Science.gov

Sample records for lung epithelia model

  1. Function of Proton Channels in Lung Epithelia.

    PubMed

    Fischer, Horst

    2012-05-01

    The properties of the voltage-dependent H(+) channel have been studied in lung epithelial cells for many years, and recently HVCN1 mRNA expression has been linked directly to H(+) channel function in lung epithelium. The H(+) channel is activated by strong membrane depolarization, intracellular acidity, or extracellular alkalinity. Early on it was noted that these are surprising physiological channel characteristics when considering that lung epithelial cells have rather stable membrane potentials and a well pH-buffered intracellular milieu. This raised the question under which conditions the H(+) channel is active in lung epithelium and what is its physiological function there. Current understanding of the HVCN1 H(+) channel in lung epithelial acid secretion, its activation by an alkaline mucosal extracellular pH, and its role in the regulation of the mucosal pH of the lung has resulted in a model of mucosal pH regulation based on the parallel function of the HVCN1 H(+) channel and the CFTR HCO(3) (-) channel, which suggests that HVCN1 is a critical factor that maintains a neutral surface pH in the lung.

  2. Next Generation Respiratory Viral Vaccine System: Advanced and Emerging Bioengineered Human Lung Epithelia Model (HLEM) Organoid Technology

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; Schneider, Sandra L.; MacIntosh, Victor; Gibbons, Thomas F.

    2010-01-01

    Acute respiratory infections, including pneumonia and influenza, are the S t" leading cause of United States and worldwide deaths. Newly emerging pathogens signaled the need for an advanced generation of vaccine technology.. Human bronchial-tracheal epithelial tissue was bioengineered to detect, identify, host and study the pathogenesis of acute respiratory viral disease. The 3-dimensional (3D) human lung epithelio-mesechymal tissue-like assemblies (HLEM TLAs) share characteristics with human respiratory epithelium: tight junctions, desmosomes, microvilli, functional markers villin, keratins and production of tissue mucin. Respiratory Syntial Virus (RSV) studies demonstrate viral growth kinetics and membrane bound glycoproteins up to day 20 post infection in the human lung-orgainoid infected cell system. Peak replication of RSV occurred on day 10 at 7 log10 particles forming units per ml/day. HLEM is an advanced virus vaccine model and biosentinel system for emergent viral infectious diseases to support DoD global surveillance and military readiness.

  3. Biophysical model of ion transport across human respiratory epithelia allows quantification of ion permeabilities.

    PubMed

    Garcia, Guilherme J M; Boucher, Richard C; Elston, Timothy C

    2013-02-01

    Lung health and normal mucus clearance depend on adequate hydration of airway surfaces. Because transepithelial osmotic gradients drive water flows, sufficient hydration of the airway surface liquid depends on a balance between ion secretion and absorption by respiratory epithelia. In vitro experiments using cultures of primary human nasal epithelia and human bronchial epithelia have established many of the biophysical processes involved in airway surface liquid homeostasis. Most experimental studies, however, have focused on the apical membrane, despite the fact that ion transport across respiratory epithelia involves both cellular and paracellular pathways. In fact, the ion permeabilities of the basolateral membrane and paracellular pathway remain largely unknown. Here we use a biophysical model for water and ion transport to quantify ion permeabilities of all pathways (apical, basolateral, paracellular) in human nasal epithelia cultures using experimental (Ussing Chamber and microelectrode) data reported in the literature. We derive analytical formulas for the steady-state short-circuit current and membrane potential, which are for polarized epithelia the equivalent of the Goldman-Hodgkin-Katz equation for single isolated cells. These relations allow parameter estimation to be performed efficiently. By providing a method to quantify all the ion permeabilities of respiratory epithelia, the model may aid us in understanding the physiology that regulates normal airway surface hydration.

  4. Value of Organoids from Comparative Epithelia Models.

    PubMed

    Schwarz, Julia S; de Jonge, Hugo R; Forrest, John N

    2015-12-01

    Organoids have tremendous therapeutic potential. They were recently defined as a collection of organ-specific cell types, which self-organize through cell-sorting, develop from stem cells, and perform an organ specific function. The ability to study organoid development and growth in culture and manipulate their genetic makeup makes them particularly suitable for studying development, disease, and drug efficacy. Organoids show great promise in personalized medicine. From a single patient biopsy, investigators can make hundreds of organoids with the genetic landscape of the patient of origin. This genetic similarity makes organoids an ideal system in which to test drug efficacy. While many investigators assume human organoids are the ultimate model system, we believe that the generation of epithelial organoids of comparative model organisms has great potential. Many key transport discoveries were made using marine organisms. In this paper, we describe how deriving organoids from the spiny dogfish shark, zebrafish, and killifish can contribute to the fields of comparative biology and disease modeling with future prospects for personalized medicine. PMID:26604860

  5. Amiloride‐sensitive fluid resorption in NCI‐H441 lung epithelia depends on an apical Cl− conductance

    PubMed Central

    Korbmacher, Jonas P.; Michel, Christiane; Neubauer, Daniel; Thompson, Kristin; Mizaikoff, Boris; Frick, Manfred; Dietl, Paul; Wittekindt, Oliver H.

    2014-01-01

    Abstract Proper apical airway surface hydration is essential to maintain lung function. This hydration depends on well‐balanced water resorption and secretion. The mechanisms involved in resorption are still a matter of debate, especially as the measurement of transepithelial water transport remains challenging. In this study, we combined classical short circuit current (ISC) measurements with a novel D2O dilution method to correlate ion and water transport in order to reveal basic transport mechanisms in lung epithelia. D2O dilution method enabled precise analysis of water resorption with an unprecedented resolution. NCI‐H441 cells cultured at an air–liquid interface resorbed water at a rate of 1.5 ± 0.4 μL/(h cm2). Water resorption and ISC were reduced by almost 80% in the presence of the bulk Cl− channel inhibitor 5‐nitro‐2‐(3‐phenylpropylamino)benzoic acid (NPPB) or amiloride, a specific inhibitor of epithelial sodium channel (ENaC). However, water resorption and ISC were only moderately affected by forskolin or cystic fibrosis transmembrane regulator (CFTR) channel inhibitors (CFTRinh‐172 and glybenclamide). In line with previous studies, we demonstrate that water resorption depends on ENaC, and CFTR channels have only a minor but probably modulating effect on water resorption. However, the major ENaC‐mediated water resorption depends on an apical non‐CFTR Cl− conductance. PMID:24744880

  6. Cadmium-mediated toxicity of lung epithelia is enhanced through NF-κB-mediated transcriptional activation of the human zinc transporter ZIP8.

