Lunar surface vehicle model competition
NASA Technical Reports Server (NTRS)
1990-01-01
During Fall and Winter quarters, Georgia Tech's School of Mechanical Engineering students designed machines and devices related to Lunar Base construction tasks. These include joint projects with Textile Engineering students. Topics studied included lunar environment simulator via drop tower technology, lunar rated fasteners, lunar habitat shelter, design of a lunar surface trenching machine, lunar support system, lunar worksite illumination (daytime), lunar regolith bagging system, sunlight diffusing tent for lunar worksite, service apparatus for lunar launch vehicles, lunar communication/power cables and teleoperated deployment machine, lunar regolith bag collection and emplacement device, soil stabilization mat for lunar launch/landing site, lunar rated fastening systems for robotic implementation, lunar surface cable/conduit and automated deployment system, lunar regolith bagging system, and lunar rated fasteners and fastening systems. A special topics team of five Spring quarter students designed and constructed a remotely controlled crane implement for the SKITTER model.
Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M
NASA Technical Reports Server (NTRS)
1993-01-01
The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc.
Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-01-01
The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc. Separate abstracts have been prepared for articles from this report.
Lunar mission safety and rescue: Escape/rescue analysis and plan
NASA Technical Reports Server (NTRS)
1971-01-01
The results are presented of the technical analysis of escape/rescue/survival situations, crew survival techniques, alternate escape/rescue approaches and vehicles, and the advantages and disadvantages of each for advanced lunar exploration. Candidate escape/rescue guidelines are proposed and elements of a rescue plan developed. The areas of discussions include the following: lunar arrival/departure operations, lunar orbiter operations, lunar surface operations, lunar surface base escape/rescue analysis, lander tug location operations, portable airlock, emergency pressure suit, and the effects of no orbiting lunar station, no lunar surface base, and no foreign lunar orbit/surface operations on the escape/rescue plan.
Lunar Surface Architecture Utilization and Logistics Support Assessment
NASA Astrophysics Data System (ADS)
Bienhoff, Dallas; Findiesen, William; Bayer, Martin; Born, Andrew; McCormick, David
2008-01-01
Crew and equipment utilization and logistics support needs for the point of departure lunar outpost as presented by the NASA Lunar Architecture Team (LAT) and alternative surface architectures were assessed for the first ten years of operation. The lunar surface architectures were evaluated and manifests created for each mission. Distances between Lunar Surface Access Module (LSAM) landing sites and emplacement locations were estimated. Physical characteristics were assigned to each surface element and operational characteristics were assigned to each surface mobility element. Stochastic analysis was conducted to assess probable times to deploy surface elements, conduct exploration excursions, and perform defined crew activities. Crew time is divided into Outpost-related, exploration and science, overhead, and personal activities. Outpost-related time includes element deployment, EVA maintenance, IVA maintenance, and logistics resupply. Exploration and science activities include mapping, geological surveys, science experiment deployment, sample analysis and categorizing, and physiological and biological tests in the lunar environment. Personal activities include sleeping, eating, hygiene, exercising, and time off. Overhead activities include precursor or close-out tasks that must be accomplished but don't fit into the other three categories such as: suit donning and doffing, airlock cycle time, suit cleaning, suit maintenance, post-landing safing actions, and pre-departure preparations. Equipment usage time, spares, maintenance actions, and Outpost consumables are also estimated to provide input into logistics support planning. Results are normalized relative to the NASA LAT point of departure lunar surface architecture.
Lunar Thermal Wadis and Exploration Rovers: Outpost Productivity and Participatory Exploration
NASA Technical Reports Server (NTRS)
Sacksteder, Kurt; Wegeng, Robert; Suzuki, Nantel
2009-01-01
The presentation introduces the concept of a thermal wadi, an engineered source of thermal energy that can be created using native material on the moon or elsewhere to store solar energy for use by various lunar surface assets to survive the extremely cold environment of the lunar night. A principal benefit of this approach to energy storage is the low mass requirement for transportation from Earth derived from the use of the lunar soil, or regolith, as the energy storage medium. The presentation includes a summary of the results of a feasibility study involving the numerical modeling of the performance of a thermal wadi including a manufactured thermal mass, a solar energy reflector, a nighttime thermal energy reflector and a lunar surface rover. The feasibility study shows that sufficient thermal energy can be stored using unconcentrated solar flux to keep a lunar surface rover sufficiently warm throughout a 354 hour lunar night at the lunar equator, and that similar approaches can be used to sustain surface assets during shorter dark periods that occur at the lunar poles. The presentation includes descriptions of a compact lunar rover concept that could be used to manufacture a thermal wadi and could alternatively be used to conduct a variety of high-value tasks on the lunar surface. Such rovers can be produced more easily because the capability for surviving the lunar night is offloaded to the thermal wadi infrastructure. The presentation also includes several concepts for operational scenarios that could be implemented on the moon using the thermal wadi and compact rover concepts in which multiple affordable rovers, operated by multiple terrestrial organizations, can conduct resource prospecting and human exploration site preparation tasks.
Apollo scientific experiments data handbook
NASA Technical Reports Server (NTRS)
Eichelman, W. F. (Editor); Lauderdale, W. W. (Editor)
1974-01-01
A brief description of each of the Apollo scientific experiments was described, together with its operational history, the data content and formats, and the availability of the data. The lunar surface experiments described are the passive seismic, active seismic, lunar surface magnetometer, solar wind spectrometer, suprathermal ion detector, heat flow, charged particle, cold cathode gage, lunar geology, laser ranging retroreflector, cosmic ray detector, lunar portable magnetometer, traverse gravimeter, soil mechanics, far UV camera (lunar surface), lunar ejecta and meteorites, surface electrical properties, lunar atmospheric composition, lunar surface gravimeter, lunar seismic profiling, neutron flux, and dust detector. The orbital experiments described are the gamma-ray spectrometer, X-ray fluorescence, alpha-particle spectrometer, S-band transponder, mass spectrometer, far UV spectrometer, bistatic radar, IR scanning radiometer, particle shadows, magnetometer, lunar sounder, and laser altimeter. A brief listing of the mapping products available and information on the sample program were also included.
NASA Astrophysics Data System (ADS)
Gleißner, P.; Becker, H.
2017-05-01
Abundances of HSE, Te, Se, and S in ancient lunar impactites constrain accretion of differentiated and primitive material (including carbonaceous chondrite-like material) and variable mixing of their compositions on the lunar surface.
Bounding Extreme Spacecraft Charging in the Lunar Environment
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Parker, Linda N.
2008-01-01
Robotic and manned spacecraft from the Apollo era demonstrated that the lunar surface in daylight will charge to positive potentials of a few tens of volts because the photoelectron current dominates the charging process. In contrast, potentials of the lunar surface in darkness which were predicted to be on the order of a hundred volts negative in the Apollo era have been shown more recently to reach values of a few hundred volts negative with extremes on the order of a few kilovolts. The recent measurements of night time lunar surface potentials are based on electron beams in the Lunar Prospector Electron Reflectometer data sets interpreted as evidence for secondary electrons generated on the lunar surface accelerated through a plasma sheath from a negatively charged lunar surface. The spacecraft potential was not evaluated in these observations and therefore represents a lower limit to the magnitude of the lunar negative surface potential. This paper will describe a method for obtaining bounds on the magnitude of lunar surface potentials from spacecraft measurements in low lunar orbit based on estimates of the spacecraft potential. We first use Nascap-2k surface charging analyses to evaluate potentials of spacecraft in low lunar orbit and then include the potential drops between the ambient space environment and the spacecraft to the potential drop between the lunar surface and the ambient space environment to estimate the lunar surface potential from the satellite measurements.
NASA Technical Reports Server (NTRS)
1975-01-01
The papers deal with solar-wind and magnetospheric interactions with the moon, ancient and present-day lunar surface magnetic and electric fields, the dynamics and evolution of the lunar atmosphere, the lunar record of solar radiation, and nonmeteoric transport of lunar surface materials. Topics discussed include bow-shock protons in the lunar environment, energetic ion events during the lunar night, mapping of the lunar surface magnetic field from orbital observations of mirrored electrons, geomagnetic disturbances induced by the moon, the relationship between lunar topography and limb compressions, measurements of lunar sky brightness, atmospheric supply and loss mechanisms on the moon, the nature and composition of the lunar atmosphere, molecular gas species in that atmosphere, and vacuum-UV spectroscopic measurements of the surface properties of lunar materials. Individual items are announced in this issue.
Lunar surface engineering properties experiment definition
NASA Technical Reports Server (NTRS)
Mitchell, J. K.; Goodman, R. E.; Hurlbut, F. C.; Houston, W. N.; Willis, D. R.; Witherspoon, P. A.; Hovland, H. J.
1971-01-01
Research on the mechanics of lunar soils and on developing probes to determine the properties of lunar surface materials is summarized. The areas of investigation include the following: soil simulation, soil property determination using an impact penetrometer, soil stabilization using urethane foam or phenolic resin, effects of rolling boulders down lunar slopes, design of borehole jack and its use in determining failure mechanisms and properties of rocks, and development of a permeability probe for measuring fluid flow through porous lunar surface materials.
1971-07-31
This is a photo of the Apollo 15 Lunar Module, Falcon, on the lunar surface. Apollo 15 launched from Kennedy Space Center (KSC) on July 26, 1971 via a Saturn V launch vehicle. Aboard was a crew of three astronauts including David R. Scott, Mission Commander; James B. Irwin, Lunar Module Pilot; and Alfred M. Worden, Command Module Pilot. The first mission designed to explore the Moon over longer periods, greater ranges and with more instruments for the collection of scientific data than on previous missions, the mission included the introduction of a $40,000,000 lunar roving vehicle (LRV) that reached a top speed of 16 kph (10 mph) across the Moon's surface. The successful Apollo 15 lunar landing mission was the first in a series of three advanced missions planned for the Apollo program. The primary scientific objectives were to observe the lunar surface, survey and sample material and surface features in a preselected area of the Hadley-Apennine region, setup and activation of surface experiments and conduct in-flight experiments and photographic tasks from lunar orbit. Apollo 15 televised the first lunar liftoff and recorded a walk in deep space by Alfred Worden. Both the Saturn V rocket and the LRV were developed at the Marshall Space Flight Center.
NASA Technical Reports Server (NTRS)
Merrill, R. B.
1975-01-01
Recent investigations of the moon are reported. Topics discussed include the Apollo 17 site, selenography, craters, remote sensing, selenophysics, lunar surface fields and particles, magnetic properties of lunar samples, physical property measurements, surface-correlated properties, micrometeoroids, solar-system regoliths, and cosmic rays. Lunar orbital data maps are presented, and the evolution of lunar features is examined.
Lunar map showing traverse plans for Apollo 14 lunar landing mission
1970-09-01
This lunar map shows the traverse plans for the Apollo 14 lunar landing mission. Areas marked include Lunar module landing site, areas for the Apollo Lunar Surface Experiment Package (ALSEP) and areas for gathering of core samples.
Lunar surface magnetometer experiment
NASA Technical Reports Server (NTRS)
Dyal, P.; Parkin, C. W.; Colburn, D. S.; Schubert, G.
1972-01-01
The Apollo 16 lunar surface magnetometer (LSM) activation completed the network installation of magnetic observatories on the lunar surface and initiated simultaneous measurements of the global response of the moon to large-scale solar and terrestrial magnetic fields. Fossil remanent magnetic fields have been measured at nine locations on the lunar surface, including the Apollo 16 LSM site in the Descartes highlands area. This fossil record indicates the possible existence of an ancient lunar dynamo or a solar or terrestrial field much stronger than exists at present. The experimental technique and operation of the LSM are described and the results obtained are discussed.
Modeling of Lunar Dust Contamination Due to Plume Impingement
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2009-01-01
During the Apollo missions it became apparent that lunar dust was a significant hazard. Problems included: surface obscuration during landing sequence; abrasion damage to gouge faces and helmet visors; mechanism clogging; development of space suit pressurization leaks; loss of radiator heat rejection capabilities to the point where vulnerable equipment exceeded maximum survival temperature ratings; temporary vision and respiratory problems within the Apollo Lunar Module (LM). NASA Constellation Program features many system-level components, including the Altair Lunar Lander. Altair to endure longer periods at lunar surface conditions: Apollo LM, about three days; Altair, over seven months. Program managers interested in plume-generated dust transport onto thermal control surface radiators of the first Altair created by its own landing operations.
Apollo lunar surface experiments package
NASA Technical Reports Server (NTRS)
1972-01-01
Developments in the ALSEP program are reported. A summary of the status for the total ALSEP program is included. Other areas discussed include: (1) status of Apollo 16 (array D) and Apollo 17 (array E), (2) lunar seismic profiling experiment, (3) lunar ejecta and meteorites experiment, and (4) lunar mass spectrometer experiments.
Lunar Regolith Simulant Materials: Recommendations for Standardization, Production, and Usage
NASA Technical Reports Server (NTRS)
Sibille, L.; Carpenter, P.; Schlagheck, R.; French, R. A.
2006-01-01
Experience gained during the Apollo program demonstrated the need for extensive testing of surface systems in relevant environments, including regolith materials similar to those encountered on the lunar surface. As NASA embarks on a return to the Moon, it is clear that the current lunar sample inventory is not only insufficient to support lunar surface technology and system development, but its scientific value is too great to be consumed by destructive studies. Every effort must be made to utilize standard simulant materials, which will allow developers to reduce the cost, development, and operational risks to surface systems. The Lunar Regolith Simulant Materials Workshop held in Huntsville, AL, on January 24 26, 2005, identified the need for widely accepted standard reference lunar simulant materials to perform research and development of technologies required for lunar operations. The workshop also established a need for a common, traceable, and repeatable process regarding the standardization, characterization, and distribution of lunar simulants. This document presents recommendations for the standardization, production and usage of lunar regolith simulant materials.
Documentation of Apollo 15 samples
NASA Technical Reports Server (NTRS)
Sutton, R. L.; Hait, M. H.; Larson, K. B.; Swann, G. A.; Reed, V. S.; Schaber, G. G.
1972-01-01
A catalog is presented of the documentation of Apollo 15 samples using photographs and verbal descriptions returned from the lunar surface. Almost all of the Apollo 15 samples were correlated with lunar surface photographs, descriptions, and traverse locations. Where possible, the lunar orientations of rock samples were reconstructed in the lunar receiving laboratory, using a collimated light source to reproduce illumination and shadow characteristics of the same samples shown in lunar photographs. In several cases, samples were not recognized in lunar surface photographs, and their approximate locations are known only by association with numbered sample bags used during their collection. Tables, photographs, and maps included in this report are designed to aid in the understanding of the lunar setting of the Apollo 15 samples.
NASA Technical Reports Server (NTRS)
Head, D. E.; Mitchell, K. L.
1967-01-01
Program computes the thermal environment of a spacecraft in a lunar orbit. The quantities determined include the incident flux /solar and lunar emitted radiation/, total radiation absorbed by a surface, and the resulting surface temperature as a function of time and orbital position.
The Use of Nanomaterials to Achieve NASA's Exploration Program Power Goals
NASA Technical Reports Server (NTRS)
Jeevarajan, J.
2009-01-01
This slide presentation reviews the power requirements for the space exploration and the lunar surface mobility programs. It includes information about the specifications for high energy batteries and the power requirements for lunar rovers, lunar outposts, lunar ascent module, and the lunar EVA suit.
Low-cost unmanned lunar lander
NASA Technical Reports Server (NTRS)
Daniel, Walter K.
1992-01-01
Two student groups designed unmanned landers to deliver 200 kilogram payloads to the lunar surface. Payloads could include astronomical telescopes, small lunar rovers, and experiments related to future human exploration. Requirements include the use of existing hardware where possible, use of a medium-class launch vehicle, an unobstructed view of the sky for the payload, and access to the lunar surface for the payload. The projects were modeled after Artemis, a project that the NASA Office of Exploration is pursuing with a planned first launch in 1996. The Lunar Scout design uses a Delta 2 launch vehicle with a Star 48 motor for insertion into the trans-lunar trajectory. During the transfer, the solar panels will be folded inward and the spacecraft will be powered by rechargeable nickel-cadmium batteries. The lander will use a combination of a solid rocket motor and hydrazine thrusters for the descent to the lunar surface. The solar arrays will be deployed after landing. The lander will provide power for operations to the payload during the lunar day; batteries will provide 'stay-alive' power during the lunar night. A horn antenna on the lander will provide communications between the payload and the earth.
Lunar Simulation in the Lunar Dust Adhesion Bell Jar
NASA Technical Reports Server (NTRS)
Gaier, James R.; Sechkar, Edward A.
2007-01-01
The Lunar Dust Adhesion Bell Jar has been assembled at the NASA Glenn Research Center to provide a high fidelity lunar simulation facility to test the interactions of lunar dust and lunar dust simulant with candidate aerospace materials and coatings. It has a sophisticated design which enables it to treat dust in a way that will remove adsorbed gases and create a chemically reactive surface. It can simulate the vacuum, thermal, and radiation environments of the Moon, including proximate areas of illuminated heat and extremely cold shadow. It is expected to be a valuable tool in the development of dust repellant and cleaning technologies for lunar surface systems.
Reduction of lunar landing fuel requirements by utilizing lunar ballistic capture.
Johnson, Michael D; Belbruno, Edward A
2005-12-01
Ballistic lunar capture trajectories have been successfully utilized for lunar orbital missions since 1991. Recent interest in lunar landing trajectories has occurred due to a directive from President Bush to return humans to the Moon by 2015. NASA requirements for humans to return to the lunar surface include separation of crew and cargo missions, all lunar surface access, and anytime-abort to return to Earth. Such requirements are very demanding from a propellant standpoint. The subject of this paper is the application of lunar ballistic capture for the reduction of lunar landing propellant requirements. Preliminary studies of the application of weak stability boundary (WSB) trajectories and ballistic capture have shown that considerable savings in low Earth orbit (LEO) mission mass may be realized, on the order of 36% less than conventional Hohmann transfer orbit missions. Other advantages, such as reduction in launch window constraints and reduction of lunar orbit maintenance propellant requirements, have also surfaced from this study.
A survey of surface structures and subsurface developments for lunar bases
NASA Technical Reports Server (NTRS)
Hypes, Warren D.; Wright, Robert L.
1990-01-01
Concepts proposed for lunar-base structures and shelters include those fabricated on earth, fabricated locally using lunar materials, and developed from subsurface features. Early bases may rely on evolutionary growth using Space Station modules and nodes covered with regolith for protection against thermal and radiative stresses. Expandable/inflatable shelters used alone on the surface or in conjunction with subselene (beneath the lunar surface) features and spent portions of the Space Shuttle's fuel tanks offer early alternatives. More mature lunar bases may need larger volumes provided by erectable buildings, hybrid inflatable/rigid spheres, modular concrete buildings using locally derived cement, or larger subselene developments.
Characterizing the Early Impact Bombardment
NASA Technical Reports Server (NTRS)
Bogard, Donald D.
2005-01-01
The early bombardment revealed in the larger impact craters and basins on the moon was a major planetary process that affected all bodies in the inner solar system, including the Earth and Mars. Understanding the nature and timing of this bombardment is a fundamental planetary problem. The surface density of lunar impact craters within a given size range on a given lunar surface is a measure of the age of that surface relative to other lunar surfaces. When crater densities are combined with absolute radiometric ages determined on lunar rocks returned to Earth, the flux of large lunar impactors through time can be estimated. These studies suggest that the flux of impactors producing craters greater than 1 km in diameter has been approximately constant over the past approx. 3 Gyr. However, prior to 3.0 - 3.5 Gyr the impactor flux was much larger and defines an early bombardment period. Unfortunately, no lunar surface feature older than approx. 4 Gyr is accurately dated, and the surface density of craters are saturated in most of the lunar highlands. This means that such data cannot define the impactor flux between lunar formation and approx. 4 Gyr ago.
Visible and near-infrared imaging spectrometer (VNIS) for in-situ lunar surface measurements
NASA Astrophysics Data System (ADS)
He, Zhiping; Xu, Rui; Li, Chunlai; Lv, Gang; Yuan, Liyin; Wang, Binyong; Shu, Rong; Wang, Jianyu
2015-10-01
The Visible and Near-Infrared Imaging Spectrometer (VNIS) onboard China's Chang'E 3 lunar rover is capable of simultaneously in situ acquiring full reflectance spectra for objects on the lunar surface and performing calibrations. VNIS uses non-collinear acousto-optic tunable filters and consists of a VIS/NIR imaging spectrometer (0.45-0.95 μm), a shortwave IR spectrometer (0.9-2.4 μm), and a calibration unit with dust-proofing functionality. To been underwent a full program of pre-flight ground tests, calibrations, and environmental simulation tests, VNIS entered into orbit around the Moon on 6 December 2013 and landed on 14 December 2013 following Change'E 3. The first operations of VNIS were conducted on 23 December 2013, and include several explorations and calibrations to obtain several spectral images and spectral reflectance curves of the lunar soil in the Imbrium region. These measurements include the first in situ spectral imaging detections on the lunar surface. This paper describes the VNIS characteristics, lab calibration, in situ measurements and calibration on lunar surface.
Charged Particle lunar Environment Experiment (CPLEE)
NASA Technical Reports Server (NTRS)
Reasoner, D. L.
1974-01-01
Research development in the Charged Particle Lunar Environment Experiment (CPLEE) is reported. The CPLEE is ion-electron spectrometer placed on the lunar surface for the purpose of measuring charged particle fluxes impacting the moon from a variety of regions and to study the interactions between space plasmas and the lunar surface. The principal accomplishments reported include: (1) furnishing design specifications for construction of the CPLEE instruments; (2) development of an advanced computer-controlled facility for automated instrument calibration; (3) active participation in the deployment and past-deployment operational phases with regard to data verification and operational mode selection; and (4) publication of research papers, including a study of lunar photoelectrons, a study of plasmas resulting from man-made lunar impart events, a study of magnetotail and magnetosheath particle populations, and a study of solar-flare interplanetary particles.
Benefits of Using a Mars Forward Strategy for Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Mulqueen, Jack; Griffin, Brand; Smitherman, David; Maples, Dauphne
2009-01-01
This paper identifies potential risk reduction, cost savings and programmatic procurement benefits of a Mars Forward Lunar Surface System architecture that provides commonality or evolutionary development paths for lunar surface system elements applicable to Mars surface systems. The objective of this paper is to identify the potential benefits for incorporating a Mars Forward development strategy into the planned Project Constellation Lunar Surface System Architecture. The benefits include cost savings, technology readiness, and design validation of systems that would be applicable to lunar and Mars surface systems. The paper presents a survey of previous lunar and Mars surface systems design concepts and provides an assessment of previous conclusions concerning those systems in light of the current Project Constellation Exploration Architectures. The operational requirements for current Project Constellation lunar and Mars surface system elements are compared and evaluated to identify the potential risk reduction strategies that build on lunar surface systems to reduce the technical and programmatic risks for Mars exploration. Risk reduction for rapidly evolving technologies is achieved through systematic evolution of technologies and components based on Moore's Law superimposed on the typical NASA systems engineering project development "V-cycle" described in NASA NPR 7120.5. Risk reduction for established or slowly evolving technologies is achieved through a process called the Mars-Ready Platform strategy in which incremental improvements lead from the initial lunar surface system components to Mars-Ready technologies. The potential programmatic benefits of the Mars Forward strategy are provided in terms of the transition from the lunar exploration campaign to the Mars exploration campaign. By utilizing a sequential combined procurement strategy for lunar and Mars exploration surface systems, the overall budget wedges for exploration systems are reduced and the costly technological development gap between the lunar and Mars programs can be eliminated. This provides a sustained level of technological competitiveness as well as maintaining a stable engineering and manufacturing capability throughout the entire duration of Project Constellation.
NASA Technical Reports Server (NTRS)
Scheuring, R. A.; Jones, J. A.; Lee, P.; Comtois, J. M.; Chappell, S.; Rafiq, A.; Braham, S.; Hodgson, E.; Sullivan, P.; Wilkinson, N.;
2007-01-01
The lunar architecture for future sortie and outpost missions will require humans to serve on the lunar surface considerably longer than the Apollo moon missions. Although the Apollo crewmembers sustained few injuries during their brief lunar surface activity, injuries did occur and are a concern for the longer lunar stays. Interestingly, lunar medical contingency plans were not developed during Apollo. In order to develop an evidence-base for handling a medical contingency on the lunar surface, a simulation using the moon-Mars analog environment at Devon Island, Nunavut, high Canadian Arctic was conducted. Objectives of this study included developing an effective management strategy for dealing with an incapacitated crewmember on the lunar surface, establishing audio/visual and biomedical data connectivity to multiple centers, testing rescue/extraction hardware and procedures, and evaluating in suit increased oxygen consumption. Methods: A review of the Apollo lunar surface activities and personal communications with Apollo lunar crewmembers provided the knowledge base of plausible scenarios that could potentially injure an astronaut during a lunar extravehicular activity (EVA). Objectives were established to demonstrate stabilization and transfer of an injured crewmember and communication with ground controllers at multiple mission control centers. Results: The project objectives were successfully achieved during the simulation. Among these objectives were extraction from a sloped terrain by a two-member crew in a 1 g analog environment, establishing real-time communication to multiple centers, providing biomedical data to flight controllers and crewmembers, and establishing a medical diagnosis and treatment plan from a remote site. Discussion: The simulation provided evidence for the types of equipment and methods for performing extraction of an injured crewmember from a sloped terrain. Additionally, the necessary communications infrastructure to connect multiple centers worldwide was established from a remote site. The surface crewmembers were confronted with a number of unexpected scenarios including environmental, communications, EVA suit, and navigation challenges during the course of the simulation which provided insight into the challenges of carrying out a medical contingency in an austere environment. The knowledge gained from completing the objectives will be incorporated into the exploration medical requirements involving an incapacitated astronaut on the lunar surface.
A Dual Launch Robotic and Human Lunar Mission Architecture
NASA Technical Reports Server (NTRS)
Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David
2010-01-01
This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This paper describes a complete transportation architecture including the analysis of transportation element options and sensitivities including: transportation element mass to surface landed mass; lander propellant options; and mission crew size. Based on this analysis, initial design concepts for the launch vehicle, crew module and lunar lander are presented. The paper also describes how the dual launch lunar mission architecture would fit into a more general overarching human space exploration philosophy that would allow expanded application of mission transportation elements for missions beyond the Earth-moon realm.
Recovery of Lunar Surface Access Module Residual and Reserve Propellants
NASA Technical Reports Server (NTRS)
Notardonato, William U.
2007-01-01
The Vision for Space Exploration calls for human exploration of the lunar surface in the 2020 timeframe. Sustained human exploration of the lunar surface will require supply, storage, and distribution of consumables for a variety of mission elements. These elements include propulsion systems for ascent and descent stages, life support for habitats and extra-vehicular activity, and reactants for power systems. NASA KSC has been tasked to develop technologies and strategies for consumables transfer for lunar exploration as part of the Exploration Technology Development Program. This paper will investigate details of operational concepts to scavenge residual propellants from the lunar descent propulsion system. Predictions on the mass of residuals and reserves are made. Estimates of heat transfer and boiloff rates are calculated and transient tank thermodynamic issues post-engine cutoff are modeled. Recovery and storage options including cryogenic liquid, vapor and water are discussed, and possible reuse of LSAM assets is presented.
Development of a Modified Vacuum Cleaner for Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.
2009-01-01
The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf" vacuum cleaner has been used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating percent removal, relative to the retained simulant on the tested surface. In addition, Scanning Electron Microscopy (SEM) imaging was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has focused on detachment capabilities varying pressure environments.
Development of a Modified Vacuum Cleaner for Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.
2010-01-01
The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf' vacuum cleaner will be used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques in order to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating particulate removal, relative to the retained simulant on the tested surface. In addition, optical microscopy was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has focused on detachment capabilities at varying pressure environments.
NASA Technical Reports Server (NTRS)
Dietz, J. B.
1973-01-01
The environmental heat flux routine version 4, (EHFR-4) is a generalized computer program which calculates the steady state and/or transient thermal environments experienced by a space system during lunar surface, deep space, or thermal vacuum chamber operation. The specific environments possible for EHFR analysis include: lunar plain, lunar crater, combined lunar plain and crater, lunar plain in the region of spacecraft surfaces, intervehicular, deep space in the region of spacecraft surfaces, and thermal vacuum chamber generation. The EHFR was used for Extra Vehicular Mobility Unit environment analysis of the Apollo 11-17 missions, EMU manned and unmanned thermal vacuum qualification testing, and EMU-LRV interface environmental analyses.
Thermophysical properties of lunar media. II - Heat transfer within the lunar surface layer
NASA Technical Reports Server (NTRS)
Cremers, C. J.
1974-01-01
Heat transfer within the lunar surface layer depends on several thermophysical properties of the lunar regolith, including the thermal conductivity, the specific heat, the thermal diffusivity, and the thermal parameter. Results of property measurements on simulated lunar materials are presented where appropriate as well as measurements made on the actual samples themselves. The variation of temperature on the moon with depth is considered, taking into account various times of the lunar day. The daily variation in temperature drops to about 1 deg at a depth of only 0.172 meters. The steady temperature on the moon below this depth is 225 K.
Observing the Magnetosphere in Soft X-Rays: The Lunar X-Ray Observatory (LXO)
NASA Astrophysics Data System (ADS)
Sibeck, D. G.; Collier, M. R.; Porter, F. S.
2018-02-01
Wide field-of-view soft X-ray imagers in lunar orbit or on the lunar surface can be used to address many heliophysics objectives, including the nature of the solar wind magnetosphere-interaction, the lunar exosphere, and the helium focusing cone.
Lunar surface structural concepts and construction studies
NASA Technical Reports Server (NTRS)
Mikulas, Martin
1991-01-01
The topics are presented in viewgraph form and include the following: lunar surface structures construction research areas; lunar crane related disciplines; shortcomings of typical mobile crane in lunar base applications; candidate crane cable suspension systems; NIST six-cable suspension crane; numerical example of natural frequency; the incorporation of two new features for improved performance of the counter-balanced actively-controlled lunar crane; lunar crane pendulum mechanics; simulation results; 1/6 scale lunar crane testbed using GE robot for global manipulation; basic deployable truss approaches; bi-pantograph elevator platform; comparison of elevator platforms; perspective of bi-pantograph beam; bi-pantograph synchronously deployable tower/beam; lunar module off-loading concept; module off-loader concept packaged; starburst deployable precision reflector; 3-ring reflector deployment scheme; cross-section of packaged starburst reflector; and focal point and thickness packaging considerations.
Lunar base thermal management/power system analysis and design
NASA Technical Reports Server (NTRS)
Mcghee, Jerry R.
1992-01-01
A compilation of several lunar surface thermal management and power system studies completed under contract and IR&D is presented. The work includes analysis and preliminary design of all major components of an integrated thermal management system, including loads determination, active internal acquisition and transport equipment, external transport systems (active and passive), passive insulation, solar shielding, and a range of lunar surface radiator concepts. Several computer codes were utilized in support of this study, including RADSIM to calculate radiation exchange factors and view factors, RADIATOR (developed in-house) for heat rejection system sizing and performance analysis over a lunar day, SURPWER for power system sizing, and CRYSTORE for cryogenic system performance predictions. Although much of the work was performed in support of lunar rover studies, any or all of the results can be applied to a range of surface applications. Output data include thermal loads summaries, subsystem performance data, mass, and volume estimates (where applicable), integrated and worst-case lunar day radiator size/mass and effective sink temperatures for several concepts (shielded and unshielded), and external transport system performance estimates for both single and two-phase (heat pumped) transport loops. Several advanced radiator concepts are presented, along with brief assessments of possible system benefits and potential drawbacks. System point designs are presented for several cases, executed in support of the contract and IR&D studies, although the parametric nature of the analysis is stressed to illustrate applicability of the analysis procedure to a wide variety of lunar surface systems. The reference configuration(s) derived from the various studies will be presented along with supporting criteria. A preliminary design will also be presented for the reference basing scenario, including qualitative data regarding TPS concerns and issues.
Science Hybrid Orbiter and Lunar Relay (SCHOLR) Architecture and Design
NASA Technical Reports Server (NTRS)
Trase, Kathryn K.; Barch, Rachel A.; Chaney, Ryan E.; Coulter, Rachel A.; Gao, Hui; Huynh, David P.; Iaconis, Nicholas A.; MacMillan, Todd S.; Pitner, Gregory M.; Schwab, Devin T.
2011-01-01
Considered both a stepping-stone to deep space and a key to unlocking the mysteries of planetary formation, the Moon offers a unique opportunity for scientific study. Robotic precursor missions are being developed to improve technology and enable new approaches to exploration. Robots, lunar landers, and satellites play significant roles in advancing science and technologies, offering close range and in-situ observations. Science and exploration data gathered from these nodes and a lunar science satellite is intended to support future human expeditions and facilitate future utilization of lunar resources. To attain a global view of lunar science, the nodes will be distributed over the lunar surface, including locations on the far side of the Moon. Given that nodes on the lunar far side do not have direct line-of-sight for Earth communications, the planned presence of such nodes creates the need for a lunar communications relay satellite. Since the communications relay capability would only be required for a small portion of the satellite s orbit, it may be possible to include communication relay components on a science spacecraft. Furthermore, an integrated satellite has the potential to reduce lunar surface mission costs. A SCience Hybrid Orbiter and Lunar Relay (SCHOLR) is proposed to accomplish scientific goals while also supporting the communications needs of landers on the far side of the Moon. User needs and design drivers for the system were derived from the anticipated needs of future robotic and lander missions. Based on these drivers and user requirements, accommodations for communications payload aboard a science spacecraft were developed. A team of interns identified and compared possible SCHOLR architectures. The final SCHOLR architecture was analyzed in terms of orbiter lifetime, lunar surface coverage, size, mass, power, and communications data rates. This paper presents the driving requirements, operational concept, and architecture views for SCHOLR within a lunar surface nodal network. Orbital and bidirectional link analysis, between lunar nodes, orbiter, and Earth, as well as a conceptual design for the spacecraft are also presented
NASA Astrophysics Data System (ADS)
Ungar, S.
2017-12-01
Over the past 3 years, the Earth Observing-one (EO-1) Hyperion imaging spectrometer was used to slowly scan the lunar surface at a rate which results in up to 32X oversampling to effectively increase the SNR. Several strategies, including comparison against the USGS RObotic Lunar Observatory (ROLO) mode,l are being employed to estimate the absolute and relative accuracy of the measurement set. There is an existing need to resolve discrepancies as high as 10% between ROLO and solar based calibration of current NASA EOS assets. Although the EO-1 mission was decommissioned at the end of March 2017, the development of a well-characterized exoatmospheric spectral radiometric database, for a range of lunar phase angles surrounding the fully illuminated moon, continues. Initial studies include a comprehensive analysis of the existing 17-year collection of more than 200 monthly lunar acquisitions. Specific lunar surface areas, such as a lunar mare, are being characterized as potential "lunar calibration sites" in terms of their radiometric stability in the presence of lunar nutation and libration. Site specific Hyperion-derived lunar spectral reflectance are being compared against spectrographic measurements made during the Apollo program. Techniques developed through this activity can be employed by future high-quality orbiting imaging spectrometers (such as HyspIRI and EnMap) to further refine calibration accuracies. These techniques will enable the consistent cross calibration of existing and future earth observing systems (spectral and multi-spectral) including those that do not have lunar viewing capability. When direct lunar viewing is not an option for an earth observing asset, orbiting imaging spectrometers can serve as transfer radiometers relating that asset's sensor response to lunar values through near contemporaneous observations of well characterized stable CEOS test sites. Analysis of this dataset will lead to the development of strategies to ensure more accurate cross calibrations when employing the more capable, future imaging spectrometers.
Applying the OTV to lunar logistics
NASA Technical Reports Server (NTRS)
Willcockson, W. H.
1988-01-01
The Orbit Transfer Vehicle (OTV), representing the next generation of upper stages, has recently been studied in a Phase A concept definition study managed by NASA's Marshall Space Flight Center. The vehicle has been previously defined as strictly an orbit-to-orbit type transfer device. Recently its application to the task of lunar surface logistics was investigated. Transfer options to the surface were considered which included direct transfer, and transfer via lunar orbit as well as the L1 libration point. The subsystem modifications required to enable lunar landings were established for the following elements: aerobrake, main propulsion system, landing legs, primary structure, and avionics. It is concluded that the majority of the basic systems required for efficient transfer to the lunar surface are already contained in the OTV.
Radiation and Plasma Environments for Lunar Missions
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Edwards, David L.; Altstatt, Richard L.; Diekmann, Anne M.; Blackwell, William C., Jr.; Harine, Katherine J.
2006-01-01
Space system design for lunar orbit and extended operations on the lunar surface requires analysis of potential system vulnerabilities to plasma and radiation environments to minimize anomalies and assure that environmental failures do not occur during the mission. Individual environments include the trapped particles in Earth s radiation belts, solar energetic particles and galactic cosmic rays, plasma environments encountered in transit to the moon and on the lunar surface (solar wind, terrestrial magnetosheath and magnetotail, and lunar photoelectrons), and solar ultraviolet and extreme ultraviolet photons. These are the plasma and radiation environments which contribute to a variety of effects on space systems including total ionizing dose and dose rate effects in electronics, degradation of materials in the space environment, and charging of spacecraft and lunar dust. This paper provides a survey of the relevant charged particle and photon environments of importance to lunar mission design ranging from the lowest (approx.few 10 s eV) photoelectron energies to the highest (approx.GeV) cosmic ray energies.
Lunar surface operations. Volume 3: Robotic arm for lunar surface vehicle
NASA Technical Reports Server (NTRS)
Shields, William; Feteih, Salah; Hollis, Patrick
1993-01-01
A robotic arm for a lunar surface vehicle that can help in handling cargo and equipment, and remove obstacles from the path of the vehicle is defined as a support to NASA's intention to establish a lunar based colony by the year 2010. Its mission would include, but not limited to the following: exploration, lunar sampling, replace and remove equipment, and setup equipment (e.g. microwave repeater stations). Performance objectives for the robotic arm include a reach of 3 m, accuracy of 1 cm, arm mass of 100 kg, and lifting capability of 50 kg. The end effectors must grip various sizes and shapes of cargo; push, pull, turn, lift, or lower various types of equipment; and clear a path on the lunar surface by shoveling, sweeping aside, or gripping the obstacle present in the desired path. The arm can safely complete a task within a reasonable amount of time; the actual time is dependent upon the task to be performed. The positioning of the arm includes a manual backup system such that the arm can be safely stored in case of failure. Remote viewing and proximity and positioning sensors are incorporated in the design of the arm. The following specific topic are addressed in this report: mission and requirements, system design and integration, mechanical structure, modified wrist, structure-to-end-effector interface, end-effectors, and system controls.
Constellation Architecture Team-Lunar: Lunar Habitat Concepts
NASA Technical Reports Server (NTRS)
Toups, Larry; Kennedy, Kriss J.
2008-01-01
This paper will describe lunar habitat concepts that were defined as part of the Constellation Architecture Team-Lunar (CxAT-Lunar) in support of the Vision for Space Exploration. There are many challenges to designing lunar habitats such as mission objectives, launch packaging, lander capability, and risks. Surface habitats are required in support of sustaining human life to meet the mission objectives of lunar exploration, operations, and sustainability. Lunar surface operations consist of crew operations, mission operations, EVA operations, science operations, and logistics operations. Habitats are crewed pressurized vessels that include surface mission operations, science laboratories, living support capabilities, EVA support, logistics, and maintenance facilities. The challenge is to deliver, unload, and deploy self-contained habitats and laboratories to the lunar surface. The CxAT-Lunar surface campaign analysis focused on three primary trade sets of analysis. Trade set one (TS1) investigated sustaining a crew of four for six months with full outpost capability and the ability to perform long surface mission excursions using large mobility systems. Two basic habitat concepts of a hard metallic horizontal cylinder and a larger inflatable torus concept were investigated as options in response to the surface exploration architecture campaign analysis. Figure 1 and 2 depicts the notional outpost configurations for this trade set. Trade set two (TS2) investigated a mobile architecture approach with the campaign focused on early exploration using two small pressurized rovers and a mobile logistics support capability. This exploration concept will not be described in this paper. Trade set three (TS3) investigated delivery of a "core' habitation capability in support of an early outpost that would mature into the TS1 full outpost capability. Three core habitat concepts were defined for this campaign analysis. One with a four port core habitat, another with a 2 port core habitat, and the third investigated leveraging commonality of the lander ascent module and airlock pressure vessel hard shell. The paper will describe an overview of the various habitat concepts and their functionality. The Crew Operations area includes basic crew accommodations such as sleeping, eating, hygiene and stowage. The EVA Operations area includes additional EVA capability beyond the suit-port airlock function such as redundant airlock(s), suit maintenance, spares stowage, and suit stowage. The Logistics Operations area includes the enhanced accommodations for 180 days such as closed loop life support systems hardware, consumable stowage, spares stowage, interconnection to the other Hab units, and a common interface mechanism for future growth and mating to a pressurized rover. The Mission & Science Operations area includes enhanced outpost autonomy such as an IVA glove box, life support, and medical operations.
Lunar Surface Habitat Configuration Assessment: Methodology and Observations
NASA Technical Reports Server (NTRS)
Carpenter, Amanda
2008-01-01
The Lunar Habitat Configuration Assessment evaluated the major habitat approaches that were conceptually developed during the Lunar Architecture Team II Study. The objective of the configuration assessment was to identify desired features, operational considerations, and risks to derive habitat requirements. This assessment only considered operations pertaining to the lunar surface and did not consider all habitat conceptual designs developed. To examine multiple architectures, the Habitation Focus Element Team defined several adequate concepts which warranted the need for a method to assess the various configurations. The fundamental requirement designed into each concept included the functional and operational capability to support a crew of four on a six-month lunar surface mission; however, other conceptual aspects were diverse in comparison. The methodology utilized for this assessment consisted of defining figure of merits, providing relevant information, and establishing a scoring system. In summary, the assessment considered the geometric configuration of each concept to determine the complexity of unloading, handling, mobility, leveling, aligning, mating to other elements, and the accessibility to the lunar surface. In theory, the assessment was designed to derive habitat requirements, potential technology development needs and identify risks associated with living and working on the lunar surface. Although the results were more subjective opposed to objective, the assessment provided insightful observations for further assessments and trade studies of lunar surface habitats. This overall methodology and resulting observations will be describe in detail and illustrative examples will be discussed.
Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F
NASA Technical Reports Server (NTRS)
1993-01-01
The topics covered include the following: petrology, petrography, meteoritic composition, planetary geology, atmospheric composition, astronomical spectroscopy, lunar geology, Mars (planet), Mars composition, Mars surface, volcanology, Mars volcanoes, Mars craters, lunar craters, mineralogy, mineral deposits, lithology, asteroids, impact melts, planetary composition, planetary atmospheres, planetary mapping, cosmic dust, photogeology, stratigraphy, lunar craters, lunar exploration, space exploration, geochronology, tectonics, atmospheric chemistry, astronomical models, and geochemistry.
Estimates of Sputter Yields of Solar-Wind Heavy Ions of Lunar Regolith Materials
NASA Technical Reports Server (NTRS)
Barghouty, Abdulmasser F.; Adams, James H., Jr.
2008-01-01
At energies of approximately 1 keV/amu, solar-wind protons and heavy ions interact with the lunar surface materials via a number of microscopic interactions that include sputtering. Solar-wind induced sputtering is a main mechanism by which the composition of the topmost layers of the lunar surface can change, dynamically and preferentially. This work concentrates on sputtering induced by solar-wind heavy ions. Sputtering associated with slow (speeds the electrons speed in its first Bohr orbit) and highly charged ions are known to include both kinetic and potential sputtering. Potential sputtering enjoys some unique characteristics that makes it of special interest to lunar science and exploration. Unlike the yield from kinetic sputtering where simulation and approximation schemes exist, the yield from potential sputtering is not as easy to estimate. This work will present a preliminary numerical scheme designed to estimate potential sputtering yields from reactions relevant to this aspect of solar-wind lunar-surface coupling.
Lessons Learned from Lunar Exploration: The Moon Continues to Surprise Us
NASA Astrophysics Data System (ADS)
Pieters, C. M.
2002-01-01
This article addresses unexpected discoveries in recent lunar exploration, including the South Pole-Aitken Basin (SPA), a thorium 'hot spot' in the Imbrium Basin, hydrogen (possibly water ice) at the lunar poles, and the contrast between the appearance of lunar soil samples and remote imagery of the lunar surface. It also summarizes the history of manned and unmanned lunar exploration, from the Apollo program to Clementine and Lunar Prospector in the 1990s. A section at the end of the article addresses the importance of lunar samples.
Data catalog of satellite experiments. Supplement no. 2D: Planetology
NASA Technical Reports Server (NTRS)
1974-01-01
Spacecraft, experiment, and data sets are presented of lunar explorations. Apollo lunar surface experiments are listed and brief discriptions are included. Areas of data include: astronomy, meteorology, planetology, and solar physics.
Lunar Surface Electric Potential Changes Associated with Traversals through the Earth's Foreshock
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Hills, H. Kent; Stubbs, Timothy J.; Halekas, Jasper S.; Delory, Gregory T.; Espley, Jared; Farrell, William M.; Freeman, John W.; Vondrak, Richard
2011-01-01
We report an analysis of one year of Suprathermal Ion Detector Experiment (SIDE) Total Ion Detector (TID) resonance events observed between January 1972 and January 1973. The study includes only those events during which upstream solar wind conditions were readily available. The analysis shows that these events are associated with lunar traversals through the dawn flank of the terrestrial magnetospheric bow shock. We propose that the events result from an increase in lunar surface electric potential effected by secondary electron emission due to primary electrons in the Earth's foreshock region (although primary ions may play a role as well). This work establishes (1) the lunar surface potential changes as the Moon moves through the terrestrial bow shock, (2) the lunar surface achieves potentials in the upstream foreshock region that differ from those in the downstream magnetosheath region, (3) these differences can be explained by the presence of energetic electron beams in the upstream foreshock region and (4) if this explanation is correct, the location of the Moon with respect to the terrestrial bow shock influences lunar surface potential.
NASA Human Spaceflight Architecture Team: Lunar Surface Exploration Strategies
NASA Technical Reports Server (NTRS)
Mueller, Rob P.
2012-01-01
NASA s agency wide Human Spaceflight Architecture Team (HAT) has been developing Design Reference Missions (DRMs) to support the ongoing effort to characterize NASA s future human exploration strategy. The DRM design effort includes specific articulations of transportation and surface elements, technologies and operations required to enable future human exploration of various destinations including the moon, Near Earth Asteroids (NEAs) and Mars as well as interim cis-lunar targets. In prior architecture studies, transportation concerns have dominated the analysis. As a result, an effort was made to study the human utilization strategy at each specific destination and the resultant impacts on the overall architecture design. In particular, this paper considers various lunar surface strategies as representative scenarios that could occur in a human lunar return, and demonstrates their alignment with the internationally developed Global Exploration Roadmap (GER).
Moon Age and Regolith Explorer (MARE) Mission Design and Performance
NASA Technical Reports Server (NTRS)
Condon, Gerald L.; Lee, David E.; Carson, John M., III
2017-01-01
On December 11, 1972, Apollo 17 marked the last controlled U.S. lunar landing and was followed by an absence of methodical in-situ investigation of the lunar surface. The Moon Age and Regolith Explorer (MARE) proposal provides scientific measurement of the age and composition of a relatively young portion of the lunar surface near Aristarchus Plateau and the first post-Apollo U.S. soft lunar landing. It includes the first demonstration of a crew survivability-enhancing autonomous hazard detection and avoidance system. This report focuses on the mission design and performance associated with the MARE robotic lunar landing subject to mission and trajectory constraints.
ERIC Educational Resources Information Center
Stonehouse, H. B.
1979-01-01
Presents three activities that allow students to practice some of the techniques used by lunar researchers, and to become more familiar with lunar features through scrutiny of lunar photography. Topics include dimensions of a crater, different surface ages, and types of rilles. (Author/MA)
The Lunar Environment: Determining the Health Effects of Exposure to Moon Dusts
NASA Technical Reports Server (NTRS)
Khan-Mayberry, Noreen
2007-01-01
The Earth s moon presents a hostile environment in which to live and work. There is no atmosphere to protect its surface from the ravages of solar wind and micrometeorite impacts. As a result, the moon s surface is covered with a thin layer of fine, charged, reactive dust capable of entering habitats and vehicle compartments, where it can result in crewmember health problems. During the Apollo missions, lunar dusts were introduced into the crew vehicle, resulting in direct exposure and occasional reports of respiratory, dermal and ocular irritation. In order to study the toxicological effects of lunar dust, NASA formed the Lunar Airborne Dust Toxicity Advisory Group (LADTAG). This interdisciplinary group is comprised of leading experts in space toxicology, lunar geology, space medicine and biomedical research. LADTAG has demonstrated that lunar soil contains several types of reactive dusts, including an extremely fine respirable component. These dusts have highly reactive surfaces in the lunar environment; the grains contain surface coatings which are generated by vapor phases formed by hypervelocity impact of micrometeorites. This unique class of dusts has surface properties that are unlike any Earth based analog. These distinctive properties are why lunar dusts are of great toxicological interest. Understanding how these reactive components behave "biochemically" in a moisture-rich pulmonary environment will aid in determining how toxic these particles are to humans. The data obtained from toxicological examination of lunar dusts will determine the human risk criteria for lunar dust exposure and produce a lunar health standard. LADTAG s analysis of lunar dusts and lunar dust simulants will include detailed lunar particle characterizations, determining the properties of particle activation, reactivation of lunar dust, the process of dust passivation and discerning the pathology of lunar dust exposure via inhalation, intratracheal instillation, cell culture exposure, dermal exposure and ocular exposure. The resulting health standard will be time-based and will vary by the duration and type of exposure. It may also be necessary to set multiple standards for different types of lunar dust, as well as for dust in its activated form vs. aged & passivated dust. This standard, set to protect the health of our robust astronaut crews, will not only impact NASA medical operations, but engineering designs as well. The data from our multidisciplinary research are vital in developing remediation devices and environmental monitors. Ultimately, the engineering and safety groups will design and develop countermeasures for space vehicles, suits, rovers and habitats that will be sustained within the limits of the health standard.
A Sustainable Architecture for Lunar Resource Prospecting from an EML-based Exploration Platform
NASA Astrophysics Data System (ADS)
Klaus, K.; Post, K.; Lawrence, S. J.
2012-12-01
Introduction - We present a point of departure architecture for prospecting for Lunar Resources from an Exploration Platform at the Earth - Moon Lagrange points. Included in our study are launch vehicle, cis-lunar transportation architecture, habitat requirements and utilization, lander/rover concepts and sample return. Different transfer design techniques can be explored by mission designers, testing various propulsive systems, maneuvers, rendezvous, and other in-space and surface operations. Understanding the availability of high and low energy trajectory transfer options opens up the possibility of exploring the human and logistics support mission design space and deriving solutions never before contemplated. For sample return missions from the lunar surface, low-energy transfers could be utilized between EML platform and the surface as well as return of samples to EML-based spacecraft. Human Habitation at the Exploration Platform - Telerobotic and telepresence capabilities are considered by the agency to be "grand challenges" for space technology. While human visits to the lunar surface provide optimal opportunities for field geologic exploration, on-orbit telerobotics may provide attractive early opportunities for geologic exploration, resource prospecting, and other precursor activities in advance of human exploration campaigns and ISRU processing. The Exploration Platform provides a perfect port for a small lander which could be refueled and used for multiple missions including sample return. The EVA and robotic capabilities of the EML Exploration Platform allow the lander to be serviced both internally and externally, based on operational requirements. The placement of the platform at an EML point allows the lander to access any site on the lunar surface, thus providing the global lunar surface access that is commonly understood to be required in order to enable a robust lunar exploration program. Designing the sample return lander for low-energy trajectories would reduce the overall mass and potentially increase the sample return mass. The Initial Lunar Mission -Building upon Apollo sample investigations, the recent results of the LRO/LCROSS, international missions such as Chandrayaan-1, and legacy missions including Lunar Prospector, and Clementine, among the most important science and exploration goals is surface prospecting for lunar resources and to provide ground truth for orbital observations. Being able to constrain resource production potential will allow us to estimate the prospect for reducing the size of payloads launched from Earth required for Solar System exploration. Flight opportunities for something like the NASA RESOLVE instrument suite to areas of high science and exploration interest could be used to refine and improve future Exploration architectures, reducing the outlays required for cis-lunar operations. Summary - EML points are excellent for placement of a semi-permanent human-tended Exploration Platform both in the near term, while providing important infrastructure and deep-space experience that will be built upon to gradually increase long-term operational capabilities.
Overview of the LADEE Ultraviolet-visible Spectrometer: Design, Performance and Planned Operations
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R. C.; Landis, D.; Karcz, J.; Osetinsky, L.; Shirley, M.; Vargo, K.; Wooden, D.
2013-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) is an orbital lunar science mission currently under development to address the goals of the 2003 National Research Council decadal survey, the Lunar Exploration Analysis Group Roadmap, and the "Scientific Context for Exploration of the Moon" (SCEM) report, and has been recommended for execution by the 2011 Planetary Missions Decadal Survey. The mission s focus is to study the pristine state of the lunar atmosphere and dust environment prior to possible lunar exploration activities by countries, including the United States, China, India, and Japan, among others. Activity on the lunar surface has the potential of altering the tenuous lunar atmosphere, but changing the type and concentration of gases in the atmosphere. Before these activities occur it is important to make measurements of the current lunar atmosphere in its unmodified state. LADEE will determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. It will monitor variations in known gases, such as sodium, potassium, argon and helium, and will search for other, as-yet-undetected gases of both lunar and extra-lunar origin. LADEE will also determine whether dust is present in the lunar exosphere, and reveal the processes that contribute to its sources and variability. Launch is planned for August, 2013.
NASA Technical Reports Server (NTRS)
Vondrak, Richard; Keller, John W.; Chin, Gordon; Petro, Noah; Garvin, James B.; Rice, James W.
2012-01-01
The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and to investigate the Lunar radiation environment. After spacecraft commissioning, the ESMD phase of the mission began on September 15, 2009 and completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission was scheduled for 2 years and completed in September, 2012. The LRO mission has been extended for two years under SMD. The extended mission focuses on a new set of goals related to understanding the geologic history of the Moon, its current state, and what it can tell us about the evolution Of the Solar System. Here we will review the major results from the LRO mission for both exploration and science and discuss plans and objectives going forward including plans for the extended science phase out to 2014. Results from the LRO mission include but are not limited to the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measurement of the day and night time temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the PSRs, evidence for recent tectonic activity on the Moon, and high resolution maps of the illumination conditions as the poles. The objectives for the second and extended science phases of the mission under SMD include: 1) understanding the bombardment history of the Moon, 2) interpreting Lunar geologic processes, 3) mapping the global Lunar regolith, 4) identifying volatiles on the Moon, and 5) measuring the Lunar atmosphere and radiation environment.
Review of dust transport and mitigation technologies in lunar and Martian atmospheres
NASA Astrophysics Data System (ADS)
Afshar-Mohajer, Nima; Wu, Chang-Yu; Curtis, Jennifer Sinclair; Gaier, James R.
2015-09-01
Dust resuspension and deposition is a ubiquitous phenomenon in all lunar and Martian missions. The near-term plans to return to the Moon as a stepping stone to further exploration of Mars and beyond bring scientists' attention to development and evaluation of lunar and Martian dust mitigation technologies. In this paper, different lunar and Martian dust transport mechanisms are presented, followed by a review of previously developed dust mitigation technologies including fluidal, mechanical, electrical and passive self-cleaning methods for lunar/Martian installed surfaces along with filtration for dust control inside cabins. Key factors in choosing the most effective dust mitigation technology are recognized to be the dust transport mechanism, energy consumption, environment, type of surface materials, area of the surface and surface functionality. While electrical methods operating at higher voltages are identified to be suitable for small but light sensitive surfaces, pre-treatment of the surface is effective for cleaning thermal control surfaces, and mechanical methods are appropriate for surfaces with no concerns of light blockage, surface abrasion and 100% cleaning efficiency. Findings from this paper can help choose proper surface protection/cleaning for future space explorations. Hybrid techniques combining the advantages of different methods are recommended.
NASA Technical Reports Server (NTRS)
Dukes, C.; Loeffler, M.J.; Baragiola, R.; Christoffersen, R.; Keller, J.
2009-01-01
Current understanding of the chemistry and microstructure of the surfaces of lunar soil grains is dominated by a reference frame derived mainly from electron microscopy observations [e.g. 1,2]. These studies have shown that the outermost 10-100 nm of grain surfaces in mature lunar soil finest fractions have been modified by the combined effects of solar wind exposure, surface deposition of vapors and accretion of impact melt products [1,2]. These processes produce surface-correlated nanophase Feo, host grain amorphization, formation of surface patinas and other complex changes [1,2]. What is less well understood is how these changes are reflected directly at the surface, defined as the outermost 1-5 atomic monolayers, a region not easily chemically characterized by TEM. We are currently employing X-ray Photoelectron Spectroscopy (XPS) to study the surface chemistry of lunar soil samples that have been previously studied by TEM. This work includes modification of the grain surfaces by in situ irradiation with ions at solar wind energies to better understand how irradiated surfaces in lunar grains change their chemistry once exposed to ambient conditions on earth.
Lunar Extravehicular Activity Program
NASA Technical Reports Server (NTRS)
Heartsill, Amy Ellison
2006-01-01
Extravehicular Activity (EVA) has proven an invaluable tool for space exploration since the inception of the space program. There are situations in which the best means to evaluate, observe, explore and potentially troubleshoot space systems are accomplished by direct human intervention. EVA provides this unique capability. There are many aspects of the technology required to enable a "miniature spaceship" to support individuals in a hostile environment in order to accomplish these tasks. This includes not only the space suit assembly itself, but the tools, design interfaces of equipment on which EVA must work and the specific vehicles required to support transfer of humans between habitation areas and the external world. This lunar mission program will require EVA support in three primary areas. The first of these areas include Orbital stage EVA or micro-gravity EVA which includes both Low Earth Orbit (LEO), transfer and Lunar Orbit EVA. The second area is Lunar Lander EVA capability, which is lunar surface EVA and carries slightly different requirements from micro-gravity EVA. The third and final area is Lunar Habitat based surface EVA, which is the final system supporting a long-term presence on the moon.
NASA Technical Reports Server (NTRS)
Eppler, D. B.
2015-01-01
Lunar surface geological exploration should be founded on a number of key elements that are seemingly disparate, but which can form an integrated operational concept when properly conceived and deployed. If lunar surface geological exploration is to be useful, this integration of key elements needs to be undertaken throughout the development of both mission hardware, training and operational concepts. These elements include the concept of mission class, crew makeup and training, surface mobility assets that are matched with mission class, and field tools and IT assets that make data collection, sharing and archiving transparent to the surface crew.
NASA Technical Reports Server (NTRS)
1975-01-01
The papers consider the origin and evolution of the lunar regolith utilizing data obtained during American and Soviet manned and unmanned lunar missions as well as surface and orbital observations, photography, sample collections, and experimental studies. Topics include the transport and emplacement of crater and basin deposits, development of the mare regolith, the shallow lunar structure as determined from the passive seismic experiment, horizontal transport of the regolith, the origin of the exotic component and KREEP-rich materials, the influx of interplanetary materials onto the moon, stratification in the lunar regolith, catastrophic rupture of lunar rocks, cosmic-ray exposure ages of surface features, breccia formation by sintering and crystallization, evolution of the lunar soil, and effects of maturation on the reflectance of the regolith. Individual items are announced in this issue.
NASA Astrophysics Data System (ADS)
Morgan, T.; Chin, G.
2007-08-01
NASA's Lunar Reconnaissance Orbiter (LRO) plans to launch in October 2008 with a companion secondary impactor mission, LCROSS, as the inaugural missions for the Exploration System Mission Directorate. LRO is a pathfinder whose objective is to obtain the needed information to prepare for eventual human return to the Moon. LRO will undertake at least one baseline year of operation with additional extended mission phase sponsored by NASA's Science Mission Directorate. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions; Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources; Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration; Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits; Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only by starlight; Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which will investigate the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background space radiation. The technology demonstration is an advanced radar (mini-RF) that will demonstrate X- and S-band radar imaging and interferometry using a light-weight synthetic aperture radar.
Overview of the Altair Lunar Lander Thermal Control System Design and the Impacts of Global Access
NASA Technical Reports Server (NTRS)
Stephan, Ryan A.
2011-01-01
NASA's Constellation Program (CxP) was developed to successfully return humans to the Lunar surface prior to 2020. The CxP included several different project offices including Altair, which was planned to be the next generation Lunar Lander. The Altair missions were architected to be quite different than the Lunar missions accomplished during the Apollo era. These differences resulted in a significantly dissimilar Thermal Control System (TCS) design. The current paper will summarize the Altair mission architecture and the various operational phases associated with the planned mission. In addition, the derived thermal requirements and the TCS designed to meet these unique and challenging thermal requirements will be presented. During the past year, the design team has focused on developing a vehicle architecture capable of accessing the entire Lunar surface. Due to the widely varying Lunar thermal environment, this global access requirement resulted in major changes to the thermal control system architecture. These changes, and the rationale behind the changes, will be detailed throughout the current paper.
The Lunar Atmosphere: History, Status, Current Problems, and Context
NASA Technical Reports Server (NTRS)
Stern, S. Alan .
