mass Spectrometer (NMS), an Ultraviolet/Visible Spectrometer (UVS), and the Lunar Dust Experiment (LDEX). It will also carry a space terminal as part of the Lunar Laser Communication Demonstration (LLCD), which is a technology demonstration. LLCD will also supply a ground terminal. LLCD is funded by the Space Operations Mission Directorate (SOMD), managed by GSFC, and built by MIT Lincoln Lab. NMS was directed to the Goddard Space Flight Center (GSFC) and UVS to Ames Research Center (ARC). LDEX was selected through the Stand Alone Missions of Opportunity Notice (SALMON) Acquisition Process, and is provided by the University of Colorado at Boulder. The LADEE NMS covers a m/z range of 2-150 and draws its design from mass spectrometers developed at GSFC for the MSL/SAM, Cassini Orbiter, CONTOUR, and MAVEN missions. The UVS instrument is a next-generation, high-reliability version of the LCROSS UV-Vis spectrometer, spanning 250-800 nm wavelength, with high (<1 nm) spectral resolution. UVS will also perform dust occultation measurements via a solar viewer optic. LDEX senses dust impacts in situ, at LADEE orbital altitudes of 50 km and below, with a particle size range of between 100 nm and 5 micron. Dust particle impacts on a large hemispherical target create electron and ion pairs. The latter are focused and accelerated in an electric field and detected at a microchannel plate. LADEE is an important part of NASA s portfolio of near-term lunar missions; launch is planned for May, 2013. The lunar atmosphere is the most accessible example of a surface boundary exosphere, and may reveal the sources and cycling of volatiles. Dynamic dust activity must be accounted for in the design and operation of lunar surface operations.
NASA Astrophysics Data System (ADS)
Lange, C.
2009-04-01
With an increased interest on the moon within the last years, at least with several missions in orbit or under development (SELENE/Japan, Chang'e/China, Chandrayaan/India and others), there is a strong demand within the German science community to participate in this initiative, building-up a national competence regarding lunar exploration. For this purpose, a Phase-0 analysis for a small lunar semi-hard landing scenario has been performed at DLR to foster future lunar exploration missions. This study's scope was to work out a more detailed insight into the design drivers and challenges and their impact on mass and cost budgets for such a mission. LAPIS has been dedicated to the investigation of the seismic activities of the moon, additionally to some other geophysical in-situ measurements at the lunar surface. In fact, the current status of the knowledge and understanding of lunar seismic activities leads to a range of open questions which have not been answered so far by the various Apollo missions in the past and could now possibly be answered by the studied LAPIS mission. Among these are the properties of the lunar core, the origin of deep and shallow moonquakes and the occurrence of micro-meteoroids. Therefore, as proposed first for LAPIS on the LEO mission, a payload of a short period micro-seismometer, based on European and American predevelopments, has been suggested. A staged mission scenario will be described, using a 2-module spacecraft with a propulsion part and a landing part, the so called LAPIS-PROP and LAPIS-LAND. In this scenario, the LAPIS-PROP module will do the cruise, until the spacecraft reaches an altitude of 100 m above the moon, after which the landing module will separate and continue to the actual semi-hard landing, which is based on deformable structures. Further technical details, e.g. considering the subsystem technologies, have been addressed within the performed study. These especially critical and uniquely challenging issues, such as the structural damping of the landing impact, the communication subsystem and the thermal subsystem have been investigated to some extent and will be described further. The described study will analyze in a unique way the technology, which is necessary to realize such a rather unconventional mission scenario, which will furthermore to a great extent contribute to the current knowledge on seismic activities on the moon.
Future lunar exploration activities in ESA
NASA Astrophysics Data System (ADS)
Houdou, B.; Carpenter, J. D.; Fisackerly, R.; Koschny, D.; Pradier, A.; di Pippo, S.; Gardini, B.
2009-04-01
Introduction Recent years have seen a resurgence of interest in the Moon and various recent and coming orbital missions including Smart-1, Kaguya, Chandrayaan-1and Lunar Reconnaissance Orbiter are advancing our understanding. In 2004 the US announced a new Vision for Space Exploration [1], whose objectives are focused towards human missions to the Moon and Mars. The European Space Agency has established similar objectives for Europe, described in [2] and approved at the ESA ministerial council (2009). There is considerable potential for international cooperation in these activities, as formulated in the recently agreed Global Exploration Strategy [3]. Present lunar exploration activities at ESA emphasise the development of European technologies and capabilities, to enable European participation in future international human exploration of the Moon. A major element in this contribution has been identified as a large lunar cargo lander, which would fulfill an ATV-like function, providing logistical support to human activities on the Moon, extending the duration of sorties and the capabilities of human explorers. To meet this ultimate goal, ESA is currently considering various possible development approaches, involving lunar landers of different sizes. Lunar Lander Mission Options A high capacity cargo lander able to deliver consumables, equipment and small infrastructure, in both sortie and outpost mission scenarios, would use a full Ariane 5 launch and is foreseen in the 2020-2025 timeframe. ESA is also considering an intermediate, smaller-scale mission beforehand, to mature the necessary landing technologies, to demonstrate human-related capabilities in preparation of human presence on the Moon and in general to gain experience in landing and operating on the lunar surface. Within this frame, ESA is currently leading several feasibility studies of a small lunar lander mission, also called "MoonNEXT". This mission is foreseen to be to be launched from Kourou with a Soyuz in the 2015-2018 timeframe. The mission would be a first step to-wards mastering the automated precision landing with hazard avoidance required for a future cargo lander and essential for landing at the South Pole Aitken basin (SPA), the provisional MoonNEXT landing site. In addition the mission carries a strawman payload with several technology demonstration and testing packages, which will investigate advanced fuel cell and life sup-port technologies. A small MoonNEXT-like lander (Soyuz-launched) constitutes one of several possible mission types for a first landing on the Moon. The coming year will see additional investigations into other possibilities, including a medium-size lander, launched in a shared Ariane 5 configuration, which could provide a better level of validation of the landing technologies with respect to the targeted large lunar lander, as well as a more significant payload mass. Ultimately, the candidate intermediate mission options will be traded off to find the best balance of cost, mission implementation timeframe, development effort and representability. The reference intermediate lunar lander mission will be established so as to proceed with industrial Phase B1 activities in late 2009. It is also planned to study the large lunar lander based on a full Ariane 5 launch, in order to elaborate the design and to enter in more detailed discussion with the international partners. Possible Payload Packages: Multiple domains can be covered, depending also on the available pay-load mass (thus on the lander size): • Environmental characterization and monitoring: radiation, dust, micrometeorite impacts, temperature etc. (medium TRL) • Technology experiments for exploration preparation: e.g. life support and life sciences, small-scale or subsystem for ISRU, fuel cell etc. (low TRL) • Mobility • Payload transportation and manipulation • Logistics: infrastructure, equipment, consumables etc. The primary objective of any European Moon lander will be to enhance European capabilities for human exploration. It is expected that there will be provision for a significant inclusion of scientific interests. References: [1] National Aeronautics and Space Administration (NASA), The Vision for Space Exploration, NP-2004-01-334-HQ, NASA, Washington D.C, (2004). [2] ESA declaration on Transporation and Human Exploration (2008). [3] The Global Exploration Strategy, available at http://www.esa.int/SPECIALS/Space_Exploration_Strategy/SEMDAM0YUFF_0.html.
Lunar pyroclastic deposits as seen by the Mini-SAR on Chandrayaan-1
NASA Astrophysics Data System (ADS)
Thomson, B. J.; Spudis, P.; Bussey, B.; Neisch, C.
2009-12-01
The principal objective of the Mini-SAR (synthetic aperture radar) instrument on the Chandrayaan-1 spacecraft is the investigation of permanently shadowed regions in the lunar polar regions. But additional radar observations have been made of selected non-polar targets for comparison with observations of polar targets, as well as for their own intrinsic scientific merit. These non-polar targets include former Apollo and other landing sites, lunar pyroclastic deposits, and select fresh and degraded impact craters. Here we focus on observations of a maar-type volcanic feature on the floor of Schrödinger Basin, which has been previously interpreted as a pyroclastic deposit [1]. Lunar pyroclastic deposits have a unique physical texture - glass spheres - resulting from their origin in fire fountains associated with basaltic eruptions. Schrödinger Basin is a 320 km diameter peak ring basin centered at 75°S, 138°E. Based on crater counts and superposition relationships, it appears to be only slightly older than the Orientale Basin, making it among the youngest and freshest lunar basins of its size [2]. Mini-SAR observations cover half of the basin closest to the south pole, including a portion of the central smooth plains material. Circular polarization ratio (CPR) values for the dark mantle deposits on the floor of Schrödinger are 0.2 to 0.3, which are lower than the median value of about 0.5 for the surrounding terrain. High CPR values can result from rough, rocky surfaces or from the presence of ice. Since the floor of Schrödinger is not in shadow, low CPR values here are likely indicative of a low abundance of scattering elements (e.g., rocks), consistent with the known properties of pyroclastic deposits. Comparisons of the radar return of the Schrödinger floor deposits with other dark mantle deposits are ongoing. [1] Shoemaker, E.M. et al. (1994) Science, 266, 1851-1854. [2] Wilhelms, D.E. (1987) USGS Prof Paper 1348, 302 pp.
Mineralogy of the Lunar Crust in Spatial Context: First Results from the Moon Mineralogy Mapper (M3)
NASA Technical Reports Server (NTRS)
Pieters, C. M.; Boardman, J.; Buratti, B.; Clark, R.; Combe, J-P; Green, R.; Goswami, J. N.; Head, J. W., III; Hicks, M.; Isaacson, P.;
2009-01-01
India's Chandrayaan-1 successfully launched October 22, 2008 and went into lunar orbit a few weeks later. Commissioning of instruments began in late November and was near complete by the end of the year. Initial data for NASA's Moon Mineralogy Mapper (M3) were acquired across the Orientale Basin and the science results are discussed here. M 3 image-cube data provide mineralogy of the surface in geologic context. A major new result is that the existence and distribution of massive amounts of anorthosite as a continuous stratigraphic crustal layer is now irrefutable.
NASA Technical Reports Server (NTRS)
Gaskin, Jessica A.; Carini, Gabriella A.; Wei, Chen; Elsner, Ronald F.; Kramer, Georgiana; De Geronimo, Gianluigi; Keister, Jeffrey W.; Zheng, Li; Ramsey, Brian D.; Rehak, Pavel;
2009-01-01
Over the past three years NASA Marshall Space Flight Center has been collaborating with Brookhaven National Laboratory to develop a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) intended for fine surface mapping of the light elements of the moon. The value of fluorescence spectrometry for surface element mapping is underlined by the fact that the technique has recently been employed by three lunar orbiter missions; Kaguya, Chandrayaan-1, and Chang e. The SDD-XRS instrument we have been developing can operate at a low energy threshold (i.e. is capable of detecting Carbon), comparable energy resolution to Kaguya (<150 eV at 5.9 keV) and an order of magnitude lower power requirement, making much higher sensitivities possible. Furthermore, the intrinsic radiation resistance of the SDD makes it useful even in radiation-harsh environments such as that of Jupiter and its surrounding moons.
Community Report and Recommendations from International Lunar Exploration Working Group (ILEWG)
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
2016-07-01
The International Lunar Exploration Working Group (ILEWG) was established in April 1995 at a meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon. It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and exploration information about the Moon. We refer to COSPAR and ILEWG ICEUM and lunar conferences and declarations [1-18], present the GLUC/ICEUM11 declaration and give a report on ongoing relevant ILEWG community activities. ILEWG supported community forums, ILEWG EuroMoonMars field campaigns and technology validation activities, as well as Young Lunar Explorers events, and activities with broad stakeholders. We discuss how lunar missions SMART-1, Kaguya, Chang'E1&2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE, Chang'E3 and upcoming missions contribute to lunar exploration objectives & roadmap towards the Moon Village. GLUC/ICEUM11 declaration: "467 International Lunar Explorers, registered delegates from 26 countries, assembled at GLUC Global Lunar Conference including the 11th ILEWG Conference on Exploration and Utilisation of the Moon (ICEUM11) in Beijing. The conference engaged scientists, engineers, enthusiast explorers, agencies and organisations in the discussion of recent results and activities and the review of plans for exploration. Space agencies representatives gave the latest reports on their current lunar activities and programmes. GLUC-ICEUM11 was a truly historical meeting that demonstrated the world-wide interest in lunar exploration, discovery, and science. More than 400 abstracts were accepted for oral and poster presentations in the technical sessions, organised in 32 sessions within 4 symposia: Science and Exploration; Technology and Resource Utilisation; Infrastructure and Human aspects; Moon, Space and Society. The latest technical achievements and results of recent missions (SMART-1, Kaguya, Chang'E1, Chandrayaan-1, LCROSS and LRO) were discussed at a plenary panel and technical sessions, with the Lunar Reconnaissance Orbiter (LRO) still in operation. Chang'E1 has generated many useful results for the community. Four plenary panel sessions were conducted: 1. What are the plans? 2. New mission results; 3. From space stations and robotic precursors to lunar bases; 4. Moon, Space, Society The participants summarised their findings, discussions and recommend o continue efforts by agencies and the community on previous ICEUM recommendations, and the continuation of the ILEWG forum, technical groups activities and pilot projects. 1. Science and exploration - World-wide access to raw and derived (geophysical units) data products using consistent formats and coordinate systems will maximize return on investment. We call to develop and implement plans for generation, validation, and release of these data products. Data should be made available for scientific analysis and supporting the development and planning of future missions - There are still Outstanding Questions: Structure and composition of crust, mantle, and core and implications for the origin and evolution of the Earth-Moon system; Timing, origin, and consequences of late heavy bombardment; Impact processes and regolith evolution; Nature and origin of volatile emplacement; Implications for resource utilization. These questions require international cooperation and sharing of results in order to be answered in a cost-effective manner - Ground truth information on the lunar far side is missing and needed to address many important scientific questions, e.g. with a sample return from South Pole- Aitken Basin - Knowledge of the interior is poor relative to the surface, and is needed to address a number of key questions, e.g. with International Lunar Network for seismometry and other geophysical measurements - Lunar missions will be driven by exploration, resource utilization, and science; we should consider minimum science payload for every mission, e.g., landers and rovers should carry instruments to determine surface composition and mineralogy - It is felt important to have a shared database about previous missions available for free, so as to provide inputs to future missions, including a gap analysis of needed measurements. Highly resolved global data sets are required. Autonomous landing and hazard avoidance will depend on the best topographic map of the Moon, achievable by combining shared data. - New topics such as life sciences, partial gravity processes on the Moon should be followed in relation to future exploration needs. 2. Technologies and resources - A number of robotic missions to the Moon are now undertaken independently by various nations, with a degree of exchange of information and coordination. That should increase towards real cooperation, still allowing areas of competition for keeping the process active, cost-effective and faster. - Lunar landers, pressurized lunar rover projects as presented from Europe, Asia and America are important steps that can create opportunities for international collaboration, within a coordinated village of robotic precursors and assistants to crew missions. - We have to think about development, modernization of existing navigation capabilities, and provision of lunar positioning, navigation and data relay assets to support future robotic and human exploration. New concepts and new methods for transportation have attracted much attention and are of great potential. 3. Infrastructures and human aspects - It is recommended to have technical sessions and activities dealing with different aspects of human adaptation to space environments, the modeling of sub-systems, microbial protection and use of inflatable technologies - While the Moon is the best and next logical step in human exploration, we should make best use of the space stations as stepping stones for exploration and human spaceflight beyond Low Earth Orbit. - Further research is needed on lunar dust aspects in regard to humans and interaction with habitats. We note high interest in CELSS for Moon and Mars bases, and recommend further research and development. - We recommend the development and use of terrestrial analogues research sites and facilities, for technology demonstrations, comparative geology and human performance research, and public engagement. We endorse the proposal of development of a site at La Reunion for international Moon-Mars analogue research. 4. Moon, Space, Society and Young Explorers - We consider that the current legal regime as set out in the Outer Space Treaty and the Moon agreement are satisfactory for current and future missions, but may require further clarification for future exploration. Issues of transparency and security will need to be addressed. - Great things are happening for Young Lunar Explorers, with inspiring missions and hands-on activities as coordinated by ILEWG. Lunar exploration is encouraging students of all ages to pursue higher education. - More possibilities for participatory engagement should be offered to the society for example via interdisciplinary activities with the humanities. - We appreciate the work from COSPAR panel on Exploration PEX that should be shared further. - Continued cooperation should be enforced at all levels. The space community feels strongly that joining the forces of space faring nations to explore the Moon should be seriously implemented, with the views of expanding a Global Robotic Village and building in the long run a Manned International Lunar Base. - We propose that a panel be formed through ILEWG with the help of IAF and Chinese Society of Astronautics in cooperation with space agencies, COSPAR and other stakeholders in order to initiate a permanent International Space Exploration Governance Forum We, the participants of the GLUC-ICEUM11 conference, commit to an enhanced global cooperation towards international lunar exploration for the benefit of humankind. Endorsed by the delegates of GLUC-ICEUM11" References: [1] 1st International Lunar Workshop, Balsiger H. et al., Editors, European Space Agency, 1994. ESA-SP-1170. [2] 2nd International Lunar Workshop, Kyoto, H. Mizutani, editor, Japan Space Forum Publisher, 1997. [3] 3rd International Lunar Workshop, Moscow 1998, E. Galimov, editor. [4] ICEUM4, ESTEC, 2000, ESA SP-462, B.H. Foing & M. Perry, editors. [5] ICEUM5, Hawaii Nov 2003, Durst S.M. et al, Editors, Vol 108, 1-576 pp, Science and Technology Series, American Astronautical Society, 2004. [6] ICEUM6, Udaipur 2004, Bhandari N., Editor, Journal Earth System Science, India, 114, No6, Dec 2005, pp. 573-841. [7] ICEUM7, Toronto Sept 2005, sci.esa.int/ilewg. [8] ICEUM8, Beijing July 2006, Journal of Chinese Society of Astronautics, Vol. 28 Sup., 2007, Ji W., Editor. [9] ICEUM9, Sorrento, Italy, Foing B., Espinasse S., Kosters G., Editors. http://sci.esa.int/iceum9, Dec. 2007), [11] Ehrenfreund, P., Foing, B.H., Cellino, A. Editors, The Moon and Near Earth Objects, ASR Vol 37, 1, 2006. [12] Foing, B.H. et al editors, 'Astronomy and Space Science from the Moon', ASR 14, 6, 1994. [13] Ip W.-H., Foing, B.H., Masson Ph.L., editors, The Moon and Mars, ASR Vol 23, 11, 1999. [14] Foing, B.H. et al, editor, Lunar Exploration, Planetary and Space Science, Vol 50, 14-15, 2002. [15] Foing, B.H., Heather, D. editors, 'Lunar Exploration 2000', ASR Vol 30, Nr 8, 2002. [16] Huntress, W. et al 'The next steps in exploring deep space - A cosmic study by the IAA', Acta Astronautica, Vol 58, Issues 6-7, 2006, p302-377. [17] http://sci.esa.int/ilewg/43654-declaration-iceum10-leag-srr-florida-2008/ [18] Ehrenfreund P. et al (COSPAR planetary exploration panel report) 2012, ASR Vol 49, Nr 1, pp. 2-48.
Report from International Lunar Exploration Working Group (ILEWG) to COSPAR
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
We refer to COSPAR and ILEWG ICEUM and lunar conferences and declarations [1-18]. We discuss how lunar missions SMART-1, Kaguya, Chang'E1&2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE, Chang'E3 and upcoming missions contribute to lunar exploration objectives & roadmap. We present the GLUC/ICEUM11 declaration and give a report on ongoing relevant ILEWG community activities, with focus on: “1. Science and exploration - World-wide access to raw and derived (geophysical units) data products using consistent formats and coordinate systems will maximize return on investment. We call to develop and implement plans for generation, validation, and release of these data products. Data should be made available for scientific analysis and supporting the development and planning of future missions - There are still Outstanding Questions: Structure and composition of crust, mantle, and core and implications for the origin and evolution of the Earth-Moon system; Timing, origin, and consequences of late heavy bombardment; Impact processes and regolith evolution; Nature and origin of volatile emplacement; Implications for resource utilization. These questions require international cooperation and sharing of results in order to be answered in a cost-effective manner - Ground truth information on the lunar far side is missing and needed to address many important scientific questions, e.g. with a sample return from South Pole-Aitken Basin - Knowledge of the interior is poor relative to the surface, and is needed to address a number of key questions, e.g. with International Lunar Network for seismometry and other geophysical measurements - Lunar missions will be driven by exploration, resource utilization, and science; we should consider minimum science payload for every mission, e.g., landers and rovers should carry instruments to determine surface composition and mineralogy - It is felt important to have a shared database about previous missions available for free, so as to provide inputs to future missions, including a gap analysis of needed measurements. Highly resolved global data sets are required. Autonomous landing and hazard avoidance will depend on the best topographic map of the Moon, achievable by combining shared data. - New topics such as life sciences, partial gravity processes on the Moon should be followed in relation to future exploration needs.” http://sci.esa.int/ilewg/ http://sci.esa.int/ilewg/47170-gluc-iceum11-beijing-2010lunar-declaration/ References: [1] 1st International Lunar Workshop, Balsiger H. et al., Editors, European Space Agency, 1994. ESA-SP-1170. [2] 2nd International Lunar Workshop, Kyoto, H. Mizutani, editor, Japan Space Forum Publisher, 1997. [3] 3rd International Lunar Workshop, Moscow 1998, E. Galimov, editor. [4] ICEUM4, ESTEC, 2000, ESA SP-462, B.H. Foing & M. Perry, editors. [5] ICEUM5, Hawaii Nov 2003, Durst S.M. et al, Editors, Vol 108, 1-576 pp, Science and Technology Series, American Astronautical Society, 2004. [6] ICEUM6, Udaipur 2004, Bhandari N., Editor, Journal Earth Sys-tem Science, India, 114, No6, Dec 2005, pp. 573-841. [7] ICEUM7, Toronto Sept 2005, sci.esa.int/ilewg. [8] ICEUM8, Beijing July 2006, Journal of Chinese Society of Astronautics, Vol. 28 Sup., 2007, Ji W., Editor. [9] ICEUM9, Sorrento, Italy, Foing B., Espinasse S., Kosters G., Editors. http://sci.esa.int/iceum9, Dec. 2007), [11] Ehrenfreund, P., Foing, B.H., Cellino, A. Editors, The Moon and Near Earth Objects, ASR Vol 37, 1, 2006. [12] Foing, B.H. et al editors, 'Astronomy and Space Science from the Moon', ASR 14, 6, 1994. [13] Ip W.-H., Foing, B.H., Masson Ph.L., editors, The Moon and Mars, ASR Vol 23, 11, 1999. [14] Foing, B.H. et al, editor, Lunar Exploration, Planetary and Space Science, Vol 50, 14-15, 2002. [15] Foing, B.H., Heather, D. editors, 'Lunar Exploration 2000', ASR Vol 30, Nr 8, 2002. [16] Huntress, W. et al 'The next steps in exploring deep space - A cosmic study by the IAA', Acta Astronautica, Vol 58, Issues 6-7, 2006, p302-377. [17] http://sci.esa.int/ilewg/43654-declaration-iceum10-leag-srr-florida-2008/ [18] Ehrenfreund P. et al (COSPAR planetary exploration panel report) 2012, ASR Vol 49, Nr 1, pp. 2-48.
2009-08-03
NASA Moon Minerology Mapper, a guest instrument onboard the Indian Space Research Organization Chandrayaan-1 mission to the moon, looks homeward. Australia is visible in the lower center of the image.
SMART-1 New Results from 2009-2010
NASA Astrophysics Data System (ADS)
Foing, Bernard
2010-05-01
We present highlights and new SMART-1 results published or obtained in 2009-2010 that are relevant for lunar science and future exploration, in relation with subsequent missions and future landers. SMART-1 is the first of ESA's Small Missions for Advanced Research and Technology [1,2,3]. Its prime objective has been achieved to demonstrate Solar Electric missions (such as Bepi-Colombo) and to test new technologies for spacecraft and instruments. The SMART-1 spacecraft was launched in 2003, as Ariane-5 auxiliary passenger, and reached on 15 March 2005 a lunar orbit 400-3000 km for a nominal science period of six months, with 1 year extension until impact on 3 September 2006. New SMART-1 lunar science and exploration results since 2009 include: - Multiangular photometry of Mare regions allowing to model scattering in planetary regoliths - The study of specific regions at different phase angles allowed to detect variations in regolith roughness - Lunar North and South polar maps and repeated high resolution images have been obtained, giving a monitoring of illumination to study potential sites relevant for future exploration. This permitted to identify SMART-1 peaks of quasi-eternal light and to derive their topography. - The SMART-1 archive observations have been used to support Kaguya, Chandrayaan-1, Chang'E 1, the US Lunar Reconnaissance Orbiter, the LCROSS impact, and to prepare subsequent landers and future human activities and lunar bases. References: [1] Foing, B. et al (2001) Earth Moon Planets, 85, 523 . [2] Racca, G.D. et al. (2002) Earth Moon Planets, 85, 379. [3] Racca, G.D. et al. (2002) PSS, 50, 1323. [4] Grande, M. et al. (2003) PSS, 51, 427. [5] Dunkin, S. et al. (2003) PSS, 51, 435. [6] Huovelin, J. et al. (2002) PSS, 50, 1345. [7] Shkuratov, Y. et al (2003) JGRE 108, E4, 1. [8] Foing, B.H. et al (2003) Adv. Space Res., 31, 2323. [9] Grande, M. et al (2007) PSS 55, 494. [10] Pinet, P. et al (2005) PSS, 53, 1309. [11] Josset J.L. et al (2006) Adv Space Res, 37, 14. [12] Foing B.H. et al (2006) Adv Space Res, 37, 6. Co-authors: B.H. Foing, B. Grieger, D. Koschny, J.-L. Josset, S. Beauvivre, V. Kaydash, Y. Shkuratov, K. Muinonen, U. Mall, A. Nathues, B. Kellett, P. Pinet, S. Chevrel, P. Cerroni, M.C. de Sanctis, M.A. Barucci, S. Erard, D. Despan, V. Shevchenko, S. Peters, A. Borst, F. Bexkens, M. Almeida, D. Frew, J.Volp, D. Heather, SMART1 Science Technology Working Team, ESTEC/SRE-S, postbus 299, 2200 AG Noordwijk, NL, Europe
Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1.
Pieters, C M; Goswami, J N; Clark, R N; Annadurai, M; Boardman, J; Buratti, B; Combe, J-P; Dyar, M D; Green, R; Head, J W; Hibbitts, C; Hicks, M; Isaacson, P; Klima, R; Kramer, G; Kumar, S; Livo, E; Lundeen, S; Malaret, E; McCord, T; Mustard, J; Nettles, J; Petro, N; Runyon, C; Staid, M; Sunshine, J; Taylor, L A; Tompkins, S; Varanasi, P
2009-10-23
The search for water on the surface of the anhydrous Moon had remained an unfulfilled quest for 40 years. However, the Moon Mineralogy Mapper (M3) on Chandrayaan-1 has recently detected absorption features near 2.8 to 3.0 micrometers on the surface of the Moon. For silicate bodies, such features are typically attributed to hydroxyl- and/or water-bearing materials. On the Moon, the feature is seen as a widely distributed absorption that appears strongest at cooler high latitudes and at several fresh feldspathic craters. The general lack of correlation of this feature in sunlit M3 data with neutron spectrometer hydrogen abundance data suggests that the formation and retention of hydroxyl and water are ongoing surficial processes. Hydroxyl/water production processes may feed polar cold traps and make the lunar regolith a candidate source of volatiles for human exploration.
Character and spatial distribution of OH/H2O on the surface of the moon seen by M3 on chandrayaan-1
Pieters, C.M.; Goswami, J.N.; Clark, R.N.; Annadurai, M.; Boardman, J.; Buratti, B.; Combe, J.-P.; Dyar, M.D.; Green, R.; Head, J.W.; Hibbitts, C.; Hicks, M.; Isaacson, P.; Klima, R.; Kramer, G.; Kumar, S.; Livo, E.; Lundeen, S.; Malaret, E.; McCord, T.; Mustard, J.; Nettles, J.; Petro, N.; Runyon, C.; Staid, M.; Sunshine, J.; Taylor, L.A.; Tompkins, S.; Varanasi, P.
2009-01-01
The search for water on the surface of the anhydrous Moon had remained an unfulfilled quest for 40 years. However, the Moon Mineralogy Mapper (M 3) on Chandrayaan-1 has recently detected absorption features near 2.8 to 3.0 micrometers on the surface of the Moon. For silicate bodies, such features are typically attributed to hydroxyl- and/or water-bearing materials. On the Moon, the feature is seen as a widely distributed absorption that appears strongest at cooler high latitudes and at several fresh feldspathic craters. The general lack of correlation of this feature in sunlit M3 data with neutron spectrometer hydrogen abundance data suggests that the formation and retention of hydroxyl and water are ongoing surficial processes. Hydroxyl/water production processes may feed polar cold traps and make the lunar regolith a candidate source of volatiles for human exploration.
A Year at the Moon on Chandrayaan-1: Moon Mineralogy Mapper Data in a Global Perspective
NASA Astrophysics Data System (ADS)
Boardman, J. W.; Pieters, C. M.; Clark, R. N.; Combe, J.; Green, R. O.; Isaacson, P.; Lundeen, S.; Malaret, E.; McCord, T. B.; Nettles, J. W.; Petro, N. E.; Staid, M.; Varanasi, P.
2009-12-01
The Moon Mineralogy Mapper, M3, a high-fidelity high-resolution imaging spectrometer on Chandrayaan-1 has completed two of its four scheduled optical periods during its maiden year in lunar orbit, collecting over 4.6 billion spectra covering most of the lunar surface. These imaging periods (November 2008-February 2009 and April 2009-August 2009) correspond to times of equatorial solar zenith angle less than sixty degrees, relative to the Chandrayaan-1 orbit. The vast majority of the data collected in these first two optical periods are in Global Mode (85 binned spectral bands from 460 to 2976 nanometers with a 2-by-2 binned angular pixel size of 1.4 milliradians). Full-resolution Target Mode data (259 spectral bands and 0.7 milliradian pixels) will be the focus of the remaining two collection periods. Chandrayaan-1 operated initially in a 100-kilometer polar orbit, yielding 70 meter Target pixels and 140 meter Global pixels. The orbit was raised on May 20, 2009, during Optical Period 2, to a nominal 200 kilometer altitude, effectively doubling the pixel spatial sizes. While the high spatial and spectral resolutions of the data allow detailed examination of specific local areas on the Moon, they can also reveal remarkable features when combined, processed and viewed in a global context. Using preliminary calibration and selenolocation, we have explored the spectral and spatial properties of the Moon as a whole as revealed by M3. The data display striking new diversity and information related to surface mineralogy, distribution of volatiles, thermal processes and photometry. Large volumes of complex imaging spectrometry data are, by their nature, simultaneously information-rich and challenging to process. For an initial assessment of the gross information content of the data set we performed a Principal Components analysis on the entire suite of Global Mode imagery. More than a dozen linearly independent spectral dimensions are present, even at the global scale. An animation of a Grand Tour Projection, sweeping a three-dimensional red/green/blue image visualization window through the M3 hyperdimensional spectral space, confirms both spatially and spectrally that the M3 data will revolutionize our understanding of our nearest celestial neighbor.
NASA Technical Reports Server (NTRS)
Boardman, J. W.; Pieters, C. M.; Green, R. O.; Clark, R. N.; Sunshine, J.; Combe, J.-P.; Isaacson, P.; Lundeen, S. R.; Malaret, E.; McCord, T.;
2010-01-01
The Moon Mineralogy Mapper (M3), a NASA Discovery Mission of Opportunity, was launched October 22, 2008 from Shriharikota in India on board the Indian ISRO Chandrayaan- 1 spacecraft for a nominal two-year mission in a 100-km polar lunar orbit. M3 is a high-fidelity imaging spectrometer with 260 spectral bands in Target Mode and 85 spectral bands in a reduced-resolution Global Mode. Target Mode pixel sizes are nominally 70 meters and Global pixels (binned 2 by 2) are 140 meters, from the planned 100-km orbit. The mission was cut short, just before halfway, in August, 2009 when the spacecraft ceased operations. Despite the abbreviated mission and numerous technical and scientific challenges during the flight, M3 was able to cover more than 95% of the Moon in Global Mode. These data, presented and analyzed here as a global whole, are revolutionizing our understanding of the Moon. Already, numerous discoveries relating to volatiles and unexpected mineralogy have been published [1], [2], [3]. The rich spectral and spatial information content of the M3 data indicates that many more discoveries and an improved understanding of the mineralogy, geology, photometry, thermal regime and volatile status of our nearest neighbor are forthcoming from these data. Sadly, only minimal high-resolution Target Mode images were acquired, as these were to be the focus of the second half of the mission. This abstract gives the reader a global overview of all the M3 data that were collected and an introduction to their rich spectral character and complexity. We employ a Principal Components statistical method to assess the underlying dimensionality of the Moon as a whole, as seen by M3, and to identify numerous areas that are low-probability targets and thus of potential interest to selenologists.
Water Detected at High Latitudes
2009-09-24
This image of the moon is from NASA Moon Mineralogy Mapper on the Indian Space Research Organization Chandrayaan-1 mission. It is a three-color composite of reflected near-infrared radiation from the sun.
Simulating the Reiner Gamma Lunar Swirl: Solar Wind Standoff Works!
NASA Astrophysics Data System (ADS)
Deca, Jan; Divin, Andrey; Lue, Charles; Ahmadi, Tara; Horányi, Mihály
2017-04-01
Discovered by early astronomers during the Renaissance, the Reiner Gamma formation is a prominent lunar surface feature. Observations have shown that the tadpole-shaped albedo marking, or swirl, is co-located with one of the strongest crustal magnetic anomalies on the Moon. The region therefore presents an ideal test case to constrain the kinetic solar wind interaction with lunar magnetic anomalies and its possible consequences for lunar swirl formation. All known swirls have been associated with magnetic anomalies, but the opposite does not hold. The evolutionary scenario of the lunar albedo markings has been under debate since the Apollo era. By coupling fully kinetic simulations with a surface vector mapping model based on Kaguya and Lunar Prospector magnetic field measurements, we show that solar wind standoff is the dominant process to have formed the lunar swirls. It is an ion-electron kinetic interaction mechanism that locally prevents weathering by solar wind ions and the subsequent formation of nanophase iron. The correlation between the surface weathering process and the surface reflectance is optimal when evaluating the proton energy flux, rather than the proton density or number flux. This is an important result to characterise the primary process for surface darkening. In addition, the simulated proton reflection rate is for the first time directly compared with in-orbit flux measurements from the SARA:SWIM ion sensor onboard the Chandrayaan-1 spacecraft. The agreement is found excellent. Understanding the relation between the lunar surface albedo features and the co-located magnetic anomaly is essential for our interpretation of the Moon's geological history, space weathering, and to evaluate future lunar exploration opportunities. This work was supported in part by NASA's Solar System Exploration Research Virtual Institute (SSERVI): Institute for Modeling Plasmas, Atmosphere, and Cosmic Dust (IMPACT). The work by C.L. was supported by NASA grant NNX15AP89G. Resources were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. Part of this work was inspired by discussions within International Team 336: "Plasma Surface Interactions with Airless Bodies in Space and the Laboratory" at the International Space Science Institute, Bern, Switzerland. The LRO-WAC data are publicly available from the NASA PDS Imaging Node. The Wind/MFI and Wind/SWE data used in this study are available via the NASA National Space Science Data Center, Space Physics Data Facility, and the MIT Space Plasma Group. The Chandrayaan-1/SARA data are available via the Indian Space Science Data Center.
Remote detection of widespread indigenous water in lunar pyroclastic deposits
NASA Astrophysics Data System (ADS)
Milliken, Ralph E.; Li, Shuai
2017-08-01
Laboratory analyses of lunar samples provide a direct means to identify indigenous volatiles and have been used to argue for the presence of Earth-like water content in the lunar interior. Some volatile elements, however, have been interpreted as evidence for a bulk lunar mantle that is dry. Here we demonstrate that, for a number of lunar pyroclastic deposits, near-infrared reflectance spectra acquired by the Moon Mineralogy Mapper instrument onboard the Chandrayaan-1 orbiter exhibit absorptions consistent with enhanced OH- and/or H2O-bearing materials. These enhancements suggest a widespread occurrence of water in pyroclastic materials sourced from the deep lunar interior, and thus an indigenous origin. Water abundances of up to 150 ppm are estimated for large pyroclastic deposits, with localized values of about 300 to 400 ppm at potential vent areas. Enhanced water content associated with lunar pyroclastic deposits and the large areal extent, widespread distribution and variable chemistry of these deposits on the lunar surface are consistent with significant water in the bulk lunar mantle. We therefore suggest that water-bearing volcanic glasses from Apollo landing sites are not anomalous, and volatile loss during pyroclastic eruptions may represent a significant pathway for the transport of water to the lunar surface.
Identification of a New Spinel-Rich Lunar Rock Type by the Moon Mineralogy Mapper (M (sup 3))
NASA Technical Reports Server (NTRS)
Pieters, C. M.; Boardman, J.; Buratti, B.; Clark, R.; Combe, J. P.; Green, R.; Goswami, J. N.; Head, J. W., III; Hicks, M.; Isaacson, P.;
2010-01-01
The canonical characterization of the lunar crust is based principally on available Apollo, Luna, and meteorite samples. The crust is described as an anorthosite-rich cumulate produced by the lunar magma ocean that has been infused with a mix of Mgsuite components. These have been mixed and redistributed during the late heavy bombardment and basin forming events. We report a new rock-type detected on the farside of the Moon by the Moon Mineralogy Mapper (M3) on Chandrayaan-1 that does not easily fit with current crustal evolution models. The rock-type is dominated by Mg-spinel with no detectible pyroxene or olivine present (<5%). It occurs along the western inner ring of Moscoviense Basin as one of several discrete areas that exhibit unusual compositions relative to their surroundings but without morphological evidence for separate processes leading to exposure.
Simulating the Reiner Gamma Lunar Swirl: Influence of the Upstream Plasma Conditions
NASA Astrophysics Data System (ADS)
Deca, J.; Gerard, M. J.; Divin, A. V.; Lue, C.; Ahmadi, T.; Lembege, B.; Horanyi, M.
2017-12-01
The Reiner Gamma swirl formation, co-located with one of our Moon's strongest crustal magnetic anomalies, is one of the most prominent lunar surface features. Due to Reiner Gamma's fairly moderate spatial scales, it presents an ideal test case to study the solar wind interaction with its magnetic topology from an ion-electron kinetic perspective. Using a fully kinetic particle-in-cell approach, coupled with a surface vector mapping magnetic field model based on Kaguya and Lunar Prospector observations, we are able to constrain both the reflected as well as the incident flux patterns to the lunar surface. Finding excellent agreement with the in-orbit flux measurements from the SARA:SWIM ion sensor onboard the Chandrayaan-1 spacecraft and the surface albedo images from the Lunar Reconnaissance Orbiter Wide Angle Camera we conclude that (from a pure plasma physics point of view) that solar wind standoff is a viable mechanism for the formation of lunar swirls. Here we show how the reflected and incident flux patterns change under influence of the upstream plasma and magnetic field conditions. The possible consequences of crustal magnetic anomalies for lunar swirl formation are essential for the interpretation of our Moon's geological history and evolution, space weathering, and to evaluate the needs and targets for future lunar exploration opportunities.
Green, R.O.; Pieters, C.; Mouroulis, P.; Eastwood, M.; Boardman, J.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Barr, D.; Buratti, B.; Cate, D.; Chatterjee, A.; Clark, R.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, Kenneth; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriquez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.
2011-01-01
The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric, spatial, and uniformity validation effort has been pursued with selected data sets including an Earth-view data set. With this effort an initial validation of the on-orbit performance of the imaging spectrometer has been achieved, including validation of the cross-track spectral uniformity and spectral instantaneous field of view uniformity. The Moon Mineralogy Mapper is the first imaging spectrometer to measure a data set of this kind at the Moon. These calibrated science measurements are being used to address the full set of science goals and objectives for this mission. Copyright 2011 by the American Geophysical Union.
C. Pieters,; P. Mouroulis,; M. Eastwood,; J. Boardman,; Green, R.O.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Cate, D.; Chatterjee, A.; Clark, R.; Barr, D.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, K.; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriguez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.
2011-01-01
The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric, spatial, and uniformity validation effort has been pursued with selected data sets including an Earth-view data set. With this effort an initial validation of the on-orbit performance of the imaging spectrometer has been achieved, including validation of the cross-track spectral uniformity and spectral instantaneous field of view uniformity. The Moon Mineralogy Mapper is the first imaging spectrometer to measure a data set of this kind at the Moon. These calibrated science measurements are being used to address the full set of science goals and objectives for this mission.
Redistribution of Lunar Polar Water to Mid-latitudes and Its Role in Forming an OH Veneer
NASA Technical Reports Server (NTRS)
Farrell, William M.; Hurley, D. M.; Hodges, R. R.; Killen, R. M.; Halekas, J. S.; Zimmerman, M. I.; Delory, G. T.
2013-01-01
We suggest that energization processes like ion sputtering and impact vaporization can eject/release polar water molecules residing within cold trapped regions with sufficient velocity to allow their redistribution to mid-latitudes. We consider the possibility that these polar-ejected molecules can contribution to the water/OH veneer observed as a 3 micrometer IR absorption feature at mid-latitudes by Chandrayaan-1, Cassini, and EPOXI. We find this source cannot fully account for the observed IR feature, but could be a low intensity additional source.
NASA Astrophysics Data System (ADS)
Varatharajan, Indhu; Srivastava, Neeraj; Murty, Sripada V. S.
2014-07-01
A comparative assessment of the mineralogy of young basalts (∼1.2 Ga to ∼2.8 Ga) from the western nearside, Moscoviense basin, and the Orientale basin of the Moon has been made using Level 2 Moon Mineralogy Mapper (M3) data from the Chandrayaan-1 mission. Spectral data characteristics of the individual units have been generated from fresh small craters to minimize the complications due to space weathering. Representative spectra for individual units and the derived spectral parameters (band centers and integrated band depth ratio) have been used to study composition of these young basalts. A modified approach of Gaffey et al. (Gaffey, M.J., Cloutis, E.A., Kelley, M.S., Reed, K.L. [2002]. Mineralogy of asteroids. In: Asteroids III. The University of Arizona Press, Tucson, pp. 183-204) (for olivine-pyroxene mixtures) and the methodology of Adams (Adams, J.B. [1974]. J. Geophys. Res. 79, 4829-4836. http://dx.doi.org/10.1029/JB079i032p04829) (for interpreting pyroxene type) have been used to improve our understanding of the spectral behavior of these basalts. Most of the young basalts of Oceanus Procellarum are characterized by abundant olivines and they show complex volcanic history. Vast exposures of olivine concentrated units having higher abundance of olivine content than high-Ca pyroxenes are emplaced in the northern Oceanus Procellarum region. Mostly, they show distinct stratigraphic gradation with the immediately underlying units of relatively lower olivine content. The Moscoviense unit shows signatures of Fe-rich glasses along with clinopyroxenes. The basalts of Orientale basin are typically devoid of olivine and are rich in high-Ca pyroxene. Thus, mineralogy of these mare basalts which erupted during the late stage volcanism vary across the Moon’s surface; however, broader observations reveal apparently higher FeO content in the younger basalts of western nearside and Orientale region.
Research on lunar and planet development and utilization
NASA Astrophysics Data System (ADS)
Iwata, Tsutomu; Etou, Takao; Imai, Ryouichi; Oota, Kazuo; Kaneko, Yutaka; Maeda, Toshihide; Takano, Yutaka
1992-08-01
Status of the study on unmanned and manned lunar missions, unmanned Mars missions, lunar resource development and utilization missions, remote sensing exploration missions, survey and review to elucidate the problems of research and development for lunar resource development and utilization, and the techniques and equipment for lunar and planet exploration are presented. Following items were studied respectively: (1) spacecraft systems for unmanned lunar missions, such as lunar observation satellites, lunar landing vehicles, lunar surface rovers, lunar surface hoppers, and lunar sample retrieval; (2) spacecraft systems for manned lunar missions, such as manned lunar bases, lunar surface operation robots, lunar surface experiment systems, manned lunar take-off and landing vehicles, and lunar freight transportation ships; (3) spacecraft systems for Mars missions, such as Mars satellites, Phobos and Deimos sample retrieval vehicles, Mars landing explorers, Mars rovers, Mars sample retrieval; (4) lunar resource development and utilization; and (5) remote sensing exploration technologies.
APXS on board Chandrayaan-2 Rover
NASA Astrophysics Data System (ADS)
Shanmugam, M.; Sripada, V. S. Murty; Acharya, Y. B.; Goyal, S. K.
2012-07-01
Alpha Particle X-ray Spectrometer (APXS) is a well proven instrument for quantitative in situ elemental analysis of the planetary surfaces and has been successfully employed for Mars surface exploration. Chandrayaan-2, ISRO's second lunar mission having an Orbiter, Lander and Rover has provided an opportunity to explore the lunar surface with superior detectors such as Silicon Drift Detector (SDD) with energy resolution of about 150eV @ 5.9keV. The objective of the APXS instrument is to analyse several soil/rock samples along the rover traverse for the major elements with characteristic X-rays in 1 to 25keV range. The working principle of APXS involves measuring the intensity of characteristic X-rays emitted from the sample due to Alpha Particle Induced X-ray Emission (PIXE) and X-ray florescence (XRF) processes using suitable radioactive sources, allowing the determination of elements from Na to Br, spanning the energy range of 0.9 to 16keV. For this experiment ^{244}Cm radioactive source has been chosen which emits both Alpha particles (5.8MeV) and X-rays (14.1keV, 18keV). APXS uses six Alpha sources, each about 5mCi activity. Unlike Mars, lunar environment poses additional challenges due to the regolith and extreme surface temperature changes, to operate the APXS. Our APXS instrument consists of two packages namely APXS sensor head and APXS signal electronics. The sensor head assembly contains SDD, six alpha sources and front end electronic circuits such as preamplifier and shaper circuits and will be mounted on a robotic arm which on command brings the sensor head close to the lunar surface at a height of 35±10mm. SDD module to be used in the experiment has 30mm ^{2} active detector area with in-built peltier cooler and heat sink to maintain the detector at about -35°C. The detector is covered with 8 micron thick Be window which results in the low energy threshold of about 1keV. The size of the APXS sensor head is 70x70x70mm ^{3} (approx). APXS signal electronics consists of a PCB having digital, power and rover interface electronics circuits, which are housed inside the Warm Electronics Box (WEB) mounted under the rover chassis where the temperature is maintained between -50°C to +70°C. Presently, we have completed the design verification model of the APXS payload and engineering model of the payload is in progress. The developed system has been tested using laboratory X-ray sources and observed an energy resolution of about 150eV at 5.9keV when the detector is cooled to -35°C. We also carried out the detection of X-ray fluorescence for some of the USGS standards for a fixed geometry of detector, source and sample, using ^{55}Fe and ^{241}Am X-ray sources. It is shown that the count rate of a given peak varies linearly with the concentration of the corresponding element. The detailed developments and results will be discussed at the conference.
Widespread distribution of OH/H2O on the lunar surface inferred from spectral data
NASA Astrophysics Data System (ADS)
Bandfield, Joshua L.; Poston, Michael J.; Klima, Rachel L.; Edwards, Christopher S.
2018-03-01
Remote-sensing data from lunar orbiters have revealed spectral features consistent with the presence of OH or H2O on the lunar surface. Analyses of data from the Moon Mineralogy Mapper spectrometer onboard the Chandrayaan-1 spacecraft have suggested that OH/H2O is recycled on diurnal timescales and persists only at high latitudes. However, the spatial distribution and temporal variability of the OH/H2O, as well as its source, remain uncertain. Here we incorporate a physics-based thermal correction into analysis of reflectance spectra from the Moon Mineralogy Mapper and find that prominent absorption features consistent with OH/H2O can be present at all latitudes, local times and surface types examined. This suggests the widespread presence of OH/H2O on the lunar surface without significant diurnal migration. We suggest that the spectra are consistent with the production of OH in space-weathered materials by the solar wind implantation of H+ and formation of OH at crystal defect sites, as opposed to H2O sourced from the lunar interior. Regardless of the specific composition or formation mechanism, we conclude that OH/H2O can be present on the Moon under thermal conditions more wide-ranging than previously recognized.
One Moon, many measurements 1: Radiance values
NASA Astrophysics Data System (ADS)
Pieters, C. M.; Boardman, J. W.; Ohtake, M.; Matsunaga, T.; Haruyama, J.; Green, R. O.; Mall, U.; Staid, M. I.; Isaacson, P. J.; Yokota, Y.; Yamamoto, S.; Besse, S.; Sunshine, J. M.
2013-09-01
Several modern optical instruments orbited the Moon during 2008 and 2009 onboard the SELENE and Chandrayaan-1 spacecraft and provided a welcomed feast of spectroscopic data to be used for scientific analyses. The different spatial and spectral resolutions of these sensors along with diverse illumination geometry during data acquisition make each set of data unique, and each instrument contributes special value to integrated science analyses. In order to provide the maximum science benefit, we have undertaken a careful cross-validation of radiance data among these orbital instruments and also a set of systematic data acquired using Earth-based telescopes. Most radiance values at 750 nm fall between 0 and 100 W/(m2 μm sr), but a small important fraction can be up to ×2 to ×3 that value, with the largest values occurring at the highest spatial resolution. All instruments are in agreement about overall spectral properties of lunar materials, but small systematic differences are documented between instruments. Lunar radiance values measured with remote sensors for landing sites are all not as high as that estimated from laboratory measurements of returned soil. This is largely because laboratory measurements of lunar soils cannot retain or duplicate the fine structure of lunar regolith found in the natural space environment.
Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations
NASA Technical Reports Server (NTRS)
Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mile; Perrotto, Trish;
2017-01-01
CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for lunar and L1/L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, Jet Propulsion Laboratory, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASA’s Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1/L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1/L2 orbits. Potential CubeSat radios and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. This paper will describe modifications in process for the Morehead ground station, as well as further enhancements of the Morehead ground station and NASA Near Earth Network (NEN) that are being considered. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. This paper also describes how the NEN may support lunar and L1/L2 CubeSats without any enhancements. In addition, NEN is studying other initiatives to better support the CubeSat community, including streamlining the compatibility testing, planning and scheduling associated with CubeSat missions. Because of the lower cost, opportunity for simultaneous multipoint observations, it is inevitable that CubeSats will continue to increase in popularity for not only LEO missions, but for lunar and L1/L2 missions as well. The challenges for lunar and L1/L2 missions for communication and navigation are much greater than for LEO missions, but are not insurmountable. Advancements in flight hardware and ground infrastructure will ease the burden.
NASA Technical Reports Server (NTRS)
Hamilton, M. H.
1972-01-01
Data links for the guidance system of manned lunar module orbital and lunar missions are presented. Subjects discussed are: (1) digital uplink to lunar module, (2) lunar module liftoff time increment, (3) lunar module contiguous block update, (4) lunar module scatter update, (5) lunar module digital downlink, and (6) absolute addresses for update program.
NASA Astrophysics Data System (ADS)
Vorburger, Audrey; Wurz, Peter; Barabash, Stas; Wieser, Martin; Futaana, Yoshifumi; Bhardwaj, Anil; Dhanya, Mb; Asamura, Kazushi
2017-04-01
The Sub-keV Atom Reflecting Analyzer (SARA) instrument on board Chandrayaan-1 was exceptionally successful. The instrument not only achieved all its set science goals but also revealed several hitherto unknown and unexpected properties of the solar wind interaction with the lunar surface. SARA's scientific findings can be divided into two groups based on the nature of the particles detected: The first group contains findings gained from ion measurements (from SWIM, SARA's ion sensor) whereas the second group contains findings gained from energetic neutral atom (ENA) measurements (from CENA, SARA's ENA sensor). Here, we present a review of all scientific findings based on ENA measurements. Since the Moon is constantly bombarded by solar wind ions. Until recently, it was tacitly assumed that the ions that impinge onto the lunar surface are almost completely absorbed, with less than 1% reflection, (e.g. Crider and Vondrak, Adv. Space Res., 2002; Feldman et al., JGR, 2000). However, recent observations conducted showed that on average 16% of the impinging solar wind ions are reflected as ENAs (e.g. McComas et al., GRL, 2009; Wieser et al., PSS, 2009; Vorburger et al., JGR, 2013). The energy spectrum of the reflected ENAs is broader than the spectrum of the incident solar wind protons (Futaana et al., JGR, 2012; Harada et al., JGR, 2014), and the characteristic energy is < 50% of the incident solar wind characteristic energy. This hints at multiple scattering processes taking place on the lunar surface. Determination of the ENA angular backscatter function showed that, contrary to expectations, as the solar zenith angle (SZA) increases, particles scatter more toward the sunward direction than in the anti-sunward direction (Vorburger et al., GRL, 2011; Lue et al., JGR, 2016). The ENA reflection ratio is rather featureless over the lunar surface (Vorburger et al., JGR., 2013), showing only strong variations at local crustal magnetic fields due to the interaction of the plasma with so-called mini-magnetospheres (e.g., Wieser et al., GRL, 2010; Vorburger et al., JGR, 2012; Vorburger et al., JGR, 2013). CENA measurements were also used to derive the electric potential above a lunar magnetic anomaly (Futaana et al., GRL, 2012, Järvinen et al. GRL, 2014). Electrical potentials are of scientific interest because they can influence the local plasma and dust environment near the magnetic anomaly. CENA also presented the first-ever measurements of sputtered lunar oxygen (Vorburger et al., JGR., 2012) as well as the first-ever observations of backscattered solar wind helium (Vorburger et al., JGR., 2012). With the backscattered proton signal being unexpectedly large, these signals are small in comparison, but persistent nevertheless. Finally, recent CENA data analyses showed that a significant fraction of the solar wind plasma is able to reach far into the lunar nightside surface: CENA measured a 30 deg broad ENA ring parallel to the terminator, with a total flux equal to 1.5% of the total dayside flux (Vorburger et al., GR., 2016). These measurements shed light onto the expansion of plasma into voids as they occur in planetary wakes.
1971-02-05
AS14-66-9233 (5 Feb. 1971) --- Astronaut Edgar D. Mitchell, lunar module pilot for the Apollo 14 lunar landing mission, stands by the deployed U.S. flag on the lunar surface during the early moments of the first extravehicular activity (EVA) of the mission. He was photographed by astronaut Alan B. Shepard Jr., mission commander, using a 70mm modified lunar surface Hasselblad camera. While astronauts Shepard and Mitchell descended in the Lunar Module (LM) "Antares" to explore the Fra Mauro region of the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) "Kitty Hawk" in lunar orbit.
Human Exploration of Earth's Neighborhood and Mars
NASA Technical Reports Server (NTRS)
Condon, Gerald
2003-01-01
The presentation examines Mars landing scenarios, Earth to Moon transfers comparing direct vs. via libration points. Lunar transfer/orbit diagrams, comparison of opposition class and conjunction class missions, and artificial gravity for human exploration missions. Slides related to Mars landing scenarios include: mission scenario; direct entry landing locations; 2005 opportunity - Type 1; Earth-mars superior conjunction; Lander latitude accessibility; Low thrust - Earth return phase; SEP Earth return sequence; Missions - 200, 2007, 2009; and Mission map. Slides related to Earth to Moon transfers (direct vs. via libration points (L1, L2) include libration point missions, expeditionary vs. evolutionary, Earth-Moon L1 - gateway for lunar surface operations, and Lunar mission libration point vs. lunar orbit rendezvous (LOR). Slides related to lunar transfer/orbit diagrams include: trans-lunar trajectory from ISS parking orbit, trans-Earth trajectories, parking orbit considerations, and landing latitude restrictions. Slides related to comparison of opposition class (short-stay) and conjunction class (long-stay) missions for human exploration of Mars include: Mars mission planning, Earth-Mars orbital characteristics, delta-V variations, and Mars mission duration comparison. Slides related to artificial gravity for human exploration missions include: current configuration, NEP thruster location trades, minor axis rotation, and example load paths.
Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations
NASA Technical Reports Server (NTRS)
Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George D.; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mike; Perrotto, Trish;
2017-01-01
CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for Lunar and L1L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the MoreheadGSFC Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, JPL, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASAs Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1L2 orbits. Potential CubeSat radio and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. There are currently modifications in process for the Morehead ground station. Further enhancement of the Morehead ground station and the NASA Near Earth Network (NEN) are being examined. This paper describes how the NEN may support Lunar and L1L2 CubeSats without any enhancements and potential expansion of NEN to better support such missions in the future. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band Uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. The paper also discusses other initiatives that the NEN is studying to better support the CubeSat community, including streamlining the compatibility test, planning and scheduling associated with CubeSat missions.
Space Weathering Trends (UV and NIR) at Lunar Magnetic Anomalies
NASA Astrophysics Data System (ADS)
Blewett, D. T.; Denevi, B. W.; Cahill, J. T.; Klima, R. L.
2017-12-01
Areas of magnetized crustal rocks on the Moon, known as magnetic anomalies, affect the flux of solar-wind ions that bombard the lunar surface. Hence, magnetically shielded areas could experience a space weathering regime different from the lunar norm. The unusual, high-albedo markings called lunar swirls are collocated with magnetic anomalies. The high albedo in the near-ultraviolet through near-infrared is consistent with the presence of material that is less weathered than that found in mature, non-shielded areas. We have undertaken an analysis of spectral trends associated with swirls in order to gain further insight into the nature and origin of these features. We examine swirls in the near-ultraviolet (Lunar Reconnaissance Orbiter LROC-WAC) and near-infrared (Chandrayaan Moon Mineralogy Mapper and Kaguya Spectral Profiler). We find that relative to the normal weathering trend, the swirls have a steeper NIR continuum slope (i.e., the continuum is redder than expected for their albedo) and steeper UV slope (i.e., greater UV drop-off than expected for their albedo). These trends can be understood in terms of differing relative abundances of microphase and nanophase metallic iron weathering products.
NASA Astrophysics Data System (ADS)
Kim, Kyeong; Berezhnoy, Alexey; Wöhler, Christian; Grumpe, Arne; Rodriguez, Alexis; Hasebe, Nobuyuki; Van Gasselt, Stephan
2016-07-01
Using Kaguya GRS data, we investigated Si distribution on the Moon, based on study of the 4934 keV Si gamma ray peak caused by interaction between thermal neutrons and lunar Si-28 atoms. A Si peak analysis for a grid of 10 degrees in longitude and latitude was accomplished by the IRAP Aquarius program followed by a correction for altitude and thermal neutron density. A spectral parameter based regression model of the Si distribution was built for latitudes between 60°S and 60°N based on the continuum slopes, band depths, widths and minimum wavelengths of the absorption bands near 1 μμm and 2 μμm. Based on these regression models a nearly global cpm (counts per minute) map of Si with a resolution of 20 pixels per degree was constructed. The construction of a nearly global map of lunar Si abundances has been achieved by a combination of regression-based analysis of KGRS cpm data and M ^{3} spectral reflectance data, it has been calibrated with respect to returned sample-based wt% values. The Si abundances estimated with our method systematically exceed those of the LP GRS Si data set but are consistent with typical Si abundances of lunar basalt samples (in the maria) and feldspathic mineral samples (in the highlands). Our Si map shows that the Si abundance values on the Moon are typically between 17 and 28 wt%. The obtained Si map will provide an important aspect in both understanding the distribution of minerals and the evolution of the lunar surface since its formation.
Mini-Magnetospheres at the Moon in the Solar Wind and the Earth's Plasma Sheet
NASA Astrophysics Data System (ADS)
Harada, Y.; Futaana, Y.; Barabash, S. V.; Wieser, M.; Wurz, P.; Bhardwaj, A.; Asamura, K.; Saito, Y.; Yokota, S.; Tsunakawa, H.; Machida, S.
2014-12-01
Lunar mini-magnetospheres are formed as a consequence of solar-wind interaction with remanent crustal magnetization on the Moon. A variety of plasma and field perturbations have been observed in a vicinity of the lunar magnetic anomalies, including electron energization, ion reflection/deflection, magnetic field enhancements, electrostatic and electromagnetic wave activities, and low-altitude ion deceleration and electron acceleration. Recent Chandrayaan-1 observations of the backscattered energetic neutral atoms (ENAs) from the Moon in the solar wind revealed upward ENA flux depletion (and thus depletion of the proton flux impinging on the lunar surface) in association with strongly magnetized regions. These ENA observations demonstrate that the lunar surface is shielded from the solar wind protons by the crustal magnetic fields. On the other hand, when the Moon was located in the Earth's plasma sheet, no significant depletion of the backscattered ENA flux was observed above the large and strong magnetic anomaly. It suggests less effective magnetic shielding of the surface from the plasma sheet protons than from the solar wind protons. We conduct test-particle simulations showing that protons with a broad velocity distribution are more likely to reach a strongly magnetized surface than those with a beam-like velocity distribution. The ENA observations together with the simulation results suggest that the lunar crustal magnetic fields are no longer capable of standing off the ambient plasma when the Moon is immersed in the hot magnetospheric plasma.
Characteristics of Low-Frequency Waves at the Lunar Wake Boundary
NASA Astrophysics Data System (ADS)
Leisner, J. S.; Glassmeier, K.; Constantinescu, D. O.; Halekas, J. S.; Fornacon, K.
2013-12-01
The Moon has generally been considered to be a simple absorbing body that does not have a complex interaction with the solar wind. Recent studies using Kaguya and Chandrayaan, however, how demonstrated that this is not the case. The ARTEMIS spacecraft (formerly THEMIS-B and -C) entered lunar orbit in July 2011 and now provide an opportunity to make robust, long-term observations of this plasma interaction. During a November 2012 wake crossing, when the IMF was steady and nearly radial, Halekas et al. [2013] documented a previously unseen feature of the Moon environment. As ARTEMIS P2 approached the wake, it observed low-amplitude fast magnetonic waves that were convected from upstream; inside the rarefaction region, the compressional strength of these waves intensified; and through the wake boundary, the waves changed from correlated to anti-correlated density and field fluctuations. Halekas et al. explained this structure as the superposition of the magnetosonic waves and lateral wake motion driven by the same. In this study, we use wake observations through the ARTEMIS mission to characterize the presence and behavior of these waves as a function of the solar wind and IMF conditions and of spacecraft location relative to the Moon. With this survey, we test the Halekas et al. predictions that these phenomena will be most common during radial IMF conditions, but will still be observable in oblique fields. Finally, we discuss what implications these results have for the more common situation where a bow shock is present.