    PubMed

    Napolitano, Jessica R; Liu, Ming-Jie; Bao, Shengying; Crawford, Melissa; Nana-Sinkam, Patrick; Cormet-Boyaka, Estelle; Knoell, Daren L

    2012-05-01

    Cadmium (Cd), a toxic heavy metal and carcinogen that is abundantly present in cigarette smoke, is a cause of smoking-induced lung disease. SLC39A8 (ZIP8), a zinc transporter, is a major portal for Cd uptake into cells. We have recently identified that ZIP8 expression is under the transcriptional control of the NF-κB pathway. On the basis of this, we hypothesized that cigarette-smoke induced inflammation would increase ZIP8 expression in lung epithelia, thereby enhancing Cd uptake and cell toxicity. Herein we report that ZIP8 is a central mediator of Cd-mediated toxicity. TNF-α treatment of primary human lung epithelia and A549 cells induced ZIP8 expression, resulting in significantly higher cell death attributable to both apoptosis and necrosis following Cd exposure. Inhibition of the NF-κB pathway and ZIP8 expression significantly reduced cell toxicity. Zinc (Zn), a known cytoprotectant, prevented Cd-mediated cell toxicity via ZIP8 uptake. Consistent with cell culture findings, a significant increase in ZIP8 mRNA and protein expression was observed in the lung of chronic smokers compared with nonsmokers. From these studies, we conclude that ZIP8 expression is induced in lung epithelia in an NF-κB-dependent manner, thereby resulting in increased cell death in the presence of Cd. From this we contend that ZIP8 plays a critical role at the interface between micronutrient (Zn) metabolism and toxic metal exposure (Cd) in the lung microenvironment following cigarette smoke exposure. Furthermore, dietary Zn intake, or a lack thereof, may be a contributing factor in smoking-induced lung disease.

  7. Cadmium-mediated toxicity of lung epithelia is enhanced through NF-κB-mediated transcriptional activation of the human zinc transporter ZIP8

    PubMed Central

    Napolitano, Jessica R.; Liu, Ming-Jie; Bao, Shengying; Crawford, Melissa; Nana-Sinkam, Patrick; Cormet-Boyaka, Estelle

    2012-01-01

    Cadmium (Cd), a toxic heavy metal and carcinogen that is abundantly present in cigarette smoke, is a cause of smoking-induced lung disease. SLC39A8 (ZIP8), a zinc transporter, is a major portal for Cd uptake into cells. We have recently identified that ZIP8 expression is under the transcriptional control of the NF-κB pathway. On the basis of this, we hypothesized that cigarette-smoke induced inflammation would increase ZIP8 expression in lung epithelia, thereby enhancing Cd uptake and cell toxicity. Herein we report that ZIP8 is a central mediator of Cd-mediated toxicity. TNF-α treatment of primary human lung epithelia and A549 cells induced ZIP8 expression, resulting in significantly higher cell death attributable to both apoptosis and necrosis following Cd exposure. Inhibition of the NF-κB pathway and ZIP8 expression significantly reduced cell toxicity. Zinc (Zn), a known cytoprotectant, prevented Cd-mediated cell toxicity via ZIP8 uptake. Consistent with cell culture findings, a significant increase in ZIP8 mRNA and protein expression was observed in the lung of chronic smokers compared with nonsmokers. From these studies, we conclude that ZIP8 expression is induced in lung epithelia in an NF-κB-dependent manner, thereby resulting in increased cell death in the presence of Cd. From this we contend that ZIP8 plays a critical role at the interface between micronutrient (Zn) metabolism and toxic metal exposure (Cd) in the lung microenvironment following cigarette smoke exposure. Furthermore, dietary Zn intake, or a lack thereof, may be a contributing factor in smoking-induced lung disease. PMID:22345571

  8. The Non-Proliferative Nature of Ascidian Folliculogenesis as a Model of Highly Ordered Cellular Topology Distinct from Proliferative Epithelia

    PubMed Central

    Azzag, Karim; Chelin, Yoann; Rousset, François; Le Goff, Emilie; Martinand-Mari, Camille; Martinez, Anne-Marie; Maurin, Bernard; Daujat-Chavanieu, Martine; Godefroy, Nelly; Averseng, Julien; Mangeat, Paul; Baghdiguian, Stephen

    2015-01-01

    Previous studies have addressed why and how mono‐stratified epithelia adopt a polygonal topology. One major additional, and yet unanswered question is how the frequency of different cell shapes is achieved and whether the same distribution applies between non-proliferative and proliferative epithelia. We compared different proliferative and non-proliferative epithelia from a range of organisms as well as Drosophila melanogaster mutants, deficient for apoptosis or hyperproliferative. We show that the distribution of cell shapes in non‐proliferative epithelia (follicular cells of five species of tunicates) is distinctly, and more stringently organized than proliferative ones (cultured epithelial cells and Drosophila melanogaster imaginal discs). The discrepancy is not supported by geometrical constraints (spherical versus flat monolayers), number of cells, or apoptosis events. We have developed a theoretical model of epithelial morphogenesis, based on the physics of divided media, that takes into account biological parameters such as cell‐cell contact adhesions and tensions, cell and tissue growth, and which reproduces the effects of proliferation by increasing the topological heterogeneity observed experimentally. We therefore present a model for the morphogenesis of epithelia where, in a proliferative context, an extended distribution of cell shapes (range of 4 to 10 neighbors per cell) contrasts with the narrower range of 5-7 neighbors per cell that characterizes non proliferative epithelia. PMID:26000769

  9. Models for study of the specificity by which indigenous lactobacilli adhere to murine gastric epithelia.

    PubMed

    Kotarski, S F; Savage, D C

    1979-12-01

    A Lactobacillus strain isolated from a mouse (indigenous) and another strain isolated from swine feces (nonindigenous) were compared in two model systems for their ability to adhere in vitro and in vivo to keratinizing squamous and columnar epithelia of mouse stomachs. In one model, stomachs dissected from specific-pathogen-free or germfree mice were injected with suspensions of lactobacilli labeled with [(3)H]thymidine and incubated at 37 degrees C. Thereafter, the non-secreting and secreting tissues were separated and washed vigorously. The radioactivity remaining with each tissue was counted by liquid scintillation spectrometry. When the radioactivity remaining with these tissues ranged between 500 and 100,000 cpm, the calculated radioactivity (disintegrations per minute) was related linearly to the number of lactobacilli adhering to the tissue. The estimate of the number of bacteria adherent to the tissue was not influenced significantly by artifacts in the techniques used. In this model, both Lactobacillus strains adhered in equally high numbers to both types of epithelial surfaces from stomachs from germfree mice. In contrast, in the second model, in which germfree mice were monoassociated with one or the other of the Lactobacillus strains, only the strain indigenous to the mouse formed dense layers on the epithelia of the nonsecreting portions of the stomachs, although both strains maintained high population levels throughout the gastrointestinal tracts of the animals. The capacity to adhere to the mucosal surface is undoubtedly necessary for lactobacilli to colonize gastric epithelia in mice. Our findings suggest, however, that nutritional or environmental conditions dictate whether particular Lactobacillus strains can colonize particular surfaces in the stomachs of living animals.