1997-01-01
After decades of speculation and fruitless searches, the lunar atmosphere was first observed by Apollo surface and orbital instruments between 1970 and 1972. With the demise of Apollo in 1972, and the termination of funding for Apollo lunar ground station studies in 1977, the field withered for many years, but has recently enjoyed a renaissance. This reflowering has been driven by the discovery and exploration of sodium and potassium in the lunar exosphere by groundbased observers, the detection of metal ions derived from the Moon in interplanetary space, the possible discoveries of H2O ice at the poles of the Moon and Mercury, and the detections of tenuous atmospheres around more remote sites in the solar system, including Mercury and the Galilean satellites. In this review we summarize the present state of knowledge about the lunar atmosphere, describe the important physical processes taking place within it, and then discuss related topics including a comparison of the lunar atmosphere to other surface boundary exospheres in the solar system.
Observing Solar Radio Bursts from the Lunar Surface
NASA Technical Reports Server (NTRS)
MacDowall, R. J.; Gopalswamy, N.; Kaiser, M. L.; Lazio, T. J.; Jones, D. L.; Bale, S. D.; Burns, J.; Kasper, J. C.; Weiler, K. W.
2011-01-01
Locating low frequency radio observatories on the lunar surface has a number of advantages, including fixes locations for the antennas and no terrestrial interference on the far side of the moon. Here, we describe the Radio Observatory for Lunar Sortie Science (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff of the solar radio emissions and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays designed for faint sources.
CEV Trajectory Design Considerations for Lunar Missions
NASA Technical Reports Server (NTRS)
Condon, Gerald L.; Dawn, Timothy; Merriam, Robert S.; Sostaric, Ronald; Westhelle, Carlos H.
2007-01-01
The Crew Exploration Vehicle (CEV) translational maneuver Delta-V budget must support both the successful completion of a nominal lunar mission and an "anytime" emergency crew return with the potential for much more demanding orbital maneuvers. This translational Delta-V budget accounts for Earth-based LEO rendezvous with the lunar surface access module (LSAM)/Earth departure stage (EDS) stack, orbit maintenance during the lunar surface stay, an on-orbit plane change to align the CEV orbit for an in-plane LSAM ascent, and the Moon-to-Earth trans-Earth injection (TEI) maneuver sequence as well as post-TEI TCMs. Additionally, the CEV will have to execute TEI maneuver sequences while observing Earth atmospheric entry interface objectives for lunar high-latitude to equatorial sortie missions as well as near-polar sortie and long duration missions. The combination of these objectives places a premium on appropriately designed trajectories both to and from the Moon to accurately size the translational V and associated propellant mass in the CEV reference configuration and to demonstrate the feasibility of anytime Earth return for all lunar missions. This report examines the design of the primary CEV translational maneuvers (or maneuver sequences) including associated mission design philosophy, associated assumptions, and methodology for lunar sortie missions with up to a 7-day surface stay and with global lunar landing site access as well as for long duration (outpost) missions with up to a 210-day surface stay at or near the polar regions. The analyses presented in this report supports the Constellation Program and CEV project requirement for nominal and anytime abort (early return) by providing for minimum wedge angles, lunar orbit maintenance maneuvers, phasing orbit inclination changes, and lunar departure maneuvers for a CEV supporting an LSAM launch and subsequent CEV TEI to Earth return, anytime during the lunar surface stay.
Future lunar missions and investigation of dusty plasma processes on the Moon
NASA Astrophysics Data System (ADS)
Popel, Sergey I.; Zelenyi, Lev M.; Zelenyi
2013-08-01
From the Apollo era of exploration, it was discovered that sunlight was scattered at the terminators giving rise to ``horizon glow'' and ``streamers'' above the lunar surface. Subsequent investigations have shown that the sunlight was most likely scattered by electrostatically charged dust grains originating from the surface. A renaissance is being observed currently in investigations of the Moon. The Luna-Glob and Luna-Resource missions (the latter jointly with India) are being prepared in Russia. Some of these missions will include investigations of lunar dust. Here we discuss the future experimental investigations of lunar dust within the missions of Luna-Glob and Luna-Resource. We consider the dusty plasma system over the lunar surface and determine the maximum height of dust rise. We describe mechanisms of formation of the dusty plasma system over the Moon and its main properties, determine distributions of electrons and dust over the lunar surface, and show a possibility of rising dust particles over the surface of the illuminated part of the Moon in the entire range of lunar latitudes. Finally, we discuss the effect of condensation of micrometeoriod substance during the expansion of the impact plume and show that this effect is important from the viewpoint of explanation of dust particle rise to high altitudes in addition to the dusty plasma effects.
Petrologic Characteristics of the Lunar Surface
NASA Astrophysics Data System (ADS)
Wang, Xianmin; Pedrycz, Witold
2015-11-01
Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface.
Petrologic Characteristics of the Lunar Surface
Wang, Xianmin; Pedrycz, Witold
2015-01-01
Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface. PMID:26611148
Petrologic Characteristics of the Lunar Surface.
Wang, Xianmin; Pedrycz, Witold
2015-11-27
Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface.
Astronauts Alan Bean and Charles Conrad on Lunar Surface
NASA Technical Reports Server (NTRS)
1969-01-01
The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn Five launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. In this photograph, one of the astronauts on the Moon's surface is holding a container of lunar soil. The other astronaut is seen reflected in his helmet. Apollo 12 safely returned to Earth on November 24, 1969.
Kinetic Modeling of the Lunar Dust-Plasma Environment
NASA Astrophysics Data System (ADS)
Kallio, Esa; Alho, Markku; Alvarez, Francisco; Barabash, Stas; Dyadechkin, Sergey; Fernandes, Vera; Futaana, Yoshifumi; Harri, Ari-Matti; Haunia, Touko; Heilimo, Jyri; Holmström, Mats; Jarvinen, Riku; Lue, Charles; Makela, Jakke; Porjo, Niko; Schmidt, Walter; Shahab, Fatemi; Siili, Tero; Wurz, Peter
2014-05-01
Modeling of the lunar dust and plasma environment is a challenging task because a self-consistent model should include ions, electrons and dust particles and numerous other factors. However, most of the parameters are not well established or constrained by measurements in the lunar environment. More precisely, a comprehensive model should contain electrons originating from 1) the solar wind, 2) the lunar material (photoelectrons, secondary electrons) and 3) the lunar dust. Ions originate from the solar wind, the lunar material, the lunar exosphere and the dust. To model the role of the dust in the lunar plasma environment is a highly complex task since the properties of the dust particles in the exosphere are poorly known (e.g. mass, size, shape, conductivity) or not known (e.g. charge and photoelectron emission) and probably are time dependent. Models should also include the effects of interactions between the surface and solar wind and energetic particles, and micrometeorites. Largely different temporal and spatial scales are also a challenge for the numerical models. In addition, the modeling of a region on the Moon - for example on the South Pole - at a given time requires also knowledge of the solar illumination conditions at that time, mineralogical and electric properties of the local lunar surface, lunar magnetic anomalies, solar UV flux and the properties of the solar wind. Harmful effects of lunar dust to technical devices and to human health as well as modeling of the properties of the lunar plasma and dust environment have been topics of two ESA funded projects L-DEPP and DPEM. In the presentation we will summarize some basic results and characteristics of plasma and fields near and around the Moon as studied and discovered in these projects. Especially, we analyse three different space and time scales by kinetic models: [1] the "microscale" region near surface with an electrostatic PIC (ions and electrons are particles) model, [2] the "mesoscale" region including lunar magnetic anomalies and [3] the global scale Moon-solar wind interaction with hybrid (ions as particles in massless electron fluid) models.
Life Sciences Implications of Lunar Surface Operations
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Norcross, Jason R.; Abercromby, Andrew F.; Gernhardt, Michael L.
2010-01-01
The purpose of this report is to document preliminary, predicted, life sciences implications of expected operational concepts for lunar surface extravehicular activity (EVA). Algorithms developed through simulation and testing in lunar analog environments were used to predict crew metabolic rates and ground reaction forces experienced during lunar EVA. Subsequently, the total metabolic energy consumption, the daily bone load stimulus, total oxygen needed, and other variables were calculated and provided to Human Research Program and Exploration Systems Mission Directorate stakeholders. To provide context to the modeling, the report includes an overview of some scenarios that have been considered. Concise descriptions of the analog testing and development of the algorithms are also provided. This document may be updated to remain current with evolving lunar or other planetary surface operations, assumptions and concepts, and to provide additional data and analyses collected during the ongoing analog research program.
Project Columbiad: Reestablishment of human presence on the Moon
NASA Technical Reports Server (NTRS)
Shea, Joseph; Weiss, Stanley; Alexander, Harold; Belobaba, Peter; Loboda, Greg; Berry, Maresi; Bower, Mark; Bruen, Charles; Cazeau, Patrick; Clarke, Michael
1992-01-01
In response to the Report of the Advisory Committee on the future of the U.S. Space Program and a request from NASA's Exploration Office, the MIT Hunsaker Aerospace Corporation (HAC) conducted a feasibility study, known as Project Columbiad, on reestablishing human presence on the Moon before the year 2000. The mission criteria established were to transport a four person crew to the lunar surface at any latitude and back to Earth with a 14-28 day stay on the lunar surface. Safety followed by cost of the Columbiad Mission were the top level priorities of HAC. The resulting design has a precursor mission that emplaces the required surface payloads before the piloted mission arrives. Both the precursor and piloted missions require two National Launch System (NLS) launches. Both the precursor and piloted missions have an Earth orbit rendezvous (EOR) with a direct transit to the Moon post-EOR. The piloted mission returns to Earth via a direct transit. Included among the surface payloads preemplaced are a habitat, solar power plant (including fuel cells for the lunar night), lunar rover, and mecanisms used to cover the habitat with regolith (lunar soil) in order to protect the crew members from severe solar flare radiation.
NASA Technical Reports Server (NTRS)
Zuniga, Allison; Turner, Mark; Rasky, Dan
2017-01-01
A new concept study was initiated to examine the framework needed to gradually develop an economical and sustainable lunar infrastructure using a public private partnerships approach. This approach would establish partnership agreements between NASA and industry teams to develop cis-lunar and surface capabilities for mutual benefit while sharing cost and risk in the development phase and then allowing for transfer of operation of these infrastructure services back to its industry owners in the execution phase. These infrastructure services may include but are not limited to the following: lunar cargo transportation, power stations, energy storage devices, communication relay satellites, local communication towers, and surface mobility operations.
Analysis of Lunar Surface Charging for a Candidate Spacecraft Using NASCAP-2K
NASA Technical Reports Server (NTRS)
Parker, Linda; Minow, Joseph; Blackwell, William, Jr.
2007-01-01
The characterization of the electromagnetic interaction for a spacecraft in the lunar environment, and identification of viable charging mitigation strategies, is a critical lunar mission design task, as spacecraft charging has important implications both for science applications and for astronaut safety. To that end, we have performed surface charging calculations of a candidate lunar spacecraft for lunar orbiting and lunar landing missions. We construct a model of the spacecraft with candidate materials having appropriate electrical properties using Object Toolkit and perform the spacecraft charging analysis using Nascap-2k, the NASA/AFRL sponsored spacecraft charging analysis tool. We use nominal and atypical lunar environments appropriate for lunar orbiting and lunar landing missions to establish current collection of lunar ions and electrons. In addition, we include a geostationary orbit case to demonstrate a bounding example of extreme (negative) charging of a lunar spacecraft in the geostationary orbit environment. Results from the charging analysis demonstrate that minimal differential potentials (and resulting threat of electrostatic discharge) occur when the spacecraft is constructed entirely of conducting materials, as expected. We compare charging results to data taken during previous lunar orbiting or lunar flyby spacecraft missions.
NASA Astrophysics Data System (ADS)
Lazio, J.; Jones, D. L.; MacDowall, R. J.; Burns, J. O.; Kasper, J. C.
2011-12-01
The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent and its behavior over time, including modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the peak plasma density of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of nanometer- to micron-scale dust. The LUNAR consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.
View Seventeen of Lunar Panoramic Scene
NASA Technical Reports Server (NTRS)
1969-01-01
The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the seventeenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.
Environment Challenges for Exploration of the Moon
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Blackwell, William C., Jr.; Coffey, Victoria N.; Cooke, William B.; Howard, James W.; Parker, Linda N.; Sharp, John; Schunck, Greg; Suggs. Robert W.; Wang, Joseph W.
2008-01-01
NASA's Constellation Program is designing a new generation of human rated launch and space transportation vehicles to first replace the Space Shuttle fleet, then support develop of a permanent human habitat on the Moon, and ultimately prepare for human exploration of Mars. The ambitious first step beyond low Earth orbit is to develop the infrastructure required for conducting missions to a variety of locations on the lunar surface for periods of a week and establishment of a permanent settlement at one of the lunar poles where crews will serve for periods on the order of approx.200 days. We present an overview of the most challenging aspects of the lunar environment that will need to be addressed when developing transport and habitat infrastructure for long term human presence on the Moon including low temperatures and dusty regolith surfaces, radiation environments due to galactic cosmic rays and solar energetic particles, charging of lunar infrastructure when exposed to lunar plasma environments, and secondary meteor environments generated by primary impacts on the lunar surface.
SELMA: a mission to study lunar environment and surface interaction
NASA Astrophysics Data System (ADS)
Barabash, Stas; Futaana, Yoshifumi
2017-04-01
SELMA (Surface, Environment, and Lunar Magnetic Anomalies) proposed for the ESA M5 mission opportunity is a mission to study how the Moon environment and surface interact. SELMA addresses four overarching science questions: (1) What is the origin of water on the Moon? (2) How do the "volatile cycles" on the Moon work? (3) How do the lunar mini-magnetospheres work? (4) What is the influence of dust on the lunar environment and surface? SELMA uses a unique combination of remote sensing via UV, IR, and energetic neutral atoms and local measurements of plasma, fields, waves, exospheric gasses, and dust. It will also conduct an impact experiment to investigate volatile content in the soil of the permanently shadowed area of the Shakleton crater. SELMA carries an impact probe to sound the Reiner-Gamma mini-magnetosphere and its interaction with the lunar regolith from the SELMA orbit down to the surface. The SELMA science objectives include: - Establish the role of the solar wind and exosphere in the formation of the water bearing materials; - Determine the water content in the regolith of the permanently shadowed region and its isotope composition; - Establish variability, sources and sinks of the lunar exosphere and its relations to impact events; - Investigate a mini-magnetosphere interaction with the solar wind; - Investigate the long-term effects of mini-magnetospheres on the local surface; - Investigate how the impact events affect the lunar dust environments; - Investigate how the plasma effects result in lofting the lunar dust; SELMA is a flexible and short (15 months) mission including the following elements SELMA orbiter, SELMA Impact Probe for Magnetic Anomalies (SIP-MA), passive Impactor, and Relaying CubeSat (RCS). SELMA is placed on quasi-frozen polar orbit 30 km x 200 km with the pericenter over the South Pole. Approximately 9 months after the launch SELMA releases SIP-MA to sound the Reiner-Gamma magnetic anomaly with very high time resolution <0.5 s to investigate small-scale structure of the respective mini-magnetosphere. At the end of the mission the passive impactor impacts the permanently shadowed region of the Shakleton crater >10 sec before SELMA and SELMA orbiter flies through the resulted plume to perform high resolution mass spectroscopy of the released volatiles. The data are downlinked to ground and RCS. RCS stays on orbit for 2 more hours to downlink the complete data set. SELMA orbiter payload include: Remote sensing instruments - Infrared and visible spectrometer with spectral range 400 - 3600 nm; - Wide angle and transient phenomena camera to detect meteoroid impact (>100 g) - Moon UV imaging spectrometer with spectral range 115 - 315 nm - ENA telescope with an angular resolution < 10 ̊ In-situ instruments - Lunar ion spectrometer M/ΔM > 80 - Lunar scattered proton and negative ion experiment: - Lunar electron spectrometer - Moon magnetometer - Plasma wave instrument - Lunar dust detector: M>10-15 kg - Lunar exospheric mass spectrometer: M/ΔM > 1000 SIP-MA payload includes: - Waves and electric field instrument - Impact probe ions and electrons spectrometer - Impact probe magnetometer - Context camera Passive 10 kg copper spherical impactor
NASA Astrophysics Data System (ADS)
Nishino, Masaki N.; Harada, Yuki; Saito, Yoshifumi; Tsunakawa, Hideo; Takahashi, Futoshi; Yokota, Shoichiro; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi
2017-09-01
There forms a tenuous region called the wake behind the Moon in the solar wind, and plasma entry/refilling into the wake is a fundamental problem of the lunar plasma science. High-energy ions and electrons in the foreshock of the Earth's magnetosphere were detected at the lunar surface in the Apollo era, but their effects on the lunar night-side environment have never been studied. Here we show the first observation of bow-shock reflected protons by Kaguya (SELENE) spacecraft in orbit around the Moon, confirming that solar wind plasma reflected at the terrestrial bow shock can easily access the deepest lunar wake when the Moon stays in the foreshock (We name this mechanism 'type-3 entry'). In a continuous type-3 event, low-energy electron beams from the lunar night-side surface are not obvious even though the spacecraft location is magnetically connected to the lunar surface. On the other hand, in an intermittent type-3 entry event, the kinetic energy of upward-going field-aligned electron beams decreases from ∼ 80 eV to ∼ 20 eV or electron beams disappear as the bow-shock reflected ions come accompanied by enhanced downward electrons. According to theoretical treatment based on electric current balance at the lunar surface including secondary electron emission by incident electron and ion impact, we deduce that incident ions would be accompanied by a few to several times higher flux of an incident electron flux, which well fits observed downward fluxes. We conclude that impact by the bow-shock reflected ions and electrons raises the electrostatic potential of the lunar night-side surface.
Monte Carlo Model Insights into the Lunar Sodium Exosphere
NASA Technical Reports Server (NTRS)
Hurley, Dana M.; Killen, R. M.; Sarantos, M.
2012-01-01
Sodium in the lunar exosphere is released from the lunar regolith by several mechanisms. These mechanisms include photon stimulated desorption (PSD), impact vaporization, electron stimulated desorption, and ion sputtering. Usually, PSD dominates; however, transient events can temporarily enhance other release mechanisms so that they are dominant. Examples of transient events include meteor showers and coronal mass ejections. The interaction between sodium and the regolith is important in determining the density and spatial distribution of sodium in the lunar exosphere. The temperature at which sodium sticks to the surface is one factor. In addition, the amount of thermal accommodation during the encounter between the sodium atom and the surface affects the exospheric distribution. Finally, the fraction of particles that are stuck when the surface is cold that are rereleased when the surface warms up also affects the exospheric density. In [1], we showed the "ambient" sodium exosphere from Monte Carlo modeling with a fixed source rate and fixed surface interaction parameters. We compared the enhancement when a CME passes the Moon to the ambient conditions. Here, we compare model results to data in order to determine the source rates and surface interaction parameters that provide the best fit of the model to the data.
Astronaut Alan Bean deploys Lunar Surface Magnetometer on lunar surface
1969-11-19
Astronaut Alan L. Bean, lunar module pilot, deploys the Lunar Surface Magnetometer (LSM) during the first Apollo 12 extravehicular activity on the Moon. The LSM is a component of the Apollo Lunar Surface Experiments Package (ALSEP). The Lunar Module can be seen in the left background.
Astronaut Alan Bean deploys Lunar Surface Magnetometer on lunar surface
NASA Technical Reports Server (NTRS)
1969-01-01
Astronaut Alan L. Bean, lunar module pilot, deploys the Lunar Surface Magnetometer (LSM) during the first Apollo 12 extravehicular activity on the Moon. The LSM is a component of the Apollo Lunar Surface Experiments Package (ALSEP). The Lunar Module can be seen in the left background.
NASA Astrophysics Data System (ADS)
Li, Ke; Chen, Jianping; Sofia, Giulia; Tarolli, Paolo
2014-05-01
Moon surface features have great significance in understanding and reconstructing the lunar geological evolution. Linear structures like rilles and ridges are closely related to the internal forced tectonic movement. The craters widely distributed on the moon are also the key research targets for external forced geological evolution. The extremely rare availability of samples and the difficulty for field works make remote sensing the most important approach for planetary studies. New and advanced lunar probes launched by China, U.S., Japan and India provide nowadays a lot of high-quality data, especially in the form of high-resolution Digital Terrain Models (DTMs), bringing new opportunities and challenges for feature extraction on the moon. The aim of this study is to recognize and extract lunar features using geomorphometric analysis based on multi-scale parameters and multi-resolution DTMs. The considered digital datasets include CE1-LAM (Chang'E One, Laser AltiMeter) data with resolution of 500m/pix, LRO-WAC (Lunar Reconnaissance Orbiter, Wide Angle Camera) data with resolution of 100m/pix, LRO-LOLA (Lunar Reconnaissance Orbiter, Lunar Orbiter Laser Altimeter) data with resolution of 60m/pix, and LRO-NAC (Lunar Reconnaissance Orbiter, Narrow Angle Camera) data with resolution of 2-5m/pix. We considered surface derivatives to recognize the linear structures including Rilles and Ridges. Different window scales and thresholds for are considered for feature extraction. We also calculated the roughness index to identify the erosion/deposits area within craters. The results underline the suitability of the adopted methods for feature recognition on the moon surface. The roughness index is found to be a useful tool to distinguish new craters, with higher roughness, from the old craters, which present a smooth and less rough surface.
Advanced Spacecraft Designs in Support of Human Missions to Earth's Neighborhood
NASA Technical Reports Server (NTRS)
Fletcher, David
2002-01-01
NASA's strategic planning for technology investment draws on engineering studies of potential future missions. A number of hypothetical mission architectures have been studied. A recent study completed by The NASA/JSC Advanced Design Team addresses one such possible architecture strategy for missions to the moon. This conceptual study presents an overview of each of the spacecraft elements that would enable such missions. These elements include an orbiting lunar outpost at lunar L1 called the Gateway, a lunar transfer vehicle (LTV) which ferries a crew of four from the ISS to the Gateway, a lunar lander which ferries the crew from the Gateway to the lunar surface, and a one-way lunar habitat lander capable of supporting the crew for 30 days. Other supporting elements of this architecture discussed below include the LTV kickstage, a solar-electric propulsion (SEP) stage, and a logistics lander capable of re-supplying the 30-day habitat lander and bringing other payloads totaling 10.3 mt in support of surface mission activities. Launch vehicle infrastructure to low-earth orbit includes the Space Shuttle, which brings up the LTV and crew, and the Delta-IV Heavy expendable launch vehicle which launches the landers, kickstage, and SEP.
Research on lunar and planet development and utilization
NASA Astrophysics Data System (ADS)
Iwata, Tsutomu; Etou, Takao; Imai, Ryouichi; Oota, Kazuo; Kaneko, Yutaka; Maeda, Toshihide; Takano, Yutaka
1992-08-01
Status of the study on unmanned and manned lunar missions, unmanned Mars missions, lunar resource development and utilization missions, remote sensing exploration missions, survey and review to elucidate the problems of research and development for lunar resource development and utilization, and the techniques and equipment for lunar and planet exploration are presented. Following items were studied respectively: (1) spacecraft systems for unmanned lunar missions, such as lunar observation satellites, lunar landing vehicles, lunar surface rovers, lunar surface hoppers, and lunar sample retrieval; (2) spacecraft systems for manned lunar missions, such as manned lunar bases, lunar surface operation robots, lunar surface experiment systems, manned lunar take-off and landing vehicles, and lunar freight transportation ships; (3) spacecraft systems for Mars missions, such as Mars satellites, Phobos and Deimos sample retrieval vehicles, Mars landing explorers, Mars rovers, Mars sample retrieval; (4) lunar resource development and utilization; and (5) remote sensing exploration technologies.
Characterization of lunar surface materials for use in construction
NASA Technical Reports Server (NTRS)
Johnson, Stewart W.; Burns, Jack O.
1992-01-01
The Workshop on the Concept of a Common Lunar Lander, which was held at the NASA Johnson Space Center on July 1 and 2, 1991, discussed potential payloads to be placed on the Moon by a common, generic, unmanned, vehicle beginning late in this decade. At this workshop, a variety of payloads were identified including a class of one-meter (and larger) optical telescopes to operate on the lunar surface. These telescopes for lunar-based astronomy are presented in an earlier section of this report. The purpose of this section is to suggest that these and other payloads for the Common Lunar Lander be used to facilitate technology development for the proposed 16-meter Aperture UV/Visible/IR Large Lunar Telescope (LLT) and a large optical aperture-synthesis instrument analogous to the Very Large Array of the National Radio Astronomy Observatory.
ERIC Educational Resources Information Center
Biggar, G. M.
1973-01-01
Summarizes the scientific activities of the Apollo program, including findings from analyses of the returned lunar sample. Descriptions are made concerning the possible origin of the moon and the formation of the lunar surface. (CC)
CE-4 Mission and Future Journey to Lunar
NASA Astrophysics Data System (ADS)
Zou, Yongliao; Wang, Qin; Liu, Xiaoqun
2016-07-01
Chang'E-4 mission, being undertaken by phase two of China Lunar Exploration Program, represents China's first attempt to explore farside of lunar surface. Its probe includes a lander, a rover and a telecommunication relay which is scheduled to launch in around 2018. The scientific objectives of CE-4 mission will be implemented to investigate the lunar regional geological characteristics of landing and roving area, and also will make the first radio-astronomy measurements from the most radio-quiet region of near-earth space. The rover will opreate for at least 3 months, the lander for half a year, and the relay for no less than 3 years. Its scinetific instruments includes Cameras, infrared imaging spectrometer, Penetrating Radar onboard the rover in which is the same as the paylads on board the CE-3 rover, and a Dust-analyzer, a Temperature-instrument and a Wide Band Low Frequency Digital Radio Astronomical Station will be installed on board the lander. Our scientific goals of the future lunar exploration will aim at the lunar geology, resources and surface environments. A series of exploraion missions such as robotic exploration and non-manned lunar scientific station is proposed in this paper.
A Survey of Terrestrial Approaches to the Challenge of Lunar Dust Containment
NASA Technical Reports Server (NTRS)
Aguilera, Tatiana; Perry, Jay L.
2009-01-01
Numerous technical challenges exist to successfully extend lunar surface exploration beyond the tantalizing first steps of Apollo. Among these is the challenge of lunar dust intrusion into the cabin environment. Addressing this challenge includes the design of barriers to intrusion as well as techniques for removing the dust from the cabin atmosphere. Opportunities exist for adapting approaches employed in dusty industrial operations and pristine manufacturing environments to cabin environmental quality maintenance applications. A survey of process technologies employed by the semiconductor, pharmaceutical, food processing, and mining industries offers insight into basic approaches that may be suitable for adaptation to lunar surface exploration applications.
Artists concept of Apollo 15 crewmen performing deployment of LRV
1971-06-26
S71-38189 (26 June 1971) --- An artist's concept showing the final steps of readying the Apollo 15 Lunar Roving Vehicle (LRV) or Rover 1 for mobility on the lunar surface. Performing the last few LRV deployment tasks here are, left to right, astronauts James B. Irwin, lunar module pilot, and David R. Scott, commander. More specifically the tasks depicted here include the setting up of the seats and the total releasing of the LRV from the LM. (This is the fourth in a series of four Grumman Aerospace Corporation artist's concepts telling the lunar surface LRV deployment story for Apollo 15).
The Lunar Mapping and Modeling Project
NASA Technical Reports Server (NTRS)
Nall, M.; French, R.; Noble, S.; Muery, K.
2010-01-01
The Lunar Mapping and Modeling Project (LMMP) is managing a suite of lunar mapping and modeling tools and data products that support lunar exploration activities, including the planning, de-sign, development, test, and operations associated with crewed and/or robotic operations on the lunar surface. Although the project was initiated primarily to serve the needs of the Constellation program, it is equally suited for supporting landing site selection and planning for a variety of robotic missions, including NASA science and/or human precursor missions and commercial missions such as those planned by the Google Lunar X-Prize participants. In addition, LMMP should prove to be a convenient and useful tool for scientific analysis and for education and public out-reach (E/PO) activities.
NASA Technical Reports Server (NTRS)
Clarke, Michael; Denecke, Johan; Garber, Suzanne; Kader, Beth; Liu, Celia; Weintraub, Ben; Cazeau, Patrick; Goetz, John; Haughwout, James; Larson, Erik
1992-01-01
In response to the Report of the Advisory Committee on the future of the U.S. Space Program and a request from NASA's Exploration Office, the MIT Hunsaker Aerospace Corporation (HAC) conducted a feasibility study, known as Project Columbiad, on reestablishing human presence on the Moon before the year 2000. The mission criteria established were to transport a four person crew to the lunar surface at any latitude and back to Earth with a 14-28 day stay on the lunar surface. Safety followed by cost of the Columbiad Mission were the top level priorities of HAC. The resulting design has a precursor mission that emplaces the required surface payloads before the piloted mission arrives. Both the precursor and piloted missions require two National Launch System (NLS) launches. Both the precursor and piloted mission have an Earth orbit rendezvous (EOR) with a direct transit to the Moon post-EOR. The piloted mission returns to Earth via a direct transit. Included among the surface payloads preemplaced are a habitat, solar power plant (including fuel cells for the lunar night), lunar rover, and mechanisms used to cover the habitat with regolith (lunar soil) in order to protect the crew members from severe solar flare radiation.
Man-Made Debris In and From Lunar Orbit
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.; McKay, Gordon A. (Technical Monitor)
1999-01-01
During 1966-1976, as part of the first phase of lunar exploration, 29 manned and robotic missions placed more than 40 objects into lunar orbit. Whereas several vehicles later successfully landed on the Moon and/or returned to Earth, others were either abandoned in orbit or intentionally sent to their destruction on the lunar surface. The former now constitute a small population of lunar orbital debris; the latter, including four Lunar Orbiters and four Lunar Module ascent stages, have contributed to nearly 50 lunar sites of man's refuse. Other lunar satellites are known or suspected of having fallen from orbit. Unlike Earth satellite orbital decays and deorbits, lunar satellites impact the lunar surface unscathed by atmospheric burning or melting. Fragmentations of lunar satellites, which would produce clouds of numerous orbital debris, have not yet been detected. The return to lunar orbit in the 1990's by the Hagoromo, Hiten, Clementine, and Lunar Prospector spacecraft and plans for increased lunar exploration early in the 21st century, raise questions of how best to minimize and to dispose of lunar orbital debris. Some of the lessons learned from more than 40 years of Earth orbit exploitation can be applied to the lunar orbital environment. For the near-term, perhaps the most important of these is postmission passivation. Unique solutions, e.g., lunar equatorial dumps, may also prove attractive. However, as with Earth satellites, debris mitigation measures are most effectively adopted early in the concept and design phase, and prevention is less costly than remediation.
Luna: What Did We Learn and What Should We Expect?
NASA Technical Reports Server (NTRS)
Wallace, William T.
2009-01-01
This presentation presents a look at the space program's background prior to lunar exploration and highlights the Apollo program and lessons learned from lunar exploration. The possibilities of exposures and difficulties attributed to lunar dust are described, including obscured vision, clogged equipment, coated surfaces, and inhalation, among others. A lunar dust simulant is proposed to support preliminary studies. Lunar dust is constantly activated by meteorite lunar dust, UV radiation and elements of solar wind - this active dust could produce reactive species. Methods of deactivation must be determined before new lunar missions, but first we must understand how to reactivate dust on Earth. Activation methods tested and described here include crushing/grinding or UV activation. Grinding time has a direct effect on amount of hydroxyl radicals produced upon addition of ground quartz to a solution. An increase in hydroxyl production was also seen for a lunar simulant with increased grinding.
The Use of Solar Heating and Heat Cured Polymers for Lunar Surface Stabilization
NASA Technical Reports Server (NTRS)
Hintze, Paul; Curran, Jerry; Back, Reddy
2008-01-01
Dust ejecta can affect visibility during a lunar landing, erode nearby coated surfaces and get into mechanical assemblies of in-place infrastructure. Regolith erosion was observed at many of the Apollo landing sites. This problem needs to be addressed at the beginning of the lunar base missions, as the amount of infrastructure susceptible to problems will increase with each landing. Protecting infrastructure from dust and debris is a crucial step in its long term functionality. A proposed way to mitigate these hazards is to build a lunar launch pad. Other areas of a lunar habitat will also need surface stabilization methods to help mitigate dust hazards. Roads would prevent dust from being lifted during movement and dust free zones might be required for certain areas critical to crew safety or to critical science missions. Work at NASA Kennedy Space Center (KSC) is investigating methods of stabilizing the lunar regolith including: sintering the regolith into a solid and using heat or UV cured polymers to stabilize the surface. Sintering, a method in which powders are heated until fusing into solids, has been proposed as one way of building a Lunar launch/landing pad. A solar concentrator has been built and used in the field to sinter JSC-1 Lunar stimulant. Polymer palliatives are used by the military to build helicopter landing pads and roads in dusty and sandy areas. Those polymers are dispersed in a solvent (water), making them unsuitable for lunar use. Commercially available, solvent free, polymer powders are being investigated to determine their viability to work in the same way as the solvent borne terrestrial analog. This presentation will describe the ongoing work at KSC in this field. Results from field testing will be presented. Physical testing results, including compression and abrasion, of field and laboratory prepared samples will be presented.
Lunar Regolith Biomining: Workshop Report
NASA Technical Reports Server (NTRS)
Dalton, Bonnie P.; Roberto, Frank F.
2008-01-01
On May 5th and 6th, 2007, NASA Ames Research Center hosted a workshop entitled 'Lunar Regolith Biomining'. The workshop addressed the feasibility of biologically-based mining of the lunar regolith along with identification of views and concepts for moving this topic forward to NASA. Workshop presentations provided background in topics of interest that served as the foundation for discussion in the subsequent breakout sessions. The first topical area included the history, status, and issues with biomining on Earth to familiarize all attendees with current activities. These presentations related the primary considerations in existing biomining, e.g., microbes of choice, pH of reactions, time and temperature, specific mining applications and locations, and benefits and/or limitations of biomining. The second area reviewed existing research efforts addressing biomining of planetary surfaces (Mars, Moon), including microbial considerations, and chemical necessities in biomining and biofuel production. The last element pertained to other non-biological considerations and influences in biomining efforts on the lunar surface such as radiation fluxes and effects, and the application of small satellite experiments to learn more about the lunar and Martian surfaces. Following the presentations, the workshop attendees divided into three breakout sessions to discuss areas of interest in greater detail and to define next steps in determining the feasibility of lunar regolith biomining. Topics for each of the three breakout sessions included: 1) bio-communities of choice, target product(s), and suggested ground studies; 2) physical/environmental issues and ground studies; and 3) the development of reference experiments for the Astrobiology Small payloads Workshop. The results of the breakout sessions are summarized and a list of participants is included.
The first stage of Lunar Prospector's LMLV is erected at Pad 46, CCAS
NASA Technical Reports Server (NTRS)
1997-01-01
Workers erect the first stage of a Lockheed Martin Launch Vehicle-2 (LMLV-2) at Launch Complex 46 at Cape Canaveral Air Station, Fla. The Lunar Prospector spacecraft is scheduled to launch aboard the LMLV-2 in October for an 18-month mission that will orbit the Earth's Moon to collect data from the lunar surface. Scientific experiments to be conducted by the Prospector include locating water ice that may exist near the lunar poles, gathering data to understand the evolution of the lunar highland crust and the lunar magnetic field, finding radon outgassing events, and describing the lunar gravity field by means of Doppler tracking.
High-priority lunar landing sites for in situ and sample return studies of polar volatiles
NASA Astrophysics Data System (ADS)
Lemelin, Myriam; Blair, David M.; Roberts, Carolyn E.; Runyon, Kirby D.; Nowka, Daniela; Kring, David A.
2014-10-01
Our understanding of the Moon has advanced greatly over the last several decades thanks to analyses of Apollo samples and lunar meteorites, and recent lunar orbital missions. Notably, it is now thought that the lunar poles may be much more enriched in H2O and other volatile chemical species than the equatorial regions sampled during the Apollo missions. The equatorial regions sampled, themselves, contain more H2O than previously thought. A new lunar mission to a polar region is therefore of great interest; it could provide a measure of the sources and processes that deliver volatiles while also evaluating the potential in situ resource utilization value they may have for human exploration. In this study, we determine the optimal sites for studying lunar volatiles by conducting a quantitative GIS-based spatial analysis of multiple relevant datasets. The datasets include the locations of permanently shadowed regions, thermal analyses of the lunar surface, and hydrogen abundances. We provide maps of the lunar surface showing areas of high scientific interest, including five regions near the lunar north pole and seven regions near the lunar south pole that have the highest scientific potential according to rational search criteria. At two of these sites-a region we call the “Intercrater Polar Highlands” (IPH) near the north pole, and Amundsen crater near the south pole-we provide a more detailed assessment of landing sites, sample locations, and exploration strategies best suited for future human or robotic exploration missions.
Design for producing fiberglass fabric in a lunar environment
NASA Technical Reports Server (NTRS)
Benson, Rafer M.; Causby, Dana R.; Johnson, Michael C.; Storey, Mark A.; Tran, Dal T.; Zahr, Thomas A.
1992-01-01
The purpose of this project was to design a method of producing a fabric material on the lunar surface from readily available glass fibers. Various methods for forming fabrics were analyzed to determine which methods were appropriate for the lunar conditions. A nonwoven process was determined to be the most suitable process for making a fabric material out of fiberglass under these conditions. Various resins were considered for adhering the fibers. A single thermoplastic resin (AURUM) was found to be the only applicable resin. The end product of the process was determined to be suitable for use as a roadway surfacing material, canopy material, reflective material, or packaging material. A cost analysis of the lunar process versus shipping the end-product from the Earth suggests that the lunar formation is highly feasible. A design for a lunar, nonwoven process was determined and is included.
Design for producing fiberglass fabric in a lunar environment
NASA Technical Reports Server (NTRS)
Dorrity, J. Lewis; Patel, Suneer; Benson, Rafer M.; Johnson, Michael C.; Storey, Mark A.; Tran, Dai T.; Zahr, Thomas A.; Causby, Dana R.
1992-01-01
The purpose of this project was to design a method of producing a fabric material on the lunar surface from readily available glass fibers. Various methods for forming fabrics were analyzed to determine which methods were appropriate for the lunar conditions. A nonwoven process was determined to be the most suitable process for making a fabric material out of fiberglass under these conditions. Various resins were considered for adhering the fibers. A single thermoplastic resin (AURUM) was found to be the only applicable resin. The end product of the process was determined to be suitable for use as a roadway surfacing material, canopy materials, reflective material, or packaging material. A cost analysis of the lunar process versus shipping the end-product from the earth suggests that the lunar formation is highly feasible. A design for a lunar, nonwoven process was determined and included in the following document.
Lunar Polar Cold Traps: Spatial Distribution and Temperatures
NASA Astrophysics Data System (ADS)
Paige, David A.; Siegler, M.; Lawrence, D. J.
2006-09-01
We have developed a ray-tracing and radiosity model that can accurately calculate lunar surface and subsurface temperatures for arbitrary topography. Using available digital elevation models for the lunar north and south polar regions derived from Clementine laser altimeter and image data, as well as ground-based radar data, we have calculated lunar surface and subsurface temperatures at 2 km resolution that include full effects of indirect solar and infrared radiation due to topography. We compare our thermal model results with maps of epithermal neutron flux measured by Lunar Prospector. When we use the ray tracing and thermal model to account for the effects of temperature and topography on the neutron measurements, our results show that the majority of the moon's polar cold traps are not filled with water ice.
Adaption of space station technology for lunar operations
NASA Technical Reports Server (NTRS)
Garvey, J. M.
1992-01-01
Space Station Freedom technology will have the potential for numerous applications in an early lunar base program. The benefits of utilizing station technology in such a fashion include reduced development and facility costs for lunar base systems, shorter schedules, and verification of such technology through space station experience. This paper presents an assessment of opportunities for using station technology in a lunar base program, particularly in the lander/ascent vehicles and surface modules.
Lunar surface mine feasibility study
NASA Astrophysics Data System (ADS)
Blair, Brad R.
This paper describes a lunar surface mine, and demonstrates the economic feasibility of mining oxygen from the moon. The mine will be at the Apollo 16 landing site. Mine design issues include pit size and shape, excavation equipment, muck transport, and processing requirements. The final mine design will be driven by production requirements, and constrained by the lunar environment. This mining scenario assumes the presence of an operating lunar base. Lunar base personnel will set-up a and run the mine. The goal of producing lunar oxygen is to reduce dependence on fuel shipped from Earth. Thus, the lunar base is the customer for the finished product. The perspective of this paper is that of a mining contractor who must produce a specific product at a remote location, pay local labor, and sell the product to an onsite captive market. To make a profit, it must be less costly to build and ship specialized equipment to the site, and pay high labor and operating costs, than to export the product directly to the site.
Test Before You Fly - High Fidelity Planetary Environment Simulation
NASA Technical Reports Server (NTRS)
Craven, Paul; Ramachandran, Narayanan; Vaughn, Jason; Schneider, Todd; Nehls, Mary
2012-01-01
The lunar surface environment will present many challenges to the survivability of systems developed for long duration lunar habitation and exploration of the lunar, or any other planetary, surface. Obstacles will include issues pertaining especially to the radiation environment (solar plasma and electromagnetic radiation) and lunar regolith dust. The Planetary Environments Chamber is one piece of the MSFC capability in Space Environmental Effects Test and Analysis. Comprised of many unique test systems, MSFC has the most complete set of SEE test capabilities in one location allowing examination of combined space environmental effects without transporting already degraded, potentially fragile samples over long distances between tests. With this system, the individual and combined effects of the lunar radiation and regolith environment on materials, sub-systems, and small systems developed for the lunar return can be investigated. This combined environments facility represents a unique capability to NASA, in which tests can be tailored to any one aspect of the lunar environment (radiation, temperature, vacuum, regolith) or to several of them combined in a single test.
1969-11-14
The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the fifteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.
1969-11-14
The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the seventeenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.
1969-11-14
The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the third of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.
1969-11-14
The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the thirteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.
1969-11-14
The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the fourteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.
1969-11-14
The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the sixth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.
1969-11-14
The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the seventh of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.
1969-11-14
The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the twenty-fifth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.
1968-11-04
The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the fourth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.
1969-11-14
The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the second of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.
1969-11-14
The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the sixteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.
1969-11-14
The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the eighteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.
1959-11-14
The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the twenty-third of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.
1969-11-14
The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the twenty-first of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.
1969-11-14
The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the twenty-fourth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.
1969-11-14
The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the fifth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.
LUNAR SURFACE AND DUST GRAIN POTENTIALS DURING THE EARTH’S MAGNETOSPHERE CROSSING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaverka, J.; Richterová, I.; Pavlu, J.
2016-07-10
Interaction between the lunar surface and the solar UV radiation and surrounding plasma environment leads to its charging by different processes like photoemission, collection of charged particles, or secondary electron emission (SEE). Whereas the photoemission depends only on the angle between the surface and direction to the Sun and varies only slowly, plasma parameters can change rapidly as the Moon orbits around the Earth. This paper presents numerical simulations of one Moon pass through the magnetospheric tail including the real plasma parameters measured by THEMIS as an input. The calculations are concentrated on different charges of the lunar surface itselfmore » and a dust grain lifted above this surface. Our estimations show that (1) the SEE leads to a positive charging of parts of the lunar surface even in the magnetosphere, where a high negative potential is expected; (2) the SEE is generally more important for isolated dust grains than for the lunar surface covered by these grains; and (3) the time constant of charging of dust grains depends on their diameter being of the order of hours for sub-micrometer grains. In view of these results, we discuss the conditions under which and the areas where a levitation of the lifted dust grains could be observed.« less
Laboratory Studies of Alkali Components in Tenuous Planetary Atmospheres
NASA Astrophysics Data System (ADS)
Yakshinskiy, B. V.
2004-05-01
We report on studies performed at the Laboratory for Surface Modification of Rutgers University and focused on the origin of alkali vapors (Na, K) in the tenuous atmospheres of the planet Mercury, the Moon, and Jupiter's icy satellite Europa [1, 2]; we also address the question why alkaline-earth metals (Mg, Ca) are less abundant in the atmospheres. A variety of ultrahigh-vacuum surface science techniques are used, including X-ray Photoelectron Spectroscopy (XPS), Low-Energy Ion Scattering (LEIS), Thermal Programmed Desorption (TPD), Electron- and Photon-Stimulated Desorption (ESD and PSD), Surface Ionization (SI). Measurements have been made on different samples, including the model mineral binary oxide SiO2 that simulates lunar silicates, and a lunar sample obtained from NASA. Desorption induced by electronic excitations (mainly PSD) rather than by thermal processes is found to be the dominant source process on the lunar surface. The flux at the lunar surface of ultraviolet photons from the Sun is adequate to insure that PSD of sodium contributes substantially to the Moon's atmosphere. A model based on irradiation-induced charge-transfer is proposed to explain the desorption process. There is a strong temperature-dependence of Na ESD and PSD signals from a lunar sample, under conditions where the Na surface coverage is constant and thermal desorption is negligible [3]. On Mercury solar heating of the surface is high enough that thermal desorption will also be a potential source of atmospheric sodium. Ion bombardment of the lunar sample causes both the sputtering of alkali atoms into vacuum and implantation into the sample bulk. In the future we outline the use a novel method, Nuclear Resonance Profiling (NRP) to study the diffusion of alkalis through model minerals, ices, and lunar samples; these measurements would provide additional information to understand the replenishment of Na at the surface of the Moon, Mercury and Europa. We also describe a new detector that we will use to search for desorption of alkaline-earth atoms. [1] T.E. Madey, R.E. Johnson, T.M. Orlando, Surf. Sci. 500 (2002) 838. [2] B.V. Yakshinskiy, T.E. Madey, Surf. Sci. 528 (2003) 54. [3] B.V. Yakshinskiy, T.E. Madey, Icarus 168 (2004) 53.
Summary of moderate depth lunar drill development program from its conception to 1 July 1972
NASA Technical Reports Server (NTRS)
1972-01-01
The results are summarized of a program aimed at the development of a lunar drill capable of taking lunar surface cores to depths of at least 100 feet. The technologies employed in the program are described along with the accomplishments and problems encountered. Recommendations are included for future concept improvements and developments.
On the Moon with Apollo 16. A Guidebook to the Descartes Region.
ERIC Educational Resources Information Center
Simmons, Gene
The Apollo 16 guidebook describes and illustrates (with artist concepts) the physical appearance of the lunar region visited. Maps show the planned traverses (trips on the lunar surface via Lunar Rover); the plans for scientific experiments are described in depth; and timelines for all activities are included. A section on "The Crew" is…
Lunar lander conceptual design
NASA Technical Reports Server (NTRS)
Lee, Joo Ahn; Carini, John; Choi, Andrew; Dillman, Robert; Griffin, Sean J.; Hanneman, Susan; Mamplata, Caesar; Stanton, Edward
1989-01-01
A conceptual design is presented of a Lunar Lander, which can be the primary vehicle to transport the equipment necessary to establish a surface lunar base, the crew that will man the base, and the raw materials which the Lunar Station will process. A Lunar Lander will be needed to operate in the regime between the lunar surface and low lunar orbit (LLO), up to 200 km. This lander is intended for the establishment and operation of a manned surface base on the moon and for the support of the Lunar Space Station. The lander will be able to fulfill the requirements of 3 basic missions: A mission dedicated to delivering maximum payload for setting up the initial lunar base; Multiple missions between LLO and lunar surface dedicated to crew rotation; and Multiple missions dedicated to cargo shipments within the regime of lunar surface and LLO. A complete set of structural specifications is given.
Lunar Exploration and Science in ESA
NASA Astrophysics Data System (ADS)
Carpenter, James; Houdou, Bérengère; Fisackerly, Richard; De Rosa, Diego; Patti, Bernardo; Schiemann, Jens; Hufenbach, Bernhard; Foing, Bernard
2015-04-01
ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the Russian led science payload, focusing on developing an characterising the resource opportunities offered at the lunar surface. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. In the frame of a broader future international programme under discussion through the International Space Exploration Coordination Group (ISECG) future missions are under investigation that would provide access to the lunar surface through international cooperation and human-robotic partnerships.
Design of equipment for lunar dust removal
NASA Technical Reports Server (NTRS)
Belden, Lacy; Cowan, Kevin; Kleespies, Hank; Ratliff, Ryan; Shah, Oniell; Shelburne, Kevin
1991-01-01
NASA has a long range goal of constructing a fully equipped, manned lunar base on the near side of the moon by the year 2015. During the Apollo Missions, lunar dust coated and fouled equipment surfaces and mechanisms exposed to the lunar environment. In addition, the atmosphere and internal surfaces of the lunar excursion module were contaminated by lunar dust which was brought in on articles passed through the airlock. Consequently, the need exists for device or appliance to remove lunar dust from surfaces of material objects used outside of the proposed lunar habitat. Additionally, several concepts were investigated for preventing the accumulation of lunar dust on mechanisms and finished surfaces. The character of the dust and the lunar environment present unique challenges for the removal of contamination from exposed surfaces. In addition to a study of lunar dust adhesion properties, the project examines the use of various energy domains for removing the dust from exposed surfaces. Also, prevention alternatives are examined for systems exposed to lunar dust. A concept utilizing a pressurized gas is presented for dust removal outside of an atmospherically controlled environment. The concept consists of a small astronaut/robotic compatible device which removes dust from contaminated surfaces by a small burst of gas.
NASA Technical Reports Server (NTRS)
Scheuring, Richard A.; Hamilton, D.; Jones, J. A.; Alexander, D.
2008-01-01
Currently there are several physiological monitoring requirements for Extravehicular Activity (EVA) in the Human-Systems Interface Requirements (HSIR) document, including continuous heart rhythm monitoring. However, it is not known whether heart rhythm monitoring in the lunar surface space suit is a necessary capability for lunar surface operations or in launch/landing suit the event of a cabin depressurization enroute to or from the moon. Methods: Current US astronaut corps demographic information was provided to an expert panel of cardiovascular medicine experts, including specialists in electrophysiology, exercise physiology, interventional cardiology and arrhythmia. This information included averages for male/female age, body mass index (BMI), blood pressure, cholesterol, inflammatory markers, echocardiogram, ranges for coronary artery calcium (CAC) scores for long duration astronauts, and ranges for heart rate (HR) and metabolic (MET) rates obtained during microgravity and lunar EVA. Results: The panel determined that no uncontrolled hazard was likely to occur in the suit during lunar surface or contingency microgravity ops that would require ECG monitoring in the highly screened US astronaut population. However having the capability for rhythm monitoring inside the vehicle (IVA) was considered critical to manage an astronaut in distress. Discussion: Heart rate (HR) monitoring alone allows effective monitoring of astronaut health and function. Consequently, electrocardiographic (ECG) monitoring capability as a clinical tool is not essential in the lunar or launch/landing space suit. However, the panel considered that rhythm monitoring could be useful in certain clinical situations, it was not considered required for safe operations. Also, lunar vehicles should be required to have ECG monitoring capability with a minimum of 5-lead ECG (derived 12- lead) for IVA medical assessments.
Conceptual design of a lunar base thermal control system
NASA Technical Reports Server (NTRS)
Simonsen, Lisa C.; Debarro, Marc J.; Farmer, Jeffery T.
1992-01-01
Space station and alternate thermal control technologies were evaluated for lunar base applications. The space station technologies consisted of single-phase, pumped water loops for sensible and latent heat removal from the cabin internal environment and two-phase ammonia loops for the transportation and rejection of these heat loads to the external environment. Alternate technologies were identified for those areas where space station technologies proved to be incompatible with the lunar environment. Areas were also identified where lunar resources could enhance the thermal control system. The internal acquisition subsystem essentially remained the same, while modifications were needed for the transport and rejection subsystems because of the extreme temperature variations on the lunar surface. The alternate technologies examined to accommodate the high daytime temperatures incorporated lunar surface insulating blankets, heat pump system, shading, and lunar soil. Other heat management techniques, such as louvers, were examined to prevent the radiators from freezing. The impact of the geographic location of the lunar base and the orientation of the radiators was also examined. A baseline design was generated that included weight, power, and volume estimates.
NASA Technical Reports Server (NTRS)
Birkebak, R. C.
1974-01-01
The successful landings on the moon of the Apollo flights and the return of samples of lunar surface material has permitted the measurement of the thermophysical properties necessary for heat transfer calculations. The characteristics of the Apollo samples are discussed along with remote sensing results which made it possible to deduce many of the thermophysical properties of the lunar surface. Definitions considered in connection with thermal radiation measurements include the bond albedo, the geometric albedo, the normal albedo, the directional reflectance, the bidirectional reflectance, and the directional emittance. The measurement techniques make use of a directional reflectance apparatus, a bidirectional reflectance apparatus, and a spectral emittance apparatus.
Design and emplacement of an integrated lunar power system - Issues and concerns
NASA Technical Reports Server (NTRS)
Sprouse, Kenneth M.; Robin, James E.; Metcalf, Kenneth J.; Cataldo, Robert
1991-01-01
Issues regarding the construction and operation of a stationary lunar surface power system that must be resolved in order to create a permanent manned presence on the moon are addressed. The issues considered include: (1) the centralization or decentralization of the electrical power system; (2) whether power transmission should be ac or dc; (3) what mix of power generating technology should be used; and (4) the physical interface requirements between the power-system hardware and the construction equipment to be used in placing the hardware on the lunar surface.
NASA Astrophysics Data System (ADS)
Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K. P.; Burns, J. O.; Farrell, W. M.; Giersch, L.; O'Dwyer, I. J.; Hicks, B. C.; Polisensky, E. J.; Hartman, J. M.; Nesnas, I.; Weiler, K.; Kasper, J. C.
2013-12-01
The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, *in situ*, the vertical extent of the lunar exosphere over time. We provide an update on a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report or commercial ventures. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Artist's impression of the Lunar Atmosphere Probe Station.
Surface charging of a crater near lunar terminator
NASA Astrophysics Data System (ADS)
Anuar, A. K.
2017-05-01
Past lunar missions have shown the presence of dust particles in the lunar exosphere. These particles originate from lunar surface and are due to the charging of lunar surface by the solar wind and solar UV flux. Near the lunar terminator region, the low conductivity of the surface and small scale variations in surface topology could cause the surface to charge to different surface potentials. This paper simulates the variation of surface potential for a crater located in the lunar terminator regions using Spacecraft Plasma Interaction Software (SPIS). SPIS employs particle in cell method to simulate the motion of solar wind particles and photoelectrons. Lunar crater has been found to create mini-wake which affects both electron and ion density and causes small scale potential differences. Simulation results show potential difference of 300 V between sunlit area and shadowed area which creates suitable condition for dust levitation to occur.
A Reusable Design for Precision Lunar Landing Systems
NASA Technical Reports Server (NTRS)
Fuhrman, Linda; Brand, Timothy; Fill, Tom; Norris, Lee; Paschall, Steve
2005-01-01
The top-level architecture to accomplish NASA's Vision for Space Exploration is to use Lunar missions and systems not just as an end in themselves, but also as testbeds for the more ambitious goals of Human Mars Exploration (HME). This approach means that Lunar missions and systems are most likely going to be targeted for (Lunar) polar missions, and also for long-duration (months) surface stays. This overacting theme creates basic top-level requirements for any next-generation lander system: 1) Long duration stays: a) Multiple landers in close proximity; b) Pinpoint landings for "surface rendezvous"; c) Autonomous landing of pre-positioned assets; and d) Autonomous Hazard Detection and Avoidance. 2) Polar and deep-crater landings (dark); 3) Common/extensible systems for Moon and Mars, crew and cargo. These requirements pose challenging technology and capability needs. Compare and contrast: 4) Apollo: a) 1 km landing accuracy; b) Lunar near-side (well imaged and direct-to-Earth com. possible); c) Lunar equatorial (landing trajectories offer best navigation support from Earth); d) Limited lighting conditions; e) Significant ground-in-the-loop operations; 5) Lunar Access: a) 10-100m landing precision; b) "Anywhere" access includes polar (potentially poor nav. support from Earth) and far side (poor gravity and imaging; no direct-to-Earth com); c) "Anytime" access includes any lighting condition (including dark); d) Full autonomous landing capability; e) Extensible design for tele-operation or operator-in-the-loop; and f) Minimal ground support to reduce operations costs. The Lunar Access program objectives, therefore, are to: a) Develop a baseline Lunar Precision Landing System (PLS) design to enable pinpoint "anywhere, anytime" landings; b) landing precision 10m-100m; c) Any LAT, LON; and d) Any lighting condition; This paper will characterize basic features of the next generation Lunar landing system, including trajectory types, sensor suite options and a reference system architecture.
Lunar Applications in Reconfigurable Computing
NASA Technical Reports Server (NTRS)
Somervill, Kevin
2008-01-01
NASA s Constellation Program is developing a lunar surface outpost in which reconfigurable computing will play a significant role. Reconfigurable systems provide a number of benefits over conventional software-based implementations including performance and power efficiency, while the use of standardized reconfigurable hardware provides opportunities to reduce logistical overhead. The current vision for the lunar surface architecture includes habitation, mobility, and communications systems, each of which greatly benefit from reconfigurable hardware in applications including video processing, natural feature recognition, data formatting, IP offload processing, and embedded control systems. In deploying reprogrammable hardware, considerations similar to those of software systems must be managed. There needs to be a mechanism for discovery enabling applications to locate and utilize the available resources. Also, application interfaces are needed to provide for both configuring the resources as well as transferring data between the application and the reconfigurable hardware. Each of these topics are explored in the context of deploying reconfigurable resources as an integral aspect of the lunar exploration architecture.
Apollo 17 Lunar Surface Experiment: Lunar Ejecta and Meteorites Experiment
1972-11-30
S72-37257 (November 1972) --- The Lunar Ejecta and Meteorites Experiment (S-202), one of the experiments of the Apollo Lunar Surface Experiments Package which will be carried on the Apollo 17 lunar landing mission. The purpose of this experiment is to measure the physical parameters of primary and secondary particles impacting the lunar surface.
A Summary of NASA Architecture Studies Utilizing Fission Surface Power Technology
NASA Technical Reports Server (NTRS)
Mason, Lee; Poston, Dave
2010-01-01
Beginning with the Exploration Systems Architecture Study in 2005, NASA has conducted various mission architecture studies to evaluate implementation options for the U.S. Space Policy (formerly the Vision for Space Exploration). Several of the studies examined the use of Fission Surface Power (FSP) systems for human missions to the lunar and Martian surface. This paper summarizes the FSP concepts developed under four different NASA-sponsored architecture studies: Lunar Architecture Team, Mars Architecture Team, Lunar Surface Systems/Constellation Architecture team, and International Architecture Working Group-Power Function team. The results include a summary of FSP design characteristics, a compilation of mission-compatible FSP configuration options, and an FSP concept-of-operations that is consistent with the overall mission objectives.
Thermal Control System for a Small, Extended Duration Lunar Surface Science Platform
NASA Technical Reports Server (NTRS)
Bugby, D.; Farmer, J.; OConnor, B.; Wirzburger, M.; Abel, E.; Stouffer, C.
2010-01-01
The presentation slides include: Introduction: lunar mission definition, Problem: requirements/methodology, Concept: thermal switching options, Analysis: system evaluation, Plans: dual-radiator LHP (loop heat pipe) test bed, and Conclusions: from this study.
NASA Human Spaceflight Architecture Team Lunar Destination Activities
NASA Technical Reports Server (NTRS)
Connolly, J. F.; Mueller, R. P.; Whitley, R. J.
2012-01-01
NASA's Human Spaceflight Architecture Team (HAT) Lunar Destination Team has been developing a number of "Design Reference Missions" (DRM) to inform exploration architecture development, transportation approaches, and destination elements and operations. There are four destinations being considered in the HAT studies: Cis-Lunar, Lunar, Near Earth Asteroids and Mars. The lunar destination includes all activities that occur on the moon itself, but not low lunar orbit operations or Earth Moon LaGrange points which are the responsibility of the HAT Cis-Lunar Team. This paper will review the various surface DRMs developed as representative scenarios that could occur in a human lunar return. The approaches have been divided into two broad categories: a seven day short stay mission with global capabilities and a longer extended duration stay of 28 days which is limited to the lunar poles as a landing zone. The surface elements, trade studies, traverses, concept of operations and other relevant issues and methodologies will be presented and discussed in the context and framework of the HAT ground rules and assumptions which are constrained by NASA's available transportation systems. An international collaborative effort based on the 2011 Global Exploration Roadmap (GER) will also be examined and evaluated.
Design and Construction of Manned Lunar Base
NASA Astrophysics Data System (ADS)
Li, Zhijie
2016-07-01
Building manned lunar base is one of the core aims of human lunar exploration project, which is also an important way to carry out the exploitation and utilization of lunar in situ resources. The most important part of manned lunar base is the design and construction of living habitation and many factors should be considered including science objective and site selection. Through investigating and research, the scientific goals of manned lunar base should be status and characteristics ascertainment of lunar available in situ resources, then developing necessary scientific experiments and utilization of lunar in situ resources by using special environment conditions of lunar surface. The site selection strategy of manned lunar base should rely on scientific goals according to special lunar surface environment and engineering capacity constraints, meanwhile, consulting the landing sites of foreign unmanned and manned lunar exploration, and choosing different typical regions of lunar surface and analyzing the landform and physiognomy, reachability, thermal environment, sunlight condition, micro meteoroids protection and utilization of in situ resources, after these steps, a logical lunar living habitation site should be confirmed. This paper brings out and compares three kinds of configurations with fabricating processes of manned lunar base, including rigid module, flexible and construction module manned lunar base. 1.The rigid habitation module is usually made by metal materials. The design and fabrication may consult the experience of space station, hence with mature technique. Because this configuration cannot be folded or deployed, which not only afford limit working and living room for astronauts, but also needs repetitious cargo transit between earth and moon for lunar base extending. 2. The flexible module habitation can be folded in fairing while launching. When deploying on moon, the configuration can be inflatable or mechanically-deployed, which means under the condition of the same volume it has less weight than rigid module, but based on durable, high hermetic, low density and elastic modulus advanced materials. 3.The construction habitation has high expansibility and various configurations by using in situ resources as construction materials, but this technique is difficult to implement since it involves deep exploitation of lunar resources. Aiming at different missions' objects and development periods, three different patterns talked above can be chosen as the scheme of lunar base habitation establishments. But each of them is too simple to adapt high-level lunar base during a long period. Thereby, based on the design of rigid module and flexible module, this paper brings out an assumed scheme of an integrated lunar base, and the exterior part of lunar base is built by using construction technique. The design of lunar base follows the principle of crew-robot coordinated exploration, which functions automatically in a long period and short period with attention by astronauts. The technique characteristics are as follows: life period ≥ 8 years; 6 astronauts; single lunar surface mission period ≥ 3 months. The inner main body of integrated manned lunar base consists of habitation module, laboratory module and support module. In order to afford security and comfortableness, the habitation module provides astronauts kitchen, bedroom, gymnasium, toilet, and so on. The laboratory module is used for science experiments, which involves plant cultivation devices and animal cultivation devices of bioregenerative life support system. The communication system, main computer, central control system and backup powers are arranged in the support module. For convenience of outside working and emergency rescue, every module with two exports is connected with other modules or lunar rovers. In order to solve the problems of waste treatment, atmosphere/water regeneration and food supply, this paper designed a bioregenerative life support system based on physical/chemic-regenerative life support system, which includes microbial waste treatment system, plants cultivation system and animal-protein production system. Energy is another important aspect needs to be solved when building lunar base habitation. The steps of lunar base building process are divided into lunar surface landing, transport, unloading, assembly and construction. Thus the activity systems including lunar lander, lunar chain block, various lunar rovers, robots and 3D printing machine are needed while building a lunar base. For the sake of enough power support for these facilities, the integrated manned lunar base will use solar + nuclear energy plus regenerative fuel cell together with 180kW power to satisfy the requirement of power supply. Besides these two questions talked above, the lunar base habitation also needs to solve the problem of lunar dust protection. Lunar dust grains are sharp and have electrostatic adsorption, which means this kind of dust may damage the functions of spacesuit, lunar rover and other equipments, and it may cause diseases if breathed by astronauts, consequently, lunar dust protection and cleaning mechanism needs to be founded and the anti-dust, automatic dust removal and self-cleaning materials need to be used. At last, this paper puts forward corresponding advices about building lunar base by using international collaboration. Out of question, the construction of lunar base is a huge project, it is very hard to be accomplished by any country alone since lots of uncertain complications exist there. By this token, international collaboration is a certain development direction, and lots of aerospace countries have already achieved the breakout of correlation key technologies, in order to avoid unnecessary waste, the dispersive advantageous resources need to be combined together.
NASA Technical Reports Server (NTRS)
Gaier, James R.
2010-01-01
During the Apollo program the effects of lunar dust on thermal control surfaces was found to be more significant than anticipated, with several systems overheating due to deposition of dust on them. In an effort to reduce risk to future missions, a series of tests has been initiated to characterize the effects of dust on these surfaces, and then to develop technologies to mitigate that risk. Given the variations in albedo across the lunar surface, one variable that may be important is the darkness of the lunar dust, and this study was undertaken to address that concern. Three thermal control surfaces, AZ-93 white paint and AgFEP and AlFEP second surface mirrors were dusted with three different lunar dust simulants in a simulated lunar environment, and their solar absorptivity and thermal emissivity values determined experimentally. The three simulants included JSC 1AF, a darker mare simulant, NU-LHT-1D, a light highlands simulant, and 1:1 mixture of the two. The response of AZ-93 was found to be slightly more pronounced than that of AgFEP. The increased with fractional dust coverage in both types of samples by a factor of 1.7 to 3.3, depending on the type of thermal control surface and the type of dust. The of the AZ-93 decreased by about 10 percent when fully covered by dust, while that of AgFEP increased by about 10 percent. It was found that alpha/epsilon varied by more than a factor of two depending on the thermal control surface and the darkness of the dust. Given that the darkest simulant used in this study may be significantly lighter than the darkest dust that could be encountered on the lunar surface, it becomes apparent that the performance degradation of thermal control surfaces due to dust on the moon will be strongly dependent on the and of the dust in the specific locality.
NASA Technical Reports Server (NTRS)
Gaier, James R.
2010-01-01
During the Apollo program the effects of lunar dust on thermal control surfaces was found to be more significant than anticipated, with several systems overheating due to deposition of dust on them. In an effort to reduce risk to future missions, a series of tests has been initiated to characterize the effects of dust on these surfaces, and then to develop technologies to mitigate that risk. Given the variations in albedo across the lunar surface, one variable that may be important is the darkness of the lunar dust, and this study was undertaken to address that concern. Three thermal control surfaces, AZ-93 white paint and AgFEP and AlFEP second surface mirrors were dusted with three different lunar dust simulants in a simulated lunar environment, and their integrated solar absorptance ( ) and thermal emittance ( ) values determined experimentally. The three simulants included JSC-1AF, a darker mare simulant, NU-LHT-1D, a light highlands simulant, and 1:1 mixture of the two. The response of AZ-93 was found to be slightly more pronounced than that of AgFEP. The increased with fractional dust coverage in both types of samples by a factor of 1.7 to 3.3, depending on the type of thermal control surface and the type of dust. The of the AZ-93 decreased by about 10 percent when fully covered by dust, while that of AgFEP increased by about 10 percent. It was found that / varied by more than a factor of two depending on the thermal control surface and the darkness of the dust. Given that the darkest simulant used in this study may be lighter than the darkest dust that could be encountered on the lunar surface, it becomes apparent that the performance degradation of thermal control surfaces due to dust on the Moon will be strongly dependent on the and of the dust in the specific locality
NASA Technical Reports Server (NTRS)
Reasoner, D. L.
1976-01-01
Lunar nightside electron fluxes were studied with the aid of the ALSEP/CPLEE and other instruments. The flux events were shown to be due to (a) electrons propagating upstream from the earth's bow shock, (b) electrons thermalized and scattered to the lunar surface by disturbances along the boundary of the lunar solarwind cavity, and (c) solar wind electrons scattered to the lunar surface by lunar limb shocks and/or compressional disturbances. These electrons were identified as a cause of the high night surface negative potentials observed in tha ALSEP/SIDE ion data. A study was also made of the shadowing of magnetotail plasma sheet electrons by interactions between the lunar body and the ambient magnetic field and by interactions between charged particles and lunar remnant magnetic fields. These shadowing effects were shown to modify lunar surface and near-lunar potential distributions.
Use of a Lunar Outpost for Developing Space Settlement Technologies
NASA Technical Reports Server (NTRS)
Purves, Lloyd R.
2008-01-01
The type of polar lunar outpost being considered in the NASA Vision for Space Exploration (VSE) can effectively support the development of technologies that will not only significantly enhance lunar exploration, but also enable long term crewed space missions, including space settlement. The critical technologies are: artificial gravity, radiation protection, Closed Ecological Life Support Systems (CELSS) and In-Situ Resource Utilization (ISRU). These enhance lunar exploration by extending the time an astronaut can remain on the moon and reducing the need for supplies from Earth, and they seem required for space settlement. A polar lunar outpost provides a location to perform the research and testing required to develop these technologies, as well as to determine if there are viable countermeasures that can reduce the need for Earth-surface-equivalent gravity and radiation protection on long human space missions. The types of spinning space vehicles or stations envisioned to provide artificial gravity can be implemented and tested on the lunar surface, where they can create any level of effective gravity above the 1/6 Earth gravity that naturally exists on the lunar surface. Likewise, varying degrees of radiation protection can provide a natural radiation environment on the lunar surface less than or equal to 1/2 that of open space at 1 AU. Lunar ISRU has the potential of providing most of the material needed for radiation protection, the centrifuge that provides artificial gravity; and the atmosphere, water and soil for a CELSS. Lunar ISRU both saves the cost of transporting these materials from Earth and helps define the requirements for ISRU on other planetary bodies. Biosphere II provides a reference point for estimating what is required for an initial habitat with a CELSS. Previous studies provide initial estimates of what would be required to provide such a lunar habitat with the gravity and radiation environment of the Earth s surface. While much preparatory work can be accomplished with existing capabilities such as the ISS, the full implementation of a lunar habitat with an Earth-like environment will require the development of a lunar mission architecture that goes beyond VSE concepts. The proven knowledge of how to build such a lunar habitat can then be applied to various approaches for space settlement.
Multidisciplinary research leading to utilization of extraterrestrial resources
NASA Technical Reports Server (NTRS)
1972-01-01
Progress of the research accomplished during fiscal year 1972 is reported. The summaries presented include: (1) background analysis and coordination, (2) surface properties of rock in simulated lunar environment, (3) rock failure processes, strength and elastic properties in simulated lunar environment, (4) thermal fragmentation, and thermophysical and optical properties in simulated lunar environment, and (5) use of explosives on the moon.
NASA Astrophysics Data System (ADS)
Halekas, J. S.; Delory, G. T.; Lin, R. P.; Stubbs, T. J.; Farrell, W. M.
2008-09-01
We present an analysis of Lunar Prospector Electron Reflectometer data from selected time periods using newly developed methods to correct for spacecraft potential and self-consistently utilizing the entire measured electron distribution to remotely sense the lunar surface electrostatic potential with respect to the ambient plasma. These new techniques enable the first quantitative measurements of lunar surface potentials from orbit. Knowledge of the spacecraft potential also allows accurate characterization of the downward-going electron fluxes that contribute to lunar surface charging, allowing us to determine how the lunar surface potential reacts to changing ambient plasma conditions. On the lunar night side, in shadow, we observe lunar surface potentials of ˜-100 V in the terrestrial magnetotail lobes and potentials of ˜-200 V to ˜-1 kV in the plasma sheet. In the lunar wake, we find potentials of ˜-200 V near the edges but smaller potentials in the central wake, where electron temperatures increase and secondary emission may reduce the magnitude of the negative surface potential. During solar energetic particle events, we see nightside lunar surface potentials as large as ˜-4 kV. On the other hand, on the lunar day side, in sunlight, we generally find potentials smaller than our measurement threshold of ˜20 V, except in the plasma sheet, where we still observe negative potentials of several hundred volts at times, even in sunlight. The presence of significant negative charging in sunlight at these times, given the measured incident electron currents, implies either photocurrents from lunar regolith in situ two orders of magnitude lower than those measured in the laboratory or nonmonotonic near-surface potential variation with altitude. The functional dependence of the lunar surface potential on electron temperature in shadow implies somewhat smaller secondary emission yields from lunar regolith in situ than previously measured in the laboratory. These new techniques open the door for future studies of the variation of lunar surface charging as a function of temporal and spatial variations in input currents and as a function of location and material characteristics of the surface as well as comparisons to the increasingly sophisticated theoretical predictions now available.
Lunar Riometry: Proof-of-Concept Instrument Package
NASA Astrophysics Data System (ADS)
Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K.; Giersch, L.; Burns, J. O.; Farrell, W. M.; Kasper, J. C.; O'Dwyer, I.; Hartman, J.
2012-12-01
The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) is based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the vertical extent of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.
Searching for Lunar Horizon Glow With the Lunar Orbiter Laser Altimeter (LOLA)
NASA Astrophysics Data System (ADS)
Barker, M. K.; Mazarico, E. M.; McClanahan, T. P.; Sun, X.; Smith, D. E.; Neumann, G. A.; Zuber, M. T.; Head, J. W., III
2017-12-01
The dust environment of the Moon is sensitive to the interplanetary meteoroid population and dust transport processes near the lunar surface, and this affects many aspects of lunar surface science and planetary exploration. The interplanetary meteoroid population poses a significant risk to spacecraft, yet it remains one of the more uncertain constituents of the space environment. Observed and hypothesized lunar dust transport mechanisms have included impact-generated dust plumes, electrostatic levitation, and dynamic lofting. Many details of the impactor flux and impact ejection process are poorly understood, a fact highlighted by recent discrepant estimates of the regolith mixing rate. Apollo-era observations of lunar horizon glow (LHG) were interpreted as sunlight forward-scattered by exospheric dust grains levitating in the top meter above the surface or lofted to tens of kilometers in altitude. However, recent studies have placed limits on the dust density orders of magnitude less than what was originally inferred, raising new questions on the time variability of the dust environment. Motivated by the need to better understand dust transport processes and the meteoroid population, the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO) is conducting a campaign to search for LHG with the LOLA Laser Ranging (LR) system. Advantages of this LOLA LHG search include: (1) the LOLA-LR telescope can observe arbitrarily close to the Sun at any time during the year without damaging itself or the other instruments, (2) a long temporal baseline with observations both during and outside of meteor streams, which will improve the chances of detecting LHG, and (3) a focus on altitudes < 20 km, the same range as the majority of Apollo 15 LHG measurements. In this contribution, we describe the instrument, methodology, and preliminary results.
The Lunar Mapping and Modeling Project
NASA Technical Reports Server (NTRS)
Noble, Sarah K.; French, R. A.; Nall, M. E.; Muery, K. G.
2009-01-01
The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The information provided through LMMP will assist CxP in: planning tasks in the areas of landing site evaluation and selection, design and placement of landers and other stationary assets, design of rovers and other mobile assets, developing terrain-relative navigation (TRN) capabilities, and assessment and planning of science traverses.
Haughton-Mars Project (HMP)/NASA 2006 Lunar Medical Contingency Simulation: An Overview
NASA Technical Reports Server (NTRS)
Scheuring, R. A.; Jones, J. A.; Lee, P.; Comtois, J. M.; Chappell, S.; Rafiq, A.; Braham, S.; Hodgson, E.; Sullivan, P.; Wilkinson, N.
2006-01-01
Medical requirements are currently being developed for NASA's space exploration program. Lunar surface operations for crews returning to the moon will be performed on a daily basis to conduct scientific research and construct a lunar habitat. Inherent to aggressive surface activities is the potential risk of injury to crew members. To develop an evidence-base for handling medical contingencies on the lunar surface, a simulation project was conducted using the moon-Mars analog environment at Devon Island, Nunavut, high Canadian Arctic. A review of the Apollo lunar surface activities and personal communications with Apollo lunar crew members provided a knowledge base of plausible scenarios that could potentially injure an astronaut during a lunar extravehicular activity. Objectives were established to 1) demonstrate stabilization, field extraction and transfer an injured crew member to the habitat and 2) evaluate audio, visual and biomedical communication capabilities with ground controllers at multiple mission control centers. The simulation project s objectives were achieved. Among these objectives were 1) extracting a crew member from a sloped terrain by a two-member team in a 1-g analog environment, 2) establishing real-time communication to multiple space centers, 3) providing biomedical data to flight controllers and crew members, and 4) establishing a medical diagnosis and treatment plan from a remote site. The simulation project provided evidence for the types of equipment and methods needed for planetary space exploration. During the project, the crew members were confronted with a number of unexpected scenarios including environmental, communications, EVA suit, and navigation challenges. These trials provided insight into the challenges of carrying out a medical contingency in an austere environment. The knowledge gained from completing the objectives of this project will be incorporated into the exploration medical requirements involving an incapacited astronaut on the lunar surface.
Lunar Prospector Extended Mission
NASA Technical Reports Server (NTRS)
Folta, David; Beckman, Mark; Lozier, David; Galal, Ken
1999-01-01
The National Aeronautics and Space Administration (NASA) selected Lunar Prospector (LP) as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning and actual results of the Lunar Prospector extended mission including maneuver design, eccentricity & argument of perigee evolution, and lunar potential modeling.
Lunar Prospector Extended Mission
NASA Technical Reports Server (NTRS)
Folta, David; Beckman, Mark; Lozier, David; Galal, Ken
1999-01-01
The National Aeronautics and Space Administration (NASA) selected Lunar Prospector as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning, and actual results of the the Lunar Prospector extended mission including maneuver design, eccentricity & argument of perigee evolution, and lunar potential modeling.
Lunar Prospector Extended Mission
NASA Astrophysics Data System (ADS)
Folta, David; Beckman, Mark; Lozier, David; Galal, Ken
1999-05-01
The National Aeronautics and Space Administration (NASA) selected Lunar Prospector (LP) as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning and actual results of the Lunar Prospector extended mission including maneuver design, eccentricity & argument of perigee evolution, and lunar potential modeling.
Lunar Surface Operations. Part 1; Post-Touchdown Lunar Surface and System Checkouts
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
This slide presentation reviews the first part of the post-touchdown lunar surface and system checkout tasks. A stay/no stay decision for the lunar lander was made based on the questions: "Is the Lunar Module (LM) stable on the lunar surface?"; "Are there any time critical systems failures or trends indicating impending loss of capability to ascent and achieve a safe lunar orbit?"; and "Is there loss of capability in critical LM systems?" The sequence of these decisions is given as a time after touchdown on the surface of the moon. After the decision to stay is made the next task is to checkout status of the lunar module. While the status of the lunar module is checking out certain conditions, the Command Service Module was also engaged in certain checkout activities.
Antenna Deployment for a Pathfinder Lunar Radio Observatory
NASA Astrophysics Data System (ADS)
MacDowall, Robert J.; Minetto, F. A.; Lazio, T. W.; Jones, D. L.; Kasper, J. C.; Burns, J. O.; Stewart, K. P.; Weiler, K. W.
2012-05-01
A first step in the development of a large radio observatory on the moon for cosmological or other astrophysical and planetary goals is to deploy a few antennas as a pathfinder mission. In this presentation, we describe a mechanism being developed to deploy such antennas from a small craft, such as a Google Lunar X-prize lander. The antenna concept is to deposit antennas and leads on a polyimide film, such as Kapton, and to unroll the film on the lunar surface. The deployment technique utilized is to launch an anchor which pulls a double line from a reel at the spacecraft. Subsequently, the anchor is set by catching on the surface or collecting sufficient regolith. A motor then pulls in one end of the line, pulling the film off of its roller onto the lunar surface. Detection of a low frequency cutoff of the galactic radio background or of solar radio bursts by such a system would determine the maximum lunar ionospheric density at the time of measurement. The current design and testing, including videos of the deployment, will be presented. These activities are funded in part by the NASA Lunar Science Institute as an activity of the Lunar University Network for Astrophysical Research (LUNAR) consortium. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Introduction to Japanese exploration study to the moon
NASA Astrophysics Data System (ADS)
Hashimoto, T.; Hoshino, T.; Tanaka, S.; Otake, H.; Otsuki, M.; Wakabayashi, S.; Morimoto, H.; Masuda, K.
2014-11-01
The Japan Aerospace Exploration Agency (JAXA) views the lunar lander SELENE-2 as the successor to the SELENE mission. In this presentation, the mission objectives of SELENE-2 are shown together with the present design status of the spacecraft. JAXA launched the Kaguya (SELENE) lunar orbiter in September 2007, and the spacecraft observed the Moon and a couple of small satellites using 15 instruments. As the next step in lunar exploration, the lunar lander SELENE-2 is being considered. SELENE-2 will land on the lunar surface and perform in-situ scientific observations, environmental investigations, and research for future lunar utilization including human activity. At the same time, it will demonstrate key technologies for lunar and planetary exploration such as precise and safe landing, surface mobility, and overnight survival. The lander will carry laser altimeters, image sensors, and landing radars for precise and safe landing. Landing legs and a precisely controlled propulsion system will also be developed. A rover is being designed to be able to travel over a wide area and observe featured terrain using scientific instruments. Since some of the instruments require long-term observation on the lunar surface, technology for night survival over more than 2 weeks needs to be considered. The SELENE-2 technologies are expected to be one of the stepping stones towards future Japanese human activities on the moon and to expand the possibilities for deep space science.
Analysis of Regolith Simulant Ejecta Distributions from Normal Incident Hypervelocity Impact
NASA Technical Reports Server (NTRS)
Edwards, David L.; Cooke, William; Suggs, Rob; Moser, Danielle E.
2008-01-01
The National Aeronautics and Space Administration (NASA) has established the Constellation Program. The Constellation Program has defined one of its many goals as long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment; of specific importance is the primary meteoroid and subsequent ejecta environment. The document, NASA SP-8013 'Meteoroid Environment Model Near Earth to Lunar Surface', was developed for the Apollo program in 1969 and contains the latest definition of the lunar ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface ejecta environment. This paper reports the results of experiments on projectile impact into powdered pumice and unconsolidated JSC-1A Lunar Mare Regolith simulant targets. Projectiles were accelerated to velocities between 2.45 and 5.18 km/s at normal incidence using the Ames Vertical Gun Range (AVGR). The ejected particles were detected by thin aluminum foil targets strategically placed around the impact site and angular ejecta distributions were determined. Assumptions were made to support the analysis which include; assuming ejecta spherical symmetry resulting from normal impact and all ejecta particles were of mean target particle size. This analysis produces a hemispherical flux density distribution of ejecta with sufficient velocity to penetrate the aluminum foil detectors.
Antenna Deployment for a Pathfinder Lunar Radio Observatory
NASA Technical Reports Server (NTRS)
MacDowall, Robert J.; Minetto, F. A.; Lazio, T. W.; Jones, D. L.; Kasper, J. C.; Burns, J. O.; Stewart, K. P.; Weiler, K. W.
2012-01-01
A first step in the development of a large radio observatory on the moon for cosmological or other astrophysical and planetary goals is to deploy a few antennas as a pathfinder mission. In this presentation, we describe a mechanism being developed to deploy such antennas from a small craft, such as a Google Lunar X-prize lander. The antenna concept is to deposit antennas and leads on a polyimide film, such as Kapton, and to unroll the film on the lunar surface. The deployment technique utilized is to launch an anchor which pulls a double line from a reel at the spacecraft. Subsequently, the anchor is set by catching on the surface or collecting sufficient regolith. A motor then pulls in one end of the line, pulling the film off of its roller onto the lunar surface. Detection of a low frequency cutoff of the galactic radio background or of solar radio bursts by such a system would determine the maximum lunar ionospheric density at the time of measurement. The current design and testing, including videos of the deployment, will be presented. These activities are funded in part by the NASA Lunar Science Institute as an activity of the Lunar University Network for Astrophysical Research (LUNAR) consortium. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
ALSEP arrays A, B, C, and A-2. [lunar surface exploration instrument specifications
NASA Technical Reports Server (NTRS)
1973-01-01
The objectives of the lunar surface exploration packages are defined and the preliminary design of scientific systems hardware is reported. Instrument packages are to collect and transmit to earth scientific data on the lunar interior, the lunar surface composition, and the lunar geomorphology
NASA Technical Reports Server (NTRS)
Baldwin, R. R.
1973-01-01
The accomplishments of the Apollo 17 flight are discussed. The scientific objectives included geological surveying and sampling of materials and surface features in a preselected area of the Taurus-Littrow region, deploying and activating surface experiments, and conducting inflight experiments and photographic tasks during lunar orbit and transearth coast. The individual Apollo 17 experiments and photographic tasks are presented in outline form. Charts are developed to show the major mission events and data collection periods correlated to Greenwich Mean Time and ground elapsed time. Maps of the lunar surface ground track envelope for the Apollo 17 orbiting spacecraft for revolutions one to seventy-five is shown.
Overview of the Altair Lunar Lander Thermal Control System Design
NASA Technical Reports Server (NTRS)
Stephan, Ryan A.
2010-01-01
NASA's Constellation Program has been developed to successfully return humans to the Lunar surface by 2020. The Constellation Program includes several different project offices including Altair, which is the next generation Lunar Lander. The planned Altair missions are very different than the Lunar missions accomplished during the Apollo era. These differences have resulted in a significantly different thermal control system architecture. The current paper will summarize the Altair mission architecture and the various operational phases. In addition, the derived thermal requirements will be presented. The paper will conclude with a brief description of the thermal control system designed to meet these unique and challenging thermal requirements.
Respiratory Toxicity of Lunar Highland Dust
NASA Technical Reports Server (NTRS)
James, John T.; Lam, Chiu-wing; Wallace, William T.
2009-01-01
Lunar dust exposures occurred during the Apollo missions while the crew was on the lunar surface and especially when microgravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes and in some cases respiratory symptoms were elicited. NASA s vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust need to be assessed. NASA has performed this assessment with a series of in vitro and in vivo tests on authentic lunar dust. Our approach is to "calibrate" the intrinsic toxicity of lunar dust by comparison to a nontoxic dust (TiO2) and a highly toxic dust (quartz) using intratrachael instillation of the dusts in mice. A battery of indices of toxicity is assessed at various time points after the instillations. Cultures of selected cells are exposed to test dusts to assess the adverse effects on the cells. Finally, chemical systems are used to assess the nature of the reactivity of various dusts and to determine the persistence of reactivity under various environmental conditions that are relevant to a space habitat. Similar systems are used to assess the dissolution of the dust. From these studies we will be able to set a defensible inhalation exposure standard for aged dust and predict whether we need a separate standard for reactive dust. Presently-available data suggest that aged lunar highland dust is slightly toxic, that it can adversely affect cultured cells, and that the surface reactivity induced by grinding the dust persists for a few hours after activation.
Decay of Reactivity Induced by Simulated Solar Wind Implantation of a Forsteritic Olivine
NASA Technical Reports Server (NTRS)
Kuhlman, K.R.; Sridharan, K.; Garrison, D.H.; McKay, D.S.; Taylor, L.A.
2009-01-01
In returning humans to the Moon, the Lunar Airborne Dust Toxicity Advisory Group (LADTAG) must address many problems faced by the original Apollo astronauts. Major among these is control of the fine dust (<20 microns) that makes up approx.20 wt% portion of the lunar surface. This ubiquitous, clinging, sharp, abrasive, glassy dust caused a plethora of problems with seals, abrasion, and coatings, in addition to possible health problems, including lunar dust hayfever. The lifetime of reactive sites on the surfaces of irradiated lunar dust grains is of interest to those studying human health because of the free radicals and toxic compounds that may be formed and may not passivate quickly when exposed to habitat/spacecraft air.
Thermal conductivity of lunar regolith simulant JSC-1A under vacuum
NASA Astrophysics Data System (ADS)
Sakatani, Naoya; Ogawa, Kazunori; Arakawa, Masahiko; Tanaka, Satoshi
2018-07-01
Many air-less planetary bodies, including the Moon, asteroids, and comets, are covered by regolith. The thermal conductivity of the regolith is an essential parameter controlling the surface temperature variation. A thermal conductivity model applicable to natural soils as well as planetary surface regolith is required to analyze infrared remote sensing data. In this study, we investigated the temperature and compressional stress dependence of the thermal conductivity of the lunar regolith simulant JSC-1A, and the temperature dependence of sieved JSC-1A samples under vacuum conditions. We confirmed that a series of the experimental data for JSC-1A are fitted well by our analytical model of the thermal conductivity (Sakatani et al., 2017). Comparison with the calibration data of the sieved samples with those for original JSC-1A indicates that the thermal conductivity of natural samples with a wide grain size distribution can be modeled as mono-sized grains with a volumetric median size. The calibrated model can be used to estimate the volumetric median grain size from infrared remote sensing data. Our experiments and the calibrated model indicates that uncompressed JSC-1A has similar thermal conductivity to lunar top-surface materials, but the lunar subsurface thermal conductivity cannot be explained only by the effects of the density and self-weighted compressional stress. We infer that the nature of the lunar subsurface regolith grains is much different from JSC-1A and lunar top-surface regolith, and/or the lunar subsurface regolith is over-consolidated and the compressional stress higher than the hydrostatic pressure is stored in the lunar regolith layer.
Photometric Lunar Surface Reconstruction
NASA Technical Reports Server (NTRS)
Nefian, Ara V.; Alexandrov, Oleg; Morattlo, Zachary; Kim, Taemin; Beyer, Ross A.
2013-01-01
Accurate photometric reconstruction of the Lunar surface is important in the context of upcoming NASA robotic missions to the Moon and in giving a more accurate understanding of the Lunar soil composition. This paper describes a novel approach for joint estimation of Lunar albedo, camera exposure time, and photometric parameters that utilizes an accurate Lunar-Lambertian reflectance model and previously derived Lunar topography of the area visualized during the Apollo missions. The method introduced here is used in creating the largest Lunar albedo map (16% of the Lunar surface) at the resolution of 10 meters/pixel.
Heliospheric Physics and NASA's Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Minow, Joseph I.
2007-01-01
The Vision for Space Exploration outlines NASA's development of a new generation of human-rated launch vehicles to replace the Space Shuttle and an architecture for exploring the Moon and Mars. The system--developed by the Constellation Program--includes a near term (approx. 2014) capability to provide crew and cargo service to the International Space Station after the Shuttle is retired in 2010 and a human return to the Moon no later than 2020. Constellation vehicles and systems will necessarily be required to operate efficiently, safely, and reliably in the space plasma and radiation environments of low Earth orbit, the Earth's magnetosphere, interplanetary space, and on the lunar surface. This presentation will provide an overview of the characteristics of space radiation and plasma environments relevant to lunar programs including the trans-lunar injection and trans-Earth injection trajectories through the Earth's radiation belts, solar wind surface dose and plasma wake charging environments in near lunar space, energetic solar particle events, and galactic cosmic rays and discusses the design and operational environments being developed for lunar program requirements to assure that systems operate successfully in the space environment.
Functional Risk Modeling for Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Thomson, Fraser; Mathias, Donovan; Go, Susie; Nejad, Hamed
2010-01-01
We introduce an approach to risk modeling that we call functional modeling , which we have developed to estimate the capabilities of a lunar base. The functional model tracks the availability of functions provided by systems, in addition to the operational state of those systems constituent strings. By tracking functions, we are able to identify cases where identical functions are provided by elements (rovers, habitats, etc.) that are connected together on the lunar surface. We credit functional diversity in those cases, and in doing so compute more realistic estimates of operational mode availabilities. The functional modeling approach yields more realistic estimates of the availability of the various operational modes provided to astronauts by the ensemble of surface elements included in a lunar base architecture. By tracking functional availability the effects of diverse backup, which often exists when two or more independent elements are connected together, is properly accounted for.
Polarimetric Observations of the Lunar Surface
NASA Astrophysics Data System (ADS)
Kim, S.
2017-12-01
Polarimetric images contain valuable information on the lunar surface such as grain size and porosity of the regolith, from which one can estimate the space weathering environment on the lunar surface. Surprisingly, polarimetric observation has never been conducted from the lunar orbit before. A Wide-Angle Polarimetric Camera (PolCam) has been recently selected as one of three Korean science instruments onboard the Korea Pathfinder Lunar Orbiter (KPLO), which is aimed to be launched in 2019/2020 as the first Korean lunar mission. PolCam will obtain 80 m-resolution polarimetric images of the whole lunar surface between -70º and +70º latitudes at 320, 430 and 750 nm bands for phase angles up to 115º. I will also discuss previous polarimetric studies on the lunar surface based on our ground-based observations.
Do Bare Rocks Exist on the Moon?
NASA Technical Reports Server (NTRS)
Allen, Carlton; Bandfield, Joshua; Greenhagen, Benjamin; Hayne, Paul; Leader, Frank; Paige, David
2017-01-01
Astronaut surface observations and close-up images at the Apollo and Chang'e 1 landing sites confirm that at least some lunar rocks have no discernable dust cover. However, ALSEP (Apollo Lunar Surface Experiments Package) measurements as well as astronaut and LADEE (Lunar Atmosphere and Dust Environment Explorer) orbital observations and laboratory experiments possibly suggest that a fine fraction of dust is levitated and moves across and above the lunar surface. Over millions of years such dust might be expected to coat all exposed rock surfaces. This study uses thermal modeling, combined with Diviner (a Lunar Reconnaissance Orbiter experiment) orbital lunar eclipse temperature data, to further document the existence of bare rocks on the lunar surface.
NASA Technical Reports Server (NTRS)
Gold, T.
1979-01-01
Experimental and theoretical research, concerning lunar surface processes and the nature, origin and derivation of the lunar surface cover, conducted during the period of February 1, 1971 through January 31, 1976 is presented. The principle research involved were: (1) electrostatic dust motion and transport process; (2) seismology properties of fine rock powders in lunar conditions; (3) surface processes that darken the lunar soil and affect the surface chemical properties of the soil grains; (4) laser simulation of micrometeorite impacts (estimation of the erosion rate caused by the microemeteorite flux); (5) the exposure history of the lunar regolith; and (6) destruction of amino acids by exposure to a simulation of the solar wind at the lunar surface. Research papers are presented which cover these general topics.
1969-11-20
The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn Five launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. In this photograph, one of the astronauts on the Moon’s surface is holding a container of lunar soil. The other astronaut is seen reflected in his helmet. Apollo 12 safely returned to Earth on November 24, 1969.
Lunar and Martian Sub-surface Habitat Structure Technology Development and Application
NASA Technical Reports Server (NTRS)
Boston, Penelope J.; Strong, Janet D.
2005-01-01
NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Subsidace structures such as caves and lava tubes offer readily available and existing in-situ habitat options. Sub-surface dwellings can provide complete radiation, micro-meteorite and exhaust plume shielding and a moderate and constant temperature environment; they are, therefore, excellent pre-existing habitat risk mitigation elements. Technical challenges to subsurface habitat structure development include surface penetration (digging and mining equipment), environmental pressurization, and psychological environment enhancement requirements. Lunar and Martian environments and elements have many beneficial similarities. This will allow for lunar testing and design development of subsurface habitat structures for Martian application; however, significant differences between lunar and Martian environments and resource elements will mandate unique application development. Mars is NASA's ultimate exploration goal and is known to have many very large lava tubes. Other cave types are plausible. The Moon has unroofed rilles and lava tubes, but further research will, in the near future, define the extent of Lunar and Martian differences and similarities. This paper will discuss Lunar and Martian subsurface habitation technology development challenges and opportunities.
Dusty plasmas in the lunar exosphere: Effects of meteoroids
NASA Astrophysics Data System (ADS)
Popel, S. I.; Golub', A. P.; Zelenyi, L. M.; Horányi, M.
2018-01-01
A possibility of the formation in the lunar exosphere of dust cloud due to meteoroid impacts onto the lunar surface is studied. The main attention is paid to the high altitudes over the lunar surface including the range of the altitudes between 30 and 110 km where the measurements of dust were performed within the NASA LADEE mission. From the viewpoint of the formation of dust cloud at high altitudes over the Moon, the most important zone formed by the meteoroid impact is the zone of melting of substance. Only the droplets originated from this zone have the speeds between the first and second astronautical velocities (for the Moon). Correspondingly, only such droplets can perform finite movement around the Moon. The liquid droplets harden when rising over the lunar surface. Furthermore, they aquire electric charges due to the action, in particular, of the solar wind electrons and ions, as well as of the solar radiation. Thus dusty plasmas exist in the lunar exosphere with the characteristic number density ≲ 10-2 m-3 of dust particles with the sizes from 300 nm to 1 μm which is in accordance with the results of measurements performed by LADEE.
1969-11-23
Sitting on the lunar surface, this Solar Wind Spectrometer is measuring the energies of the particles that make up the solar wind. This was one of the instruments used during the Apollo 12 mission. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.
1969-11-23
Sitting on the lunar surface, this magnetometer provided new data on the Moon’s magnetic field. This was one of the instruments used during the Apollo 12 mission. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.
Lower-Cost, Relocatable Lunar Polar Lander and Lunar Surface Sample Return Probes
NASA Technical Reports Server (NTRS)
Amato, G. Michael; Garvin, James B.; Burt, I. Joseph; Karpati, Gabe
2011-01-01
Key science and exploration objectives of lunar robotic precursor missions can be achieved with the Lunar Explorer (LEx) low-cost, robotic surface mission concept described herein. Selected elements of the LEx concept can also be used to create a lunar surface sample return mission that we have called Boomerang
Global Exploration Roadmap Derived Concept for Human Exploration of the Moon
NASA Technical Reports Server (NTRS)
Whitley, Ryan; Landgraf, Markus; Sato, Naoki; Picard, Martin; Goodliff, Kandyce; Stephenson, Keith; Narita, Shinichiro; Gonthier, Yves; Cowley, Aiden; Hosseini, Shahrzad;
2017-01-01
Taking advantage of the development of Mars-forward assets in cislunar space, a human lunar surface concept is proposed to maximize value for both lunar exploration and future deep space missions. The human lunar surface missions will be designed to build upon the cislunar activities that precede them, providing experience in planetary surface operations that cannot be obtained in cislunar space. To enable a five-mission limited campaign to the surface of the Moon, two new elements are required: a human lunar lander and a mobile surface habitat. The human lunar lander will have been developed throughout the cislunar phase from a subscale demonstrator and will consist of a descent module alongside a reusable ascent module. The reusable ascent module will be used for all five human lunar surface missions. Surface habitation, in the form of two small pressurized rovers, will enable 4 crew to spend up to 42 days on the lunar surface.
Lunar and Planetary Science XXXV: Moon and Mercury
NASA Technical Reports Server (NTRS)
2004-01-01
The session" Moon and Mercury" included the following reports:Helium Production of Prompt Neutrinos on the Moon; Vapor Deposition and Solar Wind Implantation on Lunar Soil-Grain Surfaces as Comparable Processes; A New Lunar Geologic Mapping Program; Physical Backgrounds to Measure Instantaneous Spin Components of Terrestrial Planets from Earth with Arcsecond Accuracy; Preliminary Findings of a Study of the Lunar Global Megaregolith; Maps Characterizing the Lunar Regolith Maturity; Probable Model of Anomalies in the Polar Regions of Mercury; Parameters of the Maximum of Positive Polarization of the Moon; Database Structure Development for Space Surveying Results by Moon -Zond Program; CM2-type Micrometeoritic Lunar Winds During the Late Heavy Bombardment; A Comparison of Textural and Chemical Features of Spinel Within Lunar Mare Basalts; The Reiner Gamma Formation as Characterized by Earth-based Photometry at Large Phase Angles; The Significance of the Geometries of Linear Graben for the Widths of Shallow Dike Intrusions on the Moon; Lunar Prospector Data, Surface Roughness and IR Thermal Emission of the Moon; The Influence of a Magma Ocean on the Lunar Global Stress Field Due to Tidal Interaction Between the Earth and Moon; Variations of the Mercurian Photometric Relief; A Model of Positive Polarization of Regolith; Ground Truth and Lunar Global Thorium Map Calibration: Are We There Yet?;and Space Weathering of Apollo 16 Sample 62255: Lunar Rocks as Witness Plates for Deciphering Regolith Formation Processes.
Orientale and South Pole-Aitken basins on the Moon: Preliminary Galileo imaging results
NASA Technical Reports Server (NTRS)
Head, J.; Fischer, E.; Murchie, S.; Pieters, C.; Plutchak, J.; Sunshine, J.; Belton, M.; Carr, M.; Chapman, C.; Davies, M.
1991-01-01
During the Earth-Moon flyby the Galileo Solid State Imaging System obtained new information on the landscape and physical geology of the Moon. Multicolor Galileo images of the Moon reveal variations in color properties of the lunar surface. Using returned lunar samples as a key, the color differences can be interpreted in terms of variations in the mineral makeup of the lunar rocks and soil. The combined results of Apollo landings and multicolor images from Galileo allow extrapolation of surface composition to areas distant from the landing sites, including the far side invisible from Earth.
The third stage of Lunar Prospector's Athena is placed atop the second stage at LC 46 at CCAS
NASA Technical Reports Server (NTRS)
1997-01-01
The third stage of the Lockheed Martin Athena launch vehicle is placed atop the vehicle's second stage at Launch Complex 46 at Cape Canaveral Air Station. Athena is scheduled to carry the Lunar Prospector spacecraft for an 18-month mission that will orbit the Earth's moon to collect data from the lunar surface. Scientific experiments to be conducted by the Prospector include locating water ice that may exist near the lunar poles, gathering data to understand the evolution of the lunar highland crust and the lunar magnetic field, finding radon outgassing events, and describing the lunar gravity field by means of Doppler tracking. The launch is now scheduled for early-January 1998.
The third stage of Lunar Prospector's Athena is lifted at LC 46 at CCAS
NASA Technical Reports Server (NTRS)
1997-01-01
The third stage of the Lockheed Martin Athena launch vehicle is lifted at Launch Complex 46 at Cape Canaveral Air Station before mating to the second stage already on the pad. Athena is scheduled to carry the Lunar Prospector spacecraft for an 18- month mission that will orbit the Earth's moon to collect data from the lunar surface. Scientific experiments to be conducted by the Prospector include locating water ice that may exist near the lunar poles, gathering data to understand the evolution of the lunar highland crust and the lunar magnetic field, finding radon outgassing events, and describing the lunar gravity field by means of Doppler tracking. The launch is now scheduled for early- January 1998.
Mobility systems activity for lunar rovers at MSFC
NASA Technical Reports Server (NTRS)
Jones, C. S., Jr.; Nola, F. J.
1971-01-01
The Apollo Lunar Roving Vehicle (LRV) mobility system is described. Special emphasis is given to the redundancy aspects and to the selection of the drive motors. A summary chart of the performance on the lunar surface during the Apollo 15 flight is included. An appendix gives details on some development work on high efficiency drive systems and compares these systems to the selected system.
Special report, diffuse reflectivity of the lunar surface
NASA Technical Reports Server (NTRS)
Fastie, W. G.
1972-01-01
The far ultraviolet diffuse reflectivity of samples of lunar dust material is determined. Equipment for measuring the diffuse reflectivity of materials (e.g. paint samples) is already in existence and requires only minor modification for the proposed experiment which will include the measurement of the polarizing properties of the lunar samples. Measurements can be made as a function of both illumination angle and angle of observation.
NASA Astrophysics Data System (ADS)
Bowman, Judd D.
2018-06-01
After stars formed in the early universe, their ultraviolet light altered the 21cm hyperfine state of hydrogen atoms, causing the atoms to absorb photons from the cosmic microwave background. The EDGES experiment has reported evidence for this signal as a decrease in the sky-averaged radio intensity observed today as a broad feature centered at 78 MHz due to cosmological redshift, corresponding to an age of about 200 million years after the Big Bang. Ground-based radio arrays are expected soon to detect and eventually to characterize the power spectrum of spatial fluctuations of the 21cm absorption signal. However, the Earth’s ionosphere and radio transmitters, particularly those in the FM radio band, will complicate the observations and likely will limit the ultimate goal of imaging the era of cosmic dawn in detail. A radio array in lunar orbit or on the lunar suface would avoid the limitations imposed by Earth ionosphere’s. The Moon’s farside is also uniquely shielded from human-generated radio interference. Locating the radio observatory on the lunar surface compared to orbit has potential advantages, including fixed locations for the antennas that require no propulsion to maintain and simpler operations. The lunar surface poses unique challenges for instruments, including surviving the 14-day lunar night when there is no sunlight and temperatures can fall to 100 K. Building on lessons from ground based arrays and design studies from the last decade that led to the Dark Ages Lunar Interferometer and the Lunar Array for Radio Cosmology concepts, we are exploring a trade space for key lunar array technology. Our trade space includes choices related to: 1) antenna design for optimizing sensitivity and mass, while maintaining mechanical and thermal stability and enabling cost-effective deployment scenarios; 2) location of the array on the lunar surface to provide an efficient observing paradigm and suitable environmental conditions; 3) data transportation and processing for collecting antenna measurements at a central location for correlation and reduction; and 4) power and environmental requirements. In this talk, I will report the status of these ongoing studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reasoner, D.L.
1976-02-02
Lunar nightside electron fluxes were studied with the aid of the ALSEP/CPLEE and other instruments. The flux events were shown to be due to (a) electrons propagating upstream from the earth's bow shock, (b) electrons thermalized and scattered to the lunar surface by disturbances along the boundary of the lunar solarwind cavity, and (c) solar wind electrons scattered to the lunar surface by lunar limb shocks and/or compressional disturbances. These electrons were identified as a cause of the high night surface negative potentials observed in tha ALSEP/SIDE ion data. A study was also made of the shadowing of magnetotail plasmamore » sheet electrons by interactions between the lunar body and the ambient magnetic field and by interactions between charged particles and lunar remnant magnetic fields. These shadowing effects were shown to modify lunar surface and near-lunar potential distributions. (Author) (GRA)« less
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; Adams, J. H., Jr.; Meyer, F.; Reinhold, c.
2010-01-01
Solar-wind induced sputtering of the lunar surface includes, in principle, both kinetic and potential sputtering. The role of the latter mechanism, however, in many focused studies has not been properly ascertained due partly to lack of data but can also be attributed to the assertion that the contribution of solar-wind heavy ions to the total sputtering is quite low due to their low number density compared to solar-wind protons. Limited laboratory measurements show marked enhancements in the sputter yields of slow-moving, highly-charged ions impacting oxides. Lunar surface sputtering yields are important as they affect, e.g., estimates of the compositional changes in the lunar surface, its erosion rate, as well as its contribution to the exosphere as well as estimates of hydrogen and water contents. Since the typical range of solar-wind ions at 1 keV/amu is comparable to the thickness of the amorphous rim found on lunar soil grains, i.e. few 10s nm, lunar simulant samples JSC-1A AGGL are specifically enhanced to have such rims in addition to the other known characteristics of the actual lunar soil particles. However, most, if not all laboratory studies of potential sputtering were carried out in single crystal targets, quite different from the rim s amorphous structure. The effect of this structural difference on the extent of potential sputtering has not, to our knowledge, been investigated to date.
Radiation measurement above the lunar surface by Kaguya gamma-ray spectrometer
NASA Astrophysics Data System (ADS)
Hasebe, Nobuyuki; Nagaoka, Hiroshi; Kusano, Hiroki; Hareyama, Matoko; Ideguchi, Yusuke; Shimizu, Sota; Shibamura, Eido
The lunar surface is filled with various ionizing radiations such as high energy galactic particles, albedo particles and secondary radiations of neutrons, gamma rays and other elementary particles. A high-resolution Kaguya Gamma-Ray Spectrometer (KGRS) was carried on the Japan’s lunar explorer SELENE (Kaguya), the largest lunar orbiter since the Apollo missions. The KGRS instrument employed, for the first time in lunar exploration, a high-purity Ge crystal to increase the identification capability of elemental gamma-ray lines. The Ge detector is surrounded by BGO and plastic counters as for anticoincidence shields. The KGRS measured gamma rays in the energy range from 200 keV to 13 MeV with high precision to determine the chemical composition of the lunar surface. It provided data on the abundance of major elements over the entire lunar surface. In addition to the gamma-ray observation by the KGRS, it successfully measured the global distribution of fast neutrons. In the energy spectra of gamma-rays observed by the KGRS, several saw-tooth- peaks of Ge are included, which are formed by the collision interaction of lunar fast neutrons with Ge atoms in the Ge crystal. With these saw-tooth-peaks analysis, global distribution of neutrons emitted from the lunara surface was successfully created, which was compared with the previous results obtained by Lunar Prospector neutron maps. Another anticoincidence counter, the plastic counter with 5 mm thickness, was used to veto radiation events mostly generated by charged particles. A single photomultiplier serves to count scintillation light from the plastic scintillation counter. The global map of counting rates observed by the plastic counter was also created, implying that the radiation counting rate implies the geological distribution, in spite that the plastic counter mostly measures high energy charged particles and energetic neutrons. These results are presented and discussed.
NASA Technical Reports Server (NTRS)
Doggett, William R.; King, Bruce D.; Jones, Thomas Carno; Dorsey, John T.; Mikulas, Martin M.
2008-01-01
Devices for lifting, translating and precisely placing payloads are critical for efficient Earthbased construction operations. Both recent and past studies have demonstrated that devices with similar functionality will be needed to support lunar outpost operations. Lunar payloads include: a) prepackaged hardware and supplies which must be unloaded from landers and then accurately located at their operational site, b) sensor packages used for periodic inspection of landers, habitat surfaces, etc., and c) local materials such as regolith which require grading, excavation and placement. Although several designs have been developed for Earth based applications, these devices lack unique design characteristics necessary for transport to and use on the harsh lunar surface. These design characteristics include: a) composite components, b) compact packaging for launch, c) simple in-field reconfiguration and repair, and d) support for tele-operated or automated operations. Also, in contrast to Earth-based construction, where special purpose devices dominate a construction site, a lunar outpost will require versatile devices which provide operational benefit from initial construction through sustained operations. This paper will detail the design of a unique, high performance, versatile lifting device designed for operations on the lunar surface. The device is called the Lunar Surface Manipulation System to highlight the versatile nature of the device which supports conventional cable suspended crane operations as well as operations usually associated with a manipulator such as precise positioning where the payload is rigidly grappled by a tool attached to the tip of the device. A first generation test-bed to verify design methods and operational procedures is under development at the NASA Langley Research Center and recently completed field tests at Moses Lake Washington. The design relied on non-linear finite element analysis which is shown to correlate favorably with laboratory experiments. A key design objective, reviewed in this paper, is the device s simplicity, resulting from a focus on the minimum set of functions necessary to perform payload offload. Further development of the device has the potential for significant mass savings, with a high performance device incorporating composite elements estimated to have a mass less than 3% of the mass of the maximum lunar payload lifted at the tip. The paper will conclude with future plans for expanding the operational versatility of the device.
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.
2011-01-01
Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lunar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however, the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.
NASA Technical Reports Server (NTRS)
1971-01-01
A detailed discussion is presented of the Apollo 15 mission, which conducted exploration of the moon over longer periods, greater ranges, and with more instruments of scientific data acquisition than previous missions. The topics include trajectory, lunar surface science, inflight science and photography, command and service module performance, lunar module performance, lunar surface operational equipment, pilot's report, biomedical evaluation, mission support performance, assessment of mission objectives, launch phase summary, anomaly summary, and vehicle and equipment descriptions. The capability of transporting larger payloads and extending time on the moon were demonstrated. The ground-controlled TV camera allowed greater real-time participation by earth-bound personnel. The crew operated more as scientists and relied more on ground support team for systems monitoring. The modified pressure garment and portable life support system provided better mobility and extended EVA time. The lunar roving vehicle and the lunar communications relay unit were also demonstrated.
Scalable Lunar Surface Networks and Adaptive Orbit Access
NASA Technical Reports Server (NTRS)
Wang, Xudong
2015-01-01
Teranovi Technologies, Inc., has developed innovative network architecture, protocols, and algorithms for both lunar surface and orbit access networks. A key component of the overall architecture is a medium access control (MAC) protocol that includes a novel mechanism of overlaying time division multiple access (TDMA) and carrier sense multiple access with collision avoidance (CSMA/CA), ensuring scalable throughput and quality of service. The new MAC protocol is compatible with legacy Institute of Electrical and Electronics Engineers (IEEE) 802.11 networks. Advanced features include efficiency power management, adaptive channel width adjustment, and error control capability. A hybrid routing protocol combines the advantages of ad hoc on-demand distance vector (AODV) routing and disruption/delay-tolerant network (DTN) routing. Performance is significantly better than AODV or DTN and will be particularly effective for wireless networks with intermittent links, such as lunar and planetary surface networks and orbit access networks.
Descent Assisted Split Habitat Lunar Lander Concept
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Goodliff, Kandyce; Cornelius, David M.
2008-01-01
The Descent Assisted Split Habitat (DASH) lunar lander concept utilizes a disposable braking stage for descent and a minimally sized pressurized volume for crew transport to and from the lunar surface. The lander can also be configured to perform autonomous cargo missions. Although a braking-stage approach represents a significantly different operational concept compared with a traditional two-stage lander, the DASH lander offers many important benefits. These benefits include improved crew egress/ingress and large-cargo unloading; excellent surface visibility during landing; elimination of the need for deep-throttling descent engines; potentially reduced plume-surface interactions and lower vertical touchdown velocity; and reduced lander gross mass through efficient mass staging and volume segmentation. This paper documents the conceptual study on various aspects of the design, including development of sortie and outpost lander configurations and a mission concept of operations; the initial descent trajectory design; the initial spacecraft sizing estimates and subsystem design; and the identification of technology needs
2009-05-08
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians photograph the Lunar Reconnaissance Orbiter, or LRO, during closeout before its mating with NASA's Lunar CRater Observation and Sensing Satellite, known as LCROSS, spacecraft. Instruments on the LRO include the LEND that will measure the flux of neutrons from the moon; the LROC, a narrow angle camera that will provide panchromatic images; the LOLA, which will provide a precise global lunar topographic model and geodetic grid; and top right, the DIVINER, which will measure lunar surface temperatures at scales that provide essential information for future surface operations and exploration; and at top, the CRaTER, which will characterize the global lunar radiation environment and its biological impacts. At right is the solar panel. The satellite's primary mission is to search for water ice on the moon in a permanently shadowed crater near one of the lunar poles. LCROSS is a low-cost, accelerated-development, companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO. LCROSS and LRO are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. Launch is targeted for no earlier than June 2 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
Methane Lunar Surface Thermal Control Test
NASA Technical Reports Server (NTRS)
Plachta, David W.; Sutherlin, Steven G.; Johnson, Wesley L.; Feller, Jeffrey R.; Jurns, John M.
2012-01-01
NASA is considering propulsion system concepts for future missions including human return to the lunar surface. Studies have identified cryogenic methane (LCH4) and oxygen (LO2) as a desirable propellant combination for the lunar surface ascent propulsion system, and they point to a surface stay requirement of 180 days. To meet this requirement, a test article was prepared with state-of-the-art insulation and tested in simulated lunar mission environments at NASA GRC. The primary goals were to validate design and models of the key thermal control technologies to store unvented methane for long durations, with a low-density high-performing Multi-layer Insulation (MLI) system to protect the propellant tanks from the environmental heat of low Earth orbit (LEO), Earth to Moon transit, lunar surface, and with the LCH4 initially densified. The data and accompanying analysis shows this storage design would have fallen well short of the unvented 180 day storage requirement, due to the MLI density being much higher than intended, its substructure collapse, and blanket separation during depressurization. Despite the performance issue, insight into analytical models and MLI construction was gained. Such modeling is important for the effective design of flight vehicle concepts, such as in-space cryogenic depots or in-space cryogenic propulsion stages.
The Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT)
NASA Technical Reports Server (NTRS)
Epp, Chirold D.; Smith, Thomas B.
2007-01-01
As NASA plans to send humans back to the Moon and develop a lunar outpost, technologies must be developed to place humans and cargo safely, precisely, repeatedly, on the lunar surface with the capability to avoid surface hazards. Exploration Space Architecture Study requirements include the need for global lunar surface access with safe, precise landing without lighting constraints on terrain that may have landing hazards for human scale landing vehicles. Landing accuracies of perhaps 1,000 meters for sortie crew missions to 10 s of meters for Outpost class missions are required. The Autonomous precision Landing Hazard Avoidance Technology (ALHAT) project will develop the new and unique descent and landing Guidance, Navigation and Control (GNC) hardware and software technologies necessary for these capabilities. The ALHAT project will qualify a lunar descent and landing GNC system to a Technology Readiness Level (TRL) of 6 capable of supporting lunar crewed, cargo, and robotic missions. The (ALHAT) development project was chartered by NASA Headquarters in October 2006. The initial effort to write a project plan and define an ALHAT Team was followed by a fairly aggressive research and analysis effort to determine what technologies existed that could be developed and applied to the lunar landing problems indicated above. This paper describes the project development, research, analysis and concept evolution that has occurred since the assignment of the project. This includes the areas of systems engineering, GNC, sensors, sensor algorithms, simulations, fielding testing, laboratory testing, Hardware-In-The-Loop testing, system avionics and system certification concepts.
NASA Astrophysics Data System (ADS)
Bell, Lisa Y.; Boles, Walter; Smith, Alvin
1991-08-01
In an environment of intense competition for Federal funding, the U.S. space research community is responsible for developing a feasible, cost-effective approach to establishing a surface base on the moon to fulfill long-term Government objectives. This report presents the results of a construction operations analysis of two lunar scenarios provided by the National Aeronautics and Space Administration (NASA). Activities necessary to install the lunar base surface elements are defined and scheduled, based on the productivities and availability of the base resources allocated to the projects depicted in each scenario. The only construction project in which the required project milestones were not completed within the nominal timeframe was the initial startup phase of NASA's FY89 Lunar Evolution Case Study (LECS), primarily because this scenario did not include any Earth-based telerobotic site preparation before the arrival of the first crew. The other scenario analyzed. Reference Mission A from NASA's 90-Day Study of the Human Exploration of the Moon and Mars, did use telerobotic site preparation before the manned phase of the base construction. Details of the analysis for LECS are provided, including spreadsheets indicating quantities of work and Gantt charts depicting the general schedule for the work. This level of detail is not presented for the scenario based on the 90-Day Study because many of the projects include the same (or similar) surface elements and facilities.
Lunar Net—a proposal in response to an ESA M3 call in 2010 for a medium sized mission
NASA Astrophysics Data System (ADS)
Smith, Alan; Crawford, I. A.; Gowen, Robert Anthony; Ambrosi, R.; Anand, M.; Banerdt, B.; Bannister, N.; Bowles, N.; Braithwaite, C.; Brown, P.; Chela-Flores, J.; Cholinser, T.; Church, P.; Coates, A. J.; Colaprete, T.; Collins, G.; Collinson, G.; Cook, T.; Elphic, R.; Fraser, G.; Gao, Y.; Gibson, E.; Glotch, T.; Grande, M.; Griffiths, A.; Grygorczuk, J.; Gudipati, M.; Hagermann, A.; Heldmann, J.; Hood, L. L.; Jones, A. P.; Joy, K. H.; Khavroshkin, O. B.; Klingelhoefer, G.; Knapmeyer, M.; Kramer, G.; Lawrence, D.; Marczewski, W.; McKenna-Lawlor, S.; Miljkovic, K.; Narendranath, S.; Palomba, E.; Phipps, A.; Pike, W. T.; Pullan, D.; Rask, J.; Richard, D. T.; Seweryn, K.; Sheridan, S.; Sims, M.; Sweeting, M.; Swindle, T.; Talboys, D.; Taylor, L.; Teanby, N.; Tong, V.; Ulamec, S.; Wawrzaszek, R.; Wieczorek, M.; Wilson, L.; Wright, I.
2012-04-01
Emplacement of four or more kinetic penetrators geographically distributed over the lunar surface can enable a broad range of scientific exploration objectives of high priority and provide significant synergy with planned orbital missions. Whilst past landed missions achieved a great deal, they have not included a far-side lander, or investigation of the lunar interior apart from a very small area on the near side. Though the LCROSS mission detected water from a permanently shadowed polar crater, there remains in-situ confirmation, knowledge of concentration levels, and detailed identification of potential organic chemistry of astrobiology interest. The planned investigations will also address issues relating to the origin and evolution of the Earth-Moon system and other Solar System planetary bodies. Manned missions would be enhanced with use of water as a potential in-situ resource; knowledge of potential risks from damaging surface Moonquakes, and exploitation of lunar regolith for radiation shielding. LunarNet is an evolution of the 2007 LunarEX proposal to ESA (European Space Agency) which draws on recent significant advances in mission definition and feasibility. In particular, the successful Pendine full-scale impact trials have proved impact survivability for many of the key technology items, and a penetrator system study has greatly improved the definition of descent systems, detailed penetrator designs, and required resources. LunarNet is hereby proposed as an exciting stand-alone mission, though is also well suited in whole or in-part to contribute to the jigsaw of upcoming lunar missions, including that of a significant element to the ILN (International Lunar Network).
Building Strategic Capabilities for Sustained Lunar Exploration
NASA Astrophysics Data System (ADS)
Landgraf, M.; Hufenbach, B.; Houdou, B.
2016-11-01
We discuss a lunar exploration architecture that addresses the strategic objective of providing access to the lunar surface. This access enables the most exciting part of the lunar exploration: building a sustained infrastructure on the lunar surface.
The Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission
NASA Technical Reports Server (NTRS)
Spremo, Stevan; Turner, Mark; Caffrey, Robert T.; Hine, Butler Preston
2010-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) is a Lunar science orbiter mission currently under development to address the goals of the National Research Council decadal surveys and the recent "Scientific Context for Exploration of the Moon" (SCEM) [1] report to study the pristine state of the lunar atmosphere and dust environment prior to significant human activities. LADEE will determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. LADEE will also determine whether dust is present in the lunar exosphere, and reveal the processes that contribute to its sources and variability. These investigations are relevant to our understanding of surface boundary exospheres and dust processes throughout the solar system, address questions regarding the origin and evolution of lunar volatiles, and have potential implications for future exploration activities. LADEE employs a high heritage science instrument payload including a neutral mass spectrometer, ultraviolet spectrometer, and dust sensor. In addition to the science payloads, LADEE will fly a laser communications system technology demonstration that could provide a building block for future space communications architectures. LADEE is an important component in NASA's portfolio of near-term lunar missions, addressing objectives that are currently not covered by other U.S. or international efforts, and whose observations must be conducted before large-scale human or robotic activities irrevocably perturb the tenuous and fragile lunar atmosphere. LADEE will also demonstrate the effectiveness of a low-cost, rapid-development program utilizing a modular bus design launched on the new Minotaur V launch vehicle. Once proven, this capability could enable future lunar missions in a highly cost constrained environment. This paper describes the LADEE objectives, mission design, and technical approach.
1979-05-01
This montage depicts the flight crew patches for the manned Apollo 7 thru Apollo 17 missions. The Apollo 7 through 10 missions were basically manned test flights that paved the way for lunar landing missions. Primary objectives met included the demonstration of the Command Service Module (CSM) crew performance; crew/space vehicle/mission support facilities performance and testing during a manned CSM mission; CSM rendezvous capability; translunar injection demonstration; the first manned Apollo docking, the first Apollo Extra Vehicular Activity (EVA), performance of the first manned flight of the lunar module (LM); the CSM-LM docking in translunar trajectory, LM undocking in lunar orbit, LM staging in lunar orbit, and manned LM-CSM docking in lunar orbit. Apollo 11 through 17 were lunar landing missions with the exception of Apollo 13 which was forced to circle the moon without landing due to an onboard explosion. The craft was,however, able to return to Earth safely. Apollo 11 was the first manned lunar landing mission and performed the first lunar surface EVA. Landing site was the Sea of Tranquility. A message for mankind was delivered, the U.S. flag was planted, experiments were set up and 47 pounds of lunar surface material was collected for analysis back on Earth. Apollo 12, the 2nd manned lunar landing mission landed in the Ocean of Storms and retrieved parts of the unmanned Surveyor 3, which had landed on the Moon in April 1967. The Apollo Lunar Surface Experiments Package (ALSEP) was deployed, and 75 pounds of lunar material was gathered. Apollo 14, the 3rd lunar landing mission landed in Fra Mauro. ALSEP and other instruments were deployed, and 94 pounds of lunar materials were gathered, using a hand cart for first time to transport rocks. Apollo 15, the 4th lunar landing mission landed in the Hadley-Apennine region. With the first use of the Lunar Roving Vehicle (LRV), the crew was bale to gather 169 pounds of lunar material. Apollo 16, the 5th lunar landing mission, landed in the Descartes Highlands for the first study of highlands area. Selected surface experiments were deployed, the ultraviolet camera/spectrograph was used for first time on the Moon, and the LRV was used for second time for a collection of 213 pounds of lunar material. The Apollo program came to a close with Apollo 17, the 6th and final manned lunar landing mission that landed in the Taurus-Littrow highlands and valley area. This mission hosted the first scientist-astronaut, Schmitt, to land on the Moon. The 6th automated research station was set up, and 243 ponds of lunar material was gathered using the LRV.
Montage of Apollo Crew Patches
NASA Technical Reports Server (NTRS)
1979-01-01
This montage depicts the flight crew patches for the manned Apollo 7 thru Apollo 17 missions. The Apollo 7 through 10 missions were basically manned test flights that paved the way for lunar landing missions. Primary objectives met included the demonstration of the Command Service Module (CSM) crew performance; crew/space vehicle/mission support facilities performance and testing during a manned CSM mission; CSM rendezvous capability; translunar injection demonstration; the first manned Apollo docking, the first Apollo Extra Vehicular Activity (EVA), performance of the first manned flight of the lunar module (LM); the CSM-LM docking in translunar trajectory, LM undocking in lunar orbit, LM staging in lunar orbit, and manned LM-CSM docking in lunar orbit. Apollo 11 through 17 were lunar landing missions with the exception of Apollo 13 which was forced to circle the moon without landing due to an onboard explosion. The craft was,however, able to return to Earth safely. Apollo 11 was the first manned lunar landing mission and performed the first lunar surface EVA. Landing site was the Sea of Tranquility. A message for mankind was delivered, the U.S. flag was planted, experiments were set up and 47 pounds of lunar surface material was collected for analysis back on Earth. Apollo 12, the 2nd manned lunar landing mission landed in the Ocean of Storms and retrieved parts of the unmanned Surveyor 3, which had landed on the Moon in April 1967. The Apollo Lunar Surface Experiments Package (ALSEP) was deployed, and 75 pounds of lunar material was gathered. Apollo 14, the 3rd lunar landing mission landed in Fra Mauro. ALSEP and other instruments were deployed, and 94 pounds of lunar materials were gathered, using a hand cart for first time to transport rocks. Apollo 15, the 4th lunar landing mission landed in the Hadley-Apennine region. With the first use of the Lunar Roving Vehicle (LRV), the crew was bale to gather 169 pounds of lunar material. Apollo 16, the 5th lunar landing mission, landed in the Descartes Highlands for the first study of highlands area. Selected surface experiments were deployed, the ultraviolet camera/spectrograph was used for first time on the Moon, and the LRV was used for second time for a collection of 213 pounds of lunar material. The Apollo program came to a close with Apollo 17, the 6th and final manned lunar landing mission that landed in the Taurus-Littrow highlands and valley area. This mission hosted the first scientist-astronaut, Schmitt, to land on the Moon. The 6th automated research station was set up, and 243 ponds of lunar material was gathered using the LRV.
Constellation Architecture Team-Lunar Scenario 12.0 Habitation Overview
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Toups, Larry D.; Rudisill, Marianne
2010-01-01
This paper will describe an overview of the Constellation Architecture Team Lunar Scenario 12.0 (LS-12) surface habitation approach and concept performed during the study definition. The Lunar Scenario 12 architecture study focused on two primary habitation approaches: a horizontally-oriented habitation module (LS-12.0) and a vertically-oriented habitation module (LS-12.1). This paper will provide an overview of the 12.0 lunar surface campaign, the associated outpost architecture, habitation functionality, concept description, system integration strategy, mass and power resource estimates. The Scenario 12 architecture resulted from combining three previous scenario attributes from Scenario 4 "Optimized Exploration", Scenario 5 "Fission Surface Power System" and Scenario 8 "Initial Extensive Mobility" into Scenario 12 along with an added emphasis on defining the excursion ConOps while the crew is away from the outpost location. This paper will describe an overview of the CxAT-Lunar Scenario 12.0 habitation concepts and their functionality. The Crew Operations area includes basic crew accommodations such as sleeping, eating, hygiene and stowage. The EVA Operations area includes additional EVA capability beyond the suitlock function such as suit maintenance, spares stowage, and suit stowage. The Logistics Operations area includes the enhanced accommodations for 180 days such as enhanced life support systems hardware, consumable stowage, spares stowage, interconnection to the other habitation elements, a common interface mechanism for future growth, and mating to a pressurized rover or Pressurized Logistics Module (PLM). The Mission & Science Operations area includes enhanced outpost autonomy such as an IVA glove box, life support, medical operations, and exercise equipment.
NASA Technical Reports Server (NTRS)
McKay, David
2009-01-01
The lunar regolith consists of about 90% submillimeter particles traditionally termed lunar soil. The remainder consists of larger particles ranging up to boulder size rocks. At the lower size end, soil particles in the 10s of nanometer sizes are present in all soil samples. Lunar regolith overlies bedrock which consists of either lava flows in mare regions or impact-produced megaregolith in highland regions. Lunar regolith has been produced over billions of years by a combination of breaking and communition of bedrock by meteorite bombardment coupled with a variety of complex space weathering processes including solar wind implantation, solar flare and cosmic ray bombardment with attendant radiation damage, melting, vaporization, and vapor condensation driven by impact, and gardening and turnover of the resultant soil. Lunar regolith is poorly sorted compared to most terrestrial soils, and has interesting engineering properties including strong grain adhesion, over-compacted soil density, an abundance of agglutinates with sharp corners, and a variety of properties related to soil maturity. The NASA program has supported a variety of engineering test research projects, the production of bricks by solar or microwave sintering, the production of concrete, the in situ sintering and glazing of regolith by microwave, and the extraction of useful resources such as oxygen, hydrogen, iron, aluminum, silicon and other products. Future requirements for a lunar surface base or outpost will include construction of protective berms, construction of paved roadways, construction of shelters, movement and emplacement of regolith for radiation shielding and thermal control, and extraction of useful products. One early need is for light weight but powerful digging, trenching, and regolith-moving equipment.
Early Results from the Lunar Atmosphere and Dust Environment Explorer (LADEE)
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Hine, B.; Delory, G. T.; Mahaffy, Paul; Benna, Mehdi; Horanyi, Mihaly; Colaprete, Anthony; Noble, Sarah
2014-01-01
On 6 September, 2013, a near-perfect launch of the first Minotaur V rocket successfully carried NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) into a high-eccentricity geocentric orbit. After 30 days of phasing, LADEE arrived at the Moon on 6 October, 2013. LADEE's science objectives are twofold: (1) Determine the composition of the lunar atmosphere, investigate processes controlling its distribution and variability, including sources, sinks, and surface interactions; (2) Characterize the lunar exospheric dust environment, measure its spatial and temporal variability, and effects on the lunar atmosphere, if any. After a successful commissioning phase, the three science instruments have made systematic observations of the lunar dust and exospheric environment. These include initial observations of argon, neon and helium exospheres, and their diurnal variations; the lunar micrometeoroid impact ejecta cloud and its variations; spatial and temporal variations of the sodium exosphere; and the search for sunlight extinction caused by dust. LADEE also made observations of the effects of the Chang'e 3 landing on 14 December 2013.
Remote Assessment of Lunar Resource Potential
NASA Technical Reports Server (NTRS)
Taylor, G. Jeffrey
1992-01-01
Assessing the resource potential of the lunar surface requires a well-planned program to determine the chemical and mineralogical composition of the Moon's surface at a range of scales. The exploration program must include remote sensing measurements (from both Earth's surface and lunar orbit), robotic in situ analysis of specific places, and eventually, human field work by trained geologists. Remote sensing data is discussed. Resource assessment requires some idea of what resources will be needed. Studies thus far have concentrated on oxygen and hydrogen production for propellant and life support, He-3 for export as fuel for nuclear fusion reactors, and use of bulk regolith for shielding and construction materials. The measurement requirements for assessing these resources are given and discussed briefly.
SELMA mission: revealing the origin of lunar water
NASA Astrophysics Data System (ADS)
Barabash, Stas; Selma Team
2013-04-01
We propose a very low cost lunar mission to cover a poorly investigated inter-disciplinary area in the lunar science. The mission SELMA (Surface, Environment, and Lunar Magnetic Anomalies) investigates the interaction of the neutral and plasma environment with the lunar surface and the impact of this interaction on the surface composition, in the first hand, on the presence of water. The mission focuses on the fundamental question: What is the origin of the water in the lunar soil? The mission also addresses the questions: What are the lunar exosphere content and composition and how does the exosphere interact with the surface? How do the lunar magnetic anomalies interact with the solar wind and affect the surface? SELMA investigates the origin of the water in the lunar soil via simultaneous measurements of the OH/H2O abundance in the soil, the proton flux deposited to the surface, and transient changes in the exospheric gas content and composition. The water content in the surface is mapped via measurements of the 2700 - 3300 nm OH/H2O/ice absorption lines. The proton flux at the surface is measured remotely via backscattered hydrogen flux (energetic neutral atoms, ENAs). The exospheric gas content and composition and possible transient changes due to micrometeoroid influx or outgassing are monitored by a neutral gas mass spectrometer. Little is known about the tenuous lunar exosphere, its composition, structure, and relation to the plasma environment. The reasons for the present poor knowledge of the lunar exosphere is the difficulty of observations due to the low number densities, and the complexity of models due to the multiplicity of the mechanisms responsible for the input and loss of exospheric species. To investigate the lunar exosphere SELMA is equipped with state-of-the-art time-of-flight neutral gas mass spectrometer with unprecedented sensitivity and mass resolution. The Moon does not have a global magnetic field but possesses local magnetizations. The magnetizations interact with the solar wind plasma creating highly variable mini-magnetospheres affecting, through an as yet unknown mechanism, the surface visible albedo. The electrodynamical interaction is very complex being one of the fundamental solar wind interactions in the solar system. SELMA studies how the magnetic anomaly interact with the solar wind and surface via simultaneous measurements of 3D ion and electron distribution functions, the local magnetic field, solar wind flux variations on the surface through ENA imaging of the backscattered hydrogen flux, imaging in the visible range, and measuring the surface IR spectrum. The SELMA results will be of critical importance for the interpretation of data from Mercury to be collected by the ESA BepiColombo mission in 2020 - 2022. To address its scientific objectives SELMA carries a highly focused suite of instruments including an IR spectrometer, an ENA telescope, an ion and electron spectrometer, a neutral gas mass spectrometer, a magnetometer, and a visible camera. SELMA is a spinning platform to be inserted on a low maintenance quasi-frozen polar orbit of 30 km x 216 km by a dedicated launch and a solid state fuel kick stage. SELMA was proposed to ESA as a candidate for the S-class mission.
Rover concepts for lunar exploration
NASA Technical Reports Server (NTRS)
Connolly, John F.
1993-01-01
The paper describes the requirements and design concepts developed for the First Lunar Outpost (FLO) and the follow-on lunar missions by the Human Planet Surface Project Office at the Johnson Space Center, which include inputs from scientists, technologists, operators, personnel, astronauts, mission designers, and program managers. Particular attention is given to the requirements common to all rover concepts, the precursor robotic missions, the FLO scenario and capabilities, and the FLO evolution.
Power System Trade Studies for the Lunar Surface Access Module
NASA Technical Reports Server (NTRS)
Kohout, Lisa, L.
2008-01-01
A Lunar Lander Preparatory Study (LLPS) was undertaken for NASA's Lunar Lander Pre-Project in 2006 to explore a wide breadth of conceptual lunar lander designs. Civil servant teams from nearly every NASA center responded with dozens of innovative designs that addressed one or more specific lander technical challenges. Although none of the conceptual lander designs sought to solve every technical design issue, each added significantly to the technical database available to the Lunar Lander Project Office as it began operations in 2007. As part of the LLPS, a first order analysis was performed to identify candidate power systems for the ascent and descent stages of the Lunar Surface Access Module (LSAM). A power profile by mission phase was established based on LSAM subsystem power requirements. Using this power profile, battery and fuel cell systems were modeled to determine overall mass and volume. Fuel cell systems were chosen for both the descent and ascent stages due to their low mass. While fuel cells looked promising based on these initial results, several areas have been identified for further investigation in subsequent studies, including the identification and incorporation of peak power requirements into the analysis, refinement of the fuel cell models to improve fidelity and incorporate ongoing technology developments, and broadening the study to include solar power.
LETS: Lunar Environments Test System
NASA Technical Reports Server (NTRS)
Vaughn, Jason A.; Schneider, Todd; Craven, Paul; Norwood, Joey
2008-01-01
The Environmental Effects Branch (EM50) at the Marshall Space Flight Center has developed a unique capability within the agency, namely the Lunar Environment Test System (LETS). LETS is a cryo-pumped vacuum chamber facility capable of high vacuum (10-7 Torr). LETS is a cylindrical chamber, 30 in. (0.8 m) diameter by 48 in. (1.2 m) long thermally controlled vacuum system. The chamber is equipped with a full array of radiation sources including vacuum ultraviolet, electron, and proton radiation. The unique feature of LETS is that it contains a large lunar simulant bed (18 in. x 40 in. x 6 in.) holding 75 kg of JSC-1a simulant while operating at a vacuum of 10-7 Torr. This facility allows three applications: 1) to study the charging, levitation and migration of dust particles, 2) to simulate the radiation environment on the lunar surface, and 3) to electrically charge the lunar simulant enhancing the attraction and adhesion of dust particles to test articles more closely simulating the lunar surface dust environment. LETS has numerous diagnostic instruments including TREK electrostatic probes, residual gas analyzer (RGA), temperature controlled quartz crystal microbalance (TQCM), and particle imaging velocimeter (PIV). Finally, LETS uses continuous Labview data acquisition for computer monitoring and system control.
Bibliography. [of articles on moon and planets
NASA Technical Reports Server (NTRS)
Kopal, Z.; Moutsoulas, M.; Waranius, F. B.
1983-01-01
A bibliography of articles entered into the data base at the Lunar and Planetary Institute Library from November 1982 through January 1983 is presented. An abstract of each article is given. The subjects covered by the articles include: the motion of the moon and dynamics of the earth-moon system: shape and gravity field of the moon; the physical structure of the moon, its thermal and stress history; the morphology of the lunar surface, the origin and stratigraphy of lunar formations, and mapping of the moon; the chemical composition of the moon, lunar petrology, mineralogy, and crystallography; electromagnetic properties of the moon; the planets; and other objects, including asteroids, comets, meteorites, and cosmic dust.
NASA Technical Reports Server (NTRS)
Sibeck, D. G.; Angelopoulos, V.; Brain, D. A.; Delory, G. T.; Eastwood, J. P.; Farrell, W. M.; Grimm, R. E.; Halekas, J. S.; Hasegawa, H.; Hellinger, P.;
2011-01-01
NASA's two spacecraft ARTEMIS mission will address both heliospheric and planetary research questions, first while in orbit about the Earth with the Moon and subsequently while in orbit about the Moon. Heliospheric topics include the structure of the Earth's magnetotail; reconnection, particle acceleration, and turbulence in the Earth's magnetosphere, at the bow shock, and in the solar wind; and the formation and structure of the lunar wake. Planetary topics include the lunar exosphere and its relationship to the composition of the lunar surface, the effects of electric fields on dust in the exosphere, internal structure of the Moon, and the lunar crustal magnetic field. This paper describes the expected contributions of ARTEMIS to these baseline scientific objectives.
Space Weathering of Lunar Rocks and Regolith Grains
NASA Technical Reports Server (NTRS)
Keller, L. P.
2013-01-01
The exposed surfaces of lunar soil grains and lunar rocks become modified and coated over time with a thin rind of material (patina) through complex interactions with the space environment. These interactions encompass many processes including micrometeorite impacts, vapor and melt deposition, and solar wind implantation/sputtering effects that collectively are referred to as "space weathering". Studies of space weathering effects in lunar soils and rocks provide important clues to understanding the origin and evolution of the lunar regolith as well as aiding in the interpretation of global chemical and mineralogical datasets obtained by remote-sensing missions. The interpretation of reflectance spectra obtained by these missions is complicated because the patina coatings obscure the underlying rock mineralogy and compositions. Much of our understanding of these processes and products comes from decades of work on remote-sensing observations of the Moon, the analysis of lunar samples, and laboratory experiments. Space weathering effects collectively result in a reddened continuum slope, lowered albedo, and attenuated absorption features in reflectance spectra of lunar soils as compared to finely comminuted rocks from the same Apollo sites. Space weathering effects are largely surface-correlated, concentrated in the fine size fractions, and occur as amorphous rims on individual soil grains. Rims on lunar soil grains are highly complex and span the range between erosional surfaces modified by solar wind irradiation to depositional surfaces modified by the condensation of sputtered ions and impact-generated vapors. The optical effects of space weathering effects are directly linked to the production of nanophase Fe metal in lunar materials]. The size of distribution of nanophase inclusions in the rims directly affect optical properties given that large Fe(sup o) grains (approx 10 nm and larger) darken the sample (lower albedo) while the tiny Fe(sup o) grains (<5nm) are the primary agent in spectral "reddening". More recent work has focused on the nature and abundance of OH/H2O in the lunar regolith using orbital data and samples analyses. Advances in sample preparation techniques have made possible detailed analyses of patina-coated rock surfaces. Major advances are occurring in quantifying the rates and efficiency of space weathering processes through laboratory experimentation.
Observing Solar Radio Bursts from the Lunar Surface
NASA Technical Reports Server (NTRS)
MacDowall, R. J.; Lazio, T. J.; Bale, S. D.; Burns, J.; Gopalswamy, N.; Jones, D. L.; Kaiser, M. L.; Kasper, J.; Weiler, K. W.
2010-01-01
Locating low frequency radio observatories on the lunar surface has a number of advantages. Here, we describe the Radio Observatory for Lunar Sortie Science (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff of the solar radio emissions and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays. Key design requirements on ROLES include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs below 10 MHz, essentially unobservable from Earth's surface due to the terrestrial ionospheric cutoff. Resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2 deg, equivalent to a linear array size of approximately 500 meters. Operations would consist of data acquisition during the lunar day, with regular data downlinks. The major components of the ROLSS array are 3 antenna arms arranged in a Y shape, with a central electronics package (CEP). Each antenna arm is a linear strip of polyimide film (e.g., Kapton (TM)) on which 16 single polarization dipole antennas are located by depositing a conductor (e.g., silver). The arms also contain transmission lines for carrying the radio signals from the science antennas to the CEP.
Lithium Iron Phosphate Cell Performance Evaluations for Lunar Extravehicular Activities
NASA Technical Reports Server (NTRS)
Reid, Concha
2007-01-01
Lithium-ion battery cells are being evaluated for their ability to provide primary power and energy storage for NASA s future Exploration missions. These missions include the Orion Crew Exploration Vehicle, the Ares Crew Launch Vehicle Upper Stage, Extravehicular Activities (EVA, the advanced space suit), the Lunar Surface Ascent Module (LSAM), and the Lunar Precursor and Robotic Program (LPRP), among others. Each of these missions will have different battery requirements. Some missions may require high specific energy and high energy density, while others may require high specific power, wide operating temperature ranges, or a combination of several of these attributes. EVA is one type of mission that presents particular challenges for today s existing power sources. The Portable Life Support System (PLSS) for the advanced Lunar surface suit will be carried on an astronaut s back during eight hour long sorties, requiring a lightweight power source. Lunar sorties are also expected to occur during varying environmental conditions, requiring a power source that can operate over a wide range of temperatures. Concepts for Lunar EVAs include a primary power source for the PLSS that can recharge rapidly. A power source that can charge quickly could enable a lighter weight system that can be recharged while an astronaut is taking a short break. Preliminary results of Al23 Ml 26650 lithium iron phosphate cell performance evaluations for an advanced Lunar surface space suit application are discussed in this paper. These cells exhibit excellent recharge rate capability, however, their specific energy and energy density is lower than typical lithium-ion cell chemistries. The cells were evaluated for their ability to provide primary power in a lightweight battery system while operating at multiple temperatures.
NASA Technical Reports Server (NTRS)
Merril, R. B.
1977-01-01
Solar system processes are considered along with the origin and evolution of the moon, planetary geophysics, lunar basins and crustal layering, lunar magnetism, the lunar surface as a planetary probe, remote observations of lunar and planetary surfaces, earth-based measurements, integrated studies, physical properties of lunar materials, and asteroids, meteorites, and the early solar system. Attention is also given to studies of mare basalts, the kinetics of basalt crystallization, topical studies of mare basalts, highland rocks, experimental studies of highland rocks, geochemical studies of highland rocks, studies of materials of KREEP composition, a consortium study of lunar breccia 73215, topical studies on highland rocks, Venus, and regional studies of the moon. Studies of surface processes, are reported, taking into account cratering mechanics and fresh crater morphology, crater statistics and surface dating, effects of exposure and gardening, and the chemistry of surfaces.
NASA Astrophysics Data System (ADS)
Shirenin, A. M.; Mazurova, E. M.; Bagrov, A. V.
2016-11-01
The paper presents a mathematical algorithm for processing an array of angular measurements of light beacons on images of the lunar surface onboard a polar artificial lunar satellite (PALS) during the Luna-Glob mission and coordinate-time referencing of the PALS for the development of reference selenocentric coordinate systems. The algorithm makes it possible to obtain angular positions of point light beacons located on the surface of the Moon in selenocentric celestial coordinates. The operation of measurement systems that determine the position and orientation of the PALS during its active existence have been numerically simulated. Recommendations have been made for the optimal use of different types of measurements, including ground radio trajectory measurements, navigational star sensors based on the onboard star catalog, gyroscopic orientation systems, and space videos of the lunar surface.
The second stage of Lunar Prospector's LMLV is erected at Pad 46, CCAS
NASA Technical Reports Server (NTRS)
1997-01-01
The second stage of the Lockheed Martin Launch Vehicle-2 (LMLV-2) arrives aboard a truck at Launch Complex 46 at Cape Canaveral Air Station before it is mated to the first stage, seen in the center of the pad structure in the background. The LMLV-2 will carry the Lunar Prospector spacecraft, scheduled to launch in October for an 18-month mission that will orbit the Earth's moon to collect data from the lunar surface. Scientific experiments to be conducted by the Prospector include locating water ice that may exist near the lunar poles, gathering data to understand the evolution of the lunar highland crust and the lunar magnetic field, finding radon outgassing events, and describing the lunar gravity field by means of Doppler tracking.
NASA Technical Reports Server (NTRS)
McClanahan, Timothy P.; Mitrofanov, I. G.; Boynton, W. V.; Sagdeev, R.; Trombka, J. I.; Starr, R. D.; Evans, L. G.; Litvak, M. L.; Chin, G.; Garvin, J.;
2010-01-01
The Lunar Reconnaissance Orbiter's (LRO), Lunar Exploration Neutron Detector (LEND) was developed to refine the lunar surface hydrogen (H) measurements generated by the Lunar Prospector Neutron Spectrometer. LPNS measurements indicated a approx.4,6% decrease in polar epithermal fluxes equivalent to (1.5+/-0,8)% H concentration and are direct geochemical evidence indicating water /high H at the poles. Given the similar operational and instrumental objectives of the LEND and LPNS systems, an important science analysis step for LEND is to test correlation with existing research including LPNS measurements. In this analysis, we compare corrected low altitude epithermal rate data from LPNS available via NASA's Planetary Data System (PDS) with calibrated LEND epithermal maps using a cross-correlation technique
Preliminary catalog of pictures taken on the lunar surface during the Apollo 16 mission
NASA Technical Reports Server (NTRS)
Batson, R. M.; Carson, K. B.; Reed, V. S.; Tyner, R. L.
1972-01-01
A catalog of all pictures taken from the lunar module or the lunar surface during the Apollo 16 lunar stay is presented. The tabulations are arranged for the following specific uses: (1) given the number of a particular frame, find its location in the sequence of lunar surface activity, the station from which it was taken and the subject matter of the picture; (2) given a particular location or activity within the sequence of lunar surface activity, find the pictures taken at that time and their subject matter; and (3) given a sample number from the voice transcript listed, find the designation assigned to the same sample by the lunar receiving laboratory.
NASA Technical Reports Server (NTRS)
Carson, John M., III; Johnson, Andrew E.; Anderson, F. Scott; Condon, Gerald L.; Nguyen, Louis H.; Olansen, Jon B.; Devolites, Jennifer L.; Harris, William J.; Hines, Glenn D.; Lee, David E.;
2016-01-01
The Lunar MARE (Moon Age and Regolith Explorer) Discovery Mission concept targets delivery of a science payload to the lunar surface for sample collection and dating. The mission science is within a 100-meter radius region of smooth lunar maria terrain near Aristarchus crater. The location has several small, sharp craters and rocks that present landing hazards to the spacecraft. For successful delivery of the science payload to the surface, the vehicle Guidance, Navigation and Control (GN&C) subsystem requires safe and precise landing capability, so design infuses the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) and a gimbaled, throttleable LOX/LCH4 main engine. The ALHAT system implemented for Lunar MARE is a specialization of prototype technologies in work within NASA for the past two decades, including a passive optical Terrain Relative Navigation (TRN) sensor, a Navigation Doppler Lidar (NDL) velocity and range sensor, and a Lidar-based Hazard Detection (HD) sensor. The landing descent profile is from a retrograde orbit over lighted terrain with landing near lunar dawn. The GN&C subsystem with ALHAT capabilities will deliver the science payload to the lunar surface within a 20-meter landing ellipse of the target location and at a site having greater than 99% safety probability, which minimizes risk to safe landing and delivery of the MARE science payload to the intended terrain region.
NASA Astrophysics Data System (ADS)
Winters, Gregory S.; Retherford, Kurt D.; Davis, Michael W.; Escobedo, Stephen M.; Bassett, Eric C.; Patrick, Edward L.; Nagengast, Maggie E.; Fairbanks, Matthew H.; Miles, Paul F.; Parker, Joel W.; Gladstone, G. Randall; Slater, David C.; Stern, S. Alan
2012-10-01
We designed and assembled a highly capable UV reflectometer chamber and data acquisition system to provide bidirectional scattering data of various surfaces and materials. This chamber was initially conceived to create laboratory-based UV reflectance measurements of water frost on lunar soil/regolith simulants, to support interpretation of UV reflectance data from the Lyman Alpha Mapping Project ("LAMP") instrument on-board the NASA Lunar Reconnaissance Orbiter spacecraft. A deuterium lamp illuminates surfaces and materials at a fixed 45° incident beam angle over the 115 to 200 nm range via a monochromator, while a photomultiplier tube detector is scanned to cover emission angles -85° to +85° (with a gap from -60° to -30°, due to the detector blocking the incident beam). Liquid nitrogen cools the material/sample mount when desired. The chamber can be configured to test a wide range of samples and materials using sample trays and holders. Test surfaces to date include aluminum mirrors, water ice, reflectance standards, and frozen mixtures of water and lunar soil/regolith stimulant. Future UV measurements planned include Apollo lunar samples, meteorite samples, other ices, minerals, and optical surfaces. Since this chamber may well be able to provide useful research data for groups outside Southwest Research Institute, we plan to take requests from and collaborate with others in the UV and surface reflection research community.
Microcratering within the lunar regolith--a theory and observation.
Hammond, E C; Berry, F D; Mitchell, F; Barron, D; Cohen, S H
2000-01-01
Since the Apollo 11 mission to the moon, there has been substantial analysis of the lunar rocks and soil grains, utilizing more recent advances in electron probe technologies. It is the objective of this research to revisit the theories concerning the microcratering within the lunar regolith. Recent theories have included the idea that the microcratering phenomenon was caused by meteoric impacting onto the lunar surface during early lunar history. Other theories have suggested that the microcratering was a result of secondary ejector associated with micrometeoric and meteoric impact. This research team suggests that microcratering may have been associated with primordial dust during and before the formation of our solar system.
NASA Astrophysics Data System (ADS)
Teodoro, L. A.; Colaprete, A.; Roush, T. L.; Elphic, R. C.; Cook, A.; Kleinhenz, J.; Fritzler, E.; Smith, J. T.; Zacny, K.
2016-12-01
In the context of NASA's Resource Prospector (RP) mission to the high latitudes and permanently shadowed regions of the Moon, we study 3D models of volatile transport in the lunar regolith. This mission's goal is to extract and identify volatile species in the top meter of the lunar regolith layer. Roughly, RP consists of 5 elements: i) the Neutron Spectrometer System will search for high hydrogen concentrations and in turn select optimum drilling locations; ii) The Near Infrared Volatile Spectrometer System (NIRVSS) will characterize the nature of the surficial water ice; iii) The Drill Sub-system will extract samples from the top meter of the lunar surface and deliver them to the Oxygen and Volatile Extraction Node (OVEN); iv) OVEN will heat up the sample and extract the volatiles therein, that will be v) transferred to the Lunar Advanced Volatiles Analysis system for chemical composition analysis. A series of vacuum cryogenic experiments have been carried out at Glenn Research Center with the aim of quantifying the volatile losses during the drilling/sample acquisition phase and sample delivery to crucibles steps. These experiments' outputs include: i) Pressure measurements of several chemical species (e.g. H2O, Ar); ii) Temperature measurements within and at the surface of the lunar simulant using thermocouples; and iii) Surficial temperature NIRVSS measurements. Here, we report on the numerical modeling we are carrying out to understand the physics underpinning these experiments. The models include 2 main parts: i) reliable computation of temperature variation throughout the lunar soil container during the experiment as constrained by temperature measurements; and ii) molecular diffusion of volatiles. The latter includes both Fick's (flight of the molecules in the porous) and Knudsen's (sublimation of volatile molecules at the grain surface) laws. We also mimic the soil porosity by randomly allocating 75 microns particles in the simulation volume. Our preliminary results show both diffusion laws play a major role during the drilling phase.
Lunar Prospector: a Preliminary Surface Remote Sensing Resource Assessment for the Moon
NASA Technical Reports Server (NTRS)
Mardon, A. A.
1992-01-01
The potential existence of lunar volatiles is a scientific discovery that could distinctly change the direction of pathways of inner solar system human expansion. With a dedicated germanium gamma ray spectrometer launched in the early 1990's, surface water concentrations of 0.7 percent could be detected immediately upon full lunar polar orbit operations. The expense of lunar base construction and operation would be dramatically reduced over a scenario with no lunar volatile resources. Global surface mineral distribution could be mapped out and integrated into a GIS database for lunar base site selection. Extensive surface lunar mapping would also result in the utilization of archived Apollo images. A variety of remote sensing systems and their parameters have been proposed for use in the detection of these lunar ice masses. The detection or nondetection of subsurface and surface ice masses in lunar polar crater floors could dramatically direct the development pathways that the human race might follow in its radiation from the Earth to habitable locales in the inner terran solar system. Potential sources of lunar volatiles are described. The use of remote sensing to detect lunar volatiles is addressed.
NASA Astrophysics Data System (ADS)
Greenhagen, B.; Paige, D. A.
2007-12-01
It is well known that surface roughness affects spectral slope in the infrared. For the first time, we applied a three-dimensional thermal model to a high resolution lunar topography map to study the effects of surface roughness on lunar thermal emission spectra. We applied a numerical instrument model of the upcoming Diviner Lunar Radiometer Experiment (DLRE) to simulate the expected instrument response to surface roughness variations. The Diviner Lunar Radiometer Experiment (DLRE) will launch in late 2008 onboard the Lunar Reconnaissance Orbiter (LRO). DLRE is a nine-channel radiometer designed to study the thermal and petrologic properties of the lunar surface. DLRE has two solar channels (0.3-3.0 μm high/low sensitivity), three mid-infrared petrology channels (7.55-8.05, 8.10-8.40 8.40-8.70 μm), and four thermal infrared channels (12.5-25, 25-50, 50-100, and 100-200 μm). The topographic data we used was selected from a USGS Hadley Rille DEM (from Apollo 15 Panoramic Camera data) with 10 m resolution (M. Rosiek; personal communication). To remove large scale topographic features, we applied a 200 x 200 pixel boxcar high-pass filter to a relatively flat portion of the DEM. This "flattened" surface roughness map served as the basis for much of this study. We also examined the unaltered topography. Surface temperatures were calculated using a three-dimensional ray tracing thermal model. We created temperature maps at numerous solar incidence angles with nadir viewing geometry. A DLRE instrument model, which includes filter spectral responses and detector fields of view, was applied to the high resolution temperature maps. We studied both the thermal and petrologic effects of surface roughness. For the thermal study, the output of the optics model is a filter specific temperature, scaled to a DLRE footprint of < 500 m. For the petrologic study, we examined the effect of the surface roughness induced spectral slope on the DLRE's ability to locate the Christiansen Feature, which is a good compositional indicator. With multiple thermal infrared channels over a wide spectral range, DLRE will be well suited to measure temperature variations due to surface roughness. Any necessary compensation (e.g. correction for spectral slope) to the mid-infrared petrology data will be performed.
NASA Technical Reports Server (NTRS)
Garrett, David
1972-01-01
This is the Press Kit that was given to the various media outlets that were interested in covering the Apollo 17 mission. It includes information about the moon, lunar science, concentrating on the planned mission. The kit includes information about the flight, and the trajectory, planned orbit insertion maneuvers, the extravehicular mission events, a comparison with the Apollo 16, a map of the lunar surface, and the surface activity, information about the Taurus-Littrow landing site, the planned science experiments, the power source for the experiment package and diagrams of some of the instrumentation that was used to perform the experiments.
High Angular Resolution Imaging of Solar Radio Bursts from the Lunar Surface
NASA Technical Reports Server (NTRS)
MacDowall, Robert J.; Lazio, Joseph; Bale, Stuart; Burns, Jack O.; Farrell, William M.; Gopalswamy, Nat; Jones, Dayton L.; Kasper, Justin Christophe; Weiler, Kurt
2012-01-01
Locating low frequency radio observatories on the lunar surface has a number of advantages, including positional stability and a very low ionospheric radio cutoff. Here, we describe the Radio Observatory on the lunar Surface for Solar studies (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The preferred site is on the lunar near side to simplify the data downlink to Earth. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by measuring the low radio frequency cutoff of the solar radio emissions or background galactic radio emission, measuring the flux, particle mass, and arrival direction of interplanetary and interstellar dust, and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs below 10 M Hz, essentially unobservable from Earth's surface due to the terrestrial ionospheric cutoff. Resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2 deg at 10 MHz, equivalent to a linear array size of approximately one kilometer. The major components of the ROLSS array are 3 antenna arms, each of 500 m length, arranged in a Y formation, with a central electronics package (CEP) at their intersection. Each antenna arm is a linear strip of polyimide film (e.g., Kapton(TradeMark)) on which 16 single polarization dipole antennas are located by depositing a conductor (e.g., silver). The arms also contain transmission lines for carrying the radio signals from the science antennas to the CEP. Operations would consist of data acquisition during the lunar day, with data downlinks to Earth one or more times every 24 hours.
NASA Astrophysics Data System (ADS)
Chi, P. J.
2017-10-01
We discuss the science to be enabled by new magnetometer measurements on the lunar surface, based on results from Apollo and other lunar missions. Also discussed are approaches to deploying magnetometers on the lunar surface with today's technology.
Lunar Orbit Insertion Targeting and Associated Outbound Mission Design for Lunar Sortie Missions
NASA Technical Reports Server (NTRS)
Condon, Gerald L.
2007-01-01
This report details the Lunar Orbit Insertion (LOI) arrival targeting and associated mission design philosophy for Lunar sortie missions with up to a 7-day surface stay and with global Lunar landing site access. It also documents the assumptions, methodology, and requirements validated by TDS-04-013, Integrated Transit Nominal and Abort Characterization and Sensitivity Study. This report examines the generation of the Lunar arrival parking orbit inclination and Longitude of the Ascending Node (LAN) targets supporting surface missions with global Lunar landing site access. These targets support the Constellation Program requirement for anytime abort (early return) by providing for a minimized worst-case wedge angle [and an associated minimum plane change delta-velocity (V) cost] between the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM) for an LSAM launch anytime during the Lunar surface stay.
NASA Astrophysics Data System (ADS)
Law, E.; Bui, B.; Chang, G.; Goodale, C. E.; Kim, R.; Malhotra, S.; Ramirez, P.; Rodriguez, L.; Sadaqathulla, S.; Nall, M.; Muery, K.
2012-12-01
The Lunar Mapping and Modeling Portal (LMMP), is a multi-center project led by NASA's Marshall Space Flight Center. The LMMP is a web-based Portal and a suite of interactive visualization and analysis tools to enable lunar scientists, engineers, and mission planners to access mapped lunar data products from past and current lunar missions, e.g., Lunar Reconnaissance Orbiter, Apollo, Lunar Orbiter, Lunar Prospector, and Clementine. The Portal allows users to search, view and download a vast number of the most recent lunar digital products including image mosaics, digital elevation models, and in situ lunar resource maps such as iron and hydrogen abundance. The Portal also provides a number of visualization and analysis tools that perform lighting analysis and local hazard assessments, such as, slope, surface roughness and crater/boulder distribution. In this talk, we will give a brief overview of the project. After that, we will highlight various key features and Lunar data products. We will further demonstrate image viewing and layering of lunar map images via our web portal as well as mobile devices.
The Apollo lunar surface experiment package suprathermal ion detector experiment. [bibliographies
NASA Technical Reports Server (NTRS)
1975-01-01
A compilation of reports and scientific papers is presented for the following topics: (1) the lunar ionosphere; (2) electric potential of the lunar surface; (3) ion activity on the lunar nightside; (4) bow shock protons; (5) magnetosheath and magnetotail; (6) solar wind-neutral gas cloud interactions at the lunar surface; (7) penetrating solar particles; and (8) rocket exhaust products from Apollo missions. Descriptions and photographs of ion detecting equipment at the lunar sites of Apollo 12, 13, 14, and 15 are given.
NASA Technical Reports Server (NTRS)
Giganti, J. J.; Larson, J. V.; Richard, J. P.; Weber, J.
1973-01-01
The lunar surface gravimeter which was emplaced on the moon by the Apollo 17 flight is described and a schematic diagram of the sensor is provided. The objective of the lunar surface gravimeter is to use the moon as an instrumented antenna to detect gravitational waves. Another objective is to measure tidal deformation of the moon. Samples of signals received during lunar sunrise activity and during quiet periods are presented in graph form based on power spectrum analysis
100-kWe lunar/Mars surface power utilizing the SP-100 reactor with dynamic conversion
NASA Technical Reports Server (NTRS)
Harty, Richard B.; Mason, Lee S.
1992-01-01
Results are presented from a study of the coupling of an SP-100 nuclear reactor with either a Stirling or Brayton power system, at the 100 kWe level, for a power generating system suitable for operation in the lunar and Martian surface environments. In the lunar environment, the reactor and primary coolant loop would be contained in a guard vessel to protect from a loss of primary loop containment. For Mars, all refractory components, including the reactor, coolant, and power conversion components will be contained in a vacuum vessel for protection against the CO2 environment.
In-situ Resource Utilization (ISRU) and Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Sanders, Jerry; Larson, Bill; Sacksteder, Kurt
2007-01-01
This viewgraph presentation reviews the benefits of In-Situ Resource Utilization (ISRU) on the surface of the moon. Included in this review is the commercialization of Lunar ISRU. ISRU will strongly influence architecture and critical technologies. ISRU is a critical capability and key implementation of the Vision for Space Exploration (VSE). ISRU will strongly effects lunar outpost logistics, design and crew safety. ISRU will strongly effect outpost critical technologies. ISRU mass investment is minimal compared to immediate and long-term architecture delivery mass and reuse capabilities provided. Therefore, investment in ISRU constitutes a commitment to the mid and long term future of human exploration.
Lunar base launch and landing facilities conceptual design
NASA Technical Reports Server (NTRS)
Phillips, Paul G.; Simonds, Charles H.; Stump, William R.
1992-01-01
The purpose of this study was to perform a first look at the requirements for launch and landing facilities for early lunar bases and to prepared conceptual designs for some of these facilities. The emphasis of the study is on the facilities needed from the first manned landing until permanent occupancy, the Phase 2 lunar base. Factors including surface characteristics, navigation system, engine blast effects, and expected surface operations are used to develop landing pad designs, and definitions fo various other elements of the launch and landing facilities. Finally, the dependence of the use of these elements and the evolution of the facilities are established.
Human Exploration of Earth's Neighborhood and Mars
NASA Technical Reports Server (NTRS)
Condon, Gerald
2003-01-01
The presentation examines Mars landing scenarios, Earth to Moon transfers comparing direct vs. via libration points. Lunar transfer/orbit diagrams, comparison of opposition class and conjunction class missions, and artificial gravity for human exploration missions. Slides related to Mars landing scenarios include: mission scenario; direct entry landing locations; 2005 opportunity - Type 1; Earth-mars superior conjunction; Lander latitude accessibility; Low thrust - Earth return phase; SEP Earth return sequence; Missions - 200, 2007, 2009; and Mission map. Slides related to Earth to Moon transfers (direct vs. via libration points (L1, L2) include libration point missions, expeditionary vs. evolutionary, Earth-Moon L1 - gateway for lunar surface operations, and Lunar mission libration point vs. lunar orbit rendezvous (LOR). Slides related to lunar transfer/orbit diagrams include: trans-lunar trajectory from ISS parking orbit, trans-Earth trajectories, parking orbit considerations, and landing latitude restrictions. Slides related to comparison of opposition class (short-stay) and conjunction class (long-stay) missions for human exploration of Mars include: Mars mission planning, Earth-Mars orbital characteristics, delta-V variations, and Mars mission duration comparison. Slides related to artificial gravity for human exploration missions include: current configuration, NEP thruster location trades, minor axis rotation, and example load paths.
Dusty plasmas over the Moon: theory research in support of the upcoming lunar missions
NASA Astrophysics Data System (ADS)
Popel, Sergey; Zelenyi, Lev; Zakharov, Alexander; Izvekova, Yulia; Dolnikov, Gennady; Dubinskii, Andrey; Kopnin, Sergey; Golub, Anatoly
The future Russian lunar missions Luna 25 and Luna 27 are planned to be equipped with instruments for direct detection of nano- and microscale dust particles and determination of plasma properties over the surface of the Moon. Lunar dust over the Moon is usually considered as a part of a dusty plasma system. Here, we present the main our theory results concerning the lunar dusty plasmas. We start with the description of the observational data on dust particles on and over the surface of the Moon. We show that the size distribution of dust on the lunar surface is in a good agreement with the Kolmogorov distribution, which is the size distribution of particles in the case of multiple crushing. We discuss the role of adhesion which has been identified as a significant force in the dust particle launching process. We evaluate the adhesive force for lunar dust particles with taking into account the roughness and adsorbed molecular layers. We show that dust particle launching can be explained if the dust particles rise at a height of about dozens of nanometers owing to some processes. This is enough for the particles to acquire charges sufficient for the dominance of the electrostatic force over the gravitational and adhesive forces. The reasons for the separation of the dust particles from the surface of the Moon are, in particular, their heating by solar radiation and cooling. We consider migration of free protons in regolith from the viewpoint of the photoemission properties of the lunar soil. Finally, we develop a model of dusty plasma system over the Moon and show that it includes charged dust, photoelectrons, and electrons and ions of the solar wind. We determine the distributions of the photoelectrons and find the characteristics of the dust which rise over the lunar regolith. We show that there are no significant constraints on the Moon landing sites for future lunar missions that will study dusty plasmas in the surface layer of the Moon. We discuss also waves in dusty plasmas over the lunar surface. This work was supported by the Presidium of the Russian Academy of Sciences (basic research program no. 22 “Fundamental Problems of Research and Exploration of the Solar System”) and by the Russian Foundation for Basic Research (project 12-02-00270-a).
NASA Astrophysics Data System (ADS)
Vinckier, Quentin; Crabtree, Karlton; Paine, Christopher G.; Hayne, Paul O.; Sellar, Glenn R.
2017-08-01
Lunar Flashlight is an innovative NASA CubeSat mission dedicated to mapping water ice in the permanently shadowed regions of the Moon, which may act as cold traps for volatiles. To this end, a multi-band reflectometer will be sent to orbit the Moon. This instrument consists of an optical receiver aligned with four lasers, each of which emits sequentially at a different wavelength in the near-infrared between 1 μm and 2 μm. The receiver measures the laser light reflected from the lunar surface; continuum/absorption band ratios are then analyzed to quantify water ice in the illuminated spot. Here, we present the current state of the optical receiver design. To optimize the optical signal-to-noise ratio, we have designed the receiver so as to maximize the laser signal collected, while minimizing the stray light reaching the detector from solarilluminated areas of the lunar surface outside the field-of-view, taking into account the complex lunar topography. Characterization plans are also discussed. This highly mass- and volume-constrained mission will demonstrate several firsts, including being one of the first CubeSats performing science measurements beyond low Earth orbit.
Early Dynamics of the Moon's Core
NASA Astrophysics Data System (ADS)
Cuk, Matija; Hamilton, Douglas; Stewart, Sarah T.
2018-04-01
The Moon has a small molten iron core (Williams et al. 2006). Remanent magnetization in lunar rocks likely derives from a past lunar dynamo (Wieczorek 2018 and references therein), which may have been powered by differential precession between the mantle and the core. The rotations of the lunar mantle and core were largely decoupled for much of lunar history, with a large mutual offset during the Cassini State Transition (Meyer and Wisdom, 2011). It is likely that the past work underestimated lunar obliquities, and therefore core offsets, during early lunar history (Cuk et al. 2016). Here we investigate the dynamics of the lunar core and mantle using a Lie-Poisson numerical integrator (Touma and Wisdom 2001) which includes interactions between triaxial core and mantle, as well as all gravitational and tidal effects included in the model of Cuk et al. (2016). Since we assume a rigid triaxial mantle, this model is applicable to the Moon only once it has acquired its current shape, which probably happened before the Moon reached 25 Earth radii. While some details of the core dynamics depend on our assumptions about the shape of the lunar core-mantle boundary, we can report some robust preliminary findings. The presence of the core does not change significantly the evolutionary scenario of Cuk et al. (2016). The core and mantle are indeed decoupled, with the core having a much smaller obliquity to the ecliptic than the mantle for almost all of the lunar history. The core was largely in an equivalent of Cassini State 2, with the vernal equinoxes (wrt the ecliptic) of the core and the mantle being anti-aligned. The core-mantle spin axis offset has been very large during the Moon's first billion years (this is true both in canonical and high-inclination tidal evolution), causing the lunar core to be sub-synchronous. If the ancient lunar magnetic dipole was rotating around the core axis that was inclined to the Moon's spin axis, then the magnetic poles would move across the lunar surface as the mantle rotates independently. This relative motion would dilute the average dipole field over much of the lunar surface, and would would restrict meaningful average fields to low lunar latitudes.
NASA Technical Reports Server (NTRS)
Leong, Gregory N.; Nease, Sandra; Lager, Vicky; Yaghjian, Raffy; Waller, Chris
1992-01-01
A design for a machine to produce hollow, continuous fiber-reinforced composite rods of lunar glass and a liquid crystalline matrix using the pultrusion process is presented. The glass fiber will be produced from the lunar surface, with the machine and matrix being transported to the moon. The process is adaptable to the low gravity and near-vacuum environment of the moon through the use of a thermoplastic matrix in fiber form as it enters the pultrusion process. With a power consumption of 5 kW, the proposed machine will run unmanned continuously in fourteen-day cycles, matching the length of lunar days. A number of dies could be included that would allow the machine to produce rods of varying diameter, I-beams, angles, and other structural members. These members could then be used for construction on the lunar surface or transported for use in orbit. The benefits of this proposal are in the savings in weight of the cargo each lunar mission would carry. The supply of glass on the moon is effectively endless, so enough rods would have to be produced to justify its transportation, operation, and capital cost. This should not be difficult as weight on lunar mission is at a premium.
NASA Technical Reports Server (NTRS)
Balasubramaniam, R.; Gokoglu, S. A.; Sacksteder, K. R.; Wegeng, R. S.; Suzuki, N. H.
2010-01-01
The realization of the renewed exploration of the Moon presents many technical challenges; among them is the survival of lunar surface assets during periods of darkness when the lunar environment is very cold. Thermal wadis are engineered sources of stored solar energy using modified lunar regolith as a thermal storage mass that can supply energy to protect lightweight robotic rovers or other assets during the lunar night. This paper describes an extension of an earlier analysis of performance of thermal wadis based on the known solar illumination of the Moon and estimates of producible thermal properties of modified lunar regolith. The current analysis has been performed for the lunar equatorial region and validates the formerly used 1-D model by comparison of predictions to those obtained from 2-D and 3-D computations. It includes the effects of a thin dust layer covering the surface of the wadi, and incorporating either water as a phase-change material or aluminum stakes as a high thermal conductivity material into the regolith. The calculations indicate that thermal wadis can provide the desired thermal energy and temperature control for the survival of rovers or other equipment during periods of darkness.
Constraints on the nature of the ancient lunar magnetic field
NASA Technical Reports Server (NTRS)
Goswami, J. N.
1976-01-01
Assuming that the physical properties of solar-wind ions have remained unchanged over the past 4 billion years, the observation of solar-wind ions in lunar breccias with compaction ages greater than 3.2 billion years places constraints on the nature and origin of the ancient lunar magnetic field. Solar-wind ions would not be expected to occur in old lunar breccias if a surface magnetic field of more than 0.03 gauss was present. Several explanations of this phenomenon are consistent with the global lunar dynamo theory of the origin of the lunar dipole field, including a wandering of the lunar dipole axis, late onset of dynamo action, and reversals of the lunar dipole field, producing a long-term field close to zero. Models invoking external field magnetization as the cause of the ancient lunar magnetic field constrain the dipole axis, precluding field reversals, and do not provide an alternative explanation for the observed occurrence of solar-wind ions in lunar breccias.
A New Model of Size-graded Soil Veneer on the Lunar Surface
NASA Technical Reports Server (NTRS)
Basu, Abhijit; McKay, David S.
2005-01-01
Introduction. We propose a new model of distribution of submillimeter sized lunar soil grains on the lunar surface. We propose that in the uppermost millimeter or two of the lunar surface, soil-grains are size graded with the finest nanoscale dust on top and larger micron-scale particles below. This standard state is perturbed by ejecta deposition of larger grains at the lunar surface, which have a coating of dusty layer that may not have substrates of intermediate sizes. Distribution of solar wind elements (SWE), agglutinates, vapor deposited nanophase Fe0 in size fractions of lunar soils and ir spectra of size fractions of lunar soils are compatible with this model. A direct test of this model requires bringing back glue-impregnated tubes of lunar soil samples to be dissected and examined on Earth.
The 1990-1991 project summaries
NASA Technical Reports Server (NTRS)
1991-01-01
Project summaries for 1990-91 at the Georgia Institute of Technology are presented. The following research projects were studied: a lunar surface vehicle model; lunar loader/transporter; trenching and cable-laying device for the lunar surface; a lunar vehicle system for habitat transport and placement; and lunar storage facility.
NASA Technical Reports Server (NTRS)
Thompson, M. S.; Christoffersen, R.; Noble, S. K.; Keller, L. P.
2012-01-01
The morphology, mineralogy, chemical composition and optical properties of lunar soils show distinct correlations as a function of grain size and origin [1,2,3]. In the <20 m size fraction, there is an increased correlation between lunar surface properties observed through remote sensing techniques and those attributed to space weathering phenomenae [1,2]. Despite the establishment of recognizable trends in lunar grains <20 in size [1,2,3], the size fraction < 10 m is characterized as a collective population of grains without subdivision. This investigation focuses specifically on grains in the <1 m diameter size fraction for both highland and mare derived soils. The properties of these materials provide the focus for many aspects of lunar research including the nature of space weathering on surface properties, electrostatic grain transport [4,5] and dusty plasmas [5]. In this study, we have used analytical transmission and scanning transmission electron microscopy (S/TEM) to characterize the mineralogy type, microstructure and major element compositions of grains in this important size range in lunar soils.
Lunar Dust Mitigation Technology Development
NASA Technical Reports Server (NTRS)
Hyatt, Mark J.; Deluane, Paul B.
2008-01-01
NASA s plans for implementing the Vision for Space Exploration include returning to the moon as a stepping stone for further exploration of Mars, and beyond. Dust on the lunar surface has a ubiquitous presence which must be explicitly addressed during upcoming human lunar exploration missions. While the operational challenges attributable to dust during the Apollo missions did not prove critical, the comparatively long duration of impending missions presents a different challenge. Near term plans to revisit the moon places a primary emphasis on characterization and mitigation of lunar dust. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it s potentially harmful effects on exploration systems. This paper presents the current perspective and implementation of dust knowledge management and integration, and mitigation technology development activities within NASA s Exploration Technology Development Program. This work is presented within the context of the Constellation Program s Integrated Lunar Dust Management Strategy. The Lunar Dust Mitigation Technology Development project has been implemented within the ETDP. Project scope and plans will be presented, along with a a perspective on lessons learned from Apollo and forensics engineering studies of Apollo hardware. This paper further outlines the scientific basis for lunar dust behavior, it s characteristics and potential effects, and surveys several potential strategies for its control and mitigation both for lunar surface operations and within the working volumes of a lunar outpost.
Observations of Titanium, Aluminum and Magnesium in the Lunar Exosphere by LADEE UVS
NASA Technical Reports Server (NTRS)
Colaprete, A.; Wooden, D.; Cook, A.; Shirley, M.; Sarantos, M.
2016-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) was an orbital lunar science mission designed to address the goals of the 2003 National Research Council decadal survey, the Lunar Exploration Analysis Group Roadmap, and the "Scientific Context for Exploration of the Moon" (SCEM) report, and has been recommended for execution by the 2011 Planetary Missions Decadal Survey. The LADEE mission goal was to determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. It will monitor variations in known gasses, such as sodium, potassium, argon and helium, and will search for other, as-yet-undetected gasses of both lunar and extra-lunar origin. Another goal of LADEE was to determine whether dust is present in the lunar exosphere, and reveal the processes that contribute to its sources and variability.
Sideways Views of the Moon: Mapping Directional Thermal Emission with Diviner
NASA Astrophysics Data System (ADS)
Greenhagen, B. T.; Bandfield, J.; Bowles, N. E.; Hayne, P. O.; Sefton-Nash, E.; Warren, T.; Paige, D. A.
2017-12-01
Systematic off-nadir observations can be used to characterize the emission phase function and radiative balance of the lunar surface. These are critical inputs for thermophysical models used to derive surface properties and study a wide range of dynamic surface properties, such as the stability of volatiles and development and evolution of regolith, on the Moon and other airless bodies. After over eight years in operation and well into its 3rd extended science mission, NASA's Lunar Reconnaissance Orbiter (LRO) Diviner Lunar Radiometer (Diviner) continues to reveal the extreme nature of the Moon's thermal environments, thermophysical properties, and surface composition. Diviner data are also used to characterize thermal emission behavior that is fundamental to airless bodies with fine-particulate surfaces, including epiregolith thermal gradients and thermal-scale surface roughness. Diviner's extended operations have provided opportunities to observe the lunar surface with a wide range of viewing geometries. Together Diviner's self-articulation and LRO's non-sun-synchronous polar orbit offer a unique platform to observe the lunar surface and characterize the emission phase behavior and radiative balance. Recently, Diviner completed global off-nadir observations at 50° and 70° in the anti-sun (low phase) direction with 8 different local times each. This fall, we'll begin a third campaign to observe the Moon at 50° emission in the pro-sun (high phase) direction. Here we present this new global off-nadir dataset, highlight models and laboratory experiments used to interpret the data, and describe the role of these data in studying the Moon and other airless bodies.
Lunar and Meteorite Thin Sections for Undergraduate and Graduate Studies
NASA Technical Reports Server (NTRS)
Allen, J.; Galindo, C.; Luckey, M.; Reustle, J.; Todd, N.; Allen, C.
2012-01-01
The Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. Between 1969 and 1972 six Apollo missions brought back 382 kilograms of lunar rocks, core samples, pebbles, sand and dust from the lunar surface. JSC also curates meteorites collected on US expeditions to Antarctica including rocks from Moon, Mars, and many asteroids including Vesta. Studies of rock and soil samples from the Moon and meteorites continue to yield useful information about the early history of the Moon, the Earth, and the inner solar system.
NASA's Earth Science Use of Commercially Availiable Remote Sensing Datasets: Cover Image
NASA Technical Reports Server (NTRS)
Underwood, Lauren W.; Goward, Samuel N.; Fearon, Matthew G.; Fletcher, Rose; Garvin, Jim; Hurtt, George
2008-01-01
The cover image incorporates high resolution stereo pairs acquired from the DigitalGlobe(R) QuickBird sensor. It shows a digital elevation model of Meteor Crater, Arizona at approximately 1.3 meter point-spacing. Image analysts used the Leica Photogrammetry Suite to produce the DEM. The outside portion was computed from two QuickBird panchromatic scenes acquired October 2006, while an Optech laser scan dataset was used for the crater s interior elevations. The crater s terrain model and image drape were created in a NASA Constellation Program project focused on simulating lunar surface environments for prototyping and testing lunar surface mission analysis and planning tools. This work exemplifies NASA s Scientific Data Purchase legacy and commercial high resolution imagery applications, as scientists use commercial high resolution data to examine lunar analog Earth landscapes for advanced planning and trade studies for future lunar surface activities. Other applications include landscape dynamics related to volcanism, hydrologic events, climate change, and ice movement.
The Miniature Radio Frequency Instruments (Mini-RF) Global Observations of Earth's Moon
NASA Technical Reports Server (NTRS)
Cahill, Joshua T. S.; Thomson, B. J.; Patterson, G. Wesley; Bussey, D. Benjamin J.; Neish, Catherine D.; Lopez, Norberto R.; Turner, F. Scott; Aldridge, T.; McAdam, M.; Meyer, H. M.;
2014-01-01
Radar provides a unique means to analyze the surface and subsurface physical properties of geologic deposits, including their wavelength-scale roughness, the relative depth of the deposits, and some limited compositional information. The NASA Lunar Reconnaissance Orbiter's (LRO) Miniature Radio Frequency (Mini-RF) instrument has enabled these analyses on the Moon at a global scale. Mini-RF has accumulated 67% coverage of the lunar surface in S-band (12.6 cm) radar with a resolution of 30 m/pixel. Here we present new Mini-RF global orthorectified uncontrolled S-band maps of the Moon and use them for analysis of lunar surface physical properties. Reported here are readily apparent global- and regional-scale differences in lunar surface physical properties that suggest three distinct terranes, namely: a (1) Nearside Radar Dark Region; (2) Orientale basin and continuous ejecta; and the (3) Highlands Radar Bright Region. Integrating these observations with new data from LRO's Diviner Radiometer rock abundance maps, as well Clementine and Lunar Prospector derived compositional values show multiple distinct lunar surface terranes and sub-terranes based upon both physical and compositional surface properties. Previous geochemical investigations of the Moon suggested its crust is best divided into three to four basic crustal provinces or terranes (Feldspathic Highlands Terrane (-An and -Outer), Procellarum KREEP Terrane, and South Pole Aitken Terrane) that are distinct from one another. However, integration of these geochemical data sets with new geophysical data sets allows us to refine these terranes. The result shows a more complex view of these same crustal provinces and provides valuable scientific and hazard perspectives for future targeted human and robotic exploration.
Pre-Flight Tests with Astronauts, Flight and Ground Hardware, to Assure On-Orbit Success
NASA Technical Reports Server (NTRS)
Haddad Michael E.
2010-01-01
On-Orbit Constraints Test (OOCT's) refers to mating flight hardware together on the ground before they will be mated on-orbit or on the Lunar surface. The concept seems simple but it can be difficult to perform operations like this on the ground when the flight hardware is being designed to be mated on-orbit in a zero-g/vacuum environment of space or low-g/vacuum environment on the Lunar/Mars Surface. Also some of the items are manufactured years apart so how are mating tasks performed on these components if one piece is on-orbit/on Lunar/Mars surface before its mating piece is planned to be built. Both the Internal Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) OOCT's performed at Kennedy Space Center will be presented in this paper. Details include how OOCT's should mimic on-orbit/Lunar/Mars surface operational scenarios, a series of photographs will be shown that were taken during OOCT's performed on International Space Station (ISS) flight elements, lessons learned as a result of the OOCT's will be presented and the paper will conclude with possible applications to Moon and Mars Surface operations planned for the Constellation Program.
The third stage of Lunar Prospector's Athena arrives at LC 46 at CCAS
NASA Technical Reports Server (NTRS)
1997-01-01
The third stage of the Lockheed Martin Athena launch vehicle arrives at Launch Complex 46 at Cape Canaveral Air Station before it is mated to the second stage. The protective covering for safe transportation is removed before the third stage is lifted on the launch pad. Athena is scheduled to carry the Lunar Prospector spacecraft for an 18-month mission that will orbit the Earth's moon to collect data from the lunar surface. Scientific experiments to be conducted by the Prospector include locating water ice that may exist near the lunar poles, gathering data to understand the evolution of the lunar highland crust and the lunar magnetic field, finding radon outgassing events, and describing the lunar gravity field by means of Doppler tracking. The launch is now scheduled for early-January 1998.
View of Scientific Instrument Module to be flown on Apollo 15
1971-06-27
S71-2250X (June 1971) --- A close-up view of the Scientific Instrument Module (SIM) to be flown for the first time on the Apollo 15 lunar landing mission. Mounted in a previously vacant sector of the Apollo Service Module (SM), the SIM carries specialized cameras and instrumentation for gathering lunar orbit scientific data. SIM equipment includes a laser altimeter for accurate measurement of height above the lunar surface; a large-format panoramic camera for mapping, correlated with a metric camera and the laser altimeter for surface mapping; a gamma ray spectrometer on a 25-feet extendible boom; a mass spectrometer on a 21-feet extendible boom; X-ray and alpha particle spectrometers; and a subsatellite which will be injected into lunar orbit carrying a particle and magnetometer, and the S-Band transponder.
Power Goals for the NASA Exploration Program
NASA Technical Reports Server (NTRS)
Jeevarajan, J.
2009-01-01
This slide presentation reviews the requirements for electrical power for future NASA exploration missions to the lunar surface. A review of the Constellation program is included as an introduction to the review of the batteries required for safe and reliable power for the ascent stage of the Altair Lunar Lander module.
Lunar Surface Propagation Modeling and Effects on Communications
NASA Technical Reports Server (NTRS)
Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.
2008-01-01
This paper analyzes the lunar terrain effects on the signal propagation of the planned NASA lunar wireless communication and sensor systems. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate that the terrain geometry, antenna location, and lunar surface material are important factors determining the propagation characteristics of the lunar wireless communication systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, operating frequency, and surface material. The analysis results from this paper are important for the lunar communication link margin analysis in determining the limits on the reliable communication range and radio frequency coverage performance at planned lunar base worksites. Key Words lunar, multipath, path loss, propagation, wireless.
NASA Technical Reports Server (NTRS)
Cooper, B. L.; Hoffman, J. H.; Allen, Carlton C.; McKay, David S.
1998-01-01
There are two important reasons to explore the Moon. First, we would like to know more about the Moon itself: its history, its geology, its chemistry, and its diversity. Second, we would like to apply this knowledge to a useful purpose. namely finding and using lunar resources. As a result of the recent Clementine and Lunar Prospector missions, we now have global data on the regional surface mineralogy of the Moon, and we have good reason to believe that water exists in the lunar polar regions. However, there is still very little information about the subsurface. If we wish to go to the lunar polar regions to extract water, or if we wish to go anywhere else on the Moon and extract (or learn) anything at all, we need information in three dimensions an understanding of what lies below the surface, both shallow and deep. The terrestrial mining industry provides an example of the logical steps that lead to an understanding of where resources are located and their economic significance. Surface maps are examined to determine likely locations for detailed study. Geochemical soil sample surveys, using broad or narrow grid patterns, are then used to gather additional data. Next, a detailed surface map is developed for a selected area, along with an interpretation of the subsurface structure that would give rise to the observed features. After that, further sampling and geophysical exploration are used to validate and refine the original interpretation, as well as to make further exploration/ mining decisions. Integrating remotely sensed, geophysical, and sample datasets gives the maximum likelihood of a correct interpretation of the subsurface geology and surface morphology. Apollo-era geophysical and automated sampling experiments sought to look beyond the upper few microns of the lunar surface. These experiments, including ground-penetrating radar and spectrometry, proved the usefulness of these methods for determining the best sites for lunar bases and lunar mining operations.
The Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter (LRO) mission
NASA Astrophysics Data System (ADS)
Riris, H.; Cavanaugh, J.; Sun, X.; Liiva, P.; Rodriguez, M.; Neuman, G.
2017-11-01
The Lunar Orbiter Laser Altimeter (LOLA) instrument [1-3] on NASA's Lunar Reconnaissance Orbiter (LRO) mission, launched on June 18th, 2009, from Kennedy Space Center, Florida, will provide a precise global lunar topographic map using laser altimetry. LOLA will assist in the selection of landing sites on the Moon for future robotic and human exploration missions and will attempt to detect the presence of water ice on or near the surface, which is one of the objectives of NASA's Exploration Program. Our present knowledge of the topography of the Moon is inadequate for determining safe landing areas for NASA's future lunar exploration missions. Only those locations, surveyed by the Apollo missions, are known with enough detail. Knowledge of the position and characteristics of the topographic features on the scale of a lunar lander are crucial for selecting safe landing sites. Our present knowledge of the rest of the lunar surface is at approximately 1 km kilometer level and in many areas, such as the lunar far side, is on the order of many kilometers. LOLA aims to rectify that and provide a precise map of the lunar surface on both the far and near side of the moon. LOLA uses short (6 ns) pulses from a single laser through a Diffractive Optical Element (DOE) to produce a five-beam pattern that illuminates the lunar surface. For each beam, LOLA measures the time of flight (range), pulse spreading (surface roughness), and transmit/return energy (surface reflectance). LOLA will produce a high-resolution global topographic model and global geodetic framework that enables precise targeting, safe landing, and surface mobility to carry out exploratory activities. In addition, it will characterize the polar illumination environment, and image permanently shadowed regions of the lunar surface to identify possible locations of surface ice crystals in shadowed polar craters.
NASA Technical Reports Server (NTRS)
Cowing, Keith L.
1992-01-01
Centrifuges will continue to serve as a valuable research tool in gaining an understanding of the biological significance of the inertial acceleration due to gravity. Space- and possibly lunar-based centrifuges will play a significant and enabling role with regard to the human component of future lunar and martian exploration, both as a means of accessing potential health and performance risks and as a means of alleviating these risks. Lunar-based centrifuges could be particularly useful as part of a program of physiologic countermeasures designed to alleviate the physical deconditioning that may result from prolonged exposure to a 1/6-g environment. Centrifuges on the lunar surface could also be used as part of a high-fidelity simulation of a trip to Mars. Other uses could include crew readaptation to 1 g, waste separation, materials processing, optical mirror production in situ on the Moon, and laboratory specimen separation.
Characterizing the Mineralogy of Potential Lunar Landing Sites
NASA Technical Reports Server (NTRS)
Pieters, Carle; Head, James W., III; Mustard, Jack; Boardman, Joe; Buratti, Bonnie; Clark, Roger; Green, Rob; Head, James W, III; McCord, Thomas B.; Mustard, Jack;
2006-01-01
Many processes active on the early Moon are common to most terrestrial planets, including the record of early and late impact bombardment. The Moon's surface provides a record of the earliest era of terrestrial planet evolution, and the type and composition of minerals that comprise a planetary surface are a direct result of the initial composition and subsequent thermal and physical processing. Lunar mineralogy seen today is thus a direct record of the early evolution of the lunar crust and subsequent geologic processes. Specifically, the distribution and concentration of specific minerals is closely tied to magma ocean products, lenses of intruded or remelted plutons, basaltic volcanism and fire-fountaining, and any process (e.g. cratering) that might redistribute or transform primary and secondary lunar crustal materials. The association of several lunar minerals with key geologic processes is illustrated in Figure 1. The geologic history of potential landing sites on the Moon can be read from the character and context of local mineralogy.
1969-11-24
Sitting in the life raft, during the Apollo 12 Pacific recovery, are the three mission astronauts; Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms, while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.
1969-12-14
The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples, some of which can be seen in this photograph. Apollo 12 safely returned to Earth on November 24, 1969.
Propulsion dynamics of lunar hoppers
NASA Technical Reports Server (NTRS)
Meetin, R. J.; Seifert, H. S.
1974-01-01
A feasibility study was recently completed on a hopping transporter concept for locomotion on the moon. Termed a Lunar Pogo because it would operate similarly to a conventional pogo stick, this vehicle would accelerate up an inclined leg, pick up the leg, and then enter ballistic flight over the moon's surface. Upon recontacting the lunar surface, the Lunar Pogo would decelerate down the leg. Propulsion would be provided by expansion of gas against a piston. Operation would be partially conservative because much of the energy expended by the gas during takeoff would be recovered by compressing the gas during landing. Two models of the ballistics and propulsion have been set up to estimate performance. The simplified first-order model illuminates the thermodynamics of ideal operation. The second-order model, which includes realistic effects such as sliding, provides a better approximation to actual performance. In a one-man Lunar Pogo, an astronaut would typically make 15-m (50-ft) leaps at an average speed of 5-8 km (3-5 miles) per hour.
Towards a Selenographic Information System: Apollo 15 Mission Digitization
NASA Astrophysics Data System (ADS)
Votava, J. E.; Petro, N. E.
2012-12-01
The Apollo missions represent some of the most technically complex and extensively documented explorations ever endeavored by mankind. The surface experiments performed and the lunar samples collected in-situ have helped form our understanding of the Moon's geologic history and the history of our Solar System. Unfortunately, a complication exists in the analysis and accessibility of these large volumes of lunar data and historical Apollo Era documents due to their multiple formats and disconnected web and print locations. Described here is a project to modernize, spatially reference, and link the lunar data into a comprehensive SELENOGRAPHIC INFORMATION SYSTEM, starting with the Apollo 15 mission. Like its terrestrial counter-parts, Geographic Information System (GIS) programs, such as ArcGIS, allow for easy integration, access, analysis, and display of large amounts of spatially-related data. Documentation in this new database includes surface photographs, panoramas, samples and their laboratory studies (major element and rare earth element weight percents), planned and actual vehicle traverses, and field notes. Using high-resolution (<0.25 m/pixel) images from the Lunar Reconnaissance Orbiter Camera (LROC) the rover (LRV) tracks and astronaut surface activities, along with field sketches from the Apollo 15 Preliminary Science Report (Swann, 1972), were digitized and mapped in ArcMap. Point features were created for each documented sample within the Lunar Sample Compendium (Meyer, 2010) and hyperlinked to the appropriate Compendium file (.PDF) at the stable archive site: http://curator.jsc.nasa.gov/lunar/compendium.cfm. Historical Apollo Era photographs and assembled panoramas were included as point features at each station that have been hyperlinked to the Apollo Lunar Surface Journal (ALSJ) online image library. The database has been set up to allow for the easy display of spatial variation of select attributes between samples. Attributes of interest that have data from the Compendium added directly into the database include age (Ga), mass, texture, major oxide elements (weight %), and Th and U (ppm). This project will produce an easily accessible and linked database that can offer technical and scientific information in its spatial context. While it is not possible given the enormous amounts of data, and the small allotment of time, to enter and/or link every detail to its map layer, the links that have been made here direct the user to rich, stable archive websites and web-based databases that are easy to navigate. While this project only created a product for the Apollo 15 mission, it is the model for spatially-referencing the other Apollo missions. Such a comprehensive lunar surface-activities database, a Selenographic Information System, will likely prove invaluable for future lunar studies. References: Meyer, C. (2010), The lunar sample compendium, June 2012 to August 2012, http://curator.jsc.nasa.gov/lunar/compendium.cfm, Astromaterials Res. & Exploration Sci., NASA L. B. Johnson Space Cent., Houston, TX. Swann, G. A. (1972), Preliminary geologic investigation of the Apollo 15 landing site, in Apollo 15 Preliminary Science Report, [NASA SP-289], pp. 5-1 - 5-112, NASA Manned Spacecraft Cent., Washington, D.C.
Advanced space transportation system support contract
NASA Technical Reports Server (NTRS)
1988-01-01
The general focus is on a phase 2 lunar base, or a lunar base during the period after the first return of a crew to the Moon, but before permanent occupancy. The software effort produced a series of trajectory programs covering low earth orbit (LEO) to various node locations, the node locations to the lunar surface, and then back to LEO. The surface operations study took a lunar scenario in the civil needs data base (CNDB) and attempted to estimate the amount of space-suit work or extravehicular activity (EVA) required to set up the base. The maintenance and supply options study was a first look at the problems of supplying and maintaining the base. A lunar surface launch and landing facility was conceptually designed. The lunar storm shelter study examined the problems of radiation protection. The lunar surface construction and equipment assembly study defined twenty surface construction and assembly tasks in detail.
Astronaut Alan Bean participates in lunar surface simulation
NASA Technical Reports Server (NTRS)
1969-01-01
Astronaut Alan L. Bean, lunar module pilot of the Apollo 12 lunar landing mission, participates in lunar surface simulation training in bldg 29 at the Manned Spacecraft Center. Bean is strapped to a one-sixth gravity simulator.
A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link
NASA Technical Reports Server (NTRS)
Wilson, K.; Biswas, A.; Schoolcraft, J.
2011-01-01
A lunar surface systems study explores the application of optical communications to support a high bandwidth data link from a lunar relay satellite and from fixed lunar assets. The results show that existing 1-m ground stations could provide more than 99% coverage of the lunar terminal at 100Mb/s data rates from a lunar relay satellite and in excess of 200Mb/s from a fixed terminal on the lunar surface. We have looked at the effects of the lunar regolith and its removal on optical samples. Our results indicate that under repeated dust removal episodes sapphire rather than fused silica would be a more durable material for optical surfaces. Disruption tolerant network protocols can minimize the data loss due to link dropouts. We report on the preliminary results of the DTN protocol implemented over the optical carrier.
NASA Technical Reports Server (NTRS)
Lazio, Joseph; Bowman, Judd D.; Burns, Jack O.; Farrell, W. M.; Jones, D. L.; Kasper, J. C.; MacDowall, R. J.; Stewart, K. P.; Weiler, K.
2012-01-01
Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. The instrument packages and infrastructure needed for radio telescopes can be transported and deployed as part of Exploration activities, and the resulting science measurements may inform Exploration (e.g., measurements of lunar surface charging). An illustrative roadmap for the staged deployment of lunar radio telescopes
Lunar Surface-to-Surface Power Transfer
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.
2007-01-01
A human lunar outpost, under NASA study for construction in the 2020's, has potential requirements to transfer electric power up to 50-kW across the lunar surface from 0.1 to 10-km distances. This power would be used to operate surface payloads located remotely from the outpost and/or outpost primary power grid. This paper describes concept designs for state-of-the-art technology power transfer subsystems including AC or DC power via cables, beamed radio frequency power and beamed laser power. Power transfer subsystem mass and performance are calculated and compared for each option. A simplified qualitative assessment of option operations, hazards, costs and technology needs is also described. Based on these concept designs and performance analyses, a DC power cabling subsystem is recommended to minimize subsystem mass and to minimize mission and programmatic costs and risks. Avenues for additional power transfer subsystem studies are recommended.
1969-03-05
The third stage (S-IVB) of the Saturn V launch vehicle for the Apollo 11 lunar landing mission is hoisted in the vehicle assembly building at the NASA Kennedy Space Center (KSC) for mating with the second stage (S-II). The vehicle, designated as AS-506, projected the first lunar landing mission, Apollo 11, on a trajectory for the Moon. The Apollo 11 mission launched from KSC in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Astronauts onboard included Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.
The average chemical composition of the lunar surface
NASA Technical Reports Server (NTRS)
Turkevich, A. L.
1973-01-01
The available analytical data from twelve locations on the moon are used to estimate the average amounts of the principal chemical elements (O, Na, Mg, Al, Si, Ca, Ti, and Fe) in the mare, the terra, and the average lunar surface regolith. These chemical elements comprise about 99% of the atoms on the lunar surface. The relatively small variability in the amounts of these elements at different mare (or terra) sites, and the evidence from the orbital measurements of Apollo 15 and 16, suggest that the lunar surface is much more homogeneous than the surface of the earth. The average chemical composition of the lunar surface may now be known as well as, if not better than, that of the solid part of the earth's surface.
NASA Technical Reports Server (NTRS)
Gupton, Lindsey; Hyde, Steve; Mckillip, Dan; Player, Bryan; Smith, Greg
1988-01-01
A catalog of fasteners is presented for a variety of applications to be used in a lunar environment. The fastening applications targeted include: covers, panels, hatches, bearings, wheels, gears, pulleys, anchors for the lunar surface and structural fasteners (general duty preloadable). The robotic installation and removal of each fastener is presented along with a discussion of failure modes. Structural performance data is tabulated for various configurations. Potential materials for the space environment are presented along with recommendations of appropriate solid film lubricants. Three original fastener designs were found suitable for the lunar environment. A structural analysis is presented for each original design.
The Clementine Bistatic Radar Experiment
NASA Technical Reports Server (NTRS)
Nozette, S.; Lichtenberg, C. L.; Spudis, P.; Bonner, R.; Ort, W.; Malaret, E.; Robinson, M.; Shoemaker, E. M.
1996-01-01
During the Clementine 1 mission, a bistatic radar experiment measured the magnitude and polarization of the radar echo versus bistatic angle, beta, for selected lunar areas. Observations of the lunar south pole yield a same-sense polarization enhancement around beta = 0. Analysis shows that the observed enhancement is localized to the permanently shadowed regions of the lunar south pole. Radar observations of periodically solar-illuminated lunar surfaces, including the north pole, yielded no such enhancement. A probable explanation for these differences is the presence of low-loss volume scatterers, such as water ice, in the permanently shadowed region at the south pole.
Scientific investigations at a lunar base
NASA Technical Reports Server (NTRS)
Duke, M. B.; Mendell, W. W.
1988-01-01
Scientific investigations to be carried out at a lunar base can have significant impact on the location, extent, and complexity of lunar surface facilities. Among the potential research activities to be carried out are: (1) Lunar Science: Studies of the origin and history of the Moon and early solar system, based on lunar field investigations, operation of networks of seismic and other instruments, and collection and analysis of materials; (2) Space Plasma Physics: Studies of the time variation of the charged particles of the solar wind, solar flares and cosmic rays that impact the Moon as it moves in and out of the magnetotail of the Earth; (3) Astronomy: Utilizing the lunar environment and stability of the surface to emplace arrays of astronomical instruments across the electromagnetic spectrum to improve spectral and spatial resolution by several orders of magnitude beyond the Hubble Space Telescope and other space observatories; (4) Fundamental physics and chemistry: Research that takes advantage of the lunar environment, such as high vacuum, low magnetic field, and thermal properties to carry out new investigations in chemistry and physics. This includes material sciences and applications; (5) Life Sciences: Experiments, such as those that require extreme isolation, highly sterile conditions, or very low natural background of organic materials may be possible; and (6) Lunar environmental science: Because many of the experiments proposed for the lunar surface depend on the special environment of the Moon, it will be necessary to understand the mechanisms that are active and which determine the major aspects of that environment, particularly the maintenance of high-vacuum conditions. From a large range of experiments, investigations and facilities that have been suggested, three specific classes of investigations are described in greater detail to show how site selection and base complexity may be affected: (1) Extended geological investigation of a complex region up to 250 kilometers from the base requires long range mobility, with transportable life support systems and laboratory facilities for the analysis of rocks and soil. Selection of an optimum base site would depend heavily on an evaluation of the degree to which science objectives could be met. These objectives could include lunar cratering, volcanism, resource surveys or other investigations; (2) An astronomical observatory initially instrumented with a VLF radio telescope, but later expanding to include other instruments, requires site preparation capability, "line shack" life support systems, instrument maintenance and storage facilities, and sortie mode transportation. A site perpetually shielded from Earth is optimum for the advanced stages of a lunar observatory; (3) an experimental physics laboratory conducting studies requiring high vacuum facilities and heavily instrumented experiments, is not highly dependent on lunar location, but will require much more flexibility in experiment operation and EVA capability, and more sophisticated instrument maintenance and fabrication facilities.
Apollo program soil mechanics experiment. [interaction of the lunar module with the lunar surface
NASA Technical Reports Server (NTRS)
Scott, R. F.
1975-01-01
The soil mechanics investigation was conducted to obtain information relating to the landing interaction of the lunar module (LM) with the lunar surface, and lunar soil erosion caused by the spacecraft engine exhaust. Results obtained by study of LM landing performance on each Apollo mission are summarized.
Proposal for a lunar landing pod for SKITTER
NASA Technical Reports Server (NTRS)
Herman, David; Huang, Frank; Morelli, Mark; Njaka, Chima; Pope, Michael; Rice, Michael
1987-01-01
The purpose of this project is to design a lunar landing module for the SKITTER vehicle. SKITTER is a three-legged mobile lunar transport and work platform. This lunar landing module must be able to bring SKITTER, with attached crane, from a lunar orbit to the surface of the Moon. This propulsion system is entirely self-contained and removable after touchdown. SKITTER is unmanned and must be able to touch down on the lunar surface and perform assigned tasks independently of other space or lunar vehicles. The propulsion system is designed to ensure that the vehicle will make a lunar landing within the expected velocity range. A landing gear configuration is presented to safely dissipate landing forces on lunar impact and be removed from the SKITTER structure after touchdown. The overall engineering analysis was conducted to determine an economical design to land SKITTER safely on the Moon. SKITTER will perform various tasks on the surface of the Moon. The completion of this project will determine the feasibility of landing SKITTER with the attached crane safely on the lunar surface.
Resource Prospector: Evaluating the ISRU Potential of the Lunar Poles
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R.; Andrews, D.; Trimble, J.; Bluethmann, B.; Quinn, J.; Chavers, G.
2017-01-01
Resource Prospector (RP) is a lunar volatiles prospecting mission being developed for potential flight in CY2021-2022. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. The primary mission goal for RP is to evaluate the In-Situ Resource Utilization (ISRU) potential of the lunar poles.
Lunar surface construction and assembly equipment study: Lunar Base Systems Study (LBSS) task 5.3
NASA Technical Reports Server (NTRS)
1988-01-01
A set of construction and assembly tasks required on the lunar surface was developed, different concepts for equipment applicable to the tasks determined, and leading candidate systems identified for future conceptual design. Data on surface construction and assembly equipment systems are necessary to facilitate an integrated review of a complete lunar scenario.
The Lunar Mapping and Modeling Project Update
NASA Technical Reports Server (NTRS)
Noble, S.; French, R.; Nall, M.; Muery, K.
2010-01-01
The Lunar Mapping and Modeling Project (LMMP) is managing the development of a suite of lunar mapping and modeling tools and data products that support lunar exploration activities, including the planning, design, development, test, and operations associated with crewed and/or robotic operations on the lunar surface. In addition, LMMP should prove to be a convenient and useful tool for scientific analysis and for education and public outreach (E/PO) activities. LMMP will utilize data predominately from the Lunar Reconnaissance Orbiter, but also historical and international lunar mission data (e.g. Lunar Prospector, Clementine, Apollo, Lunar Orbiter, Kaguya, and Chandrayaan-1) as available and appropriate. LMMP will provide such products as image mosaics, DEMs, hazard assessment maps, temperature maps, lighting maps and models, gravity models, and resource maps. We are working closely with the LRO team to prevent duplication of efforts and ensure the highest quality data products. A beta version of the LMMP software was released for limited distribution in December 2009, with the public release of version 1 expected in the Fall of 2010.
Understanding lunar magnetic field through magnetization and dynamo mechanism
NASA Astrophysics Data System (ADS)
Singh, K. H.; Kuang, W.
2016-12-01
It has been known that the Moon does not have an active global magnetic field. But past missions to the Moon (e.g. Apollo missions, Lunar Prospector) have detected magnetic anomalies in many areas on the lunar surface. They carry rich information about geophysical processes on and within the Moon, thus central for understanding the structure and dynamics in the interior, e.g. the core and the suggested magma ocean. One unsettling problem for understanding the lunar magnetic anomaly is its origin. There have been several mechanisms suggested in the past, either on the anomalies in specific regions, or only at the conceptual stage. The latter include the paleo dynamo. The lunar dynamo mechanism is conceptually very simple: lunar crustal magnetization was acquired in an internal magnetic field that was generated and maintained by dynamo action in the lunar core. Could this simple mechanism suffice to explain most of the observed lunar magnetic anomalies? We present our theoretical calculations of possible paleo-lunar magnetic field strengths based on paleomagnetic measurements of Apollo samples.
Lunar-based optical telescopes: Planning astronomical tools of the twenty-first century
NASA Astrophysics Data System (ADS)
Hilchey, J. D.; Nein, M. E.
1995-02-01
A succession of optical telescopes, ranging in aperture from 1 to 16 m or more, can be deployed and operated on the lunar surface over the next half-century. These candidates to succeed NASA's Great Observatories would capitalize on the unique observational advantages offered by the Moon. The Lunar Telescope Working Group and the LUTE Task Team of the George C. Marshall Space Flight Center (MSFC) have assessed the feasibility of developing and deploying these facilities. Studies include the 16-m Large Lunar Telescope (LLT); the Lunar Cluster Telescope Experiment (LCTE), a 4-m precursor to the LLT; the 2-m Lunar Transit Telescope (LTT); and its precursor, the 1-m Lunar Ultraviolet Telescope Experiment (LUTE). The feasibility of developing and deploying each telescope was assessed and system requirements and options for supporting technologies, subsystems, transportation, and operations were detailed. Influences of lunar environment factors and site selection on telescope design and operation were evaluated, and design approaches and key tradeoffs were established. This paper provides an overview of the study results. Design concepts and brief system descriptions are provided, including subsystem and mission options selected for the concepts.
1971-02-05
AS14-66-9233 (5 Feb. 1971) --- Astronaut Edgar D. Mitchell, lunar module pilot for the Apollo 14 lunar landing mission, stands by the deployed U.S. flag on the lunar surface during the early moments of the first extravehicular activity (EVA) of the mission. He was photographed by astronaut Alan B. Shepard Jr., mission commander, using a 70mm modified lunar surface Hasselblad camera. While astronauts Shepard and Mitchell descended in the Lunar Module (LM) "Antares" to explore the Fra Mauro region of the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) "Kitty Hawk" in lunar orbit.
Lunar Prospecting: Searching for Volatiles at the South Pole
NASA Technical Reports Server (NTRS)
Trimble, Jay; Carvalho, Robert
2016-01-01
The Resource Prospector is an in-situ resource utilization (ISRU) technology demonstration mission, planned for a 2021 launch to search for and analyze volatiles at the Lunar South Pole. The mission poses unique operational challenges. Operating at the Lunar South Pole requires navigating a surface with lighting, shadow and regolith characteristics unlike those of previous missions. The short round trip communications time enables reactive surface operations for science and engineering. Navigation of permanently shadowed regions with a solar powered rover creates risks, including power and thermal management, and requires constant real time decision making for safe entry, path selection and egress. The mission plan requires a faster rover egress from the lander than any previous NASA rover mission.
Figure of merit studies of beam power concepts for advanced space exploration
NASA Technical Reports Server (NTRS)
Miller, Gabriel; Kadiramangalam, Murali N.
1990-01-01
Surface to surface, millimeter wavelength beam power systems for power transmission on the lunar base were investigated. Qualitative/quantitative analyses and technology assessment of 35, 110 and 140 GHz beam power systems were conducted. System characteristics including mass, stowage volume, cost and efficiency as a function of range and power level were calculated. A simple figure of merit analysis indicates that the 35 GHz system would be the preferred choice for lunar base applications, followed closely by the 110 GHz system. System parameters of a 35 GHz beam power system appropriate for power transmission on a recent lunar base concept studied by NASA-Johnson and the necessary deployment sequence are suggested.
Lunar Surface Charging during Solar Energetic Particle Events
NASA Astrophysics Data System (ADS)
Halekas, Jasper S.; Delory, G. T.; Mewaldt, R. A.; Lin, R. P.; Fillingim, M. O.; Brain, D. A.; Lee, C. O.; Stubbs, T. J.; Farrell, W. M.; Hudson, M. K.
2006-09-01
The surface of the Moon, not protected by any substantial atmosphere, is directly exposed to the impact of both solar UV and solar wind plasma and energetic particles. This creates a complex lunar electrostatic environment, with the surface typically charging slightly positive in sunlight, and negative in shadow. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging leads to dust electrification and transport, posing a potentially significant hazard for exploration. The most significant charging effects should occur when the Moon is exposed to high-temperature plasmas like those encountered in the terrestrial plasmasheet or in solar storms. We now present evidence for kilovolt-scale negative charging of the shadowed lunar surface during solar energetic particle (SEP) events, utilizing data from the Lunar Prospector Electron Reflectometer (LP ER). We find that SEP events are associated with the most extreme lunar surface charging observed during the LP mission - rivaled only by previously reported charging during traversals of the terrestrial plasmasheet. The largest charging event observed by LP is a 4 kV negative surface potential (as compared to typical values of V) during a SEP event in May 1998. We characterize lunar surface charging during several SEP events, and compare to energetic particle measurements from ACE, Wind, and SOHO in order to determine the relationship between SEP events and extreme lunar surface charging. Space weather events are already considered by NASA to be a significant hazard to lunar exploration, due to high-energy ionizing radiation. Our observations demonstrate that plasma interactions with the lunar surface during SEP events, causing extreme surface charging and potentially significant dust electrification and transport, represent an additional hazard associated with space weather.
NASA Technical Reports Server (NTRS)
Gibson, E. K.; McKay, D. S.; Pillinger, C. T.; Wright, I. P.; Sims, M. R.; Richter, L.
2008-01-01
NASA has announced the selection of several Lunar Science Sortie Concept Studies for potential scientific payloads with future Lunar Missions. The Beagle 2 scientific package was one of those chosen for study. Near the beginning of the next decade will see the launch of scientific payloads to the lunar surface to begin laying the foundations for the return to the moon in the Vision for Space Exploration. Shortly thereafter, astronauts will return to the lunar surface with the ability to place scientific packages on the surface that will provide information about lunar resources and compositions of materials in permanently shadowed regions of the moon (1). One of the important questions which must be answered early in the program is whether there are lunar resources which would facilitate "living off the land" and not require the transport of resources and consumables from Earth (2). The Beagle science package developed to seek the signatures of life on Mars is the ideal payload (3) to use on the lunar surface for determining the nature of hydrogen, water and lunar volatiles found in the polar regions which could support the Vision for Space Exploration.
Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage
NASA Technical Reports Server (NTRS)
Christie, Robert J.; Plachta, David W.; Yasan, Mohammad M.
2008-01-01
A transient thermal model of the lunar surface and regolith was developed along with analytical techniques which will be used to evaluate the storage of cryogenic fluids at equatorial and polar landing sites. The model can provide lunar surface and subsurface temperatures as a function of latitude and time throughout the lunar cycle and season. It also accounts for the presence of or lack of the undisturbed fluff layer on the lunar surface. The model was validated with Apollo 15 and Clementine data and shows good agreement with other analytical models.
Recent activity in the moon; Proceedings of the Special Symposium, Houston, Tex., March 16, 1976
NASA Technical Reports Server (NTRS)
Runcorn, S. K.; Oreilly, W.; Srnka, L. J.
1977-01-01
The papers review evidence for recent activity within the moon as manifested by lunar grid system, transient phenomena, moonquakes, and episodic emissions of radiogenic gases. Topics include a survey of lunar transient phenomena, possible causes of such phenomena, evidence that high-frequency seismic events may be shallow moonquakes, lunar seismicity and tectonics, a hypothesis on the nature of sites of lunar gas venting, and a search for sporadic gas emissions from the moon. Other contributions discuss the release of radiogenic argon-40 from the moon, radon-222 emission as an indicator of current activity on the moon, upper limits to gas emission from sites of lunar transient phenomena, physical processes that could produce transient changes on the lunar surface, critical-velocity gas-plasma interaction as a mechanism for lunar transient phenomena, and tidal triggering of moonquakes, transient phenomena, and radiogenic-gas emissions.
SMART-1/CLEMENTINE Study of Humorum and Procellarum Basins
NASA Astrophysics Data System (ADS)
Carey, William; Foing, Bernard H.; Koschny, Detlef; Pio Rossi, Angelo; Josset, Jean-Luc
A study undertaken by ESA to define a European Reference Architecture for Space Exploration is due to be completed in September 2008. The development of this architecture over the past twelve months has identified a number of key capabilities, among them a lunar lander system, which could form the basis for Europe's contribution to the future exploration of space in collaboration with International Partners. The focus of this paper will be on the lunar lander system, and will present the results of an analysis of possible payloads that could be accommodated by the lander. As the industrial study is at the Phase 0 or Pre-Phase A level, the design of such a lander system is at a very early stage in its development, but an estimation of the payload capacity allows a general assessment of the types of possible payloads that could be carried, currently this capacity is estimated at 1.1 tonnes of gross payload mass to the lunar surface (assuming an Ariane 5 ECA launch). An important characteristic of the lunar lander is that it provides a versatile and flexible system for utilisation in a broad range of lunar missions which include: - Independent lunar exploration missions for science, technology demonstration and research. - Delivery of logistics and cargo to support human surface sortie missions. - Delivery of logistics to a lunar base/outpost. - Deployment of individual infrastructure elements in support of a lunar base/outpost. Based on the above different types of missions, a number of configurations of "reference payload" sets are in the process of being defined that cover specific exploration objectives related primarily to capability demonstration, exploration enabling research and enabled science. Aspects covered include: ISRU, robotics, mobility, human preparation, life science and geology. This paper will present the current status of definition of the Reference Payload sets.
Lunar Dust: Properties and Investigation Techniques
NASA Astrophysics Data System (ADS)
Kuznetsov, I. A.; Zakharov, A. V.; Dolnikov, G. G.; Lyash, A. N.; Afonin, V. V.; Popel, S. I.; Shashkova, I. A.; Borisov, N. D.
2017-12-01
Physical conditions in the near-surface layer of the Moon are overviewed. This medium is formed in the course of the permanent micrometeoroid bombardment of the lunar regolith and due to the exposure of the regolith to solar radiation and high-energy charged particles of solar and galactic origin. During a considerable part of a lunar day (more than 20%), the Moon is passing through the Earth's magnetosphere, where the conditions strongly differ from those in the interplanetary space. The external effects on the lunar regolith form the plasma-dusty medium above the lunar surface, the so-called lunar exosphere, whose characteristic altitude may reach several tens of kilometers. Observations of the near-surface dusty exosphere were carried out with the TV cameras onboard the landers Surveyor 5, 6, and 7 (1967-1968) and with the astrophotometer of Lunokhod-2 (1973). Their results showed that the near-surface layer glows above the sunlit surface of the Moon. This was interpreted as the scattering of solar light by dust particles. Direct detection of particles on the lunar surface was made by the Lunar Ejects and Meteorite (LEAM) instrument deployed by the Apollo 17 astronauts. Recently, the investigations of dust particles were performed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) instrument at an altitude of several tens of kilometers. These observations urged forward the development of theoretical models for the lunar exosphere formation, and these models are being continuously improved. However, to date, many issues related to the dynamics of dust and the near-surface electric fields remain unresolved. Further investigations of the lunar exosphere are planned to be performed onboard the Russian landers Luna-Glob and Luna-Resurs.
Data users note: Apollo 17 lunar photography
NASA Technical Reports Server (NTRS)
Cameron, W. S.; Doyle, F. J.; Levenson, L.; Michlovitz, K.
1974-01-01
The availability of Apollo 17 pictorial data is announced as an aid to the selection of the photographs for study. Brief descriptions are presented of the Apollo 17 flight, and the photographic equipment used during the flight. The following descriptions are also included: service module photography, command module photography, and lunar surface photography.
Age of Lunar Meteorite LAP02205 and Implications for Impact-Sampling of Planetary Surfaces
NASA Technical Reports Server (NTRS)
Nyquist, L. E.; Shih, C.-Y.; Reese, Y.; Bogard, D. D.
2005-01-01
We have measured the age of lunar meteorite LAP02205 by the Rb-Sr and Ar-Ar methods. Sm-Nd analyses are in progress. The Rb-Sr and Ar-Ar ages indicate a crystallization age of approx. 3 Ga. Comparing the ages of LAP02205 and other lunar mare basaltic meteorites to mare surface ages based on the density of impact craters shows no significant bias in impact- sampling of lunar mare surfaces. Comparing the isotopic and geochemical data for LAP02205 to those for other lunar mare basalts suggests that it is a younger variant of the type of volcanism that produced the Apollo 12 basalts. Representative impact-sampling of the lunar surface
NASA Astrophysics Data System (ADS)
Ajith Kumar, P.; Kumar, Shashi
2016-04-01
Surface maturity estimation of the lunar regolith revealed selenological process behind the formation of lunar surface, which might be provided vital information regarding the geological evolution of earth, because lunar surface is being considered as 8-9 times older than as that of the earth. Spectral reflectances data from Moon mineralogy mapper (M3), the hyperspectral sensor of chandrayan-1 coupled with the standard weight percentages of FeO from lunar returned samples of Apollo and Luna landing sites, through data interpolation techniques to generate the weight percentage FeO map of the target lunar locations. With the interpolated data mineral maps were prepared and the results are analyzed.
Results from the Lunar Reconnaissance Orbiter Mission and Plans for the Extended Science Mission
NASA Technical Reports Server (NTRS)
Vondrak, Richard R.; Keller, J. W.; Chin, G.; Garvin, J.; Petro, N.
2012-01-01
The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18,2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and the measurement of the lunar radiation environment. After spacecraft commissioning, the ESMD phase of the mission began on September 15, 2009 and was completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission was scheduled for 2 years and completed in September of 2012. Under SMD, the Science Mission focused on a new set of goals related to understanding the history of the Moon, its current state, and what it can tell us about the evolution of the Solar System. Having recently marked the completion of the two-year Science Mission, we will review here the major results from the LRO for both exploration and science and discuss plans and objectives for the Extended Science that will last until September, 2014. Some results from the LRO mission are: the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measurement of the daytime and nighttime temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the PSRs; evidence for recent tectonic activity on the Moon; and high resolution maps of the illumination conditions at the poles.
NASA Technical Reports Server (NTRS)
Kuntz, Kip; Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.
2011-01-01
Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lnnar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however. the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.
A Mission Concept Based on the ISECG Human Lunar Surface Architecture
NASA Technical Reports Server (NTRS)
Gruener, J. E.; Lawrence, S. J.
2017-01-01
The National Aeronautics and Space Administration (NASA) is participating in the International Space Exploration Coordination Group (ISECG), working together with 13 other space agencies to advance a long-range human space exploration strategy. The ISECG has developed a Global Exploration Roadmap (GER) that reflects the coordinated international dialog and continued preparation for exploration beyond low-Earth orbit - beginning with the International Space Station (ISS) and continuing to the Moon, near-Earth asteroids, and Mars [1]. The roadmap demonstrates how initial capabilities can enable a variety of missions in the lunar vicinity, responding to individual and common goals and objectives, while contributing to building partnerships required for sustainable human space exploration that delivers value to the public. The current GER includes three different near-term themes: exploration of a near-Earth asteroid, extended duration crew missions in cis-lunar space, and humans to the lunar surface.
The Microstructure of Lunar Micrometeorite Impact Craters
NASA Technical Reports Server (NTRS)
Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.
2016-01-01
The peak of the mass flux of impactors striking the lunar surface is made up of objects approximately 200 micrometers in diameter that erode rocks, comminute regolith grains, and produce agglutinates. The effects of these micro-scale impacts are still not fully understood. Much effort has focused on evaluating the physical and optical effects of micrometeorite impacts on lunar and meteoritic material using pulsed lasers to simulate the energy deposited into a substrate in a typical hypervelocity impact. Here we characterize the physical and chemical changes that accompany natural micrometeorite impacts into lunar rocks with long surface exposure to the space environment (12075 and 76015). Transmission electron microscope (TEM) observations were obtained from cross-sections of approximately 10-20 micrometers diameter craters that revealed important micro-structural details of micrometeorite impact processes, including the creation of npFe (sup 0) in the melt, and extensive deformation around the impact site.
Resource Prospector Mission Animation (June 2018)
2018-05-30
Expanding human presence beyond low-Earth orbit will require the maximum possible use of local materials, so-called in-situ resources (ISRU). The Moon presents a unique destination to conduct robotic investigations that advance ISRU capabilities, as well as providing significant exploration and science value. This video animation shows one mission concept under study by NASA called Resource Prospector (RP), an ISRU prospecting and technology demonstration mission. RP would scan the surface and sub-surface terrain, and demonstrate extraction of hydrogen and oxygen from lunar regolith to validate one possible ISRU approach. As NASA plans a series of progressive robotic missions to the lunar surface, the agency is considering a variety of approaches to evolve progressively larger landers leading to an eventual human lander capability. Part of this expanded lunar campaign includes early flight of select instruments from Resource Prospector to the Moon.
NASA Astrophysics Data System (ADS)
Song, Yutian; Wang, Xueqiang; Bi, Shengshan; Wu, Jiangtao; Huang, Shaopeng
2017-09-01
Surface temperature at the nearside of the Moon (Ts,n) embraces an abundance of valuable information to be explored, and its measurement contributes to studying Earth's energy budget. On a basis of a one-dimensional unsteady heat-transfer model, this paper ran a quantitative calculation that how much the Ts,n varies with the changes of different heat sources, including solar radiation, terrestrial radiation, and lunar interior heat flow. The results reveal that solar radiation always has the most important influence on Ts,n not only during lunar daytime (by means of radiation balance) but also during lunar nighttime (by means of lunar regolith heat conduction). Besides, the effect of terrestrial radiation is also unavoidable, and measuring the variation of lunar nighttime low temperature is exactly helpful in observing Earth outgoing radiation. Accordingly, it is practical to establish a Moon-base observatory on the Moon. For verification, the Apollo 15 mission temperature data was used and analyzed as well. Moreover, other 9 typical lunar areas were selected and the simulation was run one after another in these areas after proper model amendation. It is shown that the polar regions on the Moon are the best areas for establishing Moon-base observatory.
Precision Lunar Laser Ranging For Lunar and Gravitational Science
NASA Technical Reports Server (NTRS)
Merkowitz, S. M.; Arnold, D.; Dabney, P. W.; Livas, J. C.; McGarry, J. F.; Neumann, G. A.; Zagwodzki, T. W.
2008-01-01
Laser ranging to retroreflector arrays placed on the lunar surface by the Apollo astronauts and the Soviet Lunar missions over the past 39 years have dramatically increased our understanding of gravitational physics along with Earth and Moon geophysics, geodesy, and dynamics. Significant advances in these areas will require placing modern retroreflectors and/or active laser ranging systems at new locations on the lunar surface. Ranging to new locations will enable better measurements of the lunar librations, aiding in our understanding of the interior structure of the moon. More precise range measurements will allow us to study effects that are too small to be observed by the current capabilities as well as enabling more stringent tests of Einstein's theory of General Relativity. Setting up retroreflectors was a key part of the Apollo missions so it is natural to ask if future lunar missions should include them as well. The Apollo retroreflectors are still being used today, and nearly 40 years of ranging data has been invaluable for scientific as well as other studies such as orbital dynamics. However, the available retroreflectors all lie within 26 degrees latitude of the equator, and the most useful ones within 24 degrees longitude of the sub-earth meridian. This clustering weakens their geometrical strength.
NASA Astrophysics Data System (ADS)
Dong, Zehua; Fang, Guangyou; Ji, Yicai; Gao, Yunze; Wu, Chao; Zhang, Xiaojuan
2017-01-01
Chang'E-3 (CE-3) landed in the northwest Mare Imbrium, a region that has not been explored before. Yutu rover that released by CE-3 lander carried the first lunar surface penetrating radar (LPR) for exploring lunar regolith thickness and subsurface shallow geological structures. In this paper, based on the LPR data and the Panoramic Camera (PC) data, we first calculate the lunar surface regolith parameters in CE-3 landing area including its permittivity, density, conductivity and FeO + TiO2 content. LPR data provides a higher spatial resolution and more accuracy for the lunar regolith parameters comparing to other remote sensing techniques, such as orbit radar sounder and microwave sensing or earth-based powerful radar. We also derived the regolith thickness and its weathered rate with much better accuracy in the landing area. The results indicate that the regolith growth rate is much faster than previous estimation, the regolith parameters are not uniform even in such a small study area and the thickness and growth rate of lunar regolith here are different from other areas in Mare Imbrium. We infer that the main reason should be geological deformation that caused by multiple impacts of meteorites in different sizes.
Definition and Development of Habitation Readiness Levels (HRLs) for Planetary Surface Habitats
NASA Technical Reports Server (NTRS)
Connolly, Janis H.; Toups, Larry
2007-01-01
One could argue that NASA has never developed a true habitat for a planetary surface, with only the Lunar Module from the 1960's-era Apollo Program providing for a sparse 2 person, 3 day capability. An integral part of NASA's current National Vision for Space Exploration is missions back to the moon and eventually to Mars. One of the largest leaps i11 lunar surface exploration beyond the Apollo lunar missions will be the conduct of these extended duration human missions. These missions could range from 30 to 90 days in length initially and may eventually range up to 500 days in length. To enable these extended duration human missions, probably the single-most important lunar surface element is the Surface Habitat. The requirements that must be met by the Surface Habitat will go far beyond the safety, performance and operational requirements of the Lunar Module, and NASA needs to develop a basis for making intelligent, technically correct habitat design decisions. This paper will discuss the possibilities of the definition and development of a Habitation Readiness Level (HRL) scale that might be mapped to current Technology Readiness Levels (TRLs) for technology development. HRLs could help measure how well a particular technology thrust is advanced by a proposed planetary habitat concept. The readiness level would have to be measured differently than TRLs, and may include such milestones as habitat design performance under simulated mission operations and constraints (including relevant field testing), functional allocation demonstrations, crew interface evaluation and post-occupancy evaluation. With many concepts for planetary habitats proposed over the past 20 years, there are many strategic technical challenges facing designers of planetary habitats that will support NASA's exploration of the moon and Mars. The systematic assessment of a variety of planetary habitat options will be an important approach and will influence the associated requirements for human design, volumetrics, functionality, systems hardware and operations.
Global silicate mineralogy of the Moon from the Diviner lunar radiometer.
Greenhagen, Benjamin T; Lucey, Paul G; Wyatt, Michael B; Glotch, Timothy D; Allen, Carlton C; Arnold, Jessica A; Bandfield, Joshua L; Bowles, Neil E; Donaldson Hanna, Kerri L; Hayne, Paul O; Song, Eugenie; Thomas, Ian R; Paige, David A
2010-09-17
We obtained direct global measurements of the lunar surface using multispectral thermal emission mapping with the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Most lunar terrains have spectral signatures that are consistent with known lunar anorthosite and basalt compositions. However, the data have also revealed the presence of highly evolved, silica-rich lunar soils in kilometer-scale and larger exposures, expanded the compositional range of the anorthosites that dominate the lunar crust, and shown that pristine lunar mantle is not exposed at the lunar surface at the kilometer scale. Together, these observations provide compelling evidence that the Moon is a complex body that has experienced a diverse set of igneous processes.
Evaluation of Surface Modification as a Lunar Dust Mitigation Strategy for Thermal Control Surfaces
NASA Technical Reports Server (NTRS)
Gaier, James R.; Waters, Deborah L.; Misconin, Robert M.; Banks, Bruce A.; Crowder, Mark
2011-01-01
Three surface treatments were evaluated for their ability to lower the adhesion between lunar simulant dust and AZ93, AlFEP, and AgFEP thermal control surfaces under simulated lunar conditions. Samples were dusted in situ and exposed to a standardized puff of nitrogen gas. Thermal performance before dusting, after dusting, and after part of the dust was removed by the puff of gas, were compared to perform the assessment. None of the surface treatments was found to significantly affect the adhesion of lunar simulants to AZ93 thermal control paint. Oxygen ion beam texturing also did not lower the adhesion of lunar simulant dust to AlFEP or AgFEP. But a workfunction matching coating and a proprietary Ball Aerospace surface treatment were both found to significantly lower the adhesion of lunar simulants to AlFEP and AgFEP. Based on these results, it is recommended that all these two techniques be further explored as dust mitigation coatings for AlFEP and AgFEP thermal control surfaces.
Mineralogical and chemical properties of the lunar regolith
NASA Astrophysics Data System (ADS)
McKay, D. S.; Ming, D. W.
The composition of lunar regolith and its attendant properties are discussed. Tables are provided listing lunar minerals, the abundance of plagioclase feldspar, pyroxene, olivine, and ilmenite in lunar materials, typical compositions of common lunar minerals, and cumulative grain-size distribution for a large number of lunar soils. Also provided are charts on the chemistry of breccias, the chemistry of lunar glass, and the comparative chemistry of surface soils for the Apollo sites. Lunar agglutinates, constructional particles made of lithic, mineral, and glass fragments welded together by a glassy matrix containing extremely fine-grained metallic iron and formed by micrometeoric impacts at the lunar surface, are discussed. Crystalline, igneous rock fragments, breccias, and lunar glass are examined. Volatiles implanted in lunar materials and regolith maturity are also addressed.
Mineralogical and chemical properties of the lunar regolith
NASA Technical Reports Server (NTRS)
Mckay, David S.; Ming, Douglas W.
1989-01-01
The composition of lunar regolith and its attendant properties are discussed. Tables are provided listing lunar minerals, the abundance of plagioclase feldspar, pyroxene, olivine, and ilmenite in lunar materials, typical compositions of common lunar minerals, and cumulative grain-size distribution for a large number of lunar soils. Also provided are charts on the chemistry of breccias, the chemistry of lunar glass, and the comparative chemistry of surface soils for the Apollo sites. Lunar agglutinates, constructional particles made of lithic, mineral, and glass fragments welded together by a glassy matrix containing extremely fine-grained metallic iron and formed by micrometeoric impacts at the lunar surface, are discussed. Crystalline, igneous rock fragments, breccias, and lunar glass are examined. Volatiles implanted in lunar materials and regolith maturity are also addressed.
Energetic Neutral Atom Imaging of the Lunar Poles and Night-Side
NASA Astrophysics Data System (ADS)
Vorburger, Audrey; Wurz, Peter; Barabash, Stas; Wieser, Martin; Futaana, Yoshifumi; Bhardwaj, Anil; Dhanya, Mb; Asamura, Kazushi
2016-04-01
So far all reported scientific results derived from measurements of the Chandrayaan-1 Energetic Neutral Analyzer (CENA) on board the Indian lunar mission Chandrayaan-1 focused on the sun-lit part of the Moon. Here, for the first time, we present the analysis of the Moon - solar wind interaction in Energetic Neutral Atoms (ENAs) from measurements over the poles and the night-side of the Moon. The Moon, not being protected by a global magnetic field or an atmosphere, is constantly bombarded by solar wind ions. Until recently, it was tacitly assumed that the solar wind ions that impinge onto the lunar surface are almost completely absorbed ( < 1% reflection) by the lunar surface (e.g. Crider and Vondrak [Adv. Space Res., 2002]; Feldman et al. [J. Geophys. Res., 2000]). However, recent observations conducted by the two ENA sensors of NASA's Interstellar Boundary Explorer and by Chandrayaan-1/CENA showed an average global energetic neutral atom (ENA) albedo of 10% - 20% (e.g. McComas et al. [Geophys. Res. Lett., 2009], Wieser et al. [Planet. Space Sci., 2009], Vorburger et al. [J. Geophys. Res., 2013]). In the past 6 years, several studies have closely investigated this solar wind - lunar surface interaction from various viewpoints. The main findings of these studies include (1) the dependency of the hydrogen reflection ratio on the local crustal magnetic fields (e.g., Wieser et al. [Geophys. Res. Lett. ,2010] and Vorburger et al. [J. Geophys. Res., 2012]), (2) the determination of the energy spectra of backscattered neutralized solar wind protons (Futaana et al. [J. Geophys. Res., 2012]) (3) the use of the spectra shape to remotely define an electric potential above a lunar magnetic anomaly (Futaana et al. [Geophys. Res. Lett., 2012]), (4) the favouring of backscattering over forward-scattering of impinging solar wind hydrogen particles (Vorburger et al. [Geophys. Res. Lett., 2011]), (5) the first-ever measurements of sputtered lunar oxygen (Vorburger et al. [J. Geophys. Res., 2012]), (6) the first-ever observation of backscattered solar wind helium (Vorburger et al. [J. Geophys. Res., 2012]), and (7) the determination of the scattering properties of backscattered solar wind hydrogen measured when the Moon transversed Earth's magneto-sheath (Lue et al. [J. Geophys. Res., 2016]). All findings above are based on measurements from the sun-lit side of the Moon's surface, where solar wind particles can impinge freely onto the lunar surface. On the night-side, in contrast, a large scale wake structure is formed as a result of the high absorption of solar wind plasma on the lunar day-side. Very recent ion measurements of Chandrayaan-1's Solar Wind Monitor (SWIM) have revealed the presence of protons in the near-lunar wake, though (Dhanya et al., [Icarus 2016 (submitted)]). The presence of protons in the near lunar wake implies that there is also some sort of solar wind - lunar surface interaction on the lunar night-side. A complete analysis of this interaction will be presented herein.
Design of a lunar transportation system, volume 2
NASA Technical Reports Server (NTRS)
1990-01-01
The Spring 1990 Introduction to Design class was asked to conceptually design second generation lunar vehicles and equipment as a semester design project. A brief summary of four of the final projects, is presented. The designs were to facilitate the transportation of personnel and materials. The eight topics to choose from included flying vehicles, ground based vehicles, robotic arms, and life support systems. A lunar flying vehicle that uses clean propellants for propulsion is examined. A design that will not contribute to the considerable amount of caustic pollution already present in the sparse lunar atmosphere is addressed by way of ballistic flight techniques. A second generation redesign of the current Extra Vehicular Activity (EVA) suit to increase operating time, safety, and efficiency is also addressed. A separate life support system is also designed to be permanently attached to the lunar rover. The two systems would interact through the use of an umbilical cord connection. A ground based vehicle which will travel for greater distances than a 37.5 kilometer radius from a base on the lunar surface was designed. The vehicle is pressurized due to the fact that existing lunar rovers are limited by the EVA suits currently in use. A robotic arm for use at lunar bases or on roving vehicles on the lunar surface was designed. The arm was originally designed as a specimen gathering device, but it can be used for a wide range of tasks through the use of various attachments.
Surface Roughness of the Moon Derived from Multi-frequency Radar Data
NASA Astrophysics Data System (ADS)
Fa, W.
2011-12-01
Surface roughness of the Moon provides important information concerning both significant questions about lunar surface processes and engineering constrains for human outposts and rover trafficabillity. Impact-related phenomena change the morphology and roughness of lunar surface, and therefore surface roughness provides clues to the formation and modification mechanisms of impact craters. Since the Apollo era, lunar surface roughness has been studied using different approaches, such as direct estimation from lunar surface digital topographic relief, and indirect analysis of Earth-based radar echo strengths. Submillimeter scale roughness at Apollo landing sites has been studied by computer stereophotogrammetry analysis of Apollo Lunar Surface Closeup Camera (ALSCC) pictures, whereas roughness at meter to kilometer scale has been studied using laser altimeter data from recent missions. Though these studies shown lunar surface roughness is scale dependent that can be described by fractal statistics, roughness at centimeter scale has not been studied yet. In this study, lunar surface roughnesses at centimeter scale are investigated using Earth-based 70 cm Arecibo radar data and miniature synthetic aperture radar (Mini-SAR) data at S- and X-band (with wavelengths 12.6 cm and 4.12 cm). Both observations and theoretical modeling show that radar echo strengths are mostly dominated by scattering from the surface and shallow buried rocks. Given the different penetration depths of radar waves at these frequencies (< 30 m for 70 cm wavelength, < 3 m at S-band, and < 1 m at X-band), radar echo strengths at S- and X-band will yield surface roughness directly, whereas radar echo at 70-cm will give an upper limit of lunar surface roughness. The integral equation method is used to model radar scattering from the rough lunar surface, and dielectric constant of regolith and surface roughness are two dominate factors. The complex dielectric constant of regolith is first estimated globally using the regolith composition and the relation among the dielectric constant, bulk density, and regolith composition. The statistical properties of lunar surface roughness are described by the root mean square (RMS) height and correlation length, which represent the vertical and horizontal scale of the roughness. The correlation length and its scale dependence are studied using the topography data from laser altimeter observations from recent lunar missions. As these two parameters are known, surface roughness (RMS slope) can be estimated by minimizing the difference between the observed and modeled radar echo strength. Surface roughness of several regions over Oceanus Procellarum and southeastern highlands on lunar nearside are studied, and preliminary results show that maira is smoother than highlands at 70 cm scale, whereas the situation turns opposite at 12 and 4 cm scale. Surface roughness of young craters is in general higher than that of maria and highlands, indicating large rock population produced during impacting process.
NASA Technical Reports Server (NTRS)
Gibson, E. K.; McKay, D. S.; Pillinger, C. T.; Wright, I. P.; Sims, M. R.; Richter, L.
2007-01-01
Near the beginning of the next decade we will see the launch of scientific payloads to the lunar surface to begin laying the foundations for the return to the moon in the Vision for Space Exploration. Shortly thereafter, astronauts will return to the lunar surface and have the ability to place scientific packages on the surface that will provide information about lunar resources and compositions of materials in permanently shadowed regions of the moon (1). One of the important questions which must be answered early in the program is whether there are lunar resources which would facilitate "living off the land" and not require the transport of resources and consumables from Earth (2). The Beagle science package is the ideal payload (3) to use on the lunar surface for determining the nature of hydrogen, water and lunar volatiles found in the polar regions which could support the Vision for Space Exploration
A study of electric transmission lines for use on the lunar surface
NASA Technical Reports Server (NTRS)
Gaustad, Krista L.; Gordon, Lloyd B.; Weber, Jennifer R.
1994-01-01
The sources for electrical power on a lunar base are said to include solar/chemical, nuclear (static conversion), and nuclear (dynamic conversion). The transmission of power via transmission lines is more practical than power beaming or superconducting because of its low cost and reliable, proven technology. Transmission lines must have minimum mass, maximum efficiency, and the ability to operate reliably in the lunar environment. The transmission line design includes conductor material, insulator material, conductor geometry, conductor configuration, line location, waveform, phase selection, and frequency. This presentation oulines the design. Liquid and gaseous dielectrics are undesirable for long term use in the lunar vacuum due to a high probability of loss. Thus, insulation for high voltage transmission line will most likely be solid dielectric or vacuum insulation.
Astronaut Alan Bean participates in lunar surface simulation
1969-10-29
S69-56059 (24 Oct. 1969) --- Astronaut Alan L. Bean, lunar module pilot of the Apollo 12 lunar landing mission, participates in lunar surface simulation training in Building 29 at the Manned Spacecraft Center (MSC). Bean is strapped to a one-sixth gravity simulator.
Apollo lunar surface experiments package. Apollo 17 ALSEP (array E) familiarization course handout
NASA Technical Reports Server (NTRS)
1972-01-01
The familiarization course for the Apollo 17 ALSEP (ARRAY E) is presented. The subjects discussed are: (1) power and data subsystems, (2) lunar surface gravimeter, (3) lunar mass spectrometer, (4) lunar seismic profiling experiment, and (5) heat flow experiment.
Apollo 13 Astronaut Fred Haise during lunar surface simulation training
1970-01-19
S70-24012 (19 Jan. 1970) --- Astronaut Fred W. Haise Jr., lunar module pilot of the Apollo 13 lunar landing mission, participates in lunar surface simulation training at the Manned Spacecraft Center (MSC). Haise is attached to a Six Degrees of Freedom Simulator.
COMPASS Final Report: Low Cost Robotic Lunar Lander
NASA Technical Reports Server (NTRS)
McGuire, Melissa L.; Oleson, Steven R.
2010-01-01
The COllaborative Modeling for the Parametric Assessment of Space Systems (COMPASS) team designed a robotic lunar Lander to deliver an unspecified payload (greater than zero) to the lunar surface for the lowest cost in this 2006 design study. The purpose of the low cost lunar lander design was to investigate how much payload can an inexpensive chemical or Electric Propulsion (EP) system deliver to the Moon s surface. The spacecraft designed as the baseline out of this study was a solar powered robotic lander, launched on a Minotaur V launch vehicle on a direct injection trajectory to the lunar surface. A Star 27 solid rocket motor does lunar capture and performs 88 percent of the descent burn. The Robotic Lunar Lander soft-lands using a hydrazine propulsion system to perform the last 10% of the landing maneuver, leaving the descent at a near zero, but not exactly zero, terminal velocity. This low-cost robotic lander delivers 10 kg of science payload instruments to the lunar surface.
Wide-Angle Polarimetric Camera for Korea Pathfinder Lunar Orbiter
NASA Astrophysics Data System (ADS)
Choi, Y. J.; Kim, S.; Kang, K. I.
2016-12-01
A polarimetry data contains valuable information about the lunar surface such as the grain size and porosity of the regolith. However, a polarimetry toward the Moon in its orbit has not been performed. We plan to perform the polarimetry in lunar orbit through Korea Pathfinder Lunar Orbiter (KPLO), which will be launched around 2018/2019 as the first Korean lunar mission. Wide-Angle Polarimetric Camera (PolCam) is selected as one of the onboard instrument for KPLO. The science objectives are ; (1) To obtain the polarization data of the whole lunar surface at wavelengths of 430nm and 650nm for phase angle range from 0° to 120° with a spatial resolution of 80 m. (2) To obtain the reflectance ratios at 320 nm and 430 nm for the whole lunar surface with a spatial resolution of 80m. We will summarize recent results of lunar surface from ground-based polarimetric observations and will briefly introduce the science rationals and operation concept of PolCam.
Astronaut David Scott using Apollo Lunar Surface Drill during second EVA
1971-08-01
S71-41501 (1 Aug. 1971) --- Astronaut David R. Scott, Apollo 15 commander, is seen carrying the Apollo Lunar Surface Drill (ALSD) during the second lunar surface extravehicular activity (EVA) in this black and white reproduction taken from a color transmission made by the RCA color television camera mounted on the Lunar Roving Vehicle (LRV). This transmission was the fourth made during the mission.
Data processing and error analysis for the CE-1 Lunar microwave radiometer
NASA Astrophysics Data System (ADS)
Feng, Jian-Qing; Su, Yan; Liu, Jian-Jun; Zou, Yong-Liao; Li, Chun-Lai
2013-03-01
The microwave radiometer (MRM) onboard the Chang' E-1 (CE-1) lunar orbiter is a 4-frequency microwave radiometer, and it is mainly used to obtain the brightness temperature (TB) of the lunar surface, from which the thickness, temperature, dielectric constant and other related properties of the lunar regolith can be derived. The working mode of the CE-1 MRM, the ground calibration (including the official calibration coefficients), as well as the acquisition and processing of the raw data are introduced. Our data analysis shows that TB increases with increasing frequency, decreases towards the lunar poles and is significantly affected by solar illumination. Our analysis also reveals that the main uncertainty in TB comes from ground calibration.
NASA Technical Reports Server (NTRS)
Leong, Gregory N.; Nease, Sandra; Lager, Vicky; Yaghjian, Raffy; Waller, Chris; Dorrity, J. Lewis
1992-01-01
A design for a machine to produce hollow, continuous fiber reinforced composite rods of lunar glass and a liquid crystalline matrix using the pultrusion process is presented. The glass fiber will be produced from the lunar surface, with the machine and matrix being transported to the moon. The process is adaptable to the low gravity and near-vacuum environment of the moon through the use of a thermoplastic matrix in fiber form as it enters the pultrusion process. With a power consumption of 5k W, the proposed machine will run continuously, unmanned in fourteen day cycles, matching the length of moon days. A number of dies could be included that would allow the machine to produce rods of varying diameter, I-beams, angles, and other structural members. These members could then be used for construction on the lunar surface or transported for use in orbit. The benefits of this proposal are in the savings in weight of the cargo each lunar mission would carry. The supply of glass on the moon is effectively endless, so enough rods would have to be produced to justify its transportation, operation, and capital cost. This should not be difficult as weight on lunar mission is at a premium.
Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design
NASA Technical Reports Server (NTRS)
Alvarez, Erika; Forbes, John C.; Thornton, Randall J.
2010-01-01
The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform multiple burns including the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine technology testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.
NASA Astrophysics Data System (ADS)
Taylor, G. J.; Martel, L. M. V.
2018-04-01
Lunar-focused research and plans to return to the lunar surface for science and exploration have reemerged since the Space Policy Directive-1 of December 11, 2017 amended the National Space Policy to include the following, "Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations." In response to this revision, NASA proposes a Lunar Exploration and Discovery Program in the U.S. fiscal year 2019 Budget Request. It supports NASA's interests in commercial and international partnerships in Low-Earth Orbit (LEO), long-term exploration in Cislunar space beyond LEO, and research and exploration conducted on the Moon to inform future crewed missions, even to destinations beyond the Moon. (Cislunar refers to the volume of space between LEO and the Moon's orbital distance.) The lunar campaign strengthens the integration of human and robotic activities on the lunar surface with NASA's science, technology, and exploration goals.
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R.; Paz, A.; Smith, J.; Captain, J.; Zacny, K.
2016-01-01
Data gathered from lunar missions within the last two decades have significantly enhanced our understanding of the volatile resources available on the lunar surface, specifically focusing on the polar regions. Several orbiting missions such as Clementine and Lunar Prospector have suggested the presence of volatile ices and enhanced hydrogen concentrations in the permanently shadowed regions of the moon. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was the first to provide direct measurement of water ice in a permanently shadowed region. These missions with other orbiting assets have laid the groundwork for the next step in the exploration of the lunar surface; providing ground truth data of the volatiles by mapping the distribution and processing lunar regolith for resource extraction. This next step is the robotic mission Resource Prospector (RP).Resource Prospector is a lunar mission to investigate strategic knowledge gaps (SKGs) for in-situ resource utilization (ISRU). The mission is proposed to land in the lunar south pole near a permanently shadowed crater. The landing site will be determined by the science team with input from broader international community as being near traversable landscape that has a high potential of containing elevated concentrations of volatiles such as water while maximizing mission duration. A rover will host the Regolith Environment Science and Oxygen Lunar Volatile Extraction (RESOLVE) payload for resource mapping and processing. The science instruments on the payload include a 1-meter drill, neutron spectrometer, a near infrared spectrometer, an operations camera, and a reactor with a gas chromatograph-mass spectrometer for volatile analysis.
NASA Technical Reports Server (NTRS)
Cowen, Benjamin
2011-01-01
Simulations are essential for engineering design. These virtual realities provide characteristic data to scientists and engineers in order to understand the details and complications of the desired mission. A standard development simulation package known as Trick is used in developing a source code to model a component (federate in HLA terms). The runtime executive is integrated into an HLA based distributed simulation. TrickHLA is used to extend a Trick simulation for a federation execution, develop a source code for communication between federates, as well as foster data input and output. The project incorporates international cooperation along with team collaboration. Interactions among federates occur throughout the simulation, thereby relying on simulation interoperability. Communication through the semester went on between participants to figure out how to create this data exchange. The NASA intern team is designing a Lunar Rover federate and a Lunar Shuttle federate. The Lunar Rover federate supports transportation across the lunar surface and is essential for fostering interactions with other federates on the lunar surface (Lunar Shuttle, Lunar Base Supply Depot and Mobile ISRU Plant) as well as transporting materials to the desired locations. The Lunar Shuttle federate transports materials to and from lunar orbit. Materials that it takes to the supply depot include fuel and cargo necessary to continue moon-base operations. This project analyzes modeling and simulation technologies as well as simulation interoperability. Each team from participating universities will work on and engineer their own federate(s) to participate in the SISO Spring 2011 Workshop SIW Smackdown in Boston, Massachusetts. This paper will focus on the Lunar Rover federate.
Moessbauer Spectroscopy for Lunar Resource Assessment: Measurement of Mineralogy and Soil Maturity
NASA Technical Reports Server (NTRS)
Morris, R. V.; Agresti, D. G.; Shelfer, T. D.; Pimperl, M. M.; Shen, M.-H.; Gibson, M. A.; Wills, E. L.
1992-01-01
First-order assessment of lunar soil as a resource includes measurement of its mineralogy and maturity. Soils in which the mineral ilmenite is present in high concentrations are desirable feedstock for the production of oxygen at a lunar base. The maturity of lunar soils is a measure of their relative residence time in the upper 1 mm of the lunar surface. Increasing maturity implies increasing load of solar wind species (e.g., N, H, and He-3), decreasing mean grain size, and increasing glass content. All these physicochemical properties that vary in a regular way with maturity are important parameters for assessing lunar soil as a resource. For example, He-3 can be extracted and potentially used for nuclear fusion. A commonly used index for lunar soil maturity is I(sub s)/FeO, which is the concentration of fine-grained metal determined by ferromagnetic resonance (I(sub s)) normalized to the total iron content (as FeO). I(sub s)/FeO has been measured for virtually every soil returned by the Apollo and Luna missions to the Moon. Because the technique is sensitive to both oxidation state and mineralogy, iron Moessbauer spectroscopy (FeMS) is a viable technique for in situ lunar resource assessment. Its utility for mineralogy is apparent from examination of published FeMS data for lunar samples. From the data published, it can be inferred that FeMS data can also be used to determine soil maturity. The use of FeMS to determine mineralogy and maturity and progress on development of a FeMS instrument for lunar surface use are discussed.
Improvements to Lunar BRDF-Corrected Nighttime Satellite Imagery: Uses and Applications
NASA Technical Reports Server (NTRS)
Cole, Tony A.; Molthan, Andrew L.; Schultz, Lori A.; Roman, Miguel O.; Wanik, David W.
2016-01-01
Observations made by the VIIRS day/night band (DNB) provide daily, nighttime measurements to monitor Earth surface processes.However, these observations are impacted by variations in reflected solar radiation on the moon's surface. As the moon transitions from new to full phase, increasing radiance is reflected to the Earth's surface and contributes additional reflected moonlight from clouds and land surface, in addition to emissions from other light sources observed by the DNB. The introduction of a bi-directional reflectance distribution function (BRDF) algorithm serves to remove these lunar variations and normalize observed radiances. Provided by the Terrestrial Information Systems Laboratory at Goddard Space Flight Center, a 1 km gridded lunar BRDF-corrected DNB product and VIIRS cloud mask can be used for a multitude of nighttime applications without influence from the moon. Such applications include the detection of power outages following severe weather events using pre-and post-event DNB imagery, as well as the identification of boat features to curtail illegal fishing practices. This presentation will provide context on the importance of the lunar BRDF correction algorithm and explore the aforementioned uses of this improved DNB product for applied science applications.
Improvements to Lunar BRDF-Corrected Nighttime Satellite Imagery: Uses and Applications
NASA Astrophysics Data System (ADS)
Cole, T.; Molthan, A.; Schultz, L. A.; Roman, M. O.; Wanik, D. W.
2016-12-01
Observations made by the VIIRS day/night band (DNB) provide daily, nighttime measurements to monitor Earth surface processes. However, these observations are impacted by variations in reflected solar radiation on the moon's surface. As the moon transitions from new to full phase, increasing radiance is reflected to the Earth's surface and contributes additional reflected moonlight from clouds and land surface, in addition to emissions from other light sources observed by the DNB. The introduction of a bi-directional reflectance distribution function (BRDF) algorithm serves to remove these lunar variations and normalize observed radiances. Provided by the Terrestrial Information Systems Laboratory at Goddard Space Flight Center, a 1 km gridded lunar BRDF-corrected DNB product and VIIRS cloud mask can be used for a multitude of nighttime applications without influence from the moon. Such applications include the detection of power outages following severe weather events using pre- and post-event DNB imagery, as well as the identification of boat features to curtail illegal fishing practices. This presentation will provide context on the importance of the lunar BRDF correction algorithm and explore the aforementioned uses of this improved DNB product for applied science applications.
Magnetism and the interior of the moon. [measured at Apollo landing sites
NASA Technical Reports Server (NTRS)
Dyal, P.; Parkin, C. W.; Daily, W. D.
1974-01-01
During the time period 1961-1972 eleven magnetometers were sent to the moon. The results of lunar magnetometer data analysis are reviewed, with emphasis on the lunar interior. Magnetic fields have been measured on the lunar surface at the Apollo 12, 14, 15, and 16 landing sites. The remanent field values at these sites are given. Satellite and surface measurements show strong evidence that the lunar crust is magnetized over much of the lunar globe. The origin of the lunar remanent field is not yet satisfactorily understood; several source models are presented. Simultaneous data from the Apollo 12 lunar surface magnetometer and the Explorer 35 Ames magnetometer are used to construct a wholemoon hysteresis curve, from which the global lunar permeability is determined. Total iron abundance is calculated for two assumed compositional models of the lunar interior. Other lunar models with a small iron core and with a shallow iron-rich layer are also discussed in light of the measured global permeability.
Erosive Wear Characterization of Materials for Lunar Construction
NASA Technical Reports Server (NTRS)
Mpagazehe, Jeremiah N.; Street, Kenneth W., Jr.; Delgado, Irebert R.; Higgs, C. Fred, III
2012-01-01
NASA s Apollo missions revealed that exhaust from the retrorockets of landing spacecraft may act to significantly accelerate lunar dust on the surface of the Moon. A recent study by Immer et al. (C. Immer, P.T. Metzger, P.E. Hintze, A. Nick, and R. Horan, Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III, Icarus, Vol. 211, pp. 1089-1102, 2011) investigated coupons returned to Earth from the Surveyor III lunar probe which were subjected to lunar dust impingement by the Apollo 12 Lunar Module landing. Their study revealed that even with indirect impingement, the spacecraft sustained erosive damage from the fast-moving lunar dust particles. In this work, results are presented from a series of erosive wear experiments performed on 6061 Aluminum using the JSC-1AF lunar dust simulant. Optical profilometry was used to investigate the surface after the erosion process. It was found that even short durations of lunar dust simulant impacting at low velocities produced substantial changes in the surface.
1968-12-17
Apollo 8 crew members paused before the mission simulator during training for the first manned lunar orbital mission. Frank Borman, commander; James Lovell, Command Module (CM) pilot; and William Anders, Lunar Module (LM) pilot , were also the first humans to launch aboard the massive Saturn V space vehicle. Lift off occurred on December 21, 1968 and returned safely to Earth on December 27, 1968. The mission achieved operational experience and tested the Apollo command module systems, including communications, tracking, and life-support, in cis-lunar space and lunar orbit, and allowed evaluation of crew performance on a lunar orbiting mission. The crew photographed the lunar surface, both far side and near side, obtaining information on topography and landmarks as well as other scientific information necessary for future Apollo landings. All systems operated within allowable parameters and all objectives of the mission were achieved.
Degradation sequence of young lunar craters from orbital infrared survey
NASA Technical Reports Server (NTRS)
Wieczorek, M. A.; Mendell, W. W.
1993-01-01
Using new software, nighttime thermal maps of the lunar surface have been generated from data obtained by the Apollo 17 Infrared Scanning Radiometer (ISR) in lunar orbit. Most of the thermal anomalies observed in the maps correspond to fresh lunar craters because blocks on the lunar surface maintain a thermal contrast relative to surrounding soil during the lunar night. Craters of Erastosthenian age and older - relatively young by lunar standards - have developed soil covers that make them almost indistinguishable from their surroundings in the thermal data. Thermal images of Copernican age craters show various stages of a degradation process, allowing the craters to be ranked by age. The ISR data should yield insights into lunar surface evolution as well as a more detailed understanding of the bombardment history after formation of the great mare basins.
NASA Technical Reports Server (NTRS)
Bagdigian, Robert M.
2008-01-01
NASA is engaged in early architectural analyses and trade studies aimed at identifying requirements, predicting performance and resource needs, characterizing mission constraints and sensitivities, and guiding technology development planning needed to conduct a successful human exploration campaign of the lunar surface. Conceptual designs and resource estimates for environmental control and life support systems (ECLSS) within pressurized lunar surface habitats and rovers have been considered and compared in order to support these lunar campaign studies. This paper will summarize those concepts and some of the more noteworthy considerations that will likely remain as key drivers in the evolution of the lunar surface ECLSS architecture.
Close-up view of astronauts foot and footprint in lunar soil
1969-07-20
AS11-40-5880 (20 July 1969) --- A close-up view of an astronaut's boot and bootprint in the lunar soil, photographed with a 70mm lunar surface camera during the Apollo 11 lunar surface extravehicular activity (EVA). While astronauts Neil A. Armstrong, commander, and Edwin A. Aldrin Jr., lunar module pilot, descended in the Lunar Module (LM) "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Michael Collins, command module pilot, remained with the Command and Service Modules (CSM)" Columbia" in lunar orbit.
Apollo 12 Mission image - View of lunar surface mound
1969-11-19
AS12-46-6795 (19-20 Nov. 1969) --- A view of the lunar surface in the vicinity of the Apollo 12 lunar landing site, photographed during the extravehicular activity (EVA) of astronauts Charles Conrad Jr., commander, and Alan L. Bean, lunar module pilot. Conrad and Bean encountered the odd, anthill-shaped mound during their lunar traverse. The two descended in the Apollo 12 Lunar Module (LM) to explore the moon, while astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.
Astronaut John Young leaps from lunar surface to salute flag
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, leaps from the lunar surface as he salutes the U.S. Flag at the Descartes landing site during the first Apollo 16 extravehicular activity (EVA-1). Astronaut Charles M. Duke Jr., lunar module pilot, took this picture. The Lunar Module (LM) 'Orion' is on the left. The Lunar Roving Vehicle is parked beside the LM. The object behind Young in the shade of the LM is the Far Ultraviolet Camera/Spectrograph. Stone Mountain dominates the background in this lunar scene.
Process to Produce Iron Nanoparticle Lunar Dust Simulant Composite
NASA Technical Reports Server (NTRS)
Hung, Ching-cheh; McNatt, Jeremiah
2010-01-01
A document discusses a method for producing nanophase iron lunar dust composite simulant by heating a mixture of carbon black and current lunar simulant types (mixed oxide including iron oxide) at a high temperature to reduce ionic iron into elemental iron. The product is a chemically modified lunar simulant that can be attracted by a magnet, and has a surface layer with an iron concentration that is increased during the reaction. The iron was found to be -iron and Fe3O4 nanoparticles. The simulant produced with this method contains iron nanoparticles not available previously, and they are stable in ambient air. These nanoparticles can be mass-produced simply.
Drilling and Digging Techniques for the Early Lunar Outpost
NASA Technical Reports Server (NTRS)
Boles, Walter W.
1992-01-01
The theme of this workshop is lunar resource assessment. Topics include identification, quantification, and location of useful elements on and below the lunar surface. The objective of this paper is to look at another side of the issue--how to remove soil from the stiff lunar-soil matrix once useful deposits are located. The goal of this paper is to cause those who think that digging or excavating on the Moon is a trivial problem to rethink the reasons for their opinions. Another goal is to encourage them to view total reliance upon terrestrial heuristics with suspicion. This paper will focus primarily upon digging.
Enhancing Return from Lunar Surface Missions via the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Chavers, D. G.; Whitley, R. J.; Percy, T. K.; Needham, D. H.; Polsgrove, T. T.
2018-02-01
The Deep Space Gateway (DSG) will facilitate access to and communication with lunar surface assets. With a science airlock, docking port, and refueling capability in an accessible orbit, the DSG will enable high priority science across the lunar surface.
NASA Technical Reports Server (NTRS)
Allegre, C. J.; Birck, J. L.; Loubet, M.; Provost, A.
1974-01-01
The Luna 16 automatic station returned from the Sea of Fertility a 35 cm long column of lunar surface material. 1 g of the Luna 16 lunar surface material, taken at a depth of 22 cm, consists of fine material: surface material and fine fragments of rocks from 1 to 4 mm in diameter. Analyses made on 17 mg of the fine lunar surface material are presented. The results obtained for the Luna 16 surface material are plotted on the diagram of the isotopic evolution of strontium and show that this surface material is most depleted of radiogenic Sr-87 of all the known lunar surface materials and that the point characterizing Lunar 16 lies somewhat to the right of the line corresponding to an age of 4.6 billion years.
NASA Technical Reports Server (NTRS)
Chavers, Greg
2015-01-01
Since 2006 NASA has been formulating robotic missions to the lunar surface through programs and projects like the Robotic Lunar Exploration Program, Lunar Precursor Robotic Program, and International Lunar Network. All of these were led by NASA Marshall Space Flight Center (MSFC). Due to funding shortfalls, the lunar missions associated with these efforts, the designs, were not completed. From 2010 to 2013, the Robotic Lunar Lander Development Activity was funded by the Science Mission Directorate (SMD) to develop technologies that would enable and enhance robotic lunar surface missions at lower costs. In 2013, a requirements-driven, low-cost robotic lunar lander concept was developed for the Resource Prospector Mission. Beginning in 2014, The Advanced Exploration Systems funded the lander team and established the MSFC, Johnson Space Center, Applied Physics Laboratory, and the Jet Propulsion Laboratory team with MSFC leading the project. The lander concept to place a 300-kg rover on the lunar surface has been described in the New Technology Report Case Number MFS-33238-1. A low-cost lander concept for placing a robotic payload on the lunar surface is shown in figures 1 and 2. The NASA lander team has developed several lander concepts using common hardware and software to allow the lander to be configured for a specific mission need. In addition, the team began to transition lander expertise to United States (U.S.) industry to encourage the commercialization of space, specifically the lunar surface. The Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative was started and the NASA lander team listed above is partnering with three competitively selected U.S. companies (Astrobotic, Masten Space Systems, and Moon Express) to develop, test, and operate their lunar landers.
Apollo 12 - Bean - Conrad - during geological field trip
1969-10-24
S69-55667 (10 Oct. 1969) --- Astronauts Charles Conrad Jr. and Alan L. Bean train for their upcoming Apollo 12 lunar landing mission. Here they are entering a simulated lunar surface area near Flagstaff, Arizona. Both are wearing lunar surface cameras strapped to their bodies. Conrad (left), the Apollo 12 mission commander, is carrying some of the tools from the geological tool container. The geological tool container, being carried here by Bean, the lunar module pilot, is similar to the one which will be used during scheduled extravehicular activity (EVA) periods on Nov. 19 and 20, 1969, on the lunar surface. While astronauts Conrad and Bean conduct their scheduled EVA on the moon's surface, astronaut Richard F. Gordon Jr., command module pilot, will man the Command and Service Modules (CSM) in lunar orbit.
Crater Identification Algorithm for the Lost in Low Lunar Orbit Scenario
NASA Technical Reports Server (NTRS)
Hanak, Chad; Crain, TImothy
2010-01-01
Recent emphasis by NASA on returning astronauts to the Moon has placed attention on the subject of lunar surface feature tracking. Although many algorithms have been proposed for lunar surface feature tracking navigation, much less attention has been paid to the issue of navigational state initialization from lunar craters in a lost in low lunar orbit (LLO) scenario. That is, a scenario in which lunar surface feature tracking must begin, but current navigation state knowledge is either unavailable or too poor to initiate a tracking algorithm. The situation is analogous to the lost in space scenario for star trackers. A new crater identification algorithm is developed herein that allows for navigation state initialization from as few as one image of the lunar surface with no a priori state knowledge. The algorithm takes as inputs the locations and diameters of craters that have been detected in an image, and uses the information to match the craters to entries in the USGS lunar crater catalog via non-dimensional crater triangle parameters. Due to the large number of uncataloged craters that exist on the lunar surface, a probability-based check was developed to reject false identifications. The algorithm was tested on craters detected in four revolutions of Apollo 16 LLO images, and shown to perform well.
1969-07-20
The first manned lunar landing mission, Apollo 11, launched from the Kennedy Space Flight Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Astronauts onboard included Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon in the Sea of Tranquility. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew set up experiments, collected 47 pounds of lunar surface material for analysis back on Earth, planted the U.S Flag, and left a message for all mankind. In this photograph, Armstrong is removing scientific equipment from a storage bay of the LM. The brilliant sunlight emphasizes the U. S. Flag to the left. The object near the flag is the Solar Wind Composition Experiment deployed by Aldrin earlier.
The influence of surface roughness on volatile transport on the Moon
NASA Astrophysics Data System (ADS)
Prem, P.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.
2018-01-01
The Moon and other virtually airless bodies provide distinctive environments for the transport and sequestration of water and other volatiles delivered to their surfaces by various sources. In this work, we conduct Monte Carlo simulations of water vapor transport on the Moon to investigate the role of small-scale roughness (unresolved by orbital measurements) in the migration and cold-trapping of volatiles. Observations indicate that surface roughness, combined with the insulating nature of lunar regolith and the absence of significant exospheric heat flow, can cause large variations in temperature over very small scales. Surface temperature has a strong influence on the residence time of migrating water molecules on the lunar surface, which in turn affects the rate and magnitude of volatile transport to permanently shadowed craters (cold traps) near the lunar poles, as well as exospheric structure and the susceptibility of migrating molecules to photodestruction. Here, we develop a stochastic rough surface temperature model suitable for simulations of volatile transport on a global scale, and compare the results of Monte Carlo simulations of volatile transport with and without the surface roughness model. We find that including small-scale temperature variations and shadowing leads to a slight increase in cold-trapping at the lunar poles, accompanied by a slight decrease in photodestruction. Exospheric structure is altered only slightly, primarily at the dawn terminator. We also examine the sensitivity of our results to the temperature of small-scale shadows, and the energetics of water molecule desorption from the lunar regolith - two factors that remain to be definitively constrained by other methods - and find that both these factors affect the rate at which cold trap capture and photodissociation occur, as well as exospheric density and longevity.
Alteration of Lunar Rock Surfaces through Interaction with the Space Environment
NASA Technical Reports Server (NTRS)
Frushour, A. M.; Noble, S. K; Christoffersen, R.; Keller, L P.
2014-01-01
Space weathering occurs on all ex-posed surfaces of lunar rocks, as well as on the surfaces of smaller grains in the lunar regolith. Space weather-ing alters these exposed surfaces primarily through the action of solar wind ions and micrometeorite impact processes. On lunar rocks specifically, the alteration products produced by space weathering form surface coatings known as patina. Patinas can have spectral reflectance properties different than the underlying rock. An understanding of patina composition and thickness is therefore important for interpreting re-motely sensed data from airless solar system bodies. The purpose of this study is to try to understand the physical and chemical properties of patina by expanding the number of patinas known and characterized in the lunar rock sample collection.
Apollo Missions to the Lunar Surface
NASA Technical Reports Server (NTRS)
Graff, Paige V.
2018-01-01
Six Apollo missions to the Moon, from 1969-1972, enabled astronauts to collect and bring lunar rocks and materials from the lunar surface to Earth. Apollo lunar samples are curated by NASA Astromaterials at the NASA Johnson Space Center in Houston, TX. Samples continue to be studied and provide clues about our early Solar System. Learn more and view collected samples at: https://curator.jsc.nasa.gov/lunar.
Conditions and constraints of food processing in space
NASA Technical Reports Server (NTRS)
Fu, B.; Nelson, P. E.; Mitchell, C. A. (Principal Investigator)
1994-01-01
Requirements and constraints of food processing in space include a balanced diet, food variety, stability for storage, hardware weight and volume, plant performance, build-up of microorganisms, and waste processing. Lunar, Martian, and space station environmental conditions include variations in atmosphere, day length, temperature, gravity, magnetic field, and radiation environment. Weightlessness affects fluid behavior, heat transfer, and mass transfer. Concerns about microbial behavior include survival on Martian and lunar surfaces and in enclosed environments. Many present technologies can be adapted to meet space conditions.
NASA Technical Reports Server (NTRS)
1970-01-01
A developmental test plan for the wheel and wheel drive assembly of the dual-mode (manned/automated) lunar surface roving vehicle is presented. The tests cover performance, as well as critical environmental characteristics. Insofar as practical, the environmental conditions imposed will be in the sequence expected during the hardware's life from storage through the lunar mission. Test procedures are described for static load deflection and endurance tests. Soft soil tests to determine mobility characteristics including drawbar-pull and thrust vs slip, and motion resistance for various wheel loads are also discussed. Test designs for both ambient and thermal vacuum conditions are described. Facility, transducer, and instrumentation requirements are outlined.
1969-07-20
This is a close-up view of an astronaut’s footprint in the lunar soil, photographed by a 70 mm lunar surface camera during the Apollo 11 lunar surface extravehicular activity. The first manned lunar mission, the Apollo 11 launched aboard a Saturn V launch vehicle from the Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of Neil A, Armstrong, mission commander; Edwin E. Aldrin, Jr., Lunar Module Pilot; and Michael Collins, Command Module pilot. The LM landed on the moon’s surface on July 20, 1969 in the region known as Mare Tranquilitatis (the Sea of Tranquility). Armstrong was the first human to ever stand on the lunar surface. As he stepped off the LM, Armstrong proclaimed, “That’s one small step for man, one giant leap for mankind”. He was followed by Edwin (Buzz) Aldrin, describing the lunar surface as Magnificent desolation. Astronaut Collins piloted the Command Module in a parking orbit around the Moon. The crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. The surface exploration was concluded in 2½ hours. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. von Braun.
NASA Technical Reports Server (NTRS)
Gose, W. A.
1974-01-01
Numerous studies on the properties of the moon based on Apollo findings and samples are presented. Topics treated include ages of the lunar nearside light plains and maria, orange material in the Sulpicius Gallus formation at the southwestern edge of Mare Serenitatis, impact-induced fractionation in the lunar highlands, igneous rocks from Apollo 16 rake samples, experimental liquid line of descent and liquid immiscibility for basalt 70017, ion microprobe mass analysis of plagioclase from 'non-mare' lunar samples, grain size and the evolution of lunar soils, chemical composition of rocks and soils at Taurus-Littrow, the geochemical evolution of the moon, U-Th-Pb systematics of some Apollo 17 lunar samples and implications for a lunar basin excavation chronology, volatile-element systematics and green glass in Apollo 15 lunar soils, solar wind nitrogen and indigenous nitrogen in Apollo 17 lunar samples, lunar trapped xenon, solar flare and lunar surface process characterization at the Apollo 17 site, and the permanent and induced magnetic dipole moment of the moon. Individual items are announced in this issue.
The use of automation and robotic systems to establish and maintain lunar base operations
NASA Technical Reports Server (NTRS)
Petrosky, Lyman J.
1992-01-01
Robotic systems provide a means of performing many of the operations required to establish and maintain a lunar base. They form a synergistic system when properly used in concert with human activities. This paper discusses the various areas where robotics and automation may be used to enhance lunar base operations. Robots are particularly well suited for surface operations (exterior to the base habitat modules) because they can be designed to operate in the extreme temperatures and vacuum conditions of the Moon (or Mars). In this environment, the capabilities of semi-autonomous robots would surpass that of humans in all but the most complex tasks. Robotic surface operations include such activities as long range geological and mineralogical surveys with sample return, materials movement in and around the base, construction of radiation barriers around habitats, transfer of materials over large distances, and construction of outposts. Most of the above operations could be performed with minor modifications to a single basic robotic rover. Within the lunar base habitats there are a few areas where robotic operations would be preferable to human operations. Such areas include routine inspections for leakage in the habitat and its systems, underground transfer of materials between habitats, and replacement of consumables. In these and many other activities, robotic systems will greatly enhance lunar base operations. The robotic systems described in this paper are based on what is realistically achievable with relatively near term technology. A lunar base can be built and maintained if we are willing.
NASA Astrophysics Data System (ADS)
Calla, O. P. N.; Mathur, Shubhra; Gadri, Kishan Lal; Jangid, Monika
2016-12-01
In the present paper, permittivity maps of equatorial lunar surface are generated using brightness temperature (TB) data obtained from Microwave Radiometer (MRM) of Chang'e-1 and physical temperature (TP) data obtained from Diviner of Lunar Reconnaissance Orbiter (LRO). Here, permittivity mapping is not carried out above 60° latitudes towards the lunar poles due to large anomaly in the physical temperature obtained from the Diviner. Microwave frequencies, which are used to generate these maps are 3 GHz, 7.8 GHz, 19.35 GHz and 37 GHz. Permittivity values are simulated using TB values at these four frequencies. Here, weighted average of physical temperature obtained from Diviner are used to compute permittivity at each microwave frequencies. Longer wavelengths of microwave signals give information of more deeper layers of the lunar surface as compared to smaller wavelength. Initially, microwave emissivity is estimated using TB values from MRM and physical temperature (TP) from Diviner. From estimated emissivity the real part of permittivity (ε), is calculated using Fresnel equations. The permittivity maps of equatorial lunar surface is generated. The simulated permittivity values are normalized with respect to density for easy comparison of simulated permittivity values with the permittivity values of Apollo samples as well as with the permittivity values of Terrestrial Analogue of Lunar Soil (TALS) JSC-1A. Lower value of dielectric constant (ε‧) indicates that the corresponding lunar surface is smooth and doesn't have rough rocky terrain. Thus a future lunar astronaut can use these data to decide proper landing site for future lunar missions. The results of this paper will serve as input to future exploration of lunar surface.
Lunar and Planetary Science XXXI
NASA Technical Reports Server (NTRS)
2000-01-01
This CD-ROM presents papers presented to the Thirty-first Lunar and Planetary Science Conference, March 13-17, 2000, Houston, Texas. Eighty-one conference sessions, and over one thousand extended abstracts are included. Abstracts cover topics such as Martian surface properties and geology, meteoritic composition, Martian landing sites and roving vehicles, planned Mars Sample Return Missions, and general astrobiology.
Particles and fields subsatellite program
NASA Technical Reports Server (NTRS)
Horn, H. J.
1972-01-01
The development and characteristics of the Particles and Fields Lunar Subsatellite are discussed. The basic mission is to investigate two problems in space physics: (1) the formation and dynamics of the earth's magnetosphere and (2) the boundary layer of the solar wind as it flows over the lunar surface. Illustrations of the subsatellites and the mission concepts are included.
Lunar exploration: opening a window into the history and evolution of the inner Solar System
Crawford, Ian A.; Joy, Katherine H.
2014-01-01
The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth–Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth–Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap. PMID:25114318
1969-11-24
The smiling Apollo 12 astronauts peer out of the window of the mobile quarantine facility aboard the recovery ship, USS Hornet. Pictured (Left to right) are Spacecraft Commander, Charles Conrad; Command Module (CM) Pilot, Richard Gordon; and Lunar Module (LM) Pilot, Alan L. Bean. The crew were housed in the quarantine facility immediately after the Pacific recovery operation took place. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 returned safely to Earth on November 24, 1969.
1969-11-23
This is a view of astronaut Richard F. Gordon attaching a high resolution telephoto lens to a camera aboard the Apollo 12 Command Module (CM) Yankee Clipper. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Apollo 12 safely returned to Earth on November 24, 1969.
Lunar exploration: opening a window into the history and evolution of the inner Solar System.
Crawford, Ian A; Joy, Katherine H
2014-09-13
The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth-Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth-Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Recovery of Missing Apollo Lunar ALSEP Data
NASA Astrophysics Data System (ADS)
Taylor, P. T.; Nagihara, S.; Nakamura, Y.; Williams, D. R.; Kiefer, W. S.
2016-12-01
Apollo astronauts on missions 12, 14, 15, 16, and 17 installed instruments on the lunar surface, the Apollo Lunar Surface Experiment Package (ALSEP). The last astronauts departed from the Moon in December 1972; however ALSEP instruments continued to send data until 1977. These long-term in-situ data, along with data from orbital satellites launched from the Command Module, are some of the best information on the Moon's environment, surface and interior. Much of these data were archived at the now NASA Space Science Data Coordinated Archive (NSSDCA) in the 70's and 80's, but some were never submitted. This is particularly true of the ALSEP data returned autonomously after the last Apollo astronauts departed. The data that were archived were generally on microfilm, microfiche, or magnetic tape in now obsolete formats, making them difficult to use. Some of the documentation and metadata are insufficient for current use. The Lunar Data Node at Goddard Space Flight Center, under the auspices of the Planetary Data System (PDS) Geosciences Node, is attempting to collect and restore the original data that were never archived, in addition to much of the archived data that were on media and in formats that are outmoded. 440 original data archival tapes for the ALSEP experiments were found at the Washington National Records Center. We have recently completed extraction of binary files from these tapes filling a number of gaps in the current ALSEP data collection at NSSDCA. Some of these experiments include: Solar Wind Spectrometer (Apollo12, 15); Cold Cathode Ion Gage (14, 15); Heat Flow (15, 17); Dust Detector (11, 12, 14, 15); Lunar Ejecta and Meteorites (17); Lunar Atmosphere composition Experiment (17); Suprathermal Ion Detector (12, 14, 15); Lunar Surface Magnetometer (12,15, 16). The purpose of the Lunar Data Project is to take data collections already archived at the NSSDCA and prepare them for archive through PDS, and to locate lunar data that were never archived into NSSDCA, and then archive them through PDS. In addition results of recent re-analyses of some of these data with advanced data processing algorithms revealed more detailed interpretation (e.g., seismicity data). We expect that more techniques will be developed in the future.
Development of a Gamma-Ray Spectrometer for Korean Pathfinder Lunar Orbiter
NASA Astrophysics Data System (ADS)
Kim, Kyeong Ja; Park, Junghun; Choi, Yire; Lee, Sungsoon; Yeon, Youngkwang; Yi, Eung Seok; Jeong, Meeyoung; Sun, Changwan; van Gasselt, Stephan; Lee, K. B.; Kim, Yongkwon; Min, Kyungwook; Kang, Kyungin; Cho, Jinyeon; Park, Kookjin; Hasebe, Nobuyuki; Elphic, Richard; Englert, Peter; Gasnault, Olivier; Lim, Lucy; Shibamura, Eido; GRS Team
2016-10-01
Korea is preparing for a lunar orbiter mission (KPLO) to be developed in no later than 2018. Onboard the spacecraft is a gamma ray spectrometer (KLGRS) allowing to collect low energy gamma-ray signals in order to detect elements by either X-ray fluorescence or by natural radioactive decay in the low as well as higher energy regions of up to 10 MeV. Scientific objectives include lunar resources (water and volatile measurements, rare earth elements and precious metals, energy resources, major elemental distributions for prospective in-situ utilizations), investigation of the lunar geology and studies of the lunar environment (mapping of the global radiation environment from keV to 10 MeV, high energy cosmic ray flux using the plastic scintillator).The Gamma-Ray Spectrometer (GRS) system is a compact low-weight instrument for the chemical analysis of lunar surface materials within a gamma-ray energy range from 10s keV to 10 MeV. The main LaBr3 detector is surrounded by an anti-coincidence counting module of BGO/PS scintillators to reduce both low gamma-ray background from the spacecraft and housing materials and high energy gamma-ray background from cosmic rays. The GRS system will determine the elemental compositions of the near surface of the Moon.The GRS system is a recently developed gamma-ray scintillation based detector which can be used as a replacement for the HPGe GRS sensor with the advantage of being able to operate at a wide range of temperatures with remarkable energy resolution. LaBr3 also has a high photoelectron yield, fast scintillation response, good linearity and thermal stability. With these major advantages, the LaBr3 GRS system will allow us to investigate scientific objectives and assess important research questions on lunar geology and resource exploration.The GRS investigation will help to assess open questions related to the spatial distribution and origin of the elements on the lunar surface and will contribute to unravel geological surface evolution and elemental distributions of potential lunar resources.
NEXT-Lunar Lander -an Opportunity for a Close Look at the Lunar South Pole
NASA Astrophysics Data System (ADS)
Homeister, Maren; Thaeter, Joachim; Scheper, Marc; Apeldoorn, Jeffrey; Koebel, David
The NEXT-Lunar Lander mission, as contracted by ESA and investigated by OHB-System and its industrial study team, has two main purposes. The first is technology demonstration for enabling technologies like propulsion-based soft precision landing for future planetary landing missions. This involves also enabling technology experiments, like fuel cell, life science and life support, which are embedded in the stationary payload of the lander. The second main and equally important aspect is the in-situ investigation of the surface of the Moon at the lunar South Pole by stationary payload inside the Lander, deployable payload to be placed in the vicinity of the lander and mobile payload carried by a rover. The currently assessed model payload includes 15 instruments on the lander and additional five on the rover. They are addressing the fields geophysics, geochemistry, geology and radio astronomy preparation. The mission is currently under investigation in frame of a phase A mission study contract awarded by ESA to two independent industrial teams, of which one is led by OHB-System. The phase A activities started in spring 2008 and were conducted until spring 2010. A phase B is expected shortly afterwards. The analysed mission architectures range from a Soyuz-based mission to a Shared-Ariane V class mission via different transfer trajectories. Depending on the scenario payload masses including servicing of 70 to 150 kg can be delivered to the lunar surface. The lander can offer different services to the payload. The stationary payload is powered and conditioned by the lander. Examples for embarked payloads are an optical camera system, a Radio Science Experiment and a radiation monitor. The lander surface payload is deployed to the lunar surface by a 5 DoF robotic arm and will be powered by the Lander. To this group of payloads belong seismometers, a magnetometer and an instrumented Mole. The mobile payload will be carried by a rover. The rover is equipped with its own 5 DoF robotic arm and can travel with an average speed of about 1 cm/s. The Rover is generally tele-operated but has the capability to execute autonomously pre-selected operation tasks, is aware of its current status and analyses potential hazards to avoid loss of its mission by operator failure. It is equipped with a model payload consisting of a camera system for multi-spectra including infra-red, a Raman-LIBS and a CLUPI. In addition its task is to position seismometers at a distance of about 1 km away from the lander. The baseline scenario includes a launch in the 2018 timeframe and one year of surface operations at the Shakleton crater rim. This presentation will focus on the following points: • Mission architecture and spacecraft layout as elaborated during the past study activities • Surface operations of lander and rover • Current mission capability to support scientific investigations at the lunar South Pole
Dual Mission Scenarios for the Human Lunar Campaign - Performance, Cost and Risk Benefits
NASA Technical Reports Server (NTRS)
Saucillo, Rudolph J.; Reeves, David M.; Chrone, Jonathan D.; Stromgren, Chel; Reeves, John D.; North, David D.
2008-01-01
Scenarios for human lunar operations with capabilities significantly beyond Constellation Program baseline missions are potentially feasible based on the concept of dual, sequential missions utilizing a common crew and a single Ares I/CEV (Crew Exploration Vehicle). For example, scenarios possible within the scope of baseline technology planning include outpost-based sortie missions and dual sortie missions. Top level cost benefits of these dual sortie scenarios may be estimated by comparison to the Constellation Program reference two-mission-per-year lunar campaign. The primary cost benefit is the accomplishment of Mission B with a "single launch solution" since no Ares I launch is required. Cumulative risk to the crew is lowered since crew exposure to launch risks and Earth return risks are reduced versus comparable Constellation Program reference two-mission-per-year scenarios. Payload-to-the-lunar-surface capability is substantially increased in the Mission B sortie as a result of additional propellant available for Lunar Lander #2 descent. This additional propellant is a result of EDS #2 transferring a smaller stack through trans-lunar injection and using remaining propellant to perform a portion of the lunar orbit insertion (LOI) maneuver. This paper describes these dual mission concepts, including cost, risk and performance benefits per lunar sortie site, and provides an initial feasibility assessment.
Inhalation Toxicity of Ground Lunar Dust Prepared from Apollo-14 Soil
NASA Technical Reports Server (NTRS)
James, John T.; Lam, Chiu-wing; Scully, Robert R.; Cooper, Bonnie L.
2011-01-01
Within the decade one or more space-faring nations intend to return humans to the moon for more in depth exploration of the lunar surface and subsurface than was conducted during the Apollo days. The lunar surface is blanketed with fine dust, much of it in the respirable size range (<10 micron). Eventually, there is likely to be a habitable base and rovers available to reach distant targets for sample acquisition. Despite designs that could minimize the entry of dust into habitats and rovers, it is reasonable to expect lunar dust to pollute both as operations progress. Apollo astronauts were exposed briefly to dust at nuisance levels, but stays of up to 6 months on the lunar surface are envisioned. Will repeated episodic exposures to lunar dust present a health hazard to those engaged in lunar exploration? Using rats exposed to lunar dust by nose-only inhalation, we set out to investigate that question.
Fission Surface Power Technology Development Status
NASA Technical Reports Server (NTRS)
Palac, Donald T.; Mason, Lee S.; Harlow, Scott
2009-01-01
With the potential future deployment of a lunar outpost there is expected to be a clear need for a high-power, lunar surface power source to support lunar surface operations independent of the day-night cycle, and Fission Surface Power (FSP) is a very effective solution for power levels above a couple 10 s of kWe. FSP is similarly enabling for the poorly illuminated surface of Mars. The power levels/requirements for a lunar outpost option are currently being studied, but it is known that cost is clearly a predominant concern to decision makers. This paper describes the plans of NASA and the DOE to execute an affordable fission surface power system technology development project to demonstrate sufficient technology readiness of an affordable FSP system so viable and cost-effective FSP system options will be available when high power lunar surface system choices are expected to be made in the early 2010s.
Calculation of fast neutron removal cross sections for different lunar soils
NASA Astrophysics Data System (ADS)
Tellili, B.; Elmahroug, Y.; Souga, C.
2014-01-01
The interaction of galactic cosmic rays (GCRs) and solar energetic particles (SEPs) with the lunar surface produces secondary radiations as neutrons. The study of the production and attenuation of these neutrons in the lunar soil is very important to estimate the annual ambient dose equivalent on the lunar surface and for lunar nuclear spectroscopy. Also, understanding the attenuation of fast neutrons in lunar soils can help in measuring of the lunar neutron density profile and to measure the neutron flux on the lunar surface. In this paper, the attenuation of fast neutrons in different lunar soils is investigated. The macroscopic effective removal cross section (ΣR) of fast neutrons was theoretically calculated from the mass removal cross-section values (ΣR/ρ) for various elements in soils. The obtained values of (ΣR) were discussed according to the density. The results show that the attenuation of fast neutrons is more important in the landing sites of Apollo 12 and Luna 16 than the other landing sites of Apollo and Luna missions.
Single launch lunar habitat derived from an NSTS external tank
NASA Technical Reports Server (NTRS)
King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.
1990-01-01
A concept for using the spent external tank from a National Space Transportation System (NSTS) to derive a lunar habitat is described. The external tank is carried into low Earth orbit where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS orbiter can place the external tank in LEO, provide orbiter astronauts for disassembly of the external tank, and transport the required subsystem hardware for outfitting the lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen intertank modifications utilize existing structures and openings for man access without compromising the structural integrity of the tank. The modifications include installation of living quarters, instrumentation, and an airlock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal control, environmental control and life support, and propulsion. The converted lunar habitat is designed for unmanned transport and autonomous soft landing on the lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyer. The lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a lunar lander for crew changeover and resupply.
Comparative Study of Lunar Roughness from Multi - Source Data
NASA Astrophysics Data System (ADS)
Lou, Y.; Kang, Z.
2017-07-01
The lunar terrain can show its collision and volcanic history. The lunar surface roughness can give a deep indication of the effects of lunar surface magma, sedimentation and uplift. This paper aims to get different information from the roughness through different data sources. Besides introducing the classical Root-mean-square height method and Morphological Surface Roughness (MSR) algorithm, this paper takes the area of the Jurassic mountain uplift in the Sinus Iridum and the Plato Crater area as experimental areas. And then make the comparison and contrast of the lunar roughness derived from LRO's DEM and CE-2 DOM. The experimental results show that the roughness obtained by the traditional roughness calculation method reflect the ups and downs of the topography, while the results obtained by morphological surface roughness algorithm show the smoothness of the lunar surface. So, we can first use the surface fluctuation situation derived from RMSH to select the landing area range which ensures the lands are gentle. Then the morphological results determine whether the landing area is suitable for the detector walking and observing. The results obtained at two different scales provide a more complete evaluation system for selecting the landing site of the lunar probe.
Lunar Surface Potential Increases during Terrestrial Bow Shock Traversals
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Stubbs, Timothy J.; Hills, H. Kent; Halekas, Jasper; Farrell, William M.; Delory, Greg T.; Espley, Jared; Freeman, John W.; Vondrak, Richard R.; Kasper, Justin
2009-01-01
Since the Apollo era the electric potential of the Moon has been a subject of interest and debate. Deployed by three Apollo missions, Apollo 12, Apollo 14 and Apollo 15, the Suprathermal Ion Detector Experiment (SIDE) determined the sunlit lunar surface potential to be about +10 Volts using the energy spectra of lunar ionospheric thermal ions accelerated toward the Moon. We present an analysis of Apollo 14 SIDE "resonance" events that indicate the lunar surface potential increases when the Moon traverses the dawn bow shock. By analyzing Wind spacecraft crossings of the terrestrial bow shock at approximately this location and employing current balancing models of the lunar surface, we suggest causes for the increasing potential. Determining the origin of this phenomenon will improve our ability to predict the lunar surface potential in support of human exploration as well as provide models for the behavior of other airless bodies when they traverse similar features such as interplanetary shocks, both of which are goals of the NASA Lunar Science Institute's Dynamic Response of the Environment At the Moon (DREAM) team.
Apollo 12 crewmembers during geological field trip
1969-10-24
S69-55662 (10 Oct. 1969) --- Astronauts Alan L. Bean (left) and Charles Conrad Jr., the two crewmen of the Apollo 12 lunar landing mission who are scheduled to participate in two lengthy periods of extravehicular activity (EVA) on the lunar surface, are pictured during a geological field trip and training at a simulated lunar surface area near Flagstaff, Arizona. Here Conrad, the Apollo 12 commander, gets a close look through hand lens at the stratigraphy (study of strata or layers beneath the surface) of a man-dug hole, while Bean, the Apollo 12 mission's lunar module pilot, looks on. The topography in this area, with several man-made modifications, resembles very closely much of the topography found on the lunar surface. While Conrad and Bean explore the lunar surface (plans call for Apollo 12 spacecraft to land in the Sea of Storms), astronaut Richard F. Gordon Jr., command module pilot for the Apollo 12 mission, will remain with the Command and Service Modules (CSM) in lunar orbit. The Apollo 12 mission is scheduled to lift off from Cape Kennedy on Nov. 14, 1969.
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.
2012-01-01
As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.
NASA Technical Reports Server (NTRS)
Criswell, D. R. (Editor); Freeman, J. W. (Editor)
1974-01-01
Reviewed are the active mechanisms relating the moon to its environment and the linkage between these mechanisms and their records in the lunar sample and geophysical data. Topics: (1) large scale plasma interactions with the moon and non-magnetic planets; (2) ancient and present day lunar surface magnetic and electric fields; (3) dynamics and evolution of the lunar atmosphere; (4) evolution of the solar plasma; (5) lunar record of solar radiations; (6) non-meteoritic and meteoritic disturbance and transport of lunar surface materials; and (7) future lunar exploration.
Apollo 13 Astronaut James Lovel during lunar surface simulation training
1970-01-16
S70-28229 (16 Jan. 1970) --- Astronaut James A. Lovell Jr., commander of the Apollo 13 lunar landing mission, participates in lunar surface simulation training at the Manned Spacecraft Center. Lovell is attached to a Six Degrees of Freedom Simulator. He is carrying an Apollo Lunar Hand Tools carrier in his right hand.
Impact-Actuated Digging Tool for Lunar Excavation
NASA Technical Reports Server (NTRS)
Wilson, Jak; Chu, Philip; Craft, Jack; Zacny, Kris; Santoro, Chris
2013-01-01
NASA s plans for a lunar outpost require extensive excavation. The Lunar Surface Systems Project Office projects that thousands of tons of lunar soil will need to be moved. Conventional excavators dig through soil by brute force, and depend upon their substantial weight to react to the forces generated. This approach will not be feasible on the Moon for two reasons: (1) gravity is 1/6th that on Earth, which means that a kg on the Moon will supply 1/6 the down force that it does on Earth, and (2) transportation costs (at the time of this reporting) of $50K to $100K per kg make massive excavators economically unattractive. A percussive excavation system was developed for use in vacuum or nearvacuum environments. It reduces the down force needed for excavation by an order of magnitude by using percussion to assist in soil penetration and digging. The novelty of this excavator is that it incorporates a percussive mechanism suited to sustained operation in a vacuum environment. A percussive digger breadboard was designed, built, and successfully tested under both ambient and vacuum conditions. The breadboard was run in vacuum to more than 2..times the lifetime of the Apollo Lunar Surface Drill, throughout which the mechanism performed and held up well. The percussive digger was demonstrated to reduce the force necessary for digging in lunar soil simulant by an order of magnitude, providing reductions as high as 45:1. This is an enabling technology for lunar site preparation and ISRU (In Situ Resource Utilization) mining activities. At transportation costs of $50K to $100K per kg, reducing digging forces by an order of magnitude translates into billions of dollars saved by not launching heavier systems to accomplish excavation tasks necessary to the establishment of a lunar outpost. Applications on the lunar surface include excavation for habitats, construction of roads, landing pads, berms, foundations, habitat shielding, and ISRU.
High resolution measures of polarization and color of selected lunar areas
NASA Technical Reports Server (NTRS)
Riley, L. A.; Hall, J. S.
1972-01-01
High resolution observations of intensity, color (UBV) and polarization were obtained with scanning techniques for a number of lunar areas of special interest, including boundaries of some of the brightest and darkest lunar regions, certain Apollo landing sites and prominent craters. Two dimensional raster scans of colors were obtained for Alphonsus, Aristarchus, and Herodotus. The degree of polarization for any given phase angle appears to be roughly indicative of age. The darker younger mare surface are more highly polarized than the lighter and older mare surfaces, which appear to be more contaminated by lighter material from the highlands or by ray material thrown out from fresh craters. All mare surfaces are more highly polarized than the still older and lighter terra regions surrounding the maria. The very oldest craters are either dark-floored and show polarization characteristics similar to those of the mare surfaces, or if located in the highlands, they are less and less distinguishable from the highland background with greater age, and show the general highland polarization characteristics.
Planetary Penetrators - The Vanguard for the Future Exploration of the Solar System
NASA Astrophysics Data System (ADS)
Collinson, G.; UK Penetrator Consortium
The UK Penetrator Consortium is aiming to develop spacecraft weighing <15 kg, rugged enough to survive impacts with planetary surfaces at speeds of up to 300 m/s and bury themselves a few meters into the surface. A full-scale trial is currently under preparation, leading towards a proposed Lunar mission, called “MoonLITE”, early next decade. Detectors for volatiles aboard MoonLITE will search for the presence of lunar water, whilst seismometers will measure the strength and frequency of moonquakes over the mission's nominal one-year period and probe the internal structure of the moon using simultaneous measurements of seismic waves that travel through the lunar interior. The consortium also has long term plans for more ambitious missions to Jupiter's moon of Europa, and Saturn's Moons of Titan and Enceladus as part of ESA's Cosmic Visions Programme. Key goals include the search for sub-surface oceans, the study of sub-surface geochemistry and seismic activity and the search for organic molecules of exobiological importance.
NASA Astrophysics Data System (ADS)
Lemelin, M.; Lucey, P. G.; Neumann, G. A.; Mazarico, E. M.; Barker, M. K.; Kakazu, A.; Trang, D.; Smith, D. E.; Zuber, M. T.
2016-07-01
The Lunar Orbiter Laser Altimeter (LOLA) experiment on Lunar Reconnaissance Orbiter (LRO) is a laser altimeter that also measures the strength of the return pulse from the lunar surface. These data have been used to estimate the reflectance of the lunar surface, including regions lacking direct solar illumination. A new calibration of these data is presented that features lower uncertainties overall and more consistent results in the polar regions. We use these data, along with newly available maps of the distribution of lunar maria, also derived from LRO instrument data, to investigate a newly discovered dependence of the albedo of the lunar maria on latitude (Hemingway et al., [2015]). We confirm that there is an increase in albedo with latitude in the lunar maria, and confirm that this variation is not an artifact arising from the distribution of compositions within the lunar maria, using data from the Lunar Prospector Neutron Spectrometer. Radiative transfer modeling of the albedo dependence within the lunar maria is consistent with the very weak to absent dependence of albedo on latitude in the lunar highlands; the lower abundance of the iron source for space weathering products in the lunar highlands weakens the latitude dependence to the extent that it is only weakly detectable in current data. In addition, photometric models and normalization may take into account the fact that the lunar albedo is latitude dependent, but this dependence can cause errors in normalized reflectance of at most 2% for the majority of near-nadir geometries. We also investigate whether the latitude dependent albedo may have obscured detection of small mare deposits at high latitudes. We find that small regions at high latitudes with low roughness similar to the lunar maria are not mare deposits that may have been misclassified owing to high albedos imposed by the latitude dependence. Finally, we suggest that the only modest correlations among space weathering indicators defined for the lunar samples may be due to mixing of soils from distinct latitudes.
NASA Technical Reports Server (NTRS)
Lemelin, M.; Lucey, P. G.; Neumann, G. A.; Mazarico, E. M.; Barker, M. K.; Kakazu, A.; Trang, D.; Smith, D. E.; Zuber, M. T.
2016-01-01
The Lunar Orbiter Laser Altimeter (LOLA) experiment on Lunar Reconnaissance Orbiter (LRO) is a laser altimeter that also measures the strength of the return pulse from the lunar surface. These data have been used to estimate the reflectance of the lunar surface, including regions lacking direct solar illumination. A new calibration of these data is presented that features lower uncertainties overall and more consistent results in the polar regions. We use these data, along with newly available maps of the distribution of lunar maria, also derived from LRO instrument data, to investigate a newly discovered dependence of the albedo of the lunar maria on latitude (Hemingway et al., [2015]). We confirm that there is an increase in albedo with latitude in the lunar maria, and confirm that this variation is not an artifact arising from the distribution of compositions within the lunar maria, using data from the Lunar Prospector Neutron Spectrometer. Radiative transfer modeling of the albedo dependence within the lunar maria is consistent with the very weak to absent dependence of albedo on latitude in the lunar highlands; the lower abundance of the iron source for space weathering products in the lunar highlands weakens the latitude dependence to the extent that it is only weakly detectable in current data. In addition, photometric mod- els and normalization may take into account the fact that the lunar albedo is latitude dependent, but this dependence can cause errors in normalized reflectance of at most 2% for the majority of near-nadir geometries. We also investigate whether the latitude dependent albedo may have obscured detection of small mare deposits at high latitudes. We find that small regions at high latitudes with low roughness similar to the lunar maria are not mare deposits that may have been misclassified owing to high albedos imposed by the latitude dependence. Finally, we suggest that the only modest correlations among space weathering indicators defined for the lunar samples may be due to mixing of soils from distinct latitudes.
Conceptual Design of a Communications Relay Satellite for a Lunar Sample Return Mission
NASA Technical Reports Server (NTRS)
Brunner, Christopher W.
2005-01-01
In 2003, NASA solicited proposals for a robotic exploration of the lunar surface. Submissions were requested for a lunar sample return mission from the South Pole-Aitken Basin. The basin is of interest because it is thought to contain some of the oldest accessible rocks on the lunar surface. A mission is under study that will land a spacecraft in the basin, collect a sample of rock fragments, and return the sample to Earth. Because the Aitken Basin is on the far side of the Moon, the lander will require a communications relay satellite (CRS) to maintain contact with the Earth during its surface operation. Design of the CRS's orbit is therefore critical. This paper describes a mission design which includes potential transfer and mission orbits, required changes in velocity, orbital parameters, and mission dates. Several different low lunar polar orbits are examined to compare their availability to the lander versus the distance over which they must communicate. In addition, polar orbits are compared to a halo orbit about the Earth-Moon L2 point, which would permit continuous communication at a cost of increased fuel requirements and longer transmission distances. This thesis also examines some general parameters of the spacecraft systems for the mission under study. Mission requirements for the lander dictate the eventual choice of mission orbit. This mission could be the first step in a period of renewed lunar exploration and eventual human landings.
NASA Astrophysics Data System (ADS)
Kring, D. A.
2018-02-01
The Deep Space Gateway can support astronauts on the lunar surface, providing them a departure and returning rendezvous point, a communication relay from the lunar farside to Earth, and a transfer point to Orion for return to Earth.
Interviews with Apollo Lunar Surface Astronauts in Support of EVA Systems Design
NASA Technical Reports Server (NTRS)
Eppler, Dean
2010-01-01
A 3-person team interviewed 8 of the 11 surviving Apollo crewmembers in a series of focused interviews to discuss their experiences on the lunar surface. Eppler presented the results of these interviews, along with recommendations for the design of future lunar surface systems.
Dusty Plasmas on the Lunar Surface
NASA Astrophysics Data System (ADS)
Horanyi, M.; Andersson, L.; Colwell, J.; Ergun, R.; Gruen, E.; McClintock, B.; Peterson, W. K.; Robertson, S.; Sternovsky, Z.; Wang, X.
2006-12-01
The electrostatic levitation and transport of lunar dust remains one of the most interesting and controversial science issues from the Apollo era. This issue is also of great engineering importance in designing human habitats and protecting optical and mechanical devices. As function of time and location, the lunar surface is exposed to solar wind plasma, UV radiation, and/or the plasma environment of our magnetosphere. Dust grains on the lunar surface collect an electrostatic charge; alter the large-scale surface charge density distribution, ?and subsequently develop an interface region to the background plasma and radiation. There are several in situ and remote sensing observations that indicate that dusty plasma processes are likely to be responsible for the mobilization and transport of lunar soil. These processes are relevant to: a) understanding the lunar surface environment; b) develop dust mitigation strategies; c) to understand the basic physical processes involved in the birth and collapse of dust loaded plasma sheaths. This talk will focus on the dusty plasma processes on the lunar surface. We will review the existing body of observations, and will also consider future opportunities for the combination of in situ and remote sensing observations. Our goals are to characterize: a) the temporal variation of the spatial and size distributions of the levitated/transported dust; and b) the surface plasma environment
Power requirements for the first lunar outpost (FLO)
NASA Technical Reports Server (NTRS)
Cataldo, Robert L.; Bozek, John M.
1993-01-01
NASA's Exploration Program Office is currently developing a preliminary reference mission description that lays the framework from which the nation can return to the Moon by the end of the decade. The First Lunar Outpost is the initial phase of establishing a permanent presence on the Moon and the next step of sending humans to Mars. Many systems required for missions to Mars will be verified on the Moon, while still accomplishing valuable lunar science and in-situ resource utilization (ISRU). Some of FLO's major accomplishments will be long duration habitation, extended surface roving (both piloted and teleoperated) and a suite of science experiments, including lunar resources extraction. Of equal challenge will be to provide long life, reliable power sources to meet the needs of a lunar mission.
At-sea behavior varies with lunar phase in a nocturnal pelagic seabird, the swallow-tailed gull
Cruz, Sebastian M.; Hooten, Mevin; Huyvaert, Kathryn P.; Proaño, Carolina B.; Anderson, David J.; Afanasyev, Vsevolod; Wikelski, Martin
2013-01-01
Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM) that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase.
At-sea behavior varies with lunar phase in a nocturnal pelagic seabird, the swallow-tailed gull.
Cruz, Sebastian M; Hooten, Mevin; Huyvaert, Kathryn P; Proaño, Carolina B; Anderson, David J; Afanasyev, Vsevolod; Wikelski, Martin
2013-01-01
Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM) that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase.
Building an Economical and Sustainable Lunar Infrastructure to Enable Lunar Industrialization
NASA Technical Reports Server (NTRS)
Zuniga, Allison F.; Turner, Mark; Rasky, Daniel; Loucks, Mike; Carrico, John; Policastri, Daniel
2017-01-01
A new concept study was initiated to examine the architecture needed to gradually develop an economical, evolvable and sustainable lunar infrastructure using a public/private partnerships approach. This approach would establish partnership agreements between NASA and industry teams to develop a lunar infrastructure system that would be mutually beneficial. This approach would also require NASA and its industry partners to share costs in the development phase and then transfer operation of these infrastructure services back to its industry owners in the execution phase. These infrastructure services may include but are not limited to the following: lunar cargo transportation, power stations, communication towers and satellites, autonomous rover operations, landing pads and resource extraction operations. The public/private partnerships approach used in this study leveraged best practices from NASA's Commercial Orbital Transportation Services (COTS) program which introduced an innovative and economical approach for partnering with industry to develop commercial cargo services to the International Space Station. This program was planned together with the ISS Commercial Resupply Services (CRS) contracts which was responsible for initiating commercial cargo delivery services to the ISS for the first time. The public/private partnerships approach undertaken in the COTS program proved to be very successful in dramatically reducing development costs for these ISS cargo delivery services as well as substantially reducing operational costs. To continue on this successful path towards installing economical infrastructure services for LEO and beyond, this new study, named Lunar COTS (Commercial Operations and Transport Services), was conducted to examine extending the NASA COTS model to cis-lunar space and the lunar surface. The goals of the Lunar COTS concept are to: 1) develop and demonstrate affordable and commercial cis-lunar and surface capabilities, such as lunar cargo delivery and surface power generation, in partnership with industry; 2) incentivize industry to establish economical and sustainable lunar infrastructure services to support NASA missions and initiate lunar commerce; and 3) encourage creation of new space markets for economic growth and benefit. A phased-development approach was also studied to allow for incremental development and demonstration of capabilities needed to build a lunar infrastructure. This paper will describe the Lunar COTS concept goals, objectives and approach for building an economical and sustainable lunar infrastructure. It will also describe the technical challenges and advantages of developing and operating each infrastructure element. It will also describe the potential benefits and progress that can be accomplished in the initial phase of this Lunar COTS approach. Finally, the paper will also look forward to the potential of a robust lunar industrialization environment and its potential effect on the next 50 years of space exploration.
The Unified Lunar Control Network 2005
Archinal, Brent A.; Rosiek, Mark R.; Kirk, Randolph L.; Redding, Bonnie L.
2006-01-01
This report documents a new general unified lunar control network and lunar topographic model based on a combination of Clementine images and a previous network derived from Earth-based & Apollo photographs, and Mariner 10, & Galileo images. This photogrammetric network solution is the largest planetary control network ever completed. It includes the determination of the 3-D positions of 272,931 points on the lunar surface and the correction of the camera angles for 43,866 Clementine images, using 546,126 tie point measurements. The solution RMS is 20 ?m (= 0.9 pixels) in the image plane, with the largest residual of 6.4 pixels. The explanation given here, along with the accompanying files, comprises the release of the network information and of global lunar digital elevation models (DEMs) derived from the network. A paper that will describe the solution and network in further detail will be submitted to a refereed journal, and will include additional background information, solution details, discussion of accuracy and precision, and explanatory figures.
Baseline Design and Performance Analysis of Laser Altimeter for Korean Lunar Orbiter
NASA Astrophysics Data System (ADS)
Lim, Hyung-Chul; Neumann, Gregory A.; Choi, Myeong-Hwan; Yu, Sung-Yeol; Bang, Seong-Cheol; Ka, Neung-Hyun; Park, Jong-Uk; Choi, Man-Soo; Park, Eunseo
2016-09-01
Korea’s lunar exploration project includes the launching of an orbiter, a lander (including a rover), and an experimental orbiter (referred to as a lunar pathfinder). Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.
Resources for a lunar base: Rocks, minerals, and soil of the Moon
NASA Technical Reports Server (NTRS)
Taylor, Lawrence A.
1992-01-01
The rocks and minerals of the Moon will be included among the raw materials used to construct a lunar base. The lunar regolith, the fragmental material present on the surface of the Moon, is composed mostly of disaggregated rocks and minerals, but also includes glassy fragments fused together by meteorite impacts. The finer fraction of the regolith (i.e., less than 1 cm) is informally referred to as soil. The soil is probably the most important portion of the regolith for use at a lunar base. For example, soil can be used as insulation against cosmic rays, for lunar ceramics and abodes, or for growing plants. The soil contains abundant solar-wind-implanted elements as well as various minerals, particularly oxide phases, that are of potential economic importance. For example, these components of the soil are sources of oxygen and hydrogen for rocket fuel, helium for nuclear energy, and metals such as Fe, Al, Si, and Ti.
Apollo 8 Commander Frank Borman Receives Presidential Call
NASA Technical Reports Server (NTRS)
1968-01-01
Apollo 8 Astronaut Frank Borman, commander of the first manned Saturn V space flight into Lunar orbit, accepted a phone call from the U.S. President Lyndon B. Johnson prior to launch. Borman, along with astronauts William Anders, Lunar Module (LM) pilot, and James Lovell, Command Module (CM) pilot, launched aboard the Apollo 8 mission on December 21, 1968 and returned safely to Earth on December 27, 1968. The mission achieved operational experience and tested the Apollo command module systems, including communications, tracking, and life-support, in cis-lunar space and lunar orbit, and allowed evaluation of crew performance on a lunar orbiting mission. The crew photographed the lunar surface, both far side and near side, obtaining information on topography and landmarks as well as other scientific information necessary for future Apollo landings. All systems operated within allowable parameters and all objectives of the mission were achieved.
The coming revolution in planetology
NASA Technical Reports Server (NTRS)
Okeefe, J. A.
1985-01-01
Current ideas about the moon appear to be mistaken on two fundamental points. First, at least within certain large classes of lunar craters, internal origin (i.e., some form of volcanism) predominates over impact; this result raises questions about the reality of the 'era of violent bombardment'. Second, the origin of tektites by meteoritic impact on the earth cannot be reconciled with physical principles and is to be abandoned. The only viable alternative is origin by lunar volcanism, which implies the following: continuance of (rare) explosive lunar volcanism to the present time; existence of silicic lunar volcanism and of small patches of silicic rock at the lunar surface; a body of rock in the lunar interior, probably at great depth, which is closely similar to the earth's mantle and which contains billions of tons of volatiles, probably including hydrogen; and origin of the moon from the earth after the formation of the earth's core.
Apollo 8 Astronaut Anders Suits Up For Countdown Demonstration Test
NASA Technical Reports Server (NTRS)
1968-01-01
Apollo 8 astronaut William Anders, Lunar Module (LM) pilot, is suited up for the Apollo 8 mission countdown demonstration test. The first manned Apollo mission launched aboard the Saturn V and first manned Apollo craft to enter lunar orbit, the SA-503, Apollo 8 mission lift off occurred on December 21, 1968 and returned safely to Earth on December 27, 1968. Aboard were Anders and fellow astronauts James Lovell, Command Module (CM) pilot; and Frank Borman, commander. The mission achieved operational experience and tested the Apollo command module systems, including communications, tracking, and life-support, in cis-lunar space and lunar orbit, and allowed evaluation of crew performance on a lunar orbiting mission. The crew photographed the lunar surface, both far side and near side, obtaining information on topography and landmarks as well as other scientific information necessary for future Apollo landings. All systems operated within allowable parameters and all objectives of the mission were achieved.
Apollo 8 Astronaut James Lovell On Phone With President Johnson
NASA Technical Reports Server (NTRS)
1968-01-01
Apollo 8 Astronaut James Lovell, Command Module (CM) pilot of the first manned Saturn V space flight into Lunar orbit, accepted a phone call from the U.S. President Lyndon B. Johnson prior to launch. Lovell, along with astronauts William Anders, Lunar Module (LM) pilot, and Frank Borman, commander, launched aboard the Apollo 8 mission on December 21, 1968 and returned safely to Earth on December 27, 1968. The mission achieved operational experience and tested the Apollo command module systems, including communications, tracking, and life-support, in cis-lunar space and lunar orbit, and allowed evaluation of crew performance on a lunar orbiting mission. The crew photographed the lunar surface, both far side and near side, obtaining information on topography and landmarks as well as other scientific information necessary for future Apollo landings. All systems operated within allowable parameters and all objectives of the mission were achieved.
Apollo 8 Astronaut William Anders On Phone With President Johnson
NASA Technical Reports Server (NTRS)
1968-01-01
Apollo 8 Astronaut William Anders, Lunar Module (LM) pilot of the first manned Saturn V space flight into Lunar orbit, accepted a phone call from the U.S. President Lyndon B. Johnson prior to launch. Anders, along with astronauts James Lovell, Command Module (CM) pilot, and Frank Borman, commander, launched aboard the Apollo 8 mission on December 21, 1968 and returned safely to Earth on December 27, 1968. The mission achieved operational experience and tested the Apollo command module systems, including communications, tracking, and life-support, in cis-lunar space and lunar orbit, and allowed evaluation of crew performance on a lunar orbiting mission. The crew photographed the lunar surface, both far side and near side, obtaining information on topography and landmarks as well as other scientific information necessary for future Apollo landings. All systems operated within allowable parameters and all objectives of the mission were achieved.
Granular Mechanics and Surface Systems Lab
NASA Technical Reports Server (NTRS)
Randle, Leah
2007-01-01
The cratering of sand under gas jets is observed to further understanding of soil in hopes to further understand lunar soil. Lunar soil is important to understand because it is causing problems with the materials taken into space including the shuttle. Lunar soil is not rounded like beach sand. Lunar soil is sharp like little particles of glass, and some times when blown they can hook on to one another and become bigger particles. The experiments are designed to help to understand some of the basic physics in how the shuttle jets will interact with lunar soil and how to control the lunar soil. These experiments investigate the diameter of the gas jet and the size of the sand grains to determine how these parameters affect the erosion rate and the cratering processes. Therefore, the experiments preformed will point out what is dependent and what is independent.
Distribution and Origin of Amino Acids in Lunar Regolith Samples
NASA Technical Reports Server (NTRS)
Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; McLain, H. L.; Noble, S. K.; Gibson, E. K., Jr.
2015-01-01
The existence of organic compounds on the lunar surface has been a question of interest from the Apollo era to the present. Investigations of amino acids immediately after collection of lunar samples yielded inconclusive identifications, in part due to analytical limitations including insensitivity to certain compounds, an inability to separate enantiomers, and lack of compound-specific isotopic measurements. It was not possible to determine if the detected amino acids were indigenous to the lunar samples or the result of terrestrial contamination. Recently, we presented initial data from the analysis of amino acid abundances in 12 lunar regolith samples and discussed those results in the context of four potential amino acid sources [5]. Here, we expand on our previous work, focusing on amino acid abundances and distributions in seven regolith samples and presenting the first compound-specific carbon isotopic ratios measured for amino acids in a lunar sample.
NASA Technical Reports Server (NTRS)
Sacksteder, Kurt R.; Wegeng, Robert S.; Suzuki, Nantel H.
2012-01-01
Recent missions have confirmed the existence of water and other volatiles on the Moon, both in permanently-shadowed craters and elsewhere. Non-volatile lunar resources may represent significant additional value as infrastructure or manufacturing feedstock. Characterization of lunar resources in terms of abundance concentrations, distribution, and recoverability is limited to in-situ Apollo samples and the expanding remote-sensing database. This paper introduces an approach to lunar resource prospecting supported by a simple lunar surface infrastructure based on the Thermal Wadi concept of thermal energy storage and using compact rovers equipped with appropriate prospecting sensors and demonstration resource extraction capabilities. Thermal Wadis are engineered sources of heat and power based on the storage and retrieval of solar-thermal energy in modified lunar regolith. Because Thermal Wadis keep compact prospecting rovers warm during periods of lunar darkness, the rovers are able to survive months to years on the lunar surface rather than just weeks without being required to carry the burdensome capability to do so. The resulting lower-cost, long-lived rovers represent a potential paradigm breakthrough in extra-terrestrial prospecting productivity and will enable the production of detailed resource maps. Integrating resource processing and other technology demonstrations that are based on the content of the resource maps will inform engineering economic studies that can define the true resource potential of the Moon. Once this resource potential is understood quantitatively, humans might return to the Moon with an economically sound objective including where to go, what to do upon arrival, and what to bring along.
Electric Power System Technology Options for Lunar Surface Missions
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.
2005-01-01
In 2004, the President announced a 'Vision for Space Exploration' that is bold and forward-thinking, yet practical and responsible. The vision explores answers to longstanding questions of importance to science and society and will develop revolutionary technologies and capabilities for the future, while maintaining good stewardship of taxpayer dollars. One crucial technology area enabling all space exploration is electric power systems. In this paper, the author evaluates surface power technology options in order to identify leading candidate technologies that will accomplish lunar design reference mission three (LDRM-3). LDRM-3 mission consists of multiple, 90-day missions to the lunar South Pole with 4-person crews starting in the year 2020. Top-level power requirements included a nominal 50 kW continuous habitat power over a 5-year lifetime with back-up or redundant emergency power provisions and a nominal 2-kW, 2-person unpressurized rover. To help direct NASA's technology investment strategy, this lunar surface power technology evaluation assessed many figures of merit including: current technology readiness levels (TRLs), potential to advance to TRL 6 by 2014, effectiveness of the technology to meet the mission requirements in the specified time, mass, stowed volume, deployed area, complexity, required special ground facilities, safety, reliability/redundancy, strength of industrial base, applicability to other LDRM-3 elements, extensibility to Mars missions, costs, and risks. For the 50-kW habitat module, dozens of nuclear, radioisotope and solar power technologies were down-selected to a nuclear fission heat source with Brayton, Stirling or thermoelectric power conversion options. Preferred energy storage technologies included lithium-ion battery and Proton Exchange Membrane (PEM) Regenerative Fuel Cells (RFC). Several AC and DC power management and distribution architectures and component technologies were defined consistent with the preferred habitat power generation technology option and the overall lunar surface mission. For rover power, more than 20 technology options were down-selected to radioisotope Stirling, liquid lithium-ion battery, PEM RFC, or primary fuel cell options. The author discusses various conclusions that can be drawn from the findings of this surface power technologies evaluation.
Lunar Obliquity History Revisited
NASA Astrophysics Data System (ADS)
Siegler, M.; Bills, B.; Paige, D.
2007-12-01
In preparation for a LRO (Lunar Reconnaissance Orbiter) related study of possible lunar polar volatiles, we re- examined the lunar orbital and rotational history, with primary focus on the obliquity history of the Moon. Though broad models have been made of lunar obliquity, a cohesive obliquity history was not found. We report on a new model of lunar obliquity including secular changes in inclination of the lunar orbit, tidal dissipation, lunar moments of inertia, and details for periods outside of the stable configurations known as Cassini states. For planets, the obliquity, or angle between the spin and orbit poles, is the dominant control on incident solar radiation. For planetary satellites, the radiation pattern can be more complex, as it depends on the mutual inclinations of three poles; the satellite spin and orbit poles, and the planetary heliocentric orbit pole. Presently, the lunar spin pole and orbit pole co-precess about the ecliptic pole, in a stable situation known as a Cassini state. As a result, permanently shadowed regions near the poles are expected to exist and act as cold traps, retaining water or other volatiles delivered to the surface by comets, solar wind, or via outgassing of the lunar interior. However, tidally driven secular changes in the lunar semimajor axis cause changes in precession rates of the spin and orbit poles, and thereby alter or destabilize the Cassini states. Only one prograde Cassini state exists at present (state 2). In the standard Cassini state model of Ward [1975], two other such states would have existed in the past (states 1 and 4) with the Moon starting in the low obliquity state 1, and remaining there until states 1 and 4 merged and disappear, at roughly half the present Earth-Moon distance. At that point, the Moon transitioned into the currently occupied state 2, and briefly attained very high obliquity values during the transition, and then stayed in state 2 until the present. If correct, this model implies that the transition from state 1 to state 2 is the most important event in the histories of lunar obliquity and polar volatiles, as it separates two periods in which current lunar cold traps could have existed with a period of high polar insolation which could have mobilized volatiles into space or to greater depths in the lunar near surface. If incorrect, lunar cold traps may prove only a very recent phenomenon. By including secular orbit changes, our model should help determine if this Cassini state stability really dominated in the past and allow detailed examination of extra-Cassini state periods.
[Possibility of exacerbation of allergy by lunar regolith].
Horie, Masanori; Kambara, Tatsunori; Kuroda, Etsushi; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo
2012-09-01
Japan, U.S.A. and other foreign space agencies have plans for the construction of a lunar base and long-term stay of astronauts on the moon. The surface of the moon is covered by a thick layer of soil that includes fine particles called "lunar regolith", which is formed by meteorite impact and space weathering. Risk assessment of particulate matter on the moon is important for astronauts working in microgravity on the moon. However, there are few investigations about the biological influences of lunar regolith. Especially, there is no investigation about allergic activity to lunar regolith. The main chemical components of lunar regolith are SiO2, Al2O3, CaO, FeO, etc. Of particular interest, approximately 50% of lunar regolith consists of SiO2. There is a report that the astronauts felt hay fever-like symptoms from the inhalation of the lunar regolith. Yellow sand, whose chemical components are similar to lunar regolith, enhances allergenic reactions, suggesting the possibility that lunar regolith has an adjuvant-like activity. Although intraperitoneal administration of lunar regolith with ovalbumin to mouse did not show enhancement of allergenic reactions, further evaluation of lunar regolith's potential to exacerbate the effects of allergies is essential for development of the moon.
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Dukes, C.; Keller, L. P.; Baragiola, R.
2012-01-01
Solar wind ions are capable of altering the sur-face chemistry of the lunar regolith by a number of mechanisms including preferential sputtering, radiation-enhanced diffusion and sputter erosion of space weathered surfaces containing pre-existing compositional profiles. We have previously reported in-situ ion irradiation experiments supported by X-ray photoelectron spectroscopy (XPS) and analytical TEM that show how solar ions potentially drive Fe and Ti reduction at the monolayer scale as well as the 10-100 nm depth scale in lunar soils [1]. Here we report experimental data on the effect of ion irradiation on the major element surface composition in a mature mare soil.
Astronaut Charles Conrad uses lunar equipment conveyer at Lunar Module
1969-11-19
Astronaut Charles Conrad Jr., commander, uses the lunar equipment conveyer (LEC) at the Lunar Module during the Apollo 12 extravehicular activity on the lunar surface. This photograph was taken by Astronaut Alan L. Bean, lunar module pilot.
Planetary science: A lunar perspective
NASA Technical Reports Server (NTRS)
Taylor, S. R.
1982-01-01
An interpretative synthesis of current knowledge on the moon and the terrestrial planets is presented, emphasizing the impact of recent lunar research (using Apollo data and samples) on theories of planetary morphology and evolution. Chapters are included on the exploration of the solar system; geology and stratigraphy; meteorite impacts, craters, and multiring basins; planetary surfaces; planetary crusts; basaltic volcanism; planetary interiors; the chemical composition of the planets; the origin and evolution of the moon and planets; and the significance of lunar and planetary exploration. Photographs, drawings, graphs, tables of quantitative data, and a glossary are provided.
2009-06-18
CAPE CANAVERAL, Fla. – NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, lifts off from Launch Pad 41 at Cape Canaveral Air Force Station in Florida. LRO and LCROSS are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. The LRO also includes seven instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA , CRATER, Mini-RF and LROC. Launch was on-time at 5:32 p.m. EDT June 18. Photo credit: NASA/Sandra Joseph
Lunar single-scattering, porosity, and surface-roughness properties with SMART-1/AMIE
NASA Astrophysics Data System (ADS)
Parviainen, H.; Muinonen, K.; Näränen, J.; Josset, J.-L.; Beauvivre, S.; Pinet, P.; Chevrel, S.; Koschny, D.; Grieger, B.; Foing, B.
2009-04-01
We analyze the single-scattering albedo and phase function, local surface roughness and regolith porosity, and the coherent backscattering, single scattering, and shadowing contributions to the opposition effect for specific lunar mare regions imaged by the SMART-1/AMIE camera. We account for shadowing due to surface roughness and mutual shadowing among the regolith particles with ray-tracing computations for densely-packed particulate media with a fractional-Brownian-motion interface with free space. The shadowing modeling allows us to derive the hundred-micron-scale volume-element scattering phase function for the lunar mare regolith. We explain the volume-element phase function by a coherent-backscattering model, where the single scatterers are the submicron-to-micron-scale particle inhomogeneities and/or the smallest particles on the lunar surface. We express the single-scatterer phase function as a sum of three Henyey-Greenstein terms, accounting for increased backward scattering in both narrow and wide angular ranges. The Moon exhibits an opposition effect, that is, a nonlinear increase of disk-integrated brightness with decreasing solar phase angle, the angle between the Sun and the observer as seen from the object. Recently, the coherent-backscattering mechanism (CBM) has been introduced to explain the opposition effect. CBM is a multiple-scattering interference mechanism, where reciprocal waves propagating through the same scatterers in opposite directions always interfere constructively in the backward-scattering direction but with varying interference characteristics in other directions. In addition to CBM, mutual shadowing among regolith particles (SMp) and rough-surface shadowing (SMr) have their effect on the behavior of the observed lunar surface brightness. In order to accrue knowledge on the volume-element and, ultimately, single-scattering properties of the lunar regolith, both SMp and SMr need to be accurately accounted for. We included four different lunar mare regions in our study. Each of these regions covers several hundreds of square kilometers of lunar surface. When selecting the regions, we have required that they have been imaged by AMIE across a wide range of phase angles, including the opposition geometry. The phase-angle range covered is 0-109 °, with incidence and emergence angles (ι and ε) ranging within 7-87 ° and 0-53 °, respectively. The pixel scale varies from 288m down to 29m. Biases and dark currents were subtracted from the images in the usual way, followed by a flat-field correction. New dark-current reduction procedures have recently been derived from in-flight measurements to replace the ground-calibration images . The clear filter was chosen for the present study as it provides the largest field of view and is currently the best-calibrated channel. Off-nadir-pointing observations allowed for the extensive phase-angle coverage. In total, 220 images are used for the present study. The photometric data points were extracted as follows. First, on average, 50 sample areas of 10 Ã- 10 pixels were chosen by hand from each image. Second, the surface normal, ι, ε, °, and α were computed for each pixel in each sample area using the NASA/NAIF SPICE software toolkit with the latest and corrected SMART-1/AMIE SPICE kernels. Finally, the illumination angles and the observed intensity were averaged over each sample area. In total, the images used in the study resulted in approximately 11000 photometric sample points for the four mare regions. We make use of fractional-Brownian-motion surfaces in modeling the interface between free space and regolith and a size distribution of spherical particles in modeling the particulate medium. We extract the effects of the stochastic geometry from the lunar photometry and, simultaneously, obtain the volume-element scattering phase function of the lunar regolith locations studied. The volume-element phase function allows us to constrain the physical properties of the regolith particles. Based on the present theoretical modeling of the lunar photometry from SMART-1/AMIE, we conclude that most of the lunar mare opposition effect is caused by coherent backscattering and single scattering within volume elements comparable to lunar particle sizes, with only a small contribution from shadowing effects. We thus suggest that the lunar single scatterers exhibit intensity enhancement towards the backward scattering direction in resemblance to the scattering characteristics experimentally measured and theoretically computed for realistic small particles. Further interpretations of the lunar volume-element phase function will be the subject of future research.
Restoration of Apollo Data by the Lunar Data Project/PDS Lunar Data Node: An Update
NASA Technical Reports Server (NTRS)
Williams, David R.; Hills, H. Kent; Taylor, Patrick T.; Grayzeck, Edwin J.; Guinness, Edward A.
2016-01-01
The Apollo 11, 12, and 14 through 17 missions orbited and landed on the Moon, carrying scientific instruments that returned data from all phases of the missions, included long-lived Apollo Lunar Surface Experiments Packages (ALSEPs) deployed by the astronauts on the lunar surface. Much of these data were never archived, and some of the archived data were on media and in formats that are outmoded, or were deposited with little or no useful documentation to aid outside users. This is particularly true of the ALSEP data returned autonomously for many years after the Apollo missions ended. The purpose of the Lunar Data Project and the Planetary Data System (PDS) Lunar Data Node is to take data collections already archived at the NASA Space Science Data Coordinated Archive (NSSDCA) and prepare them for archiving through PDS, and to locate lunar data that were never archived, bring them into NSSDCA, and then archive them through PDS. Preparing these data for archiving involves reading the data from the original media, be it magnetic tape, microfilm, microfiche, or hard-copy document, converting the outmoded, often binary, formats when necessary, putting them into a standard digital form accepted by PDS, collecting the necessary ancillary data and documentation (metadata) to ensure that the data are usable and well-described, summarizing the metadata in documentation to be included in the data set, adding other information such as references, mission and instrument descriptions, contact information, and related documentation, and packaging the results in a PDS-compliant data set. The data set is then validated and reviewed by a group of external scientists as part of the PDS final archive process. We present a status report on some of the data sets that we are processing.
Chronic Lunar Dust Exposure on Rat Cornea: Evaluation by Gene Expression Profiling
NASA Technical Reports Server (NTRS)
Theriot, C. A.; Glass, A.; Lam, C-W.; James, J.; Zanello, S. B.
2014-01-01
Lunar dust is capable of entering habitats and vehicle compartments by sticking to spacesuits or other objects that are transferred into the spacecraft from the lunar surface and has been reported to cause irritation upon exposure. During the Apollo missions, crewmembers reported irritation specifically to the skin and eyes after contamination of the lunar and service modules. It has since been hypothesized that ocular irritation and abrasion might occur as a result of such exposure, impairing crew vision. Recent work has shown that both ultrafine and unground lunar dust exhibited minimal irritancy of the ocular surface (i.e., cornea); however, the assessment of the severity of ocular damage resulting from contact of lunar dust particles to the cornea has focused only on macroscopic signs of mechanical irritancy and cytotoxicity. Given the chemical reactive properties of lunar dust, exposure of the cornea may contribute to detrimental effects at the molecular level including but not limited to oxidative damage. Additionally, low level chronic exposures may confound any results obtained in previous acute studies. We report here preliminary results from a tissue sharing effort using 10-week-old Fischer 344 male rats chronically exposed to filtered air or jet milled lunar dust collected during Apollo 14 using a Jaeger-NYU nose-only chamber for a total of 120 hours (6 hours daily, 5 days a week) over a 4-week period. RNA was isolated from corneas collected from rats at 1 day and 7 days after being exposed to concentrations of 0, 20, and 60 mg/m3 of lunar dust. Microarray analysis was performed using the Affymetrix GeneChip Rat Genome 230 2.0 Array with Affymetrix Expression Console and Transcriptome Analysis Console used for normalization and secondary analysis. An Ingenuity iReport"TM" was then generated for canonical pathway identification. The number of differentially expressed genes identified increases with dose compared to controls suggesting a more severe response to the lunar dust insult at higher levels. Pathways of interests that have been identified in all exposed samples include oxidative stress response, mitochondrial dysfunction, fibrosis, epithelial healing, TGF-Beta? signaling, and extracellular matrix remodeling. Several biological processes related to cell migration, cellular proliferation, and eye development were also identified to be altered by exposure to lunar dust. Our preliminary results suggest that even a chronic insult of lunar dust as low as 20 mg/m(exp 3) elicits a molecular response in cornea tissue. Lunar dust on the surface of the moon would have the added properties of ionization and activation potentially leading to further damage to the cornea and greater sensitivity to any other environmental insult such as exposure to radiation. Additional studies are required to fully assess the risk of vision impairment and the mechanistic responses initiated in cornea exposed to lunar dust as well as the potential for long-term effects to astronaut health
NASA Technical Reports Server (NTRS)
Skinner, J. A., Jr.; Gaddis, L. R.; Hagerty, J. J.
2010-01-01
The first systematic lunar geologic maps were completed at 1:1M scale for the lunar near side during the 1960s using telescopic and Lunar Orbiter (LO) photographs [1-3]. The program under which these maps were completed established precedents for map base, scale, projection, and boundaries in order to avoid widely discrepant products. A variety of geologic maps were subsequently produced for various purposes, including 1:5M scale global maps [4-9] and large scale maps of high scientific interest (including the Apollo landing sites) [10]. Since that time, lunar science has benefitted from an abundance of surface information, including high resolution images and diverse compositional data sets, which have yielded a host of topical planetary investigations. The existing suite of lunar geologic maps and topical studies provide exceptional context in which to unravel the geologic history of the Moon. However, there has been no systematic approach to lunar geologic mapping since the flight of post-Apollo scientific orbiters. Geologic maps provide a spatial and temporal framework wherein observations can be reliably benchmarked and compared. As such, a lack of a systematic mapping program means that modern (post- Apollo) data sets, their scientific ramifications, and the lunar scientists who investigate these data, are all marginalized in regard to geologic mapping. Marginalization weakens the overall understanding of the geologic evolution of the Moon and unnecessarily partitions lunar research. To bridge these deficiencies, we began a pilot geologic mapping project in 2005 as a means to assess the interest, relevance, and technical methods required for a renewed lunar geologic mapping program [11]. Herein, we provide a summary of the pilot geologic mapping project, which focused on the geologic materials and stratigraphic relationships within the Copernicus quadrangle (0-30degN, 0-45degW).
NASA Technical Reports Server (NTRS)
Stubbs, T. J.; Glenar, D. A.; Wang, Y.; Hermalyn, B.; Sarantos, M.; Colaprete, A.; Elphic, R. C.
2015-01-01
The scientific objectives of the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission are: (1) determine the composition of the lunar atmosphere, investigate processes controlling distribution and variability - sources, sinks, and surface interactions; and (2) characterize the lunar exospheric dust environment, measure spatial and temporal variability, and influences on the lunar atmosphere. Impacts on the lunar surface from meteoroid streams encountered by the Earth-Moon system are anticipated to result in enhancements in the both the lunar atmosphere and dust environment. Here we describe the annual meteoroid streams expected to be incident at the Moon during the LADEE mission, and their anticipated effects on the lunar environment.
Apollo 12 Lunar Module, in landing configuration, photographed in lunar orbit
1969-11-19
AS12-51-7507 (19 Nov. 1969) --- The Apollo 12 Lunar Module (LM), in a lunar landing configuration, is photographed in lunar orbit from the Command and Service Modules (CSM). The coordinates of the center of the lunar surface shown in picture are 4.5 degrees west longitude and 7 degrees south latitude. The largest crater in the foreground is Ptolemaeus; and the second largest is Herschel. Aboard the LM were astronauts Charles Conrad Jr., commander; and Alan L. Bean, lunar module pilot. Astronaut Richard R. Gordon Jr., command module pilot, remained with the CSM in lunar orbit while Conrad and Bean descended in the LM to explore the surface of the moon. Photo credit: NASA
Mini-Magnetospheres at the Moon in the Solar Wind and the Earth's Plasma Sheet
NASA Astrophysics Data System (ADS)
Harada, Y.; Futaana, Y.; Barabash, S. V.; Wieser, M.; Wurz, P.; Bhardwaj, A.; Asamura, K.; Saito, Y.; Yokota, S.; Tsunakawa, H.; Machida, S.
2014-12-01
Lunar mini-magnetospheres are formed as a consequence of solar-wind interaction with remanent crustal magnetization on the Moon. A variety of plasma and field perturbations have been observed in a vicinity of the lunar magnetic anomalies, including electron energization, ion reflection/deflection, magnetic field enhancements, electrostatic and electromagnetic wave activities, and low-altitude ion deceleration and electron acceleration. Recent Chandrayaan-1 observations of the backscattered energetic neutral atoms (ENAs) from the Moon in the solar wind revealed upward ENA flux depletion (and thus depletion of the proton flux impinging on the lunar surface) in association with strongly magnetized regions. These ENA observations demonstrate that the lunar surface is shielded from the solar wind protons by the crustal magnetic fields. On the other hand, when the Moon was located in the Earth's plasma sheet, no significant depletion of the backscattered ENA flux was observed above the large and strong magnetic anomaly. It suggests less effective magnetic shielding of the surface from the plasma sheet protons than from the solar wind protons. We conduct test-particle simulations showing that protons with a broad velocity distribution are more likely to reach a strongly magnetized surface than those with a beam-like velocity distribution. The ENA observations together with the simulation results suggest that the lunar crustal magnetic fields are no longer capable of standing off the ambient plasma when the Moon is immersed in the hot magnetospheric plasma.
Calibration of VIIRS F1 Sensor Fire Detection Band Using lunar Observations
NASA Technical Reports Server (NTRS)
McIntire, Jeff; Efremova, Boryana; Xiong, Xiaoxiong
2012-01-01
Visible Infrared Imager Radiometer Suite (VIIRS) Fight 1 (Fl) sensor includes a fire detection band at roughly 4 microns. This spectral band has two gain states; fire detection occurs in the low gain state above approximately 345 K. The thermal bands normally utilize an on-board blackbody to provide on-orbit calibration. However, as the maximum temperature of this blackbody is 315 K, the low gain state of the 4 micron band cannot be calibrated in the same manner as the rest of the thermal bands. Regular observations of the moon provide an alternative calibration source. The lunar surface temperature has been recently mapped by the DIVINER sensor on the LRO platform. The periodic on-board high gain calibration along with the DIVINER surface temperatures was used to determine the emissivity and solar reflectance of the lunar surface at 4 microns; these factors and the lunar data are then used to fit the low gain calibration coefficients of the 4 micron band. Furthermore, the emissivity of the lunar surface is well known near 8.5 microns due to the Christiansen feature (an emissivity maximum associated with Si-O stretching vibrations) and the solar reflectance is negligible. Thus, the 8.5 micron band is used for relative calibration with the 4 micron band to de-trend any temporal variations. In addition, the remaining thermal bands are analyzed in a similar fashion, with both calculated emissivities and solar reflectances produced.
Resource Prospector: An Update on the Lunar Volatiles Prospecting and ISRU Demonstration Mission
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R.; Andrews, D.; Trimble, J.; Bluethmann, B.; Quinn, J.; Chavers, G.
2016-01-01
Over the last two decades a wealth of new observations of the moon have demonstrated a lunar water system dramatically more complex and rich than was deduced following the Apollo era. Lunar water, and other volatiles, have the potential to be a valuable or enabling resource for future exploration. The NASA Human Exploration and Operations Mission Directorate (HEOMD) have selected a lunar volatiles prospecting mission for a concept study and potential flight in CY2021. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials.
Resource Prospector: An Update on the Lunar Volatiles Prospecting and ISRU Demonstration Mission
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R.; Andrews, D.; Trimble, J.; Bluethmann, B.; Quinn, J.; Chavers, G.
2017-01-01
Over the last two decades a wealth of new observations of the moon have demonstrated a lunar water system dramatically more complex and rich than was deduced following the Apollo era. Lunar water, and other volatiles, have the potential to be a valuable or enabling resource for future exploration. The NASA Human Exploration and Operations Mission Directorate (HEOMD) have selected a lunar volatiles prospecting mission for a concept study and potential flight in CY2021. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile- bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials.
Hydrogen and fluorine in the surfaces of lunar samples
NASA Technical Reports Server (NTRS)
Leich, D. A.; Goldberg, R. H.; Burnett, D. S.; Tombrello, T. A.
1974-01-01
The resonant nuclear reaction F-19 (p, alpha gamma)0-16 has been used to perform depth sensitive analyses for both fluorine and hydrogen in lunar samples. The resonance at 0.83 MeV (center-of-mass) in this reaction has been applied to the measurement of the distribution of trapped solar protons in lunar samples to depths of about 1/2 micrometer. These results are interpreted in terms of terrestrial H2O surface contamination and a redistribution of the implanted solar H which has been influenced by heavy radiation damage in the surface region. Results are also presented for an experiment to test the penetration of H2O into laboratory glass samples which have been irradiated with 0-16 to simulate the radiation damaged surfaces of lunar glasses. Fluorine determinations have been performed in a 1 pm surface layer on lunar samples using the same F-19 alpha gamma)0-16 resonance. The data are discussed from the standpoint of lunar fluorine and Teflon contamination.
Gravity: first measurement on the lunar surface.
Nance, R L
1969-10-17
The gravity at the landing site of the first lunar-landing mission has been determined to be 162,821.680 milligals from data telemetered to earth by the lunar module on the lunar surface. The gravity was measured with a pulsed integrating pendulous accelerometer. These measurements were used to compute the gravity anomaly and radius at the landing site.
NASA Technical Reports Server (NTRS)
Paloski, William H.
2008-01-01
Balance control and locomotor patterns were altered in Apollo crewmembers on the lunar surface, owing, presumably, to a combination of sensory-motor adaptation during transit and lunar surface operations, decreased environmental affordances associated with the reduced gravity, and restricted joint mobility as well as altered center-of-gravity caused by the EVA pressure suits. Dr. Paloski will discuss these factors, as well as the potential human and mission impacts of falls and malcoordination during planned lunar sortie and outpost missions. Learning objectives: What are the potential impacts of postural instabilities on the lunar surface? CME question: What factors affect balance control and gait stability on the moon? Answer: Sensory-motor adaptation to the lunar environment, reduced mechanical and visual affordances, and altered biomechanics caused by the EVA suit.
Chandrayaan-2: India's First Soft-landing Mission to Moon
NASA Astrophysics Data System (ADS)
Mylswamy, Annadurai; Krishnan, A.; Alex, T. K.; Rama Murali, G. K.
2012-07-01
The first Indian planetary mission to moon, Chandrayaan-1, launched on 22nd October, 2008 with a suite of Indian and International payloads on board, collected very significant data over its mission duration of close to one year. Important new findings from this mission include, discovery of hydroxyl and water molecule in sunlit lunar surface region around the poles, exposure of large anorthositic blocks confirming the global lunar magma hypothesis, signature of sub surface ice layers in permanently shadowed regions near the lunar north pole, evidence for a new refractory rock type, mapping of reflected lunar neutral atoms and identification of mini-magnetosphere, possible signature of water molecule in lunar exosphere, preserved lava tube that may provide site for future human habitation and radiation dose en-route and around the moon. Chandrayaan-2:, The success of Chandrayaan-1 orbiter mission provided impetus to implement the second approved Indian mission to moon, Chandrayaan-2, with an Orbiter-Lander-Rover configuration. The enhanced capabilities will enable addressing some of the questions raised by the results obtained from the Chandrayaan-1 and other recent lunar missions and also to enhance our understanding of origin and evolution of the moon. The orbiter that will carry payloads to further probe the morphological, mineralogical and chemical properties of the lunar surface material through remote sensing observations in X-ray, visible, infra-red and microwave regions. The Lander-Rover system will enable in-depth studies of a specific lunar location and probe various physical properties of the moon. The Chandrayaan-2 mission will be collaboration between Indian Space Research Organization (ISRO) and the Federal Space Agency of Russia. ISRO will be responsible for the Launch Vehicle, the Orbiter and the Rover while the Lander will be provided by Russia. Initial work to realize the different elements of the mission is currently in progress in both countries. Mission Elements:, On board segment of Chandrayaan-2 mission consists of a lunar Orbiter and a lunar Lander-Rover. The orbiter for Chandrayaan-2 mission is similar to that of Chandrayaan-1 from structural and propulsion aspects. Based on a study of various mission management and trajectory options, such as, separation of the Lander-Rover module in Earth Parking Orbit (EPO) or in lunar transfer trajectory (LTT) or in lunar polar orbit (LPO), the option of separating of this module at LTT, after required midcourse corrections, was selected as this offers an optimum mass and overall mission management advantage. The orbiter propulsion system will be used to transfer Orbiter-Lander-Rover composite from EPO to LTT. On reaching LTT, the Lander-Rover module will be separated from the orbiter module. The Lander-Rover and Orbiter modules are configured with individual propulsion and housekeeping systems. The indigenously developed Geostationary Satellite Launch Vehicle GSLV (Mk-II) will be used for this mission. The most critical aspect of its feasibility was an accurate evaluation of the scope for taking a 3200kg lift off mass into EPO. A Lander-Rover mass of 1270kg (including the propellant for soft landing) will provide sufficient margin for such a lift off within the capability of flight proven GSLV (Mk-II) for the EPO. Mission Scenario: ,GSLV (Mk-II) will launch the Lunar Orbiter coupled to the Lunar Lander-Rover into EPO (170 x 16980 km) following which the Orbiter will boost the orbit from EPO to LTT where the two modules will be separated. Both of them will make their independent journey towards moon and reach lunar polar orbit independently. The orbiter module will be initially placed in a circular polar orbit (200km) and the Lander-Rover module descends towards the lunar surface. After landing, a motorized rover with robotic arm and scientific instruments would be released on to the lunar surface. Although the exact landing location is yet to be finalized, a high latitude location is preferred from scientific interest. Multiple communication links involving Rover-Lander-Earth, Orbiter-Earth and Rover-Orbiter will be implemented. Scientific Payloads:, The scientific payloads on orbiter include a Terrain Mapping Camera (TMC-2), an Imaging Infra-Red Spectrometer (IIRS), a Dual Band (L&S-Band) Synthetic Aperture Radar (SAR), a Collimated Large Area Soft x-ray Spectrometer (CLASS), and a Chandra's Atmospheric Composition Explorer(ChACE-2). TMC with two cameras will provide 3D imaging and DEM, while the IIRS will cover the 0.8-5 micron region at high spectral resolution using a grating spectrograph coupled to an active cooler based MCT array detector. It will provide information on mineral composition and detect OH and H2O and also measure thermal emission from the lunar surface. CLASS is an improved version of C1XS flown on Chandrayaan-1 and will employ swept charge detector (SCD) for detection of X-rays from lunar surface during solar flares.ChACE-2 is a modified version of ChACE-1, one of the instruments on Moon Impact Probe (MIP) that provided hints for the presence of water molecule in lunar exosphere. The Synthetic Aperture Radar will include both L (1.25 GHz) and S (2.5 GHz) bands with selectable resolution of up to a few meters. A radiating patch arrangement is designed for the integrated L-band and S-band antenna. There will be two payloads on the Rover: an Alpha Particle induced X-ray Spectrometer (APXS) and a Laser Induced Breakdown Spectroscopy (LIBS) for studies of chemical composition and volatiles present in lunar surface material near the landing site. The Lander Craft will have suite of instruments to study both physical and chemical properties of the landing site. It will have direct communication link to Earth Stations. The Lander will also act as the relay for communication with the Rover. The design and development of the various mission elements as well as of the scientific payloads are currently in progress both in India and Russia. Preliminary Design Reviews of the Mission elements are also completed.
Circumlunar Free-Return Cycler Orbits for a Manned Earth-Moon Space Station
NASA Technical Reports Server (NTRS)
Genova, Anthony L.; Aldrin, Buzz
2015-01-01
Multiple free-return circumlunar cycler orbits were designed to allow regular travel between the Earth and Moon by a manned space station. The presented cycler orbits contain circumlunar free-return "figure-8" segments and yield lunar encounters every month. Smaller space "taxi" vehicles can rendezvous with (and depart from) the cycling Earth-Moon space station to enter lunar orbit (and/or land on the lunar surface), return to Earth, or reach destinations including Earth-Moon L1 and L2 halo orbits, near-Earth objects (NEOs), Venus, and Mars. To assess the practicality of the selected orbits, relevant cycler characteristics (including (Delta)V maintenance requirements) are presented and compared.
Copernicus: Lunar surface mapper
NASA Technical Reports Server (NTRS)
Redd, Frank J.; Anderson, Shaun D.
1992-01-01
The Utah State University (USU) 1991-92 Space Systems Design Team has designed a Lunar Surface Mapper (LSM) to parallel the development of the NASA Office of Exploration lunar initiatives. USU students named the LSM 'Copernicus' after the 16th century Polish astronomer, for whom the large lunar crater on the face of the moon was also named. The top level requirements for the Copernicus LSM are to produce a digital map of the lunar surface with an overall resolution of 12 meters (39.4 ft). It will also identify specified local surface features/areas to be mapped at higher resolutions by follow-on missions. The mapping operation will be conducted from a 300 km (186 mi) lunar-polar orbit. Although the entire surface should be mapped within six months, the spacecraft design lifetime will exceed one year with sufficient propellant planned for orbit maintenance in the anomalous lunar gravity field. The Copernicus LSM is a small satellite capable of reaching lunar orbit following launch on a Conestoga launch vehicle which is capable of placing 410 kg (900 lb) into translunar orbit. Upon orbital insertion, the spacecraft will weigh approximately 233 kg (513 lb). This rather severe mass constraint has insured attention to component/subsystem size and mass, and prevented 'requirements creep.' Transmission of data will be via line-of-sight to an earth-based receiving system.
Photon-stimulated desorption as a substantial source of sodium in the lunar atmosphere.
Yakshinskiy, B V; Madey, T E
1999-08-12
Mercury and the Moon both have tenuous atmospheres that contain atomic sodium and potassium. These chemicals must be continuously resupplied, as neither body can retain the atoms for more than a few hours. The mechanisms proposed to explain the resupply include sputtering of the surface by the solar wind, micrometeorite impacts, thermal desorption and photon-stimulated desorption. But there are few data and no general agreement about which processes dominate. Here we report laboratory studies of photon-stimulated desorption of sodium from surfaces that simulate lunar silicates. We find that bombardment of such surfaces at temperatures of approximately 250 K by ultraviolet photons (wavelength lambda < 300 nm) causes very efficient desorption of sodium atoms, induced by electronic excitations rather than by thermal processes or momentum transfer. The flux at the lunar surface of ultraviolet photons from the Sun is sufficient to ensure that photon-stimulated desorption of sodium contributes substantially to the Moon's atmosphere. On Mercury, solar heating of the surface implies that thermal desorption will also be an important source of atmospheric sodium.
Evaluation and selection of refrigeration systems for lunar surface and space applications
NASA Technical Reports Server (NTRS)
Copeland, R. J.; Blount, T. D.; Williams, J. L.
1971-01-01
Evaluated are the various refrigeration machines which could be used to provide heat rejection in environmental control systems for lunar surface and spacecraft applications, in order to select the best refrigeration machine for satisfying each individual application and the best refrigeration machine for satisfying all of the applications. The refrigeration machine considered include: (1) vapor comparison cycle (work-driven); (2) vapor adsorption cycle (heat-driven); (3) vapor absorption cycle (heat-driven); (4) thermoelectric (electrically-driven); (5) gas cycle (work driven); (6) steam-jet (heat-driven).
Lunar soil and surface processes studies
NASA Technical Reports Server (NTRS)
Glass, B. P.
1975-01-01
Glass particles in lunar soil were characterized and compared to terrestrial analogues. In addition, useful information was obtained concerning the nature of lunar surface processes (e.g. volcanism and impact), maturity of soils and chemistry and heterogeneity of lunar surface material. It is felt, however, that the most important result of the study was that it demonstrated that the investigation of glass particles from the regolith of planetary bodies with little or no atmospheres can be a powerful method for learning about the surface processes and chemistry of planetary surfaces. Thus, the return of samples from other planetary bodies (especially the terrestrial planets and asteroids) using unmanned spacecraft is urged.
Science Investigations Enabled by Magnetic Field Measurements on the Lunar Surface
NASA Astrophysics Data System (ADS)
Chi, P. J.; Russell, C. T.; Strangeway, R. J.; Farrell, W. M.; Garrick-Bethell, I.; Taylor, P.
2018-02-01
We present examples of the geophysical and heliophysics investigations that can be performed with magnetic field measurements on the lunar surface enabled by the support/servicing of lunar landers from the Deep Space Gateway.
CubeRovers for Lunar Exploration
NASA Astrophysics Data System (ADS)
Tallaksen, A. P.; Horchler, A. D.; Boirum, C.; Arnett, D.; Jones, H. L.; Fang, E.; Amoroso, E.; Chomas, L.; Papincak, L.; Sapunkov, O. B.; Whittaker, W. L.
2017-10-01
CubeRover is a 2-kg class of lunar rover that seeks to standardize and democratize surface mobility and science, analogous to CubeSats. This CubeRover will study in-situ lunar surface trafficability and descent engine blast ejecta phenomena.
NASA Astrophysics Data System (ADS)
Alnussirat, S. T.; Barghouty, A. F.; Edmunson, J. E.; Sabra, M. S.; Rickman, D. L.
2018-04-01
Sputtering of lunar regolith by solar-wind protons and heavy ions with kinetic energies of about 1 keV/amu is an important erosive process that affects the lunar surface and exosphere. It plays an important role in changing the chemical composition and thickness of the surface layer, and in introducing material into the exosphere. Kinetic sputtering is well modeled and understood, but understanding of mechanisms of potential sputtering has lagged behind. In this study we differentiate the contributions of potential sputtering from the standard (kinetic) sputtering in changing the chemical composition and erosion rate of the lunar surface. Also we study the contribution of potential sputtering in developing the lunar exosphere. Our results show that potential sputtering enhances the total characteristic sputtering erosion rate by about 44%, and reduces sputtering time scales by the same amount. Potential sputtering also introduces more material into the lunar exosphere.
Supercharging of the Lunar Surface by Solar Wind Halo Electrons
NASA Astrophysics Data System (ADS)
Stubbs, T. J.; Farrell, W. M.; Collier, M. R.; Halekas, J. S.; Delory, G. T.; Holland, M. P.; Vondrak, R. R.
2007-12-01
Lunar surface potentials can reach several kilovolts negative during Solar Energetic Particle (SEPs) events, as indicated by recent analysis of data from the Lunar Prospector Electron Reflectometer (LP/ER). The lunar surface- plasma interactions that result in such extreme surface potentials are poorly characterized and understood. Extreme lunar surface charging, and the associated electrostatic discharges and transport of charged dust, will likely present significant hazards to future human explorers. This is of particular concern near the terminator and polar regions, such as the South Pole/Aiken Basin site planned for NASA's manned outpost. It is the flux of electrons from the ambient plasma that charges the surface of the Moon to negative potentials. In the solar wind, the electron temperature is typically ~10 eV which tends to charge the lunar surface to ~100 V negative in shadow. However, during space weather events the solar wind electrons are often better described by the sum of two Maxwellian distributions, referred to as the "core" and "halo" components. The core electrons are relatively cool and dense (e.g., ~10 eV and ~10/cc), whereas the halo electrons are hot and tenuous (e.g., ~100 eV and ~0.1/cc). Despite, the tenuous nature of the halo electrons, our surface charging model - using core and halo electron data derived from the Solar Wind Experiment (SWE) aboard the Wind spacrcraft - predicts that they are capable of "supercharging" the lunar surface to kilovolt potentials during space weather events, which could explain the LP/ER observations.
NASA Technical Reports Server (NTRS)
Alexander, W. M.; Tanner, W. G.; Anz, P. D.; Chen, A. L.
1986-01-01
Particulate matter possessing lunar escape velocity sufficient to enhance the cislunar meteroid flux was investigated. While the interplanetary flux was extensively studied, lunar ejecta created by the impact of this material on the lunar surface is only now being studied. Two recently reported flux models are employed to calculate the total mass impacting the lunar surface due to sporadic meteor flux. There is ample evidence to support the contention that the sporadic interplanetary meteoroid flux enhances the meteroid flux of cislunar space through the creation of micron and submicron lunar ejecta with lunar escape velocity.
Effects of Electrostatic Environment on Charged Particle Transport near Lunar Holes
NASA Astrophysics Data System (ADS)
Miyake, Y.; Nishino, M. N.
2017-12-01
The Moon has neither dense atmosphere nor intrinsic magnetic field, and solar wind interactions with lunar surfaces are one of major plasma processes. The near-surface, dayside electrostatic environment is governed mainly by volume charges of solar wind plasma and photoelectrons as well as charged lunar surfaces. In fact, the electric environment strongly depends on surface topologies, as it will produce a shaded region, the electric environment of which can be very different from that in a sunlit condition. As one of high-profile terrains on the Moon, we have been focusing on the lunar vertical holes (or lunar pits), identified by the KAGUYA satellite and the Lunar Reconnaissance Orbiter. In order to model the distinctive electric and dust environments near the holes, we have started three-dimensional particle simulation analysis. The present study addresses the plasma environment of a lunar hole that is accompanied with a subsurface cavern. Besides the topographical effect of having a cavern, an investigation is focused on the following points. The first point is how deeply the solar wind protons are accessible into the hole and cavern. This point is relevant not only to an electric environment but also to possible existence of volatiles at permanently shaded regions of the hole. In order to examine the possibility, we implemented a proton scattering process at lunar surfaces into the simulation model. The other is the role of some minor current components such as secondary electrons, scattered protons, and charged dust grains at the lunar surface. Such minor currents become important for the charging of shaded surfaces, as major current components (solar wind plasma and photoelectrons) are not accessible there. We address these points based on kinetic model descriptions.
Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woronowicz, M. S.
2011-05-20
The Lunar Atmosphere Dust Environment Explorer (LADEE) spacecraft is being designed for a mission featuring low altitude orbits of the Moon to take relevant ambient measurements before that environment becomes altered by future exploration activities. Instruments include a neutral mass spectrometer capable of measuring ambient species density levels below 100 molecules/cm{sup 3}. Coincidentally, with a favorable combination of spacecraft orientations, it is also possible to measure plume gases from LADEE attitude control system thruster operations as they are reflected from the daytime lunar surface and subsequently intercepted by the spacecraft as it orbits overhead. Under such circumstances, it may bemore » possible to test a variety of properties and assumptions associated with various transient plume models or to infer certain aspects regarding lunar surface properties.« less
Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations
NASA Technical Reports Server (NTRS)
Woronowicz, M. S.
2010-01-01
The Lunar Atmosphere Dust Environment Explorer (LADEE) spacecraft is being designed for a mission featuring low altitude orbits of the Moon to take relevant ambient measurements before that environment becomes altered by future exploration activities. Instruments include a neutral mass spectrometer capable of measuring ambient species density levels below 100 molecules/cu cm. Coincidentally, with a favorable combination of spacecraft orientations, it is also possible to measure plume gases from LADEE attitude control system thruster operations as they are reflected from the daytime lunar surface and subsequently intercepted by the spacecraft as it orbits overhead. Under such circumstances, it may be possible to test a variety of properties and assumptions associated with various transient plume models or to infer certain aspects regarding lunar surface properties.
1969-07-20
The first manned lunar landing mission, Apollo 11, launched from the Kennedy Space Flight Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Astronauts onboard included Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) pilot. The CM, “Columbia”, piloted by Collins, remained in a parking orbit around the Moon while the LM, “Eagle’’, carrying astronauts Armstrong and Aldrin, landed on the Moon in the Sea of Tranquility. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. This is a reproduction of the television image that was transmitted to the world on July 20th, as Armstrong egressed the ladder to the lunar surface. The black bar running through the center of the photograph is an anomaly in the TV Ground Data System at Goldstone Tracking Station.
Lunar resources: Toward living off the lunar land
NASA Technical Reports Server (NTRS)
Haskin, Larry A.; Colson, Russell O.
1990-01-01
The following topics are addressed: (1) lunar resources and surface conditions; (2) guidelines for early lunar technologies; (3) the lunar farm; (4) the lunar filling station; (5) lunar construction materials; (6) the lunar power company; (7) the electrolysis of molten silicate as a means of producing oxygen and metals for use on the Moon and in near-Earth space.
Astronaut John Young leaps from lunar surface as he salutes U.S. flag
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, leaps from the lunar surface as he salutes the U.S. flag during the first Apollo 16 extravehicular activity (EVA-1) on the Moon, as seen in this reproduction taken from a color transmission made by the color TV camera mounted on the Lunar Roving Vehicle. Astronaut Charles M. Duke Jr., lunar module pilot, is standing in the background.
Constraints on Lunar Heat Flow Rates from Diviner Lunar Radiometer Polar Observations
NASA Astrophysics Data System (ADS)
Paige, D. A.; Siegler, M. A.; Vasavada, A. R.
2010-12-01
The heat flow rate from the lunar interior is a fundamental property of the moon that is related to its composition, interior structure and history. Lunar heat flow rates have been measured at the Apollo 15 and 17 landing sites [1], but it is widely believed that the measured values of 0.021 Wm-2 and 0.016 Wm-2 respectively may not be representative of the moon as a whole due to the presence of enhanced radiogenic elements at these landing sites [2]. The Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter [3] has acquired an extensive set of thermal emission from the lunar surface at infrared wavelengths, including the first radiometric measurements of surface temperatures at the lunar poles [4]. Due to its low obliquity and rough topography, the moon has extensive cryogenic regions at high latitudes that never receive direct sunlight. The temperatures of the coldest of these regions can be used to place upper limits on the heat flow rate from the lunar interior because if other heat sources are neglected, then surface thermal emission is balanced by heat flow from warmer lunar interior [5]. Diviner has mapped the north and south polar regions over a complete annual cycle and we have identified a 4 km2 area within Hermite Crater in the north polar region that has a winter season nighttime Channel 9 (100-400 micron) brightness temperatures in of less than 20K. These low temperatures would imply a lunar heat flow rate of less than 0.010 Wm-2, which may be consistent with expectations for regions of the moon that do not contain enhanced concentrations of radiogenic elements [2,6], as is the case for the north polar region of the moon [7]. [1] Langseth, M. G. et al, Proc. Lunar Sci. Conf, 7th, 3143-3171, 1976. [2] Warren, P. H. and K. K. L. Rasmussen, JGR 92, 3453-3465, 1987. [3] Paige, D. A. et al, Space Sci. Rev, 150:125-160, 2010. [4] Paige, D. A. et al., Science, in press, 2010. [5] Watson, K. JGR 72, 3301-3302, 1967. [6] Wieczorek, M. A. and R. J. Phillips, JGR 105, 20,417-20,430, 2000. [7] Lawrence, D. J. et al., Scence 281, 1484-1489, 1998.
Three-Body Abrasion Testing Using Lunar Dust Simulants to Evaluate Surface System Materials
NASA Technical Reports Server (NTRS)
Kobrick, Ryan L.; Budinski, Kenneth G.; Street, Kenneth W., Jr.; Klaus, David M.
2010-01-01
Numerous unexpected operational issues relating to the abrasive nature of lunar dust, such as scratched visors and spacesuit pressure seal leaks, were encountered during the Apollo missions. To avoid reoccurrence of these unexpected detrimental equipment problems on future missions to the Moon, a series of two- and three-body abrasion tests were developed and conducted in order to begin rigorously characterizing the effect of lunar dust abrasiveness on candidate surface system materials. Two-body scratch tests were initially performed to examine fundamental interactions of a single particle on a flat surface. These simple and robust tests were used to establish standardized measurement techniques for quantifying controlled volumetric wear. Subsequent efforts described in the paper involved three-body abrasion testing designed to be more representative of actual lunar interactions. For these tests, a new tribotester was developed to expose samples to a variety of industrial abrasives and lunar simulants. The work discussed in this paper describes the three-body hardware setup consisting of a rotating rubber wheel that applies a load on a specimen as a loose abrasive is fed into the system. The test methodology is based on ASTM International (ASTM) B611, except it does not mix water with the abrasive. All tests were run under identical conditions. Abraded material specimens included poly(methyl methacrylate) (PMMA), hardened 1045 steel, 6061-T6 aluminum (Al) and 1018 steel. Abrasives included lunar mare simulant JSC- 1A-F (nominal size distribution), sieved JSC-1A-F (<25 m particle diameter), lunar highland simulant NU-LHT-2M, alumina (average diameter of 50 m used per ASTM G76), and silica (50/70 mesh used per ASTM G65). The measured mass loss from each specimen was converted using standard densities to determine total wear volume in cm3. Abrasion was dominated by the alumina and the simulants were only similar to the silica (i.e., sand) on the softer materials of aluminum and PMMA. The nominal JSC- 1A-F consistently showed more abrasion wear than the sieved version of the simulant. The lunar dust displayed abrasivity to all of the test materials, which are likely to be used in lunar landing equipment. Based on this test experience and pilot results obtained, recommendations are made for systematic abrasion testing of candidate materials intended for use in lunar exploration systems and in other environments with similar dust challenges.
Lunar Mapping and Modeling Project
NASA Technical Reports Server (NTRS)
Noble, Sarah K.; French, Raymond; Nall,Mark; Muery, Kimberly
2009-01-01
The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The project draws on expertise from several NASA and non-NASA organizations (MSFC, ARC, GSFC, JPL, CRREL and USGS). LMMP will utilize data predominately from the Lunar Reconnaissance Orbiter, but also historical and international lunar mission data (e.g. Apollo, Lunar Orbiter, Kaguya, Chandrayaan-1), as available and appropriate, to meet Constellation s data needs. LMMP will provide access to this data through a single, common, intuitive and easy to use NASA portal that transparently accesses appropriately sanctioned portions of the widely dispersed and distributed collections of lunar data, products and tools. LMMP will provide such products as DEMs, hazard assessment maps, lighting maps and models, gravity models, and resource maps. We are working closely with the LRO team to prevent duplication of efforts and ensure the highest quality data products. While Constellation is our primary customer, LMMP is striving to be as useful as possible to the lunar science community, the lunar education and public outreach (E/PO) community, and anyone else interested in accessing or utilizing lunar data.
Artists concept of Apollo 15 crewmen performing deployment of LRV
1971-06-26
S71-38188 (26 June 1971) --- An artist's concept showing the Apollo 15 mission commander and the lunar module pilot performing deployment of the Lunar Roving Vehicle (LRV) on the lunar surface. The figure on the left represents astronaut James B. Irwin, lunar module pilot, who here is maintaining a constant pull on the deployment cable to help the LRV unfold, while astronaut David R. Scott (right), commander, pulls the tapes that lower the LRV to the surface. (This is the third in a series of Grumman Aerospace Corporation artist's concepts telling the lunar surface LRV deployment story of the Apollo 15 mission).
NASA Technical Reports Server (NTRS)
Kaulen, D. R.; Bulatova, T. I.; Fridenshteyn, A. Y.; Skvortsova, Y. B.
1974-01-01
Lunar surface material was studied for its content of viable microorganisms (aerobic and anaerobic, fungi, and viruses); the effect of the lunar surface material on the growth of microorganisms and its interaction with somatic cells of mammals was also observed. No viable microorganisms were detected; the samples exhibited neither stimulant or inhibitory action on the growth of microorganisms, and also showed no cytopathogenic action on tissue cultures. A suspension of lunar surface material particles was not toxic when parenterally administered to certain laboratory animals. The particles were subjected to intense phagocytosis by connective tissue cells in vivo and in vitro.
Lunar and Meteorite Sample Disk for Educators
NASA Technical Reports Server (NTRS)
Foxworth, Suzanne; Luckey, M.; McInturff, B.; Allen, J.; Kascak, A.
2015-01-01
NASA Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation and distribution of samples for research, education and public outreach. Between 1969 and 1972 six Apollo missions brought back 382 kilograms of lunar rocks, core and regolith samples, from the lunar surface. JSC also curates meteorites collected from a US cooperative effort among NASA, the National Science Foundation (NSF) and the Smithsonian Institution that funds expeditions to Antarctica. The meteorites that are collected include rocks from Moon, Mars, and many asteroids including Vesta. The sample disks for educational use include these different samples. Active relevant learning has always been important to teachers and the Lunar and Meteorite Sample Disk Program provides this active style of learning for students and the general public. The Lunar and Meteorite Sample Disks permit students to conduct investigations comparable to actual scientists. The Lunar Sample Disk contains 6 samples; Basalt, Breccia, Highland Regolith, Anorthosite, Mare Regolith and Orange Soil. The Meteorite Sample Disk contains 6 samples; Chondrite L3, Chondrite H5, Carbonaceous Chondrite, Basaltic Achondrite, Iron and Stony-Iron. Teachers are given different activities that adhere to their standards with the disks. During a Sample Disk Certification Workshop, teachers participate in the activities as students gain insight into the history, formation and geologic processes of the moon, asteroids and meteorites.
Multi-physics design and analyses of long life reactors for lunar outposts
NASA Astrophysics Data System (ADS)
Schriener, Timothy M.
Future human exploration of the solar system is likely to include establishing permanent outposts on the surface of the Moon. These outposts will require reliable sources of electrical power in the range of 10's to 100's of kWe to support exploration and resource utilization activities. This need is best met using nuclear reactor power systems which can operate steadily throughout the long ˜27.3 day lunar rotational period, irrespective of location. Nuclear power systems can potentially open up the entire lunar surface for future exploration and development. Desirable features of nuclear power systems for the lunar surface include passive operation, the avoidance of single point failures in reactor cooling and the integrated power system, moderate operating temperatures to enable the use of conventional materials with proven irradiation experience, utilization of the lunar regolith for radiation shielding and as a supplemental neutron reflector, and safe post-operation decay heat removal and storage for potential retrieval. In addition, it is desirable for the reactor to have a long operational life. Only a limited number of space nuclear reactor concepts have previously been developed for the lunar environment, and these designs possess only a few of these desirable design and operation features. The objective of this research is therefore to perform design and analyses of long operational life lunar reactors and power systems which incorporate the desirable features listed above. A long reactor operational life could be achieved either by increasing the amount of highly enriched uranium (HEU) fuel in the core or by improving the neutron economy in the reactor through reducing neutron leakage and parasitic absorption. The amount of fuel in surface power reactors is constrained by the launch safety requirements. These include ensuring that the bare reactor core remains safely subcritical when submerged in water or wet sand and flooded with seawater in the unlikely event of a launch abort accident. Increasing the amount of fuel in the reactor core, and hence its operational life, would be possible by launching the reactor unfueled and fueling it on the Moon. Such a reactor would, thus, not be subject to launch criticality safety requirements. However, loading the reactor with fuel on the Moon presents a challenge, requiring special designs of the core and the fuel elements, which lend themselves to fueling on the lunar surface. This research investigates examples of both a solid core reactor that would be fueled at launch as well as an advanced concept which could be fueled on the Moon. Increasing the operational life of a reactor fueled at launch is exercised for the NaK-78 cooled Sectored Compact Reactor (SCoRe). A multi-physics design and analyses methodology is developed which iteratively couples together detailed Monte Carlo neutronics simulations with 3-D Computational Fluid Dynamics (CFD) and thermal-hydraulics analyses. Using this methodology the operational life of this compact, fast spectrum reactor is increased by reconfiguring the core geometry to reduce neutron leakage and parasitic absorption, for the same amount of HEU in the core, and meeting launch safety requirements. The multi-physics analyses determine the impacts of the various design changes on the reactor's neutronics and thermal-hydraulics performance. The option of increasing the operational life of a reactor by loading it on the Moon is exercised for the Pellet Bed Reactor (PeBR). The PeBR uses spherical fuel pellets and is cooled by He-Xe gas, allowing the reactor core to be loaded with fuel pellets and charged with working fluid on the lunar surface. The performed neutronics analyses ensure the PeBR design achieves a long operational life, and develops safe launch canister designs to transport the spherical fuel pellets to the lunar surface. The research also investigates loading the PeBR core with fuel pellets on the Moon using a transient Discrete Element Method (DEM) analysis in lunar gravity. In addition, this research addresses the post-operation storage of the SCoRe and PeBR concepts, below the lunar surface, to determine the time required for the radioactivity in the used fuel to decrease to a low level to allow for its safe recovery. The SCoRe and PeBR concepts are designed to operate at coolant temperatures ≤ 900 K and use conventional stainless steels and superalloys for the structure in the reactor core and power system. They are emplaced below grade on the Moon to take advantage of the regolith as a supplemental neutron reflector and as shielding of the lunar outpost from the reactors' neutron and gamma radiation.
In-Situ Propellant Supplied Lunar Lander Concept
NASA Astrophysics Data System (ADS)
Donahue, Benjamin; Maulsby, Curtis
2008-01-01
Future NASA and commercial Lunar missions will require innovative spacecraft configurations incorporating reliable, sustainable propulsion, propellant storage, power and crew life support technologies that can evolve into long duration, partially autonomous systems that can be used to emplace and sustain the massive supplies required for a permanently occupied lunar base. Ambitious surface science missions will require efficient Lunar transfer systems to provide the consumables, science equipment, energy generation systems, habitation systems and crew provisions necessary for lengthy tours on the surface. Lunar lander descent and ascent stages become significantly more efficient when they can be refueled on the Lunar surface and operated numerous times. Landers enabled by Lunar In-Situ Propellant Production (ISPP) facilities will greatly ease constraints on spacecraft mass and payload delivery capability, and may operate much more affordably (in the long term) then landers that are dependant on Earth supplied propellants. In this paper, a Lander concept that leverages ISPP is described and its performance is quantified. Landers, operating as sortie vehicles from Low Lunar Orbit, with efficiencies facilitated by ISPP will enable economical utilization and enhancements that will provide increasingly valuable science yields from Lunar Bases.
Astronaut David Scott watching hammer and feather fall to lunar surface
1971-08-02
S71-43788 (2 Aug. 1971) --- Astronaut David R. Scott, Apollo 15 commander, watches a geological hammer and a feather hit the lunar surface simultaneously in a test of Galileo's law of motion concerning falling bodies, as seen in this color reproduction taken from a transmission made by the RCA color television camera mounted on the Lunar Roving Vehicle (LRV). Scott released the hammer from his right hand and the feather from his left at the same instant. Galileo (1564-1642) was the great Italian astronomer and physicist. This experiment occurred toward the end of the third and final lunar surface extravehicular activity (EVA) by astronauts Scott and James B. Irwin, lunar module pilot. While Scott and Irwin descended in the Lunar Module (LM) to explore the moon, astronaut Alfred M. Worden, command module pilot, remained in the Command and Service Modules (CSM) in lunar orbit.
NASA Technical Reports Server (NTRS)
Johnson, Stewart W.; Chua, Koon Meng
1992-01-01
Present and future technologies to facilitate lunar composition and resource assessment with applications to lunar surface construction are presented. We are particularly interested in the construction activity associated with lunar-based astronomy. We address, as an example, the use of ground-probing radar to help assess subsurface conditions at sites for observatories and other facilities.
NASA Astrophysics Data System (ADS)
Cohen, Marc M.
2004-02-01
This paper describes three innovative concepts for a mobile lunar base. These concept combine design research for habitat architecture, mobility systems, habitability, radiation protection, human factors, and living and working environments on the lunar surface. The mobile lunar base presents several key advantages over conventional static base notions. These advantages concern landing zone safety, the requirement to move modules over the lunar surface, and the ability to stage mobile reconnaissance with effective systemic redundancy. All of these concerns lead to the consideration of a mobile walking habitat module and base design. The key issues involve landing zone safety, the ability to transport habitat modules across the surface, and providing reliability and redundancy to exploration traverses in pressurized vehicles. With self-ambulating lunar base modules, it will be feasible to have each module separate itself from its retro-rocket thruster unit, and walk five to ten km away from the LZ to a pre-selected site. These mobile modules can operate in an autonomous or teleoperated mode to navigate the lunar surface. At the site of the base, the mobile modules can combine together; make pressure port connections among themselves, to create a multi-module pressurized lunar base.
Turning the Moon into a Solar Photovoltaic Paradise
NASA Technical Reports Server (NTRS)
Freundlich, Alex; Alemu, Andenet; Williams, Lawrence; Nakamura, Takashi; Sibille, Laurent; Curren, Peter
2006-01-01
Lunar resource utilization has focused principally on the extraction of oxygen from the lunar regolith. A number of schemes have been proposed for oxygen extraction from Ilmenite and Anorthite. Serendipitously, these schemes have as their by-products (or more directly as their "waste products"), materials needed for the fabrication of thin film silicon solar cells. Thus lunar surface possesses both the elemental components needed for the fabrication of silicon solar cells and a vacuum environment that allows for vacuum deposition of thin film solar cells directly on the surface of the Moon without the need for vacuum chambers. In support of the US space exploration initiative a new architecture for the production of thin film solar cells on directly on the lunar surface is proposed. The paper discusses experimental data on the fabrication and properties of lunar glass substrates, evaporated lunar regolith thin films (anti-reflect coatings and insulators), and preliminary attempts in the fabrication of thin film (silicon/II-VI) photovoltaic materials on lunar regolith glass substrates. A conceptual design for a solar powered robotic rover capable of fabricating solar cells directly on the lunar surface is provided. Technical challenges in the development of such a facility and strategies to alleviate perceived difficulties are discussed.
Electromagnetic launch of lunar material
NASA Technical Reports Server (NTRS)
Snow, William R.; Kolm, Henry H.
1992-01-01
Lunar soil can become a source of relatively inexpensive oxygen propellant for vehicles going from low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) and beyond. This lunar oxygen could replace the oxygen propellant that, in current plans for these missions, is launched from the Earth's surface and amounts to approximately 75 percent of the total mass. The reason for considering the use of oxygen produced on the Moon is that the cost for the energy needed to transport things from the lunar surface to LEO is approximately 5 percent the cost from the surface of the Earth to LEO. Electromagnetic launchers, in particular the superconducting quenchgun, provide a method of getting this lunar oxygen off the lunar surface at minimal cost. This cost savings comes from the fact that the superconducting quenchgun gets its launch energy from locally supplied, solar- or nuclear-generated electrical power. We present a preliminary design to show the main features and components of a lunar-based superconducting quenchgun for use in launching 1-ton containers of liquid oxygen, one every 2 hours. At this rate, nearly 4400 tons of liquid oxygen would be launched into low lunar orbit in a year.
Solar-Wind Protons and Heavy Ions Sputtering of Lunar Surface Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barghouty, N.; Meyer, Fred W; Harris, Peter R
2011-01-01
Lunar surface materials are exposed to {approx}1 keV/amu solar-wind protons and heavy ions on almost continuous basis. As the lunar surface consists of mostly oxides, these materials suffer, in principle, both kinetic and potential sputtering due to the actions of the solar-wind ions. Sputtering is an important mechanism affecting the composition of both the lunar surface and its tenuous exosphere. While the contribution of kinetic sputtering to the changes in the composition of the surface layer of these oxides is well understood and modeled, the role and implications of potential sputtering remain unclear. As new potential-sputtering data from multi-charged ionsmore » impacting lunar regolith simulants are becoming available from Oak Ridge National Laboratory's MIRF, we examine the role and possible implications of potential sputtering of Lunar KREEP soil. Using a non-equilibrium model we demonstrate that solar-wind heavy ions induced sputtering is critical in establishing the timescale of the overall solar-wind sputtering process of the lunar surface. We also show that potential sputtering leads to a more pronounced and significant differentiation between depleted and enriched surface elements. We briefly discuss the impacts of enhanced sputtering on the composition of the regolith and the exosphere, as well as of solar-wind sputtering as a source of hydrogen and water on the moon.« less
NASA Astrophysics Data System (ADS)
Zeng, X. G.; Liu, J. J.; Zuo, W.; Chen, W. L.; Liu, Y. X.
2018-04-01
Circular structures are widely distributed around the lunar surface. The most typical of them could be lunar impact crater, lunar dome, et.al. In this approach, we are trying to use the Convolutional Neural Network to classify the lunar circular structures from the lunar images.
Diamagnetic effect in the foremoon solar wind observed by Kaguya
NASA Astrophysics Data System (ADS)
Nishino, M. N.; Saito, Y.; Tsunakawa, H.; Miyake, Y.; Harada, Y.; Yokota, S.; Takahashi, F.; Matsushima, M.; Shibuya, H.; Shimizu, H.
2016-12-01
Interaction between the lunar surface and incident solar wind is one of the crucial phenomena of the lunar plasma sciences. Recent observations by lunar orbiters revealed that strength of the interplanetary magnetic field (IMF) at spacecraft altitude increases over crustal magnetic fields on the dayside. In addition, variations of the IMF on the lunar night side have been reported in the viewpoint of diamagnetic effect around the lunar wake. However, few studies have been performed for the IMF over non-magnetized regions on the dayside. Here we show an event where strength of the IMF decreases at 100 km altitude on the lunar dayside (i.e. in the foremoon solar wind) when the IMF is almost parallel to the incident solar wind flow, comparing the upstream solar wind data from ACE and WIND with Kaguya magnetometer data. The lunar surface below the Kaguya orbit is not magnetized (or very weakly magnetized), and the sunward-travelling protons show signatures of those back-scattered at the lunar surface. We find that the decrease in the magnetic pressure is compensated by the thermal pressure of the back-scattered protons. In other words, the IMF strength in the foremoon solar wind decreases by diamagnetic effect of sunward-travelling protons back-scattered at the lunar dayside surface. Such diamagnetic effect would be prominent in the high-beta solar wind environment, and may be ubiquitous in the environment where planetary surface directly interacts with surrounding space plasma.
Synthesis and Stability of Iron Nanoparticles for Lunar Environment Studies
NASA Technical Reports Server (NTRS)
Hung, Ching-cheh; McNatt, Jeremiah
2009-01-01
Simulant of lunar dust is needed when researching the lunar environment. However, unlike the true lunar dust, today s simulants do not contain nanophase iron. Two different processes have been developed to fabricate nanophase iron to be used as part of the lunar dust simulant: (1) Sequentially treating a mixture of ferric chloride, fluorinated carbon, and soda lime glass beads at about 300 C in nitrogen, at room temperature in air, and then at 1050 C in nitrogen. The product includes glass beads that are grey in color, can be attracted by a magnet, and contain alpha-iron nanoparticles (which seem to slowly lose their lattice structure in ambient air during a period of 12 months). This product may have some similarity to the lunar glassy regolith that contains Fe(sup 0). (2) Heating a mixture of carbon black and a lunar simulant (a mixed metal oxide that includes iron oxide) at 1050 C in nitrogen. This process simulates lunar dust reaction to the carbon in a micrometeorite at the time of impact. The product contains a chemically modified simulant that can be attracted by a magnet and has a surface layer whose iron concentration increased during the reaction. The iron was found to be alpha-iron and Fe3O4 nanoparticles, which appear to grow after the fabrication process, but stabilizes after 6 months of ambient air storage.
Lunar Navigation Determination System - LaNDS
NASA Technical Reports Server (NTRS)
Quinn, David; Talabac, Stephen
2012-01-01
A portable comprehensive navigational system has been developed that both robotic and human explorers can use to determine their location, attitude, and heading anywhere on the lunar surface independent of external infrastructure (needs no Lunar satellite network, line of sight to the Sun or Earth, etc.). The system combines robust processing power with an extensive topographical database to create a real-time atlas (GIS Geospatial Information System) that is able to autonomously control and monitor both single unmanned rovers and fleets of rovers, as well as science payload stations. The system includes provisions for teleoperation and tele-presence. The system accepts (but does not require) inputs from a wide range of sensors. A means was needed to establish a location when the search is taken deep in a crater (looking for water ice) and out of view of Earth or any other references. A star camera can be employed to determine the user's attitude in menial space and stellar map in body space. A local nadir reference (e.g., an accelerometer that orients the nadir vector in body space) can be used in conjunction with a digital ephemeris and gravity model of the Moon to isolate the latitude, longitude, and azimuth of the user on the surface. That information can be used in conjunction with a Lunar GIS and advanced navigation planning algorithms to aid astronauts (or other assets) to navigate on the Lunar surface.
A Triboelectric Sensor Array for Electrostatic Studies on the Lunar Surface
NASA Technical Reports Server (NTRS)
Johansen, Michael R.; Mackey, Paul J.; Calle, C. I.
2015-01-01
The moons electrostatic environment requires careful consideration in the development of future lunar landers. Electrostatically charged dust was well documented during the Apollo missions to cause thermal control, mechanical, and visibility issues. The fine dust particles that make up the surface are electrostatically charged as a result of numerous charging mechanisms. The relatively dry conditions on the moon creates a prime tribocharging environment during surface operations. The photoelectric effect is dominant for lunar day static charging, while plasma electrons are the main contributor for lunar night electrostatic effects. Electrostatic charging is also dependent on solar intensity, Earth-moon relative positions, and cosmic ray flux. This leads to a very complex and dynamic electrostatic environment that must be studied for the success of long term lunar missions.In order to better understand the electrostatic environment of planetary bodies, Kennedy Space Center, in previous collaboration with the Jet Propulsion Laboratory, has developed an electrostatic sensor suite. One of the instruments included in this package is the triboelectric sensor array. It is comprised of strategically selected materials that span the triboelectric series and that also have previous spaceflight history. In this presentation, we discuss detailed testing with the triboelectric sensor array performed at Kennedy Space Center. We will discuss potential benefits and use cases of this low mass, low cost sensor package, both for science and for mission success.
Bistatic Radar Observations of the Moon Using Mini-RF on LRO and the Arecibo Observatory
NASA Technical Reports Server (NTRS)
Patterson, G. W.; Stickle, A. M.; Turner, F. S.; Jensen, J. R.; Bussey, D. B. J.; Spudis, P.; Espiritu, R. C.; Schulze, R. C.; Yocky, D. A.; Wahl, D. E.;
2016-01-01
The Miniature Radio Frequency (Mini-RF) instrument aboard NASA's Lunar Reconnaissance Orbiter (LRO) is a hybrid dual-polarized synthetic aperture radar (SAR) that operated in concert with the Arecibo Observatory to collect bistatic radar data of the lunar nearside from 2012 to 2015. The purpose of this bistatic campaign was to characterize the radar scattering properties of the surface and near-surface, as a function of bistatic angle, for a variety of lunar terrains and search for a coherent backscatter opposition effect indicative of the presence of water ice. A variety of lunar terrain types were sampled over a range of incidence and bistatic angles; including mare, highland, pyroclastic, crater ejecta, and crater floor materials. Responses consistent with an opposition effect were observed for the ejecta of several Copernican-aged craters and the floor of the south-polar crater Cabeus. The responses of ejecta material varied by crater in a manner that suggests a relationship with crater age. The response for Cabeus was observed within the portion of its floor that is not in permanent shadow. The character of the response differs from that of crater ejecta and appears unique with respect to all other lunar terrains observed. Analysis of data for this region suggests that the unique nature of the response may indicate the presence of near-surface deposits of water ice.
NASA Technical Reports Server (NTRS)
Hossner, Lloyd R.; Ming, Douglas W.; Henninger, Donald L.; Allen, Earl R.
1991-01-01
The development of a CELSS for a lunar outpost is discussed. It is estimated that a lunar outpost life support system with a crew of four that produces food would break even in terms of mass and cost to deliver the system to the lunar surface after 2.5 years when compared to the cost of resupply from earth. A brief review is made of research on life support systems and NASA projects for evaluating CELSS components. The use of on-site materials for propellants, construction materials, and agriculture is evaluated, and the use of microbes for waste decomposition and stabilization of ecological balance is touched upon. Areas for further investigation include the behavior of organisms in microgravity, genetic alteration, gas exchange capabilities of organisms, integration of biological and physicochemical components, and automation. The development stages leading to lunar deployment are outlined.
NASA Technical Reports Server (NTRS)
Gose, W. A.
1973-01-01
The mineralogy, petrology, chemistry, isotopic composition, and physical properties of lunar materials are described in papers detailing methods, results, and implications of research on samples returned from eight lunar landing sites: Apollo 11, 12, 14, 15, 16, 17, and Luna 16 and 20. The results of experiments conducted or set up on the lunar surface by the astronauts are also described along with observations taken from Command Modules and subsatellites. Major topics include general geology, soil and breccia studies, petrologic studies, mineralogic analyses, elemental compositions, radiometric age determinations, rare gas chemistry, radionuclides, organogenic compounds, particle track records, thermal properties, seismic studies, resonance studies, orbital mapping, lunar atmosphere, magnetic studies, electrical studies, optical properties, and microcratering. Individual items are announced in this issue.
Buratti, B.J.; Hicks, M.D.; Nettles, J.; Staid, M.; Pieters, C.M.; Sunshine, J.; Boardman, J.; Stone, T.C.
2011-01-01
The USGS's Robotic Lunar Observatory (ROLO) dedicated ground-based lunar calibration project obtained photometric observations of the Moon over the spectral range attainable from Earth (0.347-2.39 ??m) and over solar phase angles of 1.55??-97??. From these observations, we derived empirical lunar surface solar phase functions for both the highlands and maria that can be used for a wide range of applications. The functions can be used to correct for the effects of viewing geometry to produce lunar mosaics, spectra, and quick-look products for future lunar missions and ground-based observations. Our methodology can be used for a wide range of objects for which multiply scattered radiation is not significant, including all but the very brightest asteroids and moons. Copyright 2011 by the American Geophysical Union.
At–Sea Behavior Varies with Lunar Phase in a Nocturnal Pelagic Seabird, the Swallow-Tailed Gull
Cruz, Sebastian M.; Hooten, Mevin; Huyvaert, Kathryn P.; Proaño, Carolina B.; Anderson, David J.; Afanasyev, Vsevolod; Wikelski, Martin
2013-01-01
Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM) that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase. PMID:23468889
The Lunar Atmosphere and Dust Environment Explorer (LADEE): Initial Science Results
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Hine, B.; Delory, G. T.; Salute, J. S.; Noble, S.; Colaprete, A.; Horanyi, M.; Mahaffy, P.
2014-01-01
On September 6, 2013, a nearperfect launch of the first Minotaur V rocket successfully carried NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) into a higheccentricity geocentric orbit. The launch, from NASA's Wallops Flight Facility in Virginia, was visible from much of the eastern seaboard. Over the next 30 days, LADEE performed three phasing orbits, with near-perfect maneuvers that placed apogee at ever higher altitudes in preparation for rendezvous with the Moon. LADEE arrived at the Moon on October 6, 2013, during the government shutdown. LADEE's science objectives are twofold: (1) Determine the composition of the lunar atmosphere, investigate processes controlling its distribution and variability, including sources, sinks, and surface interactions; (2) Characterize the lunar exospheric dust environment, measure its spatial and temporal variability, and effects on the lunar atmosphere, if any.
Isotopic Composition of Oxygen in Lunar Zircons
NASA Technical Reports Server (NTRS)
Nemchin, A. A.; Whitehouse, M. J.; Pidgeon, R. T.; Meyer, C.
2005-01-01
The recent discovery of heavy oxygen in zircons from the Jack Hills conglomerates Wilde et al. and Mojzsis et al. was interpreted as an indication of presence of liquid water on the surface of Early Earth. The distribution of ages of Jack Hills zircons and lunar zircons appears to be very similar and therefore analysis of oxygen in the lunar grains may provide a reference frame for further study of the early history of the Earth as well as give additional information regarding processes that operated on the Moon. In the present study we have analysed the oxygen isotopic composition of zircon grains from three lunar samples using the Swedish Museum of Natural History CAMECA 1270 ion microprobe. The samples were selected as likely tests for variations in lunar oxygen isotopic composition. Additional information is included in the original extended abstract.
Resource Prospector: Mission Goals, Relevance and Site Selection
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R. C.; Andrews, D.; Sanders, G.; McGovern, A.; Vaughan, R.; Heldmann, J.; Trimble, J.
2015-01-01
Over the last two decades a wealth of new observations of the moon have demonstrated a lunar water system dramatically more complex and rich than was deduced following the Apollo era. Observation from the Lunar Prospector Neutron Spectrometer (LPNS) revealed enhancements of hydrogen near the lunar poles. This observation has since been confirmed by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) instrument. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission targeted a permanently shadowed, enhanced hydrogen location within the crater Cabeus. The LCROSS impact showed that at least some of the hydrogen enhancement is in the form of water ice and molecular hydrogen (H2). Other volatiles were also observed in the LCROSS impact cloud, including CO2, CO, an H2S. These volatiles, and in particular water, have the potential to be a valuable or enabling resource for future exploration. In large part due to these new findings, the NASA Human Exploration and Operations Mission Directorate (HEOMD) have selected a lunar volatiles prospecting mission for a concept study and potential flight in CY2020. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith (up to 1 meter), and (3) demonstrate the form, extractability and usefulness of the materials.
Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith
NASA Technical Reports Server (NTRS)
Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon
2010-01-01
Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other systems. The negatively charged lunar soil would also be neutralized mitigating some of the adverse effects resulting from lunar dust.
1969-08-27
Artist’s concept of a manned Lunar Roving Vehicle (LRV) depicting two-man operation on the Lunar surface. The LRV was developed under the direction of the Marshall Space Flight Center (MSFC) to provide Apollo astronauts with a greater range of mobility on the lunar surface.
NASA Astrophysics Data System (ADS)
Cahill, Joshua T. S.
This dissertation has two focuses: (1) the evaluation and validation of algorithms used for analysis of lunar visible and near-infrared data sets, and (2) the determination of lunar surface and sub-surface crustal composition by virtue of these algorithms. To that end, the results and interpretation reported herein further enhance knowledge of lunar ferroan anorthosite (FAN) and magnesium-suite (Mg-suite) mineralogy, chemistry, and distribution on and in our Moon's crust.
Lunar soil properties and soil mechanics
NASA Technical Reports Server (NTRS)
Mitchell, J. K.; Houston, W. N.
1974-01-01
The long-range objectives were to develop methods of experimentation and analysis for the determination of the physical properties and engineering behavior of lunar surface materials under in situ environmental conditions. Data for this purpose were obtained from on-site manned investigations, orbiting and softlanded spacecraft, and terrestrial simulation studies. Knowledge of lunar surface material properties are reported for the development of models for several types of lunar studies and for the investigation of lunar processes. The results have direct engineering application for manned missions to the moon.
Challenges of Rover Navigation at the Lunar Poles
NASA Technical Reports Server (NTRS)
Nefian, Ara; Deans, Matt; Bouyssounouse, Xavier; Edwards, Larry; Dille, Michael; Fong, Terry; Colaprete, Tony; Miller, Scott; Vaughan, Ryan; Andrews, Dan;
2015-01-01
Observations from Lunar Prospector, LCROSS, Lunar Reconnaissance Orbiter (LRO), and other missions have contributed evidence that water and other volatiles exist at the lunar poles in permanently shadowed regions. Combining a surface rover and a volatile prospecting and analysis payload would enable the detection and characterization of volatiles in terms of nature, abundance, and distribution. This knowledge could have impact on planetary science, in-situ resource utilization, and human exploration of space. While Lunar equatorial regions of the Moon have been explored by manned (Apollo) and robotic missions (Lunokhod, Cheng'e), no surface mission has reached the lunar poles.
A single launch lunar habitat derived from an NSTS external tank
NASA Technical Reports Server (NTRS)
King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.
1990-01-01
A concept for using a spent External Tank from the National Space Transportation System (Shuttle) to derive a Lunar habitat is described. The concept is that the External Tank is carried into Low-Earth Orbit (LEO) where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person Lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS Orbiter can place the External Tank in LEO, provide orbiter astronauts for disassembly of the External Tank, and transport the required subsystem hardware for outfitting the Lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen tank-intertank modifications utilize existing structures and openings for human access without compromising the structural integrity of the tank. The modification includes installation of living quarters, instrumentation, and an air lock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal-control, environmental-control and life-support, and propulsion. The converted Lunar habitat is designed for unmanned transport and autonomous soft landing on the Lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyor. The Lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a Lunar lander for crew changeover and resupply.
Dust Grain Charge above the Lunar terminator
NASA Astrophysics Data System (ADS)
Vaverka, Jakub; Richterova, Ivana; Nemecek, Zdenek; Safrankova, Jana; Pavlu, Jiri; Vysinka, Marek
Interaction of a lunar surface with the solar wind and magnetosphere leads to its charging by several processes as photoemission, a collection of primary particles, and secondary electron emission. Nevertheless, charging of the lunar surface is complicated by a shielding of solar light and solar wind ions by hills, craters, and boulders that can locally influence the surface potential. Moreover, a presence of a plasma wake can strongly affect this potential at the night side of the Moon. A typical surface potential varies from slightly positive (dayside) to negative values of the order of several hundred volts (night side). An electric field above the charged surface can lead to a levitation of dust grains as it has been observed by several spacecraft and by astronauts during Apollo missions. Although charging and transport of dust grains above the lunar surface are in the center of interest for many years, these phenomena are not still completely understood. We present calculation of an equilibrium potential of dust grains above the lunar surface. We focus on a terminator area during the Earth’s plasma sheet crossing. We use the secondary electron emission model for dust grains which takes into account an influence of the grain size, material, and surface roughness and findings from laboratory experiments with charging of lunar dust simulants by an electron beam.
Modelling of Lunar Dust and Electrical Field for Future Lunar Surface Measurements
NASA Astrophysics Data System (ADS)
Lin, Yunlong
Modelling of the lunar dust and electrical field is important to future human and robotic activities on the surface of the moon. Apollo astronauts had witnessed the maintaining of micron- and millimeter sized moon dust up to meters level while walked on the surface of the moon. The characterizations of the moon dust would enhance not only the scientific understanding of the history of the moon but also the future technology development for the surface operations on the moon. It has been proposed that the maintaining and/or settlement of the small-sized dry dust are related to the size and weight of the dust particles, the level of the surface electrical fields on the moon, and the impaction and interaction between lunar regolith and the solar particles. The moon dust distributions and settlements obviously affected the safety of long term operations of future lunar facilities. For the modelling of the lunar dust and the electrical field, we analyzed the imaging of the legs of the moon lander, the cover and the footwear of the space suits, and the envelope of the lunar mobiles, and estimated the size and charges associated with the small moon dust particles, the gravity and charging effects to them along with the lunar surface environment. We also did numerical simulation of the surface electrical fields due to the impaction of the solar winds in several conditions. The results showed that the maintaining of meters height of the micron size of moon dust is well related to the electrical field and the solar angle variations, as expected. These results could be verified and validated through future on site and/or remote sensing measurements and observations of the moon dust and the surface electrical field.
The Character of the Solar Wind, Surface Interactions, and Water
NASA Technical Reports Server (NTRS)
Farrell, William M.
2011-01-01
We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.
Altair Lunar Lander Development Status: Enabling Human Lunar Exploration
NASA Technical Reports Server (NTRS)
Laurini, Kathleen C.; Connolly, John F.
2009-01-01
As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a minimum functionality approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicles safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to begin Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. A blended NASA-industry team will continue to refine the lander configuration and mature the vehicle design over the next few years. This paper will update the international community on the status of the Altair Project as it addresses the challenges of project formulation, including optimizing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.
Altair Lunar Lander Development Status: Enabling Lunar Exploration
NASA Technical Reports Server (NTRS)
Laurini, Kathleen C.; Connolly, John F.
2009-01-01
As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a "minimum functionality" approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicle's safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to began Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. NASA intends to continue to seek industry involvement in project formulation activities. This paper will update the international coimmunity on the status of the Altair Project as it addresses the challenges of project formulation, including optinuzing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, C. W.; Protheroe, R. J.; Ekers, R. D.
2010-02-15
We describe the design, performance, sensitivity and results of our recent experiments using the Australia Telescope Compact Array (ATCA) for lunar Cherenkov observations with a very wide (600 MHz) bandwidth and nanosecond timing, including a limit on an isotropic neutrino flux. We also make a first estimate of the effects of small-scale surface roughness on the effective experimental aperture, finding that contrary to expectations, such roughness will act to increase the detectability of near-surface events over the neutrino energy-range at which our experiment is most sensitive (though distortions to the time-domain pulse profile may make identification more difficult). The aimmore » of our 'Lunar UHE Neutrino Astrophysics using the Square Kilometre Array' (LUNASKA) project is to develop the lunar Cherenkov technique of using terrestrial radio telescope arrays for ultrahigh energy (UHE) cosmic ray (CR) and neutrino detection, and, in particular, to prepare for using the Square Kilometre Array (SKA) and its path-finders such as the Australian SKA Pathfinder (ASKAP) and the Low Frequency Array (LOFAR) for lunar Cherenkov experiments.« less
Apollo 12 Astronauts Peer Out of the Mobile Quarantine Facility
NASA Technical Reports Server (NTRS)
1969-01-01
The smiling Apollo 12 astronauts peer out of the window of the mobile quarantine facility aboard the recovery ship, USS Hornet. Pictured (Left to right) are Spacecraft Commander, Charles Conrad; Command Module (CM) Pilot, Richard Gordon; and Lunar Module (LM) Pilot, Alan L. Bean. The crew were housed in the quarantine facility immediately after the Pacific recovery operation took place. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 returned safely to Earth on November 24, 1969.
NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)
NASA Technical Reports Server (NTRS)
Elphic, Richard; Delory, Gregory; Colaprete, Anthony; Horanyi, Mihaly; Mahaffy, Paul; Hine, Butler; McClard, Steven; Grayzeck, Edwin; Boroson, Don
2011-01-01
Nearly 40 years have passed since the last Apollo missions investigated the mysteries of the lunar atmosphere and the question of levitated lunar dust. The most important questions remain: what is the composition, structure and variability of the tenuous lunar exosphere? What are its origins, transport mechanisms, and loss processes? Is lofted lunar dust the cause of the horizon glow observed by the Surveyor missions and Apollo astronauts? How does such levitated dust arise and move, what is its density, and what is its ultimate fate? The US National Academy of Sciences/National Research Council decadal surveys and the recent "Scientific Context for Exploration of the Moon" (SCEM) reports have identified studies of the pristine state of the lunar atmosphere and dust environment as among the leading priorities for future lunar science missions. These measurements have become particularly important since recent observations by the Lunar Crater Observation and Sensing Satellite (LCROSS) mission point to significant amounts of water and other volatiles sequestered within polar lunar cold traps. Moreover Chandrayaan/M3, EPOXI and Cassini/VIMS have identified molecular water and hydroxyl on lunar surface regolith grains. Variability in concentration suggests these species are likely to be present in the exosphere, and thus constitute a source for the cold traps. NASA s Lunar Atmosphere and Dust Environment Explorer (LADEE) is currently under development to address these goals. LADEE will determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. LADEE will also determine whether dust is present in the lunar exosphere, and reveal its sources and variability. LADEE s results are relevant to surface boundary exospheres and dust processes throughout the solar system, will address questions regarding the origin and evolution of lunar volatiles, and will have implications for future exploration activities. LADEE will be the first mission based on the Ames Common Bus design. LADEE employs a high heritage instrument payload: a Neutral Mass Spectrometer (NMS), an Ultraviolet/Visible Spectrometer (UVS), and the Lunar Dust Experiment (LDEX). It will also carry a space terminal as part of the Lunar Laser Communication Demonstration (LLCD), which is a technology demonstration. LLCD will also supply a ground terminal. LLCD is funded by the Space Operations Mission Directorate (SOMD), managed by GSFC, and built by MIT Lincoln Lab. NMS was directed to the Goddard Space Flight Center (GSFC) and UVS to Ames Research Center (ARC). LDEX was selected through the Stand Alone Missions of Opportunity Notice (SALMON) Acquisition Process, and is provided by the University of Colorado at Boulder. The LADEE NMS covers a m/z range of 2-150 and draws its design from mass spectrometers developed at GSFC for the MSL/SAM, Cassini Orbiter, CONTOUR, and MAVEN missions. The UVS instrument is a next-generation, high-reliability version of the LCROSS UV-Vis spectrometer, spanning 250-800 nm wavelength, with high (<1 nm) spectral resolution. UVS will also perform dust occultation measurements via a solar viewer optic. LDEX senses dust impacts in situ, at LADEE orbital altitudes of 50 km and below, with a particle size range of between 100 nm and 5 micron. Dust particle impacts on a large hemispherical target create electron and ion pairs. The latter are focused and accelerated in an electric field and detected at a microchannel plate. LADEE is an important part of NASA s portfolio of near-term lunar missions; launch is planned for May, 2013. The lunar atmosphere is the most accessible example of a surface boundary exosphere, and may reveal the sources and cycling of volatiles. Dynamic dust activity must be accounted for in the design and operation of lunar surface operations.
Enabling lunar and space missions by laser power transmission
NASA Technical Reports Server (NTRS)
Deyoung, R. J.; Nealy, J. E.; Humes, D. H.; Meador, W. E.
1992-01-01
Applications are proposed for laser power transmission on the Moon. A solar-pumped laser in lunar orbit would beam power to the lunar surface for conversion into either electricity or propulsion needs. For example, lunar rovers could be much more flexible and lighter than rovers using other primary power sources. Also, laser power could be absorbed by lunar soil to create a hard glassy surface for dust-free roadways and launch pads. Laser power could also be used to power small lunar rockets or orbital transfer vehicles, and finally, photovoltaic laser converters could power remote excavation vehicles and human habitats. Laser power transmission is shown to be a highly flexible, enabling primary power source for lunar missions.
Apollo 12 Voice Transcript Pertaining to the Geology of the Landing Site, Volume 2
NASA Technical Reports Server (NTRS)
Bailey, N. G.; Ulrich, G. E.
1975-01-01
An edited record of the conversions between the Apollo 12 astronauts and mission control pertaining to the geology of the landing site, is presented. All discussions and observations documenting the lunar landscape, its geologic characteristics, the rocks and soils collected and the lunar surface photographic record are included along with supplementary remarks essential to the continuity of events during the mission.
A One-Piece Lunar Regolith Bag Garage Prototype
NASA Technical Reports Server (NTRS)
Smithers, G. A.; Nehls, M. K.; Hovater, M. A.; Evans, S. W.; Miller, J. S.; Broughton, R. M., Jr.; Beale, D.; Kilinc-Balci, F.
2007-01-01
Shelter structures on the moon, even in early phases of exploration, should incorporate lunar materials as much as possible. This Technical Memorandum details the design and construction of a prototype for a one-piece regolith bag unpressurized garage concept and a materials testing program to investigate six candidate fabrics to learn how they might perform in the lunar environment. The conceptualization was that a lightweight fabric form be launched from Earth and landed on the lunar surface to be robotically filled with raw lunar regolith. Regolith bag fabric candidates included: Vectran(TM), Nextel(TM), Gore PTFE Fabric(TM), Zylon(TM), Twaron(TM), and Nomex(TM). Tensile (including post radiation exposure), fold, abrasion, and hypervelocity impact testing were performed under ambient conditions, and also performed under cold and elevated temperatures. In some cases, Johnson Space Center lunar simulant (JSC-1) was used in conjunction with testing. A series of preliminary structures was constructed during final prototype design based on the principles of the classic masonry arch. The prototype was constructed of Kevlar(TM) and filled with vermiculite. The structure is free-standing, but has not yet been load tested. Future plans would be to construct higher fidelity prototypes and to conduct appropriate tests of the structure.
Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat
NASA Technical Reports Server (NTRS)
Cohen, B. A.; Hayne, P. O.; Banazadeh, P.; Baker, J. D.; Staehle, R. L.; Paine, C..; Paige, D. A.
2014-01-01
Water ice and other volatiles may be located in the Moon's polar regions, with sufficient quantities for in situ extraction and utilization by future human and robotic missions. Evidence from orbiting spacecraft and the LCROSS impactor suggests the presence of surface and/or nearsurface volatiles, including water ice. These deposits are of interest to human exploration to understand their potential for use by astronauts. Understanding the composition, quantity, distribution, and form of water/H species and other volatiles associated with lunar cold traps is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits could also reveal important information about the delivery of water to the Earth- Moon system, so are of scientific interest. The scientific exploration of the lunar polar regions was one of the key recommendations of the Planetary Science Decadal Survey. In order to address NASA's SKGs, the Advanced Exploration Systems (AES) program selected three lowcost 6-U CubeSat missions for launch as secondary payloads on the first test flight (EM1) of the Space Launch System (SLS) scheduled for 2017. The Lunar Flashlight mission was selected as one of these missions, specifically to address the SKG associated with lunar volatiles. Development of the Lunar Flashlight CubeSat concept leverages JPL's Interplanetary Nano- Spacecraft Pathfinder In Relevant Environment (INSPIRE) mission, MSFC's intimate knowledge of the Space Launch System and EM-1 mission, small business development of solar sail and electric propulsion hardware, and JPL experience with specialized miniature sensors. The goal of Lunar Flashlight is to determine the presence or absence of exposed water ice and its physical state, and map its concentration at the kilometer scale within the permanently shadowed regions of the lunar south pole. After being ejected in cislunar space by SLS, Lunar Flashlight deploys its solar panels and solar sail and maneuvers into a low-energy transfer to lunar orbit. The solar sail and attitude control system work to bring the satellite into an elliptical polar orbit spiraling down to a perilune of 30-10 km above the south pole for data collection. Lunar Flashlight uses its solar sail to shine reflected sunlight into permanently shadowed regions, measuring surface albedo with a four-filter point spectrometer at 1.1, 1.5 1.9, and 2.0 microns. Water ice will be distinguished from dry regolith from these measurements in two ways: 1) spatial variations in absolute reflectance (water ice is much brighter in the continuum channels), and 2) reflectance ratios between absorption and continuum channels. Derived reflectance and reflectance ratios will be mapped onto the lunar surface in order to distinguish the composition of the PSRs from that of the sunlit terrain. Lunar Flashlight enables a low-cost path to in-situ resource utilization (ISRU) by identifying operationally useful deposits (if there are any), which is a game-changing capability for expanded human exploration.
Lunar Industry & Research Base Concept
NASA Astrophysics Data System (ADS)
Lysenko, J.; Kaliapin, M.; Osinovyy, G.
2017-09-01
Currently, all main space industry players, such as Europe, USA, Russia, China, etc., are looking back again at the idea of Moon exploration building there a manned lunar base. Alongside with other world spacefaring nations, Yuzhnoye State Design Office with its long-time development experience, technological and intellectual potential, organized its own conceptual work on development of the Lunar Industry & Research Base. In the frames of conceptual project "Lunar Industrial & Research Base" were formed its appearance, preliminary configuration and infrastructure at different stages of operation, trajectory and flight scheme to the Moon, as well as terms of the project's realization, and main technical characteristics of the systems under development, such as space transportation system for crew and cargo delivery to lunar surface and return to Earth, standardized designs of lunar modules, lunar surface vehicles, etc. The "Lunar Industrial & Research Base" project's preliminary risk assessment has shown a high value of its overall risk due to the lack of reliable information about the Moon, technical risks, long-term development of its elements, very high financial costs and dependence on state support. This points to the fact that it is reasonable to create such a global project in cooperation with other countries. International cooperation will expand the capabilities of any nation, reduce risks and increase the success probability of automated or manned space missions. It is necessary to create and bring into operation practical mechanisms for long-term space exploration on a global scale. One of the ways to do this is to create a multinational agency which would include both state enterprises and private companies.
Evolution of Shock Melt Compositions in Lunar Regoliths
NASA Technical Reports Server (NTRS)
Vance, A. M.; Christoffersen, R.; Keller, L. P.; Berger, E. L.; Noble, S. K.
2016-01-01
Space weathering processes - driven primarily by solar wind ion and micrometeorite bombardment, are constantly changing the surface regoliths of airless bodies, such as the Moon. It is essential to study lunar soils in order to fully under-stand the processes of space weathering, and how they alter the optical reflectance spectral properties of the lunar surface relative to bedrock. Lunar agglutinates are aggregates of regolith grains fused together in a glassy matrix of shock melt produced during micrometeorite impacts into the lunar regolith. The formation of the shock melt component in agglutinates involves reduction of Fe in the target material to generate nm-scale spherules of metallic Fe (nanophase Fe0 or npFe0). The ratio of elemental Fe, in the form of npFe0, to FeO in a given bulk soil indicates its maturity, which increases with length of surface exposure as well as being typically higher in the finer-size fraction of soils. The melting and mixing process in agglutinate formation remain poorly understood. This includes incomplete knowledge regarding how the homogeneity and overall compositional trends of the agglutinate glass portions (agglutinitic glass) evolve with maturity. The aim of this study is to use sub-micrometer scale X-ray compositional mapping and image analysis to quantify the chemical homogeneity of agglutinitic glass, correlate its homogeneity to its parent soil maturity, and identify the principal chemical components contributing to the shock melt composition variations. An additional focus is to see if agglutinitic glass contains anomalously high Fe sub-micron scale compositional domains similar to those recently reported in glassy patina coatings on lunar rocks.
Lunar dust and dusty plasmas: Recent developments, advances, and unsolved problems
NASA Astrophysics Data System (ADS)
Popel, S. I.; Zelenyi, L. M.; Golub', A. P.; Dubinskii, A. Yu.
2018-07-01
A renaissance is being observed currently in investigations of the Moon. The Luna-25 and Luna-27 missions are being prepared in Russia. At the same time, in connection with the future lunar missions, theory investigations of dust and dusty plasmas at the Moon are being carried out by scientists of the Space Research Institute of the Russian Academy of Sciences. Here, the corresponding results are reviewed briefly. We present the main theory results of these investigations concerning the lunar dusty plasmas. We show, in particular, the absence of the dead zone near a lunar latitude of 80° where, as was assumed earlier, dust particles cannot rise over the surface of the Moon. This indicates that there are no significant constraints on the Moon landing sites for future lunar missions that will study dust in the surface layer of the Moon. We demonstrate that the electrostatically ejected dust population can exist in the near-surface layer over the Moon while the dust appearing in the lunar exosphere owing to impacts of meteoroids present everywhere. The calculated values of number densities at high altitudes of the particles formed as a result of the impacts of meteoroids with the lunar surface are in accordance (up to an order of magnitude) with the data obtained by the recent NASA mission LADEE. Finally, we formulate new problems concerning the dusty plasma over the lunar surface.
NASA Astrophysics Data System (ADS)
Nagihara, S.; Zacny, K.; Chu, P.; Kiefer, W. S.
2018-02-01
We propose to equip the Deep Space Gateway spacecraft with a reusable lander that can shuttle to and from the lunar surface, and use it for collecting heat flow measurements globally on the lunar surface.
Lunar Science Enabled by the Deep Space Gateway and PHASR Rover
NASA Astrophysics Data System (ADS)
Bakambu, J. N.; Shaw, A.; Fulford, P.; Osinski, G.; Bourassa, M.; Rehmatullah, F.; Zanetti, M.; Rembala, R.
2018-02-01
The Deep Space Gateway will be a tremendous boon to lunar surface science. It will enable the PHASR Rover, a concept for a Canadian rover system, with international contributions and the goal of sample acquisition and lunar surface science.
NASA Astrophysics Data System (ADS)
Potts, Nicola J.; Barnes, Jessica J.; Tartèse, Romain; Franchi, Ian A.; Anand, Mahesh
2018-06-01
Compared to most other planetary materials in the Solar System, some lunar rocks display high δ37Cl signatures. Loss of Cl in a H ≪ Cl environment has been invoked to explain the heavy signatures observed in lunar samples, either during volcanic eruptions onto the lunar surface or during large scale degassing of the lunar magma ocean. To explore the conditions under which Cl isotope fractionation occurred in lunar basaltic melts, five Apollo 14 crystalline samples were selected (14053,19, 14072,13, 14073,9, 14310,171 along with basaltic clast 14321,1482) for in situ analysis of Cl isotopes using secondary ion mass spectrometry. Cl isotopes were measured within the mineral apatite, with δ37Cl values ranging from +14.6 ± 1.6‰ to +40.0 ± 2.9‰. These values expand the range previously reported for apatite in lunar rocks, and include some of the heaviest Cl isotope compositions measured in lunar samples to date. The data here do not display a trend between increasing rare earth elements contents and δ37Cl values, reported in previous studies. Other processes that can explain the wide inter- and intra-sample variability of δ37Cl values are explored. Magmatic degassing is suggested to have potentially played a role in fractionating Cl isotope in these samples. Degassing alone, however, could not create the wide variability in isotopic signatures. Our favored hypothesis, to explain small scale heterogeneity, is late-stage interaction with a volatile-rich gas phase, originating from devolatilization of lunar surface regolith rocks ∼4 billion years ago. This period coincides with vapor-induced metasomastism recorded in other lunar samples collected at the Apollo 16 and 17 landing sites, pointing to the possibility of widespread volatile-induced metasomatism on the lunar nearside at that time, potentially attributed to the Imbrium formation event.
Using Lunar Module Shadows To Scale the Effects of Rocket Exhaust Plumes
NASA Technical Reports Server (NTRS)
2008-01-01
Excavating granular materials beneath a vertical jet of gas involves several physical mechanisms. These occur, for example, beneath the exhaust plume of a rocket landing on the soil of the Moon or Mars. We performed a series of experiments and simulations (Figure 1) to provide a detailed view of the complex gas-soil interactions. Measurements taken from the Apollo lunar landing videos (Figure 2) and from photographs of the resulting terrain helped demonstrate how the interactions extrapolate into the lunar environment. It is important to understand these processes at a fundamental level to support the ongoing design of higher fidelity numerical simulations and larger-scale experiments. These are needed to enable future lunar exploration wherein multiple hardware assets will be placed on the Moon within short distances of one another. The high-velocity spray of soil from the landing spacecraft must be accurately predicted and controlled or it could erode the surfaces of nearby hardware. This analysis indicated that the lunar dust is ejected at an angle of less than 3 degrees above the surface, the results of which can be mitigated by a modest berm of lunar soil. These results assume that future lunar landers will use a single engine. The analysis would need to be adjusted for a multiengine lander. Figure 3 is a detailed schematic of the Lunar Module camera calibration math model. In this chart, formulas relating the known quantities, such as sun angle and Lunar Module dimensions, to the unknown quantities are depicted. The camera angle PSI is determined by measurement of the imaged aspect ratio of a crater, where the crater is assumed to be circular. The final solution is the determination of the camera calibration factor, alpha. Figure 4 is a detailed schematic of the dust angle math model, which again relates known to unknown parameters. The known parameters now include the camera calibration factor and Lunar Module dimensions. The final computation is the ejected dust angle, as a function of Lunar Module altitude.
NASA Technical Reports Server (NTRS)
Ambrose, Robert O.
2007-01-01
Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and power modules over long distances, pre-positioning them for the arrival of crew on a subsequent lander. Surface Handling 1. Offload surface system payloads from the lander, breaking launch restraints and power/data connections. Payloads may be offloaded to a wheeled vehicle for transport. 2. Deploy payloads from a wheeled vehicle at a field site, placing the payloads in their final use site on the ground or mating them with existing surface systems. 3. Support regolith collection, site preparation, berm construction, or other civil engineering tasks using tools and implements attached to rovers. Human-Systems Interaction 1. Provide a safe command and control interface for suited EVA to ride on and drive the vehicles, making sure that the systems are also safe for working near dismounted crew. 2. Provide an effective control system for IV crew to tele-operate vehicles, cranes and other equipment from inside the surface habitats with evolving independence from Earth. .. Provide a supervisory system that allows machines to be commanded from the ground, working across the Earth-Lunar time delays on the order of 5-10 seconds (round trip) to support operations when crew are not resident on the surface. Technology Development Needs 1. Surface vehicles that can dock, align and mate with outpost equipment such as landers, habitats and fluid/power interfaces. 2. Long life motors, drive trains, seals, motor electronics, sensors, processors, cable harnesses, and dash board displays. 3. Active suspension control, localization, high speed obstacle avoidance, and safety systems for operating near dismounted crew. 4. High specific energy and specific power batteries that are safe, rechargeable, and long lived.
Lunar surface: Changes in 31 months and micrometeoroid flux
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1972-01-01
A preliminary comparison of Surveyor 3 and Apollo 12 photographs of areas disturbed by the Surveyor is described. About 60 Surveyor pictures taken in April and May 1967 and 20 Apollo photographs including stereo pairs were examined in detail. Only one definite change in the surface, other than those produced by astronauts, was noted. This is a particle about 2 mm in diameter which appears in the Apollo photographs of a Surveyor footpad imprint but which does not appear in the Surveyor photographs. The walls made by Surveyor footpads and surface sampler were still in place, and surface areas darkened by ejected fines during the Surveyor landing still appeared dark. The absence of detectable craters in the footpad imprint implies a very low micrometeorite flux on the lunar surface.
Understanding the Potential Toxic Properties of Lunar Dust
NASA Technical Reports Server (NTRS)
2009-01-01
Lunar dust causes a variety of problems for spacecraft. It can obscure vision, clog equipment, cause seal failures and abrade surfaces. Additionally, lunar dust is potentially toxic and therefore hazardous to astronauts. Lunar dust can be activated by meteorites, UV radiation and elements of solar wind and, if inhaled, could produce reactive species in the lungs (freshly fractured quartz). Methods of lunar dust deactivation must be determined before new lunar missions. This requires knowledge of how to reactivate lunar dust on Earth - thus far crushing/grinding, UV activation and heating have been tested as activation methods. Grinding of lunar dust leads to the production of hydroxyl radicals in solution and increased dissolution of lunar simulant in buffers of different pH. Decreases in pH lead to increased lunar simulant leaching. Additionally, both ground and unground lunar simulant and unground quartz have been shown to promote the production of IL-6 and IL-8, pro-inflammatory cytokines, by alveolar epithelial cells. The results suggest the need for further studies on lunar dust and simulants prior to returning to the lunar surface.
Photometric study of the Moon with SMART-1/AMIE
NASA Astrophysics Data System (ADS)
Naranen, Jyri; Parviainen, Hannu; Muinonen, Karri; Josset, Jean-Luc; Beauvivre, Stephane; Koschny, Detlef; Foing, Bernard H.; Krieger, Bjoern; Amie Team
The Advanced Moon micro-Imager Experiment (AMIE) onboard the ESA SMART-1 lunar mission performed imaging of the Moon between November 2004 and September 2006, when the mission was ended by crashing the spacecraft into the lunar surface. AMIE was a 1024X1024 pixel miniaturized CCD camera with three colour filters and a panchromatic channel (clear filter). The images are of medium-to-high resolution, e.g. at 300 km pericenter altitude the resolution was 27 m/pix. We selected four different regions on the lunar surface imaged by AMIE for the photometric investigation reported here. These regions were selected so that as large phase angle coverage as possible was available, including the opposition geometry. Each of the regions cover a few hundred square kilometers of the lunar surface and were imaged by AMIE several tens of times. The regions examined include, e.g., Reiner gamma and Oceanus Procellarum near the crater Mairan. We utilized the latest in-flight calibration data available and we also georetrified the images to account for the aspect distortions. For the study reported here, the panchromatic filter was chosen since it is the best calibrated channel at the moment. The data was analyzed by implementing a numerical light scattering model with which we have inverted the regolith porosity and macroscopic surface roughness properties for the target areas. The model computes the bidirectional reflectance function using the geometric-optics approximation from a particulate medium constrained by a self-affine fractal random fields mimicking the regolith-covered lunar surface. Fractal description of the surface roughness is used, since it gives a more realistic way to model the true macroscopic surface roughness than the often used Gaussian correlation-model. Unlike in the previous studies, the azimuthal shadowing effects are taken into account, allowing for a more reliable inversion of surface statistics from images with large phase angles. In addition, we have fitted an empirical photometric function to the data which can be used to perform photometric correction to the images in, e.g., image mosaicking. A comparison with the results from the relevant previous photometric studies of the Moon is given. We end by presenting plans for future studies, especially the possible multi-colour photometry.
Lunar articulated remote transportation system
NASA Technical Reports Server (NTRS)
Beech, Geoffrey; Conley, Gerald; Diaz, Claudine; Dimella, Timothy; Dodson, Pete; Hykin, Jeff; Richards, Byron; Richardson, Kroy; Shetzer, Christie; Vandyke, Melissa
1990-01-01
A first generation lunar transportation vehicle was designed for use on the surface of the Moon between the years 2010 and 2020. Attention is focussed on specific design details on all components of the Lunar Articulated Remote Transportation System (Lunar ARTS). The Lunar ARTS will be a three cart, six-wheeled articulated vehicle. It's purpose will be for the transportation of astronauts and/or materials for excavation purposes at a short distance from the base (37.5 kilometers). The power system includes fuel cells for both the primary system and the back-up system. The vehicle has the option of being operated in a manned or unmanned mode. The unmanned mode includes stereo imaging with signal processing for navigation. For manned missions the display console is a digital readout displayed on the inside of the asronaut's helmet. A microprocessor is also on board the vehicle. Other components of the vehicle include: a double wishbone/flexible hemispherical wheel suspension; chassis; a steering system; motors; seat restraints, heat rejection systems; solar flare protection; dust protection; and meteoroid protection. A one-quarter scale dynamic model was built to study the dynamic behavior of the vehicle. The dynamic model closely captures the mechanical and electrical details of the total design.
NASA Astrophysics Data System (ADS)
Szalay, Jamey Robert
Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.
Catalog of Apollo experiment operations
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A.
1994-01-01
This catalog reviews Apollo mission reports, preliminary science reports, technical crew debriefings, lunar surface operations plans, and various relevant lunar experiment documents, collecting engineering- and operation-specific information by experiment. It is organized by discrete experimental and equipment items emplaced or operated on the lunar surface or at zero gravity during the Apollo missions. It also attempts to summarize some of the general problems encountered on the surface and provides guidelines for the design of future lunar surface experiments with an eye toward operations. Many of the problems dealt with on the lunar surface originated from just a few novel conditions that manifested themselves in various nasty ways. Low gravity caused cables to stick up and get caught on feet, and also made it easy for instruments to tip over. Dust was a problem and caused abrasion, visibility, and thermal control difficulties. Operating in a pressure suit limited a person's activity, especially in the hands. I hope to capture with this document some of the lessons learned from the Apollo era to make the jobs of future astronauts, principle investigators, engineers, and operators of lunar experiments more productive.
Scientific Research in the Lunar Orbiting Mission
NASA Astrophysics Data System (ADS)
Sasaki, S.; Iijima, Y.; Tanaka, K.; Kato, M.; Hashimoto, M.; Mizutani, H.; Takizawa, Y.
2002-01-01
and technology development. The launch was rescheduled last summer in the rearrangement of HII-A launch schedule. The main objective of the mission is to study the origin and evolution of the Moon. The spacecraft consists of a main orbiter at about 100 km altitude in the polar circular orbit and two subsatellites in the elliptical orbits with the apolune at 2400 km and 800 km. The main orbiter will carry instruments for scientific investigation including mapping of lunar topography and surface composition, measurement of the magnetic fields, and observation of lunar and solar terrestrial plasma environment. The mission period will be one year. If extra fuel is available, the mission will be extended. The elemental abundances are measured by the x-ray and gamma-ray spectrometers. Alpha particles from the radon gas and polonium are detected by an alpha particle spectrometer. The mineralogical characterization is performed by a multi-band imager. The mineralogical composition is identified by a spectral profiler, a continuous spectral analyzer. The surface topographic data are obtained by a high resolution terrain camera and a laser altimeter. The inside structure up to 5 km below the lunar surface is observed by the radar sounder experiment using a 5 MHz radio wave. The magnetometer provides data on the lunar surface magnetic field which will be used to understand the origin of lunar paleomagnetism and paleomagnetism. Doppler tracking of the orbiter via the relay satellite when the orbiter is in the far side is used to determine the gravity field of the far side. Radio sources on the two subsatellites are used to conduct the differential VLBI observation from ground stations. The lunar environment of high energy particles, electromagnetic fields, and plasma, is also measured by the main orbiter. The radio science using coherent x and s band carriers from the orbiter will be conducted to detect the tenuous lunar ionosphere. For the solar-terrestrial plasma observation, an imaging observation of the earth will be made to clarify the macroscopic dynamics of the terrestrial plasma environment and aurora activities. The observation of planetary radiation from the Jupiter and Saturn is also planned. Besides the scientific instruments, a high definition camera system to observe the earth and lunar surface will be onboard for publicity. A mission operation and data analysis center for SELENE is now under development. All scientific data are stored and some of them are transmitted to the PI team members outside the center for operation monitor and data analysis. Data will be open to the public one year after completion of the nominal mission.
Astronaut David Scott watching hammer and feather fall to lunar surface
NASA Technical Reports Server (NTRS)
1971-01-01
Astronaut David R. Scott, Apollo 15 commander, watches a geological hammer and a feather hit the lunar surface simultaneously in a test of Galileo's law of motion concerning falling bodies, as seen in this color reproduction taken from a transmission made by the RCA color television camera mounted on the Lunar Roving Vehicle. Scott released the hammer from his right hand and the feather from his left at the same instant. This experiment occured toward the end of the third and final lunar surface extravehicular activity.
2009-06-18
CAPE CANAVERAL, Fla. – A closeup of NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, ready for liftoff on an Atlas V/Centaur rocket from Launch Pad 41 at Cape Canaveral Air Force Station in Florida. LRO and LCROSS are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. The LRO also includes seven instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA , CRATER, Mini-RF and LROC. Launch is scheduled for 5:12 p.m. EDT June 18. Photo credit: NASA/Ken Thornsley
2009-06-18
CAPE CANAVERAL, Fla. – NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, stand ready for liftoff on an Atlas V/Centaur rocket from Launch Pad 41 at Cape Canaveral Air Force Station in Florida. LRO and LCROSS are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. The LRO also includes seven instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA , CRATER, Mini-RF and LROC. Launch is scheduled for 5:12 p.m. EDT June 18. Photo credit: NASA/Ken Thornsley
2009-06-18
CAPE CANAVERAL, Fla. – Trailing a column of smoke, NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, lifts off from Launch Pad 41 at Cape Canaveral Air Force Station in Florida. LRO and LCROSS are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. The LRO also includes seven instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA , CRATER, Mini-RF and LROC. Launch was on-time at 5:32 p.m. EDT June 18. Photo credit: NASA/Tom Farrar