The science of the lunar poles
NASA Astrophysics Data System (ADS)
Lucey, P. G.
2011-12-01
It was the great geochemist Harold Urey who first called attention to peculiar conditions at the poles of the Moon where the very small inclination of the lunar spin axis with respect to the sun causes craters and other depressions to be permanently shaded from sunlight allowing very low temperatures. Urey suggested that the expected low temperature surfaces could cold trap and collect any vapors that might transiently pass through the lunar environment. Urey's notion has led to studies of the poles as a new research area in lunar science. The conditions and science of the poles are utterly unlike those of the familiar Moon of Neil Armstrong, and the study of the poles is similar to our understanding of the Moon itself at the dawn of the space age, with possibilities outweighing current understanding. Broadly, we can treat the poles as a dynamic system of input, transport, trapping, and loss. Volatile sources range from continuous, including solar wind, the Earth's polar fountain and micrometeorites, to episodic, including comets and wet asteroids, to nearly unique events including late lunar outgassing and passage through giant molecular clouds. The lunar exosphere transports volatiles to the poles, complicated by major perturbances to the atmosphere by volatile-rich sources. Trapping includes cold trapping, but also in situ creation of more refractory species such as organics, clathrates and water-bearing minerals, as well as sequester by regolith overturn or burial by larger impacts. Finally, volatiles are lost to space by ionization and sweeping. Spacecraft results have greatly added to the understanding of the polar system. Temperatures have been precisely measured by LRO, and thermal models now allow determination of temperature over the long evolution of the lunar orbit, and show very significant changes in temperature and temperature distribution with time and depth. Polar topography is revealed in detail by Selene and LRO laser altimeters while direct imaging of interiors of polar shadowed craters has been accomplished by many instruments from the ultraviolet to the radar. Imaging radars on Chandrayaan-1 and LRO have identified anomalous craters that may contain rich water ice deposits. Neutron spectrometers on Lunar Prospector and LRO directly detected hydrogen enhancements at both poles. Spectacularly, the LCROSS impact experiment detected a wide range of volatile elements and species at Cabeus crater in the lunar south polar region. While these measurements have catapulted polar science forward, much remains to be understood about the polar system, both from analysis of the current data, and new missions planned and in development. The general state of the lunar atmosphere is planned to be addressed by the UV and neutral mass spectrometers carried by the planned NASA LADEE (Lunar Atmosphere And Dust Environment Explorer) spacecraft creating an important baseline. But more data is necessary, from an in situ direct assay of polar volatiles to measurements of species and fluxes into and out of the cold traps over lengthy timescales.
Lunar Science from and for Planet Earth
NASA Astrophysics Data System (ADS)
Pieters, M. C.; Hiesinger, H.; Head, J. W., III
2008-09-01
Our Moon Every person on Earth is familiar with the Moon. Every resident with nominal eyesight on each continent has seen this near-by planetary body with their own eyes countless times. Those fortunate enough to have binoculars or access to a telescope have explored the craters, valleys, domes, and plains across the lunar surface as changing lighting conditions highlight the mysteries of this marvellously foreign landscape. Schoolchildren learn that the daily rhythm and flow of tides along the coastlines of our oceans are due to the interaction of the Earth and the Moon. This continuous direct and personal link is but one of the many reasons lunar science is fundamental to humanity. The Earth-Moon System In the context of space exploration, our understanding of the Earth-Moon system has grown enormously. The Moon has become the cornerstone for most aspects of planetary science that relate to the terrestrial (rocky) planets. The scientific context for exploration of the Moon is presented in a recent report by a subcommittee of the Space Studies Board of the National Research Council [free from the website: http://books.nap.edu/catalog.php?record_id=11954]. Figure 1 captures the interwoven themes surrounding lunar science recognized and discussed in that report. In particular, it is now recognized that the Earth and the Moon have been intimately linked in their early history. Although they subsequently took very different evolutionary paths, the Moon provides a unique and valuable window both into processes that occurred during the first 600 Million years of solar system evolution (planetary differentiation and the heavy bombardment record) as well as the (ultimately dangerous) impact record of more recent times. This additional role of the Moon as keystone is because the Earth and the Moon share the same environment at 1 AU, but only the Moon retains a continuous record of cosmic events. An Initial Bloom of Exploration and Drought The space age celebrated its 50th anniversary in 2007 over the launch of Sputnik (from the former Soviet Union). The ensuing Apollo (US) and Luna (USSR) programs initiated serious exploration of the Moon. The samples returned from those (now historic!) early missions changed our understanding of our place in the universe forever. They were the first well documented samples from an extraterrestrial body and attracted some of the top scientists in the world to extract the first remarkable pieces of information about Earth's nearest neighbour. And so they did - filling bookcases with profound new discoveries about this airless, waterless, and beautifully mysterious ancient world. The Moon was found to represent pure geology for a silicate planetary body - without all the complicating factors of plate tectonics, climate, and weather that recycle or transform Earth materials repeatedly. And then nothing happened. After the flush of reconnaissance, there was no further exploration of the Moon. For several decades scientists had nothing except the returned samples and a few telescopes with which to further study Earth's neighbour. Lack of new information breeds ignorance and can be stifling. Even though the space age was expanding its horizons to the furthest reaches of the solar system and the universe, lunar science moved slowly if at all and was kept in the doldrums. The drought ended with two small missions to the Moon in the 1990's, Clementine and Lunar Prospector. As summarized in the SSB/NRC report (and more completely in Jolliff et al. Eds. 2006, New Views of the Moon, Rev. Min. & Geochem.), the limited data returned from these small spacecraft set in motion several fundamental paradigm shifts in our understanding of the Moon and re-invigorated an aging science community. We learned that the largest basin in the solar system and oldest on the Moon dominates the southern half of the lunar farside (only seen by spacecraft). The age of this huge basin, if known, would constrain the period of heavy bombardment in the inner solar system and the environment under which early life was able to survive. We learned that the long-lived heat producing elements are concentrated on the lunar nearside and a major geologic event must have occurred very early during the evolution of the crust and mantle to accomplish this. We learned that significant volatile deposits occur at both lunar poles and may have resulted in water ice in their permanently shadowed regions. The embers then fire from this small influx of new information and understanding in the 1990s set the stage for the next generation of lunar exploration. International Lunar Exploration: The Golden Age In 2003 ESA launched what was to become a highly successful technology demonstration mission to the Moon, SMART-1. This small pathfinder has now been followed by some of the most sophisticated remote sensing robotic missions ever sent to the Moon. The SELENE/KAGUYA mission from JAXA and the Chang'E mission from China were launched in 2007 and are successfully returning remarkable data to Earth with unprecedented resolution and detail. The Chandrayaan-1 mission of ISRO with a complement of modern Indian as well foreign instruments is set to launch in 2008. The LRO/LCROSS pair of NASA will be next, followed by NASA's GRAIL geophysics mission in 2010. It is fitting that Earth's neighbour, which harbours so many secrets about our own origins and place in the universe, is now being explored independently by a virtual armada originating from space-faring nations across the Earth. The opportunities for peaceful coordination and cooperation abound, both at the personal scientist-to-scientist level as well as at the national policy level. The next 50 years of exploration of the Earth-Moon system will be truly remarkable with the new foundation of knowledge brought forth by this golden age of lunar exploration.
The simulation of lunar gravity field recovery from D-VLBI of Chang’E-1 and SELENE lunar orbiters
NASA Astrophysics Data System (ADS)
Yan, Jianguo; Ping, Jingsong; Matsumoto, K.; Li, Fei
2008-07-01
The lunar gravity field is a foundation to study the lunar interior structure, and to recover the evolution history of the Moon. It is still an open and key topic for lunar science. For above mentioned reasons, it becomes one of the important scientific objectives of recent lunar missions, such as KAGUYA (SELENE) the Japanese lunar mission and Chang’E-1, the Chinese lunar mission. The Chang’E-1 and the SELENE were successfully launched in 2007. It is estimated that these two missions can fly around the Moon longer than 6 months simultaneously. In these two missions, the Chinese new VLBI (Very Long Baseline Interferometry) network will be applied for precise orbit determination (POD) by using a differential VLBI (D-VLBI) method during the mission period. The same-beam D-VLBI technique will contribute to recover the lunar gravity field together with other conventional observables, i.e. R&RR (Range and Range Rate) and multi-way Doppler. Taking VLBI tracking conditions into consideration and using the GEODYNII/SOVLE software of GSFC/NASA/USA [Rowlands, D.D., Marshall, J.A., Mccarthy, J., et al. GEODYN II System Description, vols. 1 5. Contractor Report, Hughes STX Corp. Greenbelt, MD, 1997; Ullman, R.E. SOLVE program: mathematical formulation and guide to user input, Hughes/STX Contractor Report, Contract NAS5-31760. NASA Goddard Space Flight Center, Greenbelt, Maryland, 1994], we simulated the lunar gravity field recovering ability with and without D-VLBI between the Chang’E-1 and SELENE main satellite. The cases of overlapped flying and tracking period of 30 days, 60 days and 90 days have been analyzed, respectively. The results show that D-VLBI tracking between two lunar satellites can improve the gravity field recovery remarkably. The results and methods introduced in this paper will benefit the actual missions.
NASA Human Spaceflight Architecture Team Cis-Lunar Analysis
NASA Technical Reports Server (NTRS)
Lupisella, M.; Bobskill, M. R.
2012-01-01
The Cis-Lunar Destination Team of NASA's Human Spaceflight Architecture Teait1 (HAT) has been perfom1ing analyses of a number of cis-lunar locations to infom1 architecture development, transportation and destination elements definition, and operations. The cis-lunar domain is defined as that area of deep space under the gravitation influence of the earth-moon system, including a set of orbital locations (low earth orbit (LEO]. geosynchronous earth orbit [GEO]. highly elliptical orbits [HEO]); earth-moon libration or "Lagrange·· points (EMLl through EMLS, and in particular, EMLI and EML2), and low lunar orbit (LLO). We developed a set of cis-lunar mission concepts defined by mission duration, pre-deployment, type of mission, and location, to develop mission concepts and the associated activities, capabilities, and architecture implications. To date, we have produced two destination operations J concepts based on present human space exploration architectural considerations. We have recently begun defining mission activities that could be conducted within an EM LI or EM L2 facility.
Apollo 11 Mission Audio - Day 1
1969-07-16
Audio from mission control during the launch of Apollo 11, which was the United States' first lunar landing mission. While astronauts Armstrong and Aldrin descended in the Lunar Module "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules "Columbia" in lunar orbit.
The Role of Cis-Lunar Space in Future Global Space Exploration
NASA Technical Reports Server (NTRS)
Bobskill, Marianne R.; Lupisella, Mark L.
2012-01-01
Cis-lunar space offers affordable near-term opportunities to help pave the way for future global human exploration of deep space, acting as a bridge between present missions and future deep space missions. While missions in cis-lunar space have value unto themselves, they can also play an important role in enabling and reducing risk for future human missions to the Moon, Near-Earth Asteroids (NEAs), Mars, and other deep space destinations. The Cis-Lunar Destination Team of NASA's Human Spaceflight Architecture Team (HAT) has been analyzing cis-lunar destination activities and developing notional missions (or "destination Design Reference Missions" [DRMs]) for cis-lunar locations to inform roadmap and architecture development, transportation and destination elements definition, operations, and strategic knowledge gaps. The cis-lunar domain is defined as that area of deep space under the gravitational influence of the earth-moon system. This includes a set of earth-centered orbital locations in low earth orbit (LEO), geosynchronous earth orbit (GEO), highly elliptical and high earth orbits (HEO), earth-moon libration or "Lagrange" points (E-ML1 through E-ML5, and in particular, E-ML1 and E-ML2), and low lunar orbit (LLO). To help explore this large possibility space, we developed a set of high level cis-lunar mission concepts in the form of a large mission tree, defined primarily by mission duration, pre-deployment, type of mission, and location. The mission tree has provided an overall analytical context and has helped in developing more detailed design reference missions that are then intended to inform capabilities, operations, and architectures. With the mission tree as context, we will describe two destination DRMs to LEO and GEO, based on present human space exploration architectural considerations, as well as our recent work on defining mission activities that could be conducted with an EML1 or EML2 facility, the latter of which will be an emphasis of this paper, motivated in part by recent interest expressed at the Global Exploration Roadmap Stakeholder meeting. This paper will also explore the links between this HAT Cis-Lunar Destination Team analysis and the recently released ISECG Global Exploration Roadmap and other potential international considerations, such as preventing harmful interference to radio astronomy observations in the shielded zone of the moon.
NASA Technical Reports Server (NTRS)
Stubbs, T. J.; Glenar, D. A.; Wang, Y.; Hermalyn, B.; Sarantos, M.; Colaprete, A.; Elphic, R. C.
2015-01-01
The scientific objectives of the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission are: (1) determine the composition of the lunar atmosphere, investigate processes controlling distribution and variability - sources, sinks, and surface interactions; and (2) characterize the lunar exospheric dust environment, measure spatial and temporal variability, and influences on the lunar atmosphere. Impacts on the lunar surface from meteoroid streams encountered by the Earth-Moon system are anticipated to result in enhancements in the both the lunar atmosphere and dust environment. Here we describe the annual meteoroid streams expected to be incident at the Moon during the LADEE mission, and their anticipated effects on the lunar environment.
NASA Technical Reports Server (NTRS)
Chavers, Greg
2015-01-01
Since 2006 NASA has been formulating robotic missions to the lunar surface through programs and projects like the Robotic Lunar Exploration Program, Lunar Precursor Robotic Program, and International Lunar Network. All of these were led by NASA Marshall Space Flight Center (MSFC). Due to funding shortfalls, the lunar missions associated with these efforts, the designs, were not completed. From 2010 to 2013, the Robotic Lunar Lander Development Activity was funded by the Science Mission Directorate (SMD) to develop technologies that would enable and enhance robotic lunar surface missions at lower costs. In 2013, a requirements-driven, low-cost robotic lunar lander concept was developed for the Resource Prospector Mission. Beginning in 2014, The Advanced Exploration Systems funded the lander team and established the MSFC, Johnson Space Center, Applied Physics Laboratory, and the Jet Propulsion Laboratory team with MSFC leading the project. The lander concept to place a 300-kg rover on the lunar surface has been described in the New Technology Report Case Number MFS-33238-1. A low-cost lander concept for placing a robotic payload on the lunar surface is shown in figures 1 and 2. The NASA lander team has developed several lander concepts using common hardware and software to allow the lander to be configured for a specific mission need. In addition, the team began to transition lander expertise to United States (U.S.) industry to encourage the commercialization of space, specifically the lunar surface. The Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative was started and the NASA lander team listed above is partnering with three competitively selected U.S. companies (Astrobotic, Masten Space Systems, and Moon Express) to develop, test, and operate their lunar landers.
NASA Technical Reports Server (NTRS)
Clark, P. E.; Malphrus, Ben; Reuter, Dennis; MacDowall, Robert; Folta, David; Hurford, Terry; Brambora, Cliff; Farrell, William
2017-01-01
BIRCHES is the compact broadband IR spectrometer of the Lunar Ice Cube mission. Lunar Ice Cube is one of 13 6U cubesats that will be deployed by EM1 in cislunar space, qualifying as lunarcubes. The LunarCube paradigm is a proposed approach for extending the affordable CubeSat standard to support access to deep space via cis-lunar/lunar missions. Because the lunar environment contains analogs of most solar system environments, the Moon is an ideal target for both testing critical deep space capabilities and understanding solar system formation and processes. Effectively, as developments are occurring in parallel, 13 prototype deep space cubesats are being flown for EM1. One useful outcome of this 'experiment' will be to determine to what extent it is possible to develop a lunarcube 'bus' with standardized interfaces to all subsystems using reasonable protocols for a variety of payloads. The lunar ice cube mission was developed as the test case in a GSFC R&D study to determine whether the cubesat paradigm could be applied to deep space, science requirements driven missions, and BIRCHES was its payload. JPL's Lunar Flashlight, and Arizona State University's LunaH-Map, both also EM1 lunar orbiters, will also be deployed from EM1 and provide complimentary observations to be used in understanding volatile dynamics in the same time frame.
The Large Scale Distribution of Water Ice in the Polar Regions of the Moon
NASA Astrophysics Data System (ADS)
Jordan, A.; Wilson, J. K.; Schwadron, N.; Spence, H. E.
2017-12-01
For in situ resource utilization, one must know where water ice is on the Moon. Many datasets have revealed both surface deposits of water ice and subsurface deposits of hydrogen near the lunar poles, but it has proved difficult to resolve the differences among the locations of these deposits. Despite these datasets disagreeing on how deposits are distributed on small scales, we show that most of these datasets do agree on the large scale distribution of water ice. We present data from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO), LRO's Lunar Exploration Neutron Detector (LEND), the Neutron Spectrometer on Lunar Prospector (LPNS), LRO's Lyman Alpha Mapping Project (LAMP), LRO's Lunar Orbiter Laser Altimeter (LOLA), and Chandrayaan-1's Moon Mineralogy Mapper (M3). All, including those that show clear evidence for water ice, reveal surprisingly similar trends with latitude, suggesting that both surface and subsurface datasets are measuring ice. All show that water ice increases towards the poles, and most demonstrate that its signature appears at about ±70° latitude and increases poleward. This is consistent with simulations of how surface and subsurface cold traps are distributed with latitude. This large scale agreement constrains the origin of the ice, suggesting that an ancient cometary impact (or impacts) created a large scale deposit that has been rendered locally heterogeneous by subsequent impacts. Furthermore, it also shows that water ice may be available down to ±70°—latitudes that are more accessible than the poles for landing.
Lunar Flashlight and Other Lunar Cubesats
NASA Technical Reports Server (NTRS)
Cohen, Barbara
2017-01-01
Water is a human-exploitable resource. Lunar Flashlight is a Cubesat mission to detect and map lunar surface ice in permanently-shadowed regions of the lunar south pole. EM-1 will carry 13 Cubesat-class missions to further smallsat science and exploration capabilities; much room to infuse LEO cubesat methodology, models, and technology. Exploring the value of concurrent measurements to measure dynamical processes of water sources and sinks.
Scientific Objectives of China Chang E 4 CE-4 Lunar Far-side Exploration Mission
NASA Astrophysics Data System (ADS)
Zhang, Hongbo; Zeng, Xingguo; Chen, Wangli
2017-10-01
China has achieved great success in the recently CE-1~CE-3 lunar missions, and in the year of 2018, China Lunar Exploration Program (CLEP) is going to launch the CE-4 mission. CE-4 satellite is the backup satellite of CE-3, so that it also consists of a Lander and a Rover. However, CE-4 is the first mission designed to detect the far side of the Moon in human lunar exploration history. So the biggest difference between CE-4 and CE-3 is that it will be equipped with a relay satellite in Earth-Moon-L2 Point for Earth-Moon Communication. And the scientific payloads carried on the Lander and Rover will also be different. It has been announced by the Chinese government that CE-4 mission will be equipped with some new international cooperated scientific payloads, such as the Low Frequency Radio Detector from Holland, Lunar Neutron and Radiation Dose Detector from Germany, Neutral Atom Detector from Sweden, and Lunar Miniature Optical Imaging Sounder from Saudi Arabia. The main scientific objective of CE-4 is to provide scientific data for lunar far side research, including: 1)general spatial environmental study of lunar far side;2)general research on the surface, shallow layer and deep layer of lunar far side;3)detection of low frequency radio on lunar far side using Low Frequency Radio Detector, which would be the first time of using such frequency band in lunar exploration history .
NASA Astrophysics Data System (ADS)
Chauhan, M.
2017-12-01
Mare Humorum, centered at 24°S and 39°W is a mare basin of Nectarian age present at the southwestern end of Oceanus Procellarum towards the nearside of the Moon. It displays several rings, in varying states of exposure and preservation. The area is entirely flooded by mare material that constitutes its major recognizable event. In the present study, investigation of mineralogy of the basaltic flows of Mare Humorum basin have been undertaken to understand its compositional character, especially the pyroxene variability. Primarily, high-resolution data of Hyperspectral Imager (HySI) (Spatial resolution, 80m/pixel) from Chandrayaan-I mission of Indian Space Research Organization (I.S.R.O) have been used. Besides, Moon Mineralogy Mapper M3 data (140 m/pixel) from the same mission, with its full coverage of the area have been used as base of whole study. The spectral properties of pyroxenes have utilized for characterization of mare lithology and to demarcate the various spectral units based on pyroxene-variability. The compositional analysis results, thus obtained, are studied and discussed for understanding the basaltic evolution of the Humorum basin.
Astronaut Alan Bean works on Modular Equipment Stowage Assembly
NASA Technical Reports Server (NTRS)
1969-01-01
Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, works at the Modular Equipment Stowage Assembly (MESA) on the Apollo 12 Lunar Module during the mission's first extravehicular activity, EVA-1, on November 19, 1969.
New Results and Synthesis from SMART-1
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
2012-07-01
We present new SMART-1 results recently published and give a synthesis of mission highlights and legacy. SMART-1 demonstrated the use of Solar Electric Propulsion that will be useful for Bepi-Colombo and future deep-space missions, tested new technologies for spacecraft and instruments miniaturisation, and provided an opportunity for science [1-12]. The SMART-1 spacecraft operated on a science orbit for 18 months until impact on 3 September 2006. To date, 72 refereed papers and more than 325 conference or technical papers have been published based on SMART-1 (see ADS on SMART-1 scitech website). The SMART-1 data are accessible on the ESA Planetary Science Archive PSA [13]. Recent SMART-1 published results using these archives include: Multi-angular photometry of Mare and specific regions to diagnose the regolith roughness and to constrain models of light re ection and scattering [14] that can be extended to understand the surface of other moons and asteroids; the SMART-1 impact observed from Earth was modelled using laboratory experiments predicting the size of asymmetric crater and ejecta [15]; the lunar North and South polar illumination was mapped and monitored over the entire year, permitting to identify SMART-1 peaks of quasi-eternal light" and to derive their topography [16, 17]; SMART-1 was also used for radio occultation experiments [18], and the X-Ray Solar Monitor data were used for activity and are studies of the Sun as a star in conjunction with GOES AND RHESSI [19] or to design future coronal X-ray instruments [20]. The SMART-1 archive observations have been used to support Kaguya, Chandrayaan-1, Chang'E 1, the US Lunar Reconnaissance Orbiter, the LCROSS impact, and to characterise potential sites relevant for lunar science and future exploration. Credits and links: we acknowledge members of SMART-1 Science and Technology Working Team and collaborators. SMART-1 Scitech or public websites: sci.esa.int/smart-1 or www.esa.int/smart-1 References [1] Foing etal (2001) EMP 85-523; [2] Racca et al (2002) EMP 85-379; [3] Racca et al. (2002) PSS 50-1323; [4] Grande et al. (2003) PSS51-427; [5] Dunkin et al. (2003) PSS 51-435; [6] Huovelin et al. (2002) PSS50-1345; [7] Shkuratov et al (2003) JGRE 108-E4-1; [8] Foing et al (2003) ASR 31-2323; [9] Grande et al (2007) PSS 55-494; [10] Pinet et al (2005) PSS 53-1309; [11] Josset etal (2006) ASR 37-14; [12] Foing et al (2006) ASR 37-6; [13] http://www.rssd.esa.int/psa [14] Muinonen et al (2011) AA 531-150; [15] Burchell et al (2010) Icarus 207-28; 16] Grieger (2010) cosp 38-417; [17] Bussey et al (2011) LPI CO-1621-5; [18] Pluchino et al MSAItS 16-152; [19] Vaananen et al (2009) SolarPhys 260-479; [20] Alha et al (2012)NIMPA 664, 358
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R.; Paz, A.; Smith, J.; Captain, J.; Zacny, K.
2016-01-01
Data gathered from lunar missions within the last two decades have significantly enhanced our understanding of the volatile resources available on the lunar surface, specifically focusing on the polar regions. Several orbiting missions such as Clementine and Lunar Prospector have suggested the presence of volatile ices and enhanced hydrogen concentrations in the permanently shadowed regions of the moon. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was the first to provide direct measurement of water ice in a permanently shadowed region. These missions with other orbiting assets have laid the groundwork for the next step in the exploration of the lunar surface; providing ground truth data of the volatiles by mapping the distribution and processing lunar regolith for resource extraction. This next step is the robotic mission Resource Prospector (RP).Resource Prospector is a lunar mission to investigate strategic knowledge gaps (SKGs) for in-situ resource utilization (ISRU). The mission is proposed to land in the lunar south pole near a permanently shadowed crater. The landing site will be determined by the science team with input from broader international community as being near traversable landscape that has a high potential of containing elevated concentrations of volatiles such as water while maximizing mission duration. A rover will host the Regolith Environment Science and Oxygen Lunar Volatile Extraction (RESOLVE) payload for resource mapping and processing. The science instruments on the payload include a 1-meter drill, neutron spectrometer, a near infrared spectrometer, an operations camera, and a reactor with a gas chromatograph-mass spectrometer for volatile analysis.
NASA Technical Reports Server (NTRS)
1991-01-01
NASA's two Office of Space Flight (Code M) Space Transfer Vehicle (STV) contractors supported development of Space Exploration Initiative (SEI) lunar transportation concepts. This work treated lunar SEI missions as the far end of a more near-term STV program, most of whose missions were satellite delivery and servicing requirements derived from Civil Needs Data Base (CNDB) projections. Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) began to address the complete design of a lunar transportation system. The following challenges were addressed: (1) the geometry of aerobraking; (2) accommodation of mixed payloads; (3) cryogenic propellant transfer in Low Lunar Orbit (LLO); (4) fully re-usable design; and (5) growth capability. The leveled requirements, derived requirements, and assumptions applied to the lunar transportation system design are discussed. The mission operations section includes data on mission analysis studies and performance parametrics as well as the operating modes and performance evaluations which include the STCAEM recommendations. Element descriptions for the lunar transportation family included are a listing of the lunar transfer vehicle/lunar excursion vehicle (LTV/LEV) components; trade studies and mass analyses of the transfer and excursion modules; advanced crew recovery vehicle (ACRV) (modified crew recovery vehicle (MCRV)) modifications required to fulfill lunar operations; the aerobrake shape and L/D to be used; and some costing methods and results. Commonality and evolution issues are also discussed.
Exploring The Moon through a 21st Century Learning Environment of Interactive Whiteboards
NASA Astrophysics Data System (ADS)
Runyon, C. J.; Hall, C.; Joyner, E.; Meyer, H. M.
2012-12-01
Lunar exploration has an important role to play in inspiring students to hone their skills and understanding, as well as encouraging them to pursue careers in science, technology engineering and math (STEM). Many of NASA's current lunar educational materials do not dynamically engage the whole learner or effectively address 21st Century skills. We present examples of several dynamic lunar science activities for use on interactive white boards. These activities are replicable and incorporate NASA mission-derived sampling and analysis techniques. Building on a highly visual and tactile workforce, it is imperative that today's classrooms keep up with technologies that are the media of modern life. Interactive white boards offer a coordinated curricula and supporting resources that are immediately usable in most classrooms across America. Our dynamic classroom materials are rich in scientific processes, meet the national standards of learning in STEM, and are teacher-vetted for content and usability. Incorporating educational activities created from the NASA Lunar Science Institute team activities, the Moon Mineralogy Mapper (M3) Educator's Guide, and more current NASA lunar missions, we offer three dynamic modules for use on an interactive white board. SMART activities implement the mastery teaching model, employing instructional strategies so that all students can achieve the same level of learning. Our goal is to provide educators with multiple resources for teaching their students about the Moon and engaging their interest in pursuing STEM in the future. In addition to background information, inquiry-oriented lessons allow students to gather information and data directly through the Internet. For example, with the return of high resolution/high spatial data from M3/Chandrayaan-1, we can now better identify, discern and understand the compositional variations on the lunar surface. Data and analysis techniques from the M3 imaging spectrometer are incorporated into the lessons. Module I: Students explore the properties of light and use an ALTA hand-held spectrometer to identify and map compositional variation on the moon's surface, discovering that the Moon is similar to, yet different from, the Earth and terrestrial planets. Module II: Students break up into teams of "Orbiters" and "Earth scientists" to gather reflectance data from "Moon rocks" and Earth rocks respectively. Students compare the reflectance spectra from those to identify the rock types on the Moon. Module III: Students create and compare color-coded mineralogy maps and topographical maps of the Moon. Using spectroscopic data and their understanding of cratering and volcanism from previous activities, students create questions and devise theories for the geologic history of the Moon. Current research is inconclusive as to whether or not the use of 21st century technologies are effective as learning tools. Although the technology may be available in modern classrooms, many teachers still teach with traditional instructional strategies. We have seen, that when students actively engage and are a part of using the technology, they develop a deeper understanding and a desire to learn more about the topics covered. The interactive whiteboard technology permits students to directly immerse themselves with the content.
The Evolution of Mission Architectures for Human Lunar Exploration
NASA Technical Reports Server (NTRS)
Everett, S. F.
1995-01-01
Defining transportation architectures for the human exploration of the Moon is a complex task due to the multitude of mission scenarios available. The mission transportation architecture recently proposed for the First Lunar Outpost (FLO) was not designed from carefully predetermined mission requirements and goals, but evolved from an initial set of requirements, which were continually modified as studies revealed that some early assumptions were not optimal. This paper focuses on the mission architectures proposed for FLO and investigates how these transportation architectures evolved. A comparison of the strengths and weaknesses of the three distinct mission architectures are discussed, namely (1) Lunar Orbit Rendezvous, (2) staging from the Cislunar Libration Point, and (3) direct to the lunar surface. In addition, several new and revolutionary architectures are discussed.
1967-04-28
Small light colored area within the crater is Surveyor 1 on lunar surface photographed by Lunar Orbiter III. Published in the book "A Century at Langley" by Joseph Chambers. pg. 93 Moon Lunar Orbiter-Lunar Orbiter III: The hidden or dark side of the Moon was taken by Lunar Orbiter III During its mission to photograph potential lunar-landing sites for Apollo missions. -- Photograph published in Winds of Change, 75th Anniversary NASA publication (page 94), by James Schultz. Photo Number:67-H-328 is 1967-L-04026
Lunar Ice Cube: Development of a Deep Space Cubesat Mission
NASA Astrophysics Data System (ADS)
Clark, P. E.; Malphrus, B.; McElroy, D.; Schabert, J.; Wilczewski, S.; Farrell, W.; Brambora, C.; Macdowall, R.; Folta, D.; Hurford, T.; Patel, D.; Banks, S.; Reuter, D.; Brown, K.; Angkasa, K.; Tsay, M.
2017-10-01
Lunar Ice Cube, a 6U deep space cubesat mission, will be deployed by EM1. It will demonstrate cubesat propulsion, the Busek BIT 3 RF Ion engine, and a compact instrument capable of addressing HEOMD Strategic Knowledge Gaps related to lunar volatiles.
Development of the Lunar Polar Hydrogen Mapper Mission
NASA Astrophysics Data System (ADS)
Hardgrove, C.; Bell, J. F.; Starr, R.; Colaprete, A.; Drake, D.; Lazbin, I.; West, S.; Johnson, E. B.; Christian, J.; Heffern, L.; Genova, A.; Dunham, D.; Williams, B.; Nelson, D.; Puckett, S.; Babuscia, A.; Scowen, P.; Kerner, H.; Amzler, R. J.
2018-04-01
The Lunar Polar Hydrogen Mapper is a 6U CubeSat mission launching on SLS EM-1. The spacecraft will orbit at a low altitude perlune over the lunar south pole and carries a miniature neutron spectrometer to map small scale hydrogen enrichments in PSRs.
NASA Technical Reports Server (NTRS)
Clarke, Michael; Denecke, Johan; Garber, Suzanne; Kader, Beth; Liu, Celia; Weintraub, Ben; Cazeau, Patrick; Goetz, John; Haughwout, James; Larson, Erik
1992-01-01
In response to the Report of the Advisory Committee on the future of the U.S. Space Program and a request from NASA's Exploration Office, the MIT Hunsaker Aerospace Corporation (HAC) conducted a feasibility study, known as Project Columbiad, on reestablishing human presence on the Moon before the year 2000. The mission criteria established were to transport a four person crew to the lunar surface at any latitude and back to Earth with a 14-28 day stay on the lunar surface. Safety followed by cost of the Columbiad Mission were the top level priorities of HAC. The resulting design has a precursor mission that emplaces the required surface payloads before the piloted mission arrives. Both the precursor and piloted missions require two National Launch System (NLS) launches. Both the precursor and piloted mission have an Earth orbit rendezvous (EOR) with a direct transit to the Moon post-EOR. The piloted mission returns to Earth via a direct transit. Included among the surface payloads preemplaced are a habitat, solar power plant (including fuel cells for the lunar night), lunar rover, and mechanisms used to cover the habitat with regolith (lunar soil) in order to protect the crew members from severe solar flare radiation.
NASA Technical Reports Server (NTRS)
Cohen, Barbara A.
2009-01-01
There are two slide presentations contained in this document. The first reviews the lunar missions from Surveyor, Galileo, Clementine, the Lunar Prospector, to upcoming lunar missions, Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation & Sensing Satellite (LCROSS), Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS), Gravity Recovery and Interior Laboratory (GRAIL), Lunar Atmosphere, Dust and Environment Explorer (LADEE), ILN and a possible Robotic sample return mission. The information that the missions about the moon is reviewed. The second set of slides reviews the lunar meteorites, and the importance of lunar meteorites to adding to our understanding of the moon.
RESOLVE Mission Architecture for Lunar Resource Prospecting and Utilization
NASA Technical Reports Server (NTRS)
George, J. A.; Mattes, G. W.; Rogers, K. N.; Magruder, D. F.; Paz, A. J.; Vaccaro, H. M.; Baird, R. S.; Sanders, G. B.; Smith, J. T.; Quinn, J. W.;
2012-01-01
Design Reference Mission (DRM) evaluations were performed for The Regolith & Environment Science, and Oxygen & Lunar Volatile Extraction (RESOLVE) project to determine future flight mission feasibility and understand potential mission environment impacts on hardware requirements, science/resource assessment objectives, and mission planning. DRM version 2.2 (DRM 2.2) is presented for a notional flight of the RESOLVE payload for lunar resource ground truth and utilization (Figure 1) [1]. The rover/payload deploys on a 10 day surface mission to the Cabeus crater near the lunar south pole in May of 2016. A drill, four primary science instruments, and a high temperature chemical reactor will acquire and characterize water and other volatiles in the near sub-surface, and perform demonstrations of In-Situ Re-source Utilization (ISRU). DRM 2.2 is a reference point, and will be periodically revised to accommodate and incorporate changes to project approach or implementation, and to explore mission alternatives such as landing site or opportunity.
Polar Resources: The Key To Development of Cis-Lunar Space
NASA Technical Reports Server (NTRS)
Larson, William E.
2017-01-01
There are plenty of unanswered science questions regarding the Moon that justify surface missions: (1) However the rate of science missions launched remains painfully slow: (a) Google X-Prize Landers may offer more opportunities, but the jury is still out: (2) Science alone will not be enough to sustain long term interest in the Moon by the Congress (or the Public) nor will it generate a frequent mission rate. We need something that drives a frequent and continual reason to go to the Moon: (1) Lunar tourism not practical in the near term; (2) Lunar Resources can be the economic driver that enables regular access to the lunar surface.
Resource Prospector: Mission Goals, Relevance and Site Selection
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R. C.; Andrews, D.; Sanders, G.; McGovern, A.; Vaughan, R.; Heldmann, J.; Trimble, J.
2015-01-01
Over the last two decades a wealth of new observations of the moon have demonstrated a lunar water system dramatically more complex and rich than was deduced following the Apollo era. Observation from the Lunar Prospector Neutron Spectrometer (LPNS) revealed enhancements of hydrogen near the lunar poles. This observation has since been confirmed by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) instrument. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission targeted a permanently shadowed, enhanced hydrogen location within the crater Cabeus. The LCROSS impact showed that at least some of the hydrogen enhancement is in the form of water ice and molecular hydrogen (H2). Other volatiles were also observed in the LCROSS impact cloud, including CO2, CO, an H2S. These volatiles, and in particular water, have the potential to be a valuable or enabling resource for future exploration. In large part due to these new findings, the NASA Human Exploration and Operations Mission Directorate (HEOMD) have selected a lunar volatiles prospecting mission for a concept study and potential flight in CY2020. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith (up to 1 meter), and (3) demonstrate the form, extractability and usefulness of the materials.
Apollo Lunar Sample Integration into Google Moon: A New Approach to Digitization
NASA Technical Reports Server (NTRS)
Dawson, Melissa D.; Todd, nancy S.; Lofgren, Gary E.
2011-01-01
The Google Moon Apollo Lunar Sample Data Integration project is part of a larger, LASER-funded 4-year lunar rock photo restoration project by NASA s Acquisition and Curation Office [1]. The objective of this project is to enhance the Apollo mission data already available on Google Moon with information about the lunar samples collected during the Apollo missions. To this end, we have combined rock sample data from various sources, including Curation databases, mission documentation and lunar sample catalogs, with newly available digital photography of rock samples to create a user-friendly, interactive tool for learning about the Apollo Moon samples
NASA Technical Reports Server (NTRS)
Bosanac, Natasha; Cox, Andrew; Howell, Kathleen C.; Folta, David C.
2017-01-01
Lunar IceCube is a 6U CubeSat that is designed to detect and observe lunar volatiles from a highly inclined orbit. This spacecraft, equipped with a low-thrust engine, will be deployed from the upcoming Exploration Mission-1 vehicle in late 2018. However, significant uncertainty in the deployment conditions for secondary payloads impacts both the availability and geometry of transfers that deliver the spacecraft to the lunar vicinity. A framework that leverages dynamical systems techniques is applied to a recently updated set of deployment conditions and spacecraft parameter values for the Lunar IceCube mission, demonstrating the capability for rapid trajectory design.
NASA Astrophysics Data System (ADS)
Bosanac, Natasha; Cox, Andrew D.; Howell, Kathleen C.; Folta, David C.
2018-03-01
Lunar IceCube is a 6U CubeSat that is designed to detect and observe lunar volatiles from a highly inclined orbit. This spacecraft, equipped with a low-thrust engine, is expected to be deployed from the upcoming Exploration Mission-1 vehicle. However, significant uncertainty in the deployment conditions for secondary payloads impacts both the availability and geometry of transfers that deliver the spacecraft to the lunar vicinity. A framework that leverages dynamical systems techniques is applied to a recently updated set of deployment conditions and spacecraft parameter values for the Lunar IceCube mission, demonstrating the capability for rapid trajectory design.
Depth and Horizontal Distribution of Volatiles in Lunar Permanently Shadowed Regions
NASA Astrophysics Data System (ADS)
Hurley, D. M.; Bussey, B.; Lawrence, D. J.; Gladstone, R.; Elphic, R. C.; Vondrak, R. R.
2011-12-01
Neutron spectroscopy from Lunar Prospector returned data consistent with the presence of water ice in the near-subsurface of the Moon in permanently shadowed regions (PSRs) at low spatial resolution. Clementine and ground-based radar returned tantalizing, but inconclusive evidence of ice in lunar PSRs. Later, Mini-RF on Chandrayaan-1 and LRO detected a signature consistent with water ice in some polar craters on the Moon, but not all PSRs. Similarly, LEND on LRO detected a heterogeneous distribution of hydrogen among lunar PSRs. In addition, LAMP on LRO detected FUV spectra consistent with a heterogeneous distribution of frost on the surface of permanently shadowed regions. Yet the weakest spectral feature from LAMP was associated with the crater with the strongest hydrogen feature from LEND. The impact of LCROSS into Cabeus released water and other volatiles, but abundances were higher than the background amounts detected by neutron spectroscopy implying heterogeneity within that PSR. Data from any one instrument taken alone would lead one to a different conclusion about the distribution of volatiles than data taken from any other single instrument. Although the data from different instrumentation can seem to be disparate, the apparent discrepancy results from the different fields of view and sensitivities of the detection techniques. The complementary nature of these data can be exploited to provide a multi-dimensional view of volatiles in lunar PSRs. We apply a Monte Carlo model to describe the retention and redistribution of volatiles within lunar cold traps. The model runs constrain the coherence of volatile deposits with depth, area, and time, which allows us to examine how a given volatile distribution would appear to remote sensing experiments. This provides a big picture framework for integrating the observations of volatiles on the surface and at depth at the poles of the Moon with the goal of finding a distribution of volatiles in lunar PSRs consistent with all of the data.
Lunar Ice Cube: Searching for Lunar Volatiles with a lunar cubesat orbiter
NASA Astrophysics Data System (ADS)
Clark, Pamela E.; Malphrus, Ben; Brown, Kevin; Hurford, Terry; Brambora, Cliff; MacDowall, Robert; Folta, David; Tsay, Michael; Brandon, Carl; Lunar Ice Cube Team
2016-10-01
Lunar Ice Cube, a NASA HEOMD NextSTEP science requirements-driven deep space exploration 6U cubesat, will be deployed, with 12 others, by NASA's EM1 mission. The mission's high priority science application is understanding volatile origin, distribution, and ongoing processes in the inner solar system. JPL's Lunar Flashlight, and Arizona State University's LunaH-Map, also lunar orbiters to be deployed by EM1, will provide complementary observations. Lunar Ice Cube utilizes a versatile GSFC-developed payload: BIRCHES, Broadband InfraRed Compact, High-resolution Exploration Spectrometer, a miniaturized version of OVIRS on OSIRIS-REx. BIRCHES is a compact (1.5U, 2 kg, 20 W including cryocooler) point spectrometer with a compact cryocooled HgCdTe focal plane array for broadband (1 to 4 micron) measurements and Linear Variable Filter enabling 10 nm spectral resolution. The instrument will achieve sufficient SNR to identify water in various forms, mineral bands, and potentially other volatiles seen by LCROSS (e.g., CH4) as well. GSFC is developing compact instrument electronics easily configurable for H1RG family of focal plane arrays. The Lunar Ice Cube team is led by Morehead State University, who will provide build, integrate and test the spacecraft and provide mission operations. Onboard communication will be provided by the X-band JPL Iris Radio and dual X-band patch antennas. Ground communication will be provided by the DSN X-band network, particularly the Morehead State University 21-meter substation. Flight Dynamics support is provided by GSFC. The Busek micropropulsion system in a low energy trajectory will allow the spacecraft to achieve the science orbit less than a year. The high inclination, equatorial periapsis orbit will allow coverage of overlapping swaths once every lunar cycle at up to six different times of day (from dawn to dusk) as the mission progresses during its nominal six month science mapping period. Led by the JPL Science PI, the Lunar Ice Cube mission science team will determine composition and distribution of volatiles in lunar regolith as a function of time of day, latitude, regolith age and composition, and thus enable understanding of current dynamics of lunar volatiles.
Optical maturity variation in lunar spectra as measured by Moon Mineralogy Mapper data
Nettles, J.W.; Staid, M.; Besse, S.; Boardman, J.; Clark, R.N.; Dhingra, D.; Isaacson, P.; Klima, R.; Kramer, G.; Pieters, C.M.; Taylor, L.A.
2011-01-01
High spectral and spatial resolution data from the Moon Mineralogy Mapper (M3) instrument on Chandrayaan-1 are used to investigate in detail changes in the optical properties of lunar materials accompanying space weathering. Three spectral parameters were developed and used to quantify spectral effects commonly thought to be associated with increasing optical maturity: an increase in spectral slope ("reddening"), a decrease in albedo ("darkening"), and loss of spectral contrast (decrease in absorption band depth). Small regions of study were defined that sample the ejecta deposits of small fresh craters that contain relatively crystalline (immature) material that grade into local background (mature) soils. Selected craters are small enough that they can be assumed to be of constant composition and thus are useful for evaluating trends in optical maturity. Color composites were also used to identify the most immature material in a region and show that maturity trends can also be identified using regional soil trends. The high resolution M3 data are well suited to quantifying the spectral changes that accompany space weathering and are able to capture subtle spectral variations in maturity trends. However, the spectral changes that occur as a function of maturity were observed to be dependent on local composition. Given the complexity of space weathering processes, this was not unexpected but poses challenges for absolute measures of optical maturity across diverse lunar terrains. Copyright 2011 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Vondrak, Richard; Keller, John W.; Chin, Gordon; Petro, Noah; Garvin, James B.; Rice, James W.
2012-01-01
The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and to investigate the Lunar radiation environment. After spacecraft commissioning, the ESMD phase of the mission began on September 15, 2009 and completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission was scheduled for 2 years and completed in September, 2012. The LRO mission has been extended for two years under SMD. The extended mission focuses on a new set of goals related to understanding the geologic history of the Moon, its current state, and what it can tell us about the evolution Of the Solar System. Here we will review the major results from the LRO mission for both exploration and science and discuss plans and objectives going forward including plans for the extended science phase out to 2014. Results from the LRO mission include but are not limited to the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measurement of the day and night time temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the PSRs, evidence for recent tectonic activity on the Moon, and high resolution maps of the illumination conditions as the poles. The objectives for the second and extended science phases of the mission under SMD include: 1) understanding the bombardment history of the Moon, 2) interpreting Lunar geologic processes, 3) mapping the global Lunar regolith, 4) identifying volatiles on the Moon, and 5) measuring the Lunar atmosphere and radiation environment.
Trajectory Design for the Lunar Polar Hydrogen Mapper Mission
NASA Technical Reports Server (NTRS)
Genova, Anthony L.; Dunham, David W.
2017-01-01
The presented trajectory was designed for the Lunar Polar Hydrogen Mapper (LunaH-Map) 6U CubeSat, which was awarded a ride on NASAs Space Launch System (SLS) with Exploration Mission 1 (EM-1) via NASAs 2015 SIMPLEX proposal call. After deployment from EM-1s upper stage (which is planned to enter heliocentric space via a lunar flyby), the LunaH-Map CubeSat will alter its trajectory via its low-thrust ion engine to target a lunar flyby that yields a Sun-Earth-Moon weak stability boundary transfer to set up a ballistic lunar capture. Finally, the orbit energy is lowered to reach the required quasi-frozen science orbit with periselene above the lunar south pole.
NASA Technical Reports Server (NTRS)
1992-01-01
The Earth Orbital Rendezvous (EOR) configuration for the piloted mission is composed of three propulsive elements in addition to the Crew Module (CM): Primary Trans-Lunar Injection (PTLI), Lunar Braking Module (LBM), and Earth Return Module (ERM). The precursor mission is also composed of three propulsive elements in addition to its surface payloads: PTLI, LBM and the Payload Landing Module (PLM). Refer to Volume 1, Section 5.1 and 5.2 for a break-up of the different stages into the four launches. A quick summary is as follows: PTLI is on Launch 1 and 3 while the LBM, PLM, and surface payloads are on Launch 2 and another LBM, ERM, and CM on Launch 4. The precursor mission is designed to be as modular as possible with the piloted mission for developmental cost considerations. The following topics are discussed: launch vehicle description; primary trans-lunar injection stage; lunar braking module; earth return module; crew module; payload landing module; and surface payload description.
Resource Prospector: An Update on the Lunar Volatiles Prospecting and ISRU Demonstration Mission
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R.; Andrews, D.; Trimble, J.; Bluethmann, B.; Quinn, J.; Chavers, G.
2016-01-01
Over the last two decades a wealth of new observations of the moon have demonstrated a lunar water system dramatically more complex and rich than was deduced following the Apollo era. Lunar water, and other volatiles, have the potential to be a valuable or enabling resource for future exploration. The NASA Human Exploration and Operations Mission Directorate (HEOMD) have selected a lunar volatiles prospecting mission for a concept study and potential flight in CY2021. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials.
Resource Prospector: An Update on the Lunar Volatiles Prospecting and ISRU Demonstration Mission
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R.; Andrews, D.; Trimble, J.; Bluethmann, B.; Quinn, J.; Chavers, G.
2017-01-01
Over the last two decades a wealth of new observations of the moon have demonstrated a lunar water system dramatically more complex and rich than was deduced following the Apollo era. Lunar water, and other volatiles, have the potential to be a valuable or enabling resource for future exploration. The NASA Human Exploration and Operations Mission Directorate (HEOMD) have selected a lunar volatiles prospecting mission for a concept study and potential flight in CY2021. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile- bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials.
NASA Technical Reports Server (NTRS)
Gutkowski, Jeffrey P.; Dawn, Timothy F.; Jedrey, Richard M.
2014-01-01
The first crewed mission, Exploration Mission 2 (EM-2), for the MPCV Orion spacecraft is scheduled for August 2021, and its current mission is to orbit the Moon in a highly elliptical lunar orbit for 3 days. A 21-year scan was performed to identify feasible missions that satisfy the propulsive capabilities of the Interim Cryogenic Propulsion Stage (ICPS) and MPCV Service Module (SM). The mission is divided into 4 phases: (1) a lunar free return trajectory, (2) a hybrid maneuver, during the translunar coast, to lower the approach perilune altitude to 100 km, (3) lunar orbit insertion into a 100 x 10,000 km orbit, and (4) lunar orbit loiter and Earth return to a splashdown off the coast of Southern California. Trajectory data was collected for all feasible missions and converted to information that influence different subsystems including propulsion, power, thermal, communications, and mission operations. The complete 21-year scan data shows seasonal effects that are due to the Earth-Moon geometry and the initial Earth parking orbit. The data and information is also useful to identify mission opportunities around the current planned launch date for EM-2.
The Lunar Transit Telescope (LTT) - An early lunar-based science and engineering mission
NASA Technical Reports Server (NTRS)
Mcgraw, John T.
1992-01-01
The Sentinel, the soft-landed lunar telescope of the LTT project, is described. The Sentinel is a two-meter telescope with virtually no moving parts which accomplishes an imaging survey of the sky over almost five octaves of the electromagnetic spectrum from the ultraviolet into the infrared, with an angular resolution better than 0.1 arsec/pixel. The Sentinel will incorporate innovative techniques of interest for future lunar-based telescopes and will return significant engineering data which can be incorporated into future lunar missions. The discussion covers thermal mapping of the Sentinel, measurement of the cosmic ray flux, lunar dust, micrometeoroid flux, the lunar atmosphere, and lunar regolith stability and seismic activity.
NASA Technical Reports Server (NTRS)
1991-01-01
This document presents trade studies and reference concept designs accomplished during a study of Space Transfer Concepts and Analyses for Exploration Missions (STCAEM). This volume contains the major top level trades, level 2 trades conducted in support of NASA's Lunar/Mars Exploration Program Office, and a synopsis of the vehicles for different propulsion systems under trade consideration. The vehicles are presented in more detail in other volumes of this report. Book 1 of Volume 1 covers the following analyses: lunar/Mars commonality trades, lunar/Mars mission operations, and Mars transfer systems.
Kickstarting a New Era of Lunar Industrialization via Campaign of Lunar COTS Missions
NASA Technical Reports Server (NTRS)
Zuniga, Allison F.; Turner, Mark; Rasky, Daniel; Pittman, Robert B.; Zapata, Edgar
2016-01-01
To support the goals of expanding our human presence and current economic sphere beyond LEO, a new plan was constructed for NASA to enter into partnerships with industry to foster and incentivize a new era of lunar industrialization. For NASA to finally be successful in achieving sustainable human exploration missions beyond LEO, lessons learned from our space history have shown that it is essential for current program planning to include affordable and economic development goals as well as address top national priorities to obtain much needed public support. In the last 58 years of NASA's existence, only Apollo's human exploration missions beyond LEO were successful since it was proclaimed to be a top national priority during the 1960's. However, the missions were not sustainable and ended abruptly in 1972 due to lack of funding and insufficient economic gain. Ever since Apollo, there have not been any human missions beyond LEO because none of the proposed program plans were economical or proclaimed a top national priority. The proposed plan outlines a new campaign of low-cost, commercial-enabled lunar COTS (Commercial Orbital Transfer Services) missions which is an update to the Lunar COTS plan previously described. The objectives of this new campaign of missions are to prospect for resources, determine the economic viability of extracting those resources and assess the value proposition of using these resources in future exploration architectures such as Mars. These missions would be accomplished in partnership with commercial industry using the wellproven COTS Program acquisition model. This model proved to be very beneficial to both NASA and its industry partners as NASA saved significantly in development and operational costs, as much as tenfold, while industry partners successfully expanded their market share and demonstrated substantial economic gain. Similar to COTS, the goals for this new initiative are 1) to develop and demonstrate cost-effective, cis-lunar commercial services, such as lunar transportation, lunar mining and lunar ISRU operations; 2) enable development of an affordable and economical exploration architecture for future missions to Mars and beyond; and 3) to incentivize the creation of new lunar markets through use of lunar resources for economic benefit to NASA, commercial industry and the international community. These cost-effective services would not only enable NASA to economically and sustainably achieve its human exploration missions to the Moon, Mars and beyond but it would also kickstart a new era of lunar industrialization. This paper will describe the goals, objectives and approach for implementing this new campaign of missions. It will also describe the potential benefits and progress that can be accomplished with these low-cost, Lunar COTS missions. Lastly, a preliminary economic analysis approach is proposed for understanding the cost and potential return on investment in the use of lunar resources to reach the goal of lunar industrialization and an expanded and sustainable human presence into cis-lunar space and beyond.
Resource Prospector: Evaluating the ISRU Potential of the Lunar Poles
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R.; Andrews, D.; Trimble, J.; Bluethmann, B.; Quinn, J.; Chavers, G.
2017-01-01
Resource Prospector (RP) is a lunar volatiles prospecting mission being developed for potential flight in CY2021-2022. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. The primary mission goal for RP is to evaluate the In-Situ Resource Utilization (ISRU) potential of the lunar poles.
Lunar Prospector Extended Mission
NASA Technical Reports Server (NTRS)
Folta, David; Beckman, Mark; Lozier, David; Galal, Ken
1999-01-01
The National Aeronautics and Space Administration (NASA) selected Lunar Prospector (LP) as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning and actual results of the Lunar Prospector extended mission including maneuver design, eccentricity & argument of perigee evolution, and lunar potential modeling.
Lunar Prospector Extended Mission
NASA Technical Reports Server (NTRS)
Folta, David; Beckman, Mark; Lozier, David; Galal, Ken
1999-01-01
The National Aeronautics and Space Administration (NASA) selected Lunar Prospector as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning, and actual results of the the Lunar Prospector extended mission including maneuver design, eccentricity & argument of perigee evolution, and lunar potential modeling.
Lunar Prospector Extended Mission
NASA Astrophysics Data System (ADS)
Folta, David; Beckman, Mark; Lozier, David; Galal, Ken
1999-05-01
The National Aeronautics and Space Administration (NASA) selected Lunar Prospector (LP) as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning and actual results of the Lunar Prospector extended mission including maneuver design, eccentricity & argument of perigee evolution, and lunar potential modeling.
Comparisons of selected laser beam power missions to conventionally powered missions
NASA Technical Reports Server (NTRS)
Bozek, John M.; Oleson, Steven R.; Landis, Geoffrey A.; Stavnes, Mark W.
1993-01-01
Earth-based laser sites beaming laser power to space assets have shown benefits over competing power system concepts for specific missions. Missions analyzed in this report that show benefits of laser beam power are low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) transfer, LEO to low lunar orbit (LLO) cargo missions, and lunar-base power. Both laser- and solar-powered orbit-transfer vehicles (OTV's) make a 'tug' concept viable, which substantially reduces cumulative initial mass to LEO in comparison to chemical propulsion concepts. Lunar cargo missions utilizing laser electric propulsion from Earth-orbit to LLO show substantial mass saving to LEO over chemical propulsion systems. Lunar-base power system options were compared on a landed-mass basis. Photovoltaics with regenerative fuel cells, reactor-based systems, and laser-based systems were sized to meet a generic lunar-base power profile. A laser-based system begins to show landed mass benefits over reactor-based systems when proposed production facilities on the Moon require power levels greater than approximately 300 kWe. Benefit/cost ratios of laser power systems for an OTV, both to GEO and LLO, and for a lunar base were calculated to be greater than 1.
Advanced Spacecraft Designs in Support of Human Missions to Earth's Neighborhood
NASA Technical Reports Server (NTRS)
Fletcher, David
2002-01-01
NASA's strategic planning for technology investment draws on engineering studies of potential future missions. A number of hypothetical mission architectures have been studied. A recent study completed by The NASA/JSC Advanced Design Team addresses one such possible architecture strategy for missions to the moon. This conceptual study presents an overview of each of the spacecraft elements that would enable such missions. These elements include an orbiting lunar outpost at lunar L1 called the Gateway, a lunar transfer vehicle (LTV) which ferries a crew of four from the ISS to the Gateway, a lunar lander which ferries the crew from the Gateway to the lunar surface, and a one-way lunar habitat lander capable of supporting the crew for 30 days. Other supporting elements of this architecture discussed below include the LTV kickstage, a solar-electric propulsion (SEP) stage, and a logistics lander capable of re-supplying the 30-day habitat lander and bringing other payloads totaling 10.3 mt in support of surface mission activities. Launch vehicle infrastructure to low-earth orbit includes the Space Shuttle, which brings up the LTV and crew, and the Delta-IV Heavy expendable launch vehicle which launches the landers, kickstage, and SEP.
Lunar and Planetary Science XXXV: Future Missions to the Moon
NASA Technical Reports Server (NTRS)
2004-01-01
This document contained the following topics: A Miniature Mass Spectrometer Module; SELENE Gamma Ray Spectrometer Using Ge Detector Cooled by Stirling Cryocooler; Lunar Elemental Composition and Investigations with D-CIXS X-Ray Mapping Spectrometer on SMART-1; X-Ray Fluorescence Spectrometer Onboard the SELENE Lunar Orbiter: Its Science and Instrument; Detectability of Degradation of Lunar Impact Craters by SELENE Terrain Camera; Study of the Apollo 16 Landing Site: As a Standard Site for the SELENE Multiband Imager; Selection of Targets for the SMART-1 Infrared Spectrometer (SIR); Development of a Telescopic Imaging Spectrometer for the Moon; The Lunar Seismic Network: Mission Update.
The Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter (LRO) mission
NASA Astrophysics Data System (ADS)
Riris, H.; Cavanaugh, J.; Sun, X.; Liiva, P.; Rodriguez, M.; Neuman, G.
2017-11-01
The Lunar Orbiter Laser Altimeter (LOLA) instrument [1-3] on NASA's Lunar Reconnaissance Orbiter (LRO) mission, launched on June 18th, 2009, from Kennedy Space Center, Florida, will provide a precise global lunar topographic map using laser altimetry. LOLA will assist in the selection of landing sites on the Moon for future robotic and human exploration missions and will attempt to detect the presence of water ice on or near the surface, which is one of the objectives of NASA's Exploration Program. Our present knowledge of the topography of the Moon is inadequate for determining safe landing areas for NASA's future lunar exploration missions. Only those locations, surveyed by the Apollo missions, are known with enough detail. Knowledge of the position and characteristics of the topographic features on the scale of a lunar lander are crucial for selecting safe landing sites. Our present knowledge of the rest of the lunar surface is at approximately 1 km kilometer level and in many areas, such as the lunar far side, is on the order of many kilometers. LOLA aims to rectify that and provide a precise map of the lunar surface on both the far and near side of the moon. LOLA uses short (6 ns) pulses from a single laser through a Diffractive Optical Element (DOE) to produce a five-beam pattern that illuminates the lunar surface. For each beam, LOLA measures the time of flight (range), pulse spreading (surface roughness), and transmit/return energy (surface reflectance). LOLA will produce a high-resolution global topographic model and global geodetic framework that enables precise targeting, safe landing, and surface mobility to carry out exploratory activities. In addition, it will characterize the polar illumination environment, and image permanently shadowed regions of the lunar surface to identify possible locations of surface ice crystals in shadowed polar craters.
Characterizing dark mantle deposits in the lunar crater Alphonsus
NASA Astrophysics Data System (ADS)
Shkuratov, Y. G.; Ivanov, M. A.; Korokhin, V. V.; Kaydash, V. G.; Basilevsky, A. T.; Videen, G.; Hradyska, L. V.; Velikodsky, Y. I.; Marchenko, G. P.
2018-04-01
We analyze available remote-sensing data of the crater Alphonsus, focusing on the analysis of the crater's dark mantle deposits (DMDs), which includes images from NASA Clementine and Lunar Reconnaissance Orbiter (LRO), Japanese Selene (Kaguya), and Indian Chandrayaan-1 missions. The Alphonsus DMDs are gentle-sloped flat hills with typical heights of several meters, which are presented with pyroclastic materials. Our determination of the absolute ages of the Alphonsus DMDs by the technique of crater size-frequency distributions shows that they are ∼200-400 m.y. old. However, being geologically young, the Alphonsus DMDs are not seen in OMAT maps. The DMDs have noticeably lower content of TiO2 (2-3%) than the mare regions to the west (>4%). The assessment of total pyroxene shows it has a higher abundance in the DMDs, although LRO Diviner measurements of the Chirstiansen feature suggest, rather, a high abundance of olivine. The DMDs pyroclastic material has no signs of OH/H2O compounds. We may suggest that this characteristic of the DMDs either relates to their impact reworking and loss of the OH/H2O compounds or to the non-water volatiles as the driving agent of the pyroclastic activity. The compositional assessments of the DMDs may be flawed from contamination with the surrounding material due to horizontal and vertical transportation due to impacts. This effect probably can be observed in LROC NAC images of high resolution. A very dark material outcropping on the slopes of the vent depression is seen due to renovation of the regolith on the steep walls of the depression. Thus, at smaller phase angles, the pyroclastic material is dark and at larger phase angles it appears almost like the surrounding material. This means that the phase dependence of the outcropping dark material is shallow; i.e. the dark surface is smoother than its surroundings. This may suggest venting of gases resulting in fluidization of the granular pyroclastic material of the deposit.
Sensitivity of Lunar Resource Economic Model to Lunar Ice Concentration
NASA Technical Reports Server (NTRS)
Blair, Brad; Diaz, Javier
2002-01-01
Lunar Prospector mission data indicates sufficient concentration of hydrogen (presumed to be in the form of water ice) to form the basis for lunar in-situ mining activities to provide a source of propellant for near-Earth and solar system transport missions. A model being developed by JPL, Colorado School of Mines, and CSP, Inc. generates the necessary conditions under which a commercial enterprise could earn a sufficient rate of return to develop and operate a LEO propellant service for government and commercial customers. A combination of Lunar-derived propellants, L-1 staging, and orbital fuel depots could make commercial LEO/GEO development, inter-planetary missions and the human exploration and development of space more energy, cost, and mass efficient.
Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat
NASA Technical Reports Server (NTRS)
Cohen, B. A.; Hayne, P. O.; Banazadeh, P.; Baker, J. D.; Staehle, R. L.; Paine, C..; Paige, D. A.
2014-01-01
Water ice and other volatiles may be located in the Moon's polar regions, with sufficient quantities for in situ extraction and utilization by future human and robotic missions. Evidence from orbiting spacecraft and the LCROSS impactor suggests the presence of surface and/or nearsurface volatiles, including water ice. These deposits are of interest to human exploration to understand their potential for use by astronauts. Understanding the composition, quantity, distribution, and form of water/H species and other volatiles associated with lunar cold traps is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits could also reveal important information about the delivery of water to the Earth- Moon system, so are of scientific interest. The scientific exploration of the lunar polar regions was one of the key recommendations of the Planetary Science Decadal Survey. In order to address NASA's SKGs, the Advanced Exploration Systems (AES) program selected three lowcost 6-U CubeSat missions for launch as secondary payloads on the first test flight (EM1) of the Space Launch System (SLS) scheduled for 2017. The Lunar Flashlight mission was selected as one of these missions, specifically to address the SKG associated with lunar volatiles. Development of the Lunar Flashlight CubeSat concept leverages JPL's Interplanetary Nano- Spacecraft Pathfinder In Relevant Environment (INSPIRE) mission, MSFC's intimate knowledge of the Space Launch System and EM-1 mission, small business development of solar sail and electric propulsion hardware, and JPL experience with specialized miniature sensors. The goal of Lunar Flashlight is to determine the presence or absence of exposed water ice and its physical state, and map its concentration at the kilometer scale within the permanently shadowed regions of the lunar south pole. After being ejected in cislunar space by SLS, Lunar Flashlight deploys its solar panels and solar sail and maneuvers into a low-energy transfer to lunar orbit. The solar sail and attitude control system work to bring the satellite into an elliptical polar orbit spiraling down to a perilune of 30-10 km above the south pole for data collection. Lunar Flashlight uses its solar sail to shine reflected sunlight into permanently shadowed regions, measuring surface albedo with a four-filter point spectrometer at 1.1, 1.5 1.9, and 2.0 microns. Water ice will be distinguished from dry regolith from these measurements in two ways: 1) spatial variations in absolute reflectance (water ice is much brighter in the continuum channels), and 2) reflectance ratios between absorption and continuum channels. Derived reflectance and reflectance ratios will be mapped onto the lunar surface in order to distinguish the composition of the PSRs from that of the sunlit terrain. Lunar Flashlight enables a low-cost path to in-situ resource utilization (ISRU) by identifying operationally useful deposits (if there are any), which is a game-changing capability for expanded human exploration.
1979-05-01
This montage depicts the flight crew patches for the manned Apollo 7 thru Apollo 17 missions. The Apollo 7 through 10 missions were basically manned test flights that paved the way for lunar landing missions. Primary objectives met included the demonstration of the Command Service Module (CSM) crew performance; crew/space vehicle/mission support facilities performance and testing during a manned CSM mission; CSM rendezvous capability; translunar injection demonstration; the first manned Apollo docking, the first Apollo Extra Vehicular Activity (EVA), performance of the first manned flight of the lunar module (LM); the CSM-LM docking in translunar trajectory, LM undocking in lunar orbit, LM staging in lunar orbit, and manned LM-CSM docking in lunar orbit. Apollo 11 through 17 were lunar landing missions with the exception of Apollo 13 which was forced to circle the moon without landing due to an onboard explosion. The craft was,however, able to return to Earth safely. Apollo 11 was the first manned lunar landing mission and performed the first lunar surface EVA. Landing site was the Sea of Tranquility. A message for mankind was delivered, the U.S. flag was planted, experiments were set up and 47 pounds of lunar surface material was collected for analysis back on Earth. Apollo 12, the 2nd manned lunar landing mission landed in the Ocean of Storms and retrieved parts of the unmanned Surveyor 3, which had landed on the Moon in April 1967. The Apollo Lunar Surface Experiments Package (ALSEP) was deployed, and 75 pounds of lunar material was gathered. Apollo 14, the 3rd lunar landing mission landed in Fra Mauro. ALSEP and other instruments were deployed, and 94 pounds of lunar materials were gathered, using a hand cart for first time to transport rocks. Apollo 15, the 4th lunar landing mission landed in the Hadley-Apennine region. With the first use of the Lunar Roving Vehicle (LRV), the crew was bale to gather 169 pounds of lunar material. Apollo 16, the 5th lunar landing mission, landed in the Descartes Highlands for the first study of highlands area. Selected surface experiments were deployed, the ultraviolet camera/spectrograph was used for first time on the Moon, and the LRV was used for second time for a collection of 213 pounds of lunar material. The Apollo program came to a close with Apollo 17, the 6th and final manned lunar landing mission that landed in the Taurus-Littrow highlands and valley area. This mission hosted the first scientist-astronaut, Schmitt, to land on the Moon. The 6th automated research station was set up, and 243 ponds of lunar material was gathered using the LRV.
Montage of Apollo Crew Patches
NASA Technical Reports Server (NTRS)
1979-01-01
This montage depicts the flight crew patches for the manned Apollo 7 thru Apollo 17 missions. The Apollo 7 through 10 missions were basically manned test flights that paved the way for lunar landing missions. Primary objectives met included the demonstration of the Command Service Module (CSM) crew performance; crew/space vehicle/mission support facilities performance and testing during a manned CSM mission; CSM rendezvous capability; translunar injection demonstration; the first manned Apollo docking, the first Apollo Extra Vehicular Activity (EVA), performance of the first manned flight of the lunar module (LM); the CSM-LM docking in translunar trajectory, LM undocking in lunar orbit, LM staging in lunar orbit, and manned LM-CSM docking in lunar orbit. Apollo 11 through 17 were lunar landing missions with the exception of Apollo 13 which was forced to circle the moon without landing due to an onboard explosion. The craft was,however, able to return to Earth safely. Apollo 11 was the first manned lunar landing mission and performed the first lunar surface EVA. Landing site was the Sea of Tranquility. A message for mankind was delivered, the U.S. flag was planted, experiments were set up and 47 pounds of lunar surface material was collected for analysis back on Earth. Apollo 12, the 2nd manned lunar landing mission landed in the Ocean of Storms and retrieved parts of the unmanned Surveyor 3, which had landed on the Moon in April 1967. The Apollo Lunar Surface Experiments Package (ALSEP) was deployed, and 75 pounds of lunar material was gathered. Apollo 14, the 3rd lunar landing mission landed in Fra Mauro. ALSEP and other instruments were deployed, and 94 pounds of lunar materials were gathered, using a hand cart for first time to transport rocks. Apollo 15, the 4th lunar landing mission landed in the Hadley-Apennine region. With the first use of the Lunar Roving Vehicle (LRV), the crew was bale to gather 169 pounds of lunar material. Apollo 16, the 5th lunar landing mission, landed in the Descartes Highlands for the first study of highlands area. Selected surface experiments were deployed, the ultraviolet camera/spectrograph was used for first time on the Moon, and the LRV was used for second time for a collection of 213 pounds of lunar material. The Apollo program came to a close with Apollo 17, the 6th and final manned lunar landing mission that landed in the Taurus-Littrow highlands and valley area. This mission hosted the first scientist-astronaut, Schmitt, to land on the Moon. The 6th automated research station was set up, and 243 ponds of lunar material was gathered using the LRV.
LOLA: The lunar operations landing assembly
NASA Technical Reports Server (NTRS)
Abreu, Mike; Argeles, Fernando; Stewart, Chris; Turner, Charles; Rivas, Gavino
1992-01-01
Because the President of the United States has begun the Space Exploration Initiative (SEI), which entails a manned mission to Mars by the year 2016, it is necessary to use the Moon as a stepping stone to this objective. In support of this mission, unmanned scientific exploration of the Moon will help re-establish man's presence there and will serve as a basis for possible lunar colonization, setting the stage for a manned Mars mission. The lunar landing platform must provide support to its payload in the form of power, communications, and thermal control. The design must be such that cost is held to a minimum, and so that a wide variety of payloads may be used with the lander. The objectives of this mission are (1) to further the SEI by returning to the moon with unmanned scientific experiments, (2) to demonstrate to the public that experimental payload missions are feasible, (3) to provide a common lunar lander platform so select scientific packages could be targeted to specific lunar locales, (4) to enable the lander to be built from off-the-shelf hardware, and (5) to provide first mission launch by 1996.
Apollo Mission Techniques Lunar Orbit Activities - Part 1a
NASA Technical Reports Server (NTRS)
Interbartolo, Michael A.
2009-01-01
This slide presentation reviews the planned sequence of events and the rationale for all lunar missions, and the flight experiences and lessons learned for the lunar orbit activities from a trajectory perspective. Shown are trajectories which include the moon's position at the various stages in the complete trip from launch, to the return and reentry. Included in the presentation are objectives and the sequence of events,for the Apollo 8, and Apollo 10. This is followed by a discussion of Apollo 11, including: the primary mission objective, the sequence of events, and the flight experience. The next mission discussed was Apollo 12. It reviews the objectives, the ground tracking, procedure changes, and the sequence of events. The aborted Apollo 13 mission is reviewed, including the objectives, and the sequence of events. Brief summaries of the flight experiences for Apollo 14-16 are reviewed. The flight sequence of events of Apollo 17 are discussed. In summary each mission consistently performing precision landings required that Apollo lunar orbit activities devote considerable attention to: (1) Improving fidelity of lunar gravity models, (2) Maximizing availability of ground tracking, (3) Minimizing perturbations on the trajectory, (4) Maximizing LM propellant reserves for hover time. Also the use of radial separation maneuvers (1) allows passive re-rendezvous after each rev, but ... (2) sensitive to small dispersions in initial sep direction
Earth to Moon Transfer: Direct vs Via Libration Points (L1, L2)
NASA Technical Reports Server (NTRS)
Condon, Gerald L.; Wilson, Samuel W.
2004-01-01
For some three decades, the Apollo-style mission has served as a proven baseline technique for transporting flight crews to the Moon and back with expendable hardware. This approach provides an optimal design for expeditionary missions, emphasizing operational flexibility in terms of safely returning the crew in the event of a hardware failure. However, its application is limited essentially to low-latitude lunar sites, and it leaves much to be desired as a model for exploratory and evolutionary programs that employ reusable space-based hardware. This study compares the performance requirements for a lunar orbit rendezvous mission type with one using the cislunar libration point (L1) as a stopover and staging point for access to arbitrary sites on the lunar surface. For selected constraints and mission objectives, it contrasts the relative uniformity of performance cost when the L1 staging point is used with the wide variation of cost for the Apollo-style lunar orbit rendezvous.
Lunar prospector mission design and trajectory support
NASA Technical Reports Server (NTRS)
Lozier, David; Galal, Ken; Folta, David; Beckman, Mark
1998-01-01
The Lunar Prospector mission is the first dedicated NASA lunar mapping mission since the Apollo Orbiter program which was flown over 25 years ago. Competitively selected under the NASA Discovery Program, Lunar Prospector was launched on January 7, 1998 on the new Lockheed Martin Athena 2 launch vehicle. The mission design of Lunar Prospector is characterized by a direct minimum energy transfer trajectory to the moon with three scheduled orbit correction maneuvers to remove launch and cislunar injection errors prior to lunar insertion. At lunar encounter, a series of three lunar orbit insertion maneuvers and a small circularization burn were executed to achieve a 100 km altitude polar mapping orbit. This paper will present the design of the Lunar Prospector transfer, lunar insertion and mapping orbits, including maneuver and orbit determination strategies in the context of mission goals and constraints. Contingency plans for handling transfer orbit injection and lunar orbit insertion anomalies are also summarized. Actual flight operations results are discussed and compared to pre-launch support analysis.
Robotic Lunar Landers For Science And Exploration
NASA Technical Reports Server (NTRS)
Cohen, B. A.; Bassler, J. A.; Morse, B. J.; Reed, C. L. B.
2010-01-01
NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA s robotic lunar lander flight projects. In 2005, the Robotic Lunar Exploration Program Mission #2 (RLEP-2) was selected as an ESMD precursor robotic lander mission to demonstrate precision landing and determine if there was water ice at the lunar poles; however, this project was canceled. Since 2008, the team has been supporting SMD designing small lunar robotic landers for science missions, primarily to establish anchor nodes of the International Lunar Network (ILN), a network of lunar geophysical nodes. Additional mission studies have been conducted to support other objectives of the lunar science community. This paper describes the current status of the MSFC/APL robotic lunar mission studies and risk reduction efforts including high pressure propulsion system testing, structure and mechanism development and testing, long cycle time battery testing, combined GN&C and avionics testing, and two autonomous lander test articles.
Application of Solar-Electric Propulsion to Robotic and Human Missions in Near-Earth Space
NASA Technical Reports Server (NTRS)
Woodcock, Gordon R.; Dankanich, John
2011-01-01
Interest in applications of solar electric propulsion (SEP) is increasing. Application of SEP technology is favored when: (1) the mission is compatible with low-thrust propulsion, (2) the mission needs high total delta V such that chemical propulsion is disadvantaged; and (3) performance enhancement is needed. If all such opportunities for future missions are considered, many uses of SEP are likely. Representative missions are surveyed and several SEP applications selected for analysis, including orbit raising, lunar science, lunar exploration, lunar exploitation, planetary science, and planetary exploration. These missions span SEP power range from 10s of kWe to several MWe. Modes of use and benefits are described, and potential SEP evolution is discussed.
Application of Solar-Electric Propulsion to Robotic and Human Missions in Near-Earth Space
NASA Technical Reports Server (NTRS)
Woodcock, Gordon R.; Dankanich, John
2006-01-01
Interest in applications of solar electric propulsion (SEP) is increasing. Application of SEP technology is favored when: (1) the mission is compatible with low-thrust propulsion, (2) the mission needs high total delta V such that chemical propulsion is disadvantaged; and (3) performance enhancement is needed. If all such opportunities for future missions are considered, many uses of SEP are likely. Representative missions are surveyed and several SEP applications selected for analysis, including orbit raising, lunar science, lunar exploration, lunar exploitation, planetary science, and planetary exploration. These missions span SEP power range from 10s of kWe to several MWe. Modes of use and benefits are described, and potential SEP evolution is discussed.
Monte Carlo Analysis as a Trajectory Design Driver for the TESS Mission
NASA Technical Reports Server (NTRS)
Nickel, Craig; Lebois, Ryan; Lutz, Stephen; Dichmann, Donald; Parker, Joel
2016-01-01
The Transiting Exoplanet Survey Satellite (TESS) will be injected into a highly eccentric Earth orbit and fly 3.5 phasing loops followed by a lunar flyby to enter a mission orbit with lunar 2:1 resonance. Through the phasing loops and mission orbit, the trajectory is significantly affected by lunar and solar gravity. We have developed a trajectory design to achieve the mission orbit and meet mission constraints, including eclipse avoidance and a 30-year geostationary orbit avoidance requirement. A parallelized Monte Carlo simulation was performed to validate the trajectory after injecting common perturbations, including launch dispersions, orbit determination errors, and maneuver execution errors. The Monte Carlo analysis helped identify mission risks and is used in the trajectory selection process.
Lower-Cost, Relocatable Lunar Polar Lander and Lunar Surface Sample Return Probes
NASA Technical Reports Server (NTRS)
Amato, G. Michael; Garvin, James B.; Burt, I. Joseph; Karpati, Gabe
2011-01-01
Key science and exploration objectives of lunar robotic precursor missions can be achieved with the Lunar Explorer (LEx) low-cost, robotic surface mission concept described herein. Selected elements of the LEx concept can also be used to create a lunar surface sample return mission that we have called Boomerang
NASA Technical Reports Server (NTRS)
1988-01-01
One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.
NASA Near Earth Network (NEN) Support for Lunar and L1/L2 CubeSats
NASA Technical Reports Server (NTRS)
Schaire, Scott; Altunc, Serhat; Wong, Yen; Shelton, Marta; Celeste, Peter; Anderson, Michael; Perrotto, Trish
2017-01-01
The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO, GEO, HEO, lunar and L1/L2 orbits. The NENs future mission set includes and will continue to include CubeSat missions. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL) developed IRIS radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 lunar CubeSats.The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NENs mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configuration/ease of upgrade, to ensure compatibility with the IRIS radio. In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1/L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is ready to begin supporting CubeSat missions. The NEN is considering network upgrades to broaden the types of CubeSat missions that can be supported and is supporting both the CubeSat community and radio developers to ensure future CubeSat missions have multiple options when choosing a network for their communications support.
Lunar Orbit Insertion Targeting and Associated Outbound Mission Design for Lunar Sortie Missions
NASA Technical Reports Server (NTRS)
Condon, Gerald L.
2007-01-01
This report details the Lunar Orbit Insertion (LOI) arrival targeting and associated mission design philosophy for Lunar sortie missions with up to a 7-day surface stay and with global Lunar landing site access. It also documents the assumptions, methodology, and requirements validated by TDS-04-013, Integrated Transit Nominal and Abort Characterization and Sensitivity Study. This report examines the generation of the Lunar arrival parking orbit inclination and Longitude of the Ascending Node (LAN) targets supporting surface missions with global Lunar landing site access. These targets support the Constellation Program requirement for anytime abort (early return) by providing for a minimized worst-case wedge angle [and an associated minimum plane change delta-velocity (V) cost] between the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM) for an LSAM launch anytime during the Lunar surface stay.
The Absolute Reflectance and New Calibration Site of the Moon
NASA Astrophysics Data System (ADS)
Wu, Yunzhao; Wang, Zhenchao; Cai, Wei; Lu, Yu
2018-05-01
How bright the Moon is forms a simple but fundamental and important question. Although numerous efforts have been made to answer this question such as use of sophisticated electro-optical measurements and suggestions for calibration sites, the answer is still debated. An in situ measurement with a calibration panel on the surface of the Moon is crucial for obtaining the accurate absolute reflectance and resolving the debate. China’s Chang’E-3 (CE-3) “Yutu” rover accomplished this type of measurement using the Visible-Near Infrared Spectrometer (VNIS). The measurements of the VNIS, which were at large emission and phase angles, complement existing measurements for the range of photometric geometry. The in situ reflectance shows that the CE-3 landing site is very dark with an average reflectance of 3.86% in the visible bands. The results are compared with recent mission instruments: the Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC), the Spectral Profiler (SP) on board the SELENE, the Moon Mineralogy Mapper (M3) on board the Chandrayaan-1, and the Chang’E-1 Interference Imaging Spectrometer (IIM). The differences in the measurements of these instruments are very large and indicate inherent differences in their absolute calibration. The M3 and IIM measurements are smaller than LROC WAC and SP, and the VNIS measurement falls between these two pairs. When using the Moon as a radiance source for the on-orbit calibration of spacecraft instruments, one should be cautious about the data. We propose that the CE-3 landing site, a young and homogeneous surface, should serve as the new calibration site.
Dual Mission Scenarios for the Human Lunar Campaign - Performance, Cost and Risk Benefits
NASA Technical Reports Server (NTRS)
Saucillo, Rudolph J.; Reeves, David M.; Chrone, Jonathan D.; Stromgren, Chel; Reeves, John D.; North, David D.
2008-01-01
Scenarios for human lunar operations with capabilities significantly beyond Constellation Program baseline missions are potentially feasible based on the concept of dual, sequential missions utilizing a common crew and a single Ares I/CEV (Crew Exploration Vehicle). For example, scenarios possible within the scope of baseline technology planning include outpost-based sortie missions and dual sortie missions. Top level cost benefits of these dual sortie scenarios may be estimated by comparison to the Constellation Program reference two-mission-per-year lunar campaign. The primary cost benefit is the accomplishment of Mission B with a "single launch solution" since no Ares I launch is required. Cumulative risk to the crew is lowered since crew exposure to launch risks and Earth return risks are reduced versus comparable Constellation Program reference two-mission-per-year scenarios. Payload-to-the-lunar-surface capability is substantially increased in the Mission B sortie as a result of additional propellant available for Lunar Lander #2 descent. This additional propellant is a result of EDS #2 transferring a smaller stack through trans-lunar injection and using remaining propellant to perform a portion of the lunar orbit insertion (LOI) maneuver. This paper describes these dual mission concepts, including cost, risk and performance benefits per lunar sortie site, and provides an initial feasibility assessment.
Aeronautics and Space Report of the President: Fiscal Year 2009 Activities
NASA Technical Reports Server (NTRS)
2009-01-01
In fiscal year 2009 (FY 09), the Exploration Systems Mission Directorate's (ESMD) Advanced Capabilities Division (ACD) provided critical research and technology products that reduced operational and technical risks for the flight systems being developed by the Constellation Program.1 These products addressed high-priority technology requirements for lunar exploration; risk mitigation related to astronaut health and performance; basic research in life and physical sciences using the International Space Station (ISS), free-flying spacecraft, and ground-based laboratories; and lunar robotic missions to gather data relevant to future human lunar missions.
Impact of lunar and planetary missions on the space station: Preliminary STS logistics report
NASA Technical Reports Server (NTRS)
1984-01-01
Space station requirements for lunar and planetary missions are discussed. Specific reference is made to projected Ceres and Kopff missions; Titan probes; Saturn and Mercury orbiters; and a Mars sample return mission. Such requirements as base design; station function; program definition; mission scenarios; uncertainties impact; launch manifest and mission schedule; and shuttle loads are considered. It is concluded that: (1) the impact of the planetary missions on the space station is not large when compared to the lunar base; (2) a quarantine module may be desirable for sample returns; (3) the Ceres and Kopff missions require the ability to stack and checkout two-stage OTVs; and (4) two to seven manweeks of on-orbit work are required of the station crew to launch a mission and, with the exception of the quarantine module, dedicated crew will not be required.
Lunar lander conceptual design
NASA Technical Reports Server (NTRS)
Lee, Joo Ahn; Carini, John; Choi, Andrew; Dillman, Robert; Griffin, Sean J.; Hanneman, Susan; Mamplata, Caesar; Stanton, Edward
1989-01-01
A conceptual design is presented of a Lunar Lander, which can be the primary vehicle to transport the equipment necessary to establish a surface lunar base, the crew that will man the base, and the raw materials which the Lunar Station will process. A Lunar Lander will be needed to operate in the regime between the lunar surface and low lunar orbit (LLO), up to 200 km. This lander is intended for the establishment and operation of a manned surface base on the moon and for the support of the Lunar Space Station. The lander will be able to fulfill the requirements of 3 basic missions: A mission dedicated to delivering maximum payload for setting up the initial lunar base; Multiple missions between LLO and lunar surface dedicated to crew rotation; and Multiple missions dedicated to cargo shipments within the regime of lunar surface and LLO. A complete set of structural specifications is given.
Lunar map showing traverse plans for Apollo 14 lunar landing mission
1970-09-01
This lunar map shows the traverse plans for the Apollo 14 lunar landing mission. Areas marked include Lunar module landing site, areas for the Apollo Lunar Surface Experiment Package (ALSEP) and areas for gathering of core samples.
NASA Technical Reports Server (NTRS)
Folta, David C.; Bosanac, Natasha; Cox, Andrew; Howell, Kathleen C.
2016-01-01
Lunar IceCube, a 6U CubeSat, will prospect for water and other volatiles from a low-periapsis, highly inclined elliptical lunar orbit. Injected from Exploration Mission-1, a lunar gravity assisted multi-body transfer trajectory will capture into a lunar science orbit. The constrained departure asymptote and value of trans-lunar energy limit transfer trajectory types that re-encounter the Moon with the necessary energy and flight duration. Purdue University and Goddard Space Flight Center's Adaptive Trajectory Design tool and dynamical system research is applied to uncover cislunar spatial regions permitting viable transfer arcs. Numerically integrated transfer designs applying low-thrust and a design framework are described.
Impact of lunar and planetary missions on the space station
NASA Technical Reports Server (NTRS)
1984-01-01
The impacts upon the growth space station of several advanced planetary missions and a populated lunar base are examined. Planetary missions examined include sample returns from Mars, the Comet Kopff, the main belt asteroid Ceres, a Mercury orbiter, and a saturn orbiter with multiple Titan probes. A manned lunar base build-up scenario is defined, encompassing preliminary lunar surveys, ten years of construction, and establishment of a permanent 18 person facility with the capability to produce oxygen propellant. The spacecraft mass departing from the space station, mission Delta V requirements, and scheduled departure date for each payload outbound from low Earth orbit are determined for both the planetary missions and for the lunar base build-up. Large aerobraked orbital transfer vehicles (OTV's) are used. Two 42 metric ton propellant capacity OTV's are required for each the the 68 lunar sorties of the base build-up scenario. The two most difficult planetary missions (Kopff and Ceres) also require two of these OTV's. An expendable lunar lander and ascent stage and a reusable lunar lander which uses lunar produced oxygen are sized to deliver 18 metric tons to the lunar surface. For the lunar base, the Space Station must hangar at least two non-pressurized OTV's, store 100 metric tons of cryogens, and support an average of 14 OTV launch, return, and refurbishment cycles per year. Planetary sample return missions require a dedicated quarantine module.
Future Lunar Sampling Missions: Big Returns on Small Samples
NASA Astrophysics Data System (ADS)
Shearer, C. K.; Borg, L.
2002-01-01
The next sampling missions to the Moon will result in the return of sample mass (100g to 1 kg) substantially smaller than those returned by the Apollo missions (380 kg). Lunar samples to be returned by these missions are vital for: (1) calibrating the late impact history of the inner solar system that can then be extended to other planetary surfaces; (2) deciphering the effects of catastrophic impacts on a planetary body (i.e. Aitken crater); (3) understanding the very late-stage thermal and magmatic evolution of a cooling planet; (4) exploring the interior of a planet; and (5) examining volatile reservoirs and transport on an airless planetary body. Can small lunar samples be used to answer these and other pressing questions concerning important solar system processes? Two potential problems with small, robotically collected samples are placing them in a geologic context and extracting robust planetary information. Although geologic context will always be a potential problem with any planetary sample, new lunar samples can be placed within the context of the important Apollo - Luna collections and the burgeoning planet-scale data sets for the lunar surface and interior. Here we illustrate the usefulness of applying both new or refined analytical approaches in deciphering information locked in small lunar samples.
NASA Technical Reports Server (NTRS)
Nickel, Craig; Parker, Joel; Dichmann, Don; Lebois, Ryan; Lutz, Stephen
2016-01-01
The Transiting Exoplanet Survey Satellite (TESS) will be injected into a highly eccentric Earth orbit and fly 3.5 phasing loops followed by a lunar flyby to enter a mission orbit with lunar 2:1 resonance. Through the phasing loops and mission orbit, the trajectory is significantly affected by lunar and solar gravity. We have developed a trajectory design to achieve the mission orbit and meet mission constraints, including eclipse avoidance and a 30-year geostationary orbit avoidance requirement. A parallelized Monte Carlo simulation was performed to validate the trajectory after injecting common perturbations, including launch dispersions, orbit determination errors, and maneuver execution errors. The Monte Carlo analysis helped identify mission risks and is used in the trajectory selection process.
NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update
NASA Technical Reports Server (NTRS)
Morse, Brian J.; Reed, Cheryl L. B.; Kirby, Karen W.; Cohen, Barbara A.; Bassler, Julie A.; Harris, Danny W.; Chavers, D. Gregory
2010-01-01
In early 2008, NASA established the Lunar Quest Program, a new lunar science research program within NASA s Science Mission Directorate. The program included the establishment of the anchor nodes of the International Lunar Network (ILN), a network of lunar science stations envisioned to be emplaced by multiple nations. This paper describes the current status of the ILN Anchor Nodes mission development and the lander risk-reduction design and test activities implemented jointly by NASA s Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory. The lunar lander concepts developed by this team are applicable to multiple science missions, and this paper will describe a mission combining the functionality of an ILN node with an investigation of lunar polar volatiles.
Fostering Outreach, Education and Exploration of the Moon Using the Lunar Mapping & Modeling Portal
NASA Astrophysics Data System (ADS)
Dodge, K.; Law, E.; Malhotra, S.; Chang, G.; Kim, R. M.; Bui, B.; Sadaqathullah, S.; Day, B. H.
2014-12-01
The Lunar Mapping and Modeling Portal (LMMP)[1], is a web-based Portal and a suite of interactive visualization and analysis tools for users to access mapped lunar data products (including image mosaics, digital elevation models, etc.) from past and current lunar missions (e.g., Lunar Reconnaissance Orbiter, Apollo, etc.). Originally designed as a mission planning tool for the Constellation Program, LMMP has grown into a generalized suite of tools facilitating a wide range of activities in support of lunar exploration including public outreach, education, lunar mission planning and scientific research. LMMP fosters outreach, education, and exploration of the Moon by educators, students, amateur astronomers, and the general public. These efforts are enhanced by Moon Tours, LMMP's mobile application, which makes LMMP's information accessible to people of all ages, putting opportunities for real lunar exploration in the palms of their hands. Our talk will include an overview of LMMP and a demonstration of its technologies (web portals, mobile apps), to show how it serves NASA data as commodities for use by advanced visualization facilities (e.g., planetariums) and how it contributes to improving teaching and learning, increasing scientific literacy of the general public, and enriching STEM efforts. References:[1] http://www.lmmp.nasa.gov
Lunar Topography: Results from the Lunar Orbiter Laser Altimeter
NASA Technical Reports Server (NTRS)
Neumann, Gregory; Smith, David E.; Zuber, Maria T.; Mazarico, Erwan
2012-01-01
The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO) has been operating nearly continuously since July 2009, accumulating over 6 billion measurements from more than 2 billion in-orbit laser shots. LRO's near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, with full coverage at the equator from more than 12000 orbital tracks averaging less than 1 km in spacing at the equator. LRO has obtained a global geodetic model of the lunar topography with 50-meter horizontal and 1-m radial accuracy in a lunar center-of-mass coordinate system, with profiles of topography at 20-m horizontal resolution, and 0.1-m vertical precision. LOLA also provides measurements of reflectivity and surface roughness down to its 5-m laser spot size. With these data LOLA has measured the shape of all lunar craters 20 km and larger. In the proposed extended mission commencing late in 2012, LOLA will concentrate observations in the Southern Hemisphere, improving the density of the polar coverage to nearly 10-m pixel resolution and accuracy to better than 20 m total position error. Uses for these data include mission planning and targeting, illumination studies, geodetic control of images, as well as lunar geology and geophysics. Further improvements in geodetic accuracy are anticipated from the use of re ned gravity fields after the successful completion of the Gravity Recovery and Interior Laboratory (GRAIL) mission in 2012.
The Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission
NASA Technical Reports Server (NTRS)
Spremo, Stevan; Turner, Mark; Caffrey, Robert T.; Hine, Butler Preston
2010-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) is a Lunar science orbiter mission currently under development to address the goals of the National Research Council decadal surveys and the recent "Scientific Context for Exploration of the Moon" (SCEM) [1] report to study the pristine state of the lunar atmosphere and dust environment prior to significant human activities. LADEE will determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. LADEE will also determine whether dust is present in the lunar exosphere, and reveal the processes that contribute to its sources and variability. These investigations are relevant to our understanding of surface boundary exospheres and dust processes throughout the solar system, address questions regarding the origin and evolution of lunar volatiles, and have potential implications for future exploration activities. LADEE employs a high heritage science instrument payload including a neutral mass spectrometer, ultraviolet spectrometer, and dust sensor. In addition to the science payloads, LADEE will fly a laser communications system technology demonstration that could provide a building block for future space communications architectures. LADEE is an important component in NASA's portfolio of near-term lunar missions, addressing objectives that are currently not covered by other U.S. or international efforts, and whose observations must be conducted before large-scale human or robotic activities irrevocably perturb the tenuous and fragile lunar atmosphere. LADEE will also demonstrate the effectiveness of a low-cost, rapid-development program utilizing a modular bus design launched on the new Minotaur V launch vehicle. Once proven, this capability could enable future lunar missions in a highly cost constrained environment. This paper describes the LADEE objectives, mission design, and technical approach.
NASA Near Earth Network (NEN) Support for Lunar and L1/L2 CubeSats
NASA Technical Reports Server (NTRS)
Schaire, Scott H.
2017-01-01
The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO, GEO, HEO, lunar and L1/L2 orbits. The NENs future mission set includes and will continue to include CubeSat missions. The first NEN supported CubeSat mission will be the Cubesat Proximity Operations Demonstration (CPOD) launching into low earth orbit (LEO) in early 2017. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL) developed IRIS radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 lunar CubeSats. The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NENs mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configurationease of upgrade, to ensure compatibility with the IRIS radio.In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1/L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is ready to begin supporting CubeSat missions. The NEN is considering network upgrades to broaden the types of CubeSat missions that can be supported and is supporting both the CubeSat community and radio developers to ensure future CubeSat missions have multiple options when choosing a network for their communications support.
ARTEMIS Mission Overview: From Concept to Operations
NASA Technical Reports Server (NTRS)
Folta, David; Sweetser, Theodore
2011-01-01
ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun) repurposed two spacecraft to extend their useful science (Angelopoulos, 2010) by moving them via lunar gravity assists from elliptical Earth orbits to L1 and L2 Earth-Moon libration orbits and then to lunar orbits by exploiting the Earth-Moon-Sun dynamical environment. This paper describes the complete design from conceptual plans using weak stability transfer options and lunar gravity assist to the implementation and operational support of the Earth-Moon libration and lunar orbits. The two spacecraft of the ARTEMIS mission will have just entered lunar orbit at this paper's presentation.
Current Status of the International Lunar Network (ILN) Anchor Nodes Mission
NASA Astrophysics Data System (ADS)
Cohen, Barbara; Bassler, J.; Harris, D.; Morse, B.; Reed, C.; Kirby, K.; Eng, D.
2009-09-01
NASA's Science Mission Directorate's (SMD) International Lunar Network Anchor Nodes Mission continues its concept development and is scheduled to complete the first formal milestone gate of a Mission Concept Review (MCR) in late 2009. The mission will establish two-four nodes of the International Lunar Network (ILN), a network of lunar geophysical stations envisioned to be emplaced by the many nations collaborating on this joint endeavor. This mission will operate over six years or more and make significant progress in satisfying many of the National Research Council's lunar science objectives, while strategically contributing to the U.S. Vision for Space Exploration Policy's objective for a robust robotic lunar program. This paper will provide a status report on the ILN Anchor Nodes mission and overview of the concept to date, which is being implemented jointly by NASA's Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory.
LUNSORT list of lunar orbiter data by LAC area
NASA Technical Reports Server (NTRS)
Hixon, S.
1976-01-01
Lunar orbiter (missions 1-5) photographic data are listed sequentially according to the number (1 to 147) LAC (Lunar Aeronautical Chart) areas by use of a computer program called LUNSORT. This listing, as well as a similar one from Apollo would simplify the task of identifying images of a given Lunar area. Instructions and sample case are included.
SMART-1/CLEMENTINE Study of Humorum and Procellarum Basins
NASA Astrophysics Data System (ADS)
Carey, William; Foing, Bernard H.; Koschny, Detlef; Pio Rossi, Angelo; Josset, Jean-Luc
A study undertaken by ESA to define a European Reference Architecture for Space Exploration is due to be completed in September 2008. The development of this architecture over the past twelve months has identified a number of key capabilities, among them a lunar lander system, which could form the basis for Europe's contribution to the future exploration of space in collaboration with International Partners. The focus of this paper will be on the lunar lander system, and will present the results of an analysis of possible payloads that could be accommodated by the lander. As the industrial study is at the Phase 0 or Pre-Phase A level, the design of such a lander system is at a very early stage in its development, but an estimation of the payload capacity allows a general assessment of the types of possible payloads that could be carried, currently this capacity is estimated at 1.1 tonnes of gross payload mass to the lunar surface (assuming an Ariane 5 ECA launch). An important characteristic of the lunar lander is that it provides a versatile and flexible system for utilisation in a broad range of lunar missions which include: - Independent lunar exploration missions for science, technology demonstration and research. - Delivery of logistics and cargo to support human surface sortie missions. - Delivery of logistics to a lunar base/outpost. - Deployment of individual infrastructure elements in support of a lunar base/outpost. Based on the above different types of missions, a number of configurations of "reference payload" sets are in the process of being defined that cover specific exploration objectives related primarily to capability demonstration, exploration enabling research and enabled science. Aspects covered include: ISRU, robotics, mobility, human preparation, life science and geology. This paper will present the current status of definition of the Reference Payload sets.
Lunar NTR vehicle design and operations study
NASA Technical Reports Server (NTRS)
Hodge, John
1993-01-01
The results of a lunar nuclear thermal rocket (NTR) vehicle design and operations study are presented in text and graphic form. The objectives of the study were to evaluate the potential applications of a specific NTR design to past and current (First Lunar Outpost) mission profiles for piloted and cargo lunar missions, and to assess the applicability of utilizing lunar vehicle design concepts for Mars missions.
Critical Robotic Lunar Missions
NASA Astrophysics Data System (ADS)
Plescia, J. B.
2018-04-01
Perhaps the most critical missions to understanding lunar history are in situ dating and network missions. These would constrain the volcanic and thermal history and interior structure. These data would better constrain lunar evolution models.
NASA Technical Reports Server (NTRS)
Williams, Jacob; Stewart, Shaun M.; Lee, David E.; Davis, Elizabeth C.; Condon, Gerald L.; Senent, Juan
2010-01-01
The National Aeronautics and Space Administration s (NASA) Constellation Program paves the way for a series of lunar missions leading to a sustained human presence on the Moon. The proposed mission design includes an Earth Departure Stage (EDS), a Crew Exploration Vehicle (Orion) and a lunar lander (Altair) which support the transfer to and from the lunar surface. This report addresses the design, development and implementation of a new mission scan tool called the Mission Assessment Post Processor (MAPP) and its use to provide insight into the integrated (i.e., EDS, Orion, and Altair based) mission cost as a function of various mission parameters and constraints. The Constellation architecture calls for semiannual launches to the Moon and will support a number of missions, beginning with 7-day sortie missions, culminating in a lunar outpost at a specified location. The operational lifetime of the Constellation Program can cover a period of decades over which the Earth-Moon geometry (particularly, the lunar inclination) will go through a complete cycle (i.e., the lunar nodal cycle lasting 18.6 years). This geometry variation, along with other parameters such as flight time, landing site location, and mission related constraints, affect the outbound (Earth to Moon) and inbound (Moon to Earth) translational performance cost. The mission designer must determine the ability of the vehicles to perform lunar missions as a function of this complex set of interdependent parameters. Trade-offs among these parameters provide essential insights for properly assessing the ability of a mission architecture to meet desired goals and objectives. These trades also aid in determining the overall usable propellant required for supporting nominal and off-nominal missions over the entire operational lifetime of the program, thus they support vehicle sizing.
Magnetometer for the Korea Pathfinder Lunar Orbiter
NASA Astrophysics Data System (ADS)
Lee, H.; Jin, H.; Kim, K. H.; Garrick-Bethell, I.; Son, D.; Lee, S.; Lee, J. K.; Shin, J.; Jeong, S.; Kim, E.
2016-12-01
KPLO (Korea Pathfinder Lunar Orbiter) is the first lunar exploration mission of the Korean Space program. KMAG (Kplo MAGnetometer) is the one of the scientific instruments on-board KPLO spacecraft. The main scientific targets are lunar crustal magnetic anomalies and the space environment around the moon. Global lunar magnetic field measurements have already been performed by the Lunar Prospector and SELENE missions. However, numerous questions about the nature and origin of lunar magnetism remain, and additional measurements would help answer them. For example, a greater number of measurements would help constrain inversions for characteristics of magnetized source bodies, and very low altitude measurements could observe complex field geometries at high-albedo locations known as "swirls". KMAG consists of three fluxgate magnetometers and control electronics. The sensor is a 3-axis fluxgate magnetometer and its measurement range is ±1000 nT, with a selectable gain function. One sensor is expected to be located inside of the spacecraft bus and the other two sensors will be operated inside of a 1.2-m-long boom. The total mass and average power consumption rate are estimated to be 3.5 kg and 2.8 W, respectively. KMAG will be operated with a 100% duty cycle in nominal phase ( 100±30 km altitude) and possibly during extended phase (<70 km altitude) after 1year mission period. The measurement campaign will finish just before impact. This paper describes the overall KMAG concept, design and operation scenario during the KPLO mission duration. KMAG is expected to provide lunar magnetic field data to supplement previous data sets, make new measurements at low altitudes, and improve our understanding of lunar magnetism.
Laboratory experiments to investigate sublimation rates of water ice in nighttime lunar regolith
NASA Astrophysics Data System (ADS)
Piquette, Marcus; Horányi, Mihály; Stern, S. Alan
2017-09-01
The existence of water ice on the lunar surface has been a long-standing topic with implications for both lunar science and in-situ resource utilization (ISRU). Cold traps on the lunar surface may have conditions necessary to retain water ice, but no laboratory experiments have been conducted to verify modeling results. We present an experiment testing the ability to thermally control bulk samples of lunar regolith simulant mixed with water ice under vacuum in an effort to constrain sublimation rates. The simulant used was JSC-1A lunar regolith simulant developed by NASA's Johnson Space Center. Samples with varying ratios of water ice and JSC-1A regolith simulant, totally about 1 kg, were placed under vacuum and cooled to 100 K to simulate conditions in lunar cold traps. The resulting sublimation of water ice over an approximately five-day period was measured by comparing the mass of the samples before and after the experimental run. Our results indicate that water ice in lunar cold traps is stable on timescales comparable to the lunar night, and should continue to be studied as possible resources for future utilization. This experiment also gauges the efficacy of the synthetic lunar atmosphere mission (SLAM) as a low-cost water resupply mission to lunar outposts.
Robotic Lunar Landers for Science and Exploration
NASA Technical Reports Server (NTRS)
Cohen, B. A.; Hill, L. A.; Bassler, J. A.; Chavers, D. G.; Hammond, M. S.; Harris, D. W.; Kirby, K. W.; Morse, B. J.; Mulac, B. D.; Reed, C. L. B.
2010-01-01
NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory has been conducting mission studies and performing risk reduction activities for NASA s robotic lunar lander flight projects. In 2005, the Robotic Lunar Exploration Program Mission #2 (RLEP-2) was selected as a Exploration Systems Mission Directorate precursor robotic lunar lander mission to demonstrate precision landing and definitively determine if there was water ice at the lunar poles; however, this project was canceled. Since 2008, the team has been supporting NASA s Science Mission Directorate designing small lunar robotic landers for diverse science missions. The primary emphasis has been to establish anchor nodes of the International Lunar Network (ILN), a network of lunar science stations envisioned to be emplaced by multiple nations. This network would consist of multiple landers carrying instruments to address the geophysical characteristics and evolution of the moon. Additional mission studies have been conducted to support other objectives of the lunar science community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects. This paper describes the current status of the robotic lunar mission studies that have been conducted by the MSFC/APL Robotic Lunar Lander Development team, including the ILN Anchor Nodes mission. In addition, the results to date of the lunar lander development risk reduction efforts including high pressure propulsion system testing, structure and mechanism development and testing, long cycle time battery testing and combined GN&C and avionics testing will be addressed. The most visible elements of the risk reduction program are two autonomous lander test articles: a compressed air system with limited flight durations and a second version using hydrogen peroxide propellant to achieve significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. Robotic Lunar Lander design and development will have significant feed-forward to other missions to the Moon and, indeed, to other airless bodies such as Mercury, asteroids, and Europa, to which similar science and exploration objectives are applicable.
NASA Missions Enabled by Space Nuclear Systems
NASA Technical Reports Server (NTRS)
Scott, John H.; Schmidt, George R.
2009-01-01
This viewgraph presentation reviews NASA Space Missions that are enabled by Space Nuclear Systems. The topics include: 1) Space Nuclear System Applications; 2) Trade Space for Electric Power Systems; 3) Power Generation Specific Energy Trade Space; 4) Radioisotope Power Generation; 5) Radioisotope Missions; 6) Fission Power Generation; 7) Solar Powered Lunar Outpost; 8) Fission Powered Lunar Outpost; 9) Fission Electric Power Generation; and 10) Fission Nuclear Thermal Propulsion.
Advances in Lunar Science and Observational Opportunities
NASA Technical Reports Server (NTRS)
Heldmann, Jennifer
2012-01-01
Lunar science is currently undergoing a renaissance as our understanding of our Moon continues to evolve given new data from multiple lunar mission and new analyses. This talk will overview NASA's recent and future lunar missions to explain the scientific questions addressed by missions such as the Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation and Sensing Satellite (LCROSS), Gravity Recovery and Interior Laboratory (Grail), Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS), and the Lunar Atmosphere and Dust Environment Explorer (LADEE). The talk will also overview opportunities for participatory exploration whereby professional and amateur astronomers are encouraged to participate in lunar exploration in conjunction with NASA.
CEV Trajectory Design Considerations for Lunar Missions
NASA Technical Reports Server (NTRS)
Condon, Gerald L.; Dawn, Timothy; Merriam, Robert S.; Sostaric, Ronald; Westhelle, Carlos H.
2007-01-01
The Crew Exploration Vehicle (CEV) translational maneuver Delta-V budget must support both the successful completion of a nominal lunar mission and an "anytime" emergency crew return with the potential for much more demanding orbital maneuvers. This translational Delta-V budget accounts for Earth-based LEO rendezvous with the lunar surface access module (LSAM)/Earth departure stage (EDS) stack, orbit maintenance during the lunar surface stay, an on-orbit plane change to align the CEV orbit for an in-plane LSAM ascent, and the Moon-to-Earth trans-Earth injection (TEI) maneuver sequence as well as post-TEI TCMs. Additionally, the CEV will have to execute TEI maneuver sequences while observing Earth atmospheric entry interface objectives for lunar high-latitude to equatorial sortie missions as well as near-polar sortie and long duration missions. The combination of these objectives places a premium on appropriately designed trajectories both to and from the Moon to accurately size the translational V and associated propellant mass in the CEV reference configuration and to demonstrate the feasibility of anytime Earth return for all lunar missions. This report examines the design of the primary CEV translational maneuvers (or maneuver sequences) including associated mission design philosophy, associated assumptions, and methodology for lunar sortie missions with up to a 7-day surface stay and with global lunar landing site access as well as for long duration (outpost) missions with up to a 210-day surface stay at or near the polar regions. The analyses presented in this report supports the Constellation Program and CEV project requirement for nominal and anytime abort (early return) by providing for minimum wedge angles, lunar orbit maintenance maneuvers, phasing orbit inclination changes, and lunar departure maneuvers for a CEV supporting an LSAM launch and subsequent CEV TEI to Earth return, anytime during the lunar surface stay.
Feasibility of lunar Helium-3 mining
NASA Astrophysics Data System (ADS)
Kleinschneider, Andreas; Van Overstraeten, Dmitry; Van der Reijnst, Roy; Van Hoorn, Niels; Lamers, Marvin; Hubert, Laurent; Dijk, Bert; Blangé, Joey; Hogeveen, Joel; De Boer, Lennaert; Noomen, Ron
With fossil fuels running out and global energy demand increasing, the need for alternative energy sources is apparent. Nuclear fusion using Helium-3 may be a solution. Helium-3 is a rare isotope on Earth, but it is abundant on the Moon. Throughout the space community lunar Helium-3 is often cited as a major reason to return to the Moon. Despite the potential of lunar Helium-3 mining, little research has been conducted on a full end-to-end mission. This abstract presents the results of a feasibility study conducted by students from Delft University of Technology. The goal of the study was to assess whether a continuous end-to-end mission to mine Helium-3 on the Moon and return it to Earth is a viable option for the future energy market. The set requirements for the representative end-to-end mission were to provide 10% of the global energy demand in the year 2040. The mission elements have been selected with multiple trade-offs among both conservative and novel concepts. A mission architecture with multiple decoupled elements for each transportation segment (LEO, transfer, lunar surface) was found to be the best option. It was found that the most critical element is the lunar mining operation itself. To supply 10% of the global energy demand in 2040, 200 tons of Helium-3 would be required per year. The resulting regolith mining rate would be 630 tons per second, based on an optimistic concentration of 20 ppb Helium-3 in lunar regolith. Between 1,700 to 2,000 Helium-3 mining vehicles would be required, if using University of Wisconsin’s Mark III miner. The required heating power, if mining both day and night, would add up to 39 GW. The resulting power system mass for the lunar operations would be in the order of 60,000 to 200,000 tons. A fleet of three lunar ascent/descent vehicles and 22 continuous-thrust vehicles for orbit transfer would be required. The costs of the mission elements have been spread out over expected lifetimes. The resulting profits from Helium-3 fusion were calculated using a predicted minimum energy price in 2040 of 30.4 Euro/MWh. Annual costs are between 427.7 to 1,347.9 billion Euro, with annual expected profit ranging from -724.0 to 260.0 billion Euro. Due to the large scale of the mission, it has also been evaluated for providing 0.1% and 1% of the global energy demand in 2040. For 1%, the annual costs are 45.6 to 140.3 billion Euro and the expected annual profits are -78.0 to 23.1 billion Euro. For 0.1%, the annual costs are 7.7 to 20.5 billion Euro. The annual expected profits are -14.3 to -0.8 billion Euro. Feasibility has been addressed in three aspects. Technically, the mission is extremely challenging and complex. However, most required technologies exist or could be developed within a reasonable time span. From a political and legal perspective, the current international treaties hardly provide any framework for a lunar mining operation. Financially, the mission only produces a net profit in the best case, and only for medium- to large-scale operations, which require a very large initial investment. To make lunar Helium-3 usage possible, further research should concentrate on the mining operation and costs of fusion plants, as their impact by far outranks all other mission elements. Different transportation concepts may be investigated nevertheless. Many - not only technical - challenges concerning Helium-3 mining are still to be addressed. Although only a starting point for further investigations, this study shows that, despite popular claims, lunar Helium-3 is unsuitable to provide a significant percentage of the global energy demand in 2040.
Apollo 8 Astronaut Anders Suits Up For Countdown Demonstration Test
NASA Technical Reports Server (NTRS)
1968-01-01
Apollo 8 astronaut William Anders, Lunar Module (LM) pilot, is suited up for the Apollo 8 mission countdown demonstration test. The first manned Apollo mission launched aboard the Saturn V and first manned Apollo craft to enter lunar orbit, the SA-503, Apollo 8 mission lift off occurred on December 21, 1968 and returned safely to Earth on December 27, 1968. Aboard were Anders and fellow astronauts James Lovell, Command Module (CM) pilot; and Frank Borman, commander. The mission achieved operational experience and tested the Apollo command module systems, including communications, tracking, and life-support, in cis-lunar space and lunar orbit, and allowed evaluation of crew performance on a lunar orbiting mission. The crew photographed the lunar surface, both far side and near side, obtaining information on topography and landmarks as well as other scientific information necessary for future Apollo landings. All systems operated within allowable parameters and all objectives of the mission were achieved.
Resource Prospector: Evaluating the ISRU Potential of the Lunar Poles
NASA Astrophysics Data System (ADS)
Colaprete, A.; Elphic, R. C.; Andrews, D.; Bluethmann, W.; Quinn, J.; Chavers, D. G.
2017-12-01
Resource Prospector (RP) is a lunar volatiles prospecting mission being developed for potential flight in CY2021-2022. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. The primary mission goal for RP is to evaluate the In-Situ Resource Utilization (ISRU) potential of the lunar poles. While it is now understood that lunar water and other volatiles have a much greater extent of distribution, possible forms, and concentrations than previously believed, to fully understand how viable these volatiles are as a resource to support human exploration of the solar system, the distribution and form needs to be understood at a "human" scale. That is, the "ore body" must be better understood at the scales it would be worked before it can be evaluated as a potential architectural element within any evolvable lunar or Mars campaign. This talk will provide an overview of the RP mission with an emphasis on mission goals and measurements, and will provide an update as to its current status.
Reduction of lunar landing fuel requirements by utilizing lunar ballistic capture.
Johnson, Michael D; Belbruno, Edward A
2005-12-01
Ballistic lunar capture trajectories have been successfully utilized for lunar orbital missions since 1991. Recent interest in lunar landing trajectories has occurred due to a directive from President Bush to return humans to the Moon by 2015. NASA requirements for humans to return to the lunar surface include separation of crew and cargo missions, all lunar surface access, and anytime-abort to return to Earth. Such requirements are very demanding from a propellant standpoint. The subject of this paper is the application of lunar ballistic capture for the reduction of lunar landing propellant requirements. Preliminary studies of the application of weak stability boundary (WSB) trajectories and ballistic capture have shown that considerable savings in low Earth orbit (LEO) mission mass may be realized, on the order of 36% less than conventional Hohmann transfer orbit missions. Other advantages, such as reduction in launch window constraints and reduction of lunar orbit maintenance propellant requirements, have also surfaced from this study.
NASA Astrophysics Data System (ADS)
Murray, J.; SU, J. J.; Sagdeev, R.; Chin, G.
2014-12-01
Introduction:Monte Carlo (MC) simulations have been used to investigate neutron production and leakage from the lunar surface to assess the composition of the lunar soil [1-3]. Orbital measurements of lunar neutron flux have been made by the Lunar Prospector Neutron Spectrometer (LPNS)[4] of the Lunar Prospector mission and the Lunar Exploration Neutron Detector (LEND)[5] of the Lunar Reconnaissance Orbiter mission. While both are cylindrical helium-3 detectors, LEND's SETN (Sensor EpiThermal Neutrons) instrument is shorter, with double the helium-3 pressure than that of LPNS. The two instruments therefore have different angular sensitivities and neutron detection efficiencies. Furthermore, the Lunar Prospector's spin-stabilized design makes its detection efficiency latitude-dependent, while the SETN instrument faces permanently downward toward the lunar surface. We use the GEANT4 Monte Carlo simulation code[6] to investigate the leakage lunar neutron energy spectrum, which follows a power law of the form E-0.9 in the epithermal energy range, and the signals detected by LPNS and SETN in the LP and LRO mission epochs, respectively. Using the lunar neutron flux reconstructed for LPNS epoch, we calculate the signal that would have been observed by SETN at that time. The subsequent deviation from the actual signal observed during the LEND epoch is due to the significantly higher intensity of Galactic Cosmic Rays during the anomalous Solar Minimum of 2009-2010. References: [1] W. C. Feldman, et al., (1998) Science Vol. 281 no. 5382 pp. 1496-1500. [2] Gasnault, O., et al.,(2000) J. Geophys. Res., 105(E2), 4263-4271. [3] Little, R. C., et al. (2003), J. Geophys. Res., 108(E5), 5046. [4]W. C. Feldman, et al., (1999) Nucl. Inst. And Method in Phys. Res. A 422, [5] M. L. Litvak, et al., (2012) J.Geophys. Res. 117, E00H32 [6] J. Allison, et al, (2006) IEEE Trans. on Nucl Sci, Vol 53, No 1.
Robotic Lunar Landers for Science and Exploration
NASA Technical Reports Server (NTRS)
Cohen, Barbara A.
2012-01-01
The MSFC/APL Robotic Lunar Landing Project (RLLDP) team has developed lander concepts encompassing a range of mission types and payloads for science, exploration, and technology demonstration missions: (1) Developed experience and expertise in lander systems, (2) incorporated lessons learned from previous efforts to improve the fidelity of mission concepts, analysis tools, and test beds Mature small and medium lander designs concepts have been developed: (1) Share largely a common design architecture. (2) Flexible for a large number of mission and payload options. High risk development areas have been successfully addressed Landers could be selected for a mission with much of the concept formulation phase work already complete
Trajectory Design of the Lunar Impactor Mission Concept
NASA Technical Reports Server (NTRS)
Chung, Min-Kun J.; McElrath, Timothy P.; Roncoli, Ralph B.
2006-01-01
The National Aeronautics and Space Administration (NASA) solicited proposals in 2006 for an opportunity to include a small secondary payload with the launch of the Lunar Reconnaissance Orbiter (LRO) scheduled for October 2008. The cost cap of the proposal was between $50 and $80M, and the mass cap was 1,000 kilograms. JPL proposed a Lunar Impactor (LI) concept for this solicitation. The mission objective of LI was to impact the permanently shadowed region of a South polar crater ultimately to detect the presence of water. The detection of water ice would prove to be an important factor on future lunar exploration. NASA Ames Research Center also proposed a similar concept, the Lunar Crater observation and Sensing Satellite (LCROSS), which was selected by NASA for the mission. However, in this paper, the trajectory design of the LI proposed by JPL is considered. Since the LI spacecraft was to be launched on the LRO launch vehicle as a secondary payload, its initial trajectory must be diverted at some later time from the LRO trans-lunar trajectory for the subsequent impact. Several such trajectories have been considered, where each trajectory option fields some specific values for the mission parameters. The mission parameters include the availability of LRO instruments at the time of impact for the observation by LRO, the mission duration, the impact velocity, the impact angle, etc. It is possible for the LI to be deflected with a relatively low delta-V to impact a South polar crater at a reasonable impact velocity and impact angle directly with no delay. However, the instruments on-board LRO may not be ready for observation. Thus, several delayed trajectory options have been considered further. The lunar phase at the time of impact may also play an important factor for observation, especially from Earth. Several lunar flyby trajectory maneuvers have been identified to arrive at the Moon for impact at the desired lunar phase. By using a combination of these successive lunar flyby maneuvers, the impact lunar phase may be adjusted to the desired location. A few such trajectories have been suggested. Also, some attempts have been made to maximize the impact velocity by converting the impact trajectory into a retrograde orbit with respect to Earth. Since these types of trajectories take advantage of the Sun-Earth three-body region to minimize the delta-V, the mission duration is relatively long. A few such trajectories are suggested. Also, an attempt has been made to adjust the lunar impact within a desired time period for the optimum Earth observation for the above trajectories. The mission parameters resulting from each trajectory option above are considered and weighed against the cost and robustness of the mission in a brief summary.
NASA Technical Reports Server (NTRS)
1972-01-01
Digital autopilots for the manned command module earth orbital and lunar missions using program COLOSSUS 3 are discussed. Subjects presented are: (1) reaction control system digital autopilot, (2) thrust vector control autopilot, (3) entry autopilot and mission control programs, (4) takeover of Saturn steering, and (5) coasting flight attitude maneuver routine.
Trajectory design for the Deep Space Program Science Experiment (DSPSE) mission
NASA Astrophysics Data System (ADS)
Carrington, D.; Carrico, J.; Jen, J.; Roberts, C.; Seacord, A.; Sharer, P.; Newman, L.; Richon, K.; Kaufman, B.; Middour, J.
In 1994, the Deep Space Program Science Experiment (DSPSE) spacecraft will become the first spacecraft to perform, in succession, both a lunar orbiting mission and a deep-space asteroid encounter mission. The primary mission objective is to perform a long-duration flight-test of various new-technology lightweight components, such as sensors, in a deep-space environment. The mission has two secondary science objectives: to provide high-resolution imaging of the entire lunar surface for mapping purposes and flyby imaging of the asteroid 1620 Geographos. The DSPSE mission is sponsored by the Strategic Defense Initiative Organization (SDIO). As prime contractor, the Naval Research Laboratory (NRL) is building the spacecraft and will conduct mission operations. The Goddard Space Flight Center's (GSFC) Flight Dynamics Division is supporting NRL in the areas of The Deep Space Network (DSN) will provide tracking support. The DSPSE mission will begin with a launch from the Western Test Range in late January 1994. Following a minimum 1.5-day stay in a low-Earth parking orbit, a solid kick motor burn will boost DSPSE into an 18-day, 2.5-revolution phasing orbit transfer trajectory to the Moon. Two burns to insert DSPSE into a lunar polar orbit suitable for the mapping mission will be followed by mapping orbit maintenance and adjustment operations over a period of 2 sidereal months. In May 1994, a lunar orbit departure maneuver, in conjunction with a lunar swingby 26 days later, will propel DSPSE onto a heliocentric transfer that will intercept Geographos on September 1, 1994. This paper presents the characteristics, deterministic delta-Vs, and design details of each trajectory phase of this unique mission, together with the requirements, constraints, and design considerations to which each phase is subject. Numerous trajectory plots and tables of significant trajectory events are included. Following a discussion of the results of a preliminary launch window analysis, a summary of the deterministic impulsive delta-V budget required to establish the baseline mission trajectory design is presented.
Analysis of Lunar Surface Charging for a Candidate Spacecraft Using NASCAP-2K
NASA Technical Reports Server (NTRS)
Parker, Linda; Minow, Joseph; Blackwell, William, Jr.
2007-01-01
The characterization of the electromagnetic interaction for a spacecraft in the lunar environment, and identification of viable charging mitigation strategies, is a critical lunar mission design task, as spacecraft charging has important implications both for science applications and for astronaut safety. To that end, we have performed surface charging calculations of a candidate lunar spacecraft for lunar orbiting and lunar landing missions. We construct a model of the spacecraft with candidate materials having appropriate electrical properties using Object Toolkit and perform the spacecraft charging analysis using Nascap-2k, the NASA/AFRL sponsored spacecraft charging analysis tool. We use nominal and atypical lunar environments appropriate for lunar orbiting and lunar landing missions to establish current collection of lunar ions and electrons. In addition, we include a geostationary orbit case to demonstrate a bounding example of extreme (negative) charging of a lunar spacecraft in the geostationary orbit environment. Results from the charging analysis demonstrate that minimal differential potentials (and resulting threat of electrostatic discharge) occur when the spacecraft is constructed entirely of conducting materials, as expected. We compare charging results to data taken during previous lunar orbiting or lunar flyby spacecraft missions.
Environmental control and life support system selection for the first Lunar outpost habitat
NASA Technical Reports Server (NTRS)
Adams, Alan
1993-01-01
The planning for and feasibility study of an early human return mission to the lunar surface has been undertaken. The First Lunar Outpost (FLO) Mission philosophy is to use existing or near-term technology to achieve a human landing on the lunar surface in the year 2000. To support the crew the lunar habitat for the FLO mission incorporates an environmental control/life support system (ECLSS) design which meets the mission requirements and balances fixed mass and consumable mass. This tradeoff becomes one of regenerable life support systems versus open-loop systems.
Apollo 8 crew shown during intravehicular activity during mission
NASA Technical Reports Server (NTRS)
1968-01-01
Astronaut Frank Borman, commander, is shown during intravehicular activity on the Apollo 8 lunar orbit mission. This still print was made from movie film taken by an on-board 16mm motion picture camera (56531); Astronaut William A. Anders, lunar module pilot, is shown during intravehicular activity on the Apollo 8 lunar orbit mission (56532); Astronaut James A. Lovell Jr., command module milot, is shown during intravehicular activity on the Apollo 8 lunar orbit mission (56533).