  10. APICAL LOCATION OF FERROPORTIN 1 IN AIRWAY EPITHELIA AND ITS ROLE IN IRON DETOXIFICATION IN THE LUNG

    EPA Science Inventory

    Ferroportin 1 (FPN1; aka MTP1, IREG1, and SLC40A1), which was originally identified as a basolateral iron transporter crucial for nutritional iron absorption in the intestine, is expressed in airway epithelia and upregulated when these cells are exposed to iron. Using immunofluor...

  11. Primary cultured cells as sensitive in vitro model for assessment of toxicants--comparison to hepatocytes and gill epithelia.

    PubMed

    Zhou, Bingsheng; Liu, Chunsheng; Wang, Jingxian; Lam, Paul K S; Wu, Rudolf S S

    2006-11-16

    In an effort to develop cultured cell models for toxicity screening and environmental biomonitoring, we compared primary cultured gill epithelia and hepatocytes from freshwater tilapia (Oreochromis niloticus) to assess their sensitivity to AhR agonist toxicants. Epithelia were cultured on permeable supports (terephthalate membranes, "filters") and bathed on the apical with waterborne toxicants (pseudo in vivo asymmetrical culture conditions). Hepatocytes were cultured in multi-well plates and exposed to toxicants in culture medium. Cytochrome P4501A (measured as 7-Ethoxyresorufin-O-deethylase, EROD) was selected as a biomarker. For cultured gill epithelia, the integrity of the epithelia remained unchanged on exposure to model toxicants, such as 1,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), benzo(a)pyrene B[a]P, polychlorinated biphenyl (PCB) mixture (Aroclor 1254), and polybrominated diphenyl ether (PBDE) mixture (DE71). A good concentration-dependent response of EROD activity was clearly observed in both cultured gill epithelia and hepatocytes. The time-course response of EROD was measured as early as 3h, and was maximal after 6h of exposure to TCDD, B[a]P and Aroclor 1254. The estimated 6h EC50 for TCDD, B[a]P, and Aroclor 1254 was 1.2 x 10(-9), 5.7 x 10(-8) and 6.6 x 10(-6)M. For the cultured hepatocytes, time-course study showed that a significant induction of EROD took place at 18 h, and the maximal induction of EROD was observed at 24h after exposure. The estimated 24h EC50 for TCDD, B[a]P, and Aroclor 1254 was 1.4 x 10(-9), 8.1 x 10(-8) and 7.3 x 10(-6)M. There was no induction or inhibition of EROD in DE71 exposure to both gill epithelia and hepatocytes. The results show that cultured gill epithelia more rapidly induce EROD and are slightly more sensitive than cultured hepatocytes, and could be used as a rapid and sensitive tool for screening chemicals and monitoring environmental AhR agonist toxicants.

  12. Xenogeneic lung transplantation models

    PubMed Central

    Burdorf, Lars; Azimzadeh, Agnes M.; Pierson, Richard N.

    2014-01-01

    Summary Study of lung xenografts has proven useful to understand the remaining barriers to successful transplantation of other organ xenografts. In this chapter, the history and current status of lung xenotransplantation will be briefly reviewed and two different experimental models, the ex vivo porcine-to-human lung perfusion and the in vivo xenogeneic lung transplantation, will be presented. We will focus on the technical details of these lung xenograft models in sufficient detail, list the needed materials and mention analysis techniques to allow others to adopt them with minimal learning curve. PMID:22565996

  13. c-Jun N-terminal kinase mediates disassembly of apical junctions in model intestinal epithelia.

    PubMed

    Naydenov, Nayden G; Hopkins, Ann M; Ivanov, Andrei I

    2009-07-01

    Dynamic remodeling of intercellular junctions is a critical determinant of epithelial barrier function in both physiological and pathophysiological states. While the disassembly of epithelial tight junctions (TJ) and adherens junctions (AJ) has been well-described in response to pathogens and other external stressors, the role of stress-related signaling in TJ/AJ regulation remains poorly understood. The aim of this study was to define the role of stress-activated c-Jun N-terminal kinase (JNK) in disruption of intercellular junctions in model intestinal epithelia. We show that rapid AJ/TJ disassembly triggered by extracellular calcium depletion of T84 and SK-CO15 cell monolayers was accompanied by activation (phosphorylation) of JNK, and prevented by pharmacological inhibitors of JNK. The opposite process, TJ/AJ reassembly, was accelerated by JNK inhibition and suppressed by the JNK activator anisomycin. JNK1 but not JNK2 was found to colocalize with intercellular junctions, and siRNA-mediated downregulation of JNK1 attenuated the TJ/AJ disruption caused by calcium depletion. JNK inhibition also blocked formation of characteristic contractile F-actin rings in calcium-depleted epithelial cells, suggesting that JNK regulates junctions by remodeling the actin cytoskeleton. In this role JNK acts downstream of the actin-reorganizing Rho-dependent kinase (ROCK), since ROCK inhibition abrogated JNK phosphorylation and TJ/AJ disassembly after calcium depletion. Furthermore, JNK acts upstream of F-actin-membrane linker proteins of the ERM (ezrin-radixin-moesin) family, but in a complex relationship yet to be fully elucidated. Taken together, our findings suggest a novel role for JNK in the signaling pathway that links ROCK and F-actin remodeling during disassembly of epithelial junctions.

  14. Differentially expressed pro- and anti-apoptogenic genes in response to benzene exposure: Immunohistochemical localization of p53, Bag, Bad, Bax, Bcl-2, and Bcl-w in lung epithelia.

