Science.gov

Sample records for lung density correction

  1. Conservative surgery and radiotherapy for stage I/II breast cancer using lung density correction: 10-year and 15-year results

    SciTech Connect

    Pierce, Lori J. . E-mail: ljpierce@umich.edu; Griffith, Kent A.; Hayman, James A.; Douglas, Kathye R.; Lichter, Allen S.

    2005-04-01

    Purpose: Radiotherapy (RT) planning for breast cancer using lung density correction improves dose homogeneity. Its use obviates the need for a medial wedge, thus reducing scatter to the opposite breast. Although lung density correction is used at many centers in planning for early-stage breast cancer, long-term results of local control and survival have not been reported. Since 1984, we have used lung density correction for dose calculations at the University of Michigan. We now present our 10-year and 15-year results. Methods and Materials: The records of 867 patients with Stage I/II breast cancer treated with breast-conserving surgery and RT with or without systemic therapy were reviewed. Tangential fields delivering 45-50 Gy to the whole breast calculated using lung density correction were used. A boost was added in 96.8% of patients for a total median dose of 61.8 Gy. Results: With a median follow-up of 6.6 years (range, 0.2-18.9 years), 5-, 10-, and 15-year actuarial rates of in-breast tumor recurrence as only first failure were 2.2%, 3.6%, and 5.4%, respectively. With surgical salvage, the 15-year cumulative rate of local control was 99.7%. Factors that significantly predicted for increased rate of local recurrence in multivariate analysis were age {<=} 35 years, hazard ratio 4.8 (95% confidence interval [CI], 1.6-13.9) p = 0.004; negative progesterone receptor status, hazard ratio 6.8 (95% CI, 2.3-20.3) p = < 0.001; negative estrogen receptor status, hazard ratio 4.0 (95% CI, 1.5-11.1) p = 0.007; and lack of adjuvant tamoxifen therapy, hazard ratio 7.7 (95% CI, 1.7-33.3) p = 0.008. Relapse-free survival rates at 5, 10, and 15 years were 84.6%, 70.8%, and 55.9%, respectively; breast cancer-specific survival rates were 94.4%, 90.5%, and 86.9%, respectively; and corresponding estimates for overall survival were 89.7%, 75.7%, and 61.3%. Conclusions: Use of lung density correction was associated with high rates of local control, relapse-free survival, breast

  2. Correction for ‘artificial’ electron disequilibrium due to cone-beam CT density errors: implications for on-line adaptive stereotactic body radiation therapy of lung

    NASA Astrophysics Data System (ADS)

    Disher, Brandon; Hajdok, George; Wang, An; Craig, Jeff; Gaede, Stewart; Battista, Jerry J.

    2013-06-01

    Cone-beam computed tomography (CBCT) has rapidly become a clinically useful imaging modality for image-guided radiation therapy. Unfortunately, CBCT images of the thorax are susceptible to artefacts due to scattered photons, beam hardening, lag in data acquisition, and respiratory motion during a slow scan. These limitations cause dose errors when CBCT image data are used directly in dose computations for on-line, dose adaptive radiation therapy (DART). The purpose of this work is to assess the magnitude of errors in CBCT numbers (HU), and determine the resultant effects on derived tissue density and computed dose accuracy for stereotactic body radiation therapy (SBRT) of lung cancer. Planning CT (PCT) images of three lung patients were acquired using a Philips multi-slice helical CT simulator, while CBCT images were obtained with a Varian On-Board Imaging system. To account for erroneous CBCT data, three practical correction techniques were tested: (1) conversion of CBCT numbers to electron density using phantoms, (2) replacement of individual CBCT pixel values with bulk CT numbers, averaged from PCT images for tissue regions, and (3) limited replacement of CBCT lung pixels values (LCT) likely to produce artificial lateral electron disequilibrium. For each corrected CBCT data set, lung SBRT dose distributions were computed for a 6 MV volume modulated arc therapy (VMAT) technique within the Philips Pinnacle treatment planning system. The reference prescription dose was set such that 95% of the planning target volume (PTV) received at least 54 Gy (i.e. D95). Further, we used the relative depth dose factor as an a priori index to predict the effects of incorrect low tissue density on computed lung dose in regions of severe electron disequilibrium. CT number profiles from co-registered CBCT and PCT patient lung images revealed many reduced lung pixel values in CBCT data, with some pixels corresponding to vacuum (-1000 HU). Similarly, CBCT data in a plastic lung

  3. Validity of lung correction algorithms

    SciTech Connect

    Tang, W.L.; Khan, F.M.; Gerbi, B.J.

    1986-09-01

    Our studies have compared the ''effective tissue--air ratio (TAR) method'' (ICRU Report No. 24), ''equivalent TAR method,'' and the ''generalized Batho method'' (currently used by the TP-11 computer treatment planning system) with measured results for different energy photon beams using two lung inhomogeneities to simulate a lateral chest field. Significant differences on the order of 3%--15% were found when comparing these various methods with measured values.

  4. Rangefinder Corrects for Air Density and Moisture

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.

    1982-01-01

    Proposed distance-measuring instrument compensates for variations in both dry atmospheric density and water-vapor content. Instrument would be expected to be more accurate than previous laser-ranging instruments. New rangefinder sends three signal trains to target: Two trains are at optical frequencies, and one is at a microwave frequency. All three signals are phase-locked.

  5. Improved correction for the tissue fraction effect in lung PET/CT imaging

    NASA Astrophysics Data System (ADS)

    Holman, Beverley F.; Cuplov, Vesna; Millner, Lynn; Hutton, Brian F.; Maher, Toby M.; Groves, Ashley M.; Thielemans, Kris

    2015-09-01

    Recently, there has been an increased interest in imaging different pulmonary disorders using PET techniques. Previous work has shown, for static PET/CT, that air content in the lung influences reconstructed image values and that it is vital to correct for this ‘tissue fraction effect’ (TFE). In this paper, we extend this work to include the blood component and also investigate the TFE in dynamic imaging. CT imaging and PET kinetic modelling are used to determine fractional air and blood voxel volumes in six patients with idiopathic pulmonary fibrosis. These values are used to illustrate best and worst case scenarios when interpreting images without correcting for the TFE. In addition, the fractional volumes were used to determine correction factors for the SUV and the kinetic parameters. These were then applied to the patient images. The kinetic parameters K1 and Ki along with the static parameter SUV were all found to be affected by the TFE with both air and blood providing a significant contribution to the errors. Without corrections, errors range from 34-80% in the best case and 29-96% in the worst case. In the patient data, without correcting for the TFE, regions of high density (fibrosis) appeared to have a higher uptake than lower density (normal appearing tissue), however this was reversed after air and blood correction. The proposed correction methods are vital for quantitative and relative accuracy. Without these corrections, images may be misinterpreted.

  6. Method and apparatus for measuring lung density by Compton backscattering

    DOEpatents

    Loo, B.W.; Goulding, F.S.

    1988-03-11

    The density of the lung of a patient suffering from pulmonary edema is monitored by irradiating the lung by a single collimated beam of monochromatic photons and measuring the energies of photons compton back-scattered from the lung by a single high-resolution, high-purity germanium detector. A compact system geometry and a unique data extraction scheme are utilized to minimize systematic errors due to the presence of the chestwall and multiple scattering. 11 figs., 1 tab.

  7. Method and apparatus for measuring lung density by Compton backscattering

    DOEpatents

    Loo, Billy W.; Goulding, Frederick S.

    1991-01-01

    The density of the lung of a patient suffering from pulmonary edema is monitored by irradiating the lung by a single collimated beam of monochromatic photons and measuring the energies of photons Compton backscattered from the lung by a single high-resolution, high-purity germanium detector. A compact system geometry and a unique data extraction scheme are utilized to monimize systematic errors due to the presence of the chestwall and multiple scattering.

  8. Ions in solution: Density corrected density functional theory (DC-DFT)

    SciTech Connect

    Kim, Min-Cheol; Sim, Eunji; Burke, Kieron

    2014-05-14

    Standard density functional approximations often give questionable results for odd-electron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to identify such cases, and how DC-DFT applies more generally. To illustrate, we calculate potential energy surfaces of HO·Cl{sup −} and HO·H{sub 2}O complexes using various common approximate functionals, with and without this density correction. Commonly used approximations yield wrongly shaped surfaces and/or incorrect minima when calculated self consistently, while yielding almost identical shapes and minima when density corrected. This improvement is retained even in the presence of implicit solvent.

  9. Adiabatic corrections to density functional theory energies and wave functions.

    PubMed

    Mohallem, José R; Coura, Thiago de O; Diniz, Leonardo G; de Castro, Gustavo; Assafrão, Denise; Heine, Thomas

    2008-09-25

    The adiabatic finite-nuclear-mass-correction (FNMC) to the electronic energies and wave functions of atoms and molecules is formulated for density-functional theory and implemented in the deMon code. The approach is tested for a series of local and gradient corrected density functionals, using MP2 results and diagonal-Born-Oppenheimer corrections from the literature for comparison. In the evaluation of absolute energy corrections of nonorganic molecules the LDA PZ81 functional works surprisingly better than the others. For organic molecules the GGA BLYP functional has the best performance. FNMC with GGA functionals, mainly BLYP, show a good performance in the evaluation of relative corrections, except for nonorganic molecules containing H atoms. The PW86 functional stands out with the best evaluation of the barrier of linearity of H2O and the isotopic dipole moment of HDO. In general, DFT functionals display an accuracy superior than the common belief and because the corrections are based on a change of the electronic kinetic energy they are here ranked in a new appropriate way. The approach is applied to obtain the adiabatic correction for full atomization of alcanes C(n)H(2n+2), n = 4-10. The barrier of 1 mHartree is approached for adiabatic corrections, justifying its insertion into DFT. PMID:18537228

  10. Self-interaction corrections in density functional theory

    SciTech Connect

    Tsuneda, Takao; Hirao, Kimihiko

    2014-05-14

    Self-interaction corrections for Kohn-Sham density functional theory are reviewed for their physical meanings, formulations, and applications. The self-interaction corrections get rid of the self-interaction error, which is the sum of the Coulomb and exchange self-interactions that remains because of the use of an approximate exchange functional. The most frequently used self-interaction correction is the Perdew-Zunger correction. However, this correction leads to instabilities in the electronic state calculations of molecules. To avoid these instabilities, several self-interaction corrections have been developed on the basis of the characteristic behaviors of self-interacting electrons, which have no two-electron interactions. These include the von Weizsäcker kinetic energy and long-range (far-from-nucleus) asymptotic correction. Applications of self-interaction corrections have shown that the self-interaction error has a serious effect on the states of core electrons, but it has a smaller than expected effect on valence electrons. This finding is supported by the fact that the distribution of self-interacting electrons indicates that they are near atomic nuclei rather than in chemical bonds.

  11. Self-interaction corrections in density functional theory

    NASA Astrophysics Data System (ADS)

    Tsuneda, Takao; Hirao, Kimihiko

    2014-05-01

    Self-interaction corrections for Kohn-Sham density functional theory are reviewed for their physical meanings, formulations, and applications. The self-interaction corrections get rid of the self-interaction error, which is the sum of the Coulomb and exchange self-interactions that remains because of the use of an approximate exchange functional. The most frequently used self-interaction correction is the Perdew-Zunger correction. However, this correction leads to instabilities in the electronic state calculations of molecules. To avoid these instabilities, several self-interaction corrections have been developed on the basis of the characteristic behaviors of self-interacting electrons, which have no two-electron interactions. These include the von Weizsäcker kinetic energy and long-range (far-from-nucleus) asymptotic correction. Applications of self-interaction corrections have shown that the self-interaction error has a serious effect on the states of core electrons, but it has a smaller than expected effect on valence electrons. This finding is supported by the fact that the distribution of self-interacting electrons indicates that they are near atomic nuclei rather than in chemical bonds.

  12. Empirical corrections for atmospheric neutral density derived from thermospheric models

    NASA Astrophysics Data System (ADS)

    Forootan, Ehsan; Kusche, Jürgen; Börger, Klaus; Henze, Christina; Löcher, Anno; Eickmans, Marius; Agena, Jens

    2016-04-01

    Accurately predicting satellite positions is a prerequisite for various applications from space situational awareness to precise orbit determination (POD). Given the fact that atmospheric drag represents a dominant influence on the position of low-Earth orbit objects, an accurate evaluation of thermospheric mass density is of great importance to low Earth orbital prediction. Over decades, various empirical atmospheric models have been developed to support computation of density changes within the atmosphere. The quality of these models is, however, restricted mainly due to the complexity of atmospheric density changes and the limited resolution of indices used to account for atmospheric temperature and neutral density changes caused by solar and geomagnetic activity. Satellite missions, such as Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE), provide a direct measurement of non-conservative accelerations, acting on the surface of satellites. These measurements provide valuable data for improving our knowledge of thermosphere density and winds. In this paper we present two empirical frameworks to correct model-derived neutral density simulations by the along-track thermospheric density measurements of CHAMP and GRACE. First, empirical scale factors are estimated by analyzing daily CHAMP and GRACE acceleration measurements and are used to correct the density simulation of Jacchia and MSIS (Mass-Spectrometer-Incoherent-Scatter) thermospheric models. The evolution of daily scale factors is then related to solar and magnetic activity enabling their prediction in time. In the second approach, principal component analysis (PCA) is applied to extract the dominant modes of differences between CHAMP/GRACE observations and thermospheric model simulations. Afterwards an adaptive correction procedure is used to account for long-term and high-frequency differences. We conclude the study by providing recommendations on possible

  13. Atmospheric Density Corrections Estimated from Fitted Drag Coefficients

    NASA Astrophysics Data System (ADS)

    McLaughlin, C. A.; Lechtenberg, T. F.; Mance, S. R.; Mehta, P.

    2010-12-01

    Fitted drag coefficients estimated using GEODYN, the NASA Goddard Space Flight Center Precision Orbit Determination and Geodetic Parameter Estimation Program, are used to create density corrections. The drag coefficients were estimated for Stella, Starlette and GFZ using satellite laser ranging (SLR) measurements; and for GEOSAT Follow-On (GFO) using SLR, Doppler, and altimeter crossover measurements. The data analyzed covers years ranging from 2000 to 2004 for Stella and Starlette, 2000 to 2002 and 2005 for GFO, and 1995 to 1997 for GFZ. The drag coefficient was estimated every eight hours. The drag coefficients over the course of a year show a consistent variation about the theoretical and yearly average values that primarily represents a semi-annual/seasonal error in the atmospheric density models used. The atmospheric density models examined were NRLMSISE-00 and MSIS-86. The annual structure of the major variations was consistent among all the satellites for a given year and consistent among all the years examined. The fitted drag coefficients can be converted into density corrections every eight hours along the orbit of the satellites. In addition, drag coefficients estimated more frequently can provide a higher frequency of density correction.

  14. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections

    SciTech Connect

    Chai, Jeng-Da; Head-Gordon, Martin

    2008-06-14

    We report re-optimization of a recently proposed long-range corrected (LC) hybrid density functionals [J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008)] to include empirical atom-atom dispersion corrections. The resulting functional, {omega}B97X-D yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions. Tests show that for non-covalent systems, {omega}B97X-D shows slight improvement over other empirical dispersion-corrected density functionals, while for covalent systems and kinetics, it performs noticeably better. Relative to our previous functionals, such as {omega}B97X, the new functional is significantly superior for non-bonded interactions, and very similar in performance for bonded interactions.

  15. Association between lung function and airway wall density

    NASA Astrophysics Data System (ADS)

    Leader, J. Ken; Zheng, Bin; Fuhrman, Carl R.; Tedrow, John; Park, Sang C.; Tan, Jun; Pu, Jiantao; Drescher, John M.; Gur, David; Sciurba, Frank C.

    2009-02-01

    Computed tomography (CT) examination is often used to quantify the relation between lung function and airway remodeling in chronic obstructive pulmonary disease (COPD). In this preliminary study, we examined the association between lung function and airway wall computed attenuation ("density") in 200 COPD screening subjects. Percent predicted FVC (FVC%), percent predicted FEV1 (FEV1%), and the ratio of FEV1 to FVC as a percentage (FEV1/FVC%) were measured post-bronchodilator. The apical bronchus of the right upper lobe was manually selected from CT examinations for evaluation. Total airway area, lumen area, wall area, lumen perimeter and wall area as fraction of the total airway area were computed. Mean HU (meanHU) and maximum HU (maxHU) values were computed across pixels assigned membership in the wall and with a HU value greater than -550. The Pearson correlation coefficients (PCC) between FVC%, FEV1%, and FEV1/FVC% and meanHU were -0.221 (p = 0.002), -0.175 (p = 0.014), and -0.110 (p = 0.123), respectively. The PCCs for maxHU were only significant for FVC%. The correlations between lung function and the airway morphometry parameters were slightly stronger compared to airway wall density. MeanHU was significantly correlated with wall area (PCC = 0.720), airway area (0.498) and wall area percent (0.611). This preliminary work demonstrates that airway wall density is associated with lung function. Although the correlations in our study were weaker than a recent study, airway wall density initially appears to be an important parameter in quantitative CT analysis of COPD.

  16. Semilocal density functional theory with correct surface asymptotics

    NASA Astrophysics Data System (ADS)

    Constantin, Lucian A.; Fabiano, Eduardo; Pitarke, J. M.; Della Sala, Fabio

    2016-03-01

    Semilocal density functional theory is the most used computational method for electronic structure calculations in theoretical solid-state physics and quantum chemistry of large systems, providing good accuracy with a very attractive computational cost. Nevertheless, because of the nonlocality of the exchange-correlation hole outside a metal surface, it was always considered inappropriate to describe the correct surface asymptotics. Here, we derive, within the semilocal density functional theory formalism, an exact condition for the imagelike surface asymptotics of both the exchange-correlation energy per particle and potential. We show that this condition can be easily incorporated into a practical computational tool, at the simple meta-generalized-gradient approximation level of theory. Using this tool, we also show that the Airy-gas model exhibits asymptotic properties that are closely related to those at metal surfaces. This result highlights the relevance of the linear effective potential model to the metal surface asymptotics.

  17. Is non-attenuation-corrected PET inferior to body attenuation-corrected PET or PET/CT in lung cancer?

    NASA Astrophysics Data System (ADS)

    Maintas, Dimitris; Houzard, Claire; Ksyar, Rachid; Mognetti, Thomas; Maintas, Catherine; Scheiber, Christian; Itti, Roland

    2006-12-01

    It is considered that one of the great strengths of PET imaging is the ability to correct for body attenuation. This enables better lesion uptake quantification and quality of PET images. The aim of this work is to compare the sensitivity of non-attenuation-corrected (NAC) PET images, the gamma photons (GPAC) and CT attenuation-corrected (CTAC) images in detecting and staging of lung cancer. We have studied 66 patients undergoing PET/CT examinations for detecting and staging NSC lung cancer. The patients were injected with 18-FDG; 5 MBq/kg under fasting conditions and examination was started 60 min later. Transmission data were acquired by a spiral CT X-ray tube and by gamma photons emitting Cs-137l source and were used for the patient body attenuation correction without correction for respiratory motion. In 55 of 66 patients we performed both attenuation correction procedures and in 11 patients only CT attenuation correction. In seven patients with solitary nodules PET was negative and in 59 patients with lung cancer PET/CT was positive for pulmonary or other localization. In the group of 55 patients we found 165 areas of focal increased 18-FDG uptake in NAC, 165 in CTAC and 164 in GPAC PET images.In the patients with only CTAC we found 58 areas of increased 18-FDG uptake on NAC and 58 areas lesions on CTAC. In the patients with positive PET we found 223 areas of focal increased uptake in NAC and 223 areas in CTAC images. The sensitivity of NAC was equal to the sensitivity of CTAC and GPAC images. The visualization of peripheral lesions was better in NAC images and the lesions were better localized in attenuation-corrected images. In three lesions of the thorax the localization was better in GPAC and fused images than in CTAC images.

  18. Motion artifacts occurring at the lung/diaphragm interface using 4D CT attenuation correction of 4D PET scans.

    PubMed

    Killoran, Joseph H; Gerbaudo, Victor H; Mamede, Marcelo; Ionascu, Dan; Park, Sang-June; Berbeco, Ross

    2011-11-15

    For PET/CT, fast CT acquisition time can lead to errors in attenuation correction, particularly at the lung/diaphragm interface. Gated 4D PET can reduce motion artifacts, though residual artifacts may persist depending on the CT dataset used for attenuation correction. We performed phantom studies to evaluate 4D PET images of targets near a density interface using three different methods for attenuation correction: a single 3D CT (3D CTAC), an averaged 4D CT (CINE CTAC), and a fully phase matched 4D CT (4D CTAC). A phantom was designed with two density regions corresponding to diaphragm and lung. An 8 mL sphere phantom loaded with 18F-FDG was used to represent a lung tumor and background FDG included at an 8:1 ratio. Motion patterns of sin(x) and sin4(x) were used for dynamic studies. Image data was acquired using a GE Discovery DVCT-PET/CT scanner. Attenuation correction methods were compared based on normalized recovery coefficient (NRC), as well as a novel quantity "fixed activity volume" (FAV) introduced in our report. Image metrics were compared to those determined from a 3D PET scan with no motion present (3D STATIC). Values of FAV and NRC showed significant variation over the motion cycle when corrected by 3D CTAC images. 4D CTAC- and CINE CTAC-corrected PET images reduced these motion artifacts. The amount of artifact reduction is greater when the target is surrounded by lower density material and when motion was based on sin4(x). 4D CTAC reduced artifacts more than CINE CTAC for most scenarios. For a target surrounded by water equivalent material, there was no advantage to 4D CTAC over CINE CTAC when using the sin(x) motion pattern. Attenuation correction using both 4D CTAC or CINE CTAC can reduce motion artifacts in regions that include a tissue interface such as the lung/diaphragm border. 4D CTAC is more effective than CINE CTAC at reducing artifacts in some, but not all, scenarios.

  19. Quantitative computed tomography of lung parenchyma in patients with emphysema: analysis of higher-density lung regions

    NASA Astrophysics Data System (ADS)

    Lederman, Dror; Leader, Joseph K.; Zheng, Bin; Sciurba, Frank C.; Tan, Jun; Gur, David

    2011-03-01

    Quantitative computed tomography (CT) has been widely used to detect and evaluate the presence (or absence) of emphysema applying the density masks at specific thresholds, e.g., -910 or -950 Hounsfield Unit (HU). However, it has also been observed that subjects with similar density-mask based emphysema scores could have varying lung function, possibly indicating differences of disease severity. To assess this possible discrepancy, we investigated whether density distribution of "viable" lung parenchyma regions with pixel values > -910 HU correlates with lung function. A dataset of 38 subjects, who underwent both pulmonary function testing and CT examinations in a COPD SCCOR study, was assembled. After the lung regions depicted on CT images were automatically segmented by a computerized scheme, we systematically divided the lung parenchyma into different density groups (bins) and computed a number of statistical features (i.e., mean, standard deviation (STD), skewness of the pixel value distributions) in these density bins. We then analyzed the correlations between each feature and lung function. The correlation between diffusion lung capacity (DLCO) and STD of pixel values in the bin of -910HU <= PV < -750HU was -0.43, as compared with a correlation of -0.49 obtained between the post-bronchodilator ratio (FEV1/FVC) measured by the forced expiratory volume in 1 second (FEV1) dividing the forced vital capacity (FVC) and the STD of pixel values in the bin of -1024HU <= PV < -910HU. The results showed an association between the distribution of pixel values in "viable" lung parenchyma and lung function, which indicates that similar to the conventional density mask method, the pixel value distribution features in "viable" lung parenchyma areas may also provide clinically useful information to improve assessments of lung disease severity as measured by lung functional tests.

  20. Metallophilic interactions from dispersion-corrected density-functional theory.

    PubMed

    Otero-de-la-Roza, Alberto; Mallory, Joel D; Johnson, Erin R

    2014-05-14

    In this article, we present the first comprehensive study of metallophilic (aurophilic) interactions using dispersion-corrected density-functional theory. Dispersion interactions (an essential component of metallophilicity) are treated using the exchange-hole dipole moment (XDM) model. By comparing against coupled-cluster benchmark calculations on simple dimers, we show that LC-ωPBE-XDM is a viable functional to study interactions between closed-shell transition metals and that it performs uniformly better than second-order Møller-Plesset theory, the basic computational technique used in previous works. We apply LC-ωPBE-XDM to address several open questions regarding metallophilicity, such as the interplay between dispersion and relativistic effects, the interaction strength along group 11, the additivity of homo- and hetero-metallophilic effects, the stability of [E(AuPH3)4](+) cations (E = N, P, As, Sb), and the role of metallophilic effects in crystal packing. We find that relativistic effects explain the prevalence of aurophilicity not by stabilizing metal-metal contacts, but by preventing gold from forming ionic structures involving bridge anions (which are otherwise common for Ag and Cu) as a result of the increased electron affinity of the metal. Dispersion effects are less important than previously assumed and their stabilization contribution is relatively independent of the metal.

  1. Metallophilic interactions from dispersion-corrected density-functional theory

    NASA Astrophysics Data System (ADS)

    Otero-de-la-Roza, Alberto; Mallory, Joel D.; Johnson, Erin R.

    2014-05-01

    In this article, we present the first comprehensive study of metallophilic (aurophilic) interactions using dispersion-corrected density-functional theory. Dispersion interactions (an essential component of metallophilicity) are treated using the exchange-hole dipole moment (XDM) model. By comparing against coupled-cluster benchmark calculations on simple dimers, we show that LC-ωPBE-XDM is a viable functional to study interactions between closed-shell transition metals and that it performs uniformly better than second-order Møller-Plesset theory, the basic computational technique used in previous works. We apply LC-ωPBE-XDM to address several open questions regarding metallophilicity, such as the interplay between dispersion and relativistic effects, the interaction strength along group 11, the additivity of homo- and hetero-metallophilic effects, the stability of [E(AuPH3)4]+ cations (E = N, P, As, Sb), and the role of metallophilic effects in crystal packing. We find that relativistic effects explain the prevalence of aurophilicity not by stabilizing metal-metal contacts, but by preventing gold from forming ionic structures involving bridge anions (which are otherwise common for Ag and Cu) as a result of the increased electron affinity of the metal. Dispersion effects are less important than previously assumed and their stabilization contribution is relatively independent of the metal.

  2. Corrections and improvements of lung imaging under Optical Coherence Tomography (OCT)

    NASA Astrophysics Data System (ADS)

    Golabchi, Ali

    Visualization and correct assessment of alveolar volume via intact lung imaging is important to study and assess respiratory mechanics. Optical Coherence Tomography (OCT), a real time imaging technique based on near-infrared interferometry, can image several layers of distal alveoli in intact, ex-vivo lung tissue. However optical effects associated with heterogeneity of lung tissue, including the refraction caused by air-tissue interfaces along alveoli and duct walls, and changes in speed of light as it travels through the tissue, result in inaccurate measurement of alveolar volume. Experimentally such errors have been difficult to analyze because of lack of ''ground truth,'' as the lung has a unique microstructure of liquid-coated thin walls surrounding relatively large airspaces, which is difficult to model with synthetic foams. In addition, both lung and foams contain airspaces of highly irregular shape, further complicating quantitative measurement of optical artifacts and correction. To address this we have adapted the Bragg-Nye bubble raft, a crystalline two-dimensional arrangement of elements similar in geometry to alveoli (up to several hundred um in diameter with thin walls) as an inflated lung phantom in order to understand, analyze and correct these errors. By applying exact optical ray tracing on OCT images of the bubble raft, the errors are predicted and corrected. The results are validated by imaging the bubble raft with OCT from one edge and with a charged coupled device (CCD) camera in transillumination from top, providing ground truth for the OCT. We also developed a tomographic technique based on incoherent summation of multiple angle-diverse images by utilizing image registration to increase our depth of imaging and our results were validated by utilizing the inflated lung phantom. In this thesis also, an experimental apparatus for macro-scale mechanical probing of lung with in-situ micro-scale imaging of alveolar deformation was analyzed

  3. A Method for Lung Boundary Correction Using Split Bregman Method and Geometric Active Contour Model

    PubMed Central

    Zhang, Jianxun; Liang, Rui

    2015-01-01

    In order to get the extracted lung region from CT images more accurately, a model that contains lung region extraction and edge boundary correction is proposed. Firstly, a new edge detection function is presented with the help of the classic structure tensor theory. Secondly, the initial lung mask is automatically extracted by an improved active contour model which combines the global intensity information, local intensity information, the new edge information, and an adaptive weight. It is worth noting that the objective function of the improved model is converted to a convex model, which makes the proposed model get the global minimum. Then, the central airway was excluded according to the spatial context messages and the position relationship between every segmented region and the rib. Thirdly, a mesh and the fractal theory are used to detect the boundary that surrounds the juxtapleural nodule. Finally, the geometric active contour model is employed to correct the detected boundary and reinclude juxtapleural nodules. We also evaluated the performance of the proposed segmentation and correction model by comparing with their popular counterparts. Efficient computing capability and robustness property prove that our model can correct the lung boundary reliably and reproducibly. PMID:26089976

  4. A Method for Lung Boundary Correction Using Split Bregman Method and Geometric Active Contour Model.

    PubMed

    Feng, Changli; Zhang, Jianxun; Liang, Rui

    2015-01-01

    In order to get the extracted lung region from CT images more accurately, a model that contains lung region extraction and edge boundary correction is proposed. Firstly, a new edge detection function is presented with the help of the classic structure tensor theory. Secondly, the initial lung mask is automatically extracted by an improved active contour model which combines the global intensity information, local intensity information, the new edge information, and an adaptive weight. It is worth noting that the objective function of the improved model is converted to a convex model, which makes the proposed model get the global minimum. Then, the central airway was excluded according to the spatial context messages and the position relationship between every segmented region and the rib. Thirdly, a mesh and the fractal theory are used to detect the boundary that surrounds the juxtapleural nodule. Finally, the geometric active contour model is employed to correct the detected boundary and reinclude juxtapleural nodules. We also evaluated the performance of the proposed segmentation and correction model by comparing with their popular counterparts. Efficient computing capability and robustness property prove that our model can correct the lung boundary reliably and reproducibly. PMID:26089976

  5. Refractive errors and corrections for OCT images in an inflated lung phantom

    PubMed Central

    Golabchi, Ali; Faust, J.; Golabchi, F. N.; Brooks, D. H.; Gouldstone, A.; DiMarzio, C. A.

    2012-01-01

    Visualization and correct assessment of alveolar volume via intact lung imaging is important to study and assess respiratory mechanics. Optical Coherence Tomography (OCT), a real-time imaging technique based on near-infrared interferometry, can image several layers of distal alveoli in intact, ex vivo lung tissue. However optical effects associated with heterogeneity of lung tissue, including the refraction caused by air-tissue interfaces along alveoli and duct walls, and changes in speed of light as it travels through the tissue, result in inaccurate measurement of alveolar volume. Experimentally such errors have been difficult to analyze because of lack of ’ground truth,’ as the lung has a unique microstructure of liquid-coated thin walls surrounding relatively large airspaces, which is difficult to model with cellular foams. In addition, both lung and foams contain airspaces of highly irregular shape, further complicating quantitative measurement of optical artifacts and correction. To address this we have adapted the Bragg-Nye bubble raft, a crystalline two-dimensional arrangement of elements similar in geometry to alveoli (up to several hundred μm in diameter with thin walls) as an inflated lung phantom in order to understand, analyze and correct these errors. By applying exact optical ray tracing on OCT images of the bubble raft, the errors are predicted and corrected. The results are validated by imaging the bubble raft with OCT from one edge and with a charged coupled device (CCD) camera in transillumination from top, providing ground truth for the OCT. PMID:22567599

  6. Trends in corrected lung cancer mortality rates in Brazil and regions

    PubMed Central

    Malta, Deborah Carvalho; de Abreu, Daisy Maria Xavier; de Moura, Lenildo; Lana, Gustavo C; Azevedo, Gulnar; França, Elisabeth

    2016-01-01

    ABSTRACT OBJECTIVE To describe the trend in cancer mortality rates in Brazil and regions before and after correction for underreporting of deaths and redistribution of ill-defined and nonspecific causes. METHODS The study used data of deaths from lung cancer among the population aged from 30 to 69 years, notified to the Mortality Information System between 1996 and 2011, corrected for underreporting of deaths, non-registered sex and age , and causes with ill-defined or garbage codes according to sex, age, and region. Standardized rates were calculated by age for raw and corrected data. An analysis of time trend in lung cancer mortality was carried out using the regression model with autoregressive errors. RESULTS Lung cancer in Brazil presented higher rates among men compared to women, and the South region showed the highest death risk in 1996 and 2011. Mortality showed a trend of reduction for males and increase for women. CONCLUSIONS Lung cancer in Brazil presented different distribution patterns according to sex, with higher rates among men and a reduction in the mortality trend for men and increase for women. PMID:27355467

  7. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, B.L.

    1998-10-27

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver > 4kW/cm{sup 2} of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources. 13 figs.

  8. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, Barry L.

    1998-01-01

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  9. SU-E-T-101: Determination and Comparison of Correction Factors Obtained for TLDs in Small Field Lung Heterogenous Phantom Using Acuros XB and EGSnrc

    SciTech Connect

    Soh, R; Lee, J; Harianto, F

    2014-06-01

    Purpose: To determine and compare the correction factors obtained for TLDs in 2 × 2cm{sup 2} small field in lung heterogenous phantom using Acuros XB (AXB) and EGSnrc. Methods: This study will simulate the correction factors due to the perturbation of TLD-100 chips (Harshaw/Thermoscientific, 3 × 3 × 0.9mm{sup 3}, 2.64g/cm{sup 3}) in small field lung medium for Stereotactic Body Radiation Therapy (SBRT). A physical lung phantom was simulated by a 14cm thick composite cork phantom (0.27g/cm{sup 3}, HU:-743 ± 11) sandwiched between 4cm thick Plastic Water (CIRS,Norfolk). Composite cork has been shown to be a good lung substitute material for dosimetric studies. 6MV photon beam from Varian Clinac iX (Varian Medical Systems, Palo Alto, CA) with field size 2 × 2cm{sup 2} was simulated. Depth dose profiles were obtained from the Eclipse treatment planning system Acuros XB (AXB) and independently from DOSxyznrc, EGSnrc. Correction factors was calculated by the ratio of unperturbed to perturbed dose. Since AXB has limitations in simulating actual material compositions, EGSnrc will also simulate the AXB-based material composition for comparison to the actual lung phantom. Results: TLD-100, with its finite size and relatively high density, causes significant perturbation in 2 × 2cm{sup 2} small field in a low lung density phantom. Correction factors calculated by both EGSnrc and AXB was found to be as low as 0.9. It is expected that the correction factor obtained by EGSnrc wlll be more accurate as it is able to simulate the actual phantom material compositions. AXB have a limited material library, therefore it only approximates the composition of TLD, Composite cork and Plastic water, contributing to uncertainties in TLD correction factors. Conclusion: It is expected that the correction factors obtained by EGSnrc will be more accurate. Studies will be done to investigate the correction factors for higher energies where perturbation may be more pronounced.

  10. An in-depth Monte Carlo study of lateral electron disequilibrium for small fields in ultra-low density lung: implications for modern radiation therapy

    NASA Astrophysics Data System (ADS)

    Disher, Brandon; Hajdok, George; Gaede, Stewart; Battista, Jerry J.

    2012-03-01

    Modern radiation therapy techniques such as intensity-modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) use tightly conformed megavoltage x-ray fields to irradiate a tumour within lung tissue. For these conditions, lateral electron disequilibrium (LED) may occur, which systematically perturbs the dose distribution within tumour and nearby lung tissues. The goal of this work is to determine the combination of beam and lung density parameters that cause significant LED within and near the tumour. The Monte Carlo code DOSXYZnrc (National Research Council of Canada, Ottawa, ON) was used to simulate four 20 × 20 × 25 cm3 water-lung-water slab phantoms, which contained lung tissue only, or one of three different centrally located small tumours (sizes: 1 × 1 × 1, 3 × 3 × 3, 5 × 5 × 5 cm3). Dose calculations were performed using combinations of six beam energies (Co-60 up to 18 MV), five field sizes (1 × 1 cm2 up to 15 × 15 cm2), and 12 lung densities (0.001 g cm-3 up to 1 g cm-3) for a total of 1440 simulations. We developed the relative depth-dose factor (RDDF), which can be used to characterize the extent of LED (RDDF <1.0). For RDDF <0.7 severe LED occurred, and both lung and tumour dose were drastically reduced. For example, a 6 MV (3 × 3 cm2) field was used to irradiate a 1 cm3 tumour embedded in lung with ultra-low density of 0.001 g cm-3 (RDDF = 0.2). Dose in up-stream lung and tumour centre were reduced by as much as 80% with respect to the water density calculation. These reductions were worse for smaller tumours irradiated with high energy beams, small field sizes, and low lung density. In conclusion, SBRT trials based on dose calculations in homogeneous tissue are misleading as they do not reflect the actual dosimetric effects due to LED. Future clinical trials should only use dose calculation engines that can account for electron scatter, with special attention given to patients with low lung density (i.e. emphysema

  11. Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure.

    PubMed

    Gattinoni, L; Pelosi, P; Vitale, G; Pesenti, A; D'Andrea, L; Mascheroni, D

    1991-01-01

    Ten patients with parenchymal acute respiratory failure (ARF) underwent computed tomography (CT) scans while in the supine and prone positions. At equal levels of positive end-expiratory pressure, the authors measured the changes of CT density in dorsal and ventral basilar lung regions induced by the change of position as well as alterations of gas exchange. The level of venous admixture did not change with body position. The CT scan image of each lung was fractionated into ten levels from dorsal to ventral, each constituting 10% of the lung height. After measuring each lung fraction, the volume, the average CT number, its frequency distribution, and the expected normal value, we computed the lung tissue mass, the excess tissue mass, and the fraction of normally inflated tissue (excess tissue mass = amount of "tissue," which includes edema, cells, and blood in excess of the expected normal value). We also estimated the superimposed hydrostatic pressure on each lung region. We found that the excess lung tissue mass is independent of position. However, in patients in the supine position, lung CT density increased and regional inflation decreased from ventral to dorsal, suggesting progressive deflation of gas-containing alveoli along the gravity gradient. A similar ventral-dorsal deflation pattern occurred within 10 min in patients in the prone position. We conclude that the lung in patients with ARF behaves like an elastic body with a diffusely increased mass; dependent lung regions are compressed by the pressure of overlying structures.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Thermal Corrections to Density Functional Simulations of Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Smith, Justin; Pribram-Jones, Aurora; Burke, Kieron

    Present density functional calculations of warm dense matter often use the Mermin-Kohn-Sham (MKS) scheme at finite temperature, but employ ground-state approximations to the exchange-correlation (XC) free energy. In the simplest solvable non-trivial model, an asymmetric Hubbard dimer, we calculate the exact many-body energies, the exact Mermin-Kohn-Sham functionals for this system, and extract the exact XC free energy. For moderate temperatures and weak correlation, we show this approximation is excellent, but fails for stronger correlations. Additionally, we use this system to test various conditions that must be satisfied.

  13. Dosimetric errors during treatment of centrally located lung tumors with stereotactic body radiation therapy: Monte Carlo evaluation of tissue inhomogeneity corrections

    SciTech Connect

    Altunbas, Cem Kavanagh, Brian; Dzingle, Wayne; Stuhr, Kelly; Gaspar, Laurie; Miften, Moyed

    2013-01-01

    Early experience with stereotactic body radiation therapy (SBRT) of centrally located lung tumors indicated increased rate of high-grade toxicity in the lungs. These clinical results were based on treatment plans that were computed using pencil beam–like algorithms and without tissue inhomogeneity corrections. In this study, we evaluated the dosimetric errors in plans with and without inhomogeneity corrections and with planning target volumes (PTVs) that were within the zone of the proximal bronchial tree (BT). For 10 patients, the PTV, lungs, and sections of the BT either inside or within 2 cm of the PTV were delineated. Two treatment plans were generated for each patient using the following dose-calculation methods: (1) pencil beam (PB) algorithm without inhomogeneity correction (IC) (PB − IC) and (2) PB with inhomogeneity correction (PB + IC). Both plans had identical beam geometry but different beam segment shapes and monitor units (MU) to achieve similar conformal dose coverage of PTV. To obtain the baseline dose distributions, each plan was recalculated using a Monte Carlo (MC) algorithm by keeping MUs the same in the respective plans. The median maximum dose to the proximal BT and PTV dose coverage in the PB + IC plans were overestimated by 8% and 11%, respectively. However, the median maximum dose to the proximal BT and PTV dose coverage in PB − IC plans were underestimated by 15% and 9%. Similar trends were observed in low-dose regions of the lung within the irradiated volume. Our study indicates that dosimetric bias introduced by unit tissue density plans cannot be characterized as underestimation or overestimation of dose without taking the tumor location into account. This issue should be considered when analyzing clinical toxicity data from early lung SBRT trials that utilized unit tissue density for dose calculations.

  14. Communication: Self-interaction correction with unitary invariance in density functional theory

    SciTech Connect

    Pederson, Mark R.; Ruzsinszky, Adrienn; Perdew, John P.

    2014-03-28

    Standard spin-density functionals for the exchange-correlation energy of a many-electron ground state make serious self-interaction errors which can be corrected by the Perdew-Zunger self-interaction correction (SIC). We propose a size-extensive construction of SIC orbitals which, unlike earlier constructions, makes SIC computationally efficient, and a true spin-density functional. The SIC orbitals are constructed from a unitary transformation that is explicitly dependent on the non-interacting one-particle density matrix. When this SIC is applied to the local spin-density approximation, improvements are found for the atomization energies of molecules.

  15. Lung ultrasound associated to capnography to verify correct endotracheal tube positioning in prehospital.

    PubMed

    Brun, Pierre-Marie; Bessereau, Jacques; Cazes, Nicolas; Querellou, Emgan; Chenaitia, Hichem

    2012-11-01

    Endotracheal intubation is the “gold standard” of the control of airway patency but is associated with nonnegligible morbidity rates. A rapid detection of esophageal intubation is essential. Capnography is considered the reference technique for correct endotracheal tube (ETT) positioning confirmation. However, capnography can provide false-positive and false-negative results in some situations. Recently, the ultrasound assessment has been studied for confirming ETT placement. Despite of few trials, the ultrasound procedure may enhance physician confidence and decision making in airway management. We report the case of a 52-year-old female patient presenting cardiorespiratory failure. During cardiopulmonary resuscitation, there was a sudden absence of end-tidal CO2 capnographic detection. Correct tube positioning could not be ascertained by auscultation because the environment had become extremely noisy. However, TM-mode (Time Motion--mode) lung ultrasound revealed bilateral pleural sliding during insufflation with the self-filling balloon, thus confirming correct ETT positioning.

  16. CT acquisition technique and quantitative analysis of the lung parenchyma: variability and corrections

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Leader, J. K.; Coxson, Harvey O.; Scuirba, Frank C.; Fuhrman, Carl R.; Balkan, Arzu; Weissfeld, Joel L.; Maitz, Glenn S.; Gur, David

    2006-03-01

    The fraction of lung voxels below a pixel value "cut-off" has been correlated with pathologic estimates of emphysema. We performed a "standard" quantitative CT (QCT) lung analysis using a -950 HU cut-off to determine the volume fraction of emphysema (below the cut-off) and a "corrected" QCT analysis after removing small group (5 and 10 pixels) of connected pixels ("blobs") below the cut-off. CT examinations two dataset of 15 subjects each with a range of visible emphysema and pulmonary obstruction were acquired at "low-dose and conventional dose reconstructed using a high-spatial frequency kernel at 2.5 mm section thickness for the same subject. The "blob" size (i.e., connected-pixels) removed was inversely related to the computed fraction of emphysema. The slopes of emphysema fraction versus blob size were 0.013, 0.009, and 0.005 for subjects with both no emphysema and no pulmonary obstruction, moderate emphysema and pulmonary obstruction, and severe emphysema and severe pulmonary obstruction, respectively. The slopes of emphysema fraction versus blob size were 0.008 and 0.006 for low-dose and conventional CT examinations, respectively. The small blobs of pixels removed are most likely CT image artifacts and do not represent actual emphysema. The magnitude of the blob correction was appropriately associated with COPD severity. The blob correction appears to be applicable to QCT analysis in low-dose and conventional CT exams.

  17. Impact of tissue heterogeneity corrections in stereotactic body radiation therapy treatment plans for lung cancer.

    PubMed

    Herman, Tania De La Fuente; Gabrish, Heather; Herman, Terence S; Vlachaki, Maria T; Ahmad, Salahuddin

    2010-07-01

    This study aims at evaluating the impact of tissue heterogeneity corrections on dosimetry of stereotactic body radiation therapy treatment plans. Four-dimensional computed tomography data from 15 low stage non-small cell lung cancer patients was used. Treatment planning and dose calculations were done using pencil beam convolution algorithm of Varian Eclipse system with Modified Batho Power Law for tissue heterogeneity. Patient plans were generated with 6 MV co-planar non-opposing four to six field beams optimized with tissue heterogeneity corrections to deliver a prescribed dose of 60 Gy in three fractions to at least 95% of the planning target volume, keeping spinal cord dose <10 Gy. The same plans were then regenerated without heterogeneity correction by recalculating previously optimized treatment plans keeping identical beam arrangements, field fluences and monitor units. Compared with heterogeneity corrected plans, the non-corrected plans had lower average minimum, mean, and maximum tumor doses by 13%, 8%, and 6% respectively. The results indicate that tissue heterogeneity is an important determinant of dosimetric optimization of SBRT plans.

  18. Respiratory effort correction strategies to improve the reproducibility of lung expansion measurements

    SciTech Connect

    Du, Kaifang; Reinhardt, Joseph M.; Christensen, Gary E.; Ding, Kai; Bayouth, John E.

    2013-12-15

    Purpose: Four-dimensional computed tomography (4DCT) can be used to make measurements of pulmonary function longitudinally. The sensitivity of such measurements to identify change depends on measurement uncertainty. Previously, intrasubject reproducibility of Jacobian-based measures of lung tissue expansion was studied in two repeat prior-RT 4DCT human acquisitions. Difference in respiratory effort such as breathing amplitude and frequency may affect longitudinal function assessment. In this study, the authors present normalization schemes that correct ventilation images for variations in respiratory effort and assess the reproducibility improvement after effort correction.Methods: Repeat 4DCT image data acquired within a short time interval from 24 patients prior to radiation therapy (RT) were used for this analysis. Using a tissue volume preserving deformable image registration algorithm, Jacobian ventilation maps in two scanning sessions were computed and compared on the same coordinate for reproducibility analysis. In addition to computing the ventilation maps from end expiration to end inspiration, the authors investigated the effort normalization strategies using other intermediated inspiration phases upon the principles of equivalent tidal volume (ETV) and equivalent lung volume (ELV). Scatter plots and mean square error of the repeat ventilation maps and the Jacobian ratio map were generated for four conditions: no effort correction, global normalization, ETV, and ELV. In addition, gamma pass rate was calculated from a modified gamma index evaluation between two ventilation maps, using acceptance criterions of 2 mm distance-to-agreement and 5% ventilation difference.Results: The pattern of regional pulmonary ventilation changes as lung volume changes. All effort correction strategies improved reproducibility when changes in respiratory effort were greater than 150 cc (p < 0.005 with regard to the gamma pass rate). Improvement of reproducibility was

  19. Subplasmalemmal linear densities in cells of the mononuclear phagocyte system in lung.

    PubMed Central

    Kawanami, O.; Ferrans, V. J.; Crystal, R. G.

    1980-01-01

    The presence of subplasmalemmal linear densities in cells of the mononuclear phagocyte system was investigated in pulmonary biopsies from 33 patients with fibrotic lung disorders. Subplasmalemmal linear densities, consisting of a thin layer of electron-dense material immediately subjacent to the inner leaflet of the plasma membrane, were found in 30 of the 33 patients, including each of 6 patients with pulmonary sarcoidosis, 18 of 19 patients with idiopathic pulmonary fibrosis, 4 of 5 patients with collagen-vascular diseases, 1 patient with pulmonary lymphangioleiomyomatosis, and 1 patient with marked interstitial pulmonary fibrosis associated with squamous cell carcinoma of the lung. Subplasmalemmal linear densities were found in epithelioid cells, macrophages, and giant cells in granulomas in the 6 patients with sarcoidosis and in alveolar macrophages in 4 of these patients. In patients with other fibrotic lung disorders, subplasmalemmal linear densities were limited in distribution to interstitial and alveolar macrophages. In all patients with sarcoidosis some of the subplasmalemmal linear densities of adjacent mononuclear phagocytes, particularly of those in granulomas, were paired and formed specialized intercellular junctions. Such junctions also were observed in macrophages in 10 of the patients with other fibrotic lung disorders. The junctions formed by subplasmalemmal linear densities differed from other types of junctional structures. Subplasmalemmal linear densities appear to function in 1) the binding of action filalar junctions, which may contribute to the immobilization of mononuclear phagocytes in granulomas and alveolar lumens. Images Figures 5 and 66 Figure 7 figure 1 Figure 2 Figure 3 Figure 4 PMID:7190361

  20. Study of density and stability of a lung-equivalent gel

    NASA Astrophysics Data System (ADS)

    Claeys, Carolien; de Deene, Yves; Truyens, Bart; de Wagter, Carlos

    2006-12-01

    Gel dosimetry is a useful tool for the verification of radiation treatments in water-equivalent tissues. In order to extend the application of gel dosimetry to the lung, the density of the dosimeter should be reduced. Some methods have been proposed for the fabrication of low-density gels. Major challenges in the fabrication of these gel dosimeters are to achieve a density that equals the electron-density of lung tissue and to obtain an acceptable homogeneity. Both polymer and Fricke gel formulations have been used as basic chemical compositions for low-density gel dosimeters. To reduce the density, two approaches have been suggested: (1) Styrofoam beads can be added to the gel or (2) the gel can be beaten until a foam is obtained. In this study we followed the latter method and added sodium-dodecyl-sulphate (SDS) as a surfactant to increase the surface tension of the gel.

  1. SU-E-T-129: Dosimetric Evaluation of the Impact of Density Correction On Dose Calculation of Breast Cancer Treatment: A Study Based On RTOG 1005 Cases

    SciTech Connect

    Li, J; Yu, Y

    2014-06-01

    Purpose: RTOG 1005 requires density correction in the dose calculation of breast cancer radiation treatment. The aim of the study was to evaluate the impact of density correction on the dose calculation. Methods: Eight cases were studied, which were planned on an XiO treatment planning system with pixel-by-pixel density correction using a superposition algorithm, following RTOG 1005 protocol requirements. Four were protocol Arm 1 (standard whole breast irradiation with sequential boost) cases and four were Arm 2 (hypofractionated whole breast irradiation with concurrent boost) cases. The plans were recalculated with the same monitor units without density correction. Dose calculations with and without density correction were compared. Results: Results of Arm 1 and Arm 2 cases showed similar trends in the comparison. The average differences between the calculations with and without density correction (difference = Without - With) among all the cases were: -0.82 Gy (range: -2.65∼−0.18 Gy) in breast PTV Eval D95, −0.75 Gy (range: −1.23∼0.26 Gy) in breast PTV Eval D90, −1.00 Gy (range: −2.46∼−0.29 Gy) in lumpectomy PTV Eval D95, −0.78 Gy (range: −1.30∼0.11 Gy) in lumpectomy PTV Eval D90, −0.43% (range: −0.95∼−0.14%) in ipsilateral lung V20, −0.81% (range: −1.62∼−0.26%) in V16, −1.95% (range: −4.13∼−0.84%) in V10, −2.64% (−5.55∼−1.04%) in V8, −4.19% (range: −6.92∼−1.81%) in V5, and −4.95% (range: −7.49∼−2.01%) in V4, respectively. The differences in other normal tissues were minimal. Conclusion: The effect of density correction was observed in breast target doses (an average increase of ∼1 Gy in D95 and D90, compared to the calculation without density correction) and exposed ipsilateral lung volumes in low dose region (average increases of ∼4% and ∼5% in V5 and V4, respectively)

  2. Lung Density Changes After Stereotactic Radiotherapy: A Quantitative Analysis in 50 Patients

    SciTech Connect

    Palma, David A.; Soernsen de Koste, John van; Verbakel, Wilko F.A.R.; Vincent, Andrew; Senan, Suresh

    2011-11-15

    Purpose: Radiologic lung density changes are observed in more than 50% of patients after stereotactic body radiotherapy (SBRT) for lung cancer. We studied the relationship between SBRT dose and posttreatment computed tomography (CT) density changes, a surrogate for lung injury. Methods and Materials: The SBRT fractionation schemes used to treat Stage I lung cancer with RapidArc were three fractions of 18 Gy, five fractions of 11 Gy, or eight fractions of 7.5 Gy, prescribed at the 80% isodose. Follow-up CT scans performed at less than 6 months (n = 50) and between 6 and 9 months (n = 30) after SBRT were reviewed. Posttreatment scans were coregistered with baseline scans using a B-spline deformable registration algorithm. Voxel-Hounsfield unit histograms were created for doses between 0.5 and 50 Gy. Linear mixed effects models were used to assess the effects of SBRT dose on CT density, and the influence of possible confounders was tested. Results: Increased CT density was associated with higher dose, increasing planning target volume size, and increasing time after SBRT (all p < 0.0001). Density increases were apparent in areas receiving >6 Gy, were most prominent in areas receiving >20 Gy, and seemed to plateau above 40 Gy. In regions receiving >36 Gy, the reduction in air-filled fraction of lung after treatment was up to 18%. No increase in CT density was observed in the contralateral lung receiving {>=}3 Gy. Conclusions: A dose-response relationship exists for quantitative CT density changes after SBRT. A threshold of effect is seen at low doses, and a plateau at highest doses.

  3. Improving sap flux density measurements by correctly determining thermal diffusivity, differentiating between bound and unbound water.

    PubMed

    Vandegehuchte, Maurits W; Steppe, Kathy

    2012-07-01

    Several heat-based sap flow methods, such as the heat field deformation method and the heat ratio method, include the thermal diffusivity D of the sapwood as a crucial parameter. Despite its importance, little attention has been paid to determine D in a plant physiological context. Therefore, D is mostly set as a constant, calculated during zero flow conditions or from a method of mixtures, taking into account wood density and moisture content. In this latter method, however, the meaning of the moisture content is misinterpreted, making it theoretically incorrect for D calculations in sapwood. A correction to this method, which includes the correct application of the moisture content, is proposed. This correction was tested for European and American beech and Eucalyptus caliginosa Blakely & McKie. Depending on the dry wood density and moisture content, the original approach over- or underestimates D and, hence, sap flux density by 10% and more.

  4. Double-counting corrections to the LDA+DMFT method in the exact density limit

    NASA Astrophysics Data System (ADS)

    Plamada, Andrei Valentin; Staar, Peter; Kozhevnikov, Anton; Ydens, Bart; Schulthess, Thomas C.

    2014-03-01

    The LDA+U method is commonly used for ab-initio studies of strongly correlated electron materials, and it has been successful in predicting spectral properties of prototypical systems such as NiO when used in conjunction with Dynamical Mean Field Theory (DMFT). Presently the method still includes an empirical term to correct doubly counted correlations. Assuming the double-counting correction is a constant μDC multiplied by the identity operator in the correlated subspace and that the electron density is well approximated with the Local Density Approximation (LDA) to Density Functional Theory, we devise a method to determine μDC directly from LDA and DMFT calculations. The method has been validated for prototypical transition metal oxides and shows promising results that agree with commonly used values for the double counting correction in the respective systems.

  5. Analytic energy-level densities of separable harmonic oscillators including approximate hindered rotor corrections

    NASA Astrophysics Data System (ADS)

    Döntgen, M.

    2016-09-01

    Energy-level densities are key for obtaining various chemical properties. In chemical kinetics, energy-level densities are used to predict thermochemistry and microscopic reaction rates. Here, an analytic energy-level density formulation is derived using inverse Laplace transformation of harmonic oscillator partition functions. Anharmonic contributions to the energy-level density are considered approximately using a literature model for the transition from harmonic to free motions. The present analytic energy-level density formulation for rigid rotor-harmonic oscillator systems is validated against the well-studied CO+O˙ H system. The approximate hindered rotor energy-level density corrections are validated against the well-studied H2O2 system. The presented analytic energy-level density formulation gives a basis for developing novel numerical simulation schemes for chemical processes.

  6. Dispersion correction derived from first principles for density functional theory and Hartree-Fock theory.

    PubMed

    Guidez, Emilie B; Gordon, Mark S

    2015-03-12

    The modeling of dispersion interactions in density functional theory (DFT) is commonly performed using an energy correction that involves empirically fitted parameters for all atom pairs of the system investigated. In this study, the first-principles-derived dispersion energy from the effective fragment potential (EFP) method is implemented for the density functional theory (DFT-D(EFP)) and Hartree-Fock (HF-D(EFP)) energies. Overall, DFT-D(EFP) performs similarly to the semiempirical DFT-D corrections for the test cases investigated in this work. HF-D(EFP) tends to underestimate binding energies and overestimate intermolecular equilibrium distances, relative to coupled cluster theory, most likely due to incomplete accounting for electron correlation. Overall, this first-principles dispersion correction yields results that are in good agreement with coupled-cluster calculations at a low computational cost.

  7. Gradient corrections to the local-density approximation for trapped superfluid Fermi gases

    SciTech Connect

    Csordas, Andras; Almasy, Orsolya; Szepfalusy, Peter

    2010-12-15

    Two species superfluid Fermi gas is investigated on the BCS side up to the Feshbach resonance. Using the Greens's function technique gradient corrections are calculated to the generalized Thomas-Fermi theory including Cooper pairing. Their relative magnitude is found to be measured by the small parameter (d/R{sub TF}){sup 4}, where d is the oscillator length of the trap potential and R{sub TF} is the radial extension of the density n in the Thomas-Fermi approximation. In particular, at the Feshbach resonance the universal corrections to the local density approximation are calculated and a universal prefactor {kappa}{sub W}=7/27 is derived for the von Weizsaecker-type correction {kappa}{sub W}(({h_bar}/2{pi}){sup 2}/2m)({nabla}{sup 2}n{sup 1/2}/n{sup 1/2}).

  8. Effect of lung and target density on small-field dose coverage and PTV definition

    SciTech Connect

    Higgins, Patrick D. Ehler, Eric D.; Cho, Lawrence C.; Dusenbery, Kathryn E.

    2015-04-01

    We have studied the effect of target and lung density on block margin for small stereotactic body radiotherapy (SBRT) targets. A phantom (50 × 50 × 50 cm{sup 3}) was created in the Pinnacle (V9.2) planning system with a 23-cm diameter lung region of interest insert. Diameter targets of 1.6, 2.0, 3.0, and 4.0 cm were placed in the lung region of interest and centered at a physical depth of 15 cm. Target densities evaluated were 0.1 to 1.0 g/cm{sup 3}, whereas the surrounding lung density was varied between 0.05 and 0.6 g/cm{sup 3}. A dose of 100 cGy was delivered to the isocenter via a single 6-MV field, and the ratio of the average dose to points defining the lateral edges of the target to the isocenter dose was recorded for each combination. Field margins were varied from none to 1.5 cm in 0.25-cm steps. Data obtained in the phantom study were used to predict planning treatment volume (PTV) margins that would match the clinical PTV and isodose prescription for a clinical set of 39 SBRT cases. The average internal target volume (ITV) density was 0.73 ± 0.17, average local lung density was 0.33 ± 0.16, and average ITV diameter was 2.16 ± 0.8 cm. The phantom results initially underpredicted PTV margins by 0.35 cm. With this offset included in the model, the ratio of predicted-to-clinical PTVs was 1.05 ± 0.32. For a given target and lung density, it was found that treatment margin was insensitive to target diameter, except for the smallest (1.6-cm diameter) target, for which the treatment margin was more sensitive to density changes than the larger targets. We have developed a graphical relationship for block margin as a function of target and lung density, which should save time in the planning phase by shortening the design of PTV margins that can satisfy Radiation Therapy Oncology Group mandated treatment volume ratios.

  9. Vapor Liquid Equilibria of Hydrofluorocarbons Using Dispersion-Corrected and Nonlocal Density Functionals.

    PubMed

    Goel, Himanshu; Butler, Charles L; Windom, Zachary W; Rai, Neeraj

    2016-07-12

    Recent developments in dispersion corrected and nonlocal density functionals are aimed at accurately capturing dispersion interactions, a key shortcoming of local and semilocal approximations of density functional theory. These functionals have shown significant promise for dimers and small clusters of molecules as well as crystalline materials. However, their efficacy for predicting vapor liquid equilibria is largely unexplored. In this work, we examine the accuracy of dispersion-corrected and nonlocal van der Waals functionals by computing the vapor liquid coexistence curves (VLCCs) of hydrofluoromethanes. Our results indicate that the PBE-D3 functional performs significantly better in predicting saturated liquid densities than the rVV10 functional. With the PBE-D3 functional, we also find that as the number of fluorine atoms increase in the molecule, the accuracy of saturated liquid density prediction improves as well. All the functionals significantly underpredict the saturated vapor densities, which also result in an underprediction of saturated vapor pressure of all compounds. Despite the differences in the bulk liquid densities, the local microstructures of the liquid CFH3 and CF2H2 are relatively insensitive to the density functional employed. For CF3H, however, rVV10 predicts slightly more structured liquid than the PBE-D3 functional.

  10. Vapor Liquid Equilibria of Hydrofluorocarbons Using Dispersion-Corrected and Nonlocal Density Functionals.

    PubMed

    Goel, Himanshu; Butler, Charles L; Windom, Zachary W; Rai, Neeraj

    2016-07-12

    Recent developments in dispersion corrected and nonlocal density functionals are aimed at accurately capturing dispersion interactions, a key shortcoming of local and semilocal approximations of density functional theory. These functionals have shown significant promise for dimers and small clusters of molecules as well as crystalline materials. However, their efficacy for predicting vapor liquid equilibria is largely unexplored. In this work, we examine the accuracy of dispersion-corrected and nonlocal van der Waals functionals by computing the vapor liquid coexistence curves (VLCCs) of hydrofluoromethanes. Our results indicate that the PBE-D3 functional performs significantly better in predicting saturated liquid densities than the rVV10 functional. With the PBE-D3 functional, we also find that as the number of fluorine atoms increase in the molecule, the accuracy of saturated liquid density prediction improves as well. All the functionals significantly underpredict the saturated vapor densities, which also result in an underprediction of saturated vapor pressure of all compounds. Despite the differences in the bulk liquid densities, the local microstructures of the liquid CFH3 and CF2H2 are relatively insensitive to the density functional employed. For CF3H, however, rVV10 predicts slightly more structured liquid than the PBE-D3 functional. PMID:27295451

  11. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: A postmortem study

    SciTech Connect

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee

    2013-12-15

    Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson'sr, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson'sr increased from 0.86 to 0.92 with the bias field correction

  12. Local respiratory motion correction for PET/CT imaging: Application to lung cancer

    SciTech Connect

    Lamare, F. Fernandez, P.; Fayad, H.; Visvikis, D.