Yamato: Bringing the Moon to the Earth ... Again
NASA Technical Reports Server (NTRS)
Lam, King; Martinelli, Scott; Patel, Neal; Powell, David; Smith, Brandon
2008-01-01
The Yamato mission to the lunar South Pole-Aitken Basin returns samples that enable dating of lunar formation and the lunar bombardment period. The design of the Yamato mission is based on a systems engineering process which takes an advanced consideration of cost and mission risk to give the mission a high probability of success.
Potential Lunar In-Situ Resource Utilization Experiments and Mission Scenarios
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.
2010-01-01
The extraction and use of resources on the Moon, known as In-Situ Resource Utilization (ISRU), can potentially reduce the cost and risk of human lunar exploration while also increasing science achieved. By not having to bring all of the shielding and mission consumables from Earth and being able to make products on the Moon, missions may require less mass to accomplish the same objectives, carry more science equipment, go to more sites of exploration, and/or provide options to recover from failures not possible with delivery of spares and consumables from Earth alone. While lunar ISRU has significant potential for mass, cost, and risk reduction for human lunar missions, it has never been demonstrated before in space. To demonstrate that ISRU can meet mission needs and to increase confidence in incorporating ISRU capabilities into mission architectures, terrestrial laboratory and analog field testing along with robotic precursor missions are required. A stepwise approach with international collaboration is recommended. This paper will outline the role of ISRU in future lunar missions, and define the approach and possible experiments to increase confidence in ISRU applications for future human lunar exploration
NASA Technical Reports Server (NTRS)
Baker, John; Cohen, Barbara; Walden, Amy
2015-01-01
The Lunar Flashlight is a Jet Propulsion Laboratory project, with NASA Marshall Space Flight Center (MSFC) serving as the principal investigator and providing the solar sail propulsion system. The goal of Lunar Flashlight is to determine the presence and abundance of exposed lunar water ice within permanently shadowed regions (PSRs) at the lunar south pole, and to map its concentration at the 1-2 kilometer scale to support future exploration and use. After being ejected in cis-lunar space by the launch vehicle, Lunar Flashlight deploys solar panels and an 85-square-meter solar sail and maneuvers into a low-energy transfer to lunar orbit. The solar sail and attitude control system work to bring the satellite into an elliptical polar orbit, spiraling down over a period of 18 months to a perilune of 30-10 kilometers above the south pole for data collection. Lunar Flashlight uses its solar sail to shine reflected sunlight onto the lunar surface, measuring surface reflectance with a four-filter point spectrometer. The spectrometer measures water ice absorption features (1.5, 1.95 microns) and the continuum between them (1.1, 1.9 microns). The ratios of water ice bands to the continuum will provide a measure of the abundance of surface frost and its variability across PSRs. Water ice abundance will be correlated with other data from previous missions, such as the Lunar Reconnaissance Orbiter and Lunar Crater Observation and Sensing Satellite, to provide future human and robotic explorers with a map of potential resources. The mission is enabled by the use of an 85-square-meter solar sail being developed by MSFC.
1971-07-31
This is a photo of the Apollo 15 Lunar Module, Falcon, on the lunar surface. Apollo 15 launched from Kennedy Space Center (KSC) on July 26, 1971 via a Saturn V launch vehicle. Aboard was a crew of three astronauts including David R. Scott, Mission Commander; James B. Irwin, Lunar Module Pilot; and Alfred M. Worden, Command Module Pilot. The first mission designed to explore the Moon over longer periods, greater ranges and with more instruments for the collection of scientific data than on previous missions, the mission included the introduction of a $40,000,000 lunar roving vehicle (LRV) that reached a top speed of 16 kph (10 mph) across the Moon's surface. The successful Apollo 15 lunar landing mission was the first in a series of three advanced missions planned for the Apollo program. The primary scientific objectives were to observe the lunar surface, survey and sample material and surface features in a preselected area of the Hadley-Apennine region, setup and activation of surface experiments and conduct in-flight experiments and photographic tasks from lunar orbit. Apollo 15 televised the first lunar liftoff and recorded a walk in deep space by Alfred Worden. Both the Saturn V rocket and the LRV were developed at the Marshall Space Flight Center.
1968-12-17
Apollo 8 crew members paused before the mission simulator during training for the first manned lunar orbital mission. Frank Borman, commander; James Lovell, Command Module (CM) pilot; and William Anders, Lunar Module (LM) pilot , were also the first humans to launch aboard the massive Saturn V space vehicle. Lift off occurred on December 21, 1968 and returned safely to Earth on December 27, 1968. The mission achieved operational experience and tested the Apollo command module systems, including communications, tracking, and life-support, in cis-lunar space and lunar orbit, and allowed evaluation of crew performance on a lunar orbiting mission. The crew photographed the lunar surface, both far side and near side, obtaining information on topography and landmarks as well as other scientific information necessary for future Apollo landings. All systems operated within allowable parameters and all objectives of the mission were achieved.
Architecture Study for a Fuel Depot Supplied from Lunar Resources
NASA Technical Reports Server (NTRS)
Perrin, Thomas M.
2016-01-01
Heretofore, discussions of space fuel depots assumed the depots would be supplied from Earth. However, the confirmation of deposits of water ice at the lunar poles in 2009 suggests the possibility of supplying a space depot with liquid hydrogen/liquid oxygen produced from lunar ice. This architecture study sought to determine the optimum architecture for a fuel depot supplied from lunar resources. Four factors - the location of propellant processing (on the Moon or on the depot), the location of the depot (on the Moon, or at L1, GEO, or LEO), the location of propellant transfer (L1, GEO, or LEO), and the method of propellant transfer (bulk fuel or canister exchange) were combined to identify 18 potential architectures. Two design reference missions (DRMs) - a satellite servicing mission and a cargo mission to Mars - were used to create demand for propellants, while a third DRM - a propellant delivery mission - was used to examine supply issues. The architectures were depicted graphically in a network diagram with individual segments representing the movement of propellant from the Moon to the depot, and from the depot to the customer.
Environmental Monitoring as Part of Life Support for the Crew Habitat for Lunar and Mars Missions
NASA Technical Reports Server (NTRS)
Jan, Darrell L.
2010-01-01
Like other crewed space missions, future missions to the moon and Mars will have requirements for monitoring the chemical and microbial status of the crew habitat. Monitoring the crew habitat becomes more critical in such long term missions. This paper will describe the state of technology development for environmental monitoring of lunar lander and lunar outpost missions, and the state of plans for future missions.
Integration of Apollo Lunar Sample Data into Google Moon
NASA Technical Reports Server (NTRS)
Dawson, Melissa D.; Todd, Nancy S.; Lofgren, Gary
2010-01-01
The Google Moon Apollo Lunar Sample Data Integration project is a continuation of the Apollo 15 Google Moon Add-On project, which provides a scientific and educational tool for the study of the Moon and its geologic features. The main goal of this project is to provide a user-friendly interface for an interactive and educational outreach and learning tool for the Apollo missions. Specifically, this project?s focus is the dissemination of information about the lunar samples collected during the Apollo missions by providing any additional information needed to enhance the Apollo mission data on Google Moon. Apollo missions 15 and 16 were chosen to be completed first due to the availability of digitized lunar sample photographs and the amount of media associated with these missions. The user will be able to learn about the lunar samples collected in these Apollo missions, as well as see videos, pictures, and 360 degree panoramas of the lunar surface depicting the lunar samples in their natural state, following collection and during processing at NASA. Once completed, these interactive data layers will be submitted for inclusion into the Apollo 15 and 16 missions on Google Moon.
Isaacson, P.J.; Pieters, C.M.; Besse, S.; Clark, R.N.; Head, J.W.; Klima, R.L.; Mustard, J.F.; Petro, N.E.; Staid, M.I.; Sunshine, J.M.; Taylor, L.A.; Thaisen, K.G.; Tompkins, S.
2011-01-01
A systematic approach for deconvolving remotely sensed lunar olivine-rich visible to near-infrared (VNIR) reflectance spectra with the Modified Gaussian Model (MGM) is evaluated with Chandrayaan-1 Moon Mineralogy Mapper (M 3) spectra. Whereas earlier studies of laboratory reflectance spectra focused only on complications due to chromite inclusions in lunar olivines, we develop a systematic approach for addressing (through continuum removal) the prominent continuum slopes common to remotely sensed reflectance spectra of planetary surfaces. We have validated our continuum removal on a suite of laboratory reflectance spectra. Suites of olivine-dominated reflectance spectra from a small crater near Mare Moscoviense, the Copernicus central peak, Aristarchus, and the crater Marius in the Marius Hills were analyzed. Spectral diversity was detected in visual evaluation of the spectra and was quantified using the MGM. The MGM-derived band positions are used to estimate the olivine's composition in a relative sense. Spectra of olivines from Moscoviense exhibit diversity in their absorption features, and this diversity suggests some variation in olivine Fe/Mg content. Olivines from Copernicus are observed to be spectrally homogeneous and thus are predicted to be more compositionally homogeneous than those at Moscoviense but are of broadly similar composition to the Moscoviense olivines. Olivines from Aristarchus and Marius exhibit clear spectral differences from those at Moscoviense and Copernicus but also exhibit features that suggest contributions from other phases. If the various precautions discussed here are weighed carefully, the methods presented here can be used to make general predictions of absolute olivine composition (Fe/Mg content). Copyright ?? 2011 by the American Geophysical Union.
A Dual Launch Robotic and Human Lunar Mission Architecture
NASA Technical Reports Server (NTRS)
Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David
2010-01-01
This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This paper describes a complete transportation architecture including the analysis of transportation element options and sensitivities including: transportation element mass to surface landed mass; lander propellant options; and mission crew size. Based on this analysis, initial design concepts for the launch vehicle, crew module and lunar lander are presented. The paper also describes how the dual launch lunar mission architecture would fit into a more general overarching human space exploration philosophy that would allow expanded application of mission transportation elements for missions beyond the Earth-moon realm.
Moon Trek: An Interactive Web Portal for Current and Future Lunar Missions
NASA Technical Reports Server (NTRS)
Day, B; Law, Emily S.
2017-01-01
NASA's Moon Trek (https://moontrek.jpl.nasa.gov) is the successor to and replacement for NASA's Lunar Mapping and Modeling Portal (LMMP). Released in 2017, Moon Trek features a new interface with improved ways to access, visualize, and analyze data. Moon Trek provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped lunar data products from past and current lunar missions.
Moon Trek: An Interactive Web Portal for Current and Future Lunar Missions
NASA Astrophysics Data System (ADS)
Day, B.; Law, E.
2017-09-01
NASA's Moon Trek (https://moontrek.jpl.nasa.gov) is the successor to and replacement for NASA's Lunar Mapping and Modeling Portal (LMMP). Released in 2017, Moon Trek features a new interface with improved ways to access, visualize, and analyse data. Moon Trek provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped lunar data products from past and current lunar missions.
Lunar Net—a proposal in response to an ESA M3 call in 2010 for a medium sized mission
NASA Astrophysics Data System (ADS)
Smith, Alan; Crawford, I. A.; Gowen, Robert Anthony; Ambrosi, R.; Anand, M.; Banerdt, B.; Bannister, N.; Bowles, N.; Braithwaite, C.; Brown, P.; Chela-Flores, J.; Cholinser, T.; Church, P.; Coates, A. J.; Colaprete, T.; Collins, G.; Collinson, G.; Cook, T.; Elphic, R.; Fraser, G.; Gao, Y.; Gibson, E.; Glotch, T.; Grande, M.; Griffiths, A.; Grygorczuk, J.; Gudipati, M.; Hagermann, A.; Heldmann, J.; Hood, L. L.; Jones, A. P.; Joy, K. H.; Khavroshkin, O. B.; Klingelhoefer, G.; Knapmeyer, M.; Kramer, G.; Lawrence, D.; Marczewski, W.; McKenna-Lawlor, S.; Miljkovic, K.; Narendranath, S.; Palomba, E.; Phipps, A.; Pike, W. T.; Pullan, D.; Rask, J.; Richard, D. T.; Seweryn, K.; Sheridan, S.; Sims, M.; Sweeting, M.; Swindle, T.; Talboys, D.; Taylor, L.; Teanby, N.; Tong, V.; Ulamec, S.; Wawrzaszek, R.; Wieczorek, M.; Wilson, L.; Wright, I.
2012-04-01
Emplacement of four or more kinetic penetrators geographically distributed over the lunar surface can enable a broad range of scientific exploration objectives of high priority and provide significant synergy with planned orbital missions. Whilst past landed missions achieved a great deal, they have not included a far-side lander, or investigation of the lunar interior apart from a very small area on the near side. Though the LCROSS mission detected water from a permanently shadowed polar crater, there remains in-situ confirmation, knowledge of concentration levels, and detailed identification of potential organic chemistry of astrobiology interest. The planned investigations will also address issues relating to the origin and evolution of the Earth-Moon system and other Solar System planetary bodies. Manned missions would be enhanced with use of water as a potential in-situ resource; knowledge of potential risks from damaging surface Moonquakes, and exploitation of lunar regolith for radiation shielding. LunarNet is an evolution of the 2007 LunarEX proposal to ESA (European Space Agency) which draws on recent significant advances in mission definition and feasibility. In particular, the successful Pendine full-scale impact trials have proved impact survivability for many of the key technology items, and a penetrator system study has greatly improved the definition of descent systems, detailed penetrator designs, and required resources. LunarNet is hereby proposed as an exciting stand-alone mission, though is also well suited in whole or in-part to contribute to the jigsaw of upcoming lunar missions, including that of a significant element to the ILN (International Lunar Network).
Launch of the Apollo 17 lunar landing mission
1972-12-07
S72-55482 (7 Dec. 1972) --- The huge, 363-feet tall Apollo 17 (Spacecraft 114/Lunar Module 12/Saturn 512) space vehicle is launched from Pad A., Launch Complex 39, Kennedy Space Center (KSC), Florida, at 12:33 a.m. (EST), Dec. 7, 1972. Apollo 17, the final lunar landing mission in NASA's Apollo program, was the first nighttime liftoff of the Saturn V launch vehicle. Aboard the Apollo 17 spacecraft were astronaut Eugene A. Cernan, commander; astronaut Ronald E. Evans, command module pilot; and scientist-astronaut Harrison H. Schmitt, lunar module pilot. Flame from the five F-1 engines of the Apollo/Saturn first (S-1C) stage illuminates the nighttime scene. A two-hour and 40-minute hold delayed the Apollo 17 launching.
Launch of the Apollo 17 lunar landing mission
1972-09-07
S72-55070 (7 Dec. 1972) --- The huge, 363-feet tall Apollo 17 (Spacecraft 114/Lunar Module 12/Saturn 512) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida, at 12:33 a.m. (EST), Dec. 7, 1972. Apollo 17, the final lunar landing mission in NASA's Apollo program, was the first nighttime liftoff of the Saturn V launch vehicle. Aboard the Apollo 17 spacecraft were astronaut Eugene A. Cernan, commander; astronaut Ronald E. Evans, command module pilot; and scientist-astronaut Harrison H. Schmitt, lunar module pilot. Flame from the five F-1 engines of the Apollo/Saturn first (S-1C) stage illuminates the nighttime scene. A two-hour and 40-minute hold delayed the Apollo 17 launching.
NASA Astrophysics Data System (ADS)
Jolliff, B. L.
2017-12-01
Exploring the South Pole-Aitken basin (SPA), one of the key unsampled geologic terranes on the Moon, is a high priority for Solar System science. As the largest and oldest recognizable impact basin on the Moon, it anchors the heavy bombardment chronology. It is thus a key target for sample return to better understand the impact flux in the Solar System between formation of the Moon and 3.9 Ga when Imbrium, one of the last of the great lunar impact basins, formed. Exploration of SPA has implications for understanding early habitable environments on the terrestrial planets. Global mineralogical and compositional data exist from the Clementine UV-VIS camera, the Lunar Prospector Gamma Ray Spectrometer, the Moon Mineralogy Mapper (M3) on Chandrayaan-1, the Chang'E-1 Imaging Interferometer, the spectral suite on SELENE, and the Lunar Reconnaissance Orbiter Cameras (LROC) Wide Angle Camera (WAC) and Diviner thermal radiometer. Integration of data sets enables synergistic assessment of geology and distribution of units across multiple spatial scales. Mineralogical assessment using hyperspectral data indicates spatial relationships with mineralogical signatures, e.g., central peaks of complex craters, consistent with inferred SPA basin structure and melt differentiation (Moriarty & Pieters, 2015, JGR-P 118). Delineation of mare, cryptomare, and nonmare surfaces is key to interpreting compositional mixing in the formation of SPA regolith to interpret remotely sensed data, and for scientific assessment of landing sites. LROC Narrow Angle Camera (NAC) images show the location and distribution of >0.5 m boulders and fresh craters that constitute the main threats to automated landers and thus provide critical information for landing site assessment and planning. NAC images suitable for geometric stereo derivation and digital terrain models so derived, controlled with Lunar Orbiter Laser Altimeter (LOLA) data, and oblique NAC images made with large slews of the spacecraft, are crucial to both scientific and landing-site assessments. These images, however, require favorable illumination and significant spacecraft resources. Thus they make up only a small percentage of all of the images taken. It is essential for future exploration to support LRO continued operation for these critical datasets.
Near Earth Network (NEN) CubeSat Communications
NASA Technical Reports Server (NTRS)
Schaire, Scott
2017-01-01
The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO (Low Earth Orbit), GEO (Geosynchronous Earth Orbit), HEO (Highly Elliptical Orbit), lunar and L1-L2 orbits. The NEN's future mission set includes and will continue to include CubeSat missions. The first NEN-supported CubeSat mission will be the Cubesat Proximity Operations Demonstration (CPOD) launching into LEO in 2017. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground-based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL)-developed IRIS (Satellite Communication for Air Traffic Management) radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 (Exploration Mission-1) lunar CubeSats. The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NEN's mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configuration ease of upgrade, to ensure compatibility with the IRIS radio. In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1-L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is ready to begin supporting CubeSat missions. The NEN is considering network upgrades to broaden the types of CubeSat missions that can be supported and is supporting both the CubeSat community and radio developers to ensure future CubeSat missions have multiple options when choosing a network for their communications support.
Challenges of Rover Navigation at the Lunar Poles
NASA Technical Reports Server (NTRS)
Nefian, Ara; Deans, Matt; Bouyssounouse, Xavier; Edwards, Larry; Dille, Michael; Fong, Terry; Colaprete, Tony; Miller, Scott; Vaughan, Ryan; Andrews, Dan;
2015-01-01
Observations from Lunar Prospector, LCROSS, Lunar Reconnaissance Orbiter (LRO), and other missions have contributed evidence that water and other volatiles exist at the lunar poles in permanently shadowed regions. Combining a surface rover and a volatile prospecting and analysis payload would enable the detection and characterization of volatiles in terms of nature, abundance, and distribution. This knowledge could have impact on planetary science, in-situ resource utilization, and human exploration of space. While Lunar equatorial regions of the Moon have been explored by manned (Apollo) and robotic missions (Lunokhod, Cheng'e), no surface mission has reached the lunar poles.
2000-11-04
Image of Surveyor 1 shadow against the lunar surface in the late lunar afternoon, with the horizon at the upper right. Surveyor 1, the first of the Surveyor missions to make a successful soft landing, proved the spacecraft design and landing technique
Astronaut Charles Duke photographed collecting lunar samples at Station 1
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut Charles M. Duke Jr., lunar module pilot of the Apollo 16 lunar landing mission, is photographed collecting lunar samples at Station no. 1 during the first Apollo 16 extravehicular activity at the Descartes landing site. This picture, looking eastward, was taken by Astronaut John W. Young, commander. Duke is standing at the rim of Plum crater, which is 40 meters in diameter and 10 meters deep. The parked Lunar Roving Vehicle can be seen in the left background.
Structural Concepts and Materials for Lunar Exploration Habitats
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Watson, Judith J.; Singhal, Surendra N.
2006-01-01
A new project within the Exploration Systems Mission Directorate s Technology Development Program at NASA involves development of lightweight structures and low temperature mechanisms for Lunar and Mars missions. The Structures and Mechanisms project is to develop advanced structure technology for the primary structure of various pressurized elements needed to implement the Vision for Space Exploration. The goals are to significantly enhance structural systems for man-rated pressurized structures by 1) lowering mass and/or improving efficient volume for reduced launch costs, 2) improving performance to reduce risk and extend life, and 3) improving manufacturing and processing to reduce costs. The targeted application of the technology is to provide for the primary structure of the pressurized elements of the lunar lander for both sortie and outpost missions, and surface habitats for the outpost missions. The paper presents concepts for habitats that support six month (and longer) lunar outpost missions. Both rigid and flexible habitat wall systems are discussed. The challenges of achieving a multi-functional habitat that provides micro-meteoroid, radiation, and thermal protection for explorers are identified.
Lunar base surface mission operations. Lunar Base Systems Study (LBSS) task 4.1
NASA Technical Reports Server (NTRS)
1987-01-01
The purpose was to perform an analysis of the surface operations associated with a human-tended lunar base. Specifically, the study defined surface elements and developed mission manifests for a selected base scenario, determined the nature of surface operations associated with this scenario, generated a preliminary crew extravehicular and intravehicular activity (EVA/IVA) time resource schedule for conducting the missions, and proposed concepts for utilizing remotely operated equipment to perform repetitious or hazardous surface tasks. The operations analysis was performed on a 6 year period of human-tended lunar base operation prior to permanent occupancy. The baseline scenario was derived from a modified version of the civil needs database (CNDB) scenario. This scenario emphasizes achievement of a limited set of science and exploration objectives while emplacing the minimum habitability elements required for a permanent base.
NASA Astrophysics Data System (ADS)
Otake, H.; Ohtake, M.; Ishihara, Y.; Masuda, K.; Sato, H.; Inoue, H.; Yamamoto, M.; Hoshino, T.; Wakabayashi, S.; Hashimoto, T.
2018-04-01
JAXA established JAXA Lunar and Planetary Exploration Data Analysis Group (JLPEDA) at 2016. Our group has been analyzing lunar and planetary data for various missions. Here, we introduce one of our activities.
Particles and fields subsatellite program
NASA Technical Reports Server (NTRS)
Horn, H. J.
1972-01-01
The development and characteristics of the Particles and Fields Lunar Subsatellite are discussed. The basic mission is to investigate two problems in space physics: (1) the formation and dynamics of the earth's magnetosphere and (2) the boundary layer of the solar wind as it flows over the lunar surface. Illustrations of the subsatellites and the mission concepts are included.
NASA Technical Reports Server (NTRS)
Folta, David C.; Bosanac, Natasha; Cox, Andrew; Howell, Kathleen C.
2017-01-01
The challenges of targeting specific lunar science orbit parameters from a concomitant Sun-EarthMoon system trajectory are examined. While the concept of ballistic lunar capture is well-studied, achieving and controlling the time evolution of the orbital elements to satisfy mission constraints is especially problematic when the spacecraft is equipped with a low-thrust propulsion system. Satisfying these requirements on the lunar approach and capture segments is critical to the success of the Lunar IceCube mission, a 6U CubeSat that will prospect for water in solid (ice), liquid, and vapor forms and other lunar volatiles from a low-periapsis, highly inclined elliptical lunar orbit.
NASA Technical Reports Server (NTRS)
Folta, David C.; Bosanac, Natasha; Cox, Andrew; Howell, Kathleen C.
2017-01-01
The challenges of targeting specific lunar science orbit parameters from a concomitant Sun-Earth/Moon system trajectory are examined. While the concept of ballistic lunar capture is well-studied, achieving and controlling the time evolution of the orbital elements to satisfy mission constraints is especially problematic when the spacecraft is equipped with a low-thrust propulsion system. Satisfying these requirements on the lunar approach and capture segments is critical to the success of the Lunar IceCube mission, a 6U CubeSat that will prospect for water in solid (ice), liquid, and vapor forms and other lunar volatiles from a low-periapsis, highly inclined elliptical lunar orbit.
Chang'e 3 and Jade Rabbit's: observations and the landing zone
NASA Astrophysics Data System (ADS)
Ping, Jinsong
Chang’E-3 was launched and landed on the near side of the Moon in December 2013. It is realizing the 2nd phase of Chinese lunar scientific exploration projects. Together with the various in-situ optical observations around the landing sites, the mission carried 4 kinds of radio science experiments, cover the various lunar scientific disciplines as well as lunar surface radio astronomy studies. The key payloads onboard the lander and rover include the near ultraviolet telescope, extreme ultraviolet cameras, ground penetrating radar, very low frequency radio spectrum analyzer, which have not been used in earlier lunar landing missions. Optical spectrometer, Alpha Paticle X-ray spectrometer and Gama Ray spectrometer is also used. The mission is using extreme ultraviolet camera to observe the sun activity and geomagnetic disturbances on geo-space plasma layer of extreme ultraviolet radiation, studying space weather in the plasma layer role in the process; the mission also carries the first time lunar base optical astronomical observations. Most importantly, the topography, landforms and geological structure has been explored in detail. Additionally, the very precise Earth-Moon radio phase ranging technique was firstly tested and realized in this mission. It may increase the study of lunar dyanmics together with LLR technique. Similar to Luna-Glob landers, together with the VLBI radio beacons, the radio transponders are also set on the Chang’E-3. Transponder will receive the uplink X band radio wave transmitted from the two newly constructed Chinese deep space stations, where the high quality hydrogen maser atomic clocks have been used as local time and frequency standard. Radio science receivers have been developed by updating the multi-channel open loop Doppler receiver developed for VLBI and Doppler tracking in Yinghuo-1 and Phobos-Glob Martian missions. This experiment will improve the study of lunar dynamics, by means of measuring the lunar physical liberations precisely together with LLR data.
Apollo 12 crewmembers shown in Apollo Lunar Module Mission Simulator
1969-11-04
S69-56699 (22 Oct. 1969) --- Astronauts Charles Conrad Jr. (left), Apollo 12 commander; and Alan L. Bean, lunar module pilot, are shown in the Apollo Lunar Module Mission Simulator during simulator training at the Kennedy Space Center (KSC). Apollo 12 will be the National Aeronautics and Space Administration's (NASA) second lunar landing mission. The third Apollo 12 crewmember will be astronaut Richard F. Gordon Jr., command module pilot.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.
2017-01-01
NASAs current focus is on the Journey to Mars sometime around the mid-to-late 2030s. However, it is also supporting the development of commercial cargo and crew delivery to the ISS (e.g., SpaceX, Orbital Sciences, SNC, Boeing) where inflatable habitation technology (e.g., Bigelow Aerospaces BEAM) is currently being tested Significant private sector interest in commercial lunar activities has also been expressed by Bigelow Aerospace, Golden Spike Company, Shackleton Energy Company (SEC), and most recently by United Launch Alliance (ULA) in their Cislunar-1000 plan Lunar-derived propellant (LDP) production specifically LLO2 and LLH2 offers significant mission leverage and are central themes of both SECs and ULAs plans for commercial lunar development. An efficient, proven propulsion technology with reuse capability like NTP offers the potential for affordable access through space essential to realizing commercial lunar missions.This presentation examines the performance potential of an evolutionary lunar transportation system (LTS) architecture using NTR initially, then transitioning to LANTR as LDPs(e.g., LLO2 from regolith or volcanic glass, LLO2 and LLH2 from lunar polar ice deposits) become available in lunar orbit (LO) Mission applications range from cargo delivery, to crewed landing, to routine commuter flights to and from transportation system nodes located in both lunar equatorial and lunar polar orbits. This presentation examines the performance potential of an evolutionary lunar transportation system (LTS) architecture using NTR initially, then transitioning to LANTR as LDPs (e.g., LLO2 from regolith or volcanic glass, LLO2 and LLH2 from lunar polar ice deposits) become available in lunar orbit (LO) Mission applications range from cargo delivery, to crewed landing, to routine commuter flights to and from transportation system nodes located in both lunar equatorial and lunar polar orbits.
NASA Technical Reports Server (NTRS)
Genova, Anthony L.; Loucks, Michael; Carrico, John
2014-01-01
The purpose of this extended abstract is to present results from a failed lunar-orbit insertion (LOI) maneuver contingency analysis for the Lunar Atmosphere Dust Environment Explorer (LADEE) mission, managed and operated by NASA Ames Research Center in Moffett Field, CA. The LADEE spacecrafts nominal trajectory implemented multiple sub-lunar phasing orbits centered at Earth before eventually reaching the Moon (Fig. 1) where a critical LOI maneuver was to be performed [1,2,3]. If this LOI was missed, the LADEE spacecraft would be on an Earth-escape trajectory, bound for heliocentric space. Although a partial mission recovery is possible from a heliocentric orbit (to be discussed in the full paper), it was found that an escape-prevention maneuver could be performed several days after a hypothetical LOI-miss, allowing a return to the desired science orbit around the Moon without leaving the Earths sphere-of-influence (SOI).
Global Exploration Roadmap Derived Concept for Human Exploration of the Moon
NASA Technical Reports Server (NTRS)
Whitley, Ryan; Landgraf, Markus; Sato, Naoki; Picard, Martin; Goodliff, Kandyce; Stephenson, Keith; Narita, Shinichiro; Gonthier, Yves; Cowley, Aiden; Hosseini, Shahrzad;
2017-01-01
Taking advantage of the development of Mars-forward assets in cislunar space, a human lunar surface concept is proposed to maximize value for both lunar exploration and future deep space missions. The human lunar surface missions will be designed to build upon the cislunar activities that precede them, providing experience in planetary surface operations that cannot be obtained in cislunar space. To enable a five-mission limited campaign to the surface of the Moon, two new elements are required: a human lunar lander and a mobile surface habitat. The human lunar lander will have been developed throughout the cislunar phase from a subscale demonstrator and will consist of a descent module alongside a reusable ascent module. The reusable ascent module will be used for all five human lunar surface missions. Surface habitation, in the form of two small pressurized rovers, will enable 4 crew to spend up to 42 days on the lunar surface.
1969-06-03
S69-35503 (June 1969) --- Astronaut Eugene A. Cernan (left), lunar module pilot of the Apollo 10 lunar orbit mission, confers with astronaut Edwin E. Aldrin Jr. during an Apollo 10 postflight de-briefing session. Aldrin is the lunar module pilot of the Apollo 11 lunar landing mission.
Real-time science operations to support a lunar polar volatiles rover mission
NASA Astrophysics Data System (ADS)
Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Mattes, Greg; Ennico, Kimberly; Fritzler, Erin; Marinova, Margarita M.; McMurray, Robert; Morse, Stephanie; Roush, Ted L.; Stoker, Carol R.
2015-05-01
Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the ∼ 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field demonstration illustrated the need for science operations personnel in constant communications with the flight mission operators and the Science Backroom to provide immediate and continual science support and validation throughout the mission. Specific data analysis tools are also required to enable immediate data monitoring, visualization, and decision making. The field campaign demonstrated that this novel methodology of real-time science operations is possible and applicable to providing important new insights regarding lunar polar volatiles for both science and exploration.
Real-Time Science Operations to Support a Lunar Polar Volatiles Rover Mission
NASA Technical Reports Server (NTRS)
Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Mattes, Greg; Ennico, Kimberly; Fritzler, Erin; Marinova, Margarita M.; McMurray, Robert; Morse, Stephanie; Roush, Ted L.;
2014-01-01
Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the approx. 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field demonstration illustrated the need for science operations personnel in constant communications with the flight mission operators and the Science Backroom to provide immediate and continual science support and validation throughout the mission. Specific data analysis tools are also required to enable immediate data monitoring, visualization, and decision making. The field campaign demonstrated that this novel methodology of real-time science operations is possible and applicable to providing important new insights regarding lunar polar volatiles for both science and exploration.
1972-04-16
The sixth manned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission Commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 mission continued the broad-scale geological, geochemical, and geophysical mapping of the Moon’s crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph which photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used. The mission ended on April 27, 1972.
NASA Astrophysics Data System (ADS)
Goossens, S.; Matsumoto, K.; Namiki, N.; Hanada, H.; Iwata, T.; Tsuruta, S.; Kawano, N.; Sasaki, S.
2006-12-01
In the near future, a number of satellite missions are planned to be launched to the Moon. These missions include initiatives by China, India, the USA, as well as the Japanese SELENE mission. These missions will gather a wealth of lunar data which will improve the knowledge of the Moon. One of the main topics to be addressed will be the lunar gravity field. Especially SELENE will contribute to improving the knowledge of the gravity field, by applying 4-way Doppler tracking between the main satellite and a relay satellite, and by applying a separate differential VLBI experiment. These will improve the determination of the global gravity field, especially over the far side and at the lower degrees (mostly for degrees lower than 30), as is shown by extensive simulations of the SELENE mission. This work focuses on the determination of the global lunar gravity field from all available tracking data to this date. In preparation for the SELENE mission, analysis using Lunar Prospector tracking data, as well as Clementine data and historical data from the Apollo and Lunar Orbiter projects is being conducted at NAOJ. Some SMART-1 tracking data are also included. The goal is to combine the good-quality data from the existing lunar missions up to this date with the tracking data from SELENE in order to derive a new lunar gravity field model. The focus therefore currently lies on processing the available data and extracting lunar gravity field information from them. It is shown that the historical tracking data contribute especially to the lower degrees of the global lunar gravity field model. Due to the large gap in tracking data coverage over the far side for the historical data, the higher degrees are almost fully determined by the a priori information in the form of a Kaula rule. The combination with SELENE data is thus expected to improve the estimate for the lower degrees even further, including coverage of the far side. Since historical tracking data are from orbits with different inclinations, this helps to break several correlations and assures better orbit predictions for those inclinations included, although the current models are still tuned heavily towards the polar orbit. Covariance analysis using the covariance of current solutions as well as the covariance from SELENE simulations also shows further improvement to be expected from the combination of the data sets. The expected improvement in the determination of the lower degrees also leads to an expectation of deriving stricter limits on the lunar k_2 Love number.
NASA Technical Reports Server (NTRS)
Angell, David; Bealmear, David; Benarroche, Patrice; Henry, Alan; Hudson, Raymond; Rivellini, Tommaso; Tolmachoff, Alex
1990-01-01
Plans to build a lunar base are presently being studied with a number of considerations. One of the most important considerations is qualifying the presence of water on the Moon. The existence of water on the Moon implies that future lunar settlements may be able to use this resource to produce things such as drinking water and rocket fuel. Due to the very high cost of transporting these materials to the Moon, in situ production could save billions of dollars in operating costs of the lunar base. Scientists have suggested that the polar regions of the Moon may contain some amounts of water ice in the regolith. Six possible mission scenarios are suggested which would allow lunar polar soil samples to be collected for analysis. The options presented are: remote sensing satellite, two unmanned robotic lunar coring missions (one is a sample return and one is a data return only), two combined manned and robotic polar coring missions, and one fully manned core retrieval mission. One of the combined manned and robotic missions has been singled out for detailed analysis. This mission proposes sending at least three unmanned robotic landers to the lunar pole to take core samples as deep as 15 meters. Upon successful completion of the coring operations, a manned mission would be sent to retrieve the samples and perform extensive experiments of the polar region. Man's first step in returning to the Moon is recommended to investigate the issue of lunar polar water. The potential benefits of lunar water more than warrant sending either astronauts, robots or both to the Moon before any permanent facility is constructed.
NASA Astrophysics Data System (ADS)
Chi, P. J.
2017-10-01
We discuss the science to be enabled by new magnetometer measurements on the lunar surface, based on results from Apollo and other lunar missions. Also discussed are approaches to deploying magnetometers on the lunar surface with today's technology.
Probabilistic Risk Model for Organ Doses and Acute Health Effects of Astronauts on Lunar Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.
2009-01-01
Exposure to large solar particle events (SPEs) is a major concern during EVAs on the lunar surface and in Earth-to-Lunar transit. 15% of crew times may be on EVA with minimal radiation shielding. Therefore, an accurate assessment of SPE occurrence probability is required for the mission planning by NASA. We apply probabilistic risk assessment (PRA) for radiation protection of crews and optimization of lunar mission planning.
Feasibility analysis of cislunar flight using the Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Haynes, Davy A.
1991-01-01
A first order orbital mechanics analysis was conducted to examine the possibility of utilizing the Space Shuttle Orbiter to perform payload delivery missions to lunar orbit. In the analysis, the earth orbit of departure was constrained to be that of Space Station Freedom. Furthermore, no enhancements of the Orbiter's thermal protection system were assumed. Therefore, earth orbit insertion maneuvers were constrained to be all propulsive. Only minimal constraints were placed on the lunar orbits and no consideration was given to possible landing sites for lunar surface payloads. The various phases and maneuvers of the mission are discussed for both a conventional (Apollo type) and an unconventional mission profile. The velocity impulses needed, and the propellant masses required are presented for all of the mission maneuvers. Maximum payload capabilities were determined for both of the mission profiles examined. In addition, other issues relating to the feasibility of such lunar shuttle missions are discussed. The results of the analysis indicate that the Shuttle Orbiter would be a poor vehicle for payload delivery missions to lunar orbit.
1967-11-01
Workmen at the Kennedy Space Center hoist the Saturn Lunar Module (LM) Adapter into position during assembly of the 204LM-1, an unmanned Apollo mission that tested the Apollo Lunar Module in Earth orbit. Also known as Apollo 5, the spacecraft was launched on the fourth Saturn IB launch vehicle. Developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in MSFC's "building block" approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine a larger booster and the Apollo spacecraft capabilities required for the manned lunar missions.
Constellation Architecture Team-Lunar: Lunar Habitat Concepts
NASA Technical Reports Server (NTRS)
Toups, Larry; Kennedy, Kriss J.
2008-01-01
This paper will describe lunar habitat concepts that were defined as part of the Constellation Architecture Team-Lunar (CxAT-Lunar) in support of the Vision for Space Exploration. There are many challenges to designing lunar habitats such as mission objectives, launch packaging, lander capability, and risks. Surface habitats are required in support of sustaining human life to meet the mission objectives of lunar exploration, operations, and sustainability. Lunar surface operations consist of crew operations, mission operations, EVA operations, science operations, and logistics operations. Habitats are crewed pressurized vessels that include surface mission operations, science laboratories, living support capabilities, EVA support, logistics, and maintenance facilities. The challenge is to deliver, unload, and deploy self-contained habitats and laboratories to the lunar surface. The CxAT-Lunar surface campaign analysis focused on three primary trade sets of analysis. Trade set one (TS1) investigated sustaining a crew of four for six months with full outpost capability and the ability to perform long surface mission excursions using large mobility systems. Two basic habitat concepts of a hard metallic horizontal cylinder and a larger inflatable torus concept were investigated as options in response to the surface exploration architecture campaign analysis. Figure 1 and 2 depicts the notional outpost configurations for this trade set. Trade set two (TS2) investigated a mobile architecture approach with the campaign focused on early exploration using two small pressurized rovers and a mobile logistics support capability. This exploration concept will not be described in this paper. Trade set three (TS3) investigated delivery of a "core' habitation capability in support of an early outpost that would mature into the TS1 full outpost capability. Three core habitat concepts were defined for this campaign analysis. One with a four port core habitat, another with a 2 port core habitat, and the third investigated leveraging commonality of the lander ascent module and airlock pressure vessel hard shell. The paper will describe an overview of the various habitat concepts and their functionality. The Crew Operations area includes basic crew accommodations such as sleeping, eating, hygiene and stowage. The EVA Operations area includes additional EVA capability beyond the suit-port airlock function such as redundant airlock(s), suit maintenance, spares stowage, and suit stowage. The Logistics Operations area includes the enhanced accommodations for 180 days such as closed loop life support systems hardware, consumable stowage, spares stowage, interconnection to the other Hab units, and a common interface mechanism for future growth and mating to a pressurized rover. The Mission & Science Operations area includes enhanced outpost autonomy such as an IVA glove box, life support, and medical operations.
Photometric Lunar Surface Reconstruction
NASA Technical Reports Server (NTRS)
Nefian, Ara V.; Alexandrov, Oleg; Morattlo, Zachary; Kim, Taemin; Beyer, Ross A.
2013-01-01
Accurate photometric reconstruction of the Lunar surface is important in the context of upcoming NASA robotic missions to the Moon and in giving a more accurate understanding of the Lunar soil composition. This paper describes a novel approach for joint estimation of Lunar albedo, camera exposure time, and photometric parameters that utilizes an accurate Lunar-Lambertian reflectance model and previously derived Lunar topography of the area visualized during the Apollo missions. The method introduced here is used in creating the largest Lunar albedo map (16% of the Lunar surface) at the resolution of 10 meters/pixel.
The Apollo lunar surface experiment package suprathermal ion detector experiment. [bibliographies
NASA Technical Reports Server (NTRS)
1975-01-01
A compilation of reports and scientific papers is presented for the following topics: (1) the lunar ionosphere; (2) electric potential of the lunar surface; (3) ion activity on the lunar nightside; (4) bow shock protons; (5) magnetosheath and magnetotail; (6) solar wind-neutral gas cloud interactions at the lunar surface; (7) penetrating solar particles; and (8) rocket exhaust products from Apollo missions. Descriptions and photographs of ion detecting equipment at the lunar sites of Apollo 12, 13, 14, and 15 are given.
Rock sample brought to earth from the Apollo 12 lunar landing mission
NASA Technical Reports Server (NTRS)
1969-01-01
Astronaut Charles Conrad Jr., commander of the Apollo 12 lunar landing mission, holds two lunar rocks which were among the samples brought back from the Moon by the Apollo 12 astronauts. The samples are under scientific examination in the Manned Spacecraft Center's Lunar Receiving Laboratory.
NASA Technical Reports Server (NTRS)
Mantel, E. J. (Editor); Miller, E. R. (Editor)
1977-01-01
Several series of spacecraft were developed, designed, built and launched to determine different characteristics of the lunar surface and environment for a manned landing. Both unmanned and manned spacecrafts, spacecraft equipment and lunar missions are documented.
Astronaut John Young leaps from lunar surface to salute flag
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, leaps from the lunar surface as he salutes the U.S. Flag at the Descartes landing site during the first Apollo 16 extravehicular activity (EVA-1). Astronaut Charles M. Duke Jr., lunar module pilot, took this picture. The Lunar Module (LM) 'Orion' is on the left. The Lunar Roving Vehicle is parked beside the LM. The object behind Young in the shade of the LM is the Far Ultraviolet Camera/Spectrograph. Stone Mountain dominates the background in this lunar scene.
Simulation of the Chang'E-5 mission contribution in lunar long wavelength gravity field improvement
NASA Astrophysics Data System (ADS)
Yan, Jianguo; Yang, Xuan; Ping, Jinsong; Ye, Mao; Liu, Shanhong; Jin, Weitong; Li, Fei; Barriot, Jean-Pierre
2018-06-01
The precision of lunar gravity field estimation has improved by means of three to five orders of magnitude since the successful GRAIL lunar mission. There are still discrepancies however, in the low degree coefficients and long wavelength components of the solutions developed by two space research centers (JPL and GSFC). These discrepancies hint at the possibilities for improving the accuracy in the long wavelength part of the lunar gravity field. In the near future, China will launch the Chang'E-5 lunar mission. In this sample-return mission, there will be a chance to do KBRR measurements between an ascending module and an orbiting module. These two modules will fly around lunar at an inclination of ˜49 degrees, with an orbital height of 100 km and an inter-satellite distance of 200 km. In our research, we simulated the contribution of the KBRR tracking mode for different GRAIL orbital geometries. This analysis indicated possible deficiencies in the low degree coefficient solutions for the polar satellite-to-satellite tracking mode at various orbital heights. We also investigated the potential contributions of the KBRR to the Chang'E-5 mission goal of lunar gravity field recovery, especially in the long wavelength component. Potential improvements were assessed using various power spectrums of the lunar gravity field models. In addition, we also investigated possible improvements in solving lunar tidal Love number K2. These results may assist the implementation of the Chang'E-5 mission.
Optimization of Crew Shielding Requirement in Reactor-Powered Lunar Surface Missions
NASA Technical Reports Server (NTRS)
Barghouty, Abdulnasser F.
2007-01-01
On the surface of the moon -and not only during heightened solar activities- the radiation environment As such that crew protection will be required for missions lasting in excess of six months. This study focuses on estimating the optimized crew shielding requirement for lunar surface missions with a nuclear option. Simple, transport-simulation based dose-depth relations of the three (galactic, solar, and fission) radiation sources am employed in a 1-dimensional optimization scheme. The scheme is developed to estimate the total required mass of lunar-regolith separating reactor from crew. The scheme was applied to both solar maximum and minimum conditions. It is shown that savings of up to 30% in regolith mass can be realized. It is argued, however, that inherent variation and uncertainty -mainly in lunar regolith attenuation properties in addition to the radiation quality factor- can easily defeat this and similar optimization schemes.
A Mission Concept Based on the ISECG Human Lunar Surface Architecture
NASA Technical Reports Server (NTRS)
Gruener, J. E.; Lawrence, S. J.
2017-01-01
The National Aeronautics and Space Administration (NASA) is participating in the International Space Exploration Coordination Group (ISECG), working together with 13 other space agencies to advance a long-range human space exploration strategy. The ISECG has developed a Global Exploration Roadmap (GER) that reflects the coordinated international dialog and continued preparation for exploration beyond low-Earth orbit - beginning with the International Space Station (ISS) and continuing to the Moon, near-Earth asteroids, and Mars [1]. The roadmap demonstrates how initial capabilities can enable a variety of missions in the lunar vicinity, responding to individual and common goals and objectives, while contributing to building partnerships required for sustainable human space exploration that delivers value to the public. The current GER includes three different near-term themes: exploration of a near-Earth asteroid, extended duration crew missions in cis-lunar space, and humans to the lunar surface.
NASA Technical Reports Server (NTRS)
Captain, J.; Elphic, R.; Colaprete, A.; Zacny, Kris; Paz, A.
2016-01-01
Data gathered from lunar missions within the last two decades have significantly enhanced our understanding of the volatile resources available on the lunar surface, specifically focusing on the polar regions. Several orbiting missions such as Clementine and Lunar Prospector have suggested the presence of volatile ices and enhanced hydrogen concentrations in the permanently shadowed regions of the moon. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was the first to provide direct measurement of water ice in a permanently shadowed region. These missions with other orbiting assets have laid the groundwork for the next step in the exploration of the lunar surface; providing ground truth data of the volatiles by mapping the distribution and processing lunar regolith for resource extraction. This next step is the robotic mission Resource Prospector (RP). Resource Prospector is a lunar mission to investigate 'strategic knowledge gaps' (SKGs) for in-situ resource utilization (ISRU). The mission is proposed to land in the lunar south pole near a permanently shadowed crater. The landing site will be determined by the science team with input from broader international community as being near traversable landscape that has a high potential of containing elevated concentrations of volatiles such as water while maximizing mission duration. A rover will host the Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) payload for resource mapping and processing. The science instruments on the payload include a 1-meter drill, neutron spectrometer, a near infrared spectrometer, an operations camera, and a reactor with a gas chromatograph-mass spectrometer for volatile analysis. After the RP lander safely delivers the rover to the lunar surface, the science team will guide the rover team on the first traverse plan. The neutron spectrometer (NS) and near infrared (NIR) spectrometer instruments will be used as prospecting tools to guide the traverse path. The NS will map the water-equivalent hydrogen concentration as low as 0.5% by weight to an 80 centimeter depth as the rover traverses the lunar landscape. The NIR spectrometer will measure surficial H2O/OH as well as general mineralogy. When the prospecting instruments identify a potential volatile-rich area during the course of a traverse, the prospect is then mapped out and the most promising location identified. An augering drill capable of sampling to a depth of 100 centimeters will excavate regolith for analysis. A quick assay of the drill cuttings will be made using an operations camera and NIR spectrometer. With the water depth confirmed by this first auguring activity, a regolith sample may be extracted for processing. The drill will deliver the regolith sample to a crucible that will be sealed and heated. Evolved volatiles will be measured by a gas chromatograph-mass spectrometer and the water will be captured and photographed. RP is a solar powered mission, which given the polar location translates to a relatively short mission duration on the order of 4-15 days. This short mission duration drives the concept of operations, instrumentation, and data analysis towards critical real time analysis and decision support. Previous payload field tests have increased the fidelity of the hardware, software, and mission operations. Current activities include a mission level field test to optimize interfaces between the payload and rover as well as better understand the interaction of the science and rover teams during the mission timeline. This paper will include the current status of the science instruments on the payload as well as the integrated field test occurring in fall of 2015. The concept of operations will be discussed, including the real time science and engineering decision-making process based on the critical data from the instrumentation. The path to flight will be discussed with the approach to this ambitious low cost mission.
View of activity in Mission Control Center during Apollo 15 EVA
1971-08-02
S71-41852 (2 Aug. 1971) --- Gerald D. Griffin, foreground, stands near his console in the Mission Operations Control Room (MOCR) during Apollo 15's third extravehicular activity (EVA) on the lunar surface. Griffin is Gold Team (Shift 1) flight director for the Apollo 15 mission. Astronauts David R. Scott and James B. Irwin can be seen on the large screen at the front of the MOCR as they participate in sample-gathering on the lunar surface.
Europa Science Platforms and Kinetic Energy Probes
NASA Technical Reports Server (NTRS)
Hays, C. C.; Klein, G. A.
2003-01-01
This presentation will outline a proposed mission for the Jupiter Icy Moons Orbiter (JIMO). The mission outlined will concentrate on an examination of Europa. Some of the primary science goals for the JIMO mission are: 1) to answer broad science questions, 2) improved knowledge of Jovian system; specifically, lunar geological and geophysical properties, 3) chemical composition of Jovian lunar surfaces and subterranean matter, and 4) the search for life. In order to address these issues, the experiment proposed here will deploy orbiting, surface, and subterranean science platforms.
Apollo 12 crewmembers shown in Apollo Lunar Module Mission Simulator
1969-11-04
S69-56700 (22 Oct. 1969) --- A fish-eye lens view of astronauts Charles Conrad Jr. (on left), Apollo 12 commander, and Alan L. Bean, lunar module pilot, inside the Apollo Lunar Module Mission Simulator during simulator training at the Kennedy Space Center (KSC). Apollo 12 will be the National Aeronautics and Space Administration's (NASA) second lunar landing mission. The third Apollo 12 crewmember will be astronaut Richard F. Gordon Jr., command module pilot.
1972-04-16
The sixth marned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 continued the broad-scale geological, geochemical, and geophysical mapping of the Moon's crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph. It photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle was also used. The mission ended on April 27, 1972.
STEREO Mission Design Implementation
NASA Technical Reports Server (NTRS)
Guzman, Jose J.; Dunham, David W.; Sharer, Peter J.; Hunt, Jack W.; Ray, J. Courtney; Shapiro, Hongxing S.; Ossing, Daniel A.; Eichstedt, John E.
2007-01-01
STEREO (Solar-TErrestrial RElations Observatory) is the third mission in the Solar Terrestrial Probes program (STP) of the National Aeronautics and Space Administration (NASA) Science Mission Directorate Sun-Earth Connection theme. This paper describes the successful implementation (lunar swingby targeting) of the mission following the first phasing orbit to deployment into the heliocentric mission orbits following the two lunar swingbys. The STEREO Project had to make some interesting trajectory decisions in order to exploit opportunities to image a bright comet and an unusual lunar transit across the Sun.
Apollo Missions to the Lunar Surface
NASA Technical Reports Server (NTRS)
Graff, Paige V.
2018-01-01
Six Apollo missions to the Moon, from 1969-1972, enabled astronauts to collect and bring lunar rocks and materials from the lunar surface to Earth. Apollo lunar samples are curated by NASA Astromaterials at the NASA Johnson Space Center in Houston, TX. Samples continue to be studied and provide clues about our early Solar System. Learn more and view collected samples at: https://curator.jsc.nasa.gov/lunar.
Mobility performance of the lunar roving vehicle: Terrestrial studies: Apollo 15 results
NASA Technical Reports Server (NTRS)
Costes, N. C.; Farmer, J. E.; George, E. B.
1972-01-01
The constriants of the Apollo 15 mission dictated that the average and limiting performance capabilities of the first manned lunar roving vehicle be known or estimated within narrow margins. Extensive studies were conducted and are compared with the actual performance of the lunar roving vehicle during the Apollo 15 mission. From this comparison, conclusions are drawn relating to the capabilities and limitation of current terrestrial methodology in predicting the mobility performance of lunar roving vehicles under in-situ environmental conditions, and recommendations are offered concerning the performance of surface vehicles on future missions related to lunar or planetary exploration.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.
1995-01-01
The feasibility of conducting human missions to the Moon is examined assuming the use of three 'high leverage' technologies: (1) a single-stage-to-orbit (SSTO) launch vehicle, (2) 'in-situ' resource utilization (ISRU)--specifically 'lunar-derived' liquid oxygen (LUNOX), and (3) LOX-augmented nuclear thermal rocket (LANTR) propulsion. Lunar transportation system elements consisting of a LANTR-powered lunar transfer vehicle (LTV) and a chemical propulsion lunar landing/Earth return vehicle (LERV) are configured to fit within the 'compact' dimensions of the SSTO cargo bay (diameter: 4.6 m/length: 9.0 m) while satisfying an initial mass in low Earth orbit (IMLEO) limit of approximately 60 t (3 SSTO launches). Using approximately 8 t of LUNOX to 'reoxidize' the LERV for a 'direct return' flight to Earth reduces its size and mass allowing delivery to LEO on a single 20 t SSTO launch. Similarly, the LANTR engine's ability to operate at any oxygen/ hydrogen mixture ratio from 0 to 7 with high specific impulse (approximately 940 to 515 s) is exploited to reduce hydrogen tank volume, thereby improving packaging of the LANTR LTV's 'propulsion' and 'propellant modules'. Expendable and reusable, piloted and cargo missions and vehicle designs are presented along with estimates of LUNOX production required to support the different mission modes. Concluding remarks address the issue of lunar transportation system costs from the launch vehicle perspective.
NASA Astrophysics Data System (ADS)
Borowski, Stanley K.
1995-10-01
The feasibility of conducting human missions to the Moon is examined assuming the use of three 'high leverage' technologies: (1) a single-stage-to-orbit (SSTO) launch vehicle, (2) 'in-situ' resource utilization (ISRU)--specifically 'lunar-derived' liquid oxygen (LUNOX), and (3) LOX-augmented nuclear thermal rocket (LANTR) propulsion. Lunar transportation system elements consisting of a LANTR-powered lunar transfer vehicle (LTV) and a chemical propulsion lunar landing/Earth return vehicle (LERV) are configured to fit within the 'compact' dimensions of the SSTO cargo bay (diameter: 4.6 m/length: 9.0 m) while satisfying an initial mass in low Earth orbit (IMLEO) limit of approximately 60 t (3 SSTO launches). Using approximately 8 t of LUNOX to 'reoxidize' the LERV for a 'direct return' flight to Earth reduces its size and mass allowing delivery to LEO on a single 20 t SSTO launch. Similarly, the LANTR engine's ability to operate at any oxygen/ hydrogen mixture ratio from 0 to 7 with high specific impulse (approximately 940 to 515 s) is exploited to reduce hydrogen tank volume, thereby improving packaging of the LANTR LTV's 'propulsion' and 'propellant modules'. Expendable and reusable, piloted and cargo missions and vehicle designs are presented along with estimates of LUNOX production required to support the different mission modes. Concluding remarks address the issue of lunar transportation system costs from the launch vehicle perspective.
Cardiovascular and hormonal changes induced by a simulation of a lunar mission.
Pavy-Le Traon, A; Allevard, A M; Fortrat, J O; Vasseur, P; Gauquelin, G; Guell, A; Bes, A; Gharib, C
1997-09-01
This is the first simulation of a 14-d lunar mission including 6 d on the Moon. We hypothesized that a lunar gravity simulation in the middle of a head-down tilt (HDT) might result in some reversal of body fluid/hormonal responses, and influence cardiovascular deconditioning. Six men (28 +/- 2.5 yr) were placed in bed rest (BR): in (HDT) (-6 degrees) to simulate microgravity during the travel (two 4-d periods), and in head-up tilt (HUT) (+10 degrees) (6-d period) to simulate lunar gravity (1/6 g). Muscular exercise was performed during the HUT period to simulate 6 h of lunar EVA. Heart rate variability (HRV) and hormonal responses were studied. An orthostatic arterial hypotension was observed after the BR (tilt test) in 4 of the 6 subjects. Plasma volume measured at D14 decreased by -11.1% (vs. D-3, sitting position). A decrease in atrial natriuretic peptide (26 +/- 3.5 pg.ml-1 (D14) vs. 37.9 +/- 3.5 pg.ml-1 (D-3, sitting) and an increase in plasma renin activity (198 +/- 9.2 mg.L-1.min-1 (D14) vs. 71 +/- 9.2 mg.L-1.min-1 (D-3, sitting) were observed during the BR, more pronounced in HUT at 7:00 p.m. Sympathetic-parasympathetic balance (HRV) at rest showed a decrease in parasympathetic indicator and an increase in sympathetic indicator in BR (p < 0.05), without differences within HDT and HUT periods. These changes were mostly similar to those reported in spaceflights, and HDT. Although the exposure to 1/6 g with exercise modified some hormonal and body fluid responses, this partial gravity simulation was not sufficient to prevent the decrease in orthostatic tolerance observed here as well as after Apollo lunar missions.
Astronaut David Scott using Apollo Lunar Surface Drill during second EVA
1971-08-01
S71-41501 (1 Aug. 1971) --- Astronaut David R. Scott, Apollo 15 commander, is seen carrying the Apollo Lunar Surface Drill (ALSD) during the second lunar surface extravehicular activity (EVA) in this black and white reproduction taken from a color transmission made by the RCA color television camera mounted on the Lunar Roving Vehicle (LRV). This transmission was the fourth made during the mission.
Guidance, navigation, and control systems performance analysis: Apollo 13 mission report
NASA Technical Reports Server (NTRS)
1970-01-01
The conclusions of the analyses of the inflight performance of the Apollo 13 spacecraft guidance, navigation, and control equipment are presented. The subjects discussed are: (1) the command module systems, (2) the lunar module inertial measurement unit, (3) the lunar module digital autopilot, (4) the lunar module abort guidance system, (5) lunar module optical alignment checks, and (6) spacecraft component separation procedures.
Geochemical and mineralogical analysis of Gruithuisen region on Moon using M3 and DIVINER images
NASA Astrophysics Data System (ADS)
Kusuma, K. N.; Sebastian, N.; Murty, S. V. S.
2012-07-01
Spectral information from the Moon Mineralogy Mapper (M3) onboard Chandrayaan-1 and DIVINER Lunar Radiometer onboard LRO have been used for geochemical and mineralogical characterisation of the Gruithuisen region on Moon along with morphometrical information from LOLA Digital elevation model. The apparent reflectance of M3 on global mode is used for (1) spectral characterisation (2) estimating the abundance of Ti and Fe using Lucey's method and (3) discriminating non-mare region from mare regions by means of Minimum Noise Fraction (MNF) transform and Integrated Band Depth (IBD) parameters. Christensen frequency (CF) value derived from DIVINER data is used to delineate the silica saturated lithology from the undersaturated rocks as well as to delineate their spatial spread. Low values of FeO, TiO2, and IBD indicate non-mare nature of the domes and highland material, also supplemented by CF values. The highland rocks represent signatures of sodic plagioclase, the end result of plagioclase crystallisation from Lunar Magma Ocean. Compositional variations are observed among the domes. NW dome has highest silica concentration than the other two domes and in turn higher viscosity. It is most likely that the three domes tapped residual liquid from different locations of the residual magma chamber which is in constant mixing. The extrusion is probably a localised phenomenon, where urKREEP welled out along the zone of crustal weakness formed by Imbrium Impact. It is likely that δ dome has extruded over a larger time span than other two features.
NASA Astrophysics Data System (ADS)
Taylor, G. J.; Martel, L. M. V.
2018-04-01
Lunar-focused research and plans to return to the lunar surface for science and exploration have reemerged since the Space Policy Directive-1 of December 11, 2017 amended the National Space Policy to include the following, "Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations." In response to this revision, NASA proposes a Lunar Exploration and Discovery Program in the U.S. fiscal year 2019 Budget Request. It supports NASA's interests in commercial and international partnerships in Low-Earth Orbit (LEO), long-term exploration in Cislunar space beyond LEO, and research and exploration conducted on the Moon to inform future crewed missions, even to destinations beyond the Moon. (Cislunar refers to the volume of space between LEO and the Moon's orbital distance.) The lunar campaign strengthens the integration of human and robotic activities on the lunar surface with NASA's science, technology, and exploration goals.
1967-04-28
Moon Lunar Orbiter-Lunar Orbiter III: The hidden or dark side of the Moon was taken by Lunar Orbiter III During its mission to photograph potential lunar-landing sites for Apollo missions. -- Photograph published in Winds of Change, 75th Anniversary NASA publication (page 94), by James Schultz. Photo Number:67-H-328 is 1967-L-04026
RESOLVE Projects: Lunar Water Resource Demonstration and Regolith Volatile Characterization
NASA Technical Reports Server (NTRS)
2008-01-01
To sustain affordable human and robotic space exploration, the ability to live off the land at the exploration site will be essential. NASA calls this ability in situ resource utilization (ISRU) and is focusing on finding ways to sustain missions first on the Moon and then on Mars. The ISRU project aims to develop capabilities to technology readiness level 6 for the Robotic Lunar Exploration Program and early human missions returning to the Moon. NASA is concentrating on three primary areas of ISRU: (1) excavating, handling, and moving lunar regolith, (2) extracting oxygen from lunar regolith, and (3) finding, characterizing, extracting, separating, and storing volatile lunar resources, especially in the permanently shadowed polar craters. To meet the challenges related to technology development for these three primary focus areas, the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) project was initiated in February 2005, through funding by the Exploration Systems Mission Directorate. RESOLVE's objectives are to develop requirements and conceptual designs and to perform breadboard concept verification testing of each experiment module. The final goal is to deliver a flight prototype unit that has been tested in a relevant lunar polar environment. Here we report progress toward the third primary area creating ways to find, characterize, extract, separate, and store volatile lunar resources. The tasks include studying thermal, chemical, and electrical ways to collect such volatile resources as hydrogen, water, nitrogen, methane, and ammonia. We approached this effort through two subtasks: lunar water resource demonstration (LWRD) and regolith volatile characterization (RVC).