    PubMed

    Weaver, Cyprian V; Liu, Shi-Ping

    2008-03-01

    Benzene, a well-known human carcinogen, is a commonly used industrial chemical that evokes further toxicological concern because of its potential genotoxic risks as a constituent of petrol and the byproduct of combustion and cigarette smoke. The present study investigated the effects of benzene inhalation on the expression of pro- and antiapoptogenic genes in lung epithelia. Immunohistochemical expression was assessed for antiapoptotic Bcl-2 family proteins, including Bcl-2, Bcl-w, and Bag-1 as well as proapoptotic subfamily members with Bcl-2 homology (BH)1 1-3, namely Bax, those that consist of only the BH3 region, represented by Bad, and proapoptotic gene expression for p53. Rats exposed to benzene via inhalation (300 ppm) for 7 days showed a significant upregulation of proapoptotic gene expression for p53, Bax, and Bad as assessed by a semiquantitative segmental analysis of the lung epithelia, including bronchioles, terminal bronchioles, respiratory bronchioles, and alveoli. Bag-1, an antiapoptogenic gene, was also found to have significant upregulated expression in lung epithelia. Since the underlying mechanisms by which Bag-1 exerts its antiapoptogenic effects are not known, benzene may target the protein chaperones hsc70/hsp70, or RING finger protein associated with Bag-1 activity. Alternatively, the significant downregulation of Bcl-2 may have diminished the antiapoptotic synergism necessary for the effectiveness of Bag-1. Both Bcl-2 and Bcl-w were found to be significantly downregulated compared to the proapoptotic counterparts. These data support the role of benzene in activating proapoptogenic events that lead to the upregulation of gene expression that may provide a crucial defense mechanism within lung parenchyma to reduce mutation hazard and potential carcinogenic effects of benzene-initiated pathogenesis.

  15. Polymorphonuclear leukocyte migration across model intestinal epithelia enhances Salmonella typhimurium killing via the epithelial derived cytokine, IL-6.

    PubMed

    Nadeau, William J; Pistole, Thomas G; McCormick, Beth A

    2002-11-01

    The host response to Salmonella typhimurium involves movement of polymorphonuclear leukocytes (PMN) across the epithelium and into the intestinal lumen. Following their arrival in the lumen, the PMN attempt to combat bacterial infection by activating antimicrobial defenses such as granule release, oxidative burst, phagocytosis, and cell signaling. We sought to examine PMN-S. typhimurium interaction following PMN arrival in the lumenal compartment. Here, for the first time, we demonstrate that PMN that have transmigrated across model intestinal epithelia have an enhanced ability to kill S. typhimurium. Our data provide evidence to indicate that the extracellular release of the primary and secondary granules of PMN, myeloperoxidase and lactoferrin, respectively, is correlated with enhanced bacterial killing. Furthermore, epithelial cells, during PMN transmigration, release the cytokine IL-6. IL-6 is known to increase intracellular stores of Ca(2+), and we have determined that this epithelial released cytokine is not only responsible for priming the PMN to release their granules, but also stimulating the PMN to kill S. typhimurium. These results substantiate the pathway in which PMN transmigration activates the epithelial release of IL-6, which in turn increases intracellular Ca(2+) storage. Our results, herein, extend this pathway to include an enhanced PMN granule release and an enhanced killing of S. typhimurium.

  16. Improved development of somatic cell cloned bovine embryos by a mammary gland epithelia cells in vitro model

    PubMed Central

    Ma, Li-bing; He, Xiao-ning; Si, Wan-tong; Zheng, Yue-Mao

    2016-01-01

    Previous studies have established a bovine mammary gland epithelia cells in vitro model by the adenovirus-mediated telomerase (hTERT-bMGEs). The present study was conducted to confirm whether hTERT-bMGEs were effective target cells to improve the efficiency of transgenic expression and somatic cell nuclear transfer (SCNT). To accomplish this, a mammary-specific vector encoding human lysozyme and green fluorescent protein was used to verify the transgenic efficiency of hTERT-bMGEs, and untreated bovine mammary gland epithelial cells (bMGEs) were used as a control group. The results showed that the hTERT-bMGEs group had much higher transgenic efficiency and protein expression than the bMGEs group. Furthermore, the nontransgenic and transgenic hTERT-bMGEs were used as donor cells to evaluate the efficiency of SCNT. There were no significant differences in rates of cleavage or blastocysts or hatched blastocysts of cloned embryos from nontransgenic hTERT-bMGEs at passage 18 and 28 groups (82.8% vs. 81.9%, 28.6% vs. 24.8%, 58.6% vs. 55.3%, respectively) and the transgenic group (80.8%, 26.5% and 53.4%); however, they were significantly higher than the bMGEs group (71.2%, 12.8% and 14.8%), (p < 0.05). We confirmed that hTERT-bMGEs could serve as effective target cells for improving development of somatic cell cloned cattle embryos. PMID:26243608

  17. Improved development of somatic cell cloned bovine embryos by a mammary gland epithelia cells in vitro model.

    PubMed

    He, Xiao-Ying; Ma, Li-Bing; He, Xiao-Ning; Si, Wan-Tong; Zheng, Yue-Mao

    2016-06-30

    Previous studies have established a bovine mammary gland epithelia cells in vitro model by the adenovirus-mediated telomerase (hTERT-bMGEs). The present study was conducted to confirm whether hTERT-bMGEs were effective target cells to improve the efficiency of transgenic expression and somatic cell nuclear transfer (SCNT). To accomplish this, a mammary-specific vector encoding human lysozyme and green fluorescent protein was used to verify the transgenic efficiency of hTERT-bMGEs, and untreated bovine mammary gland epithelial cells (bMGEs) were used as a control group. The results showed that the hTERT-bMGEs group had much higher transgenic efficiency and protein expression than the bMGEs group. Furthermore, the nontransgenic and transgenic hTERT-bMGEs were used as donor cells to evaluate the efficiency of SCNT. There were no significant differences in rates of cleavage or blastocysts or hatched blastocysts of cloned embryos from nontransgenic hTERT-bMGEs at passage 18 and 28 groups (82.8% vs. 81.9%, 28.6% vs. 24.8%, 58.6% vs. 55.3%, respectively) and the transgenic group (80.8%, 26.5% and 53.4%); however, they were significantly higher than the bMGEs group (71.2%, 12.8% and 14.8%), (p < 0.05). We confirmed that hTERT-bMGEs could serve as effective target cells for improving development of somatic cell cloned cattle embryos. PMID:26243608