    2015-10-15

    Purpose: Despite multiple methodologies already proposed to correct respiratory motion in the whole PET imaging field of view (FOV), such approaches have not found wide acceptance in clinical routine. An alternative can be the local respiratory motion correction (LRMC) of data corresponding to a given volume of interest (VOI: organ or tumor). Advantages of LRMC include the use of a simple motion model, faster execution times, and organ specific motion correction. The purpose of this study was to evaluate the performance of LMRC using various motion models for oncology (lung lesion) applications. Methods: Both simulated (NURBS based 4D cardiac-torso phantom) and clinical studies (six patients) were used in the evaluation of the proposed LRMC approach. PET data were acquired in list-mode and synchronized with respiration. The implemented approach consists first in defining a VOI on the reconstructed motion average image. Gated PET images of the VOI are subsequently reconstructed using only lines of response passing through the selected VOI and are used in combination with a center of gravity or an affine/elastic registration algorithm to derive the transformation maps corresponding to the respiration effects. Those are finally integrated in the reconstruction process to produce a motion free image over the lesion regions. Results: Although the center of gravity or affine algorithm achieved similar performance for individual lesion motion correction, the elastic model, applied either locally or to the whole FOV, led to an overall superior performance. The spatial tumor location was altered by 89% and 81% for the elastic model applied locally or to the whole FOV, respectively (compared to 44% and 39% for the center of gravity and affine models, respectively). This resulted in similar associated overall tumor volume changes of 84% and 80%, respectively (compared to 75% and 71% for the center of gravity and affine models, respectively). The application of the nonrigid

  13. The effect of respiratory induced density variations on non-TOF PET quantitation in the lung

    NASA Astrophysics Data System (ADS)

    Holman, Beverley F.; Cuplov, Vesna; Hutton, Brian F.; Groves, Ashley M.; Thielemans, Kris

    2016-04-01

    Accurate PET quantitation requires a matched attenuation map. Obtaining matched CT attenuation maps in the thorax is difficult due to the respiratory cycle which causes both motion and density changes. Unlike with motion, little attention has been given to the effects of density changes in the lung on PET quantitation. This work aims to explore the extent of the errors caused by pulmonary density attenuation map mismatch on dynamic and static parameter estimates. Dynamic XCAT phantoms were utilised using clinically relevant 18F-FDG and 18F-FMISO time activity curves for all organs within the thorax to estimate the expected parameter errors. The simulations were then validated with PET data from 5 patients suffering from idiopathic pulmonary fibrosis who underwent PET/Cine-CT. The PET data were reconstructed with three gates obtained from the Cine-CT and the average Cine-CT. The lung TACs clearly displayed differences between true and measured curves with error depending on global activity distribution at the time of measurement. The density errors from using a mismatched attenuation map were found to have a considerable impact on PET quantitative accuracy. Maximum errors due to density mismatch were found to be as high as 25% in the XCAT simulation. Differences in patient derived kinetic parameter estimates and static concentration between the extreme gates were found to be as high as 31% and 14%, respectively. Overall our results show that respiratory associated density errors in the attenuation map affect quantitation throughout the lung, not just regions near boundaries. The extent of this error is dependent on the activity distribution in the thorax and hence on the tracer and time of acquisition. Consequently there may be a significant impact on estimated kinetic parameters throughout the lung.

  14. Ensemble density variational methods with self- and ghost-interaction-corrected functionals

    SciTech Connect

    Pastorczak, Ewa; Pernal, Katarzyna

    2014-05-14

    Ensemble density functional theory (DFT) offers a way of predicting excited-states energies of atomic and molecular systems without referring to a density response function. Despite a significant theoretical work, practical applications of the proposed approximations have been scarce and they do not allow for a fair judgement of the potential usefulness of ensemble DFT with available functionals. In the paper, we investigate two forms of ensemble density functionals formulated within ensemble DFT framework: the Gross, Oliveira, and Kohn (GOK) functional proposed by Gross et al. [Phys. Rev. A 37, 2809 (1988)] alongside the orbital-dependent eDFT form of the functional introduced by Nagy [J. Phys. B 34, 2363 (2001)] (the acronym eDFT proposed in analogy to eHF – ensemble Hartree-Fock method). Local and semi-local ground-state density functionals are employed in both approaches. Approximate ensemble density functionals contain not only spurious self-interaction but also the so-called ghost-interaction which has no counterpart in the ground-state DFT. We propose how to correct the GOK functional for both kinds of interactions in approximations that go beyond the exact-exchange functional. Numerical applications lead to a conclusion that functionals free of the ghost-interaction by construction, i.e., eDFT, yield much more reliable results than approximate self- and ghost-interaction-corrected GOK functional. Additionally, local density functional corrected for self-interaction employed in the eDFT framework yields excitations energies of the accuracy comparable to that of the uncorrected semi-local eDFT functional.

  15. Fermi orbital derivatives in self-interaction corrected density functional theory: Applications to closed shell atoms

    SciTech Connect

    Pederson, Mark R.

    2015-02-14

    A recent modification of the Perdew-Zunger self-interaction-correction to the density-functional formalism has provided a framework for explicitly restoring unitary invariance to the expression for the total energy. The formalism depends upon construction of Löwdin orthonormalized Fermi-orbitals which parametrically depend on variational quasi-classical electronic positions. Derivatives of these quasi-classical electronic positions, required for efficient minimization of the self-interaction corrected energy, are derived and tested, here, on atoms. Total energies and ionization energies in closed-shell singlet atoms, where correlation is less important, using the Perdew-Wang 1992 Local Density Approximation (PW92) functional, are in good agreement with experiment and non-relativistic quantum-Monte-Carlo results albeit slightly too low.

  16. A neural network based error correction method for radio occultation electron density retrieval

    NASA Astrophysics Data System (ADS)

    Pham, Viet-Cuong; Juang, Jyh-Ching

    2015-12-01

    Abel inversion techniques have been widely employed to retrieve electron density profiles (EDPs) from radio occultation (RO) measurements, which are available by observing Global Navigation Satellite System (GNSS) satellites from low-earth-orbit (LEO) satellites. It is well known that the ordinary Abel inversion might introduce errors in the retrieval of EDPs when the spherical symmetry assumption is violated. The error, however, is case-dependent; therefore it is desirable to associate an error index or correction coefficient with respect to each retrieved EDP. Several error indices have been proposed but they only deal with electron density at the F2 peak and suffer from some drawbacks. In this paper we propose an artificial neural network (ANN) based error correction method for EDPs obtained by the ordinary Abel inversion. The ANN is first trained to learn the relationship between vertical total electron content (TEC) measurements and retrieval errors at the F2 peak, 220 km and 110 km altitudes; correction coefficients are then estimated to correct the retrieved EDPs at these three altitudes. Experiments using the NeQuick2 model and real FORMOSAT-3/COSMIC RO geometry show that the proposed method outperforms existing ones. Real incoherent scatter radar (ISR) measurements at the Jicamarca Radio Observatory and the global TEC map provided by the International GNSS Service (IGS) are also used to valid the proposed method.

  17. How important is self-consistency for the dDsC density dependent dispersion correction?

    SciTech Connect

    Brémond, Éric; Corminboeuf, Clémence; Golubev, Nikolay; Steinmann, Stephan N.

    2014-05-14

    The treatment of dispersion interactions is ubiquitous but computationally demanding for seamless ab initio approaches. A highly popular and simple remedy consists in correcting for the missing interactions a posteriori by adding an attractive energy term summed over all atom pairs to standard density functional approximations. These corrections were originally based on atom pairwise parameters and, hence, had a strong touch of empiricism. To overcome such limitations, we recently proposed a robust system-dependent dispersion correction, dDsC, that is computed from the electron density and that provides a balanced description of both weak inter- and intramolecular interactions. From the theoretical point of view and for the sake of increasing reliability, we here verify if the self-consistent implementation of dDsC impacts ground-state properties such as interaction energies, electron density, dipole moments, geometries, and harmonic frequencies. In addition, we investigate the suitability of the a posteriori scheme for molecular dynamics simulations, for which the analysis of the energy conservation constitutes a challenging tests. Our study demonstrates that the post-SCF approach in an excellent approximation.

  18. Vapor-liquid Coexistence Curves for Methanol and Methane using Dispersion-Corrected Density Functional Theory

    SciTech Connect

    McGrath, Matthew J.; Kuo, I-F W.; Ghogomu, Julius N.; Mundy, Christopher J.; Siepmann, Joern I.

    2011-10-13

    First principles Monte Carlo simulations in the Gibbs and isobaric-isothermal ensembles were performed to map the vapor-liquid coexistence curves (VLCC) of methanol and methane described by Kohn-Sham density functional theory using the Becke-Lee-Yang-Parr (BLYP) exchange and correlation functionals with the Grimme correction term for dispersive (D2) interactions. The simulations indicate that the BLYP-D2 description underpredicts the saturated vapor densities and overpredicts the saturated liquid densities and critical and boiling temperatures for both compounds. Although the deviations are quite large, these results present a significant improvement over the BLYP functional without the correction term which misses the experimental results by a larger extent in the opposite direction. With the D2 correction, an increase in the basis set does not lead to significant changes in the VLCC properties. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  19. How important is self-consistency for the dDsC density dependent dispersion correction?

    PubMed

    Brémond, Éric; Golubev, Nikolay; Steinmann, Stephan N; Corminboeuf, Clémence

    2014-05-14

    The treatment of dispersion interactions is ubiquitous but computationally demanding for seamless ab initio approaches. A highly popular and simple remedy consists in correcting for the missing interactions a posteriori by adding an attractive energy term summed over all atom pairs to standard density functional approximations. These corrections were originally based on atom pairwise parameters and, hence, had a strong touch of empiricism. To overcome such limitations, we recently proposed a robust system-dependent dispersion correction, dDsC, that is computed from the electron density and that provides a balanced description of both weak inter- and intramolecular interactions. From the theoretical point of view and for the sake of increasing reliability, we here verify if the self-consistent implementation of dDsC impacts ground-state properties such as interaction energies, electron density, dipole moments, geometries, and harmonic frequencies. In addition, we investigate the suitability of the a posteriori scheme for molecular dynamics simulations, for which the analysis of the energy conservation constitutes a challenging tests. Our study demonstrates that the post-SCF approach in an excellent approximation. PMID:24832324

  20. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density.

    PubMed

    Goldbogen, J A; Calambokidis, J; Oleson, E; Potvin, J; Pyenson, N D; Schorr, G; Shadwick, R E

    2011-01-01

    Lunge feeding by rorqual whales (Balaenopteridae) is associated with a high energetic cost that decreases diving capacity, thereby limiting access to dense prey patches at depth. Despite this cost, rorquals exhibit high rates of lipid deposition and extremely large maximum body size. To address this paradox, we integrated kinematic data from digital tags with unsteady hydrodynamic models to estimate the energy budget for lunges and foraging dives of blue whales (Balaenoptera musculus), the largest rorqual and living mammal. Our analysis suggests that, despite the large amount of mechanical work required to lunge feed, a large amount of prey and, therefore, energy is obtained during engulfment. Furthermore, we suggest that foraging efficiency for blue whales is significantly higher than for other marine mammals by nearly an order of magnitude, but only if lunges target extremely high densities of krill. The high predicted efficiency is attributed to the enhanced engulfment capacity, rapid filter rate and low mass-specific metabolic rate associated with large body size in blue whales. These results highlight the importance of high prey density, regardless of prey patch depth, for efficient bulk filter feeding in baleen whales and may explain some diel changes in foraging behavior in rorqual whales. PMID:21147977

  1. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density.

    PubMed

    Goldbogen, J A; Calambokidis, J; Oleson, E; Potvin, J; Pyenson, N D; Schorr, G; Shadwick, R E

    2011-01-01

    Lunge feeding by rorqual whales (Balaenopteridae) is associated with a high energetic cost that decreases diving capacity, thereby limiting access to dense prey patches at depth. Despite this cost, rorquals exhibit high rates of lipid deposition and extremely large maximum body size. To address this paradox, we integrated kinematic data from digital tags with unsteady hydrodynamic models to estimate the energy budget for lunges and foraging dives of blue whales (Balaenoptera musculus), the largest rorqual and living mammal. Our analysis suggests that, despite the large amount of mechanical work required to lunge feed, a large amount of prey and, therefore, energy is obtained during engulfment. Furthermore, we suggest that foraging efficiency for blue whales is significantly higher than for other marine mammals by nearly an order of magnitude, but only if lunges target extremely high densities of krill. The high predicted efficiency is attributed to the enhanced engulfment capacity, rapid filter rate and low mass-specific metabolic rate associated with large body size in blue whales. These results highlight the importance of high prey density, regardless of prey patch depth, for efficient bulk filter feeding in baleen whales and may explain some diel changes in foraging behavior in rorqual whales.

  2. On the validity of density overrides for VMAT lung SBRT planning

    SciTech Connect

    Wiant, David Vanderstraeten, Caroline; Maurer, Jacqueline; Pursley, Jan; Terrell, Jonathon; Sintay, Benjamin J.

    2014-08-15

    Purpose: Modeling dose to a moving target in lung is a very difficult task. Current approaches to planning lung stereotactic body radiotherapy (SBRT) generally calculate dose on either free breathing or average computed tomography (CT) scans, which do not always accurately predict dose to parts of the target volume not occupied by tumor on the planning scan. In this work, the authors look at using density overrides of the target volumes to more accurately predict dose for lung SBRT using the analytic anisotropic algorithm (AAA). Methods: Volumetric modulated arc therapy plans were created on free breathing scans (FBP), time average scans (AVGP), free breathing scans with the internal target volume overridden to tumor density (ITVP), free breathing scans with the planning target volume overridden to tumor density (PTVP), and free breathing scan using a hybrid scheme with the internal target volume set to tumor density and the planning target volume minus the internal target volume set to a density intermediate between lung and tumor (HP) for the case of a 4D motion phantom and five patient cases. Radiochromic film measurements were made for the phantom plans, with gamma analysis used to compare the planned to delivered dose. The patient plans were recalculated on each of the phases of a 4DCT to evaluate tumor coverage and conformity index (CI). A modified modulation complexity score (MCSv) and average open area per control point (AA) metrics were used to evaluate multileaf collimator (MLC) modulation for each of the plans. Results: The HP plans showed significantly higher gamma passing rates (p < 0.05) than the FBP, AVGP, and ITVP for criteria of 2 mm/2% and 1 mm/1%. No significant correlation was observed between gamma values and AA or MCSv. The tumor volume was covered by the prescription dose on all phases of the 4DCT for all patient plans. The PTVP and HP yielded lower mean CI than the other plans for all five patients, with three of the cases showing

  3. Calculation of correction factors for ionization chamber measurements with small fields in low-density media.

    PubMed

    Pisaturo, O; Pachoud, M; Bochud, F O; Moeckli, R

    2012-07-21

    The quantity of interest for high-energy photon beam therapy recommended by most dosimetric protocols is the absorbed dose to water. Thus, ionization chambers are calibrated in absorbed dose to water, which is the same quantity as what is calculated by most treatment planning systems (TPS). However, when measurements are performed in a low-density medium, the presence of the ionization chamber generates a perturbation at the level of the secondary particle range. Therefore, the measured quantity is close to the absorbed dose to a volume of water equivalent to the chamber volume. This quantity is not equivalent to the dose calculated by a TPS, which is the absorbed dose to an infinitesimally small volume of water. This phenomenon can lead to an overestimation of the absorbed dose measured with an ionization chamber of up to 40% in extreme cases. In this paper, we propose a method to calculate correction factors based on the Monte Carlo simulations. These correction factors are obtained by the ratio of the absorbed dose to water in a low-density medium □D(w,Q,V1)(low) averaged over a scoring volume V₁ for a geometry where V₁ is filled with the low-density medium and the absorbed dose to water □D(w,QV2)(low) averaged over a volume V₂ for a geometry where V₂ is filled with water. In the Monte Carlo simulations, □D(w,QV2)(low) is obtained by replacing the volume of the ionization chamber by an equivalent volume of water, according to the definition of the absorbed dose to water. The method is validated in two different configurations which allowed us to study the behavior of this correction factor as a function of depth in phantom, photon beam energy, phantom density and field size.

  4. Evaluation and correction of the IRI2016 topside ionospheric electron density model

    NASA Astrophysics Data System (ADS)

    Wang, Sicheng; Huang, Sixun; Fang, Hanxian; Wang, Yu

    2016-10-01

    The international reference ionosphere (IRI) is the internationally recommended empirical model. The IRI2016 is now the latest version, and it includes three options for the prediction of topside electron density profiles: IRI2001, a correction of IRI2001 (IRI2001corr), and NeQuick model. In the paper, we use the Arecibo, Jicamarca, and Millstone Hill incoherent scatter radar observed topside electron density data ranging from year 2001 to 2014 to assess the prediction capabilities of these three model options. The results show that the NeQuick model outputs perform best at these areas from the point view of relative difference distribution, followed by the IRI2001corr model, and the IRI2001 option is worst. To further improve the performance of NeQuick and IRI2001corr options, the correction factors are introduced in their model formulation and are determined by the least squares estimation technique. Compared with the original models, the corrected models perform in average better, especially at low and medium solar activities.

  5. Molecular density functional theory for water with liquid-gas coexistence and correct pressure

    SciTech Connect

    Jeanmairet, Guillaume Levesque, Maximilien; Sergiievskyi, Volodymyr; Borgis, Daniel

    2015-04-21

    The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. The solvation free energy of small molecular solutes like n-alkanes and hard sphere solutes whose radii range from angstroms to nanometers is now in quantitative agreement with reference all atom simulations. The macroscopic liquid-gas surface tension predicted by the theory is comparable to experiments. This theory gives an alternative to the empirical hard sphere bridge correction used so far by several authors.

  6. Molecular density functional theory for water with liquid-gas coexistence and correct pressure.

    PubMed

    Jeanmairet, Guillaume; Levesque, Maximilien; Sergiievskyi, Volodymyr; Borgis, Daniel

    2015-04-21

    The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. The solvation free energy of small molecular solutes like n-alkanes and hard sphere solutes whose radii range from angstroms to nanometers is now in quantitative agreement with reference all atom simulations. The macroscopic liquid-gas surface tension predicted by the theory is comparable to experiments. This theory gives an alternative to the empirical hard sphere bridge correction used so far by several authors.

  7. Correction.

    PubMed

    2015-11-01

    In the article by Heuslein et al, which published online ahead of print on September 3, 2015 (DOI: 10.1161/ATVBAHA.115.305775), a correction was needed. Brett R. Blackman was added as the penultimate author of the article. The article has been corrected for publication in the November 2015 issue. PMID:26490278

  8. A finite size pencil beam algorithm for IMRT dose optimization: density corrections.

    PubMed

    Jeleń, U; Alber, M

    2007-02-01

    For beamlet-based IMRT optimization, fast and less accurate dose computation algorithms are frequently used, while more accurate algorithms are needed to recompute the final dose for verification. In order to speed up the optimization process and ensure close proximity between dose in optimization and verification, proper consideration of dose gradients and tissue inhomogeneity effects should be ensured at every stage of the optimization. Due to their speed, pencil beam algorithms are often used for precalculation of beamlet dose distributions in IMRT treatment planning systems. However, accounting for tissue heterogeneities with these models requires the use of approximate rescaling methods. Recently, a finite size pencil beam (fsPB) algorithm, based on a simple and small set of data, was proposed which was specifically designed for the purpose of dose pre-computation in beamlet-based IMRT. The present work describes the incorporation of 3D density corrections, based on Monte Carlo simulations in heterogeneous phantoms, into this method improving the algorithm accuracy in inhomogeneous geometries while keeping its original speed and simplicity of commissioning. The algorithm affords the full accuracy of 3D density corrections at every stage of the optimization, hence providing the means for density related fluence modulation like penumbra shaping at field edges. PMID:17228109

  9. Fermi orbital self-interaction corrected electronic structure of molecules beyond local density approximation.

    PubMed

    Hahn, T; Liebing, S; Kortus, J; Pederson, Mark R

    2015-12-14

    The correction of the self-interaction error that is inherent to all standard density functional theory calculations is an object of increasing interest. In this article, we apply the very recently developed Fermi-orbital based approach for the self-interaction correction [M. R. Pederson et al., J. Chem. Phys. 140, 121103 (2014) and M. R. Pederson, J. Chem. Phys. 142, 064112 (2015)] to a set of different molecular systems. Our study covers systems ranging from simple diatomic to large organic molecules. We focus our analysis on the direct estimation of the ionization potential from orbital eigenvalues. Further, we show that the Fermi orbital positions in structurally similar molecules appear to be transferable.

  10. Fermi orbital self-interaction corrected electronic structure of molecules beyond local density approximation

    NASA Astrophysics Data System (ADS)

    Hahn, Torsten; Liebing, Simon; Kortus, Jens; Pederson, Mark

    The correction of the self-interaction error that is inherent to all standard density functional theory (DFT) calculations is an object of increasing interest. We present our results on the application of the recently developed Fermi-orbital based approach for the self-interaction correction (FO-SIC) to a set of different molecular systems. Our study covers systems ranging from simple diatomic to large organic molecules. Our focus lies on the direct estimation of the ionization potential from orbital eigenvalues and on the ordering of electronic levels in metal-organic molecules. Further, we show that the Fermi orbital positions in structurally similar molecules appear to be transferable. Support by DFG FOR1154 is greatly acknowledged.

  11. Fermi orbital self-interaction corrected electronic structure of molecules beyond local density approximation

    SciTech Connect

    Hahn, T. Liebing, S.; Kortus, J.; Pederson, Mark R.

    2015-12-14

    The correction of the self-interaction error that is inherent to all standard density functional theory calculations is an object of increasing interest. In this article, we apply the very recently developed Fermi-orbital based approach for the self-interaction correction [M. R. Pederson et al., J. Chem. Phys. 140, 121103 (2014) and M. R. Pederson, J. Chem. Phys. 142, 064112 (2015)] to a set of different molecular systems. Our study covers systems ranging from simple diatomic to large organic molecules. We focus our analysis on the direct estimation of the ionization potential from orbital eigenvalues. Further, we show that the Fermi orbital positions in structurally similar molecules appear to be transferable.

  12. Self-Interaction Corrected Density Functional Approximations with Unitary Invariance: Applications to Molecules

    NASA Astrophysics Data System (ADS)

    Pederson, Mark

    For a system of 2N electrons, the Fermi-hole may be interpreted as the square of a normalized ''Fermi orbital'', F (a) ≡ρσ (a , r) /√{ρσ (a) } . This normalized orbital captures all of the spin density at its position of definition, or descriptor, (a) . Given a set of N quasi-classical electronic positions (ai) and a spin density-matrix composed of N Kohn-Sham orbitals, the resulting set of Fermi orbitals may then be used to construct a set of localized Loewdin-orthonormalized orbitals. These orbitals are explicitly a functional of the spin density and are related to the Kohn-Sham orbitals by a unitary transformation that is parametrically dependent on the set quasi-classical electronic descriptors. The construction of such localized orbitals allows for the restoration of unitary invariance into the original Perdew-Zunger self-interaction correction and provides a possible simplification compared to the localization-equation based solution of self-interaction corrected functionals. This talk will discuss the construction of this Fermi-orbital-based self-interaction corrected method and the minimization algorithm that relies upon analytical derivatives of the self-interaction energy with respect to the Fermi-orbital descriptors. Recent applications to a large set of molecules including aromatic molecules, molecules with open transition-metal centers, and molecules with frustrated Kekule' structures will be discussed. Initial applications indicate improvements in atomization energies of pi-bonded systems and demonstrate the desired downward shift of orbital energies relative to their Kohn-Sham counterparts.

  13. Adsorption of imidazole on Au(111) surface: Dispersion corrected density functional study

    NASA Astrophysics Data System (ADS)

    Izzaouihda, Safia; Mahjoubi, Khaled; Abou El Makarim, Hassna; Komiha, Najia; Benoit, David M.

    2016-10-01

    We use density functional theory in the generalized gradient approximation to study the adsorption of imidazole on the Au(111) surface and account for dispersion effect using Grimme's empirical dispersion correction technique. Our results show that the adsorption energy of imidazole depends on the slab size and on the adsorption site. In agreement with other studies, we find the largest adsorption energy for imidazole on a top site of Au(111). However, we also note that the adsorption energy at other sites is substantial.

  14. Long-range corrected density functional theory with linearly-scaled HF exchange

    SciTech Connect

    Song, Jong-Won; Hirao, Kimihiko

    2015-12-31

    Long-range corrected density functional theory (LC-DFT) attracts many chemists’ attentions as a quantum chemical method to be applied to large molecular system and its property calculations. However, the expensive time cost to evaluate the long-range HF exchange is a big obstacle to be overcome to be applied to the large molecular systems and the solid state materials. Upon this problem, we propose a linear-scaling method of the HF exchange integration, in particular, for the LC-DFT hybrid functional.

  15. Impact of PET - CT motion correction in minimizing the gross tumor volume in non-small cell lung cancer

    PubMed Central

    Masoomi, Michael A; McLean, Anne H; Bouchareb, Yassine; Ryder, Will; Robinson, Andy

    2013-01-01

    Objective(s): To investigate the impact of respiratory motion on localization, and quantification of lung lesions for the Gross Tumor Volume utilizing a fully automated Auto3Dreg program and dynamic NURBS-based cardiac-torso digitized phantom (NCAT). Methods: Respiratory motion may result in more than 30% underestimation of the SUV values of lung, liver and kidney tumor lesions. The motion correction technique adopted in this study was an image-based motion correction approach using, a voxel-intensity-based and a multi-resolution multi-optimization (MRMO) algorithm. The NCAT phantom was used to generate CT attenuation maps and activity distribution volumes for the lung regions. All the generated frames were co-registered to a reference frame using a time efficient scheme. Quantitative assessment including Region of Interest (ROI), image fidelity and image correlation techniques, as well as semi-quantitative line profile analysis and qualitatively overlaying non-motion and motion corrected image frames were performed. Results: The largest motion was observed in the Z-direction. The greatest translation was for the frame 3, end inspiration, and the smallest for the frame 5 which was closet frame to the reference frame at 67% expiration. Visual assessment of the lesion sizes, 20-60mm at 3 different locations, apex, mid and base of lung showed noticeable improvement for all the foci and their locations. The maximum improvements for the image fidelity were from 0.395 to 0.930 within the lesion volume of interest. The greatest improvement in activity concentration underestimation was 7.7% below the true activity for the 20 mm lesion in comparison to 34.4% below, prior to correction. The discrepancies in activity underestimation were reduced with increasing the lesion sizes. Overlaying activity distribution on the attenuation map showed improved localization of the PET metabolic information to the anatomical CT images. Conclusion: The respiratory motion correction for the

  16. Evaluation of tumor localization in respiration motion-corrected cone-beam CT: Prospective study in lung

    SciTech Connect

    Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S.; Rimner, Andreas

    2014-10-15

    Purpose: Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. Methods: In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image

  17. Vibrational and Thermal Properties of β-HMX and TATB from Dispersion Corrected Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Landerville, Aaron; Oleynik, Ivan

    2015-06-01

    Dispersion Corrected Density Functional Theory (DFT+vdW) calculations are performed to predict vibrational and thermal properties of the bulk energetic materials (EMs) β-octahydrocyclotetramethylene-tetranitramine (β-HMX) and triaminotrinitrobenzene (TATB). DFT+vdW calculations of optimized unit cells along the hydrostatic equation of state are followed by frozen-phonon calculations of their respective vibration spectra. These are then used under the quasi-harmonic approximation to obtain zero-point and thermal free energy contributions to the pressure, resulting in PVT equations of state for each material that is in excellent agreement with experiment. Further, heat capacities, thermal expansion coefficients, and Gruneissen parameters as functions of temperature are calculated and compared with experiment. The vibrational properties, including phonon densities of states and pressure dependencies of individual modes, are also analyzed and compared with experiment.

  18. Deconvolution-based correction of alkali beam emission spectroscopy density profile measurements

    SciTech Connect

    Pusztai, I.; Pokol, G.; Refy, D.; Por, G.; Dunai, D.; Anda, G.; Zoletnik, S.; Schweinzer, J.

    2009-08-15

    A deconvolution-based correction method of the beam emission spectroscopy (BES) density profile measurement is demonstrated by its application to simulated measurements of the COMPASS and TEXTOR tokamaks. If the line of sight is far from tangential to the flux surfaces, and the beam width is comparable to the scale length on which the light profile varies, the observation may cause an undesired smoothing of the light profile, resulting in a non-negligible underestimation of the calculated density profile. This effect can be reduced significantly by the emission reconstruction method, which gives an estimate of the emissivity along the beam axis from the measured light profile, taking the finite beam width and the properties of the measurement into account in terms of the transfer function of the observation. Characteristics and magnitude of the mentioned systematic error and its reduction by the introduced method are studied by means of the comprehensive alkali BES simulation code RENATE.

  19. National dosimetric audit network finds discrepancies in AAA lung inhomogeneity corrections.

    PubMed

    Dunn, Leon; Lehmann, Joerg; Lye, Jessica; Kenny, John; Kron, Tomas; Alves, Andrew; Cole, Andrew; Zifodya, Jackson; Williams, Ivan

    2015-07-01

    This work presents the Australian Clinical Dosimetry Service's (ACDS) findings of an investigation of systematic discrepancies between treatment planning system (TPS) calculated and measured audit doses. Specifically, a comparison between the Anisotropic Analytic Algorithm (AAA) and other common dose-calculation algorithms in regions downstream (≥2cm) from low-density material in anthropomorphic and slab phantom geometries is presented. Two measurement setups involving rectilinear slab-phantoms (ACDS Level II audit) and anthropomorphic geometries (ACDS Level III audit) were used in conjunction with ion chamber (planar 2D array and Farmer-type) measurements. Measured doses were compared to calculated doses for a variety of cases, with and without the presence of inhomogeneities and beam-modifiers in 71 audits. Results demonstrate a systematic AAA underdose with an average discrepancy of 2.9 ± 1.2% when the AAA algorithm is implemented in regions distal from lung-tissue interfaces, when lateral beams are used with anthropomorphic phantoms. This systemic discrepancy was found for all Level III audits of facilities using the AAA algorithm. This discrepancy is not seen when identical measurements are compared for other common dose-calculation algorithms (average discrepancy -0.4 ± 1.7%), including the Acuros XB algorithm also available with the Eclipse TPS. For slab phantom geometries (Level II audits), with similar measurement points downstream from inhomogeneities this discrepancy is also not seen. PMID:25921329

  20. Smooth muscle myosin regulation by serum and cell density in cultured rat lung connective tissue cells.

    PubMed

    Babij, P; Zhao, J; White, S; Woodcock-Mitchell, J; Mitchell, J; Absher, M; Baldor, L; Periasamy, M; Low, R B

    1993-08-01

    RNA and protein analyses were used to detect expression of SM1 and SM2 smooth muscle myosin heavy chain (MHC) in cultured adult rat lung connective tissue cells (RL-90). Smooth muscle MHC mRNA expression in confluent cells grown in 10% serum was approximately 50% of the level in adult stomach. Similar results were obtained in cells cultured at low density (25% confluency) in 1% serum. However, in low-density cultures transferred to 10% serum for 24 h, the level of MHC mRNA decreased to approximately 20% of that in adult stomach. Smooth muscle alpha-actin showed a pattern of expression similar to that for smooth muscle MHC. Expression of nonmuscle MHC-A mRNA was higher in all culture conditions compared to stomach. MHC-A mRNA expression was less in low-density cultures in low serum and increased when low-density cultures were transferred to 10% serum for 24 h. MHC-B mRNA expression was less in low- vs. high-density cultures. In contrast to MHC-A, however, MHC-B mRNA expression in low-density cultures was higher in low serum. Immunofluorescence and immunoblotting with SM1-specific antibody demonstrated the presence of the SM1 protein isoform as well as reactivity to a protein band migrating slightly faster than SM2. These results demonstrate that cultured rat lung connective tissue cells express smooth muscle MHC and that expression is modulated by culture conditions.

  1. Spatiotemoral Dynamics of Online Motor Correction Processing Revealed by High-density Electroencephalography

    PubMed Central

    Dipietro, Laura; Poizner, Howard; Krebs, Hermano I.

    2015-01-01

    The ability to control online motor corrections is key to dealing with unexpected changes arising in the environment with which we interact. How the CNS controls online motor corrections is poorly understood, but evidence has accumulated in favor of a submovement-based model in which apparently continuous movement is segmented into distinct submovements. Although most studies have focused on submovements’ kinematic features, direct links with the underlying neural dynamics have not been extensively explored. This study sought to identify an electroencephalographic signature of submovements. We elicited kinematic submovements using a double-step displacement paradigm. Participants moved their wrist toward a target whose direction could shift mid-movement with a 50% probability. Movement kinematics and cortical activity were concurrently recorded with a low-friction robotic device and high-density electroencephalography. Analysis of spatiotemporal dynamics of brain activation and its correlation with movement kinematics showed that the production of each kinematic submovement was accompanied by (1) stereotyped topographic scalp maps and (2) frontoparietal ERPs time-locked to submovements. Positive ERP peaks from frontocentral areas contralateral to the moving wrist preceded kinematic submovement peaks by 220–250 msec and were followed by positive ERP peaks from contralateral parietal areas (140–250 msec latency, 0–80 msec before submovement peaks). Moreover, individual subject variability in the latency of frontoparietal ERP components following the target shift significantly predicted variability in the latency of the corrective submovement. Our results are in concordance with evidence for the intermittent nature of continuous movement and elucidate the timing and role of frontoparietal activations in the generation and control of corrective submovements. PMID:24564462

  2. Sensitivity analysis of crustal correction for calculation of lithospheric mantle density from gravity data

    NASA Astrophysics Data System (ADS)

    Herceg, M.; Artemieva, I. M.; Thybo, H.

    2016-02-01

    compositional density anomalies expected for continental lithosphere mantle). Similar values of uncertainties may be caused by a 0.2 km s-1 error in average crustal VP velocities or by a 2 km uncertainty in the Moho depth. One of the largest uncertainties is caused by errors in thickness of the sedimentary layer, and a 2 km error leads to ca. 0.03 g cm-3 error in lithospheric mantle densities. Large deviations (locally ±10 km) of the Moho depth in global crustal models (CRUST 5.1, CRUST2.0 and CRUST1.0) from the high-resolution regional seismic model of the crust, SibCrust, may produce artefact residual mantle gravity anomalies of up to ±150 mGal locally, caused by large errors in crustal gravity corrections. These errors in gravity anomalies produce up to ca. 0.04 g cm-3 (ca. 1.2 per cent) errors in density of the lithospheric mantle, which may well correspond to the amplitude of real density anomalies in the mantle. Our results demonstrate that gravity modelling alone cannot reliably constrain the crustal structure, including the Moho depth and thickness of sediments.

  3. Correlation between pneumonitis risk in radiation oncology and lung density measured with X-ray computed tomography

    PubMed Central

    Balosso, Jacques

    2016-01-01

    Background The risk of toxicity with radiation oncology for lung cancer limits the maximal radiation dose that can be delivered to thoracic tumors. This study aims at investigating the correlation between normal tissue complication probability (NTCP) and physical lung density by analyzing the computed tomography (CT) scan imaging used for radiotherapy dose planning. Methods Data from CT of lung cancer patients (n=10), treated with three dimensional radiotherapy, were selected for this study. The dose was calculated using analytical anisotropic algorithm (AAA). Dose volume histograms (DVH) for healthy lung (lung excluding targets) were calculated. The NTCP for lung radiation induced pneumonitis was computed using initial radiobiological parameters from Lyman-Kutcher and Burman (LKB) model and readjusted parameters for AAA, with α/β=3. The correlation coefficient “rho” was calculated using Spearman’s rank test. The bootstrap method was used to estimate the 95% confidence interval (95% CI). Wilcoxon paired test was used to calculate P values. Results Bootstrapping simulation revealed significant difference between NTCP computed with the initial radiobiological parameters and that computed with the parameters readjusted for AAA (P=0.03). The results of simulations based on 1,000 replications showed no correlation for NTCP with density, with “rho” <0.3. Conclusions For a given set of patients, we assessed the correlation between NTCP and lung density using bootstrap analysis. The lack of correlation could result either from a very accurate dose calculation, by AAA, whatever the lung density yielding a NTCP result only dependant of the dose and not any more of the density; or to the very limited range of natural variation of relative electronic density (0.15 to 0.20) observed in this small series of patients. Another important parameter is the bootstrap simulation with 1,000 random samplings may have underestimated the correlation, since the initial data (n

  4. Self-interaction-corrected local-spin-density calculations for rare earth materials

    SciTech Connect

    Svane, A.; Temmerman, W.M.; Szotek, Z.; Laegsgaard, J.; Winter, H.

    2000-04-20

    The ab initio self-interaction-corrected (SIC) local-spin-density (LSD) approximation is discussed with emphasis on the ability to describe localized f-electron states in rare earth solids. Two methods for minimizing the SIC-LSD total energy functional are discussed, one using a unified Hamiltonian for all electron states, thus having the advantages of Bloch's theorem, the other one employing an iterative scheme in real space. Results for cerium and cerium compounds as well as other rare earths are presented. For the cerium compounds the onset of f-electron delocalization can be accurately described, including the intricate isostructural phase transitions in elemental cerium and CeP. In Pr and Sm the equilibrium lattice constant and zero temperature equation of state is greatly improved in comparison with the LSD results.

  5. Computing approximate random Delta v magnitude probability densities. [for spacecraft trajectory correction

    NASA Technical Reports Server (NTRS)

    Chadwick, C.

    1984-01-01

    This paper describes the development and use of an algorithm to compute approximate statistics of the magnitude of a single random trajectory correction maneuver (TCM) Delta v vector. The TCM Delta v vector is modeled as a three component Cartesian vector each of whose components is a random variable having a normal (Gaussian) distribution with zero mean and possibly unequal standard deviations. The algorithm uses these standard deviations as input to produce approximations to (1) the mean and standard deviation of the magnitude of Delta v, (2) points of the probability density function of the magnitude of Delta v, and (3) points of the cumulative and inverse cumulative distribution functions of Delta v. The approximates are based on Monte Carlo techniques developed in a previous paper by the author and extended here. The algorithm described is expected to be useful in both pre-flight planning and in-flight analysis of maneuver propellant requirements for space missions.

  6. Calibrated and completeness-corrected optical stellar density maps of the northern Galactic plane

    NASA Astrophysics Data System (ADS)

    Farnhill, H. J.; Drew, J. E.; Barentsen, G.; González-Solares, E. A.

    2016-03-01

    Following on from the second release of calibrated photometry from IPHAS, the INT/WFC Photometric Hα Survey of the Northern Galactic Plane, we present incompleteness-corrected stellar density maps in the r and i photometric bands. These have been computed to a range of limiting magnitudes reaching to 20th magnitude in r and 19th in i (Vega system), and with different angular resolutions - the highest resolution available being 1 arcmin2. The maps obtained cover 94 per cent of the 1800 square degree IPHAS footprint, spanning the Galactic latitude range, -5° < b < +5°, north of the celestial equator. The corrections for incompleteness, due to confusion and sensitivity loss at the faint limit, have been deduced by the method of artificial source injection. The presentation of this method is preceded by a discussion of other more approximate methods of determining completeness. Our method takes full account of position-dependent seeing and source ellipticity in the survey data base. The application of the star counts to testing reddened Galactic disc models is previewed by a comparison with predicted counts along three constant-longitude cuts at ℓ ≃ 30°, 90° and 175°: some overprediction of the most heavily reddened ℓ ≃ 30° counts is found, alongside good agreement at ℓ ≃ 90° and 175°.

  7. Ensemble density functional theory method correctly describes bond dissociation, excited state electron transfer, and double excitations

    SciTech Connect

    Filatov, Michael; Huix-Rotllant, Miquel; Burghardt, Irene

    2015-05-14

    State-averaged (SA) variants of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, SA-REKS and state-interaction (SI)-SA-REKS, implement ensemble density functional theory for variationally obtaining excitation energies of molecular systems. In this work, the currently existing version of the SA-REKS method, which included only one excited state into the ensemble averaging, is extended by adding more excited states to the averaged energy functional. A general strategy for extension of the REKS-type methods to larger ensembles of ground and excited states is outlined and implemented in extended versions of the SA-REKS and SI-SA-REKS methods. The newly developed methods are tested in the calculation of several excited states of ground-state multi-reference systems, such as dissociating hydrogen molecule, and excited states of donor–acceptor molecular systems. For hydrogen molecule, the new method correctly reproduces the distance dependence of the lowest excited state energies and describes an avoided crossing between the doubly excited and singly excited states. For bithiophene–perylenediimide stacked complex, the SI-SA-REKS method correctly describes crossing between the locally excited state and the charge transfer excited state and yields vertical excitation energies in good agreement with the ab initio wavefunction methods.

  8. Ensemble density functional theory method correctly describes bond dissociation, excited state electron transfer, and double excitations.

    PubMed

    Filatov, Michael; Huix-Rotllant, Miquel; Burghardt, Irene

    2015-05-14

    State-averaged (SA) variants of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, SA-REKS and state-interaction (SI)-SA-REKS, implement ensemble density functional theory for variationally obtaining excitation energies of molecular systems. In this work, the currently existing version of the SA-REKS method, which included only one excited state into the ensemble averaging, is extended by adding more excited states to the averaged energy functional. A general strategy for extension of the REKS-type methods to larger ensembles of ground and excited states is outlined and implemented in extended versions of the SA-REKS and SI-SA-REKS methods. The newly developed methods are tested in the calculation of several excited states of ground-state multi-reference systems, such as dissociating hydrogen molecule, and excited states of donor-acceptor molecular systems. For hydrogen molecule, the new method correctly reproduces the distance dependence of the lowest excited state energies and describes an avoided crossing between the doubly excited and singly excited states. For bithiophene-perylenediimide stacked complex, the SI-SA-REKS method correctly describes crossing between the locally excited state and the charge transfer excited state and yields vertical excitation energies in good agreement with the ab initio wavefunction methods.

  9. Aerosol deposition in the human lung periphery is increased by reduced-density gas breathing.

    PubMed

    Peterson, Jonathan B; Prisk, G Kim; Darquenne, Chantal

    2008-06-01

    Aerosol mixing resulting from turbulent flows is thought to be a major mechanism of deposition in the upper respiratory tract (URT). Because turbulence levels are a function of gas density, the use of a low-density carrier gas should reduce deposition in the URT allowing the aerosol to reach more peripheral airways of the lung. We performed aerosol bolus tests on 11 healthy subjects to investigate the effect of reduced gas density on regional aerosol deposition in the human lung. Using both air and heliox (80% helium, 20% oxygen) as carrier gas, boluses of 1 and 2 microm-diameter particles were inhaled to five volumetric lung depths (V(p)) between 150 and 1200 mL during an inspiration from residual volume (RV) to 1 liter above functional residual capacity at a constant flow rate of approximately 0.50 L/sec, which was immediately followed by an expiration to RV at the same flow rate. Aerosol deposition and axial dispersion were calculated from aerosol concentration and flow rate measured at the mouth. For 1 microm-diameter particles, deposition was significantly reduced by 29 +/- 28% (mean +/- SD, p < 0.05) when breathing heliox instead of air at shallow V(p) (150 mL) and significantly increased by 11 +/- 9% at deep V(p) (1200 mL). For 2 microm-diameter particles, deposition was significantly higher at V(p) = 500 mL by 6 +/- 7% and the predicted V(p) to achieve 100% deposition was significantly lower with heliox (834 +/- 146 mL) compared to air (912 +/- 128 mL) (p < 0.05). Despite a decrease in deposition at shallow V(p), there was no change in axial dispersion, suggesting that other factors such as radial turbulent mixing result in decreased aerosol deposition. Our results suggested that heliox reduces upper airway deposition of 1 and 2 microm-diameter particles allowing more particles to penetrate and subsequently deposit in the peripheral lung.

  10. Corrections

    NASA Astrophysics Data System (ADS)

    2012-09-01

    The feature article "Material advantage?" on the effects of technology and rule changes on sporting performance (July pp28-30) stated that sprinters are less affected by lower oxygen levels at high altitudes because they run "aerobically". They run anaerobically. The feature about the search for the Higgs boson (August pp22-26) incorrectly gave the boson's mass as roughly 125 MeV it is 125 GeV, as correctly stated elsewhere in the issue. The article also gave a wrong value for the intended collision energy of the Superconducting Super Collider, which was designed to collide protons with a total energy of 40 TeV.

  11. Correction of localized shape errors on optical surfaces by altering the localized density of surface or near-surface layers

    DOEpatents

    Taylor, John S.; Folta, James A.; Montcalm, Claude

    2005-01-18

    Figure errors are corrected on optical or other precision surfaces by changing the local density of material in a zone at or near the surface. Optical surface height is correlated with the localized density of the material within the same region. A change in the height of the optical surface can then be caused by a change in the localized density of the material at or near the surface.

  12. Study of polycyclic aromatic hydrocarbons adsorbed on graphene using density functional theory with empirical dispersion correction.

    PubMed

    Ershova, Olga V; Lillestolen, Timothy C; Bichoutskaia, Elena

    2010-06-28

    The interaction of polycyclic aromatic hydrocarbon molecules with hydrogen-terminated graphene is studied using density functional theory with empirical dispersion correction. The effective potential energy surfaces for the interaction of benzene, C(6)H(6), naphthalene, C(10)H(8), coronene, C(24)H(12), and ovalene, C(32)H(14), with hydrogen-terminated graphene are calculated as functions of the molecular displacement along the substrate. The potential energy surfaces are also described analytically using the lowest harmonics of the Fourier expansion. It is shown that inclusion of the dispersive interaction, which is the most important contribution to the binding of these weakly bound systems, does not change the shape of the interaction energy surfaces or the value of the barriers to the motion of polycyclic aromatic hydrocarbon molecules on graphene. The potential energy surfaces are used in the estimation of the friction forces acting on the molecules along the direction of motion. These results underpin the modelling, using density functional theory, of electromechanical devices based on the relative vibrations of graphene layers and telescoping carbon nanotubes.

  13. Self-interaction corrected density functional calculations of molecular Rydberg states

    SciTech Connect

    Gudmundsdóttir, Hildur; Zhang, Yao; Weber, Peter M.; Jónsson, Hannes

    2013-11-21

    A method is presented for calculating the wave function and energy of Rydberg excited states of molecules. A good estimate of the Rydberg state orbital is obtained using ground state density functional theory including Perdew-Zunger self-interaction correction and an optimized effective potential. The total energy of the excited molecule is obtained using the Delta Self-Consistent Field method where an electron is removed from the highest occupied orbital and placed in the Rydberg orbital. Results are presented for the first few Rydberg states of NH{sub 3}, H{sub 2}O, H{sub 2}CO, C{sub 2}H{sub 4}, and N(CH{sub 3}){sub 3}. The mean absolute error in the energy of the 33 molecular Rydberg states presented here is 0.18 eV. The orbitals are represented on a real space grid, avoiding the dependence on diffuse atomic basis sets. As in standard density functional theory calculations, the computational effort scales as NM{sup 2} where N is the number of orbitals and M is the number of grid points included in the calculation. Due to the slow scaling of the computational effort with system size and the high level of parallelism in the real space grid approach, the method presented here makes it possible to estimate Rydberg electron binding energy in large molecules.

  14. Association of chronic obstructive pulmonary disease and smoking status with bone density and vertebral fractures in male lung cancer screening participants.

    PubMed

    de Jong, Werner U; de Jong, Pim A; Vliegenthart, Rozemarijn; Isgum, Ivana; Lammers, Jan-Willem J; Oudkerk, Matthijs; van der Aalst, Carlijn; de Koning, Harry J; Mohamed Hoesein, Firdaus A

    2014-10-01

    We studied the vertebral fracture prevalence on low-dose chest computed tomography (CT) in male lung cancer screening participants and the association of fractures and bone density with chronic obstructive pulmonary disease (COPD) and smoking. 1140 male current and former smokers with ≥ 16.5 packyears from the NELSON lung cancer screening trial were included. Age, body mass index, and smoking status were registered. CT scans and pulmonary function tests were obtained on the same day. On CT, vertebral fractures and bone density were measured. The cohort had a mean age of 62.5 years (standard deviation 5.2) old; 531 (46.6%) had quit smoking; and 437 (38.3%) had COPD. Of the group, 100 (8.8%) participants had a vertebral fracture. Fracture prevalence was higher in current compared to former smokers (11.3% versus 5.8%, p = 0.001), but similar in participants with COPD compared to those without (9.6% versus 8.3%, p = 0.430). The multivariable adjusted odds ratio for fracture presence was 1.79 (95% CI: 1.13-2.84) in current smokers and 1.08 (95% CI: 0.69-1.67) in COPD participants. Bone density was lower in current compared to former smokers (103.2 HU versus 108.7 HU, p = 0.006) and in participants with COPD compared to those without [100.7 Hounsfield Units (HU) versus 108.9 HU, p < 0.001]. In multivariate analysis, smoking status and COPD status were independently associated with bone density, corrected for age and body mass index. In conclusion, our study shows that lung cancer screening participants have a substantial vertebral fracture burden. Fractures are more common in current smokers, who also have lower bone density. We could not confirm that COPD is independently associated with vertebral fractures.

  15. Correction.

    PubMed

    2015-05-22

    The Circulation Research article by Keith and Bolli (“String Theory” of c-kitpos Cardiac Cells: A New Paradigm Regarding the Nature of These Cells That May Reconcile Apparently Discrepant Results. Circ Res. 2015:116:1216-1230. doi: 10.1161/CIRCRESAHA.116.305557) states that van Berlo et al (2014) observed that large numbers of fibroblasts and adventitial cells, some smooth muscle and endothelial cells, and rare cardiomyocytes originated from c-kit positive progenitors. However, van Berlo et al reported that only occasional fibroblasts and adventitial cells derived from c-kit positive progenitors in their studies. Accordingly, the review has been corrected to indicate that van Berlo et al (2014) observed that large numbers of endothelial cells, with some smooth muscle cells and fibroblasts, and more rarely cardiomyocytes, originated from c-kit positive progenitors in their murine model. The authors apologize for this error, and the error has been noted and corrected in the online version of the article, which is available at http://circres.ahajournals.org/content/116/7/1216.full ( PMID:25999426

  16. Understanding molecular crystals with dispersion-inclusive density functional theory: pairwise corrections and beyond.

    PubMed

    Kronik, Leeor; Tkatchenko, Alexandre

    2014-11-18

    CONSPECTUS: Molecular crystals are ubiquitous in many areas of science and engineering, including biology and medicine. Until recently, our ability to understand and predict their structure and properties using density functional theory was severely limited by the lack of approximate exchange-correlation functionals able to achieve sufficient accuracy. Here we show that there are many cases where the simple, minimally empirical pairwise correction scheme of Tkatchenko and Scheffler provides a useful prediction of the structure and properties of molecular crystals. After a brief introduction of the approach, we demonstrate its strength through some examples taken from our recent work. First, we show the accuracy of the approach using benchmark data sets of molecular complexes. Then we show its efficacy for structural determination using the hemozoin crystal, a challenging system possessing a wide range of strong and weak binding scenarios. Next, we show that it is equally useful for response properties by considering the elastic constants exhibited by the supramolecular diphenylalanine peptide solid and the infrared signature of water libration movements in brushite. Throughout, we emphasize lessons learned not only for the methodology but also for the chemistry and physics of the crystals in question. We further show that in many other scenarios where the simple pairwise correction scheme is not sufficiently accurate, one can go beyond it by employing a computationally inexpensive many-body dispersive approach that results in useful, quantitative accuracy, even in the presence of significant screening and/or multibody contributions to the dispersive energy. We explain the principles of the many-body approach and demonstrate its accuracy for benchmark data sets of small and large molecular complexes and molecular solids. PMID:24901508

  17. Effects of Respiration-Induced Density Variations on Dose Distributions in Radiotherapy of Lung Cancer

    SciTech Connect

    Mexner, Vanessa; Wolthaus, Jochem W.H.; Herk, Marcel van; Damen, Eugene M.F.; Sonke, Jan-Jakob

    2009-07-15

    Purpose: To determine the effect of respiration-induced density variations on the estimated dose delivered to moving structures and, consequently, to evaluate the necessity of using full four-dimensional (4D) treatment plan optimization. Methods and Materials: In 10 patients with large tumor motion (median, 1.9 cm; range, 1.1-3.6 cm), the clinical treatment plan, designed using the mid-ventilation ([MidV]; i.e., the 4D-CT frame closest to the time-averaged mean position) CT scan, was recalculated on all 4D-CT frames. The cumulative dose was determined by transforming the doses in all breathing phases to the MidV geometry using deformable registration and then averaging the results. To determine the effect of density variations, this cumulative dose was compared with the accumulated dose after similarly deforming the planned (3D) MidV-dose in each respiratory phase using the same transformation (i.e., 'blurring the dose'). Results: The accumulated tumor doses, including and excluding density variations, were almost identical. Relative differences in the minimum gross tumor volume (GTV) dose were less than 2% for all patients. The relative differences were even smaller in the mean lung dose and the V20 (<0.5% and 1%, respectively). Conclusions: The effect of respiration-induced density variations on the dose accumulated over the respiratory cycle was very small, even in the presence of considerable respiratory motion. A full 4D-dose calculation for treatment planning that takes into account such density variations is therefore not required. Planning using the MidV-CT derived from 4D-CT with an appropriate margin for geometric uncertainties is an accurate and safe method to account for respiration-induced anatomy variations.

  18. Accurate description of van der Waals complexes by density functional theory including empirical corrections.

    PubMed

    Grimme, Stefan

    2004-09-01

    An empirical method to account for van der Waals interactions in practical calculations with the density functional theory (termed DFT-D) is tested for a wide variety of molecular complexes. As in previous schemes, the dispersive energy is described by damped interatomic potentials of the form C6R(-6). The use of pure, gradient-corrected density functionals (BLYP and PBE), together with the resolution-of-the-identity (RI) approximation for the Coulomb operator, allows very efficient computations for large systems. Opposed to previous work, extended AO basis sets of polarized TZV or QZV quality are employed, which reduces the basis set superposition error to a negligible extend. By using a global scaling factor for the atomic C6 coefficients, the functional dependence of the results could be strongly reduced. The "double counting" of correlation effects for strongly bound complexes is found to be insignificant if steep damping functions are employed. The method is applied to a total of 29 complexes of atoms and small molecules (Ne, CH4, NH3, H2O, CH3F, N2, F2, formic acid, ethene, and ethine) with each other and with benzene, to benzene, naphthalene, pyrene, and coronene dimers, the naphthalene trimer, coronene. H2O and four H-bonded and stacked DNA base pairs (AT and GC). In almost all cases, very good agreement with reliable theoretical or experimental results for binding energies and intermolecular distances is obtained. For stacked aromatic systems and the important base pairs, the DFT-D-BLYP model seems to be even superior to standard MP2 treatments that systematically overbind. The good results obtained suggest the approach as a practical tool to describe the properties of many important van der Waals systems in chemistry. Furthermore, the DFT-D data may either be used to calibrate much simpler (e.g., force-field) potentials or the optimized structures can be used as input for more accurate ab initio calculations of the interaction energies.

  19. Prediction of d^0 magnetism in self-interaction corrected density functional theory

    NASA Astrophysics Data System (ADS)

    Das Pemmaraju, Chaitanya

    2010-03-01

    Over the past couple of years, the phenomenon of ``d^0 magnetism'' has greatly intrigued the magnetism community [1]. Unlike conventional magnetic materials, ``d^0 magnets'' lack any magnetic ions with open d or f shells but surprisingly, exhibit signatures of ferromagnetism often with a Curie temperature exceeding 300 K. Current research in the field is geared towards trying to understand the mechanism underlying this observed ferromagnetism which is difficult to explain within the conventional m-J paradigm [1]. The most widely studied class of d^0 materials are un-doped and light element doped wide gap Oxides such as HfO2, MgO, ZnO, TiO2 all of which have been put forward as possible d0 ferromagnets. General experimental trends suggest that the magnetism is a feature of highly defective samples leading to the expectation that the phenomenon must be defect related. In particular, based on density functional theory (DFT) calculations acceptor defects formed from the O-2p states in these Oxides have been proposed as being responsible for the ferromagnetism [2,3]. However. predicting magnetism originating from 2p orbitals is a delicate problem, which depends on the subtle interplay between covalency and Hund's coupling. DFT calculations based on semi-local functionals such as the local spin-density approximation (LSDA) can lead to qualitative failures on several fronts. On one hand the excessive delocalization of spin-polarized holes leads to half-metallic ground states and the expectation of room-temperature ferromagnetism. On the other hand, in some cases a magnetic ground state may not be predicted at all as the Hund's coupling might be under estimated. Furthermore, polaronic distortions which are often a feature of acceptor defects in Oxides are not predicted [4,5]. In this presentation, we argue that the self interaction error (SIE) inherent to semi-local functionals is responsible for the failures of LSDA and demonstrate through various examples that beyond

  20. Impurity States in Ionic Crystals: a Self-Interaction - Corrected Local Spin Density Theory Study.

    NASA Astrophysics Data System (ADS)

    Jackson, Koblar Alan

    1988-12-01

    While the local spin density theory (LSD) has been successfully used to calculate the electronic properties of a variety of condensed matter systems, its use does not provide an adequate description of point impurities in insulating crystals. Unphysical self-interaction effects in LSD lead to calculated one-electron properties which do not agree well with corresponding experimental properties in the limit of localized states. As an additional result of the spurious self-interactions, LSD calculations underestimate the host crystal band gaps in these systems by typically 40%. Recently the self-interaction-correction (SIC) was developed to remove the non-physical effects of electronic self-interaction from LSD. The resulting SIC-LSD theory is self-interaction free, and its use greatly improves the description of both localized states and insulator band gaps compared to uncorrected LSD. In the first part of this work, a novel method for calculating multiplet -dependent atomic wave functions in SIC-LSD is described, and calculated SIC-LSD wave functions for the quintet and triplet excited states of atomic oxygen are shown to be in excellent agreement with the corresponding Hartree-Fock wave functions, further establishing the success of SIC -LSD in calculating the properties of localized states. SIC -LSD is then applied to the NaCl:Cu^+ and LiCl:Ag^+ impurity systems. Transitions associated with the impurity ions in these systems are studied, and the calculated transition energies are found to be in good agreement with experiment. By examining the impurity state wave functions, characteristic differences between the absorption spectra for the Cu^+ and Ag^+ systems are explained.

  1. Effect of spin-orbit nuclear charge density corrections due to the anomalous magnetic moment on halonuclei

    SciTech Connect

    Ong, A.; Berengut, J. C.; Flambaum, V. V.

    2010-07-15

    In this paper we consider the contribution of the anomalous magnetic moments of protons and neutrons to the nuclear charge density. We show that the spin-orbit contribution to the mean-square charge radius, which has been neglected in recent nuclear calculations, can be important in light halonuclei. We estimate the size of the effect in helium, lithium, and beryllium nuclei. It is found that the spin-orbit contribution represents a approx2% correction to the charge density at the center of the {sup 7}Be nucleus. We derive a simple expression for the correction to the mean-square charge radius due to the spin-orbit term and find that in light halonuclei it may be larger than the Darwin-Foldy term and comparable to finite size corrections. A comparison of experimental and theoretical mean-square radii including the spin-orbit contribution is presented.

  2. SU-F-BRD-09: Is It Sufficient to Use Only Low Density Tissue-Margin to Compensate Inter-Fractionation Setup Uncertainties in Lung Treatment?

    SciTech Connect

    Nie, K; Yue, N; Chen, T; Millevoi, R; Qin, S; Guo, J

    2014-06-15

    Purpose: In lung radiation treatment, PTV is formed with a margin around GTV (or CTV/ITV). Although GTV is most likely of water equivalent density, the PTV margin may be formed with the surrounding low-density tissues, which may lead to unreal dosimetric plan. This study is to evaluate whether the concern of dose calculation inside the PTV with only low density margin could be justified in lung treatment. Methods: Three SBRT cases were analyzed. The PTV from the original plan (Plan-O) was created with a 5–10 mm margin outside the ITV to incorporate setup errors and all mobility from 10 respiratory phases. Test plans were generated with the GTV shifted to the PTV edge to simulate the extreme situations with maximum setup uncertainties. Two representative positions as the very posterior-superior (Plan-PS) and anterior-inferior (Plan-AI) edge were considered. The virtual GTV was assigned a density of 1.0 g.cm−3 and surrounding lung, including the PTV margin, was defined as 0.25 g.cm−3. Also, additional plan with a 1mm tissue-margin instead of full lung-margin was created to evaluate whether a composite-margin (Plan-Comp) has a better approximation for dose calculation. All plans were generated on the average CT using Analytical Anisotropic Algorithm with heterogeneity correction on and all planning parameters/monitor unites remained unchanged. DVH analyses were performed for comparisons. Results: Despite the non-static dose distribution, the high-dose region synchronized with tumor positions. This might due to scatter conditions as greater doses were absorbed in the solid-tumor than in the surrounding low-density lungtissue. However, it still showed missing target coverage in general. Certain level of composite-margin might give better approximation for the dosecalculation. Conclusion: Our exploratory results suggest that with the lungmargin only, the planning dose of PTV might overestimate the coverage of the target during treatment. The significance of this

  3. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    NASA Astrophysics Data System (ADS)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  4. Dosimetric Verification Using Monte Carlo Calculations for Tissue Heterogeneity-Corrected Conformal Treatment Plans Following RTOG 0813 Dosimetric Criteria for Lung Cancer Stereotactic Body Radiotherapy

    SciTech Connect

    Li Jun; Galvin, James; Harrison, Amy; Timmerman, Robert; Yu Yan; Xiao Ying

    2012-10-01

    Purpose: The recently activated Radiation Therapy Oncology Group (RTOG) studies of stereotactic body radiation therapy (SBRT) for non-small-cell lung cancer (NSCLC) require tissue density heterogeneity correction, where the high and intermediate dose compliance criteria were established based on superposition algorithm dose calculations. The study was aimed at comparing superposition algorithm dose calculations with Monte Carlo (MC) dose calculations for SBRT for NSCLC and to evaluate whether compliance criteria need to be adjusted for MC dose calculations. Methods and Materials: Fifteen RTOG 0236 study sets were used. The planning tumor volumes (PTV) ranged from 10.7 to 117.1 cm{sup 3}. SBRT conformal treatment plans were generated using XiO (CMS Inc.) treatment planning software with superposition algorithm to meet the dosimetric high and intermediate compliance criteria recommended by the RTOG 0813 protocol. Plans were recalculated using the MC algorithm of a Monaco (CMS, Inc.) treatment planning system. Tissue density heterogeneity correction was applied in both calculations. Results: Overall, the dosimetric quantities of the MC calculations have larger magnitudes than those of the superposition calculations. On average, R{sub 100%} (ratio of prescription isodose volume to PTV), R{sub 50%} (ratio of 50% prescription isodose volume to PTV), D{sub 2cm} (maximal dose 2 cm from PTV in any direction as a percentage of prescription dose), and V{sub 20} (percentage of lung receiving dose equal to or larger than 20 Gy) increased by 9%, 12%, 7%, and 18%, respectively. In the superposition plans, 3 cases did not meet criteria for R{sub 50%} or D{sub 2cm}. In the MC-recalculated plans, 8 cases did not meet criteria for R{sub 100%}, R{sub 50%}, or D{sub 2cm}. After reoptimization with MC calculations, 5 cases did not meet the criteria for R{sub 50%} or D{sub 2cm}. Conclusions: Results indicate that the dosimetric criteria, e.g., the criteria for R{sub 50%} recommended by

  5. Quantification of Pathologic Air Trapping in Lung Transplant Patients Using CT Density Mapping: Comparison with Other CT Air Trapping Measures.