Astronaut John Young leaps from lunar surface as he salutes U.S. flag
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, leaps from the lunar surface as he salutes the U.S. flag during the first Apollo 16 extravehicular activity (EVA-1) on the Moon, as seen in this reproduction taken from a color transmission made by the color TV camera mounted on the Lunar Roving Vehicle. Astronaut Charles M. Duke Jr., lunar module pilot, is standing in the background.
1969-11-19
AS12-46-6728 (19 Nov. 1969) --- Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 mission, is about to step off the ladder of the Lunar Module to join astronaut Charles Conrad Jr., mission commander, in extravehicular activity (EVA). Conrad and Bean descended in the Apollo 12 LM to explore the moon while astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules in lunar orbit.
Apollo 8 Commander Frank Borman Receives Presidential Call
NASA Technical Reports Server (NTRS)
1968-01-01
Apollo 8 Astronaut Frank Borman, commander of the first manned Saturn V space flight into Lunar orbit, accepted a phone call from the U.S. President Lyndon B. Johnson prior to launch. Borman, along with astronauts William Anders, Lunar Module (LM) pilot, and James Lovell, Command Module (CM) pilot, launched aboard the Apollo 8 mission on December 21, 1968 and returned safely to Earth on December 27, 1968. The mission achieved operational experience and tested the Apollo command module systems, including communications, tracking, and life-support, in cis-lunar space and lunar orbit, and allowed evaluation of crew performance on a lunar orbiting mission. The crew photographed the lunar surface, both far side and near side, obtaining information on topography and landmarks as well as other scientific information necessary for future Apollo landings. All systems operated within allowable parameters and all objectives of the mission were achieved.
Apollo 14 Mission to Fra Mauro
NASA Technical Reports Server (NTRS)
Beasley, Brian D. (Editor)
1991-01-01
The 1971 Apollo 14 Mission to Fra Mauro, a lunar highland area, is highlighted in this video. The mission's primary goal was the collection of lunar rocks and soil samples and lunar exploration. The soil and rock sampling was for the geochronological determination of the Moon's evolution and its comparison with that of Earth. A remote data collection station was assembled on the Moon and left for continuous data collection and surface monitoring experiments. The Apollo 14 astronauts were Alan B. Shepard, Edgar D. Mitchell, and Stuart A. Rossa. Astronauts Shepard and Mitchell landed on the Moon (February 5, 1971) and performed the sampling, the EVA, and deployment of the lunar experiments. There is film-footage of the lunar surface, of the command module's approach to both the Moon and the Earth, Moon and Earth spacecraft launching and landing, in-orbit command- and lunar-module docking, and of Mission Control.
Apollo 8 Astronaut James Lovell On Phone With President Johnson
NASA Technical Reports Server (NTRS)
1968-01-01
Apollo 8 Astronaut James Lovell, Command Module (CM) pilot of the first manned Saturn V space flight into Lunar orbit, accepted a phone call from the U.S. President Lyndon B. Johnson prior to launch. Lovell, along with astronauts William Anders, Lunar Module (LM) pilot, and Frank Borman, commander, launched aboard the Apollo 8 mission on December 21, 1968 and returned safely to Earth on December 27, 1968. The mission achieved operational experience and tested the Apollo command module systems, including communications, tracking, and life-support, in cis-lunar space and lunar orbit, and allowed evaluation of crew performance on a lunar orbiting mission. The crew photographed the lunar surface, both far side and near side, obtaining information on topography and landmarks as well as other scientific information necessary for future Apollo landings. All systems operated within allowable parameters and all objectives of the mission were achieved.
Apollo 8 Astronaut William Anders On Phone With President Johnson
NASA Technical Reports Server (NTRS)
1968-01-01
Apollo 8 Astronaut William Anders, Lunar Module (LM) pilot of the first manned Saturn V space flight into Lunar orbit, accepted a phone call from the U.S. President Lyndon B. Johnson prior to launch. Anders, along with astronauts James Lovell, Command Module (CM) pilot, and Frank Borman, commander, launched aboard the Apollo 8 mission on December 21, 1968 and returned safely to Earth on December 27, 1968. The mission achieved operational experience and tested the Apollo command module systems, including communications, tracking, and life-support, in cis-lunar space and lunar orbit, and allowed evaluation of crew performance on a lunar orbiting mission. The crew photographed the lunar surface, both far side and near side, obtaining information on topography and landmarks as well as other scientific information necessary for future Apollo landings. All systems operated within allowable parameters and all objectives of the mission were achieved.
Lunar Team Report from a Planetary Design Workshop at ESTEC
NASA Astrophysics Data System (ADS)
Gray, A.; MacArthur, J.; Foing, B. H.
2014-04-01
On February 13, 2014, GeoVUsie, a student association for Earth science majors at Vrijie University (VU), Amsterdam, hosted a Planetary Sciences: Moon, Mars and More symposium. The symposium included a learning exercise the following day for a planetary design workshop at the European Space Research and Technology Centre (ESTEC) for 30 motivated students, the majority being from GeoVUsie with little previous experience of planetary science. Students were split into five teams and assigned pre-selected new science mission projects. A few scientific papers were given to use as reference just days before the workshop. Three hours were allocated to create a mission concept before presenting results to the other students and science advisors. The educational backgrounds varied from second year undergraduate students to masters' students from mostly local universities.The lunar team was told to design a mission to the lunar south pole, as this is a key destination agreed upon by the international lunar scientific community. This region has the potential to address many significant objectives for planetary science, as the South Pole-Aitken basin has preserved early solar system history and would help to understand impact events throughout the solar system as well as the origin and evolution of the Earth-Moon system, particularly if samples could be returned. This report shows the lunar team's mission concept and reasons for studying the origin of volatiles on the Moon as the primary science objective [1]. Amundsen crater was selected as the optimal landing site near the lunar south pole [2]. Other mission concepts such as RESOLVE [3], L-VRAP [4], ESA's lunar lander studies and Luna-27 were reviewed. A rover and drill were selected as being the most suitable architecture for the requirements of this mission. Recommendations for future student planetary design exercises were to continue events like this, ideally with more time, and also to invite a more diverse range of educational backgrounds, i.e., both engineering and science students/professionals.
Conceptual Design of a Communications Relay Satellite for a Lunar Sample Return Mission
NASA Technical Reports Server (NTRS)
Brunner, Christopher W.
2005-01-01
In 2003, NASA solicited proposals for a robotic exploration of the lunar surface. Submissions were requested for a lunar sample return mission from the South Pole-Aitken Basin. The basin is of interest because it is thought to contain some of the oldest accessible rocks on the lunar surface. A mission is under study that will land a spacecraft in the basin, collect a sample of rock fragments, and return the sample to Earth. Because the Aitken Basin is on the far side of the Moon, the lander will require a communications relay satellite (CRS) to maintain contact with the Earth during its surface operation. Design of the CRS's orbit is therefore critical. This paper describes a mission design which includes potential transfer and mission orbits, required changes in velocity, orbital parameters, and mission dates. Several different low lunar polar orbits are examined to compare their availability to the lander versus the distance over which they must communicate. In addition, polar orbits are compared to a halo orbit about the Earth-Moon L2 point, which would permit continuous communication at a cost of increased fuel requirements and longer transmission distances. This thesis also examines some general parameters of the spacecraft systems for the mission under study. Mission requirements for the lander dictate the eventual choice of mission orbit. This mission could be the first step in a period of renewed lunar exploration and eventual human landings.
NASA Technical Reports Server (NTRS)
1971-01-01
A detailed discussion is presented of the Apollo 15 mission, which conducted exploration of the moon over longer periods, greater ranges, and with more instruments of scientific data acquisition than previous missions. The topics include trajectory, lunar surface science, inflight science and photography, command and service module performance, lunar module performance, lunar surface operational equipment, pilot's report, biomedical evaluation, mission support performance, assessment of mission objectives, launch phase summary, anomaly summary, and vehicle and equipment descriptions. The capability of transporting larger payloads and extending time on the moon were demonstrated. The ground-controlled TV camera allowed greater real-time participation by earth-bound personnel. The crew operated more as scientists and relied more on ground support team for systems monitoring. The modified pressure garment and portable life support system provided better mobility and extended EVA time. The lunar roving vehicle and the lunar communications relay unit were also demonstrated.
Observations of Titanium, Aluminum and Magnesium in the Lunar Exosphere by LADEE UVS
NASA Technical Reports Server (NTRS)
Colaprete, A.; Wooden, D.; Cook, A.; Shirley, M.; Sarantos, M.
2016-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) was an orbital lunar science mission designed to address the goals of the 2003 National Research Council decadal survey, the Lunar Exploration Analysis Group Roadmap, and the "Scientific Context for Exploration of the Moon" (SCEM) report, and has been recommended for execution by the 2011 Planetary Missions Decadal Survey. The LADEE mission goal was to determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. It will monitor variations in known gasses, such as sodium, potassium, argon and helium, and will search for other, as-yet-undetected gasses of both lunar and extra-lunar origin. Another goal of LADEE was to determine whether dust is present in the lunar exosphere, and reveal the processes that contribute to its sources and variability.
LCROSS: Lunar CRater Observation and Sensing Satellite Project
NASA Technical Reports Server (NTRS)
Marmie, John
2010-01-01
This slide presentation reviews the success of the Lunar Crater Observation and Sensing Satellite (LCROSS) project. The LCROSS mission science goals was to: (1) Confirm the presence or absence of water ice in a permanently shadowed region on the Moon (2) Identify the form/state of hydrogen observed by at the lunar poles (3) Quantify, if present, the amount of water in the lunar regolith, with respect to hydrogen concentrations (4) Characterize the lunar regolith within a permanently shadowed crater on the Moon. The mission confirmed the presence of water ice on the moon by impacting a part of the spent Centaur upper stage into the Cabeus crater.. The presentation includes pictures of the development of the spacecraft, testing, launch, impact site, impact and a section of what the author called "Lunacy" which showed joking cartoons.
Lunar e-Library: A Research Tool Focused on the Lunar Environment
NASA Technical Reports Server (NTRS)
McMahan, Tracy A.; Shea, Charlotte A.; Finckenor, Miria; Ferguson, Dale
2007-01-01
As NASA plans and implements the Vision for Space Exploration, managers, engineers, and scientists need lunar environment information that is readily available and easily accessed. For this effort, lunar environment data was compiled from a variety of missions from Apollo to more recent remote sensing missions, such as Clementine. This valuable information comes not only in the form of measurements and images but also from the observations of astronauts who have visited the Moon and people who have designed spacecraft for lunar missions. To provide a research tool that makes the voluminous lunar data more accessible, the Space Environments and Effects (SEE) Program, managed at NASA's Marshall Space Flight Center (MSFC) in Huntsville, AL, organized the data into a DVD knowledgebase: the Lunar e-Library. This searchable collection of 1100 electronic (.PDF) documents and abstracts makes it easy to find critical technical data and lessons learned from past lunar missions and exploration studies. The SEE Program began distributing the Lunar e-Library DVD in 2006. This paper describes the Lunar e-Library development process (including a description of the databases and resources used to acquire the documents) and the contents of the DVD product, demonstrates its usefulness with focused searches, and provides information on how to obtain this free resource.
Architecture Study for a Fuel Depot Supplied from Lunar Resources
NASA Technical Reports Server (NTRS)
Perrin, Thomas M.
2016-01-01
Heretofore, discussions of space fuel depots assumed the depots would be supplied from Earth. However, the confirmation of deposits of water ice at the lunar poles in 2009 suggests the possibility of supplying a space depot with liquid hydrogen/liquid oxygen produced from lunar ice. This architecture study sought to determine the optimum architecture for a fuel depot supplied from lunar resources. Four factors - the location of propellant processing (on the Moon or on the depot), the location of the depot (on the Moon or in cislunar space), and if in cislunar space, where (LEO, GEO, or Earth-Moon L1), and the method of propellant transfer (bulk fuel or canister exchange) were combined to identify 18 potential architectures. Two design reference missions (DRMs) - a satellite servicing mission and a cargo mission to Mars - were used to create demand for propellants, while a third DRM - a propellant delivery mission - was used to examine supply issues. The architectures were depicted graphically in a network diagram with individual segments representing the movement of propellant from the Moon to the depot, and from the depot to the customer
Use of a Lunar Outpost for Developing Space Settlement Technologies
NASA Technical Reports Server (NTRS)
Purves, Lloyd R.
2008-01-01
The type of polar lunar outpost being considered in the NASA Vision for Space Exploration (VSE) can effectively support the development of technologies that will not only significantly enhance lunar exploration, but also enable long term crewed space missions, including space settlement. The critical technologies are: artificial gravity, radiation protection, Closed Ecological Life Support Systems (CELSS) and In-Situ Resource Utilization (ISRU). These enhance lunar exploration by extending the time an astronaut can remain on the moon and reducing the need for supplies from Earth, and they seem required for space settlement. A polar lunar outpost provides a location to perform the research and testing required to develop these technologies, as well as to determine if there are viable countermeasures that can reduce the need for Earth-surface-equivalent gravity and radiation protection on long human space missions. The types of spinning space vehicles or stations envisioned to provide artificial gravity can be implemented and tested on the lunar surface, where they can create any level of effective gravity above the 1/6 Earth gravity that naturally exists on the lunar surface. Likewise, varying degrees of radiation protection can provide a natural radiation environment on the lunar surface less than or equal to 1/2 that of open space at 1 AU. Lunar ISRU has the potential of providing most of the material needed for radiation protection, the centrifuge that provides artificial gravity; and the atmosphere, water and soil for a CELSS. Lunar ISRU both saves the cost of transporting these materials from Earth and helps define the requirements for ISRU on other planetary bodies. Biosphere II provides a reference point for estimating what is required for an initial habitat with a CELSS. Previous studies provide initial estimates of what would be required to provide such a lunar habitat with the gravity and radiation environment of the Earth s surface. While much preparatory work can be accomplished with existing capabilities such as the ISS, the full implementation of a lunar habitat with an Earth-like environment will require the development of a lunar mission architecture that goes beyond VSE concepts. The proven knowledge of how to build such a lunar habitat can then be applied to various approaches for space settlement.
Mission Control Center (MCC): Apollo XV - MSC
1971-08-02
S71-41759 (2 Aug. 1971) --- A partial view of activity in the Mission Operations Control Room in the Mission Control Center during the liftoff of the Apollo 15 Lunar Module "Falcon" ascent stage from the lunar surface. An RCA color television camera mounted on the Lunar Roving Vehicle made it possible for people on Earth to watch the LM's spectacular launch from the moon. The LM liftoff was at 171:37 ground elapsed time. The LRV was parked about 300 feet east of the LM. The TV camera was remotely controlled from a console in the MOCR. Seated in the right foreground is astronaut Edgar D. Mitchell, a spacecraft communicator. Mitchell was lunar module pilot of the Apollo 14 lunar landing mission. Note liftoff on the television monitor in the center background.
Crew Training - Apollo X (Apollo Mission Simulator [AMS])
1969-04-05
S69-32787 (3 April 1969) --- Two members of the Apollo 10 prime crew participate in simulation activity at the Kennedy Space Center during preparations for their scheduled lunar orbit mission. Astronaut Thomas P. Stafford, commander, is in the background; and in the foreground is astronaut Eugene A. Cernan, lunar module pilot. The two crewmen are in the Lunar Module Mission Simulator.
Extraterrestrial consumables production and utilization
NASA Technical Reports Server (NTRS)
Sanders, A. P.
1972-01-01
Potential oxygen requirements for lunar-surface, lunar-orbit, and planetary missions are presented with emphasis on: (1) emergency survival of the crew, (2) provision of energy consumables for vehicles, and (3) nondependency on an earth supply of oxygen. Although many extraterrestrial resource processes are analytically feasible, this study has considered hydrogen and fluorine processing concepts to obtain oxygen or water (or both). The results are quite encouraging and are extrapolatable to other processes. Preliminary mission planning and sequencing analysis has enabled the programmatic evaluation of using lunar-derived oxygen relative to transportation cost as a function of vehicle delivery and operational capability.
NASA Technical Reports Server (NTRS)
Morrison, Donald A. (Editor)
1994-01-01
The Lunar Scout Program was one of a series of attempts by NASA to develop and fly an orbiting mission to the moon to collect geochemical, geological, and gravity data. Predecessors included the Lunar Observer, the Lunar Geochemical Orbiter, and the Lunar Polar Orbiter - missions studied under the auspices of the Office of Space Science. The Lunar Scout Program, however, was an initiative of the Office of Exploration. It was begun in late 1991 and was transferred to the Office of Space Science after the Office of Exploration was disbanded in 1993. Most of the work was done by a small group of civil servants at the Johnson Space Center; other groups also responsible for mission planning included personnel from the Charles Stark Draper Laboratories, the Lawrence Livermore National Laboratory, Boeing, and Martin Marietta. The Lunar Scout Program failed to achieve new start funding in FY 93 and FY 94 as a result of budget downturns, the de-emphasis of the Space Exploration Initiative, and the fact that lunar science did not rate as high a priority as other planned planetary missions, and was cancelled. The work done on the Lunar Scout Program and other lunar orbiter studies, however, represents assets that will be useful in developing new approaches to lunar orbit science.
1972-04-18
This view of the back side of the Moon was captured by the Apollo 16 mission crew. The sixth manned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission Commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 continued the broad-scale geological, geochemical, and geophysical mapping of the Moon’s crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph which photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used. The mission ended on April 27, 1972.
The Lunar Mapping and Modeling Project
NASA Technical Reports Server (NTRS)
Nall, M.; French, R.; Noble, S.; Muery, K.
2010-01-01
The Lunar Mapping and Modeling Project (LMMP) is managing a suite of lunar mapping and modeling tools and data products that support lunar exploration activities, including the planning, de-sign, development, test, and operations associated with crewed and/or robotic operations on the lunar surface. Although the project was initiated primarily to serve the needs of the Constellation program, it is equally suited for supporting landing site selection and planning for a variety of robotic missions, including NASA science and/or human precursor missions and commercial missions such as those planned by the Google Lunar X-Prize participants. In addition, LMMP should prove to be a convenient and useful tool for scientific analysis and for education and public out-reach (E/PO) activities.
The Neutral Mass Spectrometer on the Lunar Atmosphere and Dust Environment Explorer Mission
NASA Technical Reports Server (NTRS)
Mahaffy, Paul R.; Hodges, R. Richard; Benna, Mehdi; King, Todd; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carigan, Daniel; Errigo, Therese; Harpold, Daniel N.;
2014-01-01
The Neutral Mass Spectrometer (NMS) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission is designed to measure the composition and variability of the tenuous lunar atmosphere. The NMS complements two other instruments on the LADEE spacecraft designed to secure spectroscopic measurements of lunar composition and in situ measurement of lunar dust over the course of a 100-day mission in order to sample multiple lunation periods. The NMS utilizes a dual ion source designed to measure both surface reactive and inert species and a quadrupole analyzer. The NMS is expected to secure time resolved measurements of helium and argon and determine abundance or upper limits for many other species either sputtered or thermally evolved from the lunar surface.
A Chang'e-4 mission concept and vision of future Chinese lunar exploration activities
NASA Astrophysics Data System (ADS)
Wang, Qiong; Liu, Jizhong
2016-10-01
A novel concept for Chinese Chang'e-4 lunar exploration mission is presented in this paper at first. After the success of Chang'e-3, its backup probe, Chang'e-4 lander/rover combination, would be upgraded and land on the unexplored lunar farside by the aid of a relay satellite near the second Earth-Moon Lagrange point. Mineralogical and geochemical surveys on the farside to study the formation and evolution of lunar crust and observations at low radio frequencies to track the signals of the Universe's Dark Ages are priorities. Follow-up Chinese lunar exploration activities before 2030 are envisioned as building a robotic lunar science station by three to five missions. Finally several methods of international cooperation are proposed.
Moon Age and Regolith Explorer (MARE) Mission Design and Performance
NASA Technical Reports Server (NTRS)
Condon, Gerald L.; Lee, David E.; Carson, John M., III
2017-01-01
On December 11, 1972, Apollo 17 marked the last controlled U.S. lunar landing and was followed by an absence of methodical in-situ investigation of the lunar surface. The Moon Age and Regolith Explorer (MARE) proposal provides scientific measurement of the age and composition of a relatively young portion of the lunar surface near Aristarchus Plateau and the first post-Apollo U.S. soft lunar landing. It includes the first demonstration of a crew survivability-enhancing autonomous hazard detection and avoidance system. This report focuses on the mission design and performance associated with the MARE robotic lunar landing subject to mission and trajectory constraints.
Integrated Network Architecture for Sustained Human and Robotic Exploration
NASA Technical Reports Server (NTRS)
Noreen, Gary; Cesarone, Robert; Deutsch, Leslie; Edwards, Charles; Soloff, Jason; Ely, Todd; Cook, Brian; Morabito, David; Hemmati, Hamid; Piazolla, Sabino;
2005-01-01
The National Aeronautics and Space Administration (NASA) Exploration Systems Enterprise is planning a series of human and robotic missions to the Earth's moon and to Mars. These missions will require communication and navigation services. This paper1 sets forth presumed requirements for such services and concepts for lunar and Mars telecommunications network architectures to satisfy the presumed requirements. The paper suggests that an inexpensive ground network would suffice for missions to the near-side of the moon. A constellation of three Lunar Telecommunications Orbiters connected to an inexpensive ground network could provide continuous redundant links to a polar lunar base and its vicinity. For human and robotic missions to Mars, a pair of areostationary satellites could provide continuous redundant links between Earth and a mid-latitude Mars base in conjunction with the Deep Space Network augmented by large arrays of 12-m antennas on Earth.
On Structural Design of a Mobile Lunar Habitat with Multi-Layered Environmental Shielding
NASA Technical Reports Server (NTRS)
Rais-Rohani, Masoud
2005-01-01
The future human lunar missions are expected to undertake far more ambitious activities than those of the Apollo program with the possibility of some missions lasting up to several months. Such extended missions require the use of large-size lunar outposts to accommodate living quarters for the astronauts as well as indoor laboratory facilities. The greatest obstacle to the prolonged human presence on the Moon is the threat posed by the harsh lunar environment that is plagued with multi-source high-energy radiation exposure as well as frequent barrage of meteoroids. Hence, for such extended missions to succeed, it is vital that the future lunar outposts be designed to provide a safe habitat for the astronauts. Over the past few years, a variety of ideas and concepts for future lunar outposts and bases have been proposed. With shielding as the primary concern, some have suggested the use of natural structures such as lava tubes while others have taken a more industrial approach and suggested the construction of fixed structures in the form of inflatable, inflatable with rigid elements, and tent-style membrane. For evaluation of these structural design concepts, Drake and Richter1 have proposed a rating system based on such factors as effectiveness, importance, and timing. While all of these designs, in general, benefit from in-situ resource utilization (i.e., lunar regolith) for shielding, they share a common disadvantage of being fixed to one particular location that would limit exploration to the region in close proximity of the outpost.
Lunar Radio_phase Ranging in Chinese Lunar Lander Mission for Astrometry
NASA Astrophysics Data System (ADS)
Ping, Jinsong; Meng, Qiao; Li, Wenxiao; Wang, Mingyuan; Wang, Zhen; Zhang, Tianyi; Han, Songtao
2015-08-01
The radio tracking data in lunar and planetary missions can be directly applied for scientific investigation. The variations of phase and of amplitude of the radio carrier wave signal linked between the spacecraft and the ground tracking antenna are used to deduce the planetary atmospheric and ionospheric structure, planetary gravity field, mass, ring, ephemeris, and even to test the general relativity. In the Chinese lunar missions, we developed the lunar and planetary radio science receiver to measure the distance variation between the tracking station-lander by means of open loop radio phase tracking. Using this method in Chang’E-3 landing mission, a lunar radio_phase ranging (LRR) technique was realized at Chinese deep space tracking stations and astronomical VLBI stations with H-maser clocks installed. Radio transponder and transmitter had been installed on the Chang’E-3/4. Transponder will receive the uplink S/X band radio wave transmitted from the two newly constructed Chinese deep space stations, where the high quality hydrogen maser atomic clocks have been used as local time and frequency standard. The clocks between VLBI stations and deep space stations can be synchronized to UTC standard within 20 nanoseconds using satellite common view methods. In the near future there will be a plan to improve this accuracy to 5 nanoseconds or better, as the level of other deep space network around world. In the preliminary LRR experiments of Chang'E-3, the obtained 1sps phase ranging observables have a resolution of 0.2 millimeter or better, with a fitting RMS about 2~3 millimeter, after the atmospheric and ionospheric errors removed. This method can be a new astrometric technique to measure the Earth tide and rotation, lunar orbit, tides and liberation, by means of solo observation or of working together with Lunar Laser Ranging. After differencing the ranging, we even obtained 1sps doppler series of 2-way observables with resolution of 0.07mm/second, which can be used to check the uplimit for low frequency (0.001~1 Hz) gravitational wave detection between the Earth and the Moon.
NASA Technical Reports Server (NTRS)
Nayagam, Vedha; Berger, Gordon M.; Sacksteder, Kurt R.; Paz, Aaron
2012-01-01
Extraction of mission consumable resources such as water and oxygen from the planetary environment provides valuable reduction in launch-mass and potentially extends the mission duration. Processing of lunar regolith for resource extraction necessarily involves heating and chemical reaction of solid material with processing gases. Vibrofluidization is known to produce effective mixing and control of flow within granular media. In this study we present experimental results for vibrofluidized heat transfer in lunar regolith simulants (JSC-1 and JSC-1A) heated up to 900 C. The results show that the simulant bed height has a significant influence on the vibration induced flow field and heat transfer rates. A taller bed height leads to a two-cell circulation pattern whereas a single-cell circulation was observed for a shorter height. Lessons learned from these test results should provide insight into efficient design of future robotic missions involving In-Situ Resource Utilization.
Orion Navigation Sensitivities to Ground Station Infrastructure for Lunar Missions
NASA Technical Reports Server (NTRS)
Getchius, Joel; Kukitschek, Daniel; Crain, Timothy
2008-01-01
The Orion Crew Exploration Vehicle (CEV) will replace the Space Shuttle and serve as the next-generation spaceship to carry humans to the International Space Station and back to the Moon for the first time since the Apollo program. As in the Apollo and Space Shuttle programs, the Mission Control Navigation team will utilize radiometric measurements to determine the position and velocity of the CEV. In the case of lunar missions, the ground station infrastructure consisting of approximately twelve stations distributed about the Earth and known as the Apollo Manned Spaceflight Network, no longer exists. Therefore, additional tracking resources will have to be allocated or constructed to support mission operations for Orion lunar missions. This paper examines the sensitivity of Orion navigation for lunar missions to the number and distribution of tracking sites that form the ground station infrastructure.
Mission Architecture Comparison for Human Lunar Exploration
NASA Technical Reports Server (NTRS)
Geffre, Jim; Robertson, Ed; Lenius, Jon
2006-01-01
The Vision for Space Exploration outlines a bold new national space exploration policy that holds as one of its primary objectives the extension of human presence outward into the Solar System, starting with a return to the Moon in preparation for the future exploration of Mars and beyond. The National Aeronautics and Space Administration is currently engaged in several preliminary analysis efforts in order to develop the requirements necessary for implementing this objective in a manner that is both sustainable and affordable. Such analyses investigate various operational concepts, or mission architectures , by which humans can best travel to the lunar surface, live and work there for increasing lengths of time, and then return to Earth. This paper reports on a trade study conducted in support of NASA s Exploration Systems Mission Directorate investigating the relative merits of three alternative lunar mission architecture strategies. The three architectures use for reference a lunar exploration campaign consisting of multiple 90-day expeditions to the Moon s polar regions, a strategy which was selected for its high perceived scientific and operational value. The first architecture discussed incorporates the lunar orbit rendezvous approach employed by the Apollo lunar exploration program. This concept has been adapted from Apollo to meet the particular demands of a long-stay polar exploration campaign while assuring the safe return of crew to Earth. Lunar orbit rendezvous is also used as the baseline against which the other alternate concepts are measured. The first such alternative, libration point rendezvous, utilizes the unique characteristics of the cislunar libration point instead of a low altitude lunar parking orbit as a rendezvous and staging node. Finally, a mission strategy which does not incorporate rendezvous after the crew ascends from the Moon is also studied. In this mission strategy, the crew returns directly to Earth from the lunar surface, and is thus referred to as direct return. Figures of merit in the areas of safety and mission success, mission effectiveness, extensibility, and affordability are used to evaluate and compare the lunar orbit rendezvous, libration point rendezvous, and direct return architectures, and this paper summarizes the results of those assessments.
NASA Technical Reports Server (NTRS)
Hamilton, M. H.
1971-01-01
The data links for use with the guidance system operations plan for manned command module earth orbital and lunar missions using program Colossus 3 are presented. The subjects discussed are: (1) digital uplink to CMC, (2) command module contiguous block update, (3) CMC retrofire external data update, (4) CMC digital downlink, and (5) CMC entry update.
NASA Technical Reports Server (NTRS)
Head, James; Pieters, C.; Staid, M.; Mustard, J.; Taylor, L.; McCord, T.; Isaacson, P.; Klima, R.; Petro, N.; Clark, R.;
2010-01-01
One of the most fundamental questions in the geological and thermal evolution of the Moon is the nature and history of mantle melting and its relationship to the formation and evolution of lunar multi-ringed basins. Mare volcanic deposits provide evidence for the nature, magnitude and composition of mantle melting as a function of space and time [1]. Many argue that mantle partial melts are derived from depths well below the influence of multiringed basin impact events [1], while others postulate that the formation of these basins can cause mantle perturbations that are more directly linked to the generation ascent and eruption of mare basalts [2,3]. In any case, longer-term basin evolution will considerably influence the state and orientation of stress in the lithosphere, and the location of mare volcanic vents in basins as a function of time [4]. Thus, the location, nature and ages of volcanic vents and deposits in relation to multi-ringed impact basins provides evidence for the role that these basins played in the generation of volcanism or in the influence of the basins on surface volcanic eruption and deposit concentration. Unfortunately, most lunar multi-ringed impact basins have been eroded by impacts or filled with lunar mare deposits [5-8], with estimates of the thickness of mare fill extending up to more than six km in the central part of some basins [9-11]. The interior of most basins (e.g., Crisium, Serenitatis, Imbrium, Humorum) are almost completely covered and obscured. Although much is known about the lava filling of multi-ringed basins, and particularly the most recent deposits [5-8], little is known about initial stages of mare volcanism and its relationship to the impact event. One multi-ringed basin, Orientale, offers substantial clues to the relationships of basin interiors and mare basalt volcanism.
1969-11-19
AS12-46-6726 (19 Nov. 1969) --- Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 mission, starts down the ladder of the Lunar Module (LM) to join astronaut Charles Conrad Jr., mission commander, in extravehicular activity (EVA). While astronauts Conrad and Bean descended in the LM "Intrepid" to explore the Ocean of Storms region of the moon, astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) "Yankee Clipper" in lunar orbit.
Robotic Lunar Landers for Science and Exploration
NASA Technical Reports Server (NTRS)
Cohen, B. A.; Bassler, J. A.; Hammond, M. S.; Harris, D. W.; Hill, L. A.; Kirby, K. W.; Morse, B. J.; Mulac, B. D.; Reed, C. L. B.
2010-01-01
The Moon provides an important window into the early history of the Earth, containing information about planetary composition, magmatic evolution, surface bombardment, and exposure to the space environment. Robotic lunar landers to achieve science goals and to provide precursor technology development and site characterization are an important part of program balance within NASA s Science Mission Directorate (SMD) and Exploration Systems Mission Directorate (ESMD). A Robotic Lunar Lan-der mission complements SMD's initiatives to build a robust lunar science community through R&A lines and increases international participation in NASA's robotic exploration of the Moon.
Plume induced environments on future lunar mission vehicles
NASA Technical Reports Server (NTRS)
Rochelle, Bill; Hughes, Ruston; Fitzgerald, Steve
1992-01-01
The objective of this presentation is to identify potential plume heating/impingement problem areas on vehicles used for future lunar missions. This is accomplished by comparison with lunar module plume investigations performed during 1968-1971. All material is presented in viewgraph format.
Apollo 1 Prime and Backup Crews
1966-04-01
S66-30238 (1 April 1966) --- The National Aeronautics and Space Administration (NASA) has named these astronauts as the prime crew of the first manned Apollo Space Flight. Left to right, are Edward H. White II, command module pilot; Virgil I. Grissom, mission commander; and Roger B. Chaffee, lunar module pilot. On the second row are the Apollo 1 backup crew members, astronauts David R. Scott, James A. McDivitt and Russell L. Schweickart. EDITOR'S NOTE: Astronauts Grissom, White and Chaffee lost their lives in a Jan. 27, 1967 fire in the Apollo CM during testing at Cape Canaveral. McDivitt, Scott and Schweickart later served as crewmembers for the Apollo 9 Earth-orbital mission, which was one of the important stair-step missions leading up to the Apollo 11 manned lunar landing mission of July 1969.
A Reusable Design for Precision Lunar Landing Systems
NASA Technical Reports Server (NTRS)
Fuhrman, Linda; Brand, Timothy; Fill, Tom; Norris, Lee; Paschall, Steve
2005-01-01
The top-level architecture to accomplish NASA's Vision for Space Exploration is to use Lunar missions and systems not just as an end in themselves, but also as testbeds for the more ambitious goals of Human Mars Exploration (HME). This approach means that Lunar missions and systems are most likely going to be targeted for (Lunar) polar missions, and also for long-duration (months) surface stays. This overacting theme creates basic top-level requirements for any next-generation lander system: 1) Long duration stays: a) Multiple landers in close proximity; b) Pinpoint landings for "surface rendezvous"; c) Autonomous landing of pre-positioned assets; and d) Autonomous Hazard Detection and Avoidance. 2) Polar and deep-crater landings (dark); 3) Common/extensible systems for Moon and Mars, crew and cargo. These requirements pose challenging technology and capability needs. Compare and contrast: 4) Apollo: a) 1 km landing accuracy; b) Lunar near-side (well imaged and direct-to-Earth com. possible); c) Lunar equatorial (landing trajectories offer best navigation support from Earth); d) Limited lighting conditions; e) Significant ground-in-the-loop operations; 5) Lunar Access: a) 10-100m landing precision; b) "Anywhere" access includes polar (potentially poor nav. support from Earth) and far side (poor gravity and imaging; no direct-to-Earth com); c) "Anytime" access includes any lighting condition (including dark); d) Full autonomous landing capability; e) Extensible design for tele-operation or operator-in-the-loop; and f) Minimal ground support to reduce operations costs. The Lunar Access program objectives, therefore, are to: a) Develop a baseline Lunar Precision Landing System (PLS) design to enable pinpoint "anywhere, anytime" landings; b) landing precision 10m-100m; c) Any LAT, LON; and d) Any lighting condition; This paper will characterize basic features of the next generation Lunar landing system, including trajectory types, sensor suite options and a reference system architecture.
Fish-eye lens view Astronauts Shepard and Mitchell in Lunar Module Simulator
1970-07-15
S70-45555 (July 1970) --- A fish-eye lens view showing astronauts Alan B. Shepard Jr. (foreground) and Edgar D. Mitchell in the Apollo lunar module mission simulator at the Kennedy Space Center during preflight training for the Apollo 14 lunar landing mission. Shepard is the Apollo 14 commander; and Mitchell is the lunar module pilot.
China (CNSA) views of the Moon
NASA Astrophysics Data System (ADS)
He, S.
China's lunar objectives have widely attracted the world's attention since China National Space Administration (CNSA) chief Luan Enjie in October 2000 officially affirmed the nation plans to carry out lunar exploration. The success of the Shenzhou-3 mission last April, which indicates that China is on the eve to become the third nation to attain an independent ability to launch humans into space, coupled with Chinese president Jiang Zemin's announcement issued immediately after the launch of SZ-3 that China will develop its own space station, further prompted the mass media in the West to ponder whether "the next footsteps on the Moon will be Chinese." Although China's lunar intention is well publicized, no detail about the project has yet been unveiled in the Western space media because China's space program has been notoriously cloaked in state-imposed secrecy, while the available information is basically unreported by Western observers mainly due to the cultural and language barriers. Based on original research of both the unpublished documents as well as reports in China's space media and professional journals, this paper attempts to piece together the available material gathered from China, providing some insight into China's Moon project, and analyzing the Chinese activities in pursuit of their lunar dream in perspective of space policy. Motivations China's presence on the Moon, in the Chinese leadership's view, could help aggrandize China's international prestige and consolidate the cohesion of the Chinese nation. Lunar exploration, the science community consents, not only helps acquire knowledge about the Moon, but also deepen the understanding of the Earth. A lunar project is believed to be able to accelerate the development of launching and navigating technologies, preparing for future deep space exploration. The emergence of the return to the Moon movement in the world, and the presumption that NASA has plans to return to the Moon, as evidenced by prominent Chinese space scientists' remarks, are also the driving forces for China's determination to reach the Moon. Preliminary Studies Although China did not begin preliminary studies for lunar exploration seriously until the early 1990s, approximately the same time when the human spaceflight Project 921 started, lunar studies have been carried out in the nation for a few decades. The Advancement of Selenology, completed in 1977 by a team led by Ouyang Ziyuan at the CAS Institute of Geochemistry in Guiyang, is probably the most important work on the subject published in China. Under the direction of the Project 863 Experts Committee, a team of scientists led by Ouyang Ziyuan and Zhu Guibo of China Aerospace Industry Corporation in 1993 began to study the feasibility and necessity of lunar exploration by China. Based on a comprehensive survey of the nation's space technology and infrastructures, the feasibility study completed in 1995 believed it was possible to orbit a lunar satellite by 2000. In April 1997, CAS members Yang Jiachi, Wang Daheng and Chen Fangyun issued the "Proposal for Development of Our Nation's Lunar Exploration Technology" as part of the Project 863. The research and development of robotic rovers for lunar exploration began the following year. In May 2000 and January 2001, Tsinghua University organized two symposia on lunar exploration technology. The third lunar conference was held in March 2001 at Beijing University of Aeronautics and Astronautics (BUAA) to discuss China's lunar exploration and human spaceflight in the 21st century. A feasibility study for China's lunar adventure was unveiled at the conference for the first time. Objectives and Scenarios The primary objective of the first stage of lunar exploration, according to the feasibility study, will be a comprehensive survey of the lunar surface through remote sensing. Based on this survey, areas for soft landings will be selected. Lunar rovers will further explore these areas to identify an ideal site for the construction of a lunar base. To achieve this goal, a five-step plan has been developed. Launching orbiting missions to obtain data about the topography and resource distribution of the lunar surface before 2005 will be the task of the first phase; landing rovers on selected areas to test the soft landing technology and survey the target areas before 2010 will be the major operations for the second period of exploration; robotic exploration using rovers to survey lunar surface will be the focus of the third step (2010-2020) and sample return missions will be launched during the fourth phase (2020-2030) of the program. Upon completing these steps, CNSA will concentrate on human missions and the construction of a lunar base after 2030. Chinese scientists are currently pushing for the nation's 1st mission to the Moon, suggesting that CNSA should simplify the design of the short-term plan for lunar exploration, utilizing the existing technology and available resources to start the lunar project as soon as possible. Estimated Costs According to principal scientist of the lunar project Ouyang Ziyuan's estimation last December, CNSA may launch its 1st orbiting mission to the Moon with one billion RMB yuan (US122 million), which approximately doubles the initial estimated costs presented in the 1995 feasibility study. Technological Readiness China has laid solid foundations in the areas of satellite application, launch vehicle, ground control and tracking, astronomical observations and scientific investigations. The conditions for carrying out lunar exploration, according to the feasibility study, have completely matured. Launch vehicles: Three types of Long March 3A rockets with cryogen propellant upper stage are already capable of launching probes weighting 1,600 kg, 2,400 kg and 3,300 kg to lunar transfer orbit respectively, according to a report last January. The human-rated LM 2F, which lofted SZ-3, is also able to launch missions to the Moon. Besides, the LM 3B can be upgraded to send 1.5-ton to 3-ton payloads into lunar orbit. The next generation rockets based on the Long March series currently being developed will meet the requirements for sample return and human missions. The development of the new launchers is expected to be completed within about six years. Launch centers: Two of the three existing centers, in Jiuquan and Xichang, can be used to launch missions to the Moon. In addition, Chinese space experts have been pushing for building the 4th launch center on Hainan island for new exploration missions and commercial satellite launch, which would be the embarkation point for China's future lunar missions. Tracking and control: The existing tracking and control network, including the TT&C stations in Swakopmund, Namibia and on Tarawa Atoll in Kiribati, and the Long View fleet of 4 tracking ships, can be used for lunar missions. However, a deep space tracking station needs to be built in either Kashi, Xinjiang or Beijing to improve efficiency. But the ground stations within China's territory can only track lunar probes for 8 hours daily. The global DSN needs to be utilized in order to ensure 24-hour tracking operation. Therefore, international cooperation is necessary. International Cooperation CNSA hopes to cooperate with foreign space agencies, using NASA's DSN stations in Madrid, Goldstone and Canberra to support its lunar expeditions. As compared to other space activities in LEO, lunar exploration, the Chinese reason, is basically scientific endeavour and is unrelated to military. Therefore, it is likely that other countries would cooperate with China. China has been cooperating with Russia in many areas. CNSA also has been closely working with ESA on the Double Star project. Most recently, NASA administrator Sean O'Keefe expressed that NASA was interested in China's participation in the ISS. If such cooperation materializes, joint efforts in lunar expeditions should be a logical extension, and the prospects for truly global cooperation in peaceful exploration and utilization of space will be promising. References (all in Chinese): Chinese Academy of Sciences Institute of Geochemistry in Guiyang. Advancement of Selenology. Beijing:Science Press, 1977. Project 863 Lunar Exploration Program Team. "A Study of Necessity and Feasibility of Lunar Exploration in Our Country." Project 863 Aerospace Program, 1995. Yang Jiachi, Wang Daheng and Chen Fangyun. "Proposal for the Development of Our Nation's LunarExploration Technology." Project 863 Aerospace Program, 1997. Zi Xiao. "China's Lunar Exploration Plans Emerge." Aeronautics Knowledge, published by Beijing University of Aeronautics and Astronautics, June and July 2001. "To Realize China's Lunar Dream." A special issue on lunar exploration in China Space News, No. 838, 5 January 2002.
Application of Solar-Electric Propulsion to Robotic Missions in Near-Earth Space
NASA Technical Reports Server (NTRS)
Woodcock, Gordon R.; Dankanich, John
2007-01-01
Interest in applications of solar electric propulsion (SEP) is increasing. Application of SEP technology is favored when: (1) the mission is compatible with low-thrust propulsion, (2) the mission needs high total delta V such that chemical propulsion is disadvantaged; and (3) performance enhancement is needed. If all such opportunities for future missions are considered, many uses of SEP are likely. Representative missions are surveyed and several SEP applications selected for analysis, including orbit raising, lunar science and robotic exploration, and planetary science. These missions span SEP power range from 10 kWe to about 100 kWe. A SEP design compatible with small inexpensive launch vehicles, and capable of lunar science missions, is presented. Modes of use and benefits are described, and potential SEP evolution is discussed.
NASA Technical Reports Server (NTRS)
Garn, Michelle; Qu, Min; Chrone, Jonathan; Su, Philip; Karlgaard, Chris
2008-01-01
Lunar orbit insertion LOI is a critical maneuver for any mission going to the Moon. Optimizing the geometry of this maneuver is crucial to the success of the architecture designed to return humans to the Moon. LOI burns necessary to meet current NASA Exploration Constellation architecture requirements for the lunar sortie missions are driven mainly by the requirement for global access and "anytime" return from the lunar surface. This paper begins by describing the Earth-Moon geometry which creates the worst case (delta)V for both the LOI and the translunar injection (TLI) maneuvers over the full metonic cycle. The trajectory which optimizes the overall (delta)V performance of the mission is identified, trade studies results covering the entire lunar globe are mapped onto the contour plots, and the effects of loitering in low lunar orbit as a means of reducing the insertion (delta)V are described. Finally, the lighting conditions on the lunar surface are combined with the LOI and TLI analyses to identify geometries with ideal lighting conditions at sites of interest which minimize the mission (delta)V.
Apollo 12 crewmembers during geological field trip
1969-10-24
S69-55662 (10 Oct. 1969) --- Astronauts Alan L. Bean (left) and Charles Conrad Jr., the two crewmen of the Apollo 12 lunar landing mission who are scheduled to participate in two lengthy periods of extravehicular activity (EVA) on the lunar surface, are pictured during a geological field trip and training at a simulated lunar surface area near Flagstaff, Arizona. Here Conrad, the Apollo 12 commander, gets a close look through hand lens at the stratigraphy (study of strata or layers beneath the surface) of a man-dug hole, while Bean, the Apollo 12 mission's lunar module pilot, looks on. The topography in this area, with several man-made modifications, resembles very closely much of the topography found on the lunar surface. While Conrad and Bean explore the lunar surface (plans call for Apollo 12 spacecraft to land in the Sea of Storms), astronaut Richard F. Gordon Jr., command module pilot for the Apollo 12 mission, will remain with the Command and Service Modules (CSM) in lunar orbit. The Apollo 12 mission is scheduled to lift off from Cape Kennedy on Nov. 14, 1969.
NASA Technical Reports Server (NTRS)
1972-01-01
This is the Apollo 16 lunar landing mission crew portrait. Pictured from left to right are: Thomas K. Mattingly II, Command Module pilot; John W. Young, Mission Commander; and Charles M. Duke Jr., Lunar Module pilot. Launched from the Kennedy Space Center on April 16, 1972, Apollo 16 spent three days on Earth's Moon. The first study of the highlands area, the landing site for Apollo 16 was the Descartes Highlands. The fifth lunar landing mission out of six, Apollo 16 was famous for deploying and using an ultraviolet telescope as the first lunar observatory. The telescope photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used for collecting rocks and data on the mysterious lunar highlands. In this photo, astronaut John W. Young photographs Charles M. Duke, Jr. collecting rock samples at the Descartes landing site. Duke stands by Plum Crater while the Lunar Roving Vehicle waits parked in the background. High above, Thomas K. Mattingly orbits in the Command Module. The mission ended April 27, 1972 as the crew splashed down into the Pacific Ocean.
Mission Control Center at conclusion of Apollo 15 lunar landing mission
1971-08-07
An overall view of activity in the Mission Operations Control Room in the Mission Control Center at the conclusion of the Apollo 15 lunar landing mission. The television monitor in the right background shows the welcome ceremonies aboard the prime recovery ship, U.S.S. Okinawa, in the mid-Pacific Ocean.
The Apollo Experience Lessons Learned for Constellation Lunar Dust Management
NASA Technical Reports Server (NTRS)
Wagner, Sandra
2008-01-01
In 2008, NASA was embarking on its Exploration Vision, knowing that many technical challenges would be encountered. For lunar exploration missions, one challenge was to learn to manage lunar dust. References to problems associated with lunar dust during the Apollo Program were found on many of pages of the mission reports and technical debriefs. All engineers designing hardware that would come into contact with lunar dust had to mitigate its effects in the design.
M3 Status and Science Discussion
NASA Technical Reports Server (NTRS)
Pieters, Carle
2007-01-01
Members of the M3 Science Team will attend the Chandrayaan-I Science Team Meeting in Bangalore, India to present a brief summary of instrument status and the near-term milestones (e.g., final I&T, pre-ship review). The principal purpose of the meeting is to interact with other members of the Chandrayaan-I Science Team to prepare for successful science return. The objectives are: 1) Characterize the diversity and extent of different types of basaltic volcanism; 2) Constrain evolution over time; and 3) Examine high priority regional sites.
The Apollo Expericence Lessons Learned for Constellation Lunar Dust Management
NASA Astrophysics Data System (ADS)
Wagner, Sandra
2006-09-01
Lunar dust will present significant challenges to NASA's Lunar Exploration Missions. The challenges can be overcome by using best practices in system engineering design. For successful lunar surface missions, all systems that come into contact with lunar dust must consider the effects throughout the entire design process. Interfaces between all these systems with other systems also must be considered. Incorporating dust management into Concept of Operations and Requirements development are the best place to begin to mitigate the risks presented by lunar dust. However, that is only the beginning. To be successful, every person who works on NASA's Constellation lunar missions must be mindful of this problem. Success will also require fiscal responsibility. NASA must learn from Apollo the root cause of problems caused by dust, and then find the most cost-effective solutions to address each challenge. This will require a combination of common sense existing technologies and promising, innovative technical solutions
The Apollo Experience Lessons Learned for Constellation Lunar Dust Management
NASA Technical Reports Server (NTRS)
Wagner, Sandra
2006-01-01
Lunar dust will present significant challenges to NASA's Lunar Exploration Missions. The challenges can be overcome by using best practices in system engineering design. For successful lunar surface missions, all systems that come into contact with lunar dust must consider the effects throughout the entire design process. Interfaces between all these systems with other systems also must be considered. Incorporating dust management into Concept of Operations and Requirements development are the best place to begin to mitigate the risks presented by lunar dust. However, that is only the beginning. To be successful, every person who works on NASA's Constellation lunar missions must be mindful of this problem. Success will also require fiscal responsibility. NASA must learn from Apollo the root cause of problems caused by dust, and then find the most cost-effective solutions to address each challenge. This will require a combination of common sense existing technologies and promising, innovative technical solutions
Astronaut Fred Haise participates in simulation training
1970-04-07
S70-34412 (4 April 1970) --- Astronaut Fred W. Haise Jr., Apollo 13 lunar module pilot, participates in simulation training in preparation for the scheduled lunar landing mission. He is in the Apollo Lunar Module Mission Simulator in the Kennedy Space Center's Flight Crew Training building.
Overview of the Altair Lunar Lander Thermal Control System Design and the Impacts of Global Access
NASA Technical Reports Server (NTRS)
Stephan, Ryan A.
2011-01-01
NASA's Constellation Program (CxP) was developed to successfully return humans to the Lunar surface prior to 2020. The CxP included several different project offices including Altair, which was planned to be the next generation Lunar Lander. The Altair missions were architected to be quite different than the Lunar missions accomplished during the Apollo era. These differences resulted in a significantly dissimilar Thermal Control System (TCS) design. The current paper will summarize the Altair mission architecture and the various operational phases associated with the planned mission. In addition, the derived thermal requirements and the TCS designed to meet these unique and challenging thermal requirements will be presented. During the past year, the design team has focused on developing a vehicle architecture capable of accessing the entire Lunar surface. Due to the widely varying Lunar thermal environment, this global access requirement resulted in major changes to the thermal control system architecture. These changes, and the rationale behind the changes, will be detailed throughout the current paper.
Apollo 14 visibility tests: Visibility of lunar surface features and lunar landing
NASA Technical Reports Server (NTRS)
Ziedman, K.
1972-01-01
An in-flight visibility test conducted on the Apollo 14 mission is discussed. The need for obtaining experimental data on lunar feature visibility arose from visibility problems associated with various aspects of the Apollo missions; and especially from anticipated difficulties of recognizing lunar surface features at the time of descent and landing under certain illumination conditions. Although visibility problems have influenced many other aspects of the Apollo mission, they have been particularly important for descent operations, due to the criticality of this mission phase and the crew's guidance and control role for landing site recognition and touchdown point selection. A series of analytical and photographic studies were conducted during the Apollo program (prior to as well as after the initial manned lunar operations) to delineate constraints imposed on landing operations by visibility limitations. The purpose of the visibility test conducted on Apollo 14 was to obtain data to reduce uncertainties and to extend the analytical models of visibility in the lunar environment.
Space station accommodations for lunar base elements: A study
NASA Technical Reports Server (NTRS)
Weidman, Deene J.; Cirillo, William; Llewellyn, Charles; Kaszubowski, Martin; Kienlen, E. Michael, Jr.
1987-01-01
The results of a study conducted at NASA-LaRC to assess the impact on the space station of accommodating a Manned Lunar Base are documented. Included in the study are assembly activities for all infrastructure components, resupply and operations support for lunar base elements, crew activity requirements, the effect of lunar activities on Cape Kennedy operations, and the effect on space station science missions. Technology needs to prepare for such missions are also defined. Results of the study indicate that the space station can support the manned lunar base missions with the addition of a Fuel Depot Facility and a heavy lift launch vehicle to support the large launch requirements.
NASA Technical Reports Server (NTRS)
1975-01-01
Overall program activities and the technology developed to accomplish lunar exploration are discussed. A summary of the flights conducted over an 11-year period is presented along with specific aspects of the overall program, including lunar science, vehicle development and performance, lunar module development program, spacecraft development testing, flight crew summary, mission operations, biomedical data, spacecraft manufacturing and testing, launch site facilities, equipment, and prelaunch operations, and the lunar receiving laboratory. Appendixes provide data on each of the Apollo missions, mission type designations, spacecraft weights, records achieved by Apollo crewmen, vehicle histories, and a listing of anomalous hardware conditions noted during each flight beginning with Apollo 4.
1969-11-19
AS12-46-6780 (19 Nov. 1969) --- Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, walks from the color lunar surface television camera (center) toward the Apollo 12 Lunar Module (LM - out of frame). The photograph was taken by astronaut Charles Conrad Jr., commander, during the first extravehicular activity (EVA) of the mission. While astronauts Conrad and Bean descended in the LM "Intrepid" to explore the Ocean of Storms region of the moon, astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) "Yankee Clipper" in lunar orbit.
Preliminary Analysis of Optimal Round Trip Lunar Missions
NASA Astrophysics Data System (ADS)
Gagg Filho, L. A.; da Silva Fernandes, S.
2015-10-01
A study of optimal bi-impulsive trajectories of round trip lunar missions is presented in this paper. The optimization criterion is the total velocity increment. The dynamical model utilized to describe the motion of the space vehicle is a full lunar patched-conic approximation, which embraces the lunar patched-conic of the outgoing trip and the lunar patched-conic of the return mission. Each one of these parts is considered separately to solve an optimization problem of two degrees of freedom. The Sequential Gradient Restoration Algorithm (SGRA) is employed to achieve the optimal solutions, which show a good agreement with the ones provided by literature, and, proved to be consistent with the image trajectories theorem.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.
2017-01-01
The nuclear thermal rocket (NTR) has frequently been identified as a key space asset required for the human exploration of Mars. This proven technology can also provide the affordable access through cislunar space necessary for commercial development and sustained human presence on the Moon. It is a demonstrated technology capable of generating both high thrust and high specific impulse (Isp 900 s) twice that of todays best chemical rockets. Nuclear lunar transfer vehicles consisting of a propulsion stage using three approx.16.5 klbf "Small Nuclear Rocket Engines (SNREs)", an in-line propellant tank, plus the payload can enable a variety of reusable lunar missions. These include cargo delivery and crewed lunar landing missions. Even weeklong "tourism" missions carrying passengers into lunar orbit for a day of sightseeing and picture taking are possible. The NTR can play an important role in the next phase of lunar exploration and development by providing a robust in-space lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supported by a variety of commercial activities such as in-situ propellant production used to supply strategically located propellant depots and transportation nodes. The processing of LPI deposits (estimated to be approx. 2 billion metric tons) for propellant production - specifically liquid oxygen (LO2) and hydrogen (LH2) can significantly reduce the launch mass requirements from Earth and can enable reusable, surface-based lunar landing vehicles (LLVs) using LO2/LH2 chemical rocket engines. Afterwards, LO2/LH2 propellant depots can be established in lunar polar and equatorial orbits to supply the LTS. At this point a modified version of the conventional NTR called the LO2-augmented NTR, or LANTR would be introduced into the LTS allowing bipropellant operation and leveraging the mission benefits of refueling with lunar-derived propellants (LDPs) for Earth return. The bipropellant LANTR engine utilizes the large divergent section of its nozzle as an afterburner into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engines choked sonic throat essentially scramjet propulsion in reverse. By varying the oxygen-to-hydrogen mixture ratio, LANTR engines can operate over a range of thrust and Isp values while the reactor core power level remains relatively constant. A LANTR-based LTS offers unique mission capabilities including short transit time crewed cargo transports. Even a commuter shuttle service may be possible allowing one-way trip times to and from the Moon on the order of 36 hours or less. If only 1 of the postulated water ice trapped in deep shadowed craters at the lunar poles were available for use in lunar orbit, such a supply could support daily commuter flights to the Moon for many thousands of years! The proposed paper outlines an evolutionary mission architecture and examines a variety of mission types and transfer vehicle designs, along with the increasing demands on LDP production as mission complexity and delta V requirements increase. A comparison of vehicle features and engine operating characteristics are also provided together with a discussion of the propellant production and mining requirements, and issues, associated with using LPI as the source material.
Mission Design and Selection of Nanosatellite Subsystems for Exploration of Lunar Water Deposits
NASA Astrophysics Data System (ADS)
Cadavid, S. C.
2018-02-01
This project presents an initiative for the development of a lunar exploration mission, looking to cover the first steps of mission design and the specifications of the mission subsystems; the Cubesat 6U configuration is taken as the low cost platform.
NASA Technical Reports Server (NTRS)
Green, Robert O.; Pieters, C. M.; Boardman, J.; Barr, D.; Bruce, C.; Bousman, J.; Chatterjee, A.; Eastwood, M.; Essandoh, V.; Geier, S.;
2009-01-01
The Moon Mineralogy Mapper's (M3) is a high uniformity and high signal-to-noise ratio NASA imaging spectrometer that is a guest instrument on the Indian Chandrayaan-1 Mission to the Moon. The laboratory measured spectral, radiometric, spatial, and uniformity characteristics of the M3 instrument are given. The M3 imaging spectrometer takes advantage of a suite of critical enabling capabilities to achieve its measurement requirement with a mass of 8 kg, power usage of 15 W, and volume of 25X18X12 cm. The M3 detector and spectrometer are cooled by a multi-stage passive cooler. This paper presents early M3 performance assessment results.
NASA Astrophysics Data System (ADS)
Vinckier, Quentin; Crabtree, Karlton; Paine, Christopher G.; Hayne, Paul O.; Sellar, Glenn R.
2017-08-01
Lunar Flashlight is an innovative NASA CubeSat mission dedicated to mapping water ice in the permanently shadowed regions of the Moon, which may act as cold traps for volatiles. To this end, a multi-band reflectometer will be sent to orbit the Moon. This instrument consists of an optical receiver aligned with four lasers, each of which emits sequentially at a different wavelength in the near-infrared between 1 μm and 2 μm. The receiver measures the laser light reflected from the lunar surface; continuum/absorption band ratios are then analyzed to quantify water ice in the illuminated spot. Here, we present the current state of the optical receiver design. To optimize the optical signal-to-noise ratio, we have designed the receiver so as to maximize the laser signal collected, while minimizing the stray light reaching the detector from solarilluminated areas of the lunar surface outside the field-of-view, taking into account the complex lunar topography. Characterization plans are also discussed. This highly mass- and volume-constrained mission will demonstrate several firsts, including being one of the first CubeSats performing science measurements beyond low Earth orbit.
View of Mission Control during lunar surface Apollo 11 EVA
1969-07-20
Overall view of the Mission Operations Control Room in the Mission Control Center, bldg 30, during the lunar surface extravehicular activity (EVA) of Apollo 11 Astronauts Neil A. Armstrong and Edwin E. Aldrin Jr.
Project Columbiad: Reestablishment of human presence on the Moon
NASA Technical Reports Server (NTRS)
Shea, Joseph; Weiss, Stanley; Alexander, Harold; Belobaba, Peter; Loboda, Greg; Berry, Maresi; Bower, Mark; Bruen, Charles; Cazeau, Patrick; Clarke, Michael
1992-01-01
In response to the Report of the Advisory Committee on the future of the U.S. Space Program and a request from NASA's Exploration Office, the MIT Hunsaker Aerospace Corporation (HAC) conducted a feasibility study, known as Project Columbiad, on reestablishing human presence on the Moon before the year 2000. The mission criteria established were to transport a four person crew to the lunar surface at any latitude and back to Earth with a 14-28 day stay on the lunar surface. Safety followed by cost of the Columbiad Mission were the top level priorities of HAC. The resulting design has a precursor mission that emplaces the required surface payloads before the piloted mission arrives. Both the precursor and piloted missions require two National Launch System (NLS) launches. Both the precursor and piloted missions have an Earth orbit rendezvous (EOR) with a direct transit to the Moon post-EOR. The piloted mission returns to Earth via a direct transit. Included among the surface payloads preemplaced are a habitat, solar power plant (including fuel cells for the lunar night), lunar rover, and mecanisms used to cover the habitat with regolith (lunar soil) in order to protect the crew members from severe solar flare radiation.
Apollo 16 Astronaut Salutes the U.S. Flag on Lunar Surface
NASA Technical Reports Server (NTRS)
1972-01-01
An Apollo 16 astronaut salutes the U.S. flag on the lunar surface. The Lunar Module (LM) and Lunar Roving Vehicle (LRV) can be seen behind him. Apollo 16 launched from the Kennedy Space Center on April 16, 1972 for a 3-day stay on Earth's Moon. It's 3-man crew consisted of Thomas K. Mattingly II, Command Module pilot; John W. Young, Mission Commander; and Charles M. Duke Jr., Lunar Module pilot. The first study of the highlands area, the landing site for Apollo 16 was the Descartes Highlands. The fifth lunar landing mission out of six, Apollo 16 was famous for deploying and using an ultraviolet telescope as the first lunar observatory. The telescope photographed ultraviolet light emitted by Earth and other celestial objects. The LRV, developed by the Marshall Space Flight Center, was also used for collecting rocks and data on the mysterious lunar highlands. The mission ended April 27, 1972 as the crew splashed down into the Pacific Ocean.
Applying Strategic Visualization(Registered Trademark) to Lunar and Planetary Mission Design
NASA Technical Reports Server (NTRS)
Frassanito, John R.; Cooke, D. R.
2002-01-01
NASA teams, such as the NASA Exploration Team (NEXT), utilize advanced computational visualization processes to develop mission designs and architectures for lunar and planetary missions. One such process, Strategic Visualization (trademark), is a tool used extensively to help mission designers visualize various design alternatives and present them to other participants of their team. The participants, which may include NASA, industry, and the academic community, are distributed within a virtual network. Consequently, computer animation and other digital techniques provide an efficient means to communicate top-level technical information among team members. Today,Strategic Visualization(trademark) is used extensively both in the mission design process within the technical community, and to communicate the value of space exploration to the general public. Movies and digital images have been generated and shown on nationally broadcast television and the Internet, as well as in magazines and digital media. In our presentation will show excerpts of a computer-generated animation depicting the reference Earth/Moon L1 Libration Point Gateway architecture. The Gateway serves as a staging corridor for human expeditions to the lunar poles and other surface locations. Also shown are crew transfer systems and current reference lunar excursion vehicles as well as the Human and robotic construction of an inflatable telescope array for deployment to the Sun/Earth Libration Point.
Rover concepts for lunar exploration
NASA Technical Reports Server (NTRS)
Connolly, John F.
1993-01-01
The paper describes the requirements and design concepts developed for the First Lunar Outpost (FLO) and the follow-on lunar missions by the Human Planet Surface Project Office at the Johnson Space Center, which include inputs from scientists, technologists, operators, personnel, astronauts, mission designers, and program managers. Particular attention is given to the requirements common to all rover concepts, the precursor robotic missions, the FLO scenario and capabilities, and the FLO evolution.
2013-09-11
S70-56415 (December 1970) --- At Kapoho, Hawaii, astronauts David R. Scott (left), commander of the Apollo 15 lunar landing mission, and James B. Irwin, lunar module pilot, train at a designated lunar surface simulation area for their upcoming lunar landing mission. Wearing street clothes, but equipped with a Portable Life Support System (PLSS), the two rehearse for a selenological traverse. Here, they are inspecting a grapefruit-sized rock. Photo credit: NASA
Properties of the Lunar Interior: Preliminary Results from the GRAIL Mission
NASA Technical Reports Server (NTRS)
Williams, James G.; Konopliv, Alexander S.; Asmar, Sami W.; Lemoine, Frank G.; Melosh, H. Jay; Neumann, Gregory A.; Phillips, Roger J.; Smith, David E.; Solomon, Sean C.; Watkins, Michael M.;
2013-01-01
The Gravity Recovery and Interior Laboratory (GRAIL) mission [1] has provided lunar gravity with unprecedented accuracy and resolution. GRAIL has produced a high-resolution map of the lunar gravity field [2,3] while also determining tidal response. We present the latest gravity field solution and its preliminary implications for the Moon's interior structure, exploring properties such as the mean density, moment of inertia of the solid Moon, and tidal potential Love number k(sub 2). Lunar structure includes a thin crust, a thick mantle layer, a fluid outer core, and a suspected solid inner core. An accurate Love number mainly improves knowledge of the fluid core and deep mantle. In the future, we will search for evidence of tidal dissipation and a solid inner core using GRAIL data.
Ground-Based Navigation and Dispersion Analysis for the Orion Exploration Mission 1
NASA Technical Reports Server (NTRS)
D' Souza, Christopher; Holt, Greg; Zanetti, Renato; Wood, Brandon
2016-01-01
This paper presents the Orion Exploration Mission 1 Linear Covariance Analysis for the DRO mission using ground-based navigation. The Delta V statistics for each maneuver are presented. In particular, the statistics of the lunar encounters and the Entry Interface are presented.
OFFICIAL EMBLEM - APOLLO 11 - FIRST (1st) SCHEDULED LUNAR LANDING MISSION
1969-06-01
S69-34875 (June 1969) --- The official emblem of Apollo 11, the United States' first scheduled lunar landing mission. The Apollo 11 crew will be astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. The NASA insignia design for Apollo flights is reserved for use by the astronauts and for the official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced.
Lunar Infrared Spectrometer (LIS) for Luna-Resurs and Luna-Glob missions
NASA Astrophysics Data System (ADS)
Korablev, O.; Ivanov, A.; Mantsevich, S.; Kiselev, A.; Vyazovetskiy, N.; Fedorova, A.; Evdokimova, N.; Stepanov, A.; Titov, A.; Kalinnikov, Y.
2012-09-01
Lunar Infrared Spectrometer (LIS) is an experiment onboard Luna-Glob (launch in 2015) and Luna- Resurs (launch in 2017) Russian surface missions. The experiment is dedicated to the studies of mineralogy of the lunar regolith in the vicinity of the lander. The instrument is mounted on the mechanic arm of landing module in the field of view (45°) of stereo TV camera. LIS will provide measurements of selected surface region in the spectral range of 1.15-3.3 μm. The electrically commanded acousto-optic filter scans sequentially at a desired sampling, with random access, over the entire spectral range.
Working Group 1: Current plans of various organisations for lunar activities
NASA Technical Reports Server (NTRS)
Balsiger, H.; Pilcher, C.
1994-01-01
Summaries of presentations by representatives of several space agencies and the International Academy of Astronautics concerning lunar activities are presented. Participating space agencies reported two different types of lunar planning, long term planning and scenarios and lunar missions competing within regular programs. The long term plans of the various agencies look remarkably similar. They all involve a phased approach (coincidentally all incorporating four phases) and all address three prime scientific elements: science of, on, and from the Moon. The missions under consideration by the second group of agencies could readily fit as elements in the longer term program. There is great interest in lunar astronomy. There is a great deal of potential infrastructure and lunar transport capability already available. There is also a wide range of interesting technological developments that could form part of a lunar program. A well concerted and coordinated international effort could lead to an affordable program. Recommendations are: an international conference on lunar exploration should be held every other year; an electronic network should be established for the daily exchange of information; and a mechanism should be established for regular working level coordination of activities.
Low-Energy Ballistic Transfers to Lunar Halo Orbits
NASA Technical Reports Server (NTRS)
Parker, Jeffrey S.
2009-01-01
Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.
Lunar Satellite Snaps Image of Earth
2014-05-07
This image, captured Feb. 1, 2014, shows a colorized view of Earth from the moon-based perspective of NASA's Lunar Reconnaissance Orbiter. Credit: NASA/Goddard/Arizona State University -- NASA's Lunar Reconnaissance Orbiter (LRO) experiences 12 "earthrises" every day, however LROC (short for LRO Camera) is almost always busy imaging the lunar surface so only rarely does an opportunity arise such that LROC can capture a view of Earth. On Feb. 1, 2014, LRO pitched forward while approaching the moon's north pole allowing the LROC Wide Angle Camera to capture Earth rising above Rozhdestvenskiy crater (112 miles, or 180 km, in diameter). Read more: go.nasa.gov/1oqMlgu NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
U.S. draws blueprints for first lunar base
NASA Astrophysics Data System (ADS)
Asker, James R.
1992-08-01
NASA's space exploration office has charted a detailed program to return astronauts to the moon to establish a permanent base that would allow humans and machines to perform a wide range of science activities. The base would serve as a test site for the hardware and techniques that would be used by the first explorers on Mars. The primary mission, named the First Lunar Outpost, starts with unmanned precursor missions of small, lunar orbiting spacecraft, followed by robotic and teleoperating missions on the lunar surface, with astronauts then returning to the moon before the end of the decade.
NASA Technical Reports Server (NTRS)
1970-01-01
The Apollo 13 mission, planned as a lunar landing in the Fra Mauro area, was aborted because of an abrupt loss of service module cryogenic oxygen associated with a fire in one of the two tanks at approximately 56 hours. The lunar module provided the necessary support to sustain a minimum operational condition for a safe return to earth. A circumlunar profile was executed as the most efficient means of earth return, with the lunar module providing power and life support until transfer to the command module just prior to entry. Although the mission was unsuccessful as planned, a lunar flyby and several scientific experiments were completed.
Proceedings of the 39th Lunar and Planetary Science Conference
NASA Technical Reports Server (NTRS)
2008-01-01
Sessions with oral presentations include: A SPECIAL SESSION: MESSENGER at Mercury, Mars: Pingos, Polygons, and Other Puzzles, Solar Wind and Genesis: Measurements and Interpretation, Asteroids, Comets, and Small Bodies, Mars: Ice On the Ground and In the Ground, SPECIAL SESSION: Results from Kaguya (SELENE) Mission to the Moon, Outer Planet Satellites: Not Titan, Not Enceladus, SPECIAL SESSION: Lunar Science: Past, Present, and Future, Mars: North Pole, South Pole - Structure and Evolution, Refractory Inclusions, Impact Events: Modeling, Experiments, and Observations, Mars Sedimentary Processes from Victoria Crater to the Columbia Hills, Formation and Alteration of Carbonaceous Chondrites, New Achondrite GRA 06128/GRA 06129 - Origins Unknown, The Science Behind Lunar Missions, Mars Volcanics and Tectonics, From Dust to Planets (Planetary Formation and Planetesimals):When, Where, and Kaboom! Astrobiology: Biosignatures, Impacts, Habitability, Excavating a Comet, Mars Interior Dynamics to Exterior Impacts, Achondrites, Lunar Remote Sensing, Mars Aeolian Processes and Gully Formation Mechanisms, Solar Nebula Shake and Bake: Mixing and Isotopes, Lunar Geophysics, Meteorites from Mars: Shergottite and Nakhlite Invasion, Mars Fluvial Geomorphology, Chondrules and Chondrule Formation, Lunar Samples: Chronology, Geochemistry, and Petrology, Enceladus, Venus: Resurfacing and Topography (with Pancakes!), Overview of the Lunar Reconnaissance Orbiter Mission, Mars Sulfates, Phyllosilicates, and Their Aqueous Sources, Ordinary and Enstatite Chondrites, Impact Calibration and Effects, Comparative Planetology, Analogs: Environments and Materials, Mars: The Orbital View of Sediments and Aqueous Mineralogy, Planetary Differentiation, Titan, Presolar Grains: Still More Isotopes Out of This World, Poster sessions include: Education and Public Outreach Programs, Early Solar System and Planet Formation, Solar Wind and Genesis, Asteroids, Comets, and Small Bodies, Carbonaceous Chondrites, Chondrules and Chondrule Formation, Chondrites, Refractory Inclusions, Organics in Chondrites, Meteorites: Techniques, Experiments, and Physical Properties, MESSENGER and Mercury, Lunar Science Present: Kaguya (SELENE) Results, Lunar Remote Sensing: Basins and Mapping of Geology and Geochemistry, Lunar Science: Dust and Ice, Lunar Science: Missions and Planning, Mars: Layered, Icy, and Polygonal, Mars Stratigraphy and Sedimentology, Mars (Peri)Glacial, Mars Polar (and Vast), Mars, You are Here: Landing Sites and Imagery, Mars Volcanics and Magmas, Mars Atmosphere, Impact Events: Modeling, Experiments, and Observation, Ice is Nice: Mostly Outer Planet Satellites, Galilean Satellites, The Big Giant Planets, Astrobiology, In Situ Instrumentation, Rocket Scientist's Toolbox: Mission Science and Operations, Spacecraft Missions, Presolar Grains, Micrometeorites, Condensation-Evaporation: Stardust Ties, Comet Dust, Comparative Planetology, Planetary Differentiation, Lunar Meteorites, Nonchondritic Meteorites, Martian Meteorites, Apollo Samples and Lunar Interior, Lunar Geophysics, Lunar Science: Geophysics, Surface Science, and Extralunar Components, Mars, Remotely, Mars Orbital Data - Methods and Interpretation, Mars Tectonics and Dynamics, Mars Craters: Tiny to Humongous, Mars Sedimentary Mineralogy, Martian Gullies and Slope Streaks, Mars Fluvial Geomorphology, Mars Aeolian Processes, Mars Data and Mission,s Venus Mapping, Modeling, and Data Analysis, Titan, Icy Dwarf Satellites, Rocket Scientist's Toolbox: In Situ Analysis, Remote Sensing Approaches, Advances, and Applications, Analogs: Sulfates - Earth and Lab to Mars, Analogs: Remote Sensing and Spectroscopy, Analogs: Methods and Instruments, Analogs: Weird Places!. Print Only Early Solar System, Solar Wind, IDPs, Presolar/Solar Grains, Stardust, Comets, Asteroids, and Phobos, Venus, Mercury, Moon, Meteorites, Mars, Astrobiology, Impacts, Outer Planets, Satellites, and Rings, Support for Mission Operations, Analog Education and Public Outreach.
Results from the Lunar Reconnaissance Orbiter Mission and Plans for the Extended Science Mission
NASA Technical Reports Server (NTRS)
Vondrak, Richard R.; Keller, J. W.; Chin, G.; Garvin, J.; Petro, N.
2012-01-01
The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18,2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and the measurement of the lunar radiation environment. After spacecraft commissioning, the ESMD phase of the mission began on September 15, 2009 and was completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission was scheduled for 2 years and completed in September of 2012. Under SMD, the Science Mission focused on a new set of goals related to understanding the history of the Moon, its current state, and what it can tell us about the evolution of the Solar System. Having recently marked the completion of the two-year Science Mission, we will review here the major results from the LRO for both exploration and science and discuss plans and objectives for the Extended Science that will last until September, 2014. Some results from the LRO mission are: the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measurement of the daytime and nighttime temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the PSRs; evidence for recent tectonic activity on the Moon; and high resolution maps of the illumination conditions at the poles.
Analysis Results for Lunar Soil Simulant Using a Portable X-Ray Fluorescence Analyzer
NASA Technical Reports Server (NTRS)
Boothe, R. E.
2006-01-01
Lunar soil will potentially be used for oxygen generation, water generation, and as filler for building blocks during habitation missions on the Moon. NASA s in situ fabrication and repair program is evaluating portable technologies that can assess the chemistry of lunar soil and lunar soil simulants. This Technical Memorandum summarizes the results of the JSC 1 lunar soil simulant analysis using the TRACeR III IV handheld x-ray fluorescence analyzer, manufactured by KeyMaster Technologies, Inc. The focus of the evaluation was to determine how well the current instrument configuration would detect and quantify the components of JSC-1.
Moon Age and Regolith Explorer (MARE) Mission Design and Performance
NASA Technical Reports Server (NTRS)
Condon, Gerald L.; Lee, David E.
2016-01-01
The moon’s surface last saw a controlled landing from a U.S. spacecraft on December 11, 1972 with Apollo 17. Since that time, there has been an absence of methodical in-situ investigation of the lunar surface. In addition to the scientific value of measuring the age and composition of a relatively young portion of the lunar surface near Aristarchus Plateau, the Moon Age and Regolith Explorer (MARE) proposal provides the first U.S. soft lunar landing since the Apollo Program and the first ever robotic soft lunar landing employing an autonomous hazard detection and avoidance system, a system that promises to enhance crew safety and survivability during a manned lunar (or other) landing. This report focuses on the mission design and performance associated with the MARE robotic lunar landing subject to mission and trajectory constraints.
Apollo 11 Command/Service modules photographed from Lunar Module in orbit
1969-07-20
AS11-37-5445 (20 July 1969) --- The Apollo 11 Command and Service Modules (CSM) are photographed from the Lunar Module (LM) in lunar orbit during the Apollo 11 lunar landing mission. The lunar surface below is in the north central Sea of Fertility. The coordinates of the center of the picture are 51 degrees east longitude and 1 degree north latitude. About half of the crater Taruntius G is visible in the lower left corner of the picture. Part of Taruntius H can be seen at lower right.
1962-04-27
The Apollo 16 Command Module splashed down in the Pacific Ocean on April 27, 1972 after an 11-day moon exploration mission. The 3-man crew is shown here aboard the rescue ship, USS Horton. From left to right are: Mission Commander John W. Young, Lunar Module pilot Charles M. Duke, and Command Module pilot Thomas K. Mattingly II. The sixth manned lunar landing mission, the Apollo 16 (SA-511) lifted off on April 16, 1972. The Apollo 16 mission continued the broad-scale geological, geochemical, and geophysical mapping of the Moon’s crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph which photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.
2017-01-01
The nuclear thermal rocket (NTR) has frequently been identified as a key space asset required for the human exploration of Mars. This proven technology can also provide the affordable access through cislunar space necessary for commercial development and sustained human presence on the Moon. In his post-Apollo Integrated Space Program Plan (1970-1990), Wernher von Braun, proposed a reusable nuclear thermal propulsion stage (NTPS) to deliver cargo and crew to the Moon to establish a lunar base before undertaking human missions to Mars. The NTR option was selected by von Braun because it was a demonstrated technology capable of generating both high thrust and high specific impulse (Isp 900 s) twice that of todays best chemical rockets. In NASAs Mars Design Reference Architecture (DRA) 5.0 study, the crewed Mars transfer vehicle used three 25 klbf Pewee engines the smallest and highest performing engine tested in the Rover program along with graphite composite fuel. Smaller, lunar transfer vehicles consisting of a NTPS using three approximately 16.5 klbf Small Nuclear Rocket Engines (SNREs), an in-line propellant tank, plus the payload can enable a variety of reusable lunar missions. These include cargo delivery and crewed lunar landing missions. Even weeklong tourism missions carrying passengers into lunar orbit for a day of sightseeing and picture taking are possible. The NTR can play an important role in the next phase of lunar exploration and development by providing an affordable in-space lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supported by a variety of commercial activities such as in-situ propellant production used to supply strategically located propellant depots and transportation nodes. The utilization of iron-rich volcanic glass or lunar polar ice (LPI) deposits (each estimated at billions of metric tons) for propellant production can significantly reduce the launch mass requirements from Earth and can enable reusable, surface-based lunar landing vehicles (LLVs) using liquid oxygen/hydrogen (LOX/LH2) chemical rocket engines. Afterwards, LOX/LH2 propellant depots can be established in lunar equatorial and polar orbits to supply the LTS. At this point a modified version of the conventional NTR called the LOX-augmented NTR, or LANTR would be introduced into the LTS allowing bipropellant operation and leveraging the mission benefits of refueling with lunar-derived propellants for Earth return. The bipropellant LANTR engine utilizes the large divergent section of its nozzle as an afterburner into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engines choked sonic throat essentially scramjet propulsion in reverse. By varying the oxygen-to-hydrogen mixture ratio, LANTR engines can operate over a range of thrust and Isp values while the reactor core power level remains relatively constant. Eventually, a LANTR-based LTS can enable a rapid commuter shuttle with one-way trip times to and from the Moon ranging from 36 to 24 hours. Even if only 1 of the extracted propellant from identified volcanic glass and polar ice deposits were available for use in lunar orbit, such a supply could support daily commuter flights to the Moon for many thousands of years! An evolutionary mission architecture is outlined and a variety of lunar missions and transfer vehicle designs are examined, along with the increasing demands on propellant production as mission complexity increases. A comparison of vehicle features and engine operating characteristics, for both NTR and LANTR engines, is also provided along with a brief discussion on the propellant production issues associated with using volcanic glass and LPI as source material.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.
2017-01-01
Studies conducted by NASA and its contractors (early 1980s early 1990s) indicated a substantial benefit from using lunar-derived propellants specifically lunar-derived LO2 (LLO2) or LUNOX in a lunar space transportation system (LTS). With a LTS using LO2/LH2 chemical rockets, approx. 6 kilograms (kg) of mass in low Earth orbit (LEO) is required to place 1 kg of payload on the lunar surface (LS). Of this 6 kg, approx. 70% (4.2 kg) is propellant and 6/7th of this mass (3.6 kg) is oxygen assuming an O/H MR 6:1. Since the cost of placing a kilogram of mass on the LS is approx. 6X the cost of delivering it to LEO, the ability to produce and utilize LUNOX or lunar-derived LO2 and hydrogen (LLH2) from lunar polar ice (LPI) deposits can provide significant mission leverage. Providing LUNOX for use in fuel cells, life support systems and LO2/LH2 chemical rockets used on lunar landing vehicles (LLVs), can allow high value cargo (people, manufacturing and scientific equipment, etc.) to be transported to LEO, then to the Moon instead of bulk LO2 propellant. Oxygen is abundant in the lunar regolith (approx. 43% by mass) and can be extracted using a variety of techniques, such as hydrogen reduction of ilmenite (FeOTiO2) or FeO-rich volcanic glass (orange soil) discovered during the Apollo 17 mission to Taurus-Littrow. While considerable interest has been expressed about mining and processing LPI for rocket propellant, ground truth must first be established to quantify the physical state of the ice (e.g., its vertical thickness and areal extent, levels of soil contamination, etc.) and the deep, extremely cold (approx. 26-100 K) permanently shadowed craters where the ice resides.
1972-04-27
The Apollo 16 Command Module splashed down in the Pacific Ocean on April 27, 1972 after an 11-day moon exploration mission. The sixth manned lunar landing mission, the Apollo 16 (SA-511), carrying three astronauts: Mission Commander John W. Young, Command Module pilot Thomas K. Mattingly II, and Lunar Module pilot Charles M. Duke, lifted off on April 16, 1972. The Apollo 16 continued the broad-scale geological, geochemical, and geophysical mapping of the Moon’s crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph which photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used.
Enhancing Lunar Exploration with a Radioisotope Powered Dual Mode Lunar Rover
NASA Astrophysics Data System (ADS)
Elliott, J. O.; Coste, K.; Schriener, T. M.
2005-12-01
The emerging plans for lunar exploration and establishment of a permanent human presence on the moon will require development of numerous infrastructure elements to facilitate their implementation. One such element, which manifestly demonstrated its worth in the Apollo missions, is the lunar roving vehicle. While the original Apollo lunar rovers were designed for single mission use, the intention of proceeding with a long-term sustained lunar exploration campaign gives new impetus to consideration of a lunar roving vehicle with extended capabilities, including the ability to support multiple sequential human missions as well as teleoperated exploration activities between human visits. This paper presents a preliminary design concept for such a vehicle, powered by radioisotope power systems which would give the rover greatly extended capabilities and the versatility to operate at any latitude over the entire lunar day/night cycle. The rover would be used for human transportation during astronaut sorties, and be reconfigured for teleoperation by earth-based controllers during the times between crewed landings. In teleoperated mode the rover could be equipped with a range of scientific instrument suites for exploration and detailed assessment of the lunar environment on a regional scale. With modular payload attachments, the rover could be modified between missions to carry out a variety of scientific and utilitarian tasks, including regolith reconfiguration in support of establishment of a permanent human base.
Space Transportation Infrastructure Supported By Propellant Depots
NASA Technical Reports Server (NTRS)
Smitherman, David; Woodcock, Gordon
2012-01-01
A space transportation infrastructure is described that utilizes propellant depot servicing platforms to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicle (ELV) systems such as the Delta IV Heavy, Atlas V, and Falcon 9, for all crew, cargo, and propellant launches to orbit. Propellant launches are made to Low-Earth-Orbit (LEO) Depot and an Earth-Moon Lagrange Point 1 (L1) Depot to support a new reusable in-space transportation vehicles. The LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing and to L1 for L1 Depot missions. The L1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid and Mars Missions. New vehicle design concepts are presented that can be launched on current 5 meter diameter ELV systems. These new reusable vehicle concepts include a Crew Transfer Vehicle (CTV) for crew transportation between the LEO Depot, L1 Depot and missions beyond L1; a new reusable lunar lander for crew transportation between the L1 Depot and the lunar surface; and Mars orbital Depot are based on International Space Station (ISS) heritage hardware. Data provided includes the number of launches required for each mission utilizing current ELV systems (Delta IV Heavy or equivalent) and the approximate vehicle masses and propellant requirements. Also included is a discussion on affordability with ideas on technologies that could reduce the number of launches required and thoughts on how this infrastructure include competitive bidding for ELV flights and propellant services, developments of new reusable in-space vehicles and development of a multiuse infrastructure that can support many government and commercial missions simultaneously.
NASA Technical Reports Server (NTRS)
Haskin, L. A.; Duke, M. B.; Hubbard, N.; Johnson, T. V.; Malin, M. C.; Minear, J.
1977-01-01
A rationale for furture exploration of the moon is given. Topics discussed include the objectives of the lunar polar orbiter mission, the mission profile, and general characteristics of the spacraft to be used.
NASA Technical Reports Server (NTRS)
Bhasin, Kul B.; Warner, Joseph D.; Anderson, Lynn M.
2008-01-01
NASA is conducting architecture studies prior to deploying a series of short- and long-duration human and robotic missions for the exploration of the Moon and Mars under the Vision for Space Exploration Initiative. A key objective of these missions is to establish and expand, through a series of launches, a system of systems approach to exploration capabilities and science return. The systems identified were Crew Exploration Vehicles, crew and cargo launch vehicles, crew EVA suits, crew and cargo landers, habitats, mobility carriers, and small, pressurized rovers. Multiple space communication networks and systems, deployed over time, will support these space exploration systems of systems. Each deployment phase will support interoperability of components and provide 20 years of legacy systems. In this paper, we describe the modular lunar communications terminals needed for the emerging lunar mission operational scenarios. These lunar communication terminals require flexibility for use in stationary, integrated, and mobile environments. They will support links directly to Earth, to lunar relay satellites, to astronauts and to fixed and mobile lunar surface systems. The operating concepts and traffic models are presented for these terminals within variety of lunar scenarios. A preliminary architecture is outlined, providing for suitable long-duration operations in the harsh lunar environment.
NASA Technical Reports Server (NTRS)
Murphy, Douglas G.; Qu, Min; Salas, Andrea O.
2006-01-01
The NASA Integrated Modeling and Simulation (IM&S) project aims to develop a collaborative engineering system to include distributed analysis, integrated tools, and web-enabled graphics. Engineers on the IM&S team were tasked with applying IM&S capabilities to an orbital mechanics analysis for a lunar mission study. An interactive lunar globe was created to show 7 landing sites, contour lines depicting the energy required to reach a given site, and the optimal lunar orbit orientation to meet the mission constraints. Activation of the lunar globe rotation shows the change of the angle between the landing site latitude and the orbit plane. A heads-up-display was used to embed straightforward interface elements.
Rover Traverse Planning to Support a Lunar Polar Volatiles Mission
NASA Technical Reports Server (NTRS)
Heldmann, J.L.; Colaprete, A.C.; Elphic, R. C.; Bussey, B.; McGovern, A.; Beyer, R.; Lees, D.; Deans, M. C.; Otten, N.; Jones, H.;
2015-01-01
Studies of lunar polar volatile depositsare of interest for scientific purposes to understandthe nature and evolution of the volatiles, and alsofor exploration reasons as a possible in situ resource toenable long term exploration and settlement of theMoon. Both theoretical and observational studies havesuggested that significant quantities of volatiles exist inthe polar regions, although the lateral and horizontaldistribution remains unknown at the km scale and finerresolution. A lunar polar rover mission is required tofurther characterize the distribution, quantity, andcharacter of lunar polar volatile deposits at thesehigher spatial resolutions. Here we present two casestudies for NASA’s Resource Prospector (RP) missionconcept for a lunar polar rover and utilize this missionarchitecture and associated constraints to evaluatewhether a suitable landing site exists to support an RPflight mission.
2009-05-08
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians remove the bag that will be placed over the Lunar Reconnaissance Orbiter, or LRO, before it is mated with NASA's Lunar CRater Observation and Sensing Satellite, known as LCROSS, spacecraft. The satellite's primary mission is to search for water ice on the moon in a permanently shadowed crater near one of the lunar poles. LCROSS is a low-cost, accelerated-development, companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO. LCROSS and LRO are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. Launch is targeted for no earlier than June 2 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-08
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians place the protective bag around the Lunar Reconnaissance Orbiter, or LRO, before it is mated with NASA's Lunar CRater Observation and Sensing Satellite, known as LCROSS, spacecraft. The satellite's primary mission is to search for water ice on the moon in a permanently shadowed crater near one of the lunar poles. LCROSS is a low-cost, accelerated-development, companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO. LCROSS and LRO are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. Launch is targeted for no earlier than June 2 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-08
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians begin placing the protective bag around the Lunar Reconnaissance Orbiter, or LRO, before it is mated with NASA's Lunar CRater Observation and Sensing Satellite, known as LCROSS, spacecraft. The satellite's primary mission is to search for water ice on the moon in a permanently shadowed crater near one of the lunar poles. LCROSS is a low-cost, accelerated-development, companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO. LCROSS and LRO are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. Launch is targeted for no earlier than June 2 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-08
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians complete placing the protective bag around the Lunar Reconnaissance Orbiter, or LRO, before it is mated with NASA's Lunar CRater Observation and Sensing Satellite, known as LCROSS, spacecraft. The satellite's primary mission is to search for water ice on the moon in a permanently shadowed crater near one of the lunar poles. LCROSS is a low-cost, accelerated-development, companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO. LCROSS and LRO are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. Launch is targeted for no earlier than June 2 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
Constellation Program Mission Operations Project Office Status and Support Philosophy
NASA Technical Reports Server (NTRS)
Smith, Ernest; Webb, Dennis
2007-01-01
The Constellation Program Mission Operations Project Office (CxP MOP) at Johnson Space Center in Houston Texas is preparing to support the CxP mission operations objectives for the CEV/Orion flights, the Lunar Lander, and and Lunar surface operations. Initially the CEV will provide access to the International Space Station, then progress to the Lunar missions. Initial CEV mission operations support will be conceptually similar to the Apollo missions, and we have set a challenge to support the CEV mission with 50% of the mission operations support currently required for Shuttle missions. Therefore, we are assessing more efficient way to organize the support and new technologies which will enhance our operations support. This paper will address the status of our preparation for these CxP missions, our philosophical approach to CxP operations support, and some of the technologies we are assessing to streamline our mission operations infrastructure.
NASA/Haughton-Mars Project 2006 Lunar Medical Contingency Simulation
NASA Technical Reports Server (NTRS)
Scheuring, Richard A.; Jones, J. A.; Lee, P.; Comtois, J. M.; Chappell, S.; Rafiq, A.; Braham, S.
2007-01-01
A viewgraph presentation describing NASA's Haughton-Mars Project (HMP) medical requirements and lunar surface operations is shown. The topics onclude: 1) Mission Purpose/ Overview; 2) HMP as a Moon/Mars Analog; 3) Simulation objectives; 4) Discussion; and 5) Forward work.
High-priority lunar landing sites for in situ and sample return studies of polar volatiles
NASA Astrophysics Data System (ADS)
Lemelin, Myriam; Blair, David M.; Roberts, Carolyn E.; Runyon, Kirby D.; Nowka, Daniela; Kring, David A.
2014-10-01
Our understanding of the Moon has advanced greatly over the last several decades thanks to analyses of Apollo samples and lunar meteorites, and recent lunar orbital missions. Notably, it is now thought that the lunar poles may be much more enriched in H2O and other volatile chemical species than the equatorial regions sampled during the Apollo missions. The equatorial regions sampled, themselves, contain more H2O than previously thought. A new lunar mission to a polar region is therefore of great interest; it could provide a measure of the sources and processes that deliver volatiles while also evaluating the potential in situ resource utilization value they may have for human exploration. In this study, we determine the optimal sites for studying lunar volatiles by conducting a quantitative GIS-based spatial analysis of multiple relevant datasets. The datasets include the locations of permanently shadowed regions, thermal analyses of the lunar surface, and hydrogen abundances. We provide maps of the lunar surface showing areas of high scientific interest, including five regions near the lunar north pole and seven regions near the lunar south pole that have the highest scientific potential according to rational search criteria. At two of these sites-a region we call the “Intercrater Polar Highlands” (IPH) near the north pole, and Amundsen crater near the south pole-we provide a more detailed assessment of landing sites, sample locations, and exploration strategies best suited for future human or robotic exploration missions.
Russian plans for lunar investiagtions. Stage 1
NASA Astrophysics Data System (ADS)
Zelenyi, L.; Mitrofanov, I.; Petrukovich, A.; Khartov, V.; Martynov, M.; Lukianchikov, A.
2014-04-01
Lunar Race of 60-ies and 70-ies between US and Soviet Union produced outstanding results for lunar science. For many technical reasons mostly near equatorial and mid-latitude Lunar regions were investigated at this glorious time. New epoch of Lunar investigations began at the late 90-ies. It gradually shaped the image of a new wet moon at least at the vicinity of its polar regions. Strong interest to the mechanisms of the formation of a near polar volatiles deposits, their migration and their composition (including the bisotope one) became the central theme of the Russian program of lunar investigations for next 10 years. Certainly the number of other outstanding scientific topics like the properties of Lunar dust, peculiarities of regolith interaction with the supersonic solar wind flow, characteristics of the Lunar magnetic and gravitational anomalies, etc., are planned to be studied both from the orbit and from the surface. First stage of the Russian Lunar Program consists of a four missions: Lunas 25, 26, 27, 28. (The numeration follows Lunar missions of a Soviet Epoch - last successful regolith sample delivery have been accomplished by Luna 24 in 1976). Luna 25 will land to the southern polar site, which would be the most suitable for engineering reasons and also interesting for the science. Second lander Luna 27 will have more sophisticated payload with the additional instruments in comparison with Luna 25. Luna 27 should be landed to the selected landing site at the vicinity of the South Pole, which could be the most promising for installation of the future Lunar Base. It is very important that Luna 27 will be equipped by the subsurface drill to get samples from the permafrost shallow subsurface (one attractive option now is that this drill will be provided by our ESA colleagues having the experience of designing and manufacturing of a similar drill for the Exomars project). The principal difference of the drilling at Luna 27 in comparison with the early missions of 70-ies is that this drilling should keep all the volatiles in the regolith intact and accordingly should avoid any substantial heating, which might result in their evaporation. Orbiter Luna 26 carries a selfcontained payload for studies of Lunar exosphere and Radar for investigation of the subsurface Lunar structures. Astrophysical experiment LORD will register the emissions after the rare interactions of super high energy cosmic rays with the Lunar body. This is a special (very important for cosmology) energy range where cosmic rays are scattered at the background microwave radiation. Last at this stage mission Luna 28 should provide cryogenic return of polar regolith samples with volatiles inclusions to the Earth laboratories for the detailed analysis of their isotope composition Russia considers this stage of Lunar investigations as a first stage to the program of Lunar Exploration, which should culminate by the construction of an international Lunar base. Although the lunar mission discussed above represent the part of the national federal space program for 2015-2025 they are fully opened for the international participation and as mentioned above some of their important elements are discussed in terms of collaboration with ESA
NASA Astrophysics Data System (ADS)
Hornig, Andreas; Homeister, Maren
2015-03-01
In the current wake of mission plans to the Moon and to Earth-Moon Libration points (EML) by several agencies and organizations, TYCHO identifies the key role of telecommunication provision for the future path of lunar exploration. It demonstrates an interesting extension to existing communication methods to the Moon and beyond by combining innovative technology with a next frontier location and the commercial space communication sector. It is evident that all communication systems will rely on direct communication to Earth ground stations. In case of EML-2 missions around HALO orbits or bases on the far side of the Moon, it has to be extended by communication links via relay stations. The innovative approach is that TYCHO provides this relay communication to those out-of-sight lunar missions as a service. TYCHO will establish a new infrastructure for future missions and even create a new market for add-on relay services. The TMA-0 satellite is TYCHO's first phase and a proposed demonstrator mission to the Earth-Moon Libration point EML-4. It demonstrates relay services needed for automated exploratory and manned missions (Moon bases) on the rim (>90°E and >90°W) and far side surface, to lunar orbits and even to EML-2 halo orbits (satellites and space stations). Its main advantage is the permanent availability of communication coverage. This will provide full access to scientific and telemetry data and furthermore to crucial medical monitoring and safety. The communication subsystem is a platform for conventional communication but also a test-bed for optical communication with high data-rate LASER links to serve the future needs of manned bases and periodic burst data-transfer from lunar poles. The operational TMA-1 satellite is a stand-alone mission integrated into existing space communication networks to provide open communication service to external lunar missions. Therefore the long-time stable libration points EML-4 and -5 are selected to guarantee an operation time of up to 10 years. It also enables measurements of the libration point environment with the scientific payloads. This includes sensors for space dust, solar and cosmic radiation activity for satellite lifetime estimation and lunar crew protection by providing early-warning systems. The paper describes the mission concept and the pre-design of the demonstrator satellite according to the operational mission requirements, advantages and benefits of this service. The concept was awarded with the Space Generation Advisory Council and OHB Scholarship in 2011 and the concept study is conducted at the Institute of Space Systems (IRS) [1] of the University of Stuttgart and OHB-System, Bremen [2].
CE-4 Mission and Future Journey to Lunar
NASA Astrophysics Data System (ADS)
Zou, Yongliao; Wang, Qin; Liu, Xiaoqun
2016-07-01
Chang'E-4 mission, being undertaken by phase two of China Lunar Exploration Program, represents China's first attempt to explore farside of lunar surface. Its probe includes a lander, a rover and a telecommunication relay which is scheduled to launch in around 2018. The scientific objectives of CE-4 mission will be implemented to investigate the lunar regional geological characteristics of landing and roving area, and also will make the first radio-astronomy measurements from the most radio-quiet region of near-earth space. The rover will opreate for at least 3 months, the lander for half a year, and the relay for no less than 3 years. Its scinetific instruments includes Cameras, infrared imaging spectrometer, Penetrating Radar onboard the rover in which is the same as the paylads on board the CE-3 rover, and a Dust-analyzer, a Temperature-instrument and a Wide Band Low Frequency Digital Radio Astronomical Station will be installed on board the lander. Our scientific goals of the future lunar exploration will aim at the lunar geology, resources and surface environments. A series of exploraion missions such as robotic exploration and non-manned lunar scientific station is proposed in this paper.
NEXT-Lunar Lander -an Opportunity for a Close Look at the Lunar South Pole
NASA Astrophysics Data System (ADS)
Homeister, Maren; Thaeter, Joachim; Scheper, Marc; Apeldoorn, Jeffrey; Koebel, David
The NEXT-Lunar Lander mission, as contracted by ESA and investigated by OHB-System and its industrial study team, has two main purposes. The first is technology demonstration for enabling technologies like propulsion-based soft precision landing for future planetary landing missions. This involves also enabling technology experiments, like fuel cell, life science and life support, which are embedded in the stationary payload of the lander. The second main and equally important aspect is the in-situ investigation of the surface of the Moon at the lunar South Pole by stationary payload inside the Lander, deployable payload to be placed in the vicinity of the lander and mobile payload carried by a rover. The currently assessed model payload includes 15 instruments on the lander and additional five on the rover. They are addressing the fields geophysics, geochemistry, geology and radio astronomy preparation. The mission is currently under investigation in frame of a phase A mission study contract awarded by ESA to two independent industrial teams, of which one is led by OHB-System. The phase A activities started in spring 2008 and were conducted until spring 2010. A phase B is expected shortly afterwards. The analysed mission architectures range from a Soyuz-based mission to a Shared-Ariane V class mission via different transfer trajectories. Depending on the scenario payload masses including servicing of 70 to 150 kg can be delivered to the lunar surface. The lander can offer different services to the payload. The stationary payload is powered and conditioned by the lander. Examples for embarked payloads are an optical camera system, a Radio Science Experiment and a radiation monitor. The lander surface payload is deployed to the lunar surface by a 5 DoF robotic arm and will be powered by the Lander. To this group of payloads belong seismometers, a magnetometer and an instrumented Mole. The mobile payload will be carried by a rover. The rover is equipped with its own 5 DoF robotic arm and can travel with an average speed of about 1 cm/s. The Rover is generally tele-operated but has the capability to execute autonomously pre-selected operation tasks, is aware of its current status and analyses potential hazards to avoid loss of its mission by operator failure. It is equipped with a model payload consisting of a camera system for multi-spectra including infra-red, a Raman-LIBS and a CLUPI. In addition its task is to position seismometers at a distance of about 1 km away from the lander. The baseline scenario includes a launch in the 2018 timeframe and one year of surface operations at the Shakleton crater rim. This presentation will focus on the following points: • Mission architecture and spacecraft layout as elaborated during the past study activities • Surface operations of lander and rover • Current mission capability to support scientific investigations at the lunar South Pole
Lunar Magma Ocean Bedrock Anorthosites Detected at Orientale Basin by M3
NASA Astrophysics Data System (ADS)
Pieters, C. M.; Boardman, J. W.; Burratti, B.; Cheek, L.; Clark, R. N.; Combe, J.; Green, R. O.; Head, J. W.; Hicks, M.; Isaacson, P.; Klima, R.; Kramer, G. Y.; Lundeen, S.; Malaret, E.; McCord, T. B.; Mustard, J. F.; Nettles, J. W.; Petro, N. E.; Runyon, C. J.; Staid, M.; Sunshine, J. M.; Taylor, L. A.; Tompkins, S.; Varanasi, P.
2009-12-01
The lunar crust is thought to have formed as a result of global melting of the outer parts of the Moon in its earliest history, a lunar magma ocean (LMO). Crystallization of this magma ocean set the stage for the ensuing history of the planet. Models for the formation of the lunar crust and the evolution of the LMO were derived from individual Apollo samples that could not be placed directly in the context of crustal bedrock with remote sensing data that was available. Data from modern sensors, such as the Moon Mineralogy Mapper (M3) on Chandrayaan-1, now allow such bedrock issues to be addressed. The ~930 km diameter Orientale multi-ringed impact basin in the western highlands provides an opportunity to evaluate the mineralogy of the in situ crust of the Moon in the search for LMO mineralogy and structure. Orientale is the youngest large basin on the Moon, and the basin deposits and ring structures expose progressively deeper bedrock layering that can be used to determine lunar crustal structure and test the LMO model. With its high spatial and spectral resolution, M3 data show that the ejecta of the basin is composed of mixed assemblages of processed feldspathic breccias with small amounts of low-Ca pyroxene comprising the upper kilometers-thick mega-regolith layer of the crust. Exposures in the outermost (Cordillera) ring reveal less processed examples of this material. The M3 data show that the next interior ring (Outer Rook), representing deeper material, is characterized by distinctly more crystalline blocks of impact-shocked anorthosite and noritic anorthosite. Most importantly, M3 data reveal that the mountains of the closest ring toward the basin interior (Inner Rook) consist of pure anorthosite, including outcrops of the unshocked crystalline form. This massive exposure of anorthosite across the entire mountain range provides validation for the LMO hypothesis. These mountains are believed to have originated in the upper crust below the impact fragmented regolith and were formed and uplifted during the basin event. Such extensive exposures of this rock type, consisting of almost pure plagioclase, could not have formed in any other way than plagioclase flotation in the crystallizing lunar magma ocean. Figure 1. Schematic cross section of the Orientale basin illustrating the relation of the Inner Rook Ring to the basin deposits of the exterior (after Head et al., 1993, JGR, 98, 17149).
Lunar Quest in Second Life, Lunar Exploration Island, Phase II
NASA Astrophysics Data System (ADS)
Ireton, F. M.; Day, B. H.; Mitchell, B.; Hsu, B. C.
2010-12-01
Linden Lab’s Second Life is a virtual 3D metaverse created by users. At any one time there may be 40,000-50,000 users on line. Users develop a persona and are seen on screen as a human figure or avatar. Avatars move through Second Life by walking, flying, or teleporting. Users form communities or groups of mutual interest such as music, computer graphics, and education. These groups communicate via e-mail, voice, and text within Second Life. Information on downloading the Second Life browser and joining can be found on the Second Life website: www.secondlife.com. This poster details Phase II in the development of Lunar Exploration Island (LEI) located in Second Life. Phase I LEI highlighted NASA’s LRO/LCROSS mission. Avatars enter LEI via teleportation arriving at a hall of flight housing interactive exhibits on the LRO/ LCROSS missions including full size models of the two spacecraft and launch vehicle. Storyboards with information about the missions interpret the exhibits while links to external websites provide further information on the mission, both spacecraft’s instrument suites, and related EPO. Other lunar related activities such as My Moon and NLSI EPO programs. A special exhibit was designed for International Observe the Moon Night activities with links to websites for further information. The sim includes several sites for meetings, a conference stage to host talks, and a screen for viewing NASATV coverage of mission and other televised events. In Phase II exhibits are updated to reflect on-going lunar exploration highlights, discoveries, and future missions. A new section of LEI has been developed to showcase NASA’s Lunar Quest program. A new exhibit hall with Lunar Quest information has been designed and is being populated with Lunar Quest information, spacecraft models (LADEE is in place) and kiosks. A two stage interactive demonstration illustrates lunar phases with static and 3-D stations. As NASA’s Lunar Quest program matures further exhibits are planned. One proposal is to develop a teacher-training program to acquaint teachers with the Lunar Quest program and to provide resources.
Measurements of Photoelectric Yield and Physical Properties of Individual Lunar Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, F. A.; Taylor, L.; Hoover, R.
2005-01-01
Micron size dust grains levitated and transported on the lunar surface constitute a major problem for the robotic and human habitat missions for the Moon. It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron/sub-micron size dust grains. Transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and the levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics is believed to have a severe impact on the human habitat and the lifetime and operations of a variety of equipment, it is necessary to investigate the phenomena and the charging properties of the lunar dust in order to develop appropriate mitigating strategies. We will present results of some recent laboratory experiments on individual micro/sub-micron size dust grains levitated in electrodynamic balance in simulated space environments. The experiments involve photoelectric emission measurements of individual micron size lunar dust grains illuminated with UV radiation in the 120-160 nm wavelength range. The photoelectric yields are required to determine the charging properties of lunar dust illuminated by solar UV radiation. We will present some recent results of laboratory measurement of the photoelectric yields and the physical properties of individual micron size dust grains from the Apollo and Luna-24 sample returns as well as the JSC-1 lunar simulants.
Apollo 17 preliminary science report. [Apollo 17 investigation of Taurus-Littrow lunar region
NASA Technical Reports Server (NTRS)
1973-01-01
An analysis of the Apollo 17 flight is presented in the form of a preliminary science report. The subjects discussed are: (1) Apollo 17 site selection, (2) mission description, (3) geological investigation of landing site, (4) lunar experiments, (5) visual flight flash phenomenon, (6) volcanic studies, (7) mare ridges and related studies, (8) remote sensing and photogrammetric studies, and (9) astronomical photography. Extensive photographic data are included for all phases of the mission.
Feasibility and Definition of a Limited-Scale Lunar Polar Volatiles Prospecting Mission
NASA Astrophysics Data System (ADS)
Heldmann, J. L.; Elphic, R. C.; Colaprete, A.; Beyer, R. A.; Fong, T.; Cockrell, J.; Pedersen, L.
2011-12-01
The recent Lunar Crater Observing and Sensing Satellite (LCROSS) mission has provided evidence for significant amounts of cold-trapped volatiles in Cabeus crater near the Moon's south pole. Moreover, LRO/Diviner measurements of extremely cold lunar polar surface temperatures imply that volatiles can be stable outside of areas of strict permanent shadow. These discoveries hint at potentially extensive near-surface deposits at both lunar poles. The physical state, composition and distribution of these volatiles are key scientific issues that relate to source and emplacement mechanisms. These issues are also important for enabling lunar in situ resource utilization (ISRU). An assessment of the feasibility of cold-trapped volatile ISRU requires a priori information regarding the location, form, quantity, and potential for extraction of available resources. A small robotic mission to a persistently shadowed but briefly sunlit location with suitable environmental conditions (e.g., short periods of oblique sunlight and subsurface cryogenic temperatures which permit volatile trapping) can help answer these scientific and exploration questions. Key parameters must be defined in order to identify suitable landing sites, plan surface operations, and achieve mission success. To address this need, we have conducted an initial study for a lunar polar volatile prospecting mission, assuming the use of a solar-powered robotic lander and rover. Here we present the mission concept, goals and objectives, and landing site selection analysis for a short-duration, landed, solar-powered mission to a volatile-rich site.
Feasibility and Definition of a Lunar Polar Volatiles Prospecting Mission
NASA Technical Reports Server (NTRS)
Heldmann, Jennifer; Elphic, Richard; Colaprete, Anthony; Fong, Terry; Pedersen, Liam; Beyer, Ross; Cockrell, James
2012-01-01
The recent Lunar Crater Observing and Sensing Satellite (LCROSS) mission has provided evidence for significant amounts of cold trapped volatiles in Cabeus crater near the Moon's south pole. Moreover, LRO/Diviner measurements of extremely cold lunar polar surface temperatures imply that volatiles can be stable outside or areas of strict permanent shadows. These discoveries suggest that orbital neutron spectrometer data point to extensive deposits at both lunar poles. The physical state, composition and distribution of these volatiles are key scientific issues that relate to source and emplacement mechanisms. These issues are also important for enabling lunar in situ resource utilization (ISRU). An assessment of the feasibility of cold-trapped volatile ISRU requires a priori information regarding the location, form, quantity, and potential for extraction of available resources. A robotic mission to a mostly shadowed but briefly .unlit location with suitable environmental conditions (e.g. short periods of oblique sunlight and subsurface cryogenic temperatures which permit volatile trapping) can help answer these scientific and exploration questions. Key parameters must be defined in order to identify suitable landing sites, plan surface operations, and achieve mission success. To address this need, we have conducted an initial study for a lunar polar volatile prospecting mission, assuming the use of a solar-powered robotic lander and rover. Here we present the mission concept, goals and objectives, and landing site selection analysis for a short-duration, landed, solar-powered mission to a potential hydrogen volatile-rich site.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.
2018-01-01
The nuclear thermal rocket (NTR) has frequently been identified as a key space asset required for the human exploration of Mars. This proven technology can also provide the affordable access through cislunar space necessary for commercial development and sustained human presence on the Moon. It is a demonstrated technology capable of generating both high thrust and high specific impulse (I(sub sp) approx. 900 s) twice that of today's best chemical rockets. Nuclear lunar transfer vehicles-consisting of a propulsion stage using three approx. 16.5-klb(sub f) small nuclear rocket engines (SNREs), an in-line propellant tank, plus the payload-are reusable, enabling a variety of lunar missions. These include cargo delivery and crewed lunar landing missions. Even weeklong ''tourism'' missions carrying passengers into lunar orbit for a day of sightseeing and picture taking are possible. The NTR can play an important role in the next phase of lunar exploration and development by providing a robust in-space lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supported by a variety of commercial activities such as in-situ propellant production used to supply strategically located propellant depots and transportation nodes. The use of lunar liquid oxygen (LLO2) derived from iron oxide (FeO)-rich volcanic glass beads, found in numerous pyroclastic deposits on the Moon, can significantly reduce the launch mass requirements from Earth by enabling reusable, surface-based lunar landing vehicles (LLVs)that use liquid oxygen and hydrogen (LO2/LH2) chemical rocket engines. Afterwards, a LO2/LH2 propellant depot can be established in lunar equatorial orbit to supply the LTS. At this point a modified version of the conventional NTR-called the LO2-augmented NTR, or LANTR-is introduced into the LTS allowing bipropellant operation and leveraging the mission benefits of refueling with lunar-derived propellants for Earth return. The bipropellant LANTR engine utilizes the large divergent section of its nozzle as an ''afterburner'' into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engine's choked sonic throat-essentially ''scramjet propulsion in reverse.'' By varying the oxygen-to-hydrogen mixture ratio, LANTR engines can operate over a range of thrust and I(sub sp) values while the reactor core power level remains relatively constant. A LANTR-based LTS offers unique mission capabilities including short-transit-time crewed cargo transports. Even a ''commuter'' shuttle service may be possible allowing ''one-way'' trip times to and from the Moon on the order of 36 hours or less. If only 1% of the extracted LLO2 propellant from identified resource sites were available for use in lunar orbit, such a supply could support daily commuter flights to the Moon for many thousands of years! This report outlines an evolutionary architecture and examines a variety of mission types and transfer vehicle designs, along with the increasing demands on LLO2 production as mission complexity and velocity change delta V requirements increase. A comparison of vehicle features and engine operating characteristics, for both NTR and LANTR engines, is also provided along with a discussion of the propellant production and mining requirements associated with using FeO-rich volcanic glass as source material.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.
2017-01-01
The nuclear thermal rocket (NTR) has frequently been identified as a key space asset required for the human exploration of Mars. This proven technology can also provide the affordable access through cislunar space necessary for commercial development and sustained human presence on the Moon. It is a demonstrated technology capable of generating both high thrust and high specific impulse (Isp approx.900 s) twice that of todays best chemical rockets. Nuclear lunar transfer vehicles consisting of a propulsion stage using three approx.16.5 klbf Small Nuclear Rocket Engines (SNREs), an in-line propellant tank, plus the payload can enable a variety of reusable lunar missions. These include cargo delivery and crewed lunar landing missions. Even weeklong tourism missions carrying passengers into lunar orbit for a day of sightseeing and picture taking are possible. The NTR can play an important role in the next phase of lunar exploration and development by providing a robust in-space lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supported by a variety of commercial activities such as in-situ propellant production used to supply strategically located propellant depots and transportation nodes. The use of lunar liquid oxygen (LLO2) derived from iron oxide (FeO)-rich volcanic glass beads, found in numerous pyroclastic deposits on the Moon, can significantly reduce the launch mass requirements from Earth by enabling reusable, surface-based lunar landing vehicles (LLVs) using liquid oxygen/hydrogen (LO2/H2) chemical rocket engines. Afterwards, a LO2/H2 propellant depot can be established in lunar equatorial orbit to supply the LTS. At this point a modified version of the conventional NTR called the LOX-augmented NTR, or LANTR is introduced into the LTS allowing bipropellant operation and leveraging the mission benefits of refueling with lunar-derived propellants for Earth return. The bipropellant LANTR engine utilizes the large divergent section of its nozzle as an afterburner into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engines choked sonic throat - essentially scramjet propulsion in reverse. By varying the oxygen-to-hydrogen mixture ratio, LANTR engines can operate over a range of thrust and Isp values while the reactor core power level remains relatively constant. A LANTR-based LTS offers unique mission capabilities including short transit time crewed cargo transports. Even a commuter shuttle service may be possible allowing one-way trip times to and from the Moon on the order of 36 hours or less. If only 1 of the extracted LLO2 propellant from identified resource sites were available for use in lunar orbit, such a supply could support daily commuter flights to the Moon for many thousands of years! The proposed paper outlines an evolutionary architecture and examines a variety of mission types and transfer vehicle designs, along with the increasing demands on LLO2 production as mission complexity and (Delta)V requirements increase. A comparison of vehicle features and engine operating characteristics, for both NTR and LANTR engines, is also provided along with a discussion of the propellant production and mining requirements associated with using FeO-rich volcanic glass as source material.
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Killen, R. M.; Hurley, D. M.; Hodges, R. R.; Halekas, J. S.; Delory, G. T.
2012-01-01
We suggest that energization processes like ion sputtering and impact vaporization can eject/release polar water molecules residing within lunar cold trapped regions with sufficient velocity to allow their redistribution to mid-latitudes. We consider the possibility that these polar-ejected molecules can be an additional (but not dominant) contribution to the water/OH veneer observed as a 3 micron absorption feature at mid-latitudes by Chandrayaan-I, Cassini, and EPOXI. Taking the conservative case that polar water is ejected only from the floor of polar craters with an 0.1 % icy regolith then overall source rates are near 10(exp 18) H20s/s. This outflow amounts to approx 10(exp -7) kg/s of water to be ejected from each pole and is a water source rate that is 10(exp .5 lower than the overall exospheric source rate for all species. Hence, the out-flowing polar water is a perturbation in the overall exosphere composition & dynamics. This polar water 'fountain' model may not fully account for the relatively high concentrations in the mid-latitude water veneer observed in the IR (approx 10-1000 ppm). However, it may account for some part of the veneer. We note that the polar water fountain source rates scale linearly with ice concentration, and larger mass fractions of polar crater water should provide correspondingly larger fractions of water emission out of the poles which then 'spills' on to mid-latitude surfaces.
The MEOW lunar project for education and science based on concurrent engineering approach
NASA Astrophysics Data System (ADS)
Roibás-Millán, E.; Sorribes-Palmer, F.; Chimeno-Manguán, M.
2018-07-01
The use of concurrent engineering in the design of space missions allows to take into account in an interrelated methodology the high level of coupling and iteration of mission subsystems in the preliminary conceptual phase. This work presents the result of applying concurrent engineering in a short time lapse to design the main elements of the preliminary design for a lunar exploration mission, developed within ESA Academy Concurrent Engineering Challenge 2017. During this program, students of the Master in Space Systems at Technical University of Madrid designed a low cost satellite to find water on the Moon south pole as prospect of a future human lunar base. The resulting mission, The Moon Explorer And Observer of Water/Ice (MEOW) compromises a 262 kg spacecraft to be launched into a Geostationary Transfer Orbit as a secondary payload in the 2023/2025 time frame. A three months Weak Stability Boundary transfer via the Sun-Earth L1 Lagrange point allows for a high launch timeframe flexibility. The different aspects of the mission (orbit analysis, spacecraft design and payload) and possibilities of concurrent engineering are described.
NASA Astrophysics Data System (ADS)
Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Bussey, Ben; McGovern, Andrew; Beyer, Ross; Lees, David; Deans, Matt
2016-10-01
Studies of lunar polar volatile deposits are of interest for scientific purposes to understand the nature and evolution of the volatiles, and also for exploration reasons as a possible in situ resource to enable long term human exploration and settlement of the Moon. Both theoretical and observational studies have suggested that significant quantities of volatiles exist in the polar regions, although the lateral and horizontal distribution remains unknown at the km scale and finer resolution. A lunar polar rover mission is required to further characterize the distribution, quantity, and character of lunar polar volatile deposits at these higher spatial resolutions. Here we present a case study for NASA's Resource Prospector (RP) mission concept for a lunar polar rover and utilize this mission architecture and associated constraints to evaluate whether a suitable landing site exists to support an RP flight mission. We evaluate the landing site criteria to characterize the Haworth Crater region in terms of expected hydrogen abundance, surface topography, and prevalence of shadowed regions, as well as solar illumination and direct to Earth communications as a function of time to develop a notional rover traverse plan that addresses both science and engineering requirements. We also present lessons-learned regarding lunar traverse path planning focusing on the critical nature of landing site selection, the influence of illumination patterns on traverse planning, the effects of performing shadowed rover operations, the influence of communications coverage on traverse plan development, and strategic planning to maximize rover lifetime and science at end of mission. Here we present a detailed traverse path scenario for a lunar polar volatiles rover mission and find that the particular site north of Haworth Crater studied here is suitable for further characterization of polar volatile deposits.
NASA Technical Reports Server (NTRS)
Lowman, Paul. D., Jr.
1996-01-01
This paper proposes a comprehensive incremental program, Lunar Limb Observatory (LLO), for a return to the Moon, beginning with robotic missions and ending with a permanent lunar settlement. Several recent technological developments make such a program both affordable and scientifically valuable: robotic telescopes, the Internet, light-weight telescopes, shared- autonomy/predictive graphics telerobotic devices, and optical interferometry systems. Reasons for focussing new NASA programs on the Moon include public interest, Moon-based astronomy, renewed lunar exploration, lunar resources (especially helium-3), technological stimulus, accessibility of the Moon (compared to any planet), and dispersal of the human species to counter predictable natural catastrophes, asteroidal or cometary impacts in particular. The proposed Lunar Limb Observatory would be located in the crater Riccioli, with auxiliary robotic telescopes in M. Smythii and at the North and South Poles. The first phase of the program, after site certification, would be a series of 5 Delta-launched telerobotic missions to Riccioli (or Grimaldi if Riccioli proves unsuitable), emplacing robotic telescopes and carrying out surface exploration. The next phase would be 7 Delta-launched telerobotic missions to M. Smythii (2 missions), the South Pole (3 missions), and the North Pole (2 missions), emplacing robotic telescopes to provide continuous all-sky coverage. Lunar base establishment would begin with two unmanned Shuttle/Fitan-Centaur missions to Riccioli, for shelter emplacement, followed by the first manned return, also using the Shuttle/Fitan-Centaur mode. The main LLO at Riccioli would then be permanently or periodically inhabited, for surface exploration, telerobotic rover and telescope operation and maintenance, and support of Earth-based student projects. The LLO would evolve into a permanent human settlement, serving, among other functions, as a test area and staging base for the exploration, settlement, and terraforming of Mars.
NASA Astrophysics Data System (ADS)
Lowman, Paul. D., Jr.
1996-10-01
This paper proposes a comprehensive incremental program, Lunar Limb Observatory (LLO), for a return to the Moon, beginning with robotic missions and ending with a permanent lunar settlement. Several recent technological developments make such a program both affordable and scientifically valuable: robotic telescopes, the Internet, light-weight telescopes, shared- autonomy/predictive graphics telerobotic devices, and optical interferometry systems. Reasons for focussing new NASA programs on the Moon include public interest, Moon-based astronomy, renewed lunar exploration, lunar resources (especially helium-3), technological stimulus, accessibility of the Moon (compared to any planet), and dispersal of the human species to counter predictable natural catastrophes, asteroidal or cometary impacts in particular. The proposed Lunar Limb Observatory would be located in the crater Riccioli, with auxiliary robotic telescopes in M. Smythii and at the North and South Poles. The first phase of the program, after site certification, would be a series of 5 Delta-launched telerobotic missions to Riccioli (or Grimaldi if Riccioli proves unsuitable), emplacing robotic telescopes and carrying out surface exploration. The next phase would be 7 Delta-launched telerobotic missions to M. Smythii (2 missions), the South Pole (3 missions), and the North Pole (2 missions), emplacing robotic telescopes to provide continuous all-sky coverage. Lunar base establishment would begin with two unmanned Shuttle/Fitan-Centaur missions to Riccioli, for shelter emplacement, followed by the first manned return, also using the Shuttle/Fitan-Centaur mode. The main LLO at Riccioli would then be permanently or periodically inhabited, for surface exploration, telerobotic rover and telescope operation and maintenance, and support of Earth-based student projects. The LLO would evolve into a permanent human settlement, serving, among other functions, as a test area and staging base for the exploration, settlement, and terraforming of Mars.
Enabling lunar and space missions by laser power transmission
NASA Technical Reports Server (NTRS)
Deyoung, R. J.; Nealy, J. E.; Humes, D. H.; Meador, W. E.
1992-01-01
Applications are proposed for laser power transmission on the Moon. A solar-pumped laser in lunar orbit would beam power to the lunar surface for conversion into either electricity or propulsion needs. For example, lunar rovers could be much more flexible and lighter than rovers using other primary power sources. Also, laser power could be absorbed by lunar soil to create a hard glassy surface for dust-free roadways and launch pads. Laser power could also be used to power small lunar rockets or orbital transfer vehicles, and finally, photovoltaic laser converters could power remote excavation vehicles and human habitats. Laser power transmission is shown to be a highly flexible, enabling primary power source for lunar missions.
May Small Digital PZT And Radio Beacons Improve The LPhL For Future Lunar Missions?
NASA Astrophysics Data System (ADS)
Ping, Jinsong; Su, Xiaoli; Hanada, Hideo; Gusev, Alexandra; Li, Jinling; Shi, Xian; Liu, Qinghui
2012-08-01
LLR is the current unique precise method to measure the LPhL since the Apollo missions. After 40years observations, the measu ring error of LPhL amplitudes have been reduced to about a couple of tens milli-arcseconds. To improve the measuring precision of LPhL, the new ideas of digital PZT (ILOM) and radio beacons are suggested by researchers from Japan, Russia and China for up - coming lunar missions. To promote above ideas in these mission s, we developed a prototype PZT, proposed radio beacons on CE - 3/4 lunar landing missions and on Lunar - Glob/Resource lunar landing missions. We are also developing the small VLBI antennas in Russia and China to prepare the possible LPhL joint in - beam radio observation from later 2013 or earlier 2014. The analyzing work of simulations have been carried out. Additionally, the newly developed digital PZT technique will also be used on measuring the local or regional plume line variation, which has been recently noticed closely related to the volcano and earthquake activities on the Earth (See Li et al. and Yang et al. in this meeting).
Lunar Reconnaissance Orbiter Artist Concept
2008-07-24
Artist rendering of the Lunar Reconnaissance Orbiter LRO, above the moon. LRO carries seven instruments that make comprehensive remote sensing observations of the moon and measurements of the lunar radiation environment. The LRO mission is managed by NASA Goddard for the Science Mission Directorate at NASA Headquarters in Washington. http://photojournal.jpl.nasa.gov/catalog/PIA18163
Radiation and Plasma Environments for Lunar Missions
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Edwards, David L.; Altstatt, Richard L.; Diekmann, Anne M.; Blackwell, William C., Jr.; Harine, Katherine J.
2006-01-01
Space system design for lunar orbit and extended operations on the lunar surface requires analysis of potential system vulnerabilities to plasma and radiation environments to minimize anomalies and assure that environmental failures do not occur during the mission. Individual environments include the trapped particles in Earth s radiation belts, solar energetic particles and galactic cosmic rays, plasma environments encountered in transit to the moon and on the lunar surface (solar wind, terrestrial magnetosheath and magnetotail, and lunar photoelectrons), and solar ultraviolet and extreme ultraviolet photons. These are the plasma and radiation environments which contribute to a variety of effects on space systems including total ionizing dose and dose rate effects in electronics, degradation of materials in the space environment, and charging of spacecraft and lunar dust. This paper provides a survey of the relevant charged particle and photon environments of importance to lunar mission design ranging from the lowest (approx.few 10 s eV) photoelectron energies to the highest (approx.GeV) cosmic ray energies.
2009-05-08
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., a technician checks the thermal blanket around the LROC narrow angle camera during closeout on the Lunar Reconnaissance Orbiter, or LRO, before its mating with NASA's Lunar CRater Observation and Sensing Satellite, known as LCROSS, spacecraft. Above the LROC is the LOLA, which will provide a precise global lunar topographic model and geodetic grid; and top right, the DIVINER, which will measure lunar surface temperatures at scales that provide essential information for future surface operations and exploration. The satellite's primary mission is to search for water ice on the moon in a permanently shadowed crater near one of the lunar poles. LCROSS is a low-cost, accelerated-development, companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO. LCROSS and LRO are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. Launch is targeted for no earlier than June 2 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
Lunar exploration and the social dimension
NASA Astrophysics Data System (ADS)
Pop, Virgiliu
2002-10-01
The scientific results of the lunar exploration missions have been the subject of many article and books - yet their spiritual implications need not be overlooked. Holy texts of different religions were carried to the Moon, astronauts delivered prayers from the lunar orbit, and some of them even found new spiritual vocations on the Moon. People of all faiths were united in prayer when the astronauts faced danger, and the lunar missions received the blessings of many religious leaders - although there were few voices that saw the lunar landings as spiritually wrong.
Apollo 8 Mission image,Moon, farside near terminator
2009-02-19
AS08-14-2400 (21-27 Dec. 1968) --- This near vertical photograph of the lunar surface taken with a telephoto lens during the Apollo 8 lunar orbit mission. The area covered by the photograph is approximately 20 miles on a side, and the photographed area is located at about 3 degrees south latitude and 160 degrees west longitude on the lunar farside. The lunar surface probably had less pronounced color than indicated by this print.
LAUNCH - APOLLO XIII - LUNAR LANDING MISSION - KSC
1970-04-11
S70-34855 (11 April 1970) --- The Apollo 13 (Spacecraft 109/Lunar Module 7/Saturn 508) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), at 2:13 p.m. (EST), April 11, 1970. The crew of the National Aeronautics and Space Administration's (NASA) third lunar landing mission are astronauts James A., Lovell Jr., commander; John L. Swigert Jr., command module pilot; and Fred W. Haise Jr., lunar module pilot.
Launch of the Apollo 14 lunar landing mission
1971-01-31
S71-18395 (31 Jan. 1971) --- The huge, 363-feet tall Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida at 4:03:02 p.m. (EST), Jan. 31, 1971, on a lunar landing mission. Aboard the Apollo 14 spacecraft were astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.
Launch - Apollo 14 Lunar Landing Mission - KSC
1971-01-31
S71-17621 (31 Jan. 1971) --- The huge, 363-feet tall Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center, Florida, at 4:03:02 p.m. (EST), Jan. 31, 1981, on a lunar landing mission. Aboard the Apollo 14 spacecraft were astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.
LAUNCH - APOLLO 13 - LUNAR LANDING MISSION - KSC
1970-04-11
S70-34852 (11 April 1970) --- The Apollo 13 (Spacecraft 109/Lunar Module 7/Saturn 508) space vehicle is launched from Pad A Launch Complex 39, Kennedy Space Center (KSC), at 2:13 p.m. (EST), April 11, 1970. The crew of the National Aeronautics and Space Administration's (NASA) third lunar landing mission are astronauts James A. Lovell Jr., commander; John L. Swigert Jr., command module pilot; and Fred W. Haise Jr., lunar module pilot.
Impact of lunar oxygen production on direct manned Mars missions
NASA Technical Reports Server (NTRS)
Young, Roy M., Jr.; Tucker, William B.
1992-01-01
A manned Mars program made up of six missions is evaluated to determine the impact of using lunar liquid oxygen (LOX) as a propellant. Two departure and return nodes, low Earth orbit and low lunar orbit, are considered, as well as two return vehicle configurations, a full 70,000-kg vehicle and a 6800-kg capsule. The cost of lunar LOX delivered to orbit is expressed as a ratio of Earth launch cost.
Scattering Properties of Lunar Dust Analogs
NASA Technical Reports Server (NTRS)
Davis, S.; Marshall, J.; Richard, D.; Adler, D.; Adler, B.
2013-01-01
A number of space missions are planned to explore the lunar exosphere which may contain a small population of dust particles. The objective of this paper is to present preliminary results from scattering experiments on a suspension of lunar simulants to support one such mission. The intensity of the light scattered from a lunar simulant is measured with a commercial version of the spectrometer used in the forthcoming LADEE mission. Physical properties of the lunar simulant are described along with two similarly-sized reference microspheres. We confirm that micron-sized particles tend to form agglomerates rather than remaining isolated entities and that certain general characteristic of the target particles can be predicted from intensity measurements alone. These results can be used directly to assess general features of the lunar exosphere from LADEE instrument data. Further analysis of particle properties from such remote sensing data will require measurements of polarization signatures.
1969-11-26
S69-60294 (26 Nov. 1969) --- One of the first views of the Apollo 12 lunar rocks is this photograph of the open sample return container. The large rock is approximately 7 1/2 inches across and is larger than any rock brought back to Earth by the crew of the Apollo 11 lunar landing mission. Two of the rocks in the first container are crystalline and generally lighter in color than those returned on the first lunar landing. The rocks in this box are medium charcoal brown/gray in color.
The persistent dream - Soviet plans for manned lunar missions.
NASA Astrophysics Data System (ADS)
Van Den Abeelen, L.
Soviet hopes of achieving the supreme space `first' were crushed in July 1969 when an American became the first human on the Moon. Following the four unsuccessful flight tests of the N1 lunar booster, the Soviet manned lunar landing effort was officially suspended, but even as the Russians were denying they had ever planned to land a cosmonaut on the moon, NPO Energia was designing craft for a long-term scientific, even semi-industrial presence on the lunar surface.
Preliminary catalog of pictures taken on the lunar surface during the Apollo 16 mission
NASA Technical Reports Server (NTRS)
Batson, R. M.; Carson, K. B.; Reed, V. S.; Tyner, R. L.
1972-01-01
A catalog of all pictures taken from the lunar module or the lunar surface during the Apollo 16 lunar stay is presented. The tabulations are arranged for the following specific uses: (1) given the number of a particular frame, find its location in the sequence of lunar surface activity, the station from which it was taken and the subject matter of the picture; (2) given a particular location or activity within the sequence of lunar surface activity, find the pictures taken at that time and their subject matter; and (3) given a sample number from the voice transcript listed, find the designation assigned to the same sample by the lunar receiving laboratory.
Lunar magnetic permeability, magnetic fields, and electrical conductivity temperature
NASA Technical Reports Server (NTRS)
Parkin, C. W.
1978-01-01
In the time period 1969-1972 a total of five magnetometers were deployed on the lunar surface during four Apollo missions. Data from these instruments, along with simultaneous measurements from other experiments on the moon and in lunar orbit, were used to study properties of the lunar interior and the lunar environment. The principal scientific results from analyses of the magnetic field data are discussed. The results are presented in the following main categories: (1) lunar electrical conductivity, temperature, and structure; (2) lunar magnetic permeability, iron abundance, and core size limits; (3) the local remnant magnetic fields, their interaction with the solar wind, and a thermoelectric generator model for their origin. Relevant publications and presented papers are listed.
Candidate Mission from Planet Earth control and data delivery system architecture
NASA Technical Reports Server (NTRS)
Shapiro, Phillip; Weinstein, Frank C.; Hei, Donald J., Jr.; Todd, Jacqueline
1992-01-01
Using a structured, experienced-based approach, Goddard Space Flight Center (GSFC) has assessed the generic functional requirements for a lunar mission control and data delivery (CDD) system. This analysis was based on lunar mission requirements outlined in GSFC-developed user traffic models. The CDD system will facilitate data transportation among user elements, element operations, and user teams by providing functions such as data management, fault isolation, fault correction, and link acquisition. The CDD system for the lunar missions must not only satisfy lunar requirements but also facilitate and provide early development of data system technologies for Mars. Reuse and evolution of existing data systems can help to maximize system reliability and minimize cost. This paper presents a set of existing and currently planned NASA data systems that provide the basic functionality. Reuse of such systems can have an impact on mission design and significantly reduce CDD and other system development costs.
Flight Software for the LADEE Mission
NASA Technical Reports Server (NTRS)
Cannon, Howard N.
2015-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft was launched on September 6, 2013, and completed its mission on April 17, 2014 with a directed impact to the Lunar Surface. Its primary goals were to examine the lunar atmosphere, measure lunar dust, and to demonstrate high rate laser communications. The LADEE mission was a resounding success, achieving all mission objectives, much of which can be attributed to careful planning and preparation. This paper discusses some of the highlights from the mission, and then discusses the techniques used for developing the onboard Flight Software. A large emphasis for the Flight Software was to develop it within tight schedule and cost constraints. To accomplish this, the Flight Software team leveraged heritage software, used model based development techniques, and utilized an automated test infrastructure. This resulted in the software being delivered on time and within budget. The resulting software was able to meet all system requirements, and had very problems in flight.
Overview of the Altair Lunar Lander Thermal Control System Design
NASA Technical Reports Server (NTRS)
Stephan, Ryan A.
2010-01-01
NASA's Constellation Program has been developed to successfully return humans to the Lunar surface by 2020. The Constellation Program includes several different project offices including Altair, which is the next generation Lunar Lander. The planned Altair missions are very different than the Lunar missions accomplished during the Apollo era. These differences have resulted in a significantly different thermal control system architecture. The current paper will summarize the Altair mission architecture and the various operational phases. In addition, the derived thermal requirements will be presented. The paper will conclude with a brief description of the thermal control system designed to meet these unique and challenging thermal requirements.
Report from ILEWG to the COSPAR Panel on Exploration
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
The International Lunar Exploration Working Group (ILEWG) was established in April 1995 at a meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon. It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and exploration information about the Moon. ILEWG was used to feed forward results from lunar missions such as SMART1 to the next ones, and we look now to integrate lessons from all recent orbiters and landers, for the upcoming landers, sample return missions, and human activities. We give a report on ILEWG community activities, refer to COSPAR and ILEWG ICEUM and lunar conferences and declarations [1-18], and discuss the follow-up of GLUC/ICEUM11 declaration relevant to COSPAR PEX*. References: [1] 1st International Lunar Workshop, Balsiger H. et al., Editors, European Space Agency, 1994. ESA-SP-1170. [2] 2nd International Lunar Workshop, Kyoto, H. Mizutani, editor, Japan Space Forum Publisher, 1997. [3] 3rd International Lunar Workshop, Moscow 1998, E. Galimov, editor. [4] ICEUM4, ESTEC, 2000, ESA SP-462, B.H. Foing & M. Perry, editors. [5] ICEUM5, Hawaii Nov 2003, Durst S.M. et al, Editors, Vol 108, 1-576 pp, Science and Technology Series, American Astronautical Society, 2004. [6] ICEUM6, Udaipur 2004, Bhandari N., Editor, Journal Earth Sys-tem Science, India, 114, No6, Dec 2005, pp. 573-841. [7] ICEUM7, Toronto Sept 2005, sci.esa.int/ilewg. [8] ICEUM8, Beijing July 2006, Journal of Chinese Society of Astronautics, Vol. 28 Sup., 2007, Ji W., Editor. [9] ICEUM9, Sorrento, Italy, Foing B., Espinasse S., Kosters G., Editors. http://sci.esa.int/iceum9, Dec. 2007), [11] Ehrenfreund, P., Foing, B.H., Cellino, A. Editors, The Moon and Near Earth Objects, ASR Vol 37, 1, 2006. [12] Foing, B.H. et al editors, 'Astronomy and Space Science from the Moon', ASR 14, 6, 1994. [13] Ip W.-H., Foing, B.H., Masson Ph.L., editors, The Moon and Mars, ASR Vol 23, 11, 1999. [14] Foing, B.H. et al, editor, Lunar Exploration, Planetary and Space Science, Vol 50, 14-15, 2002. [15] Foing, B.H., Heather, D. editors, 'Lunar Exploration 2000', ASR Vol 30, Nr 8, 2002. [16] Huntress, W. et al 'The next steps in exploring deep space - A cosmic study by the IAA', Acta Astronautica, Vol 58, Issues 6-7, 2006, p302-377. [17] http://sci.esa.int/ilewg/43654-declaration-iceum10-leag-srr-florida-2008/ [18] Ehrenfreund P. et al (COSPAR planetary exploration panel report) 2012, ASR Vol 49, Nr 1, pp. 2-48. *Relevant extract from GLUC/ICEUM11 declaration: “467 International Lunar Explorers, registered delegates from 26 countries, assembled at GLUC Global Lunar Conference including the 11th ILEWG Conference on Exploration and Utilisation of the Moon (ICEUM11) in Beijing." "1. Science and exploration (related GLUC/ICEUM11 recommendations will be addressed at COSPAR B0.1 Lunar science and exploration session) 2. Technologies and resources - A number of robotic missions to the Moon are now undertaken independently by various nations, with a degree of exchange of information and co-ordination. That should increase towards real co-operation, still allowing areas of competition for keeping the process active, cost-effective and faster. - Lunar landers, pressurized lunar rover projects as presented from Europe, Asia and America are important steps that can create opportunities for international collaboration, within a coordinated village of robotic precursors and assistants to crew missions. - We have to think about development, modernization of existing navigation capabilities, and provision of lunar positioning, navigation and data relay assets to support future robotic and human exploration. New concepts and new methods for transportation have attracted much attention and are of great potential. 3. Infrastructures and human aspects - It is recommended to have technical sessions and activities dealing with different aspects of human adaptation to space environments, the modeling of sub-systems, microbial protection and use of inflatable technologies - While the Moon is the best and next logical step in human exploration, we should make best use of the space stations as stepping stones for exploration and human spaceflight beyond Low Earth Orbit. - Further research is needed on lunar dust aspects in regard to humans and interaction with habitats. We note high interest in CELSS for Moon and Mars bases, and recommend further research and development. - We recommend the development and use of terrestrial analogues research sites and facilities, for technology demonstrations, comparative geology and human performance research, and public engagement. We endorse the proposal of development of a site at La Reunion for international Moon-Mars analogue research. 4. Moon, Space, Society and Young Explorers - We consider that the current legal regime as set out in the Outer Space Treaty and the Moon agreement are satisfactory for current and future missions, but may require further clarification for future exploration. Issues of transparency and security will need to be addressed. - Great things are happening for Young Lunar Explorers, with inspiring missions and hands-on activities as coordinated by ILEWG. Lunar exploration is encouraging students of all ages to pursue higher education. - More possibilities for participatory engagement should be offered to the society for example via inter-disciplinary activities with the humanities. - We appreciate the work from COSPAR panel on Exploration PEX that should be shared further. - Continued cooperation should be enforced at all levels. The space community feels strongly that joining the forces of space faring nations to explore the Moon should be seriously implemented, with the views of expanding a Global Robotic Village and building in the long run a Manned International Lunar Base.” “We, the participants of the GLUC-ICEUM11 conference, commit to an enhanced global cooperation towards international lunar exploration for the benefit of humankind. Endorsed by the delegates of GLUC-ICEUM11”
NASA Technical Reports Server (NTRS)
Collins, S. J.; Righter, K.; Brandon, A. D.
2005-01-01
LAP 02205 is a 1.2 kg lunar mare basalt meteorite found in the Lap Paz ice field of Antarctica in 2002 [1]. Four similar meteorites were also found within the same region [1] and all five have a combined mass of 1.9 kg (LAP 02224, LAP 02226, LAP 02436 and LAP 03632, hereafter called the LAP meteorites). The LAP meteorites all contain a similar texture, mineral assemblage, and composition. A lunar origin for these samples comes from O isotopic data for LAP 02205 [1], Fe/Mn ratios of pyroxenes [1-5], and the presence of distinct lunar mineralogy such as Fe metal and baddeleyite. The LAP meteorites may represent an area of the Moon, which has never been sampled by Apollo missions, or by other lunar meteorites. The data from this study will be used to compare the LAP meteorites to Apollo mare basalts and lunar basaltic meteorites, and will ultimately help to constrain their origin.
Application of Solar-Electric Propulsion to Robotic and Human Missions in Near-Earth Space
NASA Technical Reports Server (NTRS)
Woodcock, Gordon
2006-01-01
Solar-electric propulsion (SEP) is becoming of interest for application to a wide range of missions. The benefits of SEP are strongly influenced by system element performance, especially that for the power system. Solar array performance is increasing rapidly and promises to continue to do so for another 10 to 20 years (Fig. 1). At the same time, cost per watt is decreasing. Radiation hardness is increasing. New concepts for how to design a SEP are emerging. These improvements lead to changes in the best ways to apply SEP technology to missions, and broadening of the practical uses of SEP technology compared to competing technologies. This paper addresses the evolving characteristics of SEP technology from the point of view of mission design, and how mission profile characteristics can be designed to best take advantage of evolving SEP characteristics. Mission concepts include robotic lunar landers and orbiters; scientific planetary spacecraft; delivery of spacecraft to geosynchronous orbit from inclined and low-inclination launch orbits; and lunar cargo delivery from Earth orbit to lunar orbit. Expendable and re-usable SEP profiles are considered. Flight control considerations are abstracted from recent papers by the author to describe how these influence SEP design and operations.
Overview of the LADEE Ultraviolet-visible Spectrometer: Design, Performance and Planned Operations
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R. C.; Landis, D.; Karcz, J.; Osetinsky, L.; Shirley, M.; Vargo, K.; Wooden, D.
2013-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) is an orbital lunar science mission currently under development to address the goals of the 2003 National Research Council decadal survey, the Lunar Exploration Analysis Group Roadmap, and the "Scientific Context for Exploration of the Moon" (SCEM) report, and has been recommended for execution by the 2011 Planetary Missions Decadal Survey. The mission s focus is to study the pristine state of the lunar atmosphere and dust environment prior to possible lunar exploration activities by countries, including the United States, China, India, and Japan, among others. Activity on the lunar surface has the potential of altering the tenuous lunar atmosphere, but changing the type and concentration of gases in the atmosphere. Before these activities occur it is important to make measurements of the current lunar atmosphere in its unmodified state. LADEE will determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. It will monitor variations in known gases, such as sodium, potassium, argon and helium, and will search for other, as-yet-undetected gases of both lunar and extra-lunar origin. LADEE will also determine whether dust is present in the lunar exosphere, and reveal the processes that contribute to its sources and variability. Launch is planned for August, 2013.
Re-Assessment of "Water on the Moon" after LCROSS
NASA Technical Reports Server (NTRS)
Gibson, Everett K.; Pillinger, Colin T.
2010-01-01
The LCROSS Mission has produced information about the possible presence of water in a permanently shaded regions of the Moon. Without the opportunity to have a controlled impact into a sun-lite site on the Moon, the LCROSS information must be carefully evaluated. The Apollo samples have provided a large amount of information on the nature of lunar hydrogen, water and other volatiles and this information must be considered in any interpretation of the observed data from the LCROSS and other lunar missions. Perhaps the volatiles seen by the LRO/LCROSS mission might be identical to lunar volatiles within ordinary lunar equatorial materials. Until the control experiment of having an impactor strike an equatorially site is carried out, caution must be taken when interpreting the results from the LCROSS mission.
NASA Astrophysics Data System (ADS)
Kuznetsov, Ilya; Zakharov, Alexander; Afonin, Valeri; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Lyash, Andrey; Dolnikov, Gennady; Popel, Sergey; Lisin, Evgeny
2016-07-01
One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. Meteorites bombardment has accompanied by shock-explosive phenomena, disintegration and mix of the lunar soil in depth and on area simultaneously. As a consequence, the lunar soil has undergone melting, physical and chemical transformations. Recently we have the some reemergence for interest of Moon investigation. The prospects in current century declare USA, China, India, and European Union. In Russia also prepare two missions: Luna-Glob and Luna-Resource. Not last part of investigation of Moon surface is reviewing the dust condition near the ground of landers. Studying the properties of lunar dust is important both for scientific purposes to investigation the lunar exosphere component and for the technical safety of lunar robotic and manned missions. The absence of an atmosphere on the Moon's surface is leading to greater compaction and sintering. Properties of regolith and dust particles (density, temperature, composition, etc.) as well as near-surface lunar exosphere depend on solar activity, lunar local time and position of the Moon relative to the Earth's magneto tail. Upper layers of regolith are an insulator, which is charging as a result of solar UV radiation and the constant bombardment of charged particles, creates a charge distribution on the surface of the moon: positive on the illuminated side and negative on the night side. Charge distribution depends on the local lunar time, latitude and the electrical properties of the regolith (the presence of water in the regolith can influence the local distribution of charge). On the day side of Moon near surface layer there exists possibility formation dusty plasma system. Altitude of levitation is depending from size of dust particle and Moon latitude. The distribution of dust particles by size and altitude has estimated with taking into account photoelectrons, electrons and ions of solar wind, solar emission. Dust analyzer instrument PmL for future Russian lander missions intends for investigation the dynamics of dusty plasma near lunar surface. PmL consists of three parts in the case of Luna-Glob: Impact Sensor and two Electric Field Sensors (EFC). There are 9 parts of PmL instrument for Luna-Resource mission: two Impact Sensors, 5 EFC (three on the Boom and two on the lander) and 2 Solar Wind and Dust Analyzers. These days the engineering model of PmL for LG-mission is finished. We obtained first practical results from the simulating chambers with dust particles injectors and plasma inside. All the important achievements are presented in this report as well as the roadmap for further development of PmL instruments in both of Russian lunar missions.
Trajectory Design Tools for Libration and Cis-Lunar Environments
NASA Technical Reports Server (NTRS)
Folta, David C.; Webster, Cassandra M.; Bosanac, Natasha; Cox, Andrew; Guzzetti, Davide; Howell, Kathleen C.
2016-01-01
Innovative trajectory design tools are required to support challenging multi-body regimes with complex dynamics, uncertain perturbations, and the integration of propulsion influences. Two distinctive tools, Adaptive Trajectory Design and the General Mission Analysis Tool have been developed and certified to provide the astrodynamics community with the ability to design multi-body trajectories. In this paper we discuss the multi-body design process and the capabilities of both tools. Demonstrable applications to confirmed missions, the Lunar IceCube Cubesat lunar mission and the Wide-Field Infrared Survey Telescope (WFIRST) Sun-Earth L2 mission, are presented.
Space Transfer Concepts and Analyses for Exploration Missions
NASA Technical Reports Server (NTRS)
Woodcock, Gordon R.
1993-01-01
This report covers the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during Phase 2, developed generic Mars missions profile analysis data, and conducted preliminary analysis of the Mars in-space transportation requirements and implementation from Stafford Committee Synthesis Report. The major effort of the study was the development of the first Lunar Outpost (FLO) baseline which evolved from the Space Station Freedom Hab Module. Modifications for the First Lunar Outpost were made to meet mission requirements and technology advancements.
Power requirements for the first lunar outpost (FLO)
NASA Technical Reports Server (NTRS)
Cataldo, Robert L.; Bozek, John M.
1993-01-01
NASA's Exploration Program Office is currently developing a preliminary reference mission description that lays the framework from which the nation can return to the Moon by the end of the decade. The First Lunar Outpost is the initial phase of establishing a permanent presence on the Moon and the next step of sending humans to Mars. Many systems required for missions to Mars will be verified on the Moon, while still accomplishing valuable lunar science and in-situ resource utilization (ISRU). Some of FLO's major accomplishments will be long duration habitation, extended surface roving (both piloted and teleoperated) and a suite of science experiments, including lunar resources extraction. Of equal challenge will be to provide long life, reliable power sources to meet the needs of a lunar mission.
In space performance of the lunar orbiter laser altimeter (LOLA) laser transmitter
NASA Astrophysics Data System (ADS)
Yu, Anthony W.; Shaw, George B.; Novo-Gradac, Ann Marie; Li, Steven X.; Cavanaugh, John
2011-11-01
In this paper we present the final configuration of the space flight laser transmitter as delivered to the Lunar Orbiter Laser Altimeter (LOLA) instrument along with some in-space operation performance data. The LOLA instrument is designed to map the lunar surface and provide unprecedented data products in anticipation of future manned flight missions. The laser transmitter has been operating on orbit at the Moon continuously since July 2009 and accumulated over 1.8 billion laser shots in space. The LOLA laser transmitter design has heritage dated back to the MOLA laser transmitter launched more than 10 years ago and incorporates lessons learned from previous laser altimeter missions at NASA Goddard Space Flight Center.
NASA Technical Reports Server (NTRS)
Galal, Ken; Colaprete, Tony; Cooley, Steven; Kennedy, Brian; McElrath, Tim
2007-01-01
The Lunar CRater Observation and Sensing Satellite (LCROSS) was competitively selected by the National Aeronautical and Space Administration (NASA) Exploration Systems Mission Directorate (ESMD) as a low-cost (< $80M) 1000 kg secondary payload to be launched with the Lunar Reconnaissance Orbiter (LRO) in October of 2008. LCROSS is a lunar impactor mission that will investigate the presence or absence of water in a permanently shadowed crater. Following launch, trans-lunar injection (TLI) and separation from LRO, LCROSS will remain attached to the launch vehicle's approximately 2300 kg spent Earth Departure Upper Stage (EDUS) and will guide it toward an impact of a permanently shadowed crater at the lunar South Pole. Hours prior to impact, LCROSS will separate from the EDUS and perform a braking maneuver that will allow the spacecraft to take measurements of the resulting EDUS impact ejecta cloud for several minutes, before impacting the crater as well. As a cost-capped secondary mission that must accommodate specific LRO launch dates, LCROSS faces unique challenges and constraints that must be carefully reconciled in order to satisfy an ambitious set of science observation requirements. This paper examines driving mission requirements and constraints and describes the trajectory design and navigation strategy that shape the LCROSS mission.
1969-07-15
Dr. Kurt Debus, director of the Kennedy Space Flight Center (KSC), participated in the countdown demonstration test for the Apollo 11 mission in firing room 1 of the KSC control center. The Apollo 11 mission, the first lunar landing mission, launched from KSC in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.
Replicas of Snoopy and Charlie Brown decorate top of console in MCC
NASA Technical Reports Server (NTRS)
1969-01-01
Replicas of Snoopy and Charlie Brown, the two characters from Charles Schulz's syndicated comic strip 'Peanuts', decorate the top of a console in the Mission Operations Control Room in the Mission Control Center, bldg 30, on the first day of the Apollo 10 lunar orbit mission. During the Apollo 10 lunar orbit operations the Lunar Module will be called Snoopy when it is separated from the Command/Service Modules. The code words for the Command Module will be Charlie Brown.
Lunar Module 4 moved for mating with Lunar Module Adapter at KSC
NASA Technical Reports Server (NTRS)
1969-01-01
Lunar Module 4 being moved for mating with the Spacecraft Lunar Module Adapter in the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building. Lunar module 4 will be flown on the Apollo 10 (Spacecraft 106/Saturn 505) lunar orbit mission.
FIRST LIGHT: MeV ASTROPHYSICS FROM THE MOON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Richard S.; Lawrence, David J., E-mail: richard.s.miller@uah.edu
We report evidence of the first astrophysical source detected from the Moon at MeV energies. Our detection of Cygnus X-1 is a validation of a new investigative paradigm in which the lunar environment is intrinsic to the detection approach: the Lunar Occultation Technique (LOT). NASA’s Lunar Prospector mission served as a proxy for a dedicated LOT-based mission. The characteristic signature of temporal modulation, generated by repeated lunar occultations and encoded within acquired gamma-ray data (0.5–9 MeV), is consistent with an unambiguous detection of Cygnus X-1 at 5.4 σ significance. Source localization and long-term monitoring capabilities of the LOT are alsomore » demonstrated. This “first light” detection verifies the basic tenets of the LOT methodology, reinforces its feasibility as an alternative astronomical detection paradigm for nuclear astrophysics investigations, and is an illustration of the fundamental benefits of the Moon as a platform for science.« less
NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update
NASA Technical Reports Server (NTRS)
Cohen, Barbara A.; Bassler, Julie A.; Ballard, Benjamin; Chavers, Greg; Eng, Doug S.; Hammond, Monica S.; Hill, Larry A.; Harris, Danny W.; Hollaway, Todd A.; Kubota, Sanae;
2010-01-01
NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA's robotic lunar lander flight projects. Additional mission studies have been conducted to support other objectives of the lunar science and exploration community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects.
1969-06-03
S69-35505 (June 1969) --- The prime crews of the Apollo 10 lunar orbit mission and the Apollo 11 lunar landing mission are photographed during an Apollo 10 postflight de-briefing session. Clockwise, from left foreground, are astronauts Michael Collins, Apollo 11 command module pilot; Edwin E. Aldrin Jr., Apollo 11 lunar module pilot; Eugene A. Cernan, Apollo 10 lunar module pilot; Thomas P. Stafford, Apollo 10 commander; Neil A. Armstrong, Apollo 11 commander; and John W. Young, Apollo 10 command module pilot.
The possible effect of reaction wheel unloading on orbit determination for Chang'E-1 lunar mission
NASA Astrophysics Data System (ADS)
Jianguo, Yan; Jingsong, Ping; Fei, Li
During the flight of 3-axis stabilized lunar orbiter i e SELENE main orbiter Chang E-1 due to the overflow of the accumulated angular momentum the reaction-wheel will be unloaded during certain period so as to release the angular momentum for initialization Then the momentum wheel will be reloaded for satellite attitude measurement and control Above action will not only change the attitude but also change the orbit of the spacecraft Assuming the reaction-wheel unloading is carried out twice a day according to the current engineering designation and plan for SELENE main orbiter and Chang E-1 missions considering the algebra configuration of the tracking stations the Moon and the lunar orbiter the orbit determination is simulated for 14 days evolution of lunar orbiter In the simulation the satellite orbit is generated using GEODYNII code Based on the generated orbit the common view time period of the satellite by VLBI and USB network in every day is computed the orbit determination is processed for all the arcs of the orbit The orbit determination result of 28 orbits in 14 days is provided The orbits cover most of the possible geometrical configuration among orbiter the Moon and the tracking network The analysis here can benefit the tracking designation and plan for Chang E-1 mission
Lunar dust and dusty plasmas: Recent developments, advances, and unsolved problems
NASA Astrophysics Data System (ADS)
Popel, S. I.; Zelenyi, L. M.; Golub', A. P.; Dubinskii, A. Yu.
2018-07-01
A renaissance is being observed currently in investigations of the Moon. The Luna-25 and Luna-27 missions are being prepared in Russia. At the same time, in connection with the future lunar missions, theory investigations of dust and dusty plasmas at the Moon are being carried out by scientists of the Space Research Institute of the Russian Academy of Sciences. Here, the corresponding results are reviewed briefly. We present the main theory results of these investigations concerning the lunar dusty plasmas. We show, in particular, the absence of the dead zone near a lunar latitude of 80° where, as was assumed earlier, dust particles cannot rise over the surface of the Moon. This indicates that there are no significant constraints on the Moon landing sites for future lunar missions that will study dust in the surface layer of the Moon. We demonstrate that the electrostatically ejected dust population can exist in the near-surface layer over the Moon while the dust appearing in the lunar exosphere owing to impacts of meteoroids present everywhere. The calculated values of number densities at high altitudes of the particles formed as a result of the impacts of meteoroids with the lunar surface are in accordance (up to an order of magnitude) with the data obtained by the recent NASA mission LADEE. Finally, we formulate new problems concerning the dusty plasma over the lunar surface.
Summary of the Results from the Lunar Orbiter Laser Altimeter after Seven Years in Lunar Orbit
NASA Technical Reports Server (NTRS)
Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan; Lemoine, Frank G.; Head, James W., III; Lucey, Paul G.; Aharonson, Oded; Robinson, Mark S.; Sun, Xiaoli;
2016-01-01
In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, following a 3-month commissioning phase. On completion of its exploration objectives, the LRO mission transitioned to a science mission. After 7 years in lunar orbit, the LOLA instrument continues to map the lunar surface. The LOLA dataset is one of the foundational datasets acquired by the various LRO instruments. LOLA provided a high-accuracy global geodetic reference frame to which past, present and future lunar observations can be referenced. It also obtained high-resolution and accurate global topography that were used to determine regions in permanent shadow at the lunar poles. LOLA further contributed to the study of polar volatiles through its unique measurement of surface brightness at zero phase, which revealed anomalies in several polar craters that may indicate the presence of water ice. In this paper, we describe the many LOLA accomplishments to date and its contribution to lunar and planetary science.
Lunar Prospecting: Searching for Volatiles at the South Pole
NASA Technical Reports Server (NTRS)
Trimble, Jay; Carvalho, Robert
2016-01-01
The Resource Prospector is an in-situ resource utilization (ISRU) technology demonstration mission, planned for a 2021 launch to search for and analyze volatiles at the Lunar South Pole. The mission poses unique operational challenges. Operating at the Lunar South Pole requires navigating a surface with lighting, shadow and regolith characteristics unlike those of previous missions. The short round trip communications time enables reactive surface operations for science and engineering. Navigation of permanently shadowed regions with a solar powered rover creates risks, including power and thermal management, and requires constant real time decision making for safe entry, path selection and egress. The mission plan requires a faster rover egress from the lander than any previous NASA rover mission.
Diagnostic Imaging in the Medical Support of the Future Missions to the Moon
NASA Technical Reports Server (NTRS)
Sargsyan, Ashot E.; Jones, Jeffrey A.; Hamilton, Douglas R.; Dulchavsky, Scott A.; Duncan, J. Michael
2007-01-01
This viewgraph presentation is a course that reviews the diagnostic imaging techniques available for medical support on the future moon missions. The educational objectives of the course are to: 1) Update the audience on the curreultrasound imaging in space flight; 2) Discuss the unique aspects of conducting ultrasound imaging on ISS, interplanetary transit, ultrasound imaging on ISS, interplanetary transit, and lunar surface operations; and 3) Review preliminary data obtained in simulations of medical imaging in lunar surface operations.
1967-11-01
Workmen at the Kennedy Space Center position the nose cone for the 204LM-1, an unmanned Apollo mission that tested the Apollo Lunar Module (LM) in Earth orbit. Also known as Apollo 5, the spacecraft was launched on the fourth Saturn IBC launch vehicle. Developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in MSFC's "building block" approach to the Saturn rocket development, the Saturn IBC utilized Saturn I technology to further develop and refine a larger booster and the Apollo spacecraft capabilities required for the manned lunar missions.
NASA Astrophysics Data System (ADS)
Belbruno, Edward A.; Ridenoure, Rex W.; Fernandez, Jaime
A new concept for robotic lunar missions is presented which combines Pegasus-launched small satellites with Belbruno's concept of Weak-Stability-Boundary trajectories. The demonstration of the WSB trajectory by the Japanese Hiten spacecraft is addressed. Desirable spacecraft attributes for this type of mission are listed.
Lunar magnetic field measurements with a cubesat
NASA Astrophysics Data System (ADS)
Garrick-Bethell, Ian; Lin, Robert P.; Sanchez, Hugo; Jaroux, Belgacem A.; Bester, Manfred; Brown, Patrick; Cosgrove, Daniel; Dougherty, Michele K.; Halekas, Jasper S.; Hemingway, Doug; Lozano, Paulo C.; Martel, Francois; Whitlock, Caleb W.
2013-05-01
We have developed a mission concept that uses 3-unit cubesats to perform new measurements of lunar magnetic fields, less than 100 meters above the Moon's surface. The mission calls for sending the cubesats on impact trajectories to strongly magnetic regions on the surface, and transmitting measurements in real-time to a nearby spacecraft, or directly to the Earth, up until milliseconds before impact. The cubesats and their instruments are partly based on the NSF-funded CINEMA cubesat now in Earth orbit. Two methods of reaching the Moon as a secondary payload are discussed: 1) After launching into geostationary transfer orbit with a communication satellite, a small mother-ship travels into lunar orbit and releases the cubesats on impact trajectories, and 2) The cubesats travel to the Moon using their own propulsion after release into geosynchronous orbit. This latter version would also enable other near-Earth missions, such as constellations for studying magnetospheric processes, and observations of close-approaching asteroids.
NASA Technical Reports Server (NTRS)
Merrill, Raymond G.; Goodliff, Kandyce E.; Mazanek, Daniel D.; Reeves, John D., Jr.
2012-01-01
Historically, when mounting expeditions into uncharted territories, explorers have established strategically positioned base camps to pre-position required equipment and consumables. These base camps are secure, safe positions from which expeditions can depart when conditions are favorable, at which technology and operations can be tested and validated, and facilitate timely access to more robust facilities in the event of an emergency. For human exploration missions into deep space, cis-lunar space is well suited to serve as such a base camp. The outer regions of cis-lunar space, such as the Earth-Moon Lagrange points, lie near the edge of Earth s gravity well, allowing equipment and consumables to be aggregated with easy access to deep space and to the lunar surface, as well as more distant destinations, such as near-Earth Asteroids (NEAs) and Mars and its moons. Several approaches to utilizing a cis-lunar base camp for sustainable human exploration, as well as some possible future applications are identified. The primary objective of the analysis presented in this paper is to identify options, show the macro trends, and provide information that can be used as a basis for more detailed mission development. Compared within are the high-level performance and cost of 15 preliminary cis-lunar exploration campaigns that establish the capability to conduct crewed missions of up to one year in duration, and then aggregate mass in cis-lunar space to facilitate an expedition from Cis-Lunar Base Camp. Launch vehicles, chemical propulsion stages, and electric propulsion stages are discussed and parametric sizing values are used to create architectures of in-space transportation elements that extend the existing in-space supply chain to cis-lunar space. The transportation options to cis-lunar space assessed vary in efficiency by almost 50%; from 0.16 to 0.68 kg of cargo in cis-lunar space for every kilogram of mass in Low Earth Orbit (LEO). For the 15 cases, 5-year campaign costs vary by only 15% from 0.36 to 0.51 on a normalized scale across all campaigns. Thus the development and first flight costs of assessed transportation options are similar. However, the cost of those options per flight beyond the initial operational capability varies by 70% from 0.3 to 1.0 on a normalized scale. The 10-year campaigns assessed begin to show the effect of this large range of cost beyond initial operational capability as they vary approximately 25% with values from 0.75 to 1.0 on the normalized campaign scale. Therefore, it is important to understand both the cost of implementation and first use as well as long term utilization. Finally, minimizing long term recurring costs is critical to the affordability of future human space exploration missions. Finally minimizing long term recurring costs is critical to the affordability of future human space exploration missions.
System Analysis Applied to Autonomy: Application to Human-Rated Lunar/Mars Landers
NASA Technical Reports Server (NTRS)
Young, Larry A.
2006-01-01
System analysis is an essential technical discipline for the modern design of spacecraft and their associated missions. Specifically, system analysis is a powerful aid in identifying and prioritizing the required technologies needed for mission and/or vehicle development efforts. Maturation of intelligent systems technologies, and their incorporation into spacecraft systems, are dictating the development of new analysis tools, and incorporation of such tools into existing system analysis methodologies, in order to fully capture the trade-offs of autonomy on vehicle and mission success. A "system analysis of autonomy" methodology will be outlined and applied to a set of notional human-rated lunar/Mars lander missions toward answering these questions: 1. what is the optimum level of vehicle autonomy and intelligence required? and 2. what are the specific attributes of an autonomous system implementation essential for a given surface lander mission/application in order to maximize mission success? Future human-rated lunar/Mars landers, though nominally under the control of their crew, will, nonetheless, be highly automated systems. These automated systems will range from mission/flight control functions, to vehicle health monitoring and prognostication, to life-support and other "housekeeping" functions. The optimum degree of autonomy afforded to these spacecraft systems/functions has profound implications from an exploration system architecture standpoint.
Concepts and Benefits of Lunar Core Drilling
NASA Technical Reports Server (NTRS)
McNamara, K. M.; Bogard, D. D.; Derkowski, B. J.; George, J. A.; Askew, R. S.; Lindsay, J. F.
2007-01-01
Understanding lunar material at depth is critical to nearly every aspect of NASA s Vision and Strategic Plan. As we consider sending human s back to the Moon for brief and extended periods, we will need to utilize lunar materials in construction, for resource extraction, and for radiation shielding and protection. In each case, we will be working with materials at some depth beneath the surface. Understanding the properties of that material is critical, thus the need for Lunar core drilling capability. Of course, the science benefit from returning core samples and operating down-hole autonomous experiments is a key element of Lunar missions as defined by NASA s Exploration Systems Architecture Study. Lunar missions will be targeted to answer specific questions concerning lunar science and re-sources.
Lunar rover technology demonstrations with Dante and Ratler
NASA Technical Reports Server (NTRS)
Krotkov, Eric; Bares, John; Katragadda, Lalitesh; Simmons, Reid; Whittaker, Red
1994-01-01
Carnegie Mellon University has undertaken a research, development, and demonstration program to enable a robotic lunar mission. The two-year mission scenario is to traverse 1,000 kilometers, revisiting the historic sites of Apollo 11, Surveyor 5, Ranger 8, Apollo 17, and Lunokhod 2, and to return continuous live video amounting to more than 11 terabytes of data. Our vision blends autonomously safeguarded user driving with autonomous operation augmented with rich visual feedback, in order to enable facile interaction and exploration. The resulting experience is intended to attract mass participation and evoke strong public interest in lunar exploration. The encompassing program that forwards this work is the Lunar Rover Initiative (LRI). Two concrete technology demonstration projects currently advancing the Lunar Rover Initiative are: (1) The Dante/Mt. Spurr project, which, at the time of this writing, is sending the walking robot Dante to explore the Mt. Spurr volcano, in rough terrain that is a realistic planetary analogue. This project will generate insights into robot system robustness in harsh environments, and into remote operation by novices; and (2) The Lunar Rover Demonstration project, which is developing and evaluating key technologies for navigation, teleoperation, and user interfaces in terrestrial demonstrations. The project timetable calls for a number of terrestrial traverses incorporating teleoperation and autonomy including natural terrain this year, 10 km in 1995. and 100 km in 1996. This paper will discuss the goals of the Lunar Rover Initiative and then focus on the present state of the Dante/Mt. Spurr and Lunar Rover Demonstration projects.
NASA Astrophysics Data System (ADS)
Morgan, T.; Chin, G.
2007-08-01
NASA's Lunar Reconnaissance Orbiter (LRO) plans to launch in October 2008 with a companion secondary impactor mission, LCROSS, as the inaugural missions for the Exploration System Mission Directorate. LRO is a pathfinder whose objective is to obtain the needed information to prepare for eventual human return to the Moon. LRO will undertake at least one baseline year of operation with additional extended mission phase sponsored by NASA's Science Mission Directorate. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions; Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources; Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration; Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits; Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only by starlight; Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which will investigate the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background space radiation. The technology demonstration is an advanced radar (mini-RF) that will demonstrate X- and S-band radar imaging and interferometry using a light-weight synthetic aperture radar.
2012 Alabama Lunabotics Systems Engineering Paper
NASA Technical Reports Server (NTRS)
Baker, Justin; Ricks, Kenneth; Hull, Bethanne J.
2012-01-01
Excavation will hold a key role for future lunar missions. NASA has stated that "advances in lunar regolith mining have the potential to significantly contribute to our nation's space vision and NASA space exploration operations." [1]. The Lunabotics Mining Competition is an event hosted by NASA that is meant to encourage "the development of innovative lunar excavation concepts from universities which may result in clever ideas and solutions which could be applied to an actual lunar excavation device or payload." [2]. Teams entering the competition must "design and build a remote controlled or autonomous excavator, called a lunabot, that can collect and deposit a minimum of 10 kilograms of lunar simulant within 10 minutes." [2]. While excavation will play an important part in lunar missions, there will still be many other tasks that would benefit from robotic assistance. An excavator might not be as well suited for these tasks as other types of robots might be. For example a lightweight rover would do well with reconnaissance, and a mobile gripper arm would be fit for manipulation, while an excavator would be comparatively clumsy and slow in both cases. Even within the realm of excavation it would be beneficial to have different types of excavators for different tasks, as there are on Earth. The Alabama Lunabotics Team at the University of Alabama has made it their goal to not only design and build a robot that could compete in the Lunabotics Mining Competition, but would also be a multipurpose tool for future NASA missions. The 2010-2011 resulting robot was named the Modular Omnidirectional Lunar Excavator (MOLE). Using the Systems Engineering process and building off of two years of Lunabotics experience, the 20ll-2012 Alabama Lunabotics team (Team NASACAR) has improved the MOLE 1.0 design and optimized it for the 2012 Lunabotics Competition rules [I]. A CAD model of MOLE 2.0 can be seen below in Fig. 1.
Future lunar missions and investigation of dusty plasma processes on the Moon
NASA Astrophysics Data System (ADS)
Popel, Sergey I.; Zelenyi, Lev M.; Zelenyi
2013-08-01
From the Apollo era of exploration, it was discovered that sunlight was scattered at the terminators giving rise to ``horizon glow'' and ``streamers'' above the lunar surface. Subsequent investigations have shown that the sunlight was most likely scattered by electrostatically charged dust grains originating from the surface. A renaissance is being observed currently in investigations of the Moon. The Luna-Glob and Luna-Resource missions (the latter jointly with India) are being prepared in Russia. Some of these missions will include investigations of lunar dust. Here we discuss the future experimental investigations of lunar dust within the missions of Luna-Glob and Luna-Resource. We consider the dusty plasma system over the lunar surface and determine the maximum height of dust rise. We describe mechanisms of formation of the dusty plasma system over the Moon and its main properties, determine distributions of electrons and dust over the lunar surface, and show a possibility of rising dust particles over the surface of the illuminated part of the Moon in the entire range of lunar latitudes. Finally, we discuss the effect of condensation of micrometeoriod substance during the expansion of the impact plume and show that this effect is important from the viewpoint of explanation of dust particle rise to high altitudes in addition to the dusty plasma effects.
NASA Astrophysics Data System (ADS)
Zeng, Xingguo; Zuo, Wei; Zhang, Zhoubin; Liu, Yuxuan; Li, Chunlai
2017-04-01
China Lunar Exploration Program has successfully launched 3 missions since the year of 2007:CE-1(2007), CE-2(2009), and CE-3(2013), and it is planning to launch two lunarLanders in the upcoming years- CE-5(2017) and CE-4(2020). Few decades after the last lunar sample returning mission, CE-5 will be the first lunar sample returning mission in the 21 century. The Pre-selection landing site of CE-5 will be located at a geographic extent of:41 degrees to 45 degrees north latitude and 49 degrees to 69 west longitude, which lies in the near side of the moon, the north-east of the Oceanus Procellarum, to the west of Monte Jura and to the north of Monte Rümker. To ensure the safety of the CE-5 Lander and get lunar samples with more scientific interest, it is essential to take an investigation from the research aspects of topography and geology to select optimal precise landing sites from the Pre-selection area.From the topography aspect, the safety of the Lander is greatly involved with the rugged terrain, conditions of solar illumination and necessity of direct radio communicationwith the Earth, We present the method of preciselandingsites selection using CE-2 high resolution lunar topographic data, which is based on geographical information systems (GIS) technologies to perform analysis, utilizing the criteria of surface suitability for landing, such as slopes, waviness, craters distribution, illumination conditions and Earth visibility.Inaddition, the scientific interest is related to the complexity of the geological conditions, so that estimations of geological background based on USGS lunar geology map data were used to evaluatelanding site candidates on possible lunar volcanicmaterials. The method gave us 7possible candidates to land, which are around the location of-55°W, 43°N. In the further research, the main parameters of these possible sites will be presented with possible prioritization based on both technical requirements and scientific interest.
Astronaut John Young on rim of Plum crater gathering lunar rock samples
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, stands on the rim of Plum crater while collecting lunar rock samples at Station No.1 during the first Apollo 16 extravehicular activity (EVA-1) at the Descartes landing site. This scene, looking eastward, was photographed by Astronaut Charles M. Duke Jr., lunar module pilot. The small boulder in the center foreground was chip sampled by the crewmen. Plum crater is 40 meters in diameter and 10 meters deep. The Lunar Roving Vehicle is parked on the far rim of the crater. The gnomon, which is used as a photographic reference to establish local vertical sun angle, scale, and lunar color, is deployed in the center of the picture. Young holds a geological hammer in his right hand.
1969-11-21
S69-59525 (19 Nov. 1969) --- Overall view of activity in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, during the Apollo 12 lunar landing mission. When this picture was made the first Apollo 12 extravehicular activity (EVA) was being televised from the surface of the moon. Photo credit: NASA
NASA Technical Reports Server (NTRS)
2010-01-01
A fast growing approach in determining the best design concept for a problem is to hold a competition in which the rules are based on requirements similar to the actual problem. By going public with such competitions, sponsoring entities receive some of the most innovative engineering solutions in a fraction of the time and cost it would have taken to develop such concepts internally. Space exploration is a large benefactor of such design competitions as seen by the results of X-Prize Foundation and NASA lunar excavation competitions [1]. The results of NASA's past lunar excavator challenges has led to the need for an effective means of collecting lunar regolith in the absence of human beings. The 2010 Exploration Systems Mission Directorate (ESMD) Lunar Excavation Challenge was created "to engage and retain students in science, technology, engineering, and mathematics, or STEM, in a competitive environment that may result in innovative ideas and solutions, which could be applied to actual lunar excavation for NASA." [2]. The ESMD Challenge calls for "teams to use telerobotics or autonomous operations to excavate at least 10kg of lunar regolith simulant in a 15 minute time limit" [2]. The Systems Engineering approach was used in accordance with Auburn University's mechanical engineering senior design course (MECH 4240-50) to develop a telerobotic lunar excavator, seen in Fig. 1, that fulfilled requirements imposed by the NASA ESMD Competition Rules. The goal of the senior design project was to have a validated lunar excavator that would be used in the NASA ESMD lunar excavation challenge.
Volatile Analysis by Pyrolysis of Regolith (Vapor) on the Moon using Mass Spectrometry
NASA Technical Reports Server (NTRS)
Glavin, D. P.; Kate, I. L. ten; Brinckerhoff, W.; Cardiff, E.; Dworkin, J. P.; Feng, S.; Getty, S.; Gorevan, S.; Harpold, D.; Jones, A. L.;
2008-01-01
The identification of lunar resources such as water is a fundamental component of the the NASA Vision for Space Exploration. The Lunar Prospector mission detected high concentrations of hydrogen at the lunar poles that may indicate the presence of water or other volatiles in the lunar regolith [1]. One explanation for the presence of enhanced hydrogen in permanently shadowed crater regions is long term trapping of water-ice delivered by comets, asteroids, and other meteoritic material that have bombarded the Moon over the last 4 billion years [2]. It is also possible that the hydrogen signal at the lunar poles is due to hydrogen implanted by the solar wind which is delayed from diffusing out of the regolith by the cold temperatures [3]. Previous measurements of the lunar atmosphere by the LACE experiment on Apollo 17, suggested the presence of cold trapped vola'tiles that were expelled by solar heating [4]. In situ composition and isotopic analyses of the lunar regolith will be required to establish the abundance, origin, and distribution of water-ice and other volatiles at the lunar poles. Volatile Analysis by Pyrolysis of Regolith (VAPoR) on the Moon using mass spectrometry is one technique that should be considered. The VAPoR pyrolysis-mass spectrometer (pyr-MS) instrument concept study was selected for funding in 2007 by the NASA Lunar Sortie Science Opportunities (LSSO) Program. VAPoR is a miniature version of the Sample Analysis at Mars (SAM) instrument suite currently being developed at NASA Goddard for the 2009 Mars Science Laboratory mission (Fig. 1).
Trajectory Design to Mitigate Risk on the Transiting Exoplanet Survey Satellite (TESS) Mission
NASA Technical Reports Server (NTRS)
Dichmann, Donald
2016-01-01
The Transiting Exoplanet Survey Satellite (TESS) will employ a highly eccentric Earth orbit, in 2:1 lunar resonance, reached with a lunar flyby preceded by 3.5 phasing loops. The TESS mission has limited propellant and several orbit constraints. Based on analysis and simulation, we have designed the phasing loops to reduce delta-V and to mitigate risk due to maneuver execution errors. We have automated the trajectory design process and use distributed processing to generate and to optimize nominal trajectories, check constraint satisfaction, and finally model the effects of maneuver errors to identify trajectories that best meet the mission requirements.
Data User's Note: Apollo seismological investigations
NASA Technical Reports Server (NTRS)
Vostreys, R. W.
1980-01-01
Seismological objectives and equipment used in the passive seismic, active seismic, lunar seismic profiling, and the lunar gravimeter experiments conducted during Apollo 11, 12, 14, 15, 16, and 17 missions are described. The various formats in which the data form these investigations can be obtained are listed an an index showing the NSSDC identification number is provided. Tables show manned lunar landing missions, lunar seismic network statistics, lunar impact coordinate statistics, detonation masses and times of EP's, the ALSEP (Apollo 14) operational history; compressed scale playout tape availability, LSPE coverage for one lunation, and experimenter interpreted events types.
Lunar transportation scenarios utilising the Space Elevator.
Engel, Kilian A
2005-01-01
The Space Elevator (SE) concept has begun to receive an increasing amount of attention within the space community over the past couple of years and is no longer widely dismissed as pure science fiction. In light of the renewed interest in a, possibly sustained, human presence on the Moon and the fact that transportation and logistics form the bottleneck of many conceivable lunar missions, it is interesting to investigate what role the SE could eventually play in implementing an efficient Earth to Moon transportation system. The elevator allows vehicles to ascend from Earth and be injected into a trans-lunar trajectory without the use of chemical thrusters, thus eliminating gravity loss, aerodynamic loss and the need of high thrust multistage launch systems. Such a system therefore promises substantial savings of propellant and structural mass and could greatly increase the efficiency of Earth to Moon transportation. This paper analyzes different elevator-based trans-lunar transportation scenarios and characterizes them in terms of a number of benchmark figures. The transportation scenarios include direct elevator-launched trans-lunar trajectories, elevator launched trajectories via L1 and L2, as well as launch from an Earth-based elevator and subsequent rendezvous with lunar elevators placed either on the near or on the far side of the Moon. The benchmark figures by which the different transfer options are characterized and evaluated include release radius (RR), required delta v, transfer times as well as other factors such as accessibility of different lunar latitudes, frequency of launch opportunities and mission complexity. The performances of the different lunar transfer options are compared with each other as well as with the performance of conventional mission concepts, represented by Apollo. c2005 Elsevier Ltd. All rights reserved.
Using Gravity Assists in the Earth-moon System as a Gateway to the Solar System
NASA Technical Reports Server (NTRS)
McElrath, Timothy P.; Lantoine, Gregory; Landau, Damon; Grebow, Dan; Strange, Nathan; Wilson, Roby; Sims, Jon
2012-01-01
For spacecraft departing the Earth - Moon system, lunar flybys can significantly increase the hyperbolic escape energy (C3, in km (exp 2) /sec (exp 2) ) for a modest increase in flight time. Within approx 2 months, lunar flybys can produce a C3 of approx 2. Over 4 - 6 months, lunar flybys alone can increase the C3 to approx 4.5, or they can provide for additional periapsis burns to increase the C3 from approx 2 -3 to 10 or more, suitable for planetary missions. A lunar flyby departure can be followed by additional delta -V (such as that efficiently provided by a low thrust system, eg. Solar Electric Propulsion (SEP)) to raise the Earth - relative velocity (at a ratio of more than 2:1) before a subsequent Earth flyby, which redirects that velocity to a more distant target, all within not more than a year. This paper describes the applicability of lunar flybys for different flight times and propulsion systems, and illustrates this with instances of past usage and future possibilities. Examples discussed include ISEE-3, Nozomi, STEREO, 2018 Mars studies (which showed an 8% payload increase), and missions to Near Earth Objects (NEOs). In addition, the options for the achieving the initial lunar flyby are systematically discussed, with a view towards their practical use within a compact launch period. In particular, we show that launches to geosynchronous transfer orbit (GTO) as a secondary payload provide a feasible means of obtaining a lunar flyby for an acceptable cost, even for SEP systems that cannot easily deliver large delta-Vs at periapsis. Taken together, these results comprise a myriad of options for increasing the mission performance, by the efficient use of lunar flybys within an acceptable extension of the flight time.
Using Gravity Assists in the Earth-moon System as a Gateway to the Solar System
NASA Technical Reports Server (NTRS)
McElrath, Tim; Lantoine, Gregory; Landau, Damon; Grebow, Dan; Strange, Nathan; Wilson, Roby; Sims, Jon
2012-01-01
For spacecraft departing the Earth - Moon system, lunar flybys can significantly increase the hype rbolic escape energy (C3, in km 2 /sec 2 ) for a modest increase in flight time. Within 2 months, lunar flybys can produce a C3 of 2. Over 4 - 6 months, lunar flybys alone can increase the C3 to 4.5, or they can provide for additional periapsis burns to increase the C3 from 2 -3 to 10 or more, suitable for planetary missions. A lunar flyby departure can be followed by additional ? -V (such as that efficiently provided by a low thrust system, eg. Solar Electric Propulsion (SEP)) to raise the Earth - relative velocity (at a ratio of more than 2:1) before a subsequent Earth flyby, which redirects that velocity to a more di stant target, all within not much more than a year. This paper describes the applicability of lunar flybys for different flight times and propulsi on systems, and illustrates this with instances of past usage and future possibilities. Examples discussed i nclude ISEE - 3, Nozomi, STEREO, 2018 Mars studies (which showed an 8% payload increase), and missions to Near Earth Objects (NEOs). In addition, the options for the achieving the initial lunar flyby are systematically discussed, with a view towards their p ractical use with in a compact launch period. In particular, we show that launches to geosynchronous transfer orbit (GTO) as a secondary payload provide a feasible means of obtaining a lunar flyby for an acceptable cost, even for SEP systems that cannot ea sily deliver large ? - Vs at periapsis. Taken together, these results comprise a myriad of options for increasing the mission performance, by the efficient use of lunar flybys within an acceptable extension of the flight time.
Lunar Polar In Situ Resource Utilization (ISRU) as a Stepping Stone for Human Exploration
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.
2013-01-01
A major emphasis of NASA is to extend and expand human exploration across the solar system. While specific destinations are still being discussed as to what comes first, it is imperative that NASA create new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable exploration beyond low Earth orbit (LEO) are the development of technologies and approaches for advanced robotics, power, propulsion, habitats, life support, and especially, space resource utilization systems. Space resources and how to use them, often called In-Situ Resource Utilization (ISRU), can have a tremendous beneficial impact on robotic and human exploration of the Moon, Mars, Phobos, and Near Earth Objects (NEOs), while at the same time helping to solve terrestrial challenges and enabling commercial space activities. The search for lunar resources, demonstration of extraterrestrial mining, and the utilization of resource-derived products, especially from polar volatiles, can be a stepping stone for subsequent human exploration missions to other destinations of interest due to the proximity of the Moon, complimentary environments and resources, and the demonstration of critical technologies, processes, and operations. ISRU and the Moon: There are four main areas of development interest with respect to finding, obtaining, extracting, and using space resources: Prospecting for resources, Production of mission critical consumables like propellants and life support gases, Civil engineering and construction, and Energy production, storage, and transfer. The search for potential resources and the production of mission critical consumables are the primary focus of current NASA technology and system development activities since they provide the greatest initial reduction in mission mass, cost, and risk. Because of the proximity of the Moon, understanding lunar resources and developing, demonstrating, and implementing lunar ISRU provides a near and early opportunity to perform the following that are applicable to other human exploration mission destinations: Identify and characterize resources, how they are distributed, and the material, location and environment in which they are found; Demonstrate concepts, technologies, and hardware that can reduce the cost and risk of human exploration beyond Earth orbit; Use the Moon for operation experience and mission validation for much longer missions that are farther from Earth Develop and evolve ISRU to support sustained, economical human presence beyond Earth's orbit, including promoting space commercialization As Table 1 depicts, the Moon provides environments and resources applicable to Mars and NEOs. Two lunar ISRU resource and product pathways that have notable synergism with NEO, Phobos/Demos, and Mars ISRU are oxygen/metal extraction from regolith, and water/volatile extraction from lunar polar materials. To minimize the risk of developing and incorporating ISRU into human missions, a phased implementation plan is recommended that starts with prospecting and demonstrating critical technologies on robotic and human missions, then performing pilot scale operations (in non-mission critical roles) to enhance exploration mission capabilities, leading to full utilization of space resources in mission critical roles. Which lunar ISRU pathway is followed will depend on the results of early resource prospecting/proof-ofconcept mission(s), and long-term human exploration plans.