  18. Improved development of somatic cell cloned bovine embryos by a mammary gland epithelia cells in vitro model.

    PubMed

    He, Xiao-Ying; Ma, Li-Bing; He, Xiao-Ning; Si, Wan-Tong; Zheng, Yue-Mao

    2016-06-30

    Previous studies have established a bovine mammary gland epithelia cells in vitro model by the adenovirus-mediated telomerase (hTERT-bMGEs). The present study was conducted to confirm whether hTERT-bMGEs were effective target cells to improve the efficiency of transgenic expression and somatic cell nuclear transfer (SCNT). To accomplish this, a mammary-specific vector encoding human lysozyme and green fluorescent protein was used to verify the transgenic efficiency of hTERT-bMGEs, and untreated bovine mammary gland epithelial cells (bMGEs) were used as a control group. The results showed that the hTERT-bMGEs group had much higher transgenic efficiency and protein expression than the bMGEs group. Furthermore, the nontransgenic and transgenic hTERT-bMGEs were used as donor cells to evaluate the efficiency of SCNT. There were no significant differences in rates of cleavage or blastocysts or hatched blastocysts of cloned embryos from nontransgenic hTERT-bMGEs at passage 18 and 28 groups (82.8% vs. 81.9%, 28.6% vs. 24.8%, 58.6% vs. 55.3%, respectively) and the transgenic group (80.8%, 26.5% and 53.4%); however, they were significantly higher than the bMGEs group (71.2%, 12.8% and 14.8%), (p < 0.05). We confirmed that hTERT-bMGEs could serve as effective target cells for improving development of somatic cell cloned cattle embryos.

  19. Exposure to Engineered Nanomaterial Results in Disruption of Brush Borders in Epithelia Models in vitro

    NASA Astrophysics Data System (ADS)

    Faust, James J.

    Engineered nanoparticles (NP; 10-9 m) have found use in a variety of consumer goods and medical devices because of the unique changes in material properties that occur when synthesized on the nanoscale. Although many definitions for nanoparticle exist, from the perspective of size, nanoparticle is defined as particles with diameters less than 100 nm in any external dimension. Examples of their use include titanium dioxide added as a pigment in products intended to be ingested by humans, silicon dioxide NPs are used in foods as an anticaking agent, and gold or iron oxide NPs can be used as vectors for drug delivery or contrast agents for specialized medical imaging. Although the intended use of these NPs is often to improve human health, it has come to the attention of investigators that NPs can have unintended or even detrimental effects on the organism. This work describes one such unintended effect of NP exposure from the perspective of exposure via the oral route. First, this Dissertation will explain an event referred to as brush border disruption that occurred after nanoparticles interacted with an in vitro model of the human intestinal epithelium. Second, this Dissertation will identify and characterize several consumer goods that were shown to contain titanium dioxide that are intended to be ingested. Third, this Dissertation shows that sedimentation due to gravity does not artifactually result in disruption of brush borders as a consequence of exposure to food grade titanium dioxide in vitro. Finally, this Dissertation will demonstrate that iron oxide nanoparticles elicited similar effects after exposure to an in vitro brush border expressing model of the human placenta. Together, these data suggest that brush border disruption is not an artifact of the material/cell culture model, but instead represents a bona fide biological response as a result of exposure to nanomaterial.

  20. Onset of nonlinearity in a stochastic model for auto-chemotactic advancing epithelia

    PubMed Central

    Ben Amar, Martine; Bianca, Carlo

    2016-01-01

    We investigate the role of auto-chemotaxis in the growth and motility of an epithelium advancing on a solid substrate. In this process, cells create their own chemoattractant allowing communications among neighbours, thus leading to a signaling pathway. As known, chemotaxis provokes the onset of cellular density gradients and spatial inhomogeneities mostly at the front, a phenomenon able to predict some features revealed in in vitro experiments. A continuous model is proposed where the coupling between the cellular proliferation, the friction on the substrate and chemotaxis is investigated. According to our results, the friction and proliferation stabilize the front whereas auto-chemotaxis is a factor of destabilization. This antagonist role induces a fingering pattern with a selected wavenumber k0. However, in the planar front case, the translational invariance of the experimental set-up gives also a mode at k = 0 and the coupling between these two modes in the nonlinear regime is responsible for the onset of a Hopf-bifurcation. The time-dependent oscillations of patterns observed experimentally can be predicted simply in this continuous non-linear approach. Finally the effects of noise are also investigated below the instability threshold. PMID:27669998

  1. Stem cell heterogeneity and plasticity in epithelia.

    PubMed

    Donati, Giacomo; Watt, Fiona M

    2015-05-01

    Epithelia cover the surfaces and line the cavities of the body. Recent studies have highlighted the existence of multiple stem cell compartments within individual epithelia that exhibit striking plasticity in response to tissue damage, transplantation, or tumor development. New knowledge about the composition of the epithelial niche and the transcription factor networks that maintain cell identity has provided new insights into the extrinsic and intrinsic regulation of stem cell behavior. In addition new in vitro tissue substitutes allow better integration of data from human and mouse models. PMID:25957902

  2. Lung Cancer Risk Prediction Models

    Cancer.gov

    Developing statistical models that estimate the probability of developing lung cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  3. A spatial model of fluid recycling in the airways of the lung.

    PubMed

    Sharp, Katie; Crampin, Edmund; Sneyd, James

    2015-10-01

    The genetic disease cystic fibrosis (CF) is a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, and results in viscous mucus and impaired mucociliary clearance leading to chronic recurring pulmonary infections. Although extensive experimental research has been conducted over the last few decades, CF lung pathophysiology remains controversial. There are two competing explanations for the observed depletion of periciliary liquid (PCL) in CF lungs. The low volume hypothesis assumes fluid hyperabsorption through surface epithelia due to an over-active epithelial Na(+) channel (ENaC), and the low secretion hypothesis assumes inspissated mucins secreted from glands due to lack of serous fluid secreted from gland acini. We present a spatial mathematical model that reflects in vivo fluid recycling via submucosal gland (SMG) secretion, and absorption through surface epithelia. We then test the model in CF conditions by increasing ENaC open probability and decreasing SMG flux while simultaneously reducing CFTR open probability. Increasing ENaC activity only results in increased fluid absorption across surface epithelia, as seen in in vitro experiments. However, combining potential CF mechanisms results in markedly less fluid absorbed while providing the largest reduction in PCL volume, suggesting that a compromise in gland fluid secretion dominates over increased ENaC activity to decrease the amount of fluid transported transcellularly in CF lungs in vivo. Model results also indicate that a spatial model is necessary for an accurate calculation of total fluid transport, as the effects of spatial gradients can be severe, particularly in close proximity to the SMGs.

  4. A spatial model of fluid recycling in the airways of the lung.

    PubMed

    Sharp, Katie; Crampin, Edmund; Sneyd, James

    2015-10-01

    The genetic disease cystic fibrosis (CF) is a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, and results in viscous mucus and impaired mucociliary clearance leading to chronic recurring pulmonary infections. Although extensive experimental research has been conducted over the last few decades, CF lung pathophysiology remains controversial. There are two competing explanations for the observed depletion of periciliary liquid (PCL) in CF lungs. The low volume hypothesis assumes fluid hyperabsorption through surface epithelia due to an over-active epithelial Na(+) channel (ENaC), and the low secretion hypothesis assumes inspissated mucins secreted from glands due to lack of serous fluid secreted from gland acini. We present a spatial mathematical model that reflects in vivo fluid recycling via submucosal gland (SMG) secretion, and absorption through surface epithelia. We then test the model in CF conditions by increasing ENaC open probability and decreasing SMG flux while simultaneously reducing CFTR open probability. Increasing ENaC activity only results in increased fluid absorption across surface epithelia, as seen in in vitro experiments. However, combining potential CF mechanisms results in markedly less fluid absorbed while providing the largest reduction in PCL volume, suggesting that a compromise in gland fluid secretion dominates over increased ENaC activity to decrease the amount of fluid transported transcellularly in CF lungs in vivo. Model results also indicate that a spatial model is necessary for an accurate calculation of total fluid transport, as the effects of spatial gradients can be severe, particularly in close proximity to the SMGs. PMID:26169010

  5. Isotonic water transport in secretory epithelia.

    PubMed

    Swanson, C H

    1977-01-01

    The model proposed by Diamond and Bossert [1] for isotonic water transport has received wide acceptance in recent years. It assumes that the local driving force for water transport is a standing osmotic gradient produced in the lateral intercellular spaces of the epithelial cell layer by active solute transport. While this model is based on work done in absorptive epithelia where the closed to open direction of the lateral space and the direction of net transport are the same, it has been proposed that the lateral spaces could also serve as the site of the local osmotic gradients for water transport in secretory epithelia, where the closed to open direction of the lateral space and net transport are opposed, by actively transporting solute out of the space rather than into it. Operation in the backward direction, however, requires a lower than ambient hydrostatic pressure within the lateral space which would seem more likely to cause the space to collapse with loss of function. On the other hand, most secretory epithelia are characterized by transport into a restricted ductal system which is similar to the lateral intercellular space in the absorptive epithelia in that its closed to open direction is the same as that of net transport. In vitro micropuncture studies on the exocrine pancreas of the rabbit indicate the presence of a small but statistically significant increase in juice osmolality, 6 mOsm/kg H(2)O, at the site of electrolyte and water secretion in the smallest extralobular ducts with secretin stimulation which suggests that the ductal system in the secretory epithelia rather than the lateral intercellular space is the site of the local osmotic gradients responsible for isotonic water transport. PMID:331693

  6. Lung models: strengths and limitations.

    PubMed

    Martonen, T B; Musante, C J; Segal, R A; Schroeter, J D; Hwang, D; Dolovich, M A; Burton, R; Spencer, R M; Fleming, J S

    2000-06-01

    The most widely used particle dosimetry models are those proposed by the National Council on Radiation Protection, International Commission for Radiological Protection, and the Netherlands National Institute of Public Health and the Environment (the RIVM model). Those models have inherent problems that may be regarded as serious drawbacks: for example, they are not physiologically realistic. They ignore the presence and commensurate effects of naturally occurring structural elements of lungs (eg, cartilaginous rings, carinal ridges), which have been demonstrated to affect the motion of inhaled air. Most importantly, the surface structures have been shown to influence the trajectories of inhaled particles transported by air streams. Thus, the model presented herein by Martonen et al may be perhaps the most appropriate for human lung dosimetry. In its present form, the model's major "strengths" are that it could be used for diverse purposes in medical research and practice, including: to target the delivery of drugs for diseases of the respiratory tract (eg, cystic fibrosis, asthma, bronchogenic carcinoma); to selectively deposit drugs for systemic distribution (eg, insulin); to design clinical studies; to interpret scintigraphy data from human subject exposures; to determine laboratory conditions for animal testing (ie, extrapolation modeling); and to aid in aerosolized drug delivery to children (pediatric medicine). Based on our research, we have found very good agreement between the predictions of our model and the experimental data of Heyder et al, and therefore advocate its use in the clinical arena. In closing, we would note that for the simulations reported herein the data entered into our computer program were the actual conditions of the Heyder et al experiments. However, the deposition model is more versatile and can simulate many aerosol therapy scenarios. For example, the core model has many computer subroutines that can be enlisted to simulate the

  7. Clostridium difficile-mediated effects on human intestinal epithelia: Modelling host-pathogen interactions in a vertical diffusion chamber.

    PubMed

    Jafari, Nazila V; Kuehne, Sarah A; Minton, Nigel P; Allan, Elaine; Bajaj-Elliott, Mona

    2016-02-01

    Clostridium difficile infection is one of the leading causes of healthcare associated diarrhoea in the developed world. Although the contribution of C. difficile toxins to disease pathogenesis is now well understood, many facets of host-pathogen interactions between the human intestinal epithelia and the C. difficile bacterium that may contribute to asymptomatic carriage and/or clinical disease remain less clear. Herein, we tested the hypothesis that C. difficile strains mediate intestinal epithelial cell (IEC) antimicrobial immunity via toxin dependent and independent means and that the 'anaerobic' environment has a significant impact on bacterial-IEC interactions. Crosstalk between three C. difficile PCR ribotypes (RT) [RT027 (strain R20291), RT012 (strain 630) and RT017 (strains M68 and CF5)] and IEC cell-lines were investigated. All RTs showed significant engagement with human Toll-like receptors (TLR)-5, TLR2-CD14 and TLR2/6 as measured by IL-8 release from TLR-transfected HEK cells. Co-culture studies indicated minimal impact of R20291 and 630 TcdA and TcdB on bacterial adherence to Caco-2 cells. An apical anaerobic environment had a major effect on C. difficile-T84 crosstalk as significantly greater cytokine immunity and trans-epithelial electrical resistance (TEER) dysfunction was recorded when co-cultures were performed in an Ussing chamber system compared to standard 5% CO2 conditions. Overall, this study suggests that anaerobic C. difficile engagement with human IECs is a complex interplay that involves bacterial and toxin-mediated cellular events.