    PubMed

    Solyanik, Olga; Hollmann, Patrick; Dettmer, Sabine; Kaireit, Till; Schaefer-Prokop, Cornelia; Wacker, Frank; Vogel-Claussen, Jens; Shin, Hoen-oh

    2015-01-01

    To determine whether density mapping (DM) is more accurate for detection and quantification of pathologic air trapping (pAT) in patients after lung transplantation compared to other CT air trapping measures. One-hundred forty-seven lung and heart-lung transplant recipients underwent CT-examinations at functional residual capacity (FRC) and total lung capacity (TLC) and PFT six months after lung transplantation. Quantification of air trapping was performed with the threshold-based method in expiration (EXP), density mapping (DM) and the expiratory to inspiratory ratio of the mean lung density (E/I-ratio MLD). A non-rigid registration of inspiration-expiration CT-data with a following voxel-to-voxel mapping was carried out for DM. Systematic variation of attenuation ranges was performed for EXP and DM and correlated with the ratio of residual volume to total lung capacity (RV/TLC) by Spearman rank correlation test. AT was considered pathologic if RV/TLC was above the 95th percentile of the predicted upper limit of normal values. Receiver operating characteristic (ROC) analysis was performed. The optimal attenuation range for the EXP method was from -790 HU to -950 HU (EXP(-790 to -950HU)) (r = 0.524, p<0.001) to detect air trapping. Within the segmented lung parenchyma, AT was best defined as voxel difference less than 80 HU between expiration and registered inspiration using the DM method. DM correlated best with RV/TLC (r = 0.663, p<0.001). DM and E/I-ratio MLD showed a larger AUC (0.78; 95% CI 0.69-0.86; 0.76, 95% CI 0.67-0.85) than EXP(-790 HU to -950 HU) (0.71, 95% CI 0.63-0.78). DM and E/I-ratio MLD showed better correlation with RV/TLC and are more suited quantitative CT-methods to detect pAT in lung transplant patients than the EXP(-790HU to -950HU).

  6. Fast Computation of Solvation Free Energies with Molecular Density Functional Theory: Thermodynamic-Ensemble Partial Molar Volume Corrections.

    PubMed

    Sergiievskyi, Volodymyr P; Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel

    2014-06-01

    Molecular density functional theory (MDFT) offers an efficient implicit-solvent method to estimate molecule solvation free-energies, whereas conserving a fully molecular representation of the solvent. Even within a second-order approximation for the free-energy functional, the so-called homogeneous reference fluid approximation, we show that the hydration free-energies computed for a data set of 500 organic compounds are of similar quality as those obtained from molecular dynamics free-energy perturbation simulations, with a computer cost reduced by 2-3 orders of magnitude. This requires to introduce the proper partial volume correction to transform the results from the grand canonical to the isobaric-isotherm ensemble that is pertinent to experiments. We show that this correction can be extended to 3D-RISM calculations, giving a sound theoretical justification to empirical partial molar volume corrections that have been proposed recently.

  7. Enhanced correction methods for high density hot pixel defects in digital imagers

    NASA Astrophysics Data System (ADS)

    Chapman, Glenn H.; Thomas, Rahul; Thomas, Rohit; Koren, Zahava; Koren, Israel

    2015-03-01

    Our previous research has found that the main defects in digital cameras are "Hot Pixels" which increase at a nearly constant temporal rate. Defect rates have been shown to grow as a power law of the pixel size and ISO, potentially causing hundreds to thousands of defects per year in cameras with <2 micron pixels, thus making image correction crucial. This paper discusses a novel correction method that uses a weighted combination of two terms - traditional interpolation and hot pixel parameters correction. The weights are based on defect severity, ISO, exposure time and complexity of the image. For the hot pixel parameters component, we have studied the behavior of hot pixels under illumination and have created a new correction model that takes this behavior into account. We show that for an image with a slowly changing background, the classic interpolation performs well. However, for more complex scenes, the correction improves when a weighted combination of both components is used. To test our algorithm's accuracy, we devised a novel laboratory experimental method for extracting the true value of the pixel that currently experiences a hot pixel defect. This method involves a simple translation of the imager based on the pixel size and other optical distances.

  8. Self-Interaction Corrected Electronic Structure and Energy Gap of CuAlO2 beyond Local Density Approximation

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka

    2011-05-01

    We implemented a self-interaction correction (SIC) into first-principles calculation code to go beyond local density approximation and applied it to CuAlO2. Our simulation shows that the valence band width calculated within the SIC is narrower than that calculated without the SIC because the SIC makes the d-band potential deeper. The energy gap calculated within the SIC expands and is close to experimental data.

  9. Level density of a Fermi gas and integer partitions: A Gumbel-like finite-size correction

    SciTech Connect

    Roccia, Jerome; Leboeuf, Patricio

    2010-04-15

    We investigate the many-body level density of a gas of noninteracting fermions. We determine its behavior as a function of the temperature and the number of particles. As the temperature increases, and beyond the usual Sommerfeld expansion that describes the degenerate gas behavior, corrections due to a finite number of particles lead to Gumbel-like contributions. We discuss connections with the partition problem in number theory, extreme value statistics, and differences with respect to the Bose gas.

  10. High-density Lipoproteins and Apolipoprotein A-I: Potential New Players in the Prevention and Treatment of Lung Disease

    PubMed Central

    Gordon, Elizabeth M.; Figueroa, Debbie M.; Barochia, Amisha V.; Yao, Xianglan; Levine, Stewart J.

    2016-01-01

    Apolipoprotein A-I (apoA-I) and high-density lipoproteins (HDL) mediate reverse cholesterol transport out of cells. Furthermore, HDL has additional protective functions, which include anti-oxidative, anti-inflammatory, anti-apoptotic, and vasoprotective effects. In contrast, HDL can become dysfunctional with a reduction in both cholesterol efflux and anti-inflammatory properties in the setting of disease or the acute phase response. These paradigms are increasingly being recognized to be active in the pulmonary system, where apoA-I and HDL have protective effects in normal lung health, as well as in a variety of disease states, including acute lung injury (ALI), asthma, chronic obstructive pulmonary disease, lung cancer, pulmonary arterial hypertension, pulmonary fibrosis, and viral pneumonia. Similar to observations in cardiovascular disease, however, HDL may become dysfunctional and contribute to disease pathogenesis in respiratory disorders. Furthermore, synthetic apoA-I mimetic peptides have been shown to have protective effects in animal models of ALI, asthma, pulmonary hypertension, and influenza pneumonia. These findings provide evidence to support the concept that apoA-I mimetic peptides might be developed into a new treatment that can either prevent or attenuate the manifestations of lung diseases, such as asthma. Thus, the lung is positioned to take a page from the cardiovascular disease playbook and utilize the protective properties of HDL and apoA-I as a novel therapeutic approach. PMID:27708582

  11. Technical Note: Contrast solution density and cross section errors in inhomogeneity-corrected dose calculation for breast balloon brachytherapy

    SciTech Connect

    Kim, Leonard H.; Zhang Miao; Howell, Roger W.; Yue, Ning J.; Khan, Atif J.

    2013-01-15

    Purpose: Recent recommendations by the American Association of Physicists in Medicine Task Group 186 emphasize the importance of understanding material properties and their effect on inhomogeneity-corrected dose calculation for brachytherapy. Radiographic contrast is normally injected into breast brachytherapy balloons. In this study, the authors independently estimate properties of contrast solution that were expected to be incorrectly specified in a commercial brachytherapy dose calculation algorithm. Methods: The mass density and atomic weight fractions of a clinical formulation of radiographic contrast solution were determined using manufacturers' data. The mass density was verified through measurement and compared with the density obtained by the treatment planning system's CT calibration. The atomic weight fractions were used to determine the photon interaction cross section of the contrast solution for a commercial high-dose-rate (HDR) brachytherapy source and compared with that of muscle. Results: The density of contrast solution was 10% less than that obtained from the CT calibration. The cross section of the contrast solution for the HDR source was 1.2% greater than that of muscle. Both errors could be addressed by overriding the density of the contrast solution in the treatment planning system. Conclusions: The authors estimate the error in mass density and cross section parameters used by a commercial brachytherapy dose calculation algorithm for radiographic contrast used in a clinical breast brachytherapy practice. This approach is adaptable to other clinics seeking to evaluate dose calculation errors and determine appropriate density override values if desired.

  12. Correcting magnetic probe perturbations on current density measurements of current carrying plasmas

    SciTech Connect

    Knoblauch, P.; Raspa, V.; Di Lorenzo, F.; Lazarte, A.; Moreno, C.; Clausse, A.

    2010-09-15

    A method to infer the current density distribution in the current sheath of a plasma focus discharge from a magnetic probe is formulated and then applied to experimental data obtained in a 1.1 kJ device. Distortions on the magnetic probe signal caused by current redistribution and by a time-dependent total discharge current are considered simultaneously, leading to an integral equation for the current density. Two distinct, easy to implement, numerical procedures are given to solve such equation. Experimental results show the coexistence of at least two maxima in the current density structure of a nitrogen sheath.

  13. Carrier Density Profiling of Ultra-Shallow Junction Layers Through Corrected C-V Plotting

    SciTech Connect

    Chen, James; Dimitrov, Dimitar; Dimitrova, Tatiana; Timans, Paul; Gelpey, Jeff; McCoy, Steve; Lerch, Wilfried; Paul, Silke; Bolze, Detlef

    2008-11-03

    The aim of this report is to present and justify a new approach for carrier density profiling in ultra-shallow junction (USJ) layer. This new approach is based on a capacitance measurement model, which takes series impedance, shunt resistance and the presence of a boron skin on the USJ layer into account. It allows us to extract the depletion layer capacitances in the USJ layer from C-V plotting more accurately and hence to obtain better carrier density profiles. Based on this new approach the carrier density profiles of different USJ layers with and without halo-style implants are obtained and discussed.

  14. APOM and high-density lipoprotein cholesterol are associated with lung function and per cent emphysema.

    PubMed

    Burkart, Kristin M; Manichaikul, Ani; Wilk, Jemma B; Ahmed, Firas S; Burke, Gregory L; Enright, Paul; Hansel, Nadia N; Haynes, Demondes; Heckbert, Susan R; Hoffman, Eric A; Kaufman, Joel D; Kurai, Jun; Loehr, Laura; London, Stephanie J; Meng, Yang; O'Connor, George T; Oelsner, Elizabeth; Petrini, Marcy; Pottinger, Tess D; Powell, Charles A; Redline, Susan; Rotter, Jerome I; Smith, Lewis J; Soler Artigas, María; Tobin, Martin D; Tsai, Michael Y; Watson, Karol; White, Wendy; Young, Taylor R; Rich, Stephen S; Barr, R Graham

    2014-04-01

    Chronic obstructive pulmonary disease (COPD) is linked to cardiovascular disease; however, there are few studies on the associations of cardiovascular genes with COPD. We assessed the association of lung function with 2100 genes selected for cardiovascular diseases among 20 077 European-Americans and 6900 African-Americans. We performed replication of significant loci in the other racial group and an independent consortium of Europeans, tested the associations of significant loci with per cent emphysema and examined gene expression in an independent sample. We then tested the association of a related lipid biomarker with forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio and per cent emphysema. We identified one new polymorphism for FEV1/FVC (rs805301) in European-Americans (p=1.3×10(-6)) and a second (rs707974) in the combined European-American and African-American analysis (p=1.38×10(-7)). Both single-nucleotide polymorphisms (SNPs) flank the gene for apolipoprotein M (APOM), a component of high-density lipoprotein (HDL) cholesterol. Both were replicated in an independent cohort. SNPs in a second gene related to apolipoprotein M and HDL, PCSK9, were associated with FEV1/FVC ratio among African-Americans. rs707974 was associated with per cent emphysema among European-Americans and African-Americans and APOM expression was related to FEV1/FVC ratio and per cent emphysema. Higher HDL levels were associated with lower FEV1/FVC ratio and greater per cent emphysema. These findings suggest a novel role for the apolipoprotein M/HDL pathway in the pathogenesis of COPD and emphysema.

  15. SU-E-J-173: Evaluation of Deformable Registration for Correcting Respiratory Motion in 4DCT Lung Images

    SciTech Connect

    Larrue, A; Kaster, F; Kadir, T; Gooding, M; Elmpt, W van

    2014-06-01

    Purpose: Deformable Image Registration (DIR) is gaining wider clinical acceptance in radiation oncology. The aim of this work is to characterise a DIR algorithm on publically available 4DCT lung images, such that comparison can be performed against other algorithms. We propose an evaluation method of registration accuracy that takes into account the initial misregistration of the datasets. Methods: The “DIR Validation dataset” ( http://www.creatis.insa-lyon.fr/rio/dir{sub v}alidation{sub d}ata ) provides benchmark data for evaluating 3D CT registration algorithms. It consists of six 4DCT lung datasets (1x1x2mm resolution) with 100 landmarks identified on the end-exhalation and end-inhalation phases. Images were registered to end-inhalation using proprietary form of optical flow in commercial software (Mirada RTx, Mirada Medical, UK). Target registration error was measured before and after DIR, referred to as Initial Registration Error (IRE) and Final Registration Error (FRE). Results: The mean FRE over all landmarks was 1.37±1.81mm. FRE increased with IRE. Mean FRE of 0.86, 0.86, 1.53, 3.38, 4.45, 7.58mm was observed for IRE in the ranges 0–5, 5–10, 10–15, 15–20, 20–25, >25 mm. Higher FRE was observed at the inferior lung, where IRE was greater. Out-of-plane motion contributed more to IRE, and therefore to FRE. Maximum FRE of 20.6mm was observed for IRE of 32.1mm, located at the posterior of the middle lobe for dataset 2. Sub-voxel registration accuracy was achieved for up to 10mm IRE, and increased linearly at 0.3mm FRE/mm IRE thereafter. Conclusion: Publicly available clinical datasets enable algorithms to be compared objectively between publications. However, only reporting average TRE after registration can be misleading as the ability of an algorithm to correct for displacements varies with the IRE or position within the patient. Consequently, algorithms should be characterized using the entire range of initial displacements. For the algorithm

  16. Correction of steel casing effect for density log using numerical and experimental methods in the slim borehole

    SciTech Connect

    Hwang, Seho; Shin, Jehyun; Kim, Jongman; Won, Byeongho

    2015-03-10

    Density log is widely applied for a variety of fields such as the petroleum exploration, mineral exploration, and geotechnical survey. The logging condition of density log is normally open holes but there are frequently cased boreholes. The primary calibration curve by slim hole logging manufacturer is normally the calibration curves for the variation of borehole diameter. In this study, we have performed the correction of steel casing effects using numerical and experimental methods. We have performed numerical modeling using the Monte Carlo N-Particle (MCNP) code based on Monte Carlo method, and field experimental method from open and cased hole log. In this study, we used the FDGS (Formation Density Gamma Sonde) for slim borehole with a 100 mCi 137Cs source, three inch borehole and steel casing. The casing effect between numerical and experimental method is well matched.

  17. Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method.

    PubMed

    Lutsker, V; Aradi, B; Niehaus, T A

    2015-11-14

    Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data. PMID:26567646

  18. Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method

    SciTech Connect

    Lutsker, V.; Niehaus, T. A.; Aradi, B.

    2015-11-14

    Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.

  19. A New, Self-Contained Asymptotic Correction Scheme To Exchange-Correlation Potentials For Time-Dependent Density Functional Theory

    SciTech Connect

    Hirata, So; Zhan, Chang-Guo; Apra, Edoardo; Windus, Theresa L.; Dixon, David A.

    2003-11-07

    By combining the asymptotic correction scheme of Casida and Salahub to exchange cor-relation potentials and the phenomenological linear correlation between experimental ionization potentials and highest occupied Kohn–Sham (KS) orbital energies found by Zhan, Nichols, and Dixon, we propose a new, expedient, and self-contained asymptotic correction to exchange-correlation potentials in KS density functional theory (DFT) for use in time-dependent density functional theory (TDDFT) that does not require an ionization potential as an external parameter from a separate calculation. The asymptotically-corrected (TD)DFT is implemented in the quan-tum chemistry program suite NWChem for both sequential and massively parallel execution. The method is shown to be well balanced for both valence- and Rydberg-type transitions with average errors in excitation energies of CO, N2, CH2O, and C2H4 being smaller than those of uncorrected BLYP and B3LYP TDDFT by a factor of 4 and 2, respectively. We demonstrate the general ap-plicability and accuracy of the method for the Rydberg excited states of mono- to tetra-fluorinated methanes, the valence and Rydberg excited states of benzene, and the Q, B, N, and L band posi-tions of free-base porphin.

  20. Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method

    NASA Astrophysics Data System (ADS)

    Lutsker, V.; Aradi, B.; Niehaus, T. A.

    2015-11-01

    Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.

  1. High density bit transition requirements versus the effects on BCH error correcting code. [bit synchronization

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Schoggen, W. O.

    1982-01-01

    The design to achieve the required bit transition density for the Space Shuttle high rate multiplexes (HRM) data stream of the Space Laboratory Vehicle is reviewed. It contained a recommended circuit approach, specified the pseudo random (PN) sequence to be used and detailed the properties of the sequence. Calculations showing the probability of failing to meet the required transition density were included. A computer simulation of the data stream and PN cover sequence was provided. All worst case situations were simulated and the bit transition density exceeded that required. The Preliminary Design Review and the critical Design Review are documented. The Cover Sequence Generator (CSG) Encoder/Decoder design was constructed and demonstrated. The demonstrations were successful. All HRM and HRDM units incorporate the CSG encoder or CSG decoder as appropriate.

  2. Assessing the Performances of Dispersion-Corrected Density Functional Methods for Predicting the Crystallographic Properties of High Nitrogen Energetic Salts.

    PubMed

    Sorescu, Dan C; Byrd, Edward F C; Rice, Betsy M; Jordan, Kenneth D

    2014-11-11

    Several density functional methods with corrections for long-range dispersion interactions are evaluated for their capabilities to describe the crystallographic lattice properties of a set of 26 high nitrogen-content salts relevant for energetic materials applications. Computations were done using methods that ranged from adding atom-atom dispersion corrections with environment-independent and environment-dependent coefficients, to methods that incorporate dispersion effects via dispersion-corrected atom-centered potentials (DCACP), to methods that include nonlocal corrections. Among the functionals tested, the most successful is the nonlocal optPBE-vdW functional of Klimeš and Michaelides that predicts unit cell volumes for all crystals of the reference set within the target error range of ±3% and gives individual lattice parameters with a mean average percent error of less than 0.81%. The DCACP, Grimme's D3, and Becke and Johnson's exchange-hole (XDM) methods, when used with the BLYP, PBE, and B86b functionals, respectively, are also quite successful at predicting the lattice parameters of the test set. PMID:26584381

  3. The role of delocalization error in non-covalent interactions from dispersion-corrected density-functional theory

    NASA Astrophysics Data System (ADS)

    Otero de La Roza, Alberto

    2015-03-01

    Extensive benchmarking of dispersion-corrected density functional theory (dcDFT) methods has shown that it is nowadays feasible to calculate, with great accuracy, binding energies of small dimers and lattice energies of molecular crystals. However, there are many outstanding questions that can only be answered by a proper understanding of the interplay between base functional and dispersion correction. In this talk, I explore how delocalization error from the exchange-correlation functional impacts the calculation of non-covalent donor-acceptor interactions. Delocalization error arises from the failure of most functionals to model the long-range behavior of the exchange-correlation hole. Its primary consequence for non-covalent interactions is that the stability of donor-acceptor interactions is overestimated. Errors caused by delocalization error are particularly harmful in systems with strong and extensive hydrogen-bonded networks (water clusters and ice) or strong donor-acceptor interactions (halogen bonding), and can not be corrected using a pairwise dispersion correction. In addition, I present how delocalization error affects real-life applications of dcDFT, such as molecular adsorption on iron-oxide nanoparticles and surfaces.

  4. A study of high density bit transition requirements versus the effects on BCH error correcting coding

    NASA Technical Reports Server (NTRS)

    Ingels, F.; Schoggen, W. O.

    1981-01-01

    The various methods of high bit transition density encoding are presented, their relative performance is compared in so far as error propagation characteristics, transition properties and system constraints are concerned. A computer simulation of the system using the specific PN code recommended, is included.

  5. Traffic air pollution and lung cancer in females in Taiwan: petrol station density as an indicator of disease development.

    PubMed

    Chang, Chih-Ching; Tsai, Shang-Shyue; Chiu, Hui-Fen; Wu, Trong-Neng; Yang, Chun-Yuh

    2009-01-01

    To investigate the relationship between traffic air pollution exposure and development of lung cancer in females, studies were conducted using a matched cancer case-control model into deaths that occurred in Taiwan from 1997 through 2006. Data on all eligible lung cancer deaths in females were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. The control group consisted of women who died from causes other than neoplasms or diseases that were associated with respiratory problems. The controls were pair matched to the cancer cases by year of birth and year of death. Each matched control was selected randomly from the set of possible controls for each case. Data on the number of petrol stations in study municipalities were collected from the two major petroleum supply companies, Chinese Petroleum Corporation (CPC) and Formosa Petrochemical Corporation (FPCC). The petrol station density (per square kilometer; PSD) for study municipalities was used as an indicator of a subject's exposure to benzene and other hydrocarbons present in ambient evaporative losses of petrol or to air emissions from motor vehicles. The subjects were divided into tertiles according to PSD in their residential municipality. The results showed that there was a significant exposure-response relationship between PSD and risk of lung cancer in females after controlling for possible confounders. The findings of this study warrant further investigation of the role of traffic air pollution exposure in the etiology of lung cancer. PMID:19308850

  6. Importance of far-field Topographic and Isostatic corrections for regional density modeling

    NASA Astrophysics Data System (ADS)

    Szwillus, Ebbing, Holzrichter

    2016-07-01

    The long-wavelength gravity field contains information about processes in the sub-lithospheric mantle. As satellite-derived gravity models now provide the long to medium-wavelength gravity field at unprecedented accuracy, techniques used to process gravity data need to be updated. We show that when determining these long-wavelengths, the treatment of topographic and isostatic effects is a likely source of error. We constructed a global isostatic model and calculated global topographic and isostatic effect. These calculations were done for ground stations as well as stations at satellite height. We considered both gravity and gravity gradients. Using these results, we determined how much of the gravity signal comes from distant sources. We find that a significant long-wavelength bias is introduced if far-field effects on the topographic effect are neglected. However, due to isostatic compensation far-field effects of the topographic effect are to a large degree compensated by the far-field isostatic effect. This means that far-field effects can be reduced effectively by always considering topographic masses together with their compensating isostatic masses. We show that to correctly represent the ultra-long wavelengths, a global background model should be used. This is demonstrated both globally and for a continental-scale case area in North America. In the case of regional modeling, where the ultra-long wavelengths are not of prime importance, gravity gradients can be used to help minimize correction errors caused by far-field effects.

  7. Importance of far-field topographic and isostatic corrections for regional density modelling

    NASA Astrophysics Data System (ADS)

    Szwillus, Wolfgang; Ebbing, Jörg; Holzrichter, Nils

    2016-10-01

    The long-wavelength gravity field contains information about processes in the sublithospheric mantle. As satellite-derived gravity models now provide the long to medium-wavelength gravity field at unprecedented accuracy, techniques used to process gravity data need to be updated. We show that when determining these long-wavelengths, the treatment of topographic-isostatic effect (TIE) and isostatic effects (IE) is a likely source of error. We constructed a global isostatic model and calculated global TIE and IE. These calculations were done for ground stations as well as stations at satellite height. We considered both gravity and gravity gradients. Using these results, we determined how much of the gravity signal comes from distant sources. We find that a significant long-wavelength bias is introduced if far-field effects on the topographic effect are neglected. However, due to isostatic compensation far-field effects of the topographic effect are to a large degree compensated by the far-field IE. This means that far-field effects can be reduced effectively by always considering topographic masses together with their compensating isostatic masses. We show that to correctly represent the ultra-long wavelengths, a global background model should be used. This is demonstrated both globally and for a continental-scale case area in North America. In the case of regional modelling, where the ultra-long wavelengths are not of prime importance, gravity gradients can be used to help minimize correction errors caused by far-field effects.

  8. van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections

    SciTech Connect

    Angyan, Janos G.; Gerber, Iann C.; Savin, Andreas; Toulouse, Julien

    2005-07-15

    Long-range exchange and correlation effects, responsible for the failure of currently used approximate density functionals in describing van der Waals forces, are taken into account explicitly after a separation of the electron-electron interaction in the Hamiltonian into short- and long-range components. We propose a 'range-separated hybrid' functional based on a local density approximation for the short-range exchange-correlation energy, combined with a long-range exact exchange energy. Long-range correlation effects are added by a second-order perturbational treatment. The resulting scheme is general and is particularly well adapted to describe van der Waals complexes, such as rare gas dimers.

  9. Geometrical correction for the inter- and intramolecular basis set superposition error in periodic density functional theory calculations.

    PubMed

    Brandenburg, Jan Gerit; Alessio, Maristella; Civalleri, Bartolomeo; Peintinger, Michael F; Bredow, Thomas; Grimme, Stefan

    2013-09-26

    We extend the previously developed geometrical correction for the inter- and intramolecular basis set superposition error (gCP) to periodic density functional theory (DFT) calculations. We report gCP results compared to those from the standard Boys-Bernardi counterpoise correction scheme and large basis set calculations. The applicability of the method to molecular crystals as the main target is tested for the benchmark set X23. It consists of 23 noncovalently bound crystals as introduced by Johnson et al. (J. Chem. Phys. 2012, 137, 054103) and refined by Tkatchenko et al. (J. Chem. Phys. 2013, 139, 024705). In order to accurately describe long-range electron correlation effects, we use the standard atom-pairwise dispersion correction scheme DFT-D3. We show that a combination of DFT energies with small atom-centered basis sets, the D3 dispersion correction, and the gCP correction can accurately describe van der Waals and hydrogen-bonded crystals. Mean absolute deviations of the X23 sublimation energies can be reduced by more than 70% and 80% for the standard functionals PBE and B3LYP, respectively, to small residual mean absolute deviations of about 2 kcal/mol (corresponding to 13% of the average sublimation energy). As a further test, we compute the interlayer interaction of graphite for varying distances and obtain a good equilibrium distance and interaction energy of 6.75 Å and -43.0 meV/atom at the PBE-D3-gCP/SVP level. We fit the gCP scheme for a recently developed pob-TZVP solid-state basis set and obtain reasonable results for the X23 benchmark set and the potential energy curve for water adsorption on a nickel (110) surface.

  10. Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D).

    PubMed

    van de Streek, Jacco; Neumann, Marcus A

    2014-12-01

    In 2010 we energy-minimized 225 high-quality single-crystal (SX) structures with dispersion-corrected density functional theory (DFT-D) to establish a quantitative benchmark. For the current paper, 215 organic crystal structures determined from X-ray powder diffraction (XRPD) data and published in an IUCr journal were energy-minimized with DFT-D and compared to the SX benchmark. The on average slightly less accurate atomic coordinates of XRPD structures do lead to systematically higher root mean square Cartesian displacement (RMSCD) values upon energy minimization than for SX structures, but the RMSCD value is still a good indicator for the detection of structures that deserve a closer look. The upper RMSCD limit for a correct structure must be increased from 0.25 Å for SX structures to 0.35 Å for XRPD structures; the grey area must be extended from 0.30 to 0.40 Å. Based on the energy minimizations, three structures are re-refined to give more precise atomic coordinates. For six structures our calculations provide the missing positions for the H atoms, for five structures they provide corrected positions for some H atoms. Seven crystal structures showed a minor error for a non-H atom. For five structures the energy minimizations suggest a higher space-group symmetry. For the 225 SX structures, the only deviations observed upon energy minimization were three minor H-atom related issues. Preferred orientation is the most important cause of problems. A preferred-orientation correction is the only correction where the experimental data are modified to fit the model. We conclude that molecular crystal structures determined from powder diffraction data that are published in IUCr journals are of high quality, with less than 4% containing an error in a non-H atom.

  11. A study of high density bit transition requirements versus the effects on BCH error correcting coding

    NASA Technical Reports Server (NTRS)

    Ingels, F.; Schoggen, W. O.

    1981-01-01

    Several methods for increasing bit transition densities in a data stream are summarized, discussed in detail, and compared against constraints imposed by the 2 MHz data link of the space shuttle high rate multiplexer unit. These methods include use of alternate pulse code modulation waveforms, data stream modification by insertion, alternate bit inversion, differential encoding, error encoding, and use of bit scramblers. The psuedo-random cover sequence generator was chosen for application to the 2 MHz data link of the space shuttle high rate multiplexer unit. This method is fully analyzed and a design implementation proposed.

  12. Ghost-interaction correction in ensemble density-functional theory for excited states with and without range separation

    NASA Astrophysics Data System (ADS)

    Alam, Md. Mehboob; Knecht, Stefan; Fromager, Emmanuel

    2016-07-01

    Ensemble density-functional theory (eDFT) suffers from the so-called "ghost-interaction" error when approximate exchange-correlation functionals are used. In this work, we present a rigorous ghost-interaction correction (GIC) scheme in the context of range-separated eDFT. The method relies on an exact decomposition of the ensemble short-range exchange-correlation energy into a multideterminantal exact exchange term, which involves the long-range interacting ensemble density matrix, instead of the Kohn-Sham (KS) one, and a complementary density-functional correlation energy. A generalized adiabatic connection formula is derived for the latter. In order to perform practical calculations, the complementary correlation functional is simply modeled by its ground-state local density approximation (LDA), while long-range interacting ground- and excited-state wave functions are obtained self-consistently by combining a long-range configuration-interaction calculation with a short-range LDA potential. We show that the GIC reduces the curvature of approximate range-separated ensemble energies drastically while providing considerably more accurate excitation energies, even for charge-transfer and double excitations. Interestingly, the method performs well also in the context of standard KS-eDFT, which is recovered when the range-separation parameter is set to 0.

  13. Innovative Troxler-free measurement of macular pigment and lens density with correction of the former for the aging lens.

    PubMed

    Bone, Richard A; Mukherjee, Anirbaan

    2013-10-01

    Simplified measurement of macular pigment optical density (MPOD) is important because of the ocular health benefits that are attributed to these retinal carotenoids. Here, we describe a novel instrument designed for this purpose, based on heterochromatic flicker photometry (HFP), which removes a number of difficulties that subjects often experience with traditional HFP. The instrument generates 1.5- and 15-deg diameter, centrally viewed stimuli that alternate between blue and green colors generated by light emitting diodes (LED). The 15 deg stimulus replaces the small, eccentrically viewed stimulus used in traditional HFP. Subjects adjust the blue LED intensity until flicker is eliminated in the case of the 1.5 deg stimulus and eliminated around the periphery in the case of the 15 deg stimulus. A microprocessor computes the subject's MPOD, in addition to the lens OD, and uses the latter to correct the MPOD. Good repeatability was confirmed through test-retest measurements on 52 subjects. The overwhelming majority of them stated that they found the test easy. The importance of the lens correction on MPOD measurements was confirmed in a simulation study. The study showed that, without the correction, MPOD would show an apparent age-related decline in a population for whom there was no real age dependence.

  14. Evaluation of dispersion-corrected density functional theory (B3LYP-DCP) for compounds of biochemical interest.

    PubMed

    Lill, Sten O Nilsson

    2010-09-01

    An evaluation of a dispersion-corrected density functional theory method (B3LYP-DCP) [I.D. Mackie, G.A. DiLabio, Interactions in large, polyaromatic hydrocarbon dimers: application of density functional theory with dispersion corrections, J. Phys. Chem. A 112 (2008) 10968-10976] for three systems of biochemical interest is presented. Firstly, structures and energies of isomers of the tripeptide Phe-Gly-Phe have been compared with CCSD(T)/CBS//RI-MP2/cc-pVTZ literature values. In the system aromatic interactions compete with XH-pi (X=C, N) interactions and hydrogen bonds which makes it a reliable model for proteins. The resulting mean absolute deviation between B3LYP-DCP and CCSD(T)/CBS relative energies is found to be 0.50 kcal mol(-1). Secondly, a phenylalanine derivative featuring a CH-pi interaction has been investigated. A comparison between the optimized geometry and X-ray crystal data shows that B3LYP-DCP accurately predicts the interaction between the two aromatic rings. Thirdly, the dipeptide Ac-Phe-Phe-NH(2) which contains an edge-to-face interaction between two aromatic rings has been studied. The study demonstrates the general applicability of the B3LYP-DCP method on systems which features interactions typically present in biochemical compounds.

  15. A correction for the Hartree-Fock density of states for jellium without screening

    SciTech Connect

    Blair, Alexander I.; Kroukis, Aristeidis; Gidopoulos, Nikitas I.

    2015-02-28

    We revisit the Hartree-Fock (HF) calculation for the uniform electron gas, or jellium model, whose predictions—divergent derivative of the energy dispersion relation and vanishing density of states (DOS) at the Fermi level—are in qualitative disagreement with experimental evidence for simple metals. Currently, this qualitative failure is attributed to the lack of screening in the HF equations. Employing Slater’s hyper-Hartree-Fock (HHF) equations, derived variationally, to study the ground state and the excited states of jellium, we find that the divergent derivative of the energy dispersion relation and the zero in the DOS are still present, but shifted from the Fermi wavevector and energy of jellium to the boundary between the set of variationally optimised and unoptimised HHF orbitals. The location of this boundary is not fixed, but it can be chosen to lie at arbitrarily high values of wavevector and energy, well clear from the Fermi level of jellium. We conclude that, rather than the lack of screening in the HF equations, the well-known qualitative failure of the ground-state HF approximation is an artifact of its nonlocal exchange operator. Other similar artifacts of the HF nonlocal exchange operator, not associated with the lack of electronic correlation, are known in the literature.

  16. Assessing the Relationship between Lung Density and Function with Oxygen-Enhanced Magnetic Resonance Imaging in a Mouse Model of Emphysema

    PubMed Central

    Zurek, Magdalena; Sladen, Louise; Johansson, Edvin; Olsson, Marita; Jackson, Sonya; Zhang, Hui; Mayer, Gaell; Hockings, Paul D.

    2016-01-01

    Purpose A magnetic resonance imaging method is presented that allows for the simultaneous assessment of oxygen delivery, oxygen uptake, and parenchymal density. The technique is applied to a mouse model of porcine pancreatic elastase (PPE) induced lung emphysema in order to investigate how structural changes affect lung function. Method Nine-week-old female C57BL6 mice were instilled with saline or PPE at days 0 and 7. At day 19, oxygen delivery, oxygen uptake, and lung density were quantified from T1 and proton-density measurements obtained via oxygen-enhanced magnetic resonance imaging (OE-MRI) using an ultrashort echo-time imaging sequence. Subsequently, the lungs were sectioned for histological observation. Blood-gas analyses and pulmonary functional tests via FlexiVent were performed in separate cohorts. Principal Findings PPE-challenged mice had reduced density when assessed via MRI, consistent with the parenchyma loss observed in the histology sections, and an increased lung compliance was detected via FlexiVent. The oxygenation levels, as assessed via the blood-gas analysis, showed no difference between PPE-challenged animals and control. This finding was mirrored in the global MRI assessments of oxygen delivery and uptake, where the changes in relaxation time indices were matched between the groups. The heterogeneity of the same parameters however, were increased in PPE-challenged animals. When the oxygenation status was investigated in regions of varying density, a reduced oxygen-uptake was found in low-density regions of PPE-challenged mice. In high-density regions the uptake was higher than that of regions of corresponding density in control animals. The oxygen delivery was proportional to the oxygen uptake in both groups. Conclusions The proposed method allowed for the regional assessment of the relationship between lung density and two aspects of lung function, the oxygen delivery and uptake. When compared to global indices of lung function, an

  17. Spin-Fluctuation-Driven Nematic Charge-Density Wave in Cuprate Superconductors: Impact of Aslamazov-Larkin Vertex Corrections.

    PubMed

    Yamakawa, Youichi; Kontani, Hiroshi

    2015-06-26

    We present a microscopic derivation of the nematic charge-density wave (CDW) formation in cuprate superconductors based on the three-orbital d-p Hubbard model by introducing the vertex correction (VC) into the charge susceptibility. The CDW instability at q=(Δ(FS),0), (0,Δ(FS)) appears when the spin fluctuations are strong, due to the strong charge-spin interference represented by the VC. Here, Δ(FS) is the wave number between the neighboring hot spots. The obtained spin-fluctuation-driven CDW is expressed as the "intra-unit-cell orbital order" accompanied by the charge transfer between the neighboring atomic orbitals, which is actually observed by the scanning tunneling microscope measurements. We predict that the cuprate CDW and the nematic orbital order in Fe-based superconductors are closely related spin-fluctuation-driven phenomena. PMID:26197139

  18. Electronic structure of novel charge transfer compounds: application of Fermi orbital self-interaction corrected density functional theory

    NASA Astrophysics Data System (ADS)

    Hahn, Torsten; Rückerl, Florian; Liebing, Simon; Pederson, Mark

    We present our experimental and theoretical results on novel Picene/F4TCNQ and Manganese-Phthalocyanine/F4TCNQ donor / acceptor systems. We apply the recently developed Fermi-orbital based approach for self-interaction corrected density functional theory (FO-SIC DFT) to these materials and compare the results to standard DFT calculations and to experimental data obtained by photoemission spectroscopy. We focus our analysis on the description of the magnitude of the ground state charge transfer and on the details of the formed hybrid orbitals. Further, we show that for weakly bound donor / acceptor systems the FO-SIC approach delivers a more realistic description of the electronic structure compared to standard DFT calculations Support by DFG FOR1154 is greatly acknowledged.

  19. Spin-Fluctuation-Driven Nematic Charge-Density Wave in Cuprate Superconductors: Impact of Aslamazov-Larkin Vertex Corrections.

    PubMed

    Yamakawa, Youichi; Kontani, Hiroshi

    2015-06-26

    We present a microscopic derivation of the nematic charge-density wave (CDW) formation in cuprate superconductors based on the three-orbital d-p Hubbard model by introducing the vertex correction (VC) into the charge susceptibility. The CDW instability at q=(Δ(FS),0), (0,Δ(FS)) appears when the spin fluctuations are strong, due to the strong charge-spin interference represented by the VC. Here, Δ(FS) is the wave number between the neighboring hot spots. The obtained spin-fluctuation-driven CDW is expressed as the "intra-unit-cell orbital order" accompanied by the charge transfer between the neighboring atomic orbitals, which is actually observed by the scanning tunneling microscope measurements. We predict that the cuprate CDW and the nematic orbital order in Fe-based superconductors are closely related spin-fluctuation-driven phenomena.

  20. Re-Examining the Properties of the Aqueous Vapor-Liquid Interface Using Dispersion Corrected Density Functional Theory

    SciTech Connect

    Baer, Marcel D.; Mundy, Christopher J.; McGrath, Matthew J.; Kuo, I-F W.; Siepmann, Joern I.; Tobias, Douglas J.

    2011-09-28

    First-principles molecular dynamics simulations, in which the forces are computed from electronic structure calculations, have great potential to provide unique insight into structure, dynamics, electronic properties, and chemistry at aqueous interfaces that is not available from empirical force fields. The majority of current first-principles simulations are driven by forces derived from density functional theory with generalized gradient approximations to the exchange-correlation energy, which do not capture dispersion interactions. We have carried out first-principles molecular dynamics simulations of air-water interfaces employing a particular generalized gradient approximation to the exchange-correlation functional (BLYP), with and without empirical dispersion corrections. We assess the utility of the dispersion corrections by comparison of a variety of structural, dynamic, and thermodynamic properties of bulk and interfacial water with experimental data, as well as other first-principles and force field-based simulations. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  1. Influence of radiation therapy on the lung-tissue in breast cancer patients: CT-assessed density changes and associated symptoms

    SciTech Connect

    Rotstein, S.; Lax, I.; Svane, G. )

    1990-01-01

    The relative electron density of lung tissue was measured from computer tomography (CT) slices in 33 breast cancer patients treated by various techniques of adjuvant radiotherapy. The measurements were made before radiotherapy, 3 months and 9 months after completion of radiation therapy. The changes in lung densities at 3 months and 9 months were compared to radiation induced radiological (CT) findings. In addition, subjective symptoms such as cough and dyspnoea were assessed before and after radiotherapy. It was observed that the mean of the relative electron density of lung tissue varied from 0.25 when the whole lung was considered to 0.17 when only the anterior lateral quarter of the lung was taken into account. In patients with positive radiological (CT) findings the mean lung density of the anterior lateral quarter increased 2.1 times 3 months after radiotherapy and was still increased 1.6 times 6 months later. For those patients without findings, in the CT pictures the corresponding values were 1.2 and 1.1, respectively. The standard deviation of the pixel values within the anterior lateral quarter of the lung increased 3.8 times and 3.2 times at 3 months and 9 months, respectively, in the former group, as opposed to 1.2 and 1.1 in the latter group. Thirteen patients had an increase in either cough or dyspnoea as observed 3 months after completion of radiotherapy. In eleven patients these symptoms persisted 6 months later. No significant correlation was found between radiological findings and subjective symptoms. However, when three different treatment techniques were compared among 29 patients the highest rate of radiological findings was observed in patients in which the largest lung volumes received the target dose. A tendency towards an increased rate of subjective symptoms was also found in this group.

  2. Energy ranking of molecular crystals using density functional theory calculations and an empirical van der waals correction.

    PubMed

    Neumann, Marcus A; Perrin, Marc-Antoine

    2005-08-18

    By combination of high level density functional theory (DFT) calculations with an empirical van der Waals correction, a hybrid method has been designed and parametrized that provides unprecedented accuracy for the structure optimization and the energy ranking of molecular crystals. All DFT calculations are carried out using the VASP program. The van der Waals correction is expressed as the sum over atom-atom pair potentials with each pair potential for two atoms A and B being the product of an asymptotic C(6,A,B)/r(6) term and a damping function d(A,B)(r). Empirical parameters are provided for the elements H, C, N, O, F, Cl, and S. Following Wu and Yang, the C(6) coefficients have been determined by least-squares fitting to molecular C(6) coefficients derived by Meath and co-workers from dipole oscillator strength distributions. The damping functions d(A,B)(r) guarantee the crossover from the asymptotic C(6,A,B)/r(6) behavior at large interatomic distances to a constant interaction energy at short distances. The careful parametrization of the damping functions is of crucial importance to obtain the correct balance between the DFT part of the lattice energy and the contribution from the empirical van der Waals correction. The damping functions have been adjusted to yield the best possible agreement between the unit cells of a set of experimental low temperature crystal structures and their counterparts obtained by lattice energy optimization using the hybrid method. On average, the experimental and the calculated unit cell lengths deviate by 1%. To assess the performance of the hybrid method with respect to the lattice energy ranking of molecular crystals, various crystal packings of ethane, ethylene, acetylene, methanol, acetic acid, and urea have been generated with Accelrys' Polymorph Predictor in a first step and optimized with the hybrid method in a second step. In five out of six cases, the experimentally observed low-temperature crystal structure corresponds

  3. Variability in CT lung-nodule quantification: Effects of dose reduction and reconstruction methods on density and texture based features

    PubMed Central

    Lo, P.; Young, S.; Kim, H. J.; Brown, M. S.

    2016-01-01

    Purpose: To investigate the effects of dose level and reconstruction method on density and texture based features computed from CT lung nodules. Methods: This study had two major components. In the first component, a uniform water phantom was scanned at three dose levels and images were reconstructed using four conventional filtered backprojection (FBP) and four iterative reconstruction (IR) methods for a total of 24 different combinations of acquisition and reconstruction conditions. In the second component, raw projection (sinogram) data were obtained for 33 lung nodules from patients scanned as a part of their clinical practice, where low dose acquisitions were simulated by adding noise to sinograms acquired at clinical dose levels (a total of four dose levels) and reconstructed using one FBP kernel and two IR kernels for a total of 12 conditions. For the water phantom, spherical regions of interest (ROIs) were created at multiple locations within the water phantom on one reference image obtained at a reference condition. For the lung nodule cases, the ROI of each nodule was contoured semiautomatically (with manual editing) from images obtained at a reference condition. All ROIs were applied to their corresponding images reconstructed at different conditions. For 17 of the nodule cases, repeat contours were performed to assess repeatability. Histogram (eight features) and gray level co-occurrence matrix (GLCM) based texture features (34 features) were computed for all ROIs. For the lung nodule cases, the reference condition was selected to be 100% of clinical dose with FBP reconstruction using the B45f kernel; feature values calculated from other conditions were compared to this reference condition. A measure was introduced, which the authors refer to as Q, to assess the stability of features across different conditions, which is defined as the ratio of reproducibility (across conditions) to repeatability (across repeat contours) of each feature. Results: The

  4. A human embryonic lung fibroblast with a high density of muscarinic acetylcholine receptors.

    PubMed

    André, C; Marullo, S; Convents, A; Lü, B Z; Guillet, J G; Hoebeke, J; Strosberg, D A

    1988-01-15

    Binding studies with the radiolabeled muscarinic antagonists dexetimide, quinuclidinyl benzilate and N-methylscopolamine showed that the human embryonic lung fibroblast CCL137 possesses approximately 2 X 10(5) muscarinic receptors/cell, i.e. 2.1 pmol/mg membrane protein. These receptors showed a marked stereoselectivity towards dexetimide and levetimide and only low affinity for another antagonist, pirenzepine. The muscarinic agonist carbamylcholine inhibited forskolin-stimulated adenylate cyclase and induced phosphatidylinositide turnover in the intact cells. Both effects were inhibited by the muscarinic antagonist atropine. Affinity labeling with tritiated propylbenzylcholine mustard revealed a protein of 72 kDa. Finally, down-regulation of the membrane receptors following prolonged treatment with the agonist carbamylcholine was assessed by means of the hydrophilic antagonist N-methylscopolamine. PMID:2828056

  5. Prognostic impact of average iodine density assessed by dual-energy spectral imaging for predicting lung tumor recurrence after stereotactic body radiotherapy

    PubMed Central

    Aoki, Masahiko; Hirose, Katsumi; Sato, Mariko; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Fujioka, Ichitaro; Tanaka, Mitsuki; Ono, Shuichi; Takai, Yoshihiro

    2016-01-01

    The purpose of this study was to investigate the prognostic significance of average iodine density as assessed by dual-energy computed tomography (DE-CT) for lung tumors treated with stereotactic body radiotherapy (SBRT). From March 2011 to August 2014, 93 medically inoperable patients with 74 primary lung cancers and 19 lung metastases underwent DE-CT prior to SBRT of a total dose of 45–60 Gy in 5–10 fractions. Of these 93 patients, nine patients had two lung tumors. Thus, 102 lung tumors were included in this study. DE-CT was performed for pretreatment evaluation. Regions of interest were set for the entire tumor, and average iodine density was obtained using a dedicated imaging software and evaluated with regard to local control. The median follow-up period was 23.4 months (range, 1.5–54.5 months). The median value of the average iodine density was 1.86 mg/cm3 (range, 0.40–9.27 mg/cm3). Two-year local control rates for the high and low average iodine density groups divided by the median value of the average iodine density were 96.9% and 75.7% (P = 0.006), respectively. Tumors with lower average iodine density showed a worse prognosis, possibly reflecting a hypoxic cell population in the tumor. The average iodine density exhibited a significant impact on local control. Our preliminary results indicate that iodine density evaluated using dual-energy spectral CT may be a useful, noninvasive and quantitative assessment of radio-resistance caused by presumably hypoxic cell populations in tumors. PMID:26826198

  6. Prognostic impact of average iodine density assessed by dual-energy spectral imaging for predicting lung tumor recurrence after stereotactic body radiotherapy.

    PubMed

    Aoki, Masahiko; Hirose, Katsumi; Sato, Mariko; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Fujioka, Ichitaro; Tanaka, Mitsuki; Ono, Shuichi; Takai, Yoshihiro

    2016-07-01

    The purpose of this study was to investigate the prognostic significance of average iodine density as assessed by dual-energy computed tomography (DE-CT) for lung tumors treated with stereotactic body radiotherapy (SBRT). From March 2011 to August 2014, 93 medically inoperable patients with 74 primary lung cancers and 19 lung metastases underwent DE-CT prior to SBRT of a total dose of 45-60 Gy in 5-10 fractions. Of these 93 patients, nine patients had two lung tumors. Thus, 102 lung tumors were included in this study. DE-CT was performed for pretreatment evaluation. Regions of interest were set for the entire tumor, and average iodine density was obtained using a dedicated imaging software and evaluated with regard to local control. The median follow-up period was 23.4 months (range, 1.5-54.5 months). The median value of the average iodine density was 1.86 mg/cm(3) (range, 0.40-9.27 mg/cm(3)). Two-year local control rates for the high and low average iodine density groups divided by the median value of the average iodine density were 96.9% and 75.7% (P = 0.006), respectively. Tumors with lower average iodine density showed a worse prognosis, possibly reflecting a hypoxic cell population in the tumor. The average iodine density exhibited a significant impact on local control. Our preliminary results indicate that iodine density evaluated using dual-energy spectral CT may be a useful, noninvasive and quantitative assessment of radio-resistance caused by presumably hypoxic cell populations in tumors.

  7. Prognostic impact of average iodine density assessed by dual-energy spectral imaging for predicting lung tumor recurrence after stereotactic body radiotherapy.

    PubMed

    Aoki, Masahiko; Hirose, Katsumi; Sato, Mariko; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Fujioka, Ichitaro; Tanaka, Mitsuki; Ono, Shuichi; Takai, Yoshihiro

    2016-07-01

    The purpose of this study was to investigate the prognostic significance of average iodine density as assessed by dual-energy computed tomography (DE-CT) for lung tumors treated with stereotactic body radiotherapy (SBRT). From March 2011 to August 2014, 93 medically inoperable patients with 74 primary lung cancers and 19 lung metastases underwent DE-CT prior to SBRT of a total dose of 45-60 Gy in 5-10 fractions. Of these 93 patients, nine patients had two lung tumors. Thus, 102 lung tumors were included in this study. DE-CT was performed for pretreatment evaluation. Regions of interest were set for the entire tumor, and average iodine density was obtained using a dedicated imaging software and evaluated with regard to local control. The median follow-up period was 23.4 months (range, 1.5-54.5 months). The median value of the average iodine density was 1.86 mg/cm(3) (range, 0.40-9.27 mg/cm(3)). Two-year local control rates for the high and low average iodine density groups divided by the median value of the average iodine density were 96.9% and 75.7% (P = 0.006), respectively. Tumors with lower average iodine density showed a worse prognosis, possibly reflecting a hypoxic cell population in the tumor. The average iodine density exhibited a significant impact on local control. Our preliminary results indicate that iodine density evaluated using dual-energy spectral CT may be a useful, noninvasive and quantitative assessment of radio-resistance caused by presumably hypoxic cell populations in tumors. PMID:26826198

  8. Initial implementation of the conversion from the energy-subtracted CT number to electron density in tissue inhomogeneity corrections: An anthropomorphic phantom study of radiotherapy treatment planning

    SciTech Connect

    Tsukihara, Masayoshi; Noto, Yoshiyuki; Sasamoto, Ryuta; Hayakawa, Takahide; Saito, Masatoshi

    2015-03-15

    Purpose: To achieve accurate tissue inhomogeneity corrections in radiotherapy treatment planning, the authors had previously proposed a novel conversion of the energy-subtracted computed tomography (CT) number to an electron density (ΔHU–ρ{sub e} conversion), which provides a single linear relationship between ΔHU and ρ{sub e} over a wide range of ρ{sub e}. The purpose of this study is to present an initial implementation of the ΔHU–ρ{sub e} conversion method for a treatment planning system (TPS). In this paper, two example radiotherapy plans are used to evaluate the reliability of dose calculations in the ΔHU–ρ{sub e} conversion method. Methods: CT images were acquired using a clinical dual-source CT (DSCT) scanner operated in the dual-energy mode with two tube potential pairs and an additional tin (Sn) filter for the high-kV tube (80–140 kV/Sn and 100–140 kV/Sn). Single-energy CT using the same DSCT scanner was also performed at 120 kV to compare the ΔHU–ρ{sub e} conversion method with a conventional conversion from a CT number to ρ{sub e} (Hounsfield units, HU–ρ{sub e} conversion). Lookup tables for ρ{sub e} calibration were obtained from the CT image acquisitions for tissue substitutes in an electron density phantom (EDP). To investigate the beam-hardening effect on dosimetric uncertainties, two EDPs with different sizes (a body EDP and a head EDP) were used for the ρ{sub e} calibration. Each acquired lookup table was applied to two radiotherapy plans designed using the XiO TPS with the superposition algorithm for an anthropomorphic phantom. The first radiotherapy plan was for an oral cavity tumor and the second was for a lung tumor. Results: In both treatment plans, the performance of the ΔHU–ρ{sub e} conversion was superior to that of the conventional HU–ρ{sub e} conversion in terms of the reliability of dose calculations. Especially, for the oral tumor plan, which dealt with dentition and bony structures, treatment

  9. SU-E-T-24: A Simple Correction-Based Method for Independent Monitor Unit (MU) Verification in Monte Carlo (MC) Lung SBRT Plans

    SciTech Connect

    Pokhrel, D; Badkul, R; Jiang, H; Estes, C; Kumar, P; Wang, F

    2014-06-01

    Purpose: Lung-SBRT uses hypo-fractionated dose in small non-IMRT fields with tissue-heterogeneity corrected plans. An independent MU verification is mandatory for safe and effective delivery of the treatment plan. This report compares planned MU obtained from iPlan-XVM-Calgorithm against spreadsheet-based hand-calculation using most commonly used simple TMR-based method. Methods: Treatment plans of 15 patients who underwent for MC-based lung-SBRT to 50Gy in 5 fractions for PTV V100%=95% were studied. ITV was delineated on MIP images based on 4D-CT scans. PTVs(ITV+5mm margins) ranged from 10.1- 106.5cc(average=48.6cc). MC-SBRT plans were generated using a combination of non-coplanar conformal arcs/beams using iPlan XVM-Calgorithm (BrainLAB iPlan ver.4.1.2) for Novalis-TX consisting of micro-MLCs and 6MV-SRS (1000MU/min) beam. These plans were re-computed using heterogeneity-corrected Pencil-Beam (PB-hete) algorithm without changing any beam parameters, such as MLCs/MUs. Dose-ratio: PB-hete/MC gave beam-by-beam inhomogeneity-correction-factors (ICFs):Individual Correction. For independent-2nd-check, MC-MUs were verified using TMR-based hand-calculation and obtained an average ICF:Average Correction, whereas TMR-based hand-calculation systematically underestimated MC-MUs by ∼5%. Also, first 10 MC-plans were verified with an ion-chamber measurement using homogenous phantom. Results: For both beams/arcs, mean PB-hete dose was systematically overestimated by 5.5±2.6% and mean hand-calculated MU systematic underestimated by 5.5±2.5% compared to XVMC. With individual correction, mean hand-calculated MUs matched with XVMC by - 0.3±1.4%/0.4±1.4 for beams/arcs, respectively. After average 5% correction, hand-calculated MUs matched with XVMC by 0.5±2.5%/0.6±2.0% for beams/arcs, respectively. Smaller dependence on tumor volume(TV)/field size(FS) was also observed. Ion-chamber measurement was within ±3.0%. Conclusion: PB-hete overestimates dose to lung tumor relative to

  10. Comparison of Radiation-Induced Normal Lung Tissue Density Changes for Patients From Multiple Institutions Receiving Conventional or Hypofractionated Treatments

    SciTech Connect

    Diot, Quentin; Marks, Lawrence B.; Bentzen, Soren M.; Senan, Suresh; Kavanagh, Brian D.; Lawrence, Michael V.; Miften, Moyed; Palma, David A.

    2014-07-01

    Purpose: To quantitatively assess changes in computed tomography (CT)–defined normal lung tissue density after conventional and hypofractionated radiation therapy (RT). Methods and Materials: The pre-RT and post-RT CT scans from 118 and 111 patients receiving conventional and hypofractionated RT, respectively, at 3 institutions were registered to each other and to the 3-dimensional dose distribution to quantify dose-dependent changes in normal lung tissue density. Dose-response curves (DRC) for groups of patients receiving conventional and hypofractionated RT were generated for each institution, and the frequency of density changes >80 Hounsfield Units (HU) was modeled depending on the fractionation type using a Probit model for different follow-up times. Results: For the pooled data from all institutions, there were significant differences in the DRC between the conventional and hypofractionated groups; the respective doses resulting in 50% complication risk (TD{sub 50}) were 62 Gy (95% confidence interval [CI] 57-67) versus 36 Gy (CI 33-39) at <6 months, 48 Gy (CI 46-51) versus 31 Gy (CI 28-33) at 6-12 months, and 47 Gy (CI 45-49) versus 35 Gy (32-37) at >12 months. The corresponding m values (slope of the DRC) were 0.52 (CI 0.46-0.59) versus 0.31 (CI 0.28-0.34) at <6 months, 0.46 (CI 0.42-0.51) versus 0.30 (CI 0.26-0.34) at 6-12 months, and 0.45 (CI 0.42-0.50) versus 0.31 (CI 0.27-0.35) at >12 months (P<.05 for all comparisons). Conclusion: Compared with conventional fractionation, hypofractionation has a lower TD{sub 50} and m value, both suggesting an increased degree of normal tissue density sensitivity with hypofractionation.

  11. CO2 adsorption on TiO2(101) anatase: a dispersion-corrected density functional theory study.

    PubMed

    Sorescu, Dan C; Al-Saidi, Wissam A; Jordan, Kenneth D

    2011-09-28

    Adsorption, diffusion, and dissociation of CO(2) on the anatase (101) surface were investigated using dispersion-corrected density functional theory. On the oxidized surface several different local minima were identified of which the most stable corresponds to a CO(2) molecule adsorbed at a five-fold coordinated Ti site in a tilted configuration. Surface diffusion is characterized by relatively small activation barriers. Preferential diffusion takes place along Ti rows and involves a cartwheel type of motion. The presence of a bridging oxygen defect or a surface interstitial Ti atom allows creation of several new strong binding configurations the most stable of which have bent CO(2) structures with simultaneous bonding to two surface Ti atoms. Subsurface oxygen vacancy or interstitial Ti defects are found to enhance the bonding of CO(2) molecules to the surface. CO(2) dissociation from these defect sites is calculated to be exothermic with barriers less than 21 kcal/mol. The use of such defects for catalytic activation of CO(2) on anatase (101) surface would require a mechanism for their regeneration.

  12. Pressure dependent stability and structure of carbon dioxide--a density functional study including long-range corrections.

    PubMed

    Gohr, Sebastian; Grimme, Stefan; Söhnel, Tilo; Paulus, Beate; Schwerdtfeger, Peter

    2013-11-01

    First-principles density functional theory (DFT) is used to study the solid-state modifications of carbon dioxide up to pressures of 60 GPa. All known molecular CO2 structures are investigated in this pressure range, as well as three non-molecular modifications. To account for long-range van der Waals interactions, the dispersion corrected DFT method developed by Grimme and co-workers (DFT-D3) is applied. We find that the DFT-D3 method substantially improves the results compared to the uncorrected DFT methods for the molecular carbon dioxide crystals. Enthalpies at 0 K and cohesive energies support only one possibility of the available experimental solutions for the structure of phase IV: the R3c modification, proposed by Datchi and co-workers [Phys. Rev. Lett. 103, 185701 (2009)]. Furthermore, comparing bulk moduli with experimental values, we cannot reproduce the quite large--rather typical for covalent crystal structures--experimental values for the molecular phases II and III. PMID:24206310

  13. Reaching a Uniform Accuracy for Complex Molecular Systems: Long-Range-Corrected XYG3 Doubly Hybrid Density Functional.

    PubMed

    Zhang, Igor Ying; Xu, Xin

    2013-05-16

    An unbiased understanding of complex molecular systems from first-principles critically demands theoretical methods with uniform accuracy for diverse interactions with different natures covering short-, medium-, and long-range correlations. Among the state-of-the-art density functional approximations (DFAs), doubly hybrid (DH) DFAs (e.g., XYG3 in this Letter) provide a remarkable improvement over the conventional DFAs (e.g., B3LYP in this Letter). Even though XYG3 works quite well in many cases of noncovalent bonding interactions (NCIs), it is incomplete in describing the pure long-range dispersive interactions. Here, we address such concerns by adding a scaled long-range contribution from the second-order perturbation theory (PT2). The long-range-corrected XYG3 (lrc-XYG3) is proposed without reparameterizing the three parameters in the original XYG3. Due to its overall excellent performance for all testing sets constructed for various purposes, lrc-XYG3 is the recommended method, which is expected to provide a balanced description of diverse interactions in complex molecular systems. PMID:26282977

  14. Successes and failures of Hubbard-corrected density functional theory. The case of Mg doped LiCoO2

    DOE PAGES

    Santana Palacio, Juan A.; Kim, Jeongnim; Kent, Paul R.; Reboredo, Fernando A.

    2014-10-28

    We have evaluated the successes and failures of the Hubbard-corrected density functional theory approach to study Mg doping of LiCoO2. We computed the effect of the U parameter on the energetic, geometric, and electronic properties of two possible doping mechanisms: (1) substitution of Mg onto a Co (or Li) site with an associated impurity state and (2) formation of impurity-state-free complexes of substitutional Mg and point defects in LiCoO2. We find that formation of impurity states results in changes on the valency of Co in LiCoO2. Variation of the Co U shifts the energy of the impurity state, resulting inmore » energetic, geometric, and electronic properties that depend significantly on the specific value of U. In contrast, the properties of the impurity-state-free complexes are insensitive to U. These results identify reasons for the strong dependence on the doping properties on the chosen value of U and for the overall difficulty of achieving agreement with the experimentally known energetic and electronic properties of doped transition metal oxides such as LiCoO2.« less

  15. A Correction for the IRI Topside Electron Density Model Based on Alouette/ISIS Topside Sounder Data

    NASA Technical Reports Server (NTRS)

    Bilitza, D.

    2004-01-01

    The topside segment of the International Reference Ionosphere (IRI) electron density model (and also of the Bent model) is based on the limited amount of topside data available at the time (40,OOO Alouette 1 profiles). Being established from such a small database it is therefore not surprising that the models have well-known shortcomings, for example, at high solar activities. Meanwhile a large data base of close to 200,000 topside profiles from Alouette 1,2, and ISIS I, 2 has become available online. A program of automated scaling and inversion of a large volume of digitized ionograms adds continuously to this data pool. We have used the currently available ISIs/Alouette topside profiles to evaluate the IRI topside model and to investigate ways of improving the model. The IRI model performs generally well at middle latitudes and shows discrepancies at low and high latitudes and these discrepancies are largest during high solar activity. In the upper topside IRI consistently overestimates the measurements. Based on averages of the data-model ratios we have established correction factors for the IRI model. These factors vary with altitude, modified dip latitude, and local time.

  16. Design of an organic zeolite toward the selective adsorption of small molecules at the dispersion corrected density functional theory level.

    PubMed

    Li, Wenliang; Gahungu, Godefroid; Zhang, Jingping; Hao, Lizhu

    2009-12-31

    Tris(o-phenylenedioxy)cyclotriphosphazene (TPP) became the compound of choice to investigate the structural features of organic zeolites and their potential applications as soft materials. A van der Waals crystal of the TPP analogue (host) with the thiophene side fragment tris(3,4-thiophenedioxy)cyclotriphosphazene (TTP) was designed to investigate the selective adsorption among some common gases (guest): methane (CH(4)), carbon dioxide (CO(2)), nitrogen (N(2)), or hydrogen (H(2)). The crystal structure of TTP was modeled by applying minimization methods using the COMPASS (condensed-phase optimized molecular potentials for atomic simulation studies) force field. Interaction energies and structural properties of van der Waals complexes of the crystal of TTP and gas molecules were studied using the dispersion corrected density functional theory (DFT-D). The proper functional and basis set were selected after comparing with benchmark data of the coupled-cluster calculations with singles, doubles, and perturbative triple excitations [CCSD(T)] estimated at the complete basis set (CBS) limit. On the basis of our results, the interaction energy between the host and the guest molecules was predicted in the increasing order of host-H(2) < host-N(2) < host-CH(4) < host-CO(2), suggesting the designed TTP is a good candidate as an organic zeolite for potential fuel storage, hydrogen purification, carbon dioxide removal from the air, as well as safety care in a coal mine. PMID:19968318

  17. Using the electron localization function to correct for confinement physics in semi-local density functional theory

    SciTech Connect

    Hao, Feng Mattsson, Ann E.; Armiento, Rickard

    2014-05-14

    We have previously proposed that further improved functionals for density functional theory can be constructed based on the Armiento-Mattsson subsystem functional scheme if, in addition to the uniform electron gas and surface models used in the Armiento-Mattsson 2005 functional, a model for the strongly confined electron gas is also added. However, of central importance for this scheme is an index that identifies regions in space where the correction provided by the confined electron gas should be applied. The electron localization function (ELF) is a well-known indicator of strongly localized electrons. We use a model of a confined electron gas based on the harmonic oscillator to show that regions with high ELF directly coincide with regions where common exchange energy functionals have large errors. This suggests that the harmonic oscillator model together with an index based on the ELF provides the crucial ingredients for future improved semi-local functionals. For a practical illustration of how the proposed scheme is intended to work for a physical system we discuss monoclinic cupric oxide, CuO. A thorough discussion of this system leads us to promote the cell geometry of CuO as a useful benchmark for future semi-local functionals. Very high ELF values are found in a shell around the O ions, and take its maximum value along the Cu–O directions. An estimate of the exchange functional error from the effect of electron confinement in these regions suggests a magnitude and sign that could account for the error in cell geometry.

  18. A localized orbital analysis of the thermochemical errors in hybrid density functional theory: achieving chemical accuracy via a simple empirical correction scheme.

    PubMed

    Friesner, Richard A; Knoll, Eric H; Cao, Yixiang

    2006-09-28

    This paper describes an empirical localized orbital correction model which improves the accuracy of density functional theory (DFT) methods for the prediction of thermochemical properties for molecules of first and second row elements. The B3LYP localized orbital correction version of the model improves B3LYP DFT atomization energy calculations on the G3 data set of 222 molecules from a mean absolute deviation (MAD) from experiment of 4.8 to 0.8 kcal/mol. The almost complete elimination of large outliers and the substantial reduction in MAD yield overall results comparable to the G3 wave-function-based method; furthermore, the new model has zero additional computational cost beyond standard DFT calculations. The following four classes of correction parameters are applied to a molecule based on standard valence bond assignments: corrections to atoms, corrections to individual bonds, corrections for neighboring bonds of a given bond, and radical environmental corrections. Although the model is heuristic and is based on a 22 parameter multiple linear regression to experimental errors, each of the parameters is justified on physical grounds, and each provides insight into the fundamental limitations of DFT, most importantly the failure of current DFT methods to accurately account for nondynamical electron correlation.

  19. First-order exchange and self-energy corrections to static density correlation function of a spin-polarized two-dimensional quantum electron fluid

    SciTech Connect

    Arora, Priya; Moudgil, R. K.; Bhukal, Nisha

    2015-05-15

    Static density-density correlation function has been calculated for a spin-polarized two-dimensional quantum electron fluid by including the first-order exchange and self-energy corrections to the random-phase approximation (RPA). This is achieved by determining these corrections to the RPA linear density-density response function, obtained by solving the equation of motion for the single-particle Green’s function. Resulting infinite hierarchy of equations (involving higher-order Green’s functions) is truncated by factorizing the two-particle Green’s function as a product of the single-particle Green’s function and one-particle distribution function. Numerical results of correlation function are compared directly against the quantum Monte Carlo simulation data due to Tanatar and Ceperley for different coupling parameter (r{sub s}) values. We find almost exact agreement for r{sub s}=1, with a noticeable improvement over the RPA. Its quality, however, deteriorates with increasing r{sub s}, but correction to RPA is quite significant.

  20. Continuous MR bone density measurement using water- and fat-suppressed projection imaging (WASPI) for PET attenuation correction in PET-MR.

    PubMed

    Huang, C; Ouyang, J; Reese, T G; Wu, Y; El Fakhri, G; Ackerman, J L

    2015-10-21

    Due to the lack of signal from solid bone in normal MR sequences for the purpose of MR-based attenuation correction, investigators have proposed using the ultrashort echo time (UTE) pulse sequence, which yields signal from bone. However, the UTE-based segmentation approach might not fully capture the intra- and inter-subject bone density variation, which will inevitably lead to bias in reconstructed PET images. In this work, we investigated using the water- and fat-suppressed proton projection imaging (WASPI) sequence to obtain accurate and continuous attenuation for bones. This approach is capable of accounting for intra- and inter-subject bone attenuation variations. Using data acquired from a phantom, we have found that that attenuation correction based on the WASPI sequence is more accurate and precise when compared to either conventional MR attenuation correction or UTE-based segmentation approaches.

  1. Continuous MR bone density measurement using water- and fat-suppressed projection imaging (WASPI) for PET attenuation correction in PET-MR

    NASA Astrophysics Data System (ADS)

    Huang, C.; Ouyang, J.; Reese, T. G.; Wu, Y.; El Fakhri, G.; Ackerman, J. L.

    2015-10-01

    Due to the lack of signal from solid bone in normal MR sequences for the purpose of MR-based attenuation correction, investigators have proposed using the ultrashort echo time (UTE) pulse sequence, which yields signal from bone. However, the UTE-based segmentation approach might not fully capture the intra- and inter-subject bone density variation, which will inevitably lead to bias in reconstructed PET images. In this work, we investigated using the water- and fat-suppressed proton projection imaging (WASPI) sequence to obtain accurate and continuous attenuation for bones. This approach is capable of accounting for intra- and inter-subject bone attenuation variations. Using data acquired from a phantom, we have found that that attenuation correction based on the WASPI sequence is more accurate and precise when compared to either conventional MR attenuation correction or UTE-based segmentation approaches.

  2. A new inversion method of estimation of simultaneous near surface bulk density variations and terrain correction across the Bandar Charak (Hormozgan-Iran).

    PubMed

    Toushmalani, Reza; Rahmati, Azizalah

    2014-01-01

    A gravity inversion method based on the Nettleton-Parasnis technique is used to estimate near surface density in an area without exposed outcrop or where outcrop occurrences do not adequately represent the subsurface rock densities. Its accuracy, however, strongly depends on how efficiently the regional trends and very local (terrain) effects are removed from the gravity anomalies processed. Nettleton's method implemented in a usual inversion scheme and combined with the simultaneous determination of terrain corrections. This method may lead to realistic density estimations of the topographical masses. The author applied this technique in the Bandar Charak (Hormozgan-Iran) with various geological/geophysical properties. These inversion results are comparable to both values obtained from density logs in the mentioned area and other methods like Fractal methods. The calculated densities are 2.4005 gr/cm3. The slightly higher differences between calculated densities and densities of the hand rock samples may be caused by the effect of sediment-filled valleys.

  3. Calibration of megavoltage cone-beam CT for radiotherapy dose calculations: correction of cupping artifacts and conversion of CT numbers to electron density.

    PubMed

    Petit, Steven F; van Elmpt, Wouter J C; Nijsten, Sebastiaan M J J G; Lambin, Philippe; Dekker, André L A J

    2008-03-01

    Megavoltage cone-beam CT (MV CBCT) is used for three-dimensional imaging of the patient anatomy on the treatment table prior to or just after radiotherapy treatment. To use MV CBCT images for radiotherapy dose calculation purposes, reliable electron density (ED) distributions are needed. Patient scatter, beam hardening and softening effects result in cupping artifacts in MV CBCT images and distort the CT number to ED conversion. A method based on transmission images is presented to correct for these effects without using prior knowledge of the object's geometry. The scatter distribution originating from the patient is calculated with pencil beam scatter kernels that are fitted based on transmission measurements. The radiological thickness is extracted from the scatter subtracted transmission images and is then converted to the primary transmission used in the cone-beam reconstruction. These corrections are performed in an iterative manner, without using prior knowledge regarding the geometry and composition of the object. The method was tested using various homogeneous and inhomogeneous phantoms with varying shapes and compositions, including a phantom with different electron density inserts, phantoms with large density variations, and an anthropomorphic head phantom. For all phantoms, the cupping artifact was substantially removed from the images and a linear relation between the CT number and electron density was found. After correction the deviations in reconstructed ED from the true values were reduced from up to 0.30 ED units to 0.03 for the majority of the phantoms; the residual difference is equal to the amount of noise in the images. The ED distributions were evaluated in terms of absolute dose calculation accuracy for homogeneous cylinders of different size; errors decreased from 7% to below 1% in the center of the objects for the uncorrected and corrected images, respectively, and maximum differences were reduced from 17% to 2%, respectively. The

  4. Calibration of megavoltage cone-beam CT for radiotherapy dose calculations: Correction of cupping artifacts and conversion of CT numbers to electron density

    SciTech Connect

    Petit, Steven F.; Elmpt, Wouter J. C. van; Nijsten, Sebastiaan M. J. J. G.; Lambin, Philippe; Dekker, Andre L. A. J.

    2008-03-15

    Megavoltage cone-beam CT (MV CBCT) is used for three-dimensional imaging of the patient anatomy on the treatment table prior to or just after radiotherapy treatment. To use MV CBCT images for radiotherapy dose calculation purposes, reliable electron density (ED) distributions are needed. Patient scatter, beam hardening and softening effects result in cupping artifacts in MV CBCT images and distort the CT number to ED conversion. A method based on transmission images is presented to correct for these effects without using prior knowledge of the object's geometry. The scatter distribution originating from the patient is calculated with pencil beam scatter kernels that are fitted based on transmission measurements. The radiological thickness is extracted from the scatter subtracted transmission images and is then converted to the primary transmission used in the cone-beam reconstruction. These corrections are performed in an iterative manner, without using prior knowledge regarding the geometry and composition of the object. The method was tested using various homogeneous and inhomogeneous phantoms with varying shapes and compositions, including a phantom with different electron density inserts, phantoms with large density variations, and an anthropomorphic head phantom. For all phantoms, the cupping artifact was substantially removed from the images and a linear relation between the CT number and electron density was found. After correction the deviations in reconstructed ED from the true values were reduced from up to 0.30 ED units to 0.03 for the majority of the phantoms; the residual difference is equal to the amount of noise in the images. The ED distributions were evaluated in terms of absolute dose calculation accuracy for homogeneous cylinders of different size; errors decreased from 7% to below 1% in the center of the objects for the uncorrected and corrected images, respectively, and maximum differences were reduced from 17% to 2%, respectively. The

  5. Continuous quantitative measurement of the proximal airway dimensions and lung density on four-dimensional dynamic-ventilation CT in smokers

    PubMed Central

    Yamashiro, Tsuneo; Moriya, Hiroshi; Tsubakimoto, Maho; Matsuoka, Shin; Murayama, Sadayuki

    2016-01-01

    Purpose Four-dimensional dynamic-ventilation computed tomography (CT) imaging demonstrates continuous movement of the airways and lungs, which cannot be depicted with conventional CT. We aimed to investigate continuous changes in lung density and airway dimensions and to assess the correlation with spirometric values in smokers. Materials and methods This retrospective study was approved by the Institutional Review Board, and informed consent was waived. Twenty-one smokers including six patients with COPD underwent four-dimensional dynamic-ventilation CT during free breathing (160 mm in length). The mean lung density (MLD) of the scanned lung and luminal areas (Ai) of fixed points in the trachea and the right proximal bronchi (main bronchus, upper bronchus, bronchus intermedius, and lower bronchus) were continuously measured. Concordance between the time curve of the MLD and that of the airway Ai values was expressed by cross-correlation coefficients. The associations between these quantitative measurements and the forced expiratory volume in 1 second/forced vital capacity (FEV1/FVC) values were assessed by Spearman’s rank correlation analysis. Results On the time curve for the MLD, the Δ-MLD1.05 values between the peak inspiratory frame to the later third frame (1.05 seconds later) were strongly correlated with the FEV1/FVC (ρ=0.76, P<0.0001). The cross-correlation coefficients between the airway Ai and MLD values were significantly correlated with the FEV1/FVC (ρ=−0.56 to −0.66, P<0.01), except for the right upper bronchus. This suggested that the synchrony between the airway and lung movement was lost in patients with severe airflow limitation. Conclusion Respiratory changes in the MLD and synchrony between the airway Ai and the MLD measured with dynamic-ventilation CT were correlated with patient’s spirometric values. PMID:27110108

  6. Incorporating heterogeneity correction and 4DCT in lung stereotactic body radiation therapy (SBRT): The effect on target coverage, organ-at-risk doses, and dose conformity.

    PubMed

    Franks, Kevin N; Purdie, Thomas G; Dawson, Laura A; Bezjak, Andrea; Jaffray, David A; Bissonnette, Jean-Pierre

    2010-01-01

    This study evaluates the dosimetric impact of 4-dimensional computed tomography (4DCT) target volumes and heterogeneity correction (HC) on target coverage, organ-at-risk (OAR) doses, and dose conformity in lung stereotactic body radiation therapy (SBRT). Twelve patients with lung cancer, scanned using both helical CT and 4DCT, were treated with SBRT (60 Gy in 3 fractions). The clinical plans were calculated without HC and based on targets from the free-breathing helical CT scan (PTV(HEL)). Retrospectively, the clinical plans were recalculated with HC and were evaluated based on targets from 4DCT datasets (PTV(4D)) accounting for patient-specific target motion. The PTV(4D) was greater than PTV(HEL) when tumor motion exceeded 7.5 mm (vector). There were significant decreases in target coverage (V100) for the recalculated vs. clinical plans (0.84 vs. 0.94, p < 0.02) for the same monitor units. When the recalculated plans were optimized for equivalent V100 of the clinical plans, there were significant increases in the 60-Gy dose spillage (1.27 vs. 1.13, p < 0.001) and 30-Gy dose spillage (5.20 vs. 3.73, p < 0.001) vs. the clinical plans. There was a significant increase (p < 0.04) in the mean OAR doses between the optimized re-calculated and the clinical plan. Tumor motion is an important consideration for target volumes defined using helical CT. Lower prescription doses may be required when prospectively planning with HC to achieve a similar level of toxicity and dose spillage as expected when planning based on homogeneous dose calculations.

  7. Incorporating Heterogeneity Correction and 4DCT in Lung Stereotactic Body Radiation Therapy (SBRT): The Effect on Target Coverage, Organ-At-Risk Doses, and Dose Conformity

    SciTech Connect

    Franks, Kevin N.; Purdie, Thomas G. Dawson, Laura A.; Bezjak, Andrea; Jaffray, David A.; Bissonnette, Jean-Pierre

    2010-07-01

    This study evaluates the dosimetric impact of 4-dimensional computed tomography (4DCT) target volumes and heterogeneity correction (HC) on target coverage, organ-at-risk (OAR) doses, and dose conformity in lung stereotactic body radiation therapy (SBRT). Twelve patients with lung cancer, scanned using both helical CT and 4DCT, were treated with SBRT (60 Gy in 3 fractions). The clinical plans were calculated without HC and based on targets from the free-breathing helical CT scan (PTV{sub HEL}). Retrospectively, the clinical plans were recalculated with HC and were evaluated based on targets from 4DCT datasets (PTV{sub 4D}) accounting for patient-specific target motion. The PTV{sub 4D} was greater than PTV{sub HEL} when tumor motion exceeded 7.5 mm (vector). There were significant decreases in target coverage (V100) for the recalculated vs. clinical plans (0.84 vs. 0.94, p < 0.02) for the same monitor units. When the recalculated plans were optimized for equivalent V100 of the clinical plans, there were significant increases in the 60-Gy dose spillage (1.27 vs. 1.13, p < 0.001) and 30-Gy dose spillage (5.20 vs. 3.73, p < 0.001) vs. the clinical plans. There was a significant increase (p < 0.04) in the mean OAR doses between the optimized re-calculated and the clinical plan. Tumor motion is an important consideration for target volumes defined using helical CT. Lower prescription doses may be required when prospectively planning with HC to achieve a similar level of toxicity and dose spillage as expected when planning based on homogeneous dose calculations.

  8. Choosing a density functional for modeling adsorptive hydrogen storage: reference quantum mechanical calculations and a comparison of dispersion-corrected density functionals.

    PubMed

    Kocman, Mikuláš; Jurečka, Petr; Dubecký, Matúš; Otyepka, Michal; Cho, Yeonchoo; Kim, Kwang S

    2015-03-01

    Hydrogen storage in carbonaceous materials and their derivatives is currently a widely investigated topic. The rational design of novel adsorptive materials is often attempted with the help of computational chemistry tools, in particular density functional theory (DFT). However, different exchange-correlation functionals provide a very wide range of hydrogen binding energies. The aim of this article is to offer high level QM reference data based on coupled-cluster singles and doubles calculations with perturbative triple excitations, CCSD(T), and a complete basis set limit estimate that can be used to assess the accuracy of various DFT-based predictions. For one complex, the CCSD(T) result is verified against diffusion quantum Monte Carlo calculations. Reference binding curves are calculated for two model compounds representing weak and strong hydrogen adsorption: coronene (-4.7 kJ mol(-1) per H2), and coronene modified with boron and lithium (-14.3 kJ mol(-1)). The reference data are compared to results obtained with widely used density functionals including pure DFT, M06, DFT-D3, PBE-TS, PBE + MBD, optB88-vdW, vdW-DF, vdW-DF2 and VV10. We find that whereas DFT-D3 shows excellent results for weak hydrogen adsorption on coronene, most of the less empirical density based dispersion functionals except VV10 overestimate this interaction. On the other hand, some of the less empirical density based dispersion functionals better describe stronger binding in the more polar coroB2Li22H2 complex which is one of realistic models for high-capacity hydrogen storage materials. Our results may serve as a guide for choosing suitable DFT methods for quickly evaluating hydrogen binding potential and as a reference for assessing the accuracy of the previously published DFT results.

  9. Enhanced one-loop corrections to WIMP annihilation and their thermal relic density in the coannihilation region

    NASA Astrophysics Data System (ADS)

    Drees, Manuel; Gu, Jie

    2013-03-01

    We consider quantum corrections to coannihilation processes of weakly interacting massive particles (WIMPs) due to the exchange of light bosons in the initial state (“Sommerfeld corrections”). We work at the one-loop level, i.e. we assume that these corrections can be treated perturbatively. Coannihilation is important if there is at least one additional new particle with mass close to the lightest WIMP, which is a dark matter candidate. In this case the exchange of a (relatively light) boson in the initial state can change the identity of the annihilating particles. The corrections we are interested in factorize, as in the case of WIMP self-annihilation treated previously, but they can mix different tree-level amplitudes. Moreover, even small mass splittings between the external particles and those in the loop can change the relevant loop functions significantly. We find exact analytical expressions for these functions and illustrate the effects by considering the cases of wino- or Higgsino-like neutralinos as examples.

  10. Long-range corrected density functional theory with accelerated Hartree-Fock exchange integration using a two-Gaussian operator [LC-ωPBE(2Gau)

    SciTech Connect

    Song, Jong-Won; Hirao, Kimihiko

    2015-10-14

    Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular and periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.

  11. Long-range corrected density functional theory with accelerated Hartree-Fock exchange integration using a two-Gaussian operator [LC-ωPBE(2Gau)].

    PubMed

    Song, Jong-Won; Hirao, Kimihiko

    2015-10-14

    Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular and periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory. PMID:26472368

  12. Respiration-Averaged CT for Attenuation Correction of PET Images – Impact on PET Texture Features in Non-Small Cell Lung Cancer Patients

    PubMed Central

    Cheng, Nai-Ming; Fang, Yu-Hua Dean; Tsan, Din-Li

    2016-01-01

    Purpose We compared attenuation correction of PET images with helical CT (PET/HCT) and respiration-averaged CT (PET/ACT) in patients with non-small-cell lung cancer (NSCLC) with the goal of investigating the impact of respiration-averaged CT on 18F FDG PET texture parameters. Materials and Methods A total of 56 patients were enrolled. Tumors were segmented on pretreatment PET images using the adaptive threshold. Twelve different texture parameters were computed: standard uptake value (SUV) entropy, uniformity, entropy, dissimilarity, homogeneity, coarseness, busyness, contrast, complexity, grey-level nonuniformity, zone-size nonuniformity, and high grey-level large zone emphasis. Comparisons of PET/HCT and PET/ACT were performed using Wilcoxon signed-rank tests, intraclass correlation coefficients, and Bland-Altman analysis. Receiver operating characteristic (ROC) curves as well as univariate and multivariate Cox regression analyses were used to identify the parameters significantly associated with disease-specific survival (DSS). A fixed threshold at 45% of the maximum SUV (T45) was used for validation. Results SUV maximum and total lesion glycolysis (TLG) were significantly higher in PET/ACT. However, texture parameters obtained with PET/ACT and PET/HCT showed a high degree of agreement. The lowest levels of variation between the two modalities were observed for SUV entropy (9.7%) and entropy (9.8%). SUV entropy, entropy, and coarseness from both PET/ACT and PET/HCT were significantly associated with DSS. Validation analyses using T45 confirmed the usefulness of SUV entropy and entropy in both PET/HCT and PET/ACT for the prediction of DSS, but only coarseness from PET/ACT achieved the statistical significance threshold. Conclusions Our results indicate that 1) texture parameters from PET/ACT are clinically useful in the prediction of survival in NSCLC patients and 2) SUV entropy and entropy are robust to attenuation correction methods. PMID:26930211

  13. Calculation of gravity and magnetic anomalies along profiles with end corrections and inverse solutions for density and magnetization

    USGS Publications Warehouse

    Cady, John W.

    1977-01-01

    A computer program is presented which performs, for one or more bodies, along a profile perpendicular to strike, both forward calculations for the magnetic and gravity anomaly fields and independent gravity and magnetic inverse calculations for density and susceptibility or remanent magnetization.

  14. Development of a Geomagnetic Storm Correction to the International Reference Ionosphere E-Region Electron Densities Using TIMED/SABER Observations

    NASA Technical Reports Server (NTRS)

    Mertens, C. J.; Xu, X.; Fernandez, J. R.; Bilitza, D.; Russell, J. M., III; Mlynczak, M. G.

    2009-01-01

    Auroral infrared emission observed from the TIMED/SABER broadband 4.3 micron channel is used to develop an empirical geomagnetic storm correction to the International Reference Ionosphere (IRI) E-region electron densities. The observation-based proxy used to develop the storm model is SABER-derived NO+(v) 4.3 micron volume emission rates (VER). A correction factor is defined as the ratio of storm-time NO+(v) 4.3 micron VER to a quiet-time climatological averaged NO+(v) 4.3 micron VER, which is linearly fit to available geomagnetic activity indices. The initial version of the E-region storm model, called STORM-E, is most applicable within the auroral oval region. The STORM-E predictions of E-region electron densities are compared to incoherent scatter radar electron density measurements during the Halloween 2003 storm events. Future STORM-E updates will extend the model outside the auroral oval.

  15. The adsorption of h-BN monolayer on the Ni(111) surface studied by density functional theory calculations with a semiempirical long-range dispersion correction

    SciTech Connect

    Sun, X.; Pratt, A.; Li, Z. Y.; Ohtomo, M.; Sakai, S.; Yamauchi, Y.

    2014-05-07

    The geometric and spin-resolved electronic structure of a h-BN adsorbed Ni(111) surface has been investigated by density functional theory calculations. Two energy minima (physisorption and chemisorption) are obtained when the dispersive van der Waals correction is included. The geometry of N atom on top site and B atom on fcc site is the most energetically favorable. Strong hybridization with the ferromagnetic Ni substrate induces considerable gap states in the h-BN monolayer. The induced π* states are spin-polarized.

  16. Methanol clusters (CH3OH)n: putative global minimum-energy structures from model potentials and dispersion-corrected density functional theory.

    PubMed

    Kazachenko, Sergey; Bulusu, Satya; Thakkar, Ajit J

    2013-06-14

    Putative global minima are reported for methanol clusters (CH3OH)n with n ≤ 15. The predictions are based on global optimization of three intermolecular potential energy models followed by local optimization and single-point energy calculations using two variants of dispersion-corrected density functional theory. Recurring structural motifs include folded and/or twisted rings, folded rings with a short branch, and stacked rings. Many of the larger structures are stabilized by weak C-H···O bonds.

  17. Self-interaction corrected density functional calculations of Rydberg states of molecular clusters: N,N-dimethylisopropylamine

    SciTech Connect

    Gudmundsdóttir, Hildur; Zhang, Yao; Weber, Peter M.; Jónsson, Hannes

    2014-12-21

    Theoretical calculations of Rydberg excited states of molecular clusters consisting of N,N-dimethylisopropylamine molecules using a Perdew-Zunger self-interaction corrected energy functional are presented and compared with results of resonant multiphoton ionization measurements. The binding energy of the Rydberg electron in the monomer is calculated to be 2.79 eV and 2.27 eV in the 3s and 3p state, respectively, which compares well with measured values of 2.88 eV and 2.21 eV. Three different stable configurations of the dimer in the ground state were found using an energy functional that includes van der Waals interaction. The lowest ground state energy conformation has the two N-atoms widely separated, by 6.2 Å, while the Rydberg state energy is lowest for a configuration where the N-atoms of the two molecules come close together, separated by 3.7 Å. This conformational change is found to lower the Rydberg electron binding energy by 0.2 eV. The self-interaction corrected functional gives a highly localized hole on one of the two molecules, unlike results obtained using the PBE functional or the hybrid B3LYP functional which give a delocalized hole. For the trimer, the self-interaction corrected calculation gives a Rydberg electron binding energy lowered further by 0.13 eV as compared with the dimer. The calculated results compare well with trends observed in experimental measurements. The reduction of the Rydberg electron binding energy with cluster size can be ascribed to an effective delocalization of the positive charge of the hole by the induced and permanent dipole moments of the neighboring molecules. A further decrease observed to occur on a time scale of tens of ps can be ascribed to a structural rearrangement of the clusters in the Rydberg state where molecules rotate to orient their dipoles in response to the formation of the localized hole.

  18. Magnetic properties and vapochromic reversible guest-induced transformation in a bispyrazolato copper(II) polymer: an experimental and dispersion-corrected density functional theory study.

    PubMed

    Bencini, Alessandro; Casarin, Maurizio; Forrer, Daniel; Franco, Lorenzo; Garau, Federica; Masciocchi, Norberto; Pandolfo, Luciano; Pettinari, Claudio; Ruzzi, Marco; Vittadini, Andrea

    2009-05-01

    Dispersion-corrected density functional theory (DFT-D) calculations, Electron Spin Resonance spectroscopy (EPR), and variable temperature magnetic moment measurements were used to investigate the structure and the electronic/magnetic properties of bispyrazolato-copper(II) coordination polymer and of its hydration product. The Cu(II) ions are antiferromagnetically coupled through the sigma system of the pyrazolate rings in both compounds. Theoretical electron density maps reveal that water molecules interact simultaneously and to a comparable extent with two Cu(II) centers (through the electronegative O end) and two pyrazolate rings (through the partly positively charged H atoms), which is compatible with the observed internuclear distances. DFT-D calculations indicate that low kinetic barriers are involved in the rearrangement of the host structure.

  19. Symmetry-adapted perturbation theory with Kohn-Sham orbitals using non-empirically tuned, long-range-corrected density functionals

    SciTech Connect

    Lao, Ka Un; Herbert, John M.

    2014-01-28

    The performance of second-order symmetry-adapted perturbation theory (SAPT) calculations using Kohn-Sham (KS) orbitals is evaluated against benchmark results for intermolecular interactions. Unlike previous studies of this “SAPT(KS)” methodology, the present study uses non-empirically tuned long-range corrected (LRC) functionals for the monomers. The proper v{sub xc} (r)→0 asymptotic limit is achieved by tuning the range separation parameter in order to satisfy the condition that the highest occupied KS energy level equals minus the molecule's ionization energy, for each monomer unit. Tests for He{sub 2}, Ne{sub 2}, and the S22 and S66 data sets reveal that this condition is important for accurate prediction of the non-dispersion components of the energy, although errors in SAPT(KS) dispersion energies remain unacceptably large. In conjunction with an empirical dispersion potential, however, the SAPT(KS) method affords good results for S22 and S66, and also accurately predicts the whole potential energy curve for the sandwich isomer of the benzene dimer. Tuned LRC functionals represent an attractive alternative to other asymptotic corrections that have been employed in density-functional-based SAPT calculations, and we recommend the use of tuned LRC functionals in both coupled-perturbed SAPT(DFT) calculations and dispersion-corrected SAPT(KS) calculations.

  20. The accurate calculation of the band gap of liquid water by means of GW corrections applied to plane-wave density functional theory molecular dynamics simulations.

    PubMed

    Fang, Changming; Li, Wun-Fan; Koster, Rik S; Klimeš, Jiří; van Blaaderen, Alfons; van Huis, Marijn A

    2015-01-01

    Knowledge about the intrinsic electronic properties of water is imperative for understanding the behaviour of aqueous solutions that are used throughout biology, chemistry, physics, and industry. The calculation of the electronic band gap of liquids is challenging, because the most accurate ab initio approaches can be applied only to small numbers of atoms, while large numbers of atoms are required for having configurations that are representative of a liquid. Here we show that a high-accuracy value for the electronic band gap of water can be obtained by combining beyond-DFT methods and statistical time-averaging. Liquid water is simulated at 300 K using a plane-wave density functional theory molecular dynamics (PW-DFT-MD) simulation and a van der Waals density functional (optB88-vdW). After applying a self-consistent GW correction the band gap of liquid water at 300 K is calculated as 7.3 eV, in good agreement with recent experimental observations in the literature (6.9 eV). For simulations of phase transformations and chemical reactions in water or aqueous solutions whereby an accurate description of the electronic structure is required, we suggest to use these advanced GW corrections in combination with the statistical analysis of quantum mechanical MD simulations.

  1. Beam hardening and smoothing correction effects on performance of micro-ct SkyScan 1173 for imaging low contrast density materials

    SciTech Connect

    Sriwayu, Wa Ode; Haryanto, Freddy; Khotimah, Siti Nurul; Latief, Fourier Dzar Eljabbar

    2015-04-16

    We have designed and fabricated phantom mimicking breast cancer composition known as a region that has low contrast density. The used compositions are a microcalcifications, fatty tissues and tumor mass by using Al{sub 2}O{sub 3}, C{sub 27}H{sub 46}O, and hard nylon materials. Besides, phantom also has a part to calculate low cost criteria /CNR (Contrast to Noise Ratio). Uniformity will be measured at water distillation medium located in a part of phantom scale contrast. Phantom will be imaged by using micro ct-sky scan 1173 high energy type, and then also can be quantified CT number to examine SkyScan 1173 performance in imaging low contrast density materials. Evaluation of CT number is done at technique configuration parameter using voltage of 30 kV, exposure 0.160 mAs, and camera resolution 560x560 pixel, the effect of image quality to reconstruction process is evaluated by varying image processing parameters in the form of beam hardening corrections with amount of 25%, 66% and100% with each smoothing level S10,S2 and S7. To obtain the better high quality image, the adjustment of beam hardening correction should be 66% and smoothing level reach maximal value at level 10.

  2. Including screening in van der Waals corrected density functional theory calculations: the case of atoms and small molecules physisorbed on graphene.

    PubMed

    Silvestrelli, Pier Luigi; Ambrosetti, Alberto

    2014-03-28

    The Density Functional Theory (DFT)/van der Waals-Quantum Harmonic Oscillator-Wannier function (vdW-QHO-WF) method, recently developed to include the vdW interactions in approximated DFT by combining the quantum harmonic oscillator model with the maximally localized Wannier function technique, is applied to the cases of atoms and small molecules (X=Ar, CO, H2, H2O) weakly interacting with benzene and with the ideal planar graphene surface. Comparison is also presented with the results obtained by other DFT vdW-corrected schemes, including PBE+D, vdW-DF, vdW-DF2, rVV10, and by the simpler Local Density Approximation (LDA) and semilocal generalized gradient approximation approaches. While for the X-benzene systems all the considered vdW-corrected schemes perform reasonably well, it turns out that an accurate description of the X-graphene interaction requires a proper treatment of many-body contributions and of short-range screening effects, as demonstrated by adopting an improved version of the DFT/vdW-QHO-WF method. We also comment on the widespread attitude of relying on LDA to get a rough description of weakly interacting systems. PMID:24697424

  3. Including screening in van der Waals corrected density functional theory calculations: the case of atoms and small molecules physisorbed on graphene.

    PubMed

    Silvestrelli, Pier Luigi; Ambrosetti, Alberto

    2014-03-28

    The Density Functional Theory (DFT)/van der Waals-Quantum Harmonic Oscillator-Wannier function (vdW-QHO-WF) method, recently developed to include the vdW interactions in approximated DFT by combining the quantum harmonic oscillator model with the maximally localized Wannier function technique, is applied to the cases of atoms and small molecules (X=Ar, CO, H2, H2O) weakly interacting with benzene and with the ideal planar graphene surface. Comparison is also presented with the results obtained by other DFT vdW-corrected schemes, including PBE+D, vdW-DF, vdW-DF2, rVV10, and by the simpler Local Density Approximation (LDA) and semilocal generalized gradient approximation approaches. While for the X-benzene systems all the considered vdW-corrected schemes perform reasonably well, it turns out that an accurate description of the X-graphene interaction requires a proper treatment of many-body contributions and of short-range screening effects, as demonstrated by adopting an improved version of the DFT/vdW-QHO-WF method. We also comment on the widespread attitude of relying on LDA to get a rough description of weakly interacting systems.

  4. Including screening in van der Waals corrected density functional theory calculations: The case of atoms and small molecules physisorbed on graphene

    SciTech Connect

    Silvestrelli, Pier Luigi; Ambrosetti, Alberto

    2014-03-28

    The Density Functional Theory (DFT)/van der Waals-Quantum Harmonic Oscillator-Wannier function (vdW-QHO-WF) method, recently developed to include the vdW interactions in approximated DFT by combining the quantum harmonic oscillator model with the maximally localized Wannier function technique, is applied to the cases of atoms and small molecules (X=Ar, CO, H{sub 2}, H{sub 2}O) weakly interacting with benzene and with the ideal planar graphene surface. Comparison is also presented with the results obtained by other DFT vdW-corrected schemes, including PBE+D, vdW-DF, vdW-DF2, rVV10, and by the simpler Local Density Approximation (LDA) and semilocal generalized gradient approximation approaches. While for the X-benzene systems all the considered vdW-corrected schemes perform reasonably well, it turns out that an accurate description of the X-graphene interaction requires a proper treatment of many-body contributions and of short-range screening effects, as demonstrated by adopting an improved version of the DFT/vdW-QHO-WF method. We also comment on the widespread attitude of relying on LDA to get a rough description of weakly interacting systems.

  5. Beam hardening and smoothing correction effects on performance of micro-ct SkyScan 1173 for imaging low contrast density materials

    NASA Astrophysics Data System (ADS)

    Sriwayu, Wa Ode; Haryanto, Freddy; Khotimah, Siti Nurul; Latief, Fourier Dzar Eljabbar

    2015-04-01

    We have designed and fabricated phantom mimicking breast cancer composition known as a region that has low contrast density. The used compositions are a microcalcifications, fatty tissues and tumor mass by using Al2O3, C27H46O, and hard nylon materials. Besides, phantom also has a part to calculate low cost criteria /CNR (Contrast to Noise Ratio). Uniformity will be measured at water distillation medium located in a part of phantom scale contrast. Phantom will be imaged by using micro ct-sky scan 1173 high energy type, and then also can be quantified CT number to examine SkyScan 1173 performance in imaging low contrast density materials. Evaluation of CT number is done at technique configuration parameter using voltage of 30 kV, exposure 0.160 mAs, and camera resolution 560x560 pixel, the effect of image quality to reconstruction process is evaluated by varying image processing parameters in the form of beam hardening corrections with amount of 25%, 66% and100% with each smoothing level S10,S2 and S7. To obtain the better high quality image, the adjustment of beam hardening correction should be 66% and smoothing level reach maximal value at level 10.

  6. Effects of van der Waals density functional corrections on trends in furfural adsorption and hydrogenation on close-packed transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Cheng, Lei; Curtiss, Larry; Greeley, Jeffrey

    2014-04-01

    The hydrogenation of furfural to furfuryl alcohol on Pd(111), Cu(111) and Pt(111) is studied with both standard Density Functional Theory (DFT)-GGA functionals and with van der Waals-corrected density functionals. VdW-DF functionals, including optPBE, optB88, optB86b, and Grimme's method, are used to optimize the adsorption configurations of furfural, furfuryl alcohol, and related intermediates resulting from hydrogenation of furfural, and the results are compared to corresponding values determined with GGA functionals, including PW91 and PBE. On Pd(111) and Pt(111), the adsorption geometries of the intermediates are not noticeably different between the two classes of functionals, while on Cu(111), modest changes are seen in both the perpendicular distance and the orientation of the aromatic ring with respect to the planar surface. In general, the binding energies increase substantially in magnitude as a result of van der Waals contributions on all metals. In contrast, however, dispersion effects on the kinetics of hydrogenation are relatively small. It is found that activation barriers are not significantly affected by the inclusion of dispersion effects, and a Brønsted-Evans-Polanyi relationship developed solely from PW91 calculations on Pd(111) is capable of describing corresponding results on Cu(111) and Pt(111), even when the dispersion effects are included. Finally, the reaction energies and barriers derived from the dispersion-corrected and pure GGA calculations are used to plot simple potential energy profiles for furfural hydrogenation to furfuryl alcohol on the three considered metals, and an approximately constant downshift of the energetics due to the dispersion corrections is observed.

  7. Effects of van der Waals Density Functional Corrections on Trends in Furfural Adsorption and Hydrogenation on Close-Packed Transition Metal Surfaces

    SciTech Connect

    Liu, Bin; Cheng, Lei; Curtiss, Larry A.; Greeley, Jeffrey P.

    2014-04-01

    The hydrogenation of furfural to furfuryl alcohol on Pd(111), Cu(111) and Pt(111) is studied with both standard Density Functional Theory (DFT)-GGA functionals and with van der Waals-corrected density functionals. VdWDF functionals, including optPBE, optB88, optB86b, and Grimme's method, are used to optimize the adsorption configurations of furfural, furfuryl alcohol, and related intermediates resulting from hydrogenation of furfural, and the results are compared to corresponding values determined with GGA functionals, including PW91 and PBE. On Pd(111) and Pt(111), the adsorption geometries of the intermediates are not noticeably different between the two classes of functionals, while on Cu(111), modest changes are seen in both the erpendicular distance and the orientation of the aromatic ringwith respect to the planar surface. In general, the binding energies increase substantially in magnitude as a result of van derWaals contributions on all metals. In contrast, however, dispersion effects on the kinetics of hydrogenation are relatively small. It is found that activation barriers are not significantly affected by the inclusion of dispersion effects, and a Brønsted–Evans–Polanyi relationship developed solely fromPW91 calculations on Pd(111) is capable of describing corresponding results on Cu(111) and Pt(111), even when the dispersion effects are included. Finally, the reaction energies and barriers derived from the dispersion-corrected and pure GGA calculations are used to plot simple potential energy profiles for furfural hydrogenation to furfuryl alcohol on the three considered metals, and an approximately constant downshift of the energetics due to the dispersion corrections is observed.

  8. Structural and vibrational properties of α-MoO3 from van der Waals corrected density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Ding, Hong; Ray, Keith G.; Ozolins, Vidvuds; Asta, Mark

    2012-01-01

    Structural and vibrational properties of α-MoO3 are studied employing two recently proposed methodologies for incorporating van der Waals (vdW) contributions in density functional theory (DFT) based calculations. The DFT-D2 [S. Grimme, J. Comput. Chem.JCCHDD0192-865110.1002/jcc.20495 27, 1787 (2006)] and optB88 vdW-DFT [J. Klimeš , J. Phys.: Condens. MatterPRBMDO0953-898410.1088/0953-8984/22/2/022201 22, 022201 (2010)] methods are shown to give rise to increased accuracy in predicted lattice parameters, relative to conventional DFT methods. Calculated vibrational frequencies agree with measurements to within 5% and 10% for modes involving bonded and nonbonded interactions in this compound, respectively.

  9. Systematic approach for simultaneously correcting the band-gap andp-dseparation errors of common cation III-V or II-VI binaries in density functional theory calculations within a local density approximation

    DOE PAGES

    Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang

    2015-07-31

    We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles methodmore » can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.« less

  10. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems.

    PubMed

    Kruse, Holger; Grimme, Stefan

    2012-04-21

    A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model

  11. Empirical Storm-Time Correction to the International Reference Ionosphere Model E-Region Electron and Ion Density Parameterizations Using Observations from TIMED/SABER

    NASA Technical Reports Server (NTRS)

    Mertens, Christoper J.; Winick, Jeremy R.; Russell, James M., III; Mlynczak, Martin G.; Evans, David S.; Bilitza, Dieter; Xu, Xiaojing

    2007-01-01

    The response of the ionospheric E-region to solar-geomagnetic storms can be characterized using observations of infrared 4.3 micrometers emission. In particular, we utilize nighttime TIMED/SABER measurements of broadband 4.3 micrometers limb emission and derive a new data product, the NO+(v) volume emission rate, which is our primary observation-based quantity for developing an empirical storm-time correction the IRI E-region electron density. In this paper we describe our E-region proxy and outline our strategy for developing the empirical storm model. In our initial studies, we analyzed a six day storm period during the Halloween 2003 event. The results of this analysis are promising and suggest that the ap-index is a viable candidate to use as a magnetic driver for our model.

  12. Exploring the limit of accuracy for density functionals based on the generalized gradient approximation: local, global hybrid, and range-separated hybrid functionals with and without dispersion corrections.

    PubMed

    Mardirossian, Narbe; Head-Gordon, Martin

    2014-05-14

    The limit of accuracy for semi-empirical generalized gradient approximation (GGA) density functionals is explored by parameterizing a variety of local, global hybrid, and range-separated hybrid functionals. The training methodology employed differs from conventional approaches in 2 main ways: (1) Instead of uniformly truncating the exchange, same-spin correlation, and opposite-spin correlation functional inhomogeneity correction factors, all possible fits up to fourth order are considered, and (2) Instead of selecting the optimal functionals based solely on their training set performance, the fits are validated on an independent test set and ranked based on their overall performance on the training and test sets. The 3 different methods of accounting for exchange are trained both with and without dispersion corrections (DFT-D2 and VV10), resulting in a total of 491 508 candidate functionals. For each of the 9 functional classes considered, the results illustrate the trade-off between improved training set performance and diminished transferability. Since all 491 508 functionals are uniformly trained and tested, this methodology allows the relative strengths of each type of functional to be consistently compared and contrasted. The range-separated hybrid GGA functional paired with the VV10 nonlocal correlation functional emerges as the most accurate form for the present training and test sets, which span thermochemical energy differences, reaction barriers, and intermolecular interactions involving lighter main group elements.

  13. Increasing the applicability of density functional theory. V. X-ray absorption spectra with ionization potential corrected exchange and correlation potentials

    NASA Astrophysics Data System (ADS)

    Verma, Prakash; Bartlett, Rodney J.

    2016-07-01

    Core excitation energies are computed with time-dependent density functional theory (TD-DFT) using the ionization energy corrected exchange and correlation potential QTP(0,0). QTP(0,0) provides C, N, and O K-edge spectra to about an electron volt. A mean absolute error (MAE) of 0.77 and a maximum error of 2.6 eV is observed for QTP(0,0) for many small molecules. TD-DFT based on QTP (0,0) is then used to describe the core-excitation spectra of the 22 amino acids. TD-DFT with conventional functionals greatly underestimates core excitation energies, largely due to the significant error in the Kohn-Sham occupied eigenvalues. To the contrary, the ionization energy corrected potential, QTP(0,0), provides excellent approximations (MAE of 0.53 eV) for core ionization energies as eigenvalues of the Kohn-Sham equations. As a consequence, core excitation energies are accurately described with QTP(0,0), as are the core ionization energies important in X-ray photoionization spectra or electron spectroscopy for chemical analysis.

  14. Van Der Waals-Corrected Density Functional Theory Simulation of Adsorption Processes on Noble-Metal Surfaces: Xe on Ag(111), Au(111), and Cu(111)

    NASA Astrophysics Data System (ADS)

    Silvestrelli, Pier Luigi; Ambrosetti, Alberto

    2016-10-01

    The DFT/vdW-WF2s1 method based on the generation of localized Wannier functions, recently developed to include the van der Waals interactions in the density functional theory and describe adsorption processes on metal surfaces by taking metal-screening effects into account, is applied to the case of the interaction of Xe with noble-metal surfaces, namely Ag(111), Au(111), and Cu(111). The study is also repeated by adopting the DFT/vdW-QHO-WF variant relying on the quantum harmonic oscillator model which describes well many body effects. Comparison of the computed equilibrium binding energies and distances, and the C_3 coefficients characterizing the adatom-surface van der Waals interactions, with available experimental and theoretical reference data shows that the methods perform well and elucidates the importance of properly including screening effects. The results are also compared with those obtained by other vdW-corrected DFT schemes, including PBE-D, vdW-DF, vdW-DF2, rVV10, and by the simpler local density approximation and semi-local (PBE) generalized gradient approximation approaches.

  15. Cohesive properties of noble metals by van der Waals-corrected density functional theory: Au, Ag, and Cu as case studies

    NASA Astrophysics Data System (ADS)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi

    2016-07-01

    The cohesive energy, equilibrium lattice constant, and bulk modulus of Au, Ag, and Cu noble metals are computed by different van der Waals (vdW)-corrected density functional theory (DFT) methods, including vdW-DF, vdW-DF2, vdW-DF-cx, rVV10, and PBE-D. Two specifically designed methods are also developed in order to effectively include dynamical screening effects: the DFT/vdW-WF2p method, based on the generation of maximally localized Wannier functions, and the RPAp scheme (in two variants), based on a single-oscillator model of the localized electron response. Comparison with results obtained without explicit inclusion of van der Waals effects, such as with the local density approximation (LDA), PBE, PBEsol, or the hybrid PBE0 functional, elucidates the importance of a suitable description of screened van der Waals interactions even in the case of strong metal bonding. Many-body effects are also quantitatively evaluated within the RPAp approach.

  16. Can Multiconfigurational Self-Consistent Field Theory and Density Functional Theory Correctly Predict the Ground State of Metal-Metal-Bonded Complexes?

    PubMed

    Carlson, Rebecca K; Odoh, Samuel O; Tereniak, Stephen J; Lu, Connie C; Gagliardi, Laura

    2015-09-01

    The electronic structure of a diiron (FeFe) complex with strong metal-metal interaction and those of analogous complexes (CoCo, CoMn, CoFe, and FeMn) with much weaker metal-metal bonding are investigated with wave function-based methods and density functional theory. The delocalization and bonding between the metal centers in the diiron complex is only fully captured after inclusion of the complete set of 3d and 4d orbitals in the active space, a situation best suited for restricted active space (RAS) approaches. Truncation of the included set of 4d orbitals results in inappropriate localization of some 3d orbitals, incorrect description of the ground spin state as well as wrong spin state energetics, as compared to experiment. Using density functional theory, some local functionals are able to predict the correct ground spin states, and describe the chemical bonding and structural properties of all the metal-metal complexes considered in this work. In contrast, the introduction of some exact exchange results in increased localization of 3d orbitals and wrong spin state energetics, a situation that is particularly troublesome for the diiron complex.

  17. Liquid structures of water, methanol, and hydrogen fluoride at ambient conditions from first principles molecular dynamics simulations with a dispersion corrected density functional.

    PubMed

    McGrath, Matthew J; Kuo, I-Feng William; Siepmann, J Ilja

    2011-11-28

    Using first principles molecular dynamics simulations in the isobaric-isothermal ensemble (T = 300 K, p = 1 atm) with the Becke-Lee-Yang-Parr exchange/correlation functional and a dispersion correction due to Grimme, the hydrogen bonding networks of pure liquid water, methanol, and hydrogen fluoride are probed. Although an accurate density is found for water with this level of electronic structure theory, the average liquid densities for both hydrogen fluoride and methanol are overpredicted by 50 and 25%, respectively. The radial distribution functions indicate somewhat overstructured liquid phases for all three compounds. The number of hydrogen bonds per molecule in water is about twice as high as for methanol and hydrogen fluoride, though the ratio of cohesive energy over number of hydrogen bonds is lower for water. An analysis of the hydrogen-bonded aggregates revealed the presence of mostly linear chains in both hydrogen fluoride and methanol, with a few stable rings and chains spanning the simulation box in the case of hydrogen fluoride. Only an extremely small fraction of smaller clusters was found for water, indicating that its hydrogen bond network is significantly more extensive. A special form of water with on average about two hydrogen bonds per molecule yields a hydrogen-bonding environment significantly different from the other two compounds.

  18. Dispersion-Corrected Density Functional Theory Investigations of Structural and Electronic Properties of Bulk MoS2: Effect of Uniaxial Strain.

    PubMed

    Nguyen, Chuong V; Hieu, Nguyen N; Nguyen, Duong T

    2015-12-01

    Strain-dependent structural and electronic properties of MoS2 materials are investigated using first principles calculations. The structural and electronic band structures of the MoS2 with relaxed unit cells are optimized and calculated by the dispersion-corrected density functional theory (DFT-D2). Calculations within the local density approximation (LDA) and GGA using PAW potentials were also performed for specific cases for the purpose of comparison. The effect of strain on the band gap and the dependence of formation energy on strain of MoS2 are also studied and discussed using the DFT-D2 method. In bulk MoS2, the orbitals shift towards the higher/lower energy area when strain is applied along the z/x direction, respectively. The energy splitting of Mo4d states is in the range from 0 to 2 eV, which is due to the reduction of the electronic band gap of MoS2.

  19. Complementary roles of microtubules and microfilaments in the lung fibroblast-mediated contraction of collagen gels: Dynamics and the influence of cell density.

    PubMed

    Redden, Robert A; Doolin, Edward J

    2006-01-01

    Fibroblasts are important cellular components in wound healing, scar formation, and fibrotic disorders; and the fibroblast-populated collagen-gel (FPCG) model allows examination of fibroblast behavior in an in vitro three-dimensional environment similar to that in vivo. Contraction of free-floating FPCGs depends on an active and dynamic cytoskeleton, and the contraction dynamics are highly influenced by cell density. We investigated mechanistic differences between high- and low-cell density FPCG contraction by evaluating contraction dynamics in detail, using specific cytoskeletal disruptors. Collagen gels were seeded with human lung fibroblasts at either high (HD) or low (LD) density, and incubated with or without cytoskeletal disruptors colchicine (microtubules) or cytochalasin D (microfilaments). Gel area was measured daily. FPCG contraction curves were essentially sigmoidal, featuring an initial period of no contraction (lag phase), followed by a period of rapid contraction (log phase). Contraction curves of HD-FPCGs were distinct from those of LD-FPCGs. For example, HD-FPCGs had a negligible lag phase (compared with 3 d for LD-FPCGs) and exhibited a higher rate of log-phase contraction. Both colchicine and cytochalasin dose-dependently inhibited contraction but specifically affected different phases of contraction in HD- and LD-FPCGs; and colchicine inhibited LD-FPCGs much more than HD-FPCGs. The data indicate that LD- and HD-FPCGs contract through different primary mechanisms. Microtubules and microfilaments are both complementarily and dynamically involved in the contraction of FPCGs, and cell density influences primary cytoskeletal mechanisms. These results provide valuable information about fibroblast behavior in healing and fibrosis, and may suggest novel treatment options. PMID:16759151

  20. Ethanol and Water Adsorption on Transition-Metal 13-Atom Clusters: A Density Functional Theory Investigation within van der Waals Corrections.

    PubMed

    Zibordi-Besse, Larissa; Tereshchuk, Polina; Chaves, Anderson S; Da Silva, Juarez L F

    2016-06-23

    Transition-metal (TM) nanoparticles supported on oxides or carbon black have attracted much attention as potential catalysts for ethanol steam reforming reactions for hydrogen production. To improve the performance of nanocatalysts, a fundamental understanding of the interaction mechanism between water and ethanol with finite TM particles is required. In this article, we employed first-principles density functional theory with van der Waals (vdW) corrections to investigate the interaction of ethanol and water with TM13 clusters, where TM = Ni, Cu, Pd, Ag, Pt, and Au. We found that both water and ethanol bind via the anionic O atom to onefold TM sites, while at higher-energy structures, ethanol binds also via the H atom from the CH2 group to the TM sites, which can play an important role at real catalysts. The putative global minimum TM13 configurations are only slightly affected upon the adsorption of water or ethanol; however, for few systems, the compact higher-energy icosahedron structure changes its configuration upon ethanol or water adsorption. That is, those configurations are only shallow local minimums in the phase space. Except few deviations, we found similar trends for the magnitude of the adsorption energies of water and ethanol, that is, Ni13 > Pt13 > Pd13 and Cu13 > Au13 > Ag13, which is enhanced by the addition of the vdW correction (i.e., from 4% to 62%); however, the trend is the same. We found that the magnitude of the adsorption energy increases by shifting the center of gravity of the d-states toward the highest occupied molecular orbital. On the basis of the Mulliken and Hirshfeld charge analysis, as well as electron density differences, we identified the location of the charge redistribution and a tiny charge transfer (from 0.01 e to 0.19 e) from the molecules to the TM13 clusters. Our vibrational analysis indicates the red shifts in the OH modes upon binding of both water and ethanol molecules to the TM13 clusters, suggesting a weakening of

  1. Ethanol and Water Adsorption on Transition-Metal 13-Atom Clusters: A Density Functional Theory Investigation within van der Waals Corrections.

    PubMed

    Zibordi-Besse, Larissa; Tereshchuk, Polina; Chaves, Anderson S; Da Silva, Juarez L F

    2016-06-23

    Transition-metal (TM) nanoparticles supported on oxides or carbon black have attracted much attention as potential catalysts for ethanol steam reforming reactions for hydrogen production. To improve the performance of nanocatalysts, a fundamental understanding of the interaction mechanism between water and ethanol with finite TM particles is required. In this article, we employed first-principles density functional theory with van der Waals (vdW) corrections to investigate the interaction of ethanol and water with TM13 clusters, where TM = Ni, Cu, Pd, Ag, Pt, and Au. We found that both water and ethanol bind via the anionic O atom to onefold TM sites, while at higher-energy structures, ethanol binds also via the H atom from the CH2 group to the TM sites, which can play an important role at real catalysts. The putative global minimum TM13 configurations are only slightly affected upon the adsorption of water or ethanol; however, for few systems, the compact higher-energy icosahedron structure changes its configuration upon ethanol or water adsorption. That is, those configurations are only shallow local minimums in the phase space. Except few deviations, we found similar trends for the magnitude of the adsorption energies of water and ethanol, that is, Ni13 > Pt13 > Pd13 and Cu13 > Au13 > Ag13, which is enhanced by the addition of the vdW correction (i.e., from 4% to 62%); however, the trend is the same. We found that the magnitude of the adsorption energy increases by shifting the center of gravity of the d-states toward the highest occupied molecular orbital. On the basis of the Mulliken and Hirshfeld charge analysis, as well as electron density differences, we identified the location of the charge redistribution and a tiny charge transfer (from 0.01 e to 0.19 e) from the molecules to the TM13 clusters. Our vibrational analysis indicates the red shifts in the OH modes upon binding of both water and ethanol molecules to the TM13 clusters, suggesting a weakening of

  2. Volume correction in computed tomography densitometry for follow-up studies on pulmonary emphysema.

    PubMed

    Stoel, Berend C; Putter, Hein; Bakker, M Els; Dirksen, Asger; Stockley, Rob A; Piitulainen, Eeva; Russi, Erich W; Parr, David; Shaker, Saher B; Reiber, Johan H C; Stolk, Jan

    2008-12-15

    Lung densitometry in drug evaluation trials can be confounded by changes in inspiration levels between computed tomography (CT) scans, limiting its sensitivity to detect changes over time. Therefore our aim was to explore whether the sensitivity of lung densitometry could be improved by correcting the measurements for changes in lung volume, based on the estimated relation between density (as measured with the 15th percentile point) and lung volume. We compared four correction methods, using CT data of 143 patients from five European countries. Patients were scanned, generally twice per visit, at baseline and after 2.5 years. The methods included one physiological model and three linear mixed-effects models using a volume-density relation: (1) estimated over the entire population with one scan per visit (model A) and two scans per visit (model B); and (2) estimated for each patient individually (model C). Both log-transformed and original volume and density values were evaluated and the differences in goodness-of-fit between methods were tested. Model C fitted best (P < 0.0001, P < 0.0001, and P = 0.064), when two scans were available. The most consistent progression estimation was obtained between sites, when both volume and density were log-transformed. Sensitivity was improved using repeated CT scans by applying volume correction to individual patient data. Volume correction reduces the variability in progression estimation by a factor of two, and is therefore recommended. PMID:19056717

  3. Investigation of the pressure dependent thermodynamic and elastic properties of 1,3,5-triamino-2,4,6-trinitrobenzene using dispersion corrected density functional theory

    SciTech Connect

    Rykounov, A. A.

    2015-06-07

    The influence of pressure on the thermodynamic, structural, and elastic properties of the 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) molecular crystal at T = 0 is systematically studied. Calculations are carried out using density functional theory methods in a plane wave basis set with dispersion corrections for the exchange-correlation part of total energy, and ultrasoft pseudopotentials. The equilibrium unit cell parameters, the cold compression curve in the pressure range of 0–50 GPa and the sound speeds are computed. The effect of finite pressure on the molecular structure of TATB is elucidated from the analysis of relative changes in the intra- and intermolecular geometrical parameters. For the first time, the full set of elastic constants of this crystal at zero and non-zero pressures is determined from ab initio calculations. The resulted structural, elastic, and acoustic properties of TATB are shown to be in a good agreement with available experimental and theoretical data.

  4. Force correcting atom centred potentials for generalised gradient approximated density functional theory: Approaching hybrid functional accuracy for geometries and harmonic frequencies in small chlorofluorocarbons

    NASA Astrophysics Data System (ADS)

    Anatole von Lilienfeld, O.

    2013-08-01

    Generalised gradient approximated (GGA) density functional theory (DFT) typically overestimates polarisability and bond-lengths, and underestimates force constants of covalent bonds. To overcome this problem we show that one can use empirical force correcting atom centred potentials (FCACPs), parametrised for every nuclear species. Parameters are obtained through minimisation of a penalty functional that explicitly encodes hybrid DFT forces and static polarisabilities of reference molecules. For hydrogen, fluorine, chlorine and carbon the respective reference molecules consist of H2, F2, Cl2 and CH4. The transferability of this approach is assessed for harmonic frequencies in a small set of chlorofluorocarbon molecules. Numerical evidence, gathered for CF4, CCl4, CCl3F, CCl2F2, CClF3, ClF, HF, HCl, CFH3, CF2H2, CF3H, CHCl3, CH2Cl2 and CH3Cl indicates that the GGA+FCACP level of theory yields harmonic frequencies that are significantly more consistent with hybrid DFT values, as well as slightly reduced molecular polarisability.

  5. Successes and failures of Hubbard-corrected density functional theory. The case of Mg doped LiCoO2

    SciTech Connect

    Santana Palacio, Juan A.; Kim, Jeongnim; Kent, Paul R.; Reboredo, Fernando A.

    2014-10-28

    We have evaluated the successes and failures of the Hubbard-corrected density functional theory approach to study Mg doping of LiCoO2. We computed the effect of the U parameter on the energetic, geometric, and electronic properties of two possible doping mechanisms: (1) substitution of Mg onto a Co (or Li) site with an associated impurity state and (2) formation of impurity-state-free complexes of substitutional Mg and point defects in LiCoO2. We find that formation of impurity states results in changes on the valency of Co in LiCoO2. Variation of the Co U shifts the energy of the impurity state, resulting in energetic, geometric, and electronic properties that depend significantly on the specific value of U. In contrast, the properties of the impurity-state-free complexes are insensitive to U. These results identify reasons for the strong dependence on the doping properties on the chosen value of U and for the overall difficulty of achieving agreement with the experimentally known energetic and electronic properties of doped transition metal oxides such as LiCoO2.

  6. A Biocompatible Reconstituted High-Density Lipoprotein Nano-System as a Probe for Lung Cancer Detection

    PubMed Central

    Lu, Hongxiu; Zhang, Hongguang; Zhang, Dong; Lu, Hongwang; Ma, Dedong

    2015-01-01

    Background Early detection of cancer is critical and is expected to contribute significantly to the success of cancer therapy and improvement of patient survival rates. Material/Methods A biocompatible, reconstituted, high-density lipoprotein (rHDL)-based nano-system containing calcium carbonate and near-infrared fluorescence dye (NIRF), methylene blue (MB), was fabricated and characterized by particle size, zeta potential, and morphology observation. The safety profile was confirmed by bovine serum albumin (BSA) challenge assay, hemolysis test, MTT assay, and in vivo long-term toxicity assay. The tumor targetability was assessed by cellular uptake, competitive inhibition experiments, and in vivo imaging assay. Results The self-assembled rHDL/MB/CCPs exhibited desirable and homogenous particle size, neutral surface charges, high bovine serum albumin stability, low hemolytic activity, and negligible cytotoxicity in vitro. The results obtained from confocal scanning laser microscopy and flow cytometry indicated that SR-BI coating exerted tumor-targeting function, which induced high and specific cellular uptake of rHDL/MB/CCPs. In vivo investigation in an A549 tumor xenografts-bearing mouse model revealed that rHDL/MB/CCPs possessed strong tumor targetability. Conclusions rHDL/MB/CCPs could be a safe tumor-targeting probe for cancer detection. PMID:26365043

  7. SU-E-T-541: Measurement of CT Density Model Variations and the Impact On the Accuracy of Monte Carlo (MC) Dose Calculation in Stereotactic Body Radiation Therapy for Lung Cancer

    SciTech Connect

    Xiang, H; Li, B; Behrman, R; Russo, G; Kachnic, L; Lu, H; Fernando, H

    2015-06-15

    Purpose: To measure the CT density model variations between different CT scanners used for treatment planning and impact on the accuracy of MC dose calculation in lung SBRT. Methods: A Gammex electron density phantom (RMI 465) was scanned on two 64-slice CT scanners (GE LightSpeed VCT64) and a 16-slice CT (Philips Brilliance Big Bore CT). All three scanners had been used to acquire CT for CyberKnife lung SBRT treatment planning. To minimize the influences of beam hardening and scatter for improving reproducibility, three scans were acquired with the phantom rotated 120° between scans. The mean CT HU of each density insert, averaged over the three scans, was used to build the CT density models. For 14 patient plans, repeat MC dose calculations were performed by using the scanner-specific CT density models and compared to a baseline CT density model in the base plans. All dose re-calculations were done using the same plan beam configurations and MUs. Comparisons of dosimetric parameters included PTV volume covered by prescription dose, mean PTV dose, V5 and V20 for lungs, and the maximum dose to the closest critical organ. Results: Up to 50.7 HU variations in CT density models were observed over the baseline CT density model. For 14 patient plans examined, maximum differences in MC dose re-calculations were less than 2% in 71.4% of the cases, less than 5% in 85.7% of the cases, and 5–10% for 14.3% of the cases. As all the base plans well exceeded the clinical objectives of target coverage and OAR sparing, none of the observed differences led to clinically significant concerns. Conclusion: Marked variations of CT density models were observed for three different CT scanners. Though the differences can cause up to 5–10% differences in MC dose calculations, it was found that they caused no clinically significant concerns.

  8. Localized orbital corrections applied to thermochemical errors in density functional theory: The role of basis set and application to molecular reactions.

    PubMed

    Goldfeld, Dahlia A; Bochevarov, Arteum D; Friesner, Richard A

    2008-12-01

    This paper is a logical continuation of the 22 parameter, localized orbital correction (LOC) methodology that we developed in previous papers [R. A. Friesner et al., J. Chem. Phys. 125, 124107 (2006); E. H. Knoll and R. A. Friesner, J. Phys. Chem. B 110, 18787 (2006).] This methodology allows one to redress systematic density functional theory (DFT) errors, rooted in DFT's inherent inability to accurately describe nondynamical correlation. Variants of the LOC scheme, in conjunction with B3LYP (denoted as B3LYP-LOC), were previously applied to enthalpies of formation, ionization potentials, and electron affinities and showed impressive reduction in the errors. In this paper, we demonstrate for the first time that the B3LYP-LOC scheme is robust across different basis sets [6-31G( *), 6-311++G(3df,3pd), cc-pVTZ, and aug-cc-pVTZ] and reaction types (atomization reactions and molecular reactions). For example, for a test set of 70 molecular reactions, the LOC scheme reduces their mean unsigned error from 4.7 kcal/mol [obtained with B3LYP/6-311++G(3df,3pd)] to 0.8 kcal/mol. We also verified whether the LOC methodology would be equally successful if applied to the promising M05-2X functional. We conclude that although M05-2X produces better reaction enthalpies than B3LYP, the LOC scheme does not combine nearly as successfully with M05-2X than with B3LYP. A brief analysis of another functional, M06-2X, reveals that it is more accurate than M05-2X but its combination with LOC still cannot compete in accuracy with B3LYP-LOC. Indeed, B3LYP-LOC remains the best method of computing reaction enthalpies.

  9. Identification of high density lipoprotein-binding proteins, including a glycosyl phosphatidylinositol-anchored membrane dipeptidase, in rat lung and type II pneumocytes.

    PubMed

    Witt, W; Kolleck, I; Rüstow, B

    2000-06-01

    Numerous communications have indicated that specific binding proteins for high density lipoprotein (HDL) exist in addition to the well characterized candidate HDL receptor SR-BI, but structural information was presented only in a few cases, and most of the work was aimed at the liver and steroidogenic glands. In this study, we purified two HDL-binding proteins by standard procedures from rat lung tissue. One of these membrane glycoproteins was identified by N-terminal sequencing and with specific antibodies as HB2, a previously described HDL-binding protein, whereas the other one was identified as a glycosyl phosphatidylinositol-anchored membrane dipeptidase (MDP). The apparent dissociation constant of the HDL binding was determined by solid phase assay to be 2.1 microg/ml (HB2) and 25 microg/ml (MDP). MDP also exerts affinity to low density lipoprotein (LDL) on ligand blots, and competition between HDL and LDL was observed, but analysis by solid phase assay showed that very high concentrations of LDL are required. The physiologic relevance of this effect is therefore questionable. The level in type II pneumocyte membranes of both binding proteins, MDP and HB2, increased when the plasma lipoprotein concentration was reduced by treatment of rats with 4-aminopyrazolo[3,4-d]-pyrimidine, consistent with a function to facilitate lipid uptake in vivo. The binding proteins were also dramatically upregulated by feeding rats a vitamin E-depleted diet. Vitamin E uptake requires interaction between HDL and type II cells, suggesting a role of HB2 and MDP also in this process.

  10. Political Correctness--Correct?

    ERIC Educational Resources Information Center

    Boase, Paul H.

    1993-01-01

    Examines the phenomenon of political correctness, its roots and objectives, and its successes and failures in coping with the conflicts and clashes of multicultural campuses. Argues that speech codes indicate failure in academia's primary mission to civilize and educate through talk, discussion, thought,166 and persuasion. (SR)

  11. Metastatic spread in patients with non-small cell lung cancer is associated with a reduced density of tumor-infiltrating T cells.

    PubMed

    Müller, Philipp; Rothschild, Sacha I; Arnold, Walter; Hirschmann, Petra; Horvath, Lukas; Bubendorf, Lukas; Savic, Spasenija; Zippelius, Alfred

    2016-01-01

    Tumor-infiltrating lymphocytes play an important role in cell-mediated immune destruction of cancer cells and tumor growth control. We investigated the heterogeneity of immune cell infiltrates between primary non-small cell lung carcinomas (NSCLC) and corresponding metastases. Formalin-fixed, paraffin-embedded primary tumors and corresponding metastases from 34 NSCLC patients were analyzed by immunohistochemistry for CD4, CD8, CD11c, CD68, CD163 and PD-L1. The percentage of positively stained cells within the stroma and tumor cell clusters was recorded and compared between primary tumors and metastases. We found significantly fewer CD4(+) and CD8(+) T cells within tumor cell clusters as compared with the stromal compartment, both in primary tumors and corresponding metastases. CD8(+) T cell counts were significantly lower in metastatic lesions than in the corresponding primary tumors, both in the stroma and the tumor cell islets. Of note, the CD8/CD4 ratio was significantly reduced in metastatic lesions compared with the corresponding primary tumors in tumor cell islets, but not in the stroma. We noted significantly fewer CD11c(+) cells and CD68(+) as well as CD163(+) macrophages in tumor cell islets compared with the tumor stroma, but no difference between primary and metastatic lesions. Furthermore, the CD8/CD68 ratio was higher in primary tumors than in the corresponding metastases. We demonstrate a differential pattern of immune cell infiltration in matched primary and metastatic NSCLC lesions, with a significantly lower density of CD8(+) T cells in metastatic lesions compared with the primary tumors. The lower CD8/CD4 and CD8/CD68 ratios observed in metastases indicate a rather tolerogenic and tumor-promoting microenvironment at the metastatic site.

  12. Two novel susceptibility loci for non-small cell lung cancer map to low-density lipoprotein receptor-related protein 5

    PubMed Central

    Wang, Ying; Zhang, Yongjun; Fang, Meiyu; Bao, Wenglong; Deng, Dehou

    2016-01-01

    This study investigated the effect of single-nucleotide polymorphisms (SNPs) of low-density lipoprotein receptor-related protein 5 (LRP5) on the risk of developing non-small cell lung cancer (NSCLC). A total of 500 NSCLC patients and 500 healthy controls were recruited for genotyping of 11 SNPs of LRP5. The association between genotype and NSCLC risk was evaluated by computing the odds ratio (OR) and 95% confidence interval (CI) from multivariate unconditional logistic regression analyses. Eleven Tag SNPs were detected. The frequency of the LRP5 rs3736228 T allele (18.9% in male NSCLC cases and 23.9% in male controls) was statistically different between male NSCLCs and male controls (P=0.03), and the T allele was associated with a lower risk of NSCLC (OR=0.74; 95% CI, 0.56–0.67), whereas the C/C homozygous genotype and the LRP5 rs64843 T/T genotype were associated with an increased risk of NSCLC and squamous cell carcinoma (SCC), respectively (OR=1.43 and 1.77, respectively). Using Haploview software, the frequency of the haplotypes of rs312009/rs3120015/rs3120014 CCC was was significantly higher in female SCC cases compared with female controls (0.064 vs. 0.009, P=0.04). LRP5 rs3736228 and rs64843 SNPs were significantly associated with an increased risk of NSCLC and SCC, respectively. Further studies are required to investigate the functional changes in LRP5 expression and activity in NSCLC in vitro.

  13. Two novel susceptibility loci for non-small cell lung cancer map to low-density lipoprotein receptor-related protein 5

    PubMed Central

    Wang, Ying; Zhang, Yongjun; Fang, Meiyu; Bao, Wenglong; Deng, Dehou

    2016-01-01

    This study investigated the effect of single-nucleotide polymorphisms (SNPs) of low-density lipoprotein receptor-related protein 5 (LRP5) on the risk of developing non-small cell lung cancer (NSCLC). A total of 500 NSCLC patients and 500 healthy controls were recruited for genotyping of 11 SNPs of LRP5. The association between genotype and NSCLC risk was evaluated by computing the odds ratio (OR) and 95% confidence interval (CI) from multivariate unconditional logistic regression analyses. Eleven Tag SNPs were detected. The frequency of the LRP5 rs3736228 T allele (18.9% in male NSCLC cases and 23.9% in male controls) was statistically different between male NSCLCs and male controls (P=0.03), and the T allele was associated with a lower risk of NSCLC (OR=0.74; 95% CI, 0.56–0.67), whereas the C/C homozygous genotype and the LRP5 rs64843 T/T genotype were associated with an increased risk of NSCLC and squamous cell carcinoma (SCC), respectively (OR=1.43 and 1.77, respectively). Using Haploview software, the frequency of the haplotypes of rs312009/rs3120015/rs3120014 CCC was was significantly higher in female SCC cases compared with female controls (0.064 vs. 0.009, P=0.04). LRP5 rs3736228 and rs64843 SNPs were significantly associated with an increased risk of NSCLC and SCC, respectively. Further studies are required to investigate the functional changes in LRP5 expression and activity in NSCLC in vitro. PMID:27698794

  14. Lung Emergencies

    MedlinePlus

    ... Emergencies Cardiac Emergencies Eye Emergencies Lung Emergencies Surgeries Lung Emergencies People with Marfan syndrome can be at ... should be considered an emergency. Symptoms of sudden lung collapse (pneumothorax) Symptoms of a sudden lung collapse ...

  15. Lung Cancer

    MedlinePlus

    ... version of this page please turn Javascript on. Lung Cancer What is Lung Cancer? How Tumors Form The body is made ... button on your keyboard.) Two Major Types of Lung Cancer There are two major types of lung ...

  16. Lung metastases

    MedlinePlus

    Metastases to the lung; Metastatic cancer to the lung ... Metastatic tumors in the lungs are cancers that developed at other places in the body (or other parts of the lungs) and spread through the ...

  17. Lung cancer

    SciTech Connect

    Aisner, J.

    1985-01-01

    This book contains 13 chapters. Some of the chapter titles are: The Pathology of Lung Cancer; Radiotherapy for Non-Small-Cell Cancer of the Lung; Chemotherapy for Non-Small-Cell Lung Cancer; Immunotherapy in the Management of Lung Cancer; Preoperative Staging and Surgery for Non-Small-Cell Lung Cancer; and Prognostic Factors in Lung Cancer.

  18. Lung B-line artefacts and their use

    PubMed Central

    Mathis, Gebhard; Blaivas, Michael; Volpicelli, Giovanni; Seibel, Armin; Wastl, Daniel; Atkinson, Nathan S. S.; Cui, Xin-Wu; Fan, Mei; Yi, Dong

    2016-01-01

    Background The analysis of lung artefacts has gained increasing importance as markers of lung pathology. B-line artefact (BLA), caused by a reverberation phenomenon, is the most important lung artefact. In this review, we discuss the current role of BLA in pneumology and explore open questions of the published consensus. Methods We summarized current literature about BLA. Also, we presented observations on healthy subjects and patients with interstitial syndrome (pulmonary fibrosis and edema), to investigate technical factors influencing BLA visualization. Results BLA imaging is influenced by more factors than recently assumed. When multiple BLA is visualized in the lung, they represent a sign of increased density due to the loss of aeration in the lung periphery. This condition may indicate different diseases including cardiogenic pulmonary edema, diffuse or focal interstitial lung diseases (ILD), infections and acute respiratory distress syndrome (ARDS). Correct interpretation of BLA in lung ultrasound is strongly influenced by associated sonographic signs and careful integration of all relevant clinical information. Conclusions BLA is useful to monitor clinical response, and may become crucial in directing the diagnostic process. Further research is warranted to clarify technical adjustments, different probe and machine factors that influence the visualization of BLA. PMID:27293860

  19. Modulation of telomere shelterin by TRF1 [corrected] and TRF2 interacts with telomerase to maintain the telomere length in non-small cell lung cancer.

    PubMed

    Hsu, Chung-Ping; Ko, Jiunn-Liang; Shai, Sen-Ei; Lee, Li-Wen

    2007-12-01

    Our previous report demonstrated good correlations between the expressions of h-TERT and its associated genes, such as c-Myc, TRF1 and TRF2. To observe the interaction between telomerase activity and expression of its associated genes in regulation of the telomere restriction fragment length (TRFL) in non-small cell lung cancer (NSCLC), 79 NSCLC specimens were examined. Telomerase activity, h-TERT, TRF1 and TRF2 genes expression were observed in 60.8, 66.7, 74.7, and 83.5% of the tumour tissues, respectively. The TRFL were shorter in both tumour tissues and telomerase positive tissues, as compared to their counterparts. The t/n-TRFLR (tumour-to-normal TRFL ratio) was also lower in telomerase positive tissues. When telomerase was negative, the t/n-TRFLR was lower in both TRF1 positive and TFR2 positive. However, when telomerase was positive, the t/n-TRFLR was only lower in the TFR2 positive group. When t/n-TRFLR level was equal to or less than 75%, the majority of the specimens became TRF1 and TRF2 positive. To explain these findings, our hypothesis is that when the TRF length becomes shorter during tumour progression, the tumour cells can sustain a better tolerance to shorter telomere with the help of both TRF1 and TRF2, but without immediate activation of the telomerase. However, when the TRF length reaches a critical level, changing the telomere shelterin by persistent expression of the TRF2, which in combination with telomerase activation reverses the telomere shortening.

  20. Thrombospondins I and II messenger RNA expression in lung carcinoma: relationship with p53 alterations, angiogenic growth factors, and vascular density.

    PubMed

    Fontanini, G; Boldrini, L; Calcinai, A; Chinè, S; Lucchi, M; Mussi, A; Angeletti, C A; Basolo, F; Bevilacqua, G

    1999-01-01

    Thrombospondin (TSP) is a Mr 450,000 multifunctional matrix glycoprotein that interferes with tumor growth, angiogenesis, and metastasis. It has recently been shown that TSP expression is enhanced by the product of the p53 gene and that a down-regulation of TSP may be observed when alterations of the p53 protein occur. Moreover, a number of studies have demonstrated a regulatory activity of p53 on human vascular endothelial growth factor (VEGF), although additional investigations will be necessary to understand their relationship. In non-small cell lung carcinoma (NSCLC), neoangiogenesis, p53 alterations, and VEGF expression seem to have meaningful implications in the development and progression of this type of cancer. The aim of this study is to identify and quantitate TSP I and TSP II mRNA in NSCLCs with respect to p53 alterations, angiogenic growth factor expression, and microvascular density. A series of 24 cases of NSCLC were analyzed. Eleven of 24 of the cases were positive for TSP II mRNA, whereas 8 of 24 showed TSP I mRNA expression. A significant inverse association was found between TSP I mRNA and fibroblast growth factor (FGF) protein expression (P = 0.00001). Tumors with low FGF protein expression (< or = 40% of positive cells) presented a number of TSP I cDNA molecules, significantly higher than tumors expressing high levels of FGF protein. No association was found between TSP mRNA expression and other angiogenic growth factors (i.e., VEGF) or tumoral neovascularization. On the contrary, tumors with high levels of FGF showed a higher number of microvessels (P = 0.05). By PCR-single-strand conformational polymorphism analysis, we observed aberrations of the p53 gene in 19 of the 24 tumor samples. No association was found between p53 alterations and TSP mRNA expression. Instead, an interestingly significant association was found between the presence of p53 mutations and high VEGF protein expression (P = 0.01) and neovascularization (P = 0.03). Highly

  1. Changes in microRNA expression in rat lungs caused by sevoflurane anesthesia: a TaqMan® low-density array study.

    PubMed

    Tanaka, Shunsuke; Ishikawa, Masashi; Arai, Masae; Genda, Yuuki; Sakamoto, Atsuhiro

    2012-01-01

    Reportedly, a large number of microRNAs (miRNAs) play an important role in inflammatory lung diseases such as asthma, idiopathic pulmonary fibrosis (IPF), acute respiratory distress syndrome (ARDS), and pulmonary arterial hypertension (PAH). Sevoflurane is routinely used to various patients, and its safety has been confirmed by clinical outcomes; however, its effects to lungs at the miRNA level have not been elucidated. In our previous genomic studies, we showed that sevoflurane anesthesia affected the expression of many genes and mRNAs in rat lungs. In this study, we comprehensively investigated changes in miRNA expression caused by sevoflurane anesthesia (2.0% and 4.0%). Sevoflurane anesthesia resulted in apparent changes in miRNA expression in rat lungs, and the pattern of 2.0% sevoflurane-induced changes in miRNA expression was similar to that of 4.0% sevoflurane. Some of the differentially expressed miRNAs are known to be involved in asthma, IPF, and PAH. Especially, miR-146a, the most up-regulated miRNA, is known to attenuate the toxic effects associated with LPS stimulation. We showed, for the first time, dynamic changes in miRNA expression caused by sevoflurane anesthesia, and moreover, our results were important to understand the influence of sevoflurane anesthesia on any patients suffered from various lung diseases. PMID:23124245

  2. {sup 63}Cu and {sup 197}Au nuclear quadrupole moments from four-component relativistic density-functional calculations using correct long-range exchange

    SciTech Connect

    Thierfelder, Christian; Schwerdtfeger, Peter; Saue, Trond

    2007-09-15

    The electric field gradient in late transition metal compounds is incorrectly determined by most density functionals. We show that the coupling of short-range density functional based with long-range wave function based methods using a reparametrization of the Coulomb-attenuated Becke three-parameter Lee-Yang-Parr approximation gives reliable results for the electric field gradients of copper and gold for a series of compounds. This results in nuclear quadrupole moments of -0.208 b for {sup 63}Cu and +0.526 b for {sup 197}Au in good agreement with experimental values of -0.220(15) and +0.547(16)b, respectively.

  3. First-Principles Study on Electronic Structure and Spin State of Rutile (Ti,Co)O2 by Self-Interaction-Corrected Local Density Approximation: Role of Oxygen Vacancy

    NASA Astrophysics Data System (ADS)

    Kizaki, Hidetoshi; Toyoda, Masayuki; Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2009-05-01

    Electronic structure of rutile-TiO2 based dilute magnetic semiconductors (DMS) are investigated within self-interaction-corrected local density approximation (SIC-LDA). These results are compared with those calculated within standard LDA. We employ the Korringa-Kohn-Rostoker method combined with coherent potential approximation. It is found that high-spin state in (Ti,Co)O2 with O vacancy is predicted in the SIC-LDA. This result is in good agreement with the experimental results. As a result, we find that O vacancy in (Ti,Co)O2 is the origin of Co2+ high-spin state and SIC-LDA is indispensable to describe the correct electronic structure and spin state of TiO2-based DMS.

  4. Lung disease

    MedlinePlus

    ... the lungs to take in oxygen and release carbon dioxide. People with this type of lung disorder often ... the lungs to take up oxygen and release carbon dioxide. These diseases may also affect heart function. An ...

  5. Collapsed Lung

    MedlinePlus

    A collapsed lung happens when air enters the pleural space, the area between the lung and the chest wall. If it is a ... is called pneumothorax. If only part of the lung is affected, it is called atelectasis. Causes of ...

  6. Second-order M{umlt o}ller-Plesset and Epstein-Nesbet corrections to the molecular charge density: distributed computing on a cluster of heterogeneous workstations with the PVM system

    SciTech Connect

    Bendrider, M.; Leclercq, J.

    1995-04-01

    We perform distributed calculations of the MP2 and EN2 corrections to the charge density of a lot of molecules. A heterogeneous cluster of IBM RS/600 and Silicon Graphics workstations is used. These network-based distributed concurrent calculations are developed with the {bold P}arallel {bold V}irtual {bold M}achine system of the Oak Ridge National Laboratory, with the ETHERNET IP mode and, for the RS/6000s, the SOCC IP mode. (AIP) {copyright}{ital 1995 American Institute of Physics}

  7. Evaluation of a semiautomated lung mass calculation technique for internal dosimetry applications

    SciTech Connect

    Busse, Nathan; Erwin, William; Pan, Tinsu

    2013-12-15

    calculated using the formula (lung HU − air HU)/(tissue HU − air HU), and mass = specific gravity × total volume × 1.04 g/cm{sup 3}.Results: The range of calculated lung masses was 0.51–1.29 kg. The average male and female lung masses during FB CT were 0.80 and 0.71 kg, respectively. The calculated lung mass varied across the respiratory cycle but changed to a lesser degree than did lung volume measurements (7.3% versus 15.4%). Lung masses calculated using deep inspiration breath-hold and average CT were significantly larger (p < 0.05) than were some masses calculated using respiratory-phase and FB CT. Increased voxel size and smooth reconstruction kernels led to high lung mass estimates owing to partial volume effects.Conclusions: Organ mass correction is an important component of patient-specific internal radionuclide dosimetry. Lung mass calculation necessitates scan-based density correction to account for volume changes owing to respiration. The range of lung masses in the authors’ patient population represents lung doses for the same absorbed energy differing from 25% below to 64% above the dose found using reference phantom organ masses. With proper management of acquisition parameters and selection of FB or midexpiration breath hold scans, lung mass estimates with about 10% population precision may be achieved.

  8. Histopathologic approach to the surgical lung biopsy in interstitial lung disease.

    PubMed

    Jones, Kirk D; Urisman, Anatoly

    2012-03-01

    Interpretation of lung biopsy specimens is an integral part in the diagnosis of interstitial lung disease (ILD). The process of evaluating a surgical lung biopsy for disease involves answering several questions. Unlike much of surgical pathology of neoplastic lung disease, arriving at the correct diagnosis in nonneoplastic lung disease often requires correlation with clinical and radiologic findings. The topic of ILD or diffuse infiltrative lung disease covers several hundred entities. This article is meant to be a launching point in the clinician's approach to the histologic evaluation of lung disease.

  9. A Density Functional Theory Based Protocol to Compute the Redox Potential of Transition Metal Complex with the Correction of Pseudo-Counterion: General Theory and Applications.

    PubMed

    Matsui, Toru; Kitagawa, Yasutaka; Shigeta, Yasuteru; Okumura, Mitsutaka

    2013-07-01

    We propose an accurate scheme to evaluate the redox potential of a wide variety of transition metal complexes by adding a charge-dependent correction term for a counterion around the charged complexes, which is based on Generalized Born theory, to the solvation energy. The mean absolute error (MAE) toward experimental redox potentials of charged complexes is considerably reduced from 0.81 V (maximum error 1.22 V) to 0.22 V (maximum error 0.50 V). We found a remarkable exchange-correlation functional dependence on the results rather than the basis set ones. The combination of Wachters+f (for metal) and 6-31++G(d,p) (for other atoms) with the B3LYP functional gives the least MAE 0.15 V for the test complexes. This scheme is applicable to other solvents, and heavier transition metal complexes such as M1(CO)5(pycn) (M1 = Cr, Mo, W), M2(mnt)2 (M2 = Ni, Pd, Pt), and M3(bpy)3 (M3 = Fe, Ru, Os) with the same quality.

  10. Lowest excited states and optical absorption spectra of donor-acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals.

    PubMed

    Pandey, Laxman; Doiron, Curtis; Sears, John S; Brédas, Jean-Luc

    2012-11-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated.

  11. Structure and stability of acrolein and allyl alcohol networks on Ag(111) from density functional theory based calculations with dispersion corrections

    NASA Astrophysics Data System (ADS)

    Ferullo, Ricardo M.; Branda, Maria Marta; Illas, Francesc

    2013-11-01

    The interaction of acrolein and allyl alcohol with the Ag(111) surface has been studied by means of periodic density functional theory based calculations including explicitly dispersion terms. Different coverage values have been explored going from isolated adsorbed molecules to isolated dimers, interacting dimers or ordered overlayers. The inclusion of the dispersion terms largely affects the calculated values of the adsorption energy and also the distance between adsorbed molecule and the metallic surface but much less the adsorbate-adsorbate interactions. Owing to the large dipole moment of acrolein, the present calculations predict that at high coverage this molecule forms a stable extensive two-dimensional network on the surface, caused by the alignment of the adsorbate dipoles. For the case of allyl alcohol, dimers and complex networks exhibit similar stability.

  12. Lithium ion solvation by ethylene carbonates in lithium-ion battery electrolytes, revisited by density functional theory with the hybrid solvation model and free energy correction in solution.

    PubMed

    Cui, Wei; Lansac, Yves; Lee, Hochun; Hong, Seung-Tae; Jang, Yun Hee

    2016-09-14

    Complex formation between lithium (Li(+)) ions and electrolyte molecules would affect the ionic conductivity through the electrolyte in lithium-ion batteries (LIBs). We hence revisit the solvation number of Li(+) in the most commonly used ethylene carbonate (EC) electrolyte. The solvation number n of Li(+)(EC)n in the first solvation shell of Li(+) is estimated on the basis of the free energy calculated by the density functional theory combined with a hybrid solvation model where the explicit solvation shell of Li(+) is immersed in a free volume of an implicit bulk solvent. This new hybrid solvation (implicit and explicit) model predicts the most probable solvation number (n = 4) and solvation free energy (-91.3 kcal mol(-1)) of Li(+) in a good agreement with those predicted by calculations employing simpler solvation models (either implicit or explicit). The desolvation (n = 2) of Li(0)(EC)n upon reduction near anodes is also well described with this new hybrid model.

  13. Lithium ion solvation by ethylene carbonates in lithium-ion battery electrolytes, revisited by density functional theory with the hybrid solvation model and free energy correction in solution.

    PubMed

    Cui, Wei; Lansac, Yves; Lee, Hochun; Hong, Seung-Tae; Jang, Yun Hee

    2016-09-14

    Complex formation between lithium (Li(+)) ions and electrolyte molecules would affect the ionic conductivity through the electrolyte in lithium-ion batteries (LIBs). We hence revisit the solvation number of Li(+) in the most commonly used ethylene carbonate (EC) electrolyte. The solvation number n of Li(+)(EC)n in the first solvation shell of Li(+) is estimated on the basis of the free energy calculated by the density functional theory combined with a hybrid solvation model where the explicit solvation shell of Li(+) is immersed in a free volume of an implicit bulk solvent. This new hybrid solvation (implicit and explicit) model predicts the most probable solvation number (n = 4) and solvation free energy (-91.3 kcal mol(-1)) of Li(+) in a good agreement with those predicted by calculations employing simpler solvation models (either implicit or explicit). The desolvation (n = 2) of Li(0)(EC)n upon reduction near anodes is also well described with this new hybrid model. PMID:27506245

  14. Interaction between n-Alkane Chains:  Applicability of the Empirically Corrected Density Functional Theory for Van der Waals Complexes.

    PubMed

    Goursot, Annick; Mineva, Tzonka; Kevorkyants, Ruslan; Talbi, Dahbia

    2007-05-01

    The geometries, interaction energies, and vibrational frequencies of a series of n-alkane dimers up to dodecane have been calculated using density functional theory (DFT) augmented with an empirical dispersion energy term (DFT-D). The results obtained from this method for ethane to hexane dimers are compared with those provided by the MP2 level of theory and the combined Gaussian-3 approach with CCSD(T) being the highest correlation method [G3(CCSD(T))]. Two types of dimer isomers have been studied. The most stable isomers have the two carbon chains in parallel planes, whereas the second ones have the two carbon chains in the same plane. Butane is found to be the shortest carbon chain to form dimers with similar properties, that is, a constant average distance between the monomer carbon skeletons, a similar increment per CH2 unit for the dimer interaction energy, and comparable dimer symmetric stretching frequencies. The values and trends obtained from the DFT-D approach agree very well with those obtained from MP2 for the geometries and vibrational frequencies and from the G3(CCSD(T)) method for the energies, validating the use of DFT-D for the study of large hydrocarbon complexes.

  15. Geological Corrections in Gravimetry

    NASA Astrophysics Data System (ADS)

    Mikuška, J.; Marušiak, I.

    2015-12-01

    Applying corrections for the known geology to gravity data can be traced back into the first quarter of the 20th century. Later on, mostly in areas with sedimentary cover, at local and regional scales, the correction known as gravity stripping has been in use since the mid 1960s, provided that there was enough geological information. Stripping at regional to global scales became possible after releasing the CRUST 2.0 and later CRUST 1.0 models in the years 2000 and 2013, respectively. Especially the later model provides quite a new view on the relevant geometries and on the topographic and crustal densities as well as on the crust/mantle density contrast. Thus, the isostatic corrections, which have been often used in the past, can now be replaced by procedures working with an independent information interpreted primarily from seismic studies. We have developed software for performing geological corrections in space domain, based on a-priori geometry and density grids which can be of either rectangular or spherical/ellipsoidal types with cells of the shapes of rectangles, tesseroids or triangles. It enables us to calculate the required gravitational effects not only in the form of surface maps or profiles but, for instance, also along vertical lines, which can shed some additional light on the nature of the geological correction. The software can work at a variety of scales and considers the input information to an optional distance from the calculation point up to the antipodes. Our main objective is to treat geological correction as an alternative to accounting for the topography with varying densities since the bottoms of the topographic masses, namely the geoid or ellipsoid, generally do not represent geological boundaries. As well we would like to call attention to the possible distortions of the corrected gravity anomalies. This work was supported by the Slovak Research and Development Agency under the contract APVV-0827-12.

  16. Fine mapping of chromosome 5p15.33 based on a targeted deep sequencing and high density genotyping identifies novel lung cancer susceptibility loci.

    PubMed

    Kachuri, Linda; Amos, Christopher I; McKay, James D; Johansson, Mattias; Vineis, Paolo; Bueno-de-Mesquita, H Bas; Boutron-Ruault, Marie-Christine; Johansson, Mikael; Quirós, J Ramón; Sieri, Sabina; Travis, Ruth C; Weiderpass, Elisabete; Le Marchand, Loic; Henderson, Brian E; Wilkens, Lynne; Goodman, Gary E; Chen, Chu; Doherty, Jennifer A; Christiani, David C; Wei, Yongyue; Su, Li; Tworoger, Shelley; Zhang, Xuehong; Kraft, Peter; Zaridze, David; Field, John K; Marcus, Michael W; Davies, Michael P A; Hyde, Russell; Caporaso, Neil E; Landi, Maria Teresa; Severi, Gianluca; Giles, Graham G; Liu, Geoffrey; McLaughlin, John R; Li, Yafang; Xiao, Xiangjun; Fehringer, Gord; Zong, Xuchen; Denroche, Robert E; Zuzarte, Philip C; McPherson, John D; Brennan, Paul; Hung, Rayjean J

    2016-01-01

    Chromosome 5p15.33 has been identified as a lung cancer susceptibility locus, however the underlying causal mechanisms were not fully elucidated. Previous fine-mapping studies of this locus have relied on imputation or investigated a small number of known, common variants. This study represents a significant advance over previous research by investigating a large number of novel, rare variants, as well as their underlying mechanisms through telomere length. Variants for this fine-mapping study were identified through a targeted deep sequencing (average depth of coverage greater than 4000×) of 576 individuals. Subsequently, 4652 SNPs, including 1108 novel SNPs, were genotyped in 5164 cases and 5716 controls of European ancestry. After adjusting for known risk loci, rs2736100 and rs401681, we identified a new, independent lung cancer susceptibility variant in LPCAT1: rs139852726 (OR = 0.46, P = 4.73×10(-9)), and three new adenocarcinoma risk variants in TERT: rs61748181 (OR = 0.53, P = 2.64×10(-6)), rs112290073 (OR = 1.85, P = 1.27×10(-5)), rs138895564 (OR = 2.16, P = 2.06×10(-5); among young cases, OR = 3.77, P = 8.41×10(-4)). In addition, we found that rs139852726 (P = 1.44×10(-3)) was associated with telomere length in a sample of 922 healthy individuals. The gene-based SKAT-O analysis implicated TERT as the most relevant gene in the 5p15.33 region for adenocarcinoma (P = 7.84×10(-7)) and lung cancer (P = 2.37×10(-5)) risk. In this largest fine-mapping study to investigate a large number of rare and novel variants within 5p15.33, we identified novel lung and adenocarcinoma susceptibility loci with large effects and provided support for the role of telomere length as the potential underlying mechanism.

  17. Density functional theoretical study of pentacene/noble metal interfaces with van der Waals corrections: Vacuum level shifts and electronic structures

    NASA Astrophysics Data System (ADS)

    Toyoda, Kenji; Hamada, Ikutaro; Lee, Kyuho; Yanagisawa, Susumu; Morikawa, Yoshitada

    2010-04-01

    In order to clarify factors determining the interface dipole, we have studied the electronic structures of pentacene adsorbed on Cu(111), Ag(111), and Au(111) by using first-principles density functional theoretical calculations. In the structural optimization, a semiempirical van der Waals (vdW) approach [S. Grimme, J. Comput. Chem. 27, 1787 (2006)] is employed to include long-range vdW interactions and is shown to reproduce pentacene-metal distances quite accurately. The pentacene-metal distances for Cu, Ag, and Au are evaluated to be 0.24, 0.29, and 0.32 nm, respectively, and work function changes calculated by using the theoretically optimized adsorption geometries are in good agreement with the experimental values, indicating the validity of the present approach in the prediction of the interface dipole at metal/organic interfaces. We examined systematically how the geometric factors, especially the pentacene-substrate distance ( Z C ) , and the electronic properties of the metal substrates contribute to the interface dipole. We found that at Z C ≥ 0.35 nm , the work function changes ( Δ ϕ 's) do not depend on the substrate work function ( ϕ m ) , indicating that the interface level alignment is nearly in the Schottky limit, whereas at Z C ≤ 0.25 nm , Δ ϕ 's vary nearly linearly with ϕ m , and the interface level alignment is in the Bardeen limit. Our results indicate the importance of both the geometric and the electronic factors in predicting the interface dipoles. The calculated electronic structure shows that on Au, the long-range vdW interaction dominates the pentacene-substrate interaction, whereas on Cu and Ag, the chemical hybridization contributes to the interaction.

  18. Adsorption and electronic properties of Fullerene/Zn-Phthalocyanine (C60/ZnPc) interface with face-on orientation: A van der Waals corrected Density Functional Theory investigation

    NASA Astrophysics Data System (ADS)

    Javaid, Saqib; Akhtar, M. Javed

    2016-04-01

    We have investigated the C60/ZnPc interfacial properties in face-on orientation by using van der Waals (vdW)-corrected density functional theory (DFT) techniques. These findings show that different vdW approaches qualitatively provide a similar description of ZnPc adsorption on C60. Adsorption of ZnPc on C60 leads to the formation of an interface dipole. The magnitudes of charge transfer and interface dipole are found to be sensitive to the vdW method employed. These results suggest that C60/ZnPc interface dipole originates mainly as a result of charge transfer instead of adsorption induced charge re-arrangement.

  19. Electronic and thermoelectric properties of Ce{sub 3}Te{sub 4} and La{sub 3}Te{sub 4} computed with density functional theory with on-site Coulomb interaction correction

    SciTech Connect

    Vo, Trinh; Allmen, Paul von; Huang, Chen-Kuo; Ma, James; Bux, Sabah; Fleurial, Jean-Pierre

    2014-10-07

    The electronic properties and Seebeck coefficients of Ce{sub 3}Te{sub 4} and La{sub 3}Te{sub 4} are computed using Density Functional Theory with on-site Coulomb interaction correction. We found that the Seebeck coefficients of Ce{sub 3}Te{sub 4} and La{sub 3}Te{sub 4} are almost equal at temperatures larger than the Curie temperature of Ce{sub 3}Te{sub 4}, and in good agreement with the measurements reported by May et al. [Phys. Rev. B 86, 035135 (2012)]. At temperatures below the Curie temperature, the Seebeck coefficient of Ce{sub 3}Te{sub 4} increases due to the ferromagnetic ordering, which leads the f-electron of Ce to contribute to the Seebeck coefficient in the relevant range of electron concentration.

  20. Spin-flip, tensor equation-of-motion configuration interaction with a density-functional correction: A spin-complete method for exploring excited-state potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Herbert, John M.

    2015-12-01

    We revisit the formalism of the spin-adapted, spin-flip (SA-SF) configuration-interaction singles (CIS) method based on a tensor equation-of-motion formalism that affords proper spin eigenstates without sacrificing single-reference simplicity. Matrix elements for SA-SF-CIS are then modified in a manner similar to collinear spin-flip time-dependent density functional theory (SF-TDDFT), to include a DFT exchange-correlation correction. The performance of this method, which we call SA-SF-DFT, is evaluated numerically and we find that it systematically improves the energies of electronic states that exhibit significant spin contamination within the conventional SF-TDDFT approach. The new method cures the state assignment problem that plagues geometry optimizations and ab initio molecular dynamics simulations using traditional SF-TDDFT, without sacrificing computational efficiency, and furthermore provides correct topology at conical intersections, including those that involve the ground state, unlike conventional TDDFT. As such, SA-SF-DFT appears to be a promising method for generating excited-state potential energy surfaces at DFT cost.

  1. Spin-flip, tensor equation-of-motion configuration interaction with a density-functional correction: A spin-complete method for exploring excited-state potential energy surfaces

    SciTech Connect

    Zhang, Xing; Herbert, John M.

    2015-12-21

    We revisit the formalism of the spin-adapted, spin-flip (SA-SF) configuration-interaction singles (CIS) method based on a tensor equation-of-motion formalism that affords proper spin eigenstates without sacrificing single-reference simplicity. Matrix elements for SA-SF-CIS are then modified in a manner similar to collinear spin-flip time-dependent density functional theory (SF-TDDFT), to include a DFT exchange-correlation correction. The performance of this method, which we call SA-SF-DFT, is evaluated numerically and we find that it systematically improves the energies of electronic states that exhibit significant spin contamination within the conventional SF-TDDFT approach. The new method cures the state assignment problem that plagues geometry optimizations and ab initio molecular dynamics simulations using traditional SF-TDDFT, without sacrificing computational efficiency, and furthermore provides correct topology at conical intersections, including those that involve the ground state, unlike conventional TDDFT. As such, SA-SF-DFT appears to be a promising method for generating excited-state potential energy surfaces at DFT cost.

  2. Lung transplant

    MedlinePlus

    Solid organ transplant - lung ... the new lung Have severe disease of other organs Cannot reliably take their medicines Are unable to ... medicines Damage to your kidneys, liver, or other organs from anti-rejection medicines Future risk of certain ...

  3. Lung surgery

    MedlinePlus

    ... Pneumonectomy; Lobectomy; Lung biopsy; Thoracoscopy; Video-assisted thoracoscopic surgery; VATS ... You will have general anesthesia before surgery. You will be asleep and unable to feel pain. Two common ways to do surgery on your lungs are thoracotomy and video- ...

  4. Lung pair phantom

    DOEpatents

    Olsen, P.C.; Gordon, N.R.; Simmons, K.L.

    1993-11-30

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an ``authentic lung tissue`` or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  5. Lung pair phantom

    DOEpatents

    Olsen, Peter C.; Gordon, N. Ross; Simmons, Kevin L.

    1993-01-01

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an "authentic lung tissue" or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  6. Role of electronic correlation in high-low temperature phase transition of hexagonal nickel sulfide: a comparative density functional theory study with and without correction for on-site Coulomb interaction.

    PubMed

    Zhang, Wei-Bing; Li, Jie; Tang, Bi-Yu

    2013-06-28

    The structural, electronic, magnetic, and elastic properties of hexagonal nickel sulfide (NiS) have been investigated comparatively by Density Functional theory (DFT) and DFT plus correction for on-site Coulomb interaction (DFT+U), in which two different exchange correlation functionals local density approximations (LDA) and general gradient approximations (GGA) in the form of Perdew-Burke-Ernzerhof (PBE) are used. Our results indicate LDA and PBE methods predict hexagonal NiS to be a paramagnetic metal whereas LDA(PBE)+U calculations with reasonable on-site Coulomb interaction energy give the antiferromagnetic insulating state of low temperature hexagonal NiS successfully. Meanwhile, compared with LDA(PBE) results, LDA(PBE)+U methods give larger lattice parameters, crystal volume, and shear constant c44, consistent with the experimental picture during high-low temperature phase transition of hexagonal NiS, in which an increase of the shear constant c44 and lattice parameters were found in the low-temperature antiferromagnetic phase. The present DFT and DFT+U calculations provide a reasonable description for the properties of high temperature and low temperature hexagonal NiS respectively, which indicates that electronic correlation is responsible for this high-low temperature phase transition.

  7. Ab initio studies of 1,3,5,7-tetranitro-1,3,5,7-tetrazocine/1,3-dimethyl-2-imidazolidinone cocrystal under high pressure using dispersion corrected density functional theory

    SciTech Connect

    Gu, Bang-Ming; Lin, He; Zhu, Shun-Guan

    2014-04-14

    A detailed study of structural, electronic, and thermodynamic properties of 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)/1,3-dimethyl-2-imidazolidinone (DMI) cocrystal under the hydrostatic pressure of 0–100 GPa was performed by using dispersion-corrected density functional theory (DFT-D) method. The calculated crystal structure is in reasonable agreement with the experimental data at the ambient pressure. Based on the analysis of lattice constants, bond lengths, bond angles, and dihedral angles under compression, it is found that HMX molecules in HMX/DMI cocrystal are seriously distorted. In addition, as the pressure increases, the band gap decreases gradually, which suggests that HMX/DMI cocrystal is becoming more metallic. Some important intermolecular interactions between HMX and DMI are also observed in the density of states spectrum. Finally, its thermodynamic properties were characterized, and the results show that HMX/DMI cocrystal is more easily formed in the low pressure.

  8. Electroweak Corrections

    NASA Astrophysics Data System (ADS)

    Barbieri, Riccardo

    2016-10-01

    The test of the electroweak corrections has played a major role in providing evidence for the gauge and the Higgs sectors of the Standard Model. At the same time the consideration of the electroweak corrections has given significant indirect information on the masses of the top and the Higgs boson before their discoveries and important orientation/constraints on the searches for new physics, still highly valuable in the present situation. The progression of these contributions is reviewed.

  9. Systematic approach for simultaneously correcting the band-gap andp-dseparation errors of common cation III-V or II-VI binaries in density functional theory calculations within a local density approximation

    SciTech Connect

    Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang

    2015-07-31

    We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles method can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.

  10. Lung Organogenesis

    PubMed Central

    Warburton, David; El-Hashash, Ahmed; Carraro, Gianni; Tiozzo, Caterina; Sala, Frederic; Rogers, Orquidea; De Langhe, Stijn; Kemp, Paul J.; Riccardi, Daniela; Torday, John; Bellusci, Saverio; Shi, Wei; Lubkin, Sharon R; Jesudason, Edwin

    2011-01-01

    Developmental lung biology is a field that has the potential for significant human impact: lung disease at the extremes of age continues to cause major morbidity and mortality worldwide. Understanding how the lung develops holds the promise that investigators can use this knowledge to aid lung repair and regeneration. In the decade since the “molecular embryology” of the lung was first comprehensively reviewed, new challenges have emerged—and it is on these that we focus the current review. Firstly, there is a critical need to understand the progenitor cell biology of the lung in order to exploit the potential of stem cells for the treatment of lung disease. Secondly, the current familiar descriptions of lung morphogenesis governed by growth and transcription factors need to be elaborated upon with the reinclusion and reconsideration of other factors, such as mechanics, in lung growth. Thirdly, efforts to parse the finer detail of lung bud signaling may need to be combined with broader consideration of overarching mechanisms that may be therapeutically easier to target: in this arena, we advance the proposal that looking at the lung in general (and branching in particular) in terms of clocks may yield unexpected benefits. PMID:20691848

  11. Specific route mapping visualized with GFP of single-file streaming contralateral and systemic metastasis of Lewis lung carcinoma cells beginning within hours of orthotopic implantation [correction of implantion].

    PubMed

    Rashidi, Babak; Moossa, Abdool R; Hoffman, Robert M

    2013-08-01

    In this study, we visualized the origin of Lewis lung carcinoma metastasis after transducing tumor cells with green fluorescent protein (GFP) and transplanting them orthotopically in the middle lobe of the right lung of nude mice. Metastasis was visualized in live tissue at single cell resolution by GFP-expression as early as 18 h post-tumor transplant. At this time, single-file streaming lung carcinoma cells already had invaded inferiorly via a tubular lymphatic structure crossing the lower lobes of the lung to the ipsilateral diaphragmatic surface. By post-implantation day 2, the ipsilateral lower lobes of the lung were involved with metastatic cells. By post-implantation day 3, the ipsilateral lower lobes of the lung and the ipsilateral diaphragmatic surface were highly involved with streaming metastatic cells trafficking in single file. By day 4 post-implantation, cancer cells invaded across the diaphragm to the contralateral diaphragmatic surface. Metastatic cells then invaded superiorly through a lymphatic vessel to involve the contralateral mediastinal lymph nodes. In this model of lung cancer, the origin of metastasis was an inferior invasion from the implanted tumor via a lymphatic duct to the ipsilateral diaphragmatic surface. The cancer cells from this site invaded on the surface of the diaphragm to the contralateral diaphragmatic surface and proceeded superiorly through a lymphatic duct to contralateral lymph nodes. Other organs such as the kidneys and the adrenal glands later became involved with metastasis with the contralateral mediastinal lymph nodes as the source. The use of GFP and the highly metastatic orthotopic lung cancer model allowed the visualization of the origin of metastasis at the single-cell level and demonstrated the critical role of lymphatic ducts and the diaphragmatic surface as the path to the contralateral side.

  12. Jitter Correction

    NASA Technical Reports Server (NTRS)

    Waegell, Mordecai J.; Palacios, David M.

    2011-01-01

    Jitter_Correct.m is a MATLAB function that automatically measures and corrects inter-frame jitter in an image sequence to a user-specified precision. In addition, the algorithm dynamically adjusts the image sample size to increase the accuracy of the measurement. The Jitter_Correct.m function takes an image sequence with unknown frame-to-frame jitter and computes the translations of each frame (column and row, in pixels) relative to a chosen reference frame with sub-pixel accuracy. The translations are measured using a Cross Correlation Fourier transformation method in which the relative phase of the two transformed images is fit to a plane. The measured translations are then used to correct the inter-frame jitter of the image sequence. The function also dynamically expands the image sample size over which the cross-correlation is measured to increase the accuracy of the measurement. This increases the robustness of the measurement to variable magnitudes of inter-frame jitter

  13. Lung transplantation

    PubMed Central

    Afonso, José Eduardo; Werebe, Eduardo de Campos; Carraro, Rafael Medeiros; Teixeira, Ricardo Henrique de Oliveira Braga; Fernandes, Lucas Matos; Abdalla, Luis Gustavo; Samano, Marcos Naoyuki; Pêgo-Fernandes, Paulo Manuel

    2015-01-01

    ABSTRACT Lung transplantation is a globally accepted treatment for some advanced lung diseases, giving the recipients longer survival and better quality of life. Since the first transplant successfully performed in 1983, more than 40 thousand transplants have been performed worldwide. Of these, about seven hundred were in Brazil. However, survival of the transplant is less than desired, with a high mortality rate related to primary graft dysfunction, infection, and chronic graft dysfunction, particularly in the form of bronchiolitis obliterans syndrome. New technologies have been developed to improve the various stages of lung transplant. To increase the supply of lungs, ex vivo lung reconditioning has been used in some countries, including Brazil. For advanced life support in the perioperative period, extracorporeal membrane oxygenation and hemodynamic support equipment have been used as a bridge to transplant in critically ill patients on the waiting list, and to keep patients alive until resolution of the primary dysfunction after graft transplant. There are patients requiring lung transplant in Brazil who do not even come to the point of being referred to a transplant center because there are only seven such centers active in the country. It is urgent to create new centers capable of performing lung transplantation to provide patients with some advanced forms of lung disease a chance to live longer and with better quality of life. PMID:26154550

  14. Lung Diseases

    MedlinePlus

    When you breathe, your lungs take in oxygen from the air and deliver it to the bloodstream. The cells in your body need oxygen to ... you breathe nearly 25,000 times. People with lung disease have difficulty breathing. Millions of people in ...

  15. Lung Cancer

    MedlinePlus

    Lung cancer is one of the most common cancers in the world. It is a leading cause of cancer death in men and women in the United States. Cigarette smoking causes most lung cancers. The more cigarettes you smoke per day and ...

  16. Interactive lung segmentation in abnormal human and animal chest CT scans

    SciTech Connect

    Kockelkorn, Thessa T. J. P. Viergever, Max A.; Schaefer-Prokop, Cornelia M.; Bozovic, Gracijela; Muñoz-Barrutia, Arrate; Rikxoort, Eva M. van; Brown, Matthew S.; Jong, Pim A. de; Ginneken, Bram van

    2014-08-15

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling results can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in

  17. Lung diffusion testing

    MedlinePlus

    Lung diffusion testing measures how well the lungs exchange gases. This is an important part of lung testing , because ... gases do not move normally across the lung tissues into the blood vessels of the lung. This ...

  18. Collapsed lung (pneumothorax)

    MedlinePlus

    Air around the lung; Air outside the lung; Pneumothorax dropped lung; Spontaneous pneumothorax ... Collapsed lung can be caused by an injury to the lung. Injuries can include a gunshot or knife wound ...

  19. Lung disease - resources

    MedlinePlus

    Resources - lung disease ... The following organizations are good resources for information on lung disease : American Lung Association -- www.lung.org National Heart, Lung, and Blood Institute -- www.nhlbi.nih.gov ...

  20. Particles causing lung disease.

    PubMed Central

    Kilburn, K H

    1984-01-01

    The lung has a limited number of patterns of reaction to inhaled particles. The disease observed depends upon the location: conducting airways, terminal bronchioles and alveoli, and upon the nature of inflammation induced: acute, subacute or chronic. Many different agents cause narrowing of conducting airways (asthma) and some of these cause permanent distortion or obliteration of airways as well. Terminal bronchioles appear to be particularly susceptible to particles which cause goblet cell metaplasia, mucous plugging and ultimately peribronchiolar fibrosis. Cancer is the last outcome at the bronchial level and appears to depend upon continuous exposure to or retention of an agent in the airway and failure of the affected cells to be exfoliated which may be due to squamous metaplasia. Alveoli are populated by endothelial cells, Type I or pavement epithelial cells and metabolically active cuboidal Type II cells that produce the lungs specific surfactant, dipalmytol lecithin. Disturbances of surfactant lead to edema in distal lung while laryngeal edema due to anaphylaxis or fumes may produce asphyxia. Physical retention of indigestible particles or retention by immune memory responses may provoke hyaline membranes, stimulate alveolar lipoproteinosis and finally fibrosis. This later exuberant deposition of connective tissue has been best studied in the occupational pneumoconioses especially silicosis and asbestosis. In contrast emphysema a catabolic response, appears frequently to result from leakage or release of lysosomal proteases into the lung during processing of cigarette smoke particles. The insidious and probably most important human lung disease due to particles is bronchiolar obstruction and obliteration, producing progressive impairment of air flow. The responsible particle is the complex combination of poorly digestive lipids and complex carbohydrates with active chemicals which we call cigarette smoke. More research is needed to perfect, correct and

  1. Metallic artifact mitigation and organ-constrained tissue assignment for Monte Carlo calculations of permanent implant lung brachytherapy

    SciTech Connect

    Sutherland, J. G. H.; Miksys, N.; Thomson, R. M.; Furutani, K. M.

    2014-01-15

    Purpose: To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Methods: Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxel and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for{sup 125}I, {sup 103}Pd, and {sup 131}Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Results: Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue

  2. [Developing surgical options for lung cancer].

    PubMed

    Sihvo, Eero

    2016-01-01

    The selection of correct treatment for lung cancer is multidisciplinary collaboration and requires careful assessment of the extent of the tumor and the condition of the patient. In localized non-small cell lung cancer, mere surgery or surgery in combination with adjuvant therapies are the best options for curing the disease. The trend in modern surgery is mini-invasiveness and preservation of lung tissue. Accordingly, any unit conducting lung cancer operations should have access to all modern techniques in order to provide each patient with optimal, patient-tailored surgical therapy. PMID:27132298

  3. A CORRECTION.

    PubMed

    Johnson, D

    1940-03-22

    IN a recently published volume on "The Origin of Submarine Canyons" the writer inadvertently credited to A. C. Veatch an excerpt from a submarine chart actually contoured by P. A. Smith, of the U. S. Coast and Geodetic Survey. The chart in question is Chart IVB of Special Paper No. 7 of the Geological Society of America entitled "Atlantic Submarine Valleys of the United States and the Congo Submarine Valley, by A. C. Veatch and P. A. Smith," and the excerpt appears as Plate III of the volume fist cited above. In view of the heavy labor involved in contouring the charts accompanying the paper by Veatch and Smith and the beauty of the finished product, it would be unfair to Mr. Smith to permit the error to go uncorrected. Excerpts from two other charts are correctly ascribed to Dr. Veatch. PMID:17839404

  4. A CORRECTION.

    PubMed

    Johnson, D

    1940-03-22

    IN a recently published volume on "The Origin of Submarine Canyons" the writer inadvertently credited to A. C. Veatch an excerpt from a submarine chart actually contoured by P. A. Smith, of the U. S. Coast and Geodetic Survey. The chart in question is Chart IVB of Special Paper No. 7 of the Geological Society of America entitled "Atlantic Submarine Valleys of the United States and the Congo Submarine Valley, by A. C. Veatch and P. A. Smith," and the excerpt appears as Plate III of the volume fist cited above. In view of the heavy labor involved in contouring the charts accompanying the paper by Veatch and Smith and the beauty of the finished product, it would be unfair to Mr. Smith to permit the error to go uncorrected. Excerpts from two other charts are correctly ascribed to Dr. Veatch.

  5. Measurement of lung function using Electrical Impedance Tomography (EIT) during mechanical ventilation

    NASA Astrophysics Data System (ADS)

    Nebuya, Satoru; Koike, Tomotaka; Imai, Hiroshi; Noshiro, Makoto; Brown, Brian H.; Soma, Kazui

    2010-04-01

    The consistency of regional lung density measurements as estimated by Electrical Impedance Tomography (EIT), in eleven patients supported by a mechanical ventilator, was validated to verify the feasibility of its use in intensive care medicine. There were significant differences in regional lung densities between the normal lung and diseased lungs associated with pneumonia, atelectasis and pleural effusion (Steel-Dwass test, p < 0.05). Temporal changes in regional lung density of patients with atelectasis were observed to be in good agreement with the results of clinical diagnosis. These results indicate that it is feasible to obtain a quantitative value for regional lung density using EIT.

  6. Bias atlases for segmentation-based PET attenuation correction using PET-CT and MR

    PubMed Central

    Ouyang, Jinsong; Chun, Se Young; Petibon, Yoann; Bonab, Ali A.; Alpert, Nathaniel; Fakhri, Georges El

    2014-01-01

    This study was to obtain voxel-wise PET accuracy and precision using tissue-segmentation for attenuation correction. We applied multiple thresholds to the CTs of 23 patients to classify tissues. For six of the 23 patients, MR images were also acquired. The MR fat/in-phase ratio images were used for fat segmentation. Segmented tissue classes were used to create attenuation maps, which were used for attenuation correction in PET reconstruction. PET bias images were then computed using the PET reconstructed with the original CT as the reference. We registered the CTs for all the patients and transformed the corresponding bias images accordingly. We then obtained the mean and standard deviation bias atlas using all the registered bias images. Our CT-based study shows that four-class segmentation (air, lungs, fat, other tissues), which is available on most PET-MR scanners, yields 15.1%, 4.1%, 6.6%, and 12.9% RMSE bias in lungs, fat, non-fat soft-tissues, and bones, respectively. An accurate fat identification is achievable using fat/in-phase MR images. Furthermore, we have found that three-class segmentation (air, lungs, other tissues) yields less than 5% standard deviation of bias within the heart, liver, and kidneys. This implies that three-class segmentation can be sufficient to achieve small variation of bias for imaging these three organs. Finally, we have found that inter- and intra-patient lung density variations contribute almost equally to the overall standard deviation of bias within the lungs. PMID:24966415

  7. On methods of inhomogeneity corrections for photon transport

    SciTech Connect

    Wong, J.W.; Purdy, J.A. )

    1990-09-01

    Eight methods of photon inhomogeneity correction were examined for their photon transport approximations. The methods were categorized according to the different approaches used to model scatter photon dose contribution. They were the ratio of TAR (RTAR) and the modified Batho power law which utilized only the 1-D density information along the primary photon path; the equivalent TAR (ETAR) and the FFT convolution methods which incorporated the 3-D density information of the medium for empirical scatter dose calculation; the differential SAR (DSAR), the delta volume (DV), dose spread array (DSA), and differential pencil beam (DPB) methods which employed explicit 3-D scatter ray-trace calculation. Cobalt-60 measurements in horizontal slab phantoms were used to allow simpler data analysis. RTAR consistently overestimated lung corrections by {approximately}10%. Not all scatter ray-trace approach was better as the DSAR calculations were inferior to those using the Batho method. The ray-tracing DV, DPB, and DSA methods agreed with measurements mostly to within 2%, at the expense of long computation time. The nonscatter ray-tracing ETAR and FFT convolution calculations were only slightly inferior in the same geometries. These methods improve on the current 1-D methods and should be seriously considered for fast optimization purposes in practical 3-D treatment planning.

  8. Open lung biopsy

    MedlinePlus

    Biopsy - open lung ... An open lung biopsy is done in the hospital using general anesthesia , which means you are asleep and pain- ... The open lung biopsy is done to evaluate lung problems seen on x-ray or CT scan .

  9. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  10. CT densitometry of the lungs: Scanner performance

    SciTech Connect

    Kemerink, G.J.; Lamers, R.J.S.; Thelissen, G.R.P.; Engelshoven, J.M.A. van

    1996-01-01

    Our goal was to establish the reproducibility and accuracy of the CT scanner in densitometry of the lungs. Scanner stability was assessed by analysis of daily quality checks. Studies using a humanoid phantom and polyethylene foams for lung were performed to measure reproducibility and accuracy. The dependence of the CT-estimated density on reconstruction filter, zoom factor, slice thickness, table height, data truncation, and objects outside the scan field was determined. Stability of the system at air density was within {approx}1 HU and at water density within {approx}2 HU. Reproducibility and accuracy for densities found for lung were within 2-3%. Dependence on the acquisition and reconstruction parameters was neglible, with the exceptions of the ultra high resolution reconstruction algorithm in the case of emphysema, and objects outside the scan field. The performance of the CT scanner tested is quite adequate for densitometry of the lungs. 26 refs., 5 figs., 4 tabs.

  11. Tsunami lung.

    PubMed

    Inoue, Yoshihiro; Fujino, Yasuhisa; Onodera, Makoto; Kikuchi, Satoshi; Shozushima, Tatsuyori; Ogino, Nobuyoshi; Mori, Kiyoshi; Oikawa, Hirotaka; Koeda, Yorihiko; Ueda, Hironobu; Takahashi, Tomohiro; Terui, Katsutoshi; Nakadate, Toshihide; Aoki, Hidehiko; Endo, Shigeatsu

    2012-04-01

    We encountered three cases of lung disorders caused by drowning in the recent large tsunami that struck following the Great East Japan Earthquake. All three were females, and two of them were old elderly. All segments of both lungs were involved in all the three patients, necessitating ICU admission and endotracheal intubation and mechanical ventilation. All three died within 3 weeks. In at least two cases, misswallowing of oil was suspected from the features noted at the time of the detection. Sputum culture for bacteria yielded isolation of Stenotrophomonas maltophilia, Legionella pneumophila, Burkholderia cepacia, and Pseudomonas aeruginosa. The cause of tsunami lung may be a combination of chemical induced pneumonia and bacterial pneumonia.

  12. Multislice CT perfusion imaging of the lung in detection of pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Hong, Helen; Lee, Jeongjin

    2006-03-01

    We propose a new subtraction technique for accurately imaging lung perfusion and efficiently detecting pulmonary embolism in chest MDCT angiography. Our method is composed of five stages. First, optimal segmentation technique is performed for extracting same volume of the lungs, major airway and vascular structures from pre- and post-contrast images with different lung density. Second, initial registration based on apex, hilar point and center of inertia (COI) of each unilateral lung is proposed to correct the gross translational mismatch. Third, initial alignment is refined by iterative surface registration. For fast and robust convergence of the distance measure to the optimal value, a 3D distance map is generated by the narrow-band distance propagation. Fourth, 3D nonlinear filter is applied to the lung parenchyma to compensate for residual spiral artifacts and artifacts caused by heart motion. Fifth, enhanced vessels are visualized by subtracting registered pre-contrast images from post-contrast images. To facilitate visualization of parenchyma enhancement, color-coded mapping and image fusion is used. Our method has been successfully applied to ten patients of pre- and post-contrast images in chest MDCT angiography. Experimental results show that the performance of our method is very promising compared with conventional methods with the aspects of its visual inspection, accuracy and processing time.

  13. Lung vasculature imaging using speckle variance optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Lee, Anthony M. D.; Lane, Pierre M.; McWilliams, Annette; Shaipanich, Tawimas; MacAulay, Calum E.; Yang, Victor X. D.; Lam, Stephen

    2012-02-01

    Architectural changes in and remodeling of the bronchial and pulmonary vasculature are important pathways in diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. However, there is a lack of methods that can find and examine small bronchial vasculature in vivo. Structural lung airway imaging using optical coherence tomography (OCT) has previously been shown to be of great utility in examining bronchial lesions during lung cancer screening under the guidance of autofluorescence bronchoscopy. Using a fiber optic endoscopic OCT probe, we acquire OCT images from in vivo human subjects. The side-looking, circumferentially-scanning probe is inserted down the instrument channel of a standard bronchoscope and manually guided to the imaging location. Multiple images are collected with the probe spinning proximally at 100Hz. Due to friction, the distal end of the probe does not spin perfectly synchronous with the proximal end, resulting in non-uniform rotational distortion (NURD) of the images. First, we apply a correction algorithm to remove NURD. We then use a speckle variance algorithm to identify vasculature. The initial data show a vascaulture density in small human airways similar to what would be expected.

  14. Quantitative assessment of scatter correction techniques incorporated in next generation dual-source computed tomography

    NASA Astrophysics Data System (ADS)

    Mobberley, Sean David

    Accurate, cross-scanner assessment of in-vivo air density used to quantitatively assess amount and distribution of emphysema in COPD subjects has remained elusive. Hounsfield units (HU) within tracheal air can be considerably more positive than -1000 HU. With the advent of new dual-source scanners which employ dedicated scatter correction techniques, it is of interest to evaluate how the quantitative measures of lung density compare between dual-source and single-source scan modes. This study has sought to characterize in-vivo and phantom-based air metrics using dual-energy computed tomography technology where the nature of the technology has required adjustments to scatter correction. Anesthetized ovine (N=6), swine (N=13: more human-like rib cage shape), lung phantom and a thoracic phantom were studied using a dual-source MDCT scanner (Siemens Definition Flash. Multiple dual-source dual-energy (DSDE) and single-source (SS) scans taken at different energy levels and scan settings were acquired for direct quantitative comparison. Density histograms were evaluated for the lung, tracheal, water and blood segments. Image data were obtained at 80, 100, 120, and 140 kVp in the SS mode (B35f kernel) and at 80, 100, 140, and 140-Sn (tin filtered) kVp in the DSDE mode (B35f and D30f kernels), in addition to variations in dose, rotation time, and pitch. To minimize the effect of cross-scatter, the phantom scans in the DSDE mode was obtained by reducing the tube current of one of the tubes to its minimum (near zero) value. When using image data obtained in the DSDE mode, the median HU values in the tracheal regions of all animals and the phantom were consistently closer to -1000 HU regardless of reconstruction kernel (chapters 3 and 4). Similarly, HU values of water and blood were consistently closer to their nominal values of 0 HU and 55 HU respectively. When using image data obtained in the SS mode the air CT numbers demonstrated a consistent positive shift of up to 35 HU

  15. Proteomic biomarkers in lung cancer.

    PubMed

    Pastor, M D; Nogal, A; Molina-Pinelo, S; Carnero, A; Paz-Ares, L

    2013-09-01

    The correct understanding of tumour development relies on the comprehensive study of proteins. They are the main orchestrators of vital processes, such as signalling pathways, which drive the carcinogenic process. Proteomic technologies can be applied to cancer research to detect differential protein expression and to assess different responses to treatment. Lung cancer is the number one cause of cancer-related death in the world. Mostly diagnosed at late stages of the disease, lung cancer has one of the lowest 5-year survival rates at 15 %. The use of different proteomic techniques such as two-dimensional gel electrophoresis (2D-PAGE), isotope labelling (ICAT, SILAC, iTRAQ) and mass spectrometry may yield new knowledge on the underlying biology of lung cancer and also allow the development of new early detection tests and the identification of changes in the cancer protein network that are associated with prognosis and drug resistance. PMID:23606351

  16. Lung tissue classification using wavelet frames.

    PubMed

    Depeursinge, Adrien; Sage, Daniel; Hidki, Asmâa; Platon, Alexandra; Poletti, Pierre-Alexandre; Unser, Michael; Müller, Henning

    2007-01-01

    We describe a texture classification system that identifies lung tissue patterns from high-resolution computed tomography (HRCT) images of patients affected with interstitial lung diseases (ILD). This pattern recognition task is part of an image-based diagnostic aid system for ILDs. Five lung tissue patterns (healthy, emphysema, ground glass, fibrosis and microdules) selected from a multimedia database are classified using the overcomplete discrete wavelet frame decompostion combined with grey-level histogram features. The overall multiclass accuracy reaches 92.5% of correct matches while combining the two types of features, which are found to be complementary. PMID:18003452

  17. Lung tissue classification using wavelet frames.

    PubMed

    Depeursinge, Adrien; Sage, Daniel; Hidki, Asmâa; Platon, Alexandra; Poletti, Pierre-Alexandre; Unser, Michael; Müller, Henning

    2007-01-01

    We describe a texture classification system that identifies lung tissue patterns from high-resolution computed tomography (HRCT) images of patients affected with interstitial lung diseases (ILD). This pattern recognition task is part of an image-based diagnostic aid system for ILDs. Five lung tissue patterns (healthy, emphysema, ground glass, fibrosis and microdules) selected from a multimedia database are classified using the overcomplete discrete wavelet frame decompostion combined with grey-level histogram features. The overall multiclass accuracy reaches 92.5% of correct matches while combining the two types of features, which are found to be complementary.

  18. 77 FR 72199 - Technical Corrections; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ...) is correcting a final rule that was published in the Federal Register on July 6, 2012 (77 FR 39899), and effective on August 6, 2012. That final rule amended the NRC regulations to make technical... COMMISSION 10 CFR Part 171 RIN 3150-AJ16 Technical Corrections; Correction AGENCY: Nuclear...

  19. Corrective Jaw Surgery

    MedlinePlus

    ... and Craniofacial Surgery Cleft Lip/Palate and Craniofacial Surgery A cleft lip may require one or more ... find out more. Corrective Jaw Surgery Corrective Jaw Surgery Orthognathic surgery is performed to correct the misalignment ...

  20. Rheumatoid lung disease

    MedlinePlus

    Lung disease - rheumatoid arthritis; Rheumatoid nodules; Rheumatoid lung ... Elsevier Saunders; 2016:chap 65. Lake F, Proudman S. Rheumatoid arthritis and lung disease: from mechanisms to a practical approach. Semin Respir ...

  1. How Lungs Work

    MedlinePlus

    ... Health and Diseases > How Lungs Work How Lungs Work The Respiratory System Your lungs are part of ... Parts of the Respiratory System and How They Work Airways SINUSES are hollow spaces in the bones ...

  2. Lung Carcinoid Tumor: Surgery

    MedlinePlus

    ... for lung carcinoid tumor symptoms Surgery to treat lung carcinoid tumors Surgery is the main treatment for ... often be cured by surgery alone. Types of lung surgery Different operations can be used to treat ( ...

  3. Cosmic strings with curvature corrections

    NASA Astrophysics Data System (ADS)

    Boisseau, Bruno; Letelier, Patricio S.

    1992-08-01

    A generic model of string described by a Lagrangian density that depends on the extrinsic curvature of the string worldsheet is studied. Using a system of coordinates adapted to the string world sheet the equation of motion and the energy-momentum tensor are derived for strings evolving in curved spacetime. We find that the curvature corrections may change the relation between the string energy density and the tension. It can also introduce heat propagation along the string. We also find for the Polyakov as well as Nambu strings with a topological term that the open string end points can travel with a speed less than the velocity of light.

  4. Improved Background Corrections for Uranium Holdup Measurements

    SciTech Connect

    Oberer, R.B.; Gunn, C.A.; Chiang, L.G.

    2004-06-21

    In the original Generalized Geometry Holdup (GGH) model, all holdup deposits were modeled as points, lines, and areas[1, 5]. Two improvements[4] were recently made to the GGH model and are currently in use at the Y-12 National Security Complex. These two improvements are the finite-source correction CF{sub g} and the self-attenuation correction. The finite-source correction corrects the average detector response for the width of point and line geometries which in effect, converts points and lines into areas. The result of a holdup measurement of an area deposit is a density-thickness which is converted to mass by multiplying it by the area of the deposit. From the measured density-thickness, the true density-thickness can be calculated by correcting for the material self-attenuation. Therefore the self-attenuation correction is applied to finite point and line deposits as well as areas. This report demonstrates that the finite-source and self-attenuation corrections also provide a means to better separate the gamma rays emitted by the material from the gamma rays emitted by background sources for an improved background correction. Currently, the measured background radiation is attenuated for equipment walls in the case of area deposits but not for line and point sources. The measured background radiation is not corrected for attenuation by the uranium material. For all of these cases, the background is overestimated which causes a negative bias in the measurement. The finite-source correction and the self-attenuation correction will allow the correction of the measured background radiation for both the equipment attenuation and material attenuation for area sources as well as point and line sources.

  5. Mean Organ Doses Resulting From Non-Human Primate Whole Thorax Lung Irradiation Prescribed to Mid-Line Tissue.

    PubMed

    Prado, Charlotte; Kazi, Abdul; Bennett, Alexander; MacVittie, Thomas; Prado, Karl

    2015-11-01

    Multi-organ dose evaluations and the effects of heterogeneous tissue dose calculations have been retrospectively evaluated following irradiation to the whole thorax and lung in non-human primates (NHP). A clinical-based approach was established to evaluate actual doses received in the heart and lungs during whole thorax lung irradiation. Anatomical structure and organ densities have been introduced in the calculations to show the effects of dose distribution through heterogeneous tissue. Mean organ doses received by non-human primates undergoing whole thorax lung irradiations were calculated using a treatment planning system that is routinely used in clinical radiation oncology. The doses received by non-human primates irradiated following conventional dose calculations have been retrospectively reconstructed using computerized tomography-based, heterogeneity-corrected dose calculations. The use of dose volume descriptors for irradiation to organs at risk and tissue exposed to radiation is introduced. Mean and partial-volume doses to lung and heart are presented and contrasted. The importance of exact dose definitions is highlighted, and the relevance of precise dosimetry to establish organ-specific dose response relationships in NHP models of acute and delayed effects of acute radiation exposure is emphasized.

  6. Lung surgery - discharge

    MedlinePlus

    Thoracotomy - discharge; Lung tissue removal - discharge; Pneumonectomy - discharge; Lobectomy - discharge; Lung biopsy - discharge; Thoracoscopy - discharge; Video-assisted thoracoscopic surgery - discharge; VATS - ...

  7. Interstitial lung disease

    MedlinePlus

    Diffuse parenchymal lung disease; Alveolitis; Idiopathic pulmonary pneumonitis (IPP) ... The lungs contain tiny air sacs (alveoli), which is where oxygen is absorbed. These air sacs expand with each ...

  8. Lung Circulation.

    PubMed

    Suresh, Karthik; Shimoda, Larissa A

    2016-04-01

    The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed. PMID:27065170

  9. Who Needs a Lung Transplant?

    MedlinePlus

    ... from the NHLBI on Twitter. Who Needs a Lung Transplant? Your doctor may recommend a lung transplant ... lungs to pick up oxygen. Applying to a Lung Transplant Program Lung transplants are done in medical ...

  10. Human Lung Angiotensin Converting Enzyme

    PubMed Central

    Friedland, Joan; Silverstein, Emanuel; Drooker, Martin; Setton, Charlotte

    1981-01-01

    To enable its immunohistologic localization, angiotensin converting enzyme (EC 3.4.15.1) from human lung was solubilized by trypsinization and purified ∼2,660-fold to apparent homogeneity from a washed lung particulate fraction. The specific activity of pure enzyme was estimated to be 117 μmol/min per mg protein with the substrate hippuryl-l-histidyl-l-leucine. Consistent with previously described lung enzyme studies, catalytic activity was strongly inhibited by EDTA, O-phenanthroline, SQ 20,881, and SQ 14,225 and increased by CoCl2. SQ 20,881 was a somewhat more potent inhibitor than SQ 14,225, unlike rabbit lung enzyme. The Michaelis constant (Km) with hippuryl-l-histidyl-l-leucine was 1.6 mM. The molecular weight was estimated at 150,000 from sucrose density gradient centrifugation. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed a single polypeptide chain estimated at 130,000 daltons. Rabbit antibody to human lung enzyme was prepared by parenteral administration of pure angiotensin-converting enzyme in Freund's adjuvant. Rabbit antibody to human lung angiotensin-converting enzyme appeared to crossreact weakly with the rabbit enzyme and strongly inhibited the catalytic activity of the enzymes from human serum, lung, and lymph node. The specificity of the rabbit antibody and purity of the final human lung enzyme preparation was suggested by the single precipitin lines obtained by radial double immunodiffusion, and by the coincidence of enzyme catalytic activity and immunoreactivity on polyacrylamide gel electrophoresis, with both relatively pure and highly impure enzymes. Generally applicable sensitive analysis of acrylamide gels for immunoreactivity (and subsequently for any other activity) by use of intact gel slices in radial double immunodiffusion was devised. Human lung enzyme was very tightly bound to and catalytically active on anti-human enzyme antibody covalently bound to Sepharose 4B, and could not be readily dissociated without

  11. Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities.

    PubMed

    Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib

    2016-03-01

    Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, in contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial

  12. Lung surfactant.

    PubMed Central

    Rooney, S A

    1984-01-01

    Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidylcholine and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids, thyroid hormone, estrogen, prolactin, cyclic AMP, beta-adrenergic and cholinergic agonists, prostaglandins and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered. Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed. PMID:6145585

  13. Lung Cancer Screening

    MedlinePlus

    ... Cancer Treatment Small Cell Lung Cancer Treatment Lung cancer is the leading cause of cancer death in the United States. Lung cancer is ... non- skin cancer in the United States. Lung cancer is the leading cause of cancer death in men and in women. ...

  14. Interstitial Lung Diseases

    MedlinePlus

    Interstitial lung disease is the name for a large group of diseases that inflame or scar the lungs. The inflammation and scarring make it hard to ... air is responsible for some types of interstitial lung diseases. Specific types include Black lung disease among ...

  15. The lung microbiome after lung transplantation.

    PubMed

    Becker, Julia; Poroyko, Valeriy; Bhorade, Sangeeta

    2014-04-01

    Lung transplantation survival remains significantly impacted by infections and the development of chronic rejection manifesting as bronchiolitis obliterans syndrome (BOS). Traditional microbiologic data has provided insight into the role of infections in BOS. Now, new non-culture-based techniques have been developed to characterize the entire population of microbes resident on the surfaces of the body, also known as the human microbiome. Early studies have identified that lung transplant patients have a different lung microbiome and have demonstrated the important finding that the transplant lung microbiome changes over time. Furthermore, both unique bacterial populations and longitudinal changes in the lung microbiome have now been suggested to play a role in the development of BOS. In the future, this technology will need to be combined with functional assays and assessment of the immune responses in the lung to help further explain the microbiome's role in the failing lung allograft.

  16. [DIFFERENTIAL DIAGNOSIS OF TUMOROID-LIKE ABSCESS AND LUNG CANCER].

    PubMed

    Churylin, R

    2015-01-01

    The purpose of work is development and clarification of roentgenology displays of tumoroidea variant of abscess of lungs for differential diagnostics him with the cancer of lungs. Practically in most cases abscess of lungs there is a necessity of leadthrough of differential diagnostics with in a number of nosology forms, including with the cavernous form of peripheral cancer of lungs. The features of flow of roentgenologic picture of tumoroidea variant are resulted, alike symptoms, differ ences and signs which allow to set a correct diagnosis, are resulted, the value of follow-up of roent genologic research and use of computed tomography is underlined.

  17. Ex vivo lung perfusion.

    PubMed

    Reeb, Jeremie; Cypel, Marcelo

    2016-03-01

    Lung transplantation is an established life-saving therapy for patients with end-stage lung disease. Unfortunately, greater success in lung transplantation is hindered by a shortage of lung donors and the relatively poor early-, mid-, and long-term outcomes associated with severe primary graft dysfunction. Ex vivo lung perfusion has emerged as a modern preservation technique that allows for a more accurate lung assessment and improvement in lung quality. This review outlines the: (i) rationale behind the method; (ii) techniques and protocols; (iii) Toronto ex vivo lung perfusion method; (iv) devices available; and (v) clinical experience worldwide. We also highlight the potential of ex vivo lung perfusion in leading a new era of lung preservation. PMID:26700566

  18. Computed tomography imaging parameters for inhomogeneity correction in radiation treatment planning

    PubMed Central

    Das, Indra J.; Cheng, Chee-Wai; Cao, Minsong; Johnstone, Peter A. S.

    2016-01-01

    Modern treatment planning systems provide accurate dosimetry in heterogeneous media (such as a patient' body) with the help of tissue characterization based on computed tomography (CT) number. However, CT number depends on the type of scanner, tube voltage, field of view (FOV), reconstruction algorithm including artifact reduction and processing filters. The impact of these parameters on CT to electron density (ED) conversion had been subject of investigation for treatment planning in various clinical situations. This is usually performed with a tissue characterization phantom with various density plugs acquired with different tube voltages (kilovoltage peak), FOV reconstruction and different scanners to generate CT number to ED tables. This article provides an overview of inhomogeneity correction in the context of CT scanning and a new evaluation tool, difference volume dose-volume histogram (DVH), dV-DVH. It has been concluded that scanner and CT parameters are important for tissue characterizations, but changes in ED are minimal and only pronounced for higher density materials. For lungs, changes in CT number are minimal among scanners and CT parameters. Dosimetric differences for lung and prostate cases are usually insignificant (<2%) in three-dimensional conformal radiation therapy and < 5% for intensity-modulated radiation therapy (IMRT) with CT parameters. It could be concluded that CT number variability is dependent on acquisition parameters, but its dosimetric impact is pronounced only in high-density media and possibly in IMRT. In view of such small dosimetric changes in low-density medium, the acquisition of additional CT data for financially difficult clinics and countries may not be warranted. PMID:27051164

  19. Epidemiology of Lung Cancer

    PubMed Central

    Ridge, Carole A.; McErlean, Aoife M.; Ginsberg, Michelle S.

    2013-01-01

    Incidence and mortality attributed to lung cancer has risen steadily since the 1930s. Efforts to improve outcomes have not only led to a greater understanding of the etiology of lung cancer, but also the histologic and molecular characteristics of individual lung tumors. This article describes this evolution by discussing the extent of the current lung cancer epidemic including contemporary incidence and mortality trends, the risk factors for development of lung cancer, and details of promising molecular targets for treatment. PMID:24436524

  20. Relationship between electron density and effective densities of body tissues for stopping, scattering, and nuclear interactions of proton and ion beams

    SciTech Connect

    Kanematsu, Nobuyuki; Inaniwa, Taku; Koba, Yusuke

    2012-02-15

    Purpose: In treatment planning of charged-particle radiotherapy, patient heterogeneity is conventionally modeled as variable-density water converted from CT images to best reproduce the stopping power, which may lead to inaccuracies in the handling of multiple scattering and nuclear interactions. Although similar conversions can be defined for these individual interactions, they would be valid only for specific CT systems and would require additional tasks for clinical application. This study aims to improve the practicality of the interaction-specific heterogeneity correction. Methods: The authors calculated the electron densities and effective densities for stopping power, multiple scattering, and nuclear interactions of protons and ions, using the standard elemental-composition data for body tissues to construct the invariant conversion functions. The authors also simulated a proton beam in a lung-like geometry and a carbon-ion beam in a prostate-like geometry to demonstrate the procedure and the effects of the interaction-specific heterogeneity correction. Results: Strong correlations were observed between the electron density and the respective effective densities, with which the authors formulated polyline conversion functions. Their effects amounted to 10% differences in multiple-scattering angle and nuclear interaction mean free path for bones compared to those in the conventional heterogeneity correction. Although their realistic effect on patient dose distributions would be generally small, it could be at the level of a few percent when a carbon-ion beam traverses a large bone. Conclusions: The present conversion functions are invariant and may be incorporated in treatment planning systems with a common function relating CT number to electron density. This will enable improved beam dose calculation while minimizing initial setup and quality management of the user's specific system.

  1. Eyeglasses for Vision Correction

    MedlinePlus

    ... Stories Español Eye Health / Glasses & Contacts Eyeglasses for Vision Correction Dec. 12, 2015 Wearing eyeglasses is an easy way to correct refractive errors. Improving your vision with eyeglasses offers the opportunity to select from ...

  2. Illinois Corrections Project Report

    ERIC Educational Resources Information Center

    Hungerford, Jack

    1974-01-01

    The Illinois Corrections Project for Law-Focused Education, which brings law-focused curriculum into corrections institutions, was initiated in 1973 with a summer institute and includes programs in nine particpating institutions. (JH)

  3. Teaching Politically Correct Language

    ERIC Educational Resources Information Center

    Tsehelska, Maryna

    2006-01-01

    This article argues that teaching politically correct language to English learners provides them with important information and opportunities to be exposed to cultural issues. The author offers a brief review of how political correctness became an issue and how being politically correct influences the use of language. The article then presents…

  4. Research in Correctional Rehabilitation.

    ERIC Educational Resources Information Center

    Rehabilitation Services Administration (DHEW), Washington, DC.

    Forty-three leaders in corrections and rehabilitation participated in the seminar planned to provide an indication of the status of research in correctional rehabilitation. Papers include: (1) "Program Trends in Correctional Rehabilitation" by John P. Conrad, (2) "Federal Offenders Rahabilitation Program" by Percy B. Bell and Merlyn Mathews, (3)…

  5. Interstitial lung disease - adults - discharge

    MedlinePlus

    Diffuse parenchymal lung disease - discharge; Alveolitis - discharge; Idiopathic pulmonary pneumonitis - discharge; IPP - discharge; Chronic interstitial lung - discharge; Chronic respiratory interstitial lung - ...

  6. Source distribution dependent scatter correction for PVI

    SciTech Connect

    Barney, J.S.; Harrop, R.; Dykstra, C.J. . School of Computing Science TRIUMF, Vancouver, British Columbia )

    1993-08-01

    Source distribution dependent scatter correction methods which incorporate different amounts of information about the source position and material distribution have been developed and tested. The techniques use image to projection integral transformation incorporating varying degrees of information on the distribution of scattering material, or convolution subtraction methods, with some information about the scattering material included in one of the convolution methods. To test the techniques, the authors apply them to data generated by Monte Carlo simulations which use geometric shapes or a voxelized density map to model the scattering material. Source position and material distribution have been found to have some effect on scatter correction. An image to projection method which incorporates a density map produces accurate scatter correction but is computationally expensive. Simpler methods, both image to projection and convolution, can also provide effective scatter correction.

  7. [Lung cancer in elderly patients: lung cancer and lung function].

    PubMed

    Tanita, Tatsuo

    2005-07-01

    The incidence of bronchogenic carcinoma is increasing as life expectancy rises. With increase in the aged population in Japan, the number of patients suffering from lung cancer and candidates for lung resections are increasing. In this paper, the author lists up indispensable procedures for diagnosis, namely, lung function tests, unilateral pulmonary arterial occlusion test and exercise tolerance test. The cut-offs for identifying candidates for elderly patients for lung resections can be applied the same cut-offs for younger patients. Also the author indicates the importance of postoperative management for lung lobe resections. In order to prevent postoperative problems such as congestive heart failure that might be a fetal complication, the most useful check values after the lung surgery for elderly patients are rate of transfusion and urine volume. In conclusion, when elderly patients assert their rights to undergo lung surgery, we, the thoracic surgeons, should reply their requests under the equal quality of safe surgery as that for younger patients. Besides, it is desirable that even elderly patients, over 80 years old, who undergo lung surgery should guarantee their quality of daily life after surgery.

  8. Epidemiology of Lung Cancer

    PubMed Central

    Brock, Malcolm V.; Ford, Jean G.; Samet, Jonathan M.; Spivack, Simon D.

    2013-01-01

    Background: Ever since a lung cancer epidemic emerged in the mid-1900s, the epidemiology of lung cancer has been intensively investigated to characterize its causes and patterns of occurrence. This report summarizes the key findings of this research. Methods: A detailed literature search provided the basis for a narrative review, identifying and summarizing key reports on population patterns and factors that affect lung cancer risk. Results: Established environmental risk factors for lung cancer include smoking cigarettes and other tobacco products and exposure to secondhand tobacco smoke, occupational lung carcinogens, radiation, and indoor and outdoor air pollution. Cigarette smoking is the predominant cause of lung cancer and the leading worldwide cause of cancer death. Smoking prevalence in developing nations has increased, starting new lung cancer epidemics in these nations. A positive family history and acquired lung disease are examples of host factors that are clinically useful risk indicators. Risk prediction models based on lung cancer risk factors have been developed, but further refinement is needed to provide clinically useful risk stratification. Promising biomarkers of lung cancer risk and early detection have been identified, but none are ready for broad clinical application. Conclusions: Almost all lung cancer deaths are caused by cigarette smoking, underscoring the need for ongoing efforts at tobacco control throughout the world. Further research is needed into the reasons underlying lung cancer disparities, the causes of lung cancer in never smokers, the potential role of HIV in lung carcinogenesis, and the development of biomarkers. PMID:23649439

  9. 4D Proton treatment planning strategy for mobile lung tumors

    SciTech Connect

    Kang Yixiu; Zhang Xiaodong; Chang, Joe Y.; Wang He; Wei Xiong; Liao Zhongxing; Komaki, Ritsuko; Cox, James D.; Balter, Peter A.; Liu, Helen; Zhu, X. Ronald; Mohan, Radhe; Dong Lei . E-mail: ldong@mdanderson.org

    2007-03-01

    Purpose: To investigate strategies for designing compensator-based 3D proton treatment plans for mobile lung tumors using four-dimensional computed tomography (4DCT) images. Methods and Materials: Four-dimensional CT sets for 10 lung cancer patients were used in this study. The internal gross tumor volume (IGTV) was obtained by combining the tumor volumes at different phases of the respiratory cycle. For each patient, we evaluated four planning strategies based on the following dose calculations: (1) the average (AVE) CT; (2) the free-breathing (FB) CT; (3) the maximum intensity projection (MIP) CT; and (4) the AVE CT in which the CT voxel values inside the IGTV were replaced by a constant density (AVE{sub R}IGTV). For each strategy, the resulting cumulative dose distribution in a respiratory cycle was determined using a deformable image registration method. Results: There were dosimetric differences between the apparent dose distribution, calculated on a single CT dataset, and the motion-corrected 4D dose distribution, calculated by combining dose distributions delivered to each phase of the 4DCT. The AVE{sub R}IGTV plan using a 1-cm smearing parameter had the best overall target coverage and critical structure sparing. The MIP plan approach resulted in an unnecessarily large treatment volume. The AVE and FB plans using 1-cm smearing did not provide adequate 4D target coverage in all patients. By using a larger smearing value, adequate 4D target coverage could be achieved; however, critical organ doses were increased. Conclusion: The AVE{sub R}IGTV approach is an effective strategy for designing proton treatment plans for mobile lung tumors.

  10. Lung ultrasound in the critically ill

    PubMed Central

    2014-01-01

    in adults), many disciplines (pulmonology, cardiology…), austere countries, and a help in any procedure (thoracentesis). A 1992, cost-effective gray-scale unit, without Doppler, and a microconvex probe are efficient. Lung ultrasound is a holistic discipline for many reasons (e.g., one probe, perfect for the lung, is able to scan the whole-body). Its integration can provide a new definition of priorities. The BLUE-protocol and FALLS-protocol allow simplification of expert echocardiography, a clear advantage when correct cardiac windows are missing. PMID:24401163

  11. Lung ultrasound in the critically ill.

    PubMed

    Lichtenstein, Daniel A

    2014-01-01

    ), many disciplines (pulmonology, cardiology…), austere countries, and a help in any procedure (thoracentesis). A 1992, cost-effective gray-scale unit, without Doppler, and a microconvex probe are efficient. Lung ultrasound is a holistic discipline for many reasons (e.g., one probe, perfect for the lung, is able to scan the whole-body). Its integration can provide a new definition of priorities. The BLUE-protocol and FALLS-protocol allow simplification of expert echocardiography, a clear advantage when correct cardiac windows are missing. PMID:24401163

  12. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume.

    PubMed

    Vande Velde, Greetje; Poelmans, Jennifer; De Langhe, Ellen; Hillen, Amy; Vanoirbeek, Jeroen; Himmelreich, Uwe; Lories, Rik J

    2016-01-01

    In vivo lung micro-computed tomography (micro-CT) is being increasingly embraced in pulmonary research because it provides longitudinal information on dynamic disease processes in a field in which ex vivo assessment of experimental disease models is still the gold standard. To optimize the quantitative monitoring of progression and therapy of lung diseases, we evaluated longitudinal changes in four different micro-CT-derived biomarkers [aerated lung volume, lung tissue (including lesions) volume, total lung volume and mean lung density], describing normal development, lung infections, inflammation, fibrosis and therapy. Free-breathing mice underwent micro-CT before and repeatedly after induction of lung disease (bleomycin-induced fibrosis, invasive pulmonary aspergillosis, pulmonary cryptococcosis) and therapy (imatinib). The four lung biomarkers were quantified. After the last time point, we performed pulmonary function tests and isolated the lungs for histology. None of the biomarkers remained stable during longitudinal follow-up of adult healthy mouse lungs, implying that biomarkers should be compared with age-matched controls upon intervention. Early inflammation and progressive fibrosis led to a substantial increase in total lung volume, which affects the interpretation of aerated lung volume, tissue volume and mean lung density measures. Upon treatment of fibrotic lung disease, the improvement in aerated lung volume and function was not accompanied by a normalization of the increased total lung volume. Significantly enlarged lungs were also present in models of rapidly and slowly progressing lung infections. The data suggest that total lung volume changes could partly reflect a compensatory mechanism that occurs during disease progression in mice. Our findings underscore the importance of quantifying total lung volume in addition to aerated lung or lesion volumes to accurately document growth and potential compensatory mechanisms in mouse models of lung

  13. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume

    PubMed Central

    Vande Velde, Greetje; Poelmans, Jennifer; De Langhe, Ellen; Hillen, Amy; Vanoirbeek, Jeroen; Himmelreich, Uwe; Lories, Rik J.

    2016-01-01

    ABSTRACT In vivo lung micro-computed tomography (micro-CT) is being increasingly embraced in pulmonary research because it provides longitudinal information on dynamic disease processes in a field in which ex vivo assessment of experimental disease models is still the gold standard. To optimize the quantitative monitoring of progression and therapy of lung diseases, we evaluated longitudinal changes in four different micro-CT-derived biomarkers [aerated lung volume, lung tissue (including lesions) volume, total lung volume and mean lung density], describing normal development, lung infections, inflammation, fibrosis and therapy. Free-breathing mice underwent micro-CT before and repeatedly after induction of lung disease (bleomycin-induced fibrosis, invasive pulmonary aspergillosis, pulmonary cryptococcosis) and therapy (imatinib). The four lung biomarkers were quantified. After the last time point, we performed pulmonary function tests and isolated the lungs for histology. None of the biomarkers remained stable during longitudinal follow-up of adult healthy mouse lungs, implying that biomarkers should be compared with age-matched controls upon intervention. Early inflammation and progressive fibrosis led to a substantial increase in total lung volume, which affects the interpretation of aerated lung volume, tissue volume and mean lung density measures. Upon treatment of fibrotic lung disease, the improvement in aerated lung volume and function was not accompanied by a normalization of the increased total lung volume. Significantly enlarged lungs were also present in models of rapidly and slowly progressing lung infections. The data suggest that total lung volume changes could partly reflect a compensatory mechanism that occurs during disease progression in mice. Our findings underscore the importance of quantifying total lung volume in addition to aerated lung or lesion volumes to accurately document growth and potential compensatory mechanisms in mouse models of

  14. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume.

    PubMed

    Vande Velde, Greetje; Poelmans, Jennifer; De Langhe, Ellen; Hillen, Amy; Vanoirbeek, Jeroen; Himmelreich, Uwe; Lories, Rik J

    2016-01-01

    In vivo lung micro-computed tomography (micro-CT) is being increasingly embraced in pulmonary research because it provides longitudinal information on dynamic disease processes in a field in which ex vivo assessment of experimental disease models is still the gold standard. To optimize the quantitative monitoring of progression and therapy of lung diseases, we evaluated longitudinal changes in four different micro-CT-derived biomarkers [aerated lung volume, lung tissue (including lesions) volume, total lung volume and mean lung density], describing normal development, lung infections, inflammation, fibrosis and therapy. Free-breathing mice underwent micro-CT before and repeatedly after induction of lung disease (bleomycin-induced fibrosis, invasive pulmonary aspergillosis, pulmonary cryptococcosis) and therapy (imatinib). The four lung biomarkers were quantified. After the last time point, we performed pulmonary function tests and isolated the lungs for histology. None of the biomarkers remained stable during longitudinal follow-up of adult healthy mouse lungs, implying that biomarkers should be compared with age-matched controls upon intervention. Early inflammation and progressive fibrosis led to a substantial increase in total lung volume, which affects the interpretation of aerated lung volume, tissue volume and mean lung density measures. Upon treatment of fibrotic lung disease, the improvement in aerated lung volume and function was not accompanied by a normalization of the increased total lung volume. Significantly enlarged lungs were also present in models of rapidly and slowly progressing lung infections. The data suggest that total lung volume changes could partly reflect a compensatory mechanism that occurs during disease progression in mice. Our findings underscore the importance of quantifying total lung volume in addition to aerated lung or lesion volumes to accurately document growth and potential compensatory mechanisms in mouse models of lung

  15. Epidemiology of Lung Cancer.

    PubMed

    Mao, Yousheng; Yang, Ding; He, Jie; Krasna, Mark J

    2016-07-01

    Lung cancer has been transformed from a rare disease into a global problem and public health issue. The etiologic factors of lung cancer become more complex along with industrialization, urbanization, and environmental pollution around the world. Currently, the control of lung cancer has attracted worldwide attention. Studies on the epidemiologic characteristics of lung cancer and its relative risk factors have played an important role in the tertiary prevention of lung cancer and in exploring new ways of diagnosis and treatment. This article reviews the current evolution of the epidemiology of lung cancer. PMID:27261907

  16. Combination effects of tissue heterogeneity and geometric targeting error in stereotactic body radiotherapy for lung cancer using CyberKnife.

    PubMed

    Kang, Ki Mun; Jeong, Bae Kwon; Choi, Hoon-Sik; Yoo, Seung Hoon; Hwang, Ui-Jung; Lim, Young Kyung; Jeong, Hojin

    2015-09-08

    We have investigated the combined effect of tissue heterogeneity and its variation associated with geometric error in stereotactic body radiotherapy (SBRT) for lung cancer. The treatment plans for eight lung cancer patients were calculated using effective path length (EPL) correction and Monte Carlo (MC) algorithms, with both having the same beam configuration for each patient. These two kinds of plans for individual patients were then subsequently recalculated with adding systematic and random geometric errors. In the ordinary treatment plans calculated with no geometric offset, the EPL calculations, compared with the MC calculations, largely overestimated the doses to PTV by ~ 21%, whereas the overestimation were markedly lower in GTV by ~ 12% due to relatively higher density of GTV than of PTV. When recalculating the plans for individual patients with assigning the systematic and random geometric errors, no significant changes in the relative dose distribution, except for overall shift, were observed in the EPL calculations, whereas largely altered in the MC calculations with a consistent increase in dose to GTV. Considering the better accuracy of MC than EPL algorithms, the present results demonstrated the strong coupling of tissue heterogeneity and geometric error, thereby emphasizing the essential need for simultaneous correction for tissue heterogeneity and geometric targeting error in SBRT of lung cancer.

  17. Density Visualization

    ERIC Educational Resources Information Center

    Keiter, Richard L.; Puzey, Whitney L.; Blitz, Erin A.

    2006-01-01

    Metal rods of high purity for many elements are now commercially available and may be used to construct a display of relative densities. We have constructed a display with nine metal rods (Mg, Al, Ti, V, Fe, Cu, Ag, Pb, and W) of equal mass whose densities vary from 1.74 to 19.3 g cm[superscript -3]. The relative densities of the metals may be…

  18. Inflationary power spectra with quantum holonomy corrections

    SciTech Connect

    Mielczarek, Jakub

    2014-03-01

    In this paper we study slow-roll inflation with holonomy corrections from loop quantum cosmology. It was previously shown that, in the Planck epoch, these corrections lead to such effects as singularity avoidance, metric signature change and a state of silence. Here, we consider holonomy corrections affecting the phase of cosmic inflation, which takes place away from the Planck epoch. Both tensor and scalar power spectra of primordial inflationary perturbations are computed up to the first order in slow-roll parameters and V/ρ{sub c}, where V is a potential of the scalar field and ρ{sub c} is a critical energy density (expected to be of the order of the Planck energy density). Possible normalizations of modes at short scales are discussed. In case the normalization is performed with use of the Wronskian condition applied to adiabatic vacuum, the tensor and scalar spectral indices are not quantum corrected in the leading order. However, by choosing an alternative method of normalization one can obtain quantum corrections in the leading order. Furthermore, we show that the holonomy-corrected equations of motion for tensor and scalar modes can be derived based on effective background metrics. This allows us to show that the classical Wronskian normalization condition is well defined for the cosmological perturbations with holonomy corrections.

  19. Influence of Manufacturing Processes on the Performance of Phantom Lungs

    SciTech Connect

    Traub, Richard J.

    2008-10-01

    Chest counting is an important tool for estimating the radiation dose to individuals who have inhaled radioactive materials. Chest counting systems are calibrated by counting the activity in the lungs of phantoms where the activity in the phantom lungs is known. In the United States a commonly used calibration phantom was developed at the Lawrence Livermore National Laboratory and is referred to as the Livermore Torso Phantom. An important feature of this phantom is that the phantom lungs can be interchanged so that the counting system can be challenged by different combinations of radionuclides and activity. Phantom lungs are made from lung tissue substitutes whose constituents are foaming plastics and various adjuvants selected to make the lung tissue substitute similar to normal healthy lung tissue. Some of the properties of phantom lungs cannot be readily controlled by phantom lung manufacturers. Some, such as density, are a complex function of the manufacturing process, while others, such as elemental composition of the bulk plastic are controlled by the plastics manufacturer without input, or knowledge of the phantom manufacturer. Despite the fact that some of these items cannot be controlled, they can be measured and accounted for. This report describes how manufacturing processes can influence the performance of phantom lungs. It is proposed that a metric that describes the brightness of the lung be employed by the phantom lung manufacturer to determine how well the phantom lung approximates the characteristics of a human lung. For many purposes, the linear attenuation of the lung tissue substitute is an appropriate surrogate for the brightness.

  20. Dynamic modeling of lung tumor motion during respiration

    NASA Astrophysics Data System (ADS)

    Kyriakou, E.; McKenzie, D. R.

    2011-05-01

    A dynamic finite element model of the lung that incorporates a simplified geometry with realistic lung material properties has been developed. Observations of lung motion from respiratory-gated computed tomography were used to provide a database against which the predictions of the model are assessed. Data from six patients presenting with lung tumors were processed to give sagittal sections of the lung containing the tumor as a function of the breathing phase. Statistical shape modeling was used to outline the diaphragm, the tumor volume and the thoracic wall at each breathing phase. The motion of the tumor in the superior-inferior direction was plotted against the diaphragm displacement. The finite element model employed a simplified geometry in which the lung material fills a rectangular volume enabling two-dimensional coordinates to be used. The diaphragm is represented as a piston, driving the motion. Plots of lung displacement against diaphragm displacement form hysteresis loops that are a sensitive indicator of the characteristics of the motion. The key parameters of lung material that determine the motion are the density and elastic properties of lung material and the airway permeability. The model predictions of the hysteresis behavior agreed well with observation only when lung material is modeled as viscoelastic. The key material parameters are suggested for use as prognostic indicators of the progression of disease and of changes arising from the response of the lung to radiation treatment.

  1. The radiological properties of a novel lung tissue substitute.

    PubMed

    Traub, R J; Olsen, P C; McDonald, J C

    2006-01-01

    Lung phantoms have been manufactured using commercially available, polyurethane foam products. Some of these materials are no longer available; therefore, a new lung tissue substitute was developed. The elemental composition and radiological properties of the new lung tissue substitute are described in this paper. Because the lung tissue substitute will be used to manufacture phantom lungs that will be used to evaluate chest counting systems, it is necessary to know the radiological properties of the material. These properties must be compared with reference materials and materials that have been used for lung phantoms in the past. The radiological properties of interest include the electron density, mean excitation energy, electron stopping power and photon mass attenuation coefficients. In all these properties, the calculated values for the new lung tissue substitute closely matched the calculated values of ICRU Publication 44 lung tissue. Good agreement was also found when the new lung tissue substitute was compared with the Griffith lung tissue substitute described by the ICRU. The new material was determined to be an excellent lung tissue substitute. PMID:17142822

  2. SU-E-J-87: Ventilation Weighting Effect On Mean Doses of Both Side Lungs for Patients with Advanced Stage Lung Cancer

    SciTech Connect

    Qu, H; Xia, P; Yu, N

    2015-06-15

    Purpose: To study ventilation weighting effect on radiation doses to both side lungs for patients with advanced stage lung cancer. Methods: Fourteen patients with advanced stage lung cancer were included in this retrospective study. Proprietary software was developed to calculate the lung ventilation map based on 4DCT images acquired for radiation therapy. Two phases of inhale (0%) and exhale (50%) were used for the lung ventilation calculations. For each patient, the CT images were resampled to the same dose calculation resolution of 3mmx3mmx3mm. The ventilation distribution was then normalized by the mean value of the ventilation. The ventilation weighted dose was calculated by applying linearly weighted ventilation to the dose of each pixel. The lung contours were automatically delineated from patient CT image with lung window, excluding the tumor and high density tissues. For contralateral and ipsilateral lungs, the mean lung doses from the original plan and ventilation weighted mean lung doses were compared using two tail t-Test. Results: The average of mean dose was 6.1 ±3.8Gy for the contralateral lungs, and 26.2 ± 14.0Gy for the ipsilateral lungs. The average of ventilation weighted dose was 6.3± 3.8Gy for the contralateral lungs and 24.6 ± 13.1Gy for the ipsilateral lungs. The statistics analysis shows the significance of the mean dose increase (p<0.015) for the contralateral lungs and decrease (p<0.005) for the ipsilateral lungs. Conclusion: Ventilation weighted doses were greater than the un-weighted doses for contralateral lungs and smaller for ipsilateral lungs. This Result may be helpful to understand the radiation dosimetric effect on the lung function and provide planning guidance for patients with advance stage lung cancer.

  3. Isolated lung perfusion.

    PubMed

    Cypel, Marcelo; Keshavjee, Shaf

    2012-01-01

    Isolated lung perfusion (ILP) has been historically used as a method to study basic lung physiologic concepts using animal models. More recently, ILP has been applied in lung transplantation and thoracic oncology. In lung transplantation, ILP has been used to assess physiological integrity of donor lungs after the organ is removed from the donor. This procedure is called Ex vivo Lung Perfusion (EVLP), and it has also been proposed as a method for active treatment and repair of injured unsuitable donor organs ex vivo. In oncology, ILP is an attractive method to deliver high dose chemotherapy to treat pulmonary metastatic disease. Since the lung vasculature is isolated in vivo, this technique is called in vivo lung perfusion (IVLP). This review will focus on the rationale, technical aspects, experimental and clinical experience of EVLP and IVLP. A perspective on the future use of these techniques is described. PMID:22202033

  4. Ex vivo lung perfusion.

    PubMed

    Machuca, Tiago N; Cypel, Marcelo

    2014-08-01

    Lung transplantation (LTx) is an established treatment option for eligible patients with end-stage lung disease. Nevertheless, the imbalance between suitable donor lungs available and the increasing number of patients considered for LTx reflects in considerable waitlist mortality. Among potential alternatives to address this issue, ex vivo lung perfusion (EVLP) has emerged as a modern preservation technique that allows for more accurate lung assessment and also improvement of lung function. Its application in high-risk donor lungs has been successful and resulted in safe expansion of the donor pool. This article will: (I) review the technical details of EVLP; (II) the rationale behind the method; (III) report the worldwide clinical experience with the EVLP, including the Toronto technique and others; (IV) finally, discuss the growing literature on EVLP application for donation after cardiac death (DCD) lungs. PMID:25132972

  5. Lung Diseases and Conditions

    MedlinePlus

    ... Share this page from the NHLBI on Twitter. Lung Diseases and Conditions Breathing is a complex process. ... your bronchial tubes ( bronchitis ) or deep in your lungs ( pneumonia ). These infections cause a buildup of mucus ...

  6. Lung needle biopsy

    MedlinePlus

    ... not improve, a chest tube is inserted to expand your lung. In rare cases, pneumothorax can be ... Philadelphia, PA: Elsevier Saunders; 2011:chap 197. Silvestri GA, Jett JR. Clinical aspects of lung cancer. In: ...

  7. American Lung Association

    MedlinePlus

    ... Washington DC West Virginia Wisconsin Wyoming November Is Lung Cancer Awareness Month If you or someone you ... RESEARCH Our vision is a world FREE OF LUNG DISEASE Make Each Breath Count: Learn, Engage, Act! ...

  8. Ex vivo lung perfusion

    PubMed Central

    Machuca, Tiago N.

    2014-01-01

    Lung transplantation (LTx) is an established treatment option for eligible patients with end-stage lung disease. Nevertheless, the imbalance between suitable donor lungs available and the increasing number of patients considered for LTx reflects in considerable waitlist mortality. Among potential alternatives to address this issue, ex vivo lung perfusion (EVLP) has emerged as a modern preservation technique that allows for more accurate lung assessment and also improvement of lung function. Its application in high-risk donor lungs has been successful and resulted in safe expansion of the donor pool. This article will: (I) review the technical details of EVLP; (II) the rationale behind the method; (III) report the worldwide clinical experience with the EVLP, including the Toronto technique and others; (IV) finally, discuss the growing literature on EVLP application for donation after cardiac death (DCD) lungs. PMID:25132972

  9. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    PubMed Central

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; Di Natale, Corrado; D’Amico, Arnaldo

    2015-01-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath. PMID:26559776

  10. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    NASA Astrophysics Data System (ADS)

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; di Natale, Corrado; D'Amico, Arnaldo

    2015-11-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.

  11. An alternative method for correcting fluorescence quenching

    NASA Astrophysics Data System (ADS)

    Biermann, L.; Guinet, C.; Bester, M.; Brierley, A.; Boehme, L.

    2015-01-01

    Under high light intensity, phytoplankton protect their photosystems from bleaching through non-photochemical quenching processes. The consequence of this is suppression of fluorescence emission, which must be corrected when measuring in situ yield with fluorometers. We present data from the Southern Ocean, collected over five austral summers by 19 southern elephant seals tagged with fluorometers. Conventionally, fluorescence data collected during the day (quenched) were corrected using the limit of the mixed layer, assuming that phytoplankton are uniformly mixed from the surface to this depth. However, distinct deep fluorescence maxima were measured in approximately 30% of the night (unquenched) data. To account for the evidence that chlorophyll is not uniformly mixed in the upper layer, we propose correcting from the limit of the euphotic zone, defined as the depth at which photosynthetically available radiation is ~ 1% of the surface value. Mixed layer depth exceeded euphotic depth over 80% of the time. Under these conditions, quenching was corrected from the depth of the remotely derived euphotic zone Zeu, and compared with fluorescence corrected from the depth of the density-derived mixed layer. Deep fluorescence maxima were evident in only 10% of the day data when correcting from mixed layer depth. This was doubled to 21% when correcting from Zeu, more closely matching the unquenched (night) data. Furthermore, correcting from Zeu served to conserve non-uniform chlorophyll features found between the 1% light level and mixed layer depth.

  12. CFTR and lung homeostasis.

    PubMed

    Collawn, James F; Matalon, Sadis

    2014-12-15

    CFTR is a cAMP-activated chloride and bicarbonate channel that is critical for lung homeostasis. Decreases in CFTR expression have dire consequences in cystic fibrosis (CF) and have been suggested to be a component of the lung pathology in chronic obstructive pulmonary disease. Decreases or loss of channel function often lead to mucus stasis, chronic bacterial infections, and the accompanying chronic inflammatory responses that promote progressive lung destruction, and, eventually in CF, lung failure. Here we discuss CFTR's functional role airway surface liquid hydration and pH, in regulation of other channels such as the epithelial sodium channel, and in regulating inflammatory responses in the lung. PMID:25381027

  13. Lung cancer in women.

    PubMed

    Coscio, Angela M; Garst, Jennifer

    2006-07-01

    Lung cancer is the most common cancer in both men and women; however, there are some clear gender-based differences. As the incidence of lung cancer is declining in men, the incidence of lung cancer is increasing in women. Women are more likely than men to have adenocarcinoma, a histologic subtype that correlates with worsened prognosis, but women have improved survival compared with men. Genetic predisposition and the presence of estrogen receptors in lung cancer cells may predispose women to developing lung cancer. Further studies are needed to understand the mechanism and significance of these findings. PMID:17254523

  14. The lung in space

    NASA Technical Reports Server (NTRS)

    Prisk, G. Kim

    2005-01-01

    The lung is exquisitely sensitive to gravity, which induces gradients in ventilation, blood flow, and gas exchange. Studies of lungs in microgravity provide a means of elucidating the effects of gravity. They suggest a mechanism by which gravity serves to match ventilation to perfusion, making for a more efficient lung than anticipated. Despite predictions, lungs do not become edematous, and there is no disruption to, gas exchange in microgravity. Sleep disturbances in microgravity are not a result of respiratory-related events; obstructive sleep apnea is caused principally by the gravitational effects on the upper airways. In microgravity, lungs may be at greater risk to the effects of inhaled aerosols.

  15. Xenogeneic lung transplantation models

    PubMed Central

    Burdorf, Lars; Azimzadeh, Agnes M.; Pierson, Richard N.

    2014-01-01

    Summary Study of lung xenografts has proven useful to understand the remaining barriers to successful transplantation of other organ xenografts. In this chapter, the history and current status of lung xenotransplantation will be briefly reviewed and two different experimental models, the ex vivo porcine-to-human lung perfusion and the in vivo xenogeneic lung transplantation, will be presented. We will focus on the technical details of these lung xenograft models in sufficient detail, list the needed materials and mention analysis techniques to allow others to adopt them with minimal learning curve. PMID:22565996

  16. Lung Cancer Screening.

    PubMed

    Deffebach, Mark E; Humphrey, Linda

    2015-10-01

    Screening for lung cancer in high-risk individuals with annual low-dose computed tomography has been shown to reduce lung cancer mortality by 20% and is recommended by multiple health care organizations. Lung cancer screening is not a specific test; it is a process that involves appropriate selection of high-risk individuals, careful interpretation and follow-up of imaging, and annual testing. Screening should be performed in the context of a multidisciplinary program experienced in the diagnosis and management of lung nodules and early-stage lung cancer.

  17. The primordial abundance of deuterium: ionization correction

    NASA Astrophysics Data System (ADS)

    Cooke, Ryan; Pettini, Max

    2016-01-01

    We determine the relative ionization of deuterium and hydrogen in low metallicity damped Lyman α (DLA) and sub-DLA systems using a detailed suite of photoionization simulations. We model metal-poor DLAs as clouds of gas in pressure equilibrium with a host dark matter halo, exposed to the Haardt & Madau background radiation of galaxies and quasars at redshift z ≃ 3. Our results indicate that the deuterium ionization correction correlates with the H I column density and the ratio of successive ion stages of the most commonly observed metals. The N(N II)/N(N I) column density ratio provides the most reliable correction factor, being essentially independent of the gas geometry, H I column density, and the radiation field. We provide a series of convenient fitting formulae to calculate the deuterium ionization correction based on observable quantities. The ionization correction typically does not exceed 0.1 per cent for metal-poor DLAs, which is comfortably below the current measurement precision (2 per cent). However, the deuterium ionization correction may need to be applied when a larger sample of D/H measurements becomes available.

  18. [Lung cancer screening].

    PubMed

    Sánchez González, M

    2014-01-01

    Lung cancer is a very important disease, curable in early stages. There have been trials trying to show the utility of chest x-ray or computed tomography in Lung Cancer Screening for decades. In 2011, National Lung Screening Trial results were published, showing a 20% reduction in lung cancer mortality in patients with low dose computed tomography screened for three years. These results are very promising and several scientific societies have included lung cancer screening in their guidelines. Nevertheless we have to be aware of lung cancer screening risks, such as: overdiagnosis, radiation and false positive results. Moreover, there are many issues to be solved, including choosing the appropriate group to be screened, the duration of the screening program, intervals between screening and its cost-effectiveness. Ongoing trials will probably answer some of these questions. This article reviews the current evidence on lung cancer screening.

  19. Comorbidities impacting on prognosis after lung transplant.

    PubMed

    Vaquero Barrios, José Manuel; Redel Montero, Javier; Santos Luna, Francisco

    2014-01-01

    The aim of this review is to give an overview of the clinical circumstances presenting before lung transplant that may have negative repercussions on the long and short-term prognosis of the transplant. Methods for screening and diagnosis of common comorbidities with negative impact on the prognosis of the transplant are proposed, both for pulmonary and extrapulmonary diseases, and measures aimed at correcting these factors are discussed. Coordination and information exchange between referral centers and transplant centers would allow these comorbidities to be detected and corrected, with the aim of minimizing the risks and improving the life expectancy of transplant receivers.

  20. Low Bone Density

    MedlinePlus

    ... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...

  1. Interventions to Correct Misinformation About Tobacco Products

    PubMed Central

    Cappella, Joseph N.; Maloney, Erin; Ophir, Yotam; Brennan, Emily

    2016-01-01

    In 2006, the U.S. District Court held that tobacco companies had “falsely and fraudulently” denied: tobacco causes lung cancer; environmental smoke endangers children’s respiratory systems; nicotine is highly addictive; low tar cigarettes were less harmful when they were not; they marketed to children; they manipulated nicotine delivery to enhance addiction; and they concealed and destroyed evidence to prevent accurate public knowledge. The courts required the tobacco companies to repair this misinformation. Several studies evaluated types of corrective statements (CS). We argue that most CS proposed (“simple CS’s”) will fall prey to “belief echoes” leaving affective remnants of the misinformation untouched while correcting underlying knowledge. Alternative forms for CS (“enhanced CS’s”) are proposed that include narrative forms, causal linkage, and emotional links to the receiver. PMID:27135046

  2. Density-orbital embedding theory

    SciTech Connect

    Gritsenko, O. V.; Visscher, L.

    2010-09-15

    In the article density-orbital embedding (DOE) theory is proposed. DOE is based on the concept of density orbital (DO), which is a generalization of the square root of the density for real functions and fractional electron numbers. The basic feature of DOE is the representation of the total supermolecular density {rho}{sub s} as the square of the sum of the DO {phi}{sub a}, which represents the active subsystem A and the square root of the frozen density {rho}{sub f} of the environment F. The correct {rho}{sub s} is obtained with {phi}{sub a} being negative in the regions in which {rho}{sub f} might exceed {rho}{sub s}. This makes it possible to obtain the correct {rho}{sub s} with a broad range of the input frozen densities {rho}{sub f} so that DOE resolves the problem of the frozen-density admissibility of the current frozen-density embedding theory. The DOE Euler equation for the DO {phi}{sub a} is derived with the characteristic embedding potential representing the effect of the environment. The DO square {phi}{sub a}{sup 2} is determined from the orbitals of the effective Kohn-Sham (KS) system. Self-consistent solution of the corresponding one-electron KS equations yields not only {phi}{sub a}{sup 2}, but also the DO {phi}{sub a} itself.

  3. Global orbit corrections

    SciTech Connect

    Symon, K.

    1987-11-01

    There are various reasons for preferring local (e.g., three bump) orbit correction methods to global corrections. One is the difficulty of solving the mN equations for the required mN correcting bumps, where N is the number of superperiods and m is the number of bumps per superperiod. The latter is not a valid reason for avoiding global corrections, since, we can take advantage of the superperiod symmetry to reduce the mN simultaneous equations to N separate problems, each involving only m simultaneous equations. Previously, I have shown how to solve the general problem when the machine contains unknown magnet errors of known probability distribution; we made measurements of known precision of the orbit displacements at a set of points, and we wish to apply correcting bumps to minimize the weighted rms orbit deviations. In this report, we will consider two simpler problems, using similar methods. We consider the case when we make M beam position measurements per superperiod, and we wish to apply an equal number M of orbit correcting bumps to reduce the measured position errors to zero. We also consider the problem when the number of correcting bumps is less than the number of measurements, and we wish to minimize the weighted rms position errors. We will see that the latter problem involves solving equations of a different form, but involving the same matrices as the former problem.

  4. Microdosimetry of plutonium in beagle dog lung

    SciTech Connect

    Fisher, D.R.; Roesch, W.C.

    1980-08-01

    A better understanding of the microdosimetry of internally-deposited radionuclides should provide new clues to the complex relationships between organ dose distribution and early or late biological effects. Our current interest is the microdosimetry of plutonium and other alpha emitters in the lung. Since the lung is an inhomogeneous tissue, it was necessary to characterize the microscopic distributions of alveolar tissue, air space, and epithelial cell nuclei to define source-target parameters. A statistical representation of the microstructure of beagle dog lung was developed from automated image analysis of specimens from three healthy adult male dogs. The statistical distributions obtained constituted a data base from which it was possible to calculate both the energy dissipation of an alpha particle as it traversed a straight line path through pulmonary tissue, and the probability of intersecting a potentially sensitive biological site in the cell. Computer methods were modified to accomodate tissues with air space regions such as one finds in lung tissue. With the lung model description, these methods were used to determine probability density curves in specific energy for inhaled plutonium aerosols. It was assumed that the activity was randomly distributed on alveolar walls. Calculated examples are given for various activities of inhaled plutonium point sources deposited in lung tissue.

  5. Quantum corrections to inflaton and curvaton dynamics

    SciTech Connect

    Markkanen, Tommi; Tranberg, Anders E-mail: anders.tranberg@nbi.dk

    2012-11-01

    We compute the fully renormalized one-loop effective action for two interacting and self-interacting scalar fields in FRW space-time. We then derive and solve the quantum corrected equations of motion both for fields that dominate the energy density (such as an inflaton) and fields that do not (such as a subdominant curvaton). In particular, we introduce quantum corrected Friedmann equations that determine the evolution of the scale factor. We find that in general, gravitational corrections are negligible for the field dynamics. For the curvaton-type fields this leaves only the effect of the flat-space Coleman-Weinberg-type effective potential, and we find that these can be significant. For the inflaton case, both the corrections to the potential and the Friedmann equations can lead to behaviour very different from the classical evolution. Even to the point that inflation, although present at tree level, can be absent at one-loop order.

  6. Contrast image correction method

    NASA Astrophysics Data System (ADS)

    Schettini, Raimondo; Gasparini, Francesca; Corchs, Silvia; Marini, Fabrizio; Capra, Alessandro; Castorina, Alfio

    2010-04-01

    A method for contrast enhancement is proposed. The algorithm is based on a local and image-dependent exponential correction. The technique aims to correct images that simultaneously present overexposed and underexposed regions. To prevent halo artifacts, the bilateral filter is used as the mask of the exponential correction. Depending on the characteristics of the image (piloted by histogram analysis), an automated parameter-tuning step is introduced, followed by stretching, clipping, and saturation preserving treatments. Comparisons with other contrast enhancement techniques are presented. The Mean Opinion Score (MOS) experiment on grayscale images gives the greatest preference score for our algorithm.

  7. The Utility of K-Correction To Adjust for a Defensive Response Set on the MMPI.

    ERIC Educational Resources Information Center

    Putzke, John D.; Williams, Mark A.; Daniel, F. Joseph; Boll, Thomas J.

    1999-01-01

    Examined the usefulness of the K-correction procedure to adjust for a defensive response set on the Minnesota Multiphasic Personality Inventory (MMPI) with 61 patients being evaluated for lung transplants. Results support the use of the K-correction procedure for this patient group. Implications for MMPI use are discussed. (SLD)

  8. Karyometry: Correction algorithm for differences in staining

    PubMed Central

    Bartels, Peter H.; Bartels, Hubert G.; Alberts, David S.

    2014-01-01

    Objectives An algorithm is described which allows the correction of differences in staining of histopathologic sections while preserving chromatin texture. Methods In order to preserve the texture of the nuclear chromatin in the corrected digital imagery, it is necessary to correct the images pixel for pixel. This is accomplished by mapping each pixel’s value onto the cumulative frequency distribution of the data set to which the image belongs, to transfer to the cumulative frequency distribution of the data set serving as standard, and to project the intersection down onto the pixel optical density scale for the corrected value. Results Feature values in the corrected imagery, for the majority of features used in karyometry, are between less than one percent and a few percent of the feature values in standard imagery. For some higher order statistical features involving multiple pixels, sensitivity to a shift in the cumulative frequency distribution may exist, and a secondary small correction by a factor may be required. Conclusions The correction algorithm allows the elimination of the effects of small staining differences on karyometric analysis. PMID:19402382

  9. Highly accurate fast lung CT registration

    NASA Astrophysics Data System (ADS)

    Rühaak, Jan; Heldmann, Stefan; Kipshagen, Till; Fischer, Bernd

    2013-03-01

    Lung registration in thoracic CT scans has received much attention in the medical imaging community. Possible applications range from follow-up analysis, motion correction for radiation therapy, monitoring of air flow and pulmonary function to lung elasticity analysis. In a clinical environment, runtime is always a critical issue, ruling out quite a few excellent registration approaches. In this paper, a highly efficient variational lung registration method based on minimizing the normalized gradient fields distance measure with curvature regularization is presented. The method ensures diffeomorphic deformations by an additional volume regularization. Supplemental user knowledge, like a segmentation of the lungs, may be incorporated as well. The accuracy of our method was evaluated on 40 test cases from clinical routine. In the EMPIRE10 lung registration challenge, our scheme ranks third, with respect to various validation criteria, out of 28 algorithms with an average landmark distance of 0.72 mm. The average runtime is about 1:50 min on a standard PC, making it by far the fastest approach of the top-ranking algorithms. Additionally, the ten publicly available DIR-Lab inhale-exhale scan pairs were registered to subvoxel accuracy at computation times of only 20 seconds. Our method thus combines very attractive runtimes with state-of-the-art accuracy in a unique way.

  10. A Method for Correcting IMRT Optimizer Heterogeneity Dose Calculations

    SciTech Connect

    Zacarias, Albert S.; Brown, Mellonie F. Mills, Michael D.

    2010-04-01

    Radiation therapy treatment planning for volumes close to the patient's surface, in lung tissue and in the head and neck region, can be challenging for the planning system optimizer because of the complexity of the treatment and protected volumes, as well as striking heterogeneity corrections. Because it is often the goal of the planner to produce an isodose plan with uniform dose throughout the planning target volume (PTV), there is a need for improved planning optimization procedures for PTVs located in these anatomical regions. To illustrate such an improved procedure, we present a treatment planning case of a patient with a lung lesion located in the posterior right lung. The intensity-modulated radiation therapy (IMRT) plan generated using standard optimization procedures produced substantial dose nonuniformity across the tumor caused by the effect of lung tissue surrounding the tumor. We demonstrate a novel iterative method of dose correction performed on the initial IMRT plan to produce a more uniform dose distribution within the PTV. This optimization method corrected for the dose missing on the periphery of the PTV and reduced the maximum dose on the PTV to 106% from 120% on the representative IMRT plan.

  11. Degenerate density perturbation theory

    NASA Astrophysics Data System (ADS)

    Palenik, Mark C.; Dunlap, Brett I.

    2016-09-01

    Fractional occupation numbers can be used in density functional theory to create a symmetric Kohn-Sham potential, resulting in orbitals with degenerate eigenvalues. We develop the corresponding perturbation theory and apply it to a system of Nd degenerate electrons in a harmonic oscillator potential. The order-by-order expansions of both the fractional occupation numbers and unitary transformations within the degenerate subspace are determined by the requirement that a differentiable map exists connecting the initial and perturbed states. Using the X α exchange-correlation (XC) functional, we find an analytic solution for the first-order density and first- through third-order energies as a function of α , with and without a self-interaction correction. The fact that the XC Hessian is not positive definite plays an important role in the behavior of the occupation numbers.

  12. Correcting Illumina data.

    PubMed

    Molnar, Michael; Ilie, Lucian

    2015-07-01

    Next-generation sequencing technologies revolutionized the ways in which genetic information is obtained and have opened the door for many essential applications in biomedical sciences. Hundreds of gigabytes of data are being produced, and all applications are affected by the errors in the data. Many programs have been designed to correct these errors, most of them targeting the data produced by the dominant technology of Illumina. We present a thorough comparison of these programs. Both HiSeq and MiSeq types of Illumina data are analyzed, and correcting performance is evaluated as the gain in depth and breadth of coverage, as given by correct reads and k-mers. Time and memory requirements, scalability and parallelism are considered as well. Practical guidelines are provided for the effective use of these tools. We also evaluate the efficiency of the current state-of-the-art programs for correcting Illumina data and provide research directions for further improvement.

  13. 75 FR 68405 - Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ...'' (Presidential Sig.) [FR Doc. C1-2010-27668 Filed 11-5-10; 8:45 am] Billing Code 1505-01-D ..., 2010--Continuation of U.S. Drug Interdiction Assistance to the Government of Colombia Correction...

  14. 78 FR 73377 - Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    .... Drug Interdiction Assistance to the Government of Colombia''. (Presidential Sig.) [FR Doc. C1-2013...--Continuation of U.S. Drug Interdiction Assistance to the Government of Colombia Correction In...

  15. Correcting Hubble Vision.

    ERIC Educational Resources Information Center

    Shaw, John M.; Sheahen, Thomas P.

    1994-01-01

    Describes the theory behind the workings of the Hubble Space Telescope, the spherical aberration in the primary mirror that caused a reduction in image quality, and the corrective device that compensated for the error. (JRH)

  16. Adaptable DC offset correction

    NASA Technical Reports Server (NTRS)

    Golusky, John M. (Inventor); Muldoon, Kelly P. (Inventor)

    2009-01-01

    Methods and systems for adaptable DC offset correction are provided. An exemplary adaptable DC offset correction system evaluates an incoming baseband signal to determine an appropriate DC offset removal scheme; removes a DC offset from the incoming baseband signal based on the appropriate DC offset scheme in response to the evaluated incoming baseband signal; and outputs a reduced DC baseband signal in response to the DC offset removed from the incoming baseband signal.

  17. Quantum Error Correction

    NASA Astrophysics Data System (ADS)

    Lidar, Daniel A.; Brun, Todd A.

    2013-09-01

    Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and

  18. Density in a Planetary Exosphere

    NASA Technical Reports Server (NTRS)

    Herring, Jackson; Kyle, Herbert L.

    1961-01-01

    A discussion of the Opik-Singer theory of the density of a planetary exosphere is presented. Their density formula permits the calculation of the depth of the exosphere. Since the correctness of their derivation of the basic formula for the density distribution has been questioned, an alternate method based directly on Liouville's theorem is given. It is concluded that the Opik-Singer formula seems valid for the ballistic component of the exosphere; but for a complete description of the planetary exosphere, the ionized and bound-orbit components must also be included.

  19. A low-cost density reference phantom for computed tomography

    PubMed Central

    Levine, Zachary H.; Li, Mingdong; Reeves, Anthony P.; Yankelevitz, David F.; Chen, Joseph J.; Siegel, Eliot L.; Peskin, Adele; Zeiger, Diana N.

    2009-01-01

    The authors characterized a commercially available foam composed of polyurethane and polyisocyanurate which is marketed for modeling parts in the aircraft, automotive, and related industries. The authors found that the foam may be suitable for use as a density reference standard in the range below −400 Hounsfield units. This range is coincident with the density of lung tissue. The foam may be helpful in making the diagnosis of lung disease more systematic. PMID:19291968

  20. A low-cost density reference phantom for computed tomography.

    PubMed

    Levine, Zachary H; Li, Mingdong; Reeves, Anthony P; Yankelevitz, David F; Chen, Joseph J; Siegel, Eliot L; Peskin, Adele; Zeiger, Diana N

    2009-02-01

    The authors characterized a commercially available foam composed of polyurethane and polyisocyanurate which is marketed for modeling parts in the aircraft, automotive, and related industries. The authors found that the foam may be suitable for use as a density reference standard in the range below -400 Hounsfield units. This range is coincident with the density of lung tissue. The foam may be helpful in making the diagnosis of lung disease more systematic. PMID:19291968

  1. Lung transplantation at Duke

    PubMed Central

    Gray, Alice L.; Hartwig, Matthew G.

    2016-01-01

    Lung transplantation represents the gold-standard therapy for patients with end-stage lung disease. Utilization of this therapy continues to rise. The Lung Transplant Program at Duke University Medical Center was established in 1992, and since that time has grown to one of the highest volume centers in the world. The program to date has performed over 1,600 lung transplants. This report represents an up-to-date review of the practice and management strategies employed for safe and effective lung transplantation at our center. Specific attention is paid to the evaluation of candidacy for lung transplantation, donor selection, surgical approach, and postoperative management. These evidence-based strategies form the foundation of the clinical transplantation program at Duke. PMID:27076968

  2. Thermodynamically constrained correction to ab initio equations of state

    SciTech Connect

    French, Martin; Mattsson, Thomas R.

    2014-07-07

    We show how equations of state generated by density functional theory methods can be augmented to match experimental data without distorting the correct behavior in the high- and low-density limits. The technique is thermodynamically consistent and relies on knowledge of the density and bulk modulus at a reference state and an estimation of the critical density of the liquid phase. We apply the method to four materials representing different classes of solids: carbon, molybdenum, lithium, and lithium fluoride. It is demonstrated that the corrected equations of state for both the liquid and solid phases show a significantly reduced dependence of the exchange-correlation functional used.

  3. Advances in lung preservation.

    PubMed

    Machuca, Tiago N; Cypel, Marcelo; Keshavjee, Shaf

    2013-12-01

    After a brief review of conventional lung preservation, this article discusses the rationale behind ex vivo lung perfusion and how it has shifted the paradigm of organ preservation from conventional static cold ischemia to the utilization of functional normothermia, restoring the lung's own metabolism and its reparative processes. Technical aspects and previous clinical experience as well as opportunities to address specific donor organ injuries in a personalized medicine approach are also reviewed. PMID:24206857

  4. Lung Cancer Screening.

    PubMed

    Wu, Geena X; Raz, Dan J

    2016-01-01

    Lung cancer is the leading cause of cancer mortality in the United States and worldwide. Since lung cancer outcomes are dependent on stage at diagnosis with early disease resulting in longer survival, the goal of screening is to capture lung cancer in its early stages when it can be treated and cured. Multiple studies have evaluated the use of chest X-ray (CXR) with or without sputum cytologic examination for lung cancer screening, but none has demonstrated a mortality benefit. In contrast, the multicenter National Lung Screening Trial (NLST) from the United States found a 20 % reduction in lung cancer mortality following three consecutive screenings with low-dose computed tomography (LDCT) in high-risk current and former smokers. Data from European trials are not yet available. In addition to a mortality benefit, lung cancer screening with LDCT also offers a unique opportunity to promote smoking cessation and abstinence and may lead to the diagnoses of treatable chronic diseases, thus decreasing the overall disease burden. The risks of lung cancer screening include overdiagnosis, radiation exposure, and false-positive results leading to unnecessary testing and possible patient anxiety and distress. However, the reduction in lung cancer mortality is a benefit that outweighs the risks and major health organizations currently recommend lung cancer screening using age, smoking history, and quit time criteria derived from the NLST. Although more research is needed to clearly define and understand the application and utility of lung cancer screening in the general population, current data support that lung cancer screening is effective and should be offered to eligible beneficiaries. PMID:27535387

  5. Lung Cancer Screening.

    PubMed

    Wu, Geena X; Raz, Dan J

    2016-01-01

    Lung cancer is the leading cause of cancer mortality in the United States and worldwide. Since lung cancer outcomes are dependent on stage at diagnosis with early disease resulting in longer survival, the goal of screening is to capture lung cancer in its early stages when it can be treated and cured. Multiple studies have evaluated the use of chest X-ray (CXR) with or without sputum cytologic examination for lung cancer screening, but none has demonstrated a mortality benefit. In contrast, the multicenter National Lung Screening Trial (NLST) from the United States found a 20 % reduction in lung cancer mortality following three consecutive screenings with low-dose computed tomography (LDCT) in high-risk current and former smokers. Data from European trials are not yet available. In addition to a mortality benefit, lung cancer screening with LDCT also offers a unique opportunity to promote smoking cessation and abstinence and may lead to the diagnoses of treatable chronic diseases, thus decreasing the overall disease burden. The risks of lung cancer screening include overdiagnosis, radiation exposure, and false-positive results leading to unnecessary testing and possible patient anxiety and distress. However, the reduction in lung cancer mortality is a benefit that outweighs the risks and major health organizations currently recommend lung cancer screening using age, smoking history, and quit time criteria derived from the NLST. Although more research is needed to clearly define and understand the application and utility of lung cancer screening in the general population, current data support that lung cancer screening is effective and should be offered to eligible beneficiaries.

  6. SU-E-J-249: Correlation of Mean Lung Ventilation Value with Ratio of Total Lung Volumes

    SciTech Connect

    Yu, N; Qu, H; Xia, P

    2014-06-01

    Purpose: Lung ventilation function measured from 4D-CT and from breathing correlated CT images is a novel concept to incorporate the lung physiologic function into treatment planning of radiotherapy. The calculated ventilation functions may vary from different breathing patterns, affecting evaluation of the treatment plans. The purpose of this study is to correlate the mean lung ventilation value with the ratio of the total lung volumes obtained from the relevant CTs. Methods: A ventilation map was calculated from the variations of voxel-to-voxel CT densities from two breathing phases from either 4D-CT or breathing correlated CTs. An open source image registration tool of Plastimatch was used to deform the inhale phase images to the exhale phase images. To calculate the ventilation map inside lung, the whole lung was delineated and the tissue outside the lung was masked out. With a software tool developed in house, the 3D ventilation map was then converted in the DICOM format associated with the planning CT images. The ventilation map was analyzed on a clinical workstation. To correlate ventilation map thus calculated with lung volume change, the total lung volume change was compared the mean ventilation from our method. Results: Twenty two patients who underwent stereotactic body irradiation for lung cancer was selected for this retrospective study. For this group of patients, the ratio of lung volumes for the inhale (Vin ) and exhale phase (Vex ) was shown to be linearly related to the mean of the local ventilation (Vent), Vin/Vex=1.+0.49*Vent (R2=0.93, p<0.01). Conclusion: The total lung volume change is highly correlated with the mean of local ventilation. The mean of local ventilation may be useful to assess the patient's lung capacity.

  7. Epidemiology of Lung Cancer.

    PubMed

    Schwartz, Ann G; Cote, Michele L

    2016-01-01

    Lung cancer continues to be one of the most common causes of cancer death despite understanding the major cause of the disease: cigarette smoking. Smoking increases lung cancer risk 5- to 10-fold with a clear dose-response relationship. Exposure to environmental tobacco smoke among nonsmokers increases lung cancer risk about 20%. Risks for marijuana and hookah use, and the new e-cigarettes, are yet to be consistently defined and will be important areas for continued research as use of these products increases. Other known environmental risk factors include exposures to radon, asbestos, diesel, and ionizing radiation. Host factors have also been associated with lung cancer risk, including family history of lung cancer, history of chronic obstructive pulmonary disease and infections. Studies to identify genes associated with lung cancer susceptibility have consistently identified chromosomal regions on 15q25, 6p21 and 5p15 associated with lung cancer risk. Risk prediction models for lung cancer typically include age, sex, cigarette smoking intensity and/or duration, medical history, and occupational exposures, however there is not yet a risk prediction model currently recommended for general use. As lung cancer screening becomes more widespread, a validated model will be needed to better define risk groups to inform screening guidelines. PMID:26667337

  8. Nicotine and lung development.

    PubMed

    Maritz, Gert S

    2008-03-01

    Nicotine is found in tobacco smoke. It is a habit forming substance and is prescribed by health professionals to assist smokers to quit smoking. It is rapidly absorbed from the lungs of smokers. It crosses the placenta and accumulates in the developing fetus. Nicotine induces formation of oxygen radicals and at the same time also reduces the antioxidant capacity of the lungs. Nicotine and the oxidants cause point mutations in the DNA molecule, thereby changing the program that controls lung growth and maintenance of lung structure. The data available indicate that maternal nicotine exposure induces a persistent inhibition of glycolysis and a drastically increased cAMP level. These metabolic changes are thought to contribute to the faster aging of the lungs of the offspring of mothers that are exposed to nicotine via the placenta and mother's milk. The lungs of these animals are more susceptible to damage as shown by the gradual deterioration of the lung parenchyma. The rapid metabolic and structural aging of the lungs of the animals that were exposed to nicotine via the placenta and mother's milk, and thus during phases of lung development characterized by rapid cell division, is likely due to "programming" induced by nicotine. It is, therefore, not advisable to use nicotine during gestation and lactation. PMID:18383131

  9. A statistical description of 3D lung texture from CT data

    NASA Astrophysics Data System (ADS)

    Chaisaowong, Kraisorn; Paul, Andreas

    2015-03-01

    A method was described to create a statistical description of 3D lung texture from CT data. The second order statistics, i.e. the gray level co-occurrence matrix (GLCM), has been applied to characterize texture of lung by defining the joint probability distribution of pixel pairs. The required GLCM was extended to three-dimensional image regions to deal with CT volume data. For a fine-scale lung segmentation, both the 3D GLCM of lung and thorax without lung are required. Once the co-occurrence densities are measured, the 3D models of the joint probability density function for each describing direction of involving voxel pairs and for each class (lung or thorax) are estimated using mixture of Gaussians through the expectation-maximization algorithm. This leads to a feature space that describes the 3D lung texture.

  10. [Usefulness of attenuation correction with transmission source in myocardial SPECT].

    PubMed

    Murakawa, Keizo; Katafuchi, Tetsuro; Nishimura, Yoshihiro; Enomoto, Naoyuki; Sago, Masayoshi; Oka, Hisashi

    2006-01-20

    Attenuation correction in SPECT has been used for uniformly absorptive objects like the head. On the other hand, it has seldom been applied to nonuniform absorptive objects like the heart and surrounding lungs because of the difficulty and inaccuracy of data processing. However, since attenuation correction using a transmission source recently became practical, we were able to apply this method to a nonuniform absorptive object. Therefore, we evaluated the usefulness of this attenuation correction system with a transmission source in myocardial SPECT. The dose linearity, defect/normal ratio using a myocardial phantom, and myocardial count distribution in clinical cases was examined with and without the attenuation correction system. We found that all data processed with attenuation correction were better than those without attenuation correction. For example, in myocardial count distribution, while there was a difference between men and women without attenuation correction, which was considered to be caused by differences in body shape, after processing with attenuation correction, myocardial count distribution was almost the same in all cases. In conclusion, these results suggested that attenuation correction with a transmission source was useful in myocardial SPECT.

  11. Body density and diving gas volume of the northern bottlenose whale (Hyperoodon ampullatus).

    PubMed

    Miller, Patrick; Narazaki, Tomoko; Isojunno, Saana; Aoki, Kagari; Smout, Sophie; Sato, Katsufumi

    2016-08-15

    Diving lung volume and tissue density, reflecting lipid store volume, are important physiological parameters that have only been estimated for a few breath-hold diving species. We fitted 12 northern bottlenose whales with data loggers that recorded depth, 3-axis acceleration and speed either with a fly-wheel or from change of depth corrected by pitch angle. We fitted measured values of the change in speed during 5 s descent and ascent glides to a hydrodynamic model of drag and buoyancy forces using a Bayesian estimation framework. The resulting estimate of diving gas volume was 27.4±4.2 (95% credible interval, CI) ml kg(-1), closely matching the measured lung capacity of the species. Dive-by-dive variation in gas volume did not correlate with dive depth or duration. Estimated body densities of individuals ranged from 1028.4 to 1033.9 kg m(-3) at the sea surface, indicating overall negative tissue buoyancy of this species in seawater. Body density estimates were highly precise with ±95% CI ranging from 0.1 to 0.4 kg m(-3), which would equate to a precision of <0.5% of lipid content based upon extrapolation from the elephant seal. Six whales tagged near Jan Mayen (Norway, 71°N) had lower body density and were closer to neutral buoyancy than six whales tagged in the Gully (Nova Scotia, Canada, 44°N), a difference that was consistent with the amount of gliding observed during ascent versus descent phases in these animals. Implementation of this approach using longer-duration tags could be used to track longitudinal changes in body density and lipid store body condition of free-ranging cetaceans. PMID:27296044

  12. Body density and diving gas volume of the northern bottlenose whale (Hyperoodon ampullatus)

    PubMed Central

    Miller, Patrick; Narazaki, Tomoko; Isojunno, Saana; Aoki, Kagari; Smout, Sophie; Sato, Katsufumi

    2016-01-01

    ABSTRACT Diving lung volume and tissue density, reflecting lipid store volume, are important physiological parameters that have only been estimated for a few breath-hold diving species. We fitted 12 northern bottlenose whales with data loggers that recorded depth, 3-axis acceleration and speed either with a fly-wheel or from change of depth corrected by pitch angle. We fitted measured values of the change in speed during 5 s descent and ascent glides to a hydrodynamic model of drag and buoyancy forces using a Bayesian estimation framework. The resulting estimate of diving gas volume was 27.4±4.2 (95% credible interval, CI) ml kg−1, closely matching the measured lung capacity of the species. Dive-by-dive variation in gas volume did not correlate with dive depth or duration. Estimated body densities of individuals ranged from 1028.4 to 1033.9 kg m−3 at the sea surface, indicating overall negative tissue buoyancy of this species in seawater. Body density estimates were highly precise with ±95% CI ranging from 0.1 to 0.4 kg m−3, which would equate to a precision of <0.5% of lipid content based upon extrapolation from the elephant seal. Six whales tagged near Jan Mayen (Norway, 71°N) had lower body density and were closer to neutral buoyancy than six whales tagged in the Gully (Nova Scotia, Canada, 44°N), a difference that was consistent with the amount of gliding observed during ascent versus descent phases in these animals. Implementation of this approach using longer-duration tags could be used to track longitudinal changes in body density and lipid store body condition of free-ranging cetaceans. PMID:27296044

  13. Thermoelectric Corrections to Quantum Measurement

    NASA Astrophysics Data System (ADS)

    Bergfield, Justin; Ratner, Mark; Stafford, Charles; di Ventra, Massimiliano

    The voltage and temperature measured by a floating probe of a nonequilibrium quantum system is shown to exhibit nontrivial thermoelectric corrections at finite temperature. Using a realistic model of a scanning thermal microscope to calculate the voltage and temperature distributions, we predict quantum temperature variations along graphene nanoribbons subject to a thermal bias which are not simply related to the local density of states. Experimentally, the wavelength of the oscillations can be tuned over several orders of magnitude by gating/doping, bringing quantum temperature oscillations within reach of the spatial resolution of existing measurement techniques. We also find that the Peltier cooling/heating which causes the temperature oscillations can lead to significant errors in voltage measurements for a wide range of system.

  14. Drugs Approved for Lung Cancer

    MedlinePlus

    ... Professionals Questions to Ask about Your Treatment Research Drugs Approved for Lung Cancer This page lists cancer ... in lung cancer that are not listed here. Drugs Approved for Non-Small Cell Lung Cancer Abitrexate ( ...

  15. Genetics Home Reference: lung cancer

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions lung cancer lung cancer Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Lung cancer is a disease in which certain cells ...

  16. 6 Common Cancers - Lung Cancer

    MedlinePlus

    ... Home Current Issue Past Issues 6 Common Cancers - Lung Cancer Past Issues / Spring 2007 Table of Contents ... for Desperate Housewives. (Photo ©2005 Kathy Hutchins / Hutchins) Lung Cancer Lung cancer causes more deaths than the ...

  17. Quantification of technetium-99m lung radioactivity from planar images.

    PubMed

    Forge, N I; Mountford, P J; O'Doherty, M J

    1993-01-01

    Six methods of quantifying technetium-99m lung uptake from planar gamma camera images were evaluated. Camera sensitivities, the broad beam attenuation coefficient and build-up factors were derived from suitable phantom measurements. The accuracy of the methods was evaluated by quantifying the lung uptake of 99mTc macroaggregated albumin (MAA) in ten patients and assuming complete trapping by the lung of the known activity of injected MAA particles. Three methods based on published techniques which related the count rate from an image of a lung to that from a lung phantom were the least accurate, producing lung activities which were typically about 70% of the injected activity. Of the other three techniques, the depth-dependent build-up factor method was slightly more accurate than the geometric mean and the depth-independent build-up factor methods, producing average values (+/- SD) of lung activity which were 100% +/- 3%, 106% +/- 3% and 101% +/- 5%, respectively, of the injected activity. To measure lung uptake, all of these latter three methods required an attenuation correction with a flood source transmission scan, and therefore their accuracy was affected by the variation in the activity distribution and attenuation across an image of the thorax. PMID:8420777

  18. TUBERCULOSIS AND LUNG CANCER.

    PubMed

    Tamura, Atsuhisa

    2016-01-01

    The occurrence of pulmonary tuberculosis (PTB) and lung cancer as comorbidities has been extensively discussed in many studies. In the past, it was well known that lung cancer is a specific epidemiological successor of PTB and that lung cancer often develops in scars caused by PTB. In recent years, the relevance of the two diseases has drawn attention in terms of the close epidemiological connection and chronic inflammation-associated carcinogenesis. In Japanese case series studies, most lung cancer patients with tuberculous sequelae received supportive care alone in the past, but more recently, the use of aggressive lung cancer treatment is increasing. Many studies on PTB and lung cancer as comorbidities have revealed that active PTB is noted in 2-5% of lung cancer cases, whereas lung cancer is noted in 1-2% of active PTB cases. In such instances of comorbidity, many active PTB cases showed Type II (non-extensively cavitary disease) and Spread 2-3 (intermediate-extensive diseases) on chest X-rays, but standard anti-tuberculosis treatment easily eradicates negative conversion of sputum culture for M. tuberculosis; lung cancer cases were often stage III- IV and squamous cell carcinoma predominant, and the administration of aggressive treatment for lung cancer is increasing. The major clinical problems associated with PTB and lung cancer as comorbidities include delay in diagnosis (doctor's delay) and therapeutic limitations. The former involves two factors of radiographic interpretation: the principles of parsimony (Occam's razor) and visual search; the latter involves three factors of lung cancer treatment: infectivity of M.tuberculosis, anatomical limitation due to lung damage by tuberculosis, and drug-drug interactions between rifampicin and anti-cancer drugs, especially molecularly targeted drugs. The comorbidity of these two diseases is an important health-related issue in Japan. In the treatment of PTB, the possibility of concurrent lung cancer should be kept

  19. One-lung anesthesia update.

    PubMed

    Mirzabeigi, Edwin; Johnson, Calvin; Ternian, Alen

    2005-09-01

    One-lung ventilation is used during a variety of cardiac, thoracic, and major vascular procedures. Endobronchial tubes, bronchial blockers, and occasionally, single-lumen tubes are used to isolate the lungs. Patients with difficult airways and pediatric patients provide special challenges for lung isolation. Finally, intraoperative hypoxia and hypercarbia in patients with intrinsic lung disease frequently complicate one-lung anesthesia. The concepts and controversies in lung isolation techniques are discussed.

  20. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation.

    PubMed

    Beurskens, Charlotte J; Brevoord, Daniel; Lagrand, Wim K; van den Bergh, Walter M; Vroom, Margreeth B; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P

    2014-01-01

    Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arrest and mechanically ventilated for 3 hours with heliox (50% helium; 50% oxygen). A fixed protective ventilation protocol (6 mL/kg) was used, with prospective observation for changes in lung mechanics and gas exchange. Statistics was by Bonferroni post-hoc correction with statistical significance set at P < 0.017. Results. During heliox ventilation, respiratory rate decreased (25 ± 4 versus 23 ± 5 breaths min(-1), P = 0.010). Minute volume ventilation showed a trend to decrease compared to baseline (11.1 ± 1.9 versus 9.9 ± 2.1 L min(-1), P = 0.026), while reducing PaCO2 levels (5.0 ± 0.6 versus 4.5 ± 0.6 kPa, P = 0.011) and peak pressures (21.1 ± 3.3 versus 19.8 ± 3.2 cm H2O, P = 0.024). Conclusions. Heliox improved CO2 elimination while allowing reduced minute volume ventilation in adult patients during protective mechanical ventilation.

  1. Aureolegraph internal scattering correction.

    PubMed

    DeVore, John; Villanucci, Dennis; LePage, Andrew

    2012-11-20

    Two methods of determining instrumental scattering for correcting aureolegraph measurements of particulate solar scattering are presented. One involves subtracting measurements made with and without an external occluding ball and the other is a modification of the Langley Plot method and involves extrapolating aureolegraph measurements collected through a large range of solar zenith angles. Examples of internal scattering correction determinations using the latter method show similar power-law dependencies on scattering, but vary by roughly a factor of 8 and suggest that changing aerosol conditions during the determinations render this method problematic. Examples of corrections of scattering profiles using the former method are presented for a range of atmospheric particulate layers from aerosols to cumulus and cirrus clouds.

  2. Aureolegraph internal scattering correction.

    PubMed

    DeVore, John; Villanucci, Dennis; LePage, Andrew

    2012-11-20

    Two methods of determining instrumental scattering for correcting aureolegraph measurements of particulate solar scattering are presented. One involves subtracting measurements made with and without an external occluding ball and the other is a modification of the Langley Plot method and involves extrapolating aureolegraph measurements collected through a large range of solar zenith angles. Examples of internal scattering correction determinations using the latter method show similar power-law dependencies on scattering, but vary by roughly a factor of 8 and suggest that changing aerosol conditions during the determinations render this method problematic. Examples of corrections of scattering profiles using the former method are presented for a range of atmospheric particulate layers from aerosols to cumulus and cirrus clouds. PMID:23207299

  3. Lung Dosimetry for Radioiodine Treatment Planning in the Case of Diffuse Lung Metastases

    PubMed Central

    Song, Hong; He, Bin; Prideaux, Andrew; Du, Yong; Frey, Eric; Kasecamp, Wayne; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George

    2010-01-01

    The lungs are the most frequent sites of distant metastasis in differentiated thyroid carcinoma. Radioiodine treatment planning for these patients is usually performed following the Benua– Leeper method, which constrains the administered activity to 2.96 GBq (80 mCi) whole-body retention at 48 h after administration to prevent lung toxicity in the presence of iodine-avid lung metastases. This limit was derived from clinical experience, and a dosimetric analysis of lung and tumor absorbed dose would be useful to understand the implications of this limit on toxicity and tumor control. Because of highly nonuniform lung density and composition as well as the nonuniform activity distribution when the lungs contain tumor nodules, Monte Carlo dosimetry is required to estimate tumor and normal lung absorbed dose. Reassessment of this toxicity limit is also appropriate in light of the contemporary use of recombinant thyrotropin (thyroid-stimulating hormone) (rTSH) to prepare patients for radioiodine therapy. In this work we demonstrated the use of MCNP, a Monte Carlo electron and photon transport code, in a 3-dimensional (3D) imaging–based absorbed dose calculation for tumor and normal lungs. Methods A pediatric thyroid cancer patient with diffuse lung metastases was administered 37MBq of 131I after preparation with rTSH. SPECT/CT scans were performed over the chest at 27, 74, and 147 h after tracer administration. The time–activity curve for 131I in the lungs was derived from the whole-body planar imaging and compared with that obtained from the quantitative SPECT methods. Reconstructed and coregistered SPECT/CT images were converted into 3D density and activity probability maps suitable for MCNP4b input. Absorbed dose maps were calculated using electron and photon transport in MCNP4b. Administered activity was estimated on the basis of the maximum tolerated dose (MTD) of 27.25 Gy to the normal lungs. Computational efficiency of the MCNP4b code was studied with a

  4. Artificial neural networks in chest radiographs: detection and characterization of interstitial lung disease

    NASA Astrophysics Data System (ADS)

    Ishida, Takayuki; Katsuragawa, Shigehiko; Ashizawa, Kazuto; MacMahon, Heber; Doi, Kunio

    1997-04-01

    We have developed a computerized scheme for detection of interstitial lung disease by using artificial neural networks (ANNs) on quantitative analysis of digital image data. Three separate ANNs wee applied for the ANN scheme. The first ANN was trained with horizontal profiles in the ROIs selected from digital chest radiographs. The second ANN was trained with vertical output pattern obtained from the 1st ANN in each ROI. The output from the 2nd ANN was used to distinguish between normal and abnormal ROIs. In order to improve the performance, we attempted a density correction and rib edge removal. The Az value was improved from 0.906 to 0.934 by incorporating density correction. For the classification of each chest image, we employed a rule-based method and a rule-based plus the third ANN method. A high Az value was obtained with the rule-based plus ANN method. The ANNs can learn certain statistical properties associate with patterns of interstitial infiltrates in chest radiographs.

  5. Correction coil cable

    DOEpatents

    Wang, S.T.

    1994-11-01

    A wire cable assembly adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies for the Superconducting Super Collider. The correction coil cables have wires collected in wire array with a center rib sandwiched therebetween to form a core assembly. The core assembly is surrounded by an assembly housing having an inner spiral wrap and a counter wound outer spiral wrap. An alternate embodiment of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable on a particle tube in a particle tube assembly. 7 figs.

  6. Corrections and clarifications.

    PubMed

    1994-11-11

    The 1994 and 1995 federal science budget appropriations for two of the activities were inadvertently transposed in a table that accompanied the article "Hitting the President's target is mixed blessing for agencies" by Jeffrey Mervis (News & Comment, 14 Oct., p. 211). The correct figures for Defense Department spending on university research are $1.460 billion in 1994 and $1.279 billion in 1995; for research and development at NASA, the correct figures are $9.455 billion in 1994 and $9.824 billion in 1995.

  7. Refraction corrections for surveying

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1979-01-01

    Optical measurements of range and elevation angle are distorted by the earth's atmosphere. High precision refraction correction equations are presented which are ideally suited for surveying because their inputs are optically measured range and optically measured elevation angle. The outputs are true straight line range and true geometric elevation angle. The 'short distances' used in surveying allow the calculations of true range and true elevation angle to be quickly made using a programmable pocket calculator. Topics covered include the spherical form of Snell's Law; ray path equations; and integrating the equations. Short-, medium-, and long-range refraction corrections are presented in tables.

  8. Lycopene and Lung Cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although epidemiological studies have shown dietary intake of lycopene is associated with decreased risk of lung cancer, the effect of lycopene on lung carcinogenesis has not been well studied. A better understanding of lycopene metabolism and the mechanistic basis of lycopene chemoprevention must ...

  9. Staging of Lung Cancer

    MedlinePlus

    ... of N2 means cancer has spread to the middle part of the chest (called the mediastinum). A rating ... so that the surgeon can remove the cancerous part of the lung and/or lymph node ... biopsied are your lungs, bones, and brain. These types of biopsies can be done with ...

  10. Lung Cancer Indicators Recurrence

    Cancer.gov

    This study describes prognostic factors for lung cancer spread and recurrence, as well as subsequent risk of death from the disease. The investigators observed that regardless of cancer stage, grade, or type of lung cancer, patients in the study were more

  11. Immunotherapy in Lung Cancer.

    PubMed

    Castellanos, Emily H; Horn, Leora

    2016-01-01

    Lung cancer has not traditionally been viewed as an immune-responsive tumor. However, it is becoming evident that tumor-induced immune suppression is vital to malignant progression. Immunotherapies act by enhancing the patient's innate immune response and hold promise for inducing long-term responses in select patients with non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Immune checkpoint inhibitors, in particular, inhibitors to cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) and programmed death receptor ligand 1 (PD-L1) have shown promise in early studies and are currently in clinical trials in both small cell lung cancer and non-small cell lung cancer patients. Two large randomized phase III trials recently demonstrated superior overall survival (OS) in patients treated with anti-PD-1 therapy compared to chemotherapy in the second-line setting.

  12. Industrial Lung Cancer

    PubMed Central

    Fitch, Maxwell

    1982-01-01

    There are many known chemical and physical causes of industrial lung cancer. Their common feature is a long latent period—usually ten to 40 years—between initial exposure to the carcinogen and clinical recognition of the lesion. Occupationally induced lung cancer is indistinguishable from lung cancer of unknown etiology or that caused by cigaret smoking. Smoking alone is responsible for a very large proportion of all lung cancer and it potentiates the effect of most other carcinogens. Most cases of lung cancer in the next 20-30 years will be the result of exposures which have already occurred. In these cases, early diagnosis of pre-invasive resectable lesions offers the only hope for prolonging life. PMID:21286559

  13. Lung cancer - non-small cell

    MedlinePlus

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk depends on the number of cigarettes ...

  14. Estimation of Lung Ventilation

    NASA Astrophysics Data System (ADS)

    Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.

    Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.

  15. Occupational lung cancer

    SciTech Connect

    Coultas, D.B.; Samet, J.M. )

    1992-06-01

    The overall importance of occupational agents as a cause of lung cancer has been a controversial subject since the 1970s. A federal report, released in the late 1970s, projected a surprisingly high burden of occupational lung cancer; for asbestos and four other agents, from 61,000 to 98,000 cases annually were attributed to these agents alone. Many estimates followed, some much more conservative. For example, Doll and Peto estimated that 15% of lung cancer in men and 5% in women could be attributed to occupational exposures. A number of population-based case-control studies also provide relevant estimates. In a recent literature review, Vineis and Simonato cited attributable risk estimates for occupation and lung cancer that ranged from 4% to 40%; for asbestos alone, the estimates ranged from 1% to 5%. These estimates would be expected to vary across locations and over time. Nevertheless, these recent estimates indicate that occupation remains an important cause of lung cancer. Approaches to Prevention. Prevention of lung cancer mortality among workers exposed to agents or industrial processes that cause lung cancer may involve several strategies, including eliminating or reducing exposures, smoking cessation, screening, and chemo-prevention. For example, changes in industrial processes that have eliminated or reduced exposures to chloromethyl ethers and nickel compounds have provided evidence of reduced risk of lung cancer following these changes. Although occupational exposures are important causes of lung cancer, cigarette smoking is the most important preventable cause of lung cancer. For adults, the work site offers an important location to target smoking cessation efforts. In fact, the work site may be the only place to reach many smokers.

  16. Issues in Correctional Training and Casework. Correctional Monograph.

    ERIC Educational Resources Information Center

    Wolford, Bruce I., Ed.; Lawrenz, Pam, Ed.

    The eight papers contained in this monograph were drawn from two national meetings on correctional training and casework. Titles and authors are: "The Challenge of Professionalism in Correctional Training" (Michael J. Gilbert); "A New Perspective in Correctional Training" (Jack Lewis); "Reasonable Expectations in Correctional Officer Training:…

  17. Lung Microbiota Changes Associated with Chronic Pseudomonas aeruginosa Lung Infection and the Impact of Intravenous Colistimethate Sodium

    PubMed Central

    Collie, David; Glendinning, Laura; Govan, John; Wright, Steven; Thornton, Elisabeth; Tennant, Peter; Doherty, Catherine; McLachlan, Gerry

    2015-01-01

    Background Exacerbations associated with chronic lung infection with Pseudomonas aeruginosa are a major contributor to morbidity, mortality and premature death in cystic fibrosis. Such exacerbations are treated with antibiotics, which generally lead to an improvement in lung function and reduced sputum P. aeruginosa density. This potentially suggests a role for the latter in the pathogenesis of exacerbations. However, other data suggesting that changes in P. aeruginosa sputum culture status may not reliably predict an improvement in clinical status, and data indicating no significant changes in either total bacterial counts or in P. aeruginosa numbers in sputum samples collected prior to pulmonary exacerbation sheds doubt on this assumption. We used our recently developed lung segmental model of chronic Pseudomonas infection in sheep to investigate the lung microbiota changes associated with chronic P. aeruginosa lung infection and the impact of systemic therapy with colistimethate sodium (CMS). Methodology/Principal Findings We collected protected specimen brush (PSB) samples from sheep (n = 8) both prior to and 14 days after establishment of chronic local lung infection with P aeruginosa. Samples were taken from both directly infected lung segments (direct) and segments spatially remote to such sites (remote). Four sheep were treated with daily intravenous injections of CMS between days 7 and 14, and four were treated with a placebo. Necropsy examination at d14 confirmed the presence of chronic local lung infection and lung pathology in every direct lung segment. The predominant orders in lung microbiota communities before infection were Bacillales, Actinomycetales and Clostridiales. While lung microbiota samples were more likely to share similarities with other samples derived from the same lung, considerable within- and between-animal heterogeneity could be appreciated. Pseudomonadales joined the aforementioned list of predominant orders in lung microbiota

  18. Space charge stopband correction

    SciTech Connect

    Huang, Xiaobiao; Lee, S.Y.; /Indiana U.

    2005-09-01

    It is speculated that the space charge effect cause beam emittance growth through the resonant envelope oscillation. Based on this theory, we propose an approach, called space charge stopband correction, to reduce such emittance growth by compensation of the half-integer stopband width of the resonant oscillation. It is illustrated with the Fermilab Booster model.

  19. Counselor Education for Corrections.

    ERIC Educational Resources Information Center

    Parsigian, Linda

    Counselor education programs most often prepare their graduates to work in either a school setting, anywhere from the elementary level through higher education, or a community agency. There is little indication that counselor education programs have seriously undertaken the task of training counselors to enter the correctional field. If…

  20. Refraction corrections for surveying

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1980-01-01

    Optical measurements of range and elevation angles are distorted by refraction of Earth's atmosphere. Theoretical discussion of effect, along with equations for determining exact range and elevation corrections, is presented in report. Potentially useful in optical site surveying and related applications, analysis is easily programmed on pocket calculator. Input to equation is measured range and measured elevation; output is true range and true elevation.

  1. 75 FR 68409 - Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... Documents#0;#0; ] Presidential Determination No. 2010-14 of September 3, 2010--Unexpected Urgent Refugee And... on page 67015 in the issue of Monday, November 1, 2010, make the following correction: On page 67015, the Presidential Determination number should read ``2010-14'' (Presidential Sig.) [FR Doc....

  2. 75 FR 68407 - Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... Documents#0;#0; ] Presidential Determination No. 2010-12 of August 26, 2010--Unexpected Urgent Refugee and... beginning on page 67013 in the issue of Monday, November 1, 2010, make the following correction: On page 67013, the Presidential Determination number should read ``2010-12'' (Presidential Sig.) [FR Doc....

  3. Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium

    SciTech Connect

    Carrasco, P.; Jornet, N.; Duch, M.A.; Weber, L.; Ginjaume, M.; Eudaldo, T.; Jurado, D.; Ruiz, A.; Ribas, M.

    2004-10-01

    An extensive set of benchmark measurement of PDDs and beam profiles was performed in a heterogeneous layer phantom, including a lung equivalent heterogeneity, by means of several detectors and compared against the predicted dose values by different calculation algorithms in two treatment planning systems. PDDs were measured with TLDs, plane parallel and cylindrical ionization chambers and beam profiles with films. Additionally, Monte Carlo simulations by meansof the PENELOPE code were performed. Four different field sizes (10x10, 5x5, 2x2, and1x1 cm{sup 2}) and two lung equivalent materials (CIRS, {rho}{sub e}{sup w}=0.195 and St. Bartholomew Hospital, London, {rho}{sub e}{sup w}=0.244-0.322) were studied. The performance of four correction-based algorithms and one based on convolution-superposition was analyzed. The correction-based algorithms were the Batho, the Modified Batho, and the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system and the TMS Pencil Beam from the Helax-TMS (Nucletron) treatment planning system. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. The only studied calculation methods that correlated successfully with the measured values with a 2% average inside all media were the Collapsed Cone and the Monte Carlo simulation. The biggest difference between the predicted and the delivered dose in the beam axis was found for the EqTAR algorithm inside the CIRS lung equivalent material in a 2x2 cm{sup 2} 18 MV x-ray beam. In these conditions, average and maximum difference against the TLD measurements were 32% and 39%, respectively. In the water equivalent part of the phantom every algorithm correctly predicted the dose (within 2%) everywhere except very close to the interfaces where differences up to 24% were found for 2x2 cm{sup 2} 18 MV photon beams. Consistent values were found between the reference detector (ionization chamber in water and TLD in lung) and Monte Carlo

  4. Characterization of dose in stereotactic body radiation therapy of lung lesions via Monte Carlo calculation

    NASA Astrophysics Data System (ADS)

    Rassiah, Premavathy

    Stereotactic Body Radiation Therapy is a new form of treatment where hypofractionated (i.e., large dose fractions), conformal doses are delivered to small extracranial target volumes. This technique has proven to be especially effective for treating lung lesions. The inability of most commercially available algorithms/treatment planning systems to accurately account for electron transport in regions of heterogeneous electron density and tissue interfaces make prediction of accurate doses especially challenging for such regions. Monte Carlo which a model based calculation algorithm has proven to be extremely accurate for dose calculation in both homogeneous and inhomogeneous environment. This study attempts to accurately characterize the doses received by static targets located in the lung, as well as critical structures (contra and ipsi -lateral lung, major airways, esophagus and spinal cord) for the serial tomotherapeutic intensity-modulated delivery method used for stereotactic body radiation therapy at the Cancer Therapy and Research Center. PEREGRINERTM (v 1.6. NOMOS) Monte Carlo, doses were compared to the Finite Sized Pencil Beam/Effective Path Length predicted values from the CORVUS 5.0 planning system. The Monte Carlo based treatment planning system was first validated in both homogenous and inhomogeneous environments. 77 stereotactic body radiation therapy lung patients previously treated with doses calculated using the Finite Sized Pencil Beam/Effective Path Length, algorithm were then retrieved and recalculated with Monte Carlo. All 77 patients plans were also recalculated without inhomogeneity correction in an attempt to counteract the known overestimation of dose at the periphery of the target by EPL with increased attenuation. The critical structures were delineated in order to standardize the contouring. Both the ipsi-lateral and contra-lateral lungs were contoured. The major airways were contoured from the apex of the lungs (trachea) to 4 cm below

  5. [Lung hyperinflation after single lung transplantation to treat emphysema].

    PubMed

    Samano, Marcos Naoyuki; Junqueira, Jader Joel Machado; Teixeira, Ricardo Henrique de Oliveira Braga; Caramori, Marlova Luzzi; Pêgo-Fernandes, Paulo Manuel; Jatene, Fabio Biscegli

    2010-01-01

    Despite preventive measures, lung hyperinflation is a relatively common complication following single lung transplantation to treat pulmonary emphysema. The progressive compression of the graft can cause mediastinal shift and respiratory failure. In addition to therapeutic strategies such as independent ventilation, the treatment consists of the reduction of native lung volume by means of lobectomy or lung volume reduction surgery. We report two cases of native lung hyperinflation after single lung transplantation. Both cases were treated by means of lobectomy or lung volume reduction surgery.

  6. Lung Cancer Screening Update.

    PubMed

    Ruchalski, Kathleen L; Brown, Kathleen

    2016-07-01

    Since the release of the US Preventive Services Task Force and Centers for Medicare and Medicaid Services recommendations for lung cancer screening, low-dose chest computed tomography screening has moved from the research arena to clinical practice. Lung cancer screening programs must reach beyond image acquisition and interpretation and engage in a multidisciplinary effort of clinical shared decision-making, standardization of imaging and nodule management, smoking cessation, and patient follow-up. Standardization of radiologic reports and nodule management will systematize patient care, provide quality assurance, further reduce harm, and contain health care costs. Although the National Lung Screening Trial results and eligibility criteria of a heavy smoking history are the foundation for the standard guidelines for low-dose chest computed tomography screening in the United States, currently only 27% of patients diagnosed with lung cancer would meet US lung cancer screening recommendations. Current and future efforts must be directed to better delineate those patients who would most benefit from screening and to ensure that the benefits of screening reach all socioeconomic strata and racial and ethnic minorities. Further optimization of lung cancer screening program design and patient eligibility will assure that lung cancer screening benefits will outweigh the potential risks to our patients. PMID:27306387

  7. A new approach to quantifying lung damage after stereotactic body radiation therapy.

    PubMed

    Palma, David A; van Sörnsen de Koste, John R; Verbakel, Wilko F A R; Senan, Suresh

    2011-05-01

    Radiological pneumonitis and fibrosis are common after stereotactic body radiotherapy (SBRT) but current scoring systems are qualitative and subjective. We evaluated the use of CT density measurements and a deformable registration tool to quantitatively measure lung changes post-SBRT. Material and methods. Four-dimensional CT datasets from 25 patients were imported into an image analysis program. Deformable registration was done using a B-spline algorithm (VelocityAI) and evaluated by landmark matching. The effects of respiration, contrast, and CT scanner on density measurements were evaluated. The relationship between density and clinician-scored radiological pneumonitis was assessed. Results. Deformable registration resulted in more accurate image matching than rigid registration. CT lung density was maximal at end-expiration, and most deformation with breathing occurred in the lower thorax. Use of contrast increased mean lung density by 18 HU (range 16-20 HU; p = 0.004). Diagnostic scans had a lower mean lung density than planning scans (mean difference 57 HU in lung contralateral to tumor; p = 0.048). Post-treatment CT density measurements correlated strongly with clinician-scored radiological pneumonitis (r = 0.75; p < 0.001). Conclusions. Quantitative analysis of changes in lung density correlated strongly with physician-assigned radiologic pneumonitis scores. Deformable registration and CT density measurements permit objective assessment of treatment toxicity.

  8. Comparison of lung alveolar and tissue cells in silica-induced inflammation.

    PubMed

    Sjöstrand, M; Absher, P M; Hemenway, D R; Trombley, L; Baldor, L C

    1991-01-01

    The silicon dioxide mineral, cristobalite (CRS) induces inflammation involving both alveolar cells and connective tissue compartments. In this study, we compared lung cells recovered by whole lung lavage and by digestion of lung tissue from rats at varying times after 8 days of exposure to aerosolized CRS. Control and exposed rats were examined between 2 and 36 wk after exposure. Lavaged cells were obtained by bronchoalveolar lavage with phosphate-buffered saline. Lung wall cells were prepared via collagenase digestion of lung tissue slices. Cells from lavage and lung wall were separated by Percoll density centrifugation. The three upper fractions, containing mostly macrophages, were cultured, and the conditioned medium was assayed for effect on lung fibroblast growth and for activity of the lysosomal enzyme, N-acetyl-beta-D-glucosaminidase. Results demonstrated that the cells separated from the lung walls exhibited different reaction patterns compared with those cells recovered by lavage. The lung wall cells exhibited a progressive increase in the number of macrophages and lymphocytes compared with a steady state in cells of the lung lavage. This increase in macrophages apparently was due to low density cells, which showed features of silica exposure. Secretion of a fibroblast-stimulating factor was consistently high by lung wall macrophages, whereas lung lavage macrophages showed inconsistent variations. The secretion of NAG was increased in lung lavage macrophages, but decreased at most observation times in lung wall macrophages. No differences were found among cells in the different density fractions regarding fibroblast stimulation and enzyme secretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Use of CT densitometry to predict lung toxicity in bone marrow transplant patients

    SciTech Connect

    el-Khatib, E.E.; Freeman, C.R.; Rybka, W.B.; Lehnert, S.; Podgorsak, E.B.

    1989-01-01

    Total body irradiation (TBI) is considered an integral part of the preparation of patients with hematological malignancies for marrow transplantation. One of the major causes of death following bone marrow transplantation is interstitial pneumonia. Its pathogenesis is complex but radiation may play a major role in its development. Computed tomography (CT) has been used in animal and human studies as a sensitive non-invasive method for detecting changes in the lung following radiotherapy. In the present study CT scans are studied before and up to 1 year after TBI. Average lung densities measured before TBI showed large variations among the individual patients. On follow-up scans, lung density decreases were measured for patients who did not develop lung complications. Significant lung density increases were measured in patients who subsequently had lung complications. These lung density increases were observed prior to the onset of respiratory complications and could be correlated with the clinical course of the patients, suggesting the possibility for the usage of CT lung densitometry to predict lung complications before the onset of clinical symptoms.

  10. Predicting lung cancer prior to surgical resection in patients with lung nodules

    PubMed Central

    Deppen, Stephen A.; Blume, Jeffrey D.; Aldrich, Melinda C.; Fletcher, Sarah A.; Massion, Pierre P.; Walker, Ronald C.; Chen, Heidi C.; Speroff, Theodore; Necessary, Catherine A.; Pinkerman, Rhonda; Lambright, Eric S.; Nesbitt, Jonathan C.; Putnam, Joe B.; Grogan, Eric L.

    2014-01-01

    Background Existing predictive models for lung cancer focus on improving screening or referral for biopsy in general medical populations. A predictive model calibrated for use during preoperative evaluation of suspicious lung lesions is needed to reduce unnecessary operations for benign disease. A clinical prediction model (TREAT) is proposed for this purpose. Methods We developed and internally validated a clinical prediction model for lung cancer in a prospective cohort evaluated at our institution. Best statistical practices were used to construct, evaluate and validate the logistic regression model in the presence of missing covariate data using bootstrap and optimism corrected techniques. The TREAT model was externally validated in a retrospectively collected Veteran Affairs population. The discrimination and calibration of the model was estimated and compared to the Mayo Clinic model in both populations. Results The TREAT model was developed in 492 patients from Vanderbilt whose lung cancer prevalence was 72% and validated among 226 Veteran Affairs patients with a lung cancer prevalence of 93%. In the development cohort the area under the receiver operating curve (AUC) and Brier score were 0.87 (95%CI: 0.83–0.92) and 0.12 respectively compared to the AUC 0.89 (95%CI: 0.79–0.98) and Brier score 0.13 in the validation dataset. The TREAT model had significantly higher accuracy (p<0.001) and better calibration than the Mayo Clinic model (AUC=0.80, 95%CI: 75–85; Brier score=0.17). Conclusion The validated TREAT model had better diagnostic accuracy than the Mayo Clinic model in preoperative assessment of suspicious lung lesions in a population being evaluated for lung resection. PMID:25170644

  11. LLPi: Liverpool Lung Project Risk Prediction Model for Lung Cancer Incidence.

    PubMed

    Marcus, Michael W; Chen, Ying; Raji, Olaide Y; Duffy, Stephen W; Field, John K

    2015-06-01

    Identification of high-risk individuals will facilitate early diagnosis, reduce overall costs, and also improve the current poor survival from lung cancer. The Liverpool Lung Project prospective cohort of 8,760 participants ages 45 to 79 years, recruited between 1998 and 2008, was followed annually through the hospital episode statistics until January 31, 2013. Cox proportional hazards models were used to identify risk predictors of lung cancer incidence. C-statistic was used to assess the discriminatory accuracy of the models. Models were internally validated using the bootstrap method. During mean follow-up of 8.7 years, 237 participants developed lung cancer. Age [hazard ratio (HR), 1.04; 95% confidence interval (CI), 1.02-1.06], male gender (HR, 1.48; 95% CI, 1.10-1.98), smoking duration (HR, 1.04; 95% CI, 1.03-1.05), chronic obstructive pulmonary disease (HR, 2.43; 95% CI, 1.79-3.30), prior diagnosis of malignant tumor (HR, 2.84; 95% CI, 2.08-3.89), and early onset of family history of lung cancer (HR, 1.68; 95% CI, 1.04-2.72) were associated with the incidence of lung cancer. The LLPi risk model had a good calibration (goodness-of-fit χ(2) 7.58, P = 0.371). The apparent C-statistic was 0.852 (95% CI, 0.831-0.873) and the optimism-corrected bootstrap resampling C-statistic was 0.849 (95% CI, 0.829-0.873). The LLPi risk model may assist in identifying individuals at high risk of developing lung cancer in population-based screening programs.

  12. Risks of Lung Cancer Screening

    MedlinePlus

    ... Cancer Treatment Small Cell Lung Cancer Treatment Lung cancer is the leading cause of cancer death in the United States. Lung cancer is ... non- skin cancer in the United States. Lung cancer is the leading cause of cancer death in men and in women. ...

  13. Lung disease in farmers.

    PubMed Central

    Warren, C. P.

    1977-01-01

    Lung diseases in farmers attributable to their occupation include (a) farmer's lung, caused by exposure to mouldy hay, (b) the asthma caused by exposure to grain dust and (c) silo-filler's disease. Their prevalence in Canada is unknown. Farmer's lung results from inhalation of mould spores in hay; the mechanism is immunologic. The exact cause and mechanism of grain dust asthma are unknown but may be immunologic. Silo-filler's disease is caused by the toxic effects of inhaled nitrogen dioxide. PMID:321110

  14. Microgravity and the lung

    NASA Technical Reports Server (NTRS)

    West, John B.

    1991-01-01

    Results are presented from studies of the effect of microgravity on the lungs of rats flown on the Cosmos 2044 mission, and from relevant laboratory experiments. The effects of microgravity fall into five categories: topographical structure and function, the lung volumes and mechanics, the intrathoracic blood pressures and volumes, the pulmonary deposition of aerosol, and denitrogenaton during EVA. The ultrastructure of the left lungs of rats flown for 14 days on the Cosmos 2044 spacecraft and that of some tail-suspended rats disclosed presence of red blood cells in the alveolar spaces, indicating that pulmonary hemorrhage and pulmonary edema occurred in these rats. Possible causes for this phenomenon are discussed.

  15. Tropical parasitic lung diseases.

    PubMed

    Vijayan, V K

    2008-01-01

    Though parasitic lung diseases are frequently seen in tropical countries, these are being increasingly reported from many parts of the world due to globalisation and travel across the continents. In addition, the emergence of human immunodeficiency virus (HIV) infection/acquired immunodeficiency syndrome (AIDS), the frequent use of immunosuppressive drugs in many diseases and the increasing numbers of organ transplantations have resulted in a renewed interest in many tropical parasitic lung diseases. This review outlines the recent developments in the pathogenesis, diagnosis and management of common and rare parasitic lung diseases.

  16. Aberration corrected emittance exchange

    NASA Astrophysics Data System (ADS)

    Nanni, E. A.; Graves, W. S.

    2015-08-01

    Full exploitation of emittance exchange (EEX) requires aberration-free performance of a complex imaging system including active radio-frequency (rf) elements which can add temporal distortions. We investigate the performance of an EEX line where the exchange occurs between two dimensions with normalized emittances which differ by multiple orders of magnitude. The transverse emittance is exchanged into the longitudinal dimension using a double dogleg emittance exchange setup with a five cell rf deflector cavity. Aberration correction is performed on the four most dominant aberrations. These include temporal aberrations that are corrected with higher order magnetic optical elements located where longitudinal and transverse emittance are coupled. We demonstrate aberration-free performance of an EEX line with emittances differing by four orders of magnitude, i.e., an initial transverse emittance of 1 pm-rad is exchanged with a longitudinal emittance of 10 nm-rad.

  17. Correction coil cable

    DOEpatents

    Wang, Sou-Tien

    1994-11-01

    A wire cable assembly (10, 310) adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies (532) for the superconducting super collider. The correction coil cables (10, 310) have wires (14, 314) collected in wire arrays (12, 312) with a center rib (16, 316) sandwiched therebetween to form a core assembly (18, 318 ). The core assembly (18, 318) is surrounded by an assembly housing (20, 320) having an inner spiral wrap (22, 322) and a counter wound outer spiral wrap (24, 324). An alternate embodiment (410) of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable (410) on a particle tube (733) in a particle tube assembly (732).

  18. Surgical correction of brachymetatarsia.

    PubMed

    Bartolomei, F J

    1990-02-01

    Brachymetatarsia describes the condition of an abnormally short metatarsal. Although the condition has been recorded since antiquity, surgical options to correct the deformity have been available for only two decades. Most published procedures involve metaphyseal lengthening with autogenous grafts from different donor sites. The author discusses one such surgical technique. In addition, the author proposes specific criteria for the objective diagnosis of brachymetatarsia. PMID:2406417

  19. Overview of Clinical Lung Transplantation

    PubMed Central

    Yeung, Jonathan C.; Keshavjee, Shaf

    2014-01-01

    Since the first successful lung transplant 30 years ago, lung transplantation has rapidly become an established standard of care to treat end-stage lung disease in selected patients. Advances in lung preservation, surgical technique, and immunosuppression regimens have resulted in the routine performance of lung transplantation around the world for an increasing number of patients, with wider indications. Despite this, donor shortages and chronic lung allograft dysfunction continue to prevent lung transplantation from reaching its full potential. With research into the underlying mechanisms of acute and chronic lung graft dysfunction and advances in personalized diagnostic and therapeutic approaches to both the donor lung and the lung transplant recipient, there is increasing confidence that we will improve short- and long-term outcomes in the near future. PMID:24384816

  20. Diaphragm and lungs (image)

    MedlinePlus

    The diaphragm, located below the lungs, is the major muscle of respiration. It is a large, dome-shaped muscle ... most of the time, involuntarily. Upon inhalation, the diaphragm contracts and flattens and the chest cavity enlarges. ...

  1. Abscess in the Lungs

    MedlinePlus

    ... abscesses are streptococci and staphylococci, including methicillin-resistant Staphylococcus aureus (MRSA), which is a serious infection. Obstruction ... night sweats. In contrast, lung abscesses caused by Staphylococcus aureus or MRSA can be fatal within days, ...

  2. Lung Cancer Prevention

    MedlinePlus

    ... from the breakdown of uranium in rocks and soil. It seeps up through the ground, and leaks ... substances increases the risk of lung cancer: Asbestos . Arsenic . Chromium. Nickel. Beryllium. Cadmium . Tar and soot. These ...

  3. Biomarkers of Lung Injury

    EPA Science Inventory

    Unlike the hepatic, cardiovascular, nervous, or excretory organ systems, where there .ls a strong contribution of host factors or extracellular biochemical milieu in causing organ damage, the causes of lung injuries and subsequent diseases are primarily from direct environmental ...

  4. Women and Lung Cancer

    MedlinePlus

    ... Horrigan Conners Center for Women’s Health and Gender Biology, Brigham and Women’s Hospital, Harvard Medical School, April, ... Lung Cancer in Women: The Differences in Epidemiology, Biology and Treatment Outcomes, Maria Patricia Rivera MD Expert ...

  5. Reflux and Lung Disease

    MedlinePlus

    ... Reflux and Lung Disease Proper Hydration Sodium Dangers Plant-Based Diets Why Breakfast Matters Patients & Visitors Giving For Professionals About Us Treatment & Programs Health Insights Doctors & Departments Research & Science Education & Training Make an Appointment Make a Donation ...

  6. Lung gallium scan

    MedlinePlus

    ... inflammation in the lungs, most often due to sarcoidosis or a certain type of pneumonia. Normal Results ... up very little gallium. What Abnormal Results Mean Sarcoidosis Other respiratory infections, most often pneumocystis jirovecii pneumonia ...

  7. Justice and lung cancer.

    PubMed

    Wilson, Aaron

    2013-04-01

    Lung cancer is the leading cause of cancer deaths, yet research funding is by far the lowest for lung cancer than for any other cancer compared with respective death rates. Although this discrepancy should appear alarming, one could argue that lung cancer deserves less attention because it is more attributable to poor life choices than other common cancers. Accordingly, the general question that I ask in this article is whether victims of more avoidable diseases, such as lung cancer, deserve to have their needs taken into less consideration than those of less avoidable diseases, on the grounds of either retributive or distributive justice. Such unequal treatment may be the "penalty" one incurs for negligent or reckless behavior. However, I hope to show that such unequal treatment cannot be supported by any coherent accounts of retributive or distributive justice.

  8. Justice and lung cancer.

    PubMed

    Wilson, Aaron

    2013-04-01

    Lung cancer is the leading cause of cancer deaths, yet research funding is by far the lowest for lung cancer than for any other cancer compared with respective death rates. Although this discrepancy should appear alarming, one could argue that lung cancer deserves less attention because it is more attributable to poor life choices than other common cancers. Accordingly, the general question that I ask in this article is whether victims of more avoidable diseases, such as lung cancer, deserve to have their needs taken into less consideration than those of less avoidable diseases, on the grounds of either retributive or distributive justice. Such unequal treatment may be the "penalty" one incurs for negligent or reckless behavior. However, I hope to show that such unequal treatment cannot be supported by any coherent accounts of retributive or distributive justice. PMID:23449364

  9. Lungs and Respiratory System

    MedlinePlus

    ... called alveoli, where the exchange of oxygen and carbon dioxide actually takes place. Each lung houses about 300- ... growth. Without oxygen, the body's cells would die. Carbon dioxide is the waste gas produced when carbon is ...

  10. What Are the Lungs?

    MedlinePlus

    ... oxygen from the air. They also help remove carbon dioxide (a waste gas that can be toxic) from ... The lungs' intake of oxygen and removal of carbon dioxide is called gas exchange. Gas exchange is part ...

  11. Repeated occurrence of second primary lung cancer at different sites in trachea: a case report.

    PubMed

    Lee, Yong Chul; Park, Yun Ji; Gang, Su Jin; Chung, Myung Ja; Kim, So Ri

    2015-05-01

    Multiple or second primary lung cancers can develop at any sites in the lung with same or different histologic types, synchronously and/or metachronously. In case of metachronous occurrence of the second primary lung cancer, it is easy to confuse with the primary lung cancer as a recurrence of precedent lung malignancy treated successfully or metastasis. Previous reports have demonstrated that majority of the second primary lung malignancies have same histologic types regardless of their developing time and location. However, the repeated occurrence of the second primary lung malignancy, in particular with the different histologic features, is a very rare condition.A 62-year-old male who had past history of squamous cell carcinoma treated with surgery and adjuvant chemotherapy and the recurrence of lung malignancy on the trachea, which was also resected successfully visited our hospital due to blood tinged sputum. Evaluation using bronchoscopy and chest computed tomography revealed the tracheal mass looked similar grossly to the previous recurred tracheal mass that was resected surgically. Unexpectedly, the newly developed tracheal mass was confirmed as small cell lung cancer, the different histologic type from previous ones.In this report, we describe an interesting case of subsequent occurrence of second primary lung cancers showing histologic shifting at different sites in trachea, suggesting that it is important for physician to make an effort to identify the histologic characteristics of second primary lung cancers for the correct and adequate treatment no matter what they exhibit similar gross morphology.

  12. Indium Lung Disease

    PubMed Central

    Nakano, Makiko; Omae, Kazuyuki; Takeuchi, Koichiro; Chonan, Tatsuya; Xiao, Yong-long; Harley, Russell A.; Roggli, Victor L.; Hebisawa, Akira; Tallaksen, Robert J.; Trapnell, Bruce C.; Day, Gregory A.; Saito, Rena; Stanton, Marcia L.; Suarthana, Eva; Kreiss, Kathleen

    2012-01-01

    Background: Reports of pulmonary fibrosis, emphysema, and, more recently, pulmonary alveolar proteinosis (PAP) in indium workers suggested that workplace exposure to indium compounds caused several different lung diseases. Methods: To better understand the pathogenesis and natural history of indium lung disease, a detailed, systematic, multidisciplinary analysis of clinical, histopathologic, radiologic, and epidemiologic data for all reported cases and workplaces was undertaken. Results: Ten men (median age, 35 years) who produced, used, or reclaimed indium compounds were diagnosed with interstitial lung disease 4-13 years after first exposure (n = 7) or PAP 1-2 years after first exposure (n = 3). Common pulmonary histopathologic features in these patients included intraalveolar exudate typical of alveolar proteinosis (n = 9), cholesterol clefts and granulomas (n = 10), and fibrosis (n = 9). Two patients with interstitial lung disease had pneumothoraces. Lung disease progressed following cessation of exposure in most patients and was fatal in two. Radiographic data revealed that two patients with PAP subsequently developed fibrosis and one also developed emphysematous changes. Epidemiologic investigations demonstrated the potential for exposure to respirable particles and an excess of lung abnormalities among coworkers. Conclusions: Occupational exposure to indium compounds was associated with PAP, cholesterol ester crystals and granulomas, pulmonary fibrosis, emphysema, and pneumothoraces. The available evidence suggests exposure to indium compounds causes a novel lung disease that may begin with PAP and progress to include fibrosis and emphysema, and, in some cases, premature death. Prospective studies are needed to better define the natural history and prognosis of this emerging lung disease and identify effective prevention strategies. PMID:22207675

  13. [Pathology of lung cancer].

    PubMed

    Theegarten, D; Hager, T

    2016-09-01

    Lung cancer is the leading cause of cancer death in men and the second most frequent cause in women. The pathology of lung tumors is of special relevance concerning therapy and prognosis and current classification systems have to be taken into consideration. The results of molecular tissue subtyping allow further classification and therapeutic options. The histological entities are mainly associated with typical X‑ray morphological features. PMID:27495784

  14. Scotland's first iron lung.

    PubMed

    Porter, I A; Williams, M J

    1997-08-01

    The history of artificial ventilation and the development of the iron lung in the USA by Drinker and his colleagues is discussed. The building and use of an iron lung by Dr R G Henderson in Aberdeen in 1933 is described. The development of other types of ventilator in the UK is recorded and the circumstances whereby positive pressure ventilation was introduced in Denmark in 1952 is outlined. PMID:9507591

  15. Lung epinephrine synthesis

    SciTech Connect

    Kennedy, B.; Elayan, H.; Ziegler, M.G. )

    1990-04-01

    We studied in vitro and in vivo epinephrine (E) synthesis by rat lung. Nine days after removal of the adrenal medullas, circulating E was reduced to 7% of levels found in sham-operated rats but 30% of lung E remained. Treatment of demedullated rats with 6 hydroxydopamine plus reserpine did not further reduce lung E. In the presence of S-(3H)adenosylmethionine lung homogenates readily N-methylated norepinephrine (NE) to form (3H)E. The rate of E synthesis by lung homogenates was progressively more rapid with increasing NE up to a concentration of 3 mM, above which it declined. The rate of E formation was optimal at an incubation pH of 8 and at temperatures of approximately 55 degrees C. We compared the E-forming enzyme(s) of lung homogenates with those of adrenal and cardiac ventricle. The adrenal contains mainly phenylethanolamine N-methyltransferase (PNMT), which is readily inhibited by SKF 29661 and methylates dopamine (DA) very poorly. Cardiac ventricles contain mainly nonspecific N-methyltransferase (NMT), which is poorly inhibited by SKF 29661 and readily methylates both DA and NE. Lung homogenates were inhibited by SKF 29661 about half as well as adrenal but more than ventricle. We used the rate of E formation from NE as an index of PNMT-like activity and deoxyepinephrine synthesis from DA as an index of NMT-like activity. PNMT and NMT activity in rat lung homogenates were not correlated with each other, displayed different responses to change in temperature, and were affected differently by glucocorticoids.

  16. Lung Parenchymal Mechanics

    PubMed Central

    Suki, Béla; Stamenovic, Dimitrije; Hubmayr, Rolf

    2014-01-01

    The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key determinant of lung deformability that influences many phenomena including local ventilation, regional blood flow, tissue stiffness, smooth muscle contractility, and alveolar stability. The main pathway for stress transmission is through the extracellular matrix. Thus, the mechanical properties of the matrix play a key role both in lung function and biology. These mechanical properties in turn are determined by the constituents of the tissue, including elastin, collagen, and proteoglycans. In addition, the macroscopic mechanical properties are also influenced by the surface tension and, to some extent, the contractile state of the adherent cells. This article focuses on the biomechanical properties of the main constituents of the parenchyma in the presence of prestress and how these properties define normal function or change in disease. An integrated view of lung mechanics is presented and the utility of parenchymal mechanics at the bedside as well as its possible future role in lung physiology and medicine are discussed. PMID:23733644

  17. Weight preserving image registration for monitoring disease progression in lung CT.

    PubMed

    Gorbunova, Vladlena; Lol, Pechin; Ashraf, Haseem; Dirksen, Asger; Nielsen, Mads; de Bruijne, Marleen

    2008-01-01

    We present a new image registration based method for monitoring regional disease progression in longitudinal image studies of lung disease. A free-form image registration technique is used to match a baseline 3D CT lung scan onto a following scan. Areas with lower intensity in the following scan compared with intensities in the deformed baseline image indicate local loss of lung tissue that is associated with progression of emphysema. To account for differences in lung intensity owing to differences in the inspiration level in the two scans rather than disease progression, we propose to adjust the density of lung tissue with respect to local expansion or compression such that the total weight of the lungs is preserved during deformation. Our method provides a good estimation of regional destruction of lung tissue for subjects with a significant difference in inspiration level between CT scans and may result in a more sensitive measure of disease progression than standard quantitative CT measures.

  18. Digital correction of computed X-radiographs for coral densitometry

    NASA Astrophysics Data System (ADS)

    Boucher, H.; Duprey, N.; Jiménez, C.

    2011-12-01

    Corals are widely used for environmental and climatic changes assessment as their skeletal growth is influenced by the surrounding environment. Variations in skeletal density are sensitive to environmental variations (water temperature, nutrients concentration etc.). Digitized X-radiographs have been used for coral skeleton density measurements since the 1980s. However, the shape of the X-ray beam emitted during the irradiation process is strongly distorted due to spherical spreading (inverse square law) and heel effect. Consequently, the X-ray intensity intersecting the surface of the sensitive film or the electronic sensor (e.g. PSL plate) is heterogeneous. These heterogeneities are characterized by an asymmetrical concentric pattern of decreasing intensity from the center to the edges of the X-radiographs. It commonly generates an error on density measurements that may reach up to 40%. This is twice as much as the seasonal density variations that are usually found in corals. Until now, extra X-ray images or aluminum standards were used to correct X-radiographs. Such corrective methods may be constraining when working with a high number of coral samples. We present an inexpensive, straightforward, and accurate method to correct strong heterogeneities of X-ray irradiation that affect X-ray images. The method relies on the relation between optical density (OD) and skeletal density; it is non-destructive, and provides high-resolution measurements. Our method was applied to measure density variations on Caribbean reef-building coral Siderastrea siderea from Costa Rica. The basic assumption is that the X-radiograph background, i.e., areas without objects, records the asymmetrical concentric pattern of X-ray intensity. A full image of this pattern was created with a natural neighbor interpolation. The resulting modeled image was then subtracted from the original X-ray image, permitting thus a reliable OD measurement directly on the corrected X-ray image. This Digital

  19. Hyperpolarized Xenon-129 Magnetic Resonance Imaging of Functional Lung Microstructure

    NASA Astrophysics Data System (ADS)

    Dregely, Isabel

    Hyperpolarized 129Xe (HXe) is a non-invasive contrast agent for lung magnetic resonance imaging (MRI), which upon inhalation follows the functional pathway of oxygen in the lung by dissolving into lung tissue structures and entering the blood stream. HXe MRI therefore provides unique opportunities for functional lung imaging of gas exchange which occurs from alveolar air spaces across the air-blood boundary into parenchymal tissue. However challenges in acquisition speed and signal-to-noise ratio have limited the development of a HXe imaging biomarker to diagnose lung disease. This thesis addresses these challenges by introducing parallel imaging to HXe MRI. Parallel imaging requires dedicated hardware. This work describes design, implementation, and characterization of a 32-channel phased-array chest receive coil with an integrated asymmetric birdcage transmit coil tuned to the HXe resonance on a 3 Tesla MRI system. Using the newly developed human chest coil, a functional HXe imaging method, multiple exchange time xenon magnetization transfer contrast (MXTC) is implemented. MXTC dynamically encodes HXe gas exchange into the image contrast. This permits two parameters to be derived regionally which are related to gas-exchange functionality by characterizing tissue-to-alveolar-volume ratio and alveolar wall thickness in the lung parenchyma. Initial results in healthy subjects demonstrate the sensitivity of MXTC by quantifying the subtle changes in lung microstructure in response to orientation and lung inflation. Our results in subjects with lung disease show that the MXTC-derived functional tissue density parameter exhibits excellent agreement with established imaging techniques. The newly developed dynamic parameter, which characterizes the alveolar wall, was elevated in subjects with lung disease, most likely indicating parenchymal inflammation. In light of these observations we believe that MXTC has potential as a biomarker for the regional quantification of 1

  20. [Lung Cancer as an Occupational Disease].

    PubMed

    Baur, X; Woitowitz, H-J

    2016-08-01

    Lung cancer is one of the most frequently encountered cancer types. According to the latest WHO data, about 10 % of this disease are due to occupational exposure to cancerogens. Asbestos is still the number one carcinogen. Further frequent causes include quarz and ionizing radiation (uranium mining). Probable causes of the disease can be identified only with the help of detailed occupational history taken by a medical specialist and qualified exposure assessment. Without clarifying the cause of the disease, there is neither a correct insurance procedure nor compensation for the victim, and furthermore, required preventive measures cannot be initiated. PMID:27512930

  1. Onboard image correction

    NASA Technical Reports Server (NTRS)

    Martin, D. R.; Smaulon, A. S.; Hamori, A. S.

    1980-01-01

    A processor architecture for performing onboard geometric and radiometric correction of LANDSAT imagery is described. The design uses a general purpose processor to calculate the distortion values at selected points in the image and a special purpose processor to resample (calculate distortion at each image point and interpolate the intensity) the sensor output data. A distinct special purpose processor is used for each spectral band. Because of the sensor's high output data rate, 80 M bit per second, the special purpose processors use a pipeline architecture. Sizing has been done on both the general and special purpose hardware.

  2. Timebias corrections to predictions

    NASA Technical Reports Server (NTRS)

    Wood, Roger; Gibbs, Philip

    1993-01-01

    The importance of an accurate knowledge of the time bias corrections to predicted orbits to a satellite laser ranging (SLR) observer, especially for low satellites, is highlighted. Sources of time bias values and the optimum strategy for extrapolation are discussed from the viewpoint of the observer wishing to maximize the chances of getting returns from the next pass. What is said may be seen as a commercial encouraging wider and speedier use of existing data centers for mutually beneficial exchange of time bias data.

  3. Live Imaging of the Lung

    PubMed Central

    Looney, Mark R.; Bhattacharya, Jahar

    2015-01-01

    Live lung imaging has spanned the discovery of capillaries in the frog lung by Malpighi to the current use of single and multiphoton imaging of intravital and isolated perfused lung preparations incorporating fluorescent molecular probes and transgenic reporter mice. Along the way, much has been learned about the unique microcirculation of the lung, including immune cell migration and the mechanisms by which cells at the alveolar-capillary interface communicate with each other. In this review, we highlight live lung imaging techniques as applied to the role of mitochondria in lung immunity, mechanisms of signal transduction in lung compartments, studies on the composition of alveolar wall liquid, and neutrophil and platelet trafficking in the lung under homeostatic and inflammatory conditions. New applications of live lung imaging and the limitations of current techniques are discussed. PMID:24245941

  4. Smooth eigenvalue correction

    NASA Astrophysics Data System (ADS)

    Hendrikse, Anne; Veldhuis, Raymond; Spreeuwers, Luuk

    2013-12-01

    Second-order statistics play an important role in data modeling. Nowadays, there is a tendency toward measuring more signals with higher resolution (e.g., high-resolution video), causing a rapid increase of dimensionality of the measured samples, while the number of samples remains more or less the same. As a result the eigenvalue estimates are significantly biased as described by the Marčenko Pastur equation for the limit of both the number of samples and their dimensionality going to infinity. By introducing a smoothness factor, we show that the Marčenko Pastur equation can be used in practical situations where both the number of samples and their dimensionality remain finite. Based on this result we derive methods, one already known and one new to our knowledge, to estimate the sample eigenvalues when the population eigenvalues are known. However, usually the sample eigenvalues are known and the population eigenvalues are required. We therefore applied one of the these methods in a feedback loop, resulting in an eigenvalue bias correction method. We compare this eigenvalue correction method with the state-of-the-art methods and show that our method outperforms other methods particularly in real-life situations often encountered in biometrics: underdetermined configurations, high-dimensional configurations, and configurations where the eigenvalues are exponentially distributed.

  5. Complications of auricular correction

    PubMed Central

    Staindl, Otto; Siedek, Vanessa

    2008-01-01

    The risk of complications of auricular correction is underestimated. There is around a 5% risk of early complications (haematoma, infection, fistulae caused by stitches and granulomae, allergic reactions, pressure ulcers, feelings of pain and asymmetry in side comparison) and a 20% risk of late complications (recurrences, telehone ear, excessive edge formation, auricle fitting too closely, narrowing of the auditory canal, keloids and complete collapse of the ear). Deformities are evaluated less critically by patients than by the surgeons, providing they do not concern how the ear is positioned. The causes of complications and deformities are, in the vast majority of cases, incorrect diagnosis and wrong choice of operating procedure. The choice of operating procedure must be adapted to suit the individual ear morphology. Bandaging technique and inspections and, if necessary, early revision are of great importance for the occurence and progress of early complications, in addition to operation techniques. In cases of late complications such as keloids and auricles that are too closely fitting, unfixed full-thickness skin flaps have proved to be the most successful. Large deformities can often only be corrected to a limited degree of satisfaction. PMID:22073079

  6. Complications of auricular correction.

    PubMed

    Staindl, Otto; Siedek, Vanessa

    2007-01-01

    The risk of complications of auricular correction is underestimated. There is around a 5% risk of early complications (haematoma, infection, fistulae caused by stitches and granulomae, allergic reactions, pressure ulcers, feelings of pain and asymmetry in side comparison) and a 20% risk of late complications (recurrences, telehone ear, excessive edge formation, auricle fitting too closely, narrowing of the auditory canal, keloids and complete collapse of the ear). Deformities are evaluated less critically by patients than by the surgeons, providing they do not concern how the ear is positioned. The causes of complications and deformities are, in the vast majority of cases, incorrect diagnosis and wrong choice of operating procedure. The choice of operating procedure must be adapted to suit the individual ear morphology. Bandaging technique and inspections and, if necessary, early revision are of great importance for the occurence and progress of early complications, in addition to operation techniques. In cases of late complications such as keloids and auricles that are too closely fitting, unfixed full-thickness skin flaps have proved to be the most successful. Large deformities can often only be corrected to a limited degree of satisfaction. PMID:22073079

  7. 40 CFR 1065.690 - Buoyancy correction for PM sample media.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... media. 1065.690 Section 1065.690 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Buoyancy correction for PM sample media. (a) General. Correct PM sample media for their buoyancy in air if you weigh them on a balance. The buoyancy correction depends on the sample media density, the...

  8. 40 CFR 1065.690 - Buoyancy correction for PM sample media.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... media. 1065.690 Section 1065.690 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Buoyancy correction for PM sample media. (a) General. Correct PM sample media for their buoyancy in air if you weigh them on a balance. The buoyancy correction depends on the sample media density, the...

  9. 40 CFR 1065.690 - Buoyancy correction for PM sample media.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... media. 1065.690 Section 1065.690 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Buoyancy correction for PM sample media. (a) General. Correct PM sample media for their buoyancy in air if you weigh them on a balance. The buoyancy correction depends on the sample media density, the...

  10. 40 CFR 1065.690 - Buoyancy correction for PM sample media.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... media. 1065.690 Section 1065.690 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Buoyancy correction for PM sample media. (a) General. Correct PM sample media for their buoyancy in air if you weigh them on a balance. The buoyancy correction depends on the sample media density, the...

  11. 40 CFR 1065.690 - Buoyancy correction for PM sample media.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... media. 1065.690 Section 1065.690 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Buoyancy correction for PM sample media. (a) General. Correct PM sample media for their buoyancy in air if you weigh them on a balance. The buoyancy correction depends on the sample media density, the...

  12. Contact Lenses for Vision Correction

    MedlinePlus

    ... Contact Lenses Colored Contact Lenses Contact Lenses for Vision Correction Written by: Kierstan Boyd Reviewed by: Brenda ... on the surface of the eye. They correct vision like eyeglasses do and are safe when used ...

  13. Temperature Correction in Probe Measurements

    NASA Astrophysics Data System (ADS)

    Gutsev, S. A.

    2015-09-01

    This work is devoted to experimental investigations of a decaying plasma using Langmuir probes. The gas pressure, the discharge current, and the moment of afterglow were selected to obtain probe characteristics in collisionless, intermediate, and drifting regimes of motion of charged particles. The manner in which the shape of the volt- ampere characteristics changes on passage from the collisionless motion to diffusion motion has been shown. A detailed analysis has been made of the source of errors arising when orbital-motion formulas or the logarithmic-operation method are applied to processing of the probe curves. It has been shown that neglect of collisions of charged particles in the probe layer leads to an ion-density value overstated more than three times, an electron-temperature value overstated two times, and an ion temperature overstated three to nine times. A model of interaction of charged particles in the probe layer has been proposed for correction of the procedure of determining temperature. Such an approach makes it possible to determine the space-charge layer in the probe, and also the value of the self-consistent field. The use of the developed procedures gives good agreement between experimental and theoretical results.

  14. Effects of lung volume on clearance of solutes from the air spaces of lungs

    SciTech Connect

    Peterson, B.T.; James, H.L.; McLarty, J.W.

    1988-03-01

    Several investigators have shown that the clearance rate of aerosolized 99mTc-labeled diethylenetriamine pentaacetate (DTPA, mol wt = 492, radius = 0.6 nm) from the air spaces of the lungs of humans and experimental animals increases with lung volume. To further investigate this phenomenon we performed a compartmental analysis of the 2-h clearance of DTPA from the lungs of anesthetized sheep using a new method to more accurately correct for the effects of DTPA recirculation. This analysis showed that the DTPA clearance in eight sheep ventilated with zero end-expired pressure was best described by a one-compartment model with a clearance rate of 0.42 +/- 0.15%/min. Ventilating eight sheep with an end-expired pressure of 10 cmH/sub 2/O throughout the study increased the end-expired volume 0.4 +/- 0.1 liter BTPS and created a clearance curve that was best described by a two-compartment model. In these sheep 56 +/- 16% of the DTPA cleared from the lungs at a rate of 7.9 +/- 2.9%/min. The remainder cleared at a rate similar to that measured in the sheep ventilated with zero end-expired pressure (0.35 +/- 0.18%/min). Additional control and lung inflation experiments were performed using /sup 99m/Tc-labeled human serum albumin (mol wt = 66,000, radius = 3.6 nm). In six control sheep ventilated with zero end-expired pressure the albumin clearance was best described by a one-compartment model with a clearance rate of 0.06 +/- 0.02%/min. The clearance rate in six sheep with increased lung volume was slightly larger (0.09 +/- 0.02, P less than 0.05) but was well described by a one-compartment model.

  15. Spatial distribution of collagen and elastin fibers in the lungs

    SciTech Connect

    Mercer, R.R.; Crapo, J.D. )

    1990-01-01

    Surface tension forces acting on the thin-wall alveolar septa and the collagen-elastin fiber network are major factors in lung parenchymal micromechanics. Quantitative serial section analysis and morphometric evaluations of planar sections were used to determine the spatial location of collagen and elastin fibers in Sprague-Dawley rat and normal human lung samples. A large concentration of connective tissue fibers was located in the alveolar duct wall in both species. For rats, the tissue densities of collagen and elastin fibers located within 10 {mu}m of an alveolar duct were 13 and 9%, respectively. In human lung samples, the tissue densities of collagen and elastin fibers within 20 {mu}m of an alveolar duct were 18 and 16%, respectively. In both species, bands of elastin fibers formed a continuous ring around each alveolar mouth. In human lungs, elastin fibers were found to penetrate significantly deeper into alveolar septal walls than they did in rat lungs. The concentration of connective tissue elements in the alveolar duct walls of both species is consistent with their proposed roles as the principal load-bearing elements of the lung parenchyma.

  16. The Gravitational Effect of the Ocean Density Contrast for a Depth-Dependent Seawater Density Model

    NASA Astrophysics Data System (ADS)

    Novak, P.; Tenzer, R.; Gladkikh, V.

    2010-12-01

    In geophysical studies investigating the lithosphere structure, the topographic and consolidated crust density contrast stripping corrections are computed and applied to observed gravity data. The gravitational field generated by the ocean density contrast represents a significant amount of the signal to be modelled and subsequently subtracted from the gravity field. The ocean density contrast is typically calculated as the difference between the mean density values of the Earth’s crust and seawater. The currently available global geopotential models and the global elevation and bathymetry (ocean bottom depth) data allow modelling the topography corrected and bathymetry stripped gravity field quantities to a very high spectral resolution (up to degree 2159 of spherical harmonics) using methods for a spherical harmonic analysis and synthesis of the gravity field. The approximation of the actual seawater density distribution by the mean value yields relative errors up to 2% in computed values of the bathymetric stripping corrections. To reduce these errors, we adopt a depth-dependent theoretical model of the seawater density distribution to account for increasing seawater density with pressure/depth. The smaller lateral seawater density variations due to salinity and temperature and other oceanographic factors are not taken into consideration. The approximation of the seawater density by the depth-dependent density model reduces the maximum errors to less than 0.6%. The corresponding depth-averaged errors are below 0.1%. The depth-dependent seawater density model is facilitated in the forward modelling of the bathymetric stripping corrections. The expressions for computing the gravitational field quantities generated by the depth-dependent ocean density contrast are formulated in the spectral representation by means of the spherical bathymetric functions. These newly derived expressions are used to compute globally the bathymetric stripping corrections. The

  17. Radiation camera motion correction system

    DOEpatents

    Hoffer, P.B.

    1973-12-18

    The device determines the ratio of the intensity of radiation received by a radiation camera from two separate portions of the object. A correction signal is developed to maintain this ratio at a substantially constant value and this correction signal is combined with the camera signal to correct for object motion. (Official Gazette)

  18. Political Correctness and Cultural Studies.

    ERIC Educational Resources Information Center

    Carey, James W.

    1992-01-01

    Discusses political correctness and cultural studies, dealing with cultural studies and the left, the conservative assault on cultural studies, and political correctness in the university. Describes some of the underlying changes in the university, largely unaddressed in the political correctness debate, that provide the deep structure to the…

  19. Job Satisfaction in Correctional Officers.

    ERIC Educational Resources Information Center

    Diehl, Ron J.

    For more than a decade, correctional leaders throughout the country have attempted to come to grips with the basic issues involved in ascertaining and meeting the needs of correctional institutions. This study investigated job satisfaction in 122 correctional officers employed in both rural and urban prison locations for the State of Kansas…

  20. Yearbook of Correctional Education 1989.

    ERIC Educational Resources Information Center

    Duguid, Stephen, Ed.

    This yearbook contains conference papers, commissioned papers, reprints of earlier works, and research-in-progress. They offer a retrospective view as well as address the mission and perspective of correctional education, its international dimension, correctional education in action, and current research. Papers include "Correctional Education and…

  1. Radon and lung cancer.

    PubMed

    Sethi, Tarsheen K; El-Ghamry, Moataz N; Kloecker, Goetz H

    2012-03-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Radon exposure is the second leading cause of lung cancer, following tobacco smoke. Radon is not only an independent risk factor; it also increases the risk of lung cancer in smokers. Numerous cohort, case-control, and experimental studies have established the carcinogenic potential of radon. The possibility of radon having a causative effect on other cancers has been explored but not yet proven. One of the postulated mechanisms of carcinogenesis is DNA damage by alpha particles mediated by the production of reactive oxygen species. The latter are also thought to constitute one of the common mechanisms underlying the synergistic effect of radon and tobacco smoke. With an estimated 21,000 lung cancer deaths attributable to radon in the United States annually, the need for radon mitigation is well acknowledged. The Environmental Protection Agency (EPA) has established an indoor limit of 4 picocuries (pCi)/L, and various methods are available for indoor radon reduction when testing shows higher levels. Radon mitigation should accompany smoking cessation measures in lung cancer prevention efforts.

  2. Lung Cancer Statistics.

    PubMed

    Torre, Lindsey A; Siegel, Rebecca L; Jemal, Ahmedin

    2016-01-01

    Lung cancer is the leading cause of cancer death among both men and women in the United States. It is also the leading cause of cancer death among men and the second leading cause of cancer death among women worldwide. Lung cancer rates and trends vary substantially by sex, age, race/ethnicity, socioeconomic status, and geography because of differences in historical smoking patterns. Lung cancer mortality rates in the United States are highest among males, blacks, people of lower socioeconomic status, and in the mid-South (e.g., Kentucky, Mississippi, Arkansas, and Tennessee). Globally, rates are highest in countries where smoking uptake began earliest, such as those in North America and Europe. Although rates are now decreasing in most of these countries (e.g., United States, United Kingdom, Australia), especially in men, they are increasing in countries where smoking uptake occurred later. Low- and middle-income countries now account for more than 50% of lung cancer deaths each year. This chapter reviews lung cancer incidence and mortality patterns in the United States and globally.

  3. Donor management and lung preservation for lung transplantation.

    PubMed

    Munshi, Laveena; Keshavjee, Shaf; Cypel, Marcelo

    2013-06-01

    Although lung transplantation has become a life-saving option for patients with end-stage lung disease, this intervention is hampered by a shortage of lungs in view of the growing number of people on the waiting list. Lungs are retrieved from only a small percentage of multiorgan donors, and the transplantation and intensive-care communities have recognised the need to develop innovative methods to expand the donor pool. Advancements in lung-preservation techniques in the preretrieval and postretrieval periods have increased the pool of available donors, and novel research and discoveries in this area have steadily improved post-transplantation adverse events. This Review summarises current best practice and the latest research on intensive-care management of a potential lung donor. We also discuss lung-preservation techniques, including advancements in normothermic ex-vivo lung perfusion, and the potential for a personalised medicine approach to the organ. PMID:24429157

  4. [Results of surgical treatment of generalized emphysema of the lungs].

    PubMed

    Iaitskiĭ, N A; Varlamov, V V; Gorbunkov, S D; Akopov, A L; Chernyĭ, S M; Lukina, O V; Chermenskiĭ, A G; Gembitskaia, T E

    2014-01-01

    An analysis of examination and treatment results was made in 123 patients with generalized emphysema of the lungs and respiratory failure of II-III degree. The patients were divided into two groups according to the age: younger than 40 years old (group A - 9 patients),40 years old and older (group B - 114). A surgical reduction of lung volume was performed to correct the respiratory failure in 69 patients. The rate of postoperative complications consisted of 14.7% in group A and it was 42.2% in group B. PMID:25055526

  5. A correction on coastal heads for groundwater flow models.

    PubMed

    Lu, Chunhui; Werner, Adrian D; Simmons, Craig T; Luo, Jian

    2015-01-01

    We introduce a simple correction to coastal heads for constant-density groundwater flow models that contain a coastal boundary, based on previous analytical solutions for interface flow. The results demonstrate that accurate discharge to the sea in confined aquifers can be obtained by direct application of Darcy's law (for constant-density flow) if the coastal heads are corrected to ((α + 1)/α)hs  - B/2α, in which hs is the mean sea level above the aquifer base, B is the aquifer thickness, and α is the density factor. For unconfined aquifers, the coastal head should be assigned the value hs1+α/α. The accuracy of using these corrections is demonstrated by consistency between constant-density Darcy's solution and variable-density flow numerical simulations. The errors introduced by adopting two previous approaches (i.e., no correction and using the equivalent fresh water head at the middle position of the aquifer to represent the hydraulic head at the coastal boundary) are evaluated. Sensitivity analysis shows that errors in discharge to the sea could be larger than 100% for typical coastal aquifer parameter ranges. The location of observation wells relative to the toe is a key factor controlling the estimation error, as it determines the relative aquifer length of constant-density flow relative to variable-density flow. The coastal head correction method introduced in this study facilitates the rapid and accurate estimation of the fresh water flux from a given hydraulic head measurement and allows for an improved representation of the coastal boundary condition in regional constant-density groundwater flow models.

  6. EDITORIAL: Politically correct physics?

    NASA Astrophysics Data System (ADS)

    Pople Deputy Editor, Stephen

    1997-03-01

    If you were a caring, thinking, liberally minded person in the 1960s, you marched against the bomb, against the Vietnam war, and for civil rights. By the 1980s, your voice was raised about the destruction of the rainforests and the threat to our whole planetary environment. At the same time, you opposed discrimination against any group because of race, sex or sexual orientation. You reasoned that people who spoke or acted in a discriminatory manner should be discriminated against. In other words, you became politically correct. Despite its oft-quoted excesses, the political correctness movement sprang from well-founded concerns about injustices in our society. So, on balance, I am all for it. Or, at least, I was until it started to invade science. Biologists were the first to feel the impact. No longer could they refer to 'higher' and 'lower' orders, or 'primitive' forms of life. To the list of undesirable 'isms' - sexism, racism, ageism - had been added a new one: speciesism. Chemists remained immune to the PC invasion, but what else could you expect from a group of people so steeped in tradition that their principal unit, the mole, requires the use of the thoroughly unreconstructed gram? Now it is the turn of the physicists. This time, the offenders are not those who talk disparagingly about other people or animals, but those who refer to 'forms of energy' and 'heat'. Political correctness has evolved into physical correctness. I was always rather fond of the various forms of energy: potential, kinetic, chemical, electrical, sound and so on. My students might merge heat and internal energy into a single, fuzzy concept loosely associated with moving molecules. They might be a little confused at a whole new crop of energies - hydroelectric, solar, wind, geothermal and tidal - but they could tell me what devices turned chemical energy into electrical energy, even if they couldn't quite appreciate that turning tidal energy into geothermal energy wasn't part of the

  7. Temperature Corrected Bootstrap Algorithm

    NASA Technical Reports Server (NTRS)

    Comiso, Joey C.; Zwally, H. Jay

    1997-01-01

    A temperature corrected Bootstrap Algorithm has been developed using Nimbus-7 Scanning Multichannel Microwave Radiometer data in preparation to the upcoming AMSR instrument aboard ADEOS and EOS-PM. The procedure first calculates the effective surface emissivity using emissivities of ice and water at 6 GHz and a mixing formulation that utilizes ice concentrations derived using the current Bootstrap algorithm but using brightness temperatures from 6 GHz and 37 GHz channels. These effective emissivities are then used to calculate surface ice which in turn are used to convert the 18 GHz and 37 GHz brightness temperatures to emissivities. Ice concentrations are then derived using the same technique as with the Bootstrap algorithm but using emissivities instead of brightness temperatures. The results show significant improvement in the area where ice temperature is expected to vary considerably such as near the continental areas in the Antarctic, where the ice temperature is colder than average, and in marginal ice zones.

  8. Electronic measurement correction devices

    SciTech Connect

    Mahns, R.R.

    1984-04-01

    The electronics semi-conductor revolution has touched every industry and home in the nation. The gas industry is no exception. Sophisticated gas measurement instrumentation has been with us for several decades now, but only in the last 10 years or so has it really begun to boom. First marketed were the flow computers dedicated to orifice meter measurement; but with steadily decreasing manufacturing costs, electronic instrumentation is now moving into the area of base volume, pressure and temperature correction previously handled almost solely by mechanical integrating instruments. This paper takes a brief look at some of the features of the newcomers on the market and how they stack up against the old standby mechanical base volume/pressure/temperature correctors.

  9. How Is Childhood Interstitial Lung Disease Treated?

    MedlinePlus

    ... the NHLBI on Twitter. How Is Childhood Interstitial Lung Disease Treated? Childhood interstitial lung disease (chILD) is ... prevent acid reflux, which can lead to aspiration. Lung Transplant A lung transplant may be an option ...

  10. Types of Childhood Interstitial Lung Disease

    MedlinePlus

    ... the NHLBI on Twitter. Types of Childhood Interstitial Lung Disease The broad term "childhood interstitial lung disease" ( ... affect are shown in the illustration below. Normal Lungs and Lung Structures Figure A shows the location ...

  11. Rethinking political correctness.

    PubMed

    Ely, Robin J; Meyerson, Debra E; Davidson, Martin N

    2006-09-01

    Legal and cultural changes over the past 40 years ushered unprecedented numbers of women and people of color into companies' professional ranks. Laws now protect these traditionally underrepresented groups from blatant forms of discrimination in hiring and promotion. Meanwhile, political correctness has reset the standards for civility and respect in people's day-to-day interactions. Despite this obvious progress, the authors' research has shown that political correctness is a double-edged sword. While it has helped many employees feel unlimited by their race, gender, or religion,the PC rule book can hinder people's ability to develop effective relationships across race, gender, and religious lines. Companies need to equip workers with skills--not rules--for building these relationships. The authors offer the following five principles for healthy resolution of the tensions that commonly arise over difference: Pause to short-circuit the emotion and reflect; connect with others, affirming the importance of relationships; question yourself to identify blind spots and discover what makes you defensive; get genuine support that helps you gain a broader perspective; and shift your mind-set from one that says, "You need to change," to one that asks, "What can I change?" When people treat their cultural differences--and related conflicts and tensions--as opportunities to gain a more accurate view of themselves, one another, and the situation, trust builds and relationships become stronger. Leaders should put aside the PC rule book and instead model and encourage risk taking in the service of building the organization's relational capacity. The benefits will reverberate through every dimension of the company's work.

  12. Kinetics of reversible-sequestration of leukocytes by the isolated perfused rat lung

    SciTech Connect

    Goliaei, B.

    1980-08-01

    The kinetics and morphology of sequestration and margination of rat leukocytes were studied using an isolated perfused and ventilated rat lung preparation. Whole rat blood, bone marrow suspension, or leukocyte suspensions, were used to perfuse the isolated rat lung. The lung was also perfused with latex particle suspensions and the passage of particles through the lung capillaries was studied. When a leukocyte suspension was perfused through the lung in the single-pass mode, the rate of sequestration decreased as more cells were perfused. In contrast, latex particles of a size comparable to that of leukocytes were totally stopped by the lung. When the leukocyte suspension was recirculated through the lung, cells were rapidly removed from circulation until a steady state was reached, after which no net removal of cells by the lung occurred. These results indicate that leukocytes are reversibly sequestered from circulation. The sequestered cells marginated and attached to the luminal surface of the endothelium of post-capillary venules and veins. A mathematical model was developed based on the assumption that the attachment and detachment of leukocytes to blood vessel walls follows first-order kinetics. The model correctly predicts the following characteristics of the system: (a) the kinetics of the sequestration of leukocytes by the lung; (b) the existence of a steady state when a suspension of leukocytes is recirculated through the lung; and (c) the independence of the fraction of cells remaining in circulation from the starting concentration for all values of starting concentration. (ERB)

  13. Screening for lung cancer.

    PubMed Central

    Carter, D.

    1981-01-01

    The survival from bronchogenic carcinoma is highly dependent upon stage at the time of treatment. This is particularly true for squamous cell carcinoma, adenocarcinoma, and large cell carcinoma, but holds true for small cell carcinoma as well. The problem presented to the medical profession has been to find a practical means of detecting lung cancer while it is still at an early stage. Three studies in progress have indicated that a larger proportion of the patients may be found to have early stage lung cancer when screened with a combination of chest X-rays and sputum cytology. However, the detection of these early stage cases has not yet been translated into an improvement in the overall mortality rate from lung cancer. PMID:6278787

  14. Mitochondria in Lung Diseases

    PubMed Central

    Aravamudan, Bharathi; Thompson, Michael A.; Pabelick, Christina M.; Prakash, Y. S.

    2014-01-01

    Summary Mitochondria are autonomous cellular organelles that oversee a variety of functions such as metabolism, energy production, calcium buffering, and cell fate determination. Regulation of their morphology and diverse activities beyond energy production are being recognized as playing major roles in cellular health and dysfunction. This review is aimed at summarizing what is known regarding mitochondrial contributions to pathogenesis of lung diseases. Emphasis is given to understanding the importance of structural and functional aspects of mitochondria in both normal cellular function (based on knowledge from other cell types) and in development and modulation of lung diseases such as asthma, COPD, cystic fibrosis and cancer. Emerging techniques that allow examination of mitochondria, and potential strategies to target mitochondria in the treatment of lung diseases are also discussed. PMID:23978003

  15. [Indium lung disease].

    PubMed

    Nakano, Makiko; Omae, Kazuyuki

    2014-02-01

    "Indium lung" is a new occupational lung disease. The global demand for indium, the major material used in manufacturing flat-screen display panels, has skyrocketed since the 1990s (Japan comprises 85% of the worldwide demand). The first case was reported in Japan in 2003, followed by seven cases (interstitial pneumonia and emphysema) in Japan. Two pulmonary alveolar proteinosis (PAP) cases in the USA followed in 2011. Indium lung has been described as interstitial pneumonia, pneumothorax, emphysema, and PAP. In 2013, The Japan Ministry of Health, Labor and Welfare issued an "Ordinance on the Prevention of Hazards Due to Specified Chemical Substances" requiring employers to provide regular health checks for employees and measurements of work environment concentrations of respirable indium dust.

  16. Lung mass, right upper lung - chest x-ray (image)

    MedlinePlus

    This picture is a chest x-ray of a person with a lung mass. This is a front view, where the lungs are the two dark areas and ... visible in the middle of the chest. The x-ray shows a mass in the right upper lung, ...

  17. Adenocarcinoma of Lung Presenting as Interstitial Lung Disease.

    PubMed

    Mohapatra, Prasanta R; Aggarwal, Deepak; Punia, Rajpal S; Janmeja, Ashok K

    2015-01-01

    Interstitial lung diseases (ILDs) presenting as lung cancer have been reported rarely from India. The present case describes a possibly primary lung cancer in a non-smoker who presented radiologically as a case of ILD. The possible mechanisms available in the literature are discussed.

  18. SU-E-T-131: Dosimetric Impact and Evaluation of Different Heterogenity Algorithm in Volumetric Modulated Arc Therapy Plan for Stereotactic Ablative Radiotherapy Lung Treatment with the Flattening Filter Free Beam

    SciTech Connect

    Chung, J; Kim, J; Lee, J; Kim, Y

    2014-06-01

    Purpose: The present study aimed to investigate the dosimetric impacts of the anisotropic analytic algorithm (AAA) and the Acuros XB (AXB) plan for lung stereotactic ablative radiation therapy using flattening filter-free (FFF) beam. We retrospectively analyzed 10 patients. Methods: We retrospectively analyzed 10 patients. The dosimetric parameters for the target and organs at risk (OARs) from the treatment plans calculated with these dose calculation algorithms were compared. The technical parameters, such as the computation times and the total monitor units (MUs), were also evaluated. Results: A comparison of DVHs from AXB and AAA showed that the AXB plan produced a high maximum PTV dose by average 4.40% with a statistical significance but slightly lower mean PTV dose by average 5.20% compared to the AAA plans. The maximum dose to the lung was slightly higher in the AXB compared to the AAA. For both algorithms, the values of V5, V10 and V20 for ipsilateral lung were higher in the AXB plan more than those of AAA. However, these parameters for contralateral lung were comparable. The differences of maximum dose for the spinal cord and heart were also small. The computation time of AXB was found fast with the relative difference of 13.7% than those of AAA. The average of monitor units (MUs) for all patients was higher in AXB plans than in the AAA plans. These results indicated that the difference between AXB and AAA are large in heterogeneous region with low density. Conclusion: The AXB provided the advantages such as the accuracy of calculations and the reduction of the computation time in lung stereotactic ablative radiotherapy (SABR) with using FFF beam, especially for VMAT planning. In dose calculation with the media of different density, therefore, the careful attention should be taken regarding the impacts of different heterogeneity correction algorithms. The authors report no conflicts of interest.

  19. CXCR4 Blockade Attenuates Hyperoxia Induced Lung Injury in Neonatal Rats

    PubMed Central

    Drummond, Shelley; Ramachandran, Shalini; Torres, Eneida; Huang, Jian; Hehre, Dorothy; Suguihara, Cleide; Young, Karen C.

    2015-01-01

    Background Lung inflammation is a key factor in the pathogenesis of bronchopulmonary dysplasia (BPD). Stromal derived factor-1 (SDF-1) and its receptor chemokine receptor 4 (CXCR4) modulate the inflammatory response. Whether antagonism of CXCR4 will alleviate lung inflammation in neonatal hyperoxia-induced lung injury is unknown. Objective To determine whether CXCR4 antagonism would attenuate lung injury in rodents with experimental BPD by decreasing pulmonary inflammation. Methods Newborn rats exposed to normoxia (RA) or hyperoxia (FiO2=0.9) from postnatal day 2 (P2)-P16 were randomized to receive the CXCR4 antagonist, AMD3100 or placebo (PL) from P5 to P15. Lung alveolarization, angiogenesis, and inflammation were evaluated at P16. Results As compared to RA, hyperoxic-PL pups had a decrease in alveolarization, reduced lung vascular density and increased lung inflammation. In contrast, AMD3100-treated hyperoxic pups had improved alveolarization and increased angiogenesis. This improvement in lung structure was accompanied by a decrease in bronchoalveolar lavage fluid macrophage and neutrophil count and reduced lung myeloperoxidase activity. Conclusion CXCR4 antagonism decreases lung inflammation and improves alveolar as well as vascular structure in neonatal rats with experimental BPD. These findings suggest a novel therapeutic strategy to alleviate lung injury in preterm infants with BPD. PMID:25825119

  20. The ALCHEMIST Lung Cancer Trial

    Cancer.gov

    A collection of material about the ALCHEMIST lung cancer trial that will examine tumor tissue from patients with early-stage, completely resected lung cancer for gene mutations in the EGFR and ALK genes, and a

  1. Lung Cancer Rates by State

    MedlinePlus

    ... HPV-Associated Ovarian Prostate Skin Uterine Cancer Home Lung Cancer Rates by State Language: English Español (Spanish) ... incidence data are currently available. Rates of Getting Lung Cancer by State The number of people who ...

  2. Lung-MAP Clinical Trial

    Cancer.gov

    A collection of material about the Lung-MAP study, which will examine treatment outcomes for patients with squamous cell lung cancer assigned to different targeted drugs based on the results of genomic tumor profiling.

  3. The ALCHEMIST Lung Cancer Trials

    Cancer.gov

    A collection of material about the ALCHEMIST lung cancer trials that will examine tumor tissue from patients with early-stage, completely resected lung cancer for gene mutations in the EGFR and ALK genes, and a

  4. National Lung Screening Trial (NLST)

    Cancer.gov

    The National Lung Screening Trial (NLST), a research study sponsored by the National Cancer Institute that used low-dose helical CT scans or chest X-ray to screen men and women at risk for lung cancer.

  5. G-corrected holographic dark energy model

    NASA Astrophysics Data System (ADS)

    Malekjani, M.; Honari-Jafarpour, M.

    2013-08-01

    Here we investigate the holographic dark energy model in the framework of FRW cosmology where the Newtonian gravitational constant, G, is varying with cosmic time. Using the complementary astronomical data which support the time dependency of G, the evolutionary treatment of EoS parameter and energy density of dark energy model are calculated in the presence of time variation of G. It has been shown that in this case, the phantom regime can be achieved at the present time. We also calculate the evolution of G-corrected deceleration parameter for holographic dark energy model and show that the dependency of G on the comic time can influence on the transition epoch from decelerated expansion to the accelerated phase. Finally we perform the statefinder analysis for G-corrected holographic model and show that this model has a shorter distance from the observational point in s- r plane compare with original holographic dark energy model.

  6. Radon and lung cancer

    SciTech Connect

    Samet, J.M.

    1989-05-10

    Radon, an inert gas released during the decay of uranium-238, is ubiquitous in indoor and outdoor air and contaminates many underground mines. Extensive epidemiologic evidence from studies of underground miners and complementary animal data have documented that radon causes lung cancer in smokers and nonsmokers. Radon must also be considered a potentially important cause of lung cancer for the general population, which is exposed through contamination of indoor air by radon from soil, water, and building materials. This review describes radon's sources, levels in U.S. homes, dosimetry, the epidemiologic evidence from studies of miners and the general population, and the principal, recent risk assessments.91 references.

  7. Radon and lung cancer.

    PubMed

    Samet, J M

    1989-05-10

    Radon, an inert gas released during the decay of uranium-238, is ubiquitous in indoor and outdoor air and contaminates many underground mines. Extensive epidemiologic evidence from studies of underground miners and complementary animal data have documented that radon causes lung cancer in smokers and nonsmokers. Radon must also be considered a potentially important cause of lung cancer for the general population, which is exposed through contamination of indoor air by radon from soil, water, and building materials. This review describes radon's sources, levels in U.S. homes, dosimetry, the epidemiologic evidence from studies of miners and the general population, and the principal, recent risk assessments.

  8. A classification framework for lung tissue categorization

    NASA Astrophysics Data System (ADS)

    Depeursinge, Adrien; Iavindrasana, Jimison; Hidki, Asmâa; Cohen, Gilles; Geissbuhler, Antoine; Platon, Alexandra; Poletti, Pierre-Alexandre; Müller, Henning

    2008-03-01

    We compare five common classifier families in their ability to categorize six lung tissue patterns in high-resolution computed tomography (HRCT) images of patients affected with interstitial lung diseases (ILD) but also normal tissue. The evaluated classifiers are Naive Bayes, k-Nearest Neighbor (k-NN), J48 decision trees, Multi-Layer Perceptron (MLP) and Support Vector Machines (SVM). The dataset used contains 843 regions of interest (ROI) of healthy and five pathologic lung tissue patterns identified by two radiologists at the University Hospitals of Geneva. Correlation of the feature space composed of 39 texture attributes is studied. A grid search for optimal parameters is carried out for each classifier family. Two complementary metrics are used to characterize the performances of classification. Those are based on McNemar's statistical tests and global accuracy. SVM reached best values for each metric and allowed a mean correct prediction rate of 87.9% with high class-specific precision on testing sets of 423 ROIs.

  9. SU-E-J-55: Dosimetric Evaluation of Centrally Located Lung Tumors: A Monte Carlo (MC) Study of Lung SBRT Planning

    SciTech Connect

    Pokhrel, D; Badkul, R; Jiang, H; Saleh, H; Estes, C; Park, J; Kumar, P; Wang, F

    2014-06-01

    Purpose: To compare dose distributions calculated using the iPlan XVMC algorithm and heterogeneities corrected/uncorrected Pencil Beam (PB-hete/PB-homo) algorithms for SBRT treatments of lung tumors. Methods: Ten patients with centrally located solitary lung tumors were treated using MC-based SBRT to 60Gy in 5 fractions for PTVV100%=95%. ITV was delineated on MIP-images based on 4D-CT scans. PTVs(ITV+5mm margins) ranged from 10.1–106.5cc(mean=48.6cc). MC-SBRT plans were generated with a combination of non-coplanar conformal arcs/beams using iPlan-XVMC-algorithm (BrainLABiPlan ver.4.1.2) for Novalis-TX consisting of HD-MLCs and 6MV-SRS(1000MU/min) mode, following RTOG 0813 dosimetric criteria. For comparison, PB-hete/PB-homo algorithms were used to re-calculate dose distributions using same beam configurations, MLCs/monitor units. Plans were evaluated with isocenter/maximal/mean doses to PTV. Normal lung doses were evaluated with V5/V10/V20 and mean-lung-dose(MLD), excluding PTV. Other OAR doses such as maximal spinal cord/2cc-esophagus/max bronchial tree (BT/maximal heart doses were tabulated. Results: Maximal/mean/isocenter doses to PTV calculated by PB-hete were uniformly larger than MC plans by a factors of 1.09/1.13/1.07, on average, whereas they were consistently lower by PB-homo by a factors of 0.9/0.84/0.9, respectively. The volume covered by 5Gy/10Gy/20Gy isodose-lines of the lung were comparable (average within±3%) when calculated by PB-hete compared to XVMC, but, consistently lower by PB-homo by a factors of 0.90/0.88/0.85, respectively. MLD was higher with PB-hete by 1.05, but, lower by PB-homo by 0.9, on average, compared to XVMC. XVMC max-cord/max-BT/max-heart and 2cc of esophagus doses were comparable to PB-hete; however, PB-homo underestimates by a factors of 0.82/0.89/0.88/0.86, on average, respectively. Conclusion: PB-hete significantly overestimates dose to PTV relative to XVMC -hence underdosing the target. MC is more complex and accurate with

  10. Full chip correction of EUV design

    NASA Astrophysics Data System (ADS)

    Lorusso, G. F.; Hendrickx, E.; Fenger, G. L.; Niroomand, A.

    2010-04-01

    Extreme Ultraviolet Lithography (EUVL) is currently the most promising technology for advanced manufacturing nodes: it recently demonstrated the feasibility of 32nm and 22nm node devices, and pre-production tools are expected to be delivered by 2010. Generally speaking, EUVL is less in need of Optical Proximity Correction (OPC) as compared to 193nm lithography, and the device feasibility studies were indeed carried out with limited or no correction. However, a rigorous optical correction strategy and an appropriate Electronic Design Automation (EDA) infrastructure is critical to face the challenges of the 22nm node and beyond, and EUV-specific effects such as flare and shadowing have to be fully integrated in the correction flow and properly tested. This study aims to assess in detail the quality of a full chip optical correction for a EUV design, as well to discuss the available approaches to compensate for EUV-specific effects. Extensive data sets have been collected on the ASML EUV Alpha-Demo Tool (ADT) using the latest IMEC baseline resist Shin-Etsu SEVR59. In total about 1300 CD measurements at wafer level and 700 at mask level were used as input for model calibration and validation. The smallest feature size in the data set was 32nm. Both one-dimensional and two-dimensional structures through CD and pitch were measured. The mask used in this calibration exercise allowed the authors to modulate flare by varying tiling densities within the range expected in the final design. The OPC model was fitted and validated against the CD data collected on the EUV ADT. The shadowing effect was modeled by means of a single bias correction throughout the design. Horizontal and vertical features of different type through pitch and CD were used to calibrate the shadowing correction, and the extent of the validity of the single bias approach is discussed. In addition, the quality of the generated full-chip flare maps has been tested against experimental results, and the model

  11. Robust lung identification in MSCT via controlled flooding and shape constraints: dealing with anatomical and pathological specificity

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Tarando, Sebastian; Brillet, Pierre-Yves; Grenier, Philippe A.

    2016-03-01

    Correct segmentation and labeling of lungs in thorax MSCT is a requirement in pulmonary/respiratory disease analysis as a basis for further processing or direct quantitative measures: lung texture classification, respiratory functional simulations, intrapulmonary vascular remodeling evaluation, detection of pleural effusion or subpleural opacities, are only few clinical applications related to this requirement. Whereas lung segmentation appears trivial for normal anatomo-pathological conditions, the presence of disease may complicate this task for fully-automated algorithms. The challenges come either from regional changes of lung texture opacity or from complex anatomic configurations (e.g., thin septum between lungs making difficult proper lung separation). They make difficult or even impossible the use of classic algorithms based on adaptive thresholding, 3-D connected component analysis and shape regularization. The objective of this work is to provide a robust segmentation approach of the pulmonary field, with individualized labeling of the lungs, able to overcome the mentioned limitations. The proposed approach relies on 3-D mathematical morphology and exploits the concept of controlled relief flooding (to identify contrasted lung areas) together with patient-specific shape properties for peripheral dense tissue detection. Tested on a database of 40 MSCT of pathological lungs, the proposed approach showed correct identification of lung areas with high sensitivity and specificity in locating peripheral dense opacities.

  12. Many Is Better Than One: An Integration of Multiple Simple Strategies for Accurate Lung Segmentation in CT Images.

    PubMed

    Shi, Zhenghao; Ma, Jiejue; Zhao, Minghua; Liu, Yonghong; Feng, Yaning; Zhang, Ming; He, Lifeng; Suzuki, Kenji

    2016-01-01

    Accurate lung segmentation is an essential step in developing a computer-aided lung disease diagnosis system. However, because of the high variability of computerized tomography (CT) images, it remains a difficult task to accurately segment lung tissue in CT slices using a simple strategy. Motived by the aforementioned, a novel CT lung segmentation method based on the integration of multiple strategies was proposed in this paper. Firstly, in order to avoid noise, the input CT slice was smoothed using the guided filter. Then, the smoothed slice was transformed into a binary image using an optimized threshold. Next, a region growing strategy was employed to extract thorax regions. Then, lung regions were segmented from the thorax regions using a seed-based random walk algorithm. The segmented lung contour was then smoothed and corrected with a curvature-based correction method on each axis slice. Finally, with the lung masks, the lung region was automatically segmented from a CT slice. The proposed method was validated on a CT database consisting of 23 scans, including a number of 883 2D slices (the number of slices per scan is 38 slices), by comparing it to the commonly used lung segmentation method. Experimental results show that the proposed method accurately segmented lung regions in CT slices. PMID:27635395

  13. Many Is Better Than One: An Integration of Multiple Simple Strategies for Accurate Lung Segmentation in CT Images

    PubMed Central

    Zhao, Minghua; Liu, Yonghong; Feng, Yaning; Zhang, Ming; He, Lifeng; Suzuki, Kenji

    2016-01-01

    Accurate lung segmentation is an essential step in developing a computer-aided lung disease diagnosis system. However, because of the high variability of computerized tomography (CT) images, it remains a difficult task to accurately segment lung tissue in CT slices using a simple strategy. Motived by the aforementioned, a novel CT lung segmentation method based on the integration of multiple strategies was proposed in this paper. Firstly, in order to avoid noise, the input CT slice was smoothed using the guided filter. Then, the smoothed slice was transformed into a binary image using an optimized threshold. Next, a region growing strategy was employed to extract thorax regions. Then, lung regions were segmented from the thorax regions using a seed-based random walk algorithm. The segmented lung contour was then smoothed and corrected with a curvature-based correction method on each axis slice. Finally, with the lung masks, the lung region was automatically segmented from a CT slice. The proposed method was validated on a CT database consisting of 23 scans, including a number of 883 2D slices (the number of slices per scan is 38 slices), by comparing it to the commonly used lung segmentation method. Experimental results show that the proposed method accurately segmented lung regions in CT slices. PMID:27635395

  14. Lung Ventilation/Perfusion Scan

    MedlinePlus

    ... from the NHLBI on Twitter. What Is a Lung Ventilation/Perfusion Scan? A lung ventilation/perfusion scan, or VQ scan, is a ... that measures air and blood flow in your lungs. A VQ scan most often is used to ...

  15. Environmental radiation and the lung

    PubMed Central

    Hamrick, Philip E.; Walsh, Phillip J.

    1974-01-01

    Environmental sources of radioactive materials and their relation to lung doses and lung burdens are described. The approaches used and the problems encountered in estimating lung doses are illustrated. Exposure to radon daughter products is contrasted to exposure to plutonium as particular examples of the hazards associated with radioactive materials of different chemical and physical characteristics. PMID:4620334

  16. Ex-vivo lung perfusion.

    PubMed

    Van Raemdonck, Dirk; Neyrinck, Arne; Cypel, Marcelo; Keshavjee, Shaf

    2015-06-01

    This review outlines the new and promising technique of ex vivo lung perfusion and its clinical potential to increase the number of transplantable lungs and to improve the early and late outcome after transplantation. The rationale, the experimental background, the technique and protocols, and available devices for ex vivo lung perfusion are discussed. The current clinical experience worldwide and ongoing clinical trials are reviewed.

  17. Thermodynamics of Error Correction

    NASA Astrophysics Data System (ADS)

    Sartori, Pablo; Pigolotti, Simone

    2015-10-01

    Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and work dissipated by the system during wrong incorporations. Its derivation is based on the second law of thermodynamics; hence, its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.

  18. A beam hardening correction method based on HL consistency

    NASA Astrophysics Data System (ADS)

    Mou, Xuanqin; Tang, Shaojie; Yu, Hengyong

    2006-08-01

    XCT with polychromatic tube spectrum causes artifact called beam hardening effect. The current correction in CT device is carried by apriori polynomial from water phantom experiment. This paper proposes a new beam hardening correction algorithm that the correction polynomial depends on the relativity of projection data in angles, which obeys Helgasson-Ludwig Consistency (HL Consistency). Firstly, a bi-polynomial is constructed to characterize the beam hardening effect based on the physical model of medical x-ray imaging. In this bi-polynomial, a factor r(γ,β) represents the ratio of the attenuation contributions caused by high density mass (bone, etc.) to low density mass (muscle, vessel, blood, soft tissue, fat, etc.) respectively in the projection angle β and fan angle γ. Secondly, let r(γ,β)=0, the bi-polynomial is degraded as a sole-polynomial. The coefficient of this polynomial can be calculated based on HL Consistency. Then, the primary correction is reached, which is also more efficient in theoretical than the correction method in current CT devices. Thirdly, based on the result of a normal CT reconstruction from the corrected projection data, r(γ,β) can be estimated. Fourthly, the coefficient of bi-polynomial can also be calculated based HL Consistency and the final correction are achieved. Experiments of circular cone beam CT indicate this method an excellent property. Correcting beam hardening effect based on HL Consistency, not only achieving a self-adaptive and more precise correction, but also getting rid of regular inconvenient water phantom experiments, will renovate the correction technique of current CT devices.

  19. Particles causing lung disease

    SciTech Connect

    Kilburn, K.H.

    1984-04-01

    The lung has a limited number of patterns of reaction to inhaled particles. The disease observed depends upon the location: conducting airways, terminal bronchioles and alveoli, and upon the nature of inflammation induced: acute, subacute or chronic. Many different agents cause narrowing of conducting airways (asthma) and some of these cause permanent distortion or obliteration of airways as well. Terminal bronchioles appear to be particularly susceptible to particles which cause goblet cell metaplasia, mucous plugging and ultimately peribronchiolar fibrosis. Cancer is the last outcome at the bronchial level and appears to depend upon continuous exposure to or retention of an agent in the airway and failure of the affected cells to be exfoliated which may be due to squamous metaplasia. Alveoli are populated by endothelial cells, Type I or pavement epithelial cells and metabolically active cuboidal Type II cells that produce the lungs specific surfactant, dipalmytol lecithin. Disturbances of surfactant lead to edema in distal lung while laryngeal edema due to anaphylaxis or fumes may produce asphyxia. Physical retention of indigestible particles or retention by immune memory responses may provoke hyaline membranes, stimulate alveolar lipoproteinosis and finally fibrosis. This later exuberant deposition of connective tissue has been best studied in the occupational pneumoconioses especially silicosis and asbestosis. In contrast emphysema a catabolic response appears frequently to result from leakage or release of lysosomal proteases into the lung during processing of cigarette smoke particles. 164 references, 1 figure, 2 tables.

  20. Lung and Bronchus Cancer

    MedlinePlus

    ... at a Glance Show More At a Glance Estimated New Cases in 2016 224,390 % of All New Cancer Cases 13.3% Estimated Deaths in 2016 158,080 % of All Cancer ... of This Cancer : In 2013, there were an estimated 415,707 people living with lung and bronchus ...