Apollo 16 astronauts in Apollo Command Module Mission Simulator
1972-03-14
S72-31047 (March 1972) --- Astronaut Thomas K. Mattingly II (right foreground), command module pilot of the Apollo 16 lunar landing mission, participates in extravehicular activity (EVA) training in Building 5 at the Manned Spacecraft Center (MSC). Mattingly is scheduled to perform EVA during the Apollo 16 journey home from the moon. Astronaut John W. Young, commander, can be seen in the left background. In the right background is astronaut Charles M. Duke Jr., lunar module pilot. They are inside the Apollo Command Module Mission Simulator. While Mattingly remains with the Apollo 16 Command and Service Modules (CSM) in lunar orbit, Young and Duke will descend in the Lunar Module (LM) to the moon's Descartes landing site.
Abort Options for Human Lunar Missions between Earth Orbit and Lunar Vicinity
NASA Technical Reports Server (NTRS)
Condon, Gerald L.; Senent, Juan S.; Llama, Eduardo Garcia
2005-01-01
Apollo mission design emphasized operational flexibility that supported premature return to Earth. However, that design was tailored to use expendable hardware for short expeditions to low-latitude sites and cannot be applied directly to an evolutionary program requiring long stay times at arbitrary sites. This work establishes abort performanc e requirements for representative onorbit phases of missions involvin g rendezvous in lunar-orbit, lunar-surface and at the Earth-Moon libr ation point. This study submits reference abort delta-V requirements and other Earth return data (e.g., entry speed, flight path angle) and also examines the effect of abort performance requirements on propul sive capability for selected vehicle configurations.
Apollo 12 Mission image - High oblique view of Craters 285,287 and Tsiolkovski
1969-11-19
AS12-47-6870 (November 1969) --- An Apollo 12 high-oblique view of the crater Tsiolkovsky (in center of horizon) on the lunar farside, as photographed from lunar orbit. The crew men of the Apollo 12 lunar landing mission were astronauts Charles Conrad Jr., commander; Richard F. Gordon Jr., command module pilot; and Alan L. Bean, lunar module pilot. Tsiolkovsky is centered at 128.5 degrees east longitude and 20.5 degrees south latitude. This view is looking south.
APOLLO 17 PRELAUNCH ASTRONAUT TRAINING
NASA Technical Reports Server (NTRS)
1972-01-01
Apollo 17 Mission Commander Eugene A. Cernan, a Navy Captain, and Lunar Module Pilot Dr. Harrison H. [Jack] Schmitt, civilian scientist-astronaut, at right, familiarize themselves with equipment used in the Lunar Module in which the pair will descent to the lunar surface during December. Cernan and Dr. Schmitt are undergoing prelaunch training in the Lunar Module Simulator at the Flight Crew Training Building at the Kennedy Space Center. Navy Commander Ronald E. Evans, Command Module Pilot, will accompany Cernan and Dr. Schmitt on the mission.
Launch - Apollo XIV - Lunar Landing Mission - KSC
1971-01-31
S71-18398 (31 Jan. 1971) --- The huge, 363-feet tall Apollo 14 (Spacecraft 110/Lunar Module 8/Saturn 509) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida at 4:03:02 p.m. (EST), Jan. 31, 1971, on a lunar landing mission. This view is framed by moss-covered dead trees in the dark foreground. Aboard the Apollo 14 spacecraft were astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot.
Astronaut Alan Bean works on Modular Equipment Stowage Assembly
1969-11-19
AS12-46-6749 (19 Nov. 1969) --- Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, works at the Modular Equipment Stowage Assembly (MESA) on the Apollo 12 Lunar Module (LM) during the mission's first extravehicular activity, (EVA) on Nov. 19, 1969. Astronaut Charles Conrad Jr., commander, and Bean descended in the Apollo 12 LM to explore the moon while astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.
1971-07-26
S71-41810 (26 July 1971) --- The 363-feet tall Apollo 15 (Spacecraft 112/Lunar Module 10/Saturn 510) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center, Florida, at 9:34:00.79 a.m., July 26, 1971, on a lunar landing mission. Aboard the Apollo 15 spacecraft were astronauts David R. Scott, commander; Alfred M. Worden, commander module pilot; and James B. Irwin, lunar module pilot. Apollo 15 is the National Aeronautics and Space Administration's (NASA) fourth manned lunar landing mission.
Apollo 10 and 11 crews photographed during Apollo 10 debriefing
1969-06-03
S69-35504 (June 1969) --- The prime crews of the Apollo 10 lunar orbit mission and the Apollo 11 lunar landing mission are photographed during an Apollo 10 postflight de-briefing session. Clockwise, from left foreground, are astronauts Michael Collins, Apollo 11 command module pilot; Edwin E. Aldrin Jr., Apollo 11 lunar module pilot; Eugene A. Cernan, Apollo 10 lunar module pilot; Thomas P. Stafford, Apollo 10 commander; Neil A. Armstrong, Apollo 11 commander; and John W. Young, Apollo 10 command module pilot.
Apollo 10 and 11 crews photographed during Apollo 10 debriefing
1969-06-03
S69-35507 (June 1969) --- The prime crews of the Apollo 10 lunar orbit mission and the Apollo 11 lunar landing mission are photographed during an Apollo 10 postflight de-briefing session. Clockwise, from left, are astronauts Michael Collins, Apollo 11 command module pilot; Edwin E. Aldrin Jr., Apollo 11 lunar module pilot; Eugene A. Cernan, Apollo 10 lunar module pilot; Thomas P. Stafford, Apollo 10 commander; Neil A. Armstrong, Apollo 11 commander; and John W. Young, Apollo 10 command module pilot.
APOLLO IX - ART CONCEPTS - EXTRAVEHICULAR ACTIVITY (EVA)
1969-02-06
S69-18546 (February 1969) --- North American Rockwell artist's concept illustrating the docking of the Lunar Module ascent stage with the Command and Service Modules during the Apollo 9 mission. The two figures in the Lunar Module represent astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot. The figure in the Command Module represents astronaut David R. Scott, command module pilot. The Apollo 9 mission will evaluate spacecraft lunar module systems performance during manned Earth-orbital flight.
NASA Astrophysics Data System (ADS)
Wang, M.; Han, S.; Ping, J.; Tang, G.; Zhang, Q.
2017-09-01
The existence of lunar ionosphere has been under debate for a long time. Radio occultation experiments had been performed by both Luna 19/22 and SELENE missions and electron column density of lunar ionosphere was provided. The Apollo 14 mission also acquired the electron density with in situ measurements. But the results of these missions don't well-matched. In order to explore the lunar ionosphere, radio occultation with the service module of Chinese circumlunar return and reentry spacecraft has been performing. One coherent S-band and X-band radio signals were recorded by China deep space stations, and local correlation was adopted to compute carrier phases of both signals. Based on the above work, the electron density profiles of lunar ionosphere was obtained and analyzed.
Extending the Lunar Mapping and Modeling Portal - New Capabilities and New Worlds
NASA Technical Reports Server (NTRS)
Day, B.; Law, E.; Arevalo, E.; Bui, B.; Chang, G.; Dodge, K.; Kim, R.; Malhotra, S.; Sadaqathullah, S.; Schmidt, G.;
2015-01-01
NASA's Lunar Mapping and Modeling Portal (LMMP) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped lunar data products from past and current lunar missions (http://lmmp.nasa.gov). During the past year, the capabilities and data served by LMMP have been significantly expanded. New interfaces are providing improved ways to access and visualize data. At the request of NASA's Science Mission Directorate, LMMP's technology and capabilities are now being extended to additional planetary bodies. New portals for Vesta and Mars are the first of these new products to be released. This presentation will provide an overview of LMMP, Vesta Trek, and Mars Trek, demonstrate their uses and capabilities, highlight new features, and preview coming enhancements.
GENESIS 2: Advanced lunar outpost
NASA Technical Reports Server (NTRS)
Moore, Gary T.
1991-01-01
Advanced, second-generation lunar habitats for astronauts and mission specialists working on the Moon are investigated. The work was based on design constraints set forth in previous publications. Design recommendations are based on environmental response to the lunar environment, habitability, safety, near-term technology, replaceability and modularity, and suitability for NASA lunar research missions in the early 21st century. Scientists, engineers, and architects from NASA/JSC, Wisconsin aeronautical industry, and area universities gave technical input and offered critiques at design reviews throughout the process. The recommended design uses a lunar lava tube, with construction using a combination of Space Station Freedom-derived modules and lightweight Kevlar-laminate inflatables. The outpost includes research laboratories and biotron, crew quarters and support facility, mission control, health maintenance facility, and related areas for functional and psychological requirements. Furniture, specialized equipment, and lighting are included in the design analysis.
Extending the Lunar Mapping and Modeling Portal - New Capabilities and New Worlds
NASA Astrophysics Data System (ADS)
Day, B.; Law, E.; Arevalo, E.; Bui, B.; Chang, G.; Dodge, K.; Kim, R.; Malhotra, S.; Sadaqathullah, S.; Schmidt, G.; Bailey, B.
2015-10-01
NASA's Lunar Mapping and Modeling Portal (LMMP) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped lunar data products from past and current lunar missions (http://lmmp.nasa.gov). During the past year, the capabilities and data served by LMMP have been significantly expanded. New interfaces are providing improved ways to access and visualize data. At the request of NASA's Science Mission Directorate, LMMP's technology and capabilities are now being extended to additional planetary bodies. New portals for Vesta and Mars are the first of these new products to be released. This presentation will provide an overview of LMMP, Vesta Trek, and Mars Trek, demonstrate their uses and capabilities, highlight new features, and preview coming enhancements.
The Apollo 17 mare basalts: Serenely sampling Taurus-Littrow
NASA Technical Reports Server (NTRS)
Neal, Clive R.; Taylor, Lawrence A.
1992-01-01
As we are all aware, the Apollo 17 mission marked the final manned lunar landing of the Apollo program. The lunar module (LM) landed approximately 0.7 km due east of Camelot Crater in the Taurus-Littrow region on the southwestern edge of Mare Serenitatis. Three extravehicular activities (EVA's) were performed, the first concentrating around the LM and including station 1 approximately 1.1 km south-southeast of the LM at the northwestern edge of Steno Crater. The second traversed approximately 8 km west of the LM to include stations 2, 3, 4, and 5, and the third EVA traversed approximately 4.5 km to the northwest of the LM to include stations 6, 7, 8, and 9. This final manned mission returned the largest quantity of lunar rock samples, 110.5 kg/243.7 lb, and included soils, breccias, highland samples, and mare basalts. This abstract concentrates upon the Apollo 17 mare basalt samples.
The Apollo 17 mare basalts: Serenely sampling Taurus-Littrow
NASA Astrophysics Data System (ADS)
Neal, Clive R.; Taylor, Lawrence A.
1992-12-01
As we are all aware, the Apollo 17 mission marked the final manned lunar landing of the Apollo program. The lunar module (LM) landed approximately 0.7 km due east of Camelot Crater in the Taurus-Littrow region on the southwestern edge of Mare Serenitatis. Three extravehicular activities (EVA's) were performed, the first concentrating around the LM and including station 1 approximately 1.1 km south-southeast of the LM at the northwestern edge of Steno Crater. The second traversed approximately 8 km west of the LM to include stations 2, 3, 4, and 5, and the third EVA traversed approximately 4.5 km to the northwest of the LM to include stations 6, 7, 8, and 9. This final manned mission returned the largest quantity of lunar rock samples, 110.5 kg/243.7 lb, and included soils, breccias, highland samples, and mare basalts. This abstract concentrates upon the Apollo 17 mare basalt samples.
Lunar Orbiter 3 - Photographic Mission Summary
NASA Technical Reports Server (NTRS)
1968-01-01
Systems performance, lunar photography, and launch operations of Lunar Orbiter 3 photographic mission. The third of five Lunar Orbiter spacecraft was successfully launched from Launch Complex 13 at the Air Force Eastern Test Range by an Atlas-Agena launch vehicle at 01:17 GMT on February 5,1967. Tracking data from the Cape Kennedy and Grand Bahama tracking stations were used to control and guide the launch vehicle during Atlas powered flight. The Agena-spacecraft combination was boosted to the proper coast ellipse by the Atlas booster prior to separation. Final 1 maneuvering and acceleration to the velocity required to maintain the 100-nautical-milealtitude Earth orbit was controlled by the preset on-board Agena computer. In addition, the Agena computer determined the maneuver and engine-burn period required to inject the spacecraft on the cislunar trajectory 20 minutes after launch. Tracking data from the downrange stations and the Johannesburg, South Africa station were used to monitor the entire boost trajectory.
Apollo 9 Lunar Module in lunar landing configuration
NASA Technical Reports Server (NTRS)
1969-01-01
View of the Apollo 9 Lunar Module, in a lunar landing configuration, as photographed form the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on the Lunar Module 'Spider' has been deployed. Note Lunar Module's upper hatch and docking tunnel.
Liftoff of the Apollo 11 lunar landing mission
1969-07-16
S69-39961 (16 July 1969) --- The huge, 363-feet tall Apollo 11 (Spacecraft 107/Lunar Module S/Saturn 506) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), at 9:32 a.m. (EDT), July 16, 1969. Onboard the Apollo 11 spacecraft are astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 is the United States' first lunar landing mission. While astronauts Armstrong and Aldrin descend in the Lunar Module (LM) "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins will remain with the Command and Service Modules (CSM) "Columbia" in lunar orbit. Photo credit: NASA
Autonomous Navigation Error Propagation Assessment for Lunar Surface Mobility Applications
NASA Technical Reports Server (NTRS)
Welch, Bryan W.; Connolly, Joseph W.
2006-01-01
The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. While navigation systems have already been proven in the Apollo missions to the moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In this document, the results of an autonomous navigation error propagation assessment are provided. The analysis is intended to be the baseline error propagation analysis for which Earth-based and Lunar-based radiometric data are added to compare these different architecture schemes, and quantify the benefits of an integrated approach, in how they can handle lunar surface mobility applications when near the Lunar South pole or on the Lunar Farside.
Launch - Apollo XV Space Vehicle - KSC
1971-07-26
S71-41356 (26 July 1971) --- The huge, 363-feet tall Apollo 15 (Spacecraft 112/Lunar Module 10/Saturn 510) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida, at 9:34:00:79 a.m. (EDT), July 26, 1971, on a lunar landing mission. Aboard the Apollo 15 spacecraft were astronauts David R. Scott, commander; Alfred M. Worden, command module pilot; and James B. Irwin, lunar module pilot. Apollo 15 is the National Aeronautics and Space Administration's (NASA) fourth manned lunar landing mission. While astronauts Scott and Irwin will descend in the Lunar Module (LM) to explore the moon, astronaut Worden will remain with the Command and Service Modules (CSM) in lunar orbit.
International, private-public, multi-mission, next-generation Lunar/Martian laser retroreflectors
NASA Astrophysics Data System (ADS)
Dellagnello, S.
2017-09-01
We describe an international, private-public, multi-mission effort to deploy on the Moon next-generation lunar laser retroreflectors to extend (also to the far side) the existing passive Lunar Geophysical Network (LNG) consisting of the three Apollo and the two Lunokhod payloads. We also describe important applications and extension of this program to Mars Geophysical Network (MGN).
1969-02-20
S69-19796 (February 1969) --- Composite of six artist's concepts illustrating key events, tasks and activities on the fifth day of the Apollo 9 mission, including vehicles undocked, Lunar Module burns for rendezvous, maximum separation, ascent propulsion system burn, formation flying and docking, and Lunar Module jettison ascent burn. The Apollo 9 mission will evaluate spacecraft lunar module systems performance during manned Earth-orbital flight.
NASA Technical Reports Server (NTRS)
Eppler, Dean B.
2013-01-01
The scientific success of any future human lunar exploration mission will be strongly dependent on design of both the systems and operations practices that underpin crew operations on the lunar surface. Inept surface mission preparation and design will either ensure poor science return, or will make achieving quality science operation unacceptably difficult for the crew and the mission operations and science teams. In particular, ensuring a robust system for managing real-time science information flow during surface operations, and ensuring the crews receive extensive field training in geological sciences, are as critical to mission success as reliable spacecraft and a competent operations team.
Europe rediscovers the Moon with SMART-1
NASA Astrophysics Data System (ADS)
2006-08-01
The whole story began in September 2003, when an Ariane 5 launcher blasted off from Kourou, French Guiana, to deliver the European Space Agency’s lunar spacecraft SMART-1 into Earth orbit. SMART-1 is a small unmanned satellite weighing 366 kilograms and roughly fitting into a cube just 1 metre across, excluding its 14-metre solar panels (which were folded during launch). After launch and injection into an elliptical orbit around the Earth, the gentle but steady push provided by the spacecraft’s highly innovative electric propulsion engine forcefully expelling xenon gas ions caused SMART-1 to spiral around the Earth, increasing its distance from our planet until, after a long journey of about 14 months, it was “captured” by the Moon’s gravity. To cover the 385,000 km distance that separates the Earth from the Moon if one travelled in a straight line, this remarkably efficient engine brought the spacecraft on a 100 million km long spiralling journey on only 60 litres of fuel! The spacecraft was captured by the Moon in November 2004 and started its scientific mission in March 2005 in an elliptical orbit around its poles. ESA’s SMART-1 is currently the only spacecraft around the Moon, paving the way for the fleet of international lunar orbiters that will be launched from 2007 onwards. The story is now close to ending. On the night of Saturday 2 to Sunday 3 September, looking at the Moon with a powerful telescope, one may be able to see something special happening. Like most of its lunar predecessors, SMART-1 will end its journey and exploration of the Moon by landing in a relatively abrupt way. It will impact the lunar surface in an area called the “Lake of Excellence”, situated in the mid-southern region of the Moon’s visible disc at 07:41 CEST (05:41 UTC), or five hours before if it finds an unknown peak on the way. The story is close to ending After 16 months harvesting scientific results in an elliptical orbit around the Moon’s poles (at distances of between 300 and 3.000 km), the mission is almost over. The spacecraft perilune has now dropped below an altitude of 300 km from the lunar surface and will get a closer look at specific targets on the Moon before landing in a controlled manner on the moon surface (controlled, that is, in terms of where and when). It will then “die” there. “With a relative low speed at impact (2 km/sec or 7200 km/h), SMART-1 will create a small crater of 3 to 10m in diameter’s” says Bernard Foing, SMART-1 Project scientist, “a crater no larger than that created by a 1kg meteorite on a surface already heavily affected by natural impacts”. Mission controllers at the European Space Agency’s Operations Centre (ESOC) in Darmstadt, near Frankfurt, Germany will monitor the final moments before impact step by step. Final milestones of SMART-1 flight operations In June, SMART-1 mission controllers at ESOC completed a series of complex thruster firings aimed at optimising the time and location of the spacecraft’s impact on the Moon's surface. They had to be done with the thrusters of the attitude control system since all the Xenon of the Ion engine had been consumed in 2005. The manoeuvres have shifted the time and location of impact, which would otherwise occurred in mid-August on the far side of the Moon; impact is now set to occur on the near side and current best estimates show the impact time to be around 07:41 CEST (05:41 UTC) on Sunday 3 September. "Mission controllers and flight dynamics engineers have analysed the results of the manoeuvre campaign to confirm and refine this estimate," says Octavio Camino-Ramos, SMART-1 spacecraft operations manager at ESA/ESOC. "The final adjustment manoeuvres are planned for 25th of August, which may still have a consequence on the final impact time", he added. Large ground telescopes will be involved before and during impact to make observations of the event, with several objectives: - To study the physics of the impact (ejected material, mass, dynamics and energy involved). - To analyse the chemistry of the surface by collecting the specific radiation emitted by the ejected material (‘spectra’) - To help technological assessment: understand what happens to the impacting spacecraft to know better how to prepare for future impactor experiments (for instance on satellites to intercept meteorites menacing our planet). Media briefing on 3 September, major press conference on 4 September Media representatives wishing to witness the impact event at ESOC and share the excitement of it with specialists and scientists available for interviews as of early morning on Sunday 3 September, or wishing to attend the press conference on Monday 4 September to highlight the first results of the impact, are required to fill in the attached registration form and return it by fax to the ESOC Communication Office by Thursday 31 August. Note for Editors Why so SMART? SMART-1 is packed with high-tech devices and state-of-the-art scientific instruments. Its ion engine, for instance, works by expelling a continuous beam of charged particles, or ions, which produces a thrust that drives the spacecraft forward. The energy to power the engine comes from the solar panels, hence the term 'solar electric propulsion'. The engine generates a very gentle continuous thrust which causes the spacecraft to move relatively slowly: SMART-1 accelerates at just 0.2 millimetres per square second, a thrust equivalent to the weight of a postcard. By necessity, SMART-1’s journey to the Moon has been neither quick nor direct. This was because, for the first time, ESA wanted to test electric propulsion on a trip similar to an interplanetary journey. After launch, SMART-1 went into an elliptical orbit around the Earth. Then the spacecraft fired its ion engine, gradually expanding its elliptical orbit and spiralling out in the direction of the Moon’s orbital plane. Month after month this brought SMART-1 closer to the Moon. This spiralling journey accounted for more than 100 million kilometres, while the Moon - if you wanted to go there in a straight line - is only between 350,000 and 400,000 kilometres away from the Earth. As SMART-1 neared its destination, it began using the gravity of the Moon to bring it into a position where it was captured by the Moon’s gravitational field. This occurred in November 2004. After being captured by the Moon, in January 2005, SMART-1 started to spiral down to its final operational polar elliptical orbit with a perilune (closest point to the lunar surface) altitude of 300 km and apolune (farthest point) altitude of 3000 km. to conduct its scientific exploration mission. What was there to know that we didn’t know already? Despite the number of spacecraft that have visited the Moon, many scientific questions concerning our natural satellite remained unanswered, notably to do with the origin and evolution of the Moon, and the processes that shape rocky planetary bodies (such as tectonics, volcanism, impacts and erosion). Thanks to SMART-1, scientists all over Europe and around the world now have the best resolution surface images ever from lunar orbit, as well as a better knowledge of the Moon’s minerals. For the first time from orbit, they have detected calcium and magnesium using an X-ray instrument. They have measured compositional changes from the central peaks of craters, volcanic plains and giant impact basins. SMART-1 has also studied impact craters, volcanic features and lava tubes, and monitored the polar regions. In addition, it found an area near the north pole where the Sun always shines, even in winter. SMART-1 has roamed over the lunar poles, enabling it to map the whole Moon, including its lesser known far side. The poles are particularly interesting to scientists because they are relatively unexplored. Moreover, some features in the polar regions have a geological history which is distinct from the more closely studied equatorial regions where all previous lunar landers have touched down so far. With SMART-1, Europe has played an active role in the international lunar exploration programme of the future and, with the data thus gathered, is able to make a substantial contribution to that effort. SMART-1 experience and data are also assisting in preparations for future lunar missions, such as India’s Chandrayaan-1, which will reuse SMART-1’s infrared and X-ray spectrometers. SMART-1 is equipped with completely new instruments, never used close to the Moon before. These include a miniature camera, and X-ray and infrared spectrometers, which are all helping to observe and study the Moon. Its solar panels use advanced gallium-arsenide solar cells, chosen in preference to traditional silicon cells. One of the experimental instruments onboard SMART-1 is OBAN, which has been testing a new navigation system that will allow future spacecraft to navigate on their own, without the need for control from the ground. Instruments and techniques tested in examining the Moon from SMART-1 will later help ESA's BepiColombo spacecraft to investigate the planet Mercury. For further information: ESA Media Relations Office Phone: + 33 1 5369 7155 Fax: + 33 1 5369 7296 Queries: media@esa.int Further information on the event at ESOC Jocelyne Landeau-Constantin Head of Corporate Communication Office ESA/ESOC Darmstadt, Germany : Tel. + 49 6151 90 26 96 / email: jlc@esa.int ACCREDITATION REQUEST FORM SMART-1 Moon impact - ESA/ESOC Darmstadt - Robert Bosch Strasse 5, Darmstadt, Germany a) Sunday 3 September b) Monday 4 September 2006 First name:___________________ Surname:_____________________ Media:______________________________________________________ Address: ___________________________________________________ ____________________________________________________________ Tel:_______________________ Fax: ___________________________ Mobile:___________________ E-mail: _________________________ I will be attending the following events (NB:_times may be subject to change after major manoeuvre of SMART-1 on 25 August. Please check updates on: www.esa.int/smart1): [ ] Sunday 3 September: Monitoring of SMART-1 Moon impact Opening times for media: 06:00 to 10:00 06:30 - 09:00 Press will be briefed on the latest flight operations and can follow live SMART-1 telemetry, right before estimated impact at 07:41 CEST in ESOC Main Control Room, together with leading European mission operations and science experts and in relation with ground based observers. [ ] Monday 4 September: Summary Press Conference on SMART-1 mission Opening times for media: 10:00 - 13:00 / Press-conference from 11:00 to 12:00 11:00 - Welcome to ESA/ESOC by Gaele Winters, ESA Director of Operations - Introduction, by ESA’s Director of Science, David Southwood 11:05 - Flight operations, ground operations concepts and lunar impact, by Octavio Camino, ESA 11:15 - Spacecraft technology achievements with emphasis on solar-electric propulsion , by Giorgio Saccoccia, ESA 11:20 - Lunar science: - scientific mission overview by Bernard Foing, ESA - lunar imaging, by Jean-Luc Josset (principal investigator for AMIE) - the Moon in X-rays - mineralogy, by Manuel Grande (principal investigator for D-CIXS) - ground observations campaign, by Prof. Pascale Ehrenfreund, Leiden Observatory 11:50 - Conclusions: Heritage for future lunar missions, International cooperation with India and China, by Gerhard Schwehm, ESA 11:55 - Q&A moderated by Jocelyne Constantin-Landeau, ESA (Individual interviews afterwards)
NASA Astrophysics Data System (ADS)
Law, E.; Bui, B.; Chang, G.; Goodale, C. E.; Kim, R.; Malhotra, S.; Ramirez, P.; Rodriguez, L.; Sadaqathulla, S.; Nall, M.; Muery, K.
2012-12-01
The Lunar Mapping and Modeling Portal (LMMP), is a multi-center project led by NASA's Marshall Space Flight Center. The LMMP is a web-based Portal and a suite of interactive visualization and analysis tools to enable lunar scientists, engineers, and mission planners to access mapped lunar data products from past and current lunar missions, e.g., Lunar Reconnaissance Orbiter, Apollo, Lunar Orbiter, Lunar Prospector, and Clementine. The Portal allows users to search, view and download a vast number of the most recent lunar digital products including image mosaics, digital elevation models, and in situ lunar resource maps such as iron and hydrogen abundance. The Portal also provides a number of visualization and analysis tools that perform lighting analysis and local hazard assessments, such as, slope, surface roughness and crater/boulder distribution. In this talk, we will give a brief overview of the project. After that, we will highlight various key features and Lunar data products. We will further demonstrate image viewing and layering of lunar map images via our web portal as well as mobile devices.
The role of small missions in planetary and lunar exploration
NASA Technical Reports Server (NTRS)
1995-01-01
The Space Studies Board of the National Research Council charged its Committee on Planetary and Lunar Exploration (COMPLEX) to (1) examine the degree to which small missions, such as those fitting within the constraints of the Discovery program, can achieve priority objectives in the lunar and planetary sciences; (2) determine those characteristics, such as level of risk, flight rate, target mix, university involvement, technology development, management structure and procedures, and so on, that could allow a successful program; (3) assess issues, such as instrument selection, mission operations, data analysis, and data archiving, to ensure the greatest scientific return from a particular mission, given a rapid deployment schedule and a tightly constrained budget; and (4) review past programmatic attempts to establish small planetary science mission lines, including the Planetary Observers and Planetary Explorers, and consider the impact management practices have had on such programs. A series of small missions presents the planetary science community with the opportunity to expand the scope of its activities and to develop the potential and inventiveness of its members in ways not possible within the confines of large, traditional programs. COMPLEX also realized that a program of small planetary missions was, in and of itself, incapable of meeting all of the prime objectives contained in its report 'An Integrated Strategy for the Planetary Sciences: 1995-2010.' Recommendations are provided for the small planetary missions to fulfill their promise.
Duke, Michael B
2002-03-01
The Clementine mission has revived interest in the possibility that ice exists in shadowed craters near the lunar poles. Theoretically, the problem is complex, with several possible sources of water (meteoroid, asteroid, comet impact), several possible loss mechanisms (impact vaporization, sputtering, photoionization), and burial by meteorite impact. Opinions of modelers have ranged from no ice to several times 10(16) g of ice in the cold traps. Clementine bistatic radar data have been interpreted in favor of the presence of ice, while Arecibo radar data do not confirm its presence. The Lunar Prospector mission, planned to be flown in the fall of 1997, could gather new evidence for the existence of ice. If ice is present, both scientific and utilitarian objectives would be addressed by a lunar polar rover, such as that proposed to the NASA Discovery program, but not selected. The lunar polar rover remains the best way to understand the distribution and characteristics of lunar polar ice. c2002 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.
The Chang'e 3 Mission Overview
NASA Astrophysics Data System (ADS)
Li, Chunlai; Liu, Jianjun; Ren, Xin; Zuo, Wei; Tan, Xu; Wen, Weibin; Li, Han; Mu, Lingli; Su, Yan; Zhang, Hongbo; Yan, Jun; Ouyang, Ziyuan
2015-07-01
The Chang'e 3 (CE-3) mission was implemented as the first lander/rover mission of the Chinese Lunar Exploration Program (CLEP). After its successful launch at 01:30 local time on December 2, 2013, CE-3 was inserted into an eccentric polar lunar orbit on December 6, and landed to the east of a 430 m crater in northwestern Mare Imbrium (19.51°W, 44.12°N) at 21:11 on December 14, 2013. The Yutu rover separated from the lander at 04:35, December 15, and traversed for a total of 0.114 km. Acquisition of science data began during the descent of the lander and will continue for 12 months during the nominal mission. The CE-3 lander and rover each carry four science instruments. Instruments on the lander are: Landing Camera (LCAM), Terrain Camera (TCAM), Extreme Ultraviolet Camera (EUVC), and Moon-based Ultraviolet Telescope (MUVT). The four instruments on the rover are: Panoramic Camera (PCAM), VIS-NIR Imaging Spectrometer (VNIS), Active Particle induced X-ray Spectrometer (APXS), and Lunar Penetrating Radar (LPR). The science objectives of the CE-3 mission include: (1) investigation of the morphological features and geological structures of and near the landing area; (2) integrated in-situ analysis of mineral and chemical composition of and near the landing area; and (3) exploration of the terrestrial-lunar space environment and lunar-based astronomical observations. This paper describes the CE-3 objectives and measurements that address the science objectives outlined by the Comprehensive Demonstration Report of Phase II of CLEP. The CE-3 team has archived the initial science data, and we describe data accessibility by the science community.
Lunar Prospector Orbit Determination Uncertainties Using the High Resolution Lunar Gravity Models
NASA Technical Reports Server (NTRS)
Carranza, Eric; Konopliv, Alex; Ryne, Mark
1999-01-01
The Lunar Prospector (LP) mission began on January 6, 1998, when the LP spacecraft was launched from Cape Canaveral, Florida. The objectives of the mission were to determine whether water ice exists at the lunar poles, generate a global compositional map of the lunar surface, detect lunar outgassing, and improve knowledge of the lunar magnetic and gravity fields. Orbit determination of LP performed at the Jet Propulsion Laboratory (JPL) is conducted as part of the principal science investigation of the lunar gravity field. This paper will describe the JPL effort in support of the LP Gravity Investigation. This support includes high precision orbit determination, gravity model validation, and data editing. A description of the mission and its trajectory will be provided first, followed by a discussion of the orbit determination estimation procedure and models. Accuracies will be examined in terms of orbit-to-orbit solution differences, as a function of oblateness model truncation, and inclination in the plane-of-sky. Long term predictions for several gravity fields will be compared to the reconstructed orbits to demonstrate the accuracy of the orbit determination and oblateness fields developed by the Principal Gravity Investigator.
2009-05-08
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians photograph the Lunar Reconnaissance Orbiter, or LRO, during closeout before its mating with NASA's Lunar CRater Observation and Sensing Satellite, known as LCROSS, spacecraft. Instruments on the LRO include the LEND that will measure the flux of neutrons from the moon; the LROC, a narrow angle camera that will provide panchromatic images; the LOLA, which will provide a precise global lunar topographic model and geodetic grid; and top right, the DIVINER, which will measure lunar surface temperatures at scales that provide essential information for future surface operations and exploration; and at top, the CRaTER, which will characterize the global lunar radiation environment and its biological impacts. At right is the solar panel. The satellite's primary mission is to search for water ice on the moon in a permanently shadowed crater near one of the lunar poles. LCROSS is a low-cost, accelerated-development, companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO. LCROSS and LRO are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. Launch is targeted for no earlier than June 2 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
Lunar Cube Transfer Trajectory Options
NASA Technical Reports Server (NTRS)
Folta, David C.; Dichman, Don; Clark, Pamela; Haapala, Amanda; Howell, Kathleen
2014-01-01
Contingent upon the modification of an initial condition of the injected or deployed orbit. Additionally, these designs can be restricted by the selection of the Cubesat subsystem design such as propulsion or communication. Nonetheless, many trajectory options can be designed with have a wide range of transfer durations, fuel requirements, and final destinations. Our investigation of potential trajectories highlights several design options including deployment into low Earth orbit (LEO), geostationary transfer orbits (GTO), and higher energy direct lunar transfer orbits. In addition to direct transfer options from these initial orbits, we also investigate the use of longer duration Earth-Moon dynamical systems. For missions with an intended lunar orbit, much of the design process is spent optimizing a ballistic capture while other science locations such as Sun-Earth libration or heliocentric orbits may simply require a reduced Delta-V imparted at a convenient location along the trajectory. In this article we examine several design options that meet the above limited deployment and subsystem drivers. We study ways that both impulsive and low-thrust Solar Electric Propulsion (SEP) engines can be used to place the Cubesat first into a highly eccentric Earth orbit, enter the Moon's Sphere of Influence, and finally achieve a highly eccentric lunar orbit. We show that such low-thrust transfers are feasible with a realistic micro-thruster model, assuming that the Cubesat can generate sufficient power for the SEP. Two examples are shown here: (1) A Cubestat injected by Exploration Mission 1 (EM-1) then employing low thrust; and (2) a CubSat deployed in a GTO, then employing impulsive maneuvers. For the EM-1 injected initial design, we increase the EM-1 targeted lunar flyby distance to reduce the energy of the lunar flyby to match that of a typical lMoon system heteroclinic manifold. Figure 1 presents an option that encompasses the similar dynamics as that of the ARTEMIS mission design. Low-thrust maneuvers are used along the manifold trajectory to raise perigee to that of a lunar orbit, adjust the timing with respect to the Moon, rotate the line of apsides, and target a ballistic lunar encounter. In this design a second flyby decreases the orbital energy with respect to the Moon, so that C3 -0.1 km2s2. Another design, shown in Figure 2 emanates from a GTO then uses impulsive maneuvers to phase onto a local Earth-Moon manifold, which then transfers the CubeSat to a lunar encounter.
Mission Planning and Scheduling System for NASA's Lunar Reconnaissance Mission
NASA Technical Reports Server (NTRS)
Garcia, Gonzalo; Barnoy, Assaf; Beech, Theresa; Saylor, Rick; Cosgrove, Jennifer Sager; Ritter, Sheila
2009-01-01
In the framework of NASA's return to the Moon efforts, the Lunar Reconnaissance Orbiter (LRO) is the first step. It is an unmanned mission to create a comprehensive atlas of the Moon's features and resources necessary to design and build a lunar outpost. LRO is scheduled for launch in April, 2009. LRO carries a payload comprised of six instruments and one technology demonstration. In addition to its scientific mission LRO will use new technologies, systems and flight operations concepts to reduce risk and increase productivity of future missions. As part of the effort to achieve robust and efficient operations, the LRO Mission Operations Team (MOT) will use its Mission Planning System (MPS) to manage the operational activities of the mission during the Lunar Orbit Insertion (LOI) and operational phases of the mission. The MPS, based on GMV's flexplan tool and developed for NASA with Honeywell Technology Solutions (prime contractor), will receive activity and slew maneuver requests from multiple science operations centers (SOC), as well as from the spacecraft engineers. flexplan will apply scheduling rules to all the requests received and will generate conflict free command schedules in the form of daily stored command loads for the orbiter and a set of daily pass scripts that help automate nominal real-time operations.
Return to the Moon: Lunar robotic science missions
NASA Technical Reports Server (NTRS)
Taylor, Lawrence A.
1992-01-01
There are two important aspects of the Moon and its materials which must be addressed in preparation for a manned return to the Moon and establishment of a lunar base. These involve its geologic science and resource utilization. Knowledge of the Moon forms the basis for interpretations of the planetary science of the terrestrial planets and their satellites; and there are numerous exciting explorations into the geologic science of the Moon to be conducted using orbiter and lander missions. In addition, the rocks and minerals and soils of the Moon will be the basic raw materials for a lunar outpost; and the In-Situ Resource Utilization (ISRU) of lunar materials must be considered in detail before any manned return to the Moon. Both of these fields -- planetary science and resource assessment -- will necessitate the collection of considerable amounts of new data, only obtainable from lunar-orbit remote sensing and robotic landers. For over fifteen years, there have been a considerable number of workshops, meetings, etc. with their subsequent 'white papers' which have detailed plans for a return to the Moon. The Lunar Observer mission, although grandiose, seems to have been too expensive for the austere budgets of the last several years. However, the tens of thousands of man-hours that have gone into 'brainstorming' and production of plans and reports have provided the precursor material for today's missions. It has been only since last year (1991) that realistic optimism for lunar orbiters and soft landers has come forth. Plans are for 1995 and 1996 'Early Robotic Missions' to the Moon, with the collection of data necessary for answering several of the major problems in lunar science, as well as for resource and site evaluation, in preparation for soft landers and a manned-presence on the Moon.
"First Convention of Lunar Explorers" - Invitation to the media
NASA Astrophysics Data System (ADS)
2001-03-01
The first LUNEX Convention will bring together lunar explorers from all backgrounds, including professionals, amateur space enthusiasts and interested visitors from the public. During the Convention numerous oral presentations will prompt detailed discussions on all aspects of future lunar exploration: the Moon as a geology laboratory or an astronomical platform; the knowledge of lunar geography needed to land and move on the surface; the implications of finding water-ice on the Moon and whether this might be detected by forthcoming missions; the architecture of lunar habitats; what would be needed in the future for the Moon to support life; cultural and social aspects; and the scientific motivation for returning to the Moon. The Convention will also be the main public event in 2001 at which SMART-1 is presented. SMART-1, due to be launched in 2002 will test solar electric propulsion and other innovative approaches for future deep space probes. It is the first European satellite to be sent towards the Moon. Visitors to the Palais de la Découverte will be able to view a model of SMART-1. On 9 March, at 09:00, the media is invited to hear about the LUNEX objectives and activities and to learn about the European Space Agency’s SMART-1 mission within the broader context of ESA’s Planetary Exploration Programme. Background information on LUNEX The Lunar Explorers Society (LUNEX) is an international organization created by 200 founder members in July 2000. LUNEX was founded at the end of the 4th Conference on Exploration and Utilisation of the Moon (ICEUM4), organised by ESA and the International Lunar Exploration Working Group (ILEWG). Its aim is to promote the exploration of the Moon for the benefit of humanity, bridging the gap between space agencies and the general public to promote planetary exploration and space. The Lunar Explorers Society invites all interested individuals to become members. Background information on SMART-1 SMART-1 is the first of ESA’s SMART (Small Mission for Advanced Research and Technology) missions under the Horizon 2000 Scientific Programme. SMART-1 will be launched in October 2002 on board an Ariane-5 rocket as an auxiliary payload. The mission’s primary objective is to flight-test solar electric primary propulsion on a Moon voyage, preparing crucial new technology for ESA’s Bepi-Colombo mission to Mercury. Other new technologies for spacecraft and instruments will also be tested. It will be the first time that Europe sends a spacecraft to the Moon. Besides relying on solar electric primary propulsion to leave the Earth and reach the Moon, the spacecraft will also carry out a complete programme of scientific observations in lunar orbit. During the cruise phase to reach the Moon, the instruments will be tested by observing the Earth and celestial targets. Note to editors: Members of the media are invited to attend the complete conference free of charge. The sessions planned for 9 March are of particularly great interest for media participation. Individual interviews and a web forum will be organized. Media representatives wishing to take part in the Press Conference on 9 March at 09:00 (in English and French) are kindly requested to fill out and return the attached accreditation request by fax to: +33(0)1.53.69.76.90.
Astronomy from the Moon and International Lunar Observatory Missions
NASA Astrophysics Data System (ADS)
Durst, S.; Takahashi, Y. D.
2018-04-01
Astronomy from the Moon provides a promising new frontier for 21st century astrophysics and related science activity. International Lunar Observatory Association is an enterprise advancing missions to the Moon for observation and communication.
Route Planning Software for Lunar Polar Missions
NASA Astrophysics Data System (ADS)
Cunningham, C.; Jones, H.; Amato, J.; Holst, I.; Otten, N.; Kitchell, F.; Whittaker, W.; Horchler, A.
2016-11-01
Rover mission planning on the lunar poles is challenging due to the long, time-varying shadows. This abstract presents software for efficiently planning traverses while balancing competing demands of science goals, rover energy constraints, and risk.
The Lunar Reconnaissance Orbiter: Plans for the Science Phase
NASA Technical Reports Server (NTRS)
Vondrak, Richard R.; Keller, John W.; Chin, Gordon; Petro, Noah; Rice, James; Garvin, James
2011-01-01
The Lunar Reconnaissance Orbiter spacecraft (LRO), which was launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's primary objectives included the search for resources and to investigate the Lunar radiation environment. This phase of the mission was completed on September 15,2010 when the operational responsibility for LRO was transferred from ESMD to NASA's Science Mission directorate (SMD). Under SMD, the mission focuses on a new set of goals related to the history of the Moon, its current state and what its history can tell us about the evolution of the Solar System.
1968-03-03
The launch of the Apollo 9 (Saturn V launch vehicle, SA-504), with astronauts James A. McDivitt, David R. Scott, and Russell L. Schweickart, took place on March 3, 1968. The Apollo 9 spacecraft, in the lunar mission configuration, was tested in Earth orbit. The mission was designed to rehearse all the steps and reproduce all the events of the Apollo 11 mission with the exception of the lunar touchdown, stay, and liftoff. The command and service modules, and the lunar module were used in flight procedures identical to those that would later take similar vehicles to the Moon, and a landing. The flight mechanics, mission support systems, communications, and recording of data were tested in a final round of verification. Astronauts Scott and Schweickart conducted Extravehicular Activity during this mission.
NASA Astrophysics Data System (ADS)
Nefedjev, Yu. A.; Valeev, S. G.; Rizvanov, N. G.; Mikeev, R. R.; Varaksina, N. Yu.
2010-05-01
The relative position of lunar center masses relative to center of the figure in Kazan and Kiev selenocentric catalogues was customized. The expansions by spherical harmonics N=5 degree and order of the lunar function h(λ, β) with using the package ASNI USTU were executed. Module of the expansion of the local area to surfaces to full sphere was used. The parameters of cosmic missions are given for comparison (SAI; Bills, Ferrari). The normalized coefficients from expansions for eight sources hypsometric information are obtained: - Clementine (N=40), - Kazan (N=5), - Kiev (N=5), - SAI (N=10; Chuikova (1975)), - Bills, Ferrari, - Каguуа (Selena, Japan mission), - ULCN (The Uuified Lunaz Control Network 2005). The displacements of the lunar centre figure relative to lunar centre of the masses were defined from equations (Chuikova (1975)). The results of the obtaining relative position of the lunar centre masses and centre of the figure in Kazan selenocentric catalogue give good agreement with modern cosmic mission data.
Apollo 9 Mission image - Lunar Module
1969-03-07
AS09-21-3183 (7 March 1969) --- A view of the Apollo 9 Lunar Module (LM) "Spider" in a lunar landing configuration, as photographed from the Command and Service Modules (CSM) on the fifth day of the Apollo 9 Earth-orbital mission. The landing gear on the "Spider" has been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the "Spider" were astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module (CM), "Gumdrop," while the other two astronauts checked out the LM. Schweickart, lunar module pilot, is photographed from the CM "Gumdrop" during his extravehicular activity (EVA) on the fourth day of the Apollo 9 Earth-orbital mission. The CSM is docked with the LM. Astronaut James A. McDivitt, Apollo 9 commander, was inside the LM "Spider." Astronaut David R. Scott, command module pilot, remained at the controls in the CM.
Apollo 9 Mission image - Lunar Module
1969-03-07
AS09-21-3197 (7 March 1969) --- A view of the Apollo 9 Lunar Module (LM) "Spider" in a lunar landing configuration, as photographed from the Command and Service Modules (CSM) on the fifth day of the Apollo 9 Earth-orbital mission. The landing gear on the "Spider" has been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the "Spider" were astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module (CM), "Gumdrop," while the other two astronauts checked out the LM. Schweickart, lunar module pilot, is photographed from the CM "Gumdrop" during his extravehicular activity (EVA) on the fourth day of the Apollo 9 Earth-orbital mission. The CSM is docked with the LM. Astronaut James A. McDivitt, Apollo 9 commander, was inside the LM "Spider." Astronaut David R. Scott, command module pilot, remained at the controls in the CM.
NASA Technical Reports Server (NTRS)
Hyatt, Mark J.; Straka, Sharon A.
2010-01-01
A return to the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth?s economic sphere, will require investment in developing new technologies and capabilities to achieve affordable and sustainable human exploration. From the operational experience gained and lessons learned during the Apollo missions, conducting long-term operations in the lunar environment will be a particular challenge, given the difficulties presented by the unique physical properties and other characteristics of lunar regolith, including dust. The Apollo missions and other lunar explorations have identified significant lunar dust-related problems that will challenge future mission success. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it?s potentially harmful effects on exploration systems and human explorers. The Dust Management Project (DMP) is tasked with the evaluation of lunar dust effects, assessment of the resulting risks, and development of mitigation and management strategies and technologies related to Exploration Systems architectures. To this end, the DMP supports the overall goal of the Exploration Technology Development Program (ETDP) of addressing the relevant high priority technology needs of multiple elements within the Constellation Program (CxP) and sister ETDP projects. Project scope, plans, and accomplishments will be presented.
Exploration planning in the context of human exploration and development of the Moon
NASA Technical Reports Server (NTRS)
Duke, Michael B.; Morrison, Donald A.
1993-01-01
It is widely believed that the next step beyond low Earth orbit in attaining the United States' stated goal of 'Expanding human presence beyond the Earth' should be to reestablish a lunar capability, building on the Apollo program, and preparing the way for eventual human missions to Mars. The Moon offers important questions in planetary and Earth science, can provide a unique platform for making astronomical observations of high resolution and sensitivity, and can be in the development path for unlocking resources of the inner solar system to support space activities and return benefits to Earth. NASA's Office of Exploration has undertaken the planning of future lunar exploration missions with the assistance of the Solar System Exploration Division in matters dealing with the quality of scientific data and the manner in which it will be made available to the scientific community. The initial elements of the proposed program include the Lunar Scout missions, which consist of two small identical spacecraft in polar orbit around the Moon, which can accomplish most of the objectives associated with previous proposals for Lunar Polar Orbiters. These missions would be followed by 'Artemis' landers, capable of emplacing up to 200 kg payloads anywhere on the Moon. In addition, the exploration program must incorporate data obtained from other missions, including the Galileo lunar flybys, the Clementine high orbital observations, and Japanese penetrator missions. In the past year, a rather detailed plan for a 'First Lunar Outpost (FLO)' which would place 4 astronauts on the lunar surface for 45 days has been developed as a possible initial step of a renewed human exploration program. In the coming year, the FLO concept will be reviewed and evolved to become more highly integrated with planning for the initial human exploration of Mars, which could come perhaps 5 years after the reestablishment of lunar capability. Both programs could benefit from the common development of systems and subsystems, where that is sensible from a performance perspective.
NEA Scout and Lunar Flashlight: Two NearTerm Interplanetary CubeSat Missions
NASA Technical Reports Server (NTRS)
Johnson, Les
2015-01-01
NASA is developing two small satellite missions as part of the Advanced Exploration Systems (AES) Program, both of which will use a solar sail to enable their scientific objectives. Solar sails reflect sunlight from a large, mirror-like sail made of a lightweight, highly reflective material to provide thrust. This continuous photon pressure provides propellantless thrust, allowing for very high delta V maneuvers in space. Lunar Flashlight, managed by the NASA Jet Propulsion Laboratory, will search for and map volatiles in permanently shadowed lunar craters using a solar sail as a gigantic mirror to steer sunlight into them, then examine the reflected light with a spectrometer. The Lunar Flashlight spacecraft will also use the solar sail to maneuver into a lunar polar orbit. The mission will demonstrate a low-cost capability to explore, locate and estimate the size and composition of ice deposits on the Moon. The Near Earth Asteroid (NEA) Scout mission, managed by the NASA Marshall Space Flight Center will survey and image a Near Earth Asteroid for possible future human exploration using a smallsat propelled by a solar sail. Detections of NEAs are expected to grow in the near future, offering increasing target opportunities. Obtaining and analyzing relevant data about these bodies via robotic precursors before committing a crew to visit them is essential. The NEA Scout spacecraft is nearly identical to the one being developed for Lunar Flashlight, with the science instrument package being the primary difference. The NEA Scout solar sail will provide the primary propulsion taking the 6U cubesat from near the Earth to its final asteroid destination and the Lunar Flashlight sail will provide the propulsion necessary for its spacecraft to enter lunar orbit. Both projects will use an 85 m2 solar sail developed by NASA MSFC. The NEA Scout and Lunar Flashlight flight systems are based on a 6U cubesat form factor, with a stowed envelope of 10 x 20 x 30 cm and a mass of less than 12 kg. The solar sail for NEA Scout and Lunar Flashlight will be based on the technology developed and flown by the NASA NanoSail-D and The Planetary Society's Lightsail-A. Four 7 m stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor deployed and pull the sail from its stowed volume. The sail material will be 3 micron CP1, an aluminized polyimide that was extensively tested for solar sail applications. The sail will spooled rather than Z-folded. This paper will describe both the Lunar Flashlight and NEA Scout missions and their solar sails.
View - Mission Control Center (MCC) - Lunar Surface - Apollo XI Extravehicular Activity (EVA) - MSC
1969-07-20
S69-39815 (20 July 1969) --- Interior view of the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC) during the Apollo 11 lunar extravehicular activity (EVA). The television monitor shows astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. on the surface of the moon.
Code-Name: Spider, Flight of Apollo 9.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
Apollo 9, an earth orbiting mission during which the Lunar Module was first tested in space flight in preparation for the eventual moon landing missions, is the subject of this pamphlet. Many color photographs and diagrams of the Lunar Module and flight activities are included with a brief description of the mission. (PR)
Meditations on the new space vision: The moon as a stepping stone to mars
NASA Astrophysics Data System (ADS)
Mendell, W. W.
2005-07-01
The Vision for Space Exploration invokes activities on the Moon in preparation for exploration of Mars and also directs International Space Station (ISS) research toward the same goal. Lunar missions will emphasize development of capability and concomitant reduction of risk for future exploration of Mars. Earlier papers identified three critical issues related to the so-called NASA Mars Design Reference Mission (MDRM) to be addressed in the lunar context: (a) safety, health, and performance of the human crew; (b) various modalities of mission operations ranging surface activities to logistics, planning, and navigation; and (c) reliability and maintainability of systems in the planetary environment. In simple terms, lunar expeditions build a résumé that demonstrates the ability to design, construct, and operate an enterprise such as the MDRM with an expectation of mission success. We can evolve from Apollo-like missions to ones that resemble the complexity and duration of the MDRM. Investment in lunar resource utilization technologies falls naturally into the Vision. NASA must construct an exit strategy from the Moon in the third decade. With a mandate for continuing exploration, it cannot assume responsibility for long-term operation of lunar assets. Therefore, NASA must enter into a partnership with some other entity—governmental, international, or commercial—that can responsibly carry on lunar development past the exploration phase.
Meditations on the new space vision: the Moon as a stepping stone to Mars.
Mendell, W W
2005-01-01
The Vision for Space Exploration invokes activities on the Moon in preparation for exploration of Mars and also directs International Space Station (ISS) research toward the same goal. Lunar missions will emphasize development of capability and concomitant reduction of risk for future exploration of Mars. Earlier papers identified three critical issues related to the so-called NASA Mars Design Reference Mission (MDRM) to be addressed in the lunar context: (a) safety, health, and performance of the human crew; (b) various modalities of mission operations ranging surface activities to logistics, planning, and navigation; and (c) reliability and maintainability of systems in the planetary environment. In simple terms, lunar expeditions build a résumé that demonstrates the ability to design, construct, and operate an enterprise such as the MDRM with an expectation of mission success. We can evolve from Apollo-like missions to ones that resemble the complexity and duration of the MDRM. Investment in lunar resource utilization technologies falls naturally into the Vision. NASA must construct an exit strategy from the Moon in the third decade. With a mandate for continuing exploration, it cannot assume responsibility for long-term operation of lunar assets. Therefore, NASA must enter into a partnership with some other entity--governmental, international, or commercial--that can responsibly carry on lunar development past the exploration phase. Published by Elsevier Ltd.
Replicas of Snoopy and Charlie Brown decorate top of console in MCC
1969-05-18
S69-34314 (18 May 1969) --- Replicas of Snoopy and Charlie Brown, the two characters from Charles Schulz's syndicated comic strip, "Peanuts," decorate the top of a console in the Mission Operations Control Room in the Mission Control Center, Building 30, on the first day of the Apollo 10 lunar orbit mission. During lunar orbit operations, the Lunar Module will be called ?Snoopy? when it is separated from the Command and Service Modules. The code words for the Command Module will be ?Charlie Brown?.
Lunar Get Away Special (GAS) spacecraft
NASA Technical Reports Server (NTRS)
Nock, K. T.; Aston, G.; Salazar, R. P.; Stella, P. M.
1987-01-01
A new approach to the resumption of Lunar missions is discussed which relies upon Shuttle Get-Away-Special Canisters for launch and solar electric ion propulsion for slow orbit transfer to low Lunar orbit. The technique of orbit transfer is outlined along with a summary of a mission profile for a first mission which could carry a Gamma Ray Spectrometer. System design constraints are discussed followed by a description of the low mass spacecraft concept which has been developed. Particular emphasis is placed upon describing the small solar electric, xenon ion propulsion system.
Radiation Analysis for the Human Lunar Return Mission
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Simonsen, L. C.; Shinn, J. L.; Kim, M.; Dubey, R. R.; Jordan, W.
1997-01-01
An analysis of the radiation hazards that are anticipated on an early Human Lunar Return (HLR) mission in support of NASA deep space exploration activities is presented. The HLR mission study emphasized a low cost lunar return to expand human capabilities in exploration, to answer fundamental science questions, and to seek opportunities for commercial development. As such, the radiation issues are cost related because the parasitic shield mass is expensive due to high launch costs. The present analysis examines the shield requirements and their impact on shield design.
Lunar campsite concept: Space transfer concepts and analysis for exploration missions
NASA Astrophysics Data System (ADS)
1991-05-01
The lunar Campsite concept responds to a perceived need to identify early manned science and exploration missions that require minimal initial funding. The Campsite concept defers the build-up of many infrastructure components without escalating total program costs. The lunar Campsite has been sized nominally for four crew for 42 days (1 lunar night and 2 lunar days), but can be modified to span two lunar nights up to 60 days. Total mission fulfillment requires five Earth-to-LEO launches, four (100 mt class launch vehicle) for the two vehicle assemblies and one (PLS or NSTS) for the crew. The lunar Campsite mission mode is tandem direct using a booster stage and a lander stage. The booster is separated from the lander after the TLI burn and is expended into the Earth's atmosphere. In the Campsite mode, the lander lands on the surface not to be returned. In the crew delivery mode, the lander is guided to a precision landing about 500 m from the Campsite, and with enough propellant to return the crew to Earth. The Campsite consists of a habitat and airlock, body mounted radiators with a surface shield, sun tracking solar arrays, and an Earth-tracking high-gain antenna. The CV is very similar to the campsite delivery vehicle. The CV does not, however, have radiators or solar arrays. The vehicle stacks are essentially common in that they utilize the same structure system and engines, the same propellant tanks, the same 'cut-out' in which the CRV and payloads are incorporated, and the same RCS locations. The booster and lander stage propellant tank propellant capacities are identical and have margins which would allow additional fueling for propulsive capture of the boost stage into Earth orbit. This contractual study was performed to identify Campsite and vehicle interfaces and vehicle requirements, and to surface issues related to the integration of the Campsite and LTV's.
The Dust Management Project: Final Report
NASA Technical Reports Server (NTRS)
Hyatt, Mark J.; Straka, Sharon
2011-01-01
A return to the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth s economic sphere, will require investment in developing new technologies and capabilities to achieve affordable and sustainable human exploration. From the operational experience gained and lessons learned during the Apollo missions, conducting longterm operations in the lunar environment will be a particular challenge, given the difficulties presented by the unique physical properties and other characteristics of lunar regolith, including dust. The Apollo missions and other lunar explorations have identified significant lunar dust-related problems that will challenge future mission success. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it s potentially harmful effects on exploration systems and human explorers. The Dust Management Project (DMP) is tasked with the evaluation of lunar dust effects, assessment of the resulting risks, and development of mitigation and management strategies and technologies related to Exploration Systems architectures. To this end, the DMP supports the overall goal of the Exploration Technology Development Program (ETDP) of addressing the relevant high priority technology needs of multiple elements within the Constellation Program (CxP) and sister ETDP projects. Project scope, approach, accomplishments, summary of deliverables, and lessons learned are presented.
Lunar Exploration and Science in ESA
NASA Astrophysics Data System (ADS)
Carpenter, James; Houdou, Bérengère; Fisackerly, Richard; De Rosa, Diego; Patti, Bernardo; Schiemann, Jens; Hufenbach, Bernhard; Foing, Bernard
2015-04-01
ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the Russian led science payload, focusing on developing an characterising the resource opportunities offered at the lunar surface. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. In the frame of a broader future international programme under discussion through the International Space Exploration Coordination Group (ISECG) future missions are under investigation that would provide access to the lunar surface through international cooperation and human-robotic partnerships.
Preliminary analysis of space mission applications for electromagnetic launchers
NASA Technical Reports Server (NTRS)
Miller, L. A.; Rice, E. E.; Earhart, R. W.; Conlon, R. J.
1984-01-01
The technical and economic feasibility of using electromagnetically launched EML payloads propelled from the Earth's surface to LEO, GEO, lunar orbit, or to interplanetary space was assessed. Analyses of the designs of rail accelerators and coaxial magnetic accelerators show that each is capable of launching to space payloads of 800 KG or more. A hybrid launcher in which EML is used for the first 2 KM/sec followed by chemical rocket stages was also tested. A cost estimates study shows that one to two EML launches per day are needed to break even, compared to a four-stage rocket. Development models are discussed for: (1) Earth orbital missions; (2) lunar base supply mission; (3) solar system escape mission; (4) Earth escape missions; (5) suborbital missions; (6) electromagnetic boost missions; and (7) space-based missions. Safety factors, environmental impacts, and EML systems analysis are discussed. Alternate systems examined include electrothermal thrustors, an EML rocket gun; an EML theta gun, and Soviet electromagnetic accelerators.
The Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT)
NASA Technical Reports Server (NTRS)
Epp, Chirold D.; Smith, Thomas B.
2007-01-01
As NASA plans to send humans back to the Moon and develop a lunar outpost, technologies must be developed to place humans and cargo safely, precisely, repeatedly, on the lunar surface with the capability to avoid surface hazards. Exploration Space Architecture Study requirements include the need for global lunar surface access with safe, precise landing without lighting constraints on terrain that may have landing hazards for human scale landing vehicles. Landing accuracies of perhaps 1,000 meters for sortie crew missions to 10 s of meters for Outpost class missions are required. The Autonomous precision Landing Hazard Avoidance Technology (ALHAT) project will develop the new and unique descent and landing Guidance, Navigation and Control (GNC) hardware and software technologies necessary for these capabilities. The ALHAT project will qualify a lunar descent and landing GNC system to a Technology Readiness Level (TRL) of 6 capable of supporting lunar crewed, cargo, and robotic missions. The (ALHAT) development project was chartered by NASA Headquarters in October 2006. The initial effort to write a project plan and define an ALHAT Team was followed by a fairly aggressive research and analysis effort to determine what technologies existed that could be developed and applied to the lunar landing problems indicated above. This paper describes the project development, research, analysis and concept evolution that has occurred since the assignment of the project. This includes the areas of systems engineering, GNC, sensors, sensor algorithms, simulations, fielding testing, laboratory testing, Hardware-In-The-Loop testing, system avionics and system certification concepts.
NASA Astrophysics Data System (ADS)
Pendleton, Yvonne
2015-08-01
After years of thinking the Moon is dry, we now know there are three ways in which water appears on the Moon today:1) The hypothesized buried deposits of volatiles at the lunar poles were found at Cabeus crater. There are questions about the origin of such volatiles (i.e., in-falling comets & meteorites, migrating surficial OH/H2O, and accumulated release from the interior), but there is no doubt the water is there. This long suspected polar water was the most recent form to be confirmed on the Moon.2) Widespread, thinly- distributed, surficial OH (or H2O) is the most recently formed lunar water, and its discovery was completely unexpected. It occurs across all types of lunar terrain, but is more difficult to detect in the warmer equatorial terrain where thermal emission is strongest. The consensus is that this OH is indeed derived from solar wind H linked to O from the surface silicate rocks. Although pervasive, we don’t know how quickly it forms, nor how mobile it is.3) The amount of water present when the Moon formed is now documented in lunar materials from Apollo samples (preserved in the lunar mantle material found in volcanic glass beads). Sample analyses made during the Apollo days were not sufficiently precise to distinguish between indigenous lunar water and terrestrial contamination. Measurements with modern equipment are not only more precise (both elemental and isotopic), but can be made in a manner to constrain a host of processes (e.g. diffusion, thermal cycling) that have acted on these samples during their residence on the Moon. The mysteries associated with all these ‘water’ forms are being pursued by teams and scientists around the world. The paradigm-shifting work that reported these discoveries in recent years are from: the NASA LCROSS (lunar impact mission) team (2010), M3 team/ on the Indian Chandrayan Mission (2009), and lunar sample chemists (2008). NASA Lunar Reconnaissance Orbiter, GRAIL, ESA Smart-1, Japanese Kaguya, and other missions have further revolutionized our understanding of the geochemical and geophysical evolution of our neighbor. Ongoing analyses are informing a number of hypotheses and theories about the connection between the Earth and its “wet’” Moon.