Science.gov

Sample records for lunar surface roving

  1. Lunar Roving Vehicle Parked Beside Boulder on Lunar Surface

    NASA Technical Reports Server (NTRS)

    1972-01-01

    In this Apollo 17 onboard photo, a Lunar Roving Vehicle (LRV) is parked beside a huge boulder near the Valley of Tourus-Litttrow on the lunar surface. The seventh and last manned lunar landing and return to Earth mission, the Apollo 17, carrying a crew of three astronauts: Mission Commander Eugene A. Cernan; Lunar Module pilot Harrison H. Schmitt; and Command Module pilot Ronald E. Evans, lifted off on December 7, 1972 from the Kennedy Space Flight Center (KSC). Scientific objectives of the Apollo 17 mission included geological surveying and sampling of materials and surface features in a preselected area of the Taurus-Littrow region, deploying and activating surface experiments, and conducting in-flight experiments and photographic tasks during lunar orbit and transearth coast (TEC). These objectives included: Deployed experiments such as the Apollo lunar surface experiment package (ALSEP) with a Heat Flow experiment, Lunar seismic profiling (LSP), Lunar surface gravimeter (LSG), Lunar atmospheric composition experiment (LACE) and Lunar ejecta and meteorites (LEAM). The mission also included Lunar Sampling and Lunar orbital experiments. Biomedical experiments included the Biostack II Experiment and the BIOCORE experiment. The mission marked the longest Apollo mission, 504 hours, and the longest lunar surface stay time, 75 hours, which allowed the astronauts to conduct an extensive geological investigation. They collected 257 pounds (117 kilograms) of lunar samples with the use of the Marshall Space Flight Center developed LRV. The mission ended on December 19, 1972

  2. Artist's Concept of Lunar Roving Vehicle (LRV)

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Artist's manned and unmanned concepts of a Lunar Roving Vehicle (LRV) Mobility Test Article (MTA) on the Lunar surface. The data provided by the MTA helped in designing the LRV, developed under the direction of MSFC. The LRV was designed to allow Apollo astronauts a greater range of mobility during lunar exploration missions.

  3. Comparison of Nonlinear Filtering Techniques for Lunar Surface Roving Navigation

    NASA Technical Reports Server (NTRS)

    Kimber, Lemon; Welch, Bryan W.

    2008-01-01

    Leading up to the Apollo missions the Extended Kalman Filter, a modified version of the Kalman Filter, was developed to estimate the state of a nonlinear system. Throughout the Apollo missions, Potter's Square Root Filter was used for lunar navigation. Now that NASA is returning to the Moon, the filters used during the Apollo missions must be compared to the filters that have been developed since that time, the Bierman-Thornton Filter (UD) and the Unscented Kalman Filter (UKF). The UD Filter involves factoring the covariance matrix into UDUT and has similar accuracy to the Square Root Filter; however it requires less computation time. Conversely, the UKF, which uses sigma points, is much more computationally intensive than any of the filters; however it produces the most accurate results. The Extended Kalman Filter, Potter's Square Root Filter, the Bierman-Thornton UD Filter, and the Unscented Kalman Filter each prove to be the most accurate filter depending on the specific conditions of the navigation system.

  4. Lunar roving vehicle thermal control system.

    NASA Technical Reports Server (NTRS)

    Elliott, R. G.; Paoletti, C. J.; Britt, M. A.

    1972-01-01

    A thermal control system was incorporated into the Lunar Roving Vehicle (LRV) to maintain temperature sensitive components within appropriate temperature limits during the translunar transportation phase, lunar surface operation, and quiescent periods between lunar traverses. This paper describes the thermal control system and discusses its thermal characteristics during all phases of operation. The basic concept is a passive system which stores internally generated energy during operation with subsequent radiation to space. The external environments are regulated by selected radiative surface finishes. Multi-layer insulation blankets, space radiators, flexible thermal straps, and fusible mass heat sinks were designed to control the temperatures of the electronic components.

  5. The Apollo Lunar Roving Vehicle.

    NASA Technical Reports Server (NTRS)

    Haeussermann, W.

    1971-01-01

    After listing the basic requirements such as operational demands and lunar environmental conditions, characteristic design data of the roving vehicle are given with special attention to the four wheel drive and its control system, the steering system, and the navigational instrumentation. The overall system is optimized in view of total mass, range, mobility, load carrying capability, safety, highest reliability through redundancy, and last but not least, cost and development time. Optimization of the drive and power system has first been evaluated by mathematical models and computational simulation of the vehicle hardware, the wheel/soil interaction, and the lunar terrain profile. The next step to refine optimization and evaluation of the drive, steering, and power system including man/machine interaction has been carried out by the use of a six-degree-of-freedom simulator subjecting the astronauts in their space suits to simulated vehicle motions while driving over a simulated terrain, observable on a cathode ray tube display.

  6. Astronauts Scott and Irwin shown on Lunar Roving Vehicle at KSC

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronauts David R. Scott (right), commander, and James B. Irwin, lunar module pilot, are shown on the Lunar Roving Vehicle at the Kennedy Space Center (KSC) during Apollo 15 lunar surface extravehicular activity simlations.

  7. View of the Lunar Module 'Orion' and Lunar Roving Vehicle during first EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A view of the Lunar Module (LM) 'Orion' and Lunar Roving Vehicle (LRV), as photographed by Astronaut Charles M. Duke Jr., lunar module pilot, during the first Apollo 16 extravehicular activity (EVA-1) at the Descates landing site. Astronaut John W. Young, commander, can be seen directly behind the LRV. The lunar surface feature in the left background is Stone Mountain.

  8. Bendix Lunar Roving Vehicle (LRV) Test Article

    NASA Technical Reports Server (NTRS)

    1966-01-01

    An engineer demonstrates a Mobility Test Article (MTA) at NASA's Marshall Space Flight Center (MSFC) as he goes down a slope onto soft earth. This unit, weighing 1/6th as much as an actual vehicle, was built by the Bendix Corporation and was one of the concepts of a possible Lunar Roving Vehicle (LRV). The data provided by the MTA helped in designing the Lunar Roving Vehicle (LRV), developed under the direction of MSFC. The LRV was designed to allow Apollo astronauts a greater range of mobility during lunar exploration missions.

  9. Bendix Lunar Roving Vehicle (LRV) Test Article

    NASA Technical Reports Server (NTRS)

    1966-01-01

    An engineer demonstrates a Mobility Test Article (MTA) at NASA's Marshall Space Flight Center (MSFC). This unit, weighing 1/6th as much as an actual vehicle, was built by the Bendix Corporation and was one of the concepts of a possible Lunar Roving Vehicle (LRV). The data provided by the MTA helped in designing the Lunar Roving Vehicle (LRV), developed under the direction of MSFC. The LRV was designed to allow Apollo astronauts a greater range of mobility during lunar exploration missions.

  10. Lunar roving vehicle navigation system performance review

    NASA Technical Reports Server (NTRS)

    Smith, E. C.; Mastin, W. C.

    1973-01-01

    The design and operation of the lunar roving vehicle (LRV) navigation system are briefly described. The basis for the premission LRV navigation error analysis is explained and an example included. The real time mission support operations philosophy is presented. The LRV navigation system operation and accuracy during the lunar missions are evaluated.

  11. Bendix Lunar Roving Vehicle (LRV) Test Article

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This Mobility Test Article (MTA), built by the Bendix Corporation for NASA's Marshall Space Flight Center (MSFC), was driven over rocks in Arizona. The data provided by the MTA helped in designing the Lunar Roving Vehicle (LRV), developed under the direction of the MSFC. The LRV was designed to allow Apollo astronauts a greater range of mobility during lunar exploration missions.

  12. Bendix Lunar Roving Vehicle (LRV) Test Article

    NASA Technical Reports Server (NTRS)

    1966-01-01

    An engineer demonstrates a Mobility Test Article (MTA) at NASA's Marshall Space Flight Center (MSFC). This unit, weighing 1/6th as much as an actual vehicle, was built by the Bendix Corporation and was one of the concepts of a possible Lunar Roving Vehicle (LRV). The data provided by the MTA helped in designing the LRV, developed under the direction of MSFC. The LRV was designed to allow Apollo astronauts a greater range of mobility during lunar exploration missions.

  13. Bendix Lunar Roving Vehicle (LRV) Test Article

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Newsmen watch a test engineer drive a Mobility Test Article (MTA) demonstrated at NASA's Marshall Space Flight Center (MSFC). This unit, built by the Bendix Corporation, was one of the concepts of a possible Lunar Roving Vehicle (LRV). The data provided by the MTA helped in designing the LRV, developed under the direction of MSFC. The LRV was designed to allow Apollo astronauts a greater range of mobility during lunar exploration missions.

  14. Bendix Lunar Roving Vehicle (LRV) Test Article

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Newsmen listen as an engineer explains operations and capabilities of a Mobility Test Article (MTA) demonstrated at NASA's Marshall Space Flight Center (MSFC). This unit, built by the Bendix Corporation, was one of the concepts of a possible Lunar Roving Vehicle (LRV). The data provided by the MTA helped in designing the LRV, developed under the direction of MSFC. The LRV was designed to allow Apollo astronauts a greater range of mobility during lunar exploration missions.

  15. Astronaut James Irwin keeps Lunar Roving Vehicle from sliding downhill

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut James B. Irwin, lunar module pilot, holds the Lunar Roving Vehicle from sliding downhill during the second Apollo 15 lunar surface extravehicular activity. Apparently, both of the Rover's rear wheels are off the ground. The Rover was parked facing downhill on a 15 to 20 degree slope. Astronaut David R. Scott, commander, took this photograph. Scott was performing other tasks while Irwin held the Rover. They were parked at a 'fresh' crater on the Apennine Front (Hadley Delta Mountain) slope. In the foreground a lunar rake lies atop a mound.

  16. View of Apollo 15 Lunar Roving Vehicle and Lunar Module during simulations

    NASA Image and Video Library

    1971-04-21

    S71-30542 (21 April 1971) --- An overall view of the Apollo 15 Lunar Roving Vehicle (LRV) and the Lunar Module (LM) during simulations at the Kennedy Space Center (KSC). Astronauts David R. Scott, commander, and James B. Irwin, lunar module pilot, will man the LRV on the lunar surface during their August 1971 traverses. Rover 1 will permit the astronauts to cover a larger area of the moon for exploration and sample collecting than on previous missions.

  17. Mobility performance of the lunar roving vehicle: Terrestrial studies: Apollo 15 results

    NASA Technical Reports Server (NTRS)

    Costes, N. C.; Farmer, J. E.; George, E. B.

    1972-01-01

    The constriants of the Apollo 15 mission dictated that the average and limiting performance capabilities of the first manned lunar roving vehicle be known or estimated within narrow margins. Extensive studies were conducted and are compared with the actual performance of the lunar roving vehicle during the Apollo 15 mission. From this comparison, conclusions are drawn relating to the capabilities and limitation of current terrestrial methodology in predicting the mobility performance of lunar roving vehicles under in-situ environmental conditions, and recommendations are offered concerning the performance of surface vehicles on future missions related to lunar or planetary exploration.

  18. Astronaut James Irwin works at Lunar Roving Vehicle during Apollo 15 EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut James B. Irwin, lunar module pilot, works at the Lunar Roving Vehicle during the first Apollo 15 lunar surface extravehicular activity (EVA-1) at the Hadley-Apennine landing site. The shadow of the Lunar Module 'Falcon' is in the foreground. This view is looking northeast, with Mount Hadley in the background. This photograph was taken by Astronaut David R. Scott, commander.

  19. Bendix Lunar Roving Vehicle (LRV) Test Article

    NASA Technical Reports Server (NTRS)

    1966-01-01

    An engineer demonstrates a Mobility Test Article (MTA) at NASA's Marshall Space Flight Center (MSFC) as he crosses a soft clay strip onto rocky ground. This unit, weighing 1/6th as much as an actual vehicle, was built by the Bendix Corporation and was one of the concepts of a possible Lunar Roving Vehicle (LRV). The data provided by the MTA helped in designing the LRV, developed under the direction of MSFC. The LRV was designed to allow Apollo astronauts a greater range of mobility during lunar exploration missions.

  20. Design and manufacture of wheels for a dual-mode (manned - automatic) lunar surface roving vehicle. Volume 2: Proposed test plan

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A developmental test plan for the wheel and wheel drive assembly of the dual-mode (manned/automated) lunar surface roving vehicle is presented. The tests cover performance, as well as critical environmental characteristics. Insofar as practical, the environmental conditions imposed will be in the sequence expected during the hardware's life from storage through the lunar mission. Test procedures are described for static load deflection and endurance tests. Soft soil tests to determine mobility characteristics including drawbar-pull and thrust vs slip, and motion resistance for various wheel loads are also discussed. Test designs for both ambient and thermal vacuum conditions are described. Facility, transducer, and instrumentation requirements are outlined.

  1. The Lunar Roving Vehicle: Historical perspective

    NASA Astrophysics Data System (ADS)

    Morea, Saverio F.

    1992-09-01

    As NASA proceeds with its studies, planning, and technology efforts in preparing for the early twenty-first century, it seems appropriate to reexamine past programs for potential applicability in meeting future national space science and exploration goals and objectives. Both the National Commission on Space (NCOS) study and NASA's 'Sally Ride study' suggest future programs involving returning to the Moon and establishing man's permanent presence there, and/or visiting the planet Mars in both the unmanned and manned mode. Regardless of when and which of these new bold initiatives is selected as our next national space goal, implementing these potentially new national thrusts in space will undoubtedly require the use of both manned and remotely controlled roving vehicles. Therefore, the purpose of this paper is to raise the consciousness level of the current space exploration planners to what, in the early 1970s, was a highly successful roving vehicle. During the Apollo program the vehicle known as the Lunar Roving Vehicle (LRV) was designed for carrying two astronauts, their tools, and the equipment needed for rudimentary exploration of the Moon. This paper contains a discussion of the vehicle, its characteristics, and its use on the Moon. Conceivably, the LRV has the potential to meet some future requirements, either with relatively low cost modifications or via an evolutionary route. This aspect, however, is left to those who would choose to further study these options.

  2. The Lunar Roving Vehicle: Historical perspective

    NASA Technical Reports Server (NTRS)

    Morea, Saverio F.

    1992-01-01

    As NASA proceeds with its studies, planning, and technology efforts in preparing for the early twenty-first century, it seems appropriate to reexamine past programs for potential applicability in meeting future national space science and exploration goals and objectives. Both the National Commission on Space (NCOS) study and NASA's 'Sally Ride study' suggest future programs involving returning to the Moon and establishing man's permanent presence there, and/or visiting the planet Mars in both the unmanned and manned mode. Regardless of when and which of these new bold initiatives is selected as our next national space goal, implementing these potentially new national thrusts in space will undoubtedly require the use of both manned and remotely controlled roving vehicles. Therefore, the purpose of this paper is to raise the consciousness level of the current space exploration planners to what, in the early 1970s, was a highly successful roving vehicle. During the Apollo program the vehicle known as the Lunar Roving Vehicle (LRV) was designed for carrying two astronauts, their tools, and the equipment needed for rudimentary exploration of the Moon. This paper contains a discussion of the vehicle, its characteristics, and its use on the Moon. Conceivably, the LRV has the potential to meet some future requirements, either with relatively low cost modifications or via an evolutionary route. This aspect, however, is left to those who would choose to further study these options.

  3. A method for lunar roving vehicle position determination from three landmark observations with a sun compass

    NASA Technical Reports Server (NTRS)

    Blucker, T. J.; Stimmel, G. L.

    1971-01-01

    A simplified method is described for determining the position of the lunar roving vehicle on the lunar surface during Apollo 15. The method is based upon sun compass azimuth measurements of three lunar landmarks. The difference between the landmark azimuth and the sun azimuth is measured and the resulting data are voice relayed to the Mission Control Center for processing.

  4. Lunar Roving Vehicle (LRV) Test Article on Rocks

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A test engineer drove a Mobility Test Article (MTA) of a possible future Lunar Roving Vehicle (LRV) over rocks during tests in Arizona. The machine was built by General Motors for NASA's Marshall Space Flight Center (MSFC). Under the direction of MSFC, the LRV was designed to allow Apollo astronauts a greater range of mobility during lunar exploration missions.

  5. Test of Lunar Roving Vehicle (LRV) Mobility Test Article (MTA)

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A test engineer drives a Mobility Test Article (MTA) during a test of a Lunar Roving Vehicle (LRV) concept through the mountains of Arizona. The data provided by the MTA helped in designing the LRV, developed under the direction of MSFC. The LRV was designed to allow Apollo astronauts a greater range of mobility during lunar exploration missions.

  6. Astronaut Charles Duke works at front of Lunar Roving Vehicle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Charles M. Duke Jr., Apollo 16 lunar module pilot, works at front of the Lunar Roving Vehicle (LRV) parked in this rock field at a North Ray crater geological site during the Mission's third extravehicular activity (EVA-3) on April 23, 1972. Astronaut John W. Young, commander, took this picture with a 70mm Hasselblad camera.

  7. The Development of Wheels for the Lunar Roving Vehicle

    NASA Technical Reports Server (NTRS)

    Asnani, Vivake; Delap, Damon; Creager, Colin

    2009-01-01

    The Lunar Roving Vehicle (LRV) was developed for NASA s Apollo program so astronauts could cover a greater range on the lunar surface, carry more science instruments, and return more soil and rock samples than by foot. Because of the unique lunar environment, the creation of flexible wheels was the most challenging and time consuming aspect of the LRV development. Wheels developed for previous lunar systems were not sufficient for use with this manned vehicle; therefore, several new designs were created and tested. Based on criteria set by NASA, the choices were narrowed down to two: the wire mesh wheel developed by General Motors (GM), and the hoop spring wheel developed by the Bendix Corporation. Each of these underwent intensive mechanical, material, and terramechanical analyses, and in the end, the wire mesh wheel was chosen for the LRV. Though the wire mesh wheel was determined to be the best choice for its particular application, it may be insufficient towards achieving the objectives of future lunar missions that could require higher tractive capability, increased weight capacity, or extended life. Therefore lessons learned from the original LRV wheel development and suggestions for future Moon wheel projects are offered.

  8. View of Astronaut Eugene Cernan beside lunar roving vehicle during EVA

    NASA Image and Video Library

    1972-12-13

    AS17-134-20476 (13 Dec. 1972) --- Astronaut Eugene A. Cernan, Apollo 17 commander, approaches the parked Lunar Roving Vehicle (LRV) on the lunar surface during the flight's third period of extravehicular activity (EVA). South Massif can be seen in the background. The photograph was taken with a hand-held Hasselblad camera by scientist-astronaut Harrison H. Schmitt, lunar module pilot. While the two explored the surface of the moon, astronaut Ronald E. Evans remained with the Command and Service Modules (CSM) in lunar orbit.

  9. Lunar Roving Vehicle gets speed workout by Astronaut John Young

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Lunar Roving Vehicle (LRV) gets a speed workout by Astronaut John W. Young in the 'Grand Prix' run during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This view is a frame from motion picture film exposed by a 16mm Maurer camera held by Astronaut Charels M. Duke Jr.

  10. Astronauts Young and Duke participate in training with Lunar Roving Vehicle

    NASA Image and Video Library

    1972-04-04

    S72-33685 (22 March 1972) --- Astronauts John W. Young, Apollo 16 commander; and Charles M. Duke Jr. (nearest camera), lunar module pilot, rehearse some of the motorized phases of their scheduled extravehicular activity (EVA) assignments on the lunar surface. Young and Duke will take part in three different sessions of EVA on the moon while astronaut Thomas K. (Ken) Mattingly II, command module pilot, remains with the Command and Service Modules (CSM) in lunar orbit. The four-wheeled helper is called the Lunar Roving Vehicle (LRV).

  11. Astronaut James Irwin works at Lunar Roving Vehicle during Apollo 15 EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut James B. Irwin, lunar module pilot, works at the Lunar Roving Vehicle during the first Apollo 15 lunar surface extravehicular activity (EVA-1) at the Hadley-Apennine landing site. A portion of the Lunar Module 'Falcon' is on the left. The undeployed Laser Ranging Retro Reflector (LR-3) lies atop the LM's MOdulear Equipment Stowage Assembly (MESA). This view is looking slightly west of south. Hadley Delta and the Apennine Front are in the background to the left. St. George crater is approximately 5 kilometers (about 3 statute miles) in the distance behind Irwin's head. This photograph was taken by Astronaut David R. Scott, Apollo 15 commander.

  12. The Discharging of Roving Objects in the Lunar Polar Regions

    NASA Technical Reports Server (NTRS)

    Jackson, T. L.; Farrell, W. M.; Killen, R. M.; Delory, G. T.; Halekas, J. S.; Stubbs, T. B.

    2012-01-01

    the gradient in pressure that would act in a collisional neutral gas. Human systems (roving astronauts or robotic systems created by humans) may be required to gain access to the crater floor to collect resources such as water and other cold-trapped material. However, these human systems are also exposed to the above-described harsh thermal and electrical environments in the region. Thus, the objective of this work is to determine the nature of charging and discharging for a roving object in the cold, plasma-starved lunar polar regions. To accomplish this objective, we first define the electrical charging environment within polar craters. We then describe the subsequent charging of a moving object near and within such craters. We apply a model of an astronaut moving in periodic steps/cadence over a surface regolith. In fact the astronaut can be considered an analog for any kind of moving human system. An astronaut stepping over the surface accumulates charge via contact electrification (tribocharging) v.lith the lunar regolith. We present a model of this tribo-charge build-up. Given the environmental plasma in the region, we determine herein the dissipation time for the astronaut to bleed off its excess charge into the surrounding plasma.

  13. Roving Vehicles for Lunar and Planetary Exploration

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This special bibliography includes the design, development, and application of lunar and Mars rovers; vehicle instrumentation and power supplies; navigation and control technologies; and site selection.

  14. Lunar Roving Vehicle gets speed workout by Astronaut John Young

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Lunar Roving Vehicle (LRV) gets a speed workout by Astronaut John W. Young in the 'Grand Prix' run during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. Note the front wheels of the LRV are off the ground. This view is a frame from motion picture film exposed by a 16mm Maurer camera held by Astronaut Charles M. Duke Jr.

  15. Bendix Lunar Roving Vehicle (LRV) Test Article

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A test engineer drove a Mobility Test Article (MTA) over rocks in Arizona. This unit was built by the Bendix Corporation for NASA's Marshall Space Flight Center (MSFC). The data provided by the MTA helped in designing the LRV, developed under the direction of the MSFC. The LRV was designed to allow Apollo astronauts a greater range of mobility during lunar exploration missions.

  16. APOLLO 15 ASTRONAUTS SCOTT AND IRWIN BRIEFED NEWSMEN ON THE LUNAR ROVING VEHICLE

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Apollo 15 astronauts David Scott, right, and James Irwin, left, briefed newsmen today on the Lunar Roving Vehicle which will be used for lunar exploration for the first time during July's Apollo 15 mission.

  17. Photograph of Apollo 17 Lunar Roving Vehicle traverses

    NASA Image and Video Library

    1972-10-01

    S72-03145 (October 1972) --- A vertical view of the Apollo 17 Taurus-Littrow site with an overlay to illustrate the three planned Apollo 17 traverses using the Lunar Roving Vehicle (LRV). The EVA-1 traverse has a single station (1); the EVA-2 traverse has four stations (2,3,4,5); and the EVA-3 traverse has five stations (6,7,8,9,10). Stations 10-A and 10-B are alternate locations for Station 10. In addition to the major stations mentioned above, brief stops are planned for sampling between stations using the LRV sampler tool (note diamond-shaped figures), and for deploying explosive charges associated with the Lunar Seismic Profiling Experiment (LSPE - note black x-marks).

  18. Close-up of lunar roving vehicle at Apollo 17 Taurus-Littrow landing site

    NASA Image and Video Library

    1972-12-12

    AS17-137-20979 (12 Dec. 1972) --- A close-up view of the lunar roving vehicle (LRV) at the Taurus-Littrow landing site photographed during Apollo 17 lunar surface extravehicular activity. Note the makeshift repair arrangement on the right rear fender of the LRV. During EVA-1 a hammer got underneath the fender and a part of it was knocked off. Astronauts Eugene A. Cernan and Harrison H. Schmitt were reporting a problem with lunar dust because of the damage fender. Following a suggestion from astronaut John W. Young in the Mission Control Center at Houston the crewmen repaired the fender early in EVA-2 using lunar maps and clamps from the optical alignment telescope lamp. Schmitt is seated in the rover. Cernan took this picture.

  19. Lunar Roving Vehicle parked in lunar depression on slope of Stone Mountain

    NASA Image and Video Library

    1972-04-22

    AS16-107-17473 (22 April 1972) --- The Lunar Roving Vehicle (LRV) appears to be parked in a deep lunar depression, on the slope of Stone Mountain. This photograph of the lunar scene at Station No. 4 was taken during the second Apollo 16 extravehicular activity (EVA) at the Descartes landing site. A sample collection bag is in the right foreground. Note field of small boulders at upper right. While astronauts John W. Young, commander, and Charles M. Duke Jr., lunar module pilot, descended in the Lunar Module (LM) "Orion" to explore the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  20. Intrepid: Lunar Roving Prospector — Providing Ground Truth and Enabling Future Exporation

    NASA Astrophysics Data System (ADS)

    Robinson, M. S.; Lawrence, S. J.; Speyerer, E. J.; Stopar, J. D.

    2014-10-01

    We propose a long range lunar roving prospector, Intrepid, to collect essential measurements to address key questions and demonstrate technologies required for future robotic and human exploration of the Moon, Mars, and other terrestrial bodies.

  1. Astronaut John Young reaches for tools in Lunar Roving Vehicle during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, reaches for tools in the Apollo lunar hand tool carrier at the aft end of the Lunar Roving Vehicle during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot. This view is looking south from the base of Stone Mountain.

  2. Astronaut John Young replaces tools in Lunar Roving Vehicle during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, replaces tools in the Apollo lunar hand tool carrier at the aft end of the Lunar Roving Vehicle during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot. Smoky Mountain, with the large Ravine crater on its flank, is in the left background. This view is looking northeast.

  3. Astronauts Young and Duke participate in training with Lunar Roving Vehicle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronauts John W. Young (right) and Charles M. Duke Jr., participate in simulation training with the Lunar Roving Vehicle (LRV) during Apollo 16 pre-launch activity at the Kennedy Space Center. All systems on the LRV-2 were activated and checked for trouble-free operation during the simulations. Young is the Apollo 16 commander; and Duke is the lunar module pilot.

  4. Astronaut John Young drives in One-G Lunar Roving Vehicle during simulation

    NASA Image and Video Library

    1971-03-04

    Astronaut John W. Young, Apollo 16 prime crew commander (right), takes a drive in the One-G Lunar Roving Vehicle (LRV) trainer in the Lunar Topgraphic Simulation area at the Manned Spacecraft Center (MSC). He is accompanied by John Omstead, with General Electric, MSC.

  5. Astronaut Harrison Schmitt seated in Lunar Roving Vehicle during EVA-3

    NASA Image and Video Library

    1972-12-13

    AS17-134-20454 (13 Dec. 1972) --- Scientist-astronaut Harrison H. Schmitt is photographed seated in the Lunar Roving Vehicle (LRV) at Station 9 (Van Serg Crater) during the third Apollo 17 extravehicular activity (EVA) at the Taurus-Littrow landing site. This photograph was taken by astronaut Eugene A. Cernan, commander. Schmitt, lunar module pilot, and Cernan explored the moon while astronaut Ronald E. Evans, command module pilot, remained with the Command and Service Modules in lunar orbit.

  6. Astronaut Eugene Cernan drives the Lunar Roving Vehicle during first EVA

    NASA Image and Video Library

    1972-12-10

    AS17-147-22527 (11 Dec. 1972) --- Astronaut Eugene A. Cernan, Apollo 17 mission commander, makes a short checkout of the Lunar Roving Vehicle during the early part of the first Apollo 17 extravehicular activity (EVA) at the Taurus-Littrow landing site. The Lunar Module is in the background. This photograph was taken by scientist-astronaut Harrison H. Schmitt, lunar module pilot.

  7. Astronaut John Young drives Lunar Roving Vehicle to final parking place

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, drives the Lunar Roving Vehicle (LRV) to its final parking place near the end of the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. Astronaut Charles M. Duke Jr., lunar module pilot, took this photograph looking southward. The flank of Stone Mountain can be seen on the horizon at left.

  8. A mechanical model for deformable and mesh pattern wheel of lunar roving vehicle

    NASA Astrophysics Data System (ADS)

    Liang, Zhongchao; Wang, Yongfu; Chen, Gang (Sheng); Gao, Haibo

    2015-12-01

    As an indispensable tool for astronauts on lunar surface, the lunar roving vehicle (LRV) is of great significance for manned lunar exploration. An LRV moves on loose and soft lunar soil, so the mechanical property of its wheels directly affects the mobility performance. The wheels used for LRV have deformable and mesh pattern, therefore, the existing mechanical theory of vehicle wheel cannot be used directly for analyzing the property of LRV wheels. In this paper, a new mechanical model for LRV wheel is proposed. At first, a mechanical model for a rigid normal wheel is presented, which involves in multiple conventional parameters such as vertical load, tangential traction force, lateral force, and slip ratio. Secondly, six equivalent coefficients are introduced to amend the rigid normal wheel model to fit for the wheels with deformable and mesh-pattern in LRV application. Thirdly, the values of the six equivalent coefficients are identified by using experimental data obtained in an LRV's single wheel testing. Finally, the identified mechanical model for LRV's wheel with deformable and mesh pattern are further verified and validated by using additional experimental results.

  9. View of Lunar Roving Vehicle parked at Station 6 by Apollo 16 astronauts

    NASA Image and Video Library

    1972-12-13

    AS17-140-21494 (13 Dec. 1972) --- This view shows the Lunar Roving Vehicle (LRV) parked by an outcrop of rocks by astronauts Eugene A. Cernan and Harrison H. (Jack) Schmitt during their visit to extravehicular activity Station 6 (Henry Crater).

  10. View of the Lunar Roving Vehicle in its final parking space

    NASA Image and Video Library

    1972-12-13

    AS17-146-22367 (7-19 Dec. 1972) --- This is an excellent view of the Lunar Roving Vehicle (LRV) which was used extensively by astronauts Eugene A. Cernan and Harrison H. Schmitt at the Taurus-Littrow landing site.

  11. Astronaut Harrison Schmitt seated in Lunar Roving Vehicle during EVA-3

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt is photographed seated in the Lunar Roving Vehicle (LRV) at Station 9 (Van Serg Crater) during the third Apollo 17 extrvehicular activity (EVA-3) at the Taurus-Littrow landing site. This photograph was taken by Astronaut Eugene A. Cernan, crew commander.

  12. View of Earth above the antenna of the lunar roving vehicle during EVA

    NASA Image and Video Library

    1972-12-13

    AS17-134-20473 (13 Dec. 1972) --- Earth appears in the far distant background above the hi-gain antenna of the Lunar Roving Vehicle in this photograph taken by scientist-astronaut Harrison H. Schmitt during the third Apollo 17 extravehicular activity (EVA) at the Taurus-Littrow landing site. Astronaut Eugene A. Cernan, Apollo 17 commander, stands beside the LRV. Schmitt is the mission's lunar module pilot. While Cernan and Schmitt descended in the lunar module "Challenger" to explore the moon, astronaut Ronald E. Evans, command module pilot, remained with the Command and Service Modules in lunar orbit.

  13. Design and manufacture of wheels for a dual-mode (manned - automatic) lunar surface roving vehicle. Volume 1: Detailed technical report

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The concept development, testing, evaluation, and the selection of a final wheel design concept for a dual-mode lunar surface vehicle (DLRV) is detailed. Four wheel configurations were fabricated (one open wheel and three closed wheel) (and subjected to a series of soft soil, mechanical, and endurance tests. Results show that the open wheel has lower draw-bar pull (slope climbing) capability in loose soil due to its higher ground pressure and tendency to dig in at high wheel slip. Endurance tests indicate that a double mesh, fully enclosed wheel can be developed to meet DLRV life requirements. There is, however, a 1.0 to 1.8 lb/wheel weight penalty associated with the wheel enclosure. Also the button cleats used as grousers for the closed-type wheels result in local stress concentration and early fatigue failure of the wire mesh. Load deflection tests indicate that the stiffness of the covered wheel increased by up to 50% after soil bin testing, due to increased friction between the fabric and the wire mesh caused by the sand. No change in stiffness was found for the open wheel. The single woven mesh open wheel design with a chevron tread is recommended for continued development

  14. Astronaut Eugene Cernan drives the Lunar Roving Vehicle during first EVA

    NASA Image and Video Library

    1972-12-10

    AS17-147-22526 (11 Dec. 1972) --- Astronaut Eugene A. Cernan, commander, makes a short checkout of the Lunar Roving Vehicle (LRV) during the early part of the first Apollo 17 extravehicular activity (EVA) at the Taurus-Littrow landing site. This view of the "stripped down" LRV is prior to loading up. Equipment later loaded onto the LRV included the ground-controlled television assembly, the lunar communications relay unit, hi-gain antenna, low-gain antenna, aft tool pallet, lunar tools and scientific gear. This photograph was taken by scientist-astronaut Harrison H. Schmitt, lunar module pilot. The mountain in the right background is the east end of South Massif. While astronauts Cernan and Schmitt descended in the Lunar Module (LM) "Challenger" to explore the moon, astronaut Ronald E. Evans, command module pilot, remained with the Command and Service Modules (CSM) "America" in lunar orbit.

  15. Apollo 17 View of Lunar Surface

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This view of the Lunar surface was taken during the Apollo 17 mission. The seventh and last manned lunar landing and return to Earth mission, the Apollo 17, carrying a crew of three astronauts: Mission Commander Eugene A. Cernan; Lunar Module pilot Harrison H. Schmitt; and Command Module pilot Ronald E. Evans, lifted off on December 7, 1972 from the Kennedy Space Flight Center (KSC). Scientific objectives of the Apollo 17 mission included geological surveying and sampling of materials and surface features in a preselected area of the Taurus-Littrow region, deploying and activating surface experiments, and conducting in-flight experiments and photographic tasks during lunar orbit and transearth coast (TEC). These objectives included: Deployed experiments such as the Apollo lunar surface experiment package (ALSEP) with a Heat Flow experiment, Lunar seismic profiling (LSP), Lunar surface gravimeter (LSG), Lunar atmospheric composition experiment (LACE) and Lunar ejecta and meteorites (LEAM). The mission also included Lunar Sampling and Lunar orbital experiments. Biomedical experiments included the Biostack II Experiment and the BIOCORE experiment. The mission marked the longest Apollo mission, 504 hours, and the longest lunar surface stay time, 75 hours, which allowed the astronauts to conduct an extensive geological investigation. They collected 257 pounds (117 kilograms) of lunar samples with the use of the Marshall Space Flight Center designed Lunar Roving Vehicle (LRV). The mission ended on December 19, 1972.

  16. Apollo 15 crewmen riding lunar roving vehicle simulator during geology trip

    NASA Image and Video Library

    1970-11-02

    S70-53300 (2-3 Nov. 1970) --- Two Apollo 15 crew members, riding a Lunar Roving Vehicle (LRV) simulator, participate in geology training at the Cinder Lake crater field in Arizona. Astronaut David R. Scott, Apollo 15 commander, seated on the left; and to Scott's right is astronaut James B. Irwin, lunar module pilot. They have stopped at the rim of a 30-feet deep crater to look over the terrain. The simulator, called "Grover", was built by the United States Geological Survey.

  17. Lunar Surface Operations. Part 2; Surface Duration

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    The objectives of this slide presentation are to review the activities on the lunar surface during the stay. The objectives include (1) Summarize Lunar Module Basics emphasizing module layout and storage. (2) Identify the primary activities occurring during each of the lunar s urface timelines, (3) List the EVA Prep tasks, (4) Identify the EVA Objectives, (5) Identify the activities associated with Post EVA (6) Describe the lessons learned during both EVA and Non EVA activities. Included are overview drawings of the Lunar Roving Vehicle, pictures of the tools, and sample return containers. There are also time lines for the Apollo 11, and Apollo 12 through 14, Apollo 15, Apollo 16 and Apollo 17. Diagrams of the EVA suits are shown, including the Liquid Cooling Garment, and the Pressure Garment Assembly. The activity prior to the EVA are reviewed. The science mission assignments of each mission are viewed. The activities after the EVA are reviewed

  18. Effect of yaw angle on steering forces for the lunar roving vehicle wheel

    NASA Technical Reports Server (NTRS)

    Green, A. J.

    1974-01-01

    A series of tests was conducted with a Lunar Roving Vehicle (LRV) wheel operating at yaw angles ranging from -5 to +90 deg. The load was varied from 42 to 82 lb (187 to 365 N), and the speed was varied from 3.5 to 10.0 ft/sec (1.07 to 3.05 m/sec). It was noted that speed had an effect on side thrust and rut depth. Side thrust, rut depth, and skid generally increased as the yaw angle increased. For the range of loads used, the effect of load on performance was not significant.

  19. Astronaut John Young leaps from lunar surface to salute flag

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, leaps from the lunar surface as he salutes the U.S. Flag at the Descartes landing site during the first Apollo 16 extravehicular activity (EVA-1). Astronaut Charles M. Duke Jr., lunar module pilot, took this picture. The Lunar Module (LM) 'Orion' is on the left. The Lunar Roving Vehicle is parked beside the LM. The object behind Young in the shade of the LM is the Far Ultraviolet Camera/Spectrograph. Stone Mountain dominates the background in this lunar scene.

  20. Astronaut David Scott simulates use of Apollo 15 Lunar Surface Drill at KSC

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut David R. Scott, commander of the Apollo 15 lunar landing mission, simulates use of the Apollo 15 Lunar Surface Drill (ALSD) at Kennedy Space Center (KSC), Florida. Scott's fellow moon-exploring crewman, Astronaut James Irwin, can be seen in the background near Lunar Roving Vehicle (LRV) trainer.

  1. Photometric Lunar Surface Reconstruction

    NASA Technical Reports Server (NTRS)

    Nefian, Ara V.; Alexandrov, Oleg; Morattlo, Zachary; Kim, Taemin; Beyer, Ross A.

    2013-01-01

    Accurate photometric reconstruction of the Lunar surface is important in the context of upcoming NASA robotic missions to the Moon and in giving a more accurate understanding of the Lunar soil composition. This paper describes a novel approach for joint estimation of Lunar albedo, camera exposure time, and photometric parameters that utilizes an accurate Lunar-Lambertian reflectance model and previously derived Lunar topography of the area visualized during the Apollo missions. The method introduced here is used in creating the largest Lunar albedo map (16% of the Lunar surface) at the resolution of 10 meters/pixel.

  2. Operations and maintenance manual for a scale-model lunar roving vehicle

    NASA Technical Reports Server (NTRS)

    Lessem, A. S.

    1972-01-01

    A one-sixth scale model of the lunar roving vehicle used in the Apollo 15 mission was built and instrumented to conduct model studies of vehicle mobility. The model was free running under radio control and was equipped with a lightweight telemetry transmitter that allowed 16 channels of data to be gathered simultaneously. String payout and fifth-wheel devices were developed to measure vehicle velocity. Other real-time measurements included wheel torque, wheel speed, center-of-gravity accelerations, and steering forces. Calibration, operations, and maintenance procedures were worked out. Details of the development of the instrumentation, its maintenance, and some of the problems encountered, are recorded serve as a preliminary operations and maintenance manual for this specific model. In addition, information regarding soil processing and testing that may be useful to NASA personnel planning mobility research with the model in soil is furnished.

  3. Apollo 17 Astronaut and United States Flag on Lunar Surface

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This is an Apollo 17 Astronaut standing upon the lunar surface with the United States flag in the background. The seventh and last manned lunar landing and return to Earth mission, the Apollo 17, carrying a crew of three astronauts: Mission Commander Eugene A. Cernan; Lunar Module pilot Harrison H. Schmitt; and Command Module pilot Ronald E. Evans lifted off on December 7, 1972 from the Kennedy Space Flight Center (KSC). Scientific objectives of the Apollo 17 mission included geological surveying and sampling of materials and surface features in a preselected area of the Taurus-Littrow region, deploying and activating surface experiments, and conducting in-flight experiments and photographic tasks during lunar orbit and transearth coast (TEC). These objectives included: Deployed experiments such as the Apollo lunar surface experiment package (ALSEP) with a Heat Flow experiment, Lunar seismic profiling (LSP), Lunar surface gravimeter (LSG), Lunar atmospheric composition experiment (LACE)and Lunar ejecta and meteorites (LEAM). The mission also included Lunar Sampling and Lunar orbital experiments. Biomedical experiments included the Biostack II Experiment and the BIOCORE experiment. The mission marked the longest Apollo mission, 504 hours, and the longest lunar surface stay time, 75 hours, which allowed the astronauts to conduct an extensive geological investigation. They collected 257 pounds (117 kilograms) of lunar samples with the use of the Marshall Space Flight Center designed Lunar Roving Vehicle (LRV). The mission ended on December 19, 1972

  4. Astronaut John Young leaps from lunar surface as he salutes U.S. flag

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, leaps from the lunar surface as he salutes the U.S. flag during the first Apollo 16 extravehicular activity (EVA-1) on the Moon, as seen in this reproduction taken from a color transmission made by the color TV camera mounted on the Lunar Roving Vehicle. Astronaut Charles M. Duke Jr., lunar module pilot, is standing in the background.

  5. Lunar surface vehicle model competition

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During Fall and Winter quarters, Georgia Tech's School of Mechanical Engineering students designed machines and devices related to Lunar Base construction tasks. These include joint projects with Textile Engineering students. Topics studied included lunar environment simulator via drop tower technology, lunar rated fasteners, lunar habitat shelter, design of a lunar surface trenching machine, lunar support system, lunar worksite illumination (daytime), lunar regolith bagging system, sunlight diffusing tent for lunar worksite, service apparatus for lunar launch vehicles, lunar communication/power cables and teleoperated deployment machine, lunar regolith bag collection and emplacement device, soil stabilization mat for lunar launch/landing site, lunar rated fastening systems for robotic implementation, lunar surface cable/conduit and automated deployment system, lunar regolith bagging system, and lunar rated fasteners and fastening systems. A special topics team of five Spring quarter students designed and constructed a remotely controlled crane implement for the SKITTER model.

  6. Astronaut David Scott using Apollo Lunar Surface Drill during second EVA

    NASA Image and Video Library

    1971-08-01

    S71-41501 (1 Aug. 1971) --- Astronaut David R. Scott, Apollo 15 commander, is seen carrying the Apollo Lunar Surface Drill (ALSD) during the second lunar surface extravehicular activity (EVA) in this black and white reproduction taken from a color transmission made by the RCA color television camera mounted on the Lunar Roving Vehicle (LRV). This transmission was the fourth made during the mission.

  7. Copernicus: Lunar surface mapper

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.; Anderson, Shaun D.

    1992-01-01

    The Utah State University (USU) 1991-92 Space Systems Design Team has designed a Lunar Surface Mapper (LSM) to parallel the development of the NASA Office of Exploration lunar initiatives. USU students named the LSM 'Copernicus' after the 16th century Polish astronomer, for whom the large lunar crater on the face of the moon was also named. The top level requirements for the Copernicus LSM are to produce a digital map of the lunar surface with an overall resolution of 12 meters (39.4 ft). It will also identify specified local surface features/areas to be mapped at higher resolutions by follow-on missions. The mapping operation will be conducted from a 300 km (186 mi) lunar-polar orbit. Although the entire surface should be mapped within six months, the spacecraft design lifetime will exceed one year with sufficient propellant planned for orbit maintenance in the anomalous lunar gravity field. The Copernicus LSM is a small satellite capable of reaching lunar orbit following launch on a Conestoga launch vehicle which is capable of placing 410 kg (900 lb) into translunar orbit. Upon orbital insertion, the spacecraft will weigh approximately 233 kg (513 lb). This rather severe mass constraint has insured attention to component/subsystem size and mass, and prevented 'requirements creep.' Transmission of data will be via line-of-sight to an earth-based receiving system.

  8. Astronaut Alan Bean deploys Lunar Surface Magnetometer on lunar surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, deploys the Lunar Surface Magnetometer (LSM) during the first Apollo 12 extravehicular activity on the Moon. The LSM is a component of the Apollo Lunar Surface Experiments Package (ALSEP). The Lunar Module can be seen in the left background.

  9. Astronaut Alan Bean deploys Lunar Surface Magnetometer on lunar surface

    NASA Image and Video Library

    1969-11-19

    Astronaut Alan L. Bean, lunar module pilot, deploys the Lunar Surface Magnetometer (LSM) during the first Apollo 12 extravehicular activity on the Moon. The LSM is a component of the Apollo Lunar Surface Experiments Package (ALSEP). The Lunar Module can be seen in the left background.

  10. Magnetometer on Lunar Surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Sitting on the lunar surface, this magnetometer provided new data on the Moon's magnetic field. This was one of the instruments used during the Apollo 12 mission. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  11. Astronaut Eugene Cernan drives the Lunar Roving Vehicle during first EVA

    NASA Image and Video Library

    1972-12-10

    AS17-147-22523 (11 Dec. 1972) --- Astronaut Eugene A. Cernan is seen test driving the "stripped down" Lunar Rover Vehicle (LRV) prior to loading the LRV up. Equipment later loaded onto the LRV included the ground controlled television assembly, the lunar communications relay unit, the hi-gain antenna, the low-gain antenna, aft tool pallet, and lunar tools and scientific gear.

  12. ASTRONAUTS EUGENE CERNAN AND HARRISON SCHMITT CONDUCT TESTS ON THE LUNAR ROVING VEHICLE

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Kennedy Space Center launch team is continuing the checkout of Apollo 17 flight hardware for the final lunar exploration mission of Project Apollo. Participating in the test were prime crew members Harrison H. Schmitt, Lunar Module Pilot, and Eugene A. Cernan, Commander.

  13. A study and analysis of the MSFC lunar roving vehicle dust profile test program

    NASA Technical Reports Server (NTRS)

    Mullis, C. H.

    1971-01-01

    The dust problem and fender design for the LRV were studied under reduced gravity with a lunar soil simulant. The test equipment, soil characteristics of the lunar soil simulant, and the test procedures are described. It is concluded: (1) The fender plus flap design is adequate. (2) Vacuum conditions tend to eliminate or reduce suspended dust clouds. (3) Reduced gravity conditions tend to increase the dust problems. (4) Slow starting speeds are necessary to minimize slip and reduce initial dust generation.

  14. Astronaut David Scott watching hammer and feather fall to lunar surface

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut David R. Scott, Apollo 15 commander, watches a geological hammer and a feather hit the lunar surface simultaneously in a test of Galileo's law of motion concerning falling bodies, as seen in this color reproduction taken from a transmission made by the RCA color television camera mounted on the Lunar Roving Vehicle. Scott released the hammer from his right hand and the feather from his left at the same instant. This experiment occured toward the end of the third and final lunar surface extravehicular activity.

  15. Apollo 17 Lunar Surface Experiment: Lunar Ejecta and Meteorites Experiment

    NASA Image and Video Library

    1972-11-30

    S72-37257 (November 1972) --- The Lunar Ejecta and Meteorites Experiment (S-202), one of the experiments of the Apollo Lunar Surface Experiments Package which will be carried on the Apollo 17 lunar landing mission. The purpose of this experiment is to measure the physical parameters of primary and secondary particles impacting the lunar surface.

  16. Astronaut David Scott watching hammer and feather fall to lunar surface

    NASA Image and Video Library

    1971-08-02

    S71-43788 (2 Aug. 1971) --- Astronaut David R. Scott, Apollo 15 commander, watches a geological hammer and a feather hit the lunar surface simultaneously in a test of Galileo's law of motion concerning falling bodies, as seen in this color reproduction taken from a transmission made by the RCA color television camera mounted on the Lunar Roving Vehicle (LRV). Scott released the hammer from his right hand and the feather from his left at the same instant. Galileo (1564-1642) was the great Italian astronomer and physicist. This experiment occurred toward the end of the third and final lunar surface extravehicular activity (EVA) by astronauts Scott and James B. Irwin, lunar module pilot. While Scott and Irwin descended in the Lunar Module (LM) to explore the moon, astronaut Alfred M. Worden, command module pilot, remained in the Command and Service Modules (CSM) in lunar orbit.

  17. Astronauts Young and Duke begin simulated lunar surface traverse at KSC

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronauts John W. Young, right, Apollo 16 commander, and Charles M. Duke Jr., lunar module pilot, prepare to begin a simulated traverse in a training area at the Kennedy Space Center (KSC). Among the experiments to fly on Apollo 16 is the soil mechanics (S-200) experiment, or self-recording penetrometer, a model of which is held here by Duke. A training model of the Lunar Roving Vehicle (LRV) is parked between the two crewmen (30694); Young and Duke maneuver a training version of the LRV about a field at KSC simulated to represent the lunar surface (30695).

  18. The lunar cart

    NASA Technical Reports Server (NTRS)

    Miller, G. C.

    1972-01-01

    Expanded experiment-carrying capability, to be used between the Apollo 11 capability and the lunar roving vehicle capability, was defined for the lunar surface crewmen. Methods used on earth to satisfy similar requirements were studied. A two-wheeled cart was built and tested to expected mission requirements and environments. The vehicle was used successfully on Apollo 14.

  19. Apollo 17 Lunar Surface Experiments

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Table-top views of two of the Apollo 17 lunar orbital experiments. Views include the the Far-Ultraviolet Spectrometer, Experiment S-169, one of the lunar orbital science experiments which will be mounted in the SIM bay of the Apollo 17 Service Module. Atomic composition, density and scale height for several contituents of the lunar atmosphere will be measured by the experiment. Solar far-UV radiation reflected from the lunar surface as well as UV radiation emitted by galactic sources also will be detected (53470); The Infrared Scanning Radiometer (ISR), Experiment S-171, which will be mounted in the SIM bay of the Service Module. The ISR experiment will provide a lunar surface temperature map with improved temperature and spatial resolution over what has been possible before (53471).

  20. Lunar surface magnetometer design review

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Design and fabrication parameters of a lunar surface magnetometer are discussed. Drawings and requirements for mechanical design, electronic packaging design, thermal design, quality assurance and systems testing are included.

  1. Lunar Dust on Heat Rejection System Surfaces: Problems and Prospects

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Jaworske, Donald A.

    2007-01-01

    Heat rejection from power systems will be necessary for human and robotic activity on the lunar surface. Functional operation of such heat rejection systems is at risk of degradation as a consequence of dust accumulation. The Apollo astronauts encountered marked degradation of performance in heat rejection systems for the lunar roving vehicle, science packages, and other components. Although ground testing of dust mitigation concepts in support of the Apollo mission identified mitigation tools, the brush concept adopted by the Apollo astronauts proved essentially ineffective. A better understanding of the issues associated with the impact of lunar dust on the functional performance of heat rejection systems and its removal is needed as planning gets underway for human and robotic missions to the Moon. Renewed emphasis must also be placed on ground testing of pristine and dust-covered heat rejection system surfaces to quantify degradation and address mitigation concepts. This paper presents a review of the degradation in performance of heat rejection systems encountered on the lunar surface to-date, and will discuss current activities underway to evaluate the durability of candidate heat rejection system surfaces and current dust mitigation concepts.

  2. Lunar Dust on Heat Rejection System Surfaces: Problems and Prospects

    NASA Astrophysics Data System (ADS)

    Gaier, James R.; Jaworske, Donald A.

    2007-01-01

    Heat rejection from power systems will be necessary for human and robotic activity on the lunar surface. Functional operation of such heat rejection systems is at risk of degradation as a consequence of dust accumulation. The Apollo astronauts encountered marked degradation of performance in heat rejection systems for the lunar roving vehicle, science packages, and other components. Although ground testing of dust mitigation concepts in support of the Apollo mission identified candidate mitigation tools, the brush concept adopted by the Apollo astronauts proved essentially ineffective. A better understanding of the issues associated with the impact of lunar dust on the functional performance of heat rejection systems and its removal is needed as planning gets underway for human and robotic missions to the Moon. Renewed emphasis must also be placed on ground testing of pristine and dust-covered heat rejection system surfaces to quantify degradation and address mitigation concepts. This paper presents a review of the degradation of heat rejection systems encountered on the lunar surface to-date, and discusses current activities underway to evaluate the durability of candidate heat rejection system surfaces and current dust mitigation concepts.

  3. Lunar surface mining equipment study

    NASA Astrophysics Data System (ADS)

    Podnieks, Egons R.; Siekmeier, John A.

    Results of a NASA-sponsored assessment of the various proposed lunar surface mining equipment concepts submitted to NASA are presented. The proposed equipment was reviewed and evaluated with due consideration of equipment design criteria, basic mining principles, and the lunar environment. On the basis of this assessment, two pieces of mining equipment were conceptualized for surface mining operations: the ripper-excavator-loader, also capable of operating as a load-haul-dump vehicle, and the haulage vehicle, capable of transporting feedstock from the pit, liquid oxygen containers from the processing plant, and materials during construction. Reliable and durable lunar mining equipment is found to be best developed by the evolution of proven terrestrial technology adapted to the lunar environment.

  4. Dielectric properties of lunar surface

    NASA Astrophysics Data System (ADS)

    Yushkova, O. V.; Kibardina, I. N.

    2017-03-01

    Measurements of the dielectric characteristics of lunar soil samples are analyzed in the context of dielectric theory. It has been shown that the real component of the dielectric permittivity and the loss tangent of rocks greatly depend on the frequency of the interacting electromagnetic field and the soil temperature. It follows from the analysis that one should take into account diurnal variations in the lunar surface temperature when interpreting the radar-sounding results, especially for the gigahertz radio range.

  5. An overnight habitat for expanding lunar surface exploration

    NASA Astrophysics Data System (ADS)

    Schreiner, Samuel S.; Setterfield, Timothy P.; Roberson, Daniel R.; Putbrese, Benjamin; Kotowick, Kyle; Vanegas, Morris D.; Curry, Mike; Geiger, Lynn M.; Barmore, David; Foley, Jordan J.; LaTour, Paul A.; Hoffman, Jeffrey A.; Head, James W.

    2015-07-01

    This paper presents the conceptual design and analysis of a system intended to increase the range, scientific capability, and safety of manned lunar surface exploration, requiring only a modest increase in capability over the Apollo mission designs. The system is intended to enable two astronauts, exploring with an unpressurized rover, to remove their space suits for an 8-h rest away from the lunar base and then conduct a second day of surface exploration before returning to base. This system is composed of an Environmental Control and Life Support System on the rover, an inflatable habitat, a solar shield and a solar power array. The proposed system doubles the distance reachable from the lunar base, thus increasing the area available for science and exploration by a factor of four. In addition to increasing mission capability, the proposed system also increases fault tolerance with an emergency inflatable structure and additional consumables to mitigate a wide range of suit or rover failures. The mass, volume, and power analyses of each subsystem are integrated to generate a total system mass of 124 kg and a volume of 594 L, both of which can be accommodated on the Apollo Lunar Roving Vehicle with minor improvements.

  6. Astronaut John Young photographed collecting lunar samples

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, is photographed collecting lunar samples near North Ray crater during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This picture was taken by Astronaut Charles M. Duke Jr., lunar module pilot. Young is using the lunar surface rake and a set of tongs. The Lunar Roving Vehicle is parked in the field of large boulders in the background.