  8. Luminal acetylcholine does not affect the activity of the CFTR in tracheal epithelia of pigs.

    PubMed

    Dittrich, Nikolaus P; Kummer, Wolfgang; Clauss, Wolfgang G; Fronius, Martin

    2015-11-01

    Fluid homeostasis mediated by the airway epithelium is required for proper lung function, and the CFTR (cystic fibrosis transmembrane conductance regulator) Cl(-) channel is crucial for these processes. Luminal acetylcholine (ACh) acts as an auto-/paracrine mediator to activate Cl(-) channels in airway epithelia and evidence exists showing that nicotinic ACh receptors activate CFTR in murine airway epithelia. The present study investigated whether or not luminal ACh regulates CFTR activity in airway epithelia of pigs, an emerging model for investigations of human airway disease and cystic fibrosis (CF) in particular. Transepithelial ion currents of freshly dissected pig tracheal preparations were measured with Ussing chambers. Application of luminal ACh (100 μM) induced an increase of the short-circuit current (I(SC)). The ACh effect was mimicked by muscarine and pilocarpine (100 μM each) and was sensitive to muscarinic receptor antagonists (atropine, 4-DAMP, pirenzepine). No changes of the I(SC) were observed by nicotine (100 μM) and ACh responses were not affected by nicotine or mecamylamine (25 μM). Luminal application of IBMX (I, 100 μM) and forskolin (F, 10 μM), increase the I(SC) and the I/F-induced current were decreased by the CFTR inhibitor GlyH-101 (GlyH, 50 μM) indicating increased CFTR activity by I/F. In contrast, GlyH did not affect the ACh-induced current, indicating that the ACh response does not involve the activation of the CFTR. Results from this study suggest that luminal ACh does not regulate the activity of the CFTR in tracheal epithelia of pigs which opposes observation from studies using mice airway epithelium.

  9. Luminal acetylcholine does not affect the activity of the CFTR in tracheal epithelia of pigs.

    PubMed

    Dittrich, Nikolaus P; Kummer, Wolfgang; Clauss, Wolfgang G; Fronius, Martin

    2015-11-01

    Fluid homeostasis mediated by the airway epithelium is required for proper lung function, and the CFTR (cystic fibrosis transmembrane conductance regulator) Cl(-) channel is crucial for these processes. Luminal acetylcholine (ACh) acts as an auto-/paracrine mediator to activate Cl(-) channels in airway epithelia and evidence exists showing that nicotinic ACh receptors activate CFTR in murine airway epithelia. The present study investigated whether or not luminal ACh regulates CFTR activity in airway epithelia of pigs, an emerging model for investigations of human airway disease and cystic fibrosis (CF) in particular. Transepithelial ion currents of freshly dissected pig tracheal preparations were measured with Ussing chambers. Application of luminal ACh (100 μM) induced an increase of the short-circuit current (I(SC)). The ACh effect was mimicked by muscarine and pilocarpine (100 μM each) and was sensitive to muscarinic receptor antagonists (atropine, 4-DAMP, pirenzepine). No changes of the I(SC) were observed by nicotine (100 μM) and ACh responses were not affected by nicotine or mecamylamine (25 μM). Luminal application of IBMX (I, 100 μM) and forskolin (F, 10 μM), increase the I(SC) and the I/F-induced current were decreased by the CFTR inhibitor GlyH-101 (GlyH, 50 μM) indicating increased CFTR activity by I/F. In contrast, GlyH did not affect the ACh-induced current, indicating that the ACh response does not involve the activation of the CFTR. Results from this study suggest that luminal ACh does not regulate the activity of the CFTR in tracheal epithelia of pigs which opposes observation from studies using mice airway epithelium. PMID:26286842

  10. Mechanics and Patterning in Metazoan Epithelia

    NASA Astrophysics Data System (ADS)

    Chiou, Kevin K.

    In this dissertation we consider the effect of mechanical interactions on cell biology and how this translates into tissue-level properties in metazoan epithelia. We delineate three model-based approaches with different phenomenological aims and compare applicable results to experimental data. We first consider cellular vertex model simulations, which are used to represent the mechanics of two-dimensional epithelial cell arrays. We outline the assumptions, parameters, and outputs. Then we review a number of systems in which these simulations have been used. The second approach is the Mechanical Inverse, which is a vertex model-based approach to inferring mechanical stresses from cell boundary labeled images of epithelial tissue. We develop this inference method from the assumption of mechanical equilibrium and dominant stresses in the tissue. We then apply this computational method to experimental images and validate the performance. In the final part we consider avian cochlea development in epithelia where lateral inhibition plays a role in cell differentiation—a process which involves cell division, differentiation, and rearrangement in a two-dimensional epithelial layer. We develop a mean-field mathematical description of this process. The results provide a description of the observed hair cell patterns in the cochlea.

  11. Aerosol-derived lung morphometry: comparisons with a lung model and lung function indexes.

    PubMed

    Blanchard, J D; Heyder, J; O'Donnell, C R; Brain, J D

    1991-10-01

    This study evaluated the ability of aerosol-derived lung morphometry to noninvasively probe airway and acinar dimensions. Effective air-space diameters (EAD) were calculated from the time-dependent gravitational losses of 1-microns particles from inhaled aerosol boluses during breath holding. In 17 males [33 +/- 7 (SD) yr] the relationship between EAD and volumetric penetration of the bolus into the lungs (Vp) could be expressed by the linear power-law function, log (EAD) alpha beta log (Vp). Our EAD values were consistent with Weibel's symmetric lung model A for small airways and more distal air spaces. As lung volume increased from 57 to 87% of total lung capacity (TLC), EAD at Vp of 160 and 550 cm3 increased 70 and 41%, respectively. At 57% TLC, log (EAD) at 160 cm3 was significantly correlated with airway resistance (r = -0.57, P less than 0.0204) but not with forced expired flow between 25 and 75% of vital capacity. Log (EAD) at 400 cm3 was correlated with deposition of 1-micron particles (r = -0.73, P less than 0.0009). We conclude that aerosol-derived lung morphometry is a responsive noninvasive probe of peripheral air-space diameters. PMID:1757343

  12. CISNET lung models: Comparison of model assumptions and model structures

    PubMed Central

    McMahon, Pamela M.; Hazelton, William; Kimmel, Marek; Clarke, Lauren

    2012-01-01

    Sophisticated modeling techniques can be powerful tools to help us understand the effects of cancer control interventions on population trends in cancer incidence and mortality. Readers of journal articles are however rarely supplied with modeling details. Six modeling groups collaborated as part of the National Cancer Institute’s Cancer Intervention and Surveillance Modeling Network (CISNET) to investigate the contribution of US tobacco control efforts towards reducing lung cancer deaths over the period 1975 to 2000. The models included in this monograph were developed independently and use distinct, complementary approaches towards modeling the natural history of lung cancer. The models used the same data for inputs and agreed on the design of the analysis and the outcome measures. This article highlights aspects of the models that are most relevant to similarities of or differences between the results. Structured comparisons can increase the transparency of these complex models. PMID:22882887

  13. Targeted Type 2 Alveolar Cell Depletion. A Dynamic Functional Model for Lung Injury Repair.

    PubMed

    Garcia, Orquidea; Hiatt, Michael J; Lundin, Amber; Lee, Jooeun; Reddy, Raghava; Navarro, Sonia; Kikuchi, Alex; Driscoll, Barbara

    2016-03-01

    Type 2 alveolar epithelial cells (AEC2) are regarded as the progenitor population of the alveolus responsible for injury repair and homeostatic maintenance. Depletion of this population is hypothesized to underlie various lung pathologies. Current models of lung injury rely on either uncontrolled, nonspecific destruction of alveolar epithelia or on targeted, nontitratable levels of fixed AEC2 ablation. We hypothesized that discrete levels of AEC2 ablation would trigger stereotypical and informative patterns of repair. To this end, we created a transgenic mouse model in which the surfactant protein-C promoter drives expression of a mutant SR39TK herpes simplex virus-1 thymidine kinase specifically in AEC2. Because of the sensitivity of SR39TK, low doses of ganciclovir can be administered to these animals to induce dose-dependent AEC2 depletion ranging from mild (50%) to lethal (82%) levels. We demonstrate that specific levels of AEC2 depletion cause altered expression patterns of apoptosis and repair proteins in surviving AEC2 as well as distinct changes in distal lung morphology, pulmonary function, collagen deposition, and expression of remodeling proteins in whole lung that persist for up to 60 days. We believe SPCTK mice demonstrate the utility of cell-specific expression of the SR39TK transgene for exerting fine control of target cell depletion. Our data demonstrate, for the first time, that specific levels of type 2 alveolar epithelial cell depletion produce characteristic injury repair outcomes. Most importantly, use of these mice will contribute to a better understanding of the role of AEC2 in the initiation of, and response to, lung injury.

  14. Hypo-Elastic Model for Lung Parenchyma

    SciTech Connect

    Freed, Alan D.; Einstein, Daniel R.

    2012-03-01

    A simple elastic isotropic constitutive model for the spongy tissue in lung is derived from the theory of hypoelasticity. The model is shown to exhibit a pressure dependent behavior that has been interpreted by some as indicating extensional anisotropy. In contrast, we show that this behavior arises natural from an analysis of isotropic hypoelastic invariants, and is a likely result of non-linearity, not anisotropy. The response of the model is determined analytically for several boundary value problems used for material characterization. These responses give insight into both the material behavior as well as admissible bounds on parameters. The model is characterized against published experimental data for dog lung. Future work includes non-elastic model behavior.

  15. Nucleotide release by airway epithelia.

    PubMed

    Lazarowski, Eduardo R; Sesma, Juliana I; Seminario, Lucia; Esther, Charles R; Kreda, Silvia M

    2011-01-01

    The purinergic events regulating the airways' innate defenses are initiated by the release of purines from the epithelium, which occurs constitutively and is enhanced by chemical or mechanical stimulation. While the external triggers have been reviewed exhaustively, this chapter focuses on current knowledge of the receptors and signaling cascades mediating nucleotide release. The list of secreted purines now includes ATP, ADP, AMP and nucleotide sugars, and involves at least three distinct mechanisms reflecting the complexity of airway epithelia. First, the constitutive mechanism involves ATP translocation to the ER/Golgi complex as energy source for protein folding, and fusion of Golgi-derived vesicles with the plasma membrane. Second, goblet cells package ATP with mucins into granules, which are discharged in response to P2Y(2)R activation and Ca(2+)-dependent signaling pathways. Finally, non-mucous cells support a regulated mechanism of ATP release involving protease activated receptor (PAR)-elicited G(12/13) activation, leading to the RhoGEF-mediated exchange of GDP for GTP on RhoA, and cytoskeleton rearrangement. Together, these pathways provide fine tuning of epithelial responses regulated by purinergic signaling events. PMID:21560042

  16. Bioelectric Characterization of Epithelia from Neonatal CFTR Knockout Ferrets

    PubMed Central

    Fisher, John T.; Tyler, Scott R.; Zhang, Yulong; Lee, Ben J.; Liu, Xiaoming; Sun, Xingshen; Sui, Hongshu; Liang, Bo; Luo, Meihui; Xie, Weiliang; Yi, Yaling; Zhou, Weihong; Song, Yi; Keiser, Nicholas; Wang, Kai; de Jonge, Hugo R.

    2013-01-01

    Cystic fibrosis (CF) is a life-shortening, recessive, multiorgan genetic disorder caused by the loss of CF transmembrane conductance regulator (CFTR) chloride channel function found in many types of epithelia. Animal models that recapitulate the human disease phenotype are critical to understanding pathophysiology in CF and developing therapies. CFTR knockout ferrets manifest many of the phenotypes observed in the human disease, including lung infections, pancreatic disease and diabetes, liver disease, malnutrition, and meconium ileus. In the present study, we have characterized abnormalities in the bioelectric properties of the trachea, stomach, intestine, and gallbladder of newborn CF ferrets. Short-circuit current (ISC) analysis of CF and wild-type (WT) tracheas revealed the following similarities and differences: (1) amiloride-sensitive sodium currents were similar between genotypes; (2) responses to 4,4′-diisothiocyano-2,2′-stilbene disulphonic acid were 3.3-fold greater in CF animals, suggesting elevated baseline chloride transport through non-CFTR channels in a subset of CF animals; and (3) a lack of 3-isobutyl-1-methylxanthine (IBMX)/forