Sample records for lunar surface samples

  1. Research on lunar and planet development and utilization

    NASA Astrophysics Data System (ADS)

    Iwata, Tsutomu; Etou, Takao; Imai, Ryouichi; Oota, Kazuo; Kaneko, Yutaka; Maeda, Toshihide; Takano, Yutaka

    1992-08-01

    Status of the study on unmanned and manned lunar missions, unmanned Mars missions, lunar resource development and utilization missions, remote sensing exploration missions, survey and review to elucidate the problems of research and development for lunar resource development and utilization, and the techniques and equipment for lunar and planet exploration are presented. Following items were studied respectively: (1) spacecraft systems for unmanned lunar missions, such as lunar observation satellites, lunar landing vehicles, lunar surface rovers, lunar surface hoppers, and lunar sample retrieval; (2) spacecraft systems for manned lunar missions, such as manned lunar bases, lunar surface operation robots, lunar surface experiment systems, manned lunar take-off and landing vehicles, and lunar freight transportation ships; (3) spacecraft systems for Mars missions, such as Mars satellites, Phobos and Deimos sample retrieval vehicles, Mars landing explorers, Mars rovers, Mars sample retrieval; (4) lunar resource development and utilization; and (5) remote sensing exploration technologies.

  2. Documentation of Apollo 15 samples

    NASA Technical Reports Server (NTRS)

    Sutton, R. L.; Hait, M. H.; Larson, K. B.; Swann, G. A.; Reed, V. S.; Schaber, G. G.

    1972-01-01

    A catalog is presented of the documentation of Apollo 15 samples using photographs and verbal descriptions returned from the lunar surface. Almost all of the Apollo 15 samples were correlated with lunar surface photographs, descriptions, and traverse locations. Where possible, the lunar orientations of rock samples were reconstructed in the lunar receiving laboratory, using a collimated light source to reproduce illumination and shadow characteristics of the same samples shown in lunar photographs. In several cases, samples were not recognized in lunar surface photographs, and their approximate locations are known only by association with numbered sample bags used during their collection. Tables, photographs, and maps included in this report are designed to aid in the understanding of the lunar setting of the Apollo 15 samples.

  3. Lower-Cost, Relocatable Lunar Polar Lander and Lunar Surface Sample Return Probes

    NASA Technical Reports Server (NTRS)

    Amato, G. Michael; Garvin, James B.; Burt, I. Joseph; Karpati, Gabe

    2011-01-01

    Key science and exploration objectives of lunar robotic precursor missions can be achieved with the Lunar Explorer (LEx) low-cost, robotic surface mission concept described herein. Selected elements of the LEx concept can also be used to create a lunar surface sample return mission that we have called Boomerang

  4. Apollo Missions to the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Graff, Paige V.

    2018-01-01

    Six Apollo missions to the Moon, from 1969-1972, enabled astronauts to collect and bring lunar rocks and materials from the lunar surface to Earth. Apollo lunar samples are curated by NASA Astromaterials at the NASA Johnson Space Center in Houston, TX. Samples continue to be studied and provide clues about our early Solar System. Learn more and view collected samples at: https://curator.jsc.nasa.gov/lunar.

  5. Age of Lunar Meteorite LAP02205 and Implications for Impact-Sampling of Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Reese, Y.; Bogard, D. D.

    2005-01-01

    We have measured the age of lunar meteorite LAP02205 by the Rb-Sr and Ar-Ar methods. Sm-Nd analyses are in progress. The Rb-Sr and Ar-Ar ages indicate a crystallization age of approx. 3 Ga. Comparing the ages of LAP02205 and other lunar mare basaltic meteorites to mare surface ages based on the density of impact craters shows no significant bias in impact- sampling of lunar mare surfaces. Comparing the isotopic and geochemical data for LAP02205 to those for other lunar mare basalts suggests that it is a younger variant of the type of volcanism that produced the Apollo 12 basalts. Representative impact-sampling of the lunar surface

  6. Hydrogen and fluorine in the surfaces of lunar samples

    NASA Technical Reports Server (NTRS)

    Leich, D. A.; Goldberg, R. H.; Burnett, D. S.; Tombrello, T. A.

    1974-01-01

    The resonant nuclear reaction F-19 (p, alpha gamma)0-16 has been used to perform depth sensitive analyses for both fluorine and hydrogen in lunar samples. The resonance at 0.83 MeV (center-of-mass) in this reaction has been applied to the measurement of the distribution of trapped solar protons in lunar samples to depths of about 1/2 micrometer. These results are interpreted in terms of terrestrial H2O surface contamination and a redistribution of the implanted solar H which has been influenced by heavy radiation damage in the surface region. Results are also presented for an experiment to test the penetration of H2O into laboratory glass samples which have been irradiated with 0-16 to simulate the radiation damaged surfaces of lunar glasses. Fluorine determinations have been performed in a 1 pm surface layer on lunar samples using the same F-19 alpha gamma)0-16 resonance. The data are discussed from the standpoint of lunar fluorine and Teflon contamination.

  7. Preliminary catalog of pictures taken on the lunar surface during the Apollo 16 mission

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Carson, K. B.; Reed, V. S.; Tyner, R. L.

    1972-01-01

    A catalog of all pictures taken from the lunar module or the lunar surface during the Apollo 16 lunar stay is presented. The tabulations are arranged for the following specific uses: (1) given the number of a particular frame, find its location in the sequence of lunar surface activity, the station from which it was taken and the subject matter of the picture; (2) given a particular location or activity within the sequence of lunar surface activity, find the pictures taken at that time and their subject matter; and (3) given a sample number from the voice transcript listed, find the designation assigned to the same sample by the lunar receiving laboratory.

  8. Magnetic hysteresis classification of the lunar surface and the interpretation of permanent remanence in lunar surface samples

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1972-01-01

    A magnetic hysteresis classification of the lunar surface is presented. It was found that there is a distinct correlation between natural remanence (NRM), saturation magnetization, and the hysteresis ratios for the rock samples. The hysteresis classification is able to explain some aspects of time dependent magnetization in the lunar samples and relates the initial susceptibility to NRM, viscous remanence, and to other aspects of magnetization in lunar samples. It is also considered that since up to 60% of the iron in the lunar soil may be super paramagnetic at 400 K, and only 10% at 100 K, the 50% which becomes ferromagnetic over the cycle has the characteristics of thermoremanence and may provide for an enhancement in measurable field on the dark side during a subsatellite magnetometer circuit.

  9. LUNAR SAMPLES - APOLLO 11

    NASA Image and Video Library

    1969-08-03

    S69-40749 (July 1969) --- Dr. Grant Heikan, MSC and a Lunar Sample Preliminary Examination Team member, examines lunar material in a sieve from the bulk sample container which was opened in the Biopreparation Laboratory of the Lunar Receiving Laboratory. The samples were collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity on July 20, 1969.

  10. Microbiological and experimental-histological investigations of lunar samples returned by the Lunar 16 automatic station

    NASA Technical Reports Server (NTRS)

    Kaulen, D. R.; Bulatova, T. I.; Fridenshteyn, A. Y.; Skvortsova, Y. B.

    1974-01-01

    Lunar surface material was studied for its content of viable microorganisms (aerobic and anaerobic, fungi, and viruses); the effect of the lunar surface material on the growth of microorganisms and its interaction with somatic cells of mammals was also observed. No viable microorganisms were detected; the samples exhibited neither stimulant or inhibitory action on the growth of microorganisms, and also showed no cytopathogenic action on tissue cultures. A suspension of lunar surface material particles was not toxic when parenterally administered to certain laboratory animals. The particles were subjected to intense phagocytosis by connective tissue cells in vivo and in vitro.

  11. The search for the cause of the low albedo of the moon

    NASA Technical Reports Server (NTRS)

    Gold, T.; Bilson, E.; Baron, R. L.

    1975-01-01

    Experimentation concerning lunar weathering and its effect on the albedo of the surface cover consisted of: (1) determination of the surface chemical composition of lunar soil and ground-up rock samples by Auger electron spectroscopy, (2) measurement of the optical albedo of these samples, and (3) proton or alpha-particle irradiation of terrestrial rock chips and rock powders and of ground-up lunar rock samples in order to determine the optical and surface chemical effect of simulated solar wind.

  12. Lunar Surface Gravimeter Experiment. [characteristics of test equipment installed on lunar surface during Apollo 17 flight

    NASA Technical Reports Server (NTRS)

    Giganti, J. J.; Larson, J. V.; Richard, J. P.; Weber, J.

    1973-01-01

    The lunar surface gravimeter which was emplaced on the moon by the Apollo 17 flight is described and a schematic diagram of the sensor is provided. The objective of the lunar surface gravimeter is to use the moon as an instrumented antenna to detect gravitational waves. Another objective is to measure tidal deformation of the moon. Samples of signals received during lunar sunrise activity and during quiet periods are presented in graph form based on power spectrum analysis

  13. Lunar sample analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1978-01-01

    Flameless atomic abosrption, X-ray photoemission spectroscopy, ferromagnetic resonance, scanning electron microscopy, and Moessbauer spectroscopy were used to investigate the evolution of the lunar regolith, the transport of volatile trace metals, and the surface composition of lunar samples. The development of a model for lunar volcanic eruptions is also discussed.

  14. Space Weathering of Lunar Rocks

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2012-01-01

    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  15. Apollo scientific experiments data handbook

    NASA Technical Reports Server (NTRS)

    Eichelman, W. F. (Editor); Lauderdale, W. W. (Editor)

    1974-01-01

    A brief description of each of the Apollo scientific experiments was described, together with its operational history, the data content and formats, and the availability of the data. The lunar surface experiments described are the passive seismic, active seismic, lunar surface magnetometer, solar wind spectrometer, suprathermal ion detector, heat flow, charged particle, cold cathode gage, lunar geology, laser ranging retroreflector, cosmic ray detector, lunar portable magnetometer, traverse gravimeter, soil mechanics, far UV camera (lunar surface), lunar ejecta and meteorites, surface electrical properties, lunar atmospheric composition, lunar surface gravimeter, lunar seismic profiling, neutron flux, and dust detector. The orbital experiments described are the gamma-ray spectrometer, X-ray fluorescence, alpha-particle spectrometer, S-band transponder, mass spectrometer, far UV spectrometer, bistatic radar, IR scanning radiometer, particle shadows, magnetometer, lunar sounder, and laser altimeter. A brief listing of the mapping products available and information on the sample program were also included.

  16. Lunar map showing traverse plans for Apollo 14 lunar landing mission

    NASA Image and Video Library

    1970-09-01

    This lunar map shows the traverse plans for the Apollo 14 lunar landing mission. Areas marked include Lunar module landing site, areas for the Apollo Lunar Surface Experiment Package (ALSEP) and areas for gathering of core samples.

  17. Development of lunar drill to take core samples to 100-foot depths

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Lunar drill takes lunar surface cores to depths of 100 feet and is being developed to the samples at greater depths. The wireline drill system has been adapted to operate in the lunar environment by providing a sealed dc motor and solid metallic base lubricants.

  18. Radioactivites in returned lunar materials and in meteorites

    NASA Technical Reports Server (NTRS)

    Fireman, E. L.

    1983-01-01

    The cosmic-ray, solar-flare, and solar-wind bombardments of lunar rocks and soils and meteorites were studied by measurements of tritium, carbon-14 and argon radioactivity. The radioactivity integrates the bombardment for a time period equal to several half-lines. H-3, Ar-37, Ar-39, C-14. For the interior samples of lunar rocks and for deep lunar soil samples, the amounts of the radioactivities were equal to those calculated for galactic cosmic-ray interactions. The top near-surface samples of lunar rocks and the shallow lunar soil samples show excess amounts of the radioactivities attributable to solar flares. Lunar soil fines contain a large amount of hydrogen due to implanted solar wind. Studies of the H-3 in lunar soils and in recovered Surveyor-3 materials gave an upper limit for the H-3/H ratio in the solar wind of 10 to the -11th power. Solar wind carbon is also implanted on lunar soil fines. Lunar soils collected on the surface contained a 0.14 component attributable to implanted solar wind C-14. The C-14/H ratio attributed to the solar wind from this C-14 excess is approximately 4 x 10 to the -11th power.

  19. Lunar Science Conference, 6th, Houston, Tex., March 17-21, 1975, Proceedings. Volume 3 - Physical studies

    NASA Technical Reports Server (NTRS)

    Merrill, R. B.

    1975-01-01

    Recent investigations of the moon are reported. Topics discussed include the Apollo 17 site, selenography, craters, remote sensing, selenophysics, lunar surface fields and particles, magnetic properties of lunar samples, physical property measurements, surface-correlated properties, micrometeoroids, solar-system regoliths, and cosmic rays. Lunar orbital data maps are presented, and the evolution of lunar features is examined.

  20. A Sustainable Architecture for Lunar Resource Prospecting from an EML-based Exploration Platform

    NASA Astrophysics Data System (ADS)

    Klaus, K.; Post, K.; Lawrence, S. J.

    2012-12-01

    Introduction - We present a point of departure architecture for prospecting for Lunar Resources from an Exploration Platform at the Earth - Moon Lagrange points. Included in our study are launch vehicle, cis-lunar transportation architecture, habitat requirements and utilization, lander/rover concepts and sample return. Different transfer design techniques can be explored by mission designers, testing various propulsive systems, maneuvers, rendezvous, and other in-space and surface operations. Understanding the availability of high and low energy trajectory transfer options opens up the possibility of exploring the human and logistics support mission design space and deriving solutions never before contemplated. For sample return missions from the lunar surface, low-energy transfers could be utilized between EML platform and the surface as well as return of samples to EML-based spacecraft. Human Habitation at the Exploration Platform - Telerobotic and telepresence capabilities are considered by the agency to be "grand challenges" for space technology. While human visits to the lunar surface provide optimal opportunities for field geologic exploration, on-orbit telerobotics may provide attractive early opportunities for geologic exploration, resource prospecting, and other precursor activities in advance of human exploration campaigns and ISRU processing. The Exploration Platform provides a perfect port for a small lander which could be refueled and used for multiple missions including sample return. The EVA and robotic capabilities of the EML Exploration Platform allow the lander to be serviced both internally and externally, based on operational requirements. The placement of the platform at an EML point allows the lander to access any site on the lunar surface, thus providing the global lunar surface access that is commonly understood to be required in order to enable a robust lunar exploration program. Designing the sample return lander for low-energy trajectories would reduce the overall mass and potentially increase the sample return mass. The Initial Lunar Mission -Building upon Apollo sample investigations, the recent results of the LRO/LCROSS, international missions such as Chandrayaan-1, and legacy missions including Lunar Prospector, and Clementine, among the most important science and exploration goals is surface prospecting for lunar resources and to provide ground truth for orbital observations. Being able to constrain resource production potential will allow us to estimate the prospect for reducing the size of payloads launched from Earth required for Solar System exploration. Flight opportunities for something like the NASA RESOLVE instrument suite to areas of high science and exploration interest could be used to refine and improve future Exploration architectures, reducing the outlays required for cis-lunar operations. Summary - EML points are excellent for placement of a semi-permanent human-tended Exploration Platform both in the near term, while providing important infrastructure and deep-space experience that will be built upon to gradually increase long-term operational capabilities.

  1. Astronaut John Young photographed collecting lunar samples

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, is photographed collecting lunar samples near North Ray crater during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This picture was taken by Astronaut Charles M. Duke Jr., lunar module pilot. Young is using the lunar surface rake and a set of tongs. The Lunar Roving Vehicle is parked in the field of large boulders in the background.

  2. Lunar Science Enabled by the Deep Space Gateway and PHASR Rover

    NASA Astrophysics Data System (ADS)

    Bakambu, J. N.; Shaw, A.; Fulford, P.; Osinski, G.; Bourassa, M.; Rehmatullah, F.; Zanetti, M.; Rembala, R.

    2018-02-01

    The Deep Space Gateway will be a tremendous boon to lunar surface science. It will enable the PHASR Rover, a concept for a Canadian rover system, with international contributions and the goal of sample acquisition and lunar surface science.

  3. Organics in APOLLO Lunar Samples

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Allton, J. H.

    2007-01-01

    One of many unknowns prior to the Apollo landings concerned the possibility of life, its remains, or its organic precursors on the surface of the Moon. While the existence of lunar organisms was considered highly unlikely, a program of biological quarantine and testing for the astronauts, the Apollo Command Modules, and the lunar rock and soil samples, was instituted in the Lunar Receiving Laboratory (LRL). No conclusive evidence of lunar organisms, was detected and the quarantine program was ended after Apollo 14. Analyses for organic compounds were also con-ducted. Considerable effort was expended, during lunar surface operations and in the LRL, to minimize and quantify organic contamination. Post-Apollo curatorial operations and cleaning minimize contamination from particulates, oxygen, and water but no longer specifically address organic contamination. The organic compounds measured in Apollo samples are generally consistent with known sources of contamination.

  4. Lessons Learned from Lunar Exploration: The Moon Continues to Surprise Us

    NASA Astrophysics Data System (ADS)

    Pieters, C. M.

    2002-01-01

    This article addresses unexpected discoveries in recent lunar exploration, including the South Pole-Aitken Basin (SPA), a thorium 'hot spot' in the Imbrium Basin, hydrogen (possibly water ice) at the lunar poles, and the contrast between the appearance of lunar soil samples and remote imagery of the lunar surface. It also summarizes the history of manned and unmanned lunar exploration, from the Apollo program to Clementine and Lunar Prospector in the 1990s. A section at the end of the article addresses the importance of lunar samples.

  5. The Surface Chemical Composition of Lunar Samples and Its Significance for Optical Properties

    NASA Technical Reports Server (NTRS)

    Gold, T.; Bilson, E.; Baron, R. L.

    1976-01-01

    The surface iron, titanium, calcium, and silicon concentration in numerous lunar soil and rock samples was determined by Auger electron spectroscopy. All soil samples show a large increase in the iron to oxygen ratio compared with samples of pulverized rock or with results of the bulk chemical analysis. A solar wind simulation experiment using 2 keV energy alpha -particles showed that an ion dose corresponding to approximately 30,000 years of solar wind increased the iron concentration on the surface of the pulverized Apollo 14 rock sample 14310 to the concentration measured in the Apollo 14 soil sample 14163, and the albedo of the pulverized rock decreased from 0.36 to 0.07. The low albedo of the lunar soil is related to the iron + titanium concentration on its surface. A solar wind sputter reduction mechanism is discussed as a possible cause for both the surface chemical and optical properties of the soil.

  6. Preliminary description of Apollo 15 sample environments

    NASA Technical Reports Server (NTRS)

    Swann, G. A.; Hait, M. H.; Schaber, G. G.; Freeman, V. L.; Ulrich, G. E.; Wolfe, E. W.; Reed, V. S.; Sutton, R. L.

    1971-01-01

    Approximately 78 kg of lunar rock and soil samples were returned by Apollo 15. The rather complete documentation of the locations of nearly all of the samples allows for relating the samples to the specific and detailed geologic environments from which they were collected. This is especially important in an area as geologically complex as the Hadley-Apennine site. All of the material presented was derived from the pre-mission photogeologic maps, lunar surface television video tapes, air-to-ground transcript and crew debriefings, photographs taken on the lunar surface by the Apollo 15 crew, and information supplied by the Lunar Sample Preliminary Examination team from which the samples were categorized into groups consisting of, broadly, basalts and breccias. The breccias are considered loosely in terms of coherent breccias and soil breccias.

  7. Specific heats of lunar surface materials from 90 to 350 degrees Kelvin

    USGS Publications Warehouse

    Robie, R.A.; Hemingway, B.S.; Wilson, W.H.

    1970-01-01

    The specific heats of lunar samples 10057 and 10084 returned by the Apollo 11 mission have been measured between 90 and 350 degrees Kelvin by use of an adiabatic calorimeter. The samples are representative of type A vesicular basalt-like rocks and of finely divided lunar soil. The specific heat of these materials changes smoothly from about 0.06 calorie per gram per degree at 90 degrees Kelvin to about 0.2 calorie per gram per degree at 350 degrees Kelvin. The thermal parameter ??=(k??C)-1/2 for the lunar surface will accordingly vary by a factor of about 2 between lunar noon and midnight.

  8. A Dual Launch Robotic and Human Lunar Mission Architecture

    NASA Technical Reports Server (NTRS)

    Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David

    2010-01-01

    This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This paper describes a complete transportation architecture including the analysis of transportation element options and sensitivities including: transportation element mass to surface landed mass; lander propellant options; and mission crew size. Based on this analysis, initial design concepts for the launch vehicle, crew module and lunar lander are presented. The paper also describes how the dual launch lunar mission architecture would fit into a more general overarching human space exploration philosophy that would allow expanded application of mission transportation elements for missions beyond the Earth-moon realm.

  9. A New Model of Size-graded Soil Veneer on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Basu, Abhijit; McKay, David S.

    2005-01-01

    Introduction. We propose a new model of distribution of submillimeter sized lunar soil grains on the lunar surface. We propose that in the uppermost millimeter or two of the lunar surface, soil-grains are size graded with the finest nanoscale dust on top and larger micron-scale particles below. This standard state is perturbed by ejecta deposition of larger grains at the lunar surface, which have a coating of dusty layer that may not have substrates of intermediate sizes. Distribution of solar wind elements (SWE), agglutinates, vapor deposited nanophase Fe0 in size fractions of lunar soils and ir spectra of size fractions of lunar soils are compatible with this model. A direct test of this model requires bringing back glue-impregnated tubes of lunar soil samples to be dissected and examined on Earth.

  10. Investigating the Sources and Timing of Projectiles Striking the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Joy, K. H.; Kring, D. A.; Zolensky, M. E.; McKay, D. S.; Ross, D. K.

    2011-01-01

    The lunar surface is exposed to bombardment by asteroids, comets, and debris from them. Surviving fragments of those projectiles in the lunar regolith provide a direct measure of the sources of exogenous material delivered to the Moon. Con-straining the temporal flux of their delivery will directly address key questions about the bombardment history of the inner Solar System. Regolith breccias, which are consolidated samples of the lunar regolith, were closed to further impact processing at the time they were assembled into rocks [1]. They are, therefore, time capsules of impact bombardment at different times through lunar history. Here we investigate the impact archive preserved in the Apollo 16 regolith breccias and compare this record to evidence of projectile species in other lunar samples.

  11. Horizons and opportunities in lunar sample science

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Moon is the cornerstone of planetary science. Lunar sample studies were fundamental in developing an understanding of the early evolution and continued development of planetary bodies, and have led to major revisions in understanding of processes for the accumulation of planetesimals and the formation of planets. Studies of lunar samples have increased an understanding of impact cratering, meteoroid and micrometeoroid fluxes, the interaction of planetary surfaces with radiations and particles, and even the history of the Sun. The lunar sample research program was especially productive, but by no means have all the important answers been determined; continued study of lunar samples will further illuminate the shadows of our knowledge about the solar system. Further, the treasures returned through the Apollo program provide information that is required for a return to the Moon, beginning with new exploration (Lunar Geoscience Observer (LGO)), followed by intensive study (new sample return missions), and eventually culminating in a lunar base and lunar resource utilization.

  12. Apollo 14 Mission to Fra Mauro

    NASA Technical Reports Server (NTRS)

    Beasley, Brian D. (Editor)

    1991-01-01

    The 1971 Apollo 14 Mission to Fra Mauro, a lunar highland area, is highlighted in this video. The mission's primary goal was the collection of lunar rocks and soil samples and lunar exploration. The soil and rock sampling was for the geochronological determination of the Moon's evolution and its comparison with that of Earth. A remote data collection station was assembled on the Moon and left for continuous data collection and surface monitoring experiments. The Apollo 14 astronauts were Alan B. Shepard, Edgar D. Mitchell, and Stuart A. Rossa. Astronauts Shepard and Mitchell landed on the Moon (February 5, 1971) and performed the sampling, the EVA, and deployment of the lunar experiments. There is film-footage of the lunar surface, of the command module's approach to both the Moon and the Earth, Moon and Earth spacecraft launching and landing, in-orbit command- and lunar-module docking, and of Mission Control.

  13. Lunar soils grain size catalog

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    1993-01-01

    This catalog compiles every available grain size distribution for Apollo surface soils, trench samples, cores, and Luna 24 soils. Original laboratory data are tabled, and cumulative weight distribution curves and histograms are plotted. Standard statistical parameters are calculated using the method of moments. Photos and location comments describe the sample environment and geological setting. This catalog can help researchers describe the geotechnical conditions and site variability of the lunar surface essential to the design of a lunar base.

  14. Laboratory Studies of Alkali Components in Tenuous Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Yakshinskiy, B. V.

    2004-05-01

    We report on studies performed at the Laboratory for Surface Modification of Rutgers University and focused on the origin of alkali vapors (Na, K) in the tenuous atmospheres of the planet Mercury, the Moon, and Jupiter's icy satellite Europa [1, 2]; we also address the question why alkaline-earth metals (Mg, Ca) are less abundant in the atmospheres. A variety of ultrahigh-vacuum surface science techniques are used, including X-ray Photoelectron Spectroscopy (XPS), Low-Energy Ion Scattering (LEIS), Thermal Programmed Desorption (TPD), Electron- and Photon-Stimulated Desorption (ESD and PSD), Surface Ionization (SI). Measurements have been made on different samples, including the model mineral binary oxide SiO2 that simulates lunar silicates, and a lunar sample obtained from NASA. Desorption induced by electronic excitations (mainly PSD) rather than by thermal processes is found to be the dominant source process on the lunar surface. The flux at the lunar surface of ultraviolet photons from the Sun is adequate to insure that PSD of sodium contributes substantially to the Moon's atmosphere. A model based on irradiation-induced charge-transfer is proposed to explain the desorption process. There is a strong temperature-dependence of Na ESD and PSD signals from a lunar sample, under conditions where the Na surface coverage is constant and thermal desorption is negligible [3]. On Mercury solar heating of the surface is high enough that thermal desorption will also be a potential source of atmospheric sodium. Ion bombardment of the lunar sample causes both the sputtering of alkali atoms into vacuum and implantation into the sample bulk. In the future we outline the use a novel method, Nuclear Resonance Profiling (NRP) to study the diffusion of alkalis through model minerals, ices, and lunar samples; these measurements would provide additional information to understand the replenishment of Na at the surface of the Moon, Mercury and Europa. We also describe a new detector that we will use to search for desorption of alkaline-earth atoms. [1] T.E. Madey, R.E. Johnson, T.M. Orlando, Surf. Sci. 500 (2002) 838. [2] B.V. Yakshinskiy, T.E. Madey, Surf. Sci. 528 (2003) 54. [3] B.V. Yakshinskiy, T.E. Madey, Icarus 168 (2004) 53.

  15. Fluorescence-Based Sensor for Monitoring Activation of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Jeevarajan, Antony S.

    2012-01-01

    This sensor unit is designed to determine the level of activation of lunar dust or simulant particles using a fluorescent technique. Activation of the surface of a lunar soil sample (for instance, through grinding) should produce a freshly fractured surface. When these reactive surfaces interact with oxygen and water, they produce hydroxyl radicals. These radicals will react with a terephthalate diluted in the aqueous medium to form 2-hydroxyterephthalate. The fluorescence produced by 2-hydroxyterephthalate provides qualitative proof of the activation of the sample. Using a calibration curve produced by synthesized 2-hydroxyterephthalate, the amount of hydroxyl radicals produced as a function of sample concentration can also be determined.

  16. Rock-forming and rare elements in lunar surface material from the Sea of Tranquillity and the Ocean of Storms

    NASA Technical Reports Server (NTRS)

    Shevaleyevskiy, I. D.; Chupakhin, M. S.

    1974-01-01

    Methodological and analytical capabilities associated with spark mass spectrometry and X-ray spectroscopy are presented for the determination of the elemental composition of samples of lunar regolith returned to the earth by Apollo 11 and Apollo 12. Using X-ray spectroscopy, the main constituents of samples of lunar surface material were determined, and using mass spectrometry -- the main admixtures. The principal difference of Apollo 11 samples from Apollo 12 samples was found for elements contained in microconcentrations. This is especially true of rare earth elements.

  17. Estimation of lunar surface maturity and ferrous oxide from Moon Mineralogy Mapper (M3) data through data interpolation techniques

    NASA Astrophysics Data System (ADS)

    Ajith Kumar, P.; Kumar, Shashi

    2016-04-01

    Surface maturity estimation of the lunar regolith revealed selenological process behind the formation of lunar surface, which might be provided vital information regarding the geological evolution of earth, because lunar surface is being considered as 8-9 times older than as that of the earth. Spectral reflectances data from Moon mineralogy mapper (M3), the hyperspectral sensor of chandrayan-1 coupled with the standard weight percentages of FeO from lunar returned samples of Apollo and Luna landing sites, through data interpolation techniques to generate the weight percentage FeO map of the target lunar locations. With the interpolated data mineral maps were prepared and the results are analyzed.

  18. Comprehensive study of thermal properties of lunar core samples

    NASA Technical Reports Server (NTRS)

    Langseth, M. G.; Horath, K.

    1975-01-01

    The feasibility of a technique for measuring the thermal conductivity of lunar core samples was investigated. The thermal conduction equation for a composite cylinder was solved to obtain a mathematical expression for the surface temperature of the core tube filled with lunar material. The sample is heated by radiation from the outside at a known rate, the variation of the temperature at the surface of the core tube is measured, and the thermal conductivity determined by comparing the observed temperature with the theoretically expected one. The apparatus used in the experiment is described.

  19. Lunar interactions: Abstracts of papers presented at the Conference on Interactions of the Interplanetary Plasma with the Modern and Ancient Moon

    NASA Technical Reports Server (NTRS)

    Criswell, D. R. (Editor); Freeman, J. W. (Editor)

    1974-01-01

    Reviewed are the active mechanisms relating the moon to its environment and the linkage between these mechanisms and their records in the lunar sample and geophysical data. Topics: (1) large scale plasma interactions with the moon and non-magnetic planets; (2) ancient and present day lunar surface magnetic and electric fields; (3) dynamics and evolution of the lunar atmosphere; (4) evolution of the solar plasma; (5) lunar record of solar radiations; (6) non-meteoritic and meteoritic disturbance and transport of lunar surface materials; and (7) future lunar exploration.

  20. A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link

    NASA Technical Reports Server (NTRS)

    Wilson, K.; Biswas, A.; Schoolcraft, J.

    2011-01-01

    A lunar surface systems study explores the application of optical communications to support a high bandwidth data link from a lunar relay satellite and from fixed lunar assets. The results show that existing 1-m ground stations could provide more than 99% coverage of the lunar terminal at 100Mb/s data rates from a lunar relay satellite and in excess of 200Mb/s from a fixed terminal on the lunar surface. We have looked at the effects of the lunar regolith and its removal on optical samples. Our results indicate that under repeated dust removal episodes sapphire rather than fused silica would be a more durable material for optical surfaces. Disruption tolerant network protocols can minimize the data loss due to link dropouts. We report on the preliminary results of the DTN protocol implemented over the optical carrier.

  1. Future Lunar Sampling Missions: Big Returns on Small Samples

    NASA Astrophysics Data System (ADS)

    Shearer, C. K.; Borg, L.

    2002-01-01

    The next sampling missions to the Moon will result in the return of sample mass (100g to 1 kg) substantially smaller than those returned by the Apollo missions (380 kg). Lunar samples to be returned by these missions are vital for: (1) calibrating the late impact history of the inner solar system that can then be extended to other planetary surfaces; (2) deciphering the effects of catastrophic impacts on a planetary body (i.e. Aitken crater); (3) understanding the very late-stage thermal and magmatic evolution of a cooling planet; (4) exploring the interior of a planet; and (5) examining volatile reservoirs and transport on an airless planetary body. Can small lunar samples be used to answer these and other pressing questions concerning important solar system processes? Two potential problems with small, robotically collected samples are placing them in a geologic context and extracting robust planetary information. Although geologic context will always be a potential problem with any planetary sample, new lunar samples can be placed within the context of the important Apollo - Luna collections and the burgeoning planet-scale data sets for the lunar surface and interior. Here we illustrate the usefulness of applying both new or refined analytical approaches in deciphering information locked in small lunar samples.

  2. Lunar sample analysis. [X-ray photoemission and Auger spectroscopy of lunar glass

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Grant, R. W.; Cirlin, E. H.

    1979-01-01

    The surface composition of two samples from the highly shocked, glass-coated lunar basalt (12054) and from four glass-coated fragments from the 1-2 mm (14161) fines were examined by X-ray photoemission spectroscopy to determine whether the agglutination process itself is responsible for the difference between their surface and bulk compositions. Auger electron spectroscopy of glass balls from the 15425 and 74001 fines were analyzed to understand the nature, extent, and behavior of volatile phases associated with lunar volcanism. Initial results indicate that (1) volatiles, in the outer few atomic layers sampled, vary considerably from ball to ball; (2) variability over the surface of individual balls is smaller; (3) the dominant volatiles on the balls are S and Zn; and (4) other volatiles commonly observed are P, Cl, and K.

  3. Laboratory experiments to investigate sublimation rates of water ice in nighttime lunar regolith

    NASA Astrophysics Data System (ADS)

    Piquette, Marcus; Horányi, Mihály; Stern, S. Alan

    2017-09-01

    The existence of water ice on the lunar surface has been a long-standing topic with implications for both lunar science and in-situ resource utilization (ISRU). Cold traps on the lunar surface may have conditions necessary to retain water ice, but no laboratory experiments have been conducted to verify modeling results. We present an experiment testing the ability to thermally control bulk samples of lunar regolith simulant mixed with water ice under vacuum in an effort to constrain sublimation rates. The simulant used was JSC-1A lunar regolith simulant developed by NASA's Johnson Space Center. Samples with varying ratios of water ice and JSC-1A regolith simulant, totally about 1 kg, were placed under vacuum and cooled to 100 K to simulate conditions in lunar cold traps. The resulting sublimation of water ice over an approximately five-day period was measured by comparing the mass of the samples before and after the experimental run. Our results indicate that water ice in lunar cold traps is stable on timescales comparable to the lunar night, and should continue to be studied as possible resources for future utilization. This experiment also gauges the efficacy of the synthetic lunar atmosphere mission (SLAM) as a low-cost water resupply mission to lunar outposts.

  4. Lunar feldspathic meteorites: Constraints on the geology of the lunar highlands, and the origin of the lunar crust

    NASA Astrophysics Data System (ADS)

    Gross, Juliane; Treiman, Allan H.; Mercer, Celestine N.

    2014-02-01

    The composition of the lunar crust provides clues about the processes that formed it and hence contains information on the origin and evolution of the Moon. Current understanding of lunar evolution is built on the Lunar Magma Ocean hypothesis that early in its history, the Moon was wholly or mostly molten. This hypothesis is based on analyses of Apollo samples of ferroan anorthosites (>90% plagioclase; molar Mg/(Mg+Fe)=Mg#<75) and the assumption that they are globally distributed. However, new results from lunar meteorites, which are random samples of the Moon's surface, and remote sensing data, show that ferroan anorthosites are not globally distributed and that the Apollo highland samples, used as a basis for the model, are influenced by ejecta from the Imbrium basin. In this study we evaluate anorthosites from all currently available adequately described lunar highland meteorites, representing a more widespread sampling of the lunar highlands than Apollo samples alone, and find that ∼80% of them are significantly more magnesian than Apollo ferroan anorthosites. Interestingly, Luna mission anorthosites, collected outside the continuous Imbrium ejecta, are also highly magnesian. If the lunar highland crust consists dominantly of magnesian anorthosites, as suggested by their abundance in samples sourced outside Imbrium ejecta, a reevaluation of the Lunar Magma Ocean model is a sensible step forward in the endeavor to understand lunar evolution. Our results demonstrate that lunar anorthosites are more similar in their chemical trends and mineral abundance to terrestrial massif anorthosites than to anorthosites predicted in a Lunar Magma Ocean. This analysis does not invalidate the idea of a Lunar Magma Ocean, which seems a necessity under the giant impact hypothesis for the origin of the moon. However, it does indicate that most rocks now seen at the Moon's surface are not primary products of a magma ocean alone, but are products of more complex crustal processes.

  5. High-priority lunar landing sites for in situ and sample return studies of polar volatiles

    NASA Astrophysics Data System (ADS)

    Lemelin, Myriam; Blair, David M.; Roberts, Carolyn E.; Runyon, Kirby D.; Nowka, Daniela; Kring, David A.

    2014-10-01

    Our understanding of the Moon has advanced greatly over the last several decades thanks to analyses of Apollo samples and lunar meteorites, and recent lunar orbital missions. Notably, it is now thought that the lunar poles may be much more enriched in H2O and other volatile chemical species than the equatorial regions sampled during the Apollo missions. The equatorial regions sampled, themselves, contain more H2O than previously thought. A new lunar mission to a polar region is therefore of great interest; it could provide a measure of the sources and processes that deliver volatiles while also evaluating the potential in situ resource utilization value they may have for human exploration. In this study, we determine the optimal sites for studying lunar volatiles by conducting a quantitative GIS-based spatial analysis of multiple relevant datasets. The datasets include the locations of permanently shadowed regions, thermal analyses of the lunar surface, and hydrogen abundances. We provide maps of the lunar surface showing areas of high scientific interest, including five regions near the lunar north pole and seven regions near the lunar south pole that have the highest scientific potential according to rational search criteria. At two of these sites-a region we call the “Intercrater Polar Highlands” (IPH) near the north pole, and Amundsen crater near the south pole-we provide a more detailed assessment of landing sites, sample locations, and exploration strategies best suited for future human or robotic exploration missions.

  6. Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon

    NASA Astrophysics Data System (ADS)

    Donaldson Hanna, K. L.; Greenhagen, B. T.; Patterson, W. R.; Pieters, C. M.; Mustard, J. F.; Bowles, N. E.; Paige, D. A.; Glotch, T. D.; Thompson, C.

    2017-02-01

    Currently, few thermal infrared measurements exist of fine particulate (<63 μm) analogue samples (e.g. minerals, mineral mixtures, rocks, meteorites, and lunar soils) measured under simulated lunar conditions. Such measurements are fundamental for interpreting thermal infrared (TIR) observations by the Diviner Lunar Radiometer Experiment (Diviner) onboard NASA's Lunar Reconnaissance Orbiter as well as future TIR observations of the Moon and other airless bodies. In this work, we present thermal infrared emissivity measurements of a suite of well-characterized Apollo lunar soils and a fine particulate (<25 μm) San Carlos olivine sample as we systematically vary parameters that control the near-surface environment in our vacuum chamber (atmospheric pressure, incident solar-like radiation, and sample cup temperature). The atmospheric pressure is varied between ambient (1000 mbar) and vacuum (<10-3 mbar) pressures, the incident solar-like radiation is varied between 52 and 146 mW/cm2, and the sample cup temperature is varied between 325 and 405 K. Spectral changes are characterized as each parameter is varied, which highlight the sensitivity of thermal infrared emissivity spectra to the atmospheric pressure and the incident solar-like radiation. Finally spectral measurements of Apollo 15 and 16 bulk lunar soils are compared with Diviner thermal infrared observations of the Apollo 15 and 16 sampling sites. This comparison allows us to constrain the temperature and pressure conditions that best simulate the near-surface environment of the Moon for future laboratory measurements and to better interpret lunar surface compositions as observed by Diviner.

  7. Development of a Korean Lunar Simulant(KLS-1) and its Possible Further Recommendations

    NASA Astrophysics Data System (ADS)

    Chang, I.; Ryn, B. H.; Cho, G. C.

    2014-12-01

    The rapid development on space exploration finally found that water exists on the moon according to NASA's recent studies. This becomes a turning point in lunar science and surface development because the existence of water raises the possibility of human survival on the moon. In this case, advanced space construction technology against the distinctive lunar environment (i.e., atmosphereless, subgravity, different geology) becomes a key issue for consistent and reliable settlement of human beings. Thus, understandings on the lunar surface and its composition must be secured as an important role in lunar development. During project Apollo (1961~1972), only 320 kg of real lunar soils were collected and sent to the Earth. Due to the lack of samples, many space agencies are attempting to simulate the lunar soil using Earth materials to be used in large and massive practical studies and simulations. In the same vein, we developed a Korean lunar simulant from a specific basalt type Cenozoic Erathem in Korea. The simulated regolith sample shows a high similarity to the Apollo average samples in mineral composition, density, and particle shape aspects. Therefore, the developed regolith simulant is expected to be used in various lunar exploration purposes.

  8. Petrology of lunar rocks and implication to lunar evolution

    NASA Technical Reports Server (NTRS)

    Ridley, W. I.

    1976-01-01

    Recent advances in lunar petrology, based on studies of lunar rock samples available through the Apollo program, are reviewed. Samples of bedrock from both maria and terra have been collected where micrometeorite impact penetrated the regolith and brought bedrock to the surface, but no in situ cores have been taken. Lunar petrogenesis and lunar thermal history supported by studies of the rock sample are discussed and a tentative evolutionary scenario is constructed. Mare basalts, terra assemblages of breccias, soils, rocks, and regolith are subjected to elemental analysis, mineralogical analysis, trace content analysis, with studies of texture, ages and isotopic composition. Probable sources of mare basalts are indicated.

  9. Alteration of Lunar Rock Surfaces through Interaction with the Space Environment

    NASA Technical Reports Server (NTRS)

    Frushour, A. M.; Noble, S. K; Christoffersen, R.; Keller, L P.

    2014-01-01

    Space weathering occurs on all ex-posed surfaces of lunar rocks, as well as on the surfaces of smaller grains in the lunar regolith. Space weather-ing alters these exposed surfaces primarily through the action of solar wind ions and micrometeorite impact processes. On lunar rocks specifically, the alteration products produced by space weathering form surface coatings known as patina. Patinas can have spectral reflectance properties different than the underlying rock. An understanding of patina composition and thickness is therefore important for interpreting re-motely sensed data from airless solar system bodies. The purpose of this study is to try to understand the physical and chemical properties of patina by expanding the number of patinas known and characterized in the lunar rock sample collection.

  10. Electrostatic charging of lunar dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walch, Bob; Horanyi, Mihaly; Robertson, Scott

    1998-10-21

    Transient dust clouds suspended above the lunar surface were indicated by the horizon glow observed by the Surveyor spacecrafts and the Lunar Ejecta and Meteorite Experiment (Apollo 17), for example. The theoretical models cannot fully explain these observations, but they all suggest that electrostatic charging of the lunar surface due to exposure to the solar wind plasma and UV radiation could result in levitation, transport and ejection of small grains. We report on our experimental studies of the electrostatic charging properties of an Apollo-17 soil sample and two lunar simulants MLS-1 and JSC-1. We have measured their charge after exposingmore » individual grains to a beam of fast electrons with energies in the range of 20{<=}E{<=}90 eV. Our measurements indicate that the secondary electron emission yield of the Apollo-17 sample is intermediate between MLS-1 and JSC-1, closer to that of MLS-1. We will also discuss our plans to develop a laboratory lunar surface model, where time dependent illumination and plasma bombardment will closely emulate the conditions on the surface of the Moon.« less

  11. Lunar Regolith Simulant Materials: Recommendations for Standardization, Production, and Usage

    NASA Technical Reports Server (NTRS)

    Sibille, L.; Carpenter, P.; Schlagheck, R.; French, R. A.

    2006-01-01

    Experience gained during the Apollo program demonstrated the need for extensive testing of surface systems in relevant environments, including regolith materials similar to those encountered on the lunar surface. As NASA embarks on a return to the Moon, it is clear that the current lunar sample inventory is not only insufficient to support lunar surface technology and system development, but its scientific value is too great to be consumed by destructive studies. Every effort must be made to utilize standard simulant materials, which will allow developers to reduce the cost, development, and operational risks to surface systems. The Lunar Regolith Simulant Materials Workshop held in Huntsville, AL, on January 24 26, 2005, identified the need for widely accepted standard reference lunar simulant materials to perform research and development of technologies required for lunar operations. The workshop also established a need for a common, traceable, and repeatable process regarding the standardization, characterization, and distribution of lunar simulants. This document presents recommendations for the standardization, production and usage of lunar regolith simulant materials.

  12. Electrostatic Characterization of Lunar Dust Simulants

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; Ritz, M. L.

    2008-01-01

    Lunar dust can jeopardize exploration activities due to its ability to cling to most surfaces. In this paper, we report on our measurements of the electrostatic properties of the lunar soil simulants. Methods have been developed to measure the volume resistivity, dielectric constant, chargeability, and charge decay of lunar soil. While the first two parameters have been measured in the past [Olhoeft 1974], the last two have never been measured directly on the lunar regolith or on any of the Apollo samples. Measurements of the electrical properties of the lunar samples are being performed in an attempt to answer important problems that must be solved for the development of an effective dust mitigation technology, namely, how much charge can accumulate on the dust and how long does the charge remain on surfaces. The measurements will help develop coatings that are compatible with the intrinsic electrostatic properties of the lunar regolith.

  13. LUNAR SAMPLES - APOLLO XI

    NASA Image and Video Library

    1969-07-27

    S69-45002 (26 July 1969) --- A close-up view of the lunar rocks contained in the first Apollo 11 sample return container. The rock box was opened for the first time in the Vacuum Laboratory of the Manned Spacecraft Center’s Lunar Receiving Laboratory, Building 37, at 3:55 p.m. (CDT), Saturday, July 26, 1969. The gloved hand gives an indication of size. This box also contained the Solar Wind Composition experiment (not shown) and two core tubes for subsurface samples (not shown). These lunar samples were collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity on July 20, 1969.

  14. Space Weathering of Lunar Rocks and Regolith Grains

    NASA Technical Reports Server (NTRS)

    Keller, L. P.

    2013-01-01

    The exposed surfaces of lunar soil grains and lunar rocks become modified and coated over time with a thin rind of material (patina) through complex interactions with the space environment. These interactions encompass many processes including micrometeorite impacts, vapor and melt deposition, and solar wind implantation/sputtering effects that collectively are referred to as "space weathering". Studies of space weathering effects in lunar soils and rocks provide important clues to understanding the origin and evolution of the lunar regolith as well as aiding in the interpretation of global chemical and mineralogical datasets obtained by remote-sensing missions. The interpretation of reflectance spectra obtained by these missions is complicated because the patina coatings obscure the underlying rock mineralogy and compositions. Much of our understanding of these processes and products comes from decades of work on remote-sensing observations of the Moon, the analysis of lunar samples, and laboratory experiments. Space weathering effects collectively result in a reddened continuum slope, lowered albedo, and attenuated absorption features in reflectance spectra of lunar soils as compared to finely comminuted rocks from the same Apollo sites. Space weathering effects are largely surface-correlated, concentrated in the fine size fractions, and occur as amorphous rims on individual soil grains. Rims on lunar soil grains are highly complex and span the range between erosional surfaces modified by solar wind irradiation to depositional surfaces modified by the condensation of sputtered ions and impact-generated vapors. The optical effects of space weathering effects are directly linked to the production of nanophase Fe metal in lunar materials]. The size of distribution of nanophase inclusions in the rims directly affect optical properties given that large Fe(sup o) grains (approx 10 nm and larger) darken the sample (lower albedo) while the tiny Fe(sup o) grains (<5nm) are the primary agent in spectral "reddening". More recent work has focused on the nature and abundance of OH/H2O in the lunar regolith using orbital data and samples analyses. Advances in sample preparation techniques have made possible detailed analyses of patina-coated rock surfaces. Major advances are occurring in quantifying the rates and efficiency of space weathering processes through laboratory experimentation.

  15. Lunar soil and surface processes studies

    NASA Technical Reports Server (NTRS)

    Glass, B. P.

    1975-01-01

    Glass particles in lunar soil were characterized and compared to terrestrial analogues. In addition, useful information was obtained concerning the nature of lunar surface processes (e.g. volcanism and impact), maturity of soils and chemistry and heterogeneity of lunar surface material. It is felt, however, that the most important result of the study was that it demonstrated that the investigation of glass particles from the regolith of planetary bodies with little or no atmospheres can be a powerful method for learning about the surface processes and chemistry of planetary surfaces. Thus, the return of samples from other planetary bodies (especially the terrestrial planets and asteroids) using unmanned spacecraft is urged.

  16. Lunar regolith dynamics based on analysis of the cosmogenic radionuclides Na-22, Al-26, and Mn-53

    NASA Technical Reports Server (NTRS)

    Fruchter, J. S.; Rancitelli, L. A.; Laul, J. C.; Perkins, R. W.

    1977-01-01

    Depth profiles of Na-22 and Al-26 in the upper portions of five lunar cores are analyzed. From the analyses, it is concluded that the natural gardening processes on the lunar surface result in mixing of the regolith to a depth of 2-3 cm over a time period which is short compared with the half-life of Al-26 (0.73 m.y.). It is also concluded that the rotary drill processes which were used to obtain the deep drill samples generally resulted in loss and/or mixing of the upper portions of the cores. In contrast, the near-surface regions of the drive tube cores appear to have a well-preserved stratigraphy. Analysis of Mn-53 in samples of six lunar rocks helps substantiate the accuracy of age date estimates by other means, and provides definite information that the total lunar surface exposure of two of these rocks has occurred during a single surface event which continued to their collection.

  17. Understanding the origin and evolution of water in the Moon through lunar sample studies

    PubMed Central

    Anand, Mahesh; Tartèse, Romain; Barnes, Jessica J.

    2014-01-01

    A paradigm shift has recently occurred in our knowledge and understanding of water in the lunar interior. This has transpired principally through continued analysis of returned lunar samples using modern analytical instrumentation. While these recent studies have undoubtedly measured indigenous water in lunar samples they have also highlighted our current limitations and some future challenges that need to be overcome in order to fully understand the origin, distribution and evolution of water in the lunar interior. Another exciting recent development in the field of lunar science has been the unambiguous detection of water or water ice on the surface of the Moon through instruments flown on a number of orbiting spacecraft missions. Considered together, sample-based studies and those from orbit strongly suggest that the Moon is not an anhydrous planetary body, as previously believed. New observations and measurements support the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. Furthermore, an approach combining measurements of water abundance in lunar samples and its hydrogen isotopic composition has proved to be of vital importance to fingerprint and elucidate processes and source(s) involved in giving rise to the lunar water inventory. A number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar wind hydrogen with the lunar soil. Perhaps two of the most striking findings from these recent studies are the revelation that at least some portions of the lunar interior are as water-rich as some Mid-Ocean Ridge Basalt source regions on Earth and that the water in the Earth and the Moon probably share a common origin. PMID:25114308

  18. The study of electrical conduction mechanisms. [dielectric response of lunar fines

    NASA Technical Reports Server (NTRS)

    Morrison, H. F.

    1974-01-01

    The dielectric response of lunar fines 74241,2 is presented in the audio-frequency range and under lunarlike conditions. Results suggest that volatiles are released during storage and transport of the lunar sample. Apparently, subsequent absorption of volatiles on the sample surface alter its dielectric response. The assumed volatile influence disappear after evacuation. A comparison of the dielectric properties of lunar and terrestrial materials as a function of density, temperature, and frequency indicates that if the lunar simulator analyzed were completely devoid of atmospheric moisture it would present dielectric losses smaller than those of the lunar sample. It is concluded that density prevails over temperature as the controlling factor of dielectric permittivity in the lunar regolith and that dielectric losses vary slowly with depth.

  19. Special report, diffuse reflectivity of the lunar surface

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1972-01-01

    The far ultraviolet diffuse reflectivity of samples of lunar dust material is determined. Equipment for measuring the diffuse reflectivity of materials (e.g. paint samples) is already in existence and requires only minor modification for the proposed experiment which will include the measurement of the polarizing properties of the lunar samples. Measurements can be made as a function of both illumination angle and angle of observation.

  20. Thermal conductivity of lunar regolith simulant JSC-1A under vacuum

    NASA Astrophysics Data System (ADS)

    Sakatani, Naoya; Ogawa, Kazunori; Arakawa, Masahiko; Tanaka, Satoshi

    2018-07-01

    Many air-less planetary bodies, including the Moon, asteroids, and comets, are covered by regolith. The thermal conductivity of the regolith is an essential parameter controlling the surface temperature variation. A thermal conductivity model applicable to natural soils as well as planetary surface regolith is required to analyze infrared remote sensing data. In this study, we investigated the temperature and compressional stress dependence of the thermal conductivity of the lunar regolith simulant JSC-1A, and the temperature dependence of sieved JSC-1A samples under vacuum conditions. We confirmed that a series of the experimental data for JSC-1A are fitted well by our analytical model of the thermal conductivity (Sakatani et al., 2017). Comparison with the calibration data of the sieved samples with those for original JSC-1A indicates that the thermal conductivity of natural samples with a wide grain size distribution can be modeled as mono-sized grains with a volumetric median size. The calibrated model can be used to estimate the volumetric median grain size from infrared remote sensing data. Our experiments and the calibrated model indicates that uncompressed JSC-1A has similar thermal conductivity to lunar top-surface materials, but the lunar subsurface thermal conductivity cannot be explained only by the effects of the density and self-weighted compressional stress. We infer that the nature of the lunar subsurface regolith grains is much different from JSC-1A and lunar top-surface regolith, and/or the lunar subsurface regolith is over-consolidated and the compressional stress higher than the hydrostatic pressure is stored in the lunar regolith layer.

  1. Evaluation of Surface Modification as a Lunar Dust Mitigation Strategy for Thermal Control Surfaces

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Waters, Deborah L.; Misconin, Robert M.; Banks, Bruce A.; Crowder, Mark

    2011-01-01

    Three surface treatments were evaluated for their ability to lower the adhesion between lunar simulant dust and AZ93, AlFEP, and AgFEP thermal control surfaces under simulated lunar conditions. Samples were dusted in situ and exposed to a standardized puff of nitrogen gas. Thermal performance before dusting, after dusting, and after part of the dust was removed by the puff of gas, were compared to perform the assessment. None of the surface treatments was found to significantly affect the adhesion of lunar simulants to AZ93 thermal control paint. Oxygen ion beam texturing also did not lower the adhesion of lunar simulant dust to AlFEP or AgFEP. But a workfunction matching coating and a proprietary Ball Aerospace surface treatment were both found to significantly lower the adhesion of lunar simulants to AlFEP and AgFEP. Based on these results, it is recommended that all these two techniques be further explored as dust mitigation coatings for AlFEP and AgFEP thermal control surfaces.

  2. Microphysical, microchemical and adhesive properties of lunar material. 3: Gas interaction with lunar material

    NASA Technical Reports Server (NTRS)

    Grossman, J. J.; Mukherjee, N. R.; Ryan, J. A.

    1972-01-01

    Knowledge of the reactivity of lunar material surfaces is important for understanding the effects of the lunar or space environment upon this material, particularly its nature, behavior and exposure history in comparison to terrestrial materials. Adsorptive properties are one of the important techniques for such studies. Gas adsorption measurements were made on an Apollo 12 ultrahigh vacuum-stored sample and Apollo 14 and 15 N2-stored samples. Surface area measurements were made on the latter two. Adsorbate gases used were N2, A, O2 and H2O. Krypton was used for the surface area determinations. Runs were made at room and liquid nitrogen temperature in volumetric and gravimetric systems. It was found that the adsorptive/desorptive behavior was in general significantly different from that of terrestrial materials of similar type and form. Specifically (1) the UHV-stored sample exhibited very high initial adsorption indicative of high surface reactivity, and (2) the N2-stored samples at room and liquid nitrogen temperatures showed that more gas was desorbed than introduced during adsorption, indicative of gas release from the samples. The high reactivity is a scribed cosmic ray track and solar wind damage.

  3. Interaction of gases with lunar materials. [analysis of lunar samples from Apollo 17 flight

    NASA Technical Reports Server (NTRS)

    Holmes, H. F.; Fuller, E. L., Jr.; Gammage, R. B.

    1974-01-01

    The surface chemistry of Apollo 17 lunar fines samples 74220 (the orange soil) and 74241 (the gray control soil) has been studied by measuring the adsorption of nitrogen, argon, and oxygen (all at 77 K) and also water vapor (at 20 or 22 C). In agreement with results for samples from other missions, both samples had low initial specific surface areas, consisted of nonporous particles, and were attacked by water vapor at high relative pressure to give an increased specific surface area and create a pore system which gave rise to a capillary condensation hysteresis loop in the adsorption isotherms. In contrast to previous samples, both of the Apollo 17 soils were partially hydrophobic in their initial interaction with water vapor (both samples were completely hydrophilic after the reaction with water). The results are consistent with formation at high temperatures without subsequent exposure to significant amounts of water.

  4. What would we miss if we characterized the Moon and Mars with just planetary meteorites, remote mapping, and robotic landers?. [Abstract only

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.

    1994-01-01

    Exploration of the Moon and planets began with telescopic studies of their surfaces, continued with orbiting spacecraft and robotic landers, and will culminate with manned exploration and sample return. For the Moon and Mars we also have accidental samples provided by impacts on their surfaces, the lunar and martian meteorites. How much would we know about the lunar surface if we only had lunar meteorites, orbital spacecraft, and robotic exploration, and not the Apollo and Luna returned samples? What does this imply for Mars? With martian meteorites and data from Mariner, Viking, and the future Pathfinder missions, how much could we learn about Mars? The basis of most of our detailed knowledge about the Moon is the Apollo samples. They provide ground truth for the remote mapping, timescales for lunar processes, and samples from the lunar interior. The Moon is the foundation of planetary science and the basis for our interpretation of the other planets. Mars is similar to the Moon in that impact and volcanism are the dominant processes, but Mars' surface has also been affected by wind and water, and hence has much more complex surface geology. Future geochemical or mineralogical mapping of Mars' surface should be able to tell us whether the dominant rock types of the ancient southern highlands are basaltic, anorthositic, granitic, or something else, but will not be able to tell us the detailed mineralogy, geochemistry, or age. Without many more martian meteorites or returned samples we will not know the diversity of martian rocks, and therefore will be limited in our ability to model martian geological evolution.

  5. Inhalation Toxicity of Ground Lunar Dust Prepared from Apollo-14 Soil

    NASA Technical Reports Server (NTRS)

    James, John T.; Lam, Chiu-wing; Scully, Robert R.; Cooper, Bonnie L.

    2011-01-01

    Within the decade one or more space-faring nations intend to return humans to the moon for more in depth exploration of the lunar surface and subsurface than was conducted during the Apollo days. The lunar surface is blanketed with fine dust, much of it in the respirable size range (<10 micron). Eventually, there is likely to be a habitable base and rovers available to reach distant targets for sample acquisition. Despite designs that could minimize the entry of dust into habitats and rovers, it is reasonable to expect lunar dust to pollute both as operations progress. Apollo astronauts were exposed briefly to dust at nuisance levels, but stays of up to 6 months on the lunar surface are envisioned. Will repeated episodic exposures to lunar dust present a health hazard to those engaged in lunar exploration? Using rats exposed to lunar dust by nose-only inhalation, we set out to investigate that question.

  6. Exploration of the Moon with Remote Sensing, Ground-Penetrating Radar, and the Regolith-Evolved Gas Analyzer (REGA)

    NASA Technical Reports Server (NTRS)

    Cooper, B. L.; Hoffman, J. H.; Allen, Carlton C.; McKay, David S.

    1998-01-01

    There are two important reasons to explore the Moon. First, we would like to know more about the Moon itself: its history, its geology, its chemistry, and its diversity. Second, we would like to apply this knowledge to a useful purpose. namely finding and using lunar resources. As a result of the recent Clementine and Lunar Prospector missions, we now have global data on the regional surface mineralogy of the Moon, and we have good reason to believe that water exists in the lunar polar regions. However, there is still very little information about the subsurface. If we wish to go to the lunar polar regions to extract water, or if we wish to go anywhere else on the Moon and extract (or learn) anything at all, we need information in three dimensions an understanding of what lies below the surface, both shallow and deep. The terrestrial mining industry provides an example of the logical steps that lead to an understanding of where resources are located and their economic significance. Surface maps are examined to determine likely locations for detailed study. Geochemical soil sample surveys, using broad or narrow grid patterns, are then used to gather additional data. Next, a detailed surface map is developed for a selected area, along with an interpretation of the subsurface structure that would give rise to the observed features. After that, further sampling and geophysical exploration are used to validate and refine the original interpretation, as well as to make further exploration/ mining decisions. Integrating remotely sensed, geophysical, and sample datasets gives the maximum likelihood of a correct interpretation of the subsurface geology and surface morphology. Apollo-era geophysical and automated sampling experiments sought to look beyond the upper few microns of the lunar surface. These experiments, including ground-penetrating radar and spectrometry, proved the usefulness of these methods for determining the best sites for lunar bases and lunar mining operations.

  7. We Did This Before - The Lunar Receiving Laboratory (1969-1972)

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Allton, Judith

    2011-01-01

    The six Apollo missions to the lunar surface, between 1969 and 1972, returned 2,196 individual rock, soil and core samples, with a total mass of 381.69 kg. The astronauts selected samples, photographed the rocks and soils prior to collection, packaged them in uniquely identified containers, and transported them to the Lunar Module

  8. Interaction of gases with lunar materials. [surface properties of lunar fines, especially on exposure to water vapor

    NASA Technical Reports Server (NTRS)

    Holmes, H. F.; Gammage, R. B.

    1975-01-01

    The surface properties of lunar fines were investigated. Results indicate that, for the most part, these properties are independent of the chemical composition and location of the samples on the lunar surface. The leaching of channels and pores by adsorbed water vapor is a distinguishing feature of their surface chemistry. The elements of air, if adsorbed in conjunction with water vapor or liquid water, severely impedes the leaching process. In the absence of air, liquid water is more effective than water vapor in attacking the grains. The characteristics of Apollo 17 orange fines were evaluated and compared with those of other samples. The interconnecting channels produced by water vapor adsorption were found to be wider than usual for other types of fines. Damage tracks caused by heavy cosmic ray nuclei and an unusually high halogen content might provide for stronger etching conditions upon exposure to water vapor.

  9. Distribution and Origin of Amino Acids in Lunar Regolith Samples

    NASA Technical Reports Server (NTRS)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; McLain, H. L.; Noble, S. K.; Gibson, E. K., Jr.

    2015-01-01

    The existence of organic compounds on the lunar surface has been a question of interest from the Apollo era to the present. Investigations of amino acids immediately after collection of lunar samples yielded inconclusive identifications, in part due to analytical limitations including insensitivity to certain compounds, an inability to separate enantiomers, and lack of compound-specific isotopic measurements. It was not possible to determine if the detected amino acids were indigenous to the lunar samples or the result of terrestrial contamination. Recently, we presented initial data from the analysis of amino acid abundances in 12 lunar regolith samples and discussed those results in the context of four potential amino acid sources [5]. Here, we expand on our previous work, focusing on amino acid abundances and distributions in seven regolith samples and presenting the first compound-specific carbon isotopic ratios measured for amino acids in a lunar sample.

  10. Lunar Science Conference, 5th, Houston, Tex., March 18-22, 1974, Proceedings. Volume 1 - Mineralogy and petrology. Volume 2 Chemical and isotope analyses. Organic chemistry. Volume 3 - Physical properties

    NASA Technical Reports Server (NTRS)

    Gose, W. A.

    1974-01-01

    Numerous studies on the properties of the moon based on Apollo findings and samples are presented. Topics treated include ages of the lunar nearside light plains and maria, orange material in the Sulpicius Gallus formation at the southwestern edge of Mare Serenitatis, impact-induced fractionation in the lunar highlands, igneous rocks from Apollo 16 rake samples, experimental liquid line of descent and liquid immiscibility for basalt 70017, ion microprobe mass analysis of plagioclase from 'non-mare' lunar samples, grain size and the evolution of lunar soils, chemical composition of rocks and soils at Taurus-Littrow, the geochemical evolution of the moon, U-Th-Pb systematics of some Apollo 17 lunar samples and implications for a lunar basin excavation chronology, volatile-element systematics and green glass in Apollo 15 lunar soils, solar wind nitrogen and indigenous nitrogen in Apollo 17 lunar samples, lunar trapped xenon, solar flare and lunar surface process characterization at the Apollo 17 site, and the permanent and induced magnetic dipole moment of the moon. Individual items are announced in this issue.

  11. LUNAR SAMPLES - APOLLO 11 - MSC

    NASA Image and Video Library

    1969-07-28

    S69-45025 (27 July 1969) --- This is the first lunar sample that was photographed in detail in the Lunar Receiving Laboratory at the Manned Spacecraft Center. The photograph shows a granular, fine-grained, mafic (iron magnesium rich) rock. At this early stage of the examination, this rock appears similar to several igneous rock types found on Earth. The scale is printed backwards due to the photographic configuration in the Vacuum Chamber. The sample number is 10003. This rock was among the samples collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity on July 20, 1969.

  12. Communications Relay and Human-Assisted Sample Return from the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Cichan, T.; Hopkins, J. B.; Bierhaus, B.; Murrow, D. W.

    2018-02-01

    The Deep Space Gateway can enable or enhance exploration of the lunar surface through two capabilities: 1. communications relay, opening up access to the lunar farside, and 2. sample return, enhancing the ability to return large sample masses.

  13. 2D Models for the evolving distribution of impact melt at the lunar near-surface

    NASA Astrophysics Data System (ADS)

    Liu, T.; Michael, G. G.; Oberst, J.

    2017-09-01

    This study aims to investigate the cumulative effect of the impact gardening process. The lateral distribution of the melt with diverse ages is traced in this model. Using the observed distribution of melt age in lunar samples and meteorites, the possible scenarios of the lunar impact history can be discriminated. The record is also helpful for the future lunar sampling, guiding the choice of site to obtain samples from different impact basins, and to understand the mixture of melt ages observed at any one site.

  14. Regolith Volatile Recovery at Simulated Lunar Environments

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Paulsen, Gale; Zacny, Kris; Schmidt, Sherry; Boucher, Dale

    2016-01-01

    Lunar Polar Volatiles: Permanently shadowed craters at the lunar poles contain water, 5 wt according to LCROSS. Interest in water for ISRU applications. Desire to ground truth water using surface prospecting e.g. Resource Prospector and RESOLVE. How to access subsurface water resources and accurately measure quantity. Excavation operations and exposure to lunar environment may affect the results. Volatile capture tests: A series a ground based dirty thermal vacuum tests are being conducted to better understand the subsurface sampling operations. Sample removal and transfer. Volatiles loss during sampling operations. Concept of operations, Instrumentation. This presentation is a progress report on volatiles capture results from these tests with lunar polar drill prototype hardware.

  15. Astronaut Alan Bean holds Special Environmental Sample Container

    NASA Image and Video Library

    1969-11-20

    AS12-49-7278 (19-20 Nov. 1969) --- Astronaut Alan L. Bean holds a Special Environmental Sample Container filled with lunar soil collected during the extravehicular activity (EVA) in which astronauts Charles Conrad Jr., commander, and Bean, lunar module pilot, participated. Conrad, who took this picture, is reflected in Bean's helmet visor. Conrad and Bean descended in the Apollo 12 Lunar Module (LM) to explore the lunar surface while astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit. Photo credit: NASA

  16. Thermophysical properties of lunar media. II - Heat transfer within the lunar surface layer

    NASA Technical Reports Server (NTRS)

    Cremers, C. J.

    1974-01-01

    Heat transfer within the lunar surface layer depends on several thermophysical properties of the lunar regolith, including the thermal conductivity, the specific heat, the thermal diffusivity, and the thermal parameter. Results of property measurements on simulated lunar materials are presented where appropriate as well as measurements made on the actual samples themselves. The variation of temperature on the moon with depth is considered, taking into account various times of the lunar day. The daily variation in temperature drops to about 1 deg at a depth of only 0.172 meters. The steady temperature on the moon below this depth is 225 K.

  17. Prototype of the Modular Equipment Transporter (MET)

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A prototype of the Modular Equipment Transporter (MET), nicknamed the 'Rickshaw' after its shape and method of propulsion. This equipment was used by the Apollo 14 astronauts during their geological and lunar surface simulation training in the Pinacate volcanic area of northwestern Sonora, Mexico. The Apollo 14 crew will be the first one to use the MET. It will be a portable workbench with a place for the lunar handtools and their carrier, three cameras, two sample container bags, a Special Environmental Sample Container, spare film magazines, and a Lunar Surface Penetrometer.

  18. The Case Against an Early Lunar Dynamo Powered by Core Convection

    NASA Astrophysics Data System (ADS)

    Evans, Alexander J.; Tikoo, Sonia M.; Andrews-Hanna, Jeffrey C.

    2018-01-01

    Paleomagnetic analyses of lunar samples indicate that the Moon had a dynamo-generated magnetic field with 50 μT surface field intensities between 3.85 and 3.56 Ga followed by a period of much lower (≤ 5 μT) intensities that persisted beyond 2.5 Ga. However, we determine herein that there is insufficient energy associated with core convection—the process commonly recognized to generate long-lived magnetic fields in planetary bodies—to sustain a lunar dynamo for the duration and intensities indicated. We find that a lunar surface field of ≤1.9 μT could have persisted until 200 Ma, but the 50 μT paleointensities recorded by lunar samples between 3.85 and 3.56 Ga could not have been sustained by a convective dynamo for more than 28 Myr. Thus, for a continuously operating, convective dynamo to be consistent with the early lunar paleomagnetic record, either an exotic mechanism or unknown energy source must be primarily responsible for the ancient lunar magnetic field.

  19. Thermophysical properties of lunar materials. I - Thermal radiation properties of lunar materials from the Apollo missions

    NASA Technical Reports Server (NTRS)

    Birkebak, R. C.

    1974-01-01

    The successful landings on the moon of the Apollo flights and the return of samples of lunar surface material has permitted the measurement of the thermophysical properties necessary for heat transfer calculations. The characteristics of the Apollo samples are discussed along with remote sensing results which made it possible to deduce many of the thermophysical properties of the lunar surface. Definitions considered in connection with thermal radiation measurements include the bond albedo, the geometric albedo, the normal albedo, the directional reflectance, the bidirectional reflectance, and the directional emittance. The measurement techniques make use of a directional reflectance apparatus, a bidirectional reflectance apparatus, and a spectral emittance apparatus.

  20. Artist's concept of Apollo 14 crewmen on their firs traverse of lunar surface

    NASA Image and Video Library

    1971-01-11

    S71-16101 (January 1971) --- A Grumman Aerospace Corporation artist's concept of Apollo 14 crewmen, astronauts Alan B. Shepard Jr., commander, and Edgar D. Mitchell, lunar module pilot, as they set out on their first traverse. Shepard is pulling the Modularized Equipment Transporter (MET) which contains cameras, lunar sample bags, tools and other paraphernalia. Shepard has the Laser Ranging Retro-Reflector (LR-3) in his other hand. Mitchell is carrying the Apollo Lunar Surface Experiments Package (ALSEP) barbell mode.

  1. ESCA studies of the surface chemistry of lunar fines. [Electron Spectroscopic Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Grant, R. W.

    1976-01-01

    The paper presents an ESCA analysis based on the use of a synthetic lunar-glass standard that allows determination of the surface composition of lunar samples with an accuracy that appears to be better than 10% of the amount present for all major elements except Ti. It is found that, on the average, grain surfaces in the lunar fines samples 10084 and 15301 are strongly enriched in Si, moderately enriched in Fe, moderately depleted in Al and Ca, and strongly depleted in Mg. This pattern could not be produced by the deposition of any expected meteoritic vapor. Neither could it be produced by simple inverse-mass-dependent element loss during sputtering. It is suggested that at least part of the pattern may be a simple consequence of agglutinate glass formation in the fines since there is some evidence that Si can become enriched on the surface of silicate melts. These results do not support the strong enrichments in Fe on grain surfaces reported from Auger studies.

  2. View of Apollo 17 lunar rock sample no. 72255

    NASA Image and Video Library

    1972-01-18

    S73-16007 (December 1972) --- A "mug shot" of Apollo 17 lunar sample no. 72255 which was brought back from the lunar surface by the final team of Apollo astronauts. The rock weighs 461.2 grams and measures 2.5 x 9 x 10.5 centimeters. The light grey breccia is sub-rounded on all faces except the top and north sides.

  3. Lunar and Planetary Science Conference, 9th, Houston, Tex., March 13-17, 1978, Proceedings. Volume 2 - Lunar and planetary surfaces

    NASA Technical Reports Server (NTRS)

    Merrill, R. B.

    1978-01-01

    Regolith studies are summarized with attention given to isotope and solar wind effects, core studies, and soil maturation and agglutinates. Consideration is also given to radiometric, cosmic-ray and track chronologies for meteorites and lunar samples and to lunar impact phenomena.

  4. Rock sample brought to earth from the Apollo 12 lunar landing mission

    NASA Image and Video Library

    1969-12-04

    S69-60909 (November 1969) --- A close-up view of lunar sample 12,052 under observation in the Manned Spacecraft Center's Lunar Receiving Laboratory (LRL). Astronauts Charles Conrad Jr., and Alan L. Bean collected several rocks and samples of finer lunar matter during their Apollo 12 lunar landing mission extravehicular activity (EVA). This particular sample was picked up during the second space walk (EVA) on Nov. 20, 1969. It is a typically fine-grained crystalline rock with a concentration of holes on the left part of the exposed side. These holes are called vesicles and have been identified as gas bubbles formed during the crystallization of the rock. Several glass-lined pits can be seen on the surface of the rock.

  5. Chlorine isotopic compositions of apatite in Apollo 14 rocks: Evidence for widespread vapor-phase metasomatism on the lunar nearside ∼4 billion years ago

    NASA Astrophysics Data System (ADS)

    Potts, Nicola J.; Barnes, Jessica J.; Tartèse, Romain; Franchi, Ian A.; Anand, Mahesh

    2018-06-01

    Compared to most other planetary materials in the Solar System, some lunar rocks display high δ37Cl signatures. Loss of Cl in a H ≪ Cl environment has been invoked to explain the heavy signatures observed in lunar samples, either during volcanic eruptions onto the lunar surface or during large scale degassing of the lunar magma ocean. To explore the conditions under which Cl isotope fractionation occurred in lunar basaltic melts, five Apollo 14 crystalline samples were selected (14053,19, 14072,13, 14073,9, 14310,171 along with basaltic clast 14321,1482) for in situ analysis of Cl isotopes using secondary ion mass spectrometry. Cl isotopes were measured within the mineral apatite, with δ37Cl values ranging from +14.6 ± 1.6‰ to +40.0 ± 2.9‰. These values expand the range previously reported for apatite in lunar rocks, and include some of the heaviest Cl isotope compositions measured in lunar samples to date. The data here do not display a trend between increasing rare earth elements contents and δ37Cl values, reported in previous studies. Other processes that can explain the wide inter- and intra-sample variability of δ37Cl values are explored. Magmatic degassing is suggested to have potentially played a role in fractionating Cl isotope in these samples. Degassing alone, however, could not create the wide variability in isotopic signatures. Our favored hypothesis, to explain small scale heterogeneity, is late-stage interaction with a volatile-rich gas phase, originating from devolatilization of lunar surface regolith rocks ∼4 billion years ago. This period coincides with vapor-induced metasomastism recorded in other lunar samples collected at the Apollo 16 and 17 landing sites, pointing to the possibility of widespread volatile-induced metasomatism on the lunar nearside at that time, potentially attributed to the Imbrium formation event.

  6. LUNAR SAMPLES - APOLLO XI - MSC

    NASA Image and Video Library

    1969-08-03

    S69-40740 (July 1969) --- Dr. Ross Taylor (seated), Australian National University, and John Allen, Brown and Root-Northrop technician, review preliminary data from the optical emission spectrograph in the Spectrographic Laboratory of the Physical-Chemical Test Laboratory. Tests were being conducted on lunar surface material collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity on July 20, 1969.

  7. SPARCLE: Space Plasma Alleviation of Regolith Concentrations in the Lunar Environment

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Keller, J. W.; Curtis, S. A.; Nuth, J. A.; Stubbs, T. J.; Farrell, W. M.

    2006-05-01

    The return of robotic devices and humans to the Moon will occur in the near future. Based on our previous experience, surface dust is a major problem requiring a solution: During Apollo landings, extensive locally- induced stirring of the regolith caused dust to be suspended long enough to come into contact with conducting surfaces. Dust behaved like abrasive Velcro: it adhered to everything and attempts to remove it by simply brushing did not remove fines (<10) and resulted in severe abrasion. Lunar fines, because of their electrostatic charging, were relatively difficult to collect in sample bags along with other size range particles. Within hours, seals were broken, samples contaminated, and portions of the samples, especially fines, lost. Because of this difficulty, details on lunar dust are relatively sparse. Obviously, the strategies initially implemented to deal with lunar dust failed. A major technological challenge will be developing a dust mitigation strategy. A currently proposed strategy based increased magnetic susceptibility in lunar fines may not work uniformly well for fines of non-mare, or non-lunar, composition. Based on dust behavior already observed on previous missions, we believe the successful strategy will deal with dust dynamics resulting from interaction between mechanical and electrostatic forces. We are planning test and develop an electrostatically-based device to modulate the electrical potential of conducting surfaces, hence to self clean exposed surfaces while collecting dust samples. It would scan a surface constantly to control its potential, and a plate of the opposite potential. As a first step, an experimental low mass, power, and volume device with complimentary electron and ion guns with specially designed self-cleaning nozzles are being designed for to test our concept and develop a working charging and discharging strategy in the lunar environment. Meanwhile, a laboratory simulation will act as a feasibility study for a laboratory breadboard self-cleaning device based on the use of combined electron or ion beams. The compact device would act as plasma dust sweeper.

  8. Understanding the origin and evolution of water in the Moon through lunar sample studies.

    PubMed

    Anand, Mahesh; Tartèse, Romain; Barnes, Jessica J

    2014-09-13

    A paradigm shift has recently occurred in our knowledge and understanding of water in the lunar interior. This has transpired principally through continued analysis of returned lunar samples using modern analytical instrumentation. While these recent studies have undoubtedly measured indigenous water in lunar samples they have also highlighted our current limitations and some future challenges that need to be overcome in order to fully understand the origin, distribution and evolution of water in the lunar interior. Another exciting recent development in the field of lunar science has been the unambiguous detection of water or water ice on the surface of the Moon through instruments flown on a number of orbiting spacecraft missions. Considered together, sample-based studies and those from orbit strongly suggest that the Moon is not an anhydrous planetary body, as previously believed. New observations and measurements support the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. Furthermore, an approach combining measurements of water abundance in lunar samples and its hydrogen isotopic composition has proved to be of vital importance to fingerprint and elucidate processes and source(s) involved in giving rise to the lunar water inventory. A number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar wind hydrogen with the lunar soil. Perhaps two of the most striking findings from these recent studies are the revelation that at least some portions of the lunar interior are as water-rich as some Mid-Ocean Ridge Basalt source regions on Earth and that the water in the Earth and the Moon probably share a common origin. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. LUNAR SAMPLES - APOLLO XI - MSC

    NASA Image and Video Library

    1969-07-28

    S69-45009 (27 July 1969) --- This is the first lunar sample that was photographed in detail in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC). The photograph shows a granular, fine-grained, mafic (iron magnesium rich) rock. At this early stage of the examination, this rock appears similar to several igneous rock types found on Earth. The scale is printed backwards due to the photographic configuration in the Vacuum Chamber. The sample number is 10003. This rock was among the samples collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity (EVA) on July 20, 1969.

  10. The Southwest Research Institute ultraviolet reflectance chamber (SwURC): a far ultraviolet reflectometer

    NASA Astrophysics Data System (ADS)

    Winters, Gregory S.; Retherford, Kurt D.; Davis, Michael W.; Escobedo, Stephen M.; Bassett, Eric C.; Patrick, Edward L.; Nagengast, Maggie E.; Fairbanks, Matthew H.; Miles, Paul F.; Parker, Joel W.; Gladstone, G. Randall; Slater, David C.; Stern, S. Alan

    2012-10-01

    We designed and assembled a highly capable UV reflectometer chamber and data acquisition system to provide bidirectional scattering data of various surfaces and materials. This chamber was initially conceived to create laboratory-based UV reflectance measurements of water frost on lunar soil/regolith simulants, to support interpretation of UV reflectance data from the Lyman Alpha Mapping Project ("LAMP") instrument on-board the NASA Lunar Reconnaissance Orbiter spacecraft. A deuterium lamp illuminates surfaces and materials at a fixed 45° incident beam angle over the 115 to 200 nm range via a monochromator, while a photomultiplier tube detector is scanned to cover emission angles -85° to +85° (with a gap from -60° to -30°, due to the detector blocking the incident beam). Liquid nitrogen cools the material/sample mount when desired. The chamber can be configured to test a wide range of samples and materials using sample trays and holders. Test surfaces to date include aluminum mirrors, water ice, reflectance standards, and frozen mixtures of water and lunar soil/regolith stimulant. Future UV measurements planned include Apollo lunar samples, meteorite samples, other ices, minerals, and optical surfaces. Since this chamber may well be able to provide useful research data for groups outside Southwest Research Institute, we plan to take requests from and collaborate with others in the UV and surface reflection research community.

  11. Saturn Apollo Program

    NASA Image and Video Library

    1971-07-31

    This is a photo of the Apollo 15 Lunar Module, Falcon, on the lunar surface. Apollo 15 launched from Kennedy Space Center (KSC) on July 26, 1971 via a Saturn V launch vehicle. Aboard was a crew of three astronauts including David R. Scott, Mission Commander; James B. Irwin, Lunar Module Pilot; and Alfred M. Worden, Command Module Pilot. The first mission designed to explore the Moon over longer periods, greater ranges and with more instruments for the collection of scientific data than on previous missions, the mission included the introduction of a $40,000,000 lunar roving vehicle (LRV) that reached a top speed of 16 kph (10 mph) across the Moon's surface. The successful Apollo 15 lunar landing mission was the first in a series of three advanced missions planned for the Apollo program. The primary scientific objectives were to observe the lunar surface, survey and sample material and surface features in a preselected area of the Hadley-Apennine region, setup and activation of surface experiments and conduct in-flight experiments and photographic tasks from lunar orbit. Apollo 15 televised the first lunar liftoff and recorded a walk in deep space by Alfred Worden. Both the Saturn V rocket and the LRV were developed at the Marshall Space Flight Center.

  12. LUNAR SAMPLES - APOLLO XVI - JSC

    NASA Image and Video Library

    1975-03-18

    S75-23543 (April 1972) --- This Apollo 16 lunar sample (moon rock) was collected by astronaut John W. Young, commander of the mission, about 15 meters southwest of the landing site. This rock weighs 128 grams when returned to Earth. The sample is a polymict breccia. This rock, like all lunar highland breccias, is very old, about 3,900,000,000 years older than 99.99% of all Earth surface rocks, according to scientists. Scientific research is being conducted on the balance of this sample at NASA's Johnson Space Center and at other research centers in the United States and certain foreign nations under a continuing program of investigation involving lunar samples collected during the Apollo program.

  13. Using Lunar Sample Disks and Resources to Promote Scientific Inquiry

    NASA Technical Reports Server (NTRS)

    Graff, Paige; Allen, Jaclyn; Runco, Susan

    2014-01-01

    This poster presentation will illustrate the use of NASA Lunar Sample Disks and resources to promote scientific inquiry and address the Next Generation Science Standards. The poster will present information on the Lunar Sample Disks, housed and managed by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center. The poster will also present information on an inquiry-based planetary sample and impact cratering unit designed to introduce students in grades 4-10 to the significance of studying the rocks, soils, and surfaces of a planetary world. The unit, consisting of many hands-on activities, provides context and background information to enhance the impact of the Lunar Sample Disks.

  14. Lunar vertical-shaft mining system

    NASA Technical Reports Server (NTRS)

    Introne, Steven D. (Editor); Krause, Roy; Williams, Erik; Baskette, Keith; Martich, Frederick; Weaver, Brad; Meve, Jeff; Alexander, Kyle; Dailey, Ron; White, Matt

    1994-01-01

    This report proposes a method that will allow lunar vertical-shaft mining. Lunar mining allows the exploitation of mineral resources imbedded within the surface. The proposed lunar vertical-shaft mining system is comprised of five subsystems: structure, materials handling, drilling, mining, and planning. The structure provides support for the exploration and mining equipment in the lunar environment. The materials handling subsystem moves mined material outside the structure and mining and drilling equipment inside the structure. The drilling process bores into the surface for the purpose of collecting soil samples, inserting transducer probes, or locating ore deposits. Once the ore deposits are discovered and pinpointed, mining operations bring the ore to the surface. The final subsystem is planning, which involves the construction of the mining structure.

  15. Microphysical, microchemical, and adhesive properties of lunar material. III - Gas interaction with lunar material.

    NASA Technical Reports Server (NTRS)

    Grossman, J. J.; Mukherjee, N. R.; Ryan, J. A.

    1972-01-01

    Gas adsorption measurements on an Apollo 12 ultrahigh vacuum-stored sample and Apollo 14 and 15 N2-stored samples, show that the cosmic ray track and solar wind damaged surface of lunar soil is very reactive. Room temperature monolayer adsorption of N2 by the Apollo 12 sample at 0.0001 atm was observed. Gas evolution of Apollo 14 lunar soil at liquid nitrogen temperature during adsorption/desorption cycling is probably due to cosmic ray track stored energy release accompanied by solar gas release from depths of 100-200 nm.

  16. Lunar Mare Basalts as Analogues for Martian Volcanic Compositions: Evidence from Visible, Near-IR, and Thermal Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Graff, T. G.; Morris, R. V.; Christensen, P. R.

    2003-01-01

    The lunar mare basalts potentially provide a unique sample suite for understanding the nature of basalts on the martian surface. Our current knowledge of the mineralogical and chemical composition of the basaltic material on Mars comes from studies of the basaltic martian meteorites and from orbital and surface remote sensing observations. Petrographic observations of basaltic martian meteorites (e.g., Shergotty, Zagami, and EETA79001) show that the dominant phases are pyroxene (primarily pigeonite and augite), maskelynite (a diaplectic glass formed from plagioclase by shock), and olivine [1,2]. Pigeonite, a low calcium pyroxene, is generally not found in abundance in terrestrial basalts, but does often occur on the Moon [3]. Lunar samples thus provide a means to examine a variety of pigeonite-rich basalts that also have bulk elemental compositions (particularly low-Ti Apollo 15 mare basalts) that are comparable to basaltic SNC meteorites [4,5]. Furthermore, lunar basalts may be mineralogically better suited as analogues of the martian surface basalts than the basaltic martian meteorites because the plagioclase feldspar in the basaltic Martian meteorites, but not in the lunar surface basalts, is largely present as maskelynite [1,2]. Analysis of lunar mare basalts my also lead to additional endmember spectra for spectral libraries. This is particularly important analysis of martian thermal emission spectra, because the spectral library apparently contains a single pigeonite spectrum derived from a synthetic sample [6].

  17. Lander and rover exploration on the lunar surface: A study for SELENE-B mission

    NASA Astrophysics Data System (ADS)

    Selene-B Rover Science Group; Sasaki, S.; Sugihara, T.; Saiki, K.; Akiyama, H.; Ohtake, M.; Takeda, H.; Hasebe, N.; Kobayashi, M.; Haruyama, J.; Shirai, K.; Kato, M.; Kubota, T.; Kunii, Y.; Kuroda, Y.

    The SELENE-B, a lunar landing mission, has been studied in Japan, where a scientific investigation plan is proposed using a robotic rover and a static lander. The main theme to be investigated is to clarify the lunar origin and evolution, especially for early crustal formation process probably from the ancient magma ocean. The highest priority is placed on a direct in situ geology at a crater central peak, “a window to the interior”, where subcrustal materials are exposed and directly accessed without drilling. As a preliminary study was introduced by Sasaki et al. [Sasaki, S., Kubota, T., Okada, T. et al. Scientific exploration of lunar surface using a rover in Japanse future lunar mission. Adv. Space Res. 30, 1921 1926, 2002.], the rover and lander are jointly used, where detailed analyses of the samples collected by the rover are conducted at the lander. Primary scientific instruments are a multi-band stereo imager, a gamma-ray spectrometer, and a sampling tool on the rover, and a multi-spectral telescopic imager, a sampling system, and a sample analysis package with an X-ray spectrometer/diffractometer, a multi-band microscope as well as a sample cleaning and grinding device on the lander.

  18. Conceptual Design of a Communications Relay Satellite for a Lunar Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Brunner, Christopher W.

    2005-01-01

    In 2003, NASA solicited proposals for a robotic exploration of the lunar surface. Submissions were requested for a lunar sample return mission from the South Pole-Aitken Basin. The basin is of interest because it is thought to contain some of the oldest accessible rocks on the lunar surface. A mission is under study that will land a spacecraft in the basin, collect a sample of rock fragments, and return the sample to Earth. Because the Aitken Basin is on the far side of the Moon, the lander will require a communications relay satellite (CRS) to maintain contact with the Earth during its surface operation. Design of the CRS's orbit is therefore critical. This paper describes a mission design which includes potential transfer and mission orbits, required changes in velocity, orbital parameters, and mission dates. Several different low lunar polar orbits are examined to compare their availability to the lander versus the distance over which they must communicate. In addition, polar orbits are compared to a halo orbit about the Earth-Moon L2 point, which would permit continuous communication at a cost of increased fuel requirements and longer transmission distances. This thesis also examines some general parameters of the spacecraft systems for the mission under study. Mission requirements for the lander dictate the eventual choice of mission orbit. This mission could be the first step in a period of renewed lunar exploration and eventual human landings.

  19. Lunar Meteorites: A Global Geochemical Dataset

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.; Joy, K. H.; Arai, T.; Gross, J.; Korotev, R. L.; McCubbin, F. M.

    2017-01-01

    To date, the world's meteorite collections contain over 260 lunar meteorite stones representing at least 120 different lunar meteorites. Additionally, there are 20-30 as yet unnamed stones currently in the process of being classified. Collectively these lunar meteorites likely represent 40-50 distinct sampling locations from random locations on the Moon. Although the exact provenance of each individual lunar meteorite is unknown, collectively the lunar meteorites represent the best global average of the lunar crust. The Apollo sites are all within or near the Procellarum KREEP Terrane (PKT), thus lithologies from the PKT are overrepresented in the Apollo sample suite. Nearly all of the lithologies present in the Apollo sample suite are found within the lunar meteorites (high-Ti basalts are a notable exception), and the lunar meteorites contain several lithologies not present in the Apollo sample suite (e.g., magnesian anorthosite). This chapter will not be a sample-by-sample summary of each individual lunar meteorite. Rather, the chapter will summarize the different types of lunar meteorites and their relative abundances, comparing and contrasting the lunar meteorite sample suite with the Apollo sample suite. This chapter will act as one of the introductory chapters to the volume, introducing lunar samples in general and setting the stage for more detailed discussions in later more specialized chapters. The chapter will begin with a description of how lunar meteorites are ejected from the Moon, how deep samples are being excavated from, what the likely pairing relationships are among the lunar meteorite samples, and how the lunar meteorites can help to constrain the impactor flux in the inner solar system. There will be a discussion of the biases inherent to the lunar meteorite sample suite in terms of underrepresented lithologies or regions of the Moon, and an examination of the contamination and limitations of lunar meteorites due to terrestrial weathering. The bulk of the chapter will use examples from the lunar meteorite suite to examine important recent advances in lunar science, including (but not limited to the following: (1) Understanding the global compositional diversity of the lunar surface; (2) Understanding the formation of the ancient lunar primary crust; (3) Understanding the diversity and timing of mantle melting, and secondary crust formation; (4) Comparing KREEPy lunar meteorites to KREEPy Apollo samples as evidence of variability within the PKT; and (5) A better understanding of the South Pole Aitken Basin through lunar meteorites whose provenance are within that Terrane.

  20. The Uppermost Surface of the Moon

    NASA Technical Reports Server (NTRS)

    Noble, Sarah K.

    2009-01-01

    The Ap16 Clam shell Sampling Devices (CSSDs) were designed to sample the uppermost surface of lunar soil. The two devices used beta cloth (69003) and velvet (69004) to collect soil from the top 100 and 500 micrometers of the soil, respectively. Due to the difficulty of the sampling method, little material was collected and as a result little research has been done on these samples. Initial studies attempted to look at the material which had fallen off of the fabrics and was subsequently collected from inside the sample containers. However, this material was highly fractionated and did not provide an adequate picture of the uppermost surface. Recently, samples were obtained directly from the beta cloth using carbon tape. While still fractionated, these samples provide a unique glimpse into the undisturbed soil exposed at the lunar surface.

  1. Ion microprobe mass analysis of lunar samples. Lunar sample program

    NASA Technical Reports Server (NTRS)

    Anderson, C. A.; Hinthorne, J. R.

    1971-01-01

    Mass analyses of selected minerals, glasses and soil particles of lunar, meteoritic and terrestrial rocks have been made with the ion microprobe mass analyzer. Major, minor and trace element concentrations have been determined in situ in major and accessory mineral phases in polished rock thin sections. The Pb isotope ratios have been measured in U and Th bearing accessory minerals to yield radiometric age dates and heavy volatile elements have been sought on the surfaces of free particles from Apollo soil samples.

  2. Determination of secondary electron emission characteristics of lunar soil samples

    NASA Technical Reports Server (NTRS)

    Gold, T.; Baron, R. L.; Bilson, E.

    1979-01-01

    A procedure is described for the determination of the 'apparent crossover voltage', i.e. the value of the primary (bombarding) electron energy at which an insulating sample surface changes the average sign of its charge. This apparent crossover point is characteristic of the secondary emission properties of insulating powders such as the lunar soil samples. Lunar core samples from well-defined, distinct soil layers are found to differ significantly in their secondary emission properties. This observation supports the suggestion that soil layers were deposited by an electrostatic transport process.

  3. The Neutral Mass Spectrometer on the Lunar Atmosphere and Dust Environment Explorer Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Hodges, R. Richard; Benna, Mehdi; King, Todd; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carigan, Daniel; Errigo, Therese; Harpold, Daniel N.; hide

    2014-01-01

    The Neutral Mass Spectrometer (NMS) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission is designed to measure the composition and variability of the tenuous lunar atmosphere. The NMS complements two other instruments on the LADEE spacecraft designed to secure spectroscopic measurements of lunar composition and in situ measurement of lunar dust over the course of a 100-day mission in order to sample multiple lunation periods. The NMS utilizes a dual ion source designed to measure both surface reactive and inert species and a quadrupole analyzer. The NMS is expected to secure time resolved measurements of helium and argon and determine abundance or upper limits for many other species either sputtered or thermally evolved from the lunar surface.

  4. Lunar sample 14425 - Characterization and resemblance to high-magnesium microtektites

    NASA Technical Reports Server (NTRS)

    Berliner, L.; Fujii, H.

    1985-01-01

    Measurements by energy-dispersive X-ray analysis of the surface of lunar sample 14425, a large glass bead, yield a noritic composition enriched in aluminum and magnesium and, as compared with other norites, depleted in iron and especially calcium. The sample is close in composition to the most basic microtektites. Spherical inclusions of nickel-iron, flattened where they protrude, are found to be enriched in sulfur and phosphorus, at least at the surface. The inclusions form approximately 1 percent of the volume.

  5. Drawings of the Modular Equipment Transporter and Hand Tool Carrier

    NASA Image and Video Library

    1970-10-12

    S70-50762 (November 1970) --- A line drawing illustrating layout view of the modular equipment transporter (MET) and its equipment. A MET (or Rickshaw, as it has been nicknamed) will be used on the lunar surface for the first time during the Apollo 14 lunar landing mission. The Rickshaw will serve as a portable workbench with a place for the Apollo lunar hand tools (ALHT) and their carrier, three cameras, two sample container bags, a special environment sample container (SESC), a lunar portable magnetometer (LPM) and spare film magazines.

  6. The carbon chemistry of the moon.

    NASA Technical Reports Server (NTRS)

    Eglinton, G.; Maxwell, J. R.; Pillinger, C. T.

    1972-01-01

    The analysis of lunar samples has shown that the carbon chemistry of the moon is entirely different from the carbon chemistry of the earth. Lunar carbon chemistry is more closely related to cosmic physics than to conventional organic chemistry. Sources of carbon on the moon are considered, giving attention to meteorites and the solar wind. The approaches used in the analysis of the samples are discussed, taking into account the method of gas chromatography employed and procedures used by bioscience investigators in the study of the lunar fines. The presence of indigenous methane and carbide in the lunar fines was established. Reactions and processes taking place on the lunar surface are discussed.

  7. Saturn Apollo Program

    NASA Image and Video Library

    1969-02-25

    In this photograph, Apollo 11 astronauts Edwin (Buzz) Aldrin (left) and Neil A. Armstrong prepare for the first Lunar landing as they practice gathering rock specimens during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas. They used special lunar geological tools to pick up samples and place them in bags.Their practice paid off in July of the same year. Aboard the Marshall Space Fight center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from the Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of Armstrong, commander; Aldrin, Lunar Module pilot; and a third astronaut Michael Collins, Command Module pilot. Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin, while Collins remained in lunar orbit. The crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. The lunar surface exploration was concluded in 2½ hours.

  8. Lunar Surface Architecture Utilization and Logistics Support Assessment

    NASA Astrophysics Data System (ADS)

    Bienhoff, Dallas; Findiesen, William; Bayer, Martin; Born, Andrew; McCormick, David

    2008-01-01

    Crew and equipment utilization and logistics support needs for the point of departure lunar outpost as presented by the NASA Lunar Architecture Team (LAT) and alternative surface architectures were assessed for the first ten years of operation. The lunar surface architectures were evaluated and manifests created for each mission. Distances between Lunar Surface Access Module (LSAM) landing sites and emplacement locations were estimated. Physical characteristics were assigned to each surface element and operational characteristics were assigned to each surface mobility element. Stochastic analysis was conducted to assess probable times to deploy surface elements, conduct exploration excursions, and perform defined crew activities. Crew time is divided into Outpost-related, exploration and science, overhead, and personal activities. Outpost-related time includes element deployment, EVA maintenance, IVA maintenance, and logistics resupply. Exploration and science activities include mapping, geological surveys, science experiment deployment, sample analysis and categorizing, and physiological and biological tests in the lunar environment. Personal activities include sleeping, eating, hygiene, exercising, and time off. Overhead activities include precursor or close-out tasks that must be accomplished but don't fit into the other three categories such as: suit donning and doffing, airlock cycle time, suit cleaning, suit maintenance, post-landing safing actions, and pre-departure preparations. Equipment usage time, spares, maintenance actions, and Outpost consumables are also estimated to provide input into logistics support planning. Results are normalized relative to the NASA LAT point of departure lunar surface architecture.

  9. Apollo Science

    ERIC Educational Resources Information Center

    Biggar, G. M.

    1973-01-01

    Summarizes the scientific activities of the Apollo program, including findings from analyses of the returned lunar sample. Descriptions are made concerning the possible origin of the moon and the formation of the lunar surface. (CC)

  10. Origin and evolution of the lunar regolith; Proceedings of the Symposium, Houston, Tex., November 13-15, 1974

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The papers consider the origin and evolution of the lunar regolith utilizing data obtained during American and Soviet manned and unmanned lunar missions as well as surface and orbital observations, photography, sample collections, and experimental studies. Topics include the transport and emplacement of crater and basin deposits, development of the mare regolith, the shallow lunar structure as determined from the passive seismic experiment, horizontal transport of the regolith, the origin of the exotic component and KREEP-rich materials, the influx of interplanetary materials onto the moon, stratification in the lunar regolith, catastrophic rupture of lunar rocks, cosmic-ray exposure ages of surface features, breccia formation by sintering and crystallization, evolution of the lunar soil, and effects of maturation on the reflectance of the regolith. Individual items are announced in this issue.

  11. Apollo 11 Astronauts Train For Lunar Rock Collection

    NASA Technical Reports Server (NTRS)

    1969-01-01

    In this photograph, Apollo 11 astronauts Edwin (Buzz) Aldrin (left) and Neil A. Armstrong prepare for the first Lunar landing as they practice gathering rock specimens during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas. They used special lunar geological tools to pick up samples and place them in bags.Their practice paid off in July of the same year. Aboard the Marshall Space Fight center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from the Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of Armstrong, commander; Aldrin, Lunar Module pilot; and a third astronaut Michael Collins, Command Module pilot. Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin, while Collins remained in lunar orbit. The crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. The lunar surface exploration was concluded in 2½ hours.

  12. Integration of Apollo Lunar Sample Data into Google Moon

    NASA Technical Reports Server (NTRS)

    Dawson, Melissa D.; Todd, Nancy S.; Lofgren, Gary

    2010-01-01

    The Google Moon Apollo Lunar Sample Data Integration project is a continuation of the Apollo 15 Google Moon Add-On project, which provides a scientific and educational tool for the study of the Moon and its geologic features. The main goal of this project is to provide a user-friendly interface for an interactive and educational outreach and learning tool for the Apollo missions. Specifically, this project?s focus is the dissemination of information about the lunar samples collected during the Apollo missions by providing any additional information needed to enhance the Apollo mission data on Google Moon. Apollo missions 15 and 16 were chosen to be completed first due to the availability of digitized lunar sample photographs and the amount of media associated with these missions. The user will be able to learn about the lunar samples collected in these Apollo missions, as well as see videos, pictures, and 360 degree panoramas of the lunar surface depicting the lunar samples in their natural state, following collection and during processing at NASA. Once completed, these interactive data layers will be submitted for inclusion into the Apollo 15 and 16 missions on Google Moon.

  13. Dielectric properties of lunar surface

    NASA Astrophysics Data System (ADS)

    Yushkova, O. V.; Kibardina, I. N.

    2017-03-01

    Measurements of the dielectric characteristics of lunar soil samples are analyzed in the context of dielectric theory. It has been shown that the real component of the dielectric permittivity and the loss tangent of rocks greatly depend on the frequency of the interacting electromagnetic field and the soil temperature. It follows from the analysis that one should take into account diurnal variations in the lunar surface temperature when interpreting the radar-sounding results, especially for the gigahertz radio range.

  14. Study of variability of permittivity and its mapping over lunar surface and subsurface using multisensors datasets

    NASA Astrophysics Data System (ADS)

    Calla, O. P. N.; Mathur, Shubhra; Gadri, Kishan Lal; Jangid, Monika

    2016-12-01

    In the present paper, permittivity maps of equatorial lunar surface are generated using brightness temperature (TB) data obtained from Microwave Radiometer (MRM) of Chang'e-1 and physical temperature (TP) data obtained from Diviner of Lunar Reconnaissance Orbiter (LRO). Here, permittivity mapping is not carried out above 60° latitudes towards the lunar poles due to large anomaly in the physical temperature obtained from the Diviner. Microwave frequencies, which are used to generate these maps are 3 GHz, 7.8 GHz, 19.35 GHz and 37 GHz. Permittivity values are simulated using TB values at these four frequencies. Here, weighted average of physical temperature obtained from Diviner are used to compute permittivity at each microwave frequencies. Longer wavelengths of microwave signals give information of more deeper layers of the lunar surface as compared to smaller wavelength. Initially, microwave emissivity is estimated using TB values from MRM and physical temperature (TP) from Diviner. From estimated emissivity the real part of permittivity (ε), is calculated using Fresnel equations. The permittivity maps of equatorial lunar surface is generated. The simulated permittivity values are normalized with respect to density for easy comparison of simulated permittivity values with the permittivity values of Apollo samples as well as with the permittivity values of Terrestrial Analogue of Lunar Soil (TALS) JSC-1A. Lower value of dielectric constant (ε‧) indicates that the corresponding lunar surface is smooth and doesn't have rough rocky terrain. Thus a future lunar astronaut can use these data to decide proper landing site for future lunar missions. The results of this paper will serve as input to future exploration of lunar surface.

  15. Effect of Space Radiation Processing on Lunar Soil Surface Chemistry: X-Ray Photoelectron Spectroscopy Studies

    NASA Technical Reports Server (NTRS)

    Dukes, C.; Loeffler, M.J.; Baragiola, R.; Christoffersen, R.; Keller, J.

    2009-01-01

    Current understanding of the chemistry and microstructure of the surfaces of lunar soil grains is dominated by a reference frame derived mainly from electron microscopy observations [e.g. 1,2]. These studies have shown that the outermost 10-100 nm of grain surfaces in mature lunar soil finest fractions have been modified by the combined effects of solar wind exposure, surface deposition of vapors and accretion of impact melt products [1,2]. These processes produce surface-correlated nanophase Feo, host grain amorphization, formation of surface patinas and other complex changes [1,2]. What is less well understood is how these changes are reflected directly at the surface, defined as the outermost 1-5 atomic monolayers, a region not easily chemically characterized by TEM. We are currently employing X-ray Photoelectron Spectroscopy (XPS) to study the surface chemistry of lunar soil samples that have been previously studied by TEM. This work includes modification of the grain surfaces by in situ irradiation with ions at solar wind energies to better understand how irradiated surfaces in lunar grains change their chemistry once exposed to ambient conditions on earth.

  16. Direct measurement of surface carbon concentrations. [in lunar soil

    NASA Technical Reports Server (NTRS)

    Filleux, C.; Tombrello, T. A.; Burnett, D. S.

    1977-01-01

    Measurements of surface concentrations of carbon in lunar soils and soil breccias provide information on the origin of carbon in the regolith. The reaction C-12 (d, p sub zero) is used to measure 'surface' and 'volume' concentrations in lunar samples. This method has a depth resolution of 1 micron, which permits only a 'surface' and a 'volume' component to be measured. Three of four Apollo 16 double drive tube samples show a surface carbon concentration of about 8 by 10 to the 14th power/sq cm, whereas the fourth sample gave 4 by 10 to the 14th power/sq cm. It can be convincingly shown that the measured concentration does not originate from fluorocarbon or hydrocarbon contaminants. Surface adsorbed layers of CO or CO2 are removed by a sputter cleaning procedure using a 2-MeV F beam. It is shown that the residual C concentration of 8 by 10 to the 14th power/sq cm cannot be further reduced by increased F fluence, and it is therefore concluded that it is truly lunar. If one assumes that the measured surface C concentration is a steady-state concentration determined only by a balance between solar-wind implantation and sputtering, a sputter erosion rate of 0.1 A/yr is obtained. However, it would be more profitable to use an independently derived sputter erosion rate to test the hypothesis of a solar-wind origin of the surface carbon.

  17. Molecular Diffusion of Volatiles in Lunar Regolith during the Resource Prospector Mission Sample Acquisition

    NASA Astrophysics Data System (ADS)

    Teodoro, L. A.; Colaprete, A.; Roush, T. L.; Elphic, R. C.; Cook, A.; Kleinhenz, J.; Fritzler, E.; Smith, J. T.; Zacny, K.

    2016-12-01

    In the context of NASA's Resource Prospector (RP) mission to the high latitudes and permanently shadowed regions of the Moon, we study 3D models of volatile transport in the lunar regolith. This mission's goal is to extract and identify volatile species in the top meter of the lunar regolith layer. Roughly, RP consists of 5 elements: i) the Neutron Spectrometer System will search for high hydrogen concentrations and in turn select optimum drilling locations; ii) The Near Infrared Volatile Spectrometer System (NIRVSS) will characterize the nature of the surficial water ice; iii) The Drill Sub-system will extract samples from the top meter of the lunar surface and deliver them to the Oxygen and Volatile Extraction Node (OVEN); iv) OVEN will heat up the sample and extract the volatiles therein, that will be v) transferred to the Lunar Advanced Volatiles Analysis system for chemical composition analysis. A series of vacuum cryogenic experiments have been carried out at Glenn Research Center with the aim of quantifying the volatile losses during the drilling/sample acquisition phase and sample delivery to crucibles steps. These experiments' outputs include: i) Pressure measurements of several chemical species (e.g. H2O, Ar); ii) Temperature measurements within and at the surface of the lunar simulant using thermocouples; and iii) Surficial temperature NIRVSS measurements. Here, we report on the numerical modeling we are carrying out to understand the physics underpinning these experiments. The models include 2 main parts: i) reliable computation of temperature variation throughout the lunar soil container during the experiment as constrained by temperature measurements; and ii) molecular diffusion of volatiles. The latter includes both Fick's (flight of the molecules in the porous) and Knudsen's (sublimation of volatile molecules at the grain surface) laws. We also mimic the soil porosity by randomly allocating 75 microns particles in the simulation volume. Our preliminary results show both diffusion laws play a major role during the drilling phase.

  18. Soil mechanics

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Carrier, W. D., III; Houston, W. N.; Scott, R. F.; Bromwell, L. G.; Durgunoglu, H. T.; Hovland, H. J.; Treadwell, D. D.; Costes, N. C.

    1972-01-01

    Preliminary results are presented of an investigation of the physical and mechanical properties of lunar soil on the Descartes slopes, and the Cayley Plains in the vicinity of the LM for Apollo 16. The soil mechanics data were derived form (1) crew commentary and debriefings, (2) television, (3) lunar surface photography, (4) performance data and observations of interactions between soil and lunar roving vehicle, (5) drive-tube and deep drill samples, (6) sample characteristics, and (7) measurements using the SRP. The general characteristics, stratigraphy and variability are described along with the core samples, penetrometer test results, density, porosity and strength.

  19. Mossbauer analysis of Luna 16 lunar surface material

    NASA Technical Reports Server (NTRS)

    Nady, D. L.; Cher, L.; Kulcsar, K.

    1974-01-01

    Samples of Apollo 11 lunar surface material were studied by the Mossbauer effect. Owing to the small number of other resonant isotopes, all measurements were made with Fe-57 nuclei. The principal constituents of the material were as follows: Iron containing silicates (olivine, pyroxene, and so on), ilmenite (FeTiO3), and metallic iron.

  20. On prediction and discovery of lunar ores

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Colson, Russell O.; Vaniman, David

    1991-01-01

    Sampling of lunar material and remote geochemical, mineralogical, and photogeologic sensing of the lunar surface, while meager, provide first-cut information about lunar composition and geochemical separation processes. Knowledge of elemental abundances in known lunar materials indicates which common lunar materials might serve as ores if there is economic demand and if economical extraction processes can be developed, remote sensing can be used to extend the understanding of the Moon's major geochemical separations and to locate potential ore bodies. Observed geochemical processes might lead to ores of less abundant elements under extreme local conditions.

  1. Towards a Selenographic Information System: Apollo 15 Mission Digitization

    NASA Astrophysics Data System (ADS)

    Votava, J. E.; Petro, N. E.

    2012-12-01

    The Apollo missions represent some of the most technically complex and extensively documented explorations ever endeavored by mankind. The surface experiments performed and the lunar samples collected in-situ have helped form our understanding of the Moon's geologic history and the history of our Solar System. Unfortunately, a complication exists in the analysis and accessibility of these large volumes of lunar data and historical Apollo Era documents due to their multiple formats and disconnected web and print locations. Described here is a project to modernize, spatially reference, and link the lunar data into a comprehensive SELENOGRAPHIC INFORMATION SYSTEM, starting with the Apollo 15 mission. Like its terrestrial counter-parts, Geographic Information System (GIS) programs, such as ArcGIS, allow for easy integration, access, analysis, and display of large amounts of spatially-related data. Documentation in this new database includes surface photographs, panoramas, samples and their laboratory studies (major element and rare earth element weight percents), planned and actual vehicle traverses, and field notes. Using high-resolution (<0.25 m/pixel) images from the Lunar Reconnaissance Orbiter Camera (LROC) the rover (LRV) tracks and astronaut surface activities, along with field sketches from the Apollo 15 Preliminary Science Report (Swann, 1972), were digitized and mapped in ArcMap. Point features were created for each documented sample within the Lunar Sample Compendium (Meyer, 2010) and hyperlinked to the appropriate Compendium file (.PDF) at the stable archive site: http://curator.jsc.nasa.gov/lunar/compendium.cfm. Historical Apollo Era photographs and assembled panoramas were included as point features at each station that have been hyperlinked to the Apollo Lunar Surface Journal (ALSJ) online image library. The database has been set up to allow for the easy display of spatial variation of select attributes between samples. Attributes of interest that have data from the Compendium added directly into the database include age (Ga), mass, texture, major oxide elements (weight %), and Th and U (ppm). This project will produce an easily accessible and linked database that can offer technical and scientific information in its spatial context. While it is not possible given the enormous amounts of data, and the small allotment of time, to enter and/or link every detail to its map layer, the links that have been made here direct the user to rich, stable archive websites and web-based databases that are easy to navigate. While this project only created a product for the Apollo 15 mission, it is the model for spatially-referencing the other Apollo missions. Such a comprehensive lunar surface-activities database, a Selenographic Information System, will likely prove invaluable for future lunar studies. References: Meyer, C. (2010), The lunar sample compendium, June 2012 to August 2012, http://curator.jsc.nasa.gov/lunar/compendium.cfm, Astromaterials Res. & Exploration Sci., NASA L. B. Johnson Space Cent., Houston, TX. Swann, G. A. (1972), Preliminary geologic investigation of the Apollo 15 landing site, in Apollo 15 Preliminary Science Report, [NASA SP-289], pp. 5-1 - 5-112, NASA Manned Spacecraft Cent., Washington, D.C.

  2. Determination of hydrogen abundance in selected lunar soils

    NASA Technical Reports Server (NTRS)

    Bustin, Roberta

    1987-01-01

    Hydrogen was implanted in lunar soil through solar wind activity. In order to determine the feasibility of utilizing this solar wind hydrogen, it is necessary to know not only hydrogen abundances in bulk soils from a variety of locations but also the distribution of hydrogen within a given soil. Hydrogen distribution in bulk soils, grain size separates, mineral types, and core samples was investigated. Hydrogen was found in all samples studied. The amount varied considerably, depending on soil maturity, mineral types present, grain size distribution, and depth. Hydrogen implantation is definitely a surface phenomenon. However, as constructional particles are formed, previously exposed surfaces become embedded within particles, causing an enrichment of hydrogen in these species. In view of possibly extracting the hydrogen for use on the lunar surface, it is encouraging to know that hydrogen is present to a considerable depth and not only in the upper few millimeters. Based on these preliminary studies, extraction of solar wind hydrogen from lunar soil appears feasible, particulary if some kind of grain size separation is possible.

  3. A Multi-Decadal Sample Return Campaign Will Advance Lunar and Solar System Science and Exploration by 2050

    NASA Technical Reports Server (NTRS)

    Neal, C. R.; Lawrence, S. J.

    2017-01-01

    There have been 11 missions to the Moon this century, 10 of which have been orbital, from 5 different space agencies. China became the third country to successfully soft-land on the Moon in 2013, and the second to successfully remotely operate a rover on the lunar surface. We now have significant global datasets that, coupled with the 1990s Clementine and Lunar Prospector missions, show that the sample collection is not representative of the lithologies present on the Moon. The M3 data from the Indian Chandrayaan-1 mission have identified lithologies that are not present/under-represented in the sample collection. LRO datasets show that volcanism could be as young as 100 Ma and that significant felsic complexes exist within the lunar crust. A multi-decadal sample return campaign is the next logical step in advancing our understanding of lunar origin and evolution and Solar System processes.

  4. Strength and compressibility of returned lunar soil.

    NASA Technical Reports Server (NTRS)

    Carrier, W. D., III; Bromwell, L. G.; Martin, R. T.

    1972-01-01

    Two oedometer and three direct shear tests have been performed in vacuum on a 200 g sample of lunar soil from Apollo 12 (12001, 119). The compressibility data have been used to calculate bulk density and shear wave velocity versus depth on the lunar surface. The shear wave velocity was found to increase approximately with the one-fourth power of the depth, and the results suggest that the Apollo 14 Active Seismic Experiment may not have detected the Fra Mauro formation at a depth of 8.5 m, but only naturally consolidated lunar soil. The shear data indicate that the strength of the lunar soil sample is about 65% that of a ground basalt simulant at the same void ratio.

  5. Astronauts Alan Bean and Charles Conrad on Lunar Surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn Five launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. In this photograph, one of the astronauts on the Moon's surface is holding a container of lunar soil. The other astronaut is seen reflected in his helmet. Apollo 12 safely returned to Earth on November 24, 1969.

  6. ESCA studies of lunar surface chemistry. [Electron Spectroscopic Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Grant, R. W.

    1975-01-01

    We have used ESCA to compare the composition of the natural exterior surface in lunar fines samples with that of the interior surface exposed by crushing. Even though the exterior surfaces have been exposed to air a significant amount of Fe in them is reduced. In addition, Ca, Al, and Mg are strongly depleted in exterior surfaces relative to Si, Ti, and Fe. Preferential sputtering by the solar wind is a possible explanation for these changes.

  7. Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Siamidis, John; Larkin, Elizabeth M. G.

    2008-01-01

    A simulation chamber has been developed to test the performance of thermal control surfaces under dusty lunar conditions. The lunar dust adhesion bell jar (LDAB) is a diffusion pumped vacuum chamber (10(exp -8) Torr) built to test material samples less than about 7 cm in diameter. The LDAB has the following lunar dust simulant processing capabilities: heating and cooling while stirring in order to degas and remove adsorbed water; RF air-plasma for activating the dust and for organic contaminant removal; RF H/He-plasma to simulate solar wind; dust sieving system for controlling particle sizes; and a controlled means of introducing the activated dust to the samples under study. The LDAB is also fitted with an in situ Xe arc lamp solar simulator, and a cold box that can reach 30 K. Samples of thermal control surfaces (2.5 cm diameter) are introduced into the chamber for calorimetric evaluation using thermocouple instrumentation. The object of this paper is to present a thermal model of the samples under test conditions and to outline the procedure to extract the absorptance, emittance, and thermal efficiency from the pristine and sub-monolayer dust covered samples.

  8. Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Siamidis, John; Larkin, Elizabeth M.G.

    2008-01-01

    A simulation chamber has been developed to test the performance of thermal control surfaces under dusty lunar conditions. The lunar dust adhesion bell jar (LDAB) is a diffusion pumped vacuum chamber (10-8 Torr) built to test material samples less than about 7 cm in diameter. The LDAB has the following lunar dust stimulant processing capabilities: heating and cooling while stirring in order to degas and remove absorbed water; RF air-plasma for activating the dust and for organic contaminant removal; RF H/He-plasma to simulate solar wind; dust sieving system for controlling particle sizes; and a controlled means of introducing the activated dust to the samples under study. The LDAB is also fitted with an in situ Xe arc lamp solar simulator, and a cold box that can reach 30 K. Samples of thermal control surfaces (2.5 cm diameter) are introduced into the chamber for calorimetric evaluation using thermocouple instrumentation. The object of this paper is to present a thermal model of the samples under test conditions, and to outline the procedure to extract the absorptance, emittance, and thermal efficiency from the pristine and sub-monolayer dust covered samples

  9. Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Siamidis, John; Larkin, Elizabeth M. G.

    2010-01-01

    A simulation chamber has been developed to test the performance of thermal control surfaces under dusty lunar conditions. The lunar dust adhesion bell jar (LDAB) is a diffusion pumped vacuum chamber (10(exp -8) Torr) built to test material samples less than about 7 cm in diameter. The LDAB has the following lunar dust simulant processing capabilities: heating and cooling while stirring in order to degas and remove adsorbed water; RF air-plasma for activating the dust and for organic contaminant removal; RF H/He-plasma to simulate solar wind; dust sieving system for controlling particle sizes; and a controlled means of introducing the activated dust to the samples under study. The LDAB is also fitted with an in situ Xe arc lamp solar simulator, and a cold box that can reach 30 K. Samples of thermal control surfaces (2.5 cm diameter) are introduced into the chamber for calorimetric evaluation using thermocouple instrumentation. The object of this paper is to present a thermal model of the samples under test conditions and to outline the procedure to extract the absorptance, emittance, and thermal efficiency from the pristine and sub-monolayer dust covered samples.

  10. Investigations of lunar materials

    NASA Technical Reports Server (NTRS)

    Comstock, G. M.; Fvwaraye, A. O.; Fleischer, R. L.; Hart, H. R., Jr.

    1972-01-01

    The investigations were directed at determining the radiation history and surface chronology of lunar materials using the etched particle track technique. The major lunar materials studied are the igneous rocks and double core from Apollo 12, the breccia and soil samples from Apollo 14, and the core samples from Luna 16. In the course of this work two new and potentially important observations were made: (1) Cosmic ray-induced spallation-recoil tracks were identified. The density of such tracks, when compared with the density of tracks induced by a known flux of accelerator protons, yields the time of exposure of a sample within the top meter or two of moon's surface. (2) Natural, fine scale plastic deformation was found to have fragmented pre-existing charged particle tracks, allowing the dating of the mechanical event causing the deformation.

  11. View Seventeen of Lunar Panoramic Scene

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the seventeenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  12. Analytical definition and proposed concept for the manned infrastructure of a lunar outpost

    NASA Astrophysics Data System (ADS)

    Clément, G.; Braak, L.; Arénalès, O.

    A recent study made by ESA has reviewed the scientific investigations to be only, or best, performed on the Moon (Return to the Moon, ESA SP-1150, June 1992), and has identified the need for a manned lunar outpost to provide support to field geologists in sampling and in-situ observations of the lunar surface, and to allow the refurbishments of surface stations and rovers. Planning and development for a manned outpost on the Moon requires an in-depth understanding and analysis of the functions this outpost is expected to perform. We therefore analyzed the impact of the proposed scientific investigations on the design of a manned lunar outpost. The specific questions raised in our study were: What are the medical, physiological and psychological risks for a crew to stay and to work on the Moon? What transit and lunar surface infrastructures (habitats and vehicles) are needed to minimize those risks?

  13. Understanding the Reactivity of Lunar Dust for Future Lunar Missions

    NASA Technical Reports Server (NTRS)

    Wallace, William; Taylor, L. A.; Jeevarajan, Antony

    2009-01-01

    During the Apollo missions, dust was found to cause numerous problems for various instruments and systems. Additionally, the dust may have caused momentary health issues for some of the astronauts. Therefore, the plan to resume robotic and manned missions to the Moon in the next decade has led to a renewed interest in the properties of lunar dust, ranging from geological to chemical to toxicological. An important property to understand is the reactivity of the dust particles. Due to the lack of an atmosphere on the Moon, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to activate the soil, or produce reactive surface species. On the Moon, these species can be maintained for millennia without oxygen or water vapor present to satisfy the broken bonds. Unfortunately, the Apollo dust samples that were returned to Earth were inadvertently exposed to the atmosphere, causing them to lose their reactive characteristics. In order to aid in the preparation of mitigation techniques prior to returning to the Moon, we measured the ability of lunar dust, lunar dust simulant, and quartz samples to produce hydroxyl radicals in solution[1]. As a first approximation of meteorite impacts on the lunar surface, we ground samples using a mortar and pestle. Our initial studies showed that all three test materials (lunar dust (62241), lunar dust simulant (JSC-1Avf), and quartz) produced hydroxyl radicals after grinding and mixing with water. However, the radical production of the ground lunar dust was approximately 10-fold and 3-fold greater than quartz and JSC-1 Avf, respectively. These reactivity differences between the different samples did not correlate with differences in specific surface area. The increased reactivity produced for the quartz by grinding was attributed to the presence of silicon- or oxygen-based radicals on the surface, as had been seen previously[2]. These radicals may also play a part in the reactivity of the lunar dust and lunar simulant. However, other factors would seem to be required to account for the greatly increased reactivity of the lunar soil. It was proposed that nanometer-size Fe 0 (zero valent) particles in the lunar soil might play a role, as they are not present in quartz or lunar dust simulant. The present work has been performed with the aim of understanding the origin of the considerable reactivity of lunar dust[3]. We have ground 8 lunar soils of varying maturity and source (highland or mare) and measured the hydroxyl-radical production and decay of the reactivity. It was determined that there is a direct correlation between the reactivity and the amount of nanophase metallic iron particles (as a function of soil maturity, I s/FeO, in which Is is the amount of iron present as nanophase iron particles present and FeO is the total iron content) in the samples; thus, the highland soils, with their lesser total FeO content, are less reactive than ground mare soils. Additionally, grinding of nanophase iron simulant [4] showed reactivity in line with the lunar soils and much greater than lunar dust simulant or quartz. Studies aimed at determining the time required to deactivate the reactive soils in a habitable environment showed that the average time to reach 50% of the initial reactivity was approximately 3.5 hours. However, even after one week, none of the soils had returned completely to its unground level of reactivity. In contrast to the reactivity results, there was no obvious correlation between the maturity of the soil and its deactivation time. These results provide the first chemical reactivity and persistence values as an important property of lunar soils, data that is paramount as mankind prepares to return to the Moon.

  14. Building on the Cornerstone: Destinations for Nearside Sample Return

    NASA Technical Reports Server (NTRS)

    Lawrence, S. J.; Jolliff, B. L.; Draper, D.; Stopar, J. D.; Petro, N. E.; Cohen, B. A.; Speyerer, E. J.; Gruener, J. E.

    2016-01-01

    Discoveries from LRO (Lunar Reconnaissance Orbiter) have transformed our knowledge of the Moon, but LRO's instruments were originally designed to collect the measurements required to enable future lunar surface exploration. Compelling science questions and critical resources make the Moon a key destination for future human and robotic exploration. Lunar surface exploration, including rovers and other landed missions, must be part of a balanced planetary science and exploration portfolio. Among the highest planetary exploration priorities is the collection of new samples and their return to Earth for more comprehensive analysis than can be done in-situ. The Moon is the closest and most accessible location to address key science questions through targeted sample return. The Moon is the only other planet from which we have contextualized samples, yet critical issues need to be addressed: we lack important details of the Moon's early and recent geologic history, the full compositional and age ranges of its crust, and its bulk composition.

  15. Lifetime of the Lunar Dynamo Constrained by the Young Apollo Regolith Breccia 15015

    NASA Astrophysics Data System (ADS)

    Wang, H.; Weiss, B. P.

    2016-12-01

    Paleomagnetic studies have shown that a dynamo magnetic field of tens of µT likely existed on the surface of the Moon from at least 4.5 to 3.6 Ga and declined to several µT by 3.3 Ga [Weiss and Tikoo, 2014]. Furthermore, a recent analysis of lunar regolith breccia 15498 found that the lunar surface field was still 5 µT at 1-2.5 Ga [Tikoo et al., 2015]. However, a key unknown is when the dynamo finally ceased. To address this, we studied the melt glass matrix of Apollo lunar regolith breccia 15015. 40Ar/39Ar measurements suggest that the glass formed at 1.0 ± 0.2 Ga [Eglinton et al., 1974], consistent with its trapped 40Ar/36Ar model age of 0.5 ± 0.4 Ga [Fagan et al. 2014]. Hysteresis data indicate a predominately pseudo-single domain grain size, making 15015 an exceptional paleomagnetic recorder among lunar rocks. Alternating field (AF) demagnetization and anhysteretic remanence (ARM) paleointensity experiments found that 15015 subsamples with faces exposed to band-saw cutting at Johnson Space Center contain highly stable natural remanence (NRM) (>420 mT) and yield paleointensities up to 60 µT, but have NRM directions that are highly non-unidirectional across the parent sample. Subsamples taken away from the saw-cut faces (>5 mm depth) contain no stable NRM and formed in a paleofield <0.1 µT (Fig. 1). Thermal demagnetization of band-sawed samples found that their AF-stable NRM demagnetizes by 150ºC, indicating that their stable NRMs are in fact partial thermoremanence (TRM) overprints from the band-saw cutting process, rather than true lunar total TRM. Thus, the lunar surface paleomagnetic field recorded by 15015 was apparently extremely weak (<0.1 µT) at 1.0 Ga. For typically assumed lunar interior parameters, essentially all published models of the lunar dynamo predict surface fields >0.1 µT for > 90% of the time period while the dynamo is active. Such a minimum field is comparable to estimates of the strongest lunar crustal surface fields and below even the weakest known dynamo surface field in the solar system today. Therefore, our 0.1 µT upper limit indicates that the lunar dynamo likely turned off sometime between 2.5 Ga and 1.0 Ga. This timing appears to be consistent with both thermochemical convection due to core crystallization and mantle precession as the major power sources for the late lunar dynamo.

  16. Apollo 16 astronauts take lunar soil sample from Station no.9 during EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    One of the Apollo 16 astronauts takes lunar soil sample at the base of a small boulder at Station no.9 during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. Depressions to th right of the scoop were made when a surface sample was taken. This photograph was taken just before the boulder was rolled over.

  17. Lunar and Meteorite Thin Sections for Undergraduate and Graduate Studies

    NASA Technical Reports Server (NTRS)

    Allen, J.; Galindo, C.; Luckey, M.; Reustle, J.; Todd, N.; Allen, C.

    2012-01-01

    The Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. Between 1969 and 1972 six Apollo missions brought back 382 kilograms of lunar rocks, core samples, pebbles, sand and dust from the lunar surface. JSC also curates meteorites collected on US expeditions to Antarctica including rocks from Moon, Mars, and many asteroids including Vesta. Studies of rock and soil samples from the Moon and meteorites continue to yield useful information about the early history of the Moon, the Earth, and the inner solar system.

  18. Lunar and Meteorite Sample Disk for Educators

    NASA Technical Reports Server (NTRS)

    Foxworth, Suzanne; Luckey, M.; McInturff, B.; Allen, J.; Kascak, A.

    2015-01-01

    NASA Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation and distribution of samples for research, education and public outreach. Between 1969 and 1972 six Apollo missions brought back 382 kilograms of lunar rocks, core and regolith samples, from the lunar surface. JSC also curates meteorites collected from a US cooperative effort among NASA, the National Science Foundation (NSF) and the Smithsonian Institution that funds expeditions to Antarctica. The meteorites that are collected include rocks from Moon, Mars, and many asteroids including Vesta. The sample disks for educational use include these different samples. Active relevant learning has always been important to teachers and the Lunar and Meteorite Sample Disk Program provides this active style of learning for students and the general public. The Lunar and Meteorite Sample Disks permit students to conduct investigations comparable to actual scientists. The Lunar Sample Disk contains 6 samples; Basalt, Breccia, Highland Regolith, Anorthosite, Mare Regolith and Orange Soil. The Meteorite Sample Disk contains 6 samples; Chondrite L3, Chondrite H5, Carbonaceous Chondrite, Basaltic Achondrite, Iron and Stony-Iron. Teachers are given different activities that adhere to their standards with the disks. During a Sample Disk Certification Workshop, teachers participate in the activities as students gain insight into the history, formation and geologic processes of the moon, asteroids and meteorites.

  19. Constraints on Exposure Ages of Lunar and Asteroidal Regolith Particles

    NASA Technical Reports Server (NTRS)

    Berger, Eve L.; Keller, Lindsay P

    2014-01-01

    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Exposure to the solar wind results in implantation effects that are preserved in the rims of grains (typically the outermost 100 nm), while impact processes result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. These processes are collectively referred to as space weathering. A critical element in the study of these processes is to determine the rate at which these effects accumulate in the grains during their space exposure. For small particulate samples, one can use the density of solar flare particle tracks to infer the length of time the particle was at the regolith surface (i.e., its exposure age). We have developed a new technique that enables more accurate determination of solar flare particle track densities in mineral grains <50 micron in size that utilizes focused ion beam (FIB) sample preparation combined with transmission electron microscopy (TEM) imaging. We have applied this technique to lunar soil grains from the Apollo 16 site (soil 64501) and most recently to samples from asteroid 25143 Itokawa returned by the Hayabusa mission. Our preliminary results show that the Hayabusa grains have shorter exposure ages compared to typical lunar soil grains. We will use these techniques to re-examine the track density-exposure age calibration from lunar samples reported by Blanford et al. (1975).

  20. A remark on the theory of measuring thermal diffusivity by the modified Angstrom's method. [in lunar samples

    NASA Technical Reports Server (NTRS)

    Horai, K.-I.

    1981-01-01

    A theory of the measurement of the thermal diffusivity of a sample by the modified Angstrom method is developed for the case in which radiative heat loss from the end surface of the sample is not negligible, and applied to measurements performed on lunar samples. Formulas allowing sample thermal diffusivity to be determined from the amplitude decay and phase lag of a temperature wave traveling through the sample are derived for a flat disk sample for which only heat loss from the end surface is important, and a sample of finite diameter and length for which heat loss through the end and side surfaces must be considered. It is noted that in the case of a flat disk, measurements at a single angular frequency of the temperature wave are sufficient, while the sample of finite diameter and length requires measurements at two discrete angular frequencies. Comparison of the values of the thermal diffusivities of two lunar samples of dimensions approximately 1 x 1 x 2 cm derived by the present methods and by the Angstrom theory for a finite bar reveals them to differ by not more than 5%, and indicates that more refined data are required as the measurement theory becomes more complicated.

  1. Lunar Samples - Apollo 12

    NASA Image and Video Library

    1969-11-28

    S69-60354 (29 Nov. 1969) --- A scientist's gloved hand holds one of the numerous rock samples brought back to Earth from the Apollo 12 lunar landing mission. The rocks are under thorough examination in the Manned Spacecraft Center's (MSC) Lunar Receiving Laboratory (LRL). This sample is a highly shattered basaltic rock with a thin black-glass coating on five of its six sides. Glass fills fractures and cements the rock together. The rock appears to have been shattered and thrown out by a meteorite impact explosion and coated with molten rock material before the rock fell to the surface.

  2. Connecting Returned Apollo Soils and Remote Sensing: Application to the Diviner Lunar Radiometer

    NASA Technical Reports Server (NTRS)

    Greenhagen, B. T.; DonaldsonHanna, K. L.; Thomas, I. R.; Bowles, N. E.; Allen, Carlton C.; Pieters, C. M.; Paige, D. A.

    2014-01-01

    The Diviner Lunar Radiometer, onboard NASA's Lunar Reconnaissance Orbiter, has produced the first global, high resolution, thermal infrared observations of an airless body. The Moon, which is the most accessible member of this most abundant class of solar system objects, is also the only body for which we have extraterrestrial samples with known spatial context, returned Apollo samples. Here we present the results of a comprehensive study to reproduce an accurate simulated lunar environment, evaluate the most appropriate sample and measurement conditions, collect thermal infrared spectra of a representative suite of Apollo soils, and correlate them with Diviner observations of the lunar surface. It has been established previously that thermal infrared spectra measured in simulated lunar environment (SLE) are significantly altered from spectra measured under terrestrial or martian conditions. The data presented here were collected at the University of Oxford Simulated Lunar Environment Chamber (SLEC). In SLEC, we simulate the lunar environment by: (1) pumping the chamber to vacuum pressures (less than 10-4 mbar) sufficient to simulate lunar heat transport processes within the sample, (2) cooling the chamber with liquid nitrogen to simulate radiation to the cold space environment, and (3) heating the samples with heaters and lamp to set-up thermal gradients similar to those experienced in the upper hundreds of microns of the lunar surface. We then conducted a comprehensive suite of experiments using different sample preparation and heating conditions on Apollo soils 15071 (maria) and 67701 (highland) and compared the results to Diviner noontime data to select the optimal experimental conditions. This study includes thermal infrared SLE measurements of 10084 (A11 - LM), 12001 (A12 - LM), 14259 (A14 - LM), 15071 (A15 - S1), 15601 (A15 - S9a), 61141 (A16 - S1), 66031 (A16 - S6), 67701 (A16 - S11), and 70181 (A17 - LM). The Diviner dataset includes all six Apollo sites at approximately 200 m spatial resolution We find that analyses of Diviner observations of individual sampling stations and SLE measurements returned Apollo soils show good agreement, while comparisons to thermal infrared reflectance under ambient conditions do not agree well, which underscores the need for SLE measurements and validates the Diviner compositional measurement technique.

  3. The negligible chondritic contribution in the lunar soils water.

    PubMed

    Stephant, Alice; Robert, François

    2014-10-21

    Recent data from Apollo samples demonstrate the presence of water in the lunar interior and at the surface, challenging previous assumption that the Moon was free of water. However, the source(s) of this water remains enigmatic. The external flux of particles and solid materials that reach the surface of the airless Moon constitute a hydrogen (H) surface reservoir that can be converted to water (or OH) during proton implantation in rocks or remobilization during magmatic events. Our original goal was thus to quantify the relative contributions to this H surface reservoir. To this end, we report NanoSIMS measurements of D/H and (7)Li/(6)Li ratios on agglutinates, volcanic glasses, and plagioclase grains from the Apollo sample collection. Clear correlations emerge between cosmogenic D and (6)Li revealing that almost all D is produced by spallation reactions both on the surface and in the interior of the grains. In grain interiors, no evidence of chondritic water has been found. This observation allows us to constrain the H isotopic ratio of hypothetical juvenile lunar water to δD ≤ -550‰. On the grain surface, the hydroxyl concentrations are significant and the D/H ratios indicate that they originate from solar wind implantation. The scattering distribution of the data around the theoretical D vs. (6)Li spallation correlation is compatible with a chondritic contribution <15%. In conclusion, (i) solar wind implantation is the major mechanism responsible for hydroxyls on the lunar surface, and (ii) the postulated chondritic lunar water is not retained in the regolith.

  4. TOPLEX: Teleoperated Lunar Explorer. Instruments and Operational Concepts for an Unmanned Lunar Rover

    NASA Technical Reports Server (NTRS)

    Blacic, James D.

    1992-01-01

    A Teleoperated Lunar Explorer, or TOPLEX, consisting of a lunar lander payload in which a small, instrument-carrying lunar surface rover is robotically landed and teleoperated from Earth to perform extended lunar geoscience and resource evaluation traverses is proposed. The rover vehicle would mass about 100 kg and carry approximately 100 kg of analytic instruments. Four instruments are envisioned: (1) a Laser-Induced Breakdown Spectrometer (LIBS) for geochemical analysis at ranges up to 100 m, capable of operating in three different modes; (2) a combined x-ray fluorescence and x-ray diffraction (XRF/XRD) instrument for elemental and mineralogic analysis of acquired samples; (3) a mass spectrometer system for stepwise heating analysis of gases released from acquired samples; and (4) a geophysical instrument package for subsurface mapping of structures such as lava tubes.

  5. What's new on the moon?

    NASA Technical Reports Server (NTRS)

    1976-01-01

    As a result of the Apollo program and other lunar probes, questions that remained unsolved during centuries of speculation and scientific study can now be answered concerning the composition, core, surface, age, and history of the moon. Data obtained from lunar samples and instruments on the lunar surface are being used to gain insight into the history of the earth and the other planets, planetary evolution, the development of planetary magnetic fields, the nature of the solar wind, and how the Sun operates. Projects suggested for using the moon to increase understanding of geophysics are described.

  6. New Lunar Paleointensity Measurements, Ancient Lunar Dynamo or Lunar Dud?

    NASA Astrophysics Data System (ADS)

    Lawrence, K. P.; Johnson, C. L.; Tauxe, L.; Gee, J. S.

    2007-12-01

    We analyze published and new paleointensity data from Apollo samples to reexamine the hypothesis of an early (3.9 to 3.6 Ga) lunar dynamo. Our new paleointensity experiments on four Apollo samples use modern absolute and relative measurement techniques. Our samples (60015, 76535, 72215, 62235) have ages ranging from 3.3 to 4.2 Ga, bracketing the putative period of a lunar dynamo. Samples 60015 (anorthosite) and 76535 (troctolite) failed during absolute paleointensity experiments, using the IZZI-modified Thellier-Thellier method. Samples 72215 and 62235 recorded a complicated, multi-component magnetic history that includes a low temperature (< 500°C) component with a high intensity (~90 μT), and a high temperature (> 500°C) component with a low intensity (~2 μT). These two samples were also subjected to a relative paleointensity experiment (sIRM), from which neither provided unambiguous evidence for a thermal origin of the recorded remanent magnetization. We found similar multi-component behavior in several published experiments on lunar samples. We test and present several magnetization scenarios in an attempt to explain the complex magnetization recorded in lunar samples. Specifically, an overprint from exposure to a small magnetic field (i.e. IRM) results in multi-component behavior (similar to lunar sample results), from which we could not recover the correct magnitude of the original TRM. The non-unique interpretation of these multi-component results combined with IRM (isothermal remanent magnetization) contamination during Apollo sample return ( Strangway et al., 1973), indicates that techniques incapable of distinguishing between single- and multi-component records (e.g., sIRM), cannot be reliably used to infer magnetic conditions of the early Moon. In light of these new experiments and a thorough reevaluation of existing paleointensity measurements, we conclude that there is a paucity of lunar samples that demonstrate a primary thermal remanent magnetization. As relative paleointensity measurements for lunar samples are calibrated using absolute paleointensities, the lack of acceptable absolute paleointensity measurements renders the interpretation of relative paleointensity measurements unreliable. Consequently, current lunar paleointensity measurements are inadequate to determine the existence and strength of an early lunar magnetic field. Surface magnetometry measurements and the return of magnetically uncontaminated samples from future missions are much needed for further progress in understanding the characteristics and origin of lunar crustal remanent magnetization.

  7. Infrared reflectance spectra (4-12 micron) of lunar samples

    NASA Technical Reports Server (NTRS)

    Nash, Douglas B.

    1991-01-01

    Presented here are infrared reflectance spectra of a typical set of Apollo samples to illustrate spectral character in the mid-infrared (4 to 12 microns) of lunar materials and how the spectra varies among three main forms: soil, breccia, and igneous rocks. Reflectance data, to a close approximation, are the inverse of emission spectra; thus, for a given material the spectral reflectance (R) at any given wavelength is related to emission (E) by 1 - R equals E. Therefore, one can use reflectance spectra of lunar samples to predict how emission spectra of material on the lunar surface will appear to spectrometers on orbiting spacecraft or earthbound telescopes. Spectra were measured in the lab in dry air using a Fourier Transform Infrared spectrometer. Shown here is only the key portion (4 to 12 microns) of each spectrum relating to the principal spectral emission region for sunlit lunar materials and to where the most diagnostic spectral features occur.

  8. The Shawmere anorthosite and OB-1 as lunar highland regolith simulants

    NASA Astrophysics Data System (ADS)

    Battler, Melissa M.; Spray, John G.

    2009-12-01

    Anorthosite constitutes a major component of the lunar crust and comprises an important, if not dominant, ingredient of the lunar regolith. Given the need for highland regolith simulants in preparation for lunar surface engineering activities, we have selected an appropriate terrestrial anorthosite and performed crushing trials to generate a particle size distribution comparable to Apollo 16 regolith sample 64 500. The root simulant is derived from a granoblastic facies of the Archean Shawmere Complex of the Kapuskasing Structural Zone of Ontario, Canada. The Shawmere exhibits minimal retrogression, is homogeneous and has an average plagioclase composition of An 78 (bytownite). Previous industrial interest in this calcic anorthosite has resulted in quarrying operations, which provide ease of extraction and access for potential large-scale simulant production. A derivative of the Shawmere involves the addition of olivine slag, crushed to yield a particle size distribution similar to that of the agglutinate and glass components of the Apollo sample. This simulant is referred to as OB-1. The Shawmere and OB-1 regolith simulants are lunar highland analogues, conceived to produce geotechnical properties of benefit to designing and testing drilling, excavation and construction equipment for future lunar surface operations.

  9. Miniregoliths. I - Dusty lunar rocks and lunar soil layers

    NASA Technical Reports Server (NTRS)

    Comstock, G. M.

    1978-01-01

    A detailed Monte-Carlo model for rock surface evolution shows that erosion processes alone cannot account for the shapes of the solar flare particle track profiles generally observed at depths of about 100 microns and less in rocks. The observed profiles are easily explained by a steady accumulation of fine dust at a rate of 0.3 to 3 mm per m.y., depending on the micrometeoroid impact rate which controls the dust cover and results in maximum dust thicknesses on the order of 100 microns to 1 mm. The commonly used lunar soil track parameters are derived in terms of parameters characterizing the exposure of soil grains in the few-millimeter-thick surface mixing and maturation zone which is one form of miniregolith. Correlation plots permit determining the degree of mixing in soil samples and the amount of processing (maturation) in surface miniregoliths. It is shown that the sampling process often artificially mixes together finer distinct layers, and that ancient miniregolith layers on the order of a millimeter thick are probably common in the lunar soil.

  10. On the history of the early meteoritic bombardment of the Moon: Was there a terminal lunar cataclysm?

    NASA Astrophysics Data System (ADS)

    Michael, Greg; Basilevsky, Alexander; Neukum, Gerhard

    2018-03-01

    This work revisits the hypothesis of the so-called 'lunar terminal cataclysm' suggested by Tera et al. (1973, 1974) as a strong peak in the meteorite bombardment of the Moon around 3.9 Ga ago. According to the hypothesis, most of the impact craters observed on the lunar highlands formed during this short time period and thus formed the majority of the lunar highland impact breccias and melts. The hypothesis arose from the observation that the ages of highland samples from all the lunar missions are mostly grouped around 3.9-4.0 Ga. Since those missions, however, radiometric dating techniques have progressed and many samples, both old and new, have been re-analyzed. Nevertheless, the debate over whether there was a terminal cataclysm persists. To progress in this problem we summarized results of 269 K-Ar datings (mostly made using the 40Ar-39Ar technique) of highland rocks represented by the Apollo 14, 15, 16, 17 and Luna 20 samples and 94 datings of clasts of the highland rocks from 23 lunar meteorites representing 21 localities on the lunar surface, and considered them jointly with the results of our modelling of the cumulative effect of the impact gardening process on the presence of impact melt of different ages at the near-surface of the Moon. The considered results of K-Ar dating of the Apollo-Luna samples of lunar highland rocks confirmed a presence of strong peak centered at 3.87 Ga. But since the time when the hypothesis of terminal cataclysm was suggested, it has become clear that this peak could be a result of sampling bias: it is the only prominent feature at the sites with an apparent domination of Imbrium basin ejecta (Apollo 14 and 15) and the age pattern is more complicated for the sites influenced not only by Imbrium ejecta but also that of other basins (Nectaris at the Apollo 16 site and Serenitatis at the Apollo 17 site). Our modelling shows that the cataclysm, if it occurred, should produce a strong peak in the measured age values but we see in the considered histograms and relative probability plots not only the 3.87 Ga peak (due to Imbrium basin), but also several secondary peaks caused by the formation of other basins distributed between 3.87 and 4.25 Ga. The lunar terminal cataclysm hypothesis is in disagreement with the distribution of K-Ar ages for the highland rocks of the lunar meteorites. The population of lunar meteorites representing localities randomly distributed over the lunar surface, and thus free from the mentioned sampling bias, shows no ∼3.9 Ga peak as it should, if the cataclysm did occur. We conclude that the statistics of sample ages contradict the terminal cataclysm scenario in the bombardment of the Moon. We also see evidence for the formation of several impact basins between 3.87 and 4.25 Ga which is likewise incompatible with the hypothesis of a short interval cataclysm. There remain other basins, including the largest South Pole - Aitken, the ages of which should be determined in future studies to further clarify the impact history. Sample-return missions targeted to date several key basins need to be planned, and the continued study of lunar meteorites may also bring new details to the general view of the impact bombardment of the Moon.

  11. Science Enabling Exploration: Using LRO to Prepare for Future Missions

    NASA Technical Reports Server (NTRS)

    Lawrence, S. J.; Jolliff, B. L.; Stopar, J. D.; Speyerer, E. J.; Petro, N. E.

    2016-01-01

    Discoveries from LRO have transformed our understanding of the Moon, but LRO's instruments were originally designed to collect the measurements required to enable future lunar surface exploration. A high lunar exploration priority is the collection of new samples and their return to Earth for comprehensive analysis. The importance of sample return from South Pole-Aitken is well-established [Jolliff et al., this conference], but there are numerous other locations where sample return will yield important advances in planetary science. Using new LRO data, we have defined an achievability envelope based on the physical characteristics of successful lunar landing sites. Those results were then used to define 1km x 1km regions of interest where sample return could be executed, including: the basalt flows in Oceanus Procellarum (22.1N, 53.9W), the Gruithuisen Domes (36.1N, 39.7W), the Dewar cryptomare (2.2S, 166.8E), the Aristarchus pyroclastic deposit (24.8N, 48.5W), the Sulpicius Gallus formation (19.9N, 10.3E), the Sinus Aestuum pyroclastic deposit (5.2N, 9.2W), the Compton-Belkovich volcanic complex (61.5N, 99.9E), the Ina Irregular Mare Patch (18.7N, 5.3E), and the Marius Hills volcanic complex (13.4N, 55.9W). All of these locations represent safe landing sites where sample returns are needed to advance our understanding of the evolution of the lunar interior and the timescales of lunar volcanism. If LRO is still active when any future mission reaches the surface, LRO's capability to rapidly place surface activities into broader geologic context will provide operational advantages. LRO remains a unique strategic asset that continues to address the needs of future missions.

  12. Test Before You Fly - High Fidelity Planetary Environment Simulation

    NASA Technical Reports Server (NTRS)

    Craven, Paul; Ramachandran, Narayanan; Vaughn, Jason; Schneider, Todd; Nehls, Mary

    2012-01-01

    The lunar surface environment will present many challenges to the survivability of systems developed for long duration lunar habitation and exploration of the lunar, or any other planetary, surface. Obstacles will include issues pertaining especially to the radiation environment (solar plasma and electromagnetic radiation) and lunar regolith dust. The Planetary Environments Chamber is one piece of the MSFC capability in Space Environmental Effects Test and Analysis. Comprised of many unique test systems, MSFC has the most complete set of SEE test capabilities in one location allowing examination of combined space environmental effects without transporting already degraded, potentially fragile samples over long distances between tests. With this system, the individual and combined effects of the lunar radiation and regolith environment on materials, sub-systems, and small systems developed for the lunar return can be investigated. This combined environments facility represents a unique capability to NASA, in which tests can be tailored to any one aspect of the lunar environment (radiation, temperature, vacuum, regolith) or to several of them combined in a single test.

  13. Elemental Mercury Diffusion Processes and Concentration at the Lunar Poles

    NASA Technical Reports Server (NTRS)

    Moxley, Frederick; Killen, Rosemary M.; Hurley, Dana M.

    2011-01-01

    In 2009, the Lyman Alpha Mapping Project (LAMP) spectrograph onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft made the first detection of element mercury (Hg) vapor in the lunar exosphere after the Lunar Crater Observing and Sensing Satellite (LCROSS) Centaur rocket impacted into the Cabeus crater in the southern polar region of the Moon. The lunar regolith core samples from the Apollo missions determined that Hg had a devolatilized pattern with a concentration gradient increasing with depth, in addition to a layered pattern suggesting multiple episodes of burial and volatile loss. Hg migration on the lunar surface resulted in cold trapping at the poles. We have modeled the rate at which indigenous Hg is lost from the regolith through diffusion out of lunar grains. We secondly modeled the migration of Hg vapor in the exosphere and estimated the rate of cold-trapping at the poles using a Monte Carlo technique. The Hg vapor may be lost from the exosphere via ionization, Jeans escape, or re-impact into the surface causing reabsorption.

  14. Lunar exploration: opening a window into the history and evolution of the inner Solar System

    PubMed Central

    Crawford, Ian A.; Joy, Katherine H.

    2014-01-01

    The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth–Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth–Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap. PMID:25114318

  15. Lunar exploration: opening a window into the history and evolution of the inner Solar System.

    PubMed

    Crawford, Ian A; Joy, Katherine H

    2014-09-13

    The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth-Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth-Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. The Petrology and Geochemistry of Feldspathic Granulitic Breccia NWA 3163: Implications for the Lunar Crust

    NASA Technical Reports Server (NTRS)

    McLeod, C. L.; Brandon, A. D.; Lapen, T. J.; Shafer, J. T.; Peslier, A. H.; Irvine, A. J.

    2013-01-01

    Lunar meteorites are crucial to understand the Moon s geological history because, being samples of the lunar crust that have been ejected by random impact events, they potentially originate from areas outside the small regions of the lunar surface sampled by the Apollo and Luna missions. The Apollo and Luna sample sites are contained within the Procellarum KREEP Terrain (PKT, Jolliff et al., 2000), where KREEP refers to potassium, rare earth element, and phosphorus-rich lithologies. The KREEP-rich rocks in the PKT are thought to be derived from late-stage residual liquids after approx.95-99% crystallization of a lunar magma ocean (LMO). These are understood to represent late-stage liquids which were enriched in incompatible trace elements (ITE) relative to older rocks (Snyder et al., 1992). As a consequence, the PKT is a significant reservoir for Th and KREEP. However, the majority of the lunar surface is likely to be significantly more depleted in ITE (84%, Jolliff et al., 2000). Lunar meteorites that are low in KREEP and Th may thus sample regions distinct from the PKT and are therefore a valuable source of information regarding the composition of KREEP-poor lunar crust. Northwest Africa (NWA) 3163 is a thermally metamorphosed ferroan, feldspathic, granulitic breccia composed of igneous clasts with a bulk anorthositic, noritic bulk composition. It is relatively mafic (approx.5.8 wt.% FeO; approx.5 wt.% MgO) and has some of the lowest concentrations of ITEs (17ppm Ba) compared to the feldspathic lunar meteorite (FLM) and Apollo sample suites (Hudgins et al., 2011). Localized plagioclase melting and incipient melting of mafic minerals require localized peak shock pressures in excess of 45 GPa (Chen and El Goresy, 2000; Hiesinger and Head, 2006). NWA 3163, and paired samples NWA 4481 and 4883, have previously been interpreted to represent an annealed micro-breccia which was produced by burial metamorphism at depth in the ancient lunar crust (Fernandes et al., 2009). This is in contrast to the interpretation of Hudgins et al. (2009) where NWA 3163 was interpreted to have formed through contact metamorphism. To further constrain its origin, we examine the petrogenesis of NWA 3163 with a particular emphasis on in-situ measurement of trace elements within constituent minerals, Sm-Nd and Rb-Sr isotopic systematics on separated mineral fractions and petrogenetic modeling.

  17. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the fifteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the seventeenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  19. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the third of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  20. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the thirteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  1. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the fourteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the sixth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  3. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the seventh of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  4. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the twenty-fifth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1968-11-04

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the fourth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the second of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  7. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the sixteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  8. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the eighteenth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  9. Saturn Apollo Program

    NASA Image and Video Library

    1959-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the twenty-third of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the twenty-first of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  11. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12, launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the twenty-fourth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  12. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-14

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. This is the fifth of 25 images captured by the crew in attempt to provide a 360 degree Lunar surface scene. Apollo 12 safely returned to Earth on November 24, 1969.

  13. The Apollo Lunar Sample Image Collection: Digital Archiving and Online Access

    NASA Technical Reports Server (NTRS)

    Todd, Nancy S.; Lofgren, Gary E.; Stefanov, William L.; Garcia, Patricia A.

    2014-01-01

    The primary goal of the Apollo Program was to land human beings on the Moon and bring them safely back to Earth. This goal was achieved during six missions - Apollo 11, 12, 14, 15, 16, and 17 - that took place between 1969 and 1972. Among the many noteworthy engineering and scientific accomplishments of these missions, perhaps the most important in terms of scientific impact was the return of 382 kg (842 lb.) of lunar rocks, core samples, pebbles, sand, and dust from the lunar surface to Earth. Returned samples were curated at JSC (then known as the Manned Spacecraft Center) and, as part of the original processing, high-quality photographs were taken of each sample. The top, bottom, and sides of each rock sample were photographed, along with 16 stereo image pairs taken at 45-degree intervals. Photographs were also taken whenever a sample was subdivided and when thin sections were made. This collection of lunar sample images consists of roughly 36,000 photographs; all six Apollo missions are represented.

  14. The New Face of the Moon

    NASA Astrophysics Data System (ADS)

    Goswami, J. N.

    2012-07-01

    The beginning of this century ushered a new era in lunar exploration. It started with the Smart-1 mission, launched in 2003, that was followed in quick succession by Kaguya, Change-1, Chandrayaan-1, LRO, LCROSS, Change-2 and the most recent GRAIL mission, launched in late 2011. Results obtained by these missions have strengthened some of the existing postulates of lunar evolution, such as the global magma hypothesis, questioned many of our earlier views on moon and generated renewed interest in laboratory studies of lunar samples. Moon can no longer be considered as a bone-dry object. Signatures of hydroxyl and water molecules were found at high latitude lunar regions by Chandrayaan-1 mission and LCROSS mission detected water in the plume generated by a planned impact on a permanently shadowed lunar polar site. Laboratory studies confirmed presence of hydroxyl as a structural component in minerals present in lunar rocks. The permanently shadowed regions turned out to be some of the coldest place in the solar system and could potentially host surface/sub-surface water ice and frozen volatiles. New results obtained by these missions suggest the presence of previously unidentified lunar rock types, young volcanic and tectonic activities, layering within the top kilometre of the lunar surface and the possibility that moon host a very tenuous exosphere. Interesting new features of solar wind interactions with the lunar surface and localized lunar magnetic field have also been delineated. The ongoing effort to reconstruct the new face of the moon will get a boost from results from the GRAIL mission on gravity anomalies and from other upcoming missions, LADEE, Chandrayaan-2, Luna Resource and Luna Glob. A general overview of our current ideas of lunar evolution will be presented along with a preview of upcoming efforts to better understand our closest neighbour in space.

  15. Rock physics properties of some lunar samples

    NASA Technical Reports Server (NTRS)

    Warren, N.; Trice, R.; Anderson, O. L.; Soga, N.

    1973-01-01

    Linear strains and acoustic velocity data for lunar samples under uniaxial and hydrostatic loading are presented. Elastic properties are presented for 60335,20; 15555,68; 15498,23; and 12063,97. Internal friction data are summarized for a number of artificial lunar glasses with compositions similar to lunar rocks 12009, 12012, 14305, 15021, and 15555. Zero porosity model-rock moduli are calculated for a number of lunar model-rocks, with mineralogies similar to Apollo 12, 14, and 16 rocks. Model-rock calculations indicate that rock types in the troctolitic composition range may provide reasonable modeling of the lunar upper mantle. Model calculations involving pore crack effects are compatible with a strong dependence of rock moduli on pore strain, and therefore of rock velocities on nonhydrostatic loading. The high velocity of rocks under uniaxial loading appears to be compatible with, and may aid in, interpretation of near-surface velocity profiles observed in the active seismic experiment.

  16. Toxicity of Lunar Dust in Lungs Assessed by Examining Biomarkers in Exposed Mice

    NASA Technical Reports Server (NTRS)

    Lam, C.-W.; James, J. T.; Zeidler-Erdely, P. C.; Castranova, V.; Young, S. H.; Quan, C. L.; Khan-Mayberry, N.; Taylor, L. A.

    2009-01-01

    NASA plans to build an outpost on the Moon for prolonged human habitation and research. The lunar surface is covered by a layer of soil, of which the finest portion is highly reactive dust. NASA has invited NIOSH to collaboratively investigate the toxicity of lunar dust. Dust samples of respirable sizes were aerodynamically isolated from two lunar soil samples of different maturities (cosmic exposure ages) collected during the Apollo 16 mission. The lunar dust samples, titanium dioxide, or quartz, suspended in normal saline or in Survanta (a bovine lung surfactant), were given to groups of 5 mice (C-57 male) by intrapharyngeal aspiration at 1, 0.3, or 0.1 mg/mouse. The mice were euthanized 7 or 30 days later, and their lungs were lavaged to assess the toxicity biomarkers in bronchioalveolar lavage fluids. The acellular fractions were assayed for total proteins, lactate dehydrogenase activities, and cytokines; the cellular portions were assessed for total cell counts and cell differentials. Results from the high-dose groups showed that lunar dust, suspended in saline, was more toxic than TiO 2, but less toxic than quartz. Lunar dust particles aggregate and settle out rapidly in water or saline, but not in Survanta. Lunar dust suspended in Survanta manifested greater toxicity than lunar dust in saline. The increase in toxicity presumably was due to that Survanta gave a better particle dispersion in the lungs. The two lunar dust samples showed similar toxicity. The overall results showed that lunar dust is more toxic than TiO 2 but less toxic than quartz.

  17. NASA Lunar Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers and Libraries

    NASA Astrophysics Data System (ADS)

    Allen, J. S.

    2009-12-01

    NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and orange glass from a pyroclastic deposit. The loan program also includes Meteorite Disks containing six meteorites that will help educators share the early history of the solar system with students and the public. Educators may borrow either lunar or meteorite disks through Johnson Space Center Curatorial Office. In trainings provided by the NASA Aerospace Education Services Program specialists, educators certified to borrow the disk learn about education resources, the proper use of the samples, and the special security for care and shipping of the disks. The Lunar and Meteorite Sample Education Disk Program is set up to bridge to new education programs that will carry NASA exploration to more people. Getting Space Rocks out to the public and connecting the public to the current space exploration missions is the focus the NASA disk loan program.

  18. The intensity of the ancient lunar field from magnetic studies on lunar samples

    NASA Technical Reports Server (NTRS)

    Stephenson, A.; Collinson, D. W.; Runchorn, S. K.

    1977-01-01

    Palaeointensity determination on Apollo 11, 16, and 17 rocks have indicated that from 3.9 to 4.0 AE ago the strength of the surface lunar magnetic field was about 1.3 Oe, while there is evidence from younger rocks that a field of about one quarter of this value was present at a later time (3.6 AE).

  19. Global lunar crust - Electrical conductivity and thermoelectric origin of remanent magnetism

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1977-01-01

    An upper limit is placed on the average crustal conductivity from an investigation of toroidal (V x B) induction in the moon, using ten-minute data intervals of simultaneous lunar orbiting and surface magnetometer data. Crustal conductivity is determined as a function of crust thickness. For an average global crust thickness of about 80 km, the crust surface electrical conductivity is of the order of 1 hundred millionth mho/m. The toroidal-induction results lower the surface-conductivity limit obtained from poloidal-induction results by approximately four orders of magnitude. In addition, a thermoelectric (Seebeck effect) generator model is presented as a magnetic-field source for thermoremanent magnetization of the lunar crust during its solidification and cooling. Magnetic fields from 1000 to 10,000 gammas are calculated for various crater and crustal geometries. Solidified crustal material cooling through the iron Curie temperature in the presence of such ancient lunar fields could have received thermoremanent magnetization consistent with that measured in most returned lunar samples.

  20. Surface Coatings on Lunar Volcanic Glasses

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; McKay, D. S.; Thomas,-Keprta, K. L.; Clemett, S. J.

    2007-01-01

    We are undertaking a detailed study of surface deposits on lunar volcanic glass beads. These tiny deposits formed by vapor condensation during cooling of the gases that drove the fire fountain eruptions responsible for the formation of the beads. Volcanic glass beads are present in most lunar soil samples in the returned lunar collection. The mare-composition beads formed as a result of fire-fountaining approx.3.4-3.7 Ga ago, within the age range of large-scale mare volcanism. Some samples from the Apollo 15 and Apollo 17 landing sites are enriched in volcanic spherules. Three major types of volcanic glass bead have been identified: Apollo 15 green glass, Apollo 17 orange glass, and Apollo 17 "black" glass. The Apollo 15 green glass has a primitive composition with low Ti. The high-Ti compositions of the orange and black glasses are essentially identical to each other but the black glasses are opaque because of quench crystallization. A poorly understood feature common to the Apollo 15 and 17 volcanic glasses is the presence of small deposits of unusual materials on their exterior surfaces. For example, early studies indicated that the Apollo 17 orange glasses had surface enrichments of In, Cd, Zn, Ga, Ge, Au, and Na, and possible Pb- and Zn-sulfides, but it was not possible to characterize the surface features in detail. Technological advances now permit us to examine such features in detail. Preliminary FE-TEM/X-ray studies of ultramicrotome sections of Apollo 15 green glass indicate that the surface deposits are heterogeneous and layered, with an inner layer consisting of Fe with minor S and an outer layer of Fe and no S, and scattered Zn enrichments. Layering in surface deposits has not been identified previously; it will be key to defining the history of lunar fire fountaining.

  1. Measurements of Photoelectric Yield and Physical Properties of Individual Lunar Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, F. A.; Taylor, L.; Hoover, R.

    2005-01-01

    Micron size dust grains levitated and transported on the lunar surface constitute a major problem for the robotic and human habitat missions for the Moon. It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron/sub-micron size dust grains. Transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and the levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics is believed to have a severe impact on the human habitat and the lifetime and operations of a variety of equipment, it is necessary to investigate the phenomena and the charging properties of the lunar dust in order to develop appropriate mitigating strategies. We will present results of some recent laboratory experiments on individual micro/sub-micron size dust grains levitated in electrodynamic balance in simulated space environments. The experiments involve photoelectric emission measurements of individual micron size lunar dust grains illuminated with UV radiation in the 120-160 nm wavelength range. The photoelectric yields are required to determine the charging properties of lunar dust illuminated by solar UV radiation. We will present some recent results of laboratory measurement of the photoelectric yields and the physical properties of individual micron size dust grains from the Apollo and Luna-24 sample returns as well as the JSC-1 lunar simulants.

  2. Pulmonary Toxicity Studies of Lunar Dusts in Rodents

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-wing; James, John T.; Taylor, Larry

    2008-01-01

    NASA will build an outpost on the lunar surface for long-duration human habitation and research. The surface of the Moon is covered by a layer of fine, reactive dust, and the living quarters in the lunar outpost are expected to be contaminated by lunar dust. NASA established the Lunar Airborne Dust Toxicity Advisory Group (LADTAG) to evaluate the risk of exposure to the dust and to establish safe exposure limits for astronauts working in the lunar habitat. Because the toxicity of lunar dust is not known, LADTAG has recommended investigating its toxicity in the lungs of laboratory animals. After receiving this recommendation, NASA directed the JSC Toxicology Laboratory to determine the pulmonary toxicity of lunar dust in exposed rodents. The rodent pulmonary toxicity studies proposed here are the same as those proposed by the LADTAG. Studies of the pulmonary toxicity of a dust are generally done first in rodents by intratracheal instillation (ITI). This toxicity screening test is then followed by an inhalation study, which requires much more of the test dust and is labor intensive. We succeeded in completing an ITI study on JSC-1 lunar dust simulant in mice (Lam et al., Inhalation Toxicology 14:901-916, 2002, and Inhalation Toxicology 14: 917-928, 2002), and have conducted a pilot ITI study to examine the acute toxicity of an Apollo lunar (highland) dust sample. Preliminary results obtained by examining lung lavage fluid from dust-treated mice show that lunar dust was somewhat toxic (more toxic than TiO2, but less than quartz dust). More extensive studies have been planned to further examine lung lavage fluid for biomarkers of toxicity and lung tissues for histopathological lesions in rodents exposed to aged and activated lunar dust samples. In these studies, reference dusts (TiO2 and quartz) of known toxicities and have industrial exposure limits will be studied in parallel so the relative toxicity of lunar dust can be determined. The ITI results will also be useful for choosing an exposure concentration for the animal inhalation study on a selected lunar dust sample, which is included as a part of this proposal. The animal inhalation exposure will be conducted with lunar dust simulant prior to the study with the lunar dust. The simulant exposure will ensure that the study techniques used with actual lunar dust will be successful. The results of ITI and inhalation studies will reveal the toxicological risk of exposures and are essential for setting exposure limits on lunar dust for astronauts living in the lunar habitat.

  3. Mission description. [major mission events and data collection periods during Apollo 17 lunar exploration

    NASA Technical Reports Server (NTRS)

    Baldwin, R. R.

    1973-01-01

    The accomplishments of the Apollo 17 flight are discussed. The scientific objectives included geological surveying and sampling of materials and surface features in a preselected area of the Taurus-Littrow region, deploying and activating surface experiments, and conducting inflight experiments and photographic tasks during lunar orbit and transearth coast. The individual Apollo 17 experiments and photographic tasks are presented in outline form. Charts are developed to show the major mission events and data collection periods correlated to Greenwich Mean Time and ground elapsed time. Maps of the lunar surface ground track envelope for the Apollo 17 orbiting spacecraft for revolutions one to seventy-five is shown.

  4. Lunar Dust 101

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2008-01-01

    Largely due to rock and soil samples returned during the Apollo program, much has been learned about the composition and properties of lunar regolith. Although, for the most part, the mineral composition resembles terrestrial minerals, the characteristics of the lunar environment have led to very different weathering processes. These result in substantial differences in the particle shapes, particle size distributions, and surface chemistry. These differences lead to non-intuitive adhesion, abrasion, and possible health properties that will pose challenges to future lunar missions. An overview of lunar dust composition and properties will be given with a particular emphasis on possible health effects.

  5. Apollo soil mechanics experiment S-200

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Houston, W. N.; Carrier, W. D., III; Costes, N. C.

    1974-01-01

    The physical and mechanical properties of the unconsolidated lunar surface material samples that were obtained during the Apollo missions were studied. Sources of data useful for deduction of soil information, and methods used to obtained the data are indicated. A model for lunar soil behavior is described which considers soil characteristics, density and porosity, strength, compressibility, and trafficability parameters. Lunar history and processes are considered, and a comparison is made of lunar and terrestrial soil behavior. The impact of the findings on future exploration and development of the moon are discussed, and publications resulting from lunar research by the soil mechanics team members are listed.

  6. Volatile element chemistry of selected lunar, meteoritic, and terrestrial samples

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Christiansen, P. C.; Burlingame, A. L.

    1973-01-01

    Using vacuum pyrolysis and high resolution mass spectrometry, a study is made of the gas release patterns of representative lunar samples, meteorites, terrestrial samples, and synthetic samples doped with various sources of carbon and nitrogen. The pyrolytic gas evolution patterns were intercorrelated, allowing an assessment of the possible sources of the volatilizable material in the lunar samples to be made. Lightly surface adsorbed species and more strongly chemisorbed species are released from ambient to 300 C and from 300 to 500 C, respectively. The low-temperature volatiles (less than 500 C) derived from various chondrites correlate well with the gas evolution patterns of volatile-rich samples, as for example 74220 and 61221. Solar wind entrapped species and molecules derived from reactions probably in the grain surfaces are evolved from about 500 to 700 C, respectively. Solar wind implanted C, N, and S species are generated from 750 to 1150 C, probably by reaction with the mineral matrix during the annealing process. Possible indigenous and/or refractory carbide, nitride, and sulfide C, N, and S are released in the region from 1200 C to fusion.

  7. Orientale and South Pole-Aitken basins on the Moon: Preliminary Galileo imaging results

    NASA Technical Reports Server (NTRS)

    Head, J.; Fischer, E.; Murchie, S.; Pieters, C.; Plutchak, J.; Sunshine, J.; Belton, M.; Carr, M.; Chapman, C.; Davies, M.

    1991-01-01

    During the Earth-Moon flyby the Galileo Solid State Imaging System obtained new information on the landscape and physical geology of the Moon. Multicolor Galileo images of the Moon reveal variations in color properties of the lunar surface. Using returned lunar samples as a key, the color differences can be interpreted in terms of variations in the mineral makeup of the lunar rocks and soil. The combined results of Apollo landings and multicolor images from Galileo allow extrapolation of surface composition to areas distant from the landing sites, including the far side invisible from Earth.

  8. Lunar Exploration and Science in ESA

    NASA Astrophysics Data System (ADS)

    Carpenter, James; Houdou, Bérengère; Fisackerly, Richard; De Rosa, Diego; Patti, Bernardo; Schiemann, Jens; Hufenbach, Bernhard; Foing, Bernard

    2015-04-01

    ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the Russian led science payload, focusing on developing an characterising the resource opportunities offered at the lunar surface. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. In the frame of a broader future international programme under discussion through the International Space Exploration Coordination Group (ISECG) future missions are under investigation that would provide access to the lunar surface through international cooperation and human-robotic partnerships.

  9. Internal friction Q factor measurements in lunar rocks

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.

    1977-01-01

    Investigations to aid in the interpretation of seismic data obtained below the lunar surface are reported. Fine grained basalt with about 1.0% open core porosity was encapsulated under hard vacuum and measured. A Q value just under 2,000 at 0.5 kbar was achieved for a terrestrial analog of lunar basalt. In contrast to the modulus which increases by as much as 10%, the quality factor Q shows little or no change with pressure (a well outgassed sample maintains a high Q, whereas one exposed to laboratory atmosphere maintains a low Q). This result suggests that the absence of volatiles plays an important role in determining the q factor even at a depth of 10 km below the lunar surface.

  10. Laboratory Simulation of Electrical Discharge in Surface Lunar Regolith

    NASA Astrophysics Data System (ADS)

    Shusterman, M.; Izenberg, N.; Wing, B. R.; Liang, S.

    2016-12-01

    Physical, chemical, and optical characteristics of space-weathered surface materials on airless bodies are produced primarily from bombardment by solar energetic particles and micrometeoroid impacts. On bodies such as the Moon and Mercury, soils in permanently shadowed regions (PSRs) are very cold, have low electrical conductivities, and are subjected to a high flux of incoming energetic particles accelerated by solar events. Theoretical models predict that up to 25% of gardened soils in the lunar polar regions are altered by dielectric breakdown; a potentially significant weathering process that is currently unconfirmed. Although electrical properties of lunar soils have been studied in relation to flight electronics and spacecraft safety, no studies have characterized potential alterations to soils resulting from electrical discharge. To replicate the surface charge field in PSRs, lunar regolith simulant JSC-1A was placed between two parallel plane electrodes under both low and high vacuum environments, 10e-3 torr and 2.5e-6 torr, respectively. Voltage was increased until discharge occurred within the sample. Grains were analyzed using an SVC fiber-fed point spectrometer, Olympus BX51 upright metallurgical microscope, and a Hitachi TM3000 scanning electron microscope with Bruker Quantax-70 X-ray spectrometer. Discharges occurring in samples under low vacuum resulted in surficial melting, silicate vapor deposition, coalescence of metallic iron, and micro-scale changes to surface topography. Samples treated under a high vacuum environment showed similar types of effects, but fewer in number compared to low vacuum samples. The variation in alteration abundances between the two environments implies that discharges may be occurring across surface contaminants, even at high vacuum conditions, inhibiting dielectric breakdown in our laboratory simulations.

  11. Toxicity of Lunar Dust in Lungs Assessed by Examining Biomarkers in Exposed Mice

    NASA Technical Reports Server (NTRS)

    Lam, C.-W.; James, J. T.; Zeidler-Erdely, P. C.; Castranova, V.; Young, S. H.; Quan, C. L.; Khan-Mayberry, N.; Taylor, L. A.

    2010-01-01

    NASA is contemplating to build an outpost on the Moon for prolonged human habitation and research. The lunar surface is covered by a layer of soil, of which the finest portion is highly reactive dust. Dust samples of respirable sizes were aerodynamically isolated from two lunar soil samples of different maturities (cosmic exposure ages) collected during the Apollo 16 mission. The lunar dust samples, TiO2, or quartz, suspended in normal saline were given to groups of 5 C57 male mice by intrapharyngeal aspiration at 0. 1, 0.3, or 1.0 mg/mouse. Because lunar dust aggregates rapidly in aqueous media, some tests were conducted with dusts suspended in Survanta/saline (1:1). The mice were euthanized 7 or 30 days later, and their lungs were lavaged to assess the presence of toxicity biomarkers in bronchioalveolar lavage fluids. The overall results showed that the two lunar dust samples were similar in toxicity, they were more toxic than T102 , but less toxic than quartz. This preliminary study is a part of the large study to obtain data for setting exposure limits for astronauts living on the Moon

  12. Concepts and Benefits of Lunar Core Drilling

    NASA Technical Reports Server (NTRS)

    McNamara, K. M.; Bogard, D. D.; Derkowski, B. J.; George, J. A.; Askew, R. S.; Lindsay, J. F.

    2007-01-01

    Understanding lunar material at depth is critical to nearly every aspect of NASA s Vision and Strategic Plan. As we consider sending human s back to the Moon for brief and extended periods, we will need to utilize lunar materials in construction, for resource extraction, and for radiation shielding and protection. In each case, we will be working with materials at some depth beneath the surface. Understanding the properties of that material is critical, thus the need for Lunar core drilling capability. Of course, the science benefit from returning core samples and operating down-hole autonomous experiments is a key element of Lunar missions as defined by NASA s Exploration Systems Architecture Study. Lunar missions will be targeted to answer specific questions concerning lunar science and re-sources.

  13. Did We Really Land on the Moon? Suggestions for Science Teachers

    NASA Technical Reports Server (NTRS)

    Lowman, Paul D., Jr.; Smith, David E. (Technical Monitor)

    2001-01-01

    On Feb. 15, 2001, the FOX network broadcast a one hour TV program claiming that the Apollo lunar landings had all been staged in a studio set in Nevada, and that astronauts had never landed on the Moon. This claim can be refuted on many points, focused on the supposed photographic evidence indicating studio lighting or other aspects of the Apollo missions. The TV program ignored the returned lunar samples. Science teachers have been swamped with questions about the program, and this paper has been written to suggest how they can use it to stimulate interest in lunar geology. The article shows how the NASA Lunar Disk kits, available on loan to schools, can be studied by students. These samples are visibly different from terrestrial soils and rocks in several ways. There is no quartz in the lunar soil; there are no true reds and browns resulting from ferric oxides; and the textures of the soil (agglutinates and glass beads) can only be formed on an airless planet. The article has several pictures of the lunar surface and the Apollo samples, and a short bibliography for background reading.

  14. Isotopic Composition of Oxygen in Lunar Zircons

    NASA Technical Reports Server (NTRS)

    Nemchin, A. A.; Whitehouse, M. J.; Pidgeon, R. T.; Meyer, C.

    2005-01-01

    The recent discovery of heavy oxygen in zircons from the Jack Hills conglomerates Wilde et al. and Mojzsis et al. was interpreted as an indication of presence of liquid water on the surface of Early Earth. The distribution of ages of Jack Hills zircons and lunar zircons appears to be very similar and therefore analysis of oxygen in the lunar grains may provide a reference frame for further study of the early history of the Earth as well as give additional information regarding processes that operated on the Moon. In the present study we have analysed the oxygen isotopic composition of zircon grains from three lunar samples using the Swedish Museum of Natural History CAMECA 1270 ion microprobe. The samples were selected as likely tests for variations in lunar oxygen isotopic composition. Additional information is included in the original extended abstract.

  15. Dust particles investigation for future Russian lunar missions.

    NASA Astrophysics Data System (ADS)

    Dolnikov, Gennady; Horanyi, Mihaly; Esposito, Francesca; Zakharov, Alexander; Popel, Sergey; Afonin, Valeri; Borisov, Nikolay; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Kuznetsov, Ilya; Lyash, Andrey; Vorobyova, Elena; Petrov, Oleg; Lisin, Evgeny

    One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. Meteorites bombardment has accompanied by shock-explosive phenomena, disintegration and mix of the lunar soil in depth and on area simultaneously. As a consequence, the lunar soil has undergone melting, physical and chemical transformations. Recently we have the some reemergence for interest of Moon investigation. The prospects in current century declare USA, China, India, and European Union. In Russia also prepare two missions: Luna-Glob and Luna-Resource. Not last part of investigation of Moon surface is reviewing the dust condition near the ground of landers. Studying the properties of lunar dust is important both for scientific purposes to investigation the lunar exosphere component and for the technical safety of lunar robotic and manned missions. The absence of an atmosphere on the Moon's surface is leading to greater compaction and sintering. Properties of regolith and dust particles (density, temperature, composition, etc.) as well as near-surface lunar exosphere depend on solar activity, lunar local time and position of the Moon relative to the Earth's magneto tail. Upper layers of regolith are an insulator, which is charging as a result of solar UV radiation and the constant bombardment of charged particles, creates a charge distribution on the surface of the moon: positive on the illuminated side and negative on the night side. Charge distribution depends on the local lunar time, latitude and the electrical properties of the regolith (the presence of water in the regolith can influence the local distribution of charge). On light side of Moon near surface layer there exists possibility formation dusty plasma system. Altitude of levitation is depending from size of dust particle and Moon latitude. The distribution dust particle by size and altitude has estimated with taking into account photoelectrons, electrons and ions of solar wind, solar emission. Dust analyzer instrument PmL for future Russian lender missons intends for investigation the dynamics of dusty plasma near lunar surface. PmL consist of three blocks: Impact Sensor and two Electric Field Sensors. Dust Experiment goals are: 1) Impact sensor to investigate the dynamics of dust particles near the lunar surface (speed, charge, mass, vectors of a fluxes) a) high speed micrometeorites b) secondary particles after micrometeorites soil bombardment c) levitating dust particles due to electrostatic fields PmL instrument will measure dust particle impulses. In laboratory tests we used - min impulse so as 7•10-11 N•c, by SiO2 dust particles, 20-40 µm with velocity about 0,5 -2,5 m/c, dispersion 0.3, and - max impulse was 10-6 N•c with possibility increased it by particles Pb-Sn 0,7 mm with velocity 1 m/c, dispersion ±0.3. Also Impact Sensor will measure the charge of dust particle as far as 10-15 C ( 1000 electrons). In case the charge and impulse of a dust particle are measured we can obtain velocity and mass of them. 2) Electric field Sensor will measure the value and dynamics of the electric fields the lunar surface. Two Electric Field Sensors both are measured the concentration and temperature of charged particles (electrons, ions, dust particles). Uncertainty of measurements is 10%. Electric Field Sensors contain of Lengmure probe. Using Lengmure probe to dark and light Moon surface we can obtain the energy spectra photoelectrons in different period of time. PmL instrument is developing, working out and manufacturing in IKI. Simultaneously with the PmL dust instrument to study lunar dust it would be very important to use an onboard TV system adjusted for imaging physical properties of dust on the lunar surface (adhesion, albedo, porosity, etc), and to collect dust particles samples from the lunar surface to return these samples to the Earth for measure a number of physic-chemical properties of the lunar dust, e.g. a quantum yield of photoemission, what is very important for modeling physical processes in the lunar exosphere.

  16. Bombardment History of the Moon: What We Think We Know and What We Don't Know

    NASA Technical Reports Server (NTRS)

    Bogard, Donald

    2006-01-01

    The absolute impace history of the moon and inner solar system can in principle be derived from the statistics of radiometric ages of shock-heated planetary samples (lunar or meteoritic), from the formation ages of specific impact craters on the moon or Earth; and from agedating samples representing geologic surface units on the moon (or Mars) for which crater densities have been determined. This impact history, however, is still poorly defined. The heavily cratered surface of the moon is a testimony to the importance of impact events in the evolution of terrestrial planets and satellites. Lunar impacts range in scale from an early intense flux of large objects that defined the surface geology of the moon, down to recent, smaller impacts that continually generate and rework the lunar regolith. Densities of larger craters on lunar surface units of dated age define a projectile flux over time that serves as the basis for estimating surface ages on other solid bodies, particularly Mars. The lunar cratering history may address aspects of Earth s evolution, such as the possible role of early intense impacts on the atmosphere and early life and possible periodicity in large impact events in the more recent past. But, much about the lunar impact history remains unknown.. On Earth approximately 172 impact craters up to 300 km in diameter and up to 2 Gyr in age are recognized. Although these data suggest greater relative numbers of younger craters, possibly suggesting a recent increase in projectile flux, both the diameters and especially the ages of most terrestrial crates are so poorly known that the differential terrestrial impact flux over time is uncertain. For the moon, densities of craters on some mare surfaces and crater ejecta deposits, for which we have measured or estimated formation ages, suggest an approximately constant lunar impact rate of larger projectiles over the past 3.5 Gyr. However, the data are cumulative in nature and limited. Questions exist as to how accurately dated samples correlate with surfaces having measured crater densities. Studies of ages of many tiny impact-melt beads from Apollos 12 and 14 soils show a decrease in the number of beads with age from 4 Gyr ago to 0.4 Gyr ago, followed by a significant increase in beads with age <0.4 Gyr (2). These authors concluded that the projectile flux had decreased over time, followed by a significant flux increase more recently.

  17. Thermal Analyses of Apollo Lunar Soils Provide Evidence for Water in Permanently Shadowed Areas

    NASA Technical Reports Server (NTRS)

    Cooper, Bonnie L.; Smith, M. C.; Gibson, E. K.

    2011-01-01

    Thermally-evolved-gas analyses were performed on the Apollo lunar soils shortly after their return to Earth [1-8]. The analyses revealed the presence of water evolving at temperatures above 200 C. Of particular interest are samples that were collected from permanently-shadowed locations (e.g., under a boulder) with a second sample collected in nearby sunlight, and pairs in which one was taken from the top of a trench, and the second was taken at the base of the trench, where the temperature would have been -10 to -20 C prior to the disturbance [9]. These samples include 63340/63500, 69941/69961, and 76240/76280. At the time that this research was first reported, the idea of hydrated minerals on the lunar surface was somewhat novel. Nevertheless, goethite was observed in lunar breccias from Apollo 14 [10], and it was shown that goethite, hematite and magnetite could originate in an equilibrium assemblage of lunar rocks

  18. Indigenous Carbonaceous Phases Embedded Within Surface Deposits on Apollo 17 Volcanic Glass Beads

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K. L.; Clemett, S. J.; Ross, D. K.; Le, L.; McKay, D. S.; Gibson, E. K.; Gonzalez, C.

    2012-01-01

    The assessment of indigenous organic matter in returned lunar samples was one of the primary scientific goals of the Apollo program. Prior studies of Apollo samples have shown the total amount of organic matter to be in the range of approx 50 to 250 ppm. Low concentrations of lunar organics may be a consequence not only of its paucity but also its heterogeneous distribution. Several processes should have contributed to the lunar organic inventory including exogenous carbonaceous accretion from meteoroids and interplanetary dust particles, and endogenous synthesis driven by early planetary volcanism and cosmic and solar radiation.

  19. Remote detection of widespread indigenous water in lunar pyroclastic deposits

    NASA Astrophysics Data System (ADS)

    Milliken, Ralph E.; Li, Shuai

    2017-08-01

    Laboratory analyses of lunar samples provide a direct means to identify indigenous volatiles and have been used to argue for the presence of Earth-like water content in the lunar interior. Some volatile elements, however, have been interpreted as evidence for a bulk lunar mantle that is dry. Here we demonstrate that, for a number of lunar pyroclastic deposits, near-infrared reflectance spectra acquired by the Moon Mineralogy Mapper instrument onboard the Chandrayaan-1 orbiter exhibit absorptions consistent with enhanced OH- and/or H2O-bearing materials. These enhancements suggest a widespread occurrence of water in pyroclastic materials sourced from the deep lunar interior, and thus an indigenous origin. Water abundances of up to 150 ppm are estimated for large pyroclastic deposits, with localized values of about 300 to 400 ppm at potential vent areas. Enhanced water content associated with lunar pyroclastic deposits and the large areal extent, widespread distribution and variable chemistry of these deposits on the lunar surface are consistent with significant water in the bulk lunar mantle. We therefore suggest that water-bearing volcanic glasses from Apollo landing sites are not anomalous, and volatile loss during pyroclastic eruptions may represent a significant pathway for the transport of water to the lunar surface.

  20. The Benefits of Sample Return: Connecting Apollo Soils and Diviner Lunar Radiometer Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Greenhagen, B. T.; Donaldson-Hanna, K. L.; Thomas, I. R.; Bowles, N. E.; Allen, C. C.; Pieters, C. M.; Paige, D. A.

    2014-01-01

    The Diviner Lunar Radiometer, onboard NASA's Lunar Reconnaissance Orbiter, has produced the first global, high resolution, thermal infrared observations of an airless body. The Moon, which is the most accessible member of this most abundant class of solar system objects, is also the only body for which we have extraterrestrial samples with known spatial context. Here we present the results of a comprehensive study to reproduce an accurate simulated lunar environment, evaluate the most appropriate sample and measurement conditions, collect thermal infrared spectra of a representative suite of Apollo soils, and correlate them with Diviner observations of the lunar surface. We find that analyses of Diviner observations of individual sampling stations and SLE measurements of returned Apollo soils show good agreement, while comparisons to thermal infrared reflectance under terrestrial conditions do not agree well, which underscores the need for SLE measurements and validates the Diviner compositional dataset. Future work includes measurement of additional soils in SLE and cross comparisons with measurements in JPL Simulated Airless Body Emission Laboratory (SABEL).

  1. Characterization and Distribution of Lunar Mare Basalt Types Using Remote Sensing Techniques. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Pieters, C.

    1977-01-01

    The types of basal to be found on the moon were identified using reflectance spectra from a variety of lunar mare surfaces and craters as well as geochemical interpretations of laboratory measurements of reflectance from lunar, terrestrial, and meteoritic samples. Findings indicate that major basaltic units are not represented in lunar sample collections. The existence of late stage high titanium basalts is confirmed. All maria contain lateral variations of compositionally heterogenous basalts; some are vertically inhomogenous with distinctly different subsurface composition. Some basalt types are spectrally gradational, suggesting minor variations in composition. Mineral components of unsampled units can be defined if spectra are obtained with sufficient spectral coverage (.3 to 2.5 micron m) and spatial resolution (approximating .5 km).

  2. Geolab 2010: Desert Rats Field Demonstration

    NASA Technical Reports Server (NTRS)

    Evans, Cindy A.; Calaway, M. J.; Bell, M. S.

    2009-01-01

    In 2010, Desert Research and Technology Studies (Desert RATS), NASA's annual field exercise designed to test spacesuit and rover technologies, will include a first generation lunar habitat facility, the Habitat Demonstration Unit (HDU). The habitat will participate in joint operations in northern Arizona with the Lunar Electric Rover (LER) and will be used as a multi-use laboratory and working space. A Geology Laboratory or GeoLab is included in the HDU design. Historically, science participation in Desert RATS exercises has supported the technology demonstrations with geological traverse activities that are consistent with preliminary concepts for lunar surface science Extravehicular Activities (EVAs). Next year s HDU demonstration is a starting point to guide the development of requirements for the Lunar Surface Systems Program and test initial operational concepts for an early lunar excursion habitat that would follow geological traverses along with the LER. For the GeoLab, these objectives are specifically applied to support future geological surface science activities. The goal of our GeoLab is to enhance geological science returns with the infrastructure that supports preliminary examination, early analytical characterization of key samples, and high-grading lunar samples for return to Earth [1, 2] . Figure 1: Inside view schematic of the GeoLab a 1/8 section of the HDU, including a glovebox for handling and examining geological samples. Other outfitting facilities are not depicted in this figure. GeoLab Description: The centerpiece of the GeoLab is a glovebox, allowing for samples to be brought into the habitat in a protected environment for preliminary examination (see Fig. 1). The glovebox will be attached to the habitat bulkhead and contain three sample pass-through antechambers that would allow direct transfer of samples from outside the HDU to inside the glovebox. We will evaluate the need for redundant chambers, and other uses for the glovebox antechambers, such as a staging area for additional tools or samples. The sides of the glovebox are designed with instrument ports and additional smaller ports for cable pass-through, imagery feeds and environmental monitoring. This first glovebox version will be equipped with basic tools for manipulating, viewing, and early analysis of samples. The GeoLab was also designed for testing additional analytical instruments in a field setting.

  3. Lunar single-scattering, porosity, and surface-roughness properties with SMART-1/AMIE

    NASA Astrophysics Data System (ADS)

    Parviainen, H.; Muinonen, K.; Näränen, J.; Josset, J.-L.; Beauvivre, S.; Pinet, P.; Chevrel, S.; Koschny, D.; Grieger, B.; Foing, B.

    2009-04-01

    We analyze the single-scattering albedo and phase function, local surface roughness and regolith porosity, and the coherent backscattering, single scattering, and shadowing contributions to the opposition effect for specific lunar mare regions imaged by the SMART-1/AMIE camera. We account for shadowing due to surface roughness and mutual shadowing among the regolith particles with ray-tracing computations for densely-packed particulate media with a fractional-Brownian-motion interface with free space. The shadowing modeling allows us to derive the hundred-micron-scale volume-element scattering phase function for the lunar mare regolith. We explain the volume-element phase function by a coherent-backscattering model, where the single scatterers are the submicron-to-micron-scale particle inhomogeneities and/or the smallest particles on the lunar surface. We express the single-scatterer phase function as a sum of three Henyey-Greenstein terms, accounting for increased backward scattering in both narrow and wide angular ranges. The Moon exhibits an opposition effect, that is, a nonlinear increase of disk-integrated brightness with decreasing solar phase angle, the angle between the Sun and the observer as seen from the object. Recently, the coherent-backscattering mechanism (CBM) has been introduced to explain the opposition effect. CBM is a multiple-scattering interference mechanism, where reciprocal waves propagating through the same scatterers in opposite directions always interfere constructively in the backward-scattering direction but with varying interference characteristics in other directions. In addition to CBM, mutual shadowing among regolith particles (SMp) and rough-surface shadowing (SMr) have their effect on the behavior of the observed lunar surface brightness. In order to accrue knowledge on the volume-element and, ultimately, single-scattering properties of the lunar regolith, both SMp and SMr need to be accurately accounted for. We included four different lunar mare regions in our study. Each of these regions covers several hundreds of square kilometers of lunar surface. When selecting the regions, we have required that they have been imaged by AMIE across a wide range of phase angles, including the opposition geometry. The phase-angle range covered is 0-109 °, with incidence and emergence angles (ι and ε) ranging within 7-87 ° and 0-53 °, respectively. The pixel scale varies from 288m down to 29m. Biases and dark currents were subtracted from the images in the usual way, followed by a flat-field correction. New dark-current reduction procedures have recently been derived from in-flight measurements to replace the ground-calibration images . The clear filter was chosen for the present study as it provides the largest field of view and is currently the best-calibrated channel. Off-nadir-pointing observations allowed for the extensive phase-angle coverage. In total, 220 images are used for the present study. The photometric data points were extracted as follows. First, on average, 50 sample areas of 10 Ã- 10 pixels were chosen by hand from each image. Second, the surface normal, ι, ε, °, and α were computed for each pixel in each sample area using the NASA/NAIF SPICE software toolkit with the latest and corrected SMART-1/AMIE SPICE kernels. Finally, the illumination angles and the observed intensity were averaged over each sample area. In total, the images used in the study resulted in approximately 11000 photometric sample points for the four mare regions. We make use of fractional-Brownian-motion surfaces in modeling the interface between free space and regolith and a size distribution of spherical particles in modeling the particulate medium. We extract the effects of the stochastic geometry from the lunar photometry and, simultaneously, obtain the volume-element scattering phase function of the lunar regolith locations studied. The volume-element phase function allows us to constrain the physical properties of the regolith particles. Based on the present theoretical modeling of the lunar photometry from SMART-1/AMIE, we conclude that most of the lunar mare opposition effect is caused by coherent backscattering and single scattering within volume elements comparable to lunar particle sizes, with only a small contribution from shadowing effects. We thus suggest that the lunar single scatterers exhibit intensity enhancement towards the backward scattering direction in resemblance to the scattering characteristics experimentally measured and theoretically computed for realistic small particles. Further interpretations of the lunar volume-element phase function will be the subject of future research.

  4. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-20

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn Five launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. In this photograph, one of the astronauts on the Moon’s surface is holding a container of lunar soil. The other astronaut is seen reflected in his helmet. Apollo 12 safely returned to Earth on November 24, 1969.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-23

    Sitting on the lunar surface, this Solar Wind Spectrometer is measuring the energies of the particles that make up the solar wind. This was one of the instruments used during the Apollo 12 mission. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  6. Space Weathering Effects in Lunar Soils: The Roles of Surface Exposure Time and Bulk Chemical Composition

    NASA Technical Reports Server (NTRS)

    Zhang, Shouliang; Keller, Lindsay P.

    2011-01-01

    Space weathering effects on lunar soil grains result from both radiation-damaged and deposited layers on grain surfaces. Typically, solar wind irradiation forms an amorphous layer on regolith silicate grains, and induces the formation of surficial metallic Fe in Fe-bearing minerals [1,2]. Impacts into the lunar regolith generate high temperature melts and vapor. The vapor component is largely deposited on the surfaces of lunar soil grains [3] as is a fraction of the melt [4, this work]. Both the vapor-deposits and the deposited melt typically contain nanophase Fe metal particles (npFe0) as abundant inclusions. The development of these rims and the abundance of the npFe0 in lunar regolith, and thus the optical properties, vary with the soil mineralogy and the length of time the soil grains have been exposed to space weathering effects [5]. In this study, we used the density of solar flare particle tracks in soil grains to estimate exposure times for individual grains and then perform nanometer-scale characterization of the rims using transmission electron microscopy (TEM). The work involved study of lunar soil samples with different mineralogy (mare vs. highland) and different exposure times (mature vs. immature).

  7. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-23

    Sitting on the lunar surface, this magnetometer provided new data on the Moon’s magnetic field. This was one of the instruments used during the Apollo 12 mission. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  8. Effect of Simulant Type on the Absorptance and Emittance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2010-01-01

    During the Apollo program the effects of lunar dust on thermal control surfaces was found to be more significant than anticipated, with several systems overheating due to deposition of dust on them. In an effort to reduce risk to future missions, a series of tests has been initiated to characterize the effects of dust on these surfaces, and then to develop technologies to mitigate that risk. Given the variations in albedo across the lunar surface, one variable that may be important is the darkness of the lunar dust, and this study was undertaken to address that concern. Three thermal control surfaces, AZ-93 white paint and AgFEP and AlFEP second surface mirrors were dusted with three different lunar dust simulants in a simulated lunar environment, and their solar absorptivity and thermal emissivity values determined experimentally. The three simulants included JSC 1AF, a darker mare simulant, NU-LHT-1D, a light highlands simulant, and 1:1 mixture of the two. The response of AZ-93 was found to be slightly more pronounced than that of AgFEP. The increased with fractional dust coverage in both types of samples by a factor of 1.7 to 3.3, depending on the type of thermal control surface and the type of dust. The of the AZ-93 decreased by about 10 percent when fully covered by dust, while that of AgFEP increased by about 10 percent. It was found that alpha/epsilon varied by more than a factor of two depending on the thermal control surface and the darkness of the dust. Given that the darkest simulant used in this study may be significantly lighter than the darkest dust that could be encountered on the lunar surface, it becomes apparent that the performance degradation of thermal control surfaces due to dust on the moon will be strongly dependent on the and of the dust in the specific locality.

  9. Effect of Simulant Type on the Absorptance and Emittance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2010-01-01

    During the Apollo program the effects of lunar dust on thermal control surfaces was found to be more significant than anticipated, with several systems overheating due to deposition of dust on them. In an effort to reduce risk to future missions, a series of tests has been initiated to characterize the effects of dust on these surfaces, and then to develop technologies to mitigate that risk. Given the variations in albedo across the lunar surface, one variable that may be important is the darkness of the lunar dust, and this study was undertaken to address that concern. Three thermal control surfaces, AZ-93 white paint and AgFEP and AlFEP second surface mirrors were dusted with three different lunar dust simulants in a simulated lunar environment, and their integrated solar absorptance ( ) and thermal emittance ( ) values determined experimentally. The three simulants included JSC-1AF, a darker mare simulant, NU-LHT-1D, a light highlands simulant, and 1:1 mixture of the two. The response of AZ-93 was found to be slightly more pronounced than that of AgFEP. The increased with fractional dust coverage in both types of samples by a factor of 1.7 to 3.3, depending on the type of thermal control surface and the type of dust. The of the AZ-93 decreased by about 10 percent when fully covered by dust, while that of AgFEP increased by about 10 percent. It was found that / varied by more than a factor of two depending on the thermal control surface and the darkness of the dust. Given that the darkest simulant used in this study may be lighter than the darkest dust that could be encountered on the lunar surface, it becomes apparent that the performance degradation of thermal control surfaces due to dust on the Moon will be strongly dependent on the and of the dust in the specific locality

  10. Grain orientation in lunar soil

    NASA Technical Reports Server (NTRS)

    Mahmood, A.; Mitchell, J. K.; Carrier, W. D., III

    1974-01-01

    Orientation of lunar soil particles in a vertical plane, as seen in the radiographs of core tubes was characterized by preparing orientation diagrams for the different stratigraphic units. Radiographs of double-core drive tubes 64001/64002, 60009/60010, and 60013/60014 were used. The orientation results reinforced the stratigraphic differences. Another source of fabric data was the laboratory-deposited sample 14163,148. The artificial deposition results showed that the grain arrangements were dependent upon the method of deposition. These results from lunar soil and other data from a crushed basalt simulant can be a basis for the inference that lunar soil grain orientation and properties are useful in interpreting lunar surface history.

  11. The interaction of water vapor with a lunar soil, a compacted soil, and a cinder-like rock fragment

    NASA Technical Reports Server (NTRS)

    Cadenhead, D. A.; Stetter, J. R.

    1974-01-01

    A volumetric adsorption system incorporating a pressure gauge was employed to determine nitrogen adsorption and evaluate surface areas. The water adsorption of the lunar samples was measured with the aid of a gravimetric adsorption system including a microbalance. The results obtained in the investigation for the three samples are discussed in detail, giving attention to aspects of dehydroxylation and rehydroxylation.

  12. Estimating the number of terrestrial organisms on the moon.

    NASA Technical Reports Server (NTRS)

    Dillon, R. T.; Gavin, W. R.; Roark, A. L.; Trauth, C. A., Jr.

    1973-01-01

    Methods used to obtain estimates for the biological loadings on moon bound spacecraft prior to launch are reviewed, along with the mathematical models used to calculate the microorganism density on the lunar surface (such as it results from contamination deposited by manned and unmanned flights) and the probability of lunar soil sample contamination. Some of the results obtained by the use of a lunar inventory system based on these models are presented.

  13. Scaling Impact-Melt and Crater Dimensions: Implications for the Lunar Cratering Record

    NASA Technical Reports Server (NTRS)

    Cintala , Mark J.; Grieve, Richard A. F.

    1997-01-01

    The consequences of impact on the solid bodies of the solar system are manifest and legion. Although the visible effects on planetary surfaces, such as the Moon's, are the most obvious testimony to the spatial and temporal importance of impacts, less dramatic chemical and petrographic characteristics of materials affected by shock abound. Both the morphologic and petrologic aspects of impact cratering are important in deciphering lunar history, and, ideally, each should complement the other. In practice, however, a gap has persisted in relating large-scale cratering processes to petrologic and geochemical data obtained from lunar samples. While this is due in no small part to the fact that no Apollo mission unambiguously sampled deposits of a large crater, it can also be attributed to the general state of our knowledge of cratering phenomena, particularly those accompanying large events. The most common shock-metamorphosed lunar samples are breccias, but a substantial number are impact-melt rocks. Indeed, numerous workers have called attention to the importance of impact-melt rocks spanning a wide range of ages in the lunar sample collection. Photogeologic studies also have demonstrated the widespread occurrence of impact-melt lithologies in and around lunar craters. Thus, it is clear that impact melting has been a fundamental process operating throughout lunar history, at scales ranging from pits formed on individual regolith grains to the largest impact basins. This contribution examines the potential relationship between impact melting on the Moon and the interior morphologies of large craters and peaking basins. It then examines some of the implications of impact melting at such large scales for lunar-sample provenance and evolution of the lunar crust.

  14. Lunar and Planetary Science XXXV: Moon and Mercury

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session" Moon and Mercury" included the following reports:Helium Production of Prompt Neutrinos on the Moon; Vapor Deposition and Solar Wind Implantation on Lunar Soil-Grain Surfaces as Comparable Processes; A New Lunar Geologic Mapping Program; Physical Backgrounds to Measure Instantaneous Spin Components of Terrestrial Planets from Earth with Arcsecond Accuracy; Preliminary Findings of a Study of the Lunar Global Megaregolith; Maps Characterizing the Lunar Regolith Maturity; Probable Model of Anomalies in the Polar Regions of Mercury; Parameters of the Maximum of Positive Polarization of the Moon; Database Structure Development for Space Surveying Results by Moon -Zond Program; CM2-type Micrometeoritic Lunar Winds During the Late Heavy Bombardment; A Comparison of Textural and Chemical Features of Spinel Within Lunar Mare Basalts; The Reiner Gamma Formation as Characterized by Earth-based Photometry at Large Phase Angles; The Significance of the Geometries of Linear Graben for the Widths of Shallow Dike Intrusions on the Moon; Lunar Prospector Data, Surface Roughness and IR Thermal Emission of the Moon; The Influence of a Magma Ocean on the Lunar Global Stress Field Due to Tidal Interaction Between the Earth and Moon; Variations of the Mercurian Photometric Relief; A Model of Positive Polarization of Regolith; Ground Truth and Lunar Global Thorium Map Calibration: Are We There Yet?;and Space Weathering of Apollo 16 Sample 62255: Lunar Rocks as Witness Plates for Deciphering Regolith Formation Processes.

  15. Rock sample brought to earth from the Apollo 12 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A scientist's gloved hand holds one of the numerous rock samples brought back to Earth from the Apollo 12 lunar landing mission. This sample is a highly shattered basaltic rock with a thin black-glass coating on five of its six sides. Glass fills fractures and cements the rock together. The rock appears to have been shattered and thrown out by a meteorite impact explosion and coated with molten rock material before the rock fell to the surface.

  16. Measurement methods and accuracy analysis of Chang'E-5 Panoramic Camera installation parameters

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Ren, Xin; Liu, Jianjun; Tan, Xu; Wang, Wenrui; Chen, Wangli; Zhang, Xiaoxia; Li, Chunlai

    2016-04-01

    Chang'E-5 (CE-5) is a lunar probe for the third phase of China Lunar Exploration Project (CLEP), whose main scientific objectives are to implement lunar surface sampling and to return the samples back to the Earth. To achieve these goals, investigation of lunar surface topography and geological structure within sampling area seems to be extremely important. The Panoramic Camera (PCAM) is one of the payloads mounted on CE-5 lander. It consists of two optical systems which installed on a camera rotating platform. Optical images of sampling area can be obtained by PCAM in the form of a two-dimensional image and a stereo images pair can be formed by left and right PCAM images. Then lunar terrain can be reconstructed based on photogrammetry. Installation parameters of PCAM with respect to CE-5 lander are critical for the calculation of exterior orientation elements (EO) of PCAM images, which is used for lunar terrain reconstruction. In this paper, types of PCAM installation parameters and coordinate systems involved are defined. Measurement methods combining camera images and optical coordinate observations are studied for this work. Then research contents such as observation program and specific solution methods of installation parameters are introduced. Parametric solution accuracy is analyzed according to observations obtained by PCAM scientifically validated experiment, which is used to test the authenticity of PCAM detection process, ground data processing methods, product quality and so on. Analysis results show that the accuracy of the installation parameters affects the positional accuracy of corresponding image points of PCAM stereo images within 1 pixel. So the measurement methods and parameter accuracy studied in this paper meet the needs of engineering and scientific applications. Keywords: Chang'E-5 Mission; Panoramic Camera; Installation Parameters; Total Station; Coordinate Conversion

  17. Saturn Apollo Program

    NASA Image and Video Library

    1972-12-07

    This is an Apollo 17 onboard photo of an astronaut beside the Lunar Roving Vehicle (LRV) on the lunar surface. Designed and developed by the Marshall Space Flight Center and built by the Boeing Company, the LRV was first used on the Apollo 15 mission and increased the range of astronauts' mobility and productivity on the lunar surface. This lightweight electric car had battery power sufficient for about 55 miles. It weighed 462 pounds (77 pounds on the Moon) and could carry two suited astronauts, their gear, cameras, and several hundred pounds of bagged samples. The LRV's mobility was quite high. It could climb and descend slopes of about 25 degrees.

  18. Lunar Infrared Spectrometer (LIS) for Luna-Resurs and Luna-Glob missions

    NASA Astrophysics Data System (ADS)

    Korablev, O.; Ivanov, A.; Mantsevich, S.; Kiselev, A.; Vyazovetskiy, N.; Fedorova, A.; Evdokimova, N.; Stepanov, A.; Titov, A.; Kalinnikov, Y.

    2012-09-01

    Lunar Infrared Spectrometer (LIS) is an experiment onboard Luna-Glob (launch in 2015) and Luna- Resurs (launch in 2017) Russian surface missions. The experiment is dedicated to the studies of mineralogy of the lunar regolith in the vicinity of the lander. The instrument is mounted on the mechanic arm of landing module in the field of view (45°) of stereo TV camera. LIS will provide measurements of selected surface region in the spectral range of 1.15-3.3 μm. The electrically commanded acousto-optic filter scans sequentially at a desired sampling, with random access, over the entire spectral range.

  19. Post-Formation Sodium Loss on the Moon: A Bulk Estimate

    NASA Technical Reports Server (NTRS)

    Saxena, P.; Killen, R. M.; Airapetian, V.; Petro, N. E.; Mandell, A. M.

    2018-01-01

    The Moon and Earth are generally similar in terms of composition, but there exist variations in the abundance of certain elements among the two bodies. These differences are a likely consequence of differing physical evolution of the two bodies over the solar system's history. While previous works have assumed this may be due to conditions during the Moonâ€"TM"s formation, we explore the likelihood that the observed depletion in Sodium in lunar samples may be partially due to post-formation mechanisms. Solar effects, loss from a primordial atmosphere and impacts are some of the dominant post-formation mechanisms that we examine. We describe how our past and current modeling efforts indicate that a significant fraction of the observed depletion of sodium in lunar samples relative to a bulk silicate earth composition may have been due to solar activity, atmospheric loss and impacts. Using profiles of sodium abundances from lunar crustal samples may thus serve as a powerful tool towards exploring conditions on the Moon's surface throughout solar system history. Conditions on the Moon immediately after formation may still be recorded in the lunar crust and may provide a window towards interpreting observations from some of the first rocky exoplanets that will be most amenable to characterization. Potential spatial variation of sodium in the lunar crust may be a relevant consideration for future sample return efforts. Sodium Depletion in the Lunar Crust: Lunar

  20. Some physical properties of Apollo 12 lunar samples

    NASA Technical Reports Server (NTRS)

    Gold, T.; Oleary, B. T.; Campbell, M.

    1971-01-01

    The size distribution of the lunar fines is measured, and small but significant differences are found between the Apollo 11 and 12 samples as well as among the Apollo 12 core samples. The observed differences in grain size distribtuion in the core samples are related to surface transportation processes, and the importance of a sedimentation process versus meteoritic impact gardening of the mare grounds is discussed. The optical and the radio frequency electrical properties are measured and are also found to differ only slightly from Apollo 11 results.

  1. Solar Wind Sputtering of Lunar Surface Materials: Role and Some Possible Implications of Potential Sputtering

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Adams, J. H., Jr.; Meyer, F.; Reinhold, c.

    2010-01-01

    Solar-wind induced sputtering of the lunar surface includes, in principle, both kinetic and potential sputtering. The role of the latter mechanism, however, in many focused studies has not been properly ascertained due partly to lack of data but can also be attributed to the assertion that the contribution of solar-wind heavy ions to the total sputtering is quite low due to their low number density compared to solar-wind protons. Limited laboratory measurements show marked enhancements in the sputter yields of slow-moving, highly-charged ions impacting oxides. Lunar surface sputtering yields are important as they affect, e.g., estimates of the compositional changes in the lunar surface, its erosion rate, as well as its contribution to the exosphere as well as estimates of hydrogen and water contents. Since the typical range of solar-wind ions at 1 keV/amu is comparable to the thickness of the amorphous rim found on lunar soil grains, i.e. few 10s nm, lunar simulant samples JSC-1A AGGL are specifically enhanced to have such rims in addition to the other known characteristics of the actual lunar soil particles. However, most, if not all laboratory studies of potential sputtering were carried out in single crystal targets, quite different from the rim s amorphous structure. The effect of this structural difference on the extent of potential sputtering has not, to our knowledge, been investigated to date.

  2. Latitude Variation of the Subsurface Lunar Temperature: Lunar Prospector Thermal Neutrons

    NASA Astrophysics Data System (ADS)

    Little, R. C.; Feldman, W. C.; Maurice, S.; Genetay, I.; Lawrence, D. J.; Lawson, S. L.; Gasnault, O.; Barraclough, B. L.; Elphic, R. C.; Prettyman, T. H.; Binder, A. B.

    2001-05-01

    Planetary thermal neutron fluxes provide a sensitive proxy for mafic and feldspathic terranes, and are also necessary for translating measured gamma-ray line strengths to elemental abundances. Both functions require a model for near surface temperatures and a knowledge of the dependence of thermal neutron flux on temperature. We have explored this dependence for a representative sample of lunar soil compositions and surface temperatures using MCNP. For all soil samples, the neutron density is found to be independent of temperature, in accord with neutron moderation theory. The thermal neutron flux, however, does vary with temperature in a way that depends on D, the ratio of macroscopic absorption to energy-loss cross sections of soil compositions. The weakest dependence is for the largest D (which corresponds to the Apollo 17 high Ti basalt in our soil selection), and the largest dependence is for the lowest D (which corresponds to ferroan anorthosite, [FAN] in our selection). For the lunar model simulated, the depth at which the thermal neutron population is most sensitive to temperature is ~30 g/cm**2. These simulations were compared with the flux of thermal neutrons measured using the Lunar Prospector neutron spectrometer over the lunar highlands using a sub-surface temperature profile that varies with latitude, L, as (Cos L)**0.25. The fit is excellent. The best fitting equatorial temperature is determined to be, Teq=224+/-40 K. This temperature range brackets the average temperature measured below the thermal wave at the equator, Tmeas = 252+/-3K [Langseth and Keihm, 1977]. The present result represents the first measurement of subsurface temperature from orbit using neutrons.

  3. Charging of Basic Structural Shapes in a Simulated Lunar Environment

    NASA Technical Reports Server (NTRS)

    Craven, P.; Schneider, T.; Vaughn, J.; Wang, J.; Polansky, J.

    2012-01-01

    In order to understand the effect of the charging environment on and around structures on the lunar surface, we have exposed basic structural shapes to electrons and Vacuum Ultra-Violet (VUV) radiation. The objects were, in separate runs, isolated, grounded, and placed on dielectric surfaces. In this presentation, the effects of electron energy, VUV flux, and sample orientation, on the charging of the objects will be examined. The potential of each of the object surfaces was monitored in order to determine the magnitude of the ram and wake effects under different orientations relative to the incoming beams (solar wind). This is a part of, and complementary to, the study of the group at USC under Dr. J. Wang, the purpose of which is to model the effects of the charging environment on structures on the lunar surface.

  4. Lunar surface operations. Volume 4: Lunar rover trailer

    NASA Technical Reports Server (NTRS)

    Shields, William; Feteih, Salah; Hollis, Patrick

    1993-01-01

    The purpose of the project was to design a lunar rover trailer for exploration missions. The trailer was designed to carry cargo such as lunar geological samples, mining equipment and personnel. It is designed to operate in both day and night lunar environments. It is also designed to operate with a maximum load of 7000 kilograms. The trailer has a ground clearance of 1.0 meters and can travel over obstacles 0.75 meters high at an incline of 45 degrees. It can be transported to the moon fully assembled using any heavy lift vehicle with a storage compartment diameter of 5.0 meters. The trailer has been designed to meet or exceed the performance of any perceivable lunar vehicle.

  5. Scanning Auger Microprobe and atomic absorption studies of lunar volcanic volatiles

    NASA Technical Reports Server (NTRS)

    Cirlin, E. H.; Housley, R. M.

    1979-01-01

    Results on lunar volatile transport processes have been obtained by studying green and brown glass droplets, orange and black core tube samples and the surface sample 74241 with the Scanning Auger Microprobe (SAM) and by Flameless Atomic Absorption Analysis (FLAA). SAM analyses show that the most dominant volatiles in the top few atomic layers of droplets are Zn and S, confirming that the surface Zn and S are good indicators of pyroclastic origin, and they are not entirely present as ZnS. In addition, FLAA thermal release profiles show that almost all the Zn and Cd are on grain surfaces, indicating that Zn and Cd were completely outgassed from lava fountain products during the volcanic eruption, were recondensed during or after the eruptions, and are thus present as surface coating.

  6. Cautionary Notes on Cosmogenic W-182 and Other Nuclei in Lunar Samples

    NASA Technical Reports Server (NTRS)

    Yin, Qingzhu; Jacobsen, Stein B.; Wasserburg, G. J.

    2003-01-01

    Leya et al. (2000) showed that neutron capture on Ta-181 results in a production rate of Ta-182 (decays with a half-life of 114 days to W-182) sufficiently high to cause significant shifts in W-182 abundances considering the neutron fluences due to the cosmic ray cascade that were known to occur near the lunar surface. Leya et al. concluded that this cosmogenic production of W-182 may explain the large positive epsilon(sub W-182) values that Lee et al. (1997) had reported in some lunar samples rather than being produced from decay of now extinct Hf-182 (bar tau = 13 x 10(exp 6) yr). If the large range in epsilon(sub W-182) of lunar samples (0 to +11 in whole rock samples) was due to decay of now extinct Hf-182, it would require a very early time of formation and differentiation of the lunar crust-mantle system (with high Hf/W ratios) during the earliest stages of Earth s accretion. This result was both surprising and difficult to understand. The ability to explain these results by a more plausible mechanism is therefore very attractive. In a recent report Lee et al. (2002) showed that there were excesses of W-182 and that epsilon(sub W-182) was correlated with the Ta/W ratios in the mineral phases of individual lunar rock samples. This is in accord with W-182 variations in lunar samples being produced by cosmic-ray induced neutron capture on Ta-182.

  7. Resource Prospector: Evaluating the ISRU Potential of the Lunar Poles

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Elphic, R.; Andrews, D.; Trimble, J.; Bluethmann, B.; Quinn, J.; Chavers, G.

    2017-01-01

    Resource Prospector (RP) is a lunar volatiles prospecting mission being developed for potential flight in CY2021-2022. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. The primary mission goal for RP is to evaluate the In-Situ Resource Utilization (ISRU) potential of the lunar poles.

  8. Lunar surface operations. Volume 3: Robotic arm for lunar surface vehicle

    NASA Technical Reports Server (NTRS)

    Shields, William; Feteih, Salah; Hollis, Patrick

    1993-01-01

    A robotic arm for a lunar surface vehicle that can help in handling cargo and equipment, and remove obstacles from the path of the vehicle is defined as a support to NASA's intention to establish a lunar based colony by the year 2010. Its mission would include, but not limited to the following: exploration, lunar sampling, replace and remove equipment, and setup equipment (e.g. microwave repeater stations). Performance objectives for the robotic arm include a reach of 3 m, accuracy of 1 cm, arm mass of 100 kg, and lifting capability of 50 kg. The end effectors must grip various sizes and shapes of cargo; push, pull, turn, lift, or lower various types of equipment; and clear a path on the lunar surface by shoveling, sweeping aside, or gripping the obstacle present in the desired path. The arm can safely complete a task within a reasonable amount of time; the actual time is dependent upon the task to be performed. The positioning of the arm includes a manual backup system such that the arm can be safely stored in case of failure. Remote viewing and proximity and positioning sensors are incorporated in the design of the arm. The following specific topic are addressed in this report: mission and requirements, system design and integration, mechanical structure, modified wrist, structure-to-end-effector interface, end-effectors, and system controls.

  9. Impact of lunar and planetary missions on the space station

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The impacts upon the growth space station of several advanced planetary missions and a populated lunar base are examined. Planetary missions examined include sample returns from Mars, the Comet Kopff, the main belt asteroid Ceres, a Mercury orbiter, and a saturn orbiter with multiple Titan probes. A manned lunar base build-up scenario is defined, encompassing preliminary lunar surveys, ten years of construction, and establishment of a permanent 18 person facility with the capability to produce oxygen propellant. The spacecraft mass departing from the space station, mission Delta V requirements, and scheduled departure date for each payload outbound from low Earth orbit are determined for both the planetary missions and for the lunar base build-up. Large aerobraked orbital transfer vehicles (OTV's) are used. Two 42 metric ton propellant capacity OTV's are required for each the the 68 lunar sorties of the base build-up scenario. The two most difficult planetary missions (Kopff and Ceres) also require two of these OTV's. An expendable lunar lander and ascent stage and a reusable lunar lander which uses lunar produced oxygen are sized to deliver 18 metric tons to the lunar surface. For the lunar base, the Space Station must hangar at least two non-pressurized OTV's, store 100 metric tons of cryogens, and support an average of 14 OTV launch, return, and refurbishment cycles per year. Planetary sample return missions require a dedicated quarantine module.

  10. Remote detection of magmatic water in Bullialdus crater on the Moon

    USGS Publications Warehouse

    Klima, Rachel L.; Cahill, John; Hagerty, Justin J.; Lawrence, David

    2013-01-01

    Once considered dry compared with Earth, laboratory analyses of igneous components of lunar samples have suggested that the Moon’s interior is not entirely anhydrous. Water and hydroxyl have also been detected from orbit on the lunar surface, but these have been attributed to nonindigenous sources, such as interactions with the solar wind. Magmatic lunar volatiles—evidence for water indigenous to the lunar interior—have not previously been detected remotely. Here we analyse spectroscopic data from the Moon Mineralogy Mapper (M3) and report that the central peak of Bullialdus Crater is significantly enhanced in hydroxyl relative to its surroundings. We suggest that the strong and localized hydroxyl absorption features are inconsistent with a surficial origin. Instead, they are consistent with hydroxyl bound to magmatic minerals that were excavated from depth by the impact that formed Bullialdus Crater. Furthermore, estimates of thorium concentration in the central peak using data from the Lunar Prospector orbiter indicate an enhancement in incompatible elements, in contrast to the compositions of water-bearing lunar samples. We suggest that the hydroxyl-bearing material was excavated from a magmatic source that is distinct from that of samples analysed thus far.

  11. Documentation and environment of the Apollo 16 samples: A preliminary report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A catalog which is a working document that shows the locations from which samples were collected during the Apollo 16 mission, and that provides a descriptive geologic context for each sample is presented. It is a compilation of notes from work in progress, and supersedes an earlier report prepared by the Apollo Lunar Geology Investigation Team. The information was obtained from the Air-to-Ground transcript from the astronaut crew, from lunar surface television, from 60 mm Hasselblad camera photographs, and from available LRL mugshot photographs of the samples. The sample descriptions are based on these sources of data.

  12. Astronaut Alan Bean deploys Lunar Surface Magnetometer on lunar surface

    NASA Image and Video Library

    1969-11-19

    Astronaut Alan L. Bean, lunar module pilot, deploys the Lunar Surface Magnetometer (LSM) during the first Apollo 12 extravehicular activity on the Moon. The LSM is a component of the Apollo Lunar Surface Experiments Package (ALSEP). The Lunar Module can be seen in the left background.

  13. Astronaut Alan Bean deploys Lunar Surface Magnetometer on lunar surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, deploys the Lunar Surface Magnetometer (LSM) during the first Apollo 12 extravehicular activity on the Moon. The LSM is a component of the Apollo Lunar Surface Experiments Package (ALSEP). The Lunar Module can be seen in the left background.

  14. GN and C Subsystem Concept for Safe Precision Landing of the Proposed Lunar MARE Robotic Science Mission

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Johnson, Andrew E.; Anderson, F. Scott; Condon, Gerald L.; Nguyen, Louis H.; Olansen, Jon B.; Devolites, Jennifer L.; Harris, William J.; Hines, Glenn D.; Lee, David E.; hide

    2016-01-01

    The Lunar MARE (Moon Age and Regolith Explorer) Discovery Mission concept targets delivery of a science payload to the lunar surface for sample collection and dating. The mission science is within a 100-meter radius region of smooth lunar maria terrain near Aristarchus crater. The location has several small, sharp craters and rocks that present landing hazards to the spacecraft. For successful delivery of the science payload to the surface, the vehicle Guidance, Navigation and Control (GN&C) subsystem requires safe and precise landing capability, so design infuses the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) and a gimbaled, throttleable LOX/LCH4 main engine. The ALHAT system implemented for Lunar MARE is a specialization of prototype technologies in work within NASA for the past two decades, including a passive optical Terrain Relative Navigation (TRN) sensor, a Navigation Doppler Lidar (NDL) velocity and range sensor, and a Lidar-based Hazard Detection (HD) sensor. The landing descent profile is from a retrograde orbit over lighted terrain with landing near lunar dawn. The GN&C subsystem with ALHAT capabilities will deliver the science payload to the lunar surface within a 20-meter landing ellipse of the target location and at a site having greater than 99% safety probability, which minimizes risk to safe landing and delivery of the MARE science payload to the intended terrain region.

  15. New paleomagnetic constraints on the lunar magnetic field evolution

    NASA Astrophysics Data System (ADS)

    Lepaulard, C.; Gattacceca, J.; Weiss, B. P.

    2017-12-01

    In the 1970s, the first paleomagnetic analyses of lunar samples from the Apollo missions allowed a glimpse of the global evolution of the Moon's magnetic field over time, with evidence for a past dynamo activity [Fuller et Cisowski, 1987]. During the last a decade, a new set of paleomagnetic studies has provided a more refined view of the evolution of the lunar dynamo activity (chronology, intensity) [Weiss et Tikoo, 2014]. The aim of this study is to further refine the knowledge of the lunar dynamo by providing new paleomagnetic data. Based on measurements of the natural remanent magnetization of the main masses of 135 Apollo samples (mass between 50 g and 5 kg) with a portable magnetometer, we have selected nine samples for laboratory analyzes. The selected Apollo samples are: 10018, 15505, 61195 (regolith breccia); 61015 (dimict breccia); 14169 (crystalline matrix breccia); 65055 (basaltic impact melt); 12005, 12021 and 15529 (basalts). Paleointensity of the lunar magnetic fields were obtained by demagnetization by alternative field and normalization with laboratory magnetizations; as well as thermal demagnetization under controlled oxygen fugacity (Thellier-Thellier method) for selected samples. Preliminary results indicate that only three samples (10018, 15505, and 15529) possess a stable high coercivity / high temperature component of magnetization. We estimated the following paleointensities: 1.5 µT for 15505, 13 µT for 15529 (both with alternating field-based methods), and 1 µT for 10018 (thermal demagnetization with the Thellier-Thellier method). The other samples provide only an upper limit for the lunar surface field. These data will be discussed in view of the age of the samples (ages from the literature, and additional dating in progress). References :Fuller, M., and S.M. Cisowski, 1987. Lunar paleomagnetism. Geomagnetism 2, 307-455. Weiss, B.P., and S.M. Tikoo, 2014. The lunar dynamo. Science, 346, doi: 10.1126/science.1246753.

  16. 3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples

    NASA Technical Reports Server (NTRS)

    Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.

    2015-01-01

    In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible

  17. Experimental petrology and origin of Fra Mauro rocks and soil

    NASA Technical Reports Server (NTRS)

    Walker, D.; Longhi, J.; Hays, J. F.

    1972-01-01

    Melting experiments over the pressure range 0 to 20 kilobars were conducted on Apollo 14 igneous rocks 14310 and 14072 and on comprehensive fines 14259. The mineralogy and textures of rocks 14310 and 14072 are presumed to be the result of near-surface crystallization. The chemical compositions of the samples show special relationships to multiply-saturated liquids in the system: anorthite-forsterite-fayalite-silica at low pressure. Partial melting of a lunar crust consisting largely of plagioclase, low calcium pyroxene, and olivine, followed by crystal fractionation at the lunar surface is proposed as a mechanism for the production of the igneous rocks and soil glasses sampled by Apollo 14.

  18. The first lunar outpost: The design reference mission and a new era in lunar science

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary E.

    1993-01-01

    The content of the First Lunar Outpost (FLO) Design Reference Mission has been formulated and a 'strawman' science program has been established. The mission consists of two independent launches using heavy lift vehicles that land directly on the lunar surface. A habitat module and support systems are flown to the Moon first. After confirmation of a successful deployment of the habitat systems, the crewed lunar lander is launched and piloted to within easy walking distance (2 km) of the habitat. By eliminating the Apollo style lunar orbit rendezvous, landing sites at very high latitudes can be considered. A surface rover and the science experiments will accompany the crew. The planned stay time is 45 days, two lunar days and one night. A payload of 3.3 metric tons will support a series of geophysics, geology, astronomy, space physics, resource utilization, and life science experiments. Sample return is 150 to 200 kg. The rover is unpressurized and can carry four astronauts or two astronauts and 500 kg of payload. The rover can also operate in robotic mode with the addition of a robotics package. The science and engineering experiment strategy is built around a representative set of place holder experiments.

  19. A Study of an Unmanned Lunar Mission for the Assay of Volatile Gases from the Soil

    NASA Astrophysics Data System (ADS)

    Wittenberg, L. J.; Sviatoslavsky, I. N.; Kulcinski, G. L.; Mogahed, E. A.

    1999-01-01

    The success of a manned lunar outpost may require that indigenous resources be utilized in order to reduce the requirements for the periodic resupply from Earth for the human inhabitants. Some indigenous lunar resources do exist. For instance, studies of the lunar regoliths, acquired by the Apollo and Luna missions from several maria, indicate that upon heating in a vacuum, these soils evolve the volatile gases: helium (He), hydrogen (H2), carbon dioxide (CO2), carbon monoxide (CO), nitrogen (N2), and sulfur dioxide (SO2). The He, H, C, and N were originally implanted by solar wind These gases would be valuable to supply life-support systems. For instance, the H2 could be used as a rocket fuel, or alternatively, reacted with the mineral ilmenite (FeTiO3), indigenous to the lunar soil, to yield water (H2O). In an enclosed structure irradiated by solar energy, the H2O, N2, and CO2 could be utilized to grow edible plants for lunar inhabitants. Alternatively, the H2O could be electrolyzed, using photovoltaic cells, yielding breathable O. The inert gas He, would be useful for filling inflatable structures. In addition, the lunar He contains a high abundance of the rare isotopic He-3, which has been identified as a potentially valuable fuel for nuclear-fusion space power systems. In order to determine the economic potential of these lunar volatiles, we need information to assess the in situ quantities of these gases and identify the most abundant sites. In order to acquire such information, a large number of soil samples must be acquired and analyzed because it is not known if these volatile gases in the soil vary widely over the distance of a few meters or several kilometers. In addition, all of the lunar soil samples were analyzed on Earth, after being contaminated by terrestrial air and water. For these reasons, therefore, a mobile, robotic vehicle has been proposed that would be landed-on a lunar maria and assay the volatiles evolved by heating the indigenous lunar regolith. A lunar rover platform with the sample equipment attached has been designed. This science platform was conceptionally designed to fit on a small Marsokhod Rover (75 kg) with a 100-km range. The proposed sampling protocol would be to collect two samples, nearly adjacent. If the results agreed within the experimental deviation, the rover would proceed 0.5 km along the planned route and select two new samples. The progress of the rover and the results of the analyses would be continuously monitored from Earth so that the sampling protocol could be revised as needed. The scientific equipment would accomplish the assay of the regolith samples in the following sequence: (1) retrieve a sample of regolith from the lunar surface by use of a scoop mounted on the platform; (2) reduce the sample to about 1 g of particles <200 pm; (3) weigh the sample; (4) characterize the mineral content (TiO2); (5) heat the sample to 1200C in a vacuum furnace; (6) collect the volatiles; (7) characterize the volatile products; and (8) transmit the data. The components of the scientific package were conceptually designed and are briefly described: (1) The heater unit. A 1 g sample of the surface regolith would be placed in a ferritic steel crucible 0.8 cm OD x 1.57 cm high. This container would be placed in a coiled electrical heater inside an evacuated 1-L container. Heat transfer calculations indicate that the sample would attain 1200C in 14 min with a 25-W heater. For a high-Ti maria regolith sufficient gases are released to create a pressure of 70 Pa at 30C, which is a sufficient sample for the mass spectrometer. (2) Determination of metallic elements. Before the sample is heated, a laser beam delivers 0.45-2.0 Joules per pulse at a wave length of 1 micron to the surface of the sample. The absorption of the laser energy vaporizes some of the minerals in the soils. The vaporized ions are quantitatively determined by the mass spectrometer. (3) Mass spectrometer. This instrument must be utilized to characterize the mineral content of the soil and the volatile gases, essentially from 1 to 72 AMU range. A Fourier Transform Mass Spectrometer (FTMS) may be particularly useful for this analysis, but requires testing. (4) Powersupply. The initial power subsystem assumed the availability of a general purpose heat source, or a Radioisotope Thermoelectric Generator. If the launch of an RTG is forbidden for safety reasons, alternative power supplies would be considered such as solar-electric or beamed microwave sources.

  20. Geomorphometric multi-scale analysis for the recognition of Moon surface features using multi-resolution DTMs

    NASA Astrophysics Data System (ADS)

    Li, Ke; Chen, Jianping; Sofia, Giulia; Tarolli, Paolo

    2014-05-01

    Moon surface features have great significance in understanding and reconstructing the lunar geological evolution. Linear structures like rilles and ridges are closely related to the internal forced tectonic movement. The craters widely distributed on the moon are also the key research targets for external forced geological evolution. The extremely rare availability of samples and the difficulty for field works make remote sensing the most important approach for planetary studies. New and advanced lunar probes launched by China, U.S., Japan and India provide nowadays a lot of high-quality data, especially in the form of high-resolution Digital Terrain Models (DTMs), bringing new opportunities and challenges for feature extraction on the moon. The aim of this study is to recognize and extract lunar features using geomorphometric analysis based on multi-scale parameters and multi-resolution DTMs. The considered digital datasets include CE1-LAM (Chang'E One, Laser AltiMeter) data with resolution of 500m/pix, LRO-WAC (Lunar Reconnaissance Orbiter, Wide Angle Camera) data with resolution of 100m/pix, LRO-LOLA (Lunar Reconnaissance Orbiter, Lunar Orbiter Laser Altimeter) data with resolution of 60m/pix, and LRO-NAC (Lunar Reconnaissance Orbiter, Narrow Angle Camera) data with resolution of 2-5m/pix. We considered surface derivatives to recognize the linear structures including Rilles and Ridges. Different window scales and thresholds for are considered for feature extraction. We also calculated the roughness index to identify the erosion/deposits area within craters. The results underline the suitability of the adopted methods for feature recognition on the moon surface. The roughness index is found to be a useful tool to distinguish new craters, with higher roughness, from the old craters, which present a smooth and less rough surface.

  1. Internal friction quality-factor Q under confining pressure. [of lunar rocks

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Ahlberg, L.; Nadler, H.; Curnow, J.; Smith, T.; Cohen, E. R.

    1977-01-01

    It has been found in previous studies that small amounts of adsorbed volatiles can have a profound effect on the internal friction quality-factor Q of rocks and other porous media. Pandit and Tozer (1970) have suggested that the laboratory-measured Q of volatile-free rocks should be similar to the in situ seismic Q values of near-surface lunar rocks which according to Latham et al. (1970) are in the range of 3000-5000. Observations of dramatic increases in Q with outgassing up to values approaching 2000 in the seismic frequency range confirm this supposition. Measurements under confining pressures with the sample encapsulated under hard vacuum are reported to aid in the interpretation of seismic data obtained below the lunar surface. It has been possible to achieve in the experiments Q values just under 2000 at about 1 kbar for a terrestrial analog of lunar basalt. It was found that a well-outgassed sample maintains a high Q whereas one exposed to moisture maintains a low Q as the confining pressure is raised to 2.5 kbar. This result suggests that volatiles can indeed affect Q when cracks are partially closed and the high lunar seismic Q values reported are concomitant with very dry rock down to depths of at least 50 km.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-24

    Sitting in the life raft, during the Apollo 12 Pacific recovery, are the three mission astronauts; Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms, while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  3. Saturn Apollo Program

    NASA Image and Video Library

    1969-12-14

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples, some of which can be seen in this photograph. Apollo 12 safely returned to Earth on November 24, 1969.

  4. AOTF near-IR spectrometers for study of Lunar and Martian surface composition

    NASA Astrophysics Data System (ADS)

    Korablev, O.; Kiselev, A.; Vyazovetskiy, N.; Fedorova, A.; Evdokimova, N.; Stepanov, A.; Titov, A.; Kalinnikov, Y.; Kuzmin, R. O.; Bazilevsky, A. T.; Bondarenko, A.; Moiseev, P.

    2013-09-01

    The series of the AOTF near-IR spectrometers is developed in Moscow Space Research Institute for study of Lunar and Martian surface composition in the vicinity of a lander or a rover. Lunar Infrared Spectrometer (LIS) is an experiment onboard Luna-Glob (launch in 2015) and Luna-Resurs (launch in 2017) Russian surface missions. The LIS is mounted on the mechanic arm of landing module in the field of view (45°) of stereo TV camera. Infrared Spectrometer for ExoMars (ISEM) is an experiment onboard ExoMars (launch in 2018) ESARoscosmos rover. The ISEM instrument is mounted on the rover's mast together with High Resolution camera (HRC). Spectrometers will provide measurements of selected surface area in the spectral range of 1.15-3.3 μm. The electrically commanded acousto-optic filter scans sequentially at a desired sampling, with random access, over the entire spectral range.

  5. SEP events and wake region lunar dust charging with grain radii

    NASA Astrophysics Data System (ADS)

    Chandran, S. B. Rakesh; Rajesh, S. R.; Abraham, A.; Renuka, G.; Venugopal, Chandu

    2017-01-01

    Our lunar surface is exposed to all kinds of radiations from the Sun, since it lacks a global magnetic field. Like lunar surface, dust particles are also exposed to plasmas and UV radiation and, consequently they carry electrostatic charges. During Solar Energetic Particle events (SEPs) secondary electron emission plays a vital role in charging of lunar dusts. To study the lunar dust charging during SEPs on lunar wake region, we derived an expression for lunar dust potential and analysed how it varies with different electron temperatures and grain radii. Because of high energetic solar fluxes, secondary yield (δ) values reach up to 2.3 for 0.5 μm dust grain. We got maximum yield at an energy of 550 eV which is in well agreement with lunar sample experimental observation (Anderegg et al., 1972). It is observed that yield value increases with electron energy, reaches to a maximum value and then decreases. During SEPs heavier dust grains show larger yield values because of the geometry of the grains. On the wake region, the dust potential reaches up to -497 V for 0.5 μm dust grain. The electric field of these grains could present a significant threat to manned and unmanned missions to the Moon.

  6. Nominally hydrous magmatism on the Moon

    PubMed Central

    McCubbin, Francis M.; Steele, Andrew; Hauri, Erik H.; Nekvasil, Hanna; Yamashita, Shigeru; Hemley, Russell J.

    2010-01-01

    For the past 40 years, the Moon has been described as nearly devoid of indigenous water; however, evidence for water both on the lunar surface and within the lunar interior have recently emerged, calling into question this long-standing lunar dogma. In the present study, hydroxyl (as well as fluoride and chloride) was analyzed by secondary ion mass spectrometry in apatite [Ca5(PO4)3(F,Cl,OH)] from three different lunar samples in order to obtain quantitative constraints on the abundance of water in the lunar interior. This work confirms that hundreds to thousands of ppm water (of the structural form hydroxyl) is present in apatite from the Moon. Moreover, two of the studied samples likely had water preserved from magmatic processes, which would qualify the water as being indigenous to the Moon. The presence of hydroxyl in apatite from a number of different types of lunar rocks indicates that water may be ubiquitous within the lunar interior, potentially as early as the time of lunar formation. The water contents analyzed for the lunar apatite indicate minimum water contents of their lunar source region to range from 64 ppb to 5 ppm H2O. This lower limit range of water contents is at least two orders of magnitude greater than the previously reported value for the bulk Moon, and the actual source region water contents could be significantly higher. PMID:20547878

  7. Nominally hydrous magmatism on the Moon.

    PubMed

    McCubbin, Francis M; Steele, Andrew; Hauri, Erik H; Nekvasil, Hanna; Yamashita, Shigeru; Hemley, Russell J

    2010-06-22

    For the past 40 years, the Moon has been described as nearly devoid of indigenous water; however, evidence for water both on the lunar surface and within the lunar interior have recently emerged, calling into question this long-standing lunar dogma. In the present study, hydroxyl (as well as fluoride and chloride) was analyzed by secondary ion mass spectrometry in apatite [Ca(5)(PO(4))(3)(F,Cl,OH)] from three different lunar samples in order to obtain quantitative constraints on the abundance of water in the lunar interior. This work confirms that hundreds to thousands of ppm water (of the structural form hydroxyl) is present in apatite from the Moon. Moreover, two of the studied samples likely had water preserved from magmatic processes, which would qualify the water as being indigenous to the Moon. The presence of hydroxyl in apatite from a number of different types of lunar rocks indicates that water may be ubiquitous within the lunar interior, potentially as early as the time of lunar formation. The water contents analyzed for the lunar apatite indicate minimum water contents of their lunar source region to range from 64 ppb to 5 ppm H(2)O. This lower limit range of water contents is at least two orders of magnitude greater than the previously reported value for the bulk Moon, and the actual source region water contents could be significantly higher.

  8. Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc.

  9. The Apollo 16 Mare Component: Petrography, Geochemistry, and Provenance

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.; Haskin, L. A.; Korotev, R. L.; Jolliff, B. L.; Gillis, J. J.

    2003-01-01

    The A16 (Apollo16) site in the lunar nearside highlands is 220 km from the nearest mare. Thus it is no surprise that mare basalt samples are uncommon at the site. Here, we present the petrography and geochemistry of 5 new mare basalt samples found at the A16 site. We also discuss possible provenances of all A16 mare basalt samples using high-resolution global data for the distribution of Fe and Ti on the lunar surface derived from Clementine UV-VIS data [1-2].

  10. The radiation history of material returned by the Soviet automatic stations Luna 16 and Luna 20, according to track studies

    NASA Technical Reports Server (NTRS)

    Kashkarov, L. L.; Genayeva, L. I.; Lavrukhina, A. K.

    1977-01-01

    Fission tracks formed by the vH (very heavy) nuclei group of solar and galactic cosmic rays have been studied in silicate minerals of the lunar regolith returned by the Luna 16 and Luna 20 unmanned spacecraft. It is shown that the material in the Luna 16 core sample, from a typical mare region of the lunar surface, has undergone stronger irradiation by cosmic rays than material returned a highland region by Luna 20. A low-irradiation component (about 10 percent of the total number of crystals) has been found in the Luna 20 core sample materials, which can possibly be attributed to material added to the main bulk of the regolith in the formation of the crater Apollonius C. From the track density distribution of crystals, as a function of depth in the regolith core sample, it follows that the process of formation of the upper layer of the regolith, both for the lunar mare and for the highland region, includes sequential layering of finely crushed crystalline matter and subsequent mixing of it by micrometeorite bombardment. A portion of the crystals with a very high track density may be a component added to the lunar surface from outer space.

  11. View of activity in Mission Control Center during Apollo 15 EVA

    NASA Image and Video Library

    1971-08-02

    S71-41852 (2 Aug. 1971) --- Gerald D. Griffin, foreground, stands near his console in the Mission Operations Control Room (MOCR) during Apollo 15's third extravehicular activity (EVA) on the lunar surface. Griffin is Gold Team (Shift 1) flight director for the Apollo 15 mission. Astronauts David R. Scott and James B. Irwin can be seen on the large screen at the front of the MOCR as they participate in sample-gathering on the lunar surface.

  12. Bounding Extreme Spacecraft Charging in the Lunar Environment

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Linda N.

    2008-01-01

    Robotic and manned spacecraft from the Apollo era demonstrated that the lunar surface in daylight will charge to positive potentials of a few tens of volts because the photoelectron current dominates the charging process. In contrast, potentials of the lunar surface in darkness which were predicted to be on the order of a hundred volts negative in the Apollo era have been shown more recently to reach values of a few hundred volts negative with extremes on the order of a few kilovolts. The recent measurements of night time lunar surface potentials are based on electron beams in the Lunar Prospector Electron Reflectometer data sets interpreted as evidence for secondary electrons generated on the lunar surface accelerated through a plasma sheath from a negatively charged lunar surface. The spacecraft potential was not evaluated in these observations and therefore represents a lower limit to the magnitude of the lunar negative surface potential. This paper will describe a method for obtaining bounds on the magnitude of lunar surface potentials from spacecraft measurements in low lunar orbit based on estimates of the spacecraft potential. We first use Nascap-2k surface charging analyses to evaluate potentials of spacecraft in low lunar orbit and then include the potential drops between the ambient space environment and the spacecraft to the potential drop between the lunar surface and the ambient space environment to estimate the lunar surface potential from the satellite measurements.

  13. Understanding lunar magnetic field through magnetization and dynamo mechanism

    NASA Astrophysics Data System (ADS)

    Singh, K. H.; Kuang, W.

    2016-12-01

    It has been known that the Moon does not have an active global magnetic field. But past missions to the Moon (e.g. Apollo missions, Lunar Prospector) have detected magnetic anomalies in many areas on the lunar surface. They carry rich information about geophysical processes on and within the Moon, thus central for understanding the structure and dynamics in the interior, e.g. the core and the suggested magma ocean. One unsettling problem for understanding the lunar magnetic anomaly is its origin. There have been several mechanisms suggested in the past, either on the anomalies in specific regions, or only at the conceptual stage. The latter include the paleo dynamo. The lunar dynamo mechanism is conceptually very simple: lunar crustal magnetization was acquired in an internal magnetic field that was generated and maintained by dynamo action in the lunar core. Could this simple mechanism suffice to explain most of the observed lunar magnetic anomalies? We present our theoretical calculations of possible paleo-lunar magnetic field strengths based on paleomagnetic measurements of Apollo samples.

  14. Lunar and Planetary Science XXXI

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This CD-ROM presents papers presented to the Thirty-first Lunar and Planetary Science Conference, March 13-17, 2000, Houston, Texas. Eighty-one conference sessions, and over one thousand extended abstracts are included. Abstracts cover topics such as Martian surface properties and geology, meteoritic composition, Martian landing sites and roving vehicles, planned Mars Sample Return Missions, and general astrobiology.

  15. Gas interaction effects on lunar bonded particles and their implications

    NASA Technical Reports Server (NTRS)

    Mukherjee, N. R.

    1976-01-01

    Results are reported for an experimental investigation of gas-interaction effects on different Apollo 11 and Apollo 12 lunar-soil samples containing bonded particles. In the experiments, lunar fines were exposed to pure O2, pure water vapor, HCl, NH3, N2, HCOOH, and CH3NH2, in order to observe whether bonded particles would separate. In addition, repeated gas adsorption/desorption measurements were performed to determine the nature and reactive properties of the particle surfaces, and surface areas were measured for comparison with analogous terrestrial samples to determine whether the surface areas of highly radiation-damaged particles were larger or smaller. It is found that N2 is apparently ineffective in separating bonded particles and that the ratio of Apollo 11 to Apollo 12 bonded particles separated by a particular gas exposure ranges from 2.5 to 3.0. Possible reasons for differences in material surface properties at the two Apollo sites are considered, and it is concluded that material from a certain depth at some other site was transported to the Apollo 12 site and mixed with the original material in recent years (considerably less than 2000 years ago).

  16. Complex Indigenous Organic Matter Embedded in Apollo 17 Volcanic Black Glass Surface Deposits

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Clemett, S. J.; Ross, D. K.; Le, L.; Rahman, Z.; Gonzalez, C.; McKay, D. S.; Gibson, E. K.

    2013-01-01

    Papers presented at the first Lunar Science Conference [1] and those published in the subsequent Science Moon Issue [2] reported the C content of Apollo II soils, breccias, and igneous rocks as rang-ing from approx.50 to 250 parts per million (ppm). Later Fegley & Swindle [3] summarized the C content of bulk soils from all the Apollo missions as ranging from 2.5 (Apollo 15) to 280 ppm (Apollo 16) with an overall average of 124+/- 45 ppm. These values are unexpectedly low given that multiple processes should have contributed (and in some cases continue to contribute) to the lunar C inventory. These include exogenous accretion of cometary and asteroidal dust, solar wind implantation, and synthesis of C-bearing species during early lunar volcanism. We estimate the contribution of C from exogenous sources alone is approx.500 ppm, which is approx.4x greater than the reported average. While the assessm ent of indigenous organic matter (OM) in returned lunar samples was one of the primary scientific goals of the Apollo program, extensive analysis of Apollo samples yielded no evidence of any significant indigenous organic species. Furthermore, with such low concentrations of OM reported, the importance of discriminating indigenous OM from terrestrial contamination (e.g., lunar module exhaust, sample processing and handling) became a formidable task. After more than 40 years, with the exception of CH4 [5-7], the presence of indigenous lunar organics still remains a subject of considerable debate. We report for the first time the identification of arguably indigenous OM present within surface deposits of black glass grains collected on the rim of Shorty crater during the Apollo 17 mission by astronauts Eugene Cernan and Harrison Schmitt.

  17. In situ experimental formation and growth of Fe nanoparticles and vesicles in lunar soil

    NASA Astrophysics Data System (ADS)

    Thompson, Michelle S.; Zega, Thomas J.; Howe, Jane Y.

    2017-03-01

    We report the results of the first dynamic, in situ heating of lunar soils to simulate micrometeorite impacts on the lunar surface. We performed slow- and rapid-heating experiments inside the transmission electron microscope to understand the chemical and microstructural changes in surface soils resulting from space-weathering processes. Our slow-heating experiments show that the formation of Fe nanoparticles begins at 575 °C. These nanoparticles also form as a result of rapid-heating experiments, and electron energy-loss spectroscopy measurements indicate the Fe nanoparticles are composed entirely of Fe0, suggesting this simulation accurately mimics micrometeorite space-weathering processes occurring on airless body surfaces. In addition to Fe nanoparticles, rapid-heating experiments also formed vesiculated textures in the samples. Several grains were subjected to repeated thermal shocks, and the measured size distribution and number of Fe nanoparticles evolved with each subsequent heating event. These results provide insight into the formation and growth mechanisms for Fe nanoparticles in space-weathered soils and could provide a new methodology for relative age dating of individual soil grains from within a sample population.

  18. Concentrations of radioactive elements in lunar materials

    NASA Astrophysics Data System (ADS)

    Korotev, Randy L.

    1998-01-01

    As an aid to interpreting data obtained remotely on the distribution of radioactive elements on the lunar surface, average concentrations of K, U, and Th as well as Al, Fe, and Ti in different types of lunar rocks and soils are tabulated. The U/Th ratio in representative samples of lunar rocks and regolith is constant at 0.27; K/Th ratios are more variable because K and Th are carried by different mineral phases. In nonmare regoliths at the Apollo sites, the main carriers of radioactive elements are mafic (i.e., 6-8 percent Fe) impact-melt breccias created at the time of basin formation and products derived therefrom.

  19. Sample Curation at a Lunar Outpost

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Lofgren, Gary E.; Treiman, A. H.; Lindstrom, Marilyn L.

    2007-01-01

    The six Apollo surface missions returned 2,196 individual rock and soil samples, with a total mass of 381.6 kg. Samples were collected based on visual examination by the astronauts and consultation with geologists in the science back room in Houston. The samples were photographed during collection, packaged in uniquely-identified containers, and transported to the Lunar Module. All samples collected on the Moon were returned to Earth. NASA's upcoming return to the Moon will be different. Astronauts will have extended stays at an out-post and will collect more samples than they will return. They will need curation and analysis facilities on the Moon in order to carefully select samples for return to Earth.

  20. In-Situ XRF Measurements in Lunar Surface Exploration Using Apollo Samples as a Standard

    NASA Technical Reports Server (NTRS)

    Young, Kelsey E.; Evans, C.; Allen, C.; Mosie, A.; Hodges, K. V.

    2011-01-01

    Samples collected during the Apollo lunar surface missions were sampled and returned to Earth by astronauts with varying degrees of geological experience. The technology used in these EVAs, or extravehicular activities, included nothing more advanced than traditional terrestrial field instruments: rock hammer, scoop, claw tool, and sample bags. 40 years after Apollo, technology is being developed that will allow for a high-resolution geochemical map to be created in the field real-time. Handheld x-ray fluorescence (XRF) technology is one such technology. We use handheld XRF to enable a broad in-situ characterization of a geologic site of interest based on fairly rapid techniques that can be implemented by either an astronaut or a robotic explorer. The handheld XRF instrument we used for this study was the Innov-X Systems Delta XRF spectrometer.

  1. The Use of Solar Heating and Heat Cured Polymers for Lunar Surface Stabilization

    NASA Technical Reports Server (NTRS)

    Hintze, Paul; Curran, Jerry; Back, Reddy

    2008-01-01

    Dust ejecta can affect visibility during a lunar landing, erode nearby coated surfaces and get into mechanical assemblies of in-place infrastructure. Regolith erosion was observed at many of the Apollo landing sites. This problem needs to be addressed at the beginning of the lunar base missions, as the amount of infrastructure susceptible to problems will increase with each landing. Protecting infrastructure from dust and debris is a crucial step in its long term functionality. A proposed way to mitigate these hazards is to build a lunar launch pad. Other areas of a lunar habitat will also need surface stabilization methods to help mitigate dust hazards. Roads would prevent dust from being lifted during movement and dust free zones might be required for certain areas critical to crew safety or to critical science missions. Work at NASA Kennedy Space Center (KSC) is investigating methods of stabilizing the lunar regolith including: sintering the regolith into a solid and using heat or UV cured polymers to stabilize the surface. Sintering, a method in which powders are heated until fusing into solids, has been proposed as one way of building a Lunar launch/landing pad. A solar concentrator has been built and used in the field to sinter JSC-1 Lunar stimulant. Polymer palliatives are used by the military to build helicopter landing pads and roads in dusty and sandy areas. Those polymers are dispersed in a solvent (water), making them unsuitable for lunar use. Commercially available, solvent free, polymer powders are being investigated to determine their viability to work in the same way as the solvent borne terrestrial analog. This presentation will describe the ongoing work at KSC in this field. Results from field testing will be presented. Physical testing results, including compression and abrasion, of field and laboratory prepared samples will be presented.

  2. Electrical properties of lunar soil dependence on frequency, temperature and moisture.

    NASA Technical Reports Server (NTRS)

    Strangway, D. W.; Chapman, W. B.; Olhoeft, G. R.; Carnes, J.

    1972-01-01

    It was found that the dielectric constant and loss tangent of lunar soil samples in the range from 100 Hz to 1 MHz are not strongly dependent on frequency provided care is taken to avoid exposure of the sample to atmospheric air containing moisture. The loss tangent value obtained is lower by nearly a factor 10 than any previously reported value. The measurement data imply that the surface layers of the moon are probably extremely transparent to radiowaves.

  3. Science Enabling Exploration: Using LRO to Prepare for Future Missions

    NASA Astrophysics Data System (ADS)

    Lawrence, S.; Jolliff, B. L.; Stopar, J.; Speyerer, E. J.; Petro, N. E.

    2016-12-01

    Discoveries from LRO have transformed our understanding of the Moon (e. g., [1],[2],[3]), but LRO's instruments were originally designed to collect the measurements required to enable future lunar surface exploration [3]. A high lunar exploration priority is the collection of new samples and their return to Earth for comprehensive analysis [4]. The importance of sample return from South Pole-Aitken is well-established [Jolliff et al., this conference], but there are numerous other locations where sample return will yield important advances in planetary science. Using new LRO data, we have defined an achievability envelope based on the physical characteristics of successful lunar landing sites [5]. Those results were then used to define 1km x 1km regions of interest where sample return could be executed, including: the basalt flows in Oceanus Procellarum (22.1N, 53.9W), the Gruithuisen Domes (36.1N, 39.7W), the Dewar cryptomare (2.2S, 166.8E), the Aristarchus pyroclastic deposit (24.8N, 48.5W), the Sulpicius Gallus formation (19.9N, 10.3E), the Sinus Aestuum pyroclastic deposit (5.2N, 9.2W), the Compton-Belkovich volcanic complex (61.5N, 99.9E), the Ina Irregular Mare Patch (18.7N, 5.3E), and the Marius Hills volcanic complex (13.4N, 55.9W). All of these locations represent safe landing sites where sample returns are needed to advance our understanding of the evolution of the lunar interior and the timescales of lunar volcanism ([6], [7]). If LRO is still active when any future mission reaches the surface, LRO's capability to rapidly place surface activities into broader geologic context will provide operational advantages. LRO remains a unique strategic asset that continues to address the needs of future missions. References: [1] M. S. Robinson et al., Icarus, 252, 229-235, 2015. [2] S. E. Braden et al. Nat. Geosci., 7, 11, 787-791, 2014. [3] J. W. Keller et al. Icarus, 273, 2-24, 2016. [4] LEAG, Lunar Exploration Roadmap, 2011. [5] S. J. Lawrence et al., LPI Contrib. 1863, p. 2074, 2015 [6] C. K. Shearer et al., LPI Contrib. 1820, p. 3041, 2014. [7] S. J. Lawrence et al., LPI Contrib 1820, p. 3062, 2014

  4. The Effect of Simulated Lunar Dust on the Absorptivity, Emissivity, and Operating Temperature on AZ-93 and Ag/FEP Thermal Control Surfaces

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Siamidis, John; Panko, Scott R.; Rogers, Kerry J.; Larkin, Elizabeth M. G.

    2008-01-01

    JSC-1AF lunar simulant has been applied to AZ-93 and AgFEP thermal control surfaces on aluminum or composite substrates in a simulated lunar environment. The temperature of these surfaces was monitored as they were heated with a solar simulator and cooled in a 30 K coldbox. Thermal modeling was used to determine the absorptivity ( ) and emissivity ( ) of the thermal control surfaces in both their clean and dusted states. Then, a known amount of power was applied to the samples while in the coldbox and the steady state temperatures measured. It was found that even a submonolayer of simulated lunar dust can significantly degrade the performance of both white paint and second-surface mirror type thermal control surfaces under these conditions. Contrary to earlier studies, dust was found to affect as well as . Dust lowered the emissivity by as much as 16 percent in the case of AZ-93, and raised it by as much as 11 percent in the case of AgFEP. The degradation of thermal control surface by dust as measured by / rose linearly regardless of the thermal control coating or substrate, and extrapolated to degradation by a factor 3 at full coverage by dust. Submonolayer coatings of dust were found to not significantly change the steady state temperature at which a shadowed thermal control surface will radiate.

  5. Lunar lander conceptual design

    NASA Technical Reports Server (NTRS)

    Lee, Joo Ahn; Carini, John; Choi, Andrew; Dillman, Robert; Griffin, Sean J.; Hanneman, Susan; Mamplata, Caesar; Stanton, Edward

    1989-01-01

    A conceptual design is presented of a Lunar Lander, which can be the primary vehicle to transport the equipment necessary to establish a surface lunar base, the crew that will man the base, and the raw materials which the Lunar Station will process. A Lunar Lander will be needed to operate in the regime between the lunar surface and low lunar orbit (LLO), up to 200 km. This lander is intended for the establishment and operation of a manned surface base on the moon and for the support of the Lunar Space Station. The lander will be able to fulfill the requirements of 3 basic missions: A mission dedicated to delivering maximum payload for setting up the initial lunar base; Multiple missions between LLO and lunar surface dedicated to crew rotation; and Multiple missions dedicated to cargo shipments within the regime of lunar surface and LLO. A complete set of structural specifications is given.

  6. Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-01-01

    The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc. Separate abstracts have been prepared for articles from this report.

  7. Lunar mission safety and rescue: Escape/rescue analysis and plan

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are presented of the technical analysis of escape/rescue/survival situations, crew survival techniques, alternate escape/rescue approaches and vehicles, and the advantages and disadvantages of each for advanced lunar exploration. Candidate escape/rescue guidelines are proposed and elements of a rescue plan developed. The areas of discussions include the following: lunar arrival/departure operations, lunar orbiter operations, lunar surface operations, lunar surface base escape/rescue analysis, lander tug location operations, portable airlock, emergency pressure suit, and the effects of no orbiting lunar station, no lunar surface base, and no foreign lunar orbit/surface operations on the escape/rescue plan.

  8. Design of equipment for lunar dust removal

    NASA Technical Reports Server (NTRS)

    Belden, Lacy; Cowan, Kevin; Kleespies, Hank; Ratliff, Ryan; Shah, Oniell; Shelburne, Kevin

    1991-01-01

    NASA has a long range goal of constructing a fully equipped, manned lunar base on the near side of the moon by the year 2015. During the Apollo Missions, lunar dust coated and fouled equipment surfaces and mechanisms exposed to the lunar environment. In addition, the atmosphere and internal surfaces of the lunar excursion module were contaminated by lunar dust which was brought in on articles passed through the airlock. Consequently, the need exists for device or appliance to remove lunar dust from surfaces of material objects used outside of the proposed lunar habitat. Additionally, several concepts were investigated for preventing the accumulation of lunar dust on mechanisms and finished surfaces. The character of the dust and the lunar environment present unique challenges for the removal of contamination from exposed surfaces. In addition to a study of lunar dust adhesion properties, the project examines the use of various energy domains for removing the dust from exposed surfaces. Also, prevention alternatives are examined for systems exposed to lunar dust. A concept utilizing a pressurized gas is presented for dust removal outside of an atmospherically controlled environment. The concept consists of a small astronaut/robotic compatible device which removes dust from contaminated surfaces by a small burst of gas.

  9. Lunar surface vehicle model competition

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During Fall and Winter quarters, Georgia Tech's School of Mechanical Engineering students designed machines and devices related to Lunar Base construction tasks. These include joint projects with Textile Engineering students. Topics studied included lunar environment simulator via drop tower technology, lunar rated fasteners, lunar habitat shelter, design of a lunar surface trenching machine, lunar support system, lunar worksite illumination (daytime), lunar regolith bagging system, sunlight diffusing tent for lunar worksite, service apparatus for lunar launch vehicles, lunar communication/power cables and teleoperated deployment machine, lunar regolith bag collection and emplacement device, soil stabilization mat for lunar launch/landing site, lunar rated fastening systems for robotic implementation, lunar surface cable/conduit and automated deployment system, lunar regolith bagging system, and lunar rated fasteners and fastening systems. A special topics team of five Spring quarter students designed and constructed a remotely controlled crane implement for the SKITTER model.

  10. Constraining Particle Variation in Lunar Regolith for Simulant Design

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Rickman, Doug; Stoeser, Douglas; Hoelzer, Hans

    2008-01-01

    Simulants are used by the lunar engineering community to develop and test technologies for In Situ Resource Utilization (ISRU), excavation and drilling, and for mitigation of hazards to machinery and human health. Working with the United States Geological Survey (USGS), other NASA centers, private industry and academia, Marshall Space Flight Center (MSFC) is leading NASA s lunar regolith simulant program. There are two main efforts: simulant production and simulant evaluation. This work requires a highly detailed understanding of regolith particle type, size, and shape distribution, and of bulk density. The project has developed Figure of Merit (FoM) algorithms to quantitatively compare these characteristics between two materials. The FoM can be used to compare two lunar regolith samples, regolith to simulant, or two parcels of simulant. In work presented here, we use the FoM algorithm to examine the variance of particle type in Apollo 16 highlands regolith core and surface samples. For this analysis we have used internally consistent particle type data for the 90-150 m fraction of Apollo core 64001/64002 from station 4, core 60009/60010 from station 10, and surface samples from various Apollo 16 stations. We calculate mean modal compositions for each core and for the group of surface samples and quantitatively compare samples of each group to its mean as a measurement of within-group variance; we also calculate an FoM for every sample against the mean composition of 64001/64002. This gives variation with depth at two locations and between Apollo 16 stations. Of the tested groups, core 60009/60010 has the highest internal variance with an average FoM score of 0.76 and core 64001/64002 has the lowest with an average FoM of 0.92. The surface samples have a low but intermediate internal variance with an average FoM of 0.79. FoM s calculated against the 64001/64002 mean reference composition range from 0.79-0.97 for 64001/64002, from 0.41-0.91 for 60009/60010, and from 0.54-0.93 for the surface samples. Six samples fall below 0.70, and they are also the least mature (i.e., have the lowest I(sub s)/FeO). Because agglutinates are the dominant particle type and the agglutinate population increases with sample maturity (I(sub s)/FeO), the maturity of the sample relative to the reference is a prime determinant of the particle type FoM score within these highland samples.

  11. Adsorption of Water on JSC-1A Lunar Simulant Samples

    NASA Technical Reports Server (NTRS)

    Goering, John; Sah, Shweta; Burghaus, Uwe; Street, Kenneth W.

    2008-01-01

    Remote sensing probes sent to the moon in the 1990s indicated that water may exist in areas such as the bottoms of deep, permanently shadowed craters at the lunar poles, buried under regolith. Water is of paramount importance for any lunar exploration and colonization project which would require self-sustainable systems. Therefore, investigating the interaction of water with lunar regolith is pertinent to future exploration. The lunar environment can be approximated in ultra-high vacuum systems such as those used in thermal desorption spectroscopy (TDS). Questions about water dissociation, surface wetting, degree of crystallization, details of water-ice transitions, and cluster formation kinetics can be addressed by TDS. Lunar regolith specimens collected during the Apollo missions are still available though precious, so testing with simulant is required before applying to use lunar regolith samples. Hence, we used for these studies JSC-1a, mostly an aluminosilicate glass and basaltic material containing substantial amounts of plagioclase, some olivine and traces of other minerals. Objectives of this project include: 1) Manufacturing samples using as little raw material as possible, allowing the use of surface chemistry and kinetics tools to determine the feasibility of parallel studies on regolith, and 2) Characterizing the adsorption kinetics of water on the regolith simulant. This has implications for the probability of finding water on the moon and, if present, for recovery techniques. For condensed water films, complex TDS data were obtained containing multiple features, which are related to subtle rearrangements of the water adlayer. Results from JSC-1a TDS studies indicate: 1) Water dissociation on JSC-1a at low exposures, with features detected at temperatures as high as 450 K and 2) The formation of 3D water clusters and a rather porous condensed water film. It appears plausible that the sub- m sized particles act as nucleation centers.

  12. Lunar Dust Effects on Spacesuit Systems: Insights from the Apollo Spacesuits

    NASA Technical Reports Server (NTRS)

    Christoffersen, Roy; Lindsay, John R.; Noble, Sarah K.; Meador, Mary Ann; Kosmo, Joseph J.; Lawrence, J. Anneliese; Brostoff, Lynn; Young, Amanda; McCue, Terry

    2008-01-01

    Systems and components of selected Apollo A7L/A7LB flight-article spacesuits that were worn on the lunar surface have been studied to determine the degree to which they suffered contamination, abrasion and wear or loss of function due to effects from lunar soil particles. Filter materials from the lithium hydroxide (LiOH) canisters from the Apollo Command Module were also studied to determine the amount and type of any lunar dust particles they may have captured from the spacecraft atmosphere. The specific spacesuit study materials include the outermost soft fabric layers on Apollo 12 and 17 integrated thermal micrometeorite garment assemblies and outermost fabrics on Apollo 17 extravehicular pressure gloves. In addition, the degree of surface wear in the sealed wrist rotation bearing from Apollo 16 extravehicular and intravehicular pressure gloves was evaluated and compared. Scanning electron microscope examination of the Apollo 12 T-164 woven TeflonO fabric confirms the presence of lunar soil particles and the ability of these particles to cause separation and fraying of the Teflon fibers. Optical imaging, chemical analysis and particle sampling applied to the outer fabric of the Apollo 17 spacesuit has identified Ti as a potentially useful chemical marker for comparing the amount of lunar soil retained on different areas of the spacesuit outer fabric. High-yield particle sampling from the Apollo 17 fabric surfaces using adhesive tape found 80% of particles on the fabric are lunar soil particles averaging 10.5 m in diameter, with the rest being intrinsic fabric materials or environmental contaminants. Analysis of the mineralogical composition of the lunar particles found that on a grain-count basis the particle population is dominated by plagioclase feldspar and various types of glassy particles derived mostly from soil agglutinates, with a subordinate amount of pyroxene. On a grain size basis, however, the pyroxene grains are generally a factor of 2 larger than glass and plagioclase, so conversion of the data to a modal (volume %) basis results in pyroxene becoming the modally dominant particle type with glass and plagioclase significantly less abundant. When comparisons are made to the modal composition of lunar soil at the Apollo 17 landing site, the results suggest that pyroxene particles have overall better retention on the spacesuit outer fabric compared to plagioclase and especially glass. Scanning electron microscopy revealed no measureable difference in the amount of wear and abrasion in the wrist rotation bearing of an Apollo 16 pressure glove worn only in the spacecraft and one worn only for extravehicular activity on the lunar surface. The results suggest either that the bearing prevented entry of lunar dust, or that dust was not sufficiently abrasive to damage the bearing, or both.

  13. Surface charging of a crater near lunar terminator

    NASA Astrophysics Data System (ADS)

    Anuar, A. K.

    2017-05-01

    Past lunar missions have shown the presence of dust particles in the lunar exosphere. These particles originate from lunar surface and are due to the charging of lunar surface by the solar wind and solar UV flux. Near the lunar terminator region, the low conductivity of the surface and small scale variations in surface topology could cause the surface to charge to different surface potentials. This paper simulates the variation of surface potential for a crater located in the lunar terminator regions using Spacecraft Plasma Interaction Software (SPIS). SPIS employs particle in cell method to simulate the motion of solar wind particles and photoelectrons. Lunar crater has been found to create mini-wake which affects both electron and ion density and causes small scale potential differences. Simulation results show potential difference of 300 V between sunlit area and shadowed area which creates suitable condition for dust levitation to occur.

  14. Space Weathering of Intermediate-Size Soil Grains in Immature Apollo 17 Soil 71061

    NASA Technical Reports Server (NTRS)

    Wentworth, S. J.; Robinson, G. A.; McKay, D. S.

    2005-01-01

    Understanding space weathering, which is caused by micrometeorite impacts, implantation of solar wind gases, radiation damage, chemical effects from solar particles and cosmic rays, interactions with the lunar atmosphere, and sputter erosion and deposition, continues to be a primary objective of lunar sample research. Electron beam studies of space weathering have focused on space weathering effects on individual glasses and minerals from the finest size fractions of lunar soils [1] and patinas on lunar rocks [2]. We are beginning a new study of space weathering of intermediate-size individual mineral grains from lunar soils. For this initial work, we chose an immature soil (see below) in order to maximize the probability that some individual grains are relatively unweathered. The likelihood of identifying a range of relatively unweathered grains in a mature soil is low, and we plan to study grains ranging from pristine to highly weathered in order to determine the progression of space weathering. Future studies will include grains from mature soils. We are currently in the process of documenting splash glass, glass pancakes, craters, and accretionary particles (glass and mineral grains) on plagioclase from our chosen soil using high-resolution field emission scanning electron microscopy (FESEM). These studies are being done concurrently with our studies of patinas on larger lunar rocks [e.g., 3]. One of our major goals is to correlate the evidence for space weathering observed in studies of the surfaces of samples with the evidence demonstrated at higher resolution (TEM) using cross-sections of samples. For example, TEM studies verified the existence of vapor deposits on soil grains [1]; we do not yet know if they can be readily distinguished by surfaces studies of samples. A wide range of textures of rims on soil grains is also clear in TEM [1]; might it be possible to correlate them with specific characteristics of weathering features seen in SEM?

  15. Proceedings of the 38th Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The sessions in the conference include: Titan, Mars Volcanism, Mars Polar Layered Deposits, Early Solar System Isotopes, SPECIAL SESSION: Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Achondrites: Exploring Oxygen Isotopes and Parent-Body Processes, Solar System Formation and Evolution, SPECIAL SESSION: SMART-1, . Impact Cratering: Observations and Experiments, SPECIAL SESSION: Volcanism and Tectonism on Saturnian Satellites, Solar Nebula Composition, Mars Fluvial Geomorphology, Asteroid Observations: Spectra, Mostly, Mars Sediments and Geochemistry: View from the Surface, Mars Tectonics and Crustal Dichotomy, Stardust: Wild-2 Revealed, Impact Cratering from Observations and Interpretations, Mars Sediments and Geochemistry: The Map View, Chondrules and Their Formation, Enceladus, Asteroids and Deep Impact: Structure, Dynamics, and Experiments, Mars Surface Process and Evolution, Martian Meteorites: Nakhlites, Experiments, and the Great Shergottite Age Debate, Stardust: Mainly Mineralogy, Astrobiology, Wind-Surface Interactions on Mars and Earth, Icy Satellite Surfaces, Venus, Lunar Remote Sensing, Space Weathering, and Impact Effects, Interplanetary Dust/Genesis, Mars Cratering: Counts and Catastrophes?, Chondrites: Secondary Processes, Mars Sediments and Geochemistry: Atmosphere, Soils, Brines, and Minerals, Lunar Interior and Differentiation, Mars Magnetics and Atmosphere: Core to Ionosphere, Metal-rich Chondrites, Organics in Chondrites, Lunar Impacts and Meteorites, Presolar/Solar Grains, Topics for Print Only papers are: Outer Planets/Satellites, Early Solar System, Interplanetary Dust, Comets and Kuiper Belt Objects, Asteroids and Meteoroids, Chondrites, Achondrites, Meteorite Related, Mars Reconnaissance Orbiter, Mars, Astrobiology, Planetary Differentiation, Impacts, Mercury, Lunar Samples and Modeling, Venus, Missions and Instruments, Global Warming, Education and Public Outreach, Poster sessions are: Asteroids/Kuiper Belt Objects, Galilean Satellites: Geology and Mapping, Titan, Volcanism and Tectonism on Saturnian Satellites, Early Solar System, Achondrite Hodgepodge, Ordinary Chondrites, Carbonaceous Chondrites, Impact Cratering from Observations and Interpretations, Impact Cratering from Experiments and Modeling, SMART-1, Planetary Differentiation, Mars Geology, Mars Volcanism, Mars Tectonics, Mars: Polar, Glacial, and Near-Surface Ice, Mars Valley Networks, Mars Gullies, Mars Outflow Channels, Mars Sediments and Geochemistry: Spirit and Opportunity, Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Mars Reconnaissance Orbiter: Geology, Layers, and Landforms, Oh, My!, Mars Reconnaissance Orbiter: Viewing Mars Through Multicolored Glasses; Mars Science Laboratory, Phoenix, and ExoMars: Science, Instruments, and Landing Sites; Planetary Analogs: Chemical and Mineral, Planetary Analogs: Physical, Planetary Analogs: Operations, Future Mission Concepts, Planetary Data, Imaging, and Cartography, Outer Solar System, Presolar/Solar Grains, Stardust Mission; Interplanetary Dust, Genesis, Asteroids and Comets: Models, Dynamics, and Experiments, Venus, Mercury, Laboratory Instruments, Methods, and Techniques to Support Planetary Exploration; Instruments, Techniques, and Enabling Techologies for Planetary Exploration; Lunar Missions and Instruments, Living and Working on the Moon, Meteoroid Impacts on the Moon, Lunar Remote Sensing, Lunar Samples and Experiments, Lunar Atmosphere, Moon: Soils, Poles, and Volatiles, Lunar Topography and Geophysics, Lunar Meteorites, Chondrites: Secondary Processes, Chondrites, Martian Meteorites, Mars Cratering, Mars Surface Processes and Evolution, Mars Sediments and Geochemistry: Regolith, Spectroscopy, and Imaging, Mars Sediments and Geochemistry: Analogs and Mineralogy, Mars: Magnetics and Atmosphere, Mars Aeolian Geomorphology, Mars Data Processing and Analyses, Astrobiology, Engaging Student Educators and the Public in Planetary Science,

  16. Cosmogenic Cl-36 production rates in meteorites and the lunar surface

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Arnold, J. R.; Kubik, P. W.; Elmore, D.; Reedy, R. C.

    1989-01-01

    Activity vs. depth profiles of cosmic ray produced Cl-36 were measured in metal from two cores each in the St. Severin and Jilin chondrites and in lunar core 15008. Production of Cl-36 in these samples range from high-energy reactions with Fe and Ni to low-energy reactions with Ca and K and possibly neutron-capture reactions with Cl-36. The cross sections used in the Reedy-Arnold model for neutron-induced reactions were adjusted to get production rates that fit the measured Cl-36 activities in St. Severin metal and in the lunar soil of core 15008. The Cl-36 in metal from St. Severin has a fairly flat activity-vs-depth profile, unlike most other cosmogenic nuclides in bulk samples from St. Severin, which increase in concentration with depth. In metal from Jilin, a decrease in Cl-36 was observed near its center. The length of Jilin's most recent cosmic-ray exposure was approximately 0.5 My. Lunar core 15008 has an excess in Cl-36 of about 4 dpm/kg near its surface that was produced by solar-proton-induced reactions. The calculated production rates are consistent with these measured trends in 15008.

  17. Documenting Surface and Sub-surface Volatiles While Drilling in Frozen Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Roush, T. L.; Cook, A. M.; Colaprete, A.; Bielawski, R.; Fritzler, E.; Benton, J.; White, B.; Forgione, J.; Kleinhenz, J.; Smith, J.; hide

    2017-01-01

    NASA's Resource Prospector (RP) mission is intended to characterize the three-dimensional nature of volatiles in lunar polar regions and permanently shadowed regions. RP is slated to carry two instruments for prospecting purposes. These include the Neutron Spectrometer System (NSS) and Near-Infrared Volatile Spectrometer System (NIRVSS). A Honybee Robotics drill (HRD) is intended to sample to depths of 1 m, and deliver a sample to a crucible that is processed by the Oxygen Volatile Extraction Node (OVEN) where the soil is heated and evolved gas is delivered to the gas chromatograph / mass spectrometer of the Lunar Advanced Volatile Analysis system (LAVA). For several years, tests of various sub-systems have been undertaken in a large cryo-vacuum chamber facility (VF-13) located at Glenn Research Center. In these tests a large tube (1.2 m high x 25.4 cm diameter) is filled with lunar simulant, NU-LHT-3M, prepared with known abundances of water. There are thermo-couples embedded at different depths, and also across the surface of the soil tube. The soil tube is placed in the chamber and cooled with LN2 as the pressure is reduced to approx.5-6x10(exp -6) Torr. Here we discuss May 2016 tests where two soil tubes were prepared and placed in the chamber. Also located in the chamber were 5 crucibles, an Inficon mass spectrometer, and a trolly permitting x-y translation, where the HRD and NIRVSS, were mounted. The shroud surrounding the soil tube was held at different temperatures for each tube to simulate a warm and cold lunar environment.

  18. Chemical markers for bacteria in extraterrestrial samples.

    PubMed

    Fox, Alvin

    2002-11-01

    Interplanetary missions to collect pristine Martian surface samples for analysis of organic molecules, and to search for evidence of life, are in the planning phases. The only extraterrestrial samples currently on Earth are lunar dust and rocks, brought back by the Apollo (U.S.) and Luna (Soviet Union) missions to the moon, and meteorites. Meteorites are contaminated when they pass through the Earth's atmosphere, and during environmental exposure on Earth. Lunar fines have been stored on Earth for over 30 years under conditions designed to avoid chemical but not microbiological contamination. It has been extremely difficult to draw firm conclusions about the origin of chemicals (including amino acids) in extraterrestrial samples. Of particular concern has been the possibility of bacterial contamination. Recent work using state-of-the-art gas chromatography tandem mass spectrometry (GC-MS/MS) has dramatically lowered the chemical background, allowing a clear demonstration that lunar fines are remarkably different from terrestrial dust in that they generally lack certain chemical markers (muramic acid and 3-hydroxy fatty acids) characteristic of Earth's bacteria. Thus, lunar dust might be used as a negative control, in conjunction with GC-MS/MS analyses, in future analytical studies of lunar dust and meteorites. Such analyses may also be important in studies designed to search for the presence of life on Mars. Copyright 2002 Wiley-Liss, Inc.

  19. Origin of isotopically light Zn in lunar samples through vaporization and the Zn isotope composition of the Moon

    NASA Astrophysics Data System (ADS)

    Kato, C.; Valdes, M. C.; Dhaliwal, J.; Day, J. M.; Moynier, F.

    2013-12-01

    The origin of the volatile element depletion of the Moon compared to Earth remains a key question in planetary science. It has recently been shown that both high-Ti and low-Ti lunar basalts are enriched in the heavier isotopes of Zn compared to Earth with an effect of ~1.3 permil on the 66Zn/64Zn ratio (Paniello et al., Nature, 2012). In order to obtain a better understanding of Zn behavior in and on the Moon, we present new measurements of lunar basalts, pyroclastic green glass 15426, highland anorthosites, cataclastic dunite 77215, cataclastic norite 72415 and some lunar soils. Samples were analyzed using a Thermo-Fisher Neptune Plus multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) at Washington University in St Louis. The data presented below are reported as the permil deviation of the 66Zn/64Zn ratio from the JMC-Lyon standard (δ66Zn). Four new high Ti basalts and three low Ti basalts confirm the observations of Paniello et al. (2012), that there is an enrichment in the heavier isotopes of Zn compared with chondrites and terrestrial samples. Combining these data together with Paniello et al. (2012) and Herzog et al. (GCA, 2009) we calculate a new average for lunar basalts of δ66Zn= 1.4×0.4 (1sd, n = 27). A few exceptions (5 samples out of 32) are isotopically light and probably represent addition of isotopically light Zn condensed onto the lunar surface from Zn isotopic fractionation during meteoritic impact, creating correspondingly isotopically heavy soils. In contrast to the homogeneity of mare basalts, highland samples show large Zn isotopic variability (δ66Zn -11.4 up to +4.24 permil) which encompasses the entire Zn isotopic variability measured so far in the Solar System. These δ66Zn variations are negatively correlated with the Zn abundance, with the isotopically light samples having the highest Zn concentrations. We interpret these results as the consequence of meteoritic bombardment and volatilization/condensation of Zn at the surface of the Moon. This represents secondary effects and mixing with exogenous Zn, explaining the higher abundance of Zn in highland rocks, relative to mare basalts. The pyroclastic green glass (15426) has a higher measured Zn concentration (~50ppm) compared with mare basalts, but is still depleted in Zn relative to most terrestrial basalts (typically >50 to 100 ppm). 15426 is also isotopically light (δ66Zn= -0.98), which is similar to previous measurements of Zn composition made for high-Ti pyroclastic glass beads (74220). We interpret the composition of the lunar pyroclastic glasses to reflect lava fountaining and coating of the surface of the beads by a volatile rich and isotopically light vapor. Thus, we conclude that mare basalts, which are isotopically heavier than the Earth, best represent the lunar silicate composition.

  20. The Moon

    NASA Astrophysics Data System (ADS)

    Warren, P. H.

    2003-12-01

    Oxygen isotopic data suggest that there is a genetic relationship between the constituent matter of the Moon and Earth (Wiechert et al., 2001). Yet lunar materials are obviously different from those of the Earth. The Moon has no hydrosphere, virtually no atmosphere, and compared to the Earth, lunar materials uniformly show strong depletions of even mildly volatile constituents such as potassium, in addition to N2, O2, and H2O (e.g., Wolf and Anders, 1980). Oxygen fugacity is uniformly very low ( BVSP, 1981) and even the earliest lunar magmas seem to have been virtually anhydrous. These features have direct and far-reaching implications for mineralogical and geochemical processes. Basically, they imply that mineralogical diversity and thus variety of geochemical processes are subdued; a factor that to some extent offsets the comparative dearth of available data for lunar geochemistry.The Moon's gross physical characteristics play an important role in the more limited range of selenochemical compared to terrestrial geochemical processes. Although exceptionally large (radius=1,738 km) in relation to its parent planet, the Moon is only 0.012 times as massive as Earth. By terrestrial standards, pressures inside the Moon are feeble: the upper mantle gradient is 0.005 GPa km -1 (versus 0.033 GPa km -1 in Earth) and the central pressure is slightly less than 5 GPa. However, lunar interior pressures are sufficient to profoundly influence igneous processes (e.g., Warren and Wasson, 1979b; Longhi, 1992, 2002), and in this sense the Moon more resembles a planet than an asteroid.Another direct consequence of the Moon's comparatively small size was early, rapid decay of its internal heat engine. But the Moon's thermal disadvantage has resulted in one great advantage for planetology. Lunar surface terrains, and many of the rock samples acquired from them, retain for the most part characteristics acquired during the first few hundred million years of solar system existence. The Moon can thus provide crucial insight into the early development of the Earth, where the direct record of early evolution was effectively destroyed by billions of years of geological activity. Lunar samples show that the vast majority of the craters that pervade the Moon's surface are at least 3.9 Gyr old (Dalrymple and Ryder, 1996). Impact cratering has been a key influence on the geochemical evolution of the Moon, and especially the shallow Moon.The uppermost few meters of the lunar crust, from which all lunar samples are derived, is a layer of loose, highly porous, fine impact-generated debris - regolith or lunar "soil." Processes peculiar to the surface of an atmosphereless body, i.e., effects of exposure to solar wind, cosmic rays, and micrometeorite bombardment, plus spheroidal glasses formed by in-flight quenching of pyroclastic or impact-generated melt splashes, all are evident in any reasonably large sample of lunar soil (Lindsay, 1992; Keller and McKay, 1997; Eugster et al., 2000). The lunar regolith is conventionally envisaged as having a well-defined lower boundary, typically 5-10 m below the surface ( McKay et al., 1991); below the regolith is either (basically) intact rock, or else a somewhat vaguely defined "megaregolith" of loose but not so finely ground material. Ancient highland terrains tend to have a regolith roughly 2-3 times than that of the maria ( Taylor, 1982). However, in much of the highlands the regolith/megaregolith "boundary" may be gradational. The growth of a regolith can approach a steady-state thickness by shielding its substrate against further impacts ( Quaide and Oberbeck, 1975), but there is no reason to believe that the size-frequency spectrum of impactors bombarding the Moon ( Melosh, 1989; Neukum et al., 2001) features a discontinuity at whatever size (of order 1-10 m) would be necessary to limit disintegration to ˜10 m.All lunar samples are from the regolith, so the detailed provenance of any individual lunar sample is rarely obvious; and for ancient highland samples, never obvious. The closest approach toin situ sampling of bedrock came on the Apollo 15 mission. The regolith is very thin near the edge of the Hadley Rille, and many samples of clearly comagmatic basalts were acquired within meters of their 3.3 Ga "young," nearly intact, lava flow, so that their collective provenance is certain (Ryder and Cox, 1996). Even the regional provenance of any individual lunar sample is potentially allocthonous. However, most lunar rocks, even ancient highland rocks, are found within a few hundred kilometers of their original locations. This conclusion stems from theoretical modeling of cratered landscapes ( Shoemaker et al., 1970; Melosh, 1989), plus observational evidence such as the sharpness of geochemical boundaries between lava-flooded maria and adjacent highlands (e.g., Li and Mustard, 2000).Besides breaking up rock into loose debris, impacts create melt. Traces of melt along grain boundaries may suffice to produce new rock out of formerly loose debris; the resultant rock would be classified as either regolith breccia or fragmental breccia, depending upon whether surface fines were important, or not, respectively, in the precursor matter (Stöffler et al., 1980). Features diagnostic of a surface component include the presence of glass spherules (typically a mix of endogenous mare-pyroclastic glasses and impact-splash glasses) or abundant solar-wind-implanted noble gases (e.g., Eugster et al., 2000).Elsewhere, especially in the largest events in which a planet's gravitational strength limits displacement and the kinetic energy of impact is mainly partitioned into heat (Melosh, 1989), impact melt may constitute a major fraction of the volume of the material that becomes new rock. Rocks formed in this manner are classified as impact-melt breccias and subclassified based on whether they are clast-poor or clast-rich, and whether their matrix is crystalline or glassy ( Stöffler et al., 1980). Obvious lithic and mineral clasts are very common in impact-melt breccias, although the full initial proportion of clasts may not be evident in the final breccia. Some of the clasts may be so pulverized, especially in large impact events ( Schultz and Mendell, 1978), that they are "lost" by digestion into comingled superheated impact melt ( Simonds et al., 1976). By some definitions, the term impact-melt breccia may be applied to products of melt plus clast mixtures with initial melt proportion as low as 10 wt.% ( Simonds et al., 1976; Papike et al., 1998).A few impactites feature a recrystallized texture, i.e., they consist dominantly of a mosaic of grains meeting at ˜120° triple junctions. These metamorphic rocks, termed granulitic breccias, may form from various precursor igneous or impactite rocks, and the heat source may be regional (burial) or local, such as a nearby impact melt (Stöffler et al., 1980). But lunar granulitic breccias are almost invariably fine grained, and they tend to be "contaminated" with meteoritic siderophile elements (e.g., M. M. Lindstrom and D. J. Lindstrom, 1986; Warren et al., 1991; Cushing et al., 1999), implying that the precursor rocks were probably mostly shallow impact breccias (brecciation and siderophile-element contamination being concentrated near the surface), and the heat source was probably most often a proximal mass of impact melt.Besides impactites, which are predominant near the bombarded surface, virtually all other lunar crustal rocks are igneous or annealed-igneous. The super-arid Moon has never produced (by any conventional definition) sedimentary rock, and most assuredly has never hosted life. Even metamorphism is of reduced scope, with scant potential for fluid-driven metasomatism. Evidence for metamorphism among returned lunar samples is mostly confined to impact shock and thermal effects. Although regional burial metamorphism may occur (Stewart, 1975), deeply buried materials seldom find their way into the surface regolith, whence all samples come. Annealing of lunar rocks is more likely a product of simple postigneous slow cooling (at significant original depth), dry baking in proximity to an intrusion, or baking within a zone of impact heating.The Moon's repertoire of geochemical processes may seem limited, but it represents a key link between the sampled asteroids (see Chapters 1.05 and 1.11) and the terrestrial planets. Four billion years ago, at a time when all but monocrystalline bits of Earth's dynamic crust were fated for destruction, most of the Moon's crust had already achieved its final configuration. The Moon thus represents a unique window into the early thermal and geochemical state of a moderately large object that underwent igneous differentiation in the inner solar system, and into the cratering history of near-Earth space.

  1. Apollo 17 Lunar Surface Experiment: Lunar Ejecta and Meteorites Experiment

    NASA Image and Video Library

    1972-11-30

    S72-37257 (November 1972) --- The Lunar Ejecta and Meteorites Experiment (S-202), one of the experiments of the Apollo Lunar Surface Experiments Package which will be carried on the Apollo 17 lunar landing mission. The purpose of this experiment is to measure the physical parameters of primary and secondary particles impacting the lunar surface.

  2. Hazard Detection Software for Lunar Landing

    NASA Technical Reports Server (NTRS)

    Huertas, Andres; Johnson, Andrew E.; Werner, Robert A.; Montgomery, James F.

    2011-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing a system for safe and precise manned lunar landing that involves novel sensors, but also specific algorithms. ALHAT has selected imaging LIDAR (light detection and ranging) as the sensing modality for onboard hazard detection because imaging LIDARs can rapidly generate direct measurements of the lunar surface elevation from high altitude. Then, starting with the LIDAR-based Hazard Detection and Avoidance (HDA) algorithm developed for Mars Landing, JPL has developed a mature set of HDA software for the manned lunar landing problem. Landing hazards exist everywhere on the Moon, and many of the more desirable landing sites are near the most hazardous terrain, so HDA is needed to autonomously and safely land payloads over much of the lunar surface. The HDA requirements used in the ALHAT project are to detect hazards that are 0.3 m tall or higher and slopes that are 5 or greater. Steep slopes, rocks, cliffs, and gullies are all hazards for landing and, by computing the local slope and roughness in an elevation map, all of these hazards can be detected. The algorithm in this innovation is used to measure slope and roughness hazards. In addition to detecting these hazards, the HDA capability also is able to find a safe landing site free of these hazards for a lunar lander with diameter .15 m over most of the lunar surface. This software includes an implementation of the HDA algorithm, software for generating simulated lunar terrain maps for testing, hazard detection performance analysis tools, and associated documentation. The HDA software has been deployed to Langley Research Center and integrated into the POST II Monte Carlo simulation environment. The high-fidelity Monte Carlo simulations determine the required ground spacing between LIDAR samples (ground sample distances) and the noise on the LIDAR range measurement. This simulation has also been used to determine the effect of viewing on hazard detection performance. The software has also been deployed to Johnson Space Center and integrated into the ALHAT real-time Hardware-in-the-Loop testbed.

  3. Lunar Exploration and Science in ESA

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Houdou, B.; Fisackerly, R.; De Rosa, D.; Patti, B.; Schiemann, J.; Hufenbach, B.; Foing, B.

    2014-04-01

    ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the composition and isotopic abundances of lunar volatiles in polar regions. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterize and utilize polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensible partner in the exploration missions of the future. We report on the current status of the European elements in this cooperative scenario, with an emphasis on the investigations to be performed at the lunar surface. These investigations should generate knowledge that can be enabling for exploration in the future, and should also have a significant fundamental scientific return.

  4. Lunar Exploration and Science Opportunities in ESA

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Houdou, B.; Fisackerly, R.; De Rosa, D.; Schiemann, J.; Patti, B.; Foing, B.

    2014-04-01

    ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavour. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the composition and isotopic abundances of lunar volatiles in polar regions. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterize and utilize polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensible partner in the exploration missions of the future. We report on the current status of the European elements in this cooperative scenario, with an emphasis on the investigations to be performed at the lunar surface. These investigations should generate knowledge that can be enabling for exploration in the future, and should also have a significant fundamental scientific return.

  5. Planetary science: A lunar perspective

    NASA Technical Reports Server (NTRS)

    Taylor, S. R.

    1982-01-01

    An interpretative synthesis of current knowledge on the moon and the terrestrial planets is presented, emphasizing the impact of recent lunar research (using Apollo data and samples) on theories of planetary morphology and evolution. Chapters are included on the exploration of the solar system; geology and stratigraphy; meteorite impacts, craters, and multiring basins; planetary surfaces; planetary crusts; basaltic volcanism; planetary interiors; the chemical composition of the planets; the origin and evolution of the moon and planets; and the significance of lunar and planetary exploration. Photographs, drawings, graphs, tables of quantitative data, and a glossary are provided.

  6. Availability of hydrogen for lunar base activities

    NASA Technical Reports Server (NTRS)

    Bustin, Roberta

    1990-01-01

    Hydrogen will be needed on a lunar base to make water for consumables, to provide fuel, and to serve as reducing agent in the extraction of oxygen from lunar minerals. The abundance and distribution of solar wind implanted hydrogen were studied. Hydrogen was found in all samples studied with concentrations varying widely depending on soil maturity, grain size, and mineral composition. Seven cores returned from the moon were studied. Although hydrogen was implanted in the upper surface layer of the regolith, it was found throughout the cores due to micrometeorite reworking of the soil.

  7. Galileo photometry of Apollo landing sites

    NASA Technical Reports Server (NTRS)

    Helfenstein, P.; Veverka, J.; Head, James W.; Pieters, C.; Pratt, S.; Mustard, J.; Klaasen, K.; Neukum, G.; Hoffmann, H.; Jaumann, R.

    1993-01-01

    As of December 1992, the Galileo spacecraft performed its second and final flyby (EM2), of the Earth-Moon system, during which it acquired Solid State Imaging (SSI) camera images of the lunar surface suitable for photometric analysis using Hapke's, photometric model. These images, together with those from the first flyby (EM1) in December 1989, provide observations of all of the Apollo landing sites over a wide range of photometric geometries and at eight broadband filter wavelengths ranging from 0.41 micron to 0.99 micron. We have completed a preliminary photometric analysis of Apollo landing sites visible in EM1 images and developed a new strategy for a more complete analysis of the combined EM1 and EM2 data sets in conjunction with telescopic observations and spectrogoniometric measurements of returned lunar samples. No existing single data set, whether from spacecraft flyby, telescopic observation, or laboratory analysis of returned samples, describes completely the light scattering behavior of a particular location on the Moon at all angles of incidence (i), emission (e), and phase angles (a). Earthbased telescopic observations of particular lunar sites provide good coverage of incidence nad phase angles, but their range in emission angle is limited to only a few degrees because of the Moon's synchronous rotation. Spacecraft flyby observations from Galileo are now available for specific lunar features at many photometric geometries unobtainable from Earth; however, this data set lacks coverage at very small phase angles (a less than 13 deg) important for distinguishing the well-known 'opposition effect'. Spectrogoniometric measurements from returned lunar samples can provide photometric coverage at almost any geometry; however, mechanical properties of prepared particulate laboratory samples, such as particle compaction and macroscopic roughness, likely differ from those on the lunar surface. In this study, we have developed methods for the simultaneous analysis of all three types of data: we combine Galileo and telescopic observations to obtain the most complete coverage with photometric geometry, and use spectrogoniometric observations of lunar soils to help distinguish the photometric effects of macroscopic roughness from those caused by particle phase function behavior (i.e., the directional scattering properties of regolith particles).

  8. A program of data synthesis from the ALSEP/CPLEE ALSEP/SIDE, and Explorer 35 magnetometer to investigate lunar terminator and nightside particle fluxes and surface interactions

    NASA Technical Reports Server (NTRS)

    Reasoner, D. L.

    1976-01-01

    Lunar nightside electron fluxes were studied with the aid of the ALSEP/CPLEE and other instruments. The flux events were shown to be due to (a) electrons propagating upstream from the earth's bow shock, (b) electrons thermalized and scattered to the lunar surface by disturbances along the boundary of the lunar solarwind cavity, and (c) solar wind electrons scattered to the lunar surface by lunar limb shocks and/or compressional disturbances. These electrons were identified as a cause of the high night surface negative potentials observed in tha ALSEP/SIDE ion data. A study was also made of the shadowing of magnetotail plasma sheet electrons by interactions between the lunar body and the ambient magnetic field and by interactions between charged particles and lunar remnant magnetic fields. These shadowing effects were shown to modify lunar surface and near-lunar potential distributions.

  9. First Apollo 11 Lunar Samples Arrive at the Manned Spacecraft Center (MSC)

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. This photograph was taken as the mission's first loaded sample return container arrived at Ellington Air Force Base by air from the Pacific recovery area. The rock box was immediately taken to the Lunar Receiving Laboratory at the Manned Spacecraft Center (MSC) in Houston, Texas. Happily posing for the photograph with the rock container are (L-R) Richard S. Johnston (back), special assistant to the MSC Director; George M. Low, MSC Apollo Spacecraft Program manager; George S. Trimble (back), MSC Deputy Director; Lt. General Samuel C. Phillips, Apollo Program Director, Office of Manned Spaceflight at NASA headquarters; Eugene G. Edmonds, MSC Photographic Technology Laboratory; Dr. Thomas O. Paine, NASA Administrator; and Dr. Robert R. Gilruth, MSC Director.

  10. Crosscutting Development- EVA Tools and Geology Sample Acquisition

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Exploration to all destinations has at one time or another involved the acquisition and return of samples and context data. Gathered at the summit of the highest mountain, the floor of the deepest sea, or the ice of a polar surface, samples and their value (both scientific and symbolic) have been a mainstay of Earthly exploration. In manned spaceflight exploration, the gathering of samples and their contextual information has continued. With the extension of collecting activities to spaceflight destinations comes the need for geology tools and equipment uniquely designed for use by suited crew members in radically different environments from conventional field geology. Beginning with the first Apollo Lunar Surface Extravehicular Activity (EVA), EVA Geology Tools were successfully used to enable the exploration and scientific sample gathering objectives of the lunar crew members. These early designs were a step in the evolution of Field Geology equipment, and the evolution continues today. Contemporary efforts seek to build upon and extend the knowledge gained in not only the Apollo program but a wealth of terrestrial field geology methods and hardware that have continued to evolve since the last lunar surface EVA. This paper is presented with intentional focus on documenting the continuing evolution and growing body of knowledge for both engineering and science team members seeking to further the development of EVA Geology. Recent engineering development and field testing efforts of EVA Geology equipment for surface EVA applications are presented, including the 2010 Desert Research and Technology Studies (Desert RATs) field trial. An executive summary of findings will also be presented, detailing efforts recommended for exotic sample acquisition and pre-return curation development regardless of planetary or microgravity destination.

  11. Lunar surface processes and cosmic ray histories over the past several million years

    NASA Technical Reports Server (NTRS)

    Fruchter, J. S.; Rancitelli, L. A.; Evans, J. C.; Perkins, R. W.

    1978-01-01

    Measurements of the Al-26 and Mn-53 in interior portions of lunar rocks have shown that lunar surface processes which move a significant fraction of kilogram size rocks on the lunar surface occur on time scales of a few million years. These measurements, together with noble gas age dating have made it possible to define the history for nine rock samples selected from whole rock counting data because of anomalously low Al-26 relative to Na-22. Six of the rocks from the Apollo 15 and 16 missions showed evidence of movement during the past five million years. Of these six, only two are of an age consistent with their origin from the South Ray Crater Event. In addition, our measurements of Na-22 and Al-26 in Apollo 17 double drive tube 74001-74002 suggest that one to two cm of soil is missing from the top of this core tube. Even with this loss, at least two cm of gardening is indicated in the top portion of 74002.

  12. Space Weathering Products Found on the Surfaces of the Itokawa Dust Particles: A Summary of the Initial Analysis

    NASA Technical Reports Server (NTRS)

    Noguchi, T.; Kimura, M.; Hashimoto, T.; Konno, M.; Nakamura, T.; Ogami, T.; Ishida, H.; Sagae, R.; Tsujimoto, S.; Tsuchiyama, A,; hide

    2012-01-01

    Surfaces of airless bodies exposed to interplanetary space gradually have their structures, optical properties, chemical compositions, and mineralogy changed by solar wind implantation and sputtering, irradiation by galactic and solar cosmic rays, and micrometeorite bombardment. These alteration processes and the resultant optical changes are known as space weathering [1, 2, 3]. Our knowledge of space weathering has depended almost entirely on studies of the surface materials returned from the Moon and regolith breccia meteorites [1, 4, 5, 6] until the surface material of the asteroid Itokawa was returned to the Earth by the Hayabusa spacecraft [7]. Lunar soil studies show that space weathering darkens the albedo of lunar soil and regolith, reddens the slopes of their reflectance spectra, and attenuates the characteristic absorption bands of their reflectance spectra [1, 2, 3]. These changes are caused by vapor deposition of small (<40 nm) metallic Fe nanoparticles within the grain rims of lunar soils and agglutinates [5, 6, 8]. The initial analysis of the Itokawa dust particles revealed that 5 out of 10 particles have nanoparticle-bearing rims, whose structure varies depending on mineral species. Sulfur-bearing Fe-rich nanoparticles (npFe) exist in a thin (5-15 nm) surface layer (zone I) on olivine, low-Ca pyroxene, and plagioclase, suggestive of vapor deposition. Sulfur-free npFe exist deeper inside (<60 nm) ferromagnesian silicates (zone II). Their texture suggests formation by amorphization and in-situ reduction of Fe2+ in ferromagnesian silicates [7]. On the other hand, nanophase metallic iron (npFe0) in the lunar samples is embedded in amorphous silicate [5, 6, 8]. These textural differences indicate that the major formation mechanisms of the npFe0 are different between the Itokawa and the lunar samples. Here we report a summary of the initial analysis of space weathering of the Itokawa dust particles.

  13. Lunar Prospector observations of the electrostatic potential of the lunar surface and its response to incident currents

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Delory, G. T.; Lin, R. P.; Stubbs, T. J.; Farrell, W. M.

    2008-09-01

    We present an analysis of Lunar Prospector Electron Reflectometer data from selected time periods using newly developed methods to correct for spacecraft potential and self-consistently utilizing the entire measured electron distribution to remotely sense the lunar surface electrostatic potential with respect to the ambient plasma. These new techniques enable the first quantitative measurements of lunar surface potentials from orbit. Knowledge of the spacecraft potential also allows accurate characterization of the downward-going electron fluxes that contribute to lunar surface charging, allowing us to determine how the lunar surface potential reacts to changing ambient plasma conditions. On the lunar night side, in shadow, we observe lunar surface potentials of ˜-100 V in the terrestrial magnetotail lobes and potentials of ˜-200 V to ˜-1 kV in the plasma sheet. In the lunar wake, we find potentials of ˜-200 V near the edges but smaller potentials in the central wake, where electron temperatures increase and secondary emission may reduce the magnitude of the negative surface potential. During solar energetic particle events, we see nightside lunar surface potentials as large as ˜-4 kV. On the other hand, on the lunar day side, in sunlight, we generally find potentials smaller than our measurement threshold of ˜20 V, except in the plasma sheet, where we still observe negative potentials of several hundred volts at times, even in sunlight. The presence of significant negative charging in sunlight at these times, given the measured incident electron currents, implies either photocurrents from lunar regolith in situ two orders of magnitude lower than those measured in the laboratory or nonmonotonic near-surface potential variation with altitude. The functional dependence of the lunar surface potential on electron temperature in shadow implies somewhat smaller secondary emission yields from lunar regolith in situ than previously measured in the laboratory. These new techniques open the door for future studies of the variation of lunar surface charging as a function of temporal and spatial variations in input currents and as a function of location and material characteristics of the surface as well as comparisons to the increasingly sophisticated theoretical predictions now available.

  14. Lunar Exploration and Science in ESA

    NASA Astrophysics Data System (ADS)

    Carpenter, James; Houdou, Bérengère; Fisackerly, Richard; De Rosa, Diego; Patti, Bernardo; Schiemann, Jens; Hufenbach, Bernhard; Foing, Bernard

    2014-05-01

    ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the composition and isotopic abundances of lunar volatiles in polar regions. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterize and utilize polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensable partner in the exploration missions of the future.

  15. Description and Analysis of Core Samples: The Lunar Experience

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Allton, Judith H.

    1997-01-01

    Although no samples yet have been returned from a comet, extensive experience from sampling another solar system body, the Moon, does exist. While, in overall structure, composition, and physical properties the Moon bears little resemblance to what is expected for a comet, sampling the Moon has provided some basic lessons in how to do things which may be equally applicable to cometary samples. In particular, an extensive series of core samples has been taken on the Moon, and coring is the best way to sample a comet in three dimensions. Data from cores taken at 24 Apollo collection stations and 3 Luna sites have been used to provide insight into the evolution of the lunar regolith. It is now well understood that this regolith is very complex and reflects gardening (stirring of grains by micrometeorites), erosion (from impacts and solar wind sputtering), maturation (exposure on the bare lunar surface to solar winds ions and micrometeorite impacts) and comminution of coarse grains into finer grains, blanket deposition of coarse-grained layers, and other processes. All of these processes have been documented in cores. While a cometary regolith should not be expected to parallel in detail the lunar regolith, it is possible that the upper part of a cometary regolith may include textural, mineralogical, and chemical features which reflect the original accretion of the comet, including a form of gardening. Differences in relative velocities and gravitational attraction no doubt made this accretionary gardening qualitatively much different than the lunar version. Furthermore, at least some comets, depending on their orbits, have been subjected to impacts of the uppermost surface by small projectiles at some time in their history. Consequently, a more recent post-accretional gardening may have occurred. Finally, for comets which approach the sun, large scale erosion may have occurred driven by gas loss. The uppermost material of these comets may reflect some of the features of this erosional process, such as crust formation, and variations with depth might be expected. Overall, the upper few meters of a comet may be as complex in their own way as the upper few meters of the lunar regolith have proven to be, and by analogy, detailed studies of core samples containing this depth information will be needed to understand these processes and the details of the accretional history and the subsequent alteration history of comets.

  16. The Rosiwal Principle and the regolithic distributions of solar-wind elements

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.

    1975-01-01

    In situ accumulation of solar elements is studied for the purpose of determining the extent of applicability of the Rosiwal Principle. The Rosiwal Principle states that the grain exposure area is proportional to the fraction of the unit volume occupied by the grains, and the test involves measurement of the relative concentrations of inert gases and reactive elements across sets of lunar fines samples for which mean grain size, sorting, and minimum radius of surface correlation are known. In some cases, the quantity of an element implanted into the lunar fines from the solar wind is found to be surface correlated, and the implications of this relationship are considered. According to the Rosiwal Principle, coarse soils should retain less inert gas than fine soil. The Principle can also be applied to species volatized or sputtered from the lunar surface and redeposited locally.

  17. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-24

    The smiling Apollo 12 astronauts peer out of the window of the mobile quarantine facility aboard the recovery ship, USS Hornet. Pictured (Left to right) are Spacecraft Commander, Charles Conrad; Command Module (CM) Pilot, Richard Gordon; and Lunar Module (LM) Pilot, Alan L. Bean. The crew were housed in the quarantine facility immediately after the Pacific recovery operation took place. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 returned safely to Earth on November 24, 1969.

  18. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-23

    This is a view of astronaut Richard F. Gordon attaching a high resolution telephoto lens to a camera aboard the Apollo 12 Command Module (CM) Yankee Clipper. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Apollo 12 safely returned to Earth on November 24, 1969.

  19. Lunar Surface Operations. Part 1; Post-Touchdown Lunar Surface and System Checkouts

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This slide presentation reviews the first part of the post-touchdown lunar surface and system checkout tasks. A stay/no stay decision for the lunar lander was made based on the questions: "Is the Lunar Module (LM) stable on the lunar surface?"; "Are there any time critical systems failures or trends indicating impending loss of capability to ascent and achieve a safe lunar orbit?"; and "Is there loss of capability in critical LM systems?" The sequence of these decisions is given as a time after touchdown on the surface of the moon. After the decision to stay is made the next task is to checkout status of the lunar module. While the status of the lunar module is checking out certain conditions, the Command Service Module was also engaged in certain checkout activities.

  20. Space Weathering of Olivine in Lunar Soils: A Comparison to Itokawa Regolith Samples

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berger, E. L.

    2014-01-01

    Regolith particles from airless bodies preserve a record of the space weathering processes that occurred during their surface exposure history. These processes have major implications for interpreting remote-sensing data from airless bodies. Solar wind irradiation effects occur in the rims of exposed grains, and impact processes result in the accumulation of vapordeposited elements and other surface-adhering materials. The grains returned from the surface of Itokawa by the Hayabusa mission allow the space weathering "style" of a chondritic, asteroidal "soil" to be compared to the lunar case. Here, we present new studies of space-weathered olivine grains from lunar soils, and compare these results to olivine grains from Itokawa. Samples and Methods: We analyzed microtome thin sections of olivine grains from the 20-45 micron fractions of three lunar soils: 71061, 71501 and 10084 (immature, submature and mature, respectively). Imaging and analytical data were obtained using a JEOL 2500SE 200kV field-emission scanning-transmission electron microscope equipped with a thin-window energy-dispersive x-ray spectrometer. Similar analyses were obtained from three Hayabusa olivine grains. Results and Discussion: We observed lunar grains showing a range of solar flare track densities (from <10(exp 9) to approx.10(exp 12)/sq cm). The lunar olivines all show disordered, highly strained, nanocrystalline rims up to 150-nm thick. The disordered rim thickness is positively correlated with solar flare track density. All of the disordered rims are overlain by a Si-rich amorphous layer, ranging up to 50-nm thick, enriched in elements that are not derived from the host olivine (e.g., Ca, Al, and Ti). The outmost layer represents impact-generated vapor deposits typically observed on other lunar soil grains. The Hayabusa olivine grains show track densities <10(exp 10)/sq cm and display disordered rims 50- to 100-nm thick. The track densities are intermediate to those observed in olivines in immature and submature lunar soils and indicate surface exposures of approx. 10(exp 5) years. The outermost few nanometers of the disordered rims on Hayabusa olivines are more Si-rich and Mg- and Fe-depleted relative to the cores of the grains and likely represent a minor accumulation of impact-generated vapors or sputter deposits. Nanophase Fe metal particles are less abundant in the Hayabusa rims compared to the rims on lunar grains. Conclusions: The Hayabusa and lunar olivine grain rims have widths and microstructures consistent with formation from atomic displacement damage from solar wind ions. The space weathering features in the Hayabusa grains are similar to those observed in olivines from immature to submature lunar soils. A major difference, however, is that the Hayabusa grains appear to lack the hypervelocity impact products (melt spherules, thick vapor deposits, and abundant nanophase Fe metal particles) that are common in lunar soil grains with a similar exposure history.

  1. ALSEP arrays A, B, C, and A-2. [lunar surface exploration instrument specifications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives of the lunar surface exploration packages are defined and the preliminary design of scientific systems hardware is reported. Instrument packages are to collect and transmit to earth scientific data on the lunar interior, the lunar surface composition, and the lunar geomorphology

  2. Resource Prospector Instrumentation for Lunar Volatiles Prospecting, Sample Acquisition and Processing

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Elphic, R.; Paz, A.; Smith, J.; Captain, J.; Zacny, K.

    2016-01-01

    Data gathered from lunar missions within the last two decades have significantly enhanced our understanding of the volatile resources available on the lunar surface, specifically focusing on the polar regions. Several orbiting missions such as Clementine and Lunar Prospector have suggested the presence of volatile ices and enhanced hydrogen concentrations in the permanently shadowed regions of the moon. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was the first to provide direct measurement of water ice in a permanently shadowed region. These missions with other orbiting assets have laid the groundwork for the next step in the exploration of the lunar surface; providing ground truth data of the volatiles by mapping the distribution and processing lunar regolith for resource extraction. This next step is the robotic mission Resource Prospector (RP).Resource Prospector is a lunar mission to investigate strategic knowledge gaps (SKGs) for in-situ resource utilization (ISRU). The mission is proposed to land in the lunar south pole near a permanently shadowed crater. The landing site will be determined by the science team with input from broader international community as being near traversable landscape that has a high potential of containing elevated concentrations of volatiles such as water while maximizing mission duration. A rover will host the Regolith Environment Science and Oxygen Lunar Volatile Extraction (RESOLVE) payload for resource mapping and processing. The science instruments on the payload include a 1-meter drill, neutron spectrometer, a near infrared spectrometer, an operations camera, and a reactor with a gas chromatograph-mass spectrometer for volatile analysis.

  3. Moessbauer Spectroscopy for Lunar Resource Assessment: Measurement of Mineralogy and Soil Maturity

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Agresti, D. G.; Shelfer, T. D.; Pimperl, M. M.; Shen, M.-H.; Gibson, M. A.; Wills, E. L.

    1992-01-01

    First-order assessment of lunar soil as a resource includes measurement of its mineralogy and maturity. Soils in which the mineral ilmenite is present in high concentrations are desirable feedstock for the production of oxygen at a lunar base. The maturity of lunar soils is a measure of their relative residence time in the upper 1 mm of the lunar surface. Increasing maturity implies increasing load of solar wind species (e.g., N, H, and He-3), decreasing mean grain size, and increasing glass content. All these physicochemical properties that vary in a regular way with maturity are important parameters for assessing lunar soil as a resource. For example, He-3 can be extracted and potentially used for nuclear fusion. A commonly used index for lunar soil maturity is I(sub s)/FeO, which is the concentration of fine-grained metal determined by ferromagnetic resonance (I(sub s)) normalized to the total iron content (as FeO). I(sub s)/FeO has been measured for virtually every soil returned by the Apollo and Luna missions to the Moon. Because the technique is sensitive to both oxidation state and mineralogy, iron Moessbauer spectroscopy (FeMS) is a viable technique for in situ lunar resource assessment. Its utility for mineralogy is apparent from examination of published FeMS data for lunar samples. From the data published, it can be inferred that FeMS data can also be used to determine soil maturity. The use of FeMS to determine mineralogy and maturity and progress on development of a FeMS instrument for lunar surface use are discussed.

  4. Exploration of the Moon to Enable Lunar and Planetary Science

    NASA Astrophysics Data System (ADS)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also address important science questions by determining the form of lunar surface volatiles. Science missions to examine the lunar interior and space weathering will also inform exploration systems with regard to the locations of large moonquakes and the radiation environment. Such examples highlight the Moon as an enabling Solar System science and exploration asset.

  5. Resource Prospector: An Update on the Lunar Volatiles Prospecting and ISRU Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Elphic, R.; Andrews, D.; Trimble, J.; Bluethmann, B.; Quinn, J.; Chavers, G.

    2016-01-01

    Over the last two decades a wealth of new observations of the moon have demonstrated a lunar water system dramatically more complex and rich than was deduced following the Apollo era. Lunar water, and other volatiles, have the potential to be a valuable or enabling resource for future exploration. The NASA Human Exploration and Operations Mission Directorate (HEOMD) have selected a lunar volatiles prospecting mission for a concept study and potential flight in CY2021. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials.

  6. Resource Prospector: An Update on the Lunar Volatiles Prospecting and ISRU Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Elphic, R.; Andrews, D.; Trimble, J.; Bluethmann, B.; Quinn, J.; Chavers, G.

    2017-01-01

    Over the last two decades a wealth of new observations of the moon have demonstrated a lunar water system dramatically more complex and rich than was deduced following the Apollo era. Lunar water, and other volatiles, have the potential to be a valuable or enabling resource for future exploration. The NASA Human Exploration and Operations Mission Directorate (HEOMD) have selected a lunar volatiles prospecting mission for a concept study and potential flight in CY2021. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile- bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials.

  7. Kinetics of hydrogen release from lunar soil

    NASA Technical Reports Server (NTRS)

    Bustin, Roberta

    1990-01-01

    With increasing interest in a lunar base, there is a need for extensive examination of possible lunar resources. Hydrogen will be needed on a lunar base for many activities including providing fuel, making water, and serving as a reducing agent in the extraction of oxygen from its ores. Previous studies have shown the solar wind has implanted hydrogen in the lunar regolith and that hydrogen is present not only in the outer layer of soil but to considerable depths, depending on the sampling site. If this hydrogen is to be mined and used on the lunar surface, a number of questions need to be answered. How much energy must be expended in order to release the hydrogen from the soil. What temperatures must be attained, and how long must the soil be heated. This study was undertaken to provide answers to practical questions such as these. Hydrogen was determined using a Pyrolysis/GC technique in which hydrogen was released by heating the soil sample contained in a quartz tube in a resistance wire furnace, followed by separation and quantitative determination using a gas chromatograph with a helium ionization detector. Heating times and temperatures were varied, and particle separates were studied in addition to bulk soils. The typical sample size was 10 mg of lunar soil. All of the soils used were mature soils with similar hydrogen abundances. Pre-treatments with air and steam were used in an effort to find a more efficient way of releasing hydrogen.

  8. New data supporting a Sm-146,147-Nd-142,143 formation interval for the lunar mantle

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Wiesmann, H.; Bansal, B. M.; Shih, C.-Y.

    1994-01-01

    Very small variations in Nd-142 abundance in SNC meteorites lunar basalts, and a terrestrial supracrustal rock, have been attributed to the decay of 103 Ma Sm-146 initially present in basalt source regions in varying abundances as a result of planetary differentiation. We previously interpreted variations in Nd-142 abundances in two Apollo 17 high-Ti basalts, three Apollo 12 low-Ti basalts, and two KREEP basalts as defining an isochron giving a formation interval of approximately 94 Ma for the lunar mantle. Here we report new data for a third Apollo 17 high-Ti basalt, two Apollo 15 low-Ti basalts, the VLT basaltic lunar meteorite A881757 (formerly Asuka 31), basalt-like KREEP impact melt rocks 14310 and 14078, and three terrestrial rock standards. Those lunar samples which were not exposed to large lunar surface thermal neutron fluences yield a revised mantle formation interval of 237 +/- 64 Ma.

  9. Man-machine interface for the control of a lunar transport machine

    NASA Technical Reports Server (NTRS)

    Ashley, Richard; Bacon, Loring; Carlton, Scott Tim; May, Mark; Moore, Jimmy; Peek, Dennis

    1987-01-01

    A proposed first generation human interface control panel is described which will be used to control SKITTER, a three-legged lunar walking machine. Under development at Georgia Tech, SKITTER will be a multi-purpose, un-manned vehicle capable of preparing a site for the proposed lunar base in advance of the arrival of men. This walking machine will be able to accept modular special purpose tools, such as a crane, a core sampling drill, and a digging device, among others. The project was concerned with the design of a human interface which could be used, from earth, to control the movements of SKITTER on the lunar surface. Preliminary inquiries were also made into necessary modifications required to adapt the panel to both a shirt-sleeve lunar environment and to a mobile unit which could be used by a man in a space suit at a lunar work site.

  10. A Miniature Mineralogical Instrument for In-Situ Characterization of Ices and Hydrous Minerals at the Lunar Poles

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Blake, D.; Vaniman, D.; Bish, D.; Chipera, S.; Collins, S. A.

    2002-01-01

    Lunar missions over the past few years have provided new evidence that water may be present at the lunar poles in the form of cold-trapped ice deposits, thereby rekindling interest in sampling the polar regions. Robotic landers fitted with mineralogical instrumentation for in-situ analyses could provide unequivocal answers on the presence of crystalline water ice and/or hydrous minerals at the lunar poles. Data from Lunar Prospector suggest that any surface exploration of the lunar poles should include the capability to drill to depths of more than 40 cm. Limited data on the lunar geotherm indicate temperatures of approximately 245-255 K at regolith depths of 40 cm, within a range where water may exist in the liquid state as brine. A relevant terrestrial analog occurs in Antarctica, where the zeolite mineral chabazite has been found at the boundary between ice-free and ice-cemented regolith horizons, and precipitation from a regolith brine is indicated. Soluble halogens and sulfur in the lunar regolith could provide comparable brine chemistry in an analogous setting. Regolith samples collected by a drilling device could be readily analyzed by CheMin, a mineralogical instrument that combines X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques to simultaneously characterize the chemical and mineralogical compositions of granular or powdered samples. CheMin can unambiguously determine not only the presence of hydrous alteration phases such as clays or zeolites, but it can also identify the structural variants or types of clay or zeolite present (e.g., well-ordered versus poorly ordered smectite; chabazite versus phillipsite). In addition, CheMin can readily measure the abundances of key elements that may occur in lunar minerals (Na, Mg, Al, Si, K, Ca, Fe) as well as the likely constituents of lunar brines (F, Cl, S). Finally, if coring and analysis are done during the lunar night or in permanent shadow, CheMin can provide information on the chemistry and structure of any crystalline ices that might occur in the regolith samples.

  11. Conference on Interactions of the Interplanetary Plasma with the Modern and Ancient Moon, George Williams College, Lake Geneva, Wis., September 30-October 4, 1974, Proceedings

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The papers deal with solar-wind and magnetospheric interactions with the moon, ancient and present-day lunar surface magnetic and electric fields, the dynamics and evolution of the lunar atmosphere, the lunar record of solar radiation, and nonmeteoric transport of lunar surface materials. Topics discussed include bow-shock protons in the lunar environment, energetic ion events during the lunar night, mapping of the lunar surface magnetic field from orbital observations of mirrored electrons, geomagnetic disturbances induced by the moon, the relationship between lunar topography and limb compressions, measurements of lunar sky brightness, atmospheric supply and loss mechanisms on the moon, the nature and composition of the lunar atmosphere, molecular gas species in that atmosphere, and vacuum-UV spectroscopic measurements of the surface properties of lunar materials. Individual items are announced in this issue.

  12. Electron- and Photon-stimulated Desorption of Alkali Atoms from Lunar Sample and a Model Mineral Surface

    NASA Technical Reports Server (NTRS)

    Yakshinskiy, B. V.; Madey, T. E.

    2003-01-01

    We report recent results on an investigation of source mechanisms for the origin of alkali atoms in the tenuous planetary atmospheres, with focus on non-thermal processes (photon stimulated desorption (PSD), electron stimulated desorption (ESD), and ion sputtering). Whereas alkaline earth oxides (MgO, CaO) are far more abundant in lunar samples than alkali oxides (Na2O, K2O), the atmosphere of the Moon contains easily measurable concentrations of Na and K, while Ca and Mg are undetected there; traces of Ca have recently been seen in the Moon's atmosphere (10-3 of Na). The experiments have included ESD, PSD and ion sputtering of alkali atoms from model mineral surface (amorphous SiO2) and from a lunar basalt sample obtained from NASA. The comparison is made between ESD and PSD efficiency of monovalent alkalis (Na, K) and divalent alkaline earths (Ba, Ca).The ultrahigh vacuum measurement scheme for ESD and PSD of Na atoms includes a highly sensitive alkali metal detector based on surface ionization, and a time-of-flight technique. For PSD measurements, a mercury arc light source (filtered and chopped) is used. We find that bombardment of the alkali covered surfaces by ultraviolet photons or by low energy electrons (E>4 eV) causes desorption of hot alkali atoms. This results are consistent with the model developed to explain our previous measurements of sodium desorption from a silica surface and from water ice: electron- or photon-induced charge transfer from the substrate to the ionic adsorbate causes formation of a neutral alkali atom in a repulsive configuration, from which desorption occurs. The two-electron charge transfer to cause desorption of divalent alkaline eath ions is a less likely process.The data support the suggestion that PSD by UV solar photons is a dominant source process for alkalis in the tenuous lunar atmosphere.

  13. Photometric Lunar Surface Reconstruction

    NASA Technical Reports Server (NTRS)

    Nefian, Ara V.; Alexandrov, Oleg; Morattlo, Zachary; Kim, Taemin; Beyer, Ross A.

    2013-01-01

    Accurate photometric reconstruction of the Lunar surface is important in the context of upcoming NASA robotic missions to the Moon and in giving a more accurate understanding of the Lunar soil composition. This paper describes a novel approach for joint estimation of Lunar albedo, camera exposure time, and photometric parameters that utilizes an accurate Lunar-Lambertian reflectance model and previously derived Lunar topography of the area visualized during the Apollo missions. The method introduced here is used in creating the largest Lunar albedo map (16% of the Lunar surface) at the resolution of 10 meters/pixel.

  14. Polarimetric Observations of the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Kim, S.

    2017-12-01

    Polarimetric images contain valuable information on the lunar surface such as grain size and porosity of the regolith, from which one can estimate the space weathering environment on the lunar surface. Surprisingly, polarimetric observation has never been conducted from the lunar orbit before. A Wide-Angle Polarimetric Camera (PolCam) has been recently selected as one of three Korean science instruments onboard the Korea Pathfinder Lunar Orbiter (KPLO), which is aimed to be launched in 2019/2020 as the first Korean lunar mission. PolCam will obtain 80 m-resolution polarimetric images of the whole lunar surface between -70º and +70º latitudes at 320, 430 and 750 nm bands for phase angles up to 115º. I will also discuss previous polarimetric studies on the lunar surface based on our ground-based observations.

  15. Do Bare Rocks Exist on the Moon?

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Bandfield, Joshua; Greenhagen, Benjamin; Hayne, Paul; Leader, Frank; Paige, David

    2017-01-01

    Astronaut surface observations and close-up images at the Apollo and Chang'e 1 landing sites confirm that at least some lunar rocks have no discernable dust cover. However, ALSEP (Apollo Lunar Surface Experiments Package) measurements as well as astronaut and LADEE (Lunar Atmosphere and Dust Environment Explorer) orbital observations and laboratory experiments possibly suggest that a fine fraction of dust is levitated and moves across and above the lunar surface. Over millions of years such dust might be expected to coat all exposed rock surfaces. This study uses thermal modeling, combined with Diviner (a Lunar Reconnaissance Orbiter experiment) orbital lunar eclipse temperature data, to further document the existence of bare rocks on the lunar surface.

  16. Lunar studies

    NASA Technical Reports Server (NTRS)

    Gold, T.

    1979-01-01

    Experimental and theoretical research, concerning lunar surface processes and the nature, origin and derivation of the lunar surface cover, conducted during the period of February 1, 1971 through January 31, 1976 is presented. The principle research involved were: (1) electrostatic dust motion and transport process; (2) seismology properties of fine rock powders in lunar conditions; (3) surface processes that darken the lunar soil and affect the surface chemical properties of the soil grains; (4) laser simulation of micrometeorite impacts (estimation of the erosion rate caused by the microemeteorite flux); (5) the exposure history of the lunar regolith; and (6) destruction of amino acids by exposure to a simulation of the solar wind at the lunar surface. Research papers are presented which cover these general topics.

  17. Project: Apollo 15

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The 12-day Apollo 15 mission, scheduled for launch on July 26 to carry out the fourth United States manned exploration of the Moon, will: Double the time and extend tenfold the range of lunar surface exploration as compared with earlier missions; Deploy the third in a network of automatic scientific stations; Conduct a new group of experiments in lunar orbit; and Return to Earth a variety of lunar rock and soil samples. Scientists expect the results will greatly increase man's knowledge both of the Moon's history and composition and of the evolution and dynamic interaction of the Sun-Earth system. This is so because the dry, airless, lifeless Moon still bears records of solar radiation and the early years of solar system history that have been erased from Earth. Observations of current lunar events also may increase understanding of similar processes on Earth, such as earthquakes. The Apollo 15 Lunar module will make its descent over the Apennine peaks, one of the highest mountain ranges on the Moon, to land near the rim of the canyon-like Hadley Rille. From this Hadley-Apennine lunar base, between the mountain range and the rille, Commander David R. Scott and Lunar Module Pilot James B. Irwin will explore several kilometers from the lunar module, driving an electric-powered lunar roving vehicle for the first time on the Moon. Scott and Irwin will leave the lunar module for three exploration periods to emplace scientific experiments on the lunar surface and to make detailed geologic investigations of formations in the Apennine foothills, along the Hadley Rille rim, and to other geologic structures. The three previous manned landings were made by Apollo 11 at Tranquillity Base, Apollo 12 in the Ocean of Storms and Apollo 14 at Fra Mauro.

  18. Global Exploration Roadmap Derived Concept for Human Exploration of the Moon

    NASA Technical Reports Server (NTRS)

    Whitley, Ryan; Landgraf, Markus; Sato, Naoki; Picard, Martin; Goodliff, Kandyce; Stephenson, Keith; Narita, Shinichiro; Gonthier, Yves; Cowley, Aiden; Hosseini, Shahrzad; hide

    2017-01-01

    Taking advantage of the development of Mars-forward assets in cislunar space, a human lunar surface concept is proposed to maximize value for both lunar exploration and future deep space missions. The human lunar surface missions will be designed to build upon the cislunar activities that precede them, providing experience in planetary surface operations that cannot be obtained in cislunar space. To enable a five-mission limited campaign to the surface of the Moon, two new elements are required: a human lunar lander and a mobile surface habitat. The human lunar lander will have been developed throughout the cislunar phase from a subscale demonstrator and will consist of a descent module alongside a reusable ascent module. The reusable ascent module will be used for all five human lunar surface missions. Surface habitation, in the form of two small pressurized rovers, will enable 4 crew to spend up to 42 days on the lunar surface.

  19. A program of data synthesis from the ALSEP/CPLEE ALSEP/SIDE, and Explorer 35 magnetometer to investigate lunar terminator and nightside particle fluxes and surface interactions. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reasoner, D.L.

    1976-02-02

    Lunar nightside electron fluxes were studied with the aid of the ALSEP/CPLEE and other instruments. The flux events were shown to be due to (a) electrons propagating upstream from the earth's bow shock, (b) electrons thermalized and scattered to the lunar surface by disturbances along the boundary of the lunar solarwind cavity, and (c) solar wind electrons scattered to the lunar surface by lunar limb shocks and/or compressional disturbances. These electrons were identified as a cause of the high night surface negative potentials observed in tha ALSEP/SIDE ion data. A study was also made of the shadowing of magnetotail plasmamore » sheet electrons by interactions between the lunar body and the ambient magnetic field and by interactions between charged particles and lunar remnant magnetic fields. These shadowing effects were shown to modify lunar surface and near-lunar potential distributions. (Author) (GRA)« less

  20. Pulmonary Toxicity Studies of Lunar Dusts in Rodents

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-wing; James, John T.

    2009-01-01

    NASA will build an outpost on the lunar surface for long-duration human habitation and research. The surface of the Moon is covered by a layer of fine, reactive dust, and the living quarters in the lunar outpost are expected to be contaminated by lunar dust. Because the toxicity of lunar dust is not known, NASA has tasked its toxicology laboratory to evaluate the risk of exposure to the dust and to establish safe exposure limits for astronauts working in the lunar habitat. Studies of the pulmonary toxicity of a dust are generally done first in rodents by intratracheal/intrapharyngeal instillation. This toxicity screening test is then followed by an inhalation study, which requires much more of the test dust and is labor intensive. Preliminary results obtained by examining lung lavage fluid from dust-treated mice show that lunar dust was somewhat toxic (more toxic than TiO2, but less than quartz dust). More extensive studies are in progress to further examine lung lavage fluid for biomarkers of toxicity and lung tissues for histopathological lesions in rodents exposed to aged and activated (ground) lunar dust samples. In these studies, reference dusts (TiO2 and quartz) of known toxicities and have industrial exposure limits will be studied in parallel so the relative toxicity of lunar dust can be determined. The results from the instillation studies will be useful for choosing exposure concentrations for the animal inhalation study. The animal inhalation exposure will be conducted with lunar dust simulant prior to the study with the lunar dust. The experiment with the simulate will ensure that the study techniques used with actual lunar dust will be successful. The results of instillation and inhalation studies will reveal the toxicological risk of exposures and are essential for setting exposure limits on lunar dust for astronauts living in the lunar habitat.

  1. Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets

    NASA Technical Reports Server (NTRS)

    Jolliff, Brad L. (Editor); Ryder, Graham (Editor)

    1998-01-01

    It has been more than 25 years since Apollo 17 returned the last of the Apollo lunar samples. Since then, a vast amount of data has been obtained from the study of rocks and soils from the Apollo and Luna sample collections and, more recently, on a set of about a dozen lunar meteorites collected on Earth. Based on direct studies of the samples, many constraints have been established for the age, early differentiation, crust and mantle structure, and subsequent impact modification of the Moon. In addition, geophysical experiments at the surface, as well as remote sensing from orbit and Earth-based telescopic studies, have provided additional datasets about the Moon that constrain the nature of its surface and internal structure. Some might be tempted to say that we know all there is to know about the Moon and that it is time to move on from this simple satellite to more complex objects. However, the ongoing Lunar Prospector mission and the highly successful Clementine mission have provided important clues to the real geological complexity of the Moon, and have shown us that we still do not yet adequately understand the geologic history of Earth's companion. These missions, like Galileo during its lunar flyby, are providing global information viewed through new kinds of windows, and providing a fresh context for models of lunar origin, evolution, and resources, and perhaps even some grist for new questions and new hypotheses. The probable detection and characterization of water ice at the poles, the extreme concentration of Th and other radioactive elements in the Procellarum-Imbrium-Frigon's resurfaced areas of the nearside of the Moon, and the high-resolution gravity modeling enabled by these missions are examples of the kinds of exciting new results that must be integrated with the extant body of knowledge based on sample studies, in situ experiments, and remote-sensing missions to bring about the best possible understanding of the Moon and its history.

  2. Consideration of sample return and the exploration strategy for Mars

    NASA Technical Reports Server (NTRS)

    Bogard, D. C.; Duke, M. B.; Gibson, E. K.; Minear, J. W.; Nyquist, L. E.; Phinney, W. C.

    1979-01-01

    The scientific rationale and requirements for a Mars surface sample return were examined and the experience gained from the analysis and study of the returned lunar samples were incorporated into the science requirements and engineering design for the Mars sample return mission. The necessary data sets for characterizing Mars are presented. If further analyses of surface samples are to be made, the best available method is for the analysis to be conducted in terrestrial laboratories.

  3. Performance of Waterless Concrete

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  4. Quantification of Efficiency of Beneficiation of Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Lane, John; Captain, James; Weis, Kyle; Quinn, Jacqueline; Watanabe, Fumiya

    2011-01-01

    Electrostatic beneficiation of lunar regolith is being researched at Kennedy Space Center to enhance the ilmenite concentration of the regolith for the production of oxygen in in-situ resource utilization on the lunar surface. Ilmenite enrichment of up to 200% was achieved using lunar simulants. For the most accurate quantification of the regolith particles, standard petrographic methods are typically followed, but in order to optimize the process, many hundreds of samples were generated in this study that made the standard analysis methods time prohibitive. In the current studies, X-ray photoelectron spectroscopy (XPS) and Secondary Electron microscopy/Energy Dispersive Spectroscopy (SEM/EDS) were used that could automatically, and quickly, analyze many separated fractions of lunar simulant. In order to test the accuracy of the quantification, test mixture samples of known quantities of ilmenite (2, 5, 10, and 20 wt%) in silica (pure quartz powder), were analyzed by XPS and EDS. The results showed that quantification for low concentrations of ilmenite in silica could be accurately achieved by both XPS and EDS, knowing the limitations of the techniques. 1

  5. Expanding the REE Partitioning Database for Lunar Materials

    NASA Technical Reports Server (NTRS)

    Rapp, Jennifer F.; Draper, David S.

    2014-01-01

    Positive europium anomalies are ubiquitous in the plagioclase-rich rocks of the lunar highlands, and complementary negative Eu anomalies are found in most lunar basalts. This is taken as evidence of a large-scale differentation event, with crystallization of a global-scale lunar magma ocean (LMO) resulting in a plagioclase flotation crust and a mafic lunar interior from which mare basalts were later derived. However, the extent of the Eu anomaly in lunar rocks is variable. Some plagioclase grains in a lunar impact rock (60635) have been reported to display a negative Eu anomaly, or in some cases single grains display both positive and neagtive anomalies. Cathodoluminescence images reveal that some crystals have a negative anomaly in the core and positive at the rim, or vice versa, and the negative anomalies are not associated with crystal overgrowths. Oxygen fugacity is known to affect Eu partitioning into plagioclase, as under low fO2 conditions Eu can be divalent, and has an ionic radius similar to Ca2+ - significant in lunar samples where plagioclase compositions are predominantly anorthitic. However, there are very few experimental studies of rare earth element (REE) partitioning in plagioclase relevant to lunar magmatism, with only two plagioclase DEu measurements from experiments using lunar materials, and little data in low fO2 conditions relevant to the Moon. We report on REE partitioning experiments on lunar compositions. We investigate two lunar basaltic compositions, high-alumina basalt 14072 and impact melt breccia 60635. These samples span a large range of lunar surface bulk compositions. The experiments are carried out at variable fO2 in 1 bar gas mixing furnaces, and REE are analysed by and LA-ICP-MS. Our results not only greatly expand the existing plagioclase DREE database for lunar compositions, but also investigate the significance of fO2 in Eu partitioning, and in the interpretation of Eu anomalies in lunar materials.

  6. Near Real-Time Prospecting for Lunar Volatiles: Demonstrating RESOLVE Science in the Field

    NASA Astrophysics Data System (ADS)

    Elphic, R. C.; Colaprete, A.; Heldmann, J. L.; Mattes, G.; Ennico, K.; Sanders, G. B.; Quinn, J.; Fritzler, E.; Marinova, M.; Roush, T. L.; Stoker, C.; Larson, W.; Picard, M.; McMurray, R.; Morse, S.

    2012-12-01

    The Regolith and Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) project aims to demonstrate the utility of "in situ resource utilization". In situ resource utilization (ISRU) is a way to rebalance the economics of spaceflight by reducing or eliminating materials that must be brought up from Earth and placed on the surface of the Moon for human use. RESOLVE is developing a rover-borne payload that (1) can locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important not only for ISRU but are also critically important for understanding the scientific nature of these intriguing lunar polar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the 4-7 days of expected sunlight at relatively low cost. In July 2012 the RESOLVE project conducted a full-scale field demonstration. In particular, the ability to perform the real-time measurement analysis necessary to search for volatiles and the ability to combine the various measurement techniques to meet the mission measurement and science goals. With help from the Pacific International Space Center for Exploration Systems (PISCES), a lunar rover prototype (provided by the Canadian Space Agency) was equipped with prospecting instruments (neutron spectrometer and near-infrared spectrometer), subsurface access and sampling tools, including both an auger and coring drill (provided by CSA) and subsurface sample analysis instrumentation, including a sample oven system, the Oxygen and Volatile Extraction Node (OVEN), and Gas Chromatograph / Mass Spectrometer system, the Lunar Advanced Volatile Analysis (LAVA) system. Given the relatively short time period this lunar mission is being designed to, prospecting needs to occur in near real-time. The two prospecting instruments are the neutron and NIR spectrometers. In the field demo a small radioactive source was provided the neutron flux. The NIR spectrometer, which includes its own light source, looks at surface reflectance for signatures of bound H2O/OH and general mineralogy. Once a "hot spot" was found by the prospecting instruments, the drill could either auger or core. The auger drill worked to a depth of 50 cm and is monitored with a drill camera and the NIR spectrometer. As cuttings are brought up the NIR spectra is monitored. If a particular location is considered of high-interest then the decision to core could be made. The coring drill (a push-tube) allowed a 1-meter sample to be acquired processed by the OVEN/LAVA sys-tem. This presentation will provide details as how these instruments worked together and how and if the planned measurements and science was obtained.

  7. Near Real Time Prospecting for Lunar Volatiles: Demonstrating RESOLVE Science in the Field

    NASA Technical Reports Server (NTRS)

    Elphic, Richard; Colaprete, Anthony; Heldmann, Jennifer; Mattes, Gregory W.; Ennico, Kimberly; Sanders, Gerald; Quinn, Jacqueline; Tegnerud, Erin Leigh; Marinova, Margarita; Larson, William E.; hide

    2012-01-01

    The Regolith and Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) project aims to demonstrate the utility of "in situ resource utilization". In situ resource utilization (ISRU) is a way to rebalance the economics of spaceflight by reducing or eliminating materials that must be brought up from Earth and placed on the surface of the Moon for human use. RESOLVE is developing a rover-borne payload that (1) can locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important not only for ISRU but are also critically important for understanding the scientific nature of these intriguing lunar polar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the 4-7 days of expected sunlight at relatively low cost. In July 2012 the RESOLVE project conducted a full-scale field demonstration. In particular, the ability to perform the real-time measurement analysis necessary to search for volatiles and the ability to combine the various measurement techniques to meet the mission measurement and science goals. With help from the Pacific International Space Center for Exploration Systems (PISCES), a lunar rover prototype (provided by the Canadian Space Agency) was equipped with prospecting instruments (neutron spectrometer and near-infrared spectrometer), subsurface access and sampling tools, including both an auger and coring drill (provided by CSA) and subsurface sample analysis instrumentation, including a sample oven system, the Oxygen and Volatile Extraction Node (OVEN), and Gas Chromatograph / Mass Spectrometer system, the Lunar Advanced Volatile Analysis (LAVA) system. Given the relatively short time period this lunar mission is being designed to, prospecting needs to occur in near real-time. The two prospecting instruments are the neutron and NIR spectrometers. In the field demo a small radioactive source was provided the neutron flux. The NIR spectrometer, which includes its own light source, looks at surface reflectance for signatures of bound H20/0H and general mineralogy. Once a "hot spot" was found by the prospecting instruments, the drill could either auger or core. The auger drill worked to a depth of 50 cm and is monitored with a drill camera and the NIR spectrometer. As cuttings are brought up the NIR spectra is monitored. If a particular location is considered of high -interest then the decision to core could be made. The coring drill (a push-tube) allowed a meter sample to be acquired processed by the OVEN/LAVA sys-tem. This presentation will provide details as how these instruments worked together and how and if the planned measurements and science was obtained.

  8. Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model.

    PubMed

    Russell, Sara S; Joy, Katherine H; Jeffries, Teresa E; Consolmagno, Guy J; Kearsley, Anton

    2014-09-13

    The lunar magma ocean model is a well-established theory of the early evolution of the Moon. By this model, the Moon was initially largely molten and the anorthositic crust that now covers much of the lunar surface directly crystallized from this enormous magma source. We are undertaking a study of the geochemical characteristics of anorthosites from lunar meteorites to test this model. Rare earth and other element abundances have been measured in situ in relict anorthosite clasts from two feldspathic lunar meteorites: Dhofar 908 and Dhofar 081. The rare earth elements were present in abundances of approximately 0.1 to approximately 10× chondritic (CI) abundance. Every plagioclase exhibited a positive Eu-anomaly, with Eu abundances of up to approximately 20×CI. Calculations of the melt in equilibrium with anorthite show that it apparently crystallized from a magma that was unfractionated with respect to rare earth elements and ranged in abundance from 8 to 80×CI. Comparisons of our data with other lunar meteorites and Apollo samples suggest that there is notable heterogeneity in the trace element abundances of lunar anorthosites, suggesting these samples did not all crystallize from a common magma source. Compositional and isotopic data from other authors also suggest that lunar anorthosites are chemically heterogeneous and have a wide range of ages. These observations may support other models of crust formation on the Moon or suggest that there are complexities in the lunar magma ocean scenario to allow for multiple generations of anorthosite formation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model

    PubMed Central

    Russell, Sara S.; Joy, Katherine H.; Jeffries, Teresa E.; Consolmagno, Guy J.; Kearsley, Anton

    2014-01-01

    The lunar magma ocean model is a well-established theory of the early evolution of the Moon. By this model, the Moon was initially largely molten and the anorthositic crust that now covers much of the lunar surface directly crystallized from this enormous magma source. We are undertaking a study of the geochemical characteristics of anorthosites from lunar meteorites to test this model. Rare earth and other element abundances have been measured in situ in relict anorthosite clasts from two feldspathic lunar meteorites: Dhofar 908 and Dhofar 081. The rare earth elements were present in abundances of approximately 0.1 to approximately 10× chondritic (CI) abundance. Every plagioclase exhibited a positive Eu-anomaly, with Eu abundances of up to approximately 20×CI. Calculations of the melt in equilibrium with anorthite show that it apparently crystallized from a magma that was unfractionated with respect to rare earth elements and ranged in abundance from 8 to 80×CI. Comparisons of our data with other lunar meteorites and Apollo samples suggest that there is notable heterogeneity in the trace element abundances of lunar anorthosites, suggesting these samples did not all crystallize from a common magma source. Compositional and isotopic data from other authors also suggest that lunar anorthosites are chemically heterogeneous and have a wide range of ages. These observations may support other models of crust formation on the Moon or suggest that there are complexities in the lunar magma ocean scenario to allow for multiple generations of anorthosite formation. PMID:25114312

  10. Lunar dust charging by photoelectric emissions

    NASA Astrophysics Data System (ADS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2007-05-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.

  11. Laboratory Measurements of Optical and Physical Properties of Individual Lunar Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Hoover, R. B.

    2006-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, and transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The experimental results were obtained on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of radii sub-micron size to several micron radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.

  12. Lunar Dust Charging by Photoelectric Emissions

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2007-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.

  13. Lunar Dust Charging by Photoelectric Emissions

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2007-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon s surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.

  14. Building Strategic Capabilities for Sustained Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Landgraf, M.; Hufenbach, B.; Houdou, B.

    2016-11-01

    We discuss a lunar exploration architecture that addresses the strategic objective of providing access to the lunar surface. This access enables the most exciting part of the lunar exploration: building a sustained infrastructure on the lunar surface.

  15. Proceedings of the 40th Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology; Seek Out and Explore: Upcoming and Future Missions; Mars: Early History and Impact Processes; Mars Analogs II: Chemical and Spectral; Achondrites and their Parent Bodies; and Planning for Future Exploration of the Moon The poster sessions were: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1; LRO and LCROSS; Geophysical Analysis of the Lunar Surface and Interior; Remote Observation and Geologic Mapping of the Lunar Surface; Lunar Spectroscopy; Venus Geology, Geophysics, Mapping, and Sampling; Planetary Differentiation; Bunburra and Buzzard Coulee: Recent Meteorite Falls; Meteorites: Terrestrial History; CAIs and Chondrules: Records of Early Solar System Processes; Volatile and Organic Compounds in Chondrites; Crashing Chondrites: Impact, Shock, and Melting; Ureilite Studies; Petrology and Mineralogy of the SNC Meteorites; Martian Meteorites; Phoenix Landing Site: Perchlorate and Other Tasty Treats; Mars Polar Atmospheres and Climate Modeling; Mars Polar Investigations; Mars Near-Surface Ice; Mars: A Volatile-Rich Planet; Mars: Geochemistry and Alteration Processes; Martian Phyllosilicates: Identification, Formation, and Alteration; Astrobiology; Instrument Concepts, Systems, and Probes for Investigating Rocks and Regolith; Seeing is Believing: UV, VIS, IR, X- and Gamma-Ray Camera and Spectrometer Instruments; Up Close and Personal: In Situ Analysis with Laser-Induced Breakdown Spectroscopy and Mass Spectrometry; Jupiter and Inscrutable Io; Tantalizing Titan; Enigmatic Enceladus and Intriguing Iapetus; Icy Satellites: Cryptic Craters; Icy Satellites: Gelid Geology/Geophysics; Icy Satellites: Cool Chemistry and Spectacular Spectroscopy; Asteroids and Comets; Comet Wild 2: Mineralogy and More; Hypervelocity Impacts: Stardust Models, LDEF, and ISPE; Presolar Grains; Early Nebular Processes: Models and Isotopes; Solar Wind and Genesis: Measurements and Interpretation; Education and Public Outreach; Mercury; Pursuing Lunar Exploration; Sources and Eruptionf Lunar Basalts; Chemical and Physical Properties of the Lunar Regolith; Lunar Dust and Transient Surface Phenomena; Lunar Databases and Data Restoration; Meteoritic Samples of the Moon; Chondrites, Their Clasts, and Alteration; Achondrites: Primitive and Not So Primitive; Iron Meteorites; Meteorite Methodology; Antarctic Micrometeorites; HEDs and Vesta; Dust Formation and Transformation; Interstellar Organic Matter; Early Solar System Chronology; Comparative Planetology; Impacts I: Models and Experiments; Impacts II: Craters and Ejecta; Mars: Volcanism; Mars: Tectonics and Dynamics; Martian Stratigraphy: Understanding the Geologic History of Mars Through the Sedimentary Rock Record; Mars: Valleys and Valley Networks; Mars: Aqueous Processes in Valles Marineris and the Southern Highlands; Mars: Aqueous Geomorphology; Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Remote Sensing; Mars: Geologic Mapping, Photogrammetry, and Cratering; Martian Mineralogy: Constraints from Missions and Laboratory Investigations; Mars Analogs: Chemical and Physical; Mars Analogs: Sulfates and Sulfides; Missions: Approaches, Architectures, Analogs, and Actualities; Not Just Skin Deep: Electron Microscopy, Heat Flow, Radar, and Seismology Instruments and Planetary Data Systems, Techniques, and Interpretation.

  16. Magnetic studies on Apollo 15 and 16 lunar samples

    NASA Technical Reports Server (NTRS)

    Pearce, G. W.; Gose, W. A.; Strangway, D. W.

    1973-01-01

    The magnetic properties of lunar samples are almost exclusively due to rather pure metallic iron. The mare basalt contains about 0.06 wt.% Fe, the soils 0.5-0.6 wt.%, and the breccias 0.3-1.0 wt.%. Most of the additional iron in the soils and breccias is believed to be the result of reduction processes operating on the lunar surface. Whereas the total metallic iron content of the soils from all landing sites is rather constant, the Fe(0)/Fe(++) ratio and the average iron grain size increase with the age of the landing site, reflecting increasing maturity. The crystalline rocks studied from Apollo 16 have highly variable, but generally, very high metallic Fe content (up to 1.7 wt.% Fe). It is suggested that these rocks are either breccias or igneous samples which have been severely thermally metamorphosed in a highly reducing environment.

  17. Effect of Illumination Angle on the Performance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2009-01-01

    JSC-1A lunar simulant has been applied to AZ93 and AgFEP thermal control surfaces on aluminum substrates in a simulated lunar environment. The temperature of these surfaces was monitored as they were heated with a solar simulator using varying angles of incidence and cooled in a 30 K coldbox. Thermal modeling was used to determine the solar absorptivity (a) and infrared emissivity (e) of the thermal control surfaces in both their clean and dusted states. It was found that even a sub-monolayer of dust can significantly raise the a of either type of surface. A full monolayer can increase the a/e ratio by a factor of 3 to 4 over a clean surface. Little angular dependence of the a of pristine thermal control surfaces for both AZ93 and AgFEP was observed, at least until 30 from the surface. The dusted surfaces showed the most angular dependence of a when the incidence angle was in the range of 25 to 35 . Samples with a full monolayer, like those with no dust, showed little angular dependence in a. The e of the dusted thermal control surfaces was within the spread of clean surfaces, with the exception of high dust coverage, where a small increase was observed at shallow angles.

  18. K/Ar dating of lunar soils. II

    NASA Technical Reports Server (NTRS)

    Alexander, E. C., Jr.; Bates, A.; Coscio, M. R., Jr.; Dragon, J. C.; Murthy, V. R.; Pepin, R. O.; Venkatesan, T. R.

    1976-01-01

    An attempt is made to identify those K/Ar techniques which extract the most reliable chronological information from lunar soils and to define the situations in which the best data are obtainable. Results are presented for determinations of the exposure and K/Ar ages of five lunar soil samples, which were performed by applying correlation techniques for a two-component argon structure to stepwise-heated and neutron-irradiated aliquots of grain-sized separates. It is found that ages deduced from Ar-40/surface-correlated Ar-36 vs K-40/surface-correlated Ar-36 and analogous plots of data from grain-sized separates appear to be the best available K/Ar ages of submature to mature lunar soils, that ages deduced from Ar-40 vs Ar-36 and analogous plots which assume a uniform K content can be significantly in error, and that stepwise-heating (Ar-40)-(Ar-39) experiments yield useful information only for simple immature soils where the K-Ar systematics are dominated by a single component.

  19. Modeling Sodium Abundance Variations in the Lunar Crust: A Likely Proxy of Past Solar System History and a Potential Guide to Close-In Rocky Exoplanets

    NASA Astrophysics Data System (ADS)

    Saxena, P.; Killen, R. M.; Petro, N. E.; Airapetian, V.; Mandell, A.

    2017-12-01

    While the Moon and Earth are generally similar in terms of composition, there exist variations in the abundance of certain elements among the two bodies. These differences are a likely consequence of differing physical evolution of the two bodies over the solar system's history. We describe how our past and current modeling efforts indicate that a significant fraction of the initial sodium budget of the Moon may have been depleted and transported from the lunar surface since the Moon's formation. Using profiles of sodium abundances from lunar crustal samples may thus serve as a powerful tool towards exploring conditions on the Moon's surface throughout solar system history. Additionally, conditions on the Moon immediately after formation may still be recorded in the lunar crust and may provide a window towards interpreting observations from some of the first rocky exoplanets that will be most amenable to characterization.

  20. Lunar Science Conference, 4th, Houston, Tex., March 5-8, 1973, Proceedings. Volume 1 - Mineralogy and petrology. Volume 2 - Chemical and isotope analyses. Organic chemistry. Volume 3 - Physical properties

    NASA Technical Reports Server (NTRS)

    Gose, W. A.

    1973-01-01

    The mineralogy, petrology, chemistry, isotopic composition, and physical properties of lunar materials are described in papers detailing methods, results, and implications of research on samples returned from eight lunar landing sites: Apollo 11, 12, 14, 15, 16, 17, and Luna 16 and 20. The results of experiments conducted or set up on the lunar surface by the astronauts are also described along with observations taken from Command Modules and subsatellites. Major topics include general geology, soil and breccia studies, petrologic studies, mineralogic analyses, elemental compositions, radiometric age determinations, rare gas chemistry, radionuclides, organogenic compounds, particle track records, thermal properties, seismic studies, resonance studies, orbital mapping, lunar atmosphere, magnetic studies, electrical studies, optical properties, and microcratering. Individual items are announced in this issue.

  1. Availability of hydrogen for lunar base activities

    NASA Technical Reports Server (NTRS)

    Bustin, Roberta; Gibson, Everett K., Jr.

    1992-01-01

    Hydrogen will be needed on a lunar base to make water for consumables, to provide fuel, and to serve as a reducing agent in the extraction of oxygen from lunar minerals. This study was undertaken in order to learn more about the abundance and distribution of solar-wind-implanted hydrogen. Hydrogen was found in all samples studied, with concentrations, varying widely depending on soil maturity, grain size, and mineral composition. Seven cores returned from the Moon were studied. Although hydrogen was implanted in the upper surface layer of the regolith, it was found throughout the cores due to micrometeorite reworking of the soil.

  2. Lunar Prospecting Using Thermal Wadis and Compact Rovers. Part A; Infrastructure for Surviving the Lunar Night

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R.; Wegeng, Robert S.; Suzuki, Nantel H.

    2012-01-01

    Recent missions have confirmed the existence of water and other volatiles on the Moon, both in permanently-shadowed craters and elsewhere. Non-volatile lunar resources may represent significant additional value as infrastructure or manufacturing feedstock. Characterization of lunar resources in terms of abundance concentrations, distribution, and recoverability is limited to in-situ Apollo samples and the expanding remote-sensing database. This paper introduces an approach to lunar resource prospecting supported by a simple lunar surface infrastructure based on the Thermal Wadi concept of thermal energy storage and using compact rovers equipped with appropriate prospecting sensors and demonstration resource extraction capabilities. Thermal Wadis are engineered sources of heat and power based on the storage and retrieval of solar-thermal energy in modified lunar regolith. Because Thermal Wadis keep compact prospecting rovers warm during periods of lunar darkness, the rovers are able to survive months to years on the lunar surface rather than just weeks without being required to carry the burdensome capability to do so. The resulting lower-cost, long-lived rovers represent a potential paradigm breakthrough in extra-terrestrial prospecting productivity and will enable the production of detailed resource maps. Integrating resource processing and other technology demonstrations that are based on the content of the resource maps will inform engineering economic studies that can define the true resource potential of the Moon. Once this resource potential is understood quantitatively, humans might return to the Moon with an economically sound objective including where to go, what to do upon arrival, and what to bring along.

  3. Liquid Acquisition Strategies for Exploration Missions: Current Status 2010

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2010-01-01

    NASA is currently developing the propulsion system concepts for human exploration missions to the lunar surface. The propulsion concepts being investigated are considering the use of cryogenic propellants for the low gravity portion of the mission, that is, the lunar transit, lunar orbit insertion, lunar descent and the rendezvous in lunar orbit with a service module after ascent from the lunar surface. These propulsion concepts will require the vapor free delivery of the cryogenic propellants stored in the propulsion tanks to the exploration vehicles main propulsion system (MPS) engines and reaction control system (RCS) engines. Propellant management devices (PMD s) such as screen channel capillary liquid acquisition devices (LAD s), vanes and sponges currently are used for earth storable propellants in the Space Shuttle Orbiter OMS and RCS applications and spacecraft propulsion applications but only very limited propellant management capability exists for cryogenic propellants. NASA has begun a technology program to develop LAD cryogenic fluid management (CFM) technology through a government in-house ground test program of accurately measuring the bubble point delta-pressure for typical screen samples using LO2, LN2, LH2 and LCH4 as test fluids at various fluid temperatures and pressures. This presentation will document the CFM project s progress to date in concept designs, as well ground testing results.

  4. Forward Contamination of the Moon and Mars: Implications for Future Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2004-01-01

    NASA and ESA have outlined new visions for solar system exploration that will include a series of lunar robotic missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under COSPAR's current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft. Nonetheless, future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  5. The Stratigraphy and Evolution of the Lunar Crust

    NASA Technical Reports Server (NTRS)

    McCallum, I. Stewart

    1998-01-01

    Reconstruction of stratigraphic relationships in the ancient lunar crust has proved to be a formidable task. The intense bombardment during the first 700 m.y. of lunar history has severely perturbed the original stratigraphy and destroyed the primary textures of all but a few nonmare rocks. However, a knowledge of the crustal stratigraphy as it existed prior to the cataclysmic bombardment about 3.9 Ga is essential to test the major models proposed for crustal origin, i.e., crystal fractionation in a global magmasphere or serial magmatism in a large number of smaller bodies. Despite the large difference in scale implicit in these two models, both require an efficient separation of plagioclase and mafic minerals to form the anorthositic crust and the mafic mantle. Despite the havoc wreaked by the large body impactors, these same impact processes have brought to the lunar surface crystalline samples derived from at least the upper half of the lunar crust, thereby providing an opportunity to reconstruct the stratigraphy in areas sampled by the Apollo missions. As noted, ejecta from the large multiring basins are dominantly, or even exclusively, of crustal origin. Given the most recent determinations of crustal thicknesses, this implies an upper limit to the depth of excavation of about 60 km. Of all the lunar samples studied, a small set has been recognized as "pristine", and within this pristine group, a small fraction have retained some vestiges of primary features formed during the earliest stages of crystallization or recrystallization prior to 4.0 Ga. We have examined a number of these samples that have retained some record of primary crystallization to deduce thermal histories from an analysis of structural, textural, and compositional features in minerals from these samples. Specifically, by quantitative modeling of (1) the growth rate and development of compositional profiles of exsolution lamellae in pyroxenes and (2) the rate of Fe-Mg ordering in orthopyroxenes, we can constrain the cooling rates of appropriate lunar samples. These cooling rates are used to compute depths of burial at the time of crystallization, which enable us to reconstruct parts of the crustal stratigraphy as it existed during the earliest stages of lunar history.

  6. Exposure ages and neutron capture record in lunar samples from Fra Mauro.

    NASA Technical Reports Server (NTRS)

    Lugmair, G. W.; Marti, K.

    1972-01-01

    Cosmic-ray exposure ages of Apollo 14 rocks and rock fragments obtained by the Kr81-Kr83 method range from 27 to 700 m.y. Rock 14321, collected near the Cone crater rim, is one of the many approximately 27 m.y. old ejecta which were reported at the Third Lunar Science Conference. All the other rocks have considerably higher exposure ages. Isotopic anomalies from neutron capture in gadolinium, bromine, and barium are used to obtain information on the lunar neutron spectrum at various depths below the lunar surface. The flux ratio of resonance and slow (less than 0.3 eV) neutrons is found to be nearly constant in the topmost approximately 100 g/sq cm.

  7. MoonDB: Restoration and Synthesis of Lunar Petrological and Geochemical Data

    NASA Technical Reports Server (NTRS)

    Lehnert, Kerstin A.; Cai, Yue; Mana, Sara; Todd, Nancy S.; Zeigler, Ryan A.; Evans, Cindy A.

    2016-01-01

    About 2,200 samples were collected from the Moon during the Apollo missions, forming a unique and irreplaceable legacy of the Apollo program. These samples, obtained at tremendous cost and great risk, are the only samples that have ever been returned by astronauts from the surface of another planetary body. These lunar samples have been curated at NASA Johnson Space Center and made available to the global research community. Over more than 45 years, a vast body of petrological, geochemical, and geochronological studies of these samples have been amassed, which helped to expand our understanding of the history and evolution of the Moon, the Earth itself, and the history of our entire solar system. Unfortunately, data from these studies are dispersed in the literature, often only available in analog format in older publications, and/or lacking sample metadata and analytical metadata (e.g., information about analytical procedure and data quality), which greatly limits their usage for new scientific endeavors. Even worse is that much lunar data have never been published, simply because no forum existed at the time (e.g., electronic supplements). Thousands of valuable analyses remain inaccessible, often preserved only in personal records, and are in danger of being lost forever, when investigators retire or pass away. Making these data and metadata publicly accessible in a digital format would dramatically help guide current and future research and eliminate duplicated analyses of precious lunar samples.

  8. Lunar Science Conference, 8th, Houston, Tex., March 14-18, 1977, Proceedings. Volume 1 - The moon and the inner solar system. Volume 2 - Petrogenetic studies of mare and highland rocks. Volume 3 - Planetary and lunar surfaces

    NASA Technical Reports Server (NTRS)

    Merril, R. B.

    1977-01-01

    Solar system processes are considered along with the origin and evolution of the moon, planetary geophysics, lunar basins and crustal layering, lunar magnetism, the lunar surface as a planetary probe, remote observations of lunar and planetary surfaces, earth-based measurements, integrated studies, physical properties of lunar materials, and asteroids, meteorites, and the early solar system. Attention is also given to studies of mare basalts, the kinetics of basalt crystallization, topical studies of mare basalts, highland rocks, experimental studies of highland rocks, geochemical studies of highland rocks, studies of materials of KREEP composition, a consortium study of lunar breccia 73215, topical studies on highland rocks, Venus, and regional studies of the moon. Studies of surface processes, are reported, taking into account cratering mechanics and fresh crater morphology, crater statistics and surface dating, effects of exposure and gardening, and the chemistry of surfaces.

  9. Lunar Plant Biology - A Review of the Apollo Era

    NASA Astrophysics Data System (ADS)

    Ferl, Robert J.; Paul, Anna-Lisa

    2010-04-01

    Recent plans for human return to the Moon have significantly elevated scientific interest in the lunar environment with emphasis on the science to be done in preparation for the return and while on the lunar surface. Since the return to the Moon is envisioned as a dedicated and potentially longer-term commitment to lunar exploration, questions of the lunar environment and particularly its impact on biology and biological systems have become a significant part of the lunar science discussion. Plants are integral to the discussion of biology on the Moon. Plants are envisioned as important components of advanced habitats and fundamental components of advanced life-support systems. Moreover, plants are sophisticated multicellular eukaryotic life-forms with highly orchestrated developmental processes, well-characterized signal transduction pathways, and exceedingly fine-tuned responses to their environments. Therefore, plants represent key test organisms for understanding the biological impact of the lunar environment on terrestrial life-forms. Indeed, plants were among the initial and primary organisms that were exposed to returned lunar regolith from the Apollo lunar missions. This review discusses the original experiments involving plants in association with the Apollo samples, with the intent of understanding those studies within the context of the first lunar exploration program and drawing from those experiments the data to inform the studies critical within the next lunar exploration science agenda.

  10. Lunar plant biology--a review of the Apollo era.

    PubMed

    Ferl, Robert J; Paul, Anna-Lisa

    2010-04-01

    Recent plans for human return to the Moon have significantly elevated scientific interest in the lunar environment with emphasis on the science to be done in preparation for the return and while on the lunar surface. Since the return to the Moon is envisioned as a dedicated and potentially longer-term commitment to lunar exploration, questions of the lunar environment and particularly its impact on biology and biological systems have become a significant part of the lunar science discussion. Plants are integral to the discussion of biology on the Moon. Plants are envisioned as important components of advanced habitats and fundamental components of advanced life-support systems. Moreover, plants are sophisticated multicellular eukaryotic life-forms with highly orchestrated developmental processes, well-characterized signal transduction pathways, and exceedingly fine-tuned responses to their environments. Therefore, plants represent key test organisms for understanding the biological impact of the lunar environment on terrestrial life-forms. Indeed, plants were among the initial and primary organisms that were exposed to returned lunar regolith from the Apollo lunar missions. This review discusses the original experiments involving plants in association with the Apollo samples, with the intent of understanding those studies within the context of the first lunar exploration program and drawing from those experiments the data to inform the studies critical within the next lunar exploration science agenda.

  11. Improved calibration of reflectance data from the LRO Lunar Orbiter Laser Altimeter (LOLA) and implications for space weathering

    NASA Astrophysics Data System (ADS)

    Lemelin, M.; Lucey, P. G.; Neumann, G. A.; Mazarico, E. M.; Barker, M. K.; Kakazu, A.; Trang, D.; Smith, D. E.; Zuber, M. T.

    2016-07-01

    The Lunar Orbiter Laser Altimeter (LOLA) experiment on Lunar Reconnaissance Orbiter (LRO) is a laser altimeter that also measures the strength of the return pulse from the lunar surface. These data have been used to estimate the reflectance of the lunar surface, including regions lacking direct solar illumination. A new calibration of these data is presented that features lower uncertainties overall and more consistent results in the polar regions. We use these data, along with newly available maps of the distribution of lunar maria, also derived from LRO instrument data, to investigate a newly discovered dependence of the albedo of the lunar maria on latitude (Hemingway et al., [2015]). We confirm that there is an increase in albedo with latitude in the lunar maria, and confirm that this variation is not an artifact arising from the distribution of compositions within the lunar maria, using data from the Lunar Prospector Neutron Spectrometer. Radiative transfer modeling of the albedo dependence within the lunar maria is consistent with the very weak to absent dependence of albedo on latitude in the lunar highlands; the lower abundance of the iron source for space weathering products in the lunar highlands weakens the latitude dependence to the extent that it is only weakly detectable in current data. In addition, photometric models and normalization may take into account the fact that the lunar albedo is latitude dependent, but this dependence can cause errors in normalized reflectance of at most 2% for the majority of near-nadir geometries. We also investigate whether the latitude dependent albedo may have obscured detection of small mare deposits at high latitudes. We find that small regions at high latitudes with low roughness similar to the lunar maria are not mare deposits that may have been misclassified owing to high albedos imposed by the latitude dependence. Finally, we suggest that the only modest correlations among space weathering indicators defined for the lunar samples may be due to mixing of soils from distinct latitudes.

  12. Improved Calibration of Reflectance Data from the LRO Lunar Orbiter Laser Altimeter (LOLA) and Implications for Space Weathering

    NASA Technical Reports Server (NTRS)

    Lemelin, M.; Lucey, P. G.; Neumann, G. A.; Mazarico, E. M.; Barker, M. K.; Kakazu, A.; Trang, D.; Smith, D. E.; Zuber, M. T.

    2016-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) experiment on Lunar Reconnaissance Orbiter (LRO) is a laser altimeter that also measures the strength of the return pulse from the lunar surface. These data have been used to estimate the reflectance of the lunar surface, including regions lacking direct solar illumination. A new calibration of these data is presented that features lower uncertainties overall and more consistent results in the polar regions. We use these data, along with newly available maps of the distribution of lunar maria, also derived from LRO instrument data, to investigate a newly discovered dependence of the albedo of the lunar maria on latitude (Hemingway et al., [2015]). We confirm that there is an increase in albedo with latitude in the lunar maria, and confirm that this variation is not an artifact arising from the distribution of compositions within the lunar maria, using data from the Lunar Prospector Neutron Spectrometer. Radiative transfer modeling of the albedo dependence within the lunar maria is consistent with the very weak to absent dependence of albedo on latitude in the lunar highlands; the lower abundance of the iron source for space weathering products in the lunar highlands weakens the latitude dependence to the extent that it is only weakly detectable in current data. In addition, photometric mod- els and normalization may take into account the fact that the lunar albedo is latitude dependent, but this dependence can cause errors in normalized reflectance of at most 2% for the majority of near-nadir geometries. We also investigate whether the latitude dependent albedo may have obscured detection of small mare deposits at high latitudes. We find that small regions at high latitudes with low roughness similar to the lunar maria are not mare deposits that may have been misclassified owing to high albedos imposed by the latitude dependence. Finally, we suggest that the only modest correlations among space weathering indicators defined for the lunar samples may be due to mixing of soils from distinct latitudes.

  13. Lunar Prospector: a Preliminary Surface Remote Sensing Resource Assessment for the Moon

    NASA Technical Reports Server (NTRS)

    Mardon, A. A.

    1992-01-01

    The potential existence of lunar volatiles is a scientific discovery that could distinctly change the direction of pathways of inner solar system human expansion. With a dedicated germanium gamma ray spectrometer launched in the early 1990's, surface water concentrations of 0.7 percent could be detected immediately upon full lunar polar orbit operations. The expense of lunar base construction and operation would be dramatically reduced over a scenario with no lunar volatile resources. Global surface mineral distribution could be mapped out and integrated into a GIS database for lunar base site selection. Extensive surface lunar mapping would also result in the utilization of archived Apollo images. A variety of remote sensing systems and their parameters have been proposed for use in the detection of these lunar ice masses. The detection or nondetection of subsurface and surface ice masses in lunar polar crater floors could dramatically direct the development pathways that the human race might follow in its radiation from the Earth to habitable locales in the inner terran solar system. Potential sources of lunar volatiles are described. The use of remote sensing to detect lunar volatiles is addressed.

  14. Lunar Paleomagnetism: The Case for an Ancient Lunar Dynamo. (Invited)

    NASA Astrophysics Data System (ADS)

    Fuller, M.; Weiss, B. P.; Gattacceca, J.

    2010-12-01

    The failure of lunar samples to satisfy minimal criteria for classical paleointensity determinations has led to skepticism of the case for an ancient lunar dynamo. There are however practical and fundamental reasons why such experiments are doomed to failure in most lunar samples. In such methods, NRMs in successive blocking temperatures ranges are thermally demagnetized and replaced with partial thermoremanent magnetization (pTRMs) given in a known field (Thellier, 1938). A practical difficulty is that it is hard to heat lunar samples without altering them. A fundamental problem is that whereas pottery, for which these methods were designed, carries a primary (TRM) from its initial cooling and little secondary magnetization, lunar samples are likely to carry weak field isothermal remanent magnetization (IRM) and shock remanent magnetization (SRM) as secondary overprints. Thermal demagnetization does not isolate weak field IRM well. For example, on thermal demagnetization of the Apollo sample 14053.48 carrying a 2000nT TRM with a superposed 5mT IRM, the IRM persists to the Curie point obscuring the TRM. Fortunately, weak field IRM is removed by AF demagnetization to fields comparable to that in which it is acquired. Furthermore, Gattacceca et al. (2008) demonstrated that experimentally generated SRM from several GPa, like weak field IRM, is demagnetized by AF fields of between ~20 and 30 mT, leaving the pre-shock remanent magnetization essentially untouched. This agrees with our theoretical understanding of SRM, which at pressures below approximately the Hugoniot elastic limit (several GPa for most rocks) should essentially be a pressure remanent magnetization (e.g., Dunlop and Ozdemir, 1997). Unlike IRM, SRM in the range of a few GPa may carry recoverable lunar field records (Gattacceca et al., 2008). NRM in samples shocked to less than ~5 GPa, which is stable against AF demagnetization beyond the fields necessary to eliminate weak SRM (~20-30 mT), requires some other explanation. Such NRM carried by the small amount of single domain iron and iron nickel present in the samples can be very stable. The troctolite 76535 is an example of such a sample. It cooled over thousands of years, or longer, which is far too long for any possible transient fields associated with impacts and must carry a TRM like NRM. Note that despite predictions that even km sized craters may generate fields up to 0.1T at 1 crater radius, no unambiguous evidence for paleomagnetic recording of such fields over individual craters has materialized. There are numerous other candidate samples having experienced <~5 GPa carrying stable NRM, which have been analyzed, or are being presently investigated. The only other obvious source of a field to explain stable TRM in lunar rocks is that of surface lunar fields, but over the mare these are too weak to account for the NRM of mare basalts. In summary, recent advances in our understanding of SRM and reanalysis of lunar paleomagnetism lead us to conclude that lunar paleomagnetism is most easily explained by a lunar dynamo.

  15. Benefits of Using a Mars Forward Strategy for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Mulqueen, Jack; Griffin, Brand; Smitherman, David; Maples, Dauphne

    2009-01-01

    This paper identifies potential risk reduction, cost savings and programmatic procurement benefits of a Mars Forward Lunar Surface System architecture that provides commonality or evolutionary development paths for lunar surface system elements applicable to Mars surface systems. The objective of this paper is to identify the potential benefits for incorporating a Mars Forward development strategy into the planned Project Constellation Lunar Surface System Architecture. The benefits include cost savings, technology readiness, and design validation of systems that would be applicable to lunar and Mars surface systems. The paper presents a survey of previous lunar and Mars surface systems design concepts and provides an assessment of previous conclusions concerning those systems in light of the current Project Constellation Exploration Architectures. The operational requirements for current Project Constellation lunar and Mars surface system elements are compared and evaluated to identify the potential risk reduction strategies that build on lunar surface systems to reduce the technical and programmatic risks for Mars exploration. Risk reduction for rapidly evolving technologies is achieved through systematic evolution of technologies and components based on Moore's Law superimposed on the typical NASA systems engineering project development "V-cycle" described in NASA NPR 7120.5. Risk reduction for established or slowly evolving technologies is achieved through a process called the Mars-Ready Platform strategy in which incremental improvements lead from the initial lunar surface system components to Mars-Ready technologies. The potential programmatic benefits of the Mars Forward strategy are provided in terms of the transition from the lunar exploration campaign to the Mars exploration campaign. By utilizing a sequential combined procurement strategy for lunar and Mars exploration surface systems, the overall budget wedges for exploration systems are reduced and the costly technological development gap between the lunar and Mars programs can be eliminated. This provides a sustained level of technological competitiveness as well as maintaining a stable engineering and manufacturing capability throughout the entire duration of Project Constellation.

  16. Heat-physical properties of lunar surface material returned to earth by the Luna 16 automatic station

    NASA Technical Reports Server (NTRS)

    Avduyevskiy, V. S.; Anfimov, N. A.; Marov, M. Y.; Treskin, Y. A.; Shalayev, S. P.; Ekonomov, A. P.

    1974-01-01

    Density, specific heat capacity, and coefficient of thermal conductivity were studied on a sample of lunar surface material returned by the Luna 16 automatic station. The study was carried out in a helium-filled chamber. The density of the surface material when freely heaped was 1.2 g/cu cm, and when shaken down -- 1.7 g/cu cm. The specific heat capacity was 0.177 + or - 0.010 cal x g/1 x deg/1. The coefficient of thermal conductivity in the material was 4.8 x 10/6 + or - 1.2 x 10/6 cal x cm/1 x sec/1 x deg/1.

  17. Analogue Materials Measured Under Simulated Lunar and Asteroid Environments: Application to Thermal Infrared Measurements of Airless Bodies

    NASA Astrophysics Data System (ADS)

    Donaldson Hanna, K. L.; Pieters, C. M.; Patterson, W., III; Moriarty, D.

    2012-12-01

    Remote sensing observations provide key insights into the composition and evolution of planetary surfaces. A fundamentally important component to any remote sensing study of planetary surfaces is laboratory measurements of well-characterized samples measured under the appropriate environmental conditions. The near-surface vacuum environment of airless bodies like the Moon and asteroids creates a thermal gradient in the upper hundred microns of regolith. Lab studies of particulate rocks and minerals as well as selected lunar soils under vacuum and lunar-like conditions have identified significant effects of this thermal gradient on thermal infrared (TIR) spectral measurements [e.g. Logan et al. 1973, Salisbury and Walter 1989, Thomas et al. 2010, Donaldson Hanna et al. 2012]. Compared to ambient conditions, these effects include: (1) the Christiansen feature (CF), an emissivity maximum diagnostic of mineralogy and average composition, shifts to higher wavenumbers and (2) an increase in spectral contrast of the CF relative to the Reststrahlen bands (RB), the fundamental molecular vibration bands due to Si-O stretching and bending. Such lab studies demonstrate the high sensitivity of TIR emissivity spectra to environmental conditions under which they are measured. The Asteroid and Lunar Environment Chamber (ALEC) is the newest addition to the RELAB at Brown University. The vacuum chamber simulates the space environment experienced by the near-surface soils of the Moon and asteroids. The internal rotation stage allows for six samples and two blackbodies to be measured without breaking vacuum (<10-4 mbar). Liquid nitrogen is used to cool the interior of the chamber, creating a cold, low emission environment (mimicking the space environment) for heated samples to radiate into. Sample cups can be heated in one of three configurations: (1) from below using heaters embedded in the base of the sample cup, (2) from above using a solar-like radiant heat source, and (3) from below and above to allow the magnitude of the thermal gradient to be examined. ALEC is connected to RELAB's Thermo Nicolet FTIR spectrometer which allows laboratory emissivity spectra to be collected at a resolution of 4 cm-1 over a nominal ~400 - 7400 cm-1 spectral range. An initial set of experiments have been run to understand how variations in the internal chamber pressure, power from the solar-like halogen lamp, and sample cup temperature affect spectral measurements of fine particulate (< 25 μm) mineral separates. These early results corroborate previous lab measurements showing the sensitivity of TIR spectra to the conditions under which they are measured and for the first time illustrates how the pressure and the thermal gradient each contribute to the changes in TIR spectral measurements. Spectral measurements of lunar soils under varying controlled conditions will be compared with Diviner data to understand how to accurately simulate conditions of the real near-surface environment of the Moon. Once conditions are constrained future spectral measurements will focus on building a spectral library of well-characterized minerals, rocks, soils, and meteorites measured under lunar environmental conditions. Such measurements are essential to interpret current TIR datasets like Diviner and future missions like OSIRIS-REx.

  18. A celestial assisted INS initialization method for lunar explorers.

    PubMed

    Ning, Xiaolin; Wang, Longhua; Wu, Weiren; Fang, Jiancheng

    2011-01-01

    The second and third phases of the Chinese Lunar Exploration Program (CLEP) are planning to achieve Moon landing, surface exploration and automated sample return. In these missions, the inertial navigation system (INS) and celestial navigation system (CNS) are two indispensable autonomous navigation systems which can compensate for limitations in the ground based navigation system. The accurate initialization of the INS and the precise calibration of the CNS are needed in order to achieve high navigation accuracy. Neither the INS nor the CNS can solve the above problems using the ground controllers or by themselves on the lunar surface. However, since they are complementary to each other, these problems can be solved by combining them together. A new celestial assisted INS initialization method is presented, in which the initial position and attitude of the explorer as well as the inertial sensors' biases are estimated by aiding the INS with celestial measurements. Furthermore, the systematic error of the CNS is also corrected by the help of INS measurements. Simulations show that the maximum error in position is 300 m and in attitude 40″, which demonstrates this method is a promising and attractive scheme for explorers on the lunar surface.

  19. A Celestial Assisted INS Initialization Method for Lunar Explorers

    PubMed Central

    Ning, Xiaolin; Wang, Longhua; Wu, Weiren; Fang, Jiancheng

    2011-01-01

    The second and third phases of the Chinese Lunar Exploration Program (CLEP) are planning to achieve Moon landing, surface exploration and automated sample return. In these missions, the inertial navigation system (INS) and celestial navigation system (CNS) are two indispensable autonomous navigation systems which can compensate for limitations in the ground based navigation system. The accurate initialization of the INS and the precise calibration of the CNS are needed in order to achieve high navigation accuracy. Neither the INS nor the CNS can solve the above problems using the ground controllers or by themselves on the lunar surface. However, since they are complementary to each other, these problems can be solved by combining them together. A new celestial assisted INS initialization method is presented, in which the initial position and attitude of the explorer as well as the inertial sensors’ biases are estimated by aiding the INS with celestial measurements. Furthermore, the systematic error of the CNS is also corrected by the help of INS measurements. Simulations show that the maximum error in position is 300 m and in attitude 40″, which demonstrates this method is a promising and attractive scheme for explorers on the lunar surface. PMID:22163998

  20. Magnetic Field Measurements on the Lunar Surface: Lessons Learned from Apollo and Science Enabled by Future Missions

    NASA Astrophysics Data System (ADS)

    Chi, P. J.

    2017-10-01

    We discuss the science to be enabled by new magnetometer measurements on the lunar surface, based on results from Apollo and other lunar missions. Also discussed are approaches to deploying magnetometers on the lunar surface with today's technology.

  1. Lunar Orbit Insertion Targeting and Associated Outbound Mission Design for Lunar Sortie Missions

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.

    2007-01-01

    This report details the Lunar Orbit Insertion (LOI) arrival targeting and associated mission design philosophy for Lunar sortie missions with up to a 7-day surface stay and with global Lunar landing site access. It also documents the assumptions, methodology, and requirements validated by TDS-04-013, Integrated Transit Nominal and Abort Characterization and Sensitivity Study. This report examines the generation of the Lunar arrival parking orbit inclination and Longitude of the Ascending Node (LAN) targets supporting surface missions with global Lunar landing site access. These targets support the Constellation Program requirement for anytime abort (early return) by providing for a minimized worst-case wedge angle [and an associated minimum plane change delta-velocity (V) cost] between the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM) for an LSAM launch anytime during the Lunar surface stay.

  2. Backscatter Mossbauer Spectrometer (BaMS) for extraterrestrial applications

    NASA Technical Reports Server (NTRS)

    Agresti, D. G.; Shelfer, T. D.; Pimperl, M. M.; Wills, E. L.; Shen, M. H.; Morris, R. V.

    1993-01-01

    Mossbauer spectroscopy is a nuclear gamma resonance technique particularly well suited to the study of materials that contain iron (Fe-57). It can provide information on the oxidation state of iron as well as the type and proportion of iron-containing mineral species in a sample of interest. Iron Mossbauer spectroscopy (FeMS) has been applied to samples believed to have come from Mars (SNC meteorites) and has been helpful in refining the choice among putative Martian surface materials by suggesting a likely nanophase component of the Martian regolity. FeMS spectrum of a Martial analogue material (Hawaiian palagonite) is shown; it is dominated by ferric-bearing phases and shows evidence of a nanophase component. FeMS has also been applied to lunar materials. It can be used to measure the maturity of lunar surface material and has been proposed as a prospector for lunar ilmenite, an oxygen resource mineral. Several years ago we suggested a backscatter Mossbauer spectrometer (BaMS) for a Mars rover mission. Backscatter design was selected as most appropriate for in-situ application because no sample preparation is required. Since that time, we have continued to develop the BaMS instrument in anticipation that it would eventually find a home on a NASA planetary mission. Gooding proposed BaMS as a geochemistry instrument on MESUR. More recently, an LPI workshop has recommended that BaMS be included in a three-instrument payload on the next (1996?) lunar lander.

  3. The Apollo lunar surface experiment package suprathermal ion detector experiment. [bibliographies

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation of reports and scientific papers is presented for the following topics: (1) the lunar ionosphere; (2) electric potential of the lunar surface; (3) ion activity on the lunar nightside; (4) bow shock protons; (5) magnetosheath and magnetotail; (6) solar wind-neutral gas cloud interactions at the lunar surface; (7) penetrating solar particles; and (8) rocket exhaust products from Apollo missions. Descriptions and photographs of ion detecting equipment at the lunar sites of Apollo 12, 13, 14, and 15 are given.

  4. Latitude variation of the subsurface lunar temperature: Lunar Prospector thermal neutrons

    NASA Astrophysics Data System (ADS)

    Little, R. C.; Feldman, W. C.; Maurice, S.; Genetay, I.; Lawrence, D. J.; Lawson, S. L.; Gasnault, O.; Barraclough, B. L.; Elphic, R. C.; Prettyman, T. H.; Binder, A. B.

    2003-05-01

    Planetary thermal neutron fluxes provide a sensitive proxy for mafic and feldspathic terranes and are also necessary for translating measured gamma-ray line strengths to elemental abundances. Both functions require a model for near-surface temperatures and a knowledge of the dependence of thermal neutron flux on temperature. We have explored this dependence for a representative sample of lunar soil compositions and surface temperatures using the Monte Carlo N-Particle Code (MCNP™)(MNCP is a trademark of the Regents of the University of California, Los Alamos National Laboratory). For all soil samples, the neutron density is found to be independent of temperature, in accord with neutron moderation theory. The thermal neutron flux, however, does vary with temperature in a way that depends on Δ, the ratio of macroscopic absorption to energy-loss cross sections of soil compositions. The weakest dependence is for the largest Δ (which corresponds to the Apollo 17 high-Ti basalt in our soil selection), and the largest dependence is for the lowest Δ (which corresponds to ferroan anorthosite, [FAN] in our selection). For the lunar model simulated, the depth at which the thermal neutron population is most sensitive to temperature is ~30 g cm-2. These simulations were compared with the flux of thermal neutrons measured using the Lunar Prospector neutron spectrometer over the lunar highlands using a subsurface temperature profile that varies with latitude, λ, as Cos1/4λ. Model results assuming equatorial temperatures of 200 and 250 K are in reasonable agreement with measured data. This range of equatorial temperatures is not inconsistent with the average temperature measured below the diurnal thermal wave at the equator, Tmeas = 252 +/- 3 K [Langseth and Keihm, 1977].

  5. Apollo 12 Astronauts Peer Out of the Mobile Quarantine Facility

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The smiling Apollo 12 astronauts peer out of the window of the mobile quarantine facility aboard the recovery ship, USS Hornet. Pictured (Left to right) are Spacecraft Commander, Charles Conrad; Command Module (CM) Pilot, Richard Gordon; and Lunar Module (LM) Pilot, Alan L. Bean. The crew were housed in the quarantine facility immediately after the Pacific recovery operation took place. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 returned safely to Earth on November 24, 1969.

  6. Bistatic Radar Observations of the Moon Using Mini-RF on LRO and the Arecibo Observatory

    NASA Technical Reports Server (NTRS)

    Patterson, G. W.; Stickle, A. M.; Turner, F. S.; Jensen, J. R.; Bussey, D. B. J.; Spudis, P.; Espiritu, R. C.; Schulze, R. C.; Yocky, D. A.; Wahl, D. E.; hide

    2016-01-01

    The Miniature Radio Frequency (Mini-RF) instrument aboard NASA's Lunar Reconnaissance Orbiter (LRO) is a hybrid dual-polarized synthetic aperture radar (SAR) that operated in concert with the Arecibo Observatory to collect bistatic radar data of the lunar nearside from 2012 to 2015. The purpose of this bistatic campaign was to characterize the radar scattering properties of the surface and near-surface, as a function of bistatic angle, for a variety of lunar terrains and search for a coherent backscatter opposition effect indicative of the presence of water ice. A variety of lunar terrain types were sampled over a range of incidence and bistatic angles; including mare, highland, pyroclastic, crater ejecta, and crater floor materials. Responses consistent with an opposition effect were observed for the ejecta of several Copernican-aged craters and the floor of the south-polar crater Cabeus. The responses of ejecta material varied by crater in a manner that suggests a relationship with crater age. The response for Cabeus was observed within the portion of its floor that is not in permanent shadow. The character of the response differs from that of crater ejecta and appears unique with respect to all other lunar terrains observed. Analysis of data for this region suggests that the unique nature of the response may indicate the presence of near-surface deposits of water ice.

  7. Development and Testing of The Lunar Resource Prospector Drill

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Paulsen, G.; Kleinhenz, J.; Smith, J. T.; Quinn, J.

    2017-12-01

    The goal of the Lunar Resource Prospector (RP) mission is to capture and identify volatiles species within the top one meter layer of the lunar surface. The RP drill has been designed to 1. Generate cuttings and place them on the surface for analysis by the Near InfraRed Volatiles Spectrometer Subsystem (NIRVSS), and 2. Capture cuttings and transfer them to the Oxygen and Volatile Extraction Node (OVEN) coupled with the Lunar Advanced Volatiles Analysis (LAVA) subsystem. The RP drill is based on the TRL4 Mars Icebreaker drill and TRL5 LITA drill developed for capturing samples of ice and ice cemented ground on Mars, and represents over a decade of technology development effort. The TRL6 RP drill weighs approximately 15 kg and is rated at just over 500 Watt. The drill consists of: 1. Rotary-Percussive Drill Head, 2. Sampling Auger, 3. Brushing Station, 4. Feed Stage, and 5. Deployment Stage. To reduce sample handling complexity, the drill auger is designed to capture cuttings as opposed to cores. High sampling efficiency is possible through a dual design of the auger. The lower section has deep and low pitch flutes for retaining of cuttings. The upper section has been designed to efficiently move the cuttings out of the hole. The drill uses a "bite" sampling approach where samples are captured in 10 cm depth intervals. The first generation, TRL4 Icebreaker drill was tested in Mars chamber as well as in Antarctica and the Arctic. It demonstrated drilling at 1-1-100-100 level (1 meter in 1 hour with 100 Watt and 100 N Weight on Bit) in ice, ice cemented ground, soil, and rocks. The second generation, TRL5 LITA drill was deployed on a Carnegie Mellon University rover, called Zoe, and tested in Atacama, Antarctica, the Arctic, and Greenland. The tests demonstrated fully autonomous sample acquisition and delivery to a carousel. The modified LITA drill was tested in NASA GRC's lunar vacuum chamber at <10^-5 torr and <200 K. It demonstrated successful capture and transfer of volatile rich frozen samples to a crucible for analysis. The modified LITA drill has also been successfully vibration tested at NASA KSC. The drill was integrated with RP rover at NASA JSC and successfully tested in a lab and in the field, as well as on a large vibration table and steep slope. The latest TRL6 RP drill is currently undergoing testing at NASA GRC lunar chamber facilities.

  8. A Simulated Chlorine-Saturated Lunar Magmatic System at the Surface and At Depth

    NASA Astrophysics Data System (ADS)

    DiFrancesco, N.; Nekvasil, H.; Lindsley, D. H.

    2016-12-01

    Analysis of igneous minerals present in lunar rocks has provided evidence that volatiles such as water, chlorine and fluorine were concentrated in melts present at or near the lunar surface. While at depth, pressure on a magma allows these gases to remain dissolved in a silicate liquid, however as the magma ascends and depressurizes, these components become saturated and begin exsolving. While at pressure, it's possible for these components, specifically Cl, to form complexes in the melt with major cations such as Na, K, and Fe as well as trace elements such as Zn and Li. While dissolved in the melt, it may be possible for the Cl to inhibit the ability for these cations to enter into crystalline phases such as olivine, plagioclase, or pyroxene, potentially altering the composition of minerals associated with the melt. As the magma rises, these compounds are able to boil off from the magma, changing its bulk composition by effectively removing these cations as halides in a vapor phase. The goals of this project are to experimentally ascertain the nature of minerals sublimated by this degassing, and the effects that this process may have on the evolution and liquid line of decent for a cooling lunar magma. This is accomplished by crystallizing volatile-rich synthetic lunar basalts both at high and zero pressure and analyzing both vapor deposits and solidified liquids. Experimental data simulating volatile-rich magma degassing and crystallization at the lunar surface, and within the lunar crust has demonstrated that typical KREEP basalts (potentially rich in Cl) will crystallize more magnesian and calcic phases at high pressure, and subsequently lose alkalis and iron to a vapor phase at low pressure. We see evidence of vapor deposits and volatile element enrichment in returned Apollo samples such as "Rusty Rock", and on the surface of orange glass beads.

  9. The 1990-1991 project summaries

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Project summaries for 1990-91 at the Georgia Institute of Technology are presented. The following research projects were studied: a lunar surface vehicle model; lunar loader/transporter; trenching and cable-laying device for the lunar surface; a lunar vehicle system for habitat transport and placement; and lunar storage facility.

  10. Modeling Lunar Borehole Temperature in order to Reconstruct Historical Total Solar Irradiance and Estimate Surface Temperature in Permanently Shadowed Regions

    NASA Astrophysics Data System (ADS)

    Wen, G.; Cahalan, R. F.; Miyahara, H.; Ohmura, A.

    2007-12-01

    The Moon is an ideal place to reconstruct historical total solar irradiance (TSI). With undisturbed lunar surface albedo and the very low thermal diffusivity of lunar regolith, changes in solar input lead to changes in lunar surface temperature that diffuse downward to be recorded in the temperature profile in the near-surface layer. Using regolith thermal properties from Apollo, we model the heat transfer in the regolith layer, and compare modeled surface temperature to Apollo observations to check model performance. Using as alternative input scenarios two reconstructed TSI time series from 1610 to 2000 (Lean, 2000; Wang, Lean, and Sheeley 2005), we conclude that the two scenarios can be distinguished by detectable differences in regolith temperature, with the peak difference of about 10 mK occuring at a depth of about 10 m (Miyahara et al., 2007). The possibility that water ice exists in permanently shadowed areas near the lunar poles (Nozette et al., 1997; Spudis et al, 1998), makes it of interest to estimate surface temperature in such dark regions. "Turning off" the Sun in our time dependent model, we found it would take several hundred years for the surface temperature to drop from ~~100K immediately after sunset down to a nearly constant equilibrium temperature of about 24~~38 K, with the range determined by the range of possible input from Earth, from 0 W/m2 without Earth visible, up to about 0.1 W/m2 at maximum Earth phase. A simple equilibrium model (e.g., Huang 2007) is inappropriate to relate the Apollo-observed nighttime temperature to Earth's radiation budget, given the long multi- centennial time scale needed for equilibration of the lunar surface layer after sunset. Although our results provide the key mechanisms for reconstructing historical TSI, further research is required to account for topography of lunar surfaces, and new measurements of regolith thermal properties will also be needed once a new base of operations is established. References Huang, S., (2007), Surface Temperatures at the Nearside of the Moon as a Record of the Radiation Budget of Earth's Climate System, Advances in Space Research, doi:10.1016/j.asr.2007.04.093. Lean, J., Geophys. Res. Lett., (2000), 27(16), 2425-2428. Miyahara, H., G. Wen, R. F. Cahalan, and A. Ohmura, (2007), Deriving Historical Total Solar Irradiance from Lunar Borehole Temperatures, submitted to Geophy. Res. Lett. Nozette, S., E. M. Shoemaker, P. D. Spudis, and C. L. Lichtenberg, The possibility of ice on the Moon, Science, 278, 144-145, 1997. Spudis, P.D., T. Cook, M. Robinson, B. Bussey, and B. Fessler, Topography of the southe polar region from Clementine stereo imaging, New views of the Moon, Integrated remotely sensed, geophysical, and sample datasets, Lunar Planet. Inst., [CD-ROM], abstract 6010, 1998. Wang, Y. M., J. L. Lean and N. R. Sheeley (2005), Astrophys. J., 625, 522-538.

  11. Coordinates of anthropogenic features on the Moon

    NASA Astrophysics Data System (ADS)

    Wagner, R. V.; Nelson, D. M.; Plescia, J. B.; Robinson, M. S.; Speyerer, E. J.; Mazarico, E.

    2017-02-01

    High-resolution images from the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) reveal the landing locations of recent and historic spacecraft and associated impact sites across the lunar surface. Using multiple images of each site acquired between 2009 and 2015, an improved Lunar Reconnaissance Orbiter (LRO) ephemeris, and a temperature-dependent camera orientation model, we derived accurate coordinates (<12 m) for each soft-landed spacecraft, rover, deployed scientific payload, and spacecraft impact crater that we have identified. Accurate coordinates enhance the scientific interpretations of data returned by the surface instruments and of returned samples of the Apollo and Luna sites. In addition, knowledge of the sizes and positions of craters formed as the result of impacting spacecraft provides key benchmarks into the relationship between energy and crater size, as well as calibration points for reanalyzing seismic measurements acquired during the Apollo program. We identified the impact craters for the three spacecraft that impacted the surface during the LRO mission by comparing before and after NAC images.

  12. Development of a refrigeration system for lunar surface and spacecraft applications

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.

    1976-01-01

    An evaluation of refrigeration devices suitable for potential lunar surface and spacecraft applications was performed. The following conclusions were reached: (1) the vapor compression system is the best overall refrigeration system for lunar surface and spacecraft applications and the single phase radiator system is generally preferred for earth orbit applications, (2) the vapor compression cycle may have some application for simultaneous heating and cooling, (3) a Stirling cycle refrigerator was selected for the manned cabin of the space shuttle, and (4) significant increases in payload heat rejection can be obtained by a kit vapor compression refrigerator added to the shuttle R-21 loop. The following recommendations were made: (1) a Stirling cycle refrigerator may be used for food freezer and biomedical sample storage, (2) the best system for a food freezer/experiments compartment for an earth orbit space station has not been determined, (3) a deployed radiator system can be designed for large heat loads in earth orbit.

  13. Coordinates of Anthropogenic Features on the Moon

    NASA Technical Reports Server (NTRS)

    Wagner, R. V.; Nelson, D. M.; Plescia, J. B.; Robinson, M. S.; Speyerer , E. J.; Mazarico, E.

    2016-01-01

    High-resolution images from the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) reveal the landing locations of recent and historic spacecraft and associated impact sites across the lunar surface. Using multiple images of each site acquired between 2009 and 2015, an improved Lunar Reconnaissance Orbiter (LRO) ephemeris, and a temperature-dependent camera orientation model, we derived accurate coordinates ( less than 12 meters) for each soft-landed spacecraft, rover, deployed scientific payload, and spacecraft impact crater that we have identified. Accurate coordinates enhance the scientific interpretations of data returned by the surface instruments and of returned samples of the Apollo and Luna sites. In addition, knowledge of the sizes and positions of craters formed as the result of impacting spacecraft provides key benchmarks into the relationship between energy and crater size, as well as calibration points for reanalyzing seismic measurements acquired during the Apollo program. We identified the impact craters for the three spacecraft that impacted the surface during the LRO mission by comparing before and after NAC images.

  14. View of rim of South Ray crater on traverse up Stone Mountain during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A view of the rim of South Ray crater photographed with a 500mm lens from Station no.4 -- the highest point on the traverse up Stone Mountain -- during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. South Ray crater was a 'fresh' source of angular ejecta in the Lunar Module-Apollo Lunar Surface Experiments Package area and for samples at Station No.8.

  15. Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter.

    PubMed

    Mazarico, Erwan; Barker, Michael K; Neumann, Gregory A; Zuber, Maria T; Smith, David E

    2014-04-16

    The Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter spacecraft collected more than 5 billion measurements in the nominal 50 km orbit over ∼10,000 orbits. The data precision, geodetic accuracy, and spatial distribution enable two-dimensional crossovers to be used to infer relative radial position corrections between tracks to better than ∼1 m. We use nearly 500,000 altimetric crossovers to separate remaining high-frequency spacecraft trajectory errors from the periodic radial surface tidal deformation. The unusual sampling of the lunar body tide from polar lunar orbit limits the size of the typical differential signal expected at ground track intersections to ∼10 cm. Nevertheless, we reliably detect the topographic tidal signal and estimate the associated Love number h 2 to be 0.0371 ± 0.0033, which is consistent with but lower than recent results from lunar laser ranging. Altimetric data are used to create radial constraints on the tidal deformationThe body tide amplitude is estimated from the crossover dataThe estimated Love number is consistent with previous estimates but more precise.

  16. Morphology and composition of condensates on Apollo 17 orange and black glass

    NASA Technical Reports Server (NTRS)

    Mckay, David S.; Wentworth, Sue J.

    1992-01-01

    Lunar soil sample 74220 and core samples 74001/2 consist mainly of orange glass droplets, droplet fragments, and their crystallized equivalents. These samples are now generally accepted to be pyroclastic ejecta from early lunar volcanic eruptions. It has been known since early examination of these samples that they contain surface coatings and material rich in volatile condensible phases, including S, Zn, F, Cl, and many volatile metals. The volatiles associated with these orange and black glasses (and the Apollo 15 green glasses) may provide important clues in understanding the differentiation and volcanic history of the Moon. In addition, condensible volatiles can be mobilized and concentrated by volcanic processes. We have reviewed many of our existing photomicrographs and energy dispersive analysis (EDXA) of grain surfaces and have reexamined some of our older SEM mounts using an improved EDXA system capable of light-element detection and analysis (oxygen, nitrogen, and carbon). The results from these investigations are presented.

  17. Large Area Lunar Dust Flux Measurement Instrument

    NASA Technical Reports Server (NTRS)

    Corsaro, R.; Giovane, F.; Liou, Jer-Chyi; Burchell, M.; Stansbery, Eugene; Lagakos, N.

    2009-01-01

    The instrument under development is designed to characterize the flux and size distribution of the lunar micrometeoroid and secondary ejecta environment. When deployed on the lunar surface, the data collected will benefit fundamental lunar science as well as enabling more reliable impact risk assessments for human lunar exploration activities. To perform this task, the instrument requirements are demanding. It must have as large a surface area as possible to sample the very sparse population of the larger potentially damage-inducing micrometeorites. It must also have very high sensitivity to enable it to measure the flux of small (<10 micron) micrometeorite and secondary ejecta dust particles. To be delivered to the lunar surface, it must also be very low mass, rugged and stow compactly. The instrument designed to meet these requirements is called FOMIS. It is a large-area thin film under tension (i.e. a drum) with multiple fiber optic displacement (FOD) sensors to monitor displacements of the film. This sensor was chosen since it can measure displacements over a wide dynamic range: 1 cm to sub-Angstrom. A prototype system was successfully demonstrated using the hypervelocity impact test facility at the University of Kent (Canterbury, UK). Based on these results, the prototype system can detect hypervelocity (approx.5 km/s) impacts by particles as small as 2 microns diameter. Additional tests using slow speeds find that it can detect secondary ejecta particles (which do not penetrate the film) with momentums as small as 15 pico-gram 100m/s, or nominally 5 microns diameter at 100 m/s.

  18. Cosmogenic nuclides in football-sized rocks.

    NASA Technical Reports Server (NTRS)

    Wahlen, M.; Honda, M.; Imamura, M.; Fruchter, J. S.; Finkel, R. C.; Kohl, C. P.; Arnold, J. R.; Reedy, R. C.

    1972-01-01

    The activity of long- and short-lived isotopes in a series of samples from a vertical column through the center of rock 14321 was measured. Rock 14321 is a 9 kg fragmental rock whose orientation was photographically documented on the lunar surface. Also investigated was a sample from the lower portion of rock 14310, where, in order to study target effects, two different density fractions (mineral separates) were analyzed. A few nuclides in a sample from the comprehensive fines 14259 were measured. This material has been collected largely from the top centimeter of the lunar soil. The study of the deep samples of 14321 and 14310 provided values for the activity of isotopes at points where only effects produced by galactic cosmic rays are significant.

  19. Lunar Surface Propagation Modeling and Effects on Communications

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2008-01-01

    This paper analyzes the lunar terrain effects on the signal propagation of the planned NASA lunar wireless communication and sensor systems. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate that the terrain geometry, antenna location, and lunar surface material are important factors determining the propagation characteristics of the lunar wireless communication systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, operating frequency, and surface material. The analysis results from this paper are important for the lunar communication link margin analysis in determining the limits on the reliable communication range and radio frequency coverage performance at planned lunar base worksites. Key Words lunar, multipath, path loss, propagation, wireless.

  20. Lunar Exploration and Science in ESA

    NASA Astrophysics Data System (ADS)

    Carpenter, James; Foing, Bernard H.; Fisackerly, Richard; Houdou, Berengere; De Rosa, Diego; Patti, Bernado; Schiemann, Jens

    ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the abundance, composition and isotopes of lunar volatiles in polar regions, and their associated chemistry. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterise and utilise polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensable partner in the exploration missions of the future.

  1. Topographic and geologic analysis of the Pre-selection landing sitesfor Chang 'E 5(CE-5) lunar sample returning mission of China

    NASA Astrophysics Data System (ADS)

    Zeng, Xingguo; Zuo, Wei; Zhang, Zhoubin; Liu, Yuxuan; Li, Chunlai

    2017-04-01

    China Lunar Exploration Program has successfully launched 3 missions since the year of 2007:CE-1(2007), CE-2(2009), and CE-3(2013), and it is planning to launch two lunarLanders in the upcoming years- CE-5(2017) and CE-4(2020). Few decades after the last lunar sample returning mission, CE-5 will be the first lunar sample returning mission in the 21 century. The Pre-selection landing site of CE-5 will be located at a geographic extent of:41 degrees to 45 degrees north latitude and 49 degrees to 69 west longitude, which lies in the near side of the moon, the north-east of the Oceanus Procellarum, to the west of Monte Jura and to the north of Monte Rümker. To ensure the safety of the CE-5 Lander and get lunar samples with more scientific interest, it is essential to take an investigation from the research aspects of topography and geology to select optimal precise landing sites from the Pre-selection area.From the topography aspect, the safety of the Lander is greatly involved with the rugged terrain, conditions of solar illumination and necessity of direct radio communicationwith the Earth, We present the method of preciselandingsites selection using CE-2 high resolution lunar topographic data, which is based on geographical information systems (GIS) technologies to perform analysis, utilizing the criteria of surface suitability for landing, such as slopes, waviness, craters distribution, illumination conditions and Earth visibility.Inaddition, the scientific interest is related to the complexity of the geological conditions, so that estimations of geological background based on USGS lunar geology map data were used to evaluatelanding site candidates on possible lunar volcanicmaterials. The method gave us 7possible candidates to land, which are around the location of-55°W, 43°N. In the further research, the main parameters of these possible sites will be presented with possible prioritization based on both technical requirements and scientific interest.

  2. Water on the Moon

    NASA Astrophysics Data System (ADS)

    Pendleton, Yvonne

    2015-08-01

    After years of thinking the Moon is dry, we now know there are three ways in which water appears on the Moon today:1) The hypothesized buried deposits of volatiles at the lunar poles were found at Cabeus crater. There are questions about the origin of such volatiles (i.e., in-falling comets & meteorites, migrating surficial OH/H2O, and accumulated release from the interior), but there is no doubt the water is there. This long suspected polar water was the most recent form to be confirmed on the Moon.2) Widespread, thinly- distributed, surficial OH (or H2O) is the most recently formed lunar water, and its discovery was completely unexpected. It occurs across all types of lunar terrain, but is more difficult to detect in the warmer equatorial terrain where thermal emission is strongest. The consensus is that this OH is indeed derived from solar wind H linked to O from the surface silicate rocks. Although pervasive, we don’t know how quickly it forms, nor how mobile it is.3) The amount of water present when the Moon formed is now documented in lunar materials from Apollo samples (preserved in the lunar mantle material found in volcanic glass beads). Sample analyses made during the Apollo days were not sufficiently precise to distinguish between indigenous lunar water and terrestrial contamination. Measurements with modern equipment are not only more precise (both elemental and isotopic), but can be made in a manner to constrain a host of processes (e.g. diffusion, thermal cycling) that have acted on these samples during their residence on the Moon. The mysteries associated with all these ‘water’ forms are being pursued by teams and scientists around the world. The paradigm-shifting work that reported these discoveries in recent years are from: the NASA LCROSS (lunar impact mission) team (2010), M3 team/ on the Indian Chandrayan Mission (2009), and lunar sample chemists (2008). NASA Lunar Reconnaissance Orbiter, GRAIL, ESA Smart-1, Japanese Kaguya, and other missions have further revolutionized our understanding of the geochemical and geophysical evolution of our neighbor. Ongoing analyses are informing a number of hypotheses and theories about the connection between the Earth and its “wet’” Moon.

  3. The Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter (LRO) mission

    NASA Astrophysics Data System (ADS)

    Riris, H.; Cavanaugh, J.; Sun, X.; Liiva, P.; Rodriguez, M.; Neuman, G.

    2017-11-01

    The Lunar Orbiter Laser Altimeter (LOLA) instrument [1-3] on NASA's Lunar Reconnaissance Orbiter (LRO) mission, launched on June 18th, 2009, from Kennedy Space Center, Florida, will provide a precise global lunar topographic map using laser altimetry. LOLA will assist in the selection of landing sites on the Moon for future robotic and human exploration missions and will attempt to detect the presence of water ice on or near the surface, which is one of the objectives of NASA's Exploration Program. Our present knowledge of the topography of the Moon is inadequate for determining safe landing areas for NASA's future lunar exploration missions. Only those locations, surveyed by the Apollo missions, are known with enough detail. Knowledge of the position and characteristics of the topographic features on the scale of a lunar lander are crucial for selecting safe landing sites. Our present knowledge of the rest of the lunar surface is at approximately 1 km kilometer level and in many areas, such as the lunar far side, is on the order of many kilometers. LOLA aims to rectify that and provide a precise map of the lunar surface on both the far and near side of the moon. LOLA uses short (6 ns) pulses from a single laser through a Diffractive Optical Element (DOE) to produce a five-beam pattern that illuminates the lunar surface. For each beam, LOLA measures the time of flight (range), pulse spreading (surface roughness), and transmit/return energy (surface reflectance). LOLA will produce a high-resolution global topographic model and global geodetic framework that enables precise targeting, safe landing, and surface mobility to carry out exploratory activities. In addition, it will characterize the polar illumination environment, and image permanently shadowed regions of the lunar surface to identify possible locations of surface ice crystals in shadowed polar craters.

  4. Advanced space transportation system support contract

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The general focus is on a phase 2 lunar base, or a lunar base during the period after the first return of a crew to the Moon, but before permanent occupancy. The software effort produced a series of trajectory programs covering low earth orbit (LEO) to various node locations, the node locations to the lunar surface, and then back to LEO. The surface operations study took a lunar scenario in the civil needs data base (CNDB) and attempted to estimate the amount of space-suit work or extravehicular activity (EVA) required to set up the base. The maintenance and supply options study was a first look at the problems of supplying and maintaining the base. A lunar surface launch and landing facility was conceptually designed. The lunar storm shelter study examined the problems of radiation protection. The lunar surface construction and equipment assembly study defined twenty surface construction and assembly tasks in detail.

  5. Analysis of Lunar Highland Regolith Samples From Apollo 16 Drive Core 64001/2 and Lunar Regolith Simulants - an Expanding Comparative Database

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Rickman, Doug; Stoeser, Douglas; Wentworth, Susan; McKay, Dave S.; Botha, Pieter; Butcher, Alan R.; Horsch, Hanna E.; Benedictus, Aukje; Gottlieb, Paul

    2008-01-01

    This slide presentation reviews the work to analyze the lunar highland regolith samples that came from the Apollo 16 core sample 64001/2 and simulants of lunar regolith, and build a comparative database. The work is part of a larger effort to compile an internally consistent database on lunar regolith (Apollo Samples) and lunar regolith simulants. This is in support of a future lunar outpost. The work is to characterize existing lunar regolith and simulants in terms of particle type, particle size distribution, particle shape distribution, bulk density, and other compositional characteristics, and to evaluate the regolith simulants by the same properties in comparison to the Apollo sample lunar regolith.

  6. Astronaut Alan Bean participates in lunar surface simulation

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot of the Apollo 12 lunar landing mission, participates in lunar surface simulation training in bldg 29 at the Manned Spacecraft Center. Bean is strapped to a one-sixth gravity simulator.

  7. The average chemical composition of the lunar surface

    NASA Technical Reports Server (NTRS)

    Turkevich, A. L.

    1973-01-01

    The available analytical data from twelve locations on the moon are used to estimate the average amounts of the principal chemical elements (O, Na, Mg, Al, Si, Ca, Ti, and Fe) in the mare, the terra, and the average lunar surface regolith. These chemical elements comprise about 99% of the atoms on the lunar surface. The relatively small variability in the amounts of these elements at different mare (or terra) sites, and the evidence from the orbital measurements of Apollo 15 and 16, suggest that the lunar surface is much more homogeneous than the surface of the earth. The average chemical composition of the lunar surface may now be known as well as, if not better than, that of the solid part of the earth's surface.

  8. Apollo program soil mechanics experiment. [interaction of the lunar module with the lunar surface

    NASA Technical Reports Server (NTRS)

    Scott, R. F.

    1975-01-01

    The soil mechanics investigation was conducted to obtain information relating to the landing interaction of the lunar module (LM) with the lunar surface, and lunar soil erosion caused by the spacecraft engine exhaust. Results obtained by study of LM landing performance on each Apollo mission are summarized.

  9. Proposal for a lunar landing pod for SKITTER

    NASA Technical Reports Server (NTRS)

    Herman, David; Huang, Frank; Morelli, Mark; Njaka, Chima; Pope, Michael; Rice, Michael

    1987-01-01

    The purpose of this project is to design a lunar landing module for the SKITTER vehicle. SKITTER is a three-legged mobile lunar transport and work platform. This lunar landing module must be able to bring SKITTER, with attached crane, from a lunar orbit to the surface of the Moon. This propulsion system is entirely self-contained and removable after touchdown. SKITTER is unmanned and must be able to touch down on the lunar surface and perform assigned tasks independently of other space or lunar vehicles. The propulsion system is designed to ensure that the vehicle will make a lunar landing within the expected velocity range. A landing gear configuration is presented to safely dissipate landing forces on lunar impact and be removed from the SKITTER structure after touchdown. The overall engineering analysis was conducted to determine an economical design to land SKITTER safely on the Moon. SKITTER will perform various tasks on the surface of the Moon. The completion of this project will determine the feasibility of landing SKITTER with the attached crane safely on the lunar surface.

  10. Lunar surface construction and assembly equipment study: Lunar Base Systems Study (LBSS) task 5.3

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A set of construction and assembly tasks required on the lunar surface was developed, different concepts for equipment applicable to the tasks determined, and leading candidate systems identified for future conceptual design. Data on surface construction and assembly equipment systems are necessary to facilitate an integrated review of a complete lunar scenario.

  11. TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crotts, Arlin P. S.

    2009-05-20

    Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunarmore » surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: {approx}50% of reports originate from near Aristarchus, {approx}16% from Plato, {approx}6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a 'feature' as defined). TLP count consistency for these features indicates that {approx}80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi. These reports begin almost exclusively after 1955, when TLPs became widely known and many more (and inexperienced) observers searched for TLPs. In a companion paper, we compare the spatial distribution of robust TLP sites to transient outgassing (seen by Apollo and Lunar Prospector instruments). To a high confidence, robust TLP sites and those of lunar outgassing correlate strongly, further arguing for the reality of TLPs.« less

  12. Volatile metal deposits on lunar soils: Relation to volcanism

    NASA Technical Reports Server (NTRS)

    Reed, G. W., Jr.; Allen, R. O., Jr.; Jovanovic, S.

    1977-01-01

    Parallel leaching and volatilization experiments conducted on lunar samples and similar experiments on sphalerite do not supply the information needed to resolve the question of the chemical nature of pb 204, Zn, Bi and Tl deposits on lunar soil surfaces. It is proposed that in Apollo 17 mare and terra soils and fractions of pb 204, Zn and Tl that are insoluble under mild, hot pH 5HNO3, leaching conditions and involatile at 600 C were originally surface deposits which became immobilized by migration into the silicate substrate or by chemisorption. Only Bi is predominantly indigenous. The implication is also that the soils over their respective times of evolution were exposed to heavy metal vapors or that an episodic exposure occurred after they had evolved. A sequence of events is proposed to account for orange 74220 and black 74001 glasses by lava fountaining and for soil 74241 as tephra from an explosive volcanic eruption.

  13. Physicochemical properties of respirable-size lunar dust

    NASA Astrophysics Data System (ADS)

    McKay, D. S.; Cooper, B. L.; Taylor, L. A.; James, J. T.; Thomas-Keprta, K.; Pieters, C. M.; Wentworth, S. J.; Wallace, W. T.; Lee, T. S.

    2015-02-01

    We separated the respirable dust and other size fractions from Apollo 14 bulk sample 14003,96 in a dry nitrogen environment. While our toxicology team performed in vivo and in vitro experiments with the respirable fraction, we studied the size distribution and shape, chemistry, mineralogy, spectroscopy, iron content and magnetic resonance of various size fractions. These represent the finest-grained lunar samples ever measured for either FMR np-Fe0 index or precise bulk chemistry, and are the first instance we know of in which SEM/TEM samples have been obtained without using liquids. The concentration of single-domain, nanophase metallic iron (np-Fe0) increases as particle size diminishes to 2 μm, confirming previous extrapolations. Size-distribution studies disclosed that the most frequent particle size was in the 0.1-0.2 μm range suggesting a relatively high surface area and therefore higher potential toxicity. Lunar dust particles are insoluble in isopropanol but slightly soluble in distilled water (~0.2 wt%/3 days). The interaction between water and lunar fines, which results in both agglomeration and partial dissolution, is observable on a macro scale over time periods of less than an hour. Most of the respirable grains were smooth amorphous glass. This suggests less toxicity than if the grains were irregular, porous, or jagged, and may account for the fact that lunar dust is less toxic than ground quartz.

  14. Apollo 14 Mission image - Astronaut Edgar D. Mitchell, lunar module pilot for the Apollo 14 lunar landing mission, stands by the deployed U.S. flag on the lunar surface during the early moments of the first extravehicular activity (EVA-1) of the mission.

    NASA Image and Video Library

    1971-02-05

    AS14-66-9233 (5 Feb. 1971) --- Astronaut Edgar D. Mitchell, lunar module pilot for the Apollo 14 lunar landing mission, stands by the deployed U.S. flag on the lunar surface during the early moments of the first extravehicular activity (EVA) of the mission. He was photographed by astronaut Alan B. Shepard Jr., mission commander, using a 70mm modified lunar surface Hasselblad camera. While astronauts Shepard and Mitchell descended in the Lunar Module (LM) "Antares" to explore the Fra Mauro region of the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) "Kitty Hawk" in lunar orbit.

  15. Noble Gases in the Lunar Meteorites Calcalong Creek and QUE 93069

    NASA Astrophysics Data System (ADS)

    Swindle, T. D.; Burkland, M. K.; Grier, J. A.

    1995-09-01

    Although the world's collections contain comparable numbers of martian and lunar meteorites (about 10 each), their ejection histories seem to be quite different [1]. We have sampled no more than four martian craters, but almost every one of the lunar meteorites apparently represents a separate cratering event. Furthermore, most lunar meteorites were apparently ejected from the top meter of the surface, unlike any of the martian meteorites. We have measured noble gases in two bulk samples of the lunar meteorite QUE93069 and three of Calcalong Creek, ranging in size from 7 to 15 mg. Averaged results are given in Table 1. Both meteorites contain solar-wind-implanted noble gas. QUE 93069, which is a mature anorthositic regolith breccia [2], contains amounts comparable to the most gas-rich lunar meteorites. The relatively low 40Ar/36Ar ratios of both meteorites suggest surface exposures no more than 2.5 Ga ago [3]. Calcalong Creek has readily observable spallogenic gas. The 131Xe/126Xe ratio of 4.8+/-0.3 corresponds to an average shielding depth of slightly more than 40 gm/cm^2 [4]. In common with many lunar breccias, Calcalong Creek has been exposed to cosmic rays for several hundred Ma (calculations based on [4] and [5]). The 3He apparent exposure age is much shorter, suggesting diffusive loss of He. To determine the detailed exposure history, it is necessary to have measurements of cosmogenic radionuclides. Our samples were too small to measure 81Kr, but [6] have measured 10Be, 26Al and 36Cl. Their data are consistent with either extended exposure at <70 gm/cm^2 in the lunar regolith followed by a short (200,000 years) transit to Earth, or with ejection from several meters depth about 2 Ma ago [6]. Our data, requiring several hundred Ma of exposure at an average depth of 40-50 gm/cm^2, are clearly more consistent with the first scenario. The only other lunar meteorite which could have been ejected at the same time is MAC 88104/5 [1], but the chemical differences between the two make it highly unlikely that they come from the same event. It is difficult to determine the amount of spallogenic gas in QUE 93069 because of the huge solar wind signature. However, a few isotopes that are normally dominated by spallation (3He, 21Ne, 80Kr and 126Xe) are enhanced by >1 sigma over solar wind values, although in every case the spallogenic gas is <25% of the total. The exposure ages derived [4,7] are comparable to those for Calcalong Creek, consistent with extensive near-surface lunar exposure. However, 131Xe is within 1 sigma of solar wind, so we can not constrain the average shielding depth. Measurements on separated clasts would be probably be required. In summary, both meteorites have typical exposure histories for lunar meteorites. Both contain solar wind gases and high cosmogenic noble gas contents suggesting ejection from near the lunar surface. We can not adequately constrain the ejection event for QUE 93069, but Calcalong Creek appears to be the only meteorite from its impact event. References: [1] Warren P. H. (1994) Icarus, 111, 338-363. [2] Lindstrom M. M. et al. (1995) LPS XXVI, 849-850. [3] McKay D. S. et al. (1986) Proc. LPSC 16th, in JGR, 91, D277-D303. [4] Hohenberg C. M. et al. (1978) Proc. LPSC 9th, 2311-2344. [5] Hill C. H. et al. (1991) Nature, 352, 614-617. [6] Nishiizumi K. et al. (1992) Meteoritics, 27, 270. [7] Kring D. A. et al. (1995) Meteoritics, submitted.

  16. Ferromagnetic resonance and magnetic studies of cores 60009/60010 and 60003 - Compositional and surface-exposure stratigraphy. [of Apollo deep drill lunar samples

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Gose, W. A.

    1976-01-01

    Ferromagnetic resonance and static magnetic measurements were made on 131 samples from core 60009/60010 and on 40 samples from section 60003 of the Apollo 16 deep drill core. These studies provided depth profiles for composition, in terms of the concentration of FeO, and relative surface exposure age (or maturity), in terms of the values of the specific FMR intensity normalized to the FeO content. For core 60009/60010, the concentration of FeO ranged from about 1.6 wt.% to 5.8 wt.% with a mean value of 4.6 wt.% and the maturity ranged from immature to mature with most of the soils being submature. A systematic decrease in maturity from the lunar surface to a depth of about 12.5 cm was observed in core section 60010. For core section 60003, the concentration of FeO ranged from about 5.2 wt.% to 7.5 wt.% with a mean value of 6.4 wt.% and the maturity ranged from submature to mature with most of the soils being mature.

  17. Lunar Surface Charging during Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Halekas, Jasper S.; Delory, G. T.; Mewaldt, R. A.; Lin, R. P.; Fillingim, M. O.; Brain, D. A.; Lee, C. O.; Stubbs, T. J.; Farrell, W. M.; Hudson, M. K.

    2006-09-01

    The surface of the Moon, not protected by any substantial atmosphere, is directly exposed to the impact of both solar UV and solar wind plasma and energetic particles. This creates a complex lunar electrostatic environment, with the surface typically charging slightly positive in sunlight, and negative in shadow. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging leads to dust electrification and transport, posing a potentially significant hazard for exploration. The most significant charging effects should occur when the Moon is exposed to high-temperature plasmas like those encountered in the terrestrial plasmasheet or in solar storms. We now present evidence for kilovolt-scale negative charging of the shadowed lunar surface during solar energetic particle (SEP) events, utilizing data from the Lunar Prospector Electron Reflectometer (LP ER). We find that SEP events are associated with the most extreme lunar surface charging observed during the LP mission - rivaled only by previously reported charging during traversals of the terrestrial plasmasheet. The largest charging event observed by LP is a 4 kV negative surface potential (as compared to typical values of V) during a SEP event in May 1998. We characterize lunar surface charging during several SEP events, and compare to energetic particle measurements from ACE, Wind, and SOHO in order to determine the relationship between SEP events and extreme lunar surface charging. Space weather events are already considered by NASA to be a significant hazard to lunar exploration, due to high-energy ionizing radiation. Our observations demonstrate that plasma interactions with the lunar surface during SEP events, causing extreme surface charging and potentially significant dust electrification and transport, represent an additional hazard associated with space weather.

  18. Beagle 2 the Moon: An Experimental Package to Measure Polar Ice and Volatiles in Permanently Shadowed Areas or Beneath the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; McKay, D. S.; Pillinger, C. T.; Wright, I. P.; Sims, M. R.; Richter, L.

    2008-01-01

    NASA has announced the selection of several Lunar Science Sortie Concept Studies for potential scientific payloads with future Lunar Missions. The Beagle 2 scientific package was one of those chosen for study. Near the beginning of the next decade will see the launch of scientific payloads to the lunar surface to begin laying the foundations for the return to the moon in the Vision for Space Exploration. Shortly thereafter, astronauts will return to the lunar surface with the ability to place scientific packages on the surface that will provide information about lunar resources and compositions of materials in permanently shadowed regions of the moon (1). One of the important questions which must be answered early in the program is whether there are lunar resources which would facilitate "living off the land" and not require the transport of resources and consumables from Earth (2). The Beagle science package developed to seek the signatures of life on Mars is the ideal payload (3) to use on the lunar surface for determining the nature of hydrogen, water and lunar volatiles found in the polar regions which could support the Vision for Space Exploration.

  19. Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Plachta, David W.; Yasan, Mohammad M.

    2008-01-01

    A transient thermal model of the lunar surface and regolith was developed along with analytical techniques which will be used to evaluate the storage of cryogenic fluids at equatorial and polar landing sites. The model can provide lunar surface and subsurface temperatures as a function of latitude and time throughout the lunar cycle and season. It also accounts for the presence of or lack of the undisturbed fluff layer on the lunar surface. The model was validated with Apollo 15 and Clementine data and shows good agreement with other analytical models.

  20. Lunar surface magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Colburn, D. S.; Schubert, G.

    1972-01-01

    The Apollo 16 lunar surface magnetometer (LSM) activation completed the network installation of magnetic observatories on the lunar surface and initiated simultaneous measurements of the global response of the moon to large-scale solar and terrestrial magnetic fields. Fossil remanent magnetic fields have been measured at nine locations on the lunar surface, including the Apollo 16 LSM site in the Descartes highlands area. This fossil record indicates the possible existence of an ancient lunar dynamo or a solar or terrestrial field much stronger than exists at present. The experimental technique and operation of the LSM are described and the results obtained are discussed.

  1. Magnetization of the Lunar Crust

    NASA Technical Reports Server (NTRS)

    Carley, R. A.; Whaler, K. A.; Purucker, M. E.; Halekas, J. S.

    2012-01-01

    Magnetic fields measured by the satellite Lunar Prospector show large scale features resulting from remanently magnetized crust. Vector data synthesized at satellite altitude from a spherical harmonic model of the lunar crustal field, and the radial component of the magnetometer data, have been used to produce spatially continuous global magnetization models for the lunar crust. The magnetization is expressed in terms of localized basis functions, with a magnetization solution selected having the smallest root-mean square magnetization for a given fit to the data, controlled by a damping parameter. Suites of magnetization models for layers with thicknesses between 10 and 50 km are able to reproduce much of the input data, with global misfits of less than 0.5 nT (within the uncertainties of the data), and some surface field estimates. The magnetization distributions show robust magnitudes for a range of model thicknesses and damping parameters, however the magnetization direction is unconstrained. These global models suggest that magnetized sources of the lunar crust can be represented by a 30 km thick magnetized layer. Average magnetization values in magnetized regions are 30-40 mA/m, similar to the measured magnetizations of the Apollo samples and significantly weaker than crustal magnetizations for Mars and the Earth. These are the first global magnetization models for the Moon, providing lower bounds on the magnitude of lunar crustal magnetization in the absence of multiple sample returns, and can be used to predict the crustal contribution to the lunar magnetic field at a particular location.

  2. Lunar surface engineering properties experiment definition

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Goodman, R. E.; Hurlbut, F. C.; Houston, W. N.; Willis, D. R.; Witherspoon, P. A.; Hovland, H. J.

    1971-01-01

    Research on the mechanics of lunar soils and on developing probes to determine the properties of lunar surface materials is summarized. The areas of investigation include the following: soil simulation, soil property determination using an impact penetrometer, soil stabilization using urethane foam or phenolic resin, effects of rolling boulders down lunar slopes, design of borehole jack and its use in determining failure mechanisms and properties of rocks, and development of a permeability probe for measuring fluid flow through porous lunar surface materials.

  3. Characterizing the Early Impact Bombardment

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.

    2005-01-01

    The early bombardment revealed in the larger impact craters and basins on the moon was a major planetary process that affected all bodies in the inner solar system, including the Earth and Mars. Understanding the nature and timing of this bombardment is a fundamental planetary problem. The surface density of lunar impact craters within a given size range on a given lunar surface is a measure of the age of that surface relative to other lunar surfaces. When crater densities are combined with absolute radiometric ages determined on lunar rocks returned to Earth, the flux of large lunar impactors through time can be estimated. These studies suggest that the flux of impactors producing craters greater than 1 km in diameter has been approximately constant over the past approx. 3 Gyr. However, prior to 3.0 - 3.5 Gyr the impactor flux was much larger and defines an early bombardment period. Unfortunately, no lunar surface feature older than approx. 4 Gyr is accurately dated, and the surface density of craters are saturated in most of the lunar highlands. This means that such data cannot define the impactor flux between lunar formation and approx. 4 Gyr ago.

  4. Multi-scale Characterization and Modeling of Surface Slope Probability Distribution for ~20-km Diameter Lunar Craters

    NASA Astrophysics Data System (ADS)

    Mahanti, P.; Robinson, M. S.; Boyd, A. K.

    2013-12-01

    Craters ~20-km diameter and above significantly shaped the lunar landscape. The statistical nature of the slope distribution on their walls and floors dominate the overall slope distribution statistics for the lunar surface. Slope statistics are inherently useful for characterizing the current topography of the surface, determining accurate photometric and surface scattering properties, and in defining lunar surface trafficability [1-4]. Earlier experimental studies on the statistical nature of lunar surface slopes were restricted either by resolution limits (Apollo era photogrammetric studies) or by model error considerations (photoclinometric and radar scattering studies) where the true nature of slope probability distribution was not discernible at baselines smaller than a kilometer[2,3,5]. Accordingly, historical modeling of lunar surface slopes probability distributions for applications such as in scattering theory development or rover traversability assessment is more general in nature (use of simple statistical models such as the Gaussian distribution[1,2,5,6]). With the advent of high resolution, high precision topographic models of the Moon[7,8], slopes in lunar craters can now be obtained at baselines as low as 6-meters allowing unprecedented multi-scale (multiple baselines) modeling possibilities for slope probability distributions. Topographic analysis (Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) 2-m digital elevation models (DEM)) of ~20-km diameter Copernican lunar craters revealed generally steep slopes on interior walls (30° to 36°, locally exceeding 40°) over 15-meter baselines[9]. In this work, we extend the analysis from a probability distribution modeling point-of-view with NAC DEMs to characterize the slope statistics for the floors and walls for the same ~20-km Copernican lunar craters. The difference in slope standard deviations between the Gaussian approximation and the actual distribution (2-meter sampling) was computed over multiple scales. This slope analysis showed that local slope distributions are non-Gaussian for both crater walls and floors. Over larger baselines (~100 meters), crater wall slope probability distributions do approximate Gaussian distributions better, but have long distribution tails. Crater floor probability distributions however, were always asymmetric (for the baseline scales analyzed) and less affected by baseline scale variations. Accordingly, our results suggest that use of long tailed probability distributions (like Cauchy) and a baseline-dependant multi-scale model can be more effective in describing the slope statistics for lunar topography. Refrences: [1]Moore, H.(1971), JGR,75(11) [2]Marcus, A. H.(1969),JGR,74 (22).[3]R.J. Pike (1970),U.S. Geological Survey Working Paper [4]N. C. Costes, J. E. Farmer and E. B. George (1972),NASA Technical Report TR R-401 [5]M. N. Parker and G. L. Tyler(1973), Radio Science, 8(3),177-184 [6]Alekseev, V. A.et al (1968), Soviet Astronomy, Vol. 11, p.860 [7]Burns et al. (2012) Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XXXIX-B4, 483-488.[8]Smith et al. (2010) GRL 37, L18204, DOI: 10.1029/2010GL043751. [9]Wagner R., Robinson, M., Speyerer E., Mahanti, P., LPSC 2013, #2924.

  5. Verification of a thermal simulation tool for moving objects on the lunar surface

    NASA Astrophysics Data System (ADS)

    Hager, Philipp; Reiss, Philipp

    2013-04-01

    The thermal environment of the Moon is a challenge for the design and successful operation of rovers and scientific instruments, especially for dynamic, mobile situations. Examples range from transport and stability of volatile samples in transport devices at the lunar poles to an analysis instrument, to astronauts exploring varied terrain. A dynamic thermal simulation tool for moving objects on the lunar surface was created and its verification for several test cases against Lunar Reconnaissance Orbiter DIVINER brightness temperature data is presented here. The Thermal Moon Simulator (TherMoS) allows the prediction of incoming heat fluxes on a mobile object on the lunar surface and subsequent object temperatures. A model for regolith temperatures based on the models presented in [1,2] was set in a MATLAB simulation context. A time-marching numerical finite-difference approach was used to calculate the temperatures for log-distributed regolith depth nodes to a depth of 2m. The lunar interior heat flux was set to 0.033 [W ? m-2], based on the early publications of [3]. The incoming heat fluxes are calculated with a ray tracing algorithm. Parallel solar rays and their diffuse reflected components lead to the solar heat flux for each surface element. Additionally each surface element emits hemispherical, diffuse infrared rays that are absorbed by the object as well as other lunar surface elements. The lunar topography is represented in a triangular mesh. The topography is either derived from Kaguya LALT data or generated artificially. In the latter case craters and boulders are placed manually or randomly in a level terrain. This approach is restricted to bowl shaped primary craters with a boulder size and spatial distribution that takes into account the region (mare or highland) and the parent crater diameter [4,5,6]. A thermal boulder model is integrated, based on work performed by [7]. This model also uses a finite-difference numerical approach to compute boulder temperatures for boulders with diameters > 1m. An orbit propagator is integrated to predict the sun angle at a given time and location on the Moon. The verification was performed for several sites on the Moon for a timeframe of approx. 1 lunar hour. In case of single craters, for example Marius A and Callipus, the overall model produces temperatures accurate within 10 %. In case of more rugged terrain such as the Apollo 15 landing site, crater Ibn Bajja close to the lunar south pole, or in case of steep slope angles, deviations can be as high as 100 % in some places. This can be explained by the different spatial resolution of Kaguya LALT data compared to DIVINER brightness temperature data. The simulation tool is well suited to predict local heat fluxes from the lunar surface for engineering and mission operations related questions, within the mentioned restrictions. [1] C.J. Cremers et al. (1971); [2] A.R. Vasavada et al. (1999); [3] M.G. Langseth et al. (1972); [4] F. Hörz et al. (1991); [5] G. D. Bart et al. (2007); [6] M. J. Cintala et al. (1981); [7] E.C. Roelof et al. (1968)

  6. Lunar and Meteorite Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    NASA Technical Reports Server (NTRS)

    Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-01-01

    NASA is eager for students and the public to experience lunar Apollo samples and meteorites first hand. Lunar rocks and soil, embedded in Lucite disks, are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks reveals the early history of our Earth-Moon system and meteorites reveal much of the history of the early solar system. The rocks help educators make the connections to this ancient history of our planet and solar system and the basic processes accretion, differentiation, impact and volcanism. With these samples, educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by many NASA planetary missions. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and orange glass from a pyroclastic deposit. Each Meteorite Disk contains two ordinary chondrites, one carbonaceous chondrite, one iron, one stony iron, and one achondrite. These samples will help educators share the early history of the solar system with students and the public. Educators may borrow either lunar or meteorite disks and the accompanying education materials through the Johnson Space Center Curatorial Office. In trainings provided by the NASA Aerospace Education Services Program specialists, educators certified to borrow the disk learn about education resources, the proper use of the samples, and the special security for care and shipping of the disks. The Lunar and Meteorite Sample Education Disk Program will take NASA exploration to more people. Getting Space Rocks out to the public and inspiring the public about new space exploration is the focus of the NASA disk loan program.

  7. Lunar Dust: Properties and Investigation Techniques

    NASA Astrophysics Data System (ADS)

    Kuznetsov, I. A.; Zakharov, A. V.; Dolnikov, G. G.; Lyash, A. N.; Afonin, V. V.; Popel, S. I.; Shashkova, I. A.; Borisov, N. D.

    2017-12-01

    Physical conditions in the near-surface layer of the Moon are overviewed. This medium is formed in the course of the permanent micrometeoroid bombardment of the lunar regolith and due to the exposure of the regolith to solar radiation and high-energy charged particles of solar and galactic origin. During a considerable part of a lunar day (more than 20%), the Moon is passing through the Earth's magnetosphere, where the conditions strongly differ from those in the interplanetary space. The external effects on the lunar regolith form the plasma-dusty medium above the lunar surface, the so-called lunar exosphere, whose characteristic altitude may reach several tens of kilometers. Observations of the near-surface dusty exosphere were carried out with the TV cameras onboard the landers Surveyor 5, 6, and 7 (1967-1968) and with the astrophotometer of Lunokhod-2 (1973). Their results showed that the near-surface layer glows above the sunlit surface of the Moon. This was interpreted as the scattering of solar light by dust particles. Direct detection of particles on the lunar surface was made by the Lunar Ejects and Meteorite (LEAM) instrument deployed by the Apollo 17 astronauts. Recently, the investigations of dust particles were performed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) instrument at an altitude of several tens of kilometers. These observations urged forward the development of theoretical models for the lunar exosphere formation, and these models are being continuously improved. However, to date, many issues related to the dynamics of dust and the near-surface electric fields remain unresolved. Further investigations of the lunar exosphere are planned to be performed onboard the Russian landers Luna-Glob and Luna-Resurs.

  8. Resource Prospector Instrumentation for Lunar Volatiles Prospecting, Sample Acquisition and Processing

    NASA Technical Reports Server (NTRS)

    Captain, J.; Elphic, R.; Colaprete, A.; Zacny, Kris; Paz, A.

    2016-01-01

    Data gathered from lunar missions within the last two decades have significantly enhanced our understanding of the volatile resources available on the lunar surface, specifically focusing on the polar regions. Several orbiting missions such as Clementine and Lunar Prospector have suggested the presence of volatile ices and enhanced hydrogen concentrations in the permanently shadowed regions of the moon. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was the first to provide direct measurement of water ice in a permanently shadowed region. These missions with other orbiting assets have laid the groundwork for the next step in the exploration of the lunar surface; providing ground truth data of the volatiles by mapping the distribution and processing lunar regolith for resource extraction. This next step is the robotic mission Resource Prospector (RP). Resource Prospector is a lunar mission to investigate 'strategic knowledge gaps' (SKGs) for in-situ resource utilization (ISRU). The mission is proposed to land in the lunar south pole near a permanently shadowed crater. The landing site will be determined by the science team with input from broader international community as being near traversable landscape that has a high potential of containing elevated concentrations of volatiles such as water while maximizing mission duration. A rover will host the Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) payload for resource mapping and processing. The science instruments on the payload include a 1-meter drill, neutron spectrometer, a near infrared spectrometer, an operations camera, and a reactor with a gas chromatograph-mass spectrometer for volatile analysis. After the RP lander safely delivers the rover to the lunar surface, the science team will guide the rover team on the first traverse plan. The neutron spectrometer (NS) and near infrared (NIR) spectrometer instruments will be used as prospecting tools to guide the traverse path. The NS will map the water-equivalent hydrogen concentration as low as 0.5% by weight to an 80 centimeter depth as the rover traverses the lunar landscape. The NIR spectrometer will measure surficial H2O/OH as well as general mineralogy. When the prospecting instruments identify a potential volatile-rich area during the course of a traverse, the prospect is then mapped out and the most promising location identified. An augering drill capable of sampling to a depth of 100 centimeters will excavate regolith for analysis. A quick assay of the drill cuttings will be made using an operations camera and NIR spectrometer. With the water depth confirmed by this first auguring activity, a regolith sample may be extracted for processing. The drill will deliver the regolith sample to a crucible that will be sealed and heated. Evolved volatiles will be measured by a gas chromatograph-mass spectrometer and the water will be captured and photographed. RP is a solar powered mission, which given the polar location translates to a relatively short mission duration on the order of 4-15 days. This short mission duration drives the concept of operations, instrumentation, and data analysis towards critical real time analysis and decision support. Previous payload field tests have increased the fidelity of the hardware, software, and mission operations. Current activities include a mission level field test to optimize interfaces between the payload and rover as well as better understand the interaction of the science and rover teams during the mission timeline. This paper will include the current status of the science instruments on the payload as well as the integrated field test occurring in fall of 2015. The concept of operations will be discussed, including the real time science and engineering decision-making process based on the critical data from the instrumentation. The path to flight will be discussed with the approach to this ambitious low cost mission.

  9. Late Accreted Material on the Lunar Surface: Constraints from Highly Siderophile and Chalcophile Elements in Ancient Lunar Impactites

    NASA Astrophysics Data System (ADS)

    Gleißner, P.; Becker, H.

    2017-05-01

    Abundances of HSE, Te, Se, and S in ancient lunar impactites constrain accretion of differentiated and primitive material (including carbonaceous chondrite-like material) and variable mixing of their compositions on the lunar surface.

  10. Lunar and Asteroid Composition Using a Remote Secondary Ion Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Funsten, H. O.; Barraclough, B. L.; Mccomas, D. J.; Nordholt, J. E.

    1992-01-01

    Laboratory experiments simulating solar wind sputtering of lunar surface materials have shown that solar wind protons sputter secondary ions in sufficient numbers to be measured from low-altitude lunar orbit. Secondary ions of Na, Mg, Al, Si, K, Ca, Mn, Ti, and Fe have been observed sputtered from sample simulants of mare and highland soils. While solar wind ions are hundreds of times less efficient than those used in standard secondary ion mass spectrometry, secondary ion fluxes expected at the Moon under normal solar wind conditions range from approximately 10 to greater than 10(exp 4) ions cm(sup -2)s(sup -1), depending on species. These secondary ion fluxes depend both on concentration in the soil and on probability of ionization; yields of easily ionized elements such as K and Na are relatively much greater than those for the more electronegative elements and compounds. Once these ions leave the surface, they are subject to acceleration by local electric and magnetic fields. For typical solar wind conditions, secondary ions can be accelerated to an orbital observing location. The same is true for atmospheric atoms and molecules that are photoionized by solar EUV. The instrument to detect, identify, and map secondary ions sputtered from the lunar surface and photoions arising from the tenuous atmosphere is discussed.

  11. Structural, Physical, and Compositional Analysis of Lunar Simulants and Regolith

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul; Street, Kenneth W.; Gaier, James

    2008-01-01

    Relative to the prior manned Apollo and unmanned robotic missions, planned Lunar initiatives are comparatively complex and longer in duration. Individual crew rotations are envisioned to span several months, and various surface systems must function in the Lunar environment for periods of years. As a consequence, an increased understanding of the surface environment is required to engineer and test the associated materials, components, and systems necessary to sustain human habitation and surface operations. The effort described here concerns the analysis of existing simulant materials, with application to Lunar return samples. The interplay between these analyses fulfills the objective of ascertaining the critical properties of regolith itself, and the parallel objective of developing suitable stimulant materials for a variety of engineering applications. Presented here are measurements of the basic physical attributes, i.e. particle size distributions and general shape factors. Also discussed are structural and chemical properties, as determined through a variety of techniques, such as optical microscopy, SEM and TEM microscopy, Mossbauer Spectroscopy, X-ray diffraction, Raman microspectroscopy, inductively coupled argon plasma emission spectroscopy and energy dispersive X-ray fluorescence mapping. A comparative description of currently available stimulant materials is discussed, with implications for more detailed analyses, as well as the requirements for continued refinement of methods for simulant production.

  12. Space Weathering in the Fine Size Fractions of Lunar Soils: Soil Maturity Effects

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Wentworth, S. J.; McKay, D. S.; Taylor, L. A.; Pieters, C.; Morris, R. V.

    1999-01-01

    The effects of space weathering on the optical properties of lunar materials have been well documented. These effects include a reddened continuum slope, lowered albedo, and attenuated absorption features in reflectance spectra of lunar soils as compared to finely comminuted rocks from the same Apollo sites. However, the regolith processes that cause these effects are not well known, nor is the petrographic setting of the products of these processes fully understood. A Lunar Soil Characterization Consortium has been formed with the purpose of systematically integrating chemical and mineralogical data with the optical properties of lunar soils. Understanding space-weathering effects is critical in order to fully integrate the lunar sample collection with remotely-sensed data from recent robotic missions (e.g., Lunar Prospector, Clementine, and Galileo) We have shown that depositional processes (condensation of impact-derived vapors, sputter deposits, accreted impact material, e.g., splash glass, spherules, etc.) are a major factor in the modification of the optical surfaces of lunar regolith materials. In mature soils, it is the size and distribution of the nanophase metal in the soil grains that has the major effect on optical properties. In this report, we compare and contrast the space-weathering effects in an immature and a mature soil with similar elemental compositions. For this study, we analyzed <10 micron sieve fractions of two Apollo 17 soils, 79221 (mature, Is/FeO = 81) and 71061 (immature, Is/FeO = 14). Details of the sieving procedures and allocation scheme are given else where. The results of other detailed chemical, mineralogical, and spectroscopic analyses of these soil samples are reported elsewhere. A representative sample of each soil was embedded in low-viscosity epoxy, and thin sections (about 70nm thick) were obtained through ultra microtomy. The thin sections used for these analyses typically contained cross sections of up to 500 individual grains. The thin sections were studied using a JEOL 2010 transmission electron microscope (TEM) equipped with a thin window energy-dispersive X-ray (EDX) spectrometer. An individual thin section was selected from each soil, and for each grain in the section we determined (1) the elemental composition by EDX; (2) whether the grain was crystalline or glassy using electron diffraction and darkfield imaging; (3) the presence or absence of rims and accreted material; and (4) the distribution of nanophase Fe where present. Most of the categories are self-evident; however, we divide the agglutinate derived material into agglutinitic glass (glass with approximately the same composition as the bulk soil that contains nanophase Fe with or without vesicles) and agglutinate fragments, which are composed of crystalline grains and agglutinitic glass. Lithic fragments are defined as polymineralic grains with no glass. Pyroxene grains have been divided into high- and low-Ca groups. As expected, there are a number of differences in the petrography of the <10-microns fractions of 79221 and 71061 given the great difference in their respective maturities, but we focus here on two major distinctions: agglutinate content and the number of grains with micropatina. Slightly over 50% of the particles in 79221 consist of agglutinitic glass and agglutinate fragments, while the remainder are predominantly crystalline mineral grains. The agglutinic glass particles contain abundant nanophase Fe and vesicles. Angular particles are rare, with most showing smooth, rounded exteriors, Of the mineral grains analyzed thus far, over 90% of the grains have amorphous rims that contain nanophase Fe (these rims are believed to have formed by vapor deposition and irradiation effects). The nanophase Fe in these rims probably accounts for a significant fraction of the increase in Is/FeO measured in these size fractions. In addition to the rims, the majority of particles also show abundant accreted material in the form of glass splashes and spherules that also contain nanophase Fe. In stark contrast, the surfaces of the mineral grains in the 71061 sample are relatively prisitine, as only about 14% of the mineral grains in the sample exhibited amorphous rims. Furthermore, the mineral particles are more angular and show greater surface roughness than in the mature sample. Accreted material on particle surfaces is rare. Agglutinitic material is a major component of the 71061 sample; however, nanophase Fe and vesicles are not as well developed as in the 79221 sample. It is now recognized that nanophase Fe is probably the main agent in modifying the optical properties of lunar soil grains. The most important result of this study is the observation that in the fine size fractions of mature soils, nearly every grain has nanophase Fe within 100 run of the particle surface. (Additional Information contained in original)

  13. A wet, heterogeneous lunar interior: Lower mantle and core dynamo evolution

    NASA Astrophysics Data System (ADS)

    Evans, A. J.; Zuber, M. T.; Weiss, B. P.; Tikoo, S. M.

    2014-05-01

    While recent analyses of lunar samples indicate the Moon had a core dynamo from at least 4.2-3.56 Ga, mantle convection models of the Moon yield inadequate heat flux at the core-mantle boundary to sustain thermal core convection for such a long time. Past investigations of lunar dynamos have focused on a generally homogeneous, relatively dry Moon, while an initial compositionally stratified mantle is the expected consequence of a postaccretionary lunar magma ocean. Furthermore, recent re-examination of Apollo samples and geophysical data suggests that the Moon contains at least some regions with high water content. Using a finite element model, we investigate the possible consequences of a heterogeneously wet, compositionally stratified interior for the evolution of the Moon. We find that a postoverturn model of mantle cumulates could result in a core heat flux sufficiently high to sustain a dynamo through 2.5 Ga and a maximum surface, dipolar magnetic field strength of less than 1 μT for a 350-km core and near ˜2 μT for a 450-km core. We find that if water was transported or retained preferentially in the deep interior, it would have played a significant role in transporting heat out of the deep interior and reducing the lower mantle temperature. Thus, water, if enriched in the lower mantle, could have influenced core dynamo timing by over 1.0 Gyr and enhanced the vigor of a lunar core dynamo. Our results demonstrate the plausibility of a convective lunar core dynamo even beyond the period currently indicated by the Apollo samples.

  14. Global silicate mineralogy of the Moon from the Diviner lunar radiometer.

    PubMed

    Greenhagen, Benjamin T; Lucey, Paul G; Wyatt, Michael B; Glotch, Timothy D; Allen, Carlton C; Arnold, Jessica A; Bandfield, Joshua L; Bowles, Neil E; Donaldson Hanna, Kerri L; Hayne, Paul O; Song, Eugenie; Thomas, Ian R; Paige, David A

    2010-09-17

    We obtained direct global measurements of the lunar surface using multispectral thermal emission mapping with the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Most lunar terrains have spectral signatures that are consistent with known lunar anorthosite and basalt compositions. However, the data have also revealed the presence of highly evolved, silica-rich lunar soils in kilometer-scale and larger exposures, expanded the compositional range of the anorthosites that dominate the lunar crust, and shown that pristine lunar mantle is not exposed at the lunar surface at the kilometer scale. Together, these observations provide compelling evidence that the Moon is a complex body that has experienced a diverse set of igneous processes.

  15. Mineralogical and chemical properties of the lunar regolith

    NASA Astrophysics Data System (ADS)

    McKay, D. S.; Ming, D. W.

    The composition of lunar regolith and its attendant properties are discussed. Tables are provided listing lunar minerals, the abundance of plagioclase feldspar, pyroxene, olivine, and ilmenite in lunar materials, typical compositions of common lunar minerals, and cumulative grain-size distribution for a large number of lunar soils. Also provided are charts on the chemistry of breccias, the chemistry of lunar glass, and the comparative chemistry of surface soils for the Apollo sites. Lunar agglutinates, constructional particles made of lithic, mineral, and glass fragments welded together by a glassy matrix containing extremely fine-grained metallic iron and formed by micrometeoric impacts at the lunar surface, are discussed. Crystalline, igneous rock fragments, breccias, and lunar glass are examined. Volatiles implanted in lunar materials and regolith maturity are also addressed.

  16. Mineralogical and chemical properties of the lunar regolith

    NASA Technical Reports Server (NTRS)

    Mckay, David S.; Ming, Douglas W.

    1989-01-01

    The composition of lunar regolith and its attendant properties are discussed. Tables are provided listing lunar minerals, the abundance of plagioclase feldspar, pyroxene, olivine, and ilmenite in lunar materials, typical compositions of common lunar minerals, and cumulative grain-size distribution for a large number of lunar soils. Also provided are charts on the chemistry of breccias, the chemistry of lunar glass, and the comparative chemistry of surface soils for the Apollo sites. Lunar agglutinates, constructional particles made of lithic, mineral, and glass fragments welded together by a glassy matrix containing extremely fine-grained metallic iron and formed by micrometeoric impacts at the lunar surface, are discussed. Crystalline, igneous rock fragments, breccias, and lunar glass are examined. Volatiles implanted in lunar materials and regolith maturity are also addressed.

  17. Surface Roughness of the Moon Derived from Multi-frequency Radar Data

    NASA Astrophysics Data System (ADS)

    Fa, W.

    2011-12-01

    Surface roughness of the Moon provides important information concerning both significant questions about lunar surface processes and engineering constrains for human outposts and rover trafficabillity. Impact-related phenomena change the morphology and roughness of lunar surface, and therefore surface roughness provides clues to the formation and modification mechanisms of impact craters. Since the Apollo era, lunar surface roughness has been studied using different approaches, such as direct estimation from lunar surface digital topographic relief, and indirect analysis of Earth-based radar echo strengths. Submillimeter scale roughness at Apollo landing sites has been studied by computer stereophotogrammetry analysis of Apollo Lunar Surface Closeup Camera (ALSCC) pictures, whereas roughness at meter to kilometer scale has been studied using laser altimeter data from recent missions. Though these studies shown lunar surface roughness is scale dependent that can be described by fractal statistics, roughness at centimeter scale has not been studied yet. In this study, lunar surface roughnesses at centimeter scale are investigated using Earth-based 70 cm Arecibo radar data and miniature synthetic aperture radar (Mini-SAR) data at S- and X-band (with wavelengths 12.6 cm and 4.12 cm). Both observations and theoretical modeling show that radar echo strengths are mostly dominated by scattering from the surface and shallow buried rocks. Given the different penetration depths of radar waves at these frequencies (< 30 m for 70 cm wavelength, < 3 m at S-band, and < 1 m at X-band), radar echo strengths at S- and X-band will yield surface roughness directly, whereas radar echo at 70-cm will give an upper limit of lunar surface roughness. The integral equation method is used to model radar scattering from the rough lunar surface, and dielectric constant of regolith and surface roughness are two dominate factors. The complex dielectric constant of regolith is first estimated globally using the regolith composition and the relation among the dielectric constant, bulk density, and regolith composition. The statistical properties of lunar surface roughness are described by the root mean square (RMS) height and correlation length, which represent the vertical and horizontal scale of the roughness. The correlation length and its scale dependence are studied using the topography data from laser altimeter observations from recent lunar missions. As these two parameters are known, surface roughness (RMS slope) can be estimated by minimizing the difference between the observed and modeled radar echo strength. Surface roughness of several regions over Oceanus Procellarum and southeastern highlands on lunar nearside are studied, and preliminary results show that maira is smoother than highlands at 70 cm scale, whereas the situation turns opposite at 12 and 4 cm scale. Surface roughness of young craters is in general higher than that of maria and highlands, indicating large rock population produced during impacting process.

  18. Beagle to the Moon: An Experiment Package to Measure Polar Ice and Volatiles in Permanently Shadowed Areas or Beneath the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; McKay, D. S.; Pillinger, C. T.; Wright, I. P.; Sims, M. R.; Richter, L.

    2007-01-01

    Near the beginning of the next decade we will see the launch of scientific payloads to the lunar surface to begin laying the foundations for the return to the moon in the Vision for Space Exploration. Shortly thereafter, astronauts will return to the lunar surface and have the ability to place scientific packages on the surface that will provide information about lunar resources and compositions of materials in permanently shadowed regions of the moon (1). One of the important questions which must be answered early in the program is whether there are lunar resources which would facilitate "living off the land" and not require the transport of resources and consumables from Earth (2). The Beagle science package is the ideal payload (3) to use on the lunar surface for determining the nature of hydrogen, water and lunar volatiles found in the polar regions which could support the Vision for Space Exploration

  19. Saturn Apollo Program

    NASA Image and Video Library

    1969-11-24

    Aboard the recovery ship, USS Hornet, Apollo 12 astronauts wave to the crowd as they enter the mobile quarantine facility. The recovery operation took place in the Pacific Ocean after the splashdown of the Command Module capsule. Navy para-rescue men recovered the capsule housing the 3-man Apollo 12 crew. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what’s known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  20. Apollo 12 voice transcript pertaining to the geology of the landing site

    USGS Publications Warehouse

    Bailey, N.G.; Ulrich, G.E.

    1975-01-01

    This document is an edited record of the conversations between the Apollo 12 astronauts and mission control pertaining to the geology of the landing site. It contains all discussions and observations documenting the lunar landscape, its geologic characteristics, the rocks and soils collected, and the lunar surface photographic record along with supplementary remarks essential to the continuity of events during the mission. This transcript is derived from audio tapes and the NASA Technical Air-to-Ground Voice Transcription and includes time of transcription, and photograph and sample numbers. The report also includes a glossary, landing site amp, and sample table.

  1. Astronaut Alan Bean participates in lunar surface simulation

    NASA Image and Video Library

    1969-10-29

    S69-56059 (24 Oct. 1969) --- Astronaut Alan L. Bean, lunar module pilot of the Apollo 12 lunar landing mission, participates in lunar surface simulation training in Building 29 at the Manned Spacecraft Center (MSC). Bean is strapped to a one-sixth gravity simulator.

  2. Apollo lunar surface experiments package. Apollo 17 ALSEP (array E) familiarization course handout

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The familiarization course for the Apollo 17 ALSEP (ARRAY E) is presented. The subjects discussed are: (1) power and data subsystems, (2) lunar surface gravimeter, (3) lunar mass spectrometer, (4) lunar seismic profiling experiment, and (5) heat flow experiment.

  3. Apollo 13 Astronaut Fred Haise during lunar surface simulation training

    NASA Image and Video Library

    1970-01-19

    S70-24012 (19 Jan. 1970) --- Astronaut Fred W. Haise Jr., lunar module pilot of the Apollo 13 lunar landing mission, participates in lunar surface simulation training at the Manned Spacecraft Center (MSC). Haise is attached to a Six Degrees of Freedom Simulator.

  4. COMPASS Final Report: Low Cost Robotic Lunar Lander

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Oleson, Steven R.

    2010-01-01

    The COllaborative Modeling for the Parametric Assessment of Space Systems (COMPASS) team designed a robotic lunar Lander to deliver an unspecified payload (greater than zero) to the lunar surface for the lowest cost in this 2006 design study. The purpose of the low cost lunar lander design was to investigate how much payload can an inexpensive chemical or Electric Propulsion (EP) system deliver to the Moon s surface. The spacecraft designed as the baseline out of this study was a solar powered robotic lander, launched on a Minotaur V launch vehicle on a direct injection trajectory to the lunar surface. A Star 27 solid rocket motor does lunar capture and performs 88 percent of the descent burn. The Robotic Lunar Lander soft-lands using a hydrazine propulsion system to perform the last 10% of the landing maneuver, leaving the descent at a near zero, but not exactly zero, terminal velocity. This low-cost robotic lander delivers 10 kg of science payload instruments to the lunar surface.

  5. Wide-Angle Polarimetric Camera for Korea Pathfinder Lunar Orbiter

    NASA Astrophysics Data System (ADS)

    Choi, Y. J.; Kim, S.; Kang, K. I.

    2016-12-01

    A polarimetry data contains valuable information about the lunar surface such as the grain size and porosity of the regolith. However, a polarimetry toward the Moon in its orbit has not been performed. We plan to perform the polarimetry in lunar orbit through Korea Pathfinder Lunar Orbiter (KPLO), which will be launched around 2018/2019 as the first Korean lunar mission. Wide-Angle Polarimetric Camera (PolCam) is selected as one of the onboard instrument for KPLO. The science objectives are ; (1) To obtain the polarization data of the whole lunar surface at wavelengths of 430nm and 650nm for phase angle range from 0° to 120° with a spatial resolution of 80 m. (2) To obtain the reflectance ratios at 320 nm and 430 nm for the whole lunar surface with a spatial resolution of 80m. We will summarize recent results of lunar surface from ground-based polarimetric observations and will briefly introduce the science rationals and operation concept of PolCam.

  6. Astronaut David Scott using Apollo Lunar Surface Drill during second EVA

    NASA Image and Video Library

    1971-08-01

    S71-41501 (1 Aug. 1971) --- Astronaut David R. Scott, Apollo 15 commander, is seen carrying the Apollo Lunar Surface Drill (ALSD) during the second lunar surface extravehicular activity (EVA) in this black and white reproduction taken from a color transmission made by the RCA color television camera mounted on the Lunar Roving Vehicle (LRV). This transmission was the fourth made during the mission.

  7. The Evolution and Development of the Lunar Regolith and Implications for Lunar Surface Operations and Construction

    NASA Technical Reports Server (NTRS)

    McKay, David

    2009-01-01

    The lunar regolith consists of about 90% submillimeter particles traditionally termed lunar soil. The remainder consists of larger particles ranging up to boulder size rocks. At the lower size end, soil particles in the 10s of nanometer sizes are present in all soil samples. Lunar regolith overlies bedrock which consists of either lava flows in mare regions or impact-produced megaregolith in highland regions. Lunar regolith has been produced over billions of years by a combination of breaking and communition of bedrock by meteorite bombardment coupled with a variety of complex space weathering processes including solar wind implantation, solar flare and cosmic ray bombardment with attendant radiation damage, melting, vaporization, and vapor condensation driven by impact, and gardening and turnover of the resultant soil. Lunar regolith is poorly sorted compared to most terrestrial soils, and has interesting engineering properties including strong grain adhesion, over-compacted soil density, an abundance of agglutinates with sharp corners, and a variety of properties related to soil maturity. The NASA program has supported a variety of engineering test research projects, the production of bricks by solar or microwave sintering, the production of concrete, the in situ sintering and glazing of regolith by microwave, and the extraction of useful resources such as oxygen, hydrogen, iron, aluminum, silicon and other products. Future requirements for a lunar surface base or outpost will include construction of protective berms, construction of paved roadways, construction of shelters, movement and emplacement of regolith for radiation shielding and thermal control, and extraction of useful products. One early need is for light weight but powerful digging, trenching, and regolith-moving equipment.

  8. Methane in the lunar exosphere: Implications for solar wind carbon escape

    NASA Astrophysics Data System (ADS)

    Hodges, R. Richard

    2016-07-01

    A positive identification of methane in the lunar exosphere has been made in data from the neutral mass spectrometer on the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft. Like argon-40, methane is adsorbed on the lunar surface during nighttime. However, higher activation energies for methane delay its desorption at sunrise by about an hour local time, creating a postsunrise bulge with peak concentration of approximately 400-450 molecules cm-3 at a reference altitude of 12 km, which is just above the highest topographic feature on the Moon. The rate of escape of carbon as methane derived from the LADEE data is estimated to be in the range 1.5-4.5 × 1021 s-1. A lower bound for solar carbon escape derived separately from Apollo sample analyses is 3.4 × 1021 s-1.

  9. Reduction of lunar landing fuel requirements by utilizing lunar ballistic capture.

    PubMed

    Johnson, Michael D; Belbruno, Edward A

    2005-12-01

    Ballistic lunar capture trajectories have been successfully utilized for lunar orbital missions since 1991. Recent interest in lunar landing trajectories has occurred due to a directive from President Bush to return humans to the Moon by 2015. NASA requirements for humans to return to the lunar surface include separation of crew and cargo missions, all lunar surface access, and anytime-abort to return to Earth. Such requirements are very demanding from a propellant standpoint. The subject of this paper is the application of lunar ballistic capture for the reduction of lunar landing propellant requirements. Preliminary studies of the application of weak stability boundary (WSB) trajectories and ballistic capture have shown that considerable savings in low Earth orbit (LEO) mission mass may be realized, on the order of 36% less than conventional Hohmann transfer orbit missions. Other advantages, such as reduction in launch window constraints and reduction of lunar orbit maintenance propellant requirements, have also surfaced from this study.

  10. Magnetism and the interior of the moon. [measured at Apollo landing sites

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    During the time period 1961-1972 eleven magnetometers were sent to the moon. The results of lunar magnetometer data analysis are reviewed, with emphasis on the lunar interior. Magnetic fields have been measured on the lunar surface at the Apollo 12, 14, 15, and 16 landing sites. The remanent field values at these sites are given. Satellite and surface measurements show strong evidence that the lunar crust is magnetized over much of the lunar globe. The origin of the lunar remanent field is not yet satisfactorily understood; several source models are presented. Simultaneous data from the Apollo 12 lunar surface magnetometer and the Explorer 35 Ames magnetometer are used to construct a wholemoon hysteresis curve, from which the global lunar permeability is determined. Total iron abundance is calculated for two assumed compositional models of the lunar interior. Other lunar models with a small iron core and with a shallow iron-rich layer are also discussed in light of the measured global permeability.

  11. Erosive Wear Characterization of Materials for Lunar Construction

    NASA Technical Reports Server (NTRS)

    Mpagazehe, Jeremiah N.; Street, Kenneth W., Jr.; Delgado, Irebert R.; Higgs, C. Fred, III

    2012-01-01

    NASA s Apollo missions revealed that exhaust from the retrorockets of landing spacecraft may act to significantly accelerate lunar dust on the surface of the Moon. A recent study by Immer et al. (C. Immer, P.T. Metzger, P.E. Hintze, A. Nick, and R. Horan, Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III, Icarus, Vol. 211, pp. 1089-1102, 2011) investigated coupons returned to Earth from the Surveyor III lunar probe which were subjected to lunar dust impingement by the Apollo 12 Lunar Module landing. Their study revealed that even with indirect impingement, the spacecraft sustained erosive damage from the fast-moving lunar dust particles. In this work, results are presented from a series of erosive wear experiments performed on 6061 Aluminum using the JSC-1AF lunar dust simulant. Optical profilometry was used to investigate the surface after the erosion process. It was found that even short durations of lunar dust simulant impacting at low velocities produced substantial changes in the surface.

  12. Mobile Payload Element (MPE): Concept study for a sample fetching rover for the ESA Lunar Lander Mission

    NASA Astrophysics Data System (ADS)

    Haarmann, R.; Jaumann, R.; Claasen, F.; Apfelbeck, M.; Klinkner, S.; Richter, L.; Schwendner, J.; Wolf, M.; Hofmann, P.

    2012-12-01

    In late 2010, the DLR Space Administration invited the German industry to submit a proposal for a study about a Mobile Payload Element (MPE), which could be a German national contribution to the ESA Lunar Lander Mission. Several spots in the south polar region of the moon come into consideration as landing site for this mission. All possible spots provide sustained periods of solar illumination, interrupted by darkness periods of several 10 h. The MPE is outlined to be a small, autonomous, innovative vehicle in the 10 kg class for scouting and sampling the environment in the vicinity of the lunar landing site. The novel capabilities of the MPE will be to acquire samples of lunar regolith from surface, subsurface as well as shadowed locations, define their geological context and bring them back to the lander. This will enable access to samples that are not contaminated by the lander descent propulsion system plumes to increase the chances of detecting any indigenous lunar volatiles contained within the samples. Kayser-Threde, as prime industrial contractor for Phase 0/A, has assembled for this study a team of German partners with relevant industrial and institutional competence in space robotics and lunar science. The primary scientific objective of the MPE is to acquire clearly documented samples and to bring them to the lander for analysis with the onboard Lunar Dust Analysis Package (L-DAP) and Lunar Volatile Resources Analysis Package (L-VRAP). Due to the unstable nature of volatiles, which are of particular scientific interest, the MPE design needs to provide a safe storage and transportation of the samples to the lander. The proposed MPE rover concept has a four-wheeled chassis configuration with active suspension, being a compromise between innovation and mass efficiency. The suspension chosen allows a compact stowage of the MPE on the lander as well as precise alignment of the solar generators and instruments. Since therefore no further complex mechanics are necessary, the active suspension significantly contributes to the lightweight MPE design. The thermal control system enables the MPE to operate in shaded areas for about 2 h and hibernate darkness periods of about 14 h. Increasing the hibernation capability requires additional battery capacity and thus increases the MPE mass. As operational modes teleoperations from earth and autonomous navigation are foreseen. The MPE payload includes navigation cameras, a close-up imager and a mole as sampling device. The MPE phase 0/A study finished in early 2012. This article describes the resulting MPE rover concept with focus on its scientific benefit for the Lunar Lander Mission.

  13. Thermophysical Properties of Martian Duricrust Analogs

    NASA Astrophysics Data System (ADS)

    Murphy, N. W.; Jakosky, B. M.; Mellon, M. T.; Budd, D. A.

    2009-03-01

    We measured thermophysical properties of samples of terrestrial duricrust from a gypsum deposit in New Mexico and Lunar Lake Playa. Our results suggest that well-indurated materials may cover a significant portion of the Mars surface.

  14. Degradation sequence of young lunar craters from orbital infrared survey

    NASA Technical Reports Server (NTRS)

    Wieczorek, M. A.; Mendell, W. W.

    1993-01-01

    Using new software, nighttime thermal maps of the lunar surface have been generated from data obtained by the Apollo 17 Infrared Scanning Radiometer (ISR) in lunar orbit. Most of the thermal anomalies observed in the maps correspond to fresh lunar craters because blocks on the lunar surface maintain a thermal contrast relative to surrounding soil during the lunar night. Craters of Erastosthenian age and older - relatively young by lunar standards - have developed soil covers that make them almost indistinguishable from their surroundings in the thermal data. Thermal images of Copernican age craters show various stages of a degradation process, allowing the craters to be ranked by age. The ISR data should yield insights into lunar surface evolution as well as a more detailed understanding of the bombardment history after formation of the great mare basins.

  15. Considerations Regarding the Development of an Environmental Control and Life Support System for Lunar Surface Applications

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.

    2008-01-01

    NASA is engaged in early architectural analyses and trade studies aimed at identifying requirements, predicting performance and resource needs, characterizing mission constraints and sensitivities, and guiding technology development planning needed to conduct a successful human exploration campaign of the lunar surface. Conceptual designs and resource estimates for environmental control and life support systems (ECLSS) within pressurized lunar surface habitats and rovers have been considered and compared in order to support these lunar campaign studies. This paper will summarize those concepts and some of the more noteworthy considerations that will likely remain as key drivers in the evolution of the lunar surface ECLSS architecture.

  16. Close-up view of astronauts foot and footprint in lunar soil

    NASA Image and Video Library

    1969-07-20

    AS11-40-5880 (20 July 1969) --- A close-up view of an astronaut's boot and bootprint in the lunar soil, photographed with a 70mm lunar surface camera during the Apollo 11 lunar surface extravehicular activity (EVA). While astronauts Neil A. Armstrong, commander, and Edwin A. Aldrin Jr., lunar module pilot, descended in the Lunar Module (LM) "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Michael Collins, command module pilot, remained with the Command and Service Modules (CSM)" Columbia" in lunar orbit.

  17. Apollo 12 Mission image - View of lunar surface mound

    NASA Image and Video Library

    1969-11-19

    AS12-46-6795 (19-20 Nov. 1969) --- A view of the lunar surface in the vicinity of the Apollo 12 lunar landing site, photographed during the extravehicular activity (EVA) of astronauts Charles Conrad Jr., commander, and Alan L. Bean, lunar module pilot. Conrad and Bean encountered the odd, anthill-shaped mound during their lunar traverse. The two descended in the Apollo 12 Lunar Module (LM) to explore the moon, while astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  18. Astronaut John Young leaps from lunar surface to salute flag

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, leaps from the lunar surface as he salutes the U.S. Flag at the Descartes landing site during the first Apollo 16 extravehicular activity (EVA-1). Astronaut Charles M. Duke Jr., lunar module pilot, took this picture. The Lunar Module (LM) 'Orion' is on the left. The Lunar Roving Vehicle is parked beside the LM. The object behind Young in the shade of the LM is the Far Ultraviolet Camera/Spectrograph. Stone Mountain dominates the background in this lunar scene.

  19. Plagioclase-Rich Itokawa Grains: Space Weathering, Exposure Ages, and Comparison to Lunar Soil Grains

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berge, E.

    2017-01-01

    Regolith grains returned by the Hayabusa mission to asteroid 25143 Itokawa provide the only samples currently available to study the interaction of chondritic asteroidal material with the space weathering environment. Several studies have documented the surface alterations observed on the regolith grains, but most of these studies involved olivine because of its abundance. Here we focus on the rarer Itokawa plagioclase grains, in order to allow comparisons between Itokawa and lunar soil plagioclase grains for which an extensive data set exists.

  20. Of Death Stars and Death Rays: A Glimpse At The Future of Space Warfare

    DTIC Science & Technology

    2013-04-01

    remains in step. The potential for long-term energy mining from the moon (discussed later in this paper) must also be a consideration as there will be a...spacecraft to the Itokawa asteroid , collected soil samples, and safely returned the mission to Earth. 37 In 2007, they demonstrated their mastery...helium-3 is dispersed across the lunar surface, large-scale mining operations and specialized equipment needed to extract the gas from lunar rocks will

  1. Apollo 11 - Prime and Backup Crews - Geology Training - TX

    NASA Image and Video Library

    1969-03-03

    S69-25199 (25 Feb. 1969) --- Two Apollo 11 astronauts study a rock specimen during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas. On the left is James A. Lovell Jr., Apollo 11 backup crew commander; and on the right is Fred W. Haise Jr., backup crew lunar module pilot. Lovell holds a camera which was used in simulating taking pictures of actual lunar samples on the surface of the Moon.

  2. Investigation of the daytime lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1985-01-01

    Lunar atmosphere research has tended to center on gases with predictably large sources and on those which have been identified by Apollo experiments. An early candidate atmospheric constituent was Ar 40 which was noted by Heyman and Yaniv to have a surface correlated component in returned soil samples, and an abundance in excess of what can be explained by potassium decay. The source of the excess argon was attributed to atmospheric argon ions which have been accelerated by solar wind fields and implanted in soil grains.

  3. Rock sample brought to earth from the Apollo 12 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Close-up view of Apollo 12 sample 12,052 under observation in the Manned Spacecraft Center's Lunar Receiving Laboratory. This sample, collected during the second Apollo 12 extravehicular activity (EVA-2) of Astronauts Charles Conrad Jr., and Alan L. Bean, is a typical fine-grained crystalline rock with a concentration of holes on the left part of the exposed side. These holes are called vesicles and have been labeled as gas bubbles formed during the crystallization of the rock. Several glass-lined pits can be seen on the surface of the rock. An idea of the size of the rock can be gained by reference to the gauge on the bottom portion of the number meter.

  4. Enhancing Return from Lunar Surface Missions via the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Chavers, D. G.; Whitley, R. J.; Percy, T. K.; Needham, D. H.; Polsgrove, T. T.

    2018-02-01

    The Deep Space Gateway (DSG) will facilitate access to and communication with lunar surface assets. With a science airlock, docking port, and refueling capability in an accessible orbit, the DSG will enable high priority science across the lunar surface.

  5. Rb-Sr age and content of potassium, rubidium strontium, barium, and rare earths in surface material from the Sea of Fertility

    NASA Technical Reports Server (NTRS)

    Allegre, C. J.; Birck, J. L.; Loubet, M.; Provost, A.

    1974-01-01

    The Luna 16 automatic station returned from the Sea of Fertility a 35 cm long column of lunar surface material. 1 g of the Luna 16 lunar surface material, taken at a depth of 22 cm, consists of fine material: surface material and fine fragments of rocks from 1 to 4 mm in diameter. Analyses made on 17 mg of the fine lunar surface material are presented. The results obtained for the Luna 16 surface material are plotted on the diagram of the isotopic evolution of strontium and show that this surface material is most depleted of radiogenic Sr-87 of all the known lunar surface materials and that the point characterizing Lunar 16 lies somewhat to the right of the line corresponding to an age of 4.6 billion years.

  6. Lander Technologies

    NASA Technical Reports Server (NTRS)

    Chavers, Greg

    2015-01-01

    Since 2006 NASA has been formulating robotic missions to the lunar surface through programs and projects like the Robotic Lunar Exploration Program, Lunar Precursor Robotic Program, and International Lunar Network. All of these were led by NASA Marshall Space Flight Center (MSFC). Due to funding shortfalls, the lunar missions associated with these efforts, the designs, were not completed. From 2010 to 2013, the Robotic Lunar Lander Development Activity was funded by the Science Mission Directorate (SMD) to develop technologies that would enable and enhance robotic lunar surface missions at lower costs. In 2013, a requirements-driven, low-cost robotic lunar lander concept was developed for the Resource Prospector Mission. Beginning in 2014, The Advanced Exploration Systems funded the lander team and established the MSFC, Johnson Space Center, Applied Physics Laboratory, and the Jet Propulsion Laboratory team with MSFC leading the project. The lander concept to place a 300-kg rover on the lunar surface has been described in the New Technology Report Case Number MFS-33238-1. A low-cost lander concept for placing a robotic payload on the lunar surface is shown in figures 1 and 2. The NASA lander team has developed several lander concepts using common hardware and software to allow the lander to be configured for a specific mission need. In addition, the team began to transition lander expertise to United States (U.S.) industry to encourage the commercialization of space, specifically the lunar surface. The Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative was started and the NASA lander team listed above is partnering with three competitively selected U.S. companies (Astrobotic, Masten Space Systems, and Moon Express) to develop, test, and operate their lunar landers.

  7. Reflectance Spectroscopy and Lunar Sample Science: Finally a Marriage After Far Too Long an Engagement

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.; Pieters, Carle; McKay, David S.

    1998-01-01

    Inferences about the igneous and impact evolution of planetary bodies are based upon spectral remote sensing of their surfaces. However, it is not the rocks of a body that are seen by the remote sensing, but rather the regolith, that may contain small pieces of rock but also many other phases as well. Indeed, recent flybys of objects even as small as asteroid Ida have shown that these objects are covered by a regolith. Thus, spectral properties cannot be directly converted into information about the igneous history of the object. It is imperative to fully understand the nature of the regolith, particularly its finer fraction termed "soil," to appreciate the possible effects of "space weathering" on the reflectance spectra. We have initiated a study of our nearest, regolith-bearing body, the Moon, as "ground truth" for further probes of planetary and asteroidal surfaces. the foundation for remote chemical and mineralogical analyses lies in the physics underlying optical absorption and the linking of spectral properties of materials measured in the laboratory to well understood mineral species and their mixtures. From this statement, it is obvious that there should be a thorough integration of the material science of lunar rocks and soils with the remote-sensing observations. That is, the lunar samples returned by the Apollo missions provide a direct means for evaluation of spectral characteristics of the Moon. However, this marriage of the remote-sensing and lunar sample communities has suffered from a prolonged unconsummated betrothal, nurtured by an obvious complacency by both parties. To make more direct and quantitative links between soil chemistry/mineralogy and spectral properties, we have initiated a program to (1) obtain accurate characterization of the petrography of lunar soils (in terms relevant to remote analyses), coupled with (2) measurement of precise reflectance spectra, with testing and use of appropriate analytical tools that identify and characterize individual mineral and glass components. It is the finest-sized fractions of the bulk lunar soil that dominate the observed spectral signatures.

  8. Apollo 12 - Bean - Conrad - during geological field trip

    NASA Image and Video Library

    1969-10-24

    S69-55667 (10 Oct. 1969) --- Astronauts Charles Conrad Jr. and Alan L. Bean train for their upcoming Apollo 12 lunar landing mission. Here they are entering a simulated lunar surface area near Flagstaff, Arizona. Both are wearing lunar surface cameras strapped to their bodies. Conrad (left), the Apollo 12 mission commander, is carrying some of the tools from the geological tool container. The geological tool container, being carried here by Bean, the lunar module pilot, is similar to the one which will be used during scheduled extravehicular activity (EVA) periods on Nov. 19 and 20, 1969, on the lunar surface. While astronauts Conrad and Bean conduct their scheduled EVA on the moon's surface, astronaut Richard F. Gordon Jr., command module pilot, will man the Command and Service Modules (CSM) in lunar orbit.

  9. Crater Identification Algorithm for the Lost in Low Lunar Orbit Scenario

    NASA Technical Reports Server (NTRS)

    Hanak, Chad; Crain, TImothy

    2010-01-01

    Recent emphasis by NASA on returning astronauts to the Moon has placed attention on the subject of lunar surface feature tracking. Although many algorithms have been proposed for lunar surface feature tracking navigation, much less attention has been paid to the issue of navigational state initialization from lunar craters in a lost in low lunar orbit (LLO) scenario. That is, a scenario in which lunar surface feature tracking must begin, but current navigation state knowledge is either unavailable or too poor to initiate a tracking algorithm. The situation is analogous to the lost in space scenario for star trackers. A new crater identification algorithm is developed herein that allows for navigation state initialization from as few as one image of the lunar surface with no a priori state knowledge. The algorithm takes as inputs the locations and diameters of craters that have been detected in an image, and uses the information to match the craters to entries in the USGS lunar crater catalog via non-dimensional crater triangle parameters. Due to the large number of uncataloged craters that exist on the lunar surface, a probability-based check was developed to reject false identifications. The algorithm was tested on craters detected in four revolutions of Apollo 16 LLO images, and shown to perform well.

  10. Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter

    PubMed Central

    Mazarico, Erwan; Barker, Michael K; Neumann, Gregory A; Zuber, Maria T; Smith, David E

    2014-01-01

    The Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter spacecraft collected more than 5 billion measurements in the nominal 50 km orbit over ∼10,000 orbits. The data precision, geodetic accuracy, and spatial distribution enable two-dimensional crossovers to be used to infer relative radial position corrections between tracks to better than ∼1 m. We use nearly 500,000 altimetric crossovers to separate remaining high-frequency spacecraft trajectory errors from the periodic radial surface tidal deformation. The unusual sampling of the lunar body tide from polar lunar orbit limits the size of the typical differential signal expected at ground track intersections to ∼10 cm. Nevertheless, we reliably detect the topographic tidal signal and estimate the associated Love number h2 to be 0.0371 ± 0.0033, which is consistent with but lower than recent results from lunar laser ranging. Key Points Altimetric data are used to create radial constraints on the tidal deformationThe body tide amplitude is estimated from the crossover dataThe estimated Love number is consistent with previous estimates but more precise PMID:26074646

  11. Secondary electron emission from lunar soil by solar wind type ion impact: Laboratory measurements

    NASA Astrophysics Data System (ADS)

    Dukes, Catherine; Bu, Caixia; Baragiola, Raul A.

    2015-11-01

    Introduction: The lunar surface potential is determined by time-varying fluxes of electrons and ions from the solar wind, photoelectrons ejected by UV photons, cosmic rays, and micrometeorite impacts. Solar wind ions have a dual role in the charging process, adding positive charge to the lunar regolith upon impact and ejecting negative secondary electrons (SE). Electron emission occurs when the energy from the impacting ion is transferred to the solid, ionizing and damaging the material; electrons with kinetic energy greater than the ionization potential (band gap + electron affinity) are ejected from the solid[1].Experiment: We investigate the energy distribution of secondary electrons ejected from Apollo soils of varying maturity and lunar analogs by 4 keV He+. Soils are placed into a shallow Al cup and compressed. In-situ low-energy oxygen plasma is used to clean atmospheric contaminants from the soil before analysis[2]. X-ray photoelectron spectroscopy ascertains that the sample surface is clean. Experiments are conducted in a PHI 560 system (<10-9 Torr), equipped with a double-pass, cylindrical-mirror electron energy analyzer (CMA) and μ-metal shield. The spectrometer is used to measure SE distributions, as well as for in situ surface characterization. A small negative bias (~5V) with respect to the grounded entrance grid of the CMA may be placed on the sample holder in order to expose the low energy cutoff.To measure SE energy distributions, primary ions rastered over a ~6 x 6 mm2 area are incident on the sample at ~40° relative to the surface normal, while SE emitted with an angle of 42.3°± 3.5° in a cone are analyzed.Results: The energy distribution of SE ejected from 4 keV He ion irradiation of albite with no bias applied shows positive charging of the surface. The general shape and distribution peak (~4 eV) are consistent with spectra for low energy ions on insulating material[1].Acknowledgements: We thank the NASA LASER program for support.References: [1]P. Riccardi, R. Baragiola et al. (2004); Surf. Science 57, L305-L310. [2]C.A. Dukes & R.A. Baragiola (2010) Surface Interface Anal. 42, 40-44.

  12. Terrestrial analogues for lunar impact melt flows

    NASA Astrophysics Data System (ADS)

    Neish, C. D.; Hamilton, C. W.; Hughes, S. S.; Nawotniak, S. Kobs; Garry, W. B.; Skok, J. R.; Elphic, R. C.; Schaefer, E.; Carter, L. M.; Bandfield, J. L.; Osinski, G. R.; Lim, D.; Heldmann, J. L.

    2017-01-01

    Lunar impact melt deposits have unique physical properties. They have among the highest observed radar returns at S-Band (12.6 cm wavelength), implying that they are rough at the decimeter scale. However, they are also observed in high-resolution optical imagery to be quite smooth at the meter scale. These characteristics distinguish them from well-studied terrestrial analogues, such as Hawaiian pāhoehoe and ´a´ā lava flows. The morphology of impact melt deposits can be related to their emplacement conditions, so understanding the origin of these unique surface properties will help to inform us as to the circumstances under which they were formed. In this work, we seek to find a terrestrial analogue for well-preserved lunar impact melt flows by examining fresh lava flows on Earth. We compare the radar return and high-resolution topographic variations of impact melt flows to terrestrial lava flows with a range of surface textures. The lava flows examined in this work range from smooth Hawaiian pāhoehoe to transitional basaltic flows at Craters of the Moon (COTM) National Monument and Preserve in Idaho to rubbly and spiny pāhoehoe-like flows at the recent eruption at Holuhraun in Iceland. The physical properties of lunar impact melt flows appear to differ from those of all the terrestrial lava flows studied in this work. This may be due to (a) differences in post-emplacement modification processes or (b) fundamental differences in the surface texture of the melt flows due to the melts' unique emplacement and/or cooling environment. Information about the surface properties of lunar impact melt deposits will be critical for future landed missions that wish to sample these materials.

  13. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-20

    This is a close-up view of an astronaut’s footprint in the lunar soil, photographed by a 70 mm lunar surface camera during the Apollo 11 lunar surface extravehicular activity. The first manned lunar mission, the Apollo 11 launched aboard a Saturn V launch vehicle from the Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of Neil A, Armstrong, mission commander; Edwin E. Aldrin, Jr., Lunar Module Pilot; and Michael Collins, Command Module pilot. The LM landed on the moon’s surface on July 20, 1969 in the region known as Mare Tranquilitatis (the Sea of Tranquility). Armstrong was the first human to ever stand on the lunar surface. As he stepped off the LM, Armstrong proclaimed, “That’s one small step for man, one giant leap for mankind”. He was followed by Edwin (Buzz) Aldrin, describing the lunar surface as Magnificent desolation. Astronaut Collins piloted the Command Module in a parking orbit around the Moon. The crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. The surface exploration was concluded in 2½ hours. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. von Braun.

  14. Mapping the Apollo 17 landing site area based on Lunar Reconnaissance Orbiter Camera images and Apollo surface photography

    NASA Astrophysics Data System (ADS)

    Haase, I.; Oberst, J.; Scholten, F.; Wählisch, M.; Gläser, P.; Karachevtseva, I.; Robinson, M. S.

    2012-05-01

    Newly acquired high resolution Lunar Reconnaissance Orbiter Camera (LROC) images allow accurate determination of the coordinates of Apollo hardware, sampling stations, and photographic viewpoints. In particular, the positions from where the Apollo 17 astronauts recorded panoramic image series, at the so-called “traverse stations”, were precisely determined for traverse path reconstruction. We analyzed observations made in Apollo surface photography as well as orthorectified orbital images (0.5 m/pixel) and Digital Terrain Models (DTMs) (1.5 m/pixel and 100 m/pixel) derived from LROC Narrow Angle Camera (NAC) and Wide Angle Camera (WAC) images. Key features captured in the Apollo panoramic sequences were identified in LROC NAC orthoimages. Angular directions of these features were measured in the panoramic images and fitted to the NAC orthoimage by applying least squares techniques. As a result, we obtained the surface panoramic camera positions to within 50 cm. At the same time, the camera orientations, North azimuth angles and distances to nearby features of interest were also determined. Here, initial results are shown for traverse station 1 (northwest of Steno Crater) as well as the Apollo Lunar Surface Experiment Package (ALSEP) area.

  15. Remote Analysis of Lunar Pyroclastic Glass Deposits by LRO Diviner

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Greenhagen, Benjamin T.; Donaldson Hanna, Kerri; Paige, David A.

    2011-01-01

    Telescope observations and orbital images of the Moon reveal at least 75 deposits, often tens to hundreds of km across, that mantle mare or highland surfaces. These deposits are interpreted as the products of pyroclastic eruptions and designated herein as lunar pyroclastic deposits (LPD). They are understood to be composed primarily of sub-millimeter beads of basaltic composition, ranging from glassy to partially-crystallized. Delano documented 25 distinct pyroclastic bead compositions in lunar soil samples, though the source deposits for most of these beads have not been identified. The pyroclastic deposits are important for many reasons. Petrology experiments and modeling have demonstrated that the pyroclastic glasses are the deepest-sourced and most primitive basalts on the Moon. Recent analyses have documented the presence of water in these glasses, demonstrating that the lunar interior is considerably more volatile-rich than previously understood. Experiments have shown that the iron-rich pyroclastic glasses release the highest percentage of oxygen of any Apollo soils, making these deposits promising lunar resources.

  16. Permissible Exposure Level for Lunar Dusts: Gaps are Closing

    NASA Technical Reports Server (NTRS)

    James, John T.; Lam, Chiu-Wing; Scully Robert; Santana, Patricia; Cooper, Bonnie; McKay, David; Zeidler-Erdely, Patti C.; Castranova, Vincent

    2010-01-01

    Space faring nations plan to return human explorers to the moon within the next decade. Experience during the Apollo flights suggests that lunar dust will invariably get into the habitat where the finest portion (less than 5 micrometers) could be inhaled by the crew before it is cleared from the atmosphere. NASA is developing a database from which a 6-month, episodic exposure standard for lunar dust can be set. Three kinds of moon dust were prepared from a parent sample of Apollo 14 regolith #14003,96. Our goal was to prepare each type of dust sample with a mean diameter less than 2 m, which is suitable for instillation into the lungs of rats. The three samples were prepared as follows: separation from the parent sample using a fluidized bed, grinding using a jet mill grinder, or grinding with a ball-mill grinder. Grinding simulated restoration of surface activation of dust expected to occur at the surface of the moon on native lunar dust. We used two grinding methods because they seemed to produce different modes of activation. The effects of grinding were preserved by maintaining the dust in ultra-pure nitrogen until immediately before it was placed in suspension for administration to rats. The dust was suspended in physiological saline with 10% Survanta, a lung surfactant. Rats were given intratrachael instillations of the dust suspension at three doses. In addition to the three moon dusts (A, C and E), we instilled the same amount of a negative control (TiO2, B) and a highly-toxic, positive control (quartz, D). These additional mineral dusts were selected because they have well-established and very different permissible exposure levels (PELs). Our goal was to determine where lunar dusts fit between these extremes, and then estimate a PEL for each lunar dust. We evaluated many indices of toxicity to the lung. The figure shows the changes in lactate dehydrogenase (LDH), a marker of cell death, for the five dusts. Benchmark dose software (Version 2.1.2) from the Environmental Protection Agency was used to estimate the 10% effect levels (BMD(sub 10)) using five models. The best-fitting model was used to estimate the optimal BMD(sub 10) (table)

  17. Problems at the Leading Edge of Space Weathering as Revealed by TEM Combined with Surface Science Techniques

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Dukes, C. A.; Keller, L. P.; Rahman, Z.; Baragiola, R. A.

    2015-01-01

    Both transmission electron micros-copy (TEM) and surface analysis techniques such as X-ray photoelectron spectroscopy (XPS) were instrumen-tal in making the first characterizations of material generated by space weathering in lunar samples [1,2]. Without them, the nature of nanophase metallic Fe (npFe0) correlated with the surface of lunar regolith grains would have taken much longer to become rec-ognized and understood. Our groups at JSC and UVa have been using both techniques in a cross-correlated way to investigate how the solar wind contributes to space weathering [e.g., 3]. These efforts have identified a number of ongoing problems and knowledge gaps. Key insights made by UVa group leader Raul Barag-iola during this work are gratefully remembered.

  18. Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Morgan, T.; Chin, G.

    2007-08-01

    NASA's Lunar Reconnaissance Orbiter (LRO) plans to launch in October 2008 with a companion secondary impactor mission, LCROSS, as the inaugural missions for the Exploration System Mission Directorate. LRO is a pathfinder whose objective is to obtain the needed information to prepare for eventual human return to the Moon. LRO will undertake at least one baseline year of operation with additional extended mission phase sponsored by NASA's Science Mission Directorate. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions; Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources; Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration; Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits; Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only by starlight; Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which will investigate the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background space radiation. The technology demonstration is an advanced radar (mini-RF) that will demonstrate X- and S-band radar imaging and interferometry using a light-weight synthetic aperture radar.

  19. Of time and the moon.

    PubMed

    Wetherill, G W

    1971-07-30

    Considerable information concerning lunar chronology has been obtained by the study of rocks and soil returned by the Apollo 11 and Apollo 12 missions. It has been shown that at the time the moon, earth, and solar system were formed, approximately 4.6 approximately 10(9) years ago, a severe chemical fractionation took place, resulting in depletion of relatively volatile elements such as Rb and Pb from the sources of the lunar rocks studied. It is very likely that much of this material was lost to interplanetary space, although some of the loss may be associated with internal chemical differentiation of the moon. It has also been shown that igneous processes have enriched some regions of the moon in lithophile elements such as Rb, U, and Ba, very early in lunar history, within 100 million years of its formation. Subsequent igneous and metamorphic activity occurred over a long period of time; mare volcanism of the Apollo 11 and Apollo 12 sites occurred at distinctly different times, 3.6 approximately 10(9) and 3.3 approximately 10(9) years ago, respectively. Consequently, lunar magmatism and remanent magnetism cannot be explained in terms of a unique event, such as a close approach to the earth at a time of lunar capture. It is likely that these phenomena will require explanation in terms of internal lunar processes, operative to a considerable depth in the moon, over a long period of time. These data, together with the low present internal temperatures of the moon, inferred from measurements of lunar electrical conductivity, impose severe constraints on acceptable thermal histories of the moon. Progress is being made toward understanding lunar surface properties by use of the effects of particle bombardment of the lunar surface (solar wind, solar flare particles, galactic cosmic rays). It has been shown that the rate of micrometeorite erosion is very low (angstroms per year) and that lunar rocks and soil have been within approximately a meter of the lunar surface for hundreds of millions of years. Future work will require sampling distinctly different regions of the moon in order to provide data concerning other important lunar events, such as the time of formation of the highland regions and of the mare basins, and of the extent to which lunar volcanism has persisted subsequent to the first third of lunar history. This work will require a sufficient number of Apollo landings, and any further cancellation of Apollo missions will jeopardize this unique opportunity to study the development of a planetary body from its beginning. Such a study is fundamental to our understanding of the earth and other planets.

  20. Apollo Experiment Report: Lunar-Sample Processing in the Lunar Receiving Laboratory High-Vacuum Complex

    NASA Technical Reports Server (NTRS)

    White, D. R.

    1976-01-01

    A high-vacuum complex composed of an atmospheric decontamination system, sample-processing chambers, storage chambers, and a transfer system was built to process and examine lunar material while maintaining quarantine status. Problems identified, equipment modifications, and procedure changes made for Apollo 11 and 12 sample processing are presented. The sample processing experiences indicate that only a few operating personnel are required to process the sample efficiently, safely, and rapidly in the high-vacuum complex. The high-vacuum complex was designed to handle the many contingencies, both quarantine and scientific, associated with handling an unknown entity such as the lunar sample. Lunar sample handling necessitated a complex system that could not respond rapidly to changing scientific requirements as the characteristics of the lunar sample were better defined. Although the complex successfully handled the processing of Apollo 11 and 12 lunar samples, the scientific requirement for vacuum samples was deleted after the Apollo 12 mission just as the vacuum system was reaching its full potential.

  1. The use of automation and robotic systems to establish and maintain lunar base operations

    NASA Technical Reports Server (NTRS)

    Petrosky, Lyman J.

    1992-01-01

    Robotic systems provide a means of performing many of the operations required to establish and maintain a lunar base. They form a synergistic system when properly used in concert with human activities. This paper discusses the various areas where robotics and automation may be used to enhance lunar base operations. Robots are particularly well suited for surface operations (exterior to the base habitat modules) because they can be designed to operate in the extreme temperatures and vacuum conditions of the Moon (or Mars). In this environment, the capabilities of semi-autonomous robots would surpass that of humans in all but the most complex tasks. Robotic surface operations include such activities as long range geological and mineralogical surveys with sample return, materials movement in and around the base, construction of radiation barriers around habitats, transfer of materials over large distances, and construction of outposts. Most of the above operations could be performed with minor modifications to a single basic robotic rover. Within the lunar base habitats there are a few areas where robotic operations would be preferable to human operations. Such areas include routine inspections for leakage in the habitat and its systems, underground transfer of materials between habitats, and replacement of consumables. In these and many other activities, robotic systems will greatly enhance lunar base operations. The robotic systems described in this paper are based on what is realistically achievable with relatively near term technology. A lunar base can be built and maintained if we are willing.

  2. Regolith Formation Rates and Evolution from the Diviner Lunar Radiometer

    NASA Astrophysics Data System (ADS)

    Hayne, P. O.; Ghent, R. R.; Bandfield, J. L.; Vasavada, A. R.; Williams, J. P.; Siegler, M. A.; Lucey, P. G.; Greenhagen, B. T.; Elder, C. M.; Paige, D. A.

    2015-12-01

    Fragmentation and overturn of lunar surface materials produces a layer of regolith, which increases in thickness through time. Experiments on the lunar surface during the Apollo era, combined with remote sensing, found that the upper 10's of cm of regolith exhibit a rapid increase in density and thermal conductivity with depth. This is interpreted to be the signature of impact gardening, which operates most rapidly in the uppermost layers. Gravity data from the GRAIL mission showed that impacts have also extensively fractured the deeper crust. The breakdown and mixing of crustal materials is therefore a central process to lunar evolution and must be understood in order to interpret compositional information from remote sensing and sample analysis. Recently, thermal infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner radiometer were used to provide the first remote observational constraints on the rate of ejecta breakdown around craters < 1 Ga (Ghent et al., 2014). Here, we use nighttime regolith temperatures derived from Diviner data to constrain regolith thermal inertia, thickness, and spatial variability. Applied to models, these new data help improve understanding of regolith formation on a variety of geologic units. We will also discuss several anomalous features that merit further investigation. Reference: Ghent, R. R., Hayne, P. O., Bandfield, J. L., Campbell, B. A., Allen, C. C., Carter, L. M., & Paige, D. A. (2014). Constraints on the recent rate of lunar ejecta breakdown and implications for crater ages. Geology, 42(12), 1059-1062.

  3. Fission Surface Power Technology Development Status

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Harlow, Scott

    2009-01-01

    With the potential future deployment of a lunar outpost there is expected to be a clear need for a high-power, lunar surface power source to support lunar surface operations independent of the day-night cycle, and Fission Surface Power (FSP) is a very effective solution for power levels above a couple 10 s of kWe. FSP is similarly enabling for the poorly illuminated surface of Mars. The power levels/requirements for a lunar outpost option are currently being studied, but it is known that cost is clearly a predominant concern to decision makers. This paper describes the plans of NASA and the DOE to execute an affordable fission surface power system technology development project to demonstrate sufficient technology readiness of an affordable FSP system so viable and cost-effective FSP system options will be available when high power lunar surface system choices are expected to be made in the early 2010s.

  4. Dr. Grant Heikan examines lunar material in sieve from sample container

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Dr. Grant Heikan, Manned Spacecraft Center and a Lunar Sample preliminary Examination Team member, examines lunar material in a sieve from the bulk sample container which was opened in the Biopreparation Laboratory of the Lunar Receiving Laboratory.

  5. Calculation of fast neutron removal cross sections for different lunar soils

    NASA Astrophysics Data System (ADS)

    Tellili, B.; Elmahroug, Y.; Souga, C.

    2014-01-01

    The interaction of galactic cosmic rays (GCRs) and solar energetic particles (SEPs) with the lunar surface produces secondary radiations as neutrons. The study of the production and attenuation of these neutrons in the lunar soil is very important to estimate the annual ambient dose equivalent on the lunar surface and for lunar nuclear spectroscopy. Also, understanding the attenuation of fast neutrons in lunar soils can help in measuring of the lunar neutron density profile and to measure the neutron flux on the lunar surface. In this paper, the attenuation of fast neutrons in different lunar soils is investigated. The macroscopic effective removal cross section (ΣR) of fast neutrons was theoretically calculated from the mass removal cross-section values (ΣR/ρ) for various elements in soils. The obtained values of (ΣR) were discussed according to the density. The results show that the attenuation of fast neutrons is more important in the landing sites of Apollo 12 and Luna 16 than the other landing sites of Apollo and Luna missions.

  6. When did the lunar core dynamo cease?

    NASA Astrophysics Data System (ADS)

    Tikoo, S. M.; Weiss, B. P.; Shuster, D. L.; Fuller, M.

    2013-12-01

    Remanent magnetization in the lunar crust and in returned Apollo samples has long suggested that the Moon formed a metallic core and an ancient dynamo magnetic field. Recent paleomagnetic investigations of lunar samples demonstrate that the Moon had a core dynamo which produced ~30-110 μT surface fields between at least 4.2 and 3.56 billion years ago (Ga). Tikoo et al. (1) recently found that the field declined to below several μT by 3.19 Ga. However, given that even values of a few μT are at the upper end of the intensities predicted by dynamo theory for this late in lunar history, it remains uncertain when the lunar dynamo actually ceased completely. Determining this requires a young lunar rock with extraordinarily high magnetic recording fidelity. With this goal, we are conducting a new analysis of young regolith breccia 15498. Although the breccia's age is currently uncertain, the presence of Apollo 15-type mare basalt clasts provides an upper limit constraint of ~3.3 Ga, while trapped Ar data suggest a lithification age of ~1.3 Ga. In stark contrast to the multidomain character of virtually all lunar crystalline rocks, the magnetic carriers in 15498 are on average pseudo-single domain to superparamagnetic, indicating that the sample should provide high-fidelity paleointensity records. A previous alternating field (AF) and thermal demagnetization study of 15498 by Gose et al. (2) observed that the sample carries stable remanent magnetization which persists to unblocking temperatures of at least 650°C. Using a modified Thellier technique, they reported a paleointensity of 2 μT. Although this value may have been influenced by spurious remanence acquired during pretreatment with AF demagnetization, our results confirm the presence of an extremely stable (blocked to coercivities >290 mT) magnetization in the glassy matrix. We also found that this magnetization is largely unidirectional across mutually oriented subsamples. The cooling timescale of this rock (~1 hour) likely precludes impact fields as a source of thermoremanent magnetization. Our paleointensity experiments and Ar/Ar thermochronometry, currently in progress, should permit us to determine whether this remanence was acquired from a late lunar core dynamo. (1) Tikoo et al. (2012) Proc. Lunar Planet Sci. Conf. 43rd, #2691. (2) Gose et al. (1973) The Moon (7), p. 196-201.

  7. Comparative Study of Lunar Roughness from Multi - Source Data

    NASA Astrophysics Data System (ADS)

    Lou, Y.; Kang, Z.

    2017-07-01

    The lunar terrain can show its collision and volcanic history. The lunar surface roughness can give a deep indication of the effects of lunar surface magma, sedimentation and uplift. This paper aims to get different information from the roughness through different data sources. Besides introducing the classical Root-mean-square height method and Morphological Surface Roughness (MSR) algorithm, this paper takes the area of the Jurassic mountain uplift in the Sinus Iridum and the Plato Crater area as experimental areas. And then make the comparison and contrast of the lunar roughness derived from LRO's DEM and CE-2 DOM. The experimental results show that the roughness obtained by the traditional roughness calculation method reflect the ups and downs of the topography, while the results obtained by morphological surface roughness algorithm show the smoothness of the lunar surface. So, we can first use the surface fluctuation situation derived from RMSH to select the landing area range which ensures the lands are gentle. Then the morphological results determine whether the landing area is suitable for the detector walking and observing. The results obtained at two different scales provide a more complete evaluation system for selecting the landing site of the lunar probe.

  8. Lunar Surface Potential Increases during Terrestrial Bow Shock Traversals

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.; Hills, H. Kent; Halekas, Jasper; Farrell, William M.; Delory, Greg T.; Espley, Jared; Freeman, John W.; Vondrak, Richard R.; Kasper, Justin

    2009-01-01

    Since the Apollo era the electric potential of the Moon has been a subject of interest and debate. Deployed by three Apollo missions, Apollo 12, Apollo 14 and Apollo 15, the Suprathermal Ion Detector Experiment (SIDE) determined the sunlit lunar surface potential to be about +10 Volts using the energy spectra of lunar ionospheric thermal ions accelerated toward the Moon. We present an analysis of Apollo 14 SIDE "resonance" events that indicate the lunar surface potential increases when the Moon traverses the dawn bow shock. By analyzing Wind spacecraft crossings of the terrestrial bow shock at approximately this location and employing current balancing models of the lunar surface, we suggest causes for the increasing potential. Determining the origin of this phenomenon will improve our ability to predict the lunar surface potential in support of human exploration as well as provide models for the behavior of other airless bodies when they traverse similar features such as interplanetary shocks, both of which are goals of the NASA Lunar Science Institute's Dynamic Response of the Environment At the Moon (DREAM) team.

  9. Apollo 12 crewmembers during geological field trip

    NASA Image and Video Library

    1969-10-24

    S69-55662 (10 Oct. 1969) --- Astronauts Alan L. Bean (left) and Charles Conrad Jr., the two crewmen of the Apollo 12 lunar landing mission who are scheduled to participate in two lengthy periods of extravehicular activity (EVA) on the lunar surface, are pictured during a geological field trip and training at a simulated lunar surface area near Flagstaff, Arizona. Here Conrad, the Apollo 12 commander, gets a close look through hand lens at the stratigraphy (study of strata or layers beneath the surface) of a man-dug hole, while Bean, the Apollo 12 mission's lunar module pilot, looks on. The topography in this area, with several man-made modifications, resembles very closely much of the topography found on the lunar surface. While Conrad and Bean explore the lunar surface (plans call for Apollo 12 spacecraft to land in the Sea of Storms), astronaut Richard F. Gordon Jr., command module pilot for the Apollo 12 mission, will remain with the Command and Service Modules (CSM) in lunar orbit. The Apollo 12 mission is scheduled to lift off from Cape Kennedy on Nov. 14, 1969.

  10. Particle-In-Cell Simulations of the Solar Wind Interaction with Lunar Crustal Magnetic Anomalies: Magnetic Cusp Regions

    NASA Technical Reports Server (NTRS)

    Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.

    2012-01-01

    As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.

  11. An Examination of the Space Weathering Patina of Lunar Rock 76015

    NASA Technical Reports Server (NTRS)

    Noble, S.; Chrisoffersen, R.; Rahman, Z.

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. Rocks have much longer surface lifetimes than an individual soil grain and thus record a longer history of exposure. By studying the weathering products which have built up on a rock surface, we can gain a deeper perspective on the weathering process and better assess the relative importance of various weathering components. The weathered coating, or patina, of the lunar rock 76015 has been previously studied under SEM and also by TEM using ultramicrotome sample preparation methods. However, to really understand the products involved in creating these coatings, it is helpful to examine the patina in cross section, something which is now possible though the use of Focused Ion Beam (FIB) sample prep techniques, which allows us to preserve intact the delicate stratigraphy of the patina coating and provides a unique cross-sectional view of the space weathering process. Several samples have been prepared from the rock and the coatings are found to be quite variable in thickness and composition from one sample to the next.

  12. Lunar Thermal Wadis and Exploration Rovers: Outpost Productivity and Participatory Exploration

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt; Wegeng, Robert; Suzuki, Nantel

    2009-01-01

    The presentation introduces the concept of a thermal wadi, an engineered source of thermal energy that can be created using native material on the moon or elsewhere to store solar energy for use by various lunar surface assets to survive the extremely cold environment of the lunar night. A principal benefit of this approach to energy storage is the low mass requirement for transportation from Earth derived from the use of the lunar soil, or regolith, as the energy storage medium. The presentation includes a summary of the results of a feasibility study involving the numerical modeling of the performance of a thermal wadi including a manufactured thermal mass, a solar energy reflector, a nighttime thermal energy reflector and a lunar surface rover. The feasibility study shows that sufficient thermal energy can be stored using unconcentrated solar flux to keep a lunar surface rover sufficiently warm throughout a 354 hour lunar night at the lunar equator, and that similar approaches can be used to sustain surface assets during shorter dark periods that occur at the lunar poles. The presentation includes descriptions of a compact lunar rover concept that could be used to manufacture a thermal wadi and could alternatively be used to conduct a variety of high-value tasks on the lunar surface. Such rovers can be produced more easily because the capability for surviving the lunar night is offloaded to the thermal wadi infrastructure. The presentation also includes several concepts for operational scenarios that could be implemented on the moon using the thermal wadi and compact rover concepts in which multiple affordable rovers, operated by multiple terrestrial organizations, can conduct resource prospecting and human exploration site preparation tasks.

  13. Apollo 13 Astronaut James Lovel during lunar surface simulation training

    NASA Image and Video Library

    1970-01-16

    S70-28229 (16 Jan. 1970) --- Astronaut James A. Lovell Jr., commander of the Apollo 13 lunar landing mission, participates in lunar surface simulation training at the Manned Spacecraft Center. Lovell is attached to a Six Degrees of Freedom Simulator. He is carrying an Apollo Lunar Hand Tools carrier in his right hand.

  14. Direct Determination of the Space Weathering Rates in Lunar Soils and Itokawa Regolith from Sample Analyses

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berger, E. L.; Christoffersen, R.; Zhang, S.

    2016-01-01

    Space weathering effects on airless bodies result largely from micrometeorite impacts and solar wind interactions. Decades of research have provided insights into space weathering processes and their effects, but a major unanswered question still remains: what is the rate at which these space weathering effects are acquired in lunar and asteroidal regolith materials? To determine the space weathering rate for the formation of rims on lunar anorthite grains, we combine the rim width and type with the exposure ages of the grains, as determined by the accumulation of solar flare particle tracks. From these analyses, we recently showed that space weathering effects in mature lunar soils (both vapor-deposited rims and solar wind amorphized rims) accumulate and attain steady state in 10(sup 6)-10(sup 7) y. Regolith grains from Itokawa also show evidence for space weathering effects, but in these samples, solar wind interactions appear to dominate over impactrelated effects such as vapor-deposition. While in our lunar work, we focused on anorthite, given its high abundance on the lunar surface, for the Itokawa grains, we focused on olivine. We previously studied 3 olivine grains from Itokawa and determined their solar flare track densities and described their solar wind damaged rims]. We also analyzed olivine grains from lunar soils, measured their track densities and rim widths, and used this data along with the Itokawa results to constrain the space weathering rate on Itokawa. We observe that olivine and anorthite have different responses to solar wind irradiation.

  15. AOTF near-IR spectrometers for study of Lunar and Martian surface composition

    NASA Astrophysics Data System (ADS)

    Ivanov, A.; Korablev, O.; Mantsevich, S.; Vyazovetskiy, N.; Fedorova, A.; Evdokimova, N.; Stepanov, A.; Titov, A.; Kalinnikov, Y.; Kuzmin, R.; Kiselev, A.; Bazilevsky, A.; Bondarenko, A.; Dokuchaev, I.; Moiseev, P.; Victorov, A.; Berezhnoy, A.; Skorov, Y.; Bisikalo, D.; Velikodsky, Y.

    2014-04-01

    The series of the AOTF near-IR spectrometers is developed in Moscow Space Research Institute for study of Lunar and Martian surface composition in the vicinity of a lander or a rover. Lunar Infrared Spectrometer (LIS) is an experiment onboard Luna-Glob (launch in 2017) and Luna- Resurs (launch in 2019) Russian surface missions. It's a pencil-beam spectrometer to be pointed by a robotic arm of the landing module. The instrument's field of view (FOV) of 1° is co-aligned with the FOV(45°) of a stereo TV camera. Infrared Spectrometer for ExoMars (ISEM) is an experiment onboard ExoMars (launch in 2018) ESARoscosmos rover. It's spectrometer based on LIS with required redesign for ExoMars mission. The ISEM instrument is mounted on the rover's mast coaligned with the FOV (5°) of High Resolution camera (HRC). Spectrometers and are intended for study of the surface composition in the vicinity of the lander and rover. The spectrometers will provide measurements of selected surface areas in the spectral range of 1.15-3.3 μm. The spectral selection is provided by acoustooptic tunable filter (AOTF), which scans the spectral range sequentially. Electrical command of the AOTF allows selecting the spectral sampling, and permits a random access if needed.

  16. Deep Space Gateway Support of Lunar Surface Ops and Tele-Operational Transfer of Surface Assets to the Next Landing Site

    NASA Astrophysics Data System (ADS)

    Kring, D. A.

    2018-02-01

    The Deep Space Gateway can support astronauts on the lunar surface, providing them a departure and returning rendezvous point, a communication relay from the lunar farside to Earth, and a transfer point to Orion for return to Earth.

  17. Interviews with Apollo Lunar Surface Astronauts in Support of EVA Systems Design

    NASA Technical Reports Server (NTRS)

    Eppler, Dean

    2010-01-01

    A 3-person team interviewed 8 of the 11 surviving Apollo crewmembers in a series of focused interviews to discuss their experiences on the lunar surface. Eppler presented the results of these interviews, along with recommendations for the design of future lunar surface systems.

  18. An Evidence-based Approach to Developing a Management Strategy for Medical Contingencies on the Lunar Surface: The NASA/Haughton-Mars Project (HMP) 2006 Lunar Medical Contingency Simulation at Devon Island

    NASA Technical Reports Server (NTRS)

    Scheuring, R. A.; Jones, J. A.; Lee, P.; Comtois, J. M.; Chappell, S.; Rafiq, A.; Braham, S.; Hodgson, E.; Sullivan, P.; Wilkinson, N.; hide

    2007-01-01

    The lunar architecture for future sortie and outpost missions will require humans to serve on the lunar surface considerably longer than the Apollo moon missions. Although the Apollo crewmembers sustained few injuries during their brief lunar surface activity, injuries did occur and are a concern for the longer lunar stays. Interestingly, lunar medical contingency plans were not developed during Apollo. In order to develop an evidence-base for handling a medical contingency on the lunar surface, a simulation using the moon-Mars analog environment at Devon Island, Nunavut, high Canadian Arctic was conducted. Objectives of this study included developing an effective management strategy for dealing with an incapacitated crewmember on the lunar surface, establishing audio/visual and biomedical data connectivity to multiple centers, testing rescue/extraction hardware and procedures, and evaluating in suit increased oxygen consumption. Methods: A review of the Apollo lunar surface activities and personal communications with Apollo lunar crewmembers provided the knowledge base of plausible scenarios that could potentially injure an astronaut during a lunar extravehicular activity (EVA). Objectives were established to demonstrate stabilization and transfer of an injured crewmember and communication with ground controllers at multiple mission control centers. Results: The project objectives were successfully achieved during the simulation. Among these objectives were extraction from a sloped terrain by a two-member crew in a 1 g analog environment, establishing real-time communication to multiple centers, providing biomedical data to flight controllers and crewmembers, and establishing a medical diagnosis and treatment plan from a remote site. Discussion: The simulation provided evidence for the types of equipment and methods for performing extraction of an injured crewmember from a sloped terrain. Additionally, the necessary communications infrastructure to connect multiple centers worldwide was established from a remote site. The surface crewmembers were confronted with a number of unexpected scenarios including environmental, communications, EVA suit, and navigation challenges during the course of the simulation which provided insight into the challenges of carrying out a medical contingency in an austere environment. The knowledge gained from completing the objectives will be incorporated into the exploration medical requirements involving an incapacitated astronaut on the lunar surface.

  19. Dusty Plasmas on the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Andersson, L.; Colwell, J.; Ergun, R.; Gruen, E.; McClintock, B.; Peterson, W. K.; Robertson, S.; Sternovsky, Z.; Wang, X.

    2006-12-01

    The electrostatic levitation and transport of lunar dust remains one of the most interesting and controversial science issues from the Apollo era. This issue is also of great engineering importance in designing human habitats and protecting optical and mechanical devices. As function of time and location, the lunar surface is exposed to solar wind plasma, UV radiation, and/or the plasma environment of our magnetosphere. Dust grains on the lunar surface collect an electrostatic charge; alter the large-scale surface charge density distribution, ?and subsequently develop an interface region to the background plasma and radiation. There are several in situ and remote sensing observations that indicate that dusty plasma processes are likely to be responsible for the mobilization and transport of lunar soil. These processes are relevant to: a) understanding the lunar surface environment; b) develop dust mitigation strategies; c) to understand the basic physical processes involved in the birth and collapse of dust loaded plasma sheaths. This talk will focus on the dusty plasma processes on the lunar surface. We will review the existing body of observations, and will also consider future opportunities for the combination of in situ and remote sensing observations. Our goals are to characterize: a) the temporal variation of the spatial and size distributions of the levitated/transported dust; and b) the surface plasma environment

  20. In Situ Biological Contamination Studies of the Moon: Implications for Future Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there yet a planetary protection category for human missions. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  1. High Spatial Resolution 40Ar/39Ar Geochronology of Lunar Impact Melt Rocks

    NASA Astrophysics Data System (ADS)

    Mercer, Cameron Mark

    Impact cratering has played a key role in the evolution of the solid surfaces of Solar System bodies. While much of Earth’s impact record has been erased, its Moon preserves an extensive history of bombardment. Quantifying the timing of lunar impact events is crucial to understanding how impacts have shaped the evolution of early Earth, and provides the basis for estimating the ages of other cratered surfaces in the Solar System. Many lunar impact melt rocks are complex mixtures of glassy and crystalline “melt” materials and inherited clasts of pre-impact minerals and rocks. If analyzed in bulk, these samples can yield complicated incremental release 40Ar/39Ar spectra, making it challenging to uniquely interpret impact ages. Here, I have used a combination of high-spatial resolution 40Ar/39Ar geochronology and thermal-kinetic modeling to gain new insights into the impact histories recorded by such lunar samples. To compare my data to those of previous studies, I developed a software tool to account for differences in the decay, isotopic, and monitor age parameters used for different published 40Ar/39Ar datasets. Using an ultraviolet laser ablation microprobe (UVLAMP) system I selectively dated melt and clast components of impact melt rocks collected during the Apollo 16 and 17 missions. UVLAMP 40Ar/39Ar data for samples 77135, 60315, 61015, and 63355 show evidence of open-system behavior, and provide new insights into how to interpret some complexities of published incremental heating 40Ar/39Ar spectra. Samples 77115, 63525, 63549, and 65015 have relatively simple thermal histories, and UVLAMP 40Ar/39Ar data for the melt components of these rocks indicate the timing of impact events—spanning hundreds of millions of years—that influenced the Apollo 16 and 17 sites. My modeling and UVLAMP 40Ar/39Ar data for sample 73217 indicate that some impact melt rocks can quantitatively retain evidence for multiple melt-producing impact events, and imply that such polygenetic rocks should be regarded as high-value sampling opportunities during future exploration missions to cratered planetary surfaces. Collectively, my results complement previous incremental heating 40Ar/39Ar studies, and support interpretations that the Moon experienced a prolonged period of heavy bombardment early in its history.

  2. Preliminary examination of lunar samples from apollo 14.

    PubMed

    1971-08-20

    The major findings of the preliminary examination of the lunar samples are as follows: 1) The samples from Fra Mauro base may be contrasted with those from Tranquillity base and the Ocean of Storms in that about half the Apollo 11 samples consist of basaltic rocks, and all but three Apollo 12 rocks are basaltic, whereas in the Apollo 14 samples only two rocks of the 33 rocks over 50 grams have basaltic textures. The samples from Fra Mauro base consist largely of fragmental rocks containing clasts of diverse lithologies and histories. Generally the rocks differ modally from earlier lunar samples in that they contain more plagioclase and contain orthopyroxene. 2) The Apollo 14 samples differ chemically from earlier lunar rocks and from their closest meteorite and terrestrial analogs. The lunar material closest in composition is the KREEP component (potassium, rare earth elements, phosphorus), "norite," "mottled gray fragments" (9) from the soil samples (in particular, sample 12033) from the Apollo 12 site, and the dark portion of rock 12013 (10). The Apollo 14 material is richer in titanium, iron, magnesium, and silicon than the Surveyor 7 material, the only lunar highlands material directly analyzed (11). The rocks also differ from the mare basalts, having much lower contents of iron, titanium, manganese, chromium, and scandium and higher contents of silicon, aluminum, zirconium, potassium, uranium, thorium, barium, rubidium, sodium, niobium, lithium, and lanthanum. The ratios of potassium to uranium are lower than those of terrestrial rocks and similar to those of earlier lunar samples. 3) The chemical composition of the soil closely resembles that of the fragmental rocks and the large basaltic rock (sample 14310) except that some elements (potassium, lanthanum, ytterbium, and barium) may be somewhat depleted in the soil with respect to the average rock composition. 4) Rocks display characteristic surface features of lunar material (impact microcraters, rounding) and shock effects similar to those observed in rocks and soil from the Apollo 11 and Apollo 12 missions. The rocks show no evidence of exposure to water, and their content of metallic iron suggests that they, like the Apollo 11 and Apollo 12 material, were formed and have remained in an environment with low oxygen activity. 5) The concentration of solar windimplanted material in the soil is large, as was the case for Apollo 11 and Apollo 12 soil. However, unlike previous fragmental rocks, Apollo 14 fragmental rocks possess solar wind contents ranging from approximately that of the soil to essentially zero, with most rocks investigated falling toward one extreme of this range. A positive correlation appears to exist between the solar wind components, carbon, and (20)Ne, of fragmental rocks and their friability (Fig. 12). 6) Carbon contents lie within the range of carbon contents for Apollo 11 and Apollo 12 samples. 7) Four fragmental rocks show surface exposure times (10 x 10(6) to 20 x 10(6) years) about an order of magnitude less than typical exposure times of Apollo 11 and Apollo 12 rocks. 8) A much broader range of soil mechanics properties was encountered at the Apollo 14 site than has been observed at the Apollo 11, Apollo 12, and Surveyor landing sites. At different points along the traverses of the Apollo 14 mission, lesser cohesion, coarser grain size, and greater resistance to penetration was found than at the Apollo 11 and Apollo 12 sites. These variations are indicative of a very complex, heterogeneous deposit. The soils are more poorly sorted, but the range of grain size is similar to those of the Apollo 11 and Apollo 12 soils. 9) No evidence of biological material has been found in the samples to date.

  3. Astronaut Charles Conrad uses lunar equipment conveyer at Lunar Module

    NASA Image and Video Library

    1969-11-19

    Astronaut Charles Conrad Jr., commander, uses the lunar equipment conveyer (LEC) at the Lunar Module during the Apollo 12 extravehicular activity on the lunar surface. This photograph was taken by Astronaut Alan L. Bean, lunar module pilot.

  4. Apollo 7 to 11 - Medical Concerns and Results

    NASA Technical Reports Server (NTRS)

    Berry, C. A.

    1969-01-01

    The goal of the Apollo Program is to land men on the moon and safely return them to earth. The medical task thus outlined required confirmation of the Gemini findings and definition and solution of any problems encountered in the four Apollo flights prior to the Apollo 11 lunar landing. The medical concerns included the following: 1. The effect of decreased red blood cell mass and decreased exercise capacity and of cardiovascular de conditioning on the ability of the crew to do lunar-surface activity; 2. The capability to work effectively in one-sixth the force of gravity and the energy cost of such work; 3. The ability to get adequate rest and sleep in flight and on the lunar surface; 4. The prevention of preflight, inflight, and post-flight illness by proper preventive medicine; 5. The possible development of motion sickness of vestibular origin; 6. The conduct of a post-flight quarantine of crew and lunar samples. The results of the Apollo 7 to 11 missions, demonstrating the ability of man to handle this difficult task and the environment successfully, are discussed in detail and are related to the future of manned flight.

  5. Soil mechanics on the Moon, Mars, and Mulberry

    NASA Technical Reports Server (NTRS)

    Carrier, W. D., III

    1988-01-01

    From a soil mechanics point of view, the Moon is a relatively simple place. Without any water, organics, or clay minerals, the geotechnical properties of the lunar soil are confined to a fairly limited range. Furthermore, the major soil-forming agent is meteorite impact, which breaks the big particles into little particles; and simultaneously, cements the little particles back together again with molten glass. After about a hundred million years of exposure to meteorite impact, the distribution of particle sizes in the soil achieves a sort of steady state. The majority of the returned lunar soil samples have been found to be well-graded silty-sand to sandy-silt (SM in the Unified Soil Classification System). Each of the particle size distributions plots within a relatively narrow band, which appears to be uniform over the entire lunar surface. This further restricts the range of physical properties of the lunar surface. In contrast, Martian soils should exhibit an extremely wide range of properties. We already know that there is a small amount of water in the soil, greater than in the Martian atmosphere. Furthermore, the soil is suspected to be smectitic clay. That makes two out of the three factors that greatly affect the properties of terrestrial soils.

  6. The Impact of Meteoroid Streams on the Lunar Atmosphere and Dust Environment During the LADEE Mission

    NASA Technical Reports Server (NTRS)

    Stubbs, T. J.; Glenar, D. A.; Wang, Y.; Hermalyn, B.; Sarantos, M.; Colaprete, A.; Elphic, R. C.

    2015-01-01

    The scientific objectives of the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission are: (1) determine the composition of the lunar atmosphere, investigate processes controlling distribution and variability - sources, sinks, and surface interactions; and (2) characterize the lunar exospheric dust environment, measure spatial and temporal variability, and influences on the lunar atmosphere. Impacts on the lunar surface from meteoroid streams encountered by the Earth-Moon system are anticipated to result in enhancements in the both the lunar atmosphere and dust environment. Here we describe the annual meteoroid streams expected to be incident at the Moon during the LADEE mission, and their anticipated effects on the lunar environment.

  7. Apollo 12 Lunar Module, in landing configuration, photographed in lunar orbit

    NASA Image and Video Library

    1969-11-19

    AS12-51-7507 (19 Nov. 1969) --- The Apollo 12 Lunar Module (LM), in a lunar landing configuration, is photographed in lunar orbit from the Command and Service Modules (CSM). The coordinates of the center of the lunar surface shown in picture are 4.5 degrees west longitude and 7 degrees south latitude. The largest crater in the foreground is Ptolemaeus; and the second largest is Herschel. Aboard the LM were astronauts Charles Conrad Jr., commander; and Alan L. Bean, lunar module pilot. Astronaut Richard R. Gordon Jr., command module pilot, remained with the CSM in lunar orbit while Conrad and Bean descended in the LM to explore the surface of the moon. Photo credit: NASA

  8. Lunar Wormbot: Design and Development of a Ground Base Robotic Tunneling Worm for Operation in Harsh Environments

    NASA Technical Reports Server (NTRS)

    Boyles, Charles; Eledui, Emory; Gasser, Ben; Johnson, Josh; Long, Jay " Ben" ; Toy, Nathan; Murphy, Gloria

    2011-01-01

    From 1969 to 1972, the National Aeronautics and Space Administration (NASA) sent Apollo missions to the moon to conduct various exploration experiment. A few of the missions were directed to the study and sampling of moon soil, otherwise known as lunar regolith. The extent of the sample acquisition was limited due to the astronauts' limited ability to penetrate the moon's surface to a depth greater than three meters. However. the samples obtained were sufficient enough to provide key information pertaining to lunar regolith material properties that would further assist in future exploration endeavors. Analysis of the collected samples showed that the properties of lunar regolith may lead to knowledge of processed materials that will be beneficial for future human exploration or colonization. However, almost 40 years after the last Apollo mission, limited infonnation is known about regions underneath the moon's surface. Future lunar missions will require hardware that possesses the ability to burrow to greater depths in order to collect samples for subsequent analysis. During the summer of 2010, a team (Dr. Jessica Gaskin, Michael Kuhlman. Blaze Sanders, and Lafe Zabowski) from the NASA Robotics Academy at Marshall Space Flight Center (MSFC) was given the task of designing a robot to function as a soil collection and analysis device. Working with the National Space Science and Technology Center (NSSTC), the team was able to propose an initial design, build a prototype, and test the various subsystems of the prototype to be known as the "Lunar Wormbot" (LW). The NASA/NSSTC team then transferred the project to a University of Alabama in Huntsville (UAH) Mechanical and Aerospace Engineering (MAE) senior design class for further development. The UAH team was to utilize the NASA Systems Engineering Engine Design Process in the continuance of the Lunar Wormbot project. This process was implemented in order to coordinate the efforts of the team and guide the design of the project to ensure a high quality product that met requirements within the academic year timeframe. When the transition from the NASA NSSTC team to the UAH team occurred in August 2010, the scope and requirements were provided to the UAH team. The main objective for the UAH team was to design and fabricate a robotic burrowing prototype using peristaltic or earthworm-like motion with the purpose of collecting soil samples. The team was tasked with the design of a sub-system of the LW called the locomotive, or active, segment. Through the design process, the team extensively reviewed the requirements and functions to be performed of the LW, which led to the proposal of a final design. The present paper provides the details of the development of the design up to and including the Critical Design Review (CDR) of the Lunar Wormbot. This document briefly describes thc overall system and its function but primarily focuses on the design and implementation of the locomotive segment. Content presented includes: general design and system functionality, technical drawings, system analysis, manufacturing methods, and general project costs.

  9. Lunar Surface Habitat Configuration Assessment: Methodology and Observations

    NASA Technical Reports Server (NTRS)

    Carpenter, Amanda

    2008-01-01

    The Lunar Habitat Configuration Assessment evaluated the major habitat approaches that were conceptually developed during the Lunar Architecture Team II Study. The objective of the configuration assessment was to identify desired features, operational considerations, and risks to derive habitat requirements. This assessment only considered operations pertaining to the lunar surface and did not consider all habitat conceptual designs developed. To examine multiple architectures, the Habitation Focus Element Team defined several adequate concepts which warranted the need for a method to assess the various configurations. The fundamental requirement designed into each concept included the functional and operational capability to support a crew of four on a six-month lunar surface mission; however, other conceptual aspects were diverse in comparison. The methodology utilized for this assessment consisted of defining figure of merits, providing relevant information, and establishing a scoring system. In summary, the assessment considered the geometric configuration of each concept to determine the complexity of unloading, handling, mobility, leveling, aligning, mating to other elements, and the accessibility to the lunar surface. In theory, the assessment was designed to derive habitat requirements, potential technology development needs and identify risks associated with living and working on the lunar surface. Although the results were more subjective opposed to objective, the assessment provided insightful observations for further assessments and trade studies of lunar surface habitats. This overall methodology and resulting observations will be describe in detail and illustrative examples will be discussed.

  10. High-Grading Lunar Samples

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Sellar, Glenn; Nunez, Jorge; Mosie, Andrea; Schwarz, Carol; Parker, Terry; Winterhalter, Daniel; Farmer, Jack

    2009-01-01

    Astronauts on long-duration lunar missions will need the capability to high-grade their samples to select the highest value samples for transport to Earth and to leave others on the Moon. We are supporting studies to define the necessary and sufficient measurements and techniques for high-grading samples at a lunar outpost. A glovebox, dedicated to testing instruments and techniques for high-grading samples, is in operation at the JSC Lunar Experiment Laboratory. A reference suite of lunar rocks and soils, spanning the full compositional range found in the Apollo collection, is available for testing in this laboratory. Thin sections of these samples are available for direct comparison. The Lunar Sample Compendium, on-line at http://www-curator.jsc.nasa.gov/lunar/compendium.cfm, summarizes previous analyses of these samples. The laboratory, sample suite, and Compendium are available to the lunar research and exploration community. In the first test of possible instruments for lunar sample high-grading, we imaged 18 lunar rocks and four soils from the reference suite using the Multispectral Microscopic Imager (MMI) developed by Arizona State University and JPL (see Farmer et. al. abstract). The MMI is a fixed-focus digital imaging system with a resolution of 62.5 microns/pixel, a field size of 40 x 32 mm, and a depth-of-field of approximately 5 mm. Samples are illuminated sequentially by 21 light emitting diodes in discrete wavelengths spanning the visible to shortwave infrared. Measurements of reflectance standards and background allow calibration to absolute reflectance. ENVI-based software is used to produce spectra for specific minerals as well as multi-spectral images of rock textures.

  11. Gravity: first measurement on the lunar surface.

    PubMed

    Nance, R L

    1969-10-17

    The gravity at the landing site of the first lunar-landing mission has been determined to be 162,821.680 milligals from data telemetered to earth by the lunar module on the lunar surface. The gravity was measured with a pulsed integrating pendulous accelerometer. These measurements were used to compute the gravity anomaly and radius at the landing site.

  12. Lunar Balance and Locomotion

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2008-01-01

    Balance control and locomotor patterns were altered in Apollo crewmembers on the lunar surface, owing, presumably, to a combination of sensory-motor adaptation during transit and lunar surface operations, decreased environmental affordances associated with the reduced gravity, and restricted joint mobility as well as altered center-of-gravity caused by the EVA pressure suits. Dr. Paloski will discuss these factors, as well as the potential human and mission impacts of falls and malcoordination during planned lunar sortie and outpost missions. Learning objectives: What are the potential impacts of postural instabilities on the lunar surface? CME question: What factors affect balance control and gait stability on the moon? Answer: Sensory-motor adaptation to the lunar environment, reduced mechanical and visual affordances, and altered biomechanics caused by the EVA suit.

  13. The Impact of Apollo-Era Microbiology on Human Space Flight

    NASA Technical Reports Server (NTRS)

    Elliott, T. F; Castro, V. A.; Bruce, R. J.; Pierson, D. L.

    2014-01-01

    The microbiota of crewmembers and the spacecraft environment contributes significant risk to crew health during space flight missions. NASA reduces microbial risk with various mitigation methods that originated during the Apollo Program and continued to evolve through subsequent programs: Skylab, Shuttle, and International Space Station (ISS). A quarantine of the crew and lunar surface samples, within the Lunar Receiving Laboratory following return from the Moon, was used to prevent contamination with unknown extraterrestrial organisms. The quarantine durations for the crew and lunar samples were 21 days and 50 days, respectively. A series of infections among Apollo crewmembers resulted in a quarantine before launch to limit exposure to infectious organisms. This Health Stabilization Program isolated the crew for 21 days before flight and was effective in reducing crew illness. After the program developed water recovery hardware for Apollo spacecraft, the 1967 National Academy of Science Space Science Board recommended the monitoring of potable water. NASA implemented acceptability limits of 10 colony forming units (CFU) per mL and the absence of viable E. coli, anaerobes, yeasts, and molds in three separate 150 mL aliquots. Microbiological investigations of the crew and spacecraft environment were conducted during the Apollo program, including the Apollo-Soyuz Test Project and Skylab. Subsequent space programs implemented microbial screening of the crew for pathogens and acceptability limits on spacecraft surfaces and air. Microbiology risk mitigation methods have evolved since the Apollo program. NASA cancelled the quarantine of the crew after return from the lunar surface, reduced the duration of the Health Stabilization Program; and implemented acceptability limits for spacecraft surfaces and air. While microbial risks were not a main focus of the early Mercury and Gemini programs, the extended duration of Apollo flights resulted in the increased scrutiny of impact of the space flight environment on crew health. The lessons learned during that era of space flight continue to impact microbiology risk mitigation in space programs today.

  14. Evolution of the Lunar Receiving Laboratory to the Astromaterial Sample Curation Facility: Technical Tensions Between Containment and Cleanliness, Between Particulate and Organic Cleanliness

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Zeigler, R. A.; Calaway, M. J.

    2016-01-01

    The Lunar Receiving Laboratory (LRL) was planned and constructed in the 1960s to support the Apollo program in the context of landing on the Moon and safely returning humans. The enduring science return from that effort is a result of careful curation of planetary materials. Technical decisions for the first facility included sample handling environment (vacuum vs inert gas), and instruments for making basic sample assessment, but the most difficult decision, and most visible, was stringent biosafety vs ultra-clean sample handling. Biosafety required handling of samples in negative pressure gloveboxes and rooms for containment and use of sterilizing protocols and animal/plant models for hazard assessment. Ultra-clean sample handling worked best in positive pressure nitrogen environment gloveboxes in positive pressure rooms, using cleanable tools of tightly controlled composition. The requirements for these two objectives were so different, that the solution was to design and build a new facility for specific purpose of preserving the scientific integrity of the samples. The resulting Lunar Curatorial Facility was designed and constructed, from 1972-1979, with advice and oversight by a very active committee comprised of lunar sample scientists. The high precision analyses required for planetary science are enabled by stringent contamination control of trace elements in the materials and protocols of construction (e.g., trace element screening for paint and flooring materials) and the equipment used in sample handling and storage. As other astromaterials, especially small particles and atoms, were added to the collections curated, the technical tension between particulate cleanliness and organic cleanliness was addressed in more detail. Techniques for minimizing particulate contamination in sample handling environments use high efficiency air filtering techniques typically requiring organic sealants which offgas. Protocols for reducing adventitious carbon on sample handling surfaces often generate particles. Further work is needed to achieve both minimal particulate and adventitious carbon contamination. This paper will discuss these facility topics and others in the historical context of nearly 50 years' curation experience for lunar rocks and regolith, meteorites, cosmic dust, comet particles, solar wind atoms, and asteroid particles at Johnson Space Center.

  15. Copernicus: Lunar surface mapper

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.; Anderson, Shaun D.

    1992-01-01

    The Utah State University (USU) 1991-92 Space Systems Design Team has designed a Lunar Surface Mapper (LSM) to parallel the development of the NASA Office of Exploration lunar initiatives. USU students named the LSM 'Copernicus' after the 16th century Polish astronomer, for whom the large lunar crater on the face of the moon was also named. The top level requirements for the Copernicus LSM are to produce a digital map of the lunar surface with an overall resolution of 12 meters (39.4 ft). It will also identify specified local surface features/areas to be mapped at higher resolutions by follow-on missions. The mapping operation will be conducted from a 300 km (186 mi) lunar-polar orbit. Although the entire surface should be mapped within six months, the spacecraft design lifetime will exceed one year with sufficient propellant planned for orbit maintenance in the anomalous lunar gravity field. The Copernicus LSM is a small satellite capable of reaching lunar orbit following launch on a Conestoga launch vehicle which is capable of placing 410 kg (900 lb) into translunar orbit. Upon orbital insertion, the spacecraft will weigh approximately 233 kg (513 lb). This rather severe mass constraint has insured attention to component/subsystem size and mass, and prevented 'requirements creep.' Transmission of data will be via line-of-sight to an earth-based receiving system.

  16. Apollo Lunar Sample Integration into Google Moon: A New Approach to Digitization

    NASA Technical Reports Server (NTRS)

    Dawson, Melissa D.; Todd, nancy S.; Lofgren, Gary E.

    2011-01-01

    The Google Moon Apollo Lunar Sample Data Integration project is part of a larger, LASER-funded 4-year lunar rock photo restoration project by NASA s Acquisition and Curation Office [1]. The objective of this project is to enhance the Apollo mission data already available on Google Moon with information about the lunar samples collected during the Apollo missions. To this end, we have combined rock sample data from various sources, including Curation databases, mission documentation and lunar sample catalogs, with newly available digital photography of rock samples to create a user-friendly, interactive tool for learning about the Apollo Moon samples

  17. Science Investigations Enabled by Magnetic Field Measurements on the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Chi, P. J.; Russell, C. T.; Strangeway, R. J.; Farrell, W. M.; Garrick-Bethell, I.; Taylor, P.

    2018-02-01

    We present examples of the geophysical and heliophysics investigations that can be performed with magnetic field measurements on the lunar surface enabled by the support/servicing of lunar landers from the Deep Space Gateway.

  18. CubeRovers for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Tallaksen, A. P.; Horchler, A. D.; Boirum, C.; Arnett, D.; Jones, H. L.; Fang, E.; Amoroso, E.; Chomas, L.; Papincak, L.; Sapunkov, O. B.; Whittaker, W. L.

    2017-10-01

    CubeRover is a 2-kg class of lunar rover that seeks to standardize and democratize surface mobility and science, analogous to CubeSats. This CubeRover will study in-situ lunar surface trafficability and descent engine blast ejecta phenomena.

  19. The origin of water in the primitive Moon as revealed by the lunar highlands samples

    NASA Astrophysics Data System (ADS)

    Barnes, Jessica J.; Tartèse, Romain; Anand, Mahesh; McCubbin, Francis M.; Franchi, Ian A.; Starkey, Natalie A.; Russell, Sara S.

    2014-03-01

    The recent discoveries of hydrogen (H) bearing species on the lunar surface and in samples derived from the lunar interior have necessitated a paradigm shift in our understanding of the water inventory of the Moon, which was previously considered to be a ‘bone-dry’ planetary body. Most sample-based studies have focused on assessing the water contents of the younger mare basalts and pyroclastic glasses, which are partial-melting products of the lunar mantle. In contrast, little attention has been paid to the inventory and source(s) of water in the lunar highlands rocks which are some of the oldest and most pristine materials available for laboratory investigations, and that have the potential to reveal the original history of water in the Earth-Moon system. Here, we report in-situ measurements of hydroxyl (OH) content and H isotopic composition of the mineral apatite from four lunar highlands samples (two norites, a troctolite, and a granite clast) collected during the Apollo missions. Apart from troctolite in which the measured OH contents in apatite are close to our analytical detection limit and its H isotopic composition appears to be severely compromised by secondary processes, we have measured up to ˜2200 ppm OH in the granite clast with a weighted average δD of ˜ -105±130‰, and up to ˜3400 ppm OH in the two norites (77215 and 78235) with weighted average δD values of -281±49‰ and -27±98‰, respectively. The apatites in the granite clast and the norites are characterised by higher OH contents than have been reported so far for highlands samples, and have H isotopic compositions similar to those of terrestrial materials and some carbonaceous chondrites, providing one of the strongest pieces of evidence yet for a common origin for water in the Earth-Moon system. In addition, the presence of water, of terrestrial affinity, in some samples of the earliest-formed lunar crust suggests that either primordial terrestrial water survived the aftermath of the putative impact-origin of the Moon or water was added to the Earth-Moon system by a common source immediately after the accretion of the Moon.

  20. Contributions of solar-wind induced potential sputtering to the lunar surface erosion rate and it's exosphere

    NASA Astrophysics Data System (ADS)

    Alnussirat, S. T.; Barghouty, A. F.; Edmunson, J. E.; Sabra, M. S.; Rickman, D. L.

    2018-04-01

    Sputtering of lunar regolith by solar-wind protons and heavy ions with kinetic energies of about 1 keV/amu is an important erosive process that affects the lunar surface and exosphere. It plays an important role in changing the chemical composition and thickness of the surface layer, and in introducing material into the exosphere. Kinetic sputtering is well modeled and understood, but understanding of mechanisms of potential sputtering has lagged behind. In this study we differentiate the contributions of potential sputtering from the standard (kinetic) sputtering in changing the chemical composition and erosion rate of the lunar surface. Also we study the contribution of potential sputtering in developing the lunar exosphere. Our results show that potential sputtering enhances the total characteristic sputtering erosion rate by about 44%, and reduces sputtering time scales by the same amount. Potential sputtering also introduces more material into the lunar exosphere.

Top