  7. Characterization of Stereo Vision Performance for Roving at the Lunar Poles

    NASA Technical Reports Server (NTRS)

    Wong, Uland; Nefian, Ara; Edwards, Larry; Furlong, Michael; Bouyssounouse, Xavier; To, Vinh; Deans, Matthew; Cannon, Howard; Fong, Terry

    2016-01-01

    Surface rover operations at the polar regions of airless bodies, particularly the Moon, are of particular interest to future NASA science missions such as Resource Prospector (RP). Polar optical conditions present challenges to conventional imaging techniques, with repercussions to driving, safeguarding and science. High dynamic range, long cast shadows, opposition and white out conditions are all significant factors in appearance. RP is currently undertaking an effort to characterize stereo vision performance in polar conditions through physical laboratory experimentation with regolith simulants, obstacle distributions and oblique lighting.

  8. Lunar surface mine feasibility study

    NASA Astrophysics Data System (ADS)

    Blair, Brad R.

    This paper describes a lunar surface mine, and demonstrates the economic feasibility of mining oxygen from the moon. The mine will be at the Apollo 16 landing site. Mine design issues include pit size and shape, excavation equipment, muck transport, and processing requirements. The final mine design will be driven by production requirements, and constrained by the lunar environment. This mining scenario assumes the presence of an operating lunar base. Lunar base personnel will set-up a and run the mine. The goal of producing lunar oxygen is to reduce dependence on fuel shipped from Earth. Thus, the lunar base is the customer for the finished product. The perspective of this paper is that of a mining contractor who must produce a specific product at a remote location, pay local labor, and sell the product to an onsite captive market. To make a profit, it must be less costly to build and ship specialized equipment to the site, and pay high labor and operating costs, than to export the product directly to the site.

  9. A Lunar Surface Operations Simulator

    NASA Technical Reports Server (NTRS)

    Nayar, H.; Balaram, J.; Cameron, J.; Jain, A.; Lim, C.; Mukherjee, R.; Peters, S.; Pomerantz, M.; Reder, L.; Shakkottai, P.; hide

    2008-01-01

    The Lunar Surface Operations Simulator (LSOS) is being developed to support planning and design of space missions to return astronauts to the moon. Vehicles, habitats, dynamic and physical processes and related environment systems are modeled and simulated in LSOS to assist in the visualization and design optimization of systems for lunar surface operations. A parametric analysis tool and a data browser were also implemented to provide an intuitive interface to run multiple simulations and review their results. The simulator and parametric analysis capability are described in this paper.

  10. A Lunar Surface Operations Simulator

    NASA Technical Reports Server (NTRS)

    Nayar, H.; Balaram, J.; Cameron, J.; Jain, A.; Lim, C.; Mukherjee, R.; Peters, S.; Pomerantz, M.; Reder, L.; Shakkottai, P.; Wall, S,

    2008-01-01

    The Lunar Surface Operations Simulator (LSOS) is being developed to support planning and design of space missions to return astronauts to the moon. Vehicles, habitats, dynamic and physical processes and related environment systems are modeled and simulated in LSOS to assist in the visualization and design optimization of systems for lunar surface operations. A parametric analysis tool and a data browser were also implemented to provide an intuitive interface to run multiple simulations and review their results. The simulator and parametric analysis capability are described in this paper.

  11. Apollo lunar surface experiments package

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The ALSEP program status and monthly progress are reported. Environmental and quality control tests and test results are described. Details are given on the Apollo 17 Array E, and the lunar seismic profiling, ejecta and meteorites, mass spectrometer, surface gravimeter, and heat flow experiments. Monitoring of the four ALSEP systems on the moon is also described.

  12. Lunar surface operations. Volume 1: Lunar surface emergency shelter

    NASA Technical Reports Server (NTRS)

    Shields, William; Feteih, Salah; Hollis, Patrick

    1993-01-01

    The lunar surface emergency shelter (LSES) is designed to provide survival-level accommodations for up to four astronauts for a maximum of five days. It would be used by astronauts who were caught out in the open during a large solar event. The habitable section consists of an aluminum pressure shell with an inner diameter of 6 ft. and a length of 12.2 ft. Access is through a 4 in. thick aluminum airlock door mounted at the rear of the shelter. Shielding is provided by a 14.9 in. thick layer of lunar regolith contained within a second, outer aluminum shell. This provides protection against a 200 MeV event, based on a 15 REM maximum dose. The shelter is self-contained with a maximum range of 1000 km. Power is supplied by a primary fuel cell which occupies 70.7 cu ft. of the interior volume. Mobility is achieved by towing the shelter behind existing lunar vehicles. It was assumed that a fully operational, independent lunar base was available to provide communication support and tools for set-up and maintenance. Transportation to the moon would be provided by the proposed heavy lift launch vehicle. Major design considerations for the LSES were safety, reliability, and minimal use of earth materials.

  13. Lunar surface operations. Volume 1: Lunar surface emergency shelter

    NASA Astrophysics Data System (ADS)

    Shields, William; Feteih, Salah; Hollis, Patrick

    1993-07-01

    The lunar surface emergency shelter (LSES) is designed to provide survival-level accommodations for up to four astronauts for a maximum of five days. It would be used by astronauts who were caught out in the open during a large solar event. The habitable section consists of an aluminum pressure shell with an inner diameter of 6 ft. and a length of 12.2 ft. Access is through a 4 in. thick aluminum airlock door mounted at the rear of the shelter. Shielding is provided by a 14.9 in. thick layer of lunar regolith contained within a second, outer aluminum shell. This provides protection against a 200 MeV event, based on a 15 REM maximum dose. The shelter is self-contained with a maximum range of 1000 km. Power is supplied by a primary fuel cell which occupies 70.7 cu ft. of the interior volume. Mobility is achieved by towing the shelter behind existing lunar vehicles. It was assumed that a fully operational, independent lunar base was available to provide communication support and tools for set-up and maintenance. Transportation to the moon would be provided by the proposed heavy lift launch vehicle. Major design considerations for the LSES were safety, reliability, and minimal use of earth materials.

  14. Lunar surface engineering properties experiment definition

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Goodman, R. E.; Hurlbut, F. C.; Houston, W. N.; Willis, D. R.; Witherspoon, P. A.; Hovland, H. J.

    1971-01-01

    Research on the mechanics of lunar soils and on developing probes to determine the properties of lunar surface materials is summarized. The areas of investigation include the following: soil simulation, soil property determination using an impact penetrometer, soil stabilization using urethane foam or phenolic resin, effects of rolling boulders down lunar slopes, design of borehole jack and its use in determining failure mechanisms and properties of rocks, and development of a permeability probe for measuring fluid flow through porous lunar surface materials.

  15. Planetary surface exploration MESUR/autonomous lunar rover

    NASA Technical Reports Server (NTRS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Laux, Richard; Lentz, Dale; Nance, Preston

    1992-01-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars have been designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA/Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental Survey (MESUR) Alpha Particle/Proton/X-ray (APX) Instrument. The system is to be launched with the 16 MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker have been developed to deploy the APX from the lander to the Martian Surface. While on Mars, the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation that NASA can use for future lunar exploratory missions. This report includes a detailed description of the designs and the methods and procedures which the University of Idaho design teams followed to arrive at the final designs.

  16. Planetary surface exploration: MESUR/autonomous lunar rover

    NASA Technical Reports Server (NTRS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Lentz, Dale; Laux, Richard; Nance, Preston

    1992-01-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included.

  17. The Influence of Weather and Lunar Phases on the Flight Activity of Paederus Rove Beetles (Coleoptera: Staphylinidae).

    PubMed

    Silva, F S; Lobo, S E P D; Lima, D C B; Brito, J M; Costa-Neta, B M

    2015-06-01

    Despite the medical importance of Paederus beetles, no studies have studied the influence of the abiotic factors on the flight activity and nighttime dispersal of these insects in Brazil. Therefore, the influence of both climatic factors and moon phase on black-light catches of Paederus rove beetles was investigated. Paederus beetles were attracted to a black light source hourly from 1800 to 0600 hours, and data on weather conditions as well as moon phase data were taken for every sampling date. Overall, 543 individuals of Paederus beetles belonging to four species were captured: P. protensus, P. columbinus, P. brasiliensis, and P. mutans. Paederus beetles were mostly active in the warmest parts of the studied nights. Variations in nighttime temperature, relative humidity, wind speed, cloud cover, and moon phases appear not to affect Paederus flight. The diurnal temperature was observed to affect the night hourly dispersal of Paederus rove beetles as well as their distribution pattern during the entire period of study. The true environmental condition responsible for Paederus beetles seasonal pattern and daily night dispersal in northeastern Brazil were the annual moisture and drought cycles and the diurnal maximum temperatures, respectively. Significant trap catches were observed in the earliest hours after sunset (1800-2100), and people must be aware of this fact, as it can notably increase the risk of acquiring linearis dermatitis from the contact with large numbers of active Paederus.

  18. PLAQUE - LUNAR SURFACE (APOLLO XV) - MSC

    NASA Image and Video Library

    1971-07-08

    S71-39357 (July 1971) --- A photographic replica of the plaque which the Apollo 15 astronauts will leave behind on the moon during their lunar landing mission. Astronauts David R. Scott, commander; and James B. Irwin, lunar module pilot; will descend to the lunar surface in the Lunar Module (LM) "Falcon". Astronaut Alfred M. Worden, command module pilot, will remain with the Command and Service Modules (CSM) in lunar orbit. The seven by nine inch stainless steel plaque will be attached to the ladder on the landing gear strut on the LM's descent stage. Commemorative plaques were also left on the moon by the Apollo 11, Apollo 12 and Apollo 14 astronauts.

  19. Gravity increased by lunar surface temperature

    NASA Astrophysics Data System (ADS)

    Keene, James

    2013-04-01

    Quantitatively large effects of lunar surface temperature on apparent gravitational force measured by lunar laser ranging (LLR) and lunar perigee may challenge widely accepted theories of gravity. LLR data grouped by days from full moon shows the moon is about 5 percent closer to earth at full moon compared to 8 days before or after full moon. In a second, related result, moon perigees were least distant in days closer to full moon. Moon phase was used as proxy independent variable for lunar surface temperature. The results support the prediction by binary mechanics that gravitational force increases with object surface temperature.

  20. Lunar Surface-to-Surface Power Transfer

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    2007-01-01

    A human lunar outpost, under NASA study for construction in the 2020's, has potential requirements to transfer electric power up to 50-kW across the lunar surface from 0.1 to 10-km distances. This power would be used to operate surface payloads located remotely from the outpost and/or outpost primary power grid. This paper describes concept designs for state-of-the-art technology power transfer subsystems including AC or DC power via cables, beamed radio frequency power and beamed laser power. Power transfer subsystem mass and performance are calculated and compared for each option. A simplified qualitative assessment of option operations, hazards, costs and technology needs is also described. Based on these concept designs and performance analyses, a DC power cabling subsystem is recommended to minimize subsystem mass and to minimize mission and programmatic costs and risks. Avenues for additional power transfer subsystem studies are recommended.

  1. Lunar surface structural concepts and construction studies

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin

    1991-01-01

    The topics are presented in viewgraph form and include the following: lunar surface structures construction research areas; lunar crane related disciplines; shortcomings of typical mobile crane in lunar base applications; candidate crane cable suspension systems; NIST six-cable suspension crane; numerical example of natural frequency; the incorporation of two new features for improved performance of the counter-balanced actively-controlled lunar crane; lunar crane pendulum mechanics; simulation results; 1/6 scale lunar crane testbed using GE robot for global manipulation; basic deployable truss approaches; bi-pantograph elevator platform; comparison of elevator platforms; perspective of bi-pantograph beam; bi-pantograph synchronously deployable tower/beam; lunar module off-loading concept; module off-loader concept packaged; starburst deployable precision reflector; 3-ring reflector deployment scheme; cross-section of packaged starburst reflector; and focal point and thickness packaging considerations.

  2. Lunar surface structural concepts and construction studies

    NASA Astrophysics Data System (ADS)

    Mikulas, Martin

    The topics are presented in viewgraph form and include the following: lunar surface structures construction research areas; lunar crane related disciplines; shortcomings of typical mobile crane in lunar base applications; candidate crane cable suspension systems; NIST six-cable suspension crane; numerical example of natural frequency; the incorporation of two new features for improved performance of the counter-balanced actively-controlled lunar crane; lunar crane pendulum mechanics; simulation results; 1/6 scale lunar crane testbed using GE robot for global manipulation; basic deployable truss approaches; bi-pantograph elevator platform; comparison of elevator platforms; perspective of bi-pantograph beam; bi-pantograph synchronously deployable tower/beam; lunar module off-loading concept; module off-loader concept packaged; starburst deployable precision reflector; 3-ring reflector deployment scheme; cross-section of packaged starburst reflector; and focal point and thickness packaging considerations.

  3. Apollo lunar surface experiments package

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Developments in the ALSEP program are reported. A summary of the status for the total ALSEP program is included. Other areas discussed include: (1) status of Apollo 16 (array D) and Apollo 17 (array E), (2) lunar seismic profiling experiment, (3) lunar ejecta and meteorites experiment, and (4) lunar mass spectrometer experiments.

  4. Apollo 15 Lunar Module (LM) View - Liftoff - Moon - TV Monitor - Mission Control Center (MCC) - MSC

    NASA Image and Video Library

    1971-08-02

    View of a photograph of the television (TV) monitor in the MCC showing a picture being transmitted from the color TV camera mounted on the parked Lunar Roving Vehicle (LRV) at the Hadley-Apennine Landing Site showing the liftoff of the Apollo 15 Lunar Module (LM) Ascent Stage from the Lunar surface. MSC, Houston, TX

  5. Apollo 11 lunar surface panoramic views

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Three panoramic views of the vicinity of the lunar surface where the Apollo 11 lunar module touched down on July 20, 1969. The top view is looking northwest, revealing many tiny rocks and craters; the center view is looking north, with Lunar Module (LM) leg in right edge of photo and large LM shadow at left; and the bottom view is looking south. The bottom view shows a portion of the LM, most conspicuously the ladder which Astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. used to descend to the lunar surface after egressing the LM. Heavy shadow cast by the LM is visible in the bottom view.

  6. ASTRONAUT ARMSTRONG, NEIL - LUNAR SURFACE SIMULATION TRAINING

    NASA Image and Video Library

    1969-11-14

    S69-31080 (18 April 1969) --- Suited astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit (EMU), participates in lunar surface simulation training on April 18, 1969 in building 9, Manned Spacecraft Center (MSC). Armstrong is prime crew commander of the Apollo 11 lunar landing mission. Here, he is opening a sample return container. On the right is the Modular Equipment Stowage Assembly (MESA) and the Lunar Module (LM) mock-up.

  7. Review on lunar surface operation robots

    NASA Astrophysics Data System (ADS)

    Mizuochi, Michiaki

    1991-07-01

    A review is given of robots to conduct construction of lunar surface sites, to layout each subsystem, and to support lunar surface experiments performed as the first step to set up a concept of lunar bases. The robots' mission requirements and the system review baselines were studied based on the following premises for their missions: (1) to support manned lunar surface sites construction; (2) to transport, install, and connect piping and wiring heavy goods being laid out in inhabited module or drive self-propelled items; (3) to be used only during day time; and (4) to be used from the initial stage of construction of manned lunar surface sites. The results of the review were presented, and the requirements, the baselines for their review, system structure and composition, main features, electric system chart, and development plans of lunar surface robots are shown. Technical problems to be solved such as stereoscopic image processing and seven degree of freedom control technology for manipulators are presented. Observation equipment to be operated by the robots on the lunar surface are: (1) radio, visible and infrared, and x-ray telescopes; (2) environment monitoring equipment; (3) lunar seismometer; and (4) thermal flow meter.

  8. Apollo 12 Mission image - Lunar surface

    NASA Image and Video Library

    1969-11-19

    AS12-47-6938 (19 Nov. 1969) --- A close-up view of a heart-shaped depression (crater) in the lunar surface, as photographed during the Apollo 12 extravehicular activity (EVA). The legs of astronaut Charles Conrad Jr., commander, can be seen in the background. Astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit while astronauts Conrad and Alan L. Bean, lunar module pilot, descended in the Lunar Module (LM) to explore the moon.

  9. APOLLO 10: Training for Lunar Surface Activities

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Astronauts train on a mock-up lunar surface, practicing the procedures they will follow on the real thing, and adjusting to the demands of the workload. From the film documentary 'APOLLO 10: 'Green Light for a Lunar Landing''. Part of a documentary series made in the early 70's on the APOLLO missions, and narrated by Burgess Meredith. (Actual date created is not known at this time) APOLLO 10: Manned lunar orbital flight with Thomas P Stafford, John W. Young, and Eugene A. Cernan to test all aspects of an actual manned lunar landing except the landing. Mission Duration 192hrs 3mins 23 sec

  10. Lunar soil and surface processes studies

    NASA Technical Reports Server (NTRS)

    Glass, B. P.

    1975-01-01

    Glass particles in lunar soil were characterized and compared to terrestrial analogues. In addition, useful information was obtained concerning the nature of lunar surface processes (e.g. volcanism and impact), maturity of soils and chemistry and heterogeneity of lunar surface material. It is felt, however, that the most important result of the study was that it demonstrated that the investigation of glass particles from the regolith of planetary bodies with little or no atmospheres can be a powerful method for learning about the surface processes and chemistry of planetary surfaces. Thus, the return of samples from other planetary bodies (especially the terrestrial planets and asteroids) using unmanned spacecraft is urged.

  11. Lighting constraints on lunar surface operations

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    1991-01-01

    An investigation into the levels of ambient lighting on the lunar surface indicates that for most nearside locations, illumination will be adequate throughout most of the lunar night to conduct EVAs with only minor artificial illumination. The maximum lighting available during the lunar night from Earthshine will be similar to the light level on a July evening at approximately 8:00 pm in the southern United States (approximately 15 minutes after sunset). Because of the captured rotation of the Moon about the Earth, the location of the Earth will remain approximately constant throughout the lunar night, with consequent constant shadow length and angle. Variations in the level of Earthside illumination will be solely a function of Earth phase angle. Experience during the Apollo Program suggests that EVA activities during the period around the lunar noon may be difficult due to lack of surface definition caused by elimination of shadows.

  12. Lunar and Planetary Science XXXI

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This CD-ROM presents papers presented to the Thirty-first Lunar and Planetary Science Conference, March 13-17, 2000, Houston, Texas. Eighty-one conference sessions, and over one thousand extended abstracts are included. Abstracts cover topics such as Martian surface properties and geology, meteoritic composition, Martian landing sites and roving vehicles, planned Mars Sample Return Missions, and general astrobiology.

  13. Lunar and Planetary Science XXXI

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This CD-ROM presents papers presented to the Thirty-first Lunar and Planetary Science Conference, March 13-17, 2000, Houston, Texas. Eighty-one conference sessions, and over one thousand extended abstracts are included. Abstracts cover topics such as Martian surface properties and geology, meteoritic composition, Martian landing sites and roving vehicles, planned Mars Sample Return Missions, and general astrobiology.

  14. Mobility systems activity for lunar rovers at MSFC

    NASA Technical Reports Server (NTRS)

    Jones, C. S., Jr.; Nola, F. J.

    1971-01-01

    The Apollo Lunar Roving Vehicle (LRV) mobility system is described. Special emphasis is given to the redundancy aspects and to the selection of the drive motors. A summary chart of the performance on the lunar surface during the Apollo 15 flight is included. An appendix gives details on some development work on high efficiency drive systems and compares these systems to the selected system.

  15. Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Hayne, P. O.; Banazadeh, P.; Baker, J. D.; Staehle, R. L.; Paine, C..; Paige, D. A.

    2014-01-01

    Water ice and other volatiles may be located in the Moon's polar regions, with sufficient quantities for in situ extraction and utilization by future human and robotic missions. Evidence from orbiting spacecraft and the LCROSS impactor suggests the presence of surface and/or nearsurface volatiles, including water ice. These deposits are of interest to human exploration to understand their potential for use by astronauts. Understanding the composition, quantity, distribution, and form of water/H species and other volatiles associated with lunar cold traps is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits could also reveal important information about the delivery of water to the Earth- Moon system, so are of scientific interest. The scientific exploration of the lunar polar regions was one of the key recommendations of the Planetary Science Decadal Survey. In order to address NASA's SKGs, the Advanced Exploration Systems (AES) program selected three lowcost 6-U CubeSat missions for launch as secondary payloads on the first test flight (EM1) of the Space Launch System (SLS) scheduled for 2017. The Lunar Flashlight mission was selected as one of these missions, specifically to address the SKG associated with lunar volatiles. Development of the Lunar Flashlight CubeSat concept leverages JPL's Interplanetary Nano- Spacecraft Pathfinder In Relevant Environment (INSPIRE) mission, MSFC's intimate knowledge of the Space Launch System and EM-1 mission, small business development of solar sail and electric propulsion hardware, and JPL experience with specialized miniature sensors. The goal of Lunar Flashlight is to determine the presence or absence of exposed water ice and its physical state, and map its concentration at the kilometer scale within the permanently shadowed regions of the lunar south pole. After being ejected in cislunar space by SLS, Lunar Flashlight deploys its solar panels and solar sail and maneuvers

  16. Astronaut Alan Bean participates in lunar surface simulation

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot of the Apollo 12 lunar landing mission, participates in lunar surface simulation training in bldg 29 at the Manned Spacecraft Center. Bean is strapped to a one-sixth gravity simulator.

  17. Astronaut Alan Bean participates in lunar surface simulation

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot of the Apollo 12 lunar landing mission, participates in lunar surface simulation training in bldg 29 at the Manned Spacecraft Center. Bean is strapped to a one-sixth gravity simulator.

  18. Lunar surface fission power supplies: Radiation issues

    SciTech Connect

    Houts, M.G.; Lee, S.K.

    1994-07-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to these seen in free space. For a well designed shield, the additional mass required to be brought fro earth should be less than 1000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield.

  19. Average chemical composition of the lunar surface

    NASA Technical Reports Server (NTRS)

    Turkevich, A. L.

    1973-01-01

    The available data on the chemical composition of the lunar surface at eleven sites (3 Surveyor, 5 Apollo and 3 Luna) are used to estimate the amounts of principal chemical elements (those present in more than about 0.5% by atom) in average lunar surface material. The terrae of the moon differ from the maria in having much less iron and titanium and appreciably more aluminum and calcium.

  20. A lunar polar expedition.

    NASA Astrophysics Data System (ADS)

    Dowling, Richard; Staehle, Robert L.; Svitek, Thomas

    This paper reviews issues related to a five-person expedition to the lunar north pole which primarily addresses site selection and the requirements for transportation, power, and life support. A one-year stay on the lunar surface is proposed based on available technology, and proposals are detailed for incorporating flight-proven systems, abort or rescue options, and the use of the base as the nucleus for subsequent operations. Specific details are given regarding lunar orbital data, the characteristics of the proposed base, power and consumables requirements, and equipment such as two-person lunar roving vehicles and space suits. During the expedition: (1) water is recycled; (2) Autolanders are used to deliver equipment; (3) two rovers are included in the mass budget; (4) the lunar surface is studied in detail. A polar lunar-base site offers the advantages of unobstructed astronomy, enhanced heat rejection, and the potential for reuse.

  1. Lunar Tire Close-up

    NASA Image and Video Library

    2017-02-23

    This is a close-up of an exact replica of the Apollo-era Lunar Roving Vehicle Wheel, of which twelve originals still rest on the surface of the Moon. The tire was designed to flex under load, without air, and was formed from a mesh of plated piano wire. Metal straps were hand riveted onto the mesh to reduce sinking into loose lunar soils. These replica wheels were tested in NASA Glenn's SLOPE Lab to establish a baseline for future improvements.

  2. Lunar near-surface structure

    NASA Technical Reports Server (NTRS)

    Cooper, M. R.; Kovach, R. L.; Watkins, J. S.

    1974-01-01

    Seismic refraction data obtained at the Apollo 14, 16, and 17 landing sites permit a compressional wave velocity profile of the lunar near surface to be derived. Beneath the regolith at the Apollo 14 Fra Mauro site and the Apollo 16 Descartes site is material with a seismic velocity of about 300 m/sec, believed to be brecciated material or impact-derived debris. Considerable detail is known about the velocity structure at the Apollo 17 Taurus-Littrow site. Seismic velocities of 100, 327, 495, 960, and 4700 m/sec are observed. The depth to the top of the 4700-m/sec material is 1385 m, compatible with gravity estimates for the thickness of mare basaltic flows, which fill the Taurus-Littrow valley. The observed magnitude of the velocity change with depth and the implied steep velocity-depth gradient of more than 2 km/sec/km are much larger than have been observed on compaction experiments on granular materials and preclude simple cold compaction of a fine-grained rock powder to thicknesses of the order of kilometers.

  3. Lunar Surface Gravimeter Experiment. [characteristics of test equipment installed on lunar surface during Apollo 17 flight

    NASA Technical Reports Server (NTRS)

    Giganti, J. J.; Larson, J. V.; Richard, J. P.; Weber, J.

    1973-01-01

    The lunar surface gravimeter which was emplaced on the moon by the Apollo 17 flight is described and a schematic diagram of the sensor is provided. The objective of the lunar surface gravimeter is to use the moon as an instrumented antenna to detect gravitational waves. Another objective is to measure tidal deformation of the moon. Samples of signals received during lunar sunrise activity and during quiet periods are presented in graph form based on power spectrum analysis

  4. Integrating advanced mobility into lunar surface exploration

    NASA Astrophysics Data System (ADS)

    Schlutz, Juergen; Messerschmid, Ernst

    2012-06-01

    With growing knowledge of the lunar surface environment from recent robotic missions, further assessment of human lunar infrastructures and operational aspects for surface exploration become possible. This is of particular interest for the integration of advanced mobility assets, where path planning, balanced energy provision and consumption as well as communication coverage grow in importance with the excursion distance. The existing modeling and simulation tools for the lunar surface environment have therefore been revisited and extended to incorporate aspects of mobile exploration. An extended analysis of the lunar topographic models from past and ongoing lunar orbital missions has resulted in the creation of a tool to calculate and visualize slope angles in selected lunar regions. This allows for the identification of traversable terrain with respect to the mobile system capabilities. In a next step, it is combined with the analysis of the solar illumination conditions throughout this terrain to inform system energy budgets in terms of electrical power availability and thermal control requirements. The combination of the traversability analysis together with a time distributed energy budget assessment then allows for a path planning and optimization for long range lunar surface mobility assets, including manned excursions as well as un-crewed relocation activities. The above mentioned tools are used for a conceptual analysis of the international lunar reference architecture, developed in the frame of the International Architecture Working Group (IAWG) of the International Space Exploration Coordination Group (ISECG). Its systems capabilities are evaluated together with the planned surface exploration range and paths in order to analyze feasibility of the architecture and to identify potential areas of optimization with respect to time-based and location-based integration of activities.

  5. Reference Avionics Architecture for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Somervill, Kevin M.; Lapin, Jonathan C.; Schmidt, Oron L.

    2010-01-01

    Developing and delivering infrastructure capable of supporting long-term manned operations to the lunar surface has been a primary objective of the Constellation Program in the Exploration Systems Mission Directorate. Several concepts have been developed related to development and deployment lunar exploration vehicles and assets that provide critical functionality such as transportation, habitation, and communication, to name a few. Together, these systems perform complex safety-critical functions, largely dependent on avionics for control and behavior of system functions. These functions are implemented using interchangeable, modular avionics designed for lunar transit and lunar surface deployment. Systems are optimized towards reuse and commonality of form and interface and can be configured via software or component integration for special purpose applications. There are two core concepts in the reference avionics architecture described in this report. The first concept uses distributed, smart systems to manage complexity, simplify integration, and facilitate commonality. The second core concept is to employ extensive commonality between elements and subsystems. These two concepts are used in the context of developing reference designs for many lunar surface exploration vehicles and elements. These concepts are repeated constantly as architectural patterns in a conceptual architectural framework. This report describes the use of these architectural patterns in a reference avionics architecture for Lunar surface systems elements.

  6. Apollo 17 Lunar Surface Experiment equipment

    NASA Image and Video Library

    1972-11-30

    S72-37259 (November 1972) --- The Geophone Module and Cable Reels of the Lunar Seismic Profiling Experiment (S-203), a component of the Apollo Lunar Surface Experiments Package which will be carried on the Apollo 17 lunar landing mission. LSPE components are four geophones similar to those used in an earlier active seismic experiment, an electronics package in the ALSEP central station, and eight explosive packages which will be deployed during the geology traverse. The four geophones will be placed one in the center and one at each corner of a 90-meter equilateral triangle. Explosive charges placed on the surface will generate seismic waves of varying strengths to provide data on the structural profile of the landing site. After the charges have been fired by ground command, the experiment will settle down into a passive listening mode, detecting moonquakes, meteorite impacts and the thump caused by the Lunar Module ascent stage impact.

  7. Apollo 17 Lunar Surface Experiments package

    NASA Image and Video Library

    1972-05-10

    S72-37260 (November 1972) --- The remote antenna for the Lunar Seismic Profiling Experiment, Numbered S-203, a component of the Apollo Lunar Surface Experiments Package which will be carried on the Apollo 17 lunar landing mission. LSPE components are four geophones similar to those used in earlier active seismic experiments an electronics package in the ALSEP central station, and eight explosive packages which will be deployed during the geology traverse. The four geophones will be placed one in the center and at each corner of a 90-meter equilateral triangle. Explosive charges placed on the surface will generate seismic waves of varying strengths to provide data on the structural profile of the landing site. After the charges have been fired by ground command, the experiment will settle down into a passive listening mode, detecting moonquakes, meteorite impacts and the thump caused by the Lunar Module ascent stage impact. The antenna is of the telescoping type.

  8. Life Sciences Implications of Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Norcross, Jason R.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2010-01-01

    The purpose of this report is to document preliminary, predicted, life sciences implications of expected operational concepts for lunar surface extravehicular activity (EVA). Algorithms developed through simulation and testing in lunar analog environments were used to predict crew metabolic rates and ground reaction forces experienced during lunar EVA. Subsequently, the total metabolic energy consumption, the daily bone load stimulus, total oxygen needed, and other variables were calculated and provided to Human Research Program and Exploration Systems Mission Directorate stakeholders. To provide context to the modeling, the report includes an overview of some scenarios that have been considered. Concise descriptions of the analog testing and development of the algorithms are also provided. This document may be updated to remain current with evolving lunar or other planetary surface operations, assumptions and concepts, and to provide additional data and analyses collected during the ongoing analog research program.

  9. Lunar surface chemistry: A new imaging technique

    USGS Publications Warehouse

    Andre, C.G.; Bielefeld, M.J.; Eliason, E.; Soderblom, L.A.; Adler, I.; Philpotts, J.A.

    1977-01-01

    Detailed chemical maps of the lunar surface have been constructed by applying a new weighted-filter imaging technique to Apollo 15 and Apollo 16 x-ray fluorescence data. The data quality improvement is amply demonstrated by (i) modes in the frequency distribution, representing highland and mare soil suites, which are not evident before data filtering and (ii) numerous examples of chemical variations which are correlated with small-scale (about 15 kilometer) lunar topographic features.

  10. Lunar surface mechanical properties from Surveyor data.

    NASA Technical Reports Server (NTRS)

    Jones, R. H.

    1971-01-01

    During the Surveyor program spacecraft were successfully landed at five widely separated lunar locations. Recent computer simulations of each landing have provided more comprehensive data on the mechanical properties of the lunar surface than have been obtained previously by this method of analysis. Results show that the variations in surface bearing pressure observed at the various lunar sites are probably due to surface slope effects and do not necessarily indicate differences in soil properties at these sites. Estimates of cohesion at two sites give almost identical results and further support the conclusion that the soil properties at all sites are probably very similar. Surface pressures that resist horizontal (plowing) motion are largely due to cohesion, and density and gravitational contributions are small. It is concluded that the lunar surface bearing strength is essentially zero at the surface and, for zero surface slope, increases with penetration depth at a rate of 1.87 (plus or minus 0.33) N/cu cm. The cohesion of the lunar soil is estimated to be between 0.11 and 0.17 N/sq cm.

  11. Petrologic Characteristics of the Lunar Surface

    PubMed Central

    Wang, Xianmin; Pedrycz, Witold

    2015-01-01

    Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface. PMID:26611148

  12. Petrologic Characteristics of the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Wang, Xianmin; Pedrycz, Witold

    2015-11-01

    Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface.

  13. Petrologic Characteristics of the Lunar Surface.

    PubMed

    Wang, Xianmin; Pedrycz, Witold

    2015-11-27

    Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface.

  14. Solar Wind Spectrometer on Lunar Surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Sitting on the lunar surface, this Solar Wind Spectrometer is measuring the energies of the particles that make up the solar wind. This was one of the instruments used during the Apollo 12 mission. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  15. Impact Generated Plasmas on the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Munsat, T.; Robertson, S. H.; Sternovsky, Z.; Wang, X.

    2009-12-01

    Lunar dust mobilization and transport remains a debated issue. There are several historical data sets from in situ and remote sensing observations that indicate the presence of lofted dust populations, possibly reaching high altitudes over the lunar surface. The expected charge density of the surface, combined with the relatively weak electric fields in a UV produced plasma sheath on the dayside, seem insufficient to explain these observations. While the surface potentials are much higher on the nightside, the very low plasma density results in a large screening distance and, hence, an even weaker electric field. In addition to solar wind plasma and UV radiation, the lunar surface is also exposed to the continual bombardment by interplanetary dust particles. Based on measurements at Earth, the Moon is expected to collect about 5×103 kg/day of dust which hits the surface at high speeds (>> km/s). These impacts generate secondary particles with a typical mass yield of 103 - 104 that form a permanently present dust exosphere about the Moon. In addition, these impacts also generate neutral and plasma clouds. Impact-generated neutrals are suspected to be one of the major sources of the tenuous lunar atmosphere, in addition to out-gassing and sputtering by solar wind ions. The impact plasma cloud is expected to expand, cool, and recombine, but for a short period of time it will significantly increase the plasma density near the surface, as well as the surface charge density. The combination of these is expected to result in a highly increased efficiency to mobilize and loft small charged grains from the surface. We report on the status of the modeling of the impact generated plasma clouds, as well as on the planned series of experiments to observe its properties at the dust accelerator facility of the recently established NASA Lunar Science Institute: Colorado Center for Lunar Dust and Atmospheric Studies. We will also discuss the possible observational opportunities to

  16. View of activity in Mission Control Center during Lunar Module liftoff

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A partial view of activity in the Mission Operations Control Room in the Mission Control Center during the liftoff of the Apollo 15 Lunar Module 'Falcon' ascent stage from the lunar surface. An RCA color television camera mounted on the Lunar Roving Vehicle made it possible for people on Earth to watch the Lunar Module (LM) launch from the Moon. Seated in the right foreground is Astronaut Edgar D. Mitchell, a spacecraft communicator. Note liftoff on the television monitor in the center background.

  17. Lunar Surface Outgassing and Alpha Particle Measurements

    NASA Astrophysics Data System (ADS)

    Lawson, S. L.; Feldman, W. C.; Lawrence, D. J.; Moore, K. R.; Elphic, R. C.; Maurice, S.; Belian, R. D.; Binder, A. B.

    2002-01-01

    The Lunar Prospector Alpha Particle Spectrometer (LP APS) searched for lunar surface gas release events and mapped their distribution by detecting alpha particles produced by the decay of gaseous radon-222 (5.5 MeV, 3.8 day half-life), solid polonium-218 (6.0 MeV, 3 minute half-life), and solid polonium-210 (5.3 MeV, 138 day half-life, but held up in production by the 21 year half-life of lead-210). These three nuclides are radioactive daughters from the decay of uranium-238. Radon reaches the lunar surface either at areas of high soil porosity or where fissures release the trapped gases in which radon is entrained. Once released, the radon spreads out by "bouncing" across the surface on ballistic trajectories in a randomwalk process. The half-life of radon-222 allows the gas to spread out by several 100 km before it decays (depositing approximately half of the polonium-218 recoil nuclides on the lunar surface) and allows the APS to detect gas release events up to several days after they occur. The long residence time of the lead-210 precursor to polonium-210 allows the mapping of gas vents which have been active over the last approximately 60 years. Because radon and polonium are daughter products of the decay of uranium, the background level of alpha particle activity is a function of the lunar crustal uranium distribution.

  18. The Lunar Surface: A Dusty Plasma Laboratory

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Brain, D.; Kempf, S.; Munsat, T.; Robertson, S. H.; Sternovsky, Z.

    2011-12-01

    The lunar surface is an excellent laboratory to study dusty plasma processes that are relevant to all airless planetary objects. The solar wind and UV radiation lead to charging of exposed surfaces, and the formation of plasma sheaths above them. Near-surface intense electric fields are thought to be capable of mobilizing and transporting small charged dust particles. Remote sensing and in situ observations indicating dust transport on the Moon date back to the Apollo era and remain highly controversial. There are many unresolved issues about the physical processes that have to this point prevented the development of a coherent explanation for the existing observations. Dust transport on airless bodies can significantly alter our interpretation of spectral identification of asteroids, the small-scale surface features of Mercury, and the Martian moons Phobos and Deimos. Understanding the behavior of dust laden plasma sheaths is of interest in basic plasma and planetary sciences, and holds the key to efficient dust hazard mitigation for the long-term use of optical and mechanical equipment used for robotic and/or human exploration. NASA Lunar Science Institute's Colorado Center of Lunar Dust is focused on experimental and theoretical investigations of dusty plasmas, and the effects of hypervelocity dust impacts on surfaces. This presentation will describe a series of small-scale laboratory experiments investigating the properties of photoelectron sheaths, and the emergence of intense electric fields near boundaries of lit and dark surfaces and regions shielded and exposed to the solar wind plasma flow. Our progress in the analysis and interpretation of the laboratory observations using simple analytic models and complex plasma simulation tools indicates that these models can be used to predict the expected properties of the lunar near-surface environment with increasing confidence. Based on our laboratory and theoretical efforts, we will also report on the status of

  19. Lunar Surface Reactor Shielding Study

    NASA Technical Reports Server (NTRS)

    King, Shawn; Lipinksi, Ronald; McAlpine, William

    2006-01-01

    Nuclear reactor system could provide power to support a long term human exploration to the moon. Such a system would require shielding to protect astronauts from its emitted radiations. Shielding studies have been performed for a Gas Cooled Reactor (GCR) system because it is considered to be the most suitable nuclear reactor system available for lunar exploration, based on its tolerance of oxidizing lunar regolith and its good conversion efficiency (Wright, 2003). The goals of the shielding studies were to provide optimal material shielding configuration that reduces the dose (rem) to the required level in order to protect astronauts, and to estimate the mass of regolith that would provide an equivalent protective effect if it were used as the shielding material. All calculations were performed using MCNPX code, a Monte Carlo transport code.

  20. Lunar Surface Reactor Shielding Study

    NASA Technical Reports Server (NTRS)

    King, Shawn; Lipinksi, Ronald; McAlpine, William

    2006-01-01

    Nuclear reactor system could provide power to support a long term human exploration to the moon. Such a system would require shielding to protect astronauts from its emitted radiations. Shielding studies have been performed for a Gas Cooled Reactor (GCR) system because it is considered to be the most suitable nuclear reactor system available for lunar exploration, based on its tolerance of oxidizing lunar regolith and its good conversion efficiency (Wright, 2003). The goals of the shielding studies were to provide optimal material shielding configuration that reduces the dose (rem) to the required level in order to protect astronauts, and to estimate the mass of regolith that would provide an equivalent protective effect if it were used as the shielding material. All calculations were performed using MCNPX code, a Monte Carlo transport code.

  1. Apollo 11 lunar surface panoramic views

    NASA Technical Reports Server (NTRS)

    1969-01-01

    An Apollo 11 panoramic view of two areas of the lunar surface near where the Apollo 11 Lunar Module (LM) touched down on July 20, 1969. The upper view shows tiny rocks and craters on the surface, looking east. The view in the bottom panorama is focused on a partially shaded crater some 200 feet east of the Apollo 11 LM. The object in the foreground, casting a shadow toward the photo's left corner, is the Apollo 11 35mm stereo close-up camera.

  2. Functional Risk Modeling for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Thomson, Fraser; Mathias, Donovan; Go, Susie; Nejad, Hamed

    2010-01-01

    We introduce an approach to risk modeling that we call functional modeling , which we have developed to estimate the capabilities of a lunar base. The functional model tracks the availability of functions provided by systems, in addition to the operational state of those systems constituent strings. By tracking functions, we are able to identify cases where identical functions are provided by elements (rovers, habitats, etc.) that are connected together on the lunar surface. We credit functional diversity in those cases, and in doing so compute more realistic estimates of operational mode availabilities. The functional modeling approach yields more realistic estimates of the availability of the various operational modes provided to astronauts by the ensemble of surface elements included in a lunar base architecture. By tracking functional availability the effects of diverse backup, which often exists when two or more independent elements are connected together, is properly accounted for.

  3. Lower-Cost, Relocatable Lunar Polar Lander and Lunar Surface Sample Return Probes

    NASA Technical Reports Server (NTRS)

    Amato, G. Michael; Garvin, James B.; Burt, I. Joseph; Karpati, Gabe

    2011-01-01

    Key science and exploration objectives of lunar robotic precursor missions can be achieved with the Lunar Explorer (LEx) low-cost, robotic surface mission concept described herein. Selected elements of the LEx concept can also be used to create a lunar surface sample return mission that we have called Boomerang

  4. Apollo 12 Mission image - View of lunar surface mound

    NASA Image and Video Library

    1969-11-19

    AS12-46-6832 (19 Nov. 1969) --- A close-up view of a lunar mound as photographed during the Apollo 12 extravehicular activity (EVA) on the lunar surface. Astronaut Richard F. Gordon Jr., command module pilot, remained with the Apollo 12 Command and Service Modules (CSM) in lunar orbit while astronauts Charles Conrad Jr., commander, and Alan L. Bean, lunar module pilot, descended in the Lunar Module (LM) to explore the moon.

  5. Lunar Surface Reactor Shielding Study

    SciTech Connect

    Kang, Shawn; McAlpine, William; Lipinski, Ronald

    2006-01-20

    A nuclear reactor system could provide power to support long term human exploration of the moon. Such a system would require shielding to protect astronauts from its emitted radiations. Shielding studies have been performed for a Gas Cooled Reactor system because it is considered to be the most suitable nuclear reactor system available for lunar exploration, based on its tolerance of oxidizing lunar regolith and its good conversion efficiency. The goals of the shielding studies were to determine a material shielding configuration that reduces the dose (rem) to the required level in order to protect astronauts, and to estimate the mass of regolith that would provide an equivalent protective effect if it were used as the shielding material. All calculations were performed using MCNPX, a Monte Carlo transport code. Lithium hydride must be kept between 600 K and 700 K to prevent excessive swelling from large amounts of gamma or neutron irradiation. The issue is that radiation damage causes separation of the lithium and the hydrogen, resulting in lithium metal and hydrogen gas. The proposed design uses a layer of B4C to reduce the combined neutron and gamma dose to below 0.5Grads before the LiH is introduced. Below 0.5Grads the swelling in LiH is small (less than about 1%) for all temperatures. This approach causes the shield to be heavier than if the B4C were replaced by LiH, but it makes the shield much more robust and reliable.

  6. Methane Lunar Surface Thermal Control Test

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Sutherlin, Steven G.; Johnson, Wesley L.; Feller, Jeffrey R.; Jurns, John M.

    2012-01-01

    NASA is considering propulsion system concepts for future missions including human return to the lunar surface. Studies have identified cryogenic methane (LCH4) and oxygen (LO2) as a desirable propellant combination for the lunar surface ascent propulsion system, and they point to a surface stay requirement of 180 days. To meet this requirement, a test article was prepared with state-of-the-art insulation and tested in simulated lunar mission environments at NASA GRC. The primary goals were to validate design and models of the key thermal control technologies to store unvented methane for long durations, with a low-density high-performing Multi-layer Insulation (MLI) system to protect the propellant tanks from the environmental heat of low Earth orbit (LEO), Earth to Moon transit, lunar surface, and with the LCH4 initially densified. The data and accompanying analysis shows this storage design would have fallen well short of the unvented 180 day storage requirement, due to the MLI density being much higher than intended, its substructure collapse, and blanket separation during depressurization. Despite the performance issue, insight into analytical models and MLI construction was gained. Such modeling is important for the effective design of flight vehicle concepts, such as in-space cryogenic depots or in-space cryogenic propulsion stages.

  7. Lunar surface outgassing and alpha particle measurements

    SciTech Connect

    Lawson, S. L.; Feldman, W. C.; Lawrence, David J. ,; Moore, K. R.; Elphic, R. C.; Maurice, S.; Belian, Richard D.; Binder, Alan B.

    2002-01-01

    The Lunar Prospector Alpha Particle Spectrometer (LP APS) searched for lunar surface gas release events and mapped their distribution by detecting alpha particle?; produced by the decay of gaseous radon-222 (5.5 MeV, 3.8 day half-life), solid polonium-2 18 (6.0 MeV, 3 minute half-life), and solid polonium-210 (5.3 MeV, 138 day half-life, but held up in production by the 21 year half-life of lead-210). These three nuclides are radioactive daughters from the decay of uranium-238.

  8. Lunar seismic profiling experiment. [Apollo 17 flight measurements of lunar surface vibrations to determine subsurface characteristics

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.; Talwani, P.

    1973-01-01

    The Apollo 17 lunar seismic profiling experiment was conducted to record the vibrations of the lunar surface as induced by explosive charges, the thrust of the lunar module ascent engine, and the crash of the lunar module ascent stage. Analysis of the data obtained made it possible to determine the internal characteristics of the lunar crust to a depth of several kilometers. The test equipment used in the experiment is described. Maps showing the location of the geophones and the deployed explosive packages are provided. Samples of the seismic signals recorded by the lunar seismic profiling experiment geophones are included.

  9. Shield Design for Lunar Surface Applications

    SciTech Connect

    Johnson, Gregory A.

    2006-01-20

    A shielding concept for lunar surface applications of nuclear power is presented herein. The reactor, primary shield, reactor equipment and power generation module are placed in a cavity in the lunar surface. Support structure and heat rejection radiator panels are on the surface, outside the cavity. The reactor power of 1,320 kWt was sized to deliver 50 kWe from a thermoelectric power conversion subsystem. The dose rate on the surface is less than 0.6 mRem/hr at 100 meters from the reactor. Unoptimized shield mass is 1,020 kg which is much lighter than a comparable 4{pi} shield weighing in at 17,000 kg.

  10. Shield Design for Lunar Surface Applications

    NASA Astrophysics Data System (ADS)

    Johnson, Gregory A.

    2006-01-01

    A shielding concept for lunar surface applications of nuclear power is presented herein. The reactor, primary shield, reactor equipment and power generation module are placed in a cavity in the lunar surface. Support structure and heat rejection radiator panels are on the surface, outside the cavity. The reactor power of 1,320 kWt was sized to deliver 50 kWe from a thermoelectric power conversion subsystem. The dose rate on the surface is less than 0.6 mRem/hr at 100 meters from the reactor. Unoptimized shield mass is 1,020 kg which is much lighter than a comparable 4π shield weighing in at 17,000 kg.

  11. Apollo program soil mechanics experiment. [interaction of the lunar module with the lunar surface

    NASA Technical Reports Server (NTRS)

    Scott, R. F.

    1975-01-01

    The soil mechanics investigation was conducted to obtain information relating to the landing interaction of the lunar module (LM) with the lunar surface, and lunar soil erosion caused by the spacecraft engine exhaust. Results obtained by study of LM landing performance on each Apollo mission are summarized.

  12. Long Shadows on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This oblique view of the Moon's surface was photographed by the Apollo 10 astronauts in May of 1969. Center point coordinates are located at 16 degrees, 2 minutes east longitude and 0 degrees, 3 minutes north latitude. One of the Apollo 10 astronauts attached a 250mm lens and aimed a handheld 70mm camera at the surface from lunar orbit for a series of pictures in this area.

  13. Astronaut Eugene Cernan inside the lunar module on lunar surface after EVA

    NASA Image and Video Library

    1972-12-12

    AS17-145-22224 (12 Dec. 1972) --- Astronaut Eugene A. Cernan, Apollo 17 commander, is photographed inside the lunar module on the lunar surface following the second extravehicular activity (EVA) of his mission. Note lunar dust on his suit. The photograph was taken by astronaut Harrison H. Schmitt, lunar module pilot, using a 70mm handheld Hasselblad camera and S0-368 film.

  14. Astronaut Neil Armstrong participates in lunar surface siumlation training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Suited Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, participates in lunar surface simulation training on April 18, 1969, in bldg 9, Manned Spacecraft Center (MSC). Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he simulates scooping up a lunar surface sample.

  15. Astronaut Neil Armstrong participates in lunar surface siumlation training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Suited Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, participates in lunar surface simulation training on April 18, 1969, in bldg 9, Manned Spacecraft Center (MSC). Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he simulates scooping up a lunar surface sample.

  16. Space environment and lunar surface processes

    NASA Technical Reports Server (NTRS)

    Comstock, G. M.

    1979-01-01

    The development of a general rock/soil model capable of simulating in a self consistent manner the mechanical and exposure history of an assemblage of solid and loose material from submicron to planetary size scales, applicable to lunar and other space exposed planetary surfaces is discussed. The model was incorporated into a computer code called MESS.2 (model for the evolution of space exposed surfaces). MESS.2, which represents a considerable increase in sophistication and scope over previous soil and rock surface models, is described. The capabilities of previous models for near surface soil and rock surfaces are compared with the rock/soil model, MESS.2.

  17. Surface charging of a crater near lunar terminator

    NASA Astrophysics Data System (ADS)

    Anuar, A. K.

    2017-05-01

    Past lunar missions have shown the presence of dust particles in the lunar exosphere. These particles originate from lunar surface and are due to the charging of lunar surface by the solar wind and solar UV flux. Near the lunar terminator region, the low conductivity of the surface and small scale variations in surface topology could cause the surface to charge to different surface potentials. This paper simulates the variation of surface potential for a crater located in the lunar terminator regions using Spacecraft Plasma Interaction Software (SPIS). SPIS employs particle in cell method to simulate the motion of solar wind particles and photoelectrons. Lunar crater has been found to create mini-wake which affects both electron and ion density and causes small scale potential differences. Simulation results show potential difference of 300 V between sunlit area and shadowed area which creates suitable condition for dust levitation to occur.

  18. Surface Coatings on Lunar Volcanic Glasses

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; McKay, D. S.; Thomas,-Keprta, K. L.; Clemett, S. J.

    2007-01-01

    We are undertaking a detailed study of surface deposits on lunar volcanic glass beads. These tiny deposits formed by vapor condensation during cooling of the gases that drove the fire fountain eruptions responsible for the formation of the beads. Volcanic glass beads are present in most lunar soil samples in the returned lunar collection. The mare-composition beads formed as a result of fire-fountaining approx.3.4-3.7 Ga ago, within the age range of large-scale mare volcanism. Some samples from the Apollo 15 and Apollo 17 landing sites are enriched in volcanic spherules. Three major types of volcanic glass bead have been identified: Apollo 15 green glass, Apollo 17 orange glass, and Apollo 17 "black" glass. The Apollo 15 green glass has a primitive composition with low Ti. The high-Ti compositions of the orange and black glasses are essentially identical to each other but the black glasses are opaque because of quench crystallization. A poorly understood feature common to the Apollo 15 and 17 volcanic glasses is the presence of small deposits of unusual materials on their exterior surfaces. For example, early studies indicated that the Apollo 17 orange glasses had surface enrichments of In, Cd, Zn, Ga, Ge, Au, and Na, and possible Pb- and Zn-sulfides, but it was not possible to characterize the surface features in detail. Technological advances now permit us to examine such features in detail. Preliminary FE-TEM/X-ray studies of ultramicrotome sections of Apollo 15 green glass indicate that the surface deposits are heterogeneous and layered, with an inner layer consisting of Fe with minor S and an outer layer of Fe and no S, and scattered Zn enrichments. Layering in surface deposits has not been identified previously; it will be key to defining the history of lunar fire fountaining.

  19. Bibliography of the lunar surface

    USGS Publications Warehouse

    Freeberg, Jacquelyn H.

    1970-01-01

    The term "surface" in this bibliography is defined to include landforms and surface materials and the nature of, and processes responsible for, their physical characteristics. References are divided into two listings: (1) Surface features and materials; and (2) Telescopic observations. The former is accompanied by a subject index, the latter by a locality index.

  20. Lunar/Mars Surface Habitat Mockups Project

    NASA Technical Reports Server (NTRS)

    Tri, Terry O.; Daues, Katherine R.

    2005-01-01

    Surface habitats play a centric role with respect to integration of the crew operations and supporting surface systems for external operations on the moon and Mars. Up to now the only planetary surface habitat NASA has ever developed is the 2-person, 3-day duration Lunar Module from the 1960 s-era Apollo Program. Today s National Vision for Space Exploration pushes far beyond the safety, performance and operational requirements of the Lunar Module, and NASA needs to develop a basis for making habitat design decisions Experience has shown that using mockups very early in a project s life cycle is extremely beneficial, providing data that influences requirements for human design, volumetrics, functionality, systems hardware and operations. Evaluating and comparing a variety of habitat configurations will provide NASA with a cost-effective basis for trades to support lunar and Martian habitat design selection. This paper describes the NASA project that recently has been created to undertake the development and evaluation of a series of planetary surface habitat mockups. This project is in direct response to the Advanced Space Platforms and Systems (ASPS) Element Program s request for novel systems approaches for robust and reconfigurable habitation systems.

  1. Lunar/Mars Surface Habitat Mockups Project

    NASA Technical Reports Server (NTRS)

    Tri, Terry O.; Daues, Katherine R.

    2005-01-01

    Surface habitats play a centric role with respect to integration of the crew operations and supporting surface systems for external operations on the moon and Mars. Up to now the only planetary surface habitat NASA has ever developed is the 2-person, 3-day duration Lunar Module from the 1960 s-era Apollo Program. Today s National Vision for Space Exploration pushes far beyond the safety, performance and operational requirements of the Lunar Module, and NASA needs to develop a basis for making habitat design decisions Experience has shown that using mockups very early in a project s life cycle is extremely beneficial, providing data that influences requirements for human design, volumetrics, functionality, systems hardware and operations. Evaluating and comparing a variety of habitat configurations will provide NASA with a cost-effective basis for trades to support lunar and Martian habitat design selection. This paper describes the NASA project that recently has been created to undertake the development and evaluation of a series of planetary surface habitat mockups. This project is in direct response to the Advanced Space Platforms and Systems (ASPS) Element Program s request for novel systems approaches for robust and reconfigurable habitation systems.

  2. Apollo 12 Mission image - View of lunar surface mound

    NASA Image and Video Library

    1969-11-19

    AS12-46-6795 (19-20 Nov. 1969) --- A view of the lunar surface in the vicinity of the Apollo 12 lunar landing site, photographed during the extravehicular activity (EVA) of astronauts Charles Conrad Jr., commander, and Alan L. Bean, lunar module pilot. Conrad and Bean encountered the odd, anthill-shaped mound during their lunar traverse. The two descended in the Apollo 12 Lunar Module (LM) to explore the moon, while astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  3. Apollo 17 lunar surface cosmic ray detector

    NASA Technical Reports Server (NTRS)

    Walker, R. M.

    1974-01-01

    The objectives and selected data are presented for the Apollo 17 Lunar Surface Cosmic Ray Experiment (LSCRE) for the purpose of introducing an analysis of three of the separate detectors contained within in LSCRE package. The mica detector for measuring heavy solar wind, and the lexan stack and glass detectors for measuring energetic particles in space are discussed in terms of their deployment, exposure time, calibration, and data yield. Relevant articles on solar particles, interplanetary ions, and cosmic ray nuclei are also included.

  4. Lunar Surface Propagation Modeling and Effects on Communications

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2008-01-01

    This paper analyzes the lunar terrain effects on the signal propagation of the planned NASA lunar wireless communication and sensor systems. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate that the terrain geometry, antenna location, and lunar surface material are important factors determining the propagation characteristics of the lunar wireless communication systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, operating frequency, and surface material. The analysis results from this paper are important for the lunar communication link margin analysis in determining the limits on the reliable communication range and radio frequency coverage performance at planned lunar base worksites. Key Words lunar, multipath, path loss, propagation, wireless.

  5. Astronaut Neil Armstrong participates in lunar surface simulation training

    NASA Image and Video Library

    1969-04-18

    S69-31042 (18 April 1969) --- Suited astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit (EMU), participates in lunar surface simulation training on April 18, 1969, in Building 9, Manned Spacecraft Center (MSC). Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he is standing on Lunar Module (LM) mockup foot pad preparing to ascend steps.

  6. Astronaut Neil Armstrong participates in lunar surface siumlation training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil Armstrong, wearing an Extravehicular Mobility Unit (EMU), participates in lunar surface siumlation training on April 18, 1969 in bldg 9, Manned Spacecraft Center (MSC). Armstrong is prime crew commander of the Apollo 11 lunar landing mission. Here, he is opening a sample return container. At the right is the Modular Equipment Stowage Assembly (MESA) and the Lunar Module Mockup.

  7. Astronaut Neil Armstrong participates in lunar surface simulation training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit (EMU), participates in lunar surface simulation training on April 18, 1969 in bldg 9, Manned Spacecraft Center. Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he is standing on Lunar Module mockup foot pad preparing to ascend steps.

  8. Astronaut Neil Armstrong participates in lunar surface simulation training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit (EMU), participates in lunar surface simulation training on April 18, 1969 in bldg 9, Manned Spacecraft Center. Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he is standing on Lunar Module mockup foot pad preparing to ascend steps.

  9. Astronaut Neil Armstrong participates in lunar surface siumlation training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil Armstrong, wearing an Extravehicular Mobility Unit (EMU), participates in lunar surface siumlation training on April 18, 1969 in bldg 9, Manned Spacecraft Center (MSC). Armstrong is prime crew commander of the Apollo 11 lunar landing mission. Here, he is opening a sample return container. At the right is the Modular Equipment Stowage Assembly (MESA) and the Lunar Module Mockup.

  10. Apollo 13 Astronaut Fred Haise during lunar surface simulation training

    NASA Image and Video Library

    1970-01-19

    S70-24012 (19 Jan. 1970) --- Astronaut Fred W. Haise Jr., lunar module pilot of the Apollo 13 lunar landing mission, participates in lunar surface simulation training at the Manned Spacecraft Center (MSC). Haise is attached to a Six Degrees of Freedom Simulator.

  11. Apollo 13 Astronaut James Lovel during lunar surface simulation training

    NASA Image and Video Library

    1970-01-16

    S70-28229 (16 Jan. 1970) --- Astronaut James A. Lovell Jr., commander of the Apollo 13 lunar landing mission, participates in lunar surface simulation training at the Manned Spacecraft Center. Lovell is attached to a Six Degrees of Freedom Simulator. He is carrying an Apollo Lunar Hand Tools carrier in his right hand.

  12. Astronaut Alan Bean participates in lunar surface simulation

    NASA Image and Video Library

    1969-10-29

    S69-56059 (24 Oct. 1969) --- Astronaut Alan L. Bean, lunar module pilot of the Apollo 12 lunar landing mission, participates in lunar surface simulation training in Building 29 at the Manned Spacecraft Center (MSC). Bean is strapped to a one-sixth gravity simulator.

  13. Surface knowledge and risks to landing and roving - The scale problem

    NASA Technical Reports Server (NTRS)

    Bourke, Roger D.

    1991-01-01

    The role of surface information in the performance of surface exploration missions is discussed. Accurate surface models based on direct measurements or inference are considered to be an important component in mission risk management. These models can be obtained using high resolution orbital photography or a combination of laser profiling, thermal inertia measurements, and/or radar. It is concluded that strategies for Martian exploration should use high confidence models to achieve maximum performance and low risk.

  14. Design of a lunar surface structure

    NASA Astrophysics Data System (ADS)

    Mottaghi, Sohrob

    The next step for manned exploration and settlement is a return to the Moon. In such a return, the most challenging task is the construction of structures for habitation, considering the Moon's hostile environment. Therefore the question is: What is the best way to erect habitable structures on the lunar surface? Given the cost associated with bringing material to the Moon, In-Situ Resource Utilization (ISRU) is viewed by most as the basis for a successful manned exploration and settlement of the Solar system. Along these lines, we propose an advanced concept where the use of freeform fabrication technologies by autonomous mini-robots can form the basis for habitable lunar structures. Also, locally-available magnesium is proposed as the structural material. While it is one of the most pervasive metals in the regolith, magnesium has been only suggested only briefly as a viable option in the past. Therefore, a study has been conducted on magnesium and its alloys, taking into account the availability of the alloying elements on the Moon. An igloo-shaped magnesium structure, covered by sandbags of regolith shielding and supported on a sintered regolith foundation, is considered as a potential design of a lunar base, as well as the test bed for the proposed vision. Three studies are carried out: First a static analysis is conducted which proves the feasibility of the proposed material and method. Second, a thermal analysis is carried out to study the effect of the regolith shielding as well as the sensitivity of such designs to measurement uncertainties of regolith and sintered thermal properties. The lunar thermal environment is modeled for a potential site at 88º latitude in the lunar South Pole Region. Our analysis shows that the uncertainties are in an acceptable range where a three-meter thick shield is considered. Also, the required capacity of a thermal rejection system is estimated, choosing the thermal loads to be those of the Space Station modules. In the

  15. Lunar surface operations. Volume 4: Lunar rover trailer

    NASA Technical Reports Server (NTRS)

    Shields, William; Feteih, Salah; Hollis, Patrick

    1993-01-01

    The purpose of the project was to design a lunar rover trailer for exploration missions. The trailer was designed to carry cargo such as lunar geological samples, mining equipment and personnel. It is designed to operate in both day and night lunar environments. It is also designed to operate with a maximum load of 7000 kilograms. The trailer has a ground clearance of 1.0 meters and can travel over obstacles 0.75 meters high at an incline of 45 degrees. It can be transported to the moon fully assembled using any heavy lift vehicle with a storage compartment diameter of 5.0 meters. The trailer has been designed to meet or exceed the performance of any perceivable lunar vehicle.

  16. Lunar surface construction and assembly equipment study: Lunar Base Systems Study (LBSS) task 5.3

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A set of construction and assembly tasks required on the lunar surface was developed, different concepts for equipment applicable to the tasks determined, and leading candidate systems identified for future conceptual design. Data on surface construction and assembly equipment systems are necessary to facilitate an integrated review of a complete lunar scenario.

  17. Radiation exposure to the orbiting lunar station and lunar surface related to reusable nuclear shuttle operations

    NASA Technical Reports Server (NTRS)

    Hutchinson, P. I.

    1972-01-01

    The radiation environment created by the Reusable Nuclear Vehicle (RNS) in performing its normal mission functions while in the lunar vicinity and the impact of that environment on the Orbiting Lunar Station (OLS) and/or the lunar surface are examined. Lunar surface exposures from the operating reactor were evaluated for both the arrival and departure burns and while there is little probability that manned bases would lie along the paths in which measurable exposures would be recorded, the analyses do indicate the need to consider this possibility in planning such operations. Conclusions supported by the analyses and recommended operational constraints for the RNS are presented.

  18. Space environment and lunar surface processes, 2

    NASA Technical Reports Server (NTRS)

    Comstock, G. M.

    1982-01-01

    The top few millimeters of a surface exposed to space represents a physically and chemically active zone with properties different from those of a surface in the environment of a planetary atmosphere. To meet the need or a quantitative synthesis of the various processes contributing to the evolution of surfaces of the Moon, Mercury, the asteroids, and similar bodies, (exposure to solar wind, solar flare particles, galactic cosmic rays, heating from solar radiation, and meteoroid bombardment), the MESS 2 computer program was developed. This program differs from earlier work in that the surface processes are broken down as a function of size scale and treated in three dimensions with good resolution on each scale. The results obtained apply to the development of soil near the surface and is based on lunar conditions. Parameters can be adjusted to describe asteroid regoliths and other space-related bodies.

  19. Rough and Steep Terrain Lunar Surface Mobility

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian

    2005-01-01

    In the summer of 2004, the NASA Exploration Systems Mission Directorate conducted an open call for projects relevant to human and robotic exploration of the Earth-Moon and Mars systems. A project entitled 'Rough and Steep Terrain Lunar Surface Mobility' was submitted by JPL and accepted by NASA. The principal investigator of this project describes the robotic vehicle being developed for this effort, which includes six 'wheels-on-legs' so that it can roll efficiently on relatively smooth terrain but walk (using locked wheels as footpads) when "the going gets rough".

  20. Rough and Steep Terrain Lunar Surface Mobility

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian

    2005-01-01

    In the summer of 2004, the NASA Exploration Systems Mission Directorate conducted an open call for projects relevant to human and robotic exploration of the Earth-Moon and Mars systems. A project entitled 'Rough and Steep Terrain Lunar Surface Mobility' was submitted by JPL and accepted by NASA. The principal investigator of this project describes the robotic vehicle being developed for this effort, which includes six 'wheels-on-legs' so that it can roll efficiently on relatively smooth terrain but walk (using locked wheels as footpads) when "the going gets rough".

  1. Improved Estimation Model of Lunar Surface Temperature

    NASA Astrophysics Data System (ADS)

    Zheng, Y.

    2015-12-01

    Lunar surface temperature (LST) is of great scientific interest both uncovering the thermal properties and designing the lunar robotic or manned landing missions. In this paper, we proposed the improved LST estimation model based on the one-dimensional partial differential equation (PDE). The shadow and surface tilts effects were combined into the model. Using the Chang'E (CE-1) DEM data from the Laser Altimeter (LA), the topographic effect can be estimated with an improved effective solar irradiance (ESI) model. In Fig. 1, the highest LST of the global Moon has been estimated with the spatial resolution of 1 degree /pixel, applying the solar albedo data derived from Clementine UV-750nm in solving the PDE function. The topographic effect is significant in the LST map. It can be identified clearly the maria, highland, and craters. The maximum daytime LST presents at the regions with low albedo, i.g. mare Procellarum, mare Serenitatis and mare Imbrium. The results are consistent with the Diviner's measurements of the LRO mission. Fig. 2 shows the temperature variations at the center of the disk in one year, assuming the Moon to be standard spherical. The seasonal variation of LST at the equator is about 10K. The highest LST occurs in early May. Fig.1. Estimated maximum surface temperatures of the global Moon in spatial resolution of 1 degree /pixel

  2. Rover wheel charging on the lunar surface

    NASA Astrophysics Data System (ADS)

    Jackson, Telana L.; Farrell, William M.; Zimmerman, Michael I.

    2015-03-01

    The environment at the Moon is dynamic, with highly variable solar wind plasma conditions at the lunar dayside, terminator, and night side regions. Moving objects such as rover wheels will charge due to contact electrification with the surface, but the degree of charging is controlled by the local plasma environment. Using a dynamic charging model of a wheel, it is demonstrated herein that moving tires will tribocharge substantially when venturing into plasma-current starved regions such as polar craters or the lunar nightside. The surface regolith distribution and the overall effect on charge accumulation of grains cohesively sticking to the rover tire has been incorporated into the model. It is shown that dust sticking can limit the overall charge accumulated on the system. However charge dissipation times are greatly increased in shadowed regions and can present a potential hazard to astronauts and electrical systems performing extra-vehicular activities. We show that dissipation times change with wheel composition and overall system tribocharging is dependent upon wheel velocity.

  3. LADEEView: Elemental Composition Analysis of Lunar Surface

    NASA Astrophysics Data System (ADS)

    Nikolic, D.; Darrach, M.

    2016-10-01

    LadeeView is a comprehensive lunar data analyzer with modular architecture. Mass spectrometry module is designed to map elemental abundances along the LADEE spacecraft trajectories. These maps are useful input for future models of lunar exosphere.

  4. Apollo 17 Astronaut Harrison Schmitt Collects Lunar Rock Samples

    NASA Technical Reports Server (NTRS)

    1972-01-01

    In this Apollo 17 onboard photo, Lunar Module pilot Harrison H. Schmitt collects rock samples from a huge boulder near the Valley of Tourus-Littrow on the lunar surface. The seventh and last manned lunar landing and return to Earth mission, the Apollo 17, carrying a crew of three astronauts: Schmitt; Mission Commander Eugene A. Cernan; and Command Module pilot Ronald E. Evans, lifted off on December 7, 1972 from the Kennedy Space Flight Center (KSC). Scientific objectives of the Apollo 17 mission included geological surveying and sampling of materials and surface features in a preselected area of the Taurus-Littrow region, deploying and activating surface experiments, and conducting in-flight experiments and photographic tasks during lunar orbit and transearth coast (TEC). These objectives included: Deployed experiments such as the Apollo lunar surface experiment package (ALSEP) with a Heat Flow experiment, Lunar seismic profiling (LSP), Lunar surface gravimeter (LSG), Lunar atmospheric composition experiment (LACE) and Lunar ejecta and meteorites (LEAM). The mission also included Lunar Sampling and Lunar orbital experiments. Biomedical experiments included the Biostack II Experiment and the BIOCORE experiment. The mission marked the longest Apollo mission, 504 hours, and the longest lunar surface stay time, 75 hours, which allowed the astronauts to conduct an extensive geological investigation. They collected 257 pounds (117 kilograms) of lunar samples with the use of the Marshall Space Flight Center designed Lunar Roving Vehicle (LRV). The mission ended on December 19, 1972

  5. Apollo 12 Mission image - Lunar surface near lunar module

    NASA Image and Video Library

    1969-11-19

    AS12-47-6949 (19-20 Nov. 1969) --- A photograph of the Apollo 12 lunar landing site taken during the extravehicular activity (EVA) of astronauts Charles Conrad Jr., commander; and Alan L. Bean, lunar module pilot. The Apollo 12 Lunar Module (LM) is on the left. Barely visible in the center of the picture, in the shadows on the farside of the crater, is the Surveyor 3 spacecraft. The two spacecraft are about 600 feet apart. Conrad and Bean walked over to Surveyor 3 during their second EVA. The television camera and several other pieces were taken from Surveyor 3 and brought back to Earth for scientific examination. Astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit, while astronauts Conrad and Bean descended in the LM to explore the moon. The considerable glare in the picture is caused by the position of the sun. The Apollo tool carrier is the object next to the LM footpad.

  6. Lunar surface operations. Volume 3: Robotic arm for lunar surface vehicle

    NASA Technical Reports Server (NTRS)

    Shields, William; Feteih, Salah; Hollis, Patrick

    1993-01-01

    A robotic arm for a lunar surface vehicle that can help in handling cargo and equipment, and remove obstacles from the path of the vehicle is defined as a support to NASA's intention to establish a lunar based colony by the year 2010. Its mission would include, but not limited to the following: exploration, lunar sampling, replace and remove equipment, and setup equipment (e.g. microwave repeater stations). Performance objectives for the robotic arm include a reach of 3 m, accuracy of 1 cm, arm mass of 100 kg, and lifting capability of 50 kg. The end effectors must grip various sizes and shapes of cargo; push, pull, turn, lift, or lower various types of equipment; and clear a path on the lunar surface by shoveling, sweeping aside, or gripping the obstacle present in the desired path. The arm can safely complete a task within a reasonable amount of time; the actual time is dependent upon the task to be performed. The positioning of the arm includes a manual backup system such that the arm can be safely stored in case of failure. Remote viewing and proximity and positioning sensors are incorporated in the design of the arm. The following specific topic are addressed in this report: mission and requirements, system design and integration, mechanical structure, modified wrist, structure-to-end-effector interface, end-effectors, and system controls.

  7. Lunar surface operations. Volume 3: Robotic arm for lunar surface vehicle

    NASA Astrophysics Data System (ADS)

    Shields, William; Feteih, Salah; Hollis, Patrick

    1993-07-01

    A robotic arm for a lunar surface vehicle that can help in handling cargo and equipment, and remove obstacles from the path of the vehicle is defined as a support to NASA's intention to establish a lunar based colony by the year 2010. Its mission would include, but not limited to the following: exploration, lunar sampling, replace and remove equipment, and setup equipment (e.g. microwave repeater stations). Performance objectives for the robotic arm include a reach of 3 m, accuracy of 1 cm, arm mass of 100 kg, and lifting capability of 50 kg. The end effectors must grip various sizes and shapes of cargo; push, pull, turn, lift, or lower various types of equipment; and clear a path on the lunar surface by shoveling, sweeping aside, or gripping the obstacle present in the desired path. The arm can safely complete a task within a reasonable amount of time; the actual time is dependent upon the task to be performed. The positioning of the arm includes a manual backup system such that the arm can be safely stored in case of failure. Remote viewing and proximity and positioning sensors are incorporated in the design of the arm. The following specific topic are addressed in this report: mission and requirements, system design and integration, mechanical structure, modified wrist, structure-to-end-effector interface, end-effectors, and system controls.

  8. Astronaut Alan B. Shepard in lunar surface simulation training

    NASA Image and Video Library

    1970-07-21

    S70-46191 (July 1970) --- Astronaut Alan B. Shepard Jr., commander of the Apollo 14 lunar landing mission, participates in lunar surface training at the Kennedy Space Center (KSC). Shepard is adjusting a camera mounted to the modular equipment transporter (MET). The MET, nicknamed the "Rickshaw", will serve as a portable work bench with a place for the Apollo lunar hand tools and their carrier, three cameras, two sample container bags, a special environment sample container, spare magazines, and a lunar surface Penetrometer. Shepard is wearing an Extravehicular Mobility Unit (EMU).

  9. Astronaut Alan B. Shepard in lunar surface simulation training

    NASA Image and Video Library

    1970-07-21

    S70-46157 (July 1970) --- Astronaut Alan B. Shepard Jr., commander of the Apollo 14 lunar landing mission, participates in lunar surface simulation training at the Kennedy Space Center (KSC). The modular equipment transporter (MET) is in the left background, in the center foreground is a gnomon. The MET, nicknamed the "Rickshaw", will serve as a portable work bench with a place for the Apollo lunar hand tools and their carrier, three cameras, two sample container bags, a special environment sample container, spare magazines, and a lunar surface Penetrometer. Shepard is wearing an Extravehicular Mobility Unit (EMU).

  10. A Radiation Analysis of Lunar Surface Habitats

    NASA Astrophysics Data System (ADS)

    de Angelis, G.; Wilson, J. W.; Tripathi, R. K.; Clowdsley, M. S.

    2002-01-01

    An analysis is performed on the radiation environment found on the surface of the Moon, and applied to different possible lunar base mission scenarios. An optimization technique has been used to minimize the astronaut radiation exposure and at the same time control the effect of shielding, in terms of mass addition and material choice, as a mission cost driver. The optimization process performs minimization of mass along all phases of a mission scenario, considered in terms of time frame, equipment, location, crew characteristics and performance required, radiation exposure annual and career limit constraints (those proposed in NCRP 132), and implementation of the ALARA principle. On the lunar surface the most important contribution to radiation exposure is given by background Galactic Cosmic Rays (GCR) particles, and by locally induced particles, mostly neutrons, generated by interaction between GCRs and surface material. In this environment manned habitats are to host future crews involved in the construction and/or in the utilization of moon based infrastructure. Three different kinds of lunar missions are considered in the analysis, Moon Base Construction Phase, during which astronauts are on the surface just to build an outpost for future resident crews, Moon Base Outpost Phase, during which astronaut crews are resident but continuing exploration and installation activities, and Moon Base Routine Phase, with shifting resident crews. In each scenario various kinds of habitats, from very simple shelters to more complex bases, are considered in detail (e.g, shape, thickness, materials, etc) with considerations of various shielding strategies. The results for all scenarios clearly showed that the direct exposure to the space environment like in transfers and EVAs phases gives the most of the dose, with the proposed shielded habitats and shelters giving quite a good protection from radiation. Material choice and distribution in the habitable sections of spacecraft

  11. Coesite and stishovite in a shocked lunar meteorite, Asuka-881757, and impact events in lunar surface.

    PubMed

    Ohtani, E; Ozawa, S; Miyahara, M; Ito, Y; Mikouchi, T; Kimura, M; Arai, T; Sato, K; Hiraga, K

    2011-01-11

    Microcrystals of coesite and stishovite were discovered as inclusions in amorphous silica grains in shocked melt pockets of a lunar meteorite Asuka-881757 by micro-Raman spectrometry, scanning electron microscopy, electron back-scatter diffraction, and transmission electron microscopy. These high-pressure polymorphs of SiO(2) in amorphous silica indicate that the meteorite experienced an equilibrium shock-pressure of at least 8-30 GPa. Secondary quartz grains are also observed in separate amorphous silica grains in the meteorite. The estimated age reported by the (39)Ar/(40)Ar chronology indicates that the source basalt of this meteorite was impacted at 3,800 Ma ago, time of lunar cataclysm; i.e., the heavy bombardment in the lunar surface. Observation of coesite and stishovite formed in the lunar breccias suggests that high-pressure impact metamorphism and formation of high-pressure minerals are common phenomena in brecciated lunar surface altered by the heavy meteoritic bombardment.

  12. Lunar Surface Properties from Diviner Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Hayne, Paul; Paige, David; Greenhagen, Benjamin; Bandfield, Joshua; Siegler, Matthew; Lucey, Paul

    2015-04-01

    The thermal behavior of planetary bodies can reveal information about fundamental processes shaping their surfaces and interiors. Diviner [1] has been mapping the Moon's diurnal temperatures since the Lunar Reconnaissance Orbiter (LRO) arrived in 2009, yielding new insights into regolith formation [2, 3], the distribution of volatiles [4, 5], lunar volcanism [6, 7, 8], and impact processes [9]. The Moon's cooling during eclipse provides complementary information on the physical properties of the uppermost surface layer, which can be used to further investigate these and other processes. We used data from Diviner's seven thermal infrared spectral channels to measure surface temperatures before, during and after the 8 Oct., 2014 eclipse. In its standard nadir-pushbroom mode, Diviner maps surface temperatures in a ~6-km swath with a spatial resolution of ~250 m. Using Diviner's independent scanning capability [11], we also targeted two regions of interest on sequential orbits to create a time series of thermal observations: 1) Kepler crater (-38°E, 8°N) and 2) an unnamed nighttime "cold spot" (-33.3°E, 3°N). Pre-eclipse surface temperatures in these regions were ~380 K. As a relatively young Copernican-aged impact crater, Kepler was selected to investigate the abundance and size distribution of rocks in the ejecta and interior. Lunar nighttime "cold spots" are anomalous features around very young impact craters, extending for up to hundreds of crater radii, notable for their low temperatures in the Diviner nighttime data [9]. Although their origins are not fully explained, they are likely the result of in-situ disruption and decompression of regolith during the impact process. The selected cold spot (one of hundreds or even thousands on the lunar surface) was located with good viewing ge- ometry from LRO, and had a diameter of ~10 km surrounding a crater < 1 km in diameter. At Kepler crater, we observed dramatic differences in the amount of cooling related to the

  13. Lunar Surface Systems Supportability Technology Development Roadmap

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony; hide

    2011-01-01

    The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.

  14. Surface magnetometer experiments: Internal lunar properties

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1973-01-01

    Magnetic fields have been measured on the lunar surface at the Apollo 12, 14, 15, and 16 landing sites. The remanent field values at these sites are respectively 38 gammas, 103 gammas (maximum), 3 gammas, and 327 gammas. Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites are compressed and that the scale size of the Apollo 16 remanent field is 5 or = L 100 km. The global eddy current fields, induced by magnetic step transients in the solar wind, were analyzed to calculate an electrical conductivity profile. From nightside data it was found that deeper than 170 km into the moon, the conductivity rises from 0.0003 mhos/m to 0.01 mhos/m at 1000 km depth. Analysis of dayside transient data using a spherically symmetric two-layer model yields a homogeneous conducting core of radios 0.9 R and conductivity sigma = 0.001 mhos/m, surrounded by a nonconducting shell of thickness 0.1 R. This result is in agreement with a nonconducting profile determined from nightside data. The conductivity profile is used to calculate the temperature for an assumed lunar material of peridotite. In an outer layer the temperature rises to 850 to 1050 K, after which it gradually increases to 1200 to 1500 K at a depth of approximately 1000 km.

  15. Apollo 13 crewmen simulate lunar surface EVA during training exercise

    NASA Image and Video Library

    1970-02-04

    S70-27037 (4 Feb. 1970) --- Astronaut James A. Lovell Jr., commander of the Apollo 13 lunar landing mission, simulates lunar surface extravehicular activity during training exercises in the Kennedy Space Center’s Flight Crew Training Building. Lovell, wearing an Extravehicular Mobility Unit (EMU), is holding an Apollo Lunar Hand Tool (a set of tongs) in his left hand. A gnomon is in front of his right foot. A tool carrier is in the right background.

  16. Potential of a New Lunar Surface Radiator Concept for Hot Lunar Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ochoa, Dustin A.; Vogel, Matthew R.; Trevino, Luis A.; Stephan, Ryan A.

    2008-01-01

    The optimum radiator configuration in hot lunar thermal environments is one in which the radiator is parallel to the ground and has no view to the hot lunar surface. However, typical spacecraft configurations have limited real estate available for top-mounted radiators, resulting in a desire to use the spacecraft s vertically oriented sides. Vertically oriented, flat panel radiators will have a large view factor to the lunar surface, and thus will be subjected to significant incident lunar infrared heat. Consequently, radiator fluid temperatures will need to exceed approx.325 K (assuming standard spacecraft radiator optical properties) in order to provide positive heat rejection at lunar noon. Such temperatures are too high for crewed spacecraft applications in which a heat pump is to be avoided. A recent study of vertically oriented radiator configurations subjected to lunar noon thermal environments led to the discovery of a novel radiator concept that yielded positive heat rejection at lower fluid temperatures. This radiator configuration, called the Upright Lunar Terrain Radiator Assembly (ULTRA), has exhibited superior performance to all previously analyzed concepts in terms of heat rejection in the lunar noon thermal environment. A key benefit of the ULTRA is the absence of louvers or other moving parts and its simple geometry. Analysis of the ULTRA for a lunar extravehicular activity (EVA) portable life support system (PLSS) is shown to provide moderate heat rejection, on average, at all solar incident angles assuming an average radiator temperature of 294 K, whereas prior concepts exhibited insignificant heat rejection or heat absorption at higher incident angles. The performance of the ULTRA for a lunar lander is also discussed and compared to the performance of a vertically oriented, flat panel radiator at various lunar latitudes.

  17. Potential of a New Lunar Surface Radiator Concept for Hot Lunar Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ochoa, Dustin A.; Vogel, Matthew R.; Trevino, Luis A.; Stephan, Ryan A.

    2008-01-01

    The optimum radiator configuration in hot lunar thermal environments is one in which the radiator is parallel to the ground and has no view to the hot lunar surface. However, typical spacecraft configurations have limited real estate available for top-mounted radiators, resulting in a desire to use the spacecraft s vertically oriented sides. Vertically oriented, flat panel radiators will have a large view factor to the lunar surface, and thus will be subjected to significant incident lunar infrared heat. Consequently, radiator fluid temperatures will need to exceed approx.325 K (assuming standard spacecraft radiator optical properties) in order to provide positive heat rejection at lunar noon. Such temperatures are too high for crewed spacecraft applications in which a heat pump is to be avoided. A recent study of vertically oriented radiator configurations subjected to lunar noon thermal environments led to the discovery of a novel radiator concept that yielded positive heat rejection at lower fluid temperatures. This radiator configuration, called the Upright Lunar Terrain Radiator Assembly (ULTRA), has exhibited superior performance to all previously analyzed concepts in terms of heat rejection in the lunar noon thermal environment. A key benefit of the ULTRA is the absence of louvers or other moving parts and its simple geometry. Analysis of the ULTRA for a lunar extravehicular activity (EVA) portable life support system (PLSS) is shown to provide moderate heat rejection, on average, at all solar incident angles assuming an average radiator temperature of 294 K, whereas prior concepts exhibited insignificant heat rejection or heat absorption at higher incident angles. The performance of the ULTRA for a lunar lander is also discussed and compared to the performance of a vertically oriented, flat panel radiator at various lunar latitudes.

  18. Plasma sheet at lunar distance - Characteristics and interactions with the lunar surface

    NASA Technical Reports Server (NTRS)

    Rich, F. J.; Reasoner, D. L.; Burke, W. J.

    1973-01-01

    The plasma sheet at lunar distance is investigated with the use of data from the charged particle lunar environment experiment (CPLEE), complemented with data from the Explorer 35/ARC magnetometer. It is shown that the presence of the lunar surface does not appreciably affect measurements of the plasma sheet characteristics by the lunar-based CPLEE instrument. In particular, the lunar surface generally does not shadow plasma sheet particles. This may be due to rapid random passage (greater than 40 km/sec) of magnetotail field lines with respect to the lunar surface or to diffusion of plasma sheet electrons into the flux tubes in contact with the lunar surface. The plasma sheet is generally observed as a rapid increase in observed particle fluxes and a simultaneous decrease in field strength. A statistical analysis of the CPLEE data shows that the plasma sheet in the midnight sector has a thickness of 5 R sub E plus or minus 2 R sub E. Geomagnetic activity reduces the probability of encounters between the moon and the plasma sheet.

  19. Lunar Resource Assessment: Strategies for Surface Exploration

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.

    1992-01-01

    Use of the indigenous resources of space to support long-term human presence is an essential element of the settlement of other planetary bodies. We are in a very early stage of understanding exactly how and under what circumstances space resources will become important. The materials and processes to recover them that we now think are critical may not ultimately be the raison d'etre for a resource utilization program. However, the need for strategic thinking proceeds in parallel with efforts to implement such plans and it is not too soon to begin thinking how we could and should use the abundant resources of materials and energy available from the Moon. The following commodities from the Moon are discussed: (1) bulk regolith, for shielding and construction on the lunar surface (ultimately for export to human-tended stations in Earth-Moon space), and (2) oxygen and hydrogen, for propellant and life support.

  20. The Apollo 17 Lunar Surface Journal

    SciTech Connect

    Jones, E.M.

    1995-08-01

    The material included in the Apollo 17 Lunar Surface Journal has been assembled so that an uninitiated reader can understand, in some detail, what happened during Apollo 17 and why and what was learned, particularly about living and working on the Moon. At its heart, the Journal consists a corrected mission transcript which is interwoven with commentary by the crew and by Journal Editor -- commentary which, we hope, will make the rich detail of Apollo 17 accessible to a wide audience. To make the Journal even more accessible, this CD-ROM publication contains virtually all of the Apollo 17 audio, a significant fraction of the photographs and a selection of drawings, maps, video clips, and background documents.

  1. Remanent magnetization of the lunar surface.

    NASA Technical Reports Server (NTRS)

    Pearce, G. W.; Strangway, D. W.; Gose, W. A.

    1972-01-01

    Two lines of evidence support each other in suggesting that a large volume of the rocks near the lunar surface possess a uniform remanent magnetization with an intensity of about .000002 emu/g. The first line is the discovery by several groups of investigators of weak but stable remanent magnetizations in igneous samples returned from the first four Apollo missions. Although the mechanism of acquisition of this remanence has not been definitely established, several lines of evidence, including thermal demagnetization, suggest that it is a thermoremanent magnetization (TRM) carried by iron. Many of the breccias are similarly magnetized. The second line is the measurement of significant fields at the Apollo sites and the discovery of large-scale anomalies by the sub-satellite magnetometer experiment.

  2. Examining the Uppermost Surface of the Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2010-01-01

    This slide presentation reviews the examination of the uppermost surface of the lunar regolith. It shows the mechanism (i.e. a Clam Shell Sampling Device) that was used to retrieve samples of the surface of the lunar soil. Samples were obtained from the devices, and they were examined in the scanning electron microscope (SEM). Using a lunar simulant, JSC-1a, test were run to ascertain if the sample from the clam shell device were biased due to the collection. The results of the test were that all the fine grains analyzed to the limit of the capabilities were found to be lunar in composition, though non-lunar contaminants may exist in the submicron population. Further work is required, though the initial study shows that the uppermost surface is enriched in fine (< 2 micron grains) compared to the bulk soil.

  3. Enlarged View - Hypervelocity Impact - Lunar Surface Material - CA

    NASA Image and Video Library

    1970-01-06

    S70-20416 (December 1969) --- Enlarged view show hypervelocity impact on iron particles of lunar surface material returned to Earth by the crew of the Apollo 11 lunar landing mission. This photograph, enlarged to 270 times the actual size, was taken by Dr. G. J. Wasserberg, J. DeVaney and K. Evans at the California Institute of Technology.

  4. The average chemical composition of the lunar surface

    NASA Technical Reports Server (NTRS)

    Turkevich, A. L.

    1973-01-01

    The available analytical data from twelve locations on the moon are used to estimate the average amounts of the principal chemical elements (O, Na, Mg, Al, Si, Ca, Ti, and Fe) in the mare, the terra, and the average lunar surface regolith. These chemical elements comprise about 99% of the atoms on the lunar surface. The relatively small variability in the amounts of these elements at different mare (or terra) sites, and the evidence from the orbital measurements of Apollo 15 and 16, suggest that the lunar surface is much more homogeneous than the surface of the earth. The average chemical composition of the lunar surface may now be known as well as, if not better than, that of the solid part of the earth's surface.

  5. Enabling Technology for Lunar Surface Science

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Millar, P. S.; Beaman, B.; Choi, M.; Cooper, L.; Feng, S.; King, R.; Leshin, L.; Lewis, R.; Yeh, P. S.; Young, E.; Lorenz, J.

    2009-03-01

    Implementation of Lunar Exploration Initiative goals will require deployment of science packages at sites with the appropriate vantage point for obtaining the desired measurements and remote from potential (human) sources of contamination, thus requiring stand alone operation. Chief instruments/instrument package candidates include those which could provide long-term monitoring of the surface and subsurface environments for fundamental lunar science and crew safety. The major challenge such packages face will be operating during long periods of darkness in extreme cold potentially without the Pu238 based power and thermal systems available to Apollo era packages (ALSEP). The initial attempt to design a 10 instrument environmental monitoring package with a solar/battery based power system led to a package with a unacceptably large mass (500 kg) of which over half was battery mass. We achieved considerable reduction in this mass, first through the introduction of high performance electronics capable of operating at far lower temperature, reducing the initial mass estimate by a factor of 2, and then through the use of innovative thermal balance strategies involving the use of multi-layer thin materials and gravity-assisted heat pipes, reducing the initial mass estimate by a factor of 5. Yet to be implemented are strategies involving the universal incorporation of ULT/ULP (Ultra Low Temperature/Ultra Low Power) digital and analog electronics, distributed or non-conventionally packaged power systems, and state of the art solar power technology. These strategies will be required to meet the far more challenging thermal requirements of operating through a normal 28 day diurnal cycle. Limited battery survival temperature range remains the largest obstacle.

  6. Multispectral mapping of the lunar surface using groundbased telescopes

    NASA Technical Reports Server (NTRS)

    Mccord, T. B.; Pieters, C.; Feirberg, M. A.

    1976-01-01

    Images of the lunar surface were obtained at several wavelengths using a silicon vidicon imaging system and groundbased telescopes. These images were recorded and processed in digital form so that quantitative information is preserved. The photometric precision of the images is shown to be better than 1 percent. Ratio images calculated by dividing images obtained at two wavelengths (0.40/0.56 micrometer) and 0.95/0.56 micrometer are presented for about 50 percent of the lunar frontside. Spatial resolution is about 2 km at the sub-earth point. A complex of distinct units is evident in the images. Earlier work with the reflectance spectrum of lunar materials indicates that for the most part these units are compositionally distinct. Digital images of this precision are extremely useful to lunar geologists in disentangling the history of the lunar surface.

  7. The Detection of Impact Ejecta on the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Li, Y. W.; Srama, R.; Grun, E.

    2014-04-01

    Based on the recent data, the LDEX (Lunar Dust EXperiment) sensor onboard lunar orbiter LADEE (Lunar Atmosphere and Dust Environment Explorer) already identified the existence of a dust cloud above the lunar surface down to 10 km [1]. Instruments placed on the lunar surface can monitor both secondary ejecta of interplanetary dust impact and lofted dust by electric force. This paper will fucus on the measurement for impact ejecta. Considering the trajectory of the ejecta, we suggest to mount the instrument with a elevation angle of + 15±. The detection of falling down ejecta population is considered as the main science goal. We recorded to add a articulate mechanism to allow the detector scanning by at lest ± 15±) in order to sperate the two ejcta populations.

  8. Partial view of the deployed Apollo Lunar Surface Experiments Package

    NASA Image and Video Library

    1972-04-21

    AS16-113-18347 (21 April 1972) --- A partial view of the Apollo 16 Apollo Lunar Surface Experiments Package (ALSEP) in deployed configuration on the lunar surface as photographed during the mission's first extravehicular activity (EVA), on April 21, 1972. The Passive Seismic Experiment (PSE) is in the foreground center; Central Station (C/S) is in center background, with the Radioisotope Thermoelectric Generator (RTG) to the left. One of the anchor flags for the Active Seismic Experiment (ASE) is at right. While astronauts John W. Young, commander; and Charles M. Duke Jr., lunar module pilot; descended in the Apollo 16 Lunar Module (LM) "Orion" to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.

  9. Lunar Surface Habitat Configuration Assessment: Methodology and Observations

    NASA Technical Reports Server (NTRS)

    Carpenter, Amanda

    2008-01-01

    The Lunar Habitat Configuration Assessment evaluated the major habitat approaches that were conceptually developed during the Lunar Architecture Team II Study. The objective of the configuration assessment was to identify desired features, operational considerations, and risks to derive habitat requirements. This assessment only considered operations pertaining to the lunar surface and did not consider all habitat conceptual designs developed. To examine multiple architectures, the Habitation Focus Element Team defined several adequate concepts which warranted the need for a method to assess the various configurations. The fundamental requirement designed into each concept included the functional and operational capability to support a crew of four on a six-month lunar surface mission; however, other conceptual aspects were diverse in comparison. The methodology utilized for this assessment consisted of defining figure of merits, providing relevant information, and establishing a scoring system. In summary, the assessment considered the geometric configuration of each concept to determine the complexity of unloading, handling, mobility, leveling, aligning, mating to other elements, and the accessibility to the lunar surface. In theory, the assessment was designed to derive habitat requirements, potential technology development needs and identify risks associated with living and working on the lunar surface. Although the results were more subjective opposed to objective, the assessment provided insightful observations for further assessments and trade studies of lunar surface habitats. This overall methodology and resulting observations will be describe in detail and illustrative examples will be discussed.

  10. APOLLO 16 ASTRONAUTS CHECK OUT LUNAR ROVER VEHICLE 2 [LRV-2

    NASA Technical Reports Server (NTRS)

    1971-01-01

    In the Manned Spacecraft Operations Building, Apollo 16 lunar module pilot Charles M. Duke [left] and commander John Young checked out operation of Lunar Roving Vehicle 2 [LRV-2] which will carry them on Traverses of the Moon's surface. As they simulated an EVA on the moon they activated all LRV systems to assure operation within design specifications. Apollo 16 backup commander Fred Haise and Backup lunar module pilot Edgar Mitchell also simulated a mission on the lunar surface during the day. Apollo 16 is scheduled for launch from the Kennedy Space Center on March 17, 1972.

  11. APOLLO 16 ASTRONAUTS CHECK OUT LUNAR ROVER VEHICLE 2 [LRV-2

    NASA Technical Reports Server (NTRS)

    1971-01-01

    In the Manned Spacecraft Operations Building, Apollo 16 lunar module pilot Charles M. Duke [left] and commander John Young checked out operation of Lunar Roving Vehicle 2 [LRV-2] which will carry them on Traverses of the Moon's surface. As they simulated an EVA on the Moon they activated all LRV systems to assure operation within design specifications. Apollo 16 backup commander Fred Haise and Backup lunar module pilot Edgar Mitchell also simulated a mission on the lunar surface during the day. Apollo 16 is scheduled for launch from the Kennedy Space Center on March 17, 1972.

  12. "Roving" Interdisciplinary Professors

    ERIC Educational Resources Information Center

    Gross, Karen; Myrka, Anne

    2009-01-01

    In an effort to find a feasible way to provide quality interdisciplinary teaching on a small campus, Southern Vermont College has introduced a program called Roving Professors. The Rovers, a select group of professors, visit multiple classes across the college's five divisions, and each one integrates his or her specialty into each course visited,…

  13. APOLLO 16 ASTRONAUTS PRACTICE LUNAR ROVER DEPLOYMENT

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Apollo 16 astronauts John W. Young, left, and Charles M. Duke, Jr., practice deploying a training version for the lunar roving vehicle from a full-scale lunar module mockup at the Kennedy Space Center's Flight Crew Training Building.

  14. Recent outgassing from the lunar surface: The Lunar Prospector Alpha Particle Spectrometer

    NASA Astrophysics Data System (ADS)

    Lawson, Stefanie L.; Feldman, William C.; Lawrence, David J.; Moore, Kurt R.; Elphic, Richard C.; Belian, Richard D.; Maurice, Sylvestre

    2005-09-01

    The Lunar Prospector Alpha Particle Spectrometer (APS) was designed to detect characteristic-energy alpha particles from the decay of Rn-222, Po-218, and Po-210 and to therefore map sites of radon release on the lunar surface. These three nuclides are radioactive daughters from the decay of U-238 hence the background level of alpha particle activity is a function of the lunar crustal uranium distribution. Radon reaches the lunar surface either at areas of high soil porosity or where fissures release the trapped gases in which radon is entrained. Once released, the radon spreads out by ``bouncing'' across the surface on ballistic trajectories in a random-walk process. The half-life of Rn-222 allows the gas to spread out by several hundred kilometers before it decays (depositing approximately half of the Po-218 recoil nuclides on the lunar surface) and allows the APS to detect gas release events up to several days after they occur. The long residence time of the Pb-210 precursor to Po-210 allows the mapping of gas vents which have been active over the last approximately 60 years. The APS found only a faint indication of Po-218 alpha particles. However, the Rn-222 alpha particle map shows that radon gas was emanating from the vicinity of craters Aristarchus and Kepler at the time of Lunar Prospector. The Po-210 alpha particle distribution reveals a variability in time and space of lunar gas release events. Po-210 and Rn-222 detections are associated with both thorium enhancements and lunar pyroclastic deposits.

  15. Astronaut Harrison Schmitt inside the lunar module on lunar surface after EVA

    NASA Image and Video Library

    1972-12-13

    AS17-134-20530 (11 Dec. 1972) --- Astronaut Harrison H. Schmitt, lunar module pilot, displays several days of growth on his beard aboard the Lunar Module (LM) prior to its liftoff from the moon's surface. The photograph was taken by astronaut Eugene A. Cernan, mission commander. The two later re-joined astronaut Ronald E. Evans, who was orbiting the moon in the Apollo 17 Command and Service Modules (CSM).

  16. Apollo lunar surface experiments package. Apollo 17 ALSEP (array E) familiarization course handout

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The familiarization course for the Apollo 17 ALSEP (ARRAY E) is presented. The subjects discussed are: (1) power and data subsystems, (2) lunar surface gravimeter, (3) lunar mass spectrometer, (4) lunar seismic profiling experiment, and (5) heat flow experiment.

  17. Lunar Surface Architecture Utilization and Logistics Support Assessment

    NASA Astrophysics Data System (ADS)

    Bienhoff, Dallas; Findiesen, William; Bayer, Martin; Born, Andrew; McCormick, David

    2008-01-01

    Crew and equipment utilization and logistics support needs for the point of departure lunar outpost as presented by the NASA Lunar Architecture Team (LAT) and alternative surface architectures were assessed for the first ten years of operation. The lunar surface architectures were evaluated and manifests created for each mission. Distances between Lunar Surface Access Module (LSAM) landing sites and emplacement locations were estimated. Physical characteristics were assigned to each surface element and operational characteristics were assigned to each surface mobility element. Stochastic analysis was conducted to assess probable times to deploy surface elements, conduct exploration excursions, and perform defined crew activities. Crew time is divided into Outpost-related, exploration and science, overhead, and personal activities. Outpost-related time includes element deployment, EVA maintenance, IVA maintenance, and logistics resupply. Exploration and science activities include mapping, geological surveys, science experiment deployment, sample analysis and categorizing, and physiological and biological tests in the lunar environment. Personal activities include sleeping, eating, hygiene, exercising, and time off. Overhead activities include precursor or close-out tasks that must be accomplished but don't fit into the other three categories such as: suit donning and doffing, airlock cycle time, suit cleaning, suit maintenance, post-landing safing actions, and pre-departure preparations. Equipment usage time, spares, maintenance actions, and Outpost consumables are also estimated to provide input into logistics support planning. Results are normalized relative to the NASA LAT point of departure lunar surface architecture.

  18. Astronaut Charles Conrad during extravehicular activity on lunar surface

    NASA Image and Video Library

    1969-11-20

    AS12-48-7149 (20 Nov. 1969) --- A close-up view of astronaut Charles Conrad Jr., commander of the Apollo 12 lunar landing mission, photographed during the extravehicular activity (EVA) on the surface of the moon. An EVA checklist is on Conrad's left wrist. A set of tongs, an Apollo Lunar Hand Tool (ALHT), is held in his right hand. Several footprints can be seen. Astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit while astronauts Conrad and Alan L. Bean, lunar module pilot, descended in the LM to explore the moon. Note lunar soil on the suit of Conrad, especially around the knees and below.

  19. Molten Materials Transfer and Handling on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Curreri, Peter A.; Sen, Subhayu

    2008-01-01

    Electrolytic reduction processes as a means to provide pure elements for lunar resource utilization have many advantages. Such processes have. the potential of removing all the oxygen from the lunar soil for use in life support and for propellant. Electrochemical reduction also provides a direct path for the. production of pure metals and silicon which can be utilized for in situ manufacturing and power production. Some of the challenges encountered in the electrolytic reduction processes include the feeding of the electrolytic cell (the transfer of electrolyte containing lunar soil), the withdrawal of reactants and refined products such as the liquidironsiliconalloy with a number of impurities, and the spent regolith slag, produced in the hot electrolytic cell for the reduction of lunar regolith. The paper will discuss some of the possible solutions to the challenges of handling molten materials on the lunar surface, as well as the path toward the construction and testing of a proof-of-concept facility.

  20. Characterization of lunar surface materials for use in construction

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Burns, Jack O.

    1992-01-01

    The Workshop on the Concept of a Common Lunar Lander, which was held at the NASA Johnson Space Center on July 1 and 2, 1991, discussed potential payloads to be placed on the Moon by a common, generic, unmanned, vehicle beginning late in this decade. At this workshop, a variety of payloads were identified including a class of one-meter (and larger) optical telescopes to operate on the lunar surface. These telescopes for lunar-based astronomy are presented in an earlier section of this report. The purpose of this section is to suggest that these and other payloads for the Common Lunar Lander be used to facilitate technology development for the proposed 16-meter Aperture UV/Visible/IR Large Lunar Telescope (LLT) and a large optical aperture-synthesis instrument analogous to the Very Large Array of the National Radio Astronomy Observatory.

  1. Molten Materials Transfer and Handling on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Curreri, Peter A.; Sen, Subhayu

    2008-01-01

    Electrolytic reduction processes as a means to provide pure elements for lunar resource utilization have many advantages. Such processes have. the potential of removing all the oxygen from the lunar soil for use in life support and for propellant. Electrochemical reduction also provides a direct path for the. production of pure metals and silicon which can be utilized for in situ manufacturing and power production. Some of the challenges encountered in the electrolytic reduction processes include the feeding of the electrolytic cell (the transfer of electrolyte containing lunar soil), the withdrawal of reactants and refined products such as the liquidironsiliconalloy with a number of impurities, and the spent regolith slag, produced in the hot electrolytic cell for the reduction of lunar regolith. The paper will discuss some of the possible solutions to the challenges of handling molten materials on the lunar surface, as well as the path toward the construction and testing of a proof-of-concept facility.

  2. Autonomous Navigation Error Propagation Assessment for Lunar Surface Mobility Applications

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.; Connolly, Joseph W.

    2006-01-01

    The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. While navigation systems have already been proven in the Apollo missions to the moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In this document, the results of an autonomous navigation error propagation assessment are provided. The analysis is intended to be the baseline error propagation analysis for which Earth-based and Lunar-based radiometric data are added to compare these different architecture schemes, and quantify the benefits of an integrated approach, in how they can handle lunar surface mobility applications when near the Lunar South pole or on the Lunar Farside.

  3. Panorama view of Apollo 17 Lunar surface photos

    NASA Image and Video Library

    1972-12-01

    Panorama view of Apollo 17 Lunar surface photos for use in presentations to NASA management and for Outreach Education in regard to new NASA initiative for human planetary research. Photo numbers used for this panoramic include: Apollo 17 start frame AS17-147-22572 thru end frame AS17-147-22600. View is of the Apollo Lunar Surface Experiment Package (ALSEP) Station taken during Extravehicular Activity (EVA) 1.

  4. Options for a lunar base surface architecture

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.

    1992-01-01

    The Planet Surface Systems Office at the NASA Johnson Space Center has participated in an analysis of the Space Exploration Initiative architectures described in the Synthesis Group report. This effort involves a Systems Engineering and Integration effort to define point designs for evolving lunar and Mars bases that support substantial science, exploration, and resource production objectives. The analysis addresses systems-level designs; element requirements and conceptual designs; assessments of precursor and technology needs; and overall programmatics and schedules. This paper focuses on the results of the study of the Space Resource Utilization Architecture. This architecture develops the capability to extract useful materials from the indigenous resources of the Moon and Mars. On the Moon, a substantial infrastructure is emplaced which can support a crew of up to twelve. Two major process lines are developed: one produces oxygen, ceramics, and metals; the other produces hydrogen, helium, and other volatiles. The Moon is also used for a simulation of a Mars mission. Significant science capabilities are established in conjunction with resource development. Exploration includes remote global surveys and piloted sorties of local and regional areas. Science accommodations include planetary science, astronomy, and biomedical research. Greenhouses are established to provide a substantial amount of food needs.

  5. Imaging Thermal He(+) from the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Sandel, B. R.; Goldstein, J.; Adrian, M. L.; Spasojevic, M.; Jahn, J.-M.

    2006-01-01

    Extreme ultraviolet observations of He(+) ions by the EUV instrument on the IMAGE spacecraft have dramatically improved our ability to observe plasmasphere dynamics in the inner magnetosphere. These primarily high latitude observations have revealed the phenomenology of thermal density structures and continue to lead us toward a more complete understanding of inner magnetospheric electric fields and plasmaspheric refilling. Recent analyses have brought attention to the disposition of thermal plasma eroded from the plasmasphere and convected into the outer dayside magnetosphere. The extent to which this plasma is lost into the solar wind or recirculated across the polar cap or through the magnetospheric flanks is an important outstanding question that relates to the influence this plasma has on space weather processes in Geospace. A concept for implementation of enhanced EUV observations from the lunar surface to resolve questions about the global circulation of He(+) plasma in the magnetosphere will be presented. The instrument and science package subsystem elements, including anticipated component capabilities and limitations will be discussed. Attention will also be given to the potential impact of dust contamination.

  6. Options for a lunar base surface architecture

    NASA Astrophysics Data System (ADS)

    Roberts, Barney B.

    1992-02-01

    The Planet Surface Systems Office at the NASA Johnson Space Center has participated in an analysis of the Space Exploration Initiative architectures described in the Synthesis Group report. This effort involves a Systems Engineering and Integration effort to define point designs for evolving lunar and Mars bases that support substantial science, exploration, and resource production objectives. The analysis addresses systems-level designs; element requirements and conceptual designs; assessments of precursor and technology needs; and overall programmatics and schedules. This paper focuses on the results of the study of the Space Resource Utilization Architecture. This architecture develops the capability to extract useful materials from the indigenous resources of the Moon and Mars. On the Moon, a substantial infrastructure is emplaced which can support a crew of up to twelve. Two major process lines are developed: one produces oxygen, ceramics, and metals; the other produces hydrogen, helium, and other volatiles. The Moon is also used for a simulation of a Mars mission. Significant science capabilities are established in conjunction with resource development. Exploration includes remote global surveys and piloted sorties of local and regional areas. Science accommodations include planetary science, astronomy, and biomedical research. Greenhouses are established to provide a substantial amount of food needs.

  7. Primary cosmic rays on the lunar surface

    NASA Technical Reports Server (NTRS)

    Vernov, S. N.; Lavrukhina, A. K.

    1977-01-01

    Results are reported for determination of the galactic cosmic ray flux during various time intervals in the 1965-1972 period, on the basis of data from the instruments of a spacecraft that made a soft landing on the lunar surface, and from the radioactivity of samples returned by the spacecraft. During minimum solar activity (the second half of 1965 and the beginning of 1966) I sub 0 (E greater than or equal to 30 percent MeV/nucleon) was determined to be 0.43 (plus or minus 10 percent). These values, within the error limits of the determinations, agree with the corresponding values of galactic cosmic ray intensities determined by stratospheric measurements. The mean flux of galactic cosmic rays over the past million years is equal to I (E greater or equal to 100 MeV/nucleon) + 0.28 (plus or minus 20 percent). This value agrees with the mean flux of modulated cosmic rays during the period of the nineteenth solar cycle. The mean flux of solar protons between 1965 and 1972 was 2.46.

  8. Imaging Thermal He(+) from the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Sandel, B. R.; Goldstein, J.; Adrian, M. L.; Spasojevic, M.; Jahn, J.-M.

    2006-01-01

    Extreme ultraviolet observations of He(+) ions by the EUV instrument on the IMAGE spacecraft have dramatically improved our ability to observe plasmasphere dynamics in the inner magnetosphere. These primarily high latitude observations have revealed the phenomenology of thermal density structures and continue to lead us toward a more complete understanding of inner magnetospheric electric fields and plasmaspheric refilling. Recent analyses have brought attention to the disposition of thermal plasma eroded from the plasmasphere and convected into the outer dayside magnetosphere. The extent to which this plasma is lost into the solar wind or recirculated across the polar cap or through the magnetospheric flanks is an important outstanding question that relates to the influence this plasma has on space weather processes in Geospace. A concept for implementation of enhanced EUV observations from the lunar surface to resolve questions about the global circulation of He(+) plasma in the magnetosphere will be presented. The instrument and science package subsystem elements, including anticipated component capabilities and limitations will be discussed. Attention will also be given to the potential impact of dust contamination.

  9. Development of a Modified Vacuum Cleaner for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.

    2009-01-01

    The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf" vacuum cleaner has been used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating percent removal, relative to the retained simulant on the tested surface. In addition, Scanning Electron Microscopy (SEM) imaging was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner

  10. Development of a Modified Vacuum Cleaner for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf' vacuum cleaner will be used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques in order to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating particulate removal, relative to the retained simulant on the tested surface. In addition, optical microscopy was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has

  11. Mass fractionation of the lunar surface by solar wind sputtering

    NASA Technical Reports Server (NTRS)

    Switkowski, Z. E.; Haff, P. K.; Tombrello, T. A.; Burnett, D. S.

    1977-01-01

    An investigation is conducted concerning the mass-fractionation effects produced in connection with the bombardment of the moon by the solar wind. Most of the material ejected by sputtering escapes the moon's gravity, but some returning matter settles back onto the lunar surface. This material, which is somewhat richer in heavier atoms than the starting surface, is incorporated into the heavily radiation-damaged outer surfaces of grains. The investigation indicates that sputtering of the lunar surface by the solar wind will give rise to significant surface heavy atom enrichments if the grain surfaces are allowed to come into sputtering equilibrium.

  12. A Framework for Lunar Surface Science Exploration

    NASA Astrophysics Data System (ADS)

    Eppler, D.; Bleacher, J.; Bell, E.; Cohen, B.; Deans, M.; Evans, C.; Graff, T.; Head, J.; Helper, M.; Hodges, K.; Hurtado, J.; Klaus, K.; Kring, D.; Schmitt, H.; Skinner, J.; Spudis, P.; Tewksbury, B.; Young, K.; Yingst, A.

    2017-05-01

    Successful lunar science will be dependent on mission concept, mobility, robotic/human assets, crew training, field tools, and IT assets. To achieve good science return, element integration must be considered at the start of any exploration program.

  13. Apollo 14 visibility tests: Visibility of lunar surface features and lunar landing

    NASA Technical Reports Server (NTRS)

    Ziedman, K.

    1972-01-01

    An in-flight visibility test conducted on the Apollo 14 mission is discussed. The need for obtaining experimental data on lunar feature visibility arose from visibility problems associated with various aspects of the Apollo missions; and especially from anticipated difficulties of recognizing lunar surface features at the time of descent and landing under certain illumination conditions. Although visibility problems have influenced many other aspects of the Apollo mission, they have been particularly important for descent operations, due to the criticality of this mission phase and the crew's guidance and control role for landing site recognition and touchdown point selection. A series of analytical and photographic studies were conducted during the Apollo program (prior to as well as after the initial manned lunar operations) to delineate constraints imposed on landing operations by visibility limitations. The purpose of the visibility test conducted on Apollo 14 was to obtain data to reduce uncertainties and to extend the analytical models of visibility in the lunar environment.

  14. Matching method of the vision image captured by the lunar rover exploring on lunar surface

    NASA Astrophysics Data System (ADS)

    Li, Lichun; Zhou, Jianliang; Sun, Jun; Shang, Desheng; Xu, Yinghui; Zhang, Wei; Wan, Wenhui

    2014-11-01

    Facing the lunar surface survey of the Lunar Exploring Engineering, the paper summarizes the environment sensing technology based on vision image. For the image matching is the most important step in the process of the lunar exploring images, the accuracy and speed of the matching method is the key problem of the lunar exploring, which play an important role in the rover auto navigating and tele-operating. To conquer difficult problem that there are significant illumination variation of the imaging, lack of image texture, and non-uniform distribution of the image texture, the huge change of the disparity for the prominent target in the scene, in the image process Engineering, the image matching method is proposed which divided the whole image into M×N regions, and each region employs the Forstner algorithm to extract features by which the semi-uniform distribution features of whole image and avoiding of the features gathering is achieved. According to the semi- uniform distribution features, the Sift and Least Square Matching method are used to realize accurate image matching. Guided by the matched features of the first step, the locale plane is detected to restrict dense image registering. The matching experiments show that the method is effective to deal with the image captured by the lunar exploring rover, that has large variation of illumination and lacking of image texture. The robustness and high accuracy of the method is also proved. The method satisfied the request of the lunar surface exploring.

  15. Regolith thickness formation on the lunar surface

    NASA Astrophysics Data System (ADS)

    Hirabayashi, M.; Minton, D.; Melosh, H., IV; Soderblom, J. M.; Milbury, C.; Huang, Y. H.

    2016-12-01

    The surface of the Moon has been cratered by meteorite impacts since its formation. Impacts both create new craters and erase preexisting ones. As a result of long-continued bombardment, some regions are now in equilibrium with respect to crater formation. During the cratering process, the thickness of the accumulated debris (regolith) also evolves. Although this problem has been argued since the Apollo era, the lunar regolith formation has not been well understood, yet. We have developed new numerical and analytical models for computing the time evolution of the spatial distribution of the regolith thickness. The analytical model takes into account the 3-dimensional distribution of the crater formation. Then, we implement a numerical scheme for it into our Cratered Terrain Evolution Model (CTEM) code, a Monte-Carlo simulation tool that computes the evolution of cratered surfaces. Our regolith thickness model considers the detailed regolith formation mechanisms such as the ejecta deposits, uplifted crater rims, a collapse of a transient crater cavity, and the role of seismic shaking created by nearby impacts. Assuming that the initial surface is a fresh, uncratered lava plain, we simulate the evolution of the regolith thickness in the Sinus Medii region. We first verify that the numerical model and the analytical model are consistent. We then investigate the regolith thickness evolution. According to the Neukum production function and the chronology function (Neukum et al. 2001), the age of the Sinus Medii equilibrium is 3 Ga. At this condition, at a depth of 0.25 m from the surface, regolith may completely blanket the Sinus Medii region, which is consistent with Gault et al. (1974). However, the amount of regolith decreases exponentially with depth beneath 0.25 m. This implies that regolith is not saturated beneath the surface, yet. For example, it takes 4.1 Ga to make regolith completely cover 95 % of the upper surface with a depth of 7 m. The present analysis

  16. Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector

    NASA Astrophysics Data System (ADS)

    Prettyman, T. H.; Hagerty, J. J.; Elphic, R. C.; Feldman, W. C.; Lawrence, D. J.; McKinney, G. W.; Vaniman, D. T.

    2006-12-01

    Gamma ray spectroscopy data acquired by Lunar Prospector are used to determine global maps of the elemental composition of the lunar surface. Maps of the abundance of major oxides, MgO, Al2O3, SiO2, CaO, TiO2, and FeO, and trace incompatible elements, K and Th, are presented along with their geochemical interpretation. Linear spectral mixing is used to model the observed gamma ray spectrum for each map pixel. The spectral shape for each elemental constituent is determined by a Monte Carlo radiation transport calculation. Linearization of the mixing model is accomplished by scaling the spectral shapes with lunar surface parameters determined by neutron spectroscopy, including the number density of neutrons slowing down within the surface and the effective atomic mass of the surface materials. The association of the highlands with the feldspathic lunar meteorites is used to calibrate the mixing model and to determine backgrounds. A linear least squares approach is used to unmix measured spectra to determine the composition of each map pixel. The present analysis uses new gamma ray production cross sections for neutron interactions, resulting in improved accuracy compared to results previously submitted to the Planetary Data System. Systematic variations in lunar composition determined by the spectral unmixing analysis are compared with the lunar soil sample and meteorite collections. Significant results include improved accuracy for the abundance of Th and K in the highlands; identification of large regions, including western Procellarum, that are not well represented by the sample collection; and the association of relatively high concentrations of Mg with KREEP-rich regions on the lunar nearside, which may have implications for the concept of an early magma ocean.

  17. Evidence for Surface Ice at the Lunar South Pole from LRO's Lunar Orbiter Laser Altimeter and Diviner Lunar Radiometer

    NASA Astrophysics Data System (ADS)

    Fisher, E. A.; Lucey, P. G.; Lemelin, M.; Greenhagen, B. T.; Siegler, M. A.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2016-12-01

    Water ice was identified on Mercury's surface by correlating high reflectance surface material, detected with the Mercury Laser Altimeter, with model biannual maximum temperatures that allow surface ice to be stable for billions of years (<100K) [Neumann et al., 2013; Paige et al., 2013]. Thermally driven sublimation constrains where a volatile may plausibly survive on a planet's surface for extended time periods because of its exponential relationship with temperature; e.g. water ice cannot be preserved on surfaces that experience temperatures above 100K due to rapid sublimation loss [Schorghofer & Taylor, 2007; Zhang & Paige, 2009, 2010; Siegler et al., 2011; Paige et al., 2013]. The Lunar Orbiter Laser Altimeter (LOLA) also measures 1064 nm surface reflectance in the lunar polar regions [Smith et al., 2010; Lemelin et al., 2016], while the Diviner Lunar Radiometer Experiment measures surface temperature [Paige et al., 2010]. We assess the behavior of LOLA reflectance as a function of Diviner derived maximum temperature, with the goal of determining if the lunar poles exhibit reflectance increases associated with maximum temperature thresholds consistent with the presence of surface volatiles. We find that average LOLA reflectance near the lunar South pole abruptly increases at Diviner maximum surface temperatures below 110K, behavior consistent with persistent surface water ice heterogeneously distributed within lunar permanently shadowed regions (PSRs). Furthermore, South polar PSRs capable of sustaining surface water ice (Tmax<110K), have a higher reflectance mean/median than South polar PSRs incapable of sustaining surface water ice (Tmax>125K). We cannot attribute the increased reflectance of South polar PSRs to mass wasting or geological variation, supporting the assertion that it is primarily a function of temperature [Lucey et al., 2014]. Our findings are consistent with those of Hayne et al., 2015, which show that surface water ice detected by LAMP in

  18. Modelling of Lunar Dust and Electrical Field for Future Lunar Surface Measurements

    NASA Astrophysics Data System (ADS)

    Lin, Yunlong

    Modelling of the lunar dust and electrical field is important to future human and robotic activities on the surface of the moon. Apollo astronauts had witnessed the maintaining of micron- and millimeter sized moon dust up to meters level while walked on the surface of the moon. The characterizations of the moon dust would enhance not only the scientific understanding of the history of the moon but also the future technology development for the surface operations on the moon. It has been proposed that the maintaining and/or settlement of the small-sized dry dust are related to the size and weight of the dust particles, the level of the surface electrical fields on the moon, and the impaction and interaction between lunar regolith and the solar particles. The moon dust distributions and settlements obviously affected the safety of long term operations of future lunar facilities. For the modelling of the lunar dust and the electrical field, we analyzed the imaging of the legs of the moon lander, the cover and the footwear of the space suits, and the envelope of the lunar mobiles, and estimated the size and charges associated with the small moon dust particles, the gravity and charging effects to them along with the lunar surface environment. We also did numerical simulation of the surface electrical fields due to the impaction of the solar winds in several conditions. The results showed that the maintaining of meters height of the micron size of moon dust is well related to the electrical field and the solar angle variations, as expected. These results could be verified and validated through future on site and/or remote sensing measurements and observations of the moon dust and the surface electrical field.

  19. Supercooling on the lunar surface - A review of analogue information

    NASA Technical Reports Server (NTRS)

    Donaldson, C. H.; Johnston, R.; Drever, H. I.

    1977-01-01

    Terrestrial analog studies of the phase petrology of supercooled melts and rapid crystal growth are reviewed for possible light shed on lunar crystallization, supercooling, and petrogenic processes, in particular rapid consolidation of lavas extruded on the lunar surface, and impact liquids. Crystallization of major constituent minerals (olivine, pyroxene, plagioclase) in dendritic or skeletal forms is found much more characteristic of lunar igneous rocks than of terrestrial counterparts. Olivine and pyroxene occur often as skeletal phenocrysts, and their stage of crystallization is crucial to the genesis and cooling history of porphyritic lavas. Widespread occurrence of glass and of immature radiate crystallization, particularly of highly zoned pyroxenes and zoned plagioclase, is noted.

  20. Simulation of a Lunar Surface Base Power Distribution Network for the Constellation Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.

    2010-01-01

    The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.

  1. Lunar atmosphere. How surface composition and meteoroid impacts mediate sodium and potassium in the lunar exosphere.

    PubMed

    Colaprete, A; Sarantos, M; Wooden, D H; Stubbs, T J; Cook, A M; Shirley, M

    2016-01-15

    Despite being trace constituents of the lunar exosphere, sodium and potassium are the most readily observed species due to their bright line emission. Measurements of these species by the Ultraviolet and Visible Spectrometer (UVS) on the Lunar Atmosphere and Dust Environment Explorer (LADEE) have revealed unambiguous temporal and spatial variations indicative of a strong role for meteoroid bombardment and surface composition in determining the composition and local time dependence of the Moon's exosphere. Observations show distinct lunar day (monthly) cycles for both species as well as an annual cycle for sodium. The first continuous measurements for potassium show a more repeatable variation across lunations and an enhancement over KREEP (Potassium Rare Earth Elements and Phosphorus) surface regions, revealing a strong dependence on surface composition.

  2. Lunar Surface Potential Increases during Terrestrial Bow Shock Traversals

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.; Hills, H. Kent; Halekas, Jasper; Farrell, William M.; Delory, Greg T.; Espley, Jared; Freeman, John W.; Vondrak, Richard R.; Kasper, Justin

    2009-01-01

    Since the Apollo era the electric potential of the Moon has been a subject of interest and debate. Deployed by three Apollo missions, Apollo 12, Apollo 14 and Apollo 15, the Suprathermal Ion Detector Experiment (SIDE) determined the sunlit lunar surface potential to be about +10 Volts using the energy spectra of lunar ionospheric thermal ions accelerated toward the Moon. We present an analysis of Apollo 14 SIDE "resonance" events that indicate the lunar surface potential increases when the Moon traverses the dawn bow shock. By analyzing Wind spacecraft crossings of the terrestrial bow shock at approximately this location and employing current balancing models of the lunar surface, we suggest causes for the increasing potential. Determining the origin of this phenomenon will improve our ability to predict the lunar surface potential in support of human exploration as well as provide models for the behavior of other airless bodies when they traverse similar features such as interplanetary shocks, both of which are goals of the NASA Lunar Science Institute's Dynamic Response of the Environment At the Moon (DREAM) team.

  3. Lunar Surface Potential Increases during Terrestrial Bow Shock Traversals

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.; Hills, H. Kent; Halekas, Jasper; Farrell, William M.; Delory, Greg T.; Espley, Jared; Freeman, John W.; Vondrak, Richard R.; Kasper, Justin

    2009-01-01

    Since the Apollo era the electric potential of the Moon has been a subject of interest and debate. Deployed by three Apollo missions, Apollo 12, Apollo 14 and Apollo 15, the Suprathermal Ion Detector Experiment (SIDE) determined the sunlit lunar surface potential to be about +10 Volts using the energy spectra of lunar ionospheric thermal ions accelerated toward the Moon. We present an analysis of Apollo 14 SIDE "resonance" events that indicate the lunar surface potential increases when the Moon traverses the dawn bow shock. By analyzing Wind spacecraft crossings of the terrestrial bow shock at approximately this location and employing current balancing models of the lunar surface, we suggest causes for the increasing potential. Determining the origin of this phenomenon will improve our ability to predict the lunar surface potential in support of human exploration as well as provide models for the behavior of other airless bodies when they traverse similar features such as interplanetary shocks, both of which are goals of the NASA Lunar Science Institute's Dynamic Response of the Environment At the Moon (DREAM) team.

  4. Recovery of Lunar Surface Access Module Residual and Reserve Propellants

    NASA Technical Reports Server (NTRS)

    Notardonato, William U.

    2007-01-01

    The Vision for Space Exploration calls for human exploration of the lunar surface in the 2020 timeframe. Sustained human exploration of the lunar surface will require supply, storage, and distribution of consumables for a variety of mission elements. These elements include propulsion systems for ascent and descent stages, life support for habitats and extra-vehicular activity, and reactants for power systems. NASA KSC has been tasked to develop technologies and strategies for consumables transfer for lunar exploration as part of the Exploration Technology Development Program. This paper will investigate details of operational concepts to scavenge residual propellants from the lunar descent propulsion system. Predictions on the mass of residuals and reserves are made. Estimates of heat transfer and boiloff rates are calculated and transient tank thermodynamic issues post-engine cutoff are modeled. Recovery and storage options including cryogenic liquid, vapor and water are discussed, and possible reuse of LSAM assets is presented.

  5. Lunar Meteorite Queen Alexandra Range 93069 and the Iron Concentration of the Lunar Highlands Surface

    NASA Technical Reports Server (NTRS)

    Korotev, Randy L.; Jolliff, Bradley L.; Rockow, Kaylynn M.

    1996-01-01

    Lunar meteorite Queen Alexandra Range 93069 is a clast-rich, glassy-matrix regolith breccia of ferroan, highly aluminous bulk composition. It is similar in composition to other feldspathic lunar meteorites but differs in having higher concentrations of siderophile elements and incompatible trace elements. Based on electron microprobe analyses of the fusion crust, glassy matrix, and clasts, and instrumental neutron activation analysis of breccia fragments, QUE 93069 is dominated by nonmare components of ferroan, noritic- anorthosite bulk composition. Thin section QUE 93069,31 also contains a large, impact-melted, partially devitrified clast of magnesian, anorthositic-norite composition. The enrichment in Fe, Sc, and Cr and lower Mg/Fe ratio of lunar meteorites Yamato 791197 and Yamato 82192/3 compared to other feldspathic lunar meteorites can be attributed to a small proportion (5-10%) of low-Ti mare basalt. It is likely that the non- mare components of Yamato 82192/3 are similar to and occur in similar abundance to those of Yamato 86032, with which it is paired. There is a significant difference between the average FeO concentration of the lunar highlands surface as inferred from the feldspathic lunar meteorites (mean: approx. 5.0%; range: 4.3-6.1 %) and a recent estimate based on data from the Clementine mission (3.6%).

  6. Risk-Assessment for Equipment Operating on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Richmond, R. C.; Kusiak, A.; Ramachandran, N.

    2008-01-01

    Particle-size distribution of lunar dust simulant is evaluated using scanning electron spectroscopy in order to consider approaches to evaluating risk to individual mechanical components operating on the lunar surface. Assessing component risk and risk-mitigation during actual operations will require noninvasive continuous data gathering on numerous parameters. Those data sets would best be evaluated using data-mining algorithms to assess risk, and recovery from risk, of individual mechanical components in real-time.

  7. Apollo 11 Mission image - Lunar surface and horizon

    NASA Image and Video Library

    1969-07-20

    AS11-40-5881 (20 July 1969) --- This 70mm handheld camera's image on the Sea of Tranquility's lunar surface is the first of a multi-framed panorama photographed from a point some 30 or 40 feet west of the plus-Z (west) footpad of the Lunar Module "Eagle." The view is looking toward the southwest showing part of the horizon crater rim that was pointed out as being visible from the Eagle's window.

  8. Lunar Surface Operations with Dual Rovers

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Lofgren, Gary E.; Eppler, Dean E.; Ming, Douglas

    2010-01-01

    Lunar Electric Rovers (LER) are currently being developed that are substantially more capable than the Apollo vehicle (LRN ,"). Unlike the LRV, the new LERs provide a pressurized cabin that serves as short-sleeve environment for the crew of two, including sleeping accommodations and other provisions that allow for long tern stays, possibly up to 60 days, on the hear surface, without the need to replenish consumables from some outside source, such as a lander or outpost. As a consequence, significantly larger regions may be explored in the future and traverse distances may be measured in a few hundred kilometers (1, 2). However, crew safety remains an overriding concern, and methods other than "walk back", the major operational constraint of all Apollo traverses, must be implemented to assure -at any time- the safe return of the crew to the lander or outpost. This then causes current Constellation plans to envision long-tern traverses to be conducted with 2 LERs exclusively, each carrying a crew of two: in case one rover fails, the other will rescue the stranded crew and return all 4 astronauts in a single LER to base camp. Recent Desert Research and Technology Studies (DRATS) analog field tests simulated a continuous 14 day traverse (3), covering some 135 km, and included a rescue operation that transferred the crew and diverse consumables from one LER to another these successful tests add substantial realism to the development of long-term, dual rover operations. The simultaneous utilization of 2 LERs is of course totally unlike Apollo and raises interesting issues regarding science productivity and mission operations, the thrust of this note.

  9. Modeling the detection of impact ejecta on the lunar surface

    NASA Astrophysics Data System (ADS)

    Li, Yanwei; Srama, Ralf; Wu, Yiyong; Grün, Eberhard

    2015-12-01

    The lunar surface is continuously exposed to the micrometeoroid environment. Hypervelocity impacts of interplanetary dust particles with speeds around 17 kms-1 generate secondary ejecta on the lunar surface. A dust detector placed on the moon is capable of characterizing the secondary ejecta population. The purpose of this paper is to study the speed and trajectory information of ejecta by impact simulations and its implications for the location of a dust sensor on the surface. AUTODYN15.0/2D software was used to simulate the velocity and angular distributions of ejecta created by the primary impacts of interplanetary dust particles. We considered projectiles with sizes of 10 μm spheres in diameter with speeds of 17 kms-1. We used impact angles of 15°, 30°, 45°, 60°, 75°, and 90° with respect to the surface. A significant percentage of the impact ejecta are created in the early-time stage of the impact process. This population can be captured by a sensor placed on the lunar surface (e.g. Lunar Ejecta and Meteorites (LEAM) experiment) or by a sensor mounted directly on a lander (e.g. Lunar Dust eXplorer (LDX)). The secondary ejecta population above the lunar surface is considered to explain the results of the LEAM experiment. A sensor directly placed on the surface like LEAM is not very well suited to measure the high-speed ejecta component - a sensor located at a few meters height (e.g. on top of a lunar lander) would measure higher fluxes.

  10. ALSEP arrays A, B, C, and A-2. [lunar surface exploration instrument specifications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives of the lunar surface exploration packages are defined and the preliminary design of scientific systems hardware is reported. Instrument packages are to collect and transmit to earth scientific data on the lunar interior, the lunar surface composition, and the lunar geomorphology

  11. Lunar surface base propulsion system study, volume 1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The efficiency, capability, and evolution of a lunar base will be largely dependent on the transportation system that supports it. Beyond Space Station in low Earth orbit (LEO), a Lunar-derived propellant supply could provide the most important resource for the transportation infrastructure. The key to an efficient Lunar base propulsion system is the degree of Lunar self-sufficiency (from Earth supply) and reasonable propulsion system performance. Lunar surface propellant production requirements must be accounted in the measurement of efficiency of the entire space transportation system. Of all chemical propellant/propulsion systems considered, hydrogen/oxygen (H/O) OTVs appear most desirable, while both H/O and aluminum/oxygen propulsion systems may be considered for the lander. Aluminized-hydrogen/oxygen and Silane/oxygen propulsion systems are also promising candidates. Lunar propellant availability and processing techniques, chemical propulsion/vehicle design characteristics, and the associated performance of the total transportation infrastructure are reviewed, conceptual propulsion system designs and vehicle/basing concepts, and technology requirements are assessed in context of a Lunar Base mission scenario.

  12. Enabler operator station. [lunar surface vehicle

    NASA Technical Reports Server (NTRS)

    Bailey, Andrea; Keitzman, John; King, Shirlyn; Stover, Rae; Wegner, Torsten

    1992-01-01

    The objective of this project was to design an onboard operator station for the conceptual Lunar Work Vehicle (LWV). This LWV would be used in the colonization of a lunar outpost. The details that follow, however, are for an earth-bound model. Several recommendations are made in the appendix as to the changes needed in material selection for the lunar environment. The operator station is designed dimensionally correct for an astronaut wearing the current space shuttle EVA suit (which includes life support). The proposed operator station will support and restrain an astronaut as well as provide protection from the hazards of vehicle rollover. The threat of suit puncture is eliminated by rounding all corners and edges. A step-plate, located at the front of the vehicle, provides excellent ease of entry and exit. The operator station weight requirements are met by making efficient use of grid members, semi-rigid members and woven fabrics.

  13. Astronauts Alan Bean and Charles Conrad on Lunar Surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn Five launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. In this photograph, one of the astronauts on the Moon's surface is holding a container of lunar soil. The other astronaut is seen reflected in his helmet. Apollo 12 safely returned to Earth on November 24, 1969.

  14. Astronauts Alan Bean and Charles Conrad on Lunar Surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn Five launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. In this photograph, one of the astronauts on the Moon's surface is holding a container of lunar soil. The other astronaut is seen reflected in his helmet. Apollo 12 safely returned to Earth on November 24, 1969.

  15. Lunar surface processes - Report of the 12054 consortium

    NASA Technical Reports Server (NTRS)

    Hartung, J. B.; Hauser, E. E.; Horz, F.; Morrison, D. A.; Schonfeld, E.; Zook, H. A.; Mandeville, J.-C.; Mcdonnell, J. A. M.; Schaal, R. B.; Zinner, E.

    1978-01-01

    A variety of lunar surface phenomena were studied using a well-characterized glass-coated ilmenite basalt, 12054, which had a simple surface residence history. Surface processes related to the following effects were studied: microcraters, solar flare and cosmic ray tracks, cosmogenic Al-26, solar wind sputtering, accreta or accretionary material, solar wind implanted noble gases, and loose dust accumulation.

  16. Mass fractionation of the lunar surface by solar wind sputtering

    NASA Technical Reports Server (NTRS)

    Switkowski, Z. E.; Haff, P. K.; Tombrello, T. A.; Burnett, D. S.

    1975-01-01

    The sputtering of the lunar surface by the solar wind is examined as a possible mechanism of mass fractionation. Simple arguments based on current theories of sputtering and the ballistics of the sputtered atoms suggest that most ejected atoms will have sufficiently high energy to escape lunar gravity. However, the fraction of atoms which falls back to the surface is enriched in the heavier atomic components relative to the lighter ones. This material is incorporated into the heavily radiation-damaged outer surfaces of grains where it is subject to resputtering. Over the course of several hundred years an equilibrium surface layer, enriched in heavier atoms, is found to form. The dependence of the calculated results upon the sputtering rate and on the details of the energy spectrum of sputtered particles is investigated. It is concluded that mass fractionation by solar wind sputtering is likely to be an important phenomenon on the lunar surface.

  17. Surface Buildup Scenarios and Outpost Architectures for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Troutman, Patrick A.; Culbert, Christopher J.; Leonard, Matthew J.; Spexarth, Gary R.

    2009-01-01

    The Constellation Program Architecture Team and the Lunar Surface Systems Project Office have developed an initial set of lunar surface buildup scenarios and associated polar outpost architectures, along with preliminary supporting element and system designs in support of NASA's Exploration Strategy. The surface scenarios are structured in such a way that outpost assembly can be suspended at any time to accommodate delivery contingencies or changes in mission emphasis. The modular nature of the architectures mitigates the impact of the loss of any one element and enhances the ability of international and commercial partners to contribute elements and systems. Additionally, the core lunar surface system technologies and outpost operations concepts are applicable to future Mars exploration. These buildup scenarios provide a point of departure for future trades and assessments of alternative architectures and surface elements.

  18. Observations of electrons at the lunar surface

    NASA Technical Reports Server (NTRS)

    Goldstein, B. E.

    1974-01-01

    Observations of electrons at the Apollo 12 and 15 sites by the ALSEP Solar Wind Spectrometer experiments showed qualitative differences. Measurements of photoelectron currents are compared to earlier predictions and calculations. A model describing the interaction of the solar wind and the lunar photoelectron layer is then developed. The observations at the Apollo 15 site are compared to the model. Then, Apollo 12 data are examined to determine the effects of the local lunar magnetic fields. Finally, it is predicted that electron pressure decreases upstream of the moon and in certain circumstances should cause an increase in proton density.

  19. Options for a lunar base surface architecture

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.

    1991-01-01

    The analysis of the Space Exploration Initiative architectures involves making definitions of systems engineering designs for the construction of lunar and Mars bases for the support of science, exploration, and resource production on these planets. This paper discusses the results of the Space Resource Utilization Architecture study, which was initiated to develop the technical capability for extracting useful materials from the indigenous resources of the moon and Mars. For the moon, an infrastructure concept of a base is designed which can support a crew of 12. The major phases of the lunar-base development, the systems and the elements involved, and the physical layout and evolution of the base are described.

  20. Analysis of Fractal Parameters of the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Nefedyev, Yuri; Petrova, Natalia; Andreev, Alexey; Demina, Natalya; Demin, Sergey

    2016-07-01

    very complex structure and traditional research methods are unacceptable. After considering this, it was decided to use the method of fractal dimensionsd comparisons. For this purpose lunar marginal zone maps made in the celestial coordinate system (maps N1) and oneconstructed on the basis of data obtained from heliometric observations with taking into account thefirst model of the figure of the Moon given by Jakovkin (maps N2) were taken. The charts contain isohypses of the lunar marginal zone extending over 10" on both sides of the mean position of the limb line. In order to find thevariations of irregularities for thelimb points above the mean level of lunar surface werecomputed the position angles of this pointsP (reckoned from the centre of the Moon's disc) and D coordinates. This coordinates introduced by Hayn: P is the selenocentric longitude reckoned along the mean limb from the north pole of the Moon, like the position angles, and D is the latitude counted positively for that part of the disc that is nearer to the observer. Thus the data of our studies was obtained by identical types. Then the first, segments of a lunar marginal zone for every 45" on P were considered. For each segment profile of the surface for a constant D were constructed with a step of 2". Thus 80 profiles were obtained. Secondly the fractal dimensions d for each considered structure was defined. Third the obtained values d werecompared with the othersmaps considered in this work. The obtained results show some well agreement between the mean fractal dimensions for maps N1 and N2. Thus it can be concluded that the using of fractal method for lunar maps analysis to determine the accuracy of the presented to themdata give good results. The work was supported by grants RFBR 15-02-01638-a, 16-32-60071-mol-dk-a and 16-02-00496-a.

  1. Coesite and stishovite in a shocked lunar meteorite, Asuka-881757, and impact events in lunar surface

    PubMed Central

    Ohtani, E.; Ozawa, S.; Miyahara, M.; Ito, Y.; Mikouchi, T.; Kimura, M.; Arai, T.; Sato, K.; Hiraga, K.

    2011-01-01

    Microcrystals of coesite and stishovite were discovered as inclusions in amorphous silica grains in shocked melt pockets of a lunar meteorite Asuka-881757 by micro-Raman spectrometry, scanning electron microscopy, electron back-scatter diffraction, and transmission electron microscopy. These high-pressure polymorphs of SiO2 in amorphous silica indicate that the meteorite experienced an equilibrium shock-pressure of at least 8–30 GPa. Secondary quartz grains are also observed in separate amorphous silica grains in the meteorite. The estimated age reported by the 39Ar/40Ar chronology indicates that the source basalt of this meteorite was impacted at 3,800 Ma ago, time of lunar cataclysm; i.e., the heavy bombardment in the lunar surface. Observation of coesite and stishovite formed in the lunar breccias suggests that high-pressure impact metamorphism and formation of high-pressure minerals are common phenomena in brecciated lunar surface altered by the heavy meteoritic bombardment. PMID:21187434

  2. Evidence of Lunar Phase Influence on Global Surface Air Temperatures

    NASA Technical Reports Server (NTRS)

    Anyamba, Ebby; Susskind, Joel

    2000-01-01

    Intraseasonal oscillations appearing in a newly available 20-year record of satellite-derived surface air temperature are composited with respect to the lunar phase. Polar regions exhibit strong lunar phase modulation with higher temperatures occurs near full moon and lower temperatures at new moon, in agreement with previous studies. The polar response to the apparent lunar forcing is shown to be most robust in the winter months when solar influence is minimum. In addition, the response appears to be influenced by ENSO events. The highest mean temperature range between full moon and new moon in the polar region between 60 deg and 90 deg latitude was recorded in 1983, 1986/87, and 1990/91. Although the largest lunar phase signal is in the polar regions, there is a tendency for meridional equatorward progression of anomalies in both hemispheres so that the warning in the tropics occurs at the time of the new moon.

  3. Electrical Transmission on the Lunar Surface. Part 1; DC Transmission

    NASA Technical Reports Server (NTRS)

    Gordon, Lloyd B.

    2001-01-01

    This report summarizes a portion of the results from a grant at Auburn University to study the electrical and thermal energy management for lunar facilities. Over the past year (June 1989 to May 1990) the following topics have been investigated: June 1989 to November 1989 - Literature survey, assessment of lunar power needs, and overview study of the requirements of a lunar power system; November 1989 to April 1990 - Develop models for the study of dc electrical power transmission lines for the lunar surface; March 1990 to May 1990 - Develop models for the study of ac electrical power transmission lines for the lunar surface. Because of the large amount of information in the model development and application to a wide parameter space this report is being bound separately. This report specifically contains the model development and parameter study for dc electrical power transmission lines. The end of the funding year (May 1990) will conclude with an annual report including the literature survey, the overview of the requirements of a lunar power system, and summaries of the dc and ac models of electrical transmission lines.

  4. SP-100 reactor with Brayton conversion for lunar surface applications

    SciTech Connect

    Mason, L.S.; Rodriguez, C.D.; Mckissock, B.I.; Hanlon, J.C.; Mansfield, B.C.

    1992-01-01

    Examined here is the potential for integrating Brayton-cycle power conversion with the SP-100 reactor for lunar surface power system applications. Two designs were characterized and modeled. The first design integrates a 100-kWe SP-100 Brayton power system with a lunar lander. This system is intended to meet early lunar mission power needs while minimizing on-site installation requirements. Man-rated radiation protection is provided by an integral multilayer, cylindrical lithium hydride/tungsten (LiH/W) shield encircling the reactor vessel. Design emphasis is on ease of deployment, safety, and reliability, while utilizing relatively near-term technology. The second design combines Brayton conversion with the SP-100 reactor in a erectable 550-kWe powerplant concept intended to satisfy later-phase lunar base power requirements. This system capitalizes on experience gained from operating the initial 100-kWe module and incorporates some technology improvements. For this system, the reactor is emplaced in a lunar regolith excavation to provide man-rated shielding, and the Brayton engines and radiators are mounted on the lunar surface and extend radially from the central reactor. Design emphasis is on performance, safety, long life, and operational flexibility.

  5. Lunar dusty plasma: A result of interaction of the solar wind flux and ultraviolet radiation with the lunar surface

    NASA Astrophysics Data System (ADS)

    Lisin, E. A.; Tarakanov, V. P.; Popel, S. I.; Petrov, O. F.

    2015-11-01

    One of the main problems of future missions to the Moon is associated with lunar dust. Solar wind flux and ultraviolet radiation interact with the lunar surface. As a result, there is a substantial surface change and a near-surface plasma sheath. Dust particles from the lunar regolith, which turned in this plasma because of any mechanical processes, can levitate above the surface, forming dust clouds. In preparing of the space experiments “Luna-Glob” and “Luna-Resource” particle-in-cell calculations of the near-surface plasma sheath parameters are carried out. Here we present some new results of particle-in-cell simulation of the plasma sheath formed near the surface of the moon as a result of interaction of the solar wind and ultraviolet radiation with the lunar surface. The conditions of charging and stable levitation of dust particles in plasma above the lunar surface are also considered.

  6. Lunar Lander Offloading Operations Using a Heavy-Lift Lunar Surface Manipulator System

    NASA Technical Reports Server (NTRS)

    Jefferies, Sharon A.; Doggett, William R.; Chrone, Jonathan; Angster, Scott; Dorsey, John T.; Jones, Thomas C.; Haddad, Michael E.; Helton, David A.; Caldwell, Darrell L., Jr.

    2010-01-01

    This study investigates the feasibility of using a heavy-lift variant of the Lunar Surface Manipulator System (LSMS-H) to lift and handle a 12 metric ton payload. Design challenges and requirements particular to handling heavy cargo were examined. Differences between the previously developed first-generation LSMS and the heavy-lift version are highlighted. An in-depth evaluation of the tip-over risk during LSMS-H operations has been conducted using the Synergistic Engineering Environment and potential methods to mitigate that risk are identified. The study investigated three specific offloading scenarios pertinent to current Lunar Campaign studies. The first involved offloading a large element, such as a habitat or logistics module, onto a mobility chassis with a lander-mounted LSMS-H and offloading that payload from the chassis onto the lunar surface with a surface-mounted LSMS-H. The second scenario involved offloading small pressurized rovers with a lander-mounted LSMS-H. The third scenario involved offloading cargo from a third-party lander, such as the proposed ESA cargo lander, with a chassis-mounted LSMS-H. In all cases, the analyses show that the LSMS-H can perform the required operations safely. However, Chariot-mounted operations require the addition of stabilizing outriggers, and when operating from the Lunar surface, LSMS-H functionality is enhanced by adding a simple ground anchoring system.

  7. Lunar surface transportation systems conceptual design lunar base systems study Task 5.2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Conceptual designs for three categories of lunar surface transportation were described. The level of understanding for the capabilities and design approach varies between the vehicles representing these categories. A summary of the vehicle categories and current state of conceptual design is provided. Finally, a brief evaluation and discussion is provided for a systematic comparison of transportation categories and effectiveness in supporting transportation objectives.

  8. The fractal method of the lunar surface parameters analysis

    NASA Astrophysics Data System (ADS)

    Nefedev, Yuri; Demina, Natalia; Petrova, Natalia; Demin, Sergey; Andreev, Alexey

    2016-10-01

    Analysis of complex selenographic systems is a complicated issue. This fully applies to the lunar topography. In this report a new method of the comparative reliable estimation of the lunar maps data is represented. The estimation was made by the comparison of high-altitude lines using the fractal analysis. The influence of the lunar macrofigure variances were determined by the method of fractal dimensions comparison.By now the highly accurate theories of the lunar movement have been obtained and stars coordinates have been determined on the basis of space measurements with the several mas accuracy but there are factors highly influencingon the accuracy of the results of these observations. They are: exactitude of the occultation moment recording, errors of the stars coordinates, accuracy of lunar ephemeris positions and unreliability of lunar marginal zone maps. Existing charts of the lunar marginal zone have some defects. To resolve this task thecomparison method in which the structure of the high-altitude lines of data appropriated with identical lunar coordinates can use. However, such comparison requires a lot of calculations.In order to find the variations of irregularities for the limb points above the mean level of lunar surface were computed the position angles of this points P and D by Hayn' coordinates. Thus the data of our studies was obtained by identical types.Then the first, segments of a lunar marginal zone for every 45" on P were considered. For each segment profile of the surface for a constant D were constructed with a step of 2". Thus 80 profiles were obtained. Secondly the fractal dimensions d for each considered structure was defined. Third the obtained values d were compared with the others maps considered in this work.The obtained results show some well agreement between the mean fractal dimensions for maps. Thus it can be concluded that the using of fractal method for lunar maps analysis to determine the accuracy of the presented to

  9. The Lunar Ultraviolet Telescope Experiment (LUTE): Enabling technology for an early lunar surface payload

    NASA Technical Reports Server (NTRS)

    Nein, M. E.; Hilchey, J. D.

    1995-01-01

    The Lunar Ultraviolet Telescope Experiment (LUTE) is a 1-m aperture, fixed declination, optical telescope to be operated on the surface of the Moon. This autonomous science payload will provide an unprecedented ultraviolet stellar survey even before manned lunar missions are resumed. This paper very briefly summarizes the LUTE concept analyzed by the LUTE Task Team of NASA's Marshall Space Flight Center (MSFC). Scientific capabilities and the Reference Design Concept are identified, and the expected system characteristics are summarized. Technologies which will be required to enable the early development, deployment, and operation of the LUTE are identified, and the principle goals and approaches for their advancement are described.

  10. Hydrogen and fluorine in the surfaces of lunar samples

    NASA Technical Reports Server (NTRS)

    Leich, D. A.; Goldberg, R. H.; Burnett, D. S.; Tombrello, T. A.

    1974-01-01

    The resonant nuclear reaction F-19 (p, alpha gamma)0-16 has been used to perform depth sensitive analyses for both fluorine and hydrogen in lunar samples. The resonance at 0.83 MeV (center-of-mass) in this reaction has been applied to the measurement of the distribution of trapped solar protons in lunar samples to depths of about 1/2 micrometer. These results are interpreted in terms of terrestrial H2O surface contamination and a redistribution of the implanted solar H which has been influenced by heavy radiation damage in the surface region. Results are also presented for an experiment to test the penetration of H2O into laboratory glass samples which have been irradiated with 0-16 to simulate the radiation damaged surfaces of lunar glasses. Fluorine determinations have been performed in a 1 pm surface layer on lunar samples using the same F-19 alpha gamma)0-16 resonance. The data are discussed from the standpoint of lunar fluorine and Teflon contamination.

  11. Hydrogen and fluorine in the surfaces of lunar samples

    NASA Technical Reports Server (NTRS)

    Leich, D. A.; Goldberg, R. H.; Burnett, D. S.; Tombrello, T. A.

    1974-01-01

    The resonant nuclear reaction F-19(p, alpha gamma)O-16 has been used to perform depth-sensitive analyses for both fluorine and hydrogen in lunar samples. The resonance at 0.83 MeV (center-of-mass) in this reaction has been applied to the measurement of the distribution of trapped solar protons in lunar samples to depths up to 0.45 microns. These results are interpreted in terms of terrestrial H2O surface contamination and of a redistribution of the implanted solar H which has been influenced by heavy radiation damage in the surface region. Results are also presented for an experiment to test the penetration of H2O into laboratory glass samples which have been irradiated with O-16 to simulate the radiation-damaged surfaces of lunar glasses. Fluorine determinations have been performed in a 1-micron surface layer on lunar samples using the same F-19(p, alpha gamma)O-16 resonance. The data are discussed from the standpoint that observed fluorine concentrations are a mixture of true lunar fluorine and Teflon contamination.

  12. The Apollo lunar surface experiment package suprathermal ion detector experiment. [bibliographies

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation of reports and scientific papers is presented for the following topics: (1) the lunar ionosphere; (2) electric potential of the lunar surface; (3) ion activity on the lunar nightside; (4) bow shock protons; (5) magnetosheath and magnetotail; (6) solar wind-neutral gas cloud interactions at the lunar surface; (7) penetrating solar particles; and (8) rocket exhaust products from Apollo missions. Descriptions and photographs of ion detecting equipment at the lunar sites of Apollo 12, 13, 14, and 15 are given.

  13. Magnetic hysteresis classification of the lunar surface and the interpretation of permanent remanence in lunar surface samples

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1972-01-01

    A magnetic hysteresis classification of the lunar surface is presented. It was found that there is a distinct correlation between natural remanence (NRM), saturation magnetization, and the hysteresis ratios for the rock samples. The hysteresis classification is able to explain some aspects of time dependent magnetization in the lunar samples and relates the initial susceptibility to NRM, viscous remanence, and to other aspects of magnetization in lunar samples. It is also considered that since up to 60% of the iron in the lunar soil may be super paramagnetic at 400 K, and only 10% at 100 K, the 50% which becomes ferromagnetic over the cycle has the characteristics of thermoremanence and may provide for an enhancement in measurable field on the dark side during a subsatellite magnetometer circuit.

  14. Lunar Fission Surface Power System Design and Implementation Concept

    SciTech Connect

    Elliott, John O.; Reh, Kim; MacPherson, Duncan

    2006-01-20

    At the request of NASA's Exploration Systems Mission Directorate (ESMD) in May of 2005, a team was assembled within the Prometheus Project to investigate lunar surface nuclear power architectures and provide design and implementation concept inputs to NASA's Exploration Systems Architecture 60-day Study (ESAS) team. System engineering tasks were undertaken to investigate the design and implementation of a Fission Surface Power System (FSPS) that could be launched as early as 2019 as part of a possible initial Lunar Base architecture. As a result of this activity, the Prometheus team evaluated a number of design and implementation concepts as well as a significant number of trades associated with lunar surface power, all culminating in a recommended approach. This paper presents the results of that study, including a recommended FSPS design and implementation concept.

  15. Lunar Fission Surface Power System Design and Implementation Concept

    NASA Astrophysics Data System (ADS)

    Elliott, John O.; Reh, Kim; MacPherson, Duncan

    2006-01-01

    At the request of NASA's Exploration Systems Mission Directorate (ESMD) in May of 2005, a team was assembled within the Prometheus Project to investigate lunar surface nuclear power architectures and provide design and implementation concept inputs to NASA's Exploration Systems Architecture 60-day Study (ESAS) team. System engineering tasks were undertaken to investigate the design and implementation of a Fission Surface Power System (FSPS) that could be launched as early as 2019 as part of a possible initial Lunar Base architecture. As a result of this activity, the Prometheus team evaluated a number of design and implementation concepts as well as a significant number of trades associated with lunar surface power, all culminating in a recommended approach. This paper presents the results of that study, including a recommended FSPS design and implementation concept.

  16. Lunar fission surface power system design and implementation concept

    NASA Technical Reports Server (NTRS)

    Elliott, John O.; Reh, Kim; MacPherson, Duncan

    2006-01-01

    The request of NASA's Exploration Systems Mission Directorate (ESMD) in May of 2005, a team was assembled within the Prometheus Project to investigate lunar surface nuclear power architectures and provide design and implementation concept inputs to NASA's Exploration Systems Architecture 60-day Study (ESAS) team. System engineering tasks were undertaken to investigate the design and implementation of a Fission Surface Power System (FSPS) that could be launched as early as 2019 as part of a possible initial Lunar Base architecture. As a result of this activity, the Prometheus team evaluated a number of design and implementation concepts as well as a significant number of trades associated with lunar surface power, all culminating in a recommended approach. This paper presents the results of that study, including a recommended FSPS design and implementation concept.

  17. Lunar fission surface power system design and implementation concept

    NASA Technical Reports Server (NTRS)

    Elliott, John O.; Reh, Kim; MacPherson, Duncan

    2006-01-01

    The request of NASA's Exploration Systems Mission Directorate (ESMD) in May of 2005, a team was assembled within the Prometheus Project to investigate lunar surface nuclear power architectures and provide design and implementation concept inputs to NASA's Exploration Systems Architecture 60-day Study (ESAS) team. System engineering tasks were undertaken to investigate the design and implementation of a Fission Surface Power System (FSPS) that could be launched as early as 2019 as part of a possible initial Lunar Base architecture. As a result of this activity, the Prometheus team evaluated a number of design and implementation concepts as well as a significant number of trades associated with lunar surface power, all culminating in a recommended approach. This paper presents the results of that study, including a recommended FSPS design and implementation concept.

  18. Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design

    NASA Technical Reports Server (NTRS)

    Alarez, Erika; Thornton, Randall J.; Forbes, John C.

    2008-01-01

    The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform minor mid-course corrections, a Lunar Orbit Insertion (LOI) burn, a de-orbit burn, and the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.

  19. Fuel cell technology for lunar surface operations

    NASA Astrophysics Data System (ADS)

    Deronck, Henry J.

    1992-02-01

    Hydrogen-oxygen fuel cells have been shown, in several NASA and contractor studies, to be an enabling technology for providing electrical power for lunar bases, outposts, and vehicles. The fuel cell, in conjunction with similar electrolysis cells, comprises a closed regenerative energy storage system, commonly referred to as a regenerative fuel cell (RFC). For stationary applications, energy densities of 1,000 watt-hours per kilograms an order of magnitude over the best rechargeable batteries, have been projected. In this RFC, the coupled fuel cell and electrolyzer act as an ultra-light battery. Electrical energy from solar arrays 'charges' the system by electrolyzing water into hydrogen and oxygen. When an electrical load is applied, the fuel cell reacts the hydrogen and oxygen to 'discharge' usable power. Several concepts for utilizing RFC's, with varying degrees of integration, have been proposed, including both primary and backup roles. For mobile power needs, such as rovers, an effective configuration may be to have only the fuel cell located on the vehicle, and to use a central electrolysis 'gas station'. Two fuel cell technologies are prime candidates for lunar power system concepts: alkaline electrolyte and proton exchange membrane. Alkaline fuel cells have been developed to a mature production power unit in NASA's Space Shuttle Orbiter. Recent advances in materials offer to significantly improve durability to the level needed for extended lunar operations. Proton exchange membrane fuel cells are receiving considerable support for hydrospace and terrestrial transportation applications. This technology promises durability, simplicity, and flexibility.

  20. Fuel cell technology for lunar surface operations

    NASA Technical Reports Server (NTRS)

    Deronck, Henry J.

    1992-01-01

    Hydrogen-oxygen fuel cells have been shown, in several NASA and contractor studies, to be an enabling technology for providing electrical power for lunar bases, outposts, and vehicles. The fuel cell, in conjunction with similar electrolysis cells, comprises a closed regenerative energy storage system, commonly referred to as a regenerative fuel cell (RFC). For stationary applications, energy densities of 1,000 watt-hours per kilograms an order of magnitude over the best rechargeable batteries, have been projected. In this RFC, the coupled fuel cell and electrolyzer act as an ultra-light battery. Electrical energy from solar arrays 'charges' the system by electrolyzing water into hydrogen and oxygen. When an electrical load is applied, the fuel cell reacts the hydrogen and oxygen to 'discharge' usable power. Several concepts for utilizing RFC's, with varying degrees of integration, have been proposed, including both primary and backup roles. For mobile power needs, such as rovers, an effective configuration may be to have only the fuel cell located on the vehicle, and to use a central electrolysis 'gas station'. Two fuel cell technologies are prime candidates for lunar power system concepts: alkaline electrolyte and proton exchange membrane. Alkaline fuel cells have been developed to a mature production power unit in NASA's Space Shuttle Orbiter. Recent advances in materials offer to significantly improve durability to the level needed for extended lunar operations. Proton exchange membrane fuel cells are receiving considerable support for hydrospace and terrestrial transportation applications. This technology promises durability, simplicity, and flexibility.

  1. Lunar Surface Material - Spacecraft Measurements of Density and Strength

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1969-01-01

    The relation of the density of the lunar surface layer to depth is probably best determined from spacecraft measurements of the bearing capacity as a function of depth. A comparison of these values with laboratory measurements of the bearing capacity of low-cohesion particulate materials as a function of the percentage of solid indicates that the bulk density at the lunar surface is about 1.1 grams per cubic centimeter and that it increases nearly linearly to about 1.6 grams per cubic centimeter at a depth of 5 centimeters.

  2. Lunar Surface Material - Spacecraft Measurements of Density and Strength

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1969-01-01

    The relation of the density of the lunar surface layer to depth is probably best determined from spacecraft measurements of the bearing capacity as a function of depth. A comparison of these values with laboratory measurements of the bearing capacity of low-cohesion particulate materials as a function of the percentage of solid indicates that the bulk density at the lunar surface is about 1.1 grams per cubic centimeter and that it increases nearly linearly to about 1.6 grams per cubic centimeter at a depth of 5 centimeters.

  3. Data Analysis Techniques for a Lunar Surface Navigation System Testbed

    NASA Technical Reports Server (NTRS)

    Chelmins, David; Sands, O. Scott; Swank, Aaron

    2011-01-01

    NASA is interested in finding new methods of surface navigation to allow astronauts to navigate on the lunar surface. In support of the Vision for Space Exploration, the NASA Glenn Research Center developed the Lunar Extra-Vehicular Activity Crewmember Location Determination System and performed testing at the Desert Research and Technology Studies event in 2009. A significant amount of sensor data was recorded during nine tests performed with six test subjects. This paper provides the procedure, formulas, and techniques for data analysis, as well as commentary on applications.

  4. Lunar base surface mission operations. Lunar Base Systems Study (LBSS) task 4.1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The purpose was to perform an analysis of the surface operations associated with a human-tended lunar base. Specifically, the study defined surface elements and developed mission manifests for a selected base scenario, determined the nature of surface operations associated with this scenario, generated a preliminary crew extravehicular and intravehicular activity (EVA/IVA) time resource schedule for conducting the missions, and proposed concepts for utilizing remotely operated equipment to perform repetitious or hazardous surface tasks. The operations analysis was performed on a 6 year period of human-tended lunar base operation prior to permanent occupancy. The baseline scenario was derived from a modified version of the civil needs database (CNDB) scenario. This scenario emphasizes achievement of a limited set of science and exploration objectives while emplacing the minimum habitability elements required for a permanent base.

  5. ESCA studies of lunar surface chemistry. [Electron Spectroscopic Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Grant, R. W.

    1975-01-01

    We have used ESCA to compare the composition of the natural exterior surface in lunar fines samples with that of the interior surface exposed by crushing. Even though the exterior surfaces have been exposed to air a significant amount of Fe in them is reduced. In addition, Ca, Al, and Mg are strongly depleted in exterior surfaces relative to Si, Ti, and Fe. Preferential sputtering by the solar wind is a possible explanation for these changes.

  6. ESCA studies of lunar surface chemistry. [Electron Spectroscopic Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Grant, R. W.

    1975-01-01

    We have used ESCA to compare the composition of the natural exterior surface in lunar fines samples with that of the interior surface exposed by crushing. Even though the exterior surfaces have been exposed to air a significant amount of Fe in them is reduced. In addition, Ca, Al, and Mg are strongly depleted in exterior surfaces relative to Si, Ti, and Fe. Preferential sputtering by the solar wind is a possible explanation for these changes.

  7. NASA Human Spaceflight Architecture Team: Lunar Surface Exploration Strategies

    NASA Technical Reports Server (NTRS)

    Mueller, Rob P.

    2012-01-01

    NASA s agency wide Human Spaceflight Architecture Team (HAT) has been developing Design Reference Missions (DRMs) to support the ongoing effort to characterize NASA s future human exploration strategy. The DRM design effort includes specific articulations of transportation and surface elements, technologies and operations required to enable future human exploration of various destinations including the moon, Near Earth Asteroids (NEAs) and Mars as well as interim cis-lunar targets. In prior architecture studies, transportation concerns have dominated the analysis. As a result, an effort was made to study the human utilization strategy at each specific destination and the resultant impacts on the overall architecture design. In particular, this paper considers various lunar surface strategies as representative scenarios that could occur in a human lunar return, and demonstrates their alignment with the internationally developed Global Exploration Roadmap (GER).

  8. The Evolution and Development of the Lunar Regolith and Implications for Lunar Surface Operations and Construction

    NASA Technical Reports Server (NTRS)

    McKay, David

    2009-01-01

    The lunar regolith consists of about 90% submillimeter particles traditionally termed lunar soil. The remainder consists of larger particles ranging up to boulder size rocks. At the lower size end, soil particles in the 10s of nanometer sizes are present in all soil samples. Lunar regolith overlies bedrock which consists of either lava flows in mare regions or impact-produced megaregolith in highland regions. Lunar regolith has been produced over billions of years by a combination of breaking and communition of bedrock by meteorite bombardment coupled with a variety of complex space weathering processes including solar wind implantation, solar flare and cosmic ray bombardment with attendant radiation damage, melting, vaporization, and vapor condensation driven by impact, and gardening and turnover of the resultant soil. Lunar regolith is poorly sorted compared to most terrestrial soils, and has interesting engineering properties including strong grain adhesion, over-compacted soil density, an abundance of agglutinates with sharp corners, and a variety of properties related to soil maturity. The NASA program has supported a variety of engineering test research projects, the production of bricks by solar or microwave sintering, the production of concrete, the in situ sintering and glazing of regolith by microwave, and the extraction of useful resources such as oxygen, hydrogen, iron, aluminum, silicon and other products. Future requirements for a lunar surface base or outpost will include construction of protective berms, construction of paved roadways, construction of shelters, movement and emplacement of regolith for radiation shielding and thermal control, and extraction of useful products. One early need is for light weight but powerful digging, trenching, and regolith-moving equipment.

  9. The Evolution and Development of the Lunar Regolith and Implications for Lunar Surface Operations and Construction

    NASA Technical Reports Server (NTRS)

    McKay, David

    2009-01-01

    The lunar regolith consists of about 90% submillimeter particles traditionally termed lunar soil. The remainder consists of larger particles ranging up to boulder size rocks. At the lower size end, soil particles in the 10s of nanometer sizes are present in all soil samples. Lunar regolith overlies bedrock which consists of either lava flows in mare regions or impact-produced megaregolith in highland regions. Lunar regolith has been produced over billions of years by a combination of breaking and communition of bedrock by meteorite bombardment coupled with a variety of complex space weathering processes including solar wind implantation, solar flare and cosmic ray bombardment with attendant radiation damage, melting, vaporization, and vapor condensation driven by impact, and gardening and turnover of the resultant soil. Lunar regolith is poorly sorted compared to most terrestrial soils, and has interesting engineering properties including strong grain adhesion, over-compacted soil density, an abundance of agglutinates with sharp corners, and a variety of properties related to soil maturity. The NASA program has supported a variety of engineering test research projects, the production of bricks by solar or microwave sintering, the production of concrete, the in situ sintering and glazing of regolith by microwave, and the extraction of useful resources such as oxygen, hydrogen, iron, aluminum, silicon and other products. Future requirements for a lunar surface base or outpost will include construction of protective berms, construction of paved roadways, construction of shelters, movement and emplacement of regolith for radiation shielding and thermal control, and extraction of useful products. One early need is for light weight but powerful digging, trenching, and regolith-moving equipment.

  10. SILVER: Surface Imaging for Lunar Volatiles, Resources, and Exploration

    NASA Technical Reports Server (NTRS)

    Pappalardo, R. T.; Cobabe-Ammann, E.; Cook, A. C.; Greeley, R.; Gulick, V. C.; McClintock, W. E.; Moore, J. M.; Stern, S. A.; Vasavada, A. R.; McClelland, M.

    2004-01-01

    The Surface Imaging for Lunar Volatiles, Exploration, and Resources (SILVER) instrument is a proposed imaging investigation for the 2008 Lunar Reconnaissance Orbiter (LRO) mission. SILVER and its experienced Measurement Team will prepare for and support future lunar human exploration activities, especially landing site identification and certification on the basis of potential resources. SILVER combines a high-resolution pushbroom visible imaging channel (SILVER-HR) and a wide-field-of-view (45 deg) framing imaging channel (SILVER-WF). SILVER-HR will obtain a single-detector 6 km imaging swath of 12,228 pixels at 0.5 m/pixel to image greater than 100 sq km target areas from 50 km altitude, imaging greater than 15% the lunar surface during a 1 year nominal mission. SILVER-HR has excellent stray-light rejection and its imaging detector has selectable time delay integration (TDI) with up to 128 stages for extreme low-light sensitivity, permitting direct imaging of permanently shadowed polar regions in scattered sunlight or earthshine. SILVER-WF will obtain geodetic framing images in a 2048 x 2048 format at 20m/pixel, with 60% along-track overlap stereo for imaging context and for derivation of a global digital elevation model of meter-scale lunar topography.

  11. SILVER: Surface Imaging for Lunar Volatiles, Resources, and Exploration

    NASA Technical Reports Server (NTRS)

    Pappalardo, R. T.; Cobabe-Ammann, E.; Cook, A. C.; Greeley, R.; Gulick, V. C.; McClintock, W. E.; Moore, J. M.; Stern, S. A.; Vasavada, A. R.; McClelland, M.

    2004-01-01

    The Surface Imaging for Lunar Volatiles, Exploration, and Resources (SILVER) instrument is a proposed imaging investigation for the 2008 Lunar Reconnaissance Orbiter (LRO) mission. SILVER and its experienced Measurement Team will prepare for and support future lunar human exploration activities, especially landing site identification and certification on the basis of potential resources. SILVER combines a high-resolution pushbroom visible imaging channel (SILVER-HR) and a wide-field-of-view (45 deg) framing imaging channel (SILVER-WF). SILVER-HR will obtain a single-detector 6 km imaging swath of 12,228 pixels at 0.5 m/pixel to image greater than 100 sq km target areas from 50 km altitude, imaging greater than 15% the lunar surface during a 1 year nominal mission. SILVER-HR has excellent stray-light rejection and its imaging detector has selectable time delay integration (TDI) with up to 128 stages for extreme low-light sensitivity, permitting direct imaging of permanently shadowed polar regions in scattered sunlight or earthshine. SILVER-WF will obtain geodetic framing images in a 2048 x 2048 format at 20m/pixel, with 60% along-track overlap stereo for imaging context and for derivation of a global digital elevation model of meter-scale lunar topography.

  12. Digital Elevation Models of the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Cook, A. C.; Robinson, M. S.

    1999-01-01

    Several digital elevation models (DEMs) have been produced at a scale of 1km/pixel and covering approximately one-fifth of the lunar surface. These were produced mostly by semiautomatically matching the stereo available between Clementine UV/VIS images, although some localized DEMs have been produced by applying this technique to Apollo Metric stereo pairs, or by digitizing an existing Apollo Metric contour map. The DEMS that result from Clementine UV/VIS images, although Of Poorer height accuracy (1300-600 in for a single matched point) than the Clementine laser altimeter point measurements (<+/-100 m), do provide considerably higher spatial resolution (e.g., every kilometer vs. every tens of kilometers) and allow topography in the polar regions to be determined. Nadir-pointing Clementine UV-VIS stereo pairs are automatically stereo matched using a patch-based matcher and fed through A stereo intersection camera model to yield a digital terrain model (DTM) of longitude, latitude, and height points. The DTM for each stereo pair is then replotted and interpolated to form map-projected DEM tiles. The DEM files can then be fitted to absolute height laser altimeter points, or iteratively to each other, to form a DEM mosaic. Uncertainties in UV-VIS camera pointing and the need to accumulate a sufficiently good topographic S/N ratio necessitates the use of 1 km pixels for the UV-VIS derived DEMs. For Apollo Metric stereo, an internal camera geometry correction and a full photogrammetric block adjustment must be performed using ground- control points to derive a DEM. The image scale of Apollo Metric, as well as the stereo angle, allow for a DEM with 100 m pixels and a height accuracy of +/- 25m. Apollo Metric imagery had previously been used to derive contour maps for much of the lunar equatorial regions; however, to recover this information in digital form these maps must be digitized. Most of the mare areas mapped contain noticeable topographic noise. This results from

  13. SELMA: a mission to study lunar environment and surface interaction

    NASA Astrophysics Data System (ADS)

    Barabash, Stas; Futaana, Yoshifumi

    2017-04-01

    SELMA (Surface, Environment, and Lunar Magnetic Anomalies) proposed for the ESA M5 mission opportunity is a mission to study how the Moon environment and surface interact. SELMA addresses four overarching science questions: (1) What is the origin of water on the Moon? (2) How do the "volatile cycles" on the Moon work? (3) How do the lunar mini-magnetospheres work? (4) What is the influence of dust on the lunar environment and surface? SELMA uses a unique combination of remote sensing via UV, IR, and energetic neutral atoms and local measurements of plasma, fields, waves, exospheric gasses, and dust. It will also conduct an impact experiment to investigate volatile content in the soil of the permanently shadowed area of the Shakleton crater. SELMA carries an impact probe to sound the Reiner-Gamma mini-magnetosphere and its interaction with the lunar regolith from the SELMA orbit down to the surface. The SELMA science objectives include: - Establish the role of the solar wind and exosphere in the formation of the water bearing materials; - Determine the water content in the regolith of the permanently shadowed region and its isotope composition; - Establish variability, sources and sinks of the lunar exosphere and its relations to impact events; - Investigate a mini-magnetosphere interaction with the solar wind; - Investigate the long-term effects of mini-magnetospheres on the local surface; - Investigate how the impact events affect the lunar dust environments; - Investigate how the plasma effects result in lofting the lunar dust; SELMA is a flexible and short (15 months) mission including the following elements SELMA orbiter, SELMA Impact Probe for Magnetic Anomalies (SIP-MA), passive Impactor, and Relaying CubeSat (RCS). SELMA is placed on quasi-frozen polar orbit 30 km x 200 km with the pericenter over the South Pole. Approximately 9 months after the launch SELMA releases SIP-MA to sound the Reiner-Gamma magnetic anomaly with very high time resolution <0.5 s to

  14. Preliminary catalog of pictures taken on the lunar surface during the Apollo 16 mission

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Carson, K. B.; Reed, V. S.; Tyner, R. L.

    1972-01-01

    A catalog of all pictures taken from the lunar module or the lunar surface during the Apollo 16 lunar stay is presented. The tabulations are arranged for the following specific uses: (1) given the number of a particular frame, find its location in the sequence of lunar surface activity, the station from which it was taken and the subject matter of the picture; (2) given a particular location or activity within the sequence of lunar surface activity, find the pictures taken at that time and their subject matter; and (3) given a sample number from the voice transcript listed, find the designation assigned to the same sample by the lunar receiving laboratory.

  15. Advanced construction management for lunar base construction - Surface operations planner

    NASA Technical Reports Server (NTRS)

    Kehoe, Robert P.

    1992-01-01

    The study proposes a conceptual solution and lays the framework for developing a new, sophisticated and intelligent tool for a lunar base construction crew to use. This concept integrates expert systems for critical decision making, virtual reality for training, logistics and laydown optimization, automated productivity measurements, and an advanced scheduling tool to form a unique new planning tool. The concept features extensive use of computers and expert systems software to support the actual work, while allowing the crew to control the project from the lunar surface. Consideration is given to a logistics data base, laydown area management, flexible critical progress scheduler, video simulation of assembly tasks, and assembly information and tracking documentation.

  16. Advanced construction management for lunar base construction - Surface operations planner

    NASA Technical Reports Server (NTRS)

    Kehoe, Robert P.

    1992-01-01

    The study proposes a conceptual solution and lays the framework for developing a new, sophisticated and intelligent tool for a lunar base construction crew to use. This concept integrates expert systems for critical decision making, virtual reality for training, logistics and laydown optimization, automated productivity measurements, and an advanced scheduling tool to form a unique new planning tool. The concept features extensive use of computers and expert systems software to support the actual work, while allowing the crew to control the project from the lunar surface. Consideration is given to a logistics data base, laydown area management, flexible critical progress scheduler, video simulation of assembly tasks, and assembly information and tracking documentation.

  17. Characterizing transient thermal interactions between lunar regolith and surface spacecraft

    NASA Astrophysics Data System (ADS)

    Hager, P. B.; Klaus, D. M.; Walter, U.

    2014-03-01

    We present a new method, its development, implementation, and verification, for calculating the transient thermal interaction between lunar regolith and moving spacecraft travelling across the surface of the Moon. Regolith temperatures can be determined for lunar landscapes as defined by laser altimeter remote sensing data refined with local crater and boulder models. The purpose of this approach is to enable more detailed, dynamic thermal analyses of mobile systems on the lunar surface rather than relying on worst case, boundary condition design approaches typically used for spacecraft thermal engineering. This new simulation method is based on integrating models that represent small and large scale landscapes; reproduce regolith and boulder temperatures on the Moon; define the position of the Sun; and perform ray tracing to determine infrared and solar heat fluxes between passing objects and the surface. The thermal model of the lunar regolith enhances established models with a slope- and depth-dependent density. The simulation results were verified against remote sensing data obtained from the Diviner Lunar Radiometer Experiment of the Lunar Reconnaissance Orbiter (LRO) and from other sources cited in the literature. The verification results for isolated regolith surface patches showed a deviation from established models of about ±3-6 K (±1-6%) during lunar day, and lunar night. For real landscapes such as Crater Calippus and Crater Marius A, the deviation is less than ±15 K (±10%) compared to remote sensing data for the majority of measured data points. Only in regions with presumed different regolith material properties, such as steep slopes or depressions, or in regions with a low resolution on the topographic map, were the deviations up to 100 K (60%). From the results, empirical equations were derived, which can be used for worst case calculations or to calculate initial temperatures for more elaborate time marching numerical models. The proposed new

  18. In-situ Resource Utilization (ISRU) and Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Sanders, Jerry; Larson, Bill; Sacksteder, Kurt

    2007-01-01

    This viewgraph presentation reviews the benefits of In-Situ Resource Utilization (ISRU) on the surface of the moon. Included in this review is the commercialization of Lunar ISRU. ISRU will strongly influence architecture and critical technologies. ISRU is a critical capability and key implementation of the Vision for Space Exploration (VSE). ISRU will strongly effects lunar outpost logistics, design and crew safety. ISRU will strongly effect outpost critical technologies. ISRU mass investment is minimal compared to immediate and long-term architecture delivery mass and reuse capabilities provided. Therefore, investment in ISRU constitutes a commitment to the mid and long term future of human exploration.

  19. Calculation of Excavation Force for ISRU on Lunar Surface

    NASA Technical Reports Server (NTRS)

    Zeng, Xiangwu (David); Burnoski, Louis; Agui, Juan H.; Wilkinson, Allen

    2007-01-01

    Accurately predicting the excavation force that will be encountered by digging tools on the lunar surface is a crucial element of in-situ resource utilization (ISRU). Based on principles of soil mechanics, this paper develops an analytical model that is relatively simple to apply and uses soil parameters that can be determined by traditional soil strength tests. The influence of important parameters on the excavation force is investigated. The results are compared with that predicted by other available theories. Results of preliminary soil tests on lunar stimulant are also reported.

  20. Distribution of iron&titanium on the lunar surface from lunar prospector gamma ray spectra

    SciTech Connect

    Prettyman, T. H.; Feldman, W. C.; Lawrence, David J. ,; Elphic, R. C.; Gasnault, O. M.; Maurice, S.; Moore, K. R.; Binder, A. B.

    2001-01-01

    Gamma ray pulse height spectra acquired by the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) contain information on the abundance of major elements in the lunar surface, including O, Si, Ti, Al, Fe, Mg, Ca, K, and Th. With the exception of Th and K, prompt gamma rays produced by cosmic ray interactions with surface materials are used to determine elemental abundance. Most of these gamma rays are produced by inelastic scattering of fast neutrons and by neutron capture. The production of neutron-induced gamma rays reaches a maximum deep below the surface (e.g. {approx}140 g/cm{sup 2} for inelastic scattering and {approx}50 g/cm{sup 2} for capture). Consequently, gamma rays sense the bulk composition of lunar materials, in contrast to optical methods [e.g. Clementine Spectral Reflectance (CSR)], which only sample the top few microns. Because most of the gamma rays are produced deep beneath the surface, few escape unscattered and the continuum of scattered gamma rays dominates the spectrum. In addition, due to the resolution of the spectrometer, there are few well-isolated peaks and peak fitting algorithms must be used to deconvolve the spectrum in order to determine the contribution of individual elements.

  1. Power System Trade Studies for the Lunar Surface Access Module

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa, L.

    2008-01-01

    A Lunar Lander Preparatory Study (LLPS) was undertaken for NASA's Lunar Lander Pre-Project in 2006 to explore a wide breadth of conceptual lunar lander designs. Civil servant teams from nearly every NASA center responded with dozens of innovative designs that addressed one or more specific lander technical challenges. Although none of the conceptual lander designs sought to solve every technical design issue, each added significantly to the technical database available to the Lunar Lander Project Office as it began operations in 2007. As part of the LLPS, a first order analysis was performed to identify candidate power systems for the ascent and descent stages of the Lunar Surface Access Module (LSAM). A power profile by mission phase was established based on LSAM subsystem power requirements. Using this power profile, battery and fuel cell systems were modeled to determine overall mass and volume. Fuel cell systems were chosen for both the descent and ascent stages due to their low mass. While fuel cells looked promising based on these initial results, several areas have been identified for further investigation in subsequent studies, including the identification and incorporation of peak power requirements into the analysis, refinement of the fuel cell models to improve fidelity and incorporate ongoing technology developments, and broadening the study to include solar power.

  2. Observing Solar Radio Bursts from the Lunar Surface

    NASA Technical Reports Server (NTRS)

    MacDowall, R. J.; Gopalswamy, N.; Kaiser, M. L.; Lazio, T. J.; Jones, D. L.; Bale, S. D.; Burns, J.; Kasper, J. C.; Weiler, K. W.

    2011-01-01

    Locating low frequency radio observatories on the lunar surface has a number of advantages, including fixes locations for the antennas and no terrestrial interference on the far side of the moon. Here, we describe the Radio Observatory for Lunar Sortie Science (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff of the solar radio emissions and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays designed for faint sources.

  3. Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design

    NASA Technical Reports Server (NTRS)

    Alvarez, Erika; Forbes, John C.; Thornton, Randall J.

    2010-01-01

    The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform multiple burns including the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine technology testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.

  4. Reference reactor module for NASA's lunar surface fission power system

    SciTech Connect

    Poston, David I; Kapernick, Richard J; Dixon, David D; Werner, James; Qualls, Louis; Radel, Ross

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO{sub 2}-fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  5. Observing Solar Radio Bursts from the Lunar Surface

    NASA Technical Reports Server (NTRS)

    MacDowall, R. J.; Lazio, T. J.; Bale, S. D.; Burns, J.; Gopalswamy, N.; Jones, D. L.; Kaiser, M. L.; Kasper, J.; Weiler, K. W.

    2010-01-01

    Locating low frequency radio observatories on the lunar surface has a number of advantages. Here, we describe the Radio Observatory for Lunar Sortie Science (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff of the solar radio emissions and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays. Key design requirements on ROLES include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs below 10 MHz, essentially unobservable from Earth's surface due to the terrestrial ionospheric cutoff. Resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2 deg, equivalent to a linear array size of approximately 500 meters. Operations would consist of data acquisition during the lunar day, with regular data downlinks. The major components of the ROLSS array are 3 antenna arms arranged in a Y shape, with a central electronics package (CEP). Each antenna arm is a linear strip of polyimide film (e.g., Kapton (TM)) on which 16 single polarization dipole antennas are located by depositing a conductor (e.g., silver). The arms also contain transmission lines for carrying the radio signals from the science antennas to the CEP.

  6. Small-area thorium features on the lunar surface

    NASA Astrophysics Data System (ADS)

    Lawrence, D. J.; Elphic, R. C.; Feldman, W. C.; Prettyman, T. H.; Gasnault, O.; Maurice, S.

    2003-09-01

    Using an improved understanding of the Lunar Prospector Gamma-Ray Spectrometer (LP-GRS) spatial footprint, we have derived a new map of global thorium abundances on the lunar surface. This map has a full-width, half-maximum spatial resolution of ~(80 km)2 and is mapped on the lunar surface using 0.5° × 0.5° pixels. This map has allowed the identification and classification of 42 small-area (<[80 km]2) thorium features across the lunar surface. Twenty of these features, all of which are located in the nearside Procellarum KREEP terrane, show a thorium-iron anticorrelation that is indicative of mixing between mare basalts and thorium-rich mafic impact-melt breccias (MIB). However, there exists at least one example of a farside location (Dewar crater) that appears to have abundances similar to the thorium-rich MIBs. This new map has also allowed the identification of mare basalts having high thorium abundances (>3 μg/g) in southwestern Mare Tranquillitatis, near the Apollo 11 landing site. With our better understanding of the LP-GRS spatial footprint, we have been able to constrain the surface thorium abundance at the Compton/Belkovich thorium anomaly to 40-55 μg/g, which is higher than any other measured location on the lunar surface and higher than most samples. Finally, using 1 km/pixel FeO abundances from Clementine and LP-GRS spatial footprint information, we have been able to obtain plausible thorium distributions around Kepler crater at a resolution of 1 km/pixel. The materials around Kepler crater appear to be a relatively simple mixing of thorium-rich MIB compositions and high-thorium mare basalts.

  7. Comparison of alternative concepts for lunar surface transportation

    NASA Astrophysics Data System (ADS)

    Apel, Uwe

    The lunar surface transportation system is a key element in lunar development. The decision which means of conveyance should be preferred depends on a lot of influencing factors such as transportation requirements, physical boundary conditions and economics. Starting with a systematic approach to define and structure the problem, a model to compare alternative transportation systems has been built. From the pool of possible means of conveyance, chemical rockets, electric cars, maglev-trains and mass-drivers have been chosen as candidates for investigation. With these candidates five different surface transportation systems were defined. For a reference lunar development scenario the systems were compared on the basis of a cost-to-benefit ratio. Preliminary results indicate that under the assumption that LH2 could be produced on lunar surface, LOX/LH2 propulsed "Hoppers" seem very attractive up to medium transportation demands. For large amounts of bulk cargo, mass driver transportation seems to have advantages, and electric cars should be used for all transportation tasks if the transportation demand is high. Maglev-trains seem to be competitive only for very large transportation demand and long life cycles.

  8. Humanoids for lunar and planetary surface operations

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Keymeulen, Didier; Csaszar, Ambrus; Gan, Quan; Hidalgo, Timothy; Moore, Jeff; Newton, Jason; Sandoval, Steven; Xu, Jiajing

    2005-01-01

    This paper presents a vision of humanoid robots as human's key partners in future space exploration, in particular for construction, maintenance/repair and operation of lunar/planetary habitats, bases and settlements. It integrates this vision with the recent plans, for human and robotic exploration, aligning a set of milestones for operational capability of humanoids with the schedule for the next decades and development spirals in the Project Constellation. These milestones relate to a set of incremental challenges, for the solving of which new humanoid technologies are needed. A system of systems integrative approach that would lead to readiness of cooperating humanoid crews is sketched. Robot fostering, training/education techniques, and improved cognitive/sensory/motor development techniques are considered essential elements for achieving intelligent humanoids. A pilot project in this direction is outlined.

  9. Surface chemistry of selected lunar regions

    NASA Technical Reports Server (NTRS)

    Bielefeld, M. J.; Reedy, R. C.; Metzger, A. E.; Trombka, J. I.; Arnold, J. R.

    1976-01-01

    A completely new analysis has been carried out on the data from the Apollo 15 and 16 gamma ray spectrometer experiments. The components of the continuum background have been estimated. The elements Th, K, Fe and Mg give useful results; results for Ti are significant only for a few high Ti regions. Errors are given, and the results are checked by other methods. Concentrations are reported for about sixty lunar regions; the ground track has been subdivided in various ways. The borders of the maria seem well-defined chemically, while the distribution of KREEP is broad. This wide distribution requires emplacement of KREEP before the era of mare formation. Its high concentration in western mare soils seems to require major vertical mixing.

  10. Lunar Orbiter Laser Altimeter (LOLA) Data: Lunar Topography and Surface Properties After 7 Years

    NASA Astrophysics Data System (ADS)

    Neumann, G. A.; Mazarico, E.; Lemoine, F. G.; Sun, X.; Head, J. W., III; Barker, M. K.; Jha, K.; Mao, D.; Torrence, M. H.; Smith, D. E.; Zuber, M. T.

    2016-12-01

    The LOLA altimeter on LRO has collected data on 31,500 orbits of the Moon since June 2009, firing 4.1 billion laser pulses split into 5 beams. Nearly 7 billion lunar altimetric bounce points have been geolocated with 0.5-m radial accuracy and 10 m total position errors using high-resolution gravity fields from GRAIL combined with radiometric tracking and one-way laser ranging, followed by crossover analysis. The altimetric data are resampled onto uniformly-spaced grids at resolutions down to the 5-m-diameter footprint scale of the LOLA beams where coverage permits. Originally flown to ensure safe landing and to provide a precise global geodetic grid on the Moon, ongoing analysis of LOLA data has enabled the measurement of the centimeter-level lunar tides, the survey of regions in permanent shadow and near-total solar illumination, and addressed problems of volcanology, tectonism, impact cratering, lunar chronology, mineralogy, crustal and interior structure, regolith evolution, nature and evolution of volatiles, surface roughness and slope interactions with particles. Active measurement of the surface reflectance at zero phase has suggested the presence of lunar frost in the coldest regions poleward of 80° N/S while passive measurements of the lunar phase function at 1064 nm wavelength have extended knowledge of lunar photometry in the near-infrared. Imperfections in topographic knowledge at the meter level arise from the need for interpolation within gaps, from misclassification of noise returns, and from residual orbital and attitude errors. Continued observations in the Extended Mission phases address these issues, while classification of ground returns is assisted by increasingly precise digital elevation models produced by stereographic analysis of data from the LRO cameras and the Kaguya Terrain Camera (e.g., imbrium.mit.edu/EXTRAS/SLDEM2015). The lower periapse altitude during the most recent mission year, together with changes in orbital inclination

  11. Direct measurement of surface carbon concentrations. [in lunar soil

    NASA Technical Reports Server (NTRS)

    Filleux, C.; Tombrello, T. A.; Burnett, D. S.

    1977-01-01

    Measurements of surface concentrations of carbon in lunar soils and soil breccias provide information on the origin of carbon in the regolith. The reaction C-12 (d, p sub zero) is used to measure 'surface' and 'volume' concentrations in lunar samples. This method has a depth resolution of 1 micron, which permits only a 'surface' and a 'volume' component to be measured. Three of four Apollo 16 double drive tube samples show a surface carbon concentration of about 8 by 10 to the 14th power/sq cm, whereas the fourth sample gave 4 by 10 to the 14th power/sq cm. It can be convincingly shown that the measured concentration does not originate from fluorocarbon or hydrocarbon contaminants. Surface adsorbed layers of CO or CO2 are removed by a sputter cleaning procedure using a 2-MeV F beam. It is shown that the residual C concentration of 8 by 10 to the 14th power/sq cm cannot be further reduced by increased F fluence, and it is therefore concluded that it is truly lunar. If one assumes that the measured surface C concentration is a steady-state concentration determined only by a balance between solar-wind implantation and sputtering, a sputter erosion rate of 0.1 A/yr is obtained. However, it would be more profitable to use an independently derived sputter erosion rate to test the hypothesis of a solar-wind origin of the surface carbon.

  12. Direct measurement of surface carbon concentrations. [in lunar soil

    NASA Technical Reports Server (NTRS)

    Filleux, C.; Tombrello, T. A.; Burnett, D. S.

    1977-01-01

    Measurements of surface concentrations of carbon in lunar soils and soil breccias provide information on the origin of carbon in the regolith. The reaction C-12 (d, p sub zero) is used to measure 'surface' and 'volume' concentrations in lunar samples. This method has a depth resolution of 1 micron, which permits only a 'surface' and a 'volume' component to be measured. Three of four Apollo 16 double drive tube samples show a surface carbon concentration of about 8 by 10 to the 14th power/sq cm, whereas the fourth sample gave 4 by 10 to the 14th power/sq cm. It can be convincingly shown that the measured concentration does not originate from fluorocarbon or hydrocarbon contaminants. Surface adsorbed layers of CO or CO2 are removed by a sputter cleaning procedure using a 2-MeV F beam. It is shown that the residual C concentration of 8 by 10 to the 14th power/sq cm cannot be further reduced by increased F fluence, and it is therefore concluded that it is truly lunar. If one assumes that the measured surface C concentration is a steady-state concentration determined only by a balance between solar-wind implantation and sputtering, a sputter erosion rate of 0.1 A/yr is obtained. However, it would be more profitable to use an independently derived sputter erosion rate to test the hypothesis of a solar-wind origin of the surface carbon.

  13. Evaluation of infrared emission spectroscopy for mapping the Moon's surface composition from lunar orbit

    NASA Technical Reports Server (NTRS)

    Nash, Douglas B.; Salisbury, John W.; Conel, James E.; Lucey, Paul G.; Christensen, Philip R.

    1993-01-01

    Infrared thermal emission spectroscopy is evaluated for its possible application to compositional mapping of the Moon's surface from lunar orbit. Principles of the mid-IR (approximately 4-25 microns) technique, previous lunar ground-based observations, and laboratory studies of Moon samples are reviewed and summarized. A lunar thermal emission spectrometer experiment is described, patterned after a similar instrument on the Mars Observer spacecraft. Thermal emission spectrometry from a polar-orbiting lunar spacecraft could provide a valuable mapping tool to aid in exploration for lunar resources and help provide understanding of the origin of the Moon and history of lunar surface processes.

  14. Constraints on the origins of lunar magnetism from electron reflection measurements of surface magnetic fields

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1979-01-01

    The paper describes a new method of detecting lunar surface magnetic fields, summarizes electron reflection measurements and correlations of surface field anomalies to moon geologic features, and discusses the constraints on the origin of lunar magnetism. Apollo 15 and 16 measurements of lunar surface magnetic fields by the electron reflection method show patches of strong surface fields distributed over the lunar surface, and a positive statistical correlation is found in lunar mare regions between the surface field strength and the geologic age of the surface. However, there is a lack of correlation of surface field with impact craters indicating that the mare does not have a strong large-scale uniform magnetization as may be expected from an ancient lunar dynamo. Fields were found in lunar highlands which imply that the rille has a strong magnetization associated with it as intrusive, magnetized rock or as a gap in a uniformly magnetic layer of rock.

  15. Constraints on the origins of lunar magnetism from electron reflection measurements of surface magnetic fields

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1979-01-01

    The paper describes a new method of detecting lunar surface magnetic fields, summarizes electron reflection measurements and correlations of surface field anomalies to moon geologic features, and discusses the constraints on the origin of lunar magnetism. Apollo 15 and 16 measurements of lunar surface magnetic fields by the electron reflection method show patches of strong surface fields distributed over the lunar surface, and a positive statistical correlation is found in lunar mare regions between the surface field strength and the geologic age of the surface. However, there is a lack of correlation of surface field with impact craters indicating that the mare does not have a strong large-scale uniform magnetization as may be expected from an ancient lunar dynamo. Fields were found in lunar highlands which imply that the rille has a strong magnetization associated with it as intrusive, magnetized rock or as a gap in a uniformly magnetic layer of rock.

  16. View of lunar surface taken from Apollo 8 spacecraft

    NASA Technical Reports Server (NTRS)

    1968-01-01

    View of the lunar surface as photographed from the Apollo 8 spacecraft. Zero-phase bright spot. With near vertical sun illumination, topographical detail is washed out and differences in surface brightness are acentuated. the numerous small bright-halo craters become conspicuous. A few larger craters have extremely bright inner walls that are commonly streaked by darker material. The bright glow near the conspicuous bright-walled crater is a halo that surrounds the position of the spacecraft shadow.

  17. Remote compositional mapping of lunar titanium and surface maturity

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Larson, S. M.; Singer, Robert B.

    1991-01-01

    Lunar ilmenite (FeTiO3) is a potential resource capable of providing oxygen for life support and spacecraft propellant for future lunar bases. Estimates of TiO2 content in mature mare soils can be made using an empirical relation between the 400/500 nm reflectance ratio and TiO2 wt percent. A TiO2 abundance map was constructed for the entire near-side lunar maria accurate to + or - 2 wt percent TiO2 using CCD images obtained at the Tumamoc Hill 0.5 m telescope in Tucson, employing bandpass filters centered at 400 and 560 nm. Highest TiO2 regions in the maria are located in western Mare Tranquillitatis. Greater contrast differences between regions on the lunar surface can be obtained using 400/730 nm ratio images. The relation might well be refined to accommodate this possibly more sensitive indicator of TiO2 content. Another potential lunar resource is solar wind-implanted He-3 which may be used as a fuel for fusion reactors. Relative soil maturity, as determined by agglutinate content, can be estimated from 950/560 nm ration images. Immature soils appear darker in this ratio since such soils contain abundant pyroxene grains which cause strong absorption centered near 950 nm due Fe(2+) crystal field transitions. A positive correlation exists between the amount of He-3 and TiO2 content in lunar soils, suggesting that regions high in TiO2 should also be high in He-3. Reflectance spectrophotometry in the region 320 to 870 nm was also obtained for several regions. Below about 340 nm, these spectra show variations in relative reflectance that are caused by as yet unassigned near-UV absorptions due to compositional differences.

  18. Remote compositional mapping of lunar titanium and surface maturity

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Larson, S. M.; Singer, Robert B.

    1991-01-01

    Lunar ilmenite (FeTiO3) is a potential resource capable of providing oxygen for life support and spacecraft propellant for future lunar bases. Estimates of TiO2 content in mature mare soils can be made using an empirical relation between the 400/500 nm reflectance ratio and TiO2 wt percent. A TiO2 abundance map was constructed for the entire near-side lunar maria accurate to + or - 2 wt percent TiO2 using CCD images obtained at the Tumamoc Hill 0.5 m telescope in Tucson, employing bandpass filters centered at 400 and 560 nm. Highest TiO2 regions in the maria are located in western Mare Tranquillitatis. Greater contrast differences between regions on the lunar surface can be obtained using 400/730 nm ratio images. The relation might well be refined to accommodate this possibly more sensitive indicator of TiO2 content. Another potential lunar resource is solar wind-implanted He-3 which may be used as a fuel for fusion reactors. Relative soil maturity, as determined by agglutinate content, can be estimated from 950/560 nm ration images. Immature soils appear darker in this ratio since such soils contain abundant pyroxene grains which cause strong absorption centered near 950 nm due Fe(2+) crystal field transitions. A positive correlation exists between the amount of He-3 and TiO2 content in lunar soils, suggesting that regions high in TiO2 should also be high in He-3. Reflectance spectrophotometry in the region 320 to 870 nm was also obtained for several regions. Below about 340 nm, these spectra show variations in relative reflectance that are caused by as yet unassigned near-UV absorptions due to compositional differences.

  19. Regionalized Lunar South Pole Surface Navigation System Analysis

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2008-01-01

    Apollo missions utilized Earth-based assets for navigation because the landings took place at lunar locations in constant view from the Earth. The new exploration campaign to the lunar south pole region will have limited Earth visibility, but the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in this region is unknown. This report presents a dilution-of-precision (DoP)-based, stationary surface navigation analysis of the performance of multiple lunar satellite constellations, Earth-based deep space network assets, and combinations thereof. Results show that kinematic and integrated solutions cannot be provided by the Earth-based deep space network stations. Also, the stationary surface navigation system needs to be operated either as a two-way navigation system or as a one-way navigation system with local terrain information, while the position solution is integrated over a short duration of time with navigation signals being provided by a lunar satellite constellation.

  20. Possible Albedo Proton Signature of Hydrated Lunar Surface Layer

    NASA Astrophysics Data System (ADS)

    Schwadron, N.; Wilson, J. K.; Looper, M. D.; Jordan, A.; Spence, H. E.; Blake, J. B.; Case, A. W.; Iwata, Y.; Kasper, J. C.; Farrell, W. M.; Lawrence, D. J.; Livadiotis, G.; Mazur, J. E.; Petro, N. E.; Pieters, C. M.; Robinson, M. S.; Smith, S. S.; Townsend, L. W.; Zeitlin, C. J.

    2015-12-01

    We find evidence for a surface layer of hydrated material in the lunar regolith using "albedo protons" measured by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO). Fluxes of these albedo protons, which are emitted from the regolith due to steady bombardment by high-energy radiation (Galactic Cosmic Rays), are observed to peak near the poles, and cannot be accounted for by either heavy element enrichment (e.g., enhanced Fe abundance), or by deeply buried (> 50 cm) hydrogenous material. The latitudinal distribution of albedo protons does not correlate with that of epithermal or high-energy neutrons. The high latitude enhancement may be due to the conversion of upward directed secondary neutrons from the lunar regolith into tertiary protons due to neutron-proton collisions in a thin (~ 1-10 cm) layer of hydrated regolith near the surface that is more prevalent near the poles. The CRaTER instrument thus provides critical measurements of volatile distributions within lunar regolith and potentially, with similar sensors and observations, at other bodies within the Solar System.

  1. Structural disturbances of the lunar surface caused by spacecraft

    NASA Astrophysics Data System (ADS)

    Kaydash, V. G.; Shkuratov, Yu. G.

    2012-04-01

    From the lunar surface survey performed with a narrow-angle camera of the Lunar Reconnaissance Orbiter (LRO) spacecraft, the distributions of the phase ratios of the Apollo 11 and 12 landing sites and the Ranger 9 impact site were mapped. In the acquired images, the traces of the structural disturbances of the lunar regolith layer caused by the jet flows are seen. In the Ranger 9 impact site, one can see the crater of about 15 m across with a ray system, which is hardly noticeable in the brightness picture, but has a high contract in the phase ratio picture. The character of the photometric anomaly of the rays of this crater shows that they are formed by the ejected stones composing the rugged relief, which induces a strong shadow effect. At the same time, the influence of jet flows from the rocket engines smooths the relief and leads to the photometric anomaly of the opposite sign. The estimate of the maturity degree of the lunar regolith in the Apollo 11 and 12 landing sites obtained from the SELENE spectral survey suggests that the depth of the influence of the rocket engines on the soil is small, and the surface of the impact crater formed by the Ranger 9 spacecraft contains a large amount of the immature soil.

  2. The possible influence of the Earth's magnetosphere on the formation of the lunar surface hydration

    NASA Astrophysics Data System (ADS)

    Wang, Huizi; Zhang, Jiang; Shi, Quanqi; Tian, Anmin; Chen, Jian; Liu, Ji; Ling, Zongcheng; Fu, Xiaohui; Wei, Yong; Zhang, Hui; Liu, Wenlong; Fu, Suiyan; Zong, Qiugang; Pu, Zuyin

    2017-04-01

    Evidence of discoveries involved with lunar water (e.g., polar ice and OH-/H2O) has been observed in recent years. The dynamic H2O loss and rehydration cycle over a lunar day indicated solar wind hydrogen should be an important source of lunar surface water. In this study, we investigate the influence of the Earth's magnetosphere on the formation of the lunar surface hydration. Based on Moon Mineralogy Mapper (M3)data onboard Chandrayaan-1, we perform a statistical study of the lunar hydration distribution at high latitude regions. The lunar surface hydration is closely related to the solar illumination condition, indicating higher abundance varies with the lunar terminator which is consistent with the Deep Impact observation. When the Moon enter into the Earth's magnetosphere, the lunar surface hydration can also be formed and the magnitudes are of the same order inside/outside magnetotail. Nevertheless, further work need to be done to study the physical mechanism.

  3. MoonRIDERS: NASA and Hawaii's Lunar Surface Flight Experiment for Late 2016

    NASA Astrophysics Data System (ADS)

    Kelso, R. M.

    2015-10-01

    This briefing will update the MoonRIDERS lunar surface flight experiment project between NASA-KSC, PISCES, and two Hawaii high schools investigating critical lunar dust-removal technologies. Launch planned in early 2017 on GLXP mission.

  4. Transport of solar wind plasma onto the lunar nightside surface

    NASA Astrophysics Data System (ADS)

    Vorburger, A.; Wurz, P.; Barabash, S.; Futaana, Y.; Wieser, M.; Bhardwaj, A.; Dhanya, M. B.; Asamura, K.

    2016-10-01

    We present first measurements of energetic neutral atoms that originate from solar wind plasma having interacted with the lunar nightside surface. We observe two distinct energetic neutral atom (ENA) distributions parallel to the terminator, the spectral shape, and the intensity of both of which indicate that the particles originate from the bulk solar wind flow. The first distribution modifies the dayside ENA flux to reach ˜6° into the nightside and is well explained by the kinetic temperature of the solar wind protons. The second distribution, which was not predicted, reaches from the terminator to up to 30° beyond the terminator, with a maximum at ˜102° in solar zenith angle. As most likely wake transport processes for this second distribution we identify acceleration by the ambipolar electric field and by the negatively charged lunar nightside surface. In addition, our data provide the first observation indicative of a global solar zenith angle dependence of positive dayside surface potentials.

  5. On the equipotential surface hypothesis of lunar maria floors

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Jafar; Konopliv, A. S.; Sjogren, W. L.

    1999-03-01

    The equipotential surface hypothesis suggests that lunar maria floors lie on a surface parallel to the selenoid. This is examined using the spherical harmonic representations of the Clementine topography and Lunar Prospector gravity data. It is demonstrated that the floors of both circular and noncircular maria significantly deviate from an equipotential surface. Deeper circular maria and the deeper part of the noncircular Mare Tranquillitatis have been subsided under larger mass loads in the crust. We calculate the mass beneath the maria to be in excess to the mass required for isostatic compensation of the topography at 60 km depth. A global map of this excess mass shows that the noncircular maria are isostatically compensated, unlike the circular maria. The map also reveals seven new sizable mascons: the three largest are associated with Mendel-Rydberg, Mare Humboldtianum, and Mare Moscoviense.

  6. Distillation Designs for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange,Kevin E.; Conger, Bruce; Anderson, Molly

    2010-01-01

    Gravity-based distillation methods may be applied to the purification of wastewater on the lunar base. These solutions to water processing are robust physical separation techniques, which may be more advantageous than many other techniques for their simplicity in design and operation. The two techniques can be used in conjunction with each other to obtain high purity water. The components and feed compositions for modeling waste water streams are presented in conjunction with the Aspen property system for traditional stage distillation. While the individual components for each of the waste streams will vary naturally within certain bounds, an analog model for waste water processing is suggested based on typical concentration ranges for these components. Target purity levels for recycled water are determined for each individual component based on NASA s required maximum contaminant levels for potable water Optimum parameters such as reflux ratio, feed stage location, and processing rates are determined with respect to the power consumption of the process. Multistage distillation is evaluated for components in wastewater to determine the minimum number of stages necessary for each of 65 components in humidity condensate and urine wastewater mixed streams.

  7. Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust

    NASA Astrophysics Data System (ADS)

    Korotev, Randy L.; Jolliff, Bradley L.; Zeigler, Ryan A.; Gillis, Jeffrey J.; Haskin, Larry A.

    2003-12-01

    We present new compositional data for six feldspathic lunar meteorites, two from cold deserts (Yamato 791197 and 82192) and four from hot deserts (Dhofar 025, Northwest Africa 482, and Dar al Gani 262 and 400). The concentrations of FeO (or Al 2O 3) and Th (or any other incompatible element) together provide first-order compositional information about lunar polymict samples (breccias and regoliths) and regions of the lunar surface observed from orbit. Concentrations of both elements on the lunar surface have been determined from data acquired by orbiting spacecraft, although the derived concentrations have large uncertainties and some systematic errors compared to sample data. Within the uncertainties and errors in the concentrations derived from orbital data, the distribution of FeO and Th concentrations among lunar meteorites, which represent ˜18 source regions on the lunar surface, is consistent with that of 18 random samples from the surface. Approximately 11 of the lunar meteorites are low-FeO and low-Th breccias, consistent with large regions of the lunar surface, particularly the northern farside highlands. Almost all regoliths from Apollo sites, on the other hand, have larger concentrations of both elements because they contain Fe-rich volcanic lithologies from the nearside maria and Th-rich lithologies from the high-Th anomaly in the northwestern nearside. The feldspathic lunar meteorites thus offer our best estimate of the composition of the surface of the feldspathic highlands, and we provide such an estimate based on the eight most well-characterized feldspathic lunar meteorites. The variable but high (on average) Mg/Fe ratio of the feldspathic lunar meteorites compared to ferroan anorthosites confirms a hypothesis that much of the plagioclase at the surface of the feldspathic highlands is associated with high-Mg/Fe feldspathic rocks such as magnesian granulitic breccia, not ferroan anorthosite. Geochemically, the high-Mg/Fe breccias appear to be

  8. Silicon distribution on the lunar surface obtained by Kaguya GRS

    NASA Astrophysics Data System (ADS)

    Kim, Kyeong Ja; Kobayashi, Masanori; Elphic, Richard; Karouji, Yuzuru; Hamara, Dave; Kobayashi, Shingo; Nagaoka, Hiroshi; Rodriguez, Alexis; Yamashita, Naoyuki; Reedy, Robert; Hasebe, Nobuyuki

    Gamma ray spectrometry (GRS) provides a powerful tool to map and characterize the elemental composition of the upper tens centimeters of solid planetary surfaces. Elemental maps generated by the Kaguya GRS (KGRS) include natural radioactive as well as major elements maps (e.g., Fe, Ca, and Ti). Analysis of the Si gamma ray has been investigated using the 4934 keV Si peak produced by the thermal neutron interaction (28) Si(n,gammag) (29) Si, generated during the interaction of galactic cosmic rays and surface material containing Si. The emission rate of gamma rays is directly proportional to the abundance of Si from the lunar surface; however, it is also affected by the thermal neutron density in the lunar surface. Thus, we corrected the Si GRS data by a low energy neutron data (< 0.1 eV) obtained by Lunar Prospector because the Kaguya orbiter did not carry a neutron detector. We used the relative change in thermal neutron flux as a function of topography measured by Lunar Prospector. Normalization of Si elemental abundance using the Kaguya data was accomplished using Apollo 11, 12, 16, and 17 archive data. The normalized Si elemental abundance of the Kaguya GRS data ranged from about 15 to 27% Si. The lowest and highest SiO _{2} abundance correspond to mineral groups like pyroxene group (PKT region) and feldspar group (Northern highlands), respectively. The Si abundance permits the quantification of the relative abundance and distribution of mafic or non-mafic lunar surfaces materials. Our KGRS data analysis shows that highland terrains are Si-enriched relative to lower basins and plains regions, which appear to consist of primarily of mafic rocks. Our elemental map of Si using Kaguya GRS data shows that the highland areas of both near side and far side of the Moon have higher abundance of Si, and the mare regions of the near side of the Moon have the lowest Si abundance on the Moon. Our study clearly shows that there are a number of Si enriched areas compared to

  9. Lunar rock surfaces as detectors of solar processes

    NASA Technical Reports Server (NTRS)

    Hartung, J. B.

    1980-01-01

    Lunar rock surfaces exposed at or just below the lunar surface are considered as detectors of the solar wind, solar flares and solar-derived magnetic fields through their interactions with galactic cosmic rays. The degradation of the solar detector capabilities of lunar surface rocks by meteoroid impact erosion, accreta deposition, loose dust, and sputtering, amorphous layer formation and accelerated diffusion due to solar particles and illumination is discussed, and it is noted that the complex interactions of factors affecting the outer micron of exposed surface material has so far prevented the development of a satisfactory model for a particle detector on the submicron scale. Methods for the determination of surface exposure ages based on the accumulation of light solar wind noble gases, Fe and Mg, impact craters, solar flare tracks, and cosmogenic Kr isotopes are examined, and the systematic variations in the ages determined by the various clocks are discussed. It is concluded that a means of obtaining satisfactory quantitative rate or flux data has not yet been established.

  10. Requirements for extravehicular activities on the lunar and Martian surfaces

    NASA Technical Reports Server (NTRS)

    Brown, Mariann F.; Schentrup, Susan M.

    1990-01-01

    Basic design reference requirements pertinent to EVA equipment on lunar and martian surfaces are provided. Environmental factors affecting surface EVA are analyzed including gravity, dust, atmospheric conditions, thermal gradients, lightning conditions, and radiation effects, and activities associated with surface EVA are outlined. Environmental and activity effects on EVA equipment are assessed, and emphasis is placed on planetary surface portable life support systems (PLSS), suit development, protection from micrometeoroids, dust, and radiation, food and water supplies, and the extravehicular mobility-unit thermal-control system. Environmental and activity impacts on PLSS design are studied, with focus on base self-sufficiency and reduction in resupply logistics.

  11. Lunar Surface Access Module Pump-Fed Engine Turbopump Technology

    NASA Technical Reports Server (NTRS)

    Thornton, Randall J.

    2007-01-01

    The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new Exploration architecture. Preliminary studies indicate that a 4 engine cluster in the thrust range of 9,000-lbf each is a likely configuration for the main propulsion of the manned lunar lander vehicle. The main Lunar Surface Access Module engines will likely be responsible for mid-course correction burns, lunar orbit insertion burns, a deorbit burn, and the powered descent to the lunar surface. This multi-task engine philosophy imposes a wide throttling requirement on the engines in the range of 10:1. Marshall Space Flight Center has initiated an internal effort to mature the technologies needed for full scale development of such a LOX/LH2 pump-fed engine. In particular, a fuel turbopump is being designed and fabricated at MSFC to address the issues that a small high speed turbopump of this class will face. These issues include adequate throttling performance of the pump and turbine over a very wide operating range. The small scale of the hardware presents issues including performance scaling, and manufacturing issues like that will challenge the traditional methods we have used to fabricate and assemble larger scale turbopumps. The small high speed turbopump being developed at MSFC will operate at speeds greater than 100,000-rpm. These speeds create issues that include structural dynamics and high cycle fatigue as well as rotordynamic stability. The fuel turbopump development at MSFC will address these issues, and plans are in work for component level testing as well as operation in a test bed engine environment. The fuel turbopump design is nearing completion and described herein.

  12. Lunar Surface Access Module Pump-Fed Engine Turbopump Technology

    NASA Technical Reports Server (NTRS)

    Thornton, Randall J.

    2007-01-01

    The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new Exploration architecture. Preliminary studies indicate that a 4 engine cluster in the thrust range of 9,000-lbf each is a likely configuration for the main propulsion of the manned lunar lander vehicle. The main Lunar Surface Access Module engines will likely be responsible for mid-course correction burns, lunar orbit insertion burns, a deorbit burn, and the powered descent to the lunar surface. This multi-task engine philosophy imposes a wide throttling requirement on the engines in the range of 10:1. Marshall Space Flight Center has initiated an internal effort to mature the technologies needed for full scale development of such a LOX/LH2 pump-fed engine. In particular, a fuel turbopump is being designed and fabricated at MSFC to address the issues that a small high speed turbopump of this class will face. These issues include adequate throttling performance of the pump and turbine over a very wide operating range. The small scale of the hardware presents issues including performance scaling, and manufacturing issues like that will challenge the traditional methods we have used to fabricate and assemble larger scale turbopumps. The small high speed turbopump being developed at MSFC will operate at speeds greater than 100,000-rpm. These speeds create issues that include structural dynamics and high cycle fatigue as well as rotordynamic stability. The fuel turbopump development at MSFC will address these issues, and plans are in work for component level testing as well as operation in a test bed engine environment. The fuel turbopump design is nearing completion and described herein.

  13. Robotic lunar surface operations: Engineering analysis for the design, emplacement, checkout and performance of robotic lunar surface systems

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1990-01-01

    The assembly, emplacement, checkout, operation, and maintenance of equipment on planetary surfaces are all part of expanding human presence out into the solar system. A single point design, a reference scenario, is presented for lunar base operations. An initial base, barely more than an output, which starts from nothing but then quickly grows to sustain people and produce rocket propellant. The study blended three efforts: conceptual design of all required surface systems; assessments of contemporary developments in robotics; and quantitative analyses of machine and human tasks, delivery and work schedules, and equipment reliability. What emerged was a new, integrated understanding of hot to make a lunar base happen. The overall goal of the concept developed was to maximize return, while minimizing cost and risk. The base concept uses solar power. Its primary industry is the production of liquid oxygen for propellant, which it extracts from native lunar regolith. Production supports four lander flights per year, and shuts down during the lunar nighttime while maintenance is performed.

  14. Dilution-of-Precision-Based Lunar Surface Navigation System Analysis Utilizing Lunar Orbiters

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.; Connolly, Joseph W.; Sands, Obed S.

    2007-01-01

    The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. Although navigation systems have already been proven in the Apollo missions to the Moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In contrast to Apollo missions, which were limited to the near-side equatorial region of the Moon, those under the Exploration Systems Initiative will require navigation on the Moon's limb and far side. Since these regions have poor Earth visibility, a navigation system comprised solely of Earth-based tracking stations will not provide adequate navigation solutions in these areas. In this report, a dilution-of-precision (DoP)-based analysis of the performance of a network of Moon orbiting satellites is provided. This analysis extends a previous analysis of a lunar network (LN) of navigation satellites by providing an assessment of the capability associated with a variety of assumptions. These assumptions pertain to the minimum surface user elevation angle and a total single satellite failure in the lunar network. The assessment is accomplished by making appropriately formed estimates of DoP. Different adaptations of DoP, such as geometric DoP and positional DoP (GDoP and PDoP), are associated with a different set of assumptions regarding augmentations to the navigation receiver or transceiver.

  15. Scalable Lunar Surface Networks and Adaptive Orbit Access

    NASA Technical Reports Server (NTRS)

    Wang, Xudong

    2015-01-01

    Teranovi Technologies, Inc., has developed innovative network architecture, protocols, and algorithms for both lunar surface and orbit access networks. A key component of the overall architecture is a medium access control (MAC) protocol that includes a novel mechanism of overlaying time division multiple access (TDMA) and carrier sense multiple access with collision avoidance (CSMA/CA), ensuring scalable throughput and quality of service. The new MAC protocol is compatible with legacy Institute of Electrical and Electronics Engineers (IEEE) 802.11 networks. Advanced features include efficiency power management, adaptive channel width adjustment, and error control capability. A hybrid routing protocol combines the advantages of ad hoc on-demand distance vector (AODV) routing and disruption/delay-tolerant network (DTN) routing. Performance is significantly better than AODV or DTN and will be particularly effective for wireless networks with intermittent links, such as lunar and planetary surface networks and orbit access networks.

  16. Lunar Radar Scattering from Near-Surface Buried Crater Ejecta

    NASA Astrophysics Data System (ADS)

    Thompson, T. W.; Ustinov, E. A.; Heggy, E.

    2009-12-01

    The Apollo 15, 16, and 17 core tubes show that the uppermost few meters of the lunar regolith are interlaced layers of a fine grained powders and blocky crater ejecta. The layers of crater ejecta have dielectric constants in the range of 7-9 while the fine-grained powders has dielectric constant on the order of 2.7. These differences in dielectric constant, in turn, create radar reflections that are both refracted and reflected back through the space-regolith interface. Note that for a dielectric constant of 2.7 for the lunar regolith, radio waves incident on the lunar surface at the angle of 30-degrees from the normal will propagate in the regolith at an angle of 18-degrees. At the limb, radio waves incident on the lunar surface at an angle near 90-degrees from the normal will propagate in the regolith at an angle of about 37-degrees. These angles are within the range where radar backscatter is in the quasi-specular regime. When these buried crater ejecta layers are modeled using Hagfors’ formulation (Hagfors, 1963), echo powers match the behavior observed for average lunar backscatter at centimeter wavelengths for higher (30° to 90°) angles of incidence. In addition, Hagfors et al. (1965) conducted an experiment where the Moon was illuminated at 23-cm wavelength with circular polarization and the differences were observed in orthogonal linear polarizations. Modeling of these observations and assuming again that the buried crater ejecta scatter in a quasi-specular manner, echo differences in horizontal and vertical linear polarizations are in relatively good agreement with the observations. The data from Chandrayaan Mini-RF radar, which operated at S-Band (13cm) wavelength, and the Lunar Reconnaissance Orbiter (LRO) Mini-RF radar, which is operating at S-Band and X-Band (4-cm) wavelengths, provide an opportunity for a new examination of whether radar backscatter from buried crater ejecta behaves like a quasi-specular scatter. These radars reproduce the

  17. Apollo 17 Astronaut Cernan Adjusts U.S. Flag on Lunar Surface

    NASA Technical Reports Server (NTRS)

    1972-01-01

    In this Apollo 17 onboard photo, Mission Commander Eugene A. Cernan adjusts the U.S. flag deployed upon the Moon. The seventh and last manned lunar landing and return to Earth mission, the Apollo 17, carrying a crew of three astronauts: Cernan; Lunar Module pilot Harrison H. Schmitt; and Command Module pilot Ronald E. Evans, lifted off on December 7, 1972 from the Kennedy Space Flight Center (KSC). Scientific objectives of the Apollo 17 mission included geological surveying and sampling of materials and surface features in a preselected area of the Taurus-Littrow region, deploying and activating surface experiments, and conducting in-flight experiments and photographic tasks during lunar orbit and transearth coast (TEC). These objectives included: Deployed experiments such as the Apollo lunar surface experiment package (ALSEP) with a Heat Flow experiment, Lunar seismic profiling (LSP), Lunar surface gravimeter (LSG), Lunar atmospheric composition experiment (LACE) and Lunar ejecta and meteorites (LEAM). The mission also included Lunar Sampling and Lunar orbital experiments. Biomedical experiments included the Biostack II Experiment and the BIOCORE experiment. The mission marked the longest Apollo mission, 504 hours, and the longest lunar surface stay time, 75 hours, which allowed the astronauts to conduct an extensive geological investigation. They collected 257 pounds (117 kilograms) of lunar samples with the use of the Marshall Space Flight Center developed LRV. The mission ended on December 19, 1972

  18. Lunar-Surface Closeup Stereoscopic Photography on the Sea of Tranquility (Apollo 11 Landing Site)

    NASA Technical Reports Server (NTRS)

    Greenwood, W. R.; Jones, R. L.; Heiken, G.; Bender, M.; Hill, R. O.

    1971-01-01

    Analysis of returned lunar samples provides limited information about lunar geology. To obtain information about in-place lunar material, a closeup stereoscopic camera capable of photographing small-scale surface features was built and was used at the Apollo 11 landing site. Stereoscopic photographs were taken of surface areas relative to the lunar module, and the surfaces photographed were analyzed. The photographs are classified into five groups: soil disturbed by astronaut activities, generally undisturbed soil, loose aggregate surface material, crater bottoms with prominent glass deposits, and hard rock deposits. Glass deposits in the returned samples are described for comparison with the features observed in the photographs. The stereoscopic photographs were of outstanding quality and show the nature of lunar-surface material in detail. Lunar topography was reconstructed from the photographs with an analytical plotter. The photography results indicate that the closeup composition and genesis of lunar soil at the Apollo 11 landing site.

  19. Liquid oxygen production and storage on the lunar surface

    NASA Technical Reports Server (NTRS)

    Mills, Gary; Newell, Dave; Pinter, Dave; Snyder, Howard

    1990-01-01

    Once oxygen is produced on the lunar surface, it must be liquefied and stored for use by the lander vehicle. CSC has performed a preliminary design for the cryogenic storage depot for this liquid oxygen (LOX). Estimates have been made of the refrigeration power and equipment weight required for the liquefaction and storage. The determination is that the system is compatible with solar power limitations and will require little new technology development.

  20. Lunar surface roughness derived from LRO Diviner Radiometer observations

    NASA Astrophysics Data System (ADS)

    Bandfield, Joshua L.; Hayne, Paul O.; Williams, Jean-Pierre; Greenhagen, Benjamin T.; Paige, David A.

    2015-03-01

    Sunlit and shaded slopes have a variety of temperatures based on their orientation with respect to the Sun. Generally, greater slope angles lead to higher anisothermality within the field of view. This anisothermality is detected by measuring changing emitted radiance as a function of viewing angle or by measuring the difference in brightness temperatures with respect to observation wavelength. Thermal infrared measurements from the Lunar Reconnaissance Orbiter Diviner Radiometer were used to derive lunar surface roughness via two observation types: (1) nadir multispectral observations with full diurnal coverage and (2) multiple emission angle targeted observations. Measurements were compared to simulated radiance from a radiative equilibrium thermal model and Gaussian slope distribution model. Nadir observations most closely match a 20° RMS slope distribution, and multiple emission angle observations can be modeled using 20-35° RMS slope distributions. Limited sampling of the lunar surface did not show any clear variation in roughness among surface units. Two-dimensional modeling shows that surfaces separated by distances greater than 0.5-5 mm can remain thermally isolated in the lunar environment, indicating the length scale of the roughness features. Non-equilibrium conditions are prevalent at night and near sunrise and sunset, preventing the use of the equilibrium thermal model for roughness derivations using data acquired at these local times. Multiple emission angle observations also show a significant decrease in radiance at high emission angles in both daytime and nighttime observations, and hemispherical emissivity is lower than is apparent from nadir observations. These observations and models serve as a basis for comparison with similar measurements of other airless bodies and as an initial template for the interpretation of TIR measurements acquired under a variety of geometric conditions.

  1. View of lunar surface taken from Apollo 8 spacecraft

    NASA Technical Reports Server (NTRS)

    1968-01-01

    View of the lunar surface taken from the Apollo 8 spacecraft looking southward from high altitude across the Southern Sea. The bright-rayed crater near the horizon is located near 130 degrees east longitude and 70 degrees south latitude. The dark floored crater near the middle of the right side of the photograph is about 70 kilometers (45 statute miles) in diameter. Both features are beyond the eastern limb of the moon as viewed from earth; neither has a name.

  2. High-resolution Elemental Mapping of the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Edwards, Bradley C.; Ameduri, Frank; Bloch, Jeffrey J.; Priedhorsky, William C.; Roussel-Dupre, Diane; Smith, Barham W.

    1992-01-01

    New instruments and missions are being proposed to study the lunar surface as a result of the resurgence of interest in returning to the Moon. One instrument recently proposed is similar in concept to the x-ray fluorescence detectors flown on Apollo, but utilizes fluorescence from the L- and M-shells rather than the K-shell. This soft X-Ray Flourescence Imager (XRFI) is discussed.

  3. Panorama view of Apollo 17 Lunar surface photos

    NASA Image and Video Library

    1972-12-01

    Panorama view of Apollo 17 Lunar surface photos for use in presentations to NASA management and for Outreach Education in regard to new NASA initiative for human planetary research. Photo numbers used for this panoramic include: Apollo 17 start frame AS17-146-22339 thru end frame AS17-146-22363. View is of Station 7 Panorama taken during Extravehicular Activity (EVA) 3.

  4. Estimation of Lunar Surface Temperatures: a Numerical Model

    NASA Astrophysics Data System (ADS)

    Bauch, K.; Hiesinger, H.; Helbert, J.

    2009-04-01

    About 40 years after the Apollo and other lunar missions, several nations return to the Moon. Indian, Chinese, Japanese and American missions are already in orbit or will soon be launched, and the possibility of a "Made in Germany" mission (Lunar Exploration Orbiter - LEO) looms on the horizon [1]. In preparation of this mission, which will include a thermal infrared spectrometer (SERTIS - SElenological Radiometer and Thermal infrared Imaging Spectrometer), accurate temperature maps of the lunar surface are required. Because the orbiter will be imaging the Moon's surface at different times of the lunar day, an accurate estimation of the thermal variations of the surface with time is necessary to optimize signal-to-noise ratios and define optimal measurement areas. In this study we present new global temperature estimates for sunrise, noontime and sunset. This work provides new and updated research on the temperature variations of the lunar surface, by taking into account the surface and subsurface bulk thermophysical properties, namely their bulk density, heat capacity, thermal conductivity, emissivity and albedo. These properties have been derived from previous spacecraft-based observations, in-situ measurements and returned samples [e.g. 2-4]. In order to determine surface and subsurface temperatures, the one-dimensional heat conduction equation is solved for a resolution of about 0.4°, which is better by a factor of 2 compared to the Clementine measurement and temperature modeling described in [2]. Our work expands on the work of Lawson et al. [2], who calculated global brightness temperatures of subsolar points from the instantaneous energy balance equation assuming the Moon to be a spherical object [2]. Surface daytime temperatures are mainly controlled by their surface albedo and angle of incidence. On the other hand nighttime temperatures are affected by the thermal inertia of the observed surface. Topographic effects are expected to cause earlier or later

  5. Mitigation of Lunar Dust Adhesion by Surface Treatment

    NASA Astrophysics Data System (ADS)

    Dove, A.; Wang, X.; Robertson, S. H.; Horanyi, M.; Devaud, J.; Crowder, M.; Lawitzke, A.

    2009-12-01

    Dust has been recognized as one of the greatest hazards in continued lunar exploration. Thus, it is crucial to develop dust mitigation techniques that will minimize both the damages done to hardware and the dangers posed to humans working on the Moon. Passive mitigation techniques, which modify the surface of a material prior to dust exposure, will aid in repelling dust or reducing adhesion for easier dust removal. Our experiments use various surfaces (black Kapton (polymide), quartz, and silicon) that have been treated to have low surface energies by a Ball Aerospace and Technologies Corp. proprietary surface treatment technique. We use a centrifugal force detachment method to measure the total adhesive force acting between < 25 µm JSC-1 lunar simulant grains and these surfaces, both untreated and treated, in vacuum. Results indicate that the treated surfaces show significant improvement; dust is removed from treated black Kapton with about 4% of the force required for untreated black Kapton, while treated quartz and silicon show about a 50% reduction in force. Further tests will be conducted on additional surfaces, such as stainless steel and polycarbonate, and with different size fractions of JSC-1 in order to evaluate the role of dust grain size on adhesion. Because the Moon’s surface is directly exposed to solar UV radiation, we will also measure adhesion on surfaces that have previously been UV-irradiated.

  6. Lunar Surface Mission Operations Scenario and Considerations

    NASA Technical Reports Server (NTRS)

    Arnold, Larissa S.; Torney, Susan E.; Rask, John Doug; Bleisath, Scott A.

    2006-01-01

    Planetary surface operations have been studied since the last visit of humans to the Moon, including conducting analog missions. Mission Operations lessons from these activities are summarized. Characteristics of forecasted surface operations are compared to current human mission operations approaches. Considerations for future designs of mission operations are assessed.

  7. Mapping Resources Potential of the Lunar Surface for Human Exploration

    NASA Astrophysics Data System (ADS)

    Garvin, James

    2005-07-01

    We propose to use the ACS/HRC to delineate UV through visible color units at three test sites on the lunar surface for the purpose of identifying localized areas enriched in potential resources, including TiO2. This pathfinding experiment will make use of HST's unique high resolution imaging capabilities in the near UV. We will observe the Apollo 15 and 17 sites to establish an empirical calibration against sampled lunar soils. We will then observe the Aristarchus Plateau in search of regions enriched in TiO2 at levels that could permit in situ resources utilization activities that support sustained human exploration. Precision mapping of TiO2 abundance and other chemical proxies by virtue of HST's high angular resolution in near UV wavelengths will extend lower resolution Visible-NIR results obtained from orbit by Clementine, and set the stage for future orbital surveys later in the decade. Understanding whether there are lunar near-side sites with adequate resource potential to target human "sorties" and related robotic precursor missions represents an important decision point in NASA's implementation of the President's Vision for Space Exploration. The proposed HST ACS/HRC test data directly support near-term engineering trades associated with the optimal location for the first human return missions to the Moon. No past, current, or planned future lunar orbiting spacecraft will have the ability to investigate the near UV aspects of the lunar spectrum at such scales { 50m}, so the results of the proposed HST observations are unique and relevant to NASA's mission.

  8. A Lunar Surface System Supportability Technology Development Roadmap

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Struk, Peter M.; Taleghani, barmac K.

    2011-01-01

    This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA s Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of supportability, in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test and Verification, Maintenance and Repair, and Scavenging and Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set

  9. A Lunar Surface System Supportability Technology Development Roadmap

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Struk, Peter M.; Taleghani, Barmac K.

    2009-01-01

    This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA's Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of "supportability", in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in a environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test & Verification, Maintenance & Repair, and Scavenging & Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of

  10. Engineering design constraints of the lunar surface environment

    NASA Astrophysics Data System (ADS)

    Morrison, D. A.

    1992-02-01

    Living and working on the lunar surface will be difficult. Design of habitats, machines, tools, and operational scenarios in order to allow maximum flexibility in human activity will require paying attention to certain constraints imposed by conditions at the surface and the characteristics of lunar material. Primary design drivers for habitat, crew health and safety, and crew equipment are: ionizing radiation, the meteoroid flux, and the thermal environment. Secondary constraints for engineering derive from: the physical and chemical properties of lunar surface materials, rock distributions and regolith thicknesses, topography, electromagnetic properties, and seismicity. Protection from ionizing radiation is essential for crew health and safety. The total dose acquired by a crew member will be the sum of the dose acquired during EVA time (when shielding will be least) plus the dose acquired during time spent in the habitat (when shielding will be maximum). Minimizing the dose acquired in the habitat extends the time allowable for EVA's before a dose limit is reached. Habitat shielding is enabling, and higher precision in predicting secondary fluxes produced in shielding material would be desirable. Means for minimizing dose during a solar flare event while on extended EVA will be essential. Early warning of the onset of flare activity (at least a half-hour is feasible) will dictate the time available to take mitigating steps. Warning capability affects design of rovers (or rover tools) and site layout. Uncertainty in solar flare timing is a design constraint that points to the need for quickly accessible or constructible safe havens.

  11. Engineering design constraints of the lunar surface environment

    NASA Technical Reports Server (NTRS)

    Morrison, D. A.

    1992-01-01

    Living and working on the lunar surface will be difficult. Design of habitats, machines, tools, and operational scenarios in order to allow maximum flexibility in human activity will require paying attention to certain constraints imposed by conditions at the surface and the characteristics of lunar material. Primary design drivers for habitat, crew health and safety, and crew equipment are: ionizing radiation, the meteoroid flux, and the thermal environment. Secondary constraints for engineering derive from: the physical and chemical properties of lunar surface materials, rock distributions and regolith thicknesses, topography, electromagnetic properties, and seismicity. Protection from ionizing radiation is essential for crew health and safety. The total dose acquired by a crew member will be the sum of the dose acquired during EVA time (when shielding will be least) plus the dose acquired during time spent in the habitat (when shielding will be maximum). Minimizing the dose acquired in the habitat extends the time allowable for EVA's before a dose limit is reached. Habitat shielding is enabling, and higher precision in predicting secondary fluxes produced in shielding material would be desirable. Means for minimizing dose during a solar flare event while on extended EVA will be essential. Early warning of the onset of flare activity (at least a half-hour is feasible) will dictate the time available to take mitigating steps. Warning capability affects design of rovers (or rover tools) and site layout. Uncertainty in solar flare timing is a design constraint that points to the need for quickly accessible or constructible safe havens.

  12. Engineering design constraints of the lunar surface environment

    NASA Technical Reports Server (NTRS)

    Morrison, D. A.

    1992-01-01

    Living and working on the lunar surface will be difficult. Design of habitats, machines, tools, and operational scenarios in order to allow maximum flexibility in human activity will require paying attention to certain constraints imposed by conditions at the surface and the characteristics of lunar material. Primary design drivers for habitat, crew health and safety, and crew equipment are: ionizing radiation, the meteoroid flux, and the thermal environment. Secondary constraints for engineering derive from: the physical and chemical properties of lunar surface materials, rock distributions and regolith thicknesses, topography, electromagnetic properties, and seismicity. Protection from ionizing radiation is essential for crew health and safety. The total dose acquired by a crew member will be the sum of the dose acquired during EVA time (when shielding will be least) plus the dose acquired during time spent in the habitat (when shielding will be maximum). Minimizing the dose acquired in the habitat extends the time allowable for EVA's before a dose limit is reached. Habitat shielding is enabling, and higher precision in predicting secondary fluxes produced in shielding material would be desirable. Means for minimizing dose during a solar flare event while on extended EVA will be essential. Early warning of the onset of flare activity (at least a half-hour is feasible) will dictate the time available to take mitigating steps. Warning capability affects design of rovers (or rover tools) and site layout. Uncertainty in solar flare timing is a design constraint that points to the need for quickly accessible or constructible safe havens.

  13. Specific surface area as a maturity index of lunar fines

    NASA Technical Reports Server (NTRS)

    Gammage, R. B.; Holmes, H. F.

    1975-01-01

    Mature surface fines have an equilibrium specific surface area of about 0.6 sq m/g the equivalent mean particle size being about 3 microns. The adsorption behavior of inert gases (reversible isotherms) indicates that the particles are also nonporous in the size range of pores from 10 to 3000 A. Apparently, in mature soils there is a balance in the forces which cause fining, attrition, pore filling, and growth of lunar dust grains. Immature, lightly irradiated soils usually have coarser grains which reduce in size as aging proceeds. The specific surface area, determined by nitrogen or krypton sorption at 77 K, is a valuable index of soil maturity.

  14. Assessment of the Lunar Surface Layer and in Situ Materials to Sustain Construction-related Applications

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Chua, Koon Meng

    1992-01-01

    Present and future technologies to facilitate lunar composition and resource assessment with applications to lunar surface construction are presented. We are particularly interested in the construction activity associated with lunar-based astronomy. We address, as an example, the use of ground-probing radar to help assess subsurface conditions at sites for observatories and other facilities.

  15. Levitated lunar surface dust as evidenced by the LEAM experiment

    NASA Astrophysics Data System (ADS)

    Auer, S.; Berg, O. E.

    2008-09-01

    The Lunar Ejecta and Meteorites (LEAM) experiment was deployed by the Apollo 17 astronauts in the Taurus-Littrow area of the moon in December 1972. The science objectives of LEAM were (1) to investigate the interplanetary dust flux (primary particles) bombarding the lunar surface; (2) to investigate the properties of the lunar ejecta (secondary) particles; (3) to follow the temporal variability of these fluxes along the lunar orbit; and (4) to observe interstellar particles. The design and expected performance was similar to the dust experiments flown on Pioneers 8 and 9 in heliocentric orbits [1]. They responded to plasma generated by hypervelocity dust impacts. The pulse height generated was a function of mv2.6 of the particle (where m [g] is its mass and v [km/s] is its impact velocity) with a detection threshold of typically m = 10-13 g at v = 25 km s-1. Particle velocity was measured directly by its time of flight between two films spaced 5 cm apart. The LEAM contained three sensor systems. The east sensor was pointed 25° north of east, so that once per lunation its field of view swept into the direction of the interstellar dust flow. The west sensor was pointing in the opposite direction, while the up sensor was parallel to the lunar surface and viewing particles coming from above. Only the west sensor was lacking the front film. It was designed to identify low-speed ejecta impacts that were not expected to penetrate the front film. It soon became evident that most events registered by the sensors had to be attributed not to meteorites or lunar ejecta but to slow moving, highly charged lunar surface dust. Most puzzling were two facts: (1) the event rates increased with the passage of the terminators and (2) the events registered in the front film only and with the maximum possible pulse height. The event rate started to increase up to 60 hours before the local sunrise and persisted after sunrise for about 30-60 hours. In this interval the east sensor's rates

  16. Interaction of Highly Underexpanded Jets with Simulated Lunar Surfaces

    NASA Technical Reports Server (NTRS)

    Stitt, Leonard E.

    1961-01-01

    Pressure distributions and erosion patterns on simulated lunar surfaces (hard and soft) and interference effects between the surface and two representative lunar vehicles (cylindrical and spherical) were obtained with cold-air jets at various descent heights and nozzle total-pressure ratios up to 288,000. Surface pressure distributions were dependent on both nozzle area ratio and, nozzle contour. Peak pressures obtained with a sonic nozzle agreed closely with those predicted theoretically for a near-sonic jet expanding into a vacuum. Short bell-shaped nozzles gave annular pressure distributions; the low center pressure resulted from the coalescence of shocks that originated within the nozzle. The high surface pressures were contained within a circle whose diameter was about 16 throat diameters, regardless of nozzle area ratio or contour. The peak pressure increased rapidly as the vehicle approached the surface; for example, at a descent height of 40 throat diameters the peak pressure was 0.4 percent of the chamber pressure, but increased to 6 percent at 13 throat diameters. The exhaust jet eroded a circular concave hole in white sand at descent heights from about 200 to 600 throat diameters. The hole diameter was about 225 throat diameters, while the depth was approximately 60 throat diameters. The sand particles, which formed a conical sheet at a semivertex angle of 50 deg, appeared to follow a ballistic trajectory and at no time struck the vehicle. An increase in pressure was measured on the base of the cylindrical lunar vehicle when it approached to within 14 throat diameters of the hard, flat surface. No interference effects were noted between the spherical model and the surface to descent heights as low as 8 throat diameters.

  17. Strategies for Ground Testing of Manned Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Beyer, Jeff; Gill, Tracy; Peacock, Mike

    2009-01-01

    One of the primary objectives of NASA's Vision for Space Exploration is the creation of a permanently manned lunar outpost. Facing the challenge of establishing a human presence on the moon will require new innovations and technologies that will be critical to expanding this exploration to Mars and beyond. However, accomplishing this task presents an unprecedented set of obstacles, one of the more significant of which is the development of new strategies for ground test and verification. Present concepts for the Lunar Surface System (LSS) architecture call for the construction of a series of independent yet tightly coupled modules and elements to be launched and assembled in incremental stages. Many of these will be fabricated at distributed locations and delivered shortly before launch, precluding any opportunity for testing in an actual integrated configuration. Furthermore, these components must operate flawlessly once delivered to the lunar surface since there is no possibility for returning a malfunctioning module to Earth for repair or modification. Although undergoing continual refinement, this paper will present the current state of the plans and models that have been devised for meeting the challenge of ground based testing for Constellation Program LSS as well as the rationale behind their selection.

  18. ARTEMIS Observations of Proton Scattering off the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Lue, M. C.; Halekas, J. S.; Poppe, A. R.; McFadden, J. P.

    2016-12-01

    Solar wind protons that have been scattered off the lunar surface constitute an important plasma population in the lunar space environment [1]. To better understand the scattering process as well as the effects of the scattered protons, we here aim to constrain the scattering characteristics.We study the characteristics of scattered protons from the Moon using data from the ARTEMIS spacecraft, and put our results in the context of previous findings from Kaguya [2] and Chandrayaan-1 [3]. We study individual cases in detail, and proceed to characterize the scattering comprehensively using data collected over several years.Our observations are generally consistent with expectations from previous studies: we confirm a scattering rate of 0.1%-1% [c.f. 2] and an energy spectrum with a peak at 60%-70% of the incident solar wind energy [c.f. 3]. The observed directional scattering function appears consistent with that of scattered neutral hydrogen atoms [c.f. 4]. However, we observe a weaker dependence on the solar wind speed than reported by [3].From these observations, we make updated empirical models for solar wind scattering off the lunar surface. We also discuss possible explanations for the weaker solar wind speed dependence observed here. Finally, we discuss implications of these results for the scattering mechanism.[1] Nishino et al., GRL, 2010[2] Saito et al., GRL, 2008[3] Lue et al., JGR, 2014[4] Schaufelberger et al., GRL, 2011

  19. View form Lunar Module of surface of the moon near where LM touched down

    NASA Image and Video Library

    1959-07-20

    AS11-37-5458 (20 July 1969) --- This excellent view from the right-hand window of the Apollo 11 Lunar Module (LM) shows the surface of the moon in the vicinity of where the LM touched down. Numerous small rocks and craters can be seen between the LM and the lunar horizon. Astronaut Michael Collins, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit while astronauts Neil A. Armstrong, commander; and Edwin E. Aldrin Jr., lunar module pilot, descended in the LM to the lunar surface.

  20. A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link

    NASA Technical Reports Server (NTRS)

    Wilson, K.; Biswas, A.; Schoolcraft, J.

    2011-01-01

    A lunar surface systems study explores the application of optical communications to support a high bandwidth data link from a lunar relay satellite and from fixed lunar assets. The results show that existing 1-m ground stations could provide more than 99% coverage of the lunar terminal at 100Mb/s data rates from a lunar relay satellite and in excess of 200Mb/s from a fixed terminal on the lunar surface. We have looked at the effects of the lunar regolith and its removal on optical samples. Our results indicate that under repeated dust removal episodes sapphire rather than fused silica would be a more durable material for optical surfaces. Disruption tolerant network protocols can minimize the data loss due to link dropouts. We report on the preliminary results of the DTN protocol implemented over the optical carrier.

  1. A New Model of Size-graded Soil Veneer on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Basu, Abhijit; McKay, David S.

    2005-01-01

    Introduction. We propose a new model of distribution of submillimeter sized lunar soil grains on the lunar surface. We propose that in the uppermost millimeter or two of the lunar surface, soil-grains are size graded with the finest nanoscale dust on top and larger micron-scale particles below. This standard state is perturbed by ejecta deposition of larger grains at the lunar surface, which have a coating of dusty layer that may not have substrates of intermediate sizes. Distribution of solar wind elements (SWE), agglutinates, vapor deposited nanophase Fe0 in size fractions of lunar soils and ir spectra of size fractions of lunar soils are compatible with this model. A direct test of this model requires bringing back glue-impregnated tubes of lunar soil samples to be dissected and examined on Earth.

  2. A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link

    NASA Technical Reports Server (NTRS)

    Wilson, K.; Biswas, A.; Schoolcraft, J.

    2011-01-01

    A lunar surface systems study explores the application of optical communications to support a high bandwidth data link from a lunar relay satellite and from fixed lunar assets. The results show that existing 1-m ground stations could provide more than 99% coverage of the lunar terminal at 100Mb/s data rates from a lunar relay satellite and in excess of 200Mb/s from a fixed terminal on the lunar surface. We have looked at the effects of the lunar regolith and its removal on optical samples. Our results indicate that under repeated dust removal episodes sapphire rather than fused silica would be a more durable material for optical surfaces. Disruption tolerant network protocols can minimize the data loss due to link dropouts. We report on the preliminary results of the DTN protocol implemented over the optical carrier.

  3. Automatic Identification of Changes on the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Speyerer, Emerson; Wagner, Robert; Robinson, Mark

    2014-05-01

    Since June 2009, the Lunar Reconnaissance Orbiter (LRO) has maintained a stable polar orbit enabling the twin Narrow Angle Cameras (NACs) to acquire high-resolution observations of the lunar surface (pixel scale of 0.25 to 2 m/pixel). This orbital configuration facilitates occasional repeat coverage with similar lighting geometries. These before and after observations, referred to in this study as temporal pairs, enable the identification of changes to the surface based on applying a series of change detection techniques. Manual inspection of the temporal pairs by LROC team members resulted in the discovery of hundreds of new changes across the lunar surface [1]. However, this manual process is time consuming (2-4 hours per temporal pair) and each analyst must apply their own judgment on whether they have discovered a real change or an artifact in the image pair. Thus far, the LROC team has identified 650 surface changes as well as 19 resolved craters using the manual approach. Leveraging image processing techniques developed by the LROC team, we started automatically scanning and identifying these changes. The new automated algorithm locates changes based on albedo variations and changes in surface texture. The program provides a list of potential new features for later manual inspection and classification (disturbance lacking resolvable crater or crater with a rim diameter of X meters). This new approach eliminates the human inspector from scanning up to 5.22*109 pixels in each temporal pair and instead provides cropped cutouts with the detected changes centered in the thumbnail image. The LROC NACs have already collected thousands of temporal pair observations and will continue to do so over the remaining extended mission. Highest fidelity change detection comes from temporal pairs with nearly identical lighting geometries. In the next two years, the progression of the LRO orbit with respect to beta angle will enable direct illumination matches (<2 degrees

  4. Power requirements for the first lunar outpost (FLO)

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.; Bozek, John M.

    1993-01-01

    NASA's Exploration Program Office is currently developing a preliminary reference mission description that lays the framework from which the nation can return to the Moon by the end of the decade. The First Lunar Outpost is the initial phase of establishing a permanent presence on the Moon and the next step of sending humans to Mars. Many systems required for missions to Mars will be verified on the Moon, while still accomplishing valuable lunar science and in-situ resource utilization (ISRU). Some of FLO's major accomplishments will be long duration habitation, extended surface roving (both piloted and teleoperated) and a suite of science experiments, including lunar resources extraction. Of equal challenge will be to provide long life, reliable power sources to meet the needs of a lunar mission.

  5. Surface Mine Design and Planning for Lunar Regolith Production

    NASA Astrophysics Data System (ADS)

    Gertsch, Leslie Sour; Gertsch, Richard E.

    2003-01-01

    Terrestrial surface mine design and planning techniques are applied to the production of lunar regolith for manufacturing makeup gases for the life-support system of a lunar base. Two scenarios are examined, due to the uncertainty of whether bound hydrogen sensed near the lunar poles is from cometary ice deposited in cold traps (mesh 1), or to hydrogen implanted within regolith grains by the solar wind (mesh 2). Scenario mesh 1, with a total production requirement of 44 tonne/day of regolith, could be handled with four groups of four 6-m3 capacity slushers (drag scrapers), each group extending 100 m around a single processing module. Scenario mesh 2 (4.382 tonne/day) could be accomplished with three powered bowl-type scrapers (capacity 24 m3) gathering the regolith into long windrows feeding a large processor. The present orebody model is extremely thin (1 m), although broad in extent: this prevents usage of high production-rate systems such as large draglines.

  6. Laboratory Simulation of Electrical Discharge in Surface Lunar Regolith

    NASA Astrophysics Data System (ADS)

    Shusterman, M.; Izenberg, N.; Wing, B. R.; Liang, S.

    2016-12-01

    Physical, chemical, and optical characteristics of space-weathered surface materials on airless bodies are produced primarily from bombardment by solar energetic particles and micrometeoroid impacts. On bodies such as the Moon and Mercury, soils in permanently shadowed regions (PSRs) are very cold, have low electrical conductivities, and are subjected to a high flux of incoming energetic particles accelerated by solar events. Theoretical models predict that up to 25% of gardened soils in the lunar polar regions are altered by dielectric breakdown; a potentially significant weathering process that is currently unconfirmed. Although electrical properties of lunar soils have been studied in relation to flight electronics and spacecraft safety, no studies have characterized potential alterations to soils resulting from electrical discharge. To replicate the surface charge field in PSRs, lunar regolith simulant JSC-1A was placed between two parallel plane electrodes under both low and high vacuum environments, 10e-3 torr and 2.5e-6 torr, respectively. Voltage was increased until discharge occurred within the sample. Grains were analyzed using an SVC fiber-fed point spectrometer, Olympus BX51 upright metallurgical microscope, and a Hitachi TM3000 scanning electron microscope with Bruker Quantax-70 X-ray spectrometer. Discharges occurring in samples under low vacuum resulted in surficial melting, silicate vapor deposition, coalescence of metallic iron, and micro-scale changes to surface topography. Samples treated under a high vacuum environment showed similar types of effects, but fewer in number compared to low vacuum samples. The variation in alteration abundances between the two environments implies that discharges may be occurring across surface contaminants, even at high vacuum conditions, inhibiting dielectric breakdown in our laboratory simulations.

  7. Apollo 12 Mission image - View of lunar surface mound

    NASA Image and Video Library

    1969-11-19

    AS12-46-6825 (19 Nov. 1969) --- Close-up view of a lunar rock, small crater, and lunar mound as photographed during the Apollo 12 extravehicular activity (EVA). Astronaut Richard F. Gordon Jr., command module pilot, remained with the Apollo 12 Command and Service Modules (CSM) in lunar orbit while astronauts Charles Conrad Jr., commander, and Alan L. Bean, lunar module pilot, descended in the Lunar Module (LM) to explore the moon.

  8. Evaluation of Surface Modification as a Lunar Dust Mitigation Strategy for Thermal Control Surfaces

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Waters, Deborah L.; Misconin, Robert M.; Banks, Bruce A.; Crowder, Mark

    2011-01-01

    Three surface treatments were evaluated for their ability to lower the adhesion between lunar simulant dust and AZ93, AlFEP, and AgFEP thermal control surfaces under simulated lunar conditions. Samples were dusted in situ and exposed to a standardized puff of nitrogen gas. Thermal performance before dusting, after dusting, and after part of the dust was removed by the puff of gas, were compared to perform the assessment. None of the surface treatments was found to significantly affect the adhesion of lunar simulants to AZ93 thermal control paint. Oxygen ion beam texturing also did not lower the adhesion of lunar simulant dust to AlFEP or AgFEP. But a workfunction matching coating and a proprietary Ball Aerospace surface treatment were both found to significantly lower the adhesion of lunar simulants to AlFEP and AgFEP. Based on these results, it is recommended that all these two techniques be further explored as dust mitigation coatings for AlFEP and AgFEP thermal control surfaces.

  9. Meteoroid impacts and dust particles in near-surface lunar exosphere

    NASA Astrophysics Data System (ADS)

    Popel, S. I.; Golub', A. P.; Lisin, E. A.; Izvekova, Yu N.; Atamaniuk, B.; Dolnikov, G. G.; Zakharov, A. V.; Zelenyi, L. M.

    2016-11-01

    It is shown that for consideration of dust particle release from the lunar surface one has to take into account (among other effects) both adhesion and meteoroid impacts. The effect of surface roughness on the adhesion intensity on the Moon is discussed. The rate of meteoroid impacts with the lunar surface per unit area is determined. The strength of the regolith due to the adhesion effect is estimated. The processes occurring when a high-speed meteoroid impacts with the lunar surface are described. In particular, the characteristic parameters of zones of evaporation of the substance, its melting, destruction of particles constituting lunar regolith, their irreversible deformations, and elastic deformation of the regolith substance are found. A possibility of the rise of micrometer-sized dust particles above the lunar surface is shown. It is demonstrated that most of the particles rising over lunar surface due to the meteoroid impact originates from the elastic deformation zone. The number of dust particles raised over the lunar surface as result of meteoroid impacts is calculated. The size-distribution function of particles released from the lunar surface due to meteoroid impacts is determined. It is noted that micrometeoroid impacts can result in rise of dust particles of the size of a few μm up to an altitude of about 30 cm that explains the effect of “horizon glow” observed by Surveyor lunar lander.

  10. Thermophysical Properties of the Lunar Surface from Diviner Observations

    NASA Astrophysics Data System (ADS)

    Hayne, Paul; Bandfield, Joshua; Vasavada, Ashwin; Ghent, Rebecca; Siegler, Matthew; Williams, Jean-Pierre; Greenhagen, Benjamin; Aharonson, Oded; Paige, David

    2013-04-01

    Orbital thermal infrared measurements are sensitive to a variety of properties of the Moon's surface layer, including rock abundance, regolith cover and porosity, and small-scale surface roughness. With its multiple spectral channels and large dynamic temperature range, the Diviner Lunar Radiometer [1] on NASA's LRO spacecraft has enabled the first global, high-resolution maps of these important thermophysical properties. Here we present a summary of the results of Diviner's thermophysical investigation thus far. Maps of surface rock abundance show low typical values of <1% with higher abundances for recent craters and their blocky ejecta, as well as mass wasting on crater walls, rilles, and impact melt features [2]. The extent and abundance of surface rocks decrease systematically with crater age, and rocky surfaces are only preserved on the youngest craters (<1 Ga). We used nighttime regolith surface temperatures and eclipse cooling observations to constrain profiles of density and conductivity in the upper ~1 m, revealing a remarkably homogeneous subsurface structure [3]. Geographic variations in upper regolith density are nonetheless apparent. For example, buried rocks are suggested within young impact ejecta showing strong radar backscatter, high subsurface density, and a lack of surface rocks [2,4]. Rock fragmentation and regolith accumulation rates can be quantified by comparison of the Diviner data with published crater ages, yielding typical erosion rates which rapidly decrease from ~10 kg m-2 yr-1 for crater ages of ~1 Ma to ~1 mg m-2 yr-1 at ~1 Ga [4]. Variations in upper regolith density correlate with the ages of individual mare basalt units, suggesting this layer is actively processed by impacts on geologically short timescales, which may reveal age relationships previously unseen [5]. Vast cold regions surrounding fresh impact craters during lunar night (termed "cold spots") are only apparent in thermal infrared data [2]. These features cannot be

  11. Imaging Thermal He(+)in Geospace from the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Sandel, B. R.; Adrian, Mark L.; Goldstein, Jerry; Jahn, Joerg-Micha; Spasojevic, Maria; Griffin, Brand

    2007-01-01

    By mass, thermal plasma dominates near-earth space and strongly influences the transport of energy and mass into the earth's atmosphere. It is proposed to play an important role in modifying the strength of space weather storms by its presence in regions of magnetic reconnection in the dayside magnetopause and in the near to mid-magnetotail. Ionospheric-origin thermal plasma also represents the most significant potential loss of atmospheric mass from our planet over geological time. Knowledge of the loss of convected thermal plasma into the solar wind versus its recirculation across high latitudes and through the magnetospheric flanks into the magnetospheric tail will enable determination of the mass balance for this mass-dominant component of the Geospace system and of its influence on global magnetospheric processes that are critical to space weather prediction and hence to the impact of space processes on human technology in space and on Earth. Our proposed concept addresses this basic issue of Geospace dynamics by imaging thermal He(+) ions in extreme ultraviolet light with an instrument on the lunar surface. The concept is derived from the highly successful Extreme Ultraviolet imager (EUV) flown on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft. From the lunar surface an advanced EUV imager is anticipated to have much higher sensitivity, lower background noise, and higher communication bandwidth back to Earth. From the near-magnetic equatorial location on the lunar surface, such an imager would be ideally located to follow thermal He(+) ions to high latitudes, into the magnetospheric flanks, and into the magnetotail.

  12. Night side lunar surface potential in the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Saito, Yoshifumi; Ishikawa, Motohisa; Nishino, Masaki; Yokota, Shoichiro; Tsunakawa, Hideo

    2015-04-01

    In the Earth's magnetotail, Kaguya repeatedly encountered the plasmoid or plasma sheet. The low energy ion signatures including lobe cold ions, cold ion acceleration in the plasma sheet-lobe boundaries, and hot plasma sheet ions or fast flowing ions associated with plasmoids characterized the encounters. On the dayside of the Moon, tailward flowing cold ions and their acceleration were observed. However, on the night side, tailward flowing cold ions could not be observed since the Moon blocked them. In stead, ion acceleration by the spacecraft potential and the electron beam accelerated by the potential difference between lunar surface and spacecraft were simultaneously observed. Similar night side ion/electron signatures were often observed at low altitude <~50km when Kaguya was in the magnetotail lobe. When Kaguya stayed in the hemisphere where lobe plasma convection direction was from lobe toward the night side of the Moon, MAP-PACE ion sensors found that the lobe cold ions intruded into the night side of the Moon. The ExB drift motion by the dawn-to-dusk electric field facilitated the intrusion of the lobe cold ions. In addition, very cold ions flowing towards the Earth (towards the Moon) were observed in the opposite hemisphere. It was also found that the flow direction of the lobe cold ions intruded into the night side of the Moon gradually changed from tailward to Earthward (Moonward) while slightly increasing their energy. Acceleration of the intruded cold ions by the electrostatic potential distributed on the night side of the Moon could explain the characteristics of the ions. The electron beams accelerated by the potential difference between lunar surface and spacecraft were also simultaneously observed. These electron and ion data enabled us to determine both the night side lunar surface potential and spacecraft potential only from the observed data.

  13. Analysis of Lunar Surface Charging for a Candidate Spacecraft Using NASCAP-2K

    NASA Technical Reports Server (NTRS)

    Parker, Linda; Minow, Joseph; Blackwell, William, Jr.

    2007-01-01

    The characterization of the electromagnetic interaction for a spacecraft in the lunar environment, and identification of viable charging mitigation strategies, is a critical lunar mission design task, as spacecraft charging has important implications both for science applications and for astronaut safety. To that end, we have performed surface charging calculations of a candidate lunar spacecraft for lunar orbiting and lunar landing missions. We construct a model of the spacecraft with candidate materials having appropriate electrical properties using Object Toolkit and perform the spacecraft charging analysis using Nascap-2k, the NASA/AFRL sponsored spacecraft charging analysis tool. We use nominal and atypical lunar environments appropriate for lunar orbiting and lunar landing missions to establish current collection of lunar ions and electrons. In addition, we include a geostationary orbit case to demonstrate a bounding example of extreme (negative) charging of a lunar spacecraft in the geostationary orbit environment. Results from the charging analysis demonstrate that minimal differential potentials (and resulting threat of electrostatic discharge) occur when the spacecraft is constructed entirely of conducting materials, as expected. We compare charging results to data taken during previous lunar orbiting or lunar flyby spacecraft missions.

  14. Effect of lunar surface material on radiation damage in mice (investigation of biological action of lunar surface material returned to earth by Luna 16 automatic station)

    NASA Technical Reports Server (NTRS)

    Antipov, V. V.; Davydov, B. I.; Gaydamakin, N. A.; Lvova, T. S.; Petrukhin, V. G.; Komarova, S. N.; Skvortsova, Y. B.

    1974-01-01

    The effect was studied of lunar surface material from the Sea of Fertility on the radiation reaction (damage) in mice caused by exposure to ionizing radiation. The material was administered to the organism in three ways -- aerogenically, through the esophagus, or peritoneally. It was shown that administering the lunar surface material did not appreciably affect the death of the animals and the reaction of the peripheral blood caused by the action of radiation. In mice which prior to irradiation had been administered inhalationally or peritoneally the lunar surface material, a lag in the increment of bodyweight was observed.

  15. Effect of lunar surface material on radiation damage in mice (investigation of biological action of lunar surface material returned to earth by Luna 16 automatic station)

    NASA Technical Reports Server (NTRS)

    Antipov, V. V.; Davydov, B. I.; Gaydamakin, N. A.; Lvova, T. S.; Petrukhin, V. G.; Komarova, S. N.; Skvortsova, Y. B.

    1974-01-01

    The effect was studied of lunar surface material from the Sea of Fertility on the radiation reaction (damage) in mice caused by exposure to ionizing radiation. The material was administered to the organism in three ways -- aerogenically, through the esophagus, or peritoneally. It was shown that administering the lunar surface material did not appreciably affect the death of the animals and the reaction of the peripheral blood caused by the action of radiation. In mice which prior to irradiation had been administered inhalationally or peritoneally the lunar surface material, a lag in the increment of bodyweight was observed.

  16. A Survey of Ballistic Transfers to the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Parker, Jeffrey S.

    2011-01-01

    In this study techniques are developed which allow an analysis of a range of different types of transfer trajectories from the Earth to the lunar surface. Trajectories ranging from those obtained using the invariant manifolds of unstable orbits to those derived from collision orbits are analyzed. These techniques allow the computation of trajectories encompassing low-energy trajectories as well as more direct transfers. The range of possible trajectory options is summarized, and a broad range of trajectories that exist as a result of the Sun's influence are computed and analyzed. The results are then classified by type, and trades between different measures of cost are discussed.

  17. Micromorphology and surface characteristics of lunar dust and breccia.

    PubMed

    Cloud, P; Margolis, S V; Moorman, M; Barker, J M; Licari, G R; Krinsley, D; Barnes, V E

    1970-01-30

    Although nothing of direct biologic interest was observed in the sample studied, small shaped glass particles and glazed pits resemble objects which elsewhere have been described as fossils. These features, although nonbiological, do bear on processes of lunar weathering and outgassing. The glazed pits are impact features. Fusion of their surfaces released gases. Electron microscopy of the glasses, pits, and angular microfractured mineral grains indicates a prevalence of destructive weathering processes-thermal expansion and contraction, abrasion by by-passing particles, and, of course, impact. ous at room temperature.

  18. View of lunar surface taken from Apollo 8 spacecraft

    NASA Image and Video Library

    1968-12-24

    AS08-12-2192 (21-27 Dec. 1968) --- View of the lunar surface taken from the Apollo 8 spacecraft looking southward from high altitude across the Southern Sea. (Hold picture with AS8 number in upper right corner). The bright-rayed crater near the horizon is located near 130 degrees east longitude and 70 degrees south latitude. The dark-floored crater near the middle of the right side of the photograph is about 70 kilometers (45 statute miles) in diameter. Both features are beyond the eastern limb of the moon as viewed from Earth; neither has a name.

  19. A Survey of Ballistic Transfers to the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Parker, Jeffrey S.

    2011-01-01

    In this study techniques are developed which allow an analysis of a range of different types of transfer trajectories from the Earth to the lunar surface. Trajectories ranging from those obtained using the invariant manifolds of unstable orbits to those derived from collision orbits are analyzed. These techniques allow the computation of trajectories encompassing low-energy trajectories as well as more direct transfers. The range of possible trajectory options is summarized, and a broad range of trajectories that exist as a result of the Sun's influence are computed and analyzed. The results are then classified by type, and trades between different measures of cost are discussed.

  20. Electric Power System Technology Options for Lunar Surface Missions

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    2005-01-01

    In 2004, the President announced a 'Vision for Space Exploration' that is bold and forward-thinking, yet practical and responsible. The vision explores answers to longstanding questions of importance to science and society and will develop revolutionary technologies and capabilities for the future, while maintaining good stewardship of taxpayer dollars. One crucial technology area enabling all space exploration is electric power systems. In this paper, the author evaluates surface power technology options in order to identify leading candidate technologies that will accomplish lunar design reference mission three (LDRM-3). LDRM-3 mission consists of multiple, 90-day missions to the lunar South Pole with 4-person crews starting in the year 2020. Top-level power requirements included a nominal 50 kW continuous habitat power over a 5-year lifetime with back-up or redundant emergency power provisions and a nominal 2-kW, 2-person unpressurized rover. To help direct NASA's technology investment strategy, this lunar surface power technology evaluation assessed many figures of merit including: current technology readiness levels (TRLs), potential to advance to TRL 6 by 2014, effectiveness of the technology to meet the mission requirements in the specified time, mass, stowed volume, deployed area, complexity, required special ground facilities, safety, reliability/redundancy, strength of industrial base, applicability to other LDRM-3 elements, extensibility to Mars missions, costs, and risks. For the 50-kW habitat module, dozens of nuclear, radioisotope and solar power technologies were down-selected to a nuclear fission heat source with Brayton, Stirling or thermoelectric power conversion options. Preferred energy storage technologies included lithium-ion battery and Proton Exchange Membrane (PEM) Regenerative Fuel Cells (RFC). Several AC and DC power management and distribution architectures and component technologies were defined consistent with the preferred habitat

  1. Field Testing of Utility Robots for Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Bualat, Maria; Deans, Matt; Allan, Mark; Bouyssounouse, Xavier; Broxton, Michael; Edwards, Laurence; Lee, Pascal; Lee, Susan Y.; Lees, David; hide

    2008-01-01

    Since 2004, NASA has been working to return to the Moon. In contrast to the Apollo missions, two key objectives of the current exploration program is to establish significant infrastructure and an outpost. Achieving these objectives will enable long-duration stays and long-distance exploration of the Moon. To do this, robotic systems will be needed to perform tasks which cannot, or should not, be performed by crew alone. In this paper, we summarize our work to develop "utility robots" for lunar surface operations, present results and lessons learned from field testing, and discuss directions for future research.

  2. An Analytic Function of Lunar Surface Temperature for Exospheric Modeling

    NASA Technical Reports Server (NTRS)

    Hurley, Dana M.; Sarantos, Menelaos; Grava, Cesare; Williams, Jean-Pierre; Retherford, Kurt D.; Siegler, Matthew; Greenhagen, Benjamin; Paige, David

    2014-01-01

    We present an analytic expression to represent the lunar surface temperature as a function of Sun-state latitude and local time. The approximation represents neither topographical features nor compositional effects and therefore does not change as a function of selenographic latitude and longitude. The function reproduces the surface temperature measured by Diviner to within +/-10 K at 72% of grid points for dayside solar zenith angles of less than 80, and at 98% of grid points for nightside solar zenith angles greater than 100. The analytic function is least accurate at the terminator, where there is a strong gradient in the temperature, and the polar regions. Topographic features have a larger effect on the actual temperature near the terminator than at other solar zenith angles. For exospheric modeling the effects of topography on the thermal model can be approximated by using an effective longitude for determining the temperature. This effective longitude is randomly redistributed with 1 sigma of 4.5deg. The resulting ''roughened'' analytical model well represents the statistical dispersion in the Diviner data and is expected to be generally useful for future models of lunar surface temperature, especially those implemented within exospheric simulations that address questions of volatile transport.

  3. Lunar Prospector: a Preliminary Surface Remote Sensing Resource Assessment for the Moon

    NASA Technical Reports Server (NTRS)

    Mardon, A. A.

    1992-01-01

    The potential existence of lunar volatiles is a scientific discovery that could distinctly change the direction of pathways of inner solar system human expansion. With a dedicated germanium gamma ray spectrometer launched in the early 1990's, surface water concentrations of 0.7 percent could be detected immediately upon full lunar polar orbit operations. The expense of lunar base construction and operation would be dramatically reduced over a scenario with no lunar volatile resources. Global surface mineral distribution could be mapped out and integrated into a GIS database for lunar base site selection. Extensive surface lunar mapping would also result in the utilization of archived Apollo images. A variety of remote sensing systems and their parameters have been proposed for use in the detection of these lunar ice masses. The detection or nondetection of subsurface and surface ice masses in lunar polar crater floors could dramatically direct the development pathways that the human race might follow in its radiation from the Earth to habitable locales in the inner terran solar system. Potential sources of lunar volatiles are described. The use of remote sensing to detect lunar volatiles is addressed.

  4. Surface electrical properties experiment, part 1. [for measuring lunar surface electrical properties

    NASA Technical Reports Server (NTRS)

    Kupfer, W. S. (Compiler)

    1973-01-01

    The design evolution, hardware development, and production history of the surface electrical properties (SEP) experiment are discussed. The SEP transmitter and receiver were designed to be used on the lunar surface during the Apollo 17 mission. The equipment was used to measure lunar surface electrical properties over traverses totalling more than 8 kilometers, for a duration of more than 100 minutes. A comprehensive outline of the techniques, is given along with a simplified detailed breakdown of equipment description and function to outline the principles of operation. A history of the design evolution with trade-off criteria and emphasis on changes caused by decisions reached in solving problems inherent in a fast-paced development program are presented from the viewpoint of overall design concept and in detail for each item of deliverable hardware. There is a brief account of lunar operations.

  5. Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Plachta, David W.; Yasan, Mohammad M.

    2008-01-01

    A transient thermal model of the lunar surface and regolith was developed along with analytical techniques which will be used to evaluate the storage of cryogenic fluids at equatorial and polar landing sites. The model can provide lunar surface and subsurface temperatures as a function of latitude and time throughout the lunar cycle and season. It also accounts for the presence of or lack of the undisturbed fluff layer on the lunar surface. The model was validated with Apollo 15 and Clementine data and shows good agreement with other analytical models.

  6. Considerations Regarding the Development of an Environmental Control and Life Support System for Lunar Surface Applications

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.

    2008-01-01

    NASA is engaged in early architectural analyses and trade studies aimed at identifying requirements, predicting performance and resource needs, characterizing mission constraints and sensitivities, and guiding technology development planning needed to conduct a successful human exploration campaign of the lunar surface. Conceptual designs and resource estimates for environmental control and life support systems (ECLSS) within pressurized lunar surface habitats and rovers have been considered and compared in order to support these lunar campaign studies. This paper will summarize those concepts and some of the more noteworthy considerations that will likely remain as key drivers in the evolution of the lunar surface ECLSS architecture.

  7. Secondary Impacts on Structures on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric; Walker, James D.; Grosch, Donald J.

    2010-01-01

    The Altair Lunar Lander is being designed for the planned return to the Moon by 2020. Since it is hoped that lander components will be re-used by later missions, studies are underway to examine the exposure threat to the lander sitting on the Lunar surface for extended periods. These threats involve both direct strikes of meteoroids on the vehicle as well as strikes from Lunar regolith and rock thrown by nearby meteorite strikes. Currently, the lander design is comprised of up to 10 different types of pressure vessels. These vessels included the manned habitation module, fuel, cryogenic fuel and gas storage containers, and instrument bays. These pressure vessels have various wall designs, including various aluminum alloys, honeycomb, and carbon-fiber composite materials. For some of the vessels, shielding is being considered. This program involved the test and analysis of six pressure vessel designs, one of which included a Whipple bumper shield. In addition to the pressure vessel walls, all the pressure vessels are wrapped in multi-layer insulation (MLI). Two variants were tested without the MLI to better understand the role of the MLI in the impact performance. The tests of performed were to examine the secondary impacts on these structures as they rested on the Lunar surface. If a hypervelocity meteor were to strike the surface nearby, it would throw regolith and rock debris into the structure at a much lower velocity. Also, when the manned module departs for the return to Earth, its rocket engines throw up debris that can impact the remaining lander components and cause damage. Glass spheres were used as a stimulant for the regolith material. Impact tests were performed with a gas gun to find the V50 of various sized spheres striking the pressure vessels. The impacts were then modeled and a fast-running approximate model for the V50 data was developed. This model was for performing risk analysis to assist in the vessel design and in the identification of ideal

  8. Secondary Impacts on Structures on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric; Walker, James D.; Grosch, Donald J.

    2010-01-01

    The Altair Lunar Lander is being designed for the planned return to the Moon by 2020. Since it is hoped that lander components will be re-used by later missions, studies are underway to examine the exposure threat to the lander sitting on the Lunar surface for extended periods. These threats involve both direct strikes of meteoroids on the vehicle as well as strikes from Lunar regolith and rock thrown by nearby meteorite strikes. Currently, the lander design is comprised of up to 10 different types of pressure vessels. These vessels included the manned habitation module, fuel, cryogenic fuel and gas storage containers, and instrument bays. These pressure vessels have various wall designs, including various aluminum alloys, honeycomb, and carbon-fiber composite materials. For some of the vessels, shielding is being considered. This program involved the test and analysis of six pressure vessel designs, one of which included a Whipple bumper shield. In addition to the pressure vessel walls, all the pressure vessels are wrapped in multi-layer insulation (MLI). Two variants were tested without the MLI to better understand the role of the MLI in the impact performance. The tests of performed were to examine the secondary impacts on these structures as they rested on the Lunar surface. If a hypervelocity meteor were to strike the surface nearby, it would throw regolith and rock debris into the structure at a much lower velocity. Also, when the manned module departs for the return to Earth, its rocket engines throw up debris that can impact the remaining lander components and cause damage. Glass spheres were used as a stimulant for the regolith material. Impact tests were performed with a gas gun to find the V50 of various sized spheres striking the pressure vessels. The impacts were then modeled and a fast-running approximate model for the V50 data was developed. This model was for performing risk analysis to assist in the vessel design and in the identification of ideal

  9. Astronaut Charles M. Duke, Jr., in shadow of Lunar Module behind ultraviolet camera

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Charles M. Duke, Jr., lunar module pilot, stands in the shadow of the Lunar Module (LM) behind the ultraviolet (UV) camera which is in operation. This photograph was taken by astronaut John W. Young, mission commander, during the mission's second extravehicular activity (EVA-2). The UV camera's gold surface is designed to maintain the correct temperature. The astronauts set the prescribed angles of azimuth and elevation (here 14 degrees for photography of the large Magellanic Cloud) and pointed the camera. Over 180 photographs and spectra in far-ultraviolet light were obtained showing clouds of hydrogen and other gases and several thousand stars. The United States flag and Lunar Roving Vehicle (LRV) are in the left background. While astronauts Young and Duke descended in the Apollo 16 Lunar Module (lm) 'Orion' to explore the Descartes highlands landing site on the Moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (csm) 'Casper' in lunar orbit.

  10. Using lunar sounder imagery to distinguish surface from subsurface reflectors in lunar highlands areas

    NASA Technical Reports Server (NTRS)

    Cooper, Bonnie L.; Carter, James L.

    1993-01-01

    We have developed a method using the Apollo 17 Lunar Sounder imagery data which appears capable of filtering out off-nadir surface noise from highland area profiles, so that subsurface features may now be detected in highland areas as well as mare areas. Previously, this had been impossible because the rough topography in the highland areas created noise in the profiles which could not be distinguished from subsurface echoes. The new method is an image processing procedure involving the computerized selection of pixels which represent intermediate echo intensity values, then manually removing those pixels from the profile. Using this technique, a subsurface feature with a horizontal extent of about 150 km, at a calculated depth of approximately 3 km, has been detected beneath the crater Riccioli in the highlands near Oceanus Procellarum. This result shows that the ALSE data contain much useful information that remains to be extracted and used.

  11. Design of a lunar transportation system, volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Spring 1990 Introduction to Design class was asked to conceptually design second generation lunar vehicles and equipment as a semester design project. A brief summary of four of the final projects, is presented. The designs were to facilitate the transportation of personnel and materials. The eight topics to choose from included flying vehicles, ground based vehicles, robotic arms, and life support systems. A lunar flying vehicle that uses clean propellants for propulsion is examined. A design that will not contribute to the considerable amount of caustic pollution already present in the sparse lunar atmosphere is addressed by way of ballistic flight techniques. A second generation redesign of the current Extra Vehicular Activity (EVA) suit to increase operating time, safety, and efficiency is also addressed. A separate life support system is also designed to be permanently attached to the lunar rover. The two systems would interact through the use of an umbilical cord connection. A ground based vehicle which will travel for greater distances than a 37.5 kilometer radius from a base on the lunar surface was designed. The vehicle is pressurized due to the fact that existing lunar rovers are limited by the EVA suits currently in use. A robotic arm for use at lunar bases or on roving vehicles on the lunar surface was designed. The arm was originally designed as a specimen gathering device, but it can be used for a wide range of tasks through the use of various attachments.

  12. The Lunar Surface Gravimeter as a Lunar Seismometer: New Identification of Unlocated Deep Moonquakes

    NASA Astrophysics Data System (ADS)

    Kawamura, Taichi; Kobayashi, Naoki; Tanaka, Satoshi; Lognonné, Philippe; Gagnepain-Beyneix, Jeannine

    2010-05-01

    The internal structure of the Moon is an essential piece of information to investigate its origin and evolution. The seismic analyses using the data from Apollo Passive Seismic Exploration (Apollo 11, 12, 14, 15, 16) are one of the most successful methods carried out to estimate the inner structure of the Moon. From the seismic analyses, it was found that the Moon is still seismically active and the Moon has layered structure with 40~60 km crust with mantle below. However, because of the limitation of seismic network, only with 4 seismic stations all on the nearside, the experiment could not fully uncover the lunar interior, especially for the region deeper than 1000 km. This is still an important question of the lunar science and new data were desired. In our previous studies, we showed that the Lunar Surface Gravimeter on Apollo 17 can be used as a seismometer. We succeeded in relocating the known seismic event and improving its location by using the additional seismic data of the LSG. In this study, we attempted to locate deep moonquakes that could not be located with the previous data set by using the LSG data. Deep moonquakes are said to occur periodically, at certain seismic source or nests. It is known that seismic events of the same nest have almost identical waveforms at one station. This is the unique characteristic of deep moonquakes and classification by waveform cross-correlation is possible. In this way, more than 300 nests were identified. 106 of them provided sufficient data to locate their sources. Among the remaining unlocated deep moonquakes, 60 provided usable waveform data at more than one station. In this study we focused on these 60 nests and examined whether they are locatable by adding data of the LSG. First, we picked up data for seismic event whose LSG data were available. This leaves 40 nests to be examined with the additional data of LSG. We examined all the seismic events from the 40 nests and identified seismic events from 5 nests

  13. Benefits of Using a Mars Forward Strategy for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Mulqueen, Jack; Griffin, Brand; Smitherman, David; Maples, Dauphne

    2009-01-01

    This paper identifies potential risk reduction, cost savings and programmatic procurement benefits of a Mars Forward Lunar Surface System architecture that provides commonality or evolutionary development paths for lunar surface system elements applicable to Mars surface systems. The objective of this paper is to identify the potential benefits for incorporating a Mars Forward development strategy into the planned Project Constellation Lunar Surface System Architecture. The benefits include cost savings, technology readiness, and design validation of systems that would be applicable to lunar and Mars surface systems. The paper presents a survey of previous lunar and Mars surface systems design concepts and provides an assessment of previous conclusions concerning those systems in light of the current Project Constellation Exploration Architectures. The operational requirements for current Project Constellation lunar and Mars surface system elements are compared and evaluated to identify the potential risk reduction strategies that build on lunar surface systems to reduce the technical and programmatic risks for Mars exploration. Risk reduction for rapidly evolving technologies is achieved through systematic evolution of technologies and components based on Moore's Law superimposed on the typical NASA systems engineering project development "V-cycle" described in NASA NPR 7120.5. Risk reduction for established or slowly evolving technologies is achieved through a process called the Mars-Ready Platform strategy in which incremental improvements lead from the initial lunar surface system components to Mars-Ready technologies. The potential programmatic benefits of the Mars Forward strategy are provided in terms of the transition from the lunar exploration campaign to the Mars exploration campaign. By utilizing a sequential combined procurement strategy for lunar and Mars exploration surface systems, the overall budget wedges for exploration systems are reduced and the

  14. Landing Site Selection and Surface Traverse Planning using the Lunar Mapping & Modeling Portal

    NASA Astrophysics Data System (ADS)

    Law, E.; Chang, G.; Bui, B.; Sadaqathullah, S.; Kim, R.; Dodge, K.; Malhotra, S.

    2013-12-01

    Introduction: The Lunar Mapping and Modeling Portal (LMMP), is a web-based Portal and a suite of interactive visualization and analysis tools for users to access mapped lunar data products (including image mosaics, digital elevation models, etc.) from past and current lunar missions (e.g., Lunar Reconnaissance Orbiter, Apollo, etc.), and to perform in-depth analyses to support lunar surface mission planning and system design for future lunar exploration and science missions. It has been widely used by many scientists mission planners, as well as educators and public outreach (e.g., Google Lunar XPRICE teams, RESOLVE project, museums etc.) This year, LMMP was used by the Lunar and Planetary Institute (LPI)'s Lunar Exploration internship program to perform lighting analysis and local hazard assessments, such as, slope, surface roughness and crater/boulder distribution to research landing sites and surface pathfinding and traversal. Our talk will include an overview of LMMP, a demonstration of the tools as well as a summary of the LPI Lunar Exploration summer interns' experience in using those tools.

  15. Organic analysis of lunar samples and the Martian surface.

    PubMed

    Oro, J; Flory, D

    1973-01-01

    In addition to the organogenic elements (H, C, N, O, S, P) which are necessary for the synthesis of organic molecules, the lunar samples from Apollo 11, 12, 14 and 15 contain substantial amounts (approximately equal to 10 to 100 microgram/g) of CO, N2 and CO2, which are released at relatively high temperatures and smaller amounts (approximately equal to 0.1 to 10 microgram/g) of more complex organic compounds (e.g. benzene). Most of these analyses have been performed by mass spectrometry or by combined gas chromatography-mass spectrometry after appropriate volatilization. The release of very small amounts of water has also been observed and is consistent with the findings of goethite (FeO.OH) and with measurements by the suprathermal ion detector. The lunar surface provides one of the less favorable solar system models for the synthesis of organic compounds yet small amounts of these compounds have been detected in the returned samples. It is reasonable to assume that the different physical and developmental features of the planet Mars (increased gravitational field, presence of an atmosphere with CO2, CO and H2O, recent volcanic and tectonic activity, etc.) would favor an increased organic content of the surface of this planet relative to the moon. Therefore the organic molecules present in the Martian soil should be measurable by miniaturized mass spectrometers after fractional distillation or gas chromatographic separation of the volatiles released by moderate heating.

  16. Organic analysis of lunar samples and the Martian surface.

    NASA Technical Reports Server (NTRS)

    Oro, J.; Flory, D.

    1973-01-01

    In addition to the organogenic elements (H, C, N, O, S, P) which are necessary for the synthesis of organic molecules, the lunar samples from Apollo 11, 12, 14, and 15 contain substantial amounts of CO, N2, and CO2 which are released at relatively high temperatures and smaller amounts of more complex organic compounds (e.g., benzene). The lunar surface provides one of the less favorable solar system models for the synthesis of organic compounds; yet small amounts of these compounds have been detected in the returned samples. It is reasonable to assume that the different physical and developmental features of the planet Mars (increased gravitational field, presence of an atmosphere with CO2, CO, and H2O, recent volcanic and tectonic activity, etc.) would favor an increased organic content of the surface of this planet relative to the moon. Therefore the organic molecules present in the Martian soil should be measurable by miniaturized mass spectrometers after fractional distillation or gas chromatographic separation of the volatiles released by moderate heating.

  17. Megawatt solar power systems for lunar surface operations

    NASA Technical Reports Server (NTRS)

    Adams, Brian; Alhadeff, Sam; Beard, Shawn; Carlile, David; Cook, David; Douglas, Craig; Garcia, Don; Gillespie, David; Golingo, Raymond; Gonzalez, Drew

    1990-01-01

    Lunar surface operations require habitation, transportation, life support, scientific, and manufacturing systems, all of which require some form of power. As an alternative to nuclear power, the development of a modular one megawatt solar power system is studied, examining both photovoltaic and dynamic cycle conversion methods, along with energy storage, heat rejection, and power backup subsystems. For photovoltaic power conversion, two systems are examined. First, a substantial increase in photovoltaic conversion efficiency is realized with the use of new GaAs/GaSb tandem photovoltaic cells, offering an impressive overall array efficiency of 23.5 percent. Since these new cells are still in the experimental phase of development, a currently available GaAs cell providing 18 percent efficiency is examined as an alternate to the experimental cells. Both Brayton and Stirling cycles, powered by linear parabolic solar concentrators, are examined for dynamic cycle power conversion. The Brayton cycle is studied in depth since it is already well developed and can provide high power levels fairly efficiently in a compact, low mass system. The dynamic conversion system requires large scale waste heat rejection capability. To provide this heat rejection, a comparison is made between a heat pipe/radiative fin system using advanced composites, and a potentially less massive liquid droplet radiator system. To supply power through the lunar night, both a low temperature alkaline fuel cell system and an experimental high temperature monolithic solid-oxide fuel cell system are considered. The reactants for the fuel cells are stored cryogenically in order to avoid the high tankage mass required by conventional gaseous storage. In addition, it is proposed that the propellant tanks from a spent, prototype lunar excursion vehicle be used for this purpose, therefore resulting in a significant overall reduction in effective storage system mass.

  18. Interviews with Apollo Lunar Surface Astronauts in Support of EVA Systems Design

    NASA Technical Reports Server (NTRS)

    Eppler, Dean

    2010-01-01

    A 3-person team interviewed 8 of the 11 surviving Apollo crewmembers in a series of focused interviews to discuss their experiences on the lunar surface. Eppler presented the results of these interviews, along with recommendations for the design of future lunar surface systems.

  19. A survey of surface structures and subsurface developments for lunar bases

    NASA Technical Reports Server (NTRS)

    Hypes, Warren D.; Wright, Robert L.

    1990-01-01

    Concepts proposed for lunar-base structures and shelters include those fabricated on earth, fabricated locally using lunar materials, and developed from subsurface features. Early bases may rely on evolutionary growth using Space Station modules and nodes covered with regolith for protection against thermal and radiative stresses. Expandable/inflatable shelters used alone on the surface or in conjunction with subselene (beneath the lunar surface) features and spent portions of the Space Shuttle's fuel tanks offer early alternatives. More mature lunar bases may need larger volumes provided by erectable buildings, hybrid inflatable/rigid spheres, modular concrete buildings using locally derived cement, or larger subselene developments.

  20. A survey of surface structures and subsurface developments for lunar bases

    NASA Technical Reports Server (NTRS)

    Hypes, Warren D.; Wright, Robert L.

    1990-01-01

    Concepts proposed for lunar-base structures and shelters include those fabricated on earth, fabricated locally using lunar materials, and developed from subsurface features. Early bases may rely on evolutionary growth using Space Station modules and nodes covered with regolith for protection against thermal and radiative stresses. Expandable/inflatable shelters used alone on the surface or in conjunction with subselene (beneath the lunar surface) features and spent portions of the Space Shuttle's fuel tanks offer early alternatives. More mature lunar bases may need larger volumes provided by erectable buildings, hybrid inflatable/rigid spheres, modular concrete buildings using locally derived cement, or larger subselene developments.

  1. Exoelectronic emission of particles of lunar surface material

    NASA Technical Reports Server (NTRS)

    Mints, R. I.; Alimov, V. I.; Melekhin, V. P.; Milman, I. I.; Kryuk, V. I.; Kunin, L. L.; Tarasov, L. S.

    1974-01-01

    A secondary electron multiplier was used to study the thermostimulated exoelectronic emission of particles of lunar surface material returned by the Soviet Luna 16 automatic station. The natural exoemission from fragments of slag, glass, anorthosite, and a metallic particle was recorded in the isochronic and isothermal thermostimulation regimes. The temperature of emission onset depended on the type of regolith fragment. For the first three particles the isothermal drop in emission is described by first-order kinetic equations. For the anorthosite fragment, exoemission at constant temperature is characterized by a symmetric curve with a maximum. These data indicate the presence of active surface defects, whose nature can be due to the prehistory of the particles.

  2. Surface history of some Apollo 17 lunar soils

    NASA Technical Reports Server (NTRS)

    Fleischer, R. L.; Hart, H. R., Jr.

    1974-01-01

    Cosmic ray track densities in Apollo 17 soil samples are used to infer surface exposure times of soils from a trench at Van Serg Crater, from on and near a boulder at Camelot Crater, and from the position of the heat flow and neutron flux experiments (the ALSEP site). The topmost 2 cm of soil at Van Serg was exposed for 11 m.y., the top cm at Camelot for 36 m.y. A layering chronology and average deposition rate are proposed for the trench. For all soils the median track densities imply predispositional irradiation in the top 15 cm of the lunar surface for times that were long compared with the actual residence in the stratigraphic positions from which the soils were collected. Van Serg crater is inferred to have been formed approximately 24 m.y. ago.

  3. Lightweight Bulldozer Attachment for Construction and Excavation on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Mueller, Robert; Wilkinson, R. Allen; Gallo, Christopher A.; Nick, Andrew J.; Schuler, Jason M.; King, Robert H.

    2009-01-01

    A lightweight bulldozer blade prototype has been designed and built to be used as an excavation implement in conjunction with the NASA Chariot lunar mobility platform prototype. The combined system was then used in a variety of field tests in order to characterize structural loads, excavation performance and learn about the operational behavior of lunar excavation in geotechnical lunar simulants. The purpose of this effort was to evaluate the feasibility of lunar excavation for site preparation at a planned NASA lunar outpost. Once the feasibility has been determined then the technology will become available as a candidate element in the NASA Lunar Surface Systems Architecture. In addition to NASA experimental testing of the LANCE blade, NASA engineers completed analytical work on the expected draft forces using classical soil mechanics methods. The Colorado School of Mines (CSM) team utilized finite element analysis (FEA) to study the interaction between the cutting edge of the LANCE blade and the surface of soil. FEA was also used to examine various load cases and their effect on the lightweight structure of the LANCE blade. Overall it has been determined that a lunar bulldozer blade is a viable technology for lunar outpost site preparation, but further work is required to characterize the behavior in 1/6th G and actual lunar regolith in a vacuum lunar environment.

  4. Analysis of Water Surplus at the Lunar Outpost

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo; Bagdigian, Robert M.; George, Patrick J.; Plachta, David W.; Fincannon, Homer J.; Jefferies, Sharon A.; Keyes, Jennifer P.; Reeves, David M.; Shyface, Hilary R.

    2010-01-01

    This paper evaluates the benefits to the lunar architecture and outpost of having a surplus of water, or a surplus of energy in the form of hydrogen and oxygen, as it has been predicted by Constellation Program's Lunar Surface System analyses. Assumptions and a scenario are presented leading to the water surplus and the revolutionary surface element options for improving the lunar exploration architecture and mission objectives. For example, some of the elements that can benefit from a water surplus are: the power system energy storage can minimize the use of battery systems by replacing batteries with higher energy density fuel cell systems; battery packs on logistics pallets can also be minimized; mobility asset power system mass can be reduced enabling more consumables and extended roving duration and distance; small robotic vehicles (hoppers) can be used to increase the science exploration range by sending round-trip robotic missions to anywhere on the Moon using in-situ produced propellants.

  5. Parameter Analysis of Lunar Surface Navigation Utilizing Dilution-of-Precision Methodology With Lunar Orbiters

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2008-01-01

    With the NASA Vision for Space Exploration focusing on the return of astronauts to the Moon and eventually to Mars, architectures for new navigation concepts must be derived and analyzed. One such concept, developed by the Space Communications Architecture Working Group (SCAWG), is to place a constellation of satellites around the Moon. Previously completed analyses examined the performance of multiple satellite constellations and recommended a constellation oriented as a Walker polar 6/2/1 with a semimajor axis (SMA) of 9250 km. One requirement of the constellations that were examined was that they have continuous access to any location on the lunar surface. In this report, the polar 6/2/1 and polar 8/2/1, with equal SMAs, are examined in greater detail. The dilution-of-precision (DoP) methodology is utilized to examine the effects of longitude surface points, latitude surface points, elevation requirements, and modified failure modes for these two constellations with regard to system availability. Longitude study results show that points along a meridian closely approximate the results of a global set of data points. Latitude study results show that previous assumptions with regard to latitude spacing are adequate to simulate global system availability. Elevation study results show that global system availability curves follow a reverse sigmoid function. Modified failure mode study results show that the benefits of reorienting a failure mode constellation depend on the type of navigation system and the length of the integration period being used.

  6. Measuring Pickup Ions to Characterize the Lunar Surface and Exosphere

    NASA Astrophysics Data System (ADS)

    Cassidy, T. A.; Hartle, R. E.; Killen, R. M.

    2004-12-01

    It has been known for some time that measurement of the ion components, born from neutral exospheres imbedded in the solar wind, can be used to determine the composition and structure of the parent neutral exospheres (Hartle et al., 1973, Hartle and Thomas, 1974, Luhmann, 1996). The ion pickup process has been observed and verified for more than two decades, including pickup ions born from cometary comas, exospheres of Venus, Mars and Titan, and interstellar gases. Several observations (Mall, et al., 1998 and Hilchenbach et al., 1992) of lunar pickup ions have been reported from passing spacecraft including observations of metallic elements that were presumably sputtered from the lunar surface. The ions so formed, primarily by photoionization, electron impact and charge exchange, are picked up and accelerated by the motional electric field E = -V × B, where V is the plasma bulk velocity and B the magnetic field. The unique orbital characteristics of pickup ions make it possible to infer important details about their sources. For a given ion mass, energy, and incoming direction, the ion trajectory can be mapped back to a point where the velocity vanishes at the cusp of a cycloid. When the gyroradius is much greater than the neutral source scale height (most cases), this cusp point is, it can be safely assumed, the source point. This also requires that the source velocity is much less than pickup acceleration integrated from the source point to spacecraft (again, true in most cases). This makes it possible to derive the neutral exosphere density at that point, assuming the ionization rate is known. When this measurement scheme is carried out on numerous orbits of a mission, it will be possible to derive neutral exosphere densities of all those species whose pickup ions can be measured. With the exception of H+, ion gyroradii are much greater than their source gas scale heights for typical solar wind conditions. Then, for a given ion mass, a spectrometer in lunar

  7. Study on Alternative Cargo Launch Options from the Lunar Surface

    SciTech Connect

    Cheryl A. Blomberg; Zamir A. Zulkefli; Spencer W. Rich; Steven D. Howe

    2013-07-01

    In the future, there will be a need for constant cargo launches from Earth to Mars in order to build, and then sustain, a Martian base. Currently, chemical rockets are used for space launches. These are expensive and heavy due to the amount of necessary propellant. Nuclear thermal rockets (NTRs) are the next step in rocket design. Another alternative is to create a launcher on the lunar surface that uses magnetic levitation to launch cargo to Mars in order to minimize the amount of necessary propellant per mission. This paper investigates using nuclear power for six different cargo launching alternatives, as well as the orbital mechanics involved in launching cargo to a Martian base from the moon. Each alternative is compared to the other alternative launchers, as well as compared to using an NTR instead. This comparison is done on the basis of mass that must be shipped from Earth, the amount of necessary propellant, and the number of equivalent NTR launches. Of the options, a lunar coil launcher had a ship mass that is 12.7% less than the next best option and 17 NTR equivalent launches, making it the best of the presented six options.

  8. Surface mapping of three components of the lunar magnetic anomaly field: Preliminary results

    NASA Astrophysics Data System (ADS)

    Tsunakawa, H.; Takahashi, F.; Shimizu, H.; Shibuya, H.; Matsushima, M.

    2010-12-01

    Mapping of the lunar magnetic anomaly gives a crucial constraint on the crustal magnetization structure of the Moon. High spatial resolution of the magnetic anomaly map requires low altitude mapping. We have developed a new method for mapping three components of the lunar magnetic anomaly field on the lunar surface using magnetic field observations by a satellite magnetometer. This surface mapping method was applied to the datasets of several lunar magnetic anomaly regions observed by Lunar Prospector and Kaguya. We will report their preliminary results. The radial component of the crustal magnetic field (Br) on the surface can be obtained from the satellite observations at various altitudes through the inversion of a boundary value problem (Tsunakawa et al., in press). In our method, surface Br values are mapped at almost equal interval points, called generalized spiral points. Two horizontal components are calculated at each point from Br values at the adjacent points. Thus we can map the surface values of three components and total intensity of the lunar magnetic anomaly field (Tsunakawa et al., in prep.). We have applied the method to several strong anomaly regions (e.g. Reiner Gamma) observed by Lunar Prospector and Kaguya. Since the observation altitudes are mostly 15-45 km, spatial resolutions are estimated to be 0.5-1 degree. Preliminary results show strong magnetic anomaly fields with intensity peaks of more than 500 nT on the lunar surface.

  9. Interpretation of Lunar Topography: Impact Cratering and Surface Roughness

    NASA Astrophysics Data System (ADS)

    Rosenburg, Margaret A.

    This work seeks to understand past and present surface conditions on the Moon using two different but complementary approaches: topographic analysis using high-resolution elevation data from recent spacecraft missions and forward modeling of the dominant agent of lunar surface modification, impact cratering. The first investigation focuses on global surface roughness of the Moon, using a variety of statistical parameters to explore slopes at different scales and their relation to competing geological processes. We find that highlands topography behaves as a nearly self-similar fractal system on scales of order 100 meters, and there is a distinct change in this behavior above and below approximately 1 km. Chapter 2 focuses this analysis on two localized regions: the lunar south pole, including Shackleton crater, and the large mare-filled basins on the nearside of the Moon. In particular, we find that differential slope, a statistical measure of roughness related to the curvature of a topographic profile, is extremely useful in distinguishing between geologic units. Chapter 3 introduces a numerical model that simulates a cratered terrain by emplacing features of characteristic shape geometrically, allowing for tracking of both the topography and surviving rim fragments over time. The power spectral density of cratered terrains is estimated numerically from model results and benchmarked against a 1-dimensional analytic model. The power spectral slope is observed to vary predictably with the size-frequency distribution of craters, as well as the crater shape. The final chapter employs the rim-tracking feature of the cratered terrain model to analyze the evolving size-frequency distribution of craters under different criteria for identifying "visible" craters from surviving rim fragments. A geometric bias exists that systematically over counts large or small craters, depending on the rim fraction required to count a given feature as either visible or erased.

  10. Coronagraphic Observations of the Lunar Sodium Exosphere Near the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Morgan, T. H.

    1998-01-01

    The sodium exosphere of the Moon was observed using a solar coronagraph to occult the illuminated surface of the Moon. Exceptionally dust-free atmospheric conditions were required to allow the faint emission from sunlight scattered by lunar sodium atoms to be distinguished from moonlight scattered from atmospheric dust. At 0300 UT on April 22, 1994, ideal conditions prevailed for a few hours, and one excellent image of the sodium exosphere was measured, with the Moon at a phase angle of 51 deg, 81 % illuminated. Analysis of the image data showed that the weighted mean temperature of the exosphere was 1280 K and that the sodium column density varied approximately as cosine-cubed of the latitude. A cosine-cubed variation is an unexpected result, since the flux per unit area of solar photons and solar particles varies as the cosine of latitude. It is suggested that this can be explained by a temperature dependence for the sputtering of sodium atoms from the surface. This is a characteristic feature of chemical sputtering, which has been previously proposed to explain the sodium exosphere of Mercury. A possible interaction between chemical sputtering and solar photons is suggested.

  11. Coronagraphic Observations of the Lunar Sodium Exosphere Near the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Morgan, T. H.

    1998-01-01

    The sodium exosphere of the Moon was observed using a solar coronagraph to occult the illuminated surface of the Moon. Exceptionally dust-free atmospheric conditions were required to allow the faint emission from sunlight scattered by lunar sodium atoms to be distinguished from moonlight scattered from atmospheric dust. At 0300 UT on April 22, 1994, ideal conditions prevailed for a few hours, and one excellent image of the sodium exosphere was measured, with the Moon at a phase angle of 51 deg, 81 % illuminated. Analysis of the image data showed that the weighted mean temperature of the exosphere was 1280 K and that the sodium column density varied approximately as cosine-cubed of the latitude. A cosine-cubed variation is an unexpected result, since the flux per unit area of solar photons and solar particles varies as the cosine of latitude. It is suggested that this can be explained by a temperature dependence for the sputtering of sodium atoms from the surface. This is a characteristic feature of chemical sputtering, which has been previously proposed to explain the sodium exosphere of Mercury. A possible interaction between chemical sputtering and solar photons is suggested.

  12. A Large Lunar Surface Testbed from Low Cost Material

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas

    2014-01-01

    For users needing to simulate the lunar surface, several distinct avenues have been used. Numerous volcanic areas, including Hawaii, have been used. While providing very large areas and scenic interest, field parties to such an area is expensive and limits testing time. An alternative is to build test facilities locally. This has been done many ways, contrast GRC-1, GSC-1, BP-1 and the KSC Morpheus facility [1-4]. GRC-1 is a mixture of sand and clay; GSC-1 and BP-1 are waste materials created in the process of crushing basaltic rock. The Morpheus field used salvaged concrete and crushed quartz rock [5]. Here I report about a 30 m X 30 m test area at MSFC which was both low cost and relatively high fidelity [6].

  13. Ferromagnetic-superparamagnetic granulometry of lunar surface materials

    NASA Technical Reports Server (NTRS)

    Schwerer, F. C.; Nagata, T.

    1976-01-01

    A technique of magnetic granulometry is applied to previously reported data for the temperature dependence of isothermal remanent magnetization (IRM) in 13 lunar surface samples, including three soils. Observed increases in IRM with decreasing temperature are attributed to changes from superparamagnetic to single-domain types of behavior for fine metallic-iron particles. Based on this hypothesis, the temperature dependence of IRM in the examined samples is analyzed to obtain particle-size distributions over the range of mean diameters from 30 to 130 A. It is found that the distribution functions for the soils and a low-grade breccia vary as the inverse square of particle volume and that the distributions for recrystallized breccias and igneous rocks apparently peak about mean values.

  14. NASA lunar surface habitat and remote exploration demonstration project

    NASA Astrophysics Data System (ADS)

    Clearwater, Yvonne A.

    1992-07-01

    The Human Exploration Demonstration Project (HEDP) conducted by the NASA Ames Research Center to develop technological integration and demonstration capabilities for lunar and Mars space missions is described. The development of safe, effective, and reliable systems requires that independently engineered subsystems be fully integrated and tested under realistic conditions. The primary objective of the HEDP is demonstration of various aspects of human exploration and habitation on extraterrestrial surfaces. Some of the technologies to be demonstrated are also applicable to unmanned precursor mission functions. It is concluded that the HEDP will provide a unique opportunity to address a broad spectrum of advanced mission operations by bridging between the early requirements for robotic systems with control at earth-based workstations.

  15. Structures and construction of nuclear power plants on lunar surface

    NASA Astrophysics Data System (ADS)

    Shimizu, Katsunori; Kobatake, Masuhiko; Ogawa, Sachio; Kanamori, Hiroshi; Okada, Yasuhiko; Mano, Hideyuki; Takagi, Kenji

    1991-07-01

    The best structure and construction techniques of nuclear power plants in the severe environments on the lunar surface are studied. Facility construction types (functional conditions such as stable structure, shield thickness, maintainability, safety distances, and service life), construction conditions (such as construction methods, construction equipment, number of personnel, time required for construction, external power supply, and required transportation) and construction feasibility (construction method, reactor transportation between the moon and the earth, ground excavation for installation, loading and unloading, transportation, and installation, filling up the ground, electric power supply of plant S (300 kW class) and plant L (3000 kW class)) are outlined. Items to pay attention to in construction are (1) automation and robotization of construction; (2) cost reduction by multi functional robots; and (3) methods of supplying power to robots. A precast concrete block manufacturing plant is also outlined.

  16. The Apollo lunar surface water vapor event revisited

    NASA Technical Reports Server (NTRS)

    Freeman, J. W., Jr.; Hills, H. K.

    1991-01-01

    On March 7, 1971, the first sunrise following the Apollo 14 mission, the Suprathermal Ion Detector Experiment (SIDE) deployed at the Apollo 14 site reported an intense flux of ions whose mass per charge was consistent with water vapor. The amount of water is examined, and the various acceleration processes, responsible for accelerating ions into the SIDE, are discussed. It is concluded that during most of the event the observed water vapor ions were accelerated by the negative lunar surface electric potential and, secondly, that this event was probably the result of mission associated water vapor, either from the LM ascent and descent stage rockets or from residual water in the descent stage tanks.

  17. Analysis of vegetable seedlings grown in contact with Apollo 14 lunar surface fines.

    NASA Technical Reports Server (NTRS)

    Walkinshaw, C. H.; Johnson, P. H.

    1971-01-01

    Study of plant seedlings treated with lunar material, grown for 14 to 21 days, and then subjected to chemical analyses and other measurements. The purpose of the study was to determine whether plants growing in contact with lunar-surface fines contained a different elemental composition compared with untreated seedlings. The results indicate a direct interaction between germfree plants and lunar material. Treated plants dissolved and absorbed significant quantities of Al, Fe, and Ti from the lunar fines. Cabbage and Brussel sprouts were particularly efficient in the dissolution and absorption of Mn.

  18. Analysis of vegetable seedlings grown in contact with Apollo 14 lunar surface fines.

    NASA Technical Reports Server (NTRS)

    Walkinshaw, C. H.; Johnson, P. H.

    1971-01-01

    Study of plant seedlings treated with lunar material, grown for 14 to 21 days, and then subjected to chemical analyses and other measurements. The purpose of the study was to determine whether plants growing in contact with lunar-surface fines contained a different elemental composition compared with untreated seedlings. The results indicate a direct interaction between germfree plants and lunar material. Treated plants dissolved and absorbed significant quantities of Al, Fe, and Ti from the lunar fines. Cabbage and Brussel sprouts were particularly efficient in the dissolution and absorption of Mn.

  19. Specific heats of lunar surface materials from 90 to 350 degrees Kelvin

    USGS Publications Warehouse

    Robie, R.A.; Hemingway, B.S.; Wilson, W.H.

    1970-01-01

    The specific heats of lunar samples 10057 and 10084 returned by the Apollo 11 mission have been measured between 90 and 350 degrees Kelvin by use of an adiabatic calorimeter. The samples are representative of type A vesicular basalt-like rocks and of finely divided lunar soil. The specific heat of these materials changes smoothly from about 0.06 calorie per gram per degree at 90 degrees Kelvin to about 0.2 calorie per gram per degree at 350 degrees Kelvin. The thermal parameter ??=(k??C)-1/2 for the lunar surface will accordingly vary by a factor of about 2 between lunar noon and midnight.

  20. Surface-Correlated Nanophase Iron Metal in Lunar Soils: Petrography and Space Weathering Effects

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Wentworth, Susan J.; McKay, David S.

    1998-01-01

    Space weathering is a term used to include all of the processes that act on material exposed at the surface of a planetary or small body. In the case of the Moon, it includes a variety of processes that formed the lunar regolith, caused the maturation of lunar soils, and formed patina on rock surfaces. The processes include micrometeorite impact and reworking, implantation of solar wind and flare particles, radiation damage and chemical effects from solar particles and cosmic rays, interactions with the lunar atmosphere, and sputtering erosion and deposition. Space weathering effects collectively result in a reddened continuum slope, lowered albedo, and attenuated absorption features in reflectance spectra of lunar soils as compared to finely comminuted rocks from the same Apollo sites. Understanding these effects is critical in order to fully integrate the lunar sample collection with remotely sensed data from recent robotic missions (e.g., Lunar Prospector, Clementine, Galileo). Our objective is to determine the origin of space weathering effects in lunar soils through combined electron microscopy and microspectrophotometry techniques applied to individual soil particles from <20 pm size factions (dry-sieved) of mature lunar soils. It has been demonstrated that it is the finest size fraction (<25 pm) of lunar soils that dominates the optical properties of the bulk soils.

  1. Surface-Correlated Nanophase Iron Metal in Lunar Soils: Petrography and Space Weathering Effects

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Wentworth, Susan J.; McKay, David S.

    1998-01-01

    Space weathering is a term used to include all of the processes that act on material exposed at the surface of a planetary or small body. In the case of the Moon, it includes a variety of processes that formed the lunar regolith, caused the maturation of lunar soils, and formed patina on rock surfaces. The processes include micrometeorite impact and reworking, implantation of solar wind and flare particles, radiation damage and chemical effects from solar particles and cosmic rays, interactions with the lunar atmosphere, and sputtering erosion and deposition. Space weathering effects collectively result in a reddened continuum slope, lowered albedo, and attenuated absorption features in reflectance spectra of lunar soils as compared to finely comminuted rocks from the same Apollo sites. Understanding these effects is critical in order to fully integrate the lunar sample collection with remotely sensed data from recent robotic missions (e.g., Lunar Prospector, Clementine, Galileo). Our objective is to determine the origin of space weathering effects in lunar soils through combined electron microscopy and microspectrophotometry techniques applied to individual soil particles from <20 pm size factions (dry-sieved) of mature lunar soils. It has been demonstrated that it is the finest size fraction (<25 pm) of lunar soils that dominates the optical properties of the bulk soils.

  2. Photoemission and electrostatic potentials on the dayside lunar surface in the terrestrial magnetotail lobes

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Poppe, A. R.; Halekas, J. S.; Chamberlin, P. C.; McFadden, J. P.

    2017-06-01

    Despite the need to accurately predict and assess the lunar electrostatic environment in all ambient conditions that the Moon encounters, photoemission and electrostatic potentials on the dayside lunar surface in the terrestrial magnetotail lobes remain poorly characterized. We study characteristics and variabilities of lunar photoelectron energy spectra by utilizing Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) and Apollo measurements in combination with the Flare Irradiance Spectral Model (FISM). We confirm that the photoelectron spectral shapes are consistent between ARTEMIS and Apollo and that the photoelectron flux is linearly correlated with the FISM solar photon flux. We develop an observation-based model of lunar photoelectron energy distributions, thereby deriving the current balance surface potential. The model predicts that dayside lunar surface potentials in the tail lobes (typically tens of volts) could increase by a factor of 2-3 during strong solar flares.

  3. Age of Lunar Meteorite LAP02205 and Implications for Impact-Sampling of Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Reese, Y.; Bogard, D. D.

    2005-01-01

    We have measured the age of lunar meteorite LAP02205 by the Rb-Sr and Ar-Ar methods. Sm-Nd analyses are in progress. The Rb-Sr and Ar-Ar ages indicate a crystallization age of approx. 3 Ga. Comparing the ages of LAP02205 and other lunar mare basaltic meteorites to mare surface ages based on the density of impact craters shows no significant bias in impact- sampling of lunar mare surfaces. Comparing the isotopic and geochemical data for LAP02205 to those for other lunar mare basalts suggests that it is a younger variant of the type of volcanism that produced the Apollo 12 basalts. Representative impact-sampling of the lunar surface

  4. Study of friction properties of lunar surface material and its analogs

    NASA Technical Reports Server (NTRS)

    Dukhovskoy, Y. A.; Motovilov, E. A.; Silin, A. A.; Smorodinov, M. I.; Shvarev, V. V.

    1974-01-01

    A description is given of instruments for determining the friction properties of the surficial layer of lunar surface material returned by the Luna 16 automatic lunar station, as well as the friction properties of its analogs: andesite-basaltic sand and basalts. The experimental method and results are presented.

  5. Lunar surface closeup stereoscopic photography at Fra Mauro (Apollo 14 site)

    NASA Technical Reports Server (NTRS)

    Carrier, W. D., III; Heiken, G.

    1972-01-01

    A total of 17-1/2 stereopairs of lunar surface rocks and soil was taken on the Apollo 14 mission. The closeup stereopair photographs are presented with a preliminary interpretation for those interested in lunar soil formation, impact phenomena, and soil mechanics.

  6. Nuclear power for Lunar and Martian surface applications

    SciTech Connect

    Houts, M.G.; Buksa, J.J. )

    1993-01-01

    Safe, reliable, low-mass, low-volume, long-life nuclear fission power supplies are an attractive option for meeting lunar and Martian surface power requirements. Two factors will have a strong impact on the suitability of a surface nuclear power supply: the technology used by the reactor and the total power supply mass that must be delivered to the planetary surface. In-core thermionic reactors are well suited for planetary surface applications and have several potential advantages over alternative systems. Because power conversion is performed in core, the fueled emitter is the only very high-temperature component. Core structure, coolant channels, and other components operate at a temperature close to that of the radiator (usually 900 to 1050 K). A large data base exists for materials operating in this temperature range; thus, most technical concerns lie with the thermionic fuel elements (TFEs), and few remain for other system components. In addition, the combination of relatively high efficiency and high heat-rejection temperature in thermionic reactors can reduce radiator size to one-sixth of that found in alternative systems. The building-block approach of thermionic systems (power is increased by adding TFEs) provides redundancy, component commonality, and reliability. Thermionic reactors should be available in the near future.

  7. Lunar surface photography - A study of Apollo 11

    NASA Astrophysics Data System (ADS)

    Arnold, H. J. P.

    1987-10-01

    Attention is drawn to the perplexing oversight of mission planners to ensure the taking of a photograph of Neil Armstrong by Buzz Aldrin, during the Apollo 11 lunar landing. The ramifications of this oversight for NASA public relations efforts are explored, together with the reasons for its occurrence that have been unearthed during subsequent investigations of both lunar walk planning and communications from earth controllers during the lunar walk activity. From Apollo 12 onwards, both lunar landing module crewmen wore Hasselblad cameras to ensure the appearance of both in numerous operational photographs.

  8. Electrical conductivity of lunar surface rocks - Laboratory measurements and implications for lunar interior temperatures

    NASA Technical Reports Server (NTRS)

    Schwerer, F. C.; Huffman, G. P.; Fisher, R. M.; Nagata, T.

    1974-01-01

    Results are reported for laboratory measurements of the dc and low-frequency ac electrical conductivity of three lunar rocks with ferrous iron contents of 5 to 26 wt %. The measurements were made at temperatures ranging from 20 to 1000 C, and Mossbauer spectroscopy was used to determine the dependence of electrical conductivity on furnace atmosphere. It is found that the magnitude of electrical conductivity generally increases with increasing iron content. A comparison of the data on these samples with data on terrestrial olivines and pyroxenes shows that the electrical conductivity of anhydrous silicate minerals is influenced primarily by the concentration, oxidation state, and distribution of iron, while the silicate crystal structure is only of secondary importance. Lunar interior temperatures are deduced from experimental lunar conductivity profiles, and the resulting temperature-depth profiles are found to be consistent with those calculated for two different lunar evolutionary models as well as with various experimental constraints.

  9. Lunar Beagle: An Experimental Package for Measuring Polar Ice and Volatiles Beneath the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Gibson, E. K.; Pillinger, C. T.; McKay, D. S.; Wright, I. P.; Sims, M. R.; Richter, L.; Waugh, L.; Lunar Beagle Consortium

    2008-07-01

    Lunar Beagle payload has the capabilities of determining the presence of polar ice and volatiles in the permanently shadowed regions of the moon. The instrument suite can provide critical information to assist "living off the land".

  10. Back to the Moon: The scientific rationale for resuming lunar surface exploration

    NASA Astrophysics Data System (ADS)

    Crawford, I. A.; Anand, M.; Cockell, C. S.; Falcke, H.; Green, D. A.; Jaumann, R.; Wieczorek, M. A.

    2012-12-01

    The lunar geological record has much to tell us about the earliest history of the Solar System, the origin and evolution of the Earth-Moon system, the geological evolution of rocky planets, and the near-Earth cosmic environment throughout Solar System history. In addition, the lunar surface offers outstanding opportunities for research in astronomy, astrobiology, fundamental physics, life sciences and human physiology and medicine. This paper provides an interdisciplinary review of outstanding lunar science objectives in all of these different areas. It is concluded that addressing them satisfactorily will require an end to the 40-year hiatus of lunar surface exploration, and the placing of new scientific instruments on, and the return of additional samples from, the surface of the Moon. Some of these objectives can be achieved robotically (e.g., through targeted sample return, the deployment of geophysical networks, and the placing of antennas on the lunar surface to form radio telescopes). However, in the longer term, most of these scientific objectives would benefit significantly from renewed human operations on the lunar surface. For these reasons it is highly desirable that current plans for renewed robotic surface exploration of the Moon are developed in the context of a future human lunar exploration programme, such as that proposed by the recently formulated Global Exploration Roadmap.

  11. Thorium distribution on the lunar surface observed by Chang'E-2 gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, Xianmin; Zhang, Xubing; Wu, Ke

    2016-07-01

    The thorium distribution on the lunar surface is critical for understanding the lunar evolution. This work reports a global map of the thorium distribution on the lunar surface observed by Chang'E-2 gamma-ray spectrometer (GRS). Our work exhibits an interesting symmetrical structure of thorium distribution along the two sides of the belt of Th hot spots. Some potential positions of KREEP volcanism are suggested, which are the Fra Mauro region, Montes Carpatus, Aristarchus Plateau and the adjacent regions of Copernicus Crater. Based on the lunar map of thorium distribution, we draw some conclusions on two critical links of lunar evolution: (1) the thorium abundance within the lunar crust and mantle, in the last stage of Lunar Magma Ocean (LMO) crystallization, may have a positive correlation with the depth in the crust, reaches a peak when coming through the transitional zone between the crust and mantle, and decreases sharply toward the inside of the mantle; thus, the Th-enhanced materials originated from the lower crust and the layer between the crust and mantle, (2) in PKT, KREEP volcanism might be the primary mechanism of Th-elevated components to the lunar surface, whereas the Imbrium impact acted as a relatively minor role.

  12. Study of variability of permittivity and its mapping over lunar surface and subsurface using multisensors datasets

    NASA Astrophysics Data System (ADS)

    Calla, O. P. N.; Mathur, Shubhra; Gadri, Kishan Lal; Jangid, Monika

    2016-12-01

    In the present paper, permittivity maps of equatorial lunar surface are generated using brightness temperature (TB) data obtained from Microwave Radiometer (MRM) of Chang'e-1 and physical temperature (TP) data obtained from Diviner of Lunar Reconnaissance Orbiter (LRO). Here, permittivity mapping is not carried out above 60° latitudes towards the lunar poles due to large anomaly in the physical temperature obtained from the Diviner. Microwave frequencies, which are used to generate these maps are 3 GHz, 7.8 GHz, 19.35 GHz and 37 GHz. Permittivity values are simulated using TB values at these four frequencies. Here, weighted average of physical temperature obtained from Diviner are used to compute permittivity at each microwave frequencies. Longer wavelengths of microwave signals give information of more deeper layers of the lunar surface as compared to smaller wavelength. Initially, microwave emissivity is estimated using TB values from MRM and physical temperature (TP) from Diviner. From estimated emissivity the real part of permittivity (ε), is calculated using Fresnel equations. The permittivity maps of equatorial lunar surface is generated. The simulated permittivity values are normalized with respect to density for easy comparison of simulated permittivity values with the permittivity values of Apollo samples as well as with the permittivity values of Terrestrial Analogue of Lunar Soil (TALS) JSC-1A. Lower value of dielectric constant (ε‧) indicates that the corresponding lunar surface is smooth and doesn't have rough rocky terrain. Thus a future lunar astronaut can use these data to decide proper landing site for future lunar missions. The results of this paper will serve as input to future exploration of lunar surface.

  13. Apollo experience report: Thermal design of Apollo lunar surface experiments package

    NASA Technical Reports Server (NTRS)

    Harris, R. S., Jr.

    1972-01-01

    The evolution of the thermal design of the Apollo lunar surface experiments package central station from the basic concept to the final flight hardware is discussed, including results of development, prototype, and qualification tests that were used to verify that the flight hardware would operate adequately on the lunar surface. In addition, brief discussions of the thermal design of experiments included in the experiments package are presented. The flight thermal performance is compared with analytical results and thermal-vacuum test results, and design modifications for future lunar surface experiment packages are presented.

  14. Recovery and Restoration of Apollo Lunar Surface Experiments Package (ALSEP) Data by the NSSDC and the PDS Lunar Data Node

    NASA Astrophysics Data System (ADS)

    Williams, D. R.; Hills, H. K.; Guinness, E. A.; Taylor, P. T.; McBride, M. J.

    2013-12-01

    Astronauts on the Apollo 12, 14, 15, 16 and 17 missions deployed long-lived (5 to 8 years) automated instrument suites on the Moon, the Apollo Lunar Surface Experiment Packages (ALSEP). The instruments were all turned off in September of 1977, but long before this the Apollo program and most of its funding had been abruptly cancelled. One result of this sudden cancellation was the loss of resources to properly archive these experiment data. Much of the data, particularly from the later years, were lost or saved in obsolete or difficult to access formats, and not properly documented. None of the surface data archived at National Space Science Data Center (NSSDC) were in a form which could be easily archived with the Planetary Data System (PDS). The Lunar Data Project was started at NSSDC in order to recover and restore Apollo data into usable, well-documented digital formats. The PDS Lunar Data Node was established at NSSDC under the auspices of the PDS Geosciences Node to produce validated PDS data sets from the restored data. Six ALSEP data sets are archived at PDS: Apollo 12 and 15 Solar Wind Spectrometer 28-sec and hourly averages, and Apollo 14 and 15 Cold Cathode Ion Gage plots. (Other surface data, from the Apollo 17 Traverse Gravimeter and the Apollo 15 and 16 Penetrometer Soil Mechanics Experiments, have also been restored and are archived with PDS.) Apollo 14 and 15 Dust Detector data and Apollo 15 and 17 Heat Flow data have been restored and gone through a PDS review. They are now undergoing lien resolution. We are currently recovering data and restoring Apollo 12, 14, and 15 Suprathermal Ion Detector Experiment, Apollo 14 Charged Particle Lunar Environment Experiment, Apollo 17 Lunar Atmospheric Composition Experiment, and Apollo 17 Lunar Ejecta and Meteorite data. Lunar Surface Magnetometer data from Apollo 15 and 16 are being restored by another group led by Peter Chi at U.C.L.A. We are also restoring, in conjunction with Yosio Nakamura (University of

  15. Design and Field Test of a Mass Efficient Crane for Lunar Payload Handling and Inspection: The Lunar Surface Manipulation System

    NASA Technical Reports Server (NTRS)

    Doggett, William R.; King, Bruce D.; Jones, Thomas Carno; Dorsey, John T.; Mikulas, Martin M.

    2008-01-01

    Devices for lifting, translating and precisely placing payloads are critical for efficient Earthbased construction operations. Both recent and past studies have demonstrated that devices with similar functionality will be needed to support lunar outpost operations. Lunar payloads include: a) prepackaged hardware and supplies which must be unloaded from landers and then accurately located at their operational site, b) sensor packages used for periodic inspection of landers, habitat surfaces, etc., and c) local materials such as regolith which require grading, excavation and placement. Although several designs have been developed for Earth based applications, these devices lack unique design characteristics necessary for transport to and use on the harsh lunar surface. These design characteristics include: a) composite components, b) compact packaging for launch, c) simple in-field reconfiguration and repair, and d) support for tele-operated or automated operations. Also, in contrast to Earth-based construction, where special purpose devices dominate a construction site, a lunar outpost will require versatile devices which provide operational benefit from initial construction through sustained operations. This paper will detail the design of a unique, high performance, versatile lifting device designed for operations on the lunar surface. The device is called the Lunar Surface Manipulation System to highlight the versatile nature of the device which supports conventional cable suspended crane operations as well as operations usually associated with a manipulator such as precise positioning where the payload is rigidly grappled by a tool attached to the tip of the device. A first generation test-bed to verify design methods and operational procedures is under development at the NASA Langley Research Center and recently completed field tests at Moses Lake Washington. The design relied on non-linear finite element analysis which is shown to correlate favorably with

  16. Heat Rejection Concepts for Lunar Fission Surface Power Applications

    NASA Technical Reports Server (NTRS)

    Siamidis, John

    2006-01-01

    This paper describes potential heat rejection design concepts for lunar surface Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for surface power applications. Surface reactors may be used for the moon to power human outposts enabling extended stays and closed loop life support. The Brayton Heat Rejection System (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 K to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped water heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a tube and fin construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. The water heat pipes interface to the coolant through curved sections partially contained within the cooling loop. The paper evaluates various design parameters including radiator panel orientation, coolant flow path, and facesheet thickness. Parameters were varied to compare design options on the basis of H2O pump pressure rise and required power, heat pipe unit power and radial flux, radiator area, radiator panel areal mass, and overall HRS mass.

  17. Microwave processing of lunar soil for supporting longer-term surface exploration of the Moon

    NASA Astrophysics Data System (ADS)

    Srivastava, V.; Lim, S.; Anand, M.

    2016-11-01

    The future of human space exploration will inevitably involve longer-term stays and possibly permanent settlement on the surfaces of other planetary bodies. It will, therefore, be advantageous or perhaps even necessary to utilise local resources for building an infrastructure for human habitation on the destination planetary body. In this context human lunar exploration is the next obvious step. Lunar soil is regarded as an ideal feedstock for lunar construction materials. However, significant gaps remain in our knowledge and understanding of certain chemical and physical properties of lunar soil, which need to be better understood in order to develop appropriate construction techniques and materials for lunar applications. This article reviews our current understanding of the dielectric behaviour of lunar soil in the microwave spectrum, which is increasingly recognised as an important topic of research in the Space Architecture field. Although the coupling between the lunar soil and microwave energy is already recognised, considerable challenges must be overcome before microwave processing could be used as a main fabrication method for producing robust structures on the Moon. We also review the existing literature on the microwave processing of lunar soil and identify three key research areas where future efforts are needed to make significant advances in understanding the potential of microwave processing of lunar soil for construction purposes.

  18. The Radio Observatory on the Lunar Surface for Solar studies

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; MacDowall, R. J.; Burns, Jack O.; Jones, D. L.; Weiler, K. W.; Demaio, L.; Cohen, A.; Paravastu Dalal, N.; Polisensky, E.; Stewart, K.; Bale, S.; Gopalswamy, N.; Kaiser, M.; Kasper, J.

    2011-12-01

    The Radio Observatory on the Lunar Surface for Solar studies (ROLSS) is a concept for a near-side low radio frequency imaging interferometric array designed to study particle acceleration at the Sun and in the inner heliosphere. The prime science mission is to image the radio emission generated by Type II and III solar radio burst processes with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Specific questions to be addressed include the following: (1) Isolating the sites of electron acceleration responsible for Type II and III solar radio bursts during coronal mass ejections (CMEs); and (2) Determining if and the mechanism(s) by which multiple, successive CMEs produce unusually efficient particle acceleration and intense radio emission. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff to solar radio emission and constraining the low energy electron population in astrophysical sources. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs at frequencies below 10 MHz. Second, resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2°, equivalent to a linear array size of approximately 1000 m. Operations would consist of data acquisition during the lunar day, with regular data downlinks. No operations would occur during lunar night. ROLSS is envisioned as an interferometric array, because a single aperture would be impractically large. The major components of the ROLSS array are 3 antenna arms arranged in a Y shape, with a central electronics package (CEP) located at the center. The Y configuration for the antenna arms both allows for the formation of reasonably high dynamic range images on short time scales as well as relatively easy

  19. Interaction of gases with lunar materials. [surface properties of lunar fines, especially on exposure to water vapor

    NASA Technical Reports Server (NTRS)

    Holmes, H. F.; Gammage, R. B.

    1975-01-01

    The surface properties of lunar fines were investigated. Results indicate that, for the most part, these properties are independent of the chemical composition and location of the samples on the lunar surface. The leaching of channels and pores by adsorbed water vapor is a distinguishing feature of their surface chemistry. The elements of air, if adsorbed in conjunction with water vapor or liquid water, severely impedes the leaching process. In the absence of air, liquid water is more effective than water vapor in attacking the grains. The characteristics of Apollo 17 orange fines were evaluated and compared with those of other samples. The interconnecting channels produced by water vapor adsorption were found to be wider than usual for other types of fines. Damage tracks caused by heavy cosmic ray nuclei and an unusually high halogen content might provide for stronger etching conditions upon exposure to water vapor.

  20. Operational Assessment of Apollo Lunar Surface Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Miller, Matthew James; Claybrook, Austin; Greenlund, Suraj; Marquez, Jessica J.; Feigh, Karen M.

    2017-01-01

    Quantifying the operational variability of extravehicular activity (EVA) execution is critical to help design and build future support systems to enable astronauts to monitor and manage operations in deep-space, where ground support operators will no longer be able to react instantly and manage execution deviations due to the significant communication latency. This study quantifies the operational variability exhibited during Apollo 14-17 lunar surface EVA operations to better understand the challenges and natural tendencies of timeline execution and life support system performance involved in surface operations. Each EVA (11 in total) is individually summarized as well as aggregated to provide descriptive trends exhibited throughout the Apollo missions. This work extends previous EVA task analyses by calculating deviations between planned and as-performed timelines as well as examining metabolic rate and consumables usage throughout the execution of each EVA. The intent of this work is to convey the natural variability of EVA operations and to provide operational context for coping with the variability inherent to EVA execution as a means to support future concepts of operations.

  1. /sup 10/Be profiles in lunar surface rock 68815

    SciTech Connect

    Nishiizumi, K.; Imamura, M.; Kohl, C.P.; Nagai, H.; Kobayashi, K.; Yoshida, K.; Yamashita, H.; Reedy, R.C.; Honda, M.; Arnold, J.R.

    1987-01-01

    Cosmic ray produced /sup 10/Be (t/sub 1/2/ = 1.6 x 10/sup 6/ years) activities have been measured in fourteen carefully ground samples of lunar surface rock 68815. The /sup 10/Be profiles from 0 to 4 mm are nearly flat for all three surface angles measured and show a very slight increase with depth from the surface to a depth of 1.5 cm. These depth profiles are in contrast to the SCR (solar cosmic ray) produced /sup 26/Al and /sup 53/Mn profiles measured from these same samples. There is no sign of SCR produced /sup 10/Be in this rock. The discrepancy between the data and the Reedy-Arnold theoretical calculation (about 2 dpm /sup 10/Be/kg at the surface) can be explained in two ways: (1) the low energy proton induced cross sections for /sup 10/Be production from oxygen are really lower than those used in the calculations or, (2) compared to the reported fits for /sup 26/Al and /sup 53/Mn, the solar proton spectral shape is actually softer (exponential rigidity parameter Ro less than 100 MV), the omnidirectional flux above 10 MeV is higher (more than 70 protons/cm/sup 2/ s), and the erosion rate is higher (greater than 1.3 mm/My). /sup 10/Be, as a high energy product, is a very useful nuclide for helping to obtain the SCR spectral shape in the past. 23 refs., 3 figs., 1 tab.

  2. Laser Induced-Plasma Ion Mass Spectrometry for Characterization of Lunar and Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Wiens, R. C.; Blacic, J. D.; Cremers, D. A.; Ritzau, S. M.; Nordholt, J. E.; Funsten, H. O.

    1999-03-01

    LIMS is being developed to perform isotopic and elemental analysis of lunar and planetary surfaces at standoff distances. It uses an advanced ion mass spectrometer to obtain mass and energy spectra from the ionized plume produced by a laser.

  3. Yet Another Lunar Surface Geologic Exploration Architecture Concept (what, again?): A Senior Field Geologist's View

    NASA Astrophysics Data System (ADS)

    Eppler, D. B.

    2015-10-01

    Lunar geological exploration should be founded on key elements that form an integrated operational concept, including mission class, crew makeup and training, surface mobility assets, and field tools and IT assets.

  4. Alteration of Lunar Rock Surfaces through Interaction with the Space Environment

    NASA Technical Reports Server (NTRS)

    Frushour, A. M.; Noble, S. K; Christoffersen, R.; Keller, L P.

    2014-01-01

    Space weathering occurs on all ex-posed surfaces of lunar rocks, as well as on the surfaces of smaller grains in the lunar regolith. Space weather-ing alters these exposed surfaces primarily through the action of solar wind ions and micrometeorite impact processes. On lunar rocks specifically, the alteration products produced by space weathering form surface coatings known as patina. Patinas can have spectral reflectance properties different than the underlying rock. An understanding of patina composition and thickness is therefore important for interpreting re-motely sensed data from airless solar system bodies. The purpose of this study is to try to understand the physical and chemical properties of patina by expanding the number of patinas known and characterized in the lunar rock sample collection.

  5. Astronaut John Young participates in lunar surface EVA training at KSC

    NASA Image and Video Library

    1972-02-09

    S72-19739 (22 Dec. 1972) --- Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, participates in lunar surface extravehicular activity (EVA) training in the Flight Crew Training Building at the Kennedy Space Center (KSC). Young adjusts a training model of a Far Ultraviolet Camera/Spectroscope, an instrument which will be emplaced on the moon during the Apollo 16 EVA. Deep-space sources of hydrogen in interplanetary, interstellar and intergalactic regions will be mapped by this instrument which gathers both photographic images and spectroscope data in the far ultraviolet spectrum. This experiment will be the first such astronomical observation emplaced on the lunar surface.

  6. Block distributions on the lunar surface: A comparison between measurements obtained from surface and orbital photography

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Mcbride, Kathleen M.

    1995-01-01

    Among the hazards that must be negotiated by lunar-landing spacecraft are blocks on the surface of the Moon. Unfortunately, few data exist that can be used to evaluate the threat posed by such blocks to landing spacecraft. Perhaps the best information is that obtained from Surveyor photographs, but those data do not extend to the dimensions of the large blocks that would pose the greatest hazards. Block distributions in the vicinities of the Surveyor 1, 3, 6, and 7 sites have been determined from Lunar Orbiter photography and are presented here. Only large (i.e., greater than or equal to 2.5 m) blocks are measurable in these pictures, resulting in a size gap between the Surveyor and Lunar Orbiter distributions. Nevertheless, the orbital data are self-consistent, a claim supported by the similarity in behavior between the subsets of data from the Surveyor 1, 3, and 6 sites and by the good agreement in position (if not slopes) between the data obtained from the Surveyor 3 photography and those derived from the Lunar Orbiter photographs. Confidence in the results is also justified by the well-behaved distribution of large blocks at the surveyor site. Comparisons between the Surveyor distributions and those derived from the orbital photography permit these observations: (1) in all cases but that for Surveyor 3, the density of large blocks is overestimated by extrapolation of the Surveyor-derived trends; (2) the slopes of the Surveyor-derived distributions are consistently lower than those determined for the large blocks; and (3) these apparent disagreements could be mitigated if the overall shapes of the cumulative lunar block populations were nonlinear, allowing for different slopes over different size intervals. The relatively large gaps between the Surveyor-derived and Orbiter-derived data sets, however, do not permit a determination of those shapes.

  7. Lunar rover developments at JPL

    NASA Technical Reports Server (NTRS)

    Burke, James D.; Bickler, Donald B.; Pivirotto, Donna L.

    1990-01-01

    Results of previous JPL developments are summarized and the current work related to lunar roving missions is discussed. Objectives of a long lunar transverse are reviewed and include lunar resource prospecting and base site surveys. Rover design criteria are presented, noting that payload instrumentation would include both television cameras for driving and cameras producing panoramic facsimile for high-fidelity scientific imaging and landmark navigation, as well as a multipurpose imaging system with multispectral, close-up, and microscopic capabilities. Instrumentation providing for chemical and mineral analysis, a gravimeter, and a magnetometer are also important. Rover performance requirements include a capability to support a 50 kg payload mass with a rover mass of 500 to 600 kg, powering and supporting the payload, managing the on-board resources available to each instrument, and handling all of the mission data. Desert tests of lunar roving navigation and field geology are discussed.

  8. Investigating the Sources and Timing of Projectiles Striking the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Joy, K. H.; Kring, D. A.; Zolensky, M. E.; McKay, D. S.; Ross, D. K.

    2011-01-01

    The lunar surface is exposed to bombardment by asteroids, comets, and debris from them. Surviving fragments of those projectiles in the lunar regolith provide a direct measure of the sources of exogenous material delivered to the Moon. Con-straining the temporal flux of their delivery will directly address key questions about the bombardment history of the inner Solar System. Regolith breccias, which are consolidated samples of the lunar regolith, were closed to further impact processing at the time they were assembled into rocks [1]. They are, therefore, time capsules of impact bombardment at different times through lunar history. Here we investigate the impact archive preserved in the Apollo 16 regolith breccias and compare this record to evidence of projectile species in other lunar samples.

  9. A preliminary investigation of the Topaz II reactor as a lunar surface power supply

    SciTech Connect

    Polansky, G.F.; Houts, M.G.

    1995-12-31

    Reactor power supplies offer many attractive characteristics for lunar surface applications. The Topaz II reactor resulted from an extensive development program in the former Soviet Union. Flight quality reactor units remain from this program and are currently under evaluation in the United States. This paper examines the potential for applying the Topaz II, originally developed to provide spacecraft power, as a lunar surface power supply.

  10. Solar-Wind Protons and Heavy Ions Sputtering of Lunar Surface Materials

    SciTech Connect

    Barghouty, N.; Meyer, Fred W; Harris, Peter R

    2011-01-01

    Lunar surface materials are exposed to {approx}1 keV/amu solar-wind protons and heavy ions on almost continuous basis. As the lunar surface consists of mostly oxides, these materials suffer, in principle, both kinetic and potential sputtering due to the actions of the solar-wind ions. Sputtering is an important mechanism affecting the composition of both the lunar surface and its tenuous exosphere. While the contribution of kinetic sputtering to the changes in the composition of the surface layer of these oxides is well understood and modeled, the role and implications of potential sputtering remain unclear. As new potential-sputtering data from multi-charged ions impacting lunar regolith simulants are becoming available from Oak Ridge National Laboratory's MIRF, we examine the role and possible implications of potential sputtering of Lunar KREEP soil. Using a non-equilibrium model we demonstrate that solar-wind heavy ions induced sputtering is critical in establishing the timescale of the overall solar-wind sputtering process of the lunar surface. We also show that potential sputtering leads to a more pronounced and significant differentiation between depleted and enriched surface elements. We briefly discuss the impacts of enhanced sputtering on the composition of the regolith and the exosphere, as well as of solar-wind sputtering as a source of hydrogen and water on the moon.

  11. Space Weathering of the Lunar Surface by Solar Wind Particles

    NASA Astrophysics Data System (ADS)

    Kim, Sungsoo S.; Sim, Chaekyung

    2017-08-01

    The lunar regolith is space-weathered to a different degree in response to the different fluxes of incident solar wind particles and micrometeoroids. Crater walls, among other slating surfaces, are good tracers of the space-weathering process because they mature differently depending on the varying incident angles of weathering agents. We divide a crater wall into four quadrants (north, south, east, and west) and analyze the distribution of 950-nm/750-nm reflectance-ratio and 750-nm reflectance values in each wall quadrant, using the topography-corrected images by Multispectral Imager (MI) onboard SELENE (Kaguya). For thousands of impact craters across the Moon, we interpret the spectral distributions in the four wall quadrants in terms of the space weathering by solar wind particles and micrometeoroids and of gardening by meteroids. We take into account the solar-wind shielding by the Earth’s magnetotail to correctly assess the different spectral behaviors between east- and west-facing walls of the craters in the near-side of the Moon.

  12. Lunar Surface Stirling Power Systems Using Am-241

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2009-01-01

    For many years NASA has used the decay of Pu-238 (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTG), which have provided electrical power for many NASA missions. While RTG's have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency (-5% efficiency) and the scarcity of Plutoinium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14 earth days) isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 watts with 2 GPHS modules at the beginning of life (BOL) (-30% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a 4-fold reduction in the number of GPHS modules. This study considers the use of Americium 241 (Am-241) as a substitute for the Pu-238 in Stirling convertor based Radioisotope Power Systems (RPS) for power levels from 1 O's of watts to 5 kWe. The Am-241 is used as a replacement for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about 1/5 while maintaining approximately the same system mass. In order to obtain the nominal 160 watts electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot end and

  13. Lunar Surface Stirling Power Systems Using Isotope Heat Sources

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2010-01-01

    For many years, NASA has used the decay of plutonium-238 (Pu-238) (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTGs), which have provided electrical power for many NASA missions. While RTGs have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency and the scarcity of plutonium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14.75 Earth days), isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 W with two GPHS modules at the beginning of life (BOL) (32% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a four-fold reduction in the number of GPHS modules. This study considers the use of americium-241 (Am-241) as a substitute for the Pu-238 in Stirling- convertor-based Radioisotope Power Systems (RPS) for power levels from tens of watts to 5 kWe. The Am-241 is used as a substitute for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about one-fifth while maintaining approximately the same system mass. In order to obtain the nominal 160 W of electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot

  14. Lunar heat-flow experiment: Long term temperature observations on the lunar surface at Apollo sites 15 and 17

    NASA Technical Reports Server (NTRS)

    Peters, K.

    1975-01-01

    Several investigators of the Apollo lunar experiments have observed gradual increases in the mean temperatures recorded by various surface thermometers. Similar effects were noticed in the temperatures of the thermometers of the Apollo 15 and 17 Heat Flow Experiments. An analysis of the long term temperature histories of the heat flow experiment thermometers is presented. These data show that no change in mean surface temperature at the Apollo 15 and 17 sites has occurred, and suggest that the slow increase in mean temperatures of thermometers in the electronics housing are due to changes in radiative properties of the housing's surfaces.

  15. Thermal mapping of the lunar surface. [using infrared radiometry

    NASA Technical Reports Server (NTRS)

    Raine, W. L.

    1973-01-01

    A program of lunar infrared radiometry which uses large area scanning is described, and procedures for atmospheric attenuation correction and data reduction to temperature by relative radiometry are outlined. Flow charts of the computer data reduction program are shown which contain the astrometric analysis from ephemeral data. The scan data, taken on 10 evenings in 1971 and 1972 in the 10 to 12 micron window, are presented as isothermal contour maps of the lunar disc. More than 160 areas of anomalous thermal emission were found in the lunar darkside data. Eclipse cooling curves, measured in the same wavelength band for 7 lunar regions during the eclipse of February 10, 1971, are also presented. Errors of the scan and eclipse data were calculated from accuracy estimates of the parameters.

  16. CE-4 Mission and Future Journey to Lunar

    NASA Astrophysics Data System (ADS)

    Zou, Yongliao; Wang, Qin; Liu, Xiaoqun

    2016-07-01

    Chang'E-4 mission, being undertaken by phase two of China Lunar Exploration Program, represents China's first attempt to explore farside of lunar surface. Its probe includes a lander, a rover and a telecommunication relay which is scheduled to launch in around 2018. The scientific objectives of CE-4 mission will be implemented to investigate the lunar regional geological characteristics of landing and roving area, and also will make the first radio-astronomy measurements from the most radio-quiet region of near-earth space. The rover will opreate for at least 3 months, the lander for half a year, and the relay for no less than 3 years. Its scinetific instruments includes Cameras, infrared imaging spectrometer, Penetrating Radar onboard the rover in which is the same as the paylads on board the CE-3 rover, and a Dust-analyzer, a Temperature-instrument and a Wide Band Low Frequency Digital Radio Astronomical Station will be installed on board the lander. Our scientific goals of the future lunar exploration will aim at the lunar geology, resources and surface environments. A series of exploraion missions such as robotic exploration and non-manned lunar scientific station is proposed in this paper.

  17. The surface abundance and stratigraphy of lunar rocks from data about their albedo

    NASA Technical Reports Server (NTRS)

    Shevchenko, V. V.

    1977-01-01

    The data pf ground-based studies and surveys of the lunar surface by the Zond and Apollo spacecraft have been used to construct an albedo map covering 80 percent of the lunar sphere. Statistical analysis of the distribution of areas with various albedos shows several types of lunar surface. Comparison of albedo data for maria and continental areas with the results of geochemical orbital surveys allows the identification of the types of surface with known types of lunar rock. The aluminum/silcon and magnesium/silicon ratios as measured by the geochemical experiments on the Apollo 15 and Apollo 16 spacecraft were used as an indication of the chemical composition of the rock. The relationship of the relative aluminum content to the age of crystalline rocks allows a direct dependence to be constructed between the mean albedo of areas and the age of the rocks of which they are composed.

  18. Anisotropic Solar Wind Sputtering of the Lunar Surface Induced by Crustal Magnetic Anomalies

    NASA Technical Reports Server (NTRS)

    Poppe, A. R.; Sarantos, M.; Halekas, J. S.; Delory, G. T.; Saito, Y.; Nishino, M.

    2014-01-01

    The lunar exosphere is generated by several processes each of which generates neutral distributions with different spatial and temporal variability. Solar wind sputtering of the lunar surface is a major process for many regolith-derived species and typically generates neutral distributions with a cosine dependence on solar zenith angle. Complicating this picture are remanent crustal magnetic anomalies on the lunar surface, which decelerate and partially reflect the solar wind before it strikes the surface. We use Kaguya maps of solar wind reflection efficiencies, Lunar Prospector maps of crustal field strengths, and published neutral sputtering yields to calculate anisotropic solar wind sputtering maps. We feed these maps to a Monte Carlo neutral exospheric model to explore three-dimensional exospheric anisotropies and find that significant anisotropies should be present in the neutral exosphere depending on selenographic location and solar wind conditions. Better understanding of solar wind/crustal anomaly interactions could potentially improve our results.

  19. Anisotropic Solar Wind Sputtering of the Lunar Surface Induced by Crustal Magnetic Anomalies

    NASA Technical Reports Server (NTRS)

    Poppe, A. R.; Sarantos, M.; Halekas, J. S.; Delory, G. T.; Saito, Y.; Nishino, M.

    2014-01-01

    The lunar exosphere is generated by several processes each of which generates neutral distributions with different spatial and temporal variability. Solar wind sputtering of the lunar surface is a major process for many regolith-derived species and typically generates neutral distributions with a cosine dependence on solar zenith angle. Complicating this picture are remanent crustal magnetic anomalies on the lunar surface, which decelerate and partially reflect the solar wind before it strikes the surface. We use Kaguya maps of solar wind reflection efficiencies, Lunar Prospector maps of crustal field strengths, and published neutral sputtering yields to calculate anisotropic solar wind sputtering maps. We feed these maps to a Monte Carlo neutral exospheric model to explore three-dimensional exospheric anisotropies and find that significant anisotropies should be present in the neutral exosphere depending on selenographic location and solar wind conditions. Better understanding of solar wind/crustal anomaly interactions could potentially improve our results.

  20. Determination of selenographic coordinates of lunar surface points from single pictures obtained from Zond 6

    NASA Technical Reports Server (NTRS)

    Ziman, Y. L.; Baratova, V. F.; Isavnina, I. V.

    1974-01-01

    Pictures of the lunar surface with an image of practically the entire lunar limb were obtained from the Zond 6 spacecraft. During the time of exposure, the entire lunar surface covered by these photographs was illuminated by the sun. Such single pictures were used to find the external orientation elements and selenographic coordinates of the photographed lunar surface points. The selenographic coordinate system was specified by the Goloseyev catalog and was realized by points of this catalog identified on the pictures and termed reference points. Craters located on the invisible side of the moon and also other points of the Goloseyev catalog, which could be used as control points, were taken as the points being determined. The technique used to compute the selenographic coordinates of the points is outlined.

  1. Special report, diffuse reflectivity of the lunar surface

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1972-01-01

    The far ultraviolet diffuse reflectivity of samples of lunar dust material is determined. Equipment for measuring the diffuse reflectivity of materials (e.g. paint samples) is already in existence and requires only minor modification for the proposed experiment which will include the measurement of the polarizing properties of the lunar samples. Measurements can be made as a function of both illumination angle and angle of observation.

  2. Lunar Polar Landing Sites

    NASA Astrophysics Data System (ADS)

    Kamps, Oscar; Foing, Bernard H.; Flahaut, Jessica

    2016-07-01

    An important step for a scientific mission is to assess on where the mission should be conducted. This study on landing site selection focuses on a mission to the poles of the Moon where an in-situ mission should be conducted to answer the questions with respect to volatiles and ices. The European interest for a mission to the poles of the Moon is presented in the mission concept called Heracles. This mission would be a tele-operated, sample return mission where astronauts will controlling a rover from an Orion capsule in cislunar orbit. The primary selection of landing sites was based on the scientific interest of areas near the poles. The maximum temperature map from Diviner was used to select sites where CO^2¬ should always be stable. This means that the maximum temperature is lower than 54K which is the sublimation temperature for CO^2¬ in lunar atmospheric pressure. Around these areas 14 potential regions of interest were selected. Further selection was based on the epoch of the surface in these regions of interest. It was thought that it would be of high scientific value if sites are sampled which have another epoch than already sampled by one of the Apollo or Luna missions. Only 6 sites on both North as South Pole could contain stable CO^2 ¬and were older than (Pre-)Necterian. Before a landing site and rover traverse was planned these six sites were compared on their accessibility of the areas which could contain stable CO^2. It was assumed that slope lower than 20^o is doable to rove. Eventually Amundsen and Rozhdestvenskiy West were selected as regions of interest. Assumptions for selecting landing sites was that area should have a slope lower than 5^o, a diameter of 1km, in partial illuminated area, and should not be isolated but inside an area which is in previous steps marked as accessible area to rove. By using multiple tools in ArcGIS it is possible to present the area's which were marked as potential landing sites. The closest potential landing

  3. Lunar Resources

    NASA Technical Reports Server (NTRS)

    Edmunson, Jennifer

    2010-01-01

    This slide presentation reviews the lunar resources that we know are available for human use while exploration of the moon. Some of the lunar resources that are available for use are minerals, sunlight, solar wind, water and water ice, rocks and regolith. The locations for some of the lunar resouces and temperatures are reviewed. The Lunar CRater Observation and Sensing Satellite (LCROSS) mission, and its findings are reviewed. There is also discussion about water retention in Permament Shadowed Regions of the Moon. There is also discussion about the Rock types on the lunar surface. There is also discussion of the lunar regolith, the type and the usages that we can have from it.

  4. Ground Simulations of Near-Surface Plasma Field and Charging at the Lunar Terminator

    NASA Astrophysics Data System (ADS)

    Polansky, J.; Ding, N.; Wang, J.; Craven, P.; Schneider, T.; Vaughn, J.

    2012-12-01

    Charging in the lunar terminator region is the most complex and is still not well understood. In this region, the surface potential is sensitively influenced by both solar illumination and plasma flow. The combined effects from localized shadow generated by low sun elevation angles and localized wake generated by plasma flow over the rugged terrain can generate strongly differentially charged surfaces. Few models currently exist that can accurately resolve the combined effects of plasma flow and solar illumination over realistic lunar terminator topographies. This paper presents an experimental investigation of lunar surface charging at the terminator region in simulated plasma environments in a vacuum chamber. The solar wind plasma flow is simulated using an electron bombardment gridded Argon ion source. An electrostatic Langmuir probe, nude Faraday probes, a floating emissive probe, and retarding potential analyzer are used to quantify the plasma flow field. Surface potentials of both conducting and dielectric materials immersed in the plasma flow are measured with a Trek surface potential probe. The conducting material surface potential will simultaneously be measured with a high impedance voltmeter to calibrate the Trek probe. Measurement results will be presented for flat surfaces and objects-on-surface for various angles of attack of the plasma flow. The implications on the generation of localized plasma wake and surface charging at the lunar terminator will be discussed. (This research is supported by the NASA Lunar Advanced Science and Exploration Research program.)

  5. A thermal control system for long-term survival of scientific instruments on lunar surface.

    PubMed

    Ogawa, K; Iijima, Y; Sakatani, N; Otake, H; Tanaka, S

    2014-03-01

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime -200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a "regolith mound". Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.

  6. A thermal control system for long-term survival of scientific instruments on lunar surface

    NASA Astrophysics Data System (ADS)

    Ogawa, K.; Iijima, Y.; Sakatani, N.; Otake, H.; Tanaka, S.

    2014-03-01

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime -200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a "regolith mound". Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.

  7. Vapor Deposition and Solar Wind Implantation on Lunar Soil-Grain Surfaces as Comparable Processes

    NASA Technical Reports Server (NTRS)

    Basu, A.; Wentworth, S. J.; McKay, D. S.

    2004-01-01

    Vapor deposited patinas (VDP) on lunar soil grains consist of a thin (less than 1 micron) layer of amorphous silicate (glass) embedded with nanoscale Fe(sup 0) globules as seen in many TEM images. VDPs are also present on larger space-weathered lunar rocks; these larger samples will not be discussed here although the process of vapor deposition is common to exposed grains of all sizes. Whether or not the majority of the Fe(sup 0) globules present in lunar soils reside in vapor deposited patina is a matter of some concern. Some Fe(sup 0) globules are clearly seen to reside within the glass of agglutinates and might represent remobilized Fe(sup 0) in agglutinitic melts. remobilized Fe(sup 0) in agglutinitic melts. We argue that because VDP coatings are present only on the surfaces of lunar soil grains, their distribution as a surface correlated component (SCC) of lunar soils should parallel those of Solar Wind Elements (SWE) implanted in the outermost rinds of lunar soil grains. SWE residing in the interior of soils grains make up the volume correlated component (VCC). Relative to Fe(sup 0) in VDP, the distribution of various SWE have been studied well. The reason is understandable because instrumentation for nanoscale imaging is not ubiquitous. In this study we use the distribution of SWE in lunar soils as a guide to understanding the fate of Fe(sup 0) in VDP.

  8. A thermal control system for long-term survival of scientific instruments on lunar surface

    SciTech Connect

    Ogawa, K.; Iijima, Y.; Tanaka, S.; Sakatani, N.; Otake, H.

    2014-03-15

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime −200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a “regolith mound”. Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.

  9. Pickup Ion Mass Spectrometry for Surface Bounded Exospheres and Composition Mapping of Lunar and Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Keller, J. W.; Zurbuchen, T. H.; Baragiola, R. A.; Cassidy, T. A.; Chornay, D. J.; Collier, M. R.; Hartle, R. E.; Johnson, R. E.; Killen, R. M.; Koehn, P.

    2005-01-01

    Many of the small to medium sized objects in the solar system can be characterized as having surface bounded exospheres, or atmospheres so tenuous that scale lengths for inter-particle collisions are much larger than the dimensions of the objects. The atmospheres of these objects are the product of their surfaces, both the surface composition and the interactions that occur on them and also their interiors when gases escape from there. Thus by studying surface bounded exospheres it is possible to develop insight into the composition and processes that are taking place on the surface and interiors of these objects. The Moon and Mercury are two examples of planetary bodies with surface bounded exospheres that have been studied through spectroscopic observations of sodium, potassium, and, on the moon, mass spectrometric measurements of lunar gases such as argon and helium.

  10. Surface electrical properties experiment study phase, volume 2

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The choice of an antenna for a subsurface radio sounding experiment is discussed. The radiation properties of the antennas as placed on the surface of the medium is examined. The objective of the lunar surface electrical properties experiment is described. A numerical analysis of the dielectric permittivity and magnetic permeability of a subsurface domain is developed. The application of electromagnetic field measurements between one or more transmitting antennas and a roving receiving station is explained.

  11. Battery and Fuel Cell Development Goals for the Lunar Surface and Lander

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.

    2008-01-01

    NASA is planning a return to the moon and requires advances in energy storage technology for its planned lunar lander and lunar outpost. This presentation describes NASA s overall mission goals and technical goals for batteries and fuel cells to support the mission. Goals are given for secondary batteries for the lander s ascent stage and suits for extravehicular activity on the lunar surface, and for fuel cells for the lander s descent stage and regenerative fuel cells for outpost power. An overall approach to meeting these goals is also presented.

  12. Apollo 12 stereo view of lunar surface upon which astronaut had stepped

    NASA Image and Video Library

    1969-11-20

    AS12-57-8448 (19-20 Nov. 1969) --- An Apollo 12 stereo view showing a three-inch square of the lunar surface upon which an astronaut had stepped. Taken during extravehicular activity of astronauts Charles Conrad Jr. and Alan L. Bean, the exposure of the boot imprint was made with an Apollo 35mm stereo close-up camera. The camera was developed to get the highest possible resolution of a small area. The three-inch square is photographed with a flash illumination and at a fixed distance. The camera is mounted on a walking stick, and the astronauts use it by holding it up against the object to be photographed and pulling the trigger. While astronauts Conrad and Bean descended in their Apollo 12 Lunar Module to explore the lunar surface, astronaut Richard F. Gordon Jr. remained with the Command and Service Modules in lunar orbit.

  13. Application of automation and robotics to lunar surface human exploration operations

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.; Sherwood, Brent; Buddington, Patricia A.; Bares, Leona C.; Folsom, Rolfe; Mah, Robert; Lousma, Jack

    1990-01-01

    Major results of a study applying automation and robotics to lunar surface base buildup and operations concepts are reported. The study developed a reference base scenario with specific goals, equipment concepts, robot concepts, activity schedules and buildup manifests. It examined crew roles, contingency cases and system reliability, and proposed a set of technologies appropriate and necessary for effective lunar operations. This paper refers readers to four companion papers for quantitative details where appropriate.

  14. Two-Phase Thermal Switching System for a Small, Extended Duration Lunar Surface Science Platform

    NASA Technical Reports Server (NTRS)

    Bugby, David C.; Farmer, Jeffery T.; OConnor, Brian F.; Wirzburger, Melissa J.; Abel, Elisabeth D.; Stouffer, Chuck J.

    2010-01-01

    This paper describes a novel thermal control system for the Warm Electronics Box (WEB) on board a small lunar surface lander intended to support science activities anywhere on the lunar surface for an extended duration of up to 6 years. Virtually all lander electronics, which collectively dissipate about 60 W in the reference mission, are contained within the WEB. These devices must be maintained below 323 K (with a goal of 303 K) during the nearly 15-earth-day lunar day, when surface temperatures can reach 390K, and above 263 K during the nearly 15-earth-day lunar night, when surface temperatures can reach 100K. Because of the large temperature swing from lunar day-to-night, a novel thermal switching system was required that would be able to provide high conductance from WEB to radiator(s) during the hot lunar day and low (or negligible) conductance during the cold lunar night. The concept that was developed consists of ammonia variable conductance heat pipes (VCHPs) to collect heat from WEB components and a polymer wick propylene loop heat pipe (LHP) to transport the collected heat to the radiator(s). The VCHPs autonomously maximize transport when the WEB is warm and autonomously shut down when the WEB gets cold. The LHP autonomously shuts down when the VCHPs shut down. When the environment transitions from lunar night to day, the VCHPs and LHP autonomously turn back on. Out of 26 analyzed systems, this novel arrangement was able to best achieve the combined goals of zero control power, autonomous operation, long life, low complexity, low T, and landed tilt tolerance.

  15. Radiation measurement above the lunar surface by Kaguya gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Hasebe, Nobuyuki; Nagaoka, Hiroshi; Kusano, Hiroki; Hareyama, Matoko; Ideguchi, Yusuke; Shimizu, Sota; Shibamura, Eido

    The lunar surface is filled with various ionizing radiations such as high energy galactic particles, albedo particles and secondary radiations of neutrons, gamma rays and other elementary particles. A high-resolution Kaguya Gamma-Ray Spectrometer (KGRS) was carried on the Japan’s lunar explorer SELENE (Kaguya), the largest lunar orbiter since the Apollo missions. The KGRS instrument employed, for the first time in lunar exploration, a high-purity Ge crystal to increase the identification capability of elemental gamma-ray lines. The Ge detector is surrounded by BGO and plastic counters as for anticoincidence shields. The KGRS measured gamma rays in the energy range from 200 keV to 13 MeV with high precision to determine the chemical composition of the lunar surface. It provided data on the abundance of major elements over the entire lunar surface. In addition to the gamma-ray observation by the KGRS, it successfully measured the global distribution of fast neutrons. In the energy spectra of gamma-rays observed by the KGRS, several saw-tooth- peaks of Ge are included, which are formed by the collision interaction of lunar fast neutrons with Ge atoms in the Ge crystal. With these saw-tooth-peaks analysis, global distribution of neutrons emitted from the lunara surface was successfully created, which was compared with the previous results obtained by Lunar Prospector neutron maps. Another anticoincidence counter, the plastic counter with 5 mm thickness, was used to veto radiation events mostly generated by charged particles. A single photomultiplier serves to count scintillation light from the plastic scintillation counter. The global map of counting rates observed by the plastic counter was also created, implying that the radiation counting rate implies the geological distribution, in spite that the plastic counter mostly measures high energy charged particles and energetic neutrons. These results are presented and discussed.

  16. Documenting Surface and Sub-surface Volatiles While Drilling in Frozen Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Roush, T. L.; Cook, A. M.; Colaprete, A.; Bielawski, R.; Fritzler, E.; Benton, J.; White, B.; Forgione, J.; Kleinhenz, J.; Smith, J.; hide

    2017-01-01

    NASA's Resource Prospector (RP) mission is intended to characterize the three-dimensional nature of volatiles in lunar polar regions and permanently shadowed regions. RP is slated to carry two instruments for prospecting purposes. These include the Neutron Spectrometer System (NSS) and Near-Infrared Volatile Spectrometer System (NIRVSS). A Honybee Robotics drill (HRD) is intended to sample to depths of 1 m, and deliver a sample to a crucible that is processed by the Oxygen Volatile Extraction Node (OVEN) where the soil is heated and evolved gas is delivered to the gas chromatograph / mass spectrometer of the Lunar Advanced Volatile Analysis system (LAVA). For several years, tests of various sub-systems have been undertaken in a large cryo-vacuum chamber facility (VF-13) located at Glenn Research Center. In these tests a large tube (1.2 m high x 25.4 cm diameter) is filled with lunar simulant, NU-LHT-3M, prepared with known abundances of water. There are thermo-couples embedded at different depths, and also across the surface of the soil tube. The soil tube is placed in the chamber and cooled with LN2 as the pressure is reduced to approx.5-6x10(exp -6) Torr. Here we discuss May 2016 tests where two soil tubes were prepared and placed in the chamber. Also located in the chamber were 5 crucibles, an Inficon mass spectrometer, and a trolly permitting x-y translation, where the HRD and NIRVSS, were mounted. The shroud surrounding the soil tube was held at different temperatures for each tube to simulate a warm and cold lunar environment.

  17. Solar flares, the lunar surface, and gas rich meteorites

    NASA Technical Reports Server (NTRS)

    Barber, D. J.; Cowsik, R.; Hutcheon, I. D.; Price, P. B.; Rajan, R. S.

    1972-01-01

    Investigations on the Fe-group nuclei track density vs depth in lunar rocks and Surveyor 3 TV camera filter glass were critically examined considering more factors than previously. The analysis gives a firmer basis to the observation of the preferential leakage of low energy Fe nuclei from the accelerating region of the sun. The track density gradients in lunar rock 12022 and filter glass are used to determine the lunar erosion rate of 3 angstroms/yr. Track gradients are less steep than predicted from energy spectrum observed in the Surveyor glass, perhaps due to sputtering. High densities of etchable tracks were found at all depths down to 60 cm in fines from Apollo cores and also in thin sections of the Pesjanoe, Pantar, and Fayetteville gas-rich meteorites. It is felt unlikely that suprathermal heavy ions were responsible for the high track densities.

  18. Yet Another Lunar Surface Geologic Exploration Architecture Concept (What, Again?): A Senior Field Geologist's Integrated View

    NASA Technical Reports Server (NTRS)

    Eppler, D. B.

    2015-01-01

    Lunar surface geological exploration should be founded on a number of key elements that are seemingly disparate, but which can form an integrated operational concept when properly conceived and deployed. If lunar surface geological exploration is to be useful, this integration of key elements needs to be undertaken throughout the development of both mission hardware, training and operational concepts. These elements include the concept of mission class, crew makeup and training, surface mobility assets that are matched with mission class, and field tools and IT assets that make data collection, sharing and archiving transparent to the surface crew.

  19. Solar Wind Sputtering of Lunar Surface Materials: Role and Some Possible Implications of Potential Sputtering

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Adams, J. H., Jr.; Meyer, F.; Reinhold, c.

    2010-01-01

    Solar-wind induced sputtering of the lunar surface includes, in principle, both kinetic and potential sputtering. The role of the latter mechanism, however, in many focused studies has not been properly ascertained due partly to lack of data but can also be attributed to the assertion that the contribution of solar-wind heavy ions to the total sputtering is quite low due to their low number density compared to solar-wind protons. Limited laboratory measurements show marked enhancements in the sputter yields of slow-moving, highly-charged ions impacting oxides. Lunar surface sputtering yields are important as they affect, e.g., estimates of the compositional changes in the lunar surface, its erosion rate, as well as its contribution to the exosphere as well as estimates of hydrogen and water contents. Since the typical range of solar-wind ions at 1 keV/amu is comparable to the thickness of the amorphous rim found on lunar soil grains, i.e. few 10s nm, lunar simulant samples JSC-1A AGGL are specifically enhanced to have such rims in addition to the other known characteristics of the actual lunar soil particles. However, most, if not all laboratory studies of potential sputtering were carried out in single crystal targets, quite different from the rim s amorphous structure. The effect of this structural difference on the extent of potential sputtering has not, to our knowledge, been investigated to date.

  20. Solar Wind Access to Lunar Polar Craters: Feedback Between Surface Charging and Plasma Expansion

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Jackson, T. L.

    2011-01-01

    Determining the plasma environment within permanently shadowed lunar craters is critical to understanding local processes such as surface charging, electrostatic dust transport, volatile sequestration, and space weathering. In order to investigate the nature of this plasma environment, the first two-dimensional kinetic simulations of solar wind expansion into a lunar crater with a self-consistent plasma-surface interaction have been undertaken. The present results reveal how the plasma expansion into a crater couples with the electrically-charged lunar surface to produce a quasi-steady wake structure. In particular, there is a negative feedback between surface charging and ambipolar wake potential that allows an equilibrium to be achieved, with secondary electron emission strongly moderating the process. A range of secondary electron yields is explored, and two distinct limits are highlighted in which either surface charging or ambipoiar expansion is responsible for determining the overall wake structure.

  1. Solar Wind Access to Lunar Polar Craters: Feedback Between Surface Charging and Plasma Expansion

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Jackson, T. L.

    2011-01-01

    Determining the plasma environment within permanently shadowed lunar craters is critical to understanding local processes such as surface charging, electrostatic dust transport, volatile sequestration, and space weathering. In order to investigate the nature of this plasma environment, the first two-dimensional kinetic simulations of solar wind expansion into a lunar crater with a self-consistent plasma-surface interaction have been undertaken. The present results reveal how the plasma expansion into a crater couples with the electrically-charged lunar surface to produce a quasi-steady wake structure. In particular, there is a negative feedback between surface charging and ambipolar wake potential that allows an equilibrium to be achieved, with secondary electron emission strongly moderating the process. A range of secondary electron yields is explored, and two distinct limits are highlighted in which either surface charging or ambipoiar expansion is responsible for determining the overall wake structure.

  2. Effects of slightly rough surfaces on the brightness temperature of the lunar regolith

    NASA Astrophysics Data System (ADS)

    Chen, Ping; Huang, Ping; He, Yanchun; Wang, Congcong; Li, Qingxia; Gui, Liangqi; Huang, Quanliang; Lang, Liang; Zheng, Yongchun; Li, Xiongyao; Hua, Lei

    2013-05-01

    Keihm [1984] made a study on the effects of the rough lunar surface on microwave brightness temperature using geometric optics (GO), which is valid only when the microwave wavelength is much smaller than the radius of curvature of the rough surface. This approach is deficient because it has no explicit wavelength dependence. The Chang'E-1 Lunar Orbiter carried out lunar microwave remote sensing of maria where the surface can be regarded as "slightly" rough, and this has motivated our study. We model the mare regolith as a multilayer planar layered media with a slightly rough top surface, and the temperature profile is retrieved by solving the heat conduction equation. The noncoherent method is utilized to calculate the emission of the multilayer media. To calculate the effect of the rough top surface on brightness temperatures, we use the bistatic transmission coefficients by applying the second-order small perturbation method. Using this model, the microwave brightness temperatures of the Apollo 12 area under different roughness conditions are calculated. It is shown that a slightly rough surface will increase or decrease the microwave radiative brightness temperature of the lunar regolith and that the change is related to the roughness, incidence angle, frequency, and polarization. In the case of measurements made by the Chang'E-1 microwave radiometer, where the incidence angle is 0°, the small-scale roughness will increase the brightness temperature of the lunar regolith.

  3. The Use of Solar Heating and Heat Cured Polymers for Lunar Surface Stabilization

    NASA Technical Reports Server (NTRS)

    Hintze, Paul; Curran, Jerry; Back, Reddy

    2008-01-01

    Dust ejecta can affect visibility during a lunar landing, erode nearby coated surfaces and get into mechanical assemblies of in-place infrastructure. Regolith erosion was observed at many of the Apollo landing sites. This problem needs to be addressed at the beginning of the lunar base missions, as the amount of infrastructure susceptible to problems will increase with each landing. Protecting infrastructure from dust and debris is a crucial step in its long term functionality. A proposed way to mitigate these hazards is to build a lunar launch pad. Other areas of a lunar habitat will also need surface stabilization methods to help mitigate dust hazards. Roads would prevent dust from being lifted during movement and dust free zones might be required for certain areas critical to crew safety or to critical science missions. Work at NASA Kennedy Space Center (KSC) is investigating methods of stabilizing the lunar regolith including: sintering the regolith into a solid and using heat or UV cured polymers to stabilize the surface. Sintering, a method in which powders are heated until fusing into solids, has been proposed as one way of building a Lunar launch/landing pad. A solar concentrator has been built and used in the field to sinter JSC-1 Lunar stimulant. Polymer palliatives are used by the military to build helicopter landing pads and roads in dusty and sandy areas. Those polymers are dispersed in a solvent (water), making them unsuitable for lunar use. Commercially available, solvent free, polymer powders are being investigated to determine their viability to work in the same way as the solvent borne terrestrial analog. This presentation will describe the ongoing work at KSC in this field. Results from field testing will be presented. Physical testing results, including compression and abrasion, of field and laboratory prepared samples will be presented.

  4. Remote sensing of the lunar surface using low energy ions from the Moon

    NASA Astrophysics Data System (ADS)

    Saito, Yoshifumi; Yokota, Shoichiro; Nishino, Masaki N.; Uemura, Kota; Kawamura, Mariko; Tsunakawa, Hideo

    2013-04-01

    Interaction between the solar wind and a solar system object varies largely according to the object's properties, such as the existence of a global intrinsic magnetic field and/or thick atmosphere. It is well known that the Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth's case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. In the Earth's magnetosphere, where the Moon stays for 3 ~ 4 days every month, hot plasma-sheet plasmas in the Earth's magnetosphere (instead of the solar wind) can impact the lunar surface. On the other hand, the ions generated or reflected / scattered at the lunar surface are accelerated by the solar wind / magnetotail convection electric field and are detected by ion detectors on the spacecraft orbiting around the Moon. Since these ions have information about the lunar surface structure / composition, they can be used for remote sensing of the lunar surface. Solar wind protons reflected / backscattered at the lunar surface is one of the ion populations observed on the dayside of the Moon. The solar wind protons that impact the lunar surface are mostly scattered backward inside a scattering cone with ± 40deg. whose center axis is opposite to the incidence direction of the solar wind. It is also found that the energy decrease of the backscattered solar wind is most significant along the axis of the scattering cone. In order to investigate the global distribution of the backscattered solar wind protons, we have made a backscattered proton intensity map. Since the magnetic anomalies magnetically reflect the incident solar wind ions, we have made the backscattered proton intensity map by masking the major magnetic anomalies on the lunar surface. The backscattered proton intensity map shows that the relatively intense backscattering was observed on the lunar maria regions. It indicates that the

  5. Plasma wake simulations and object charging in a shadowed lunar crater during a solar storm

    NASA Astrophysics Data System (ADS)

    Zimmerman, M. I.; Jackson, T. L.; Farrell, W. M.; Stubbs, T. J.

    2012-08-01

    Within a permanently shadowed lunar crater the horizontal flow of solar wind is obstructed by upstream topography, forming a plasma wake that electrostatically diverts ions toward the crater floor and generates a surface potential that can reach kilovolts. In the present work kinetic plasma simulations are employed to investigate the morphology of a lunar crater wake during passage of a solar storm. Results are cast in terms of leading dimensionless ratios including the ion Mach number, ratio of crater depth to plasma Debye length, peak secondary electron yield, and electron temperature versus electron impact energy at peak secondary yield. This small set of ratios allows generalization to a much wider range of scenarios. The kinetic simulation results are fed forward into an equivalent-circuit model of a roving astronaut. In very low-plasma-current environments triboelectric charging of the astronaut suit becomes effectively perpetual, representing a critical engineering concern for roving within shadowed lunar regions. Finally, simulated ion fluxes are used to explore sputtering and implantation processes within an idealized crater. It is suggested that the physics of plasma miniwakes formed in the vicinity of permanently shadowed topography may play a critical role in modulating the enigmatic spatial distribution of volatiles at the lunar poles.

  6. Plasma Wake Simulations and Object Charging in a Shadowed Lunar Crater During a Solar Storm

    NASA Technical Reports Server (NTRS)

    Zimmerman, Michael I.; Jackson, T. L.; Farrell, W. W.; Stubbs, T. J.

    2012-01-01

    Within a permanently shadowed lunar crater the horizontal flow of solar wind is obstructed by upstream topography, forming a plasma wake that electrostatically diverts ions toward the crater floor and generates a surface potential that can reach kilovolts. In the present work kinetic plasma simulations are employed to investigate the morphology of a lunar crater wake during passage of a solar storm. Results are cast in terms of leading dimensionless ratios including the ion Mach number, ratio of crater depth to plasma Debye length, peak secondary electron yield, and electron temperature vs. electron impact energy at peak secondary yield. This small set of ratios allows generalization to a much wider range of scenarios. The kinetic simulation results are fed forward into an equivalent-circuit model of a roving astronaut. In very low-plasma-current environments triboelectric charging of the astronaut suit becomes effectively perpetual, representing a critical engineering concern for roving within shadowed lunar regions. Finally, simulated ion fluxes are used to explore sputtering and implantation processes within an idealized crater. It is suggested that the physics of plasma mini-wakes formed in the vicinity of permanently shadowed topography may play a critical role in modulating the enigmatic spatial distribution of volatiles at the lunar poles.

  7. Apollo 12 Mission image - View of part of the deployed Apollo Lunar Surface Experiment Package (ALSEP)

    NASA Image and Video Library

    1969-11-19

    AS12-47-6918 (19 Nov. 1969) --- Astronaut Alan L. Bean, lunar module pilot, took this photograph of three of the components of the Apollo Lunar Surface Experiments Package (ALSEP) which was deployed on the moon during the first Apollo 12 extravehicular activity (EVA). The Passive Seismic Experiment (PSE) is in the center foreground. The largest object is the Central Station; and the white object on legs is the Suprathermal Ion Detector Experiment (SIDE). A portion of the shadow of astronaut Charles Conrad Jr., commander, can be seen at the left center edge of the picture. Astronaut Richard F. Gordon Jr., command module pilot, remained with the Apollo 12 Command and Service Modules (CSM) in lunar orbit while Conrad and Bean descended in the Lunar Module (LM) to explore the moon.

  8. Enlarged view of hypervelocity impact of lunar surface material

    NASA Image and Video Library

    1970-01-06

    S70-20417 (December 1969) --- Enlarged view shows hypervelocity impact of cosmic dust on broken glass particles, taken during the examination of Apollo 11 lunar material by Dr. G. J. Wasserberg, J. DeVaney and K. Evans at California Institute of Technology. The photograph is enlarged 4,850 times actual size.

  9. Enlarged view of hypervelocity impact of lunar surface material

    NASA Image and Video Library

    1970-01-06

    S70-20418 (December 1969) --- Enlarged view shows cosmic dust on broken glass particles, photographed by Dr. G. J. Wasserberg, J. DeVaney and K. Evans at California Institute of Technology during examination of the Apollo 11 lunar material. The photograph was enlarged to 1,700 time its actual size.

  10. Lunar Meteorites and Implications for Compositional Remote Sensing of the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Korotev, R. L.

    1999-01-01

    Lunar meteorites (LMs) are rocks found on Earth that were ejected from the Moon by impact of an asteroidal meteoroid. Three factors make the LMs important to remote-sensing studies: (1) Most are breccias composed of regolith or fragmental material; (2) all are rocks that resided (or breccias composed of material that resided) in the upper few meters of the Moon prior to launch and (3) most apparently come from areas distant from the Apollo sites. How Many Lunar Locations? At this writing (June 1999), there are 18 known lunar meteorite specimens. When unambiguous cases of terrestrial pairing are considered, the number of actual LMs reduces to 13. (Terrestrial pairing is when a single piece of lunar rock entered Earth's atmosphere, but multiple fragments were produced because the meteoroid broke apart on entry, upon hitting the ground or ice, or while being transported through the ice.) We have no reason to believe that LMs preferentially derive from any specific region(s) of the Moon; i.e., we believe that they are samples from random locations. However, we do not know how many different locations are represented by the LMs; mathematically, it could be as few as 1 or as many as 13. The actual maximum is < 13 because in some cases a single impact appears to have yielded more than one LM. Yamato 793169 and Asuka 881757 are considered "source-crater paired" or "launch paired" because they are compositionally and petrographically similar to each other and distinct from the others, and both have similar cosmic-ray exposure (CRE) histories. The same can be said of QUE 94281 and Y 793274. Thus the 13 meteorites probably represent a maximum of 11 locations on the Moon. The minimum number of likely source craters is debated and in flux as new data for different isotopic systems are obtained. Conservatively, considering CRE data only, a minimum of about 5 impacts is required. Compositional and petrographic data offer only probabilistic constraints. An extreme, but not

  11. In situ reworking /gardening/ of the lunar surface - Evidence from the Apollo cores

    NASA Technical Reports Server (NTRS)

    Morris, R. V.

    1978-01-01

    The in situ reworking (gardening) of the lunar surface by impacting projectiles creates an in situ reworking zone extending horizontally over the entire regolith surface and extending vertically from the surface to a depth which varies from place-to-place on the moon. On the basis of available evidence, the 'high-maturity' zones observed at the top of the lunar cores have resulted from the in situ reworking of the present-day lunar surface. The temporal variation of the in situ reworking depth was investigated using depths inferred from maturity I sub s/FeO and Al-26 profiles of Apollo cores. The observed temporal variation of the in situ reworking depth in units of centimeters is equal to 2.2 times the time (in units of million years) to the 0.45th power.

  12. PDS Lunar Data Node Restoration of Apollo In-Situ Surface Data

    NASA Technical Reports Server (NTRS)

    Williams, David R.; Hills, H. Kent; Guinness, Edward A.; Lowman, Paul D.; Taylor, Patrick T.

    2010-01-01

    The Apollo missions between 1969 and 1972 deployed scientific instruments on the Moon's surface which made in-situ measurements of the lunar environment. Apollo II had the short-term Early Apollo Surface Experiments Package (EASEP) and Apollos 12, 14, 15, 16, and 17 each set up an Apollo Lunar Surface Experiments Package (ALSEP). Each ALSEP package contained a different suite of instruments which took measurements and radioed the results back to Earth over periods from 5 to 7 years until they were turned off on 30 September 1977. To this day the ALSEP data remain the only long-term in-situ information on the Moon's surface environment. The Lunar Data Node (LDN) has been formed under the auspices of the Planetary Data System (PDS) Geosciences Node to put relevant, scientifically important Apollo data into accessible digital form for use by researchers and mission planners. We will report on progress made since last year and plans for future data restorations.

  13. Autonomous Surface Sample Acquisition for Planetary and Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Barnes, D. P.

    2007-08-01

    Surface science sample acquisition is a critical activity within any planetary and lunar exploration mission, and our research is focused upon the design, implementation, experimentation and demonstration of an onboard autonomous surface sample acquisition capability for a rover equipped with a robotic arm upon which are mounted appropriate science instruments. Images captured by a rover stereo camera system can be processed using shape from stereo methods and a digital elevation model (DEM) generated. We have developed a terrain feature identification algorithm that can determine autonomously from DEM data suitable regions for instrument placement and/or surface sample acquisition. Once identified, surface normal data can be generated autonomously which are then used to calculate an arm trajectory for instrument placement and sample acquisition. Once an instrument placement and sample acquisition trajectory has been calculated, a collision detection algorithm is required to ensure the safe operation of the arm during sample acquisition.We have developed a novel adaptive 'bounding spheres' approach to this problem. Once potential science targets have been identified, and these are within the reach of the arm and will not cause any undesired collision, then the 'cost' of executing the sample acquisition activity is required. Such information which includes power expenditure and duration can be used to select the 'best' target from a set of potential targets. We have developed a science sample acquisition resource requirements calculation that utilises differential inverse kinematics methods to yield a high fidelity result, thus improving upon simple 1st order approximations. To test our algorithms a new Planetary Analogue Terrain (PAT) Laboratory has been created that has a terrain region composed of Mars Soil Simulant-D from DLR Germany, and rocks that have been fully characterised in the laboratory. These have been donated by the UK Planetary Analogue Field Study

  14. Joint Workshop on New Technologies for Lunar Resource Assessment

    NASA Technical Reports Server (NTRS)

    Elphic, Rick C. (Editor); Mckay, David S. (Editor)

    1992-01-01

    The workshop included talks on NASA's and DOE's role in Space Exploration Initiative, lunar geology, lunar resources, the strategy for the first lunar outpost, and an industry perspective on lunar resources. The sessions focused on four major aspects of lunar resource assessment: (1) Earth-based remote sensing of the Moon; (2) lunar orbital remote sensing; (3) lunar lander and roving investigations; and (4) geophysical and engineering consideration. The workshop ended with a spirited discussion of a number of issues related to resource assessment.

  15. A Kalman Approach to Lunar Surface Navigation using Radiometric and Inertial Measurements

    NASA Technical Reports Server (NTRS)

    Chelmins, David T.; Welch, Bryan W.; Sands, O. Scott; Nguyen, Binh V.

    2009-01-01

    Future lunar missions supporting the NASA Vision for Space Exploration will rely on a surface navigation system to determine astronaut position, guide exploration, and return safely to the lunar habitat. In this report, we investigate one potential architecture for surface navigation, using an extended Kalman filter to integrate radiometric and inertial measurements. We present a possible infrastructure to support this technique, and we examine an approach to simulating navigational accuracy based on several different system configurations. The results show that position error can be reduced to 1 m after 5 min of processing, given two satellites, one surface communication terminal, and knowledge of the starting position to within 100 m.

  16. Science Operations on the Lunar Surface - Understanding the Past, Testing in the Present, Considering the Future

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    2013-01-01

    The scientific success of any future human lunar exploration mission will be strongly dependent on design of both the systems and operations practices that underpin crew operations on the lunar surface. Inept surface mission preparation and design will either ensure poor science return, or will make achieving quality science operation unacceptably difficult for the crew and the mission operations and science teams. In particular, ensuring a robust system for managing real-time science information flow during surface operations, and ensuring the crews receive extensive field training in geological sciences, are as critical to mission success as reliable spacecraft and a competent operations team.

  17. A Conceptual Study for the Autonomous Direct Forming of Lunar Regolith into Flexlock (Trademark) Geomats for Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Robertson, Luke B.; Hintze, Paul; OConnor, Gregory W.

    2009-01-01

    We describe the conceptual method of an autonomously operable Direct Forming machine that would consume regolith or regolith slag to mold intimately, interlinked elements in a continuous process. The resulting product, one to three meter wide geomats, would be deployed over commonly traversed areas to isolate the astronauts and equipment from underlying dust. The porous geotextile would provide areas for dust settling, thereby mitigating dust impingement on astronaut suits or surface structures. Because of their self-supporting yet flexible structure, these geomats could be assembled into shields and buttresses to protect lunar habitants from radiation, forming a "flexoskeleton" from in situ materials.

  18. Effect of Space Radiation Processing on Lunar Soil Surface Chemistry: X-Ray Photoelectron Spectroscopy Studies

    NASA Technical Reports Server (NTRS)

    Dukes, C.; Loeffler, M.J.; Baragiola, R.; Christoffersen, R.; Keller, J.

    2009-01-01

    Current understanding of the chemistry and microstructure of the surfaces of lunar soil grains is dominated by a reference frame derived mainly from electron microscopy observations [e.g. 1,2]. These studies have shown that the outermost 10-100 nm of grain surfaces in mature lunar soil finest fractions have been modified by the combined effects of solar wind exposure, surface deposition of vapors and accretion of impact melt products [1,2]. These processes produce surface-correlated nanophase Feo, host grain amorphization, formation of surface patinas and other complex changes [1,2]. What is less well understood is how these changes are reflected directly at the surface, defined as the outermost 1-5 atomic monolayers, a region not easily chemically characterized by TEM. We are currently employing X-ray Photoelectron Spectroscopy (XPS) to study the surface chemistry of lunar soil samples that have been previously studied by TEM. This work includes modification of the grain surfaces by in situ irradiation with ions at solar wind energies to better understand how irradiated surfaces in lunar grains change their chemistry once exposed to ambient conditions on earth.

  19. Astronaut Charles Conrad uses lunar equipment conveyer at Lunar Module

    NASA Image and Video Library

    1969-11-19

    Astronaut Charles Conrad Jr., commander, uses the lunar equipment conveyer (LEC) at the Lunar Module during the Apollo 12 extravehicular activity on the lunar surface. This photograph was taken by Astronaut Alan L. Bean, lunar module pilot.

  20. Plume Impingement to the Lunar Surface: A Challenging Problem for DSMC

    NASA Technical Reports Server (NTRS)

    Lumpkin, Forrest; Marichalar, Jermiah; Piplica, Anthony

    2007-01-01

    The President's Vision for Space Exploration calls for the return of human exploration of the Moon. The plans are ambitious and call for the creation of a lunar outpost. Lunar Landers will therefore be required to land near predeployed hardware, and the dust storm created by the Lunar Lander's plume impingement to the lunar surface presents a hazard. Knowledge of the number density, size distribution, and velocity of the grains in the dust cloud entrained into the flow is needing to develop mitigation strategies. An initial step to acquire such knowledge is simulating the associated plume impingement flow field. The following paper presents results from a loosely coupled continuum flow solver/Direct Simulation Monte Carlo (DSMC) technique for simulating the plume impingement of the Apollo Lunar module on the lunar surface. These cases were chosen for initial study to allow for comparison with available Apollo video. The relatively high engine thrust and the desire to simulate interesting cases near touchdown result in flow that is nearly entirely continuum. The DSMC region of the flow field was simulated using NASA's DSMC Analysis Code (DAC) and must begin upstream of the impingement shock for the loosely coupled technique to succeed. It was therefore impossible to achieve mean free path resolution with a reasonable number of molecules (say 100 million) as is shown. In order to mitigate accuracy and performance issues when using such large cells, advanced techniques such as collision limiting and nearest neighbor collisions were employed. The final paper will assess the benefits and shortcomings of such techniques. In addition, the effects of plume orientation, plume altitude, and lunar topography, such as craters, on the flow field, the surface pressure distribution, and the surface shear stress distribution are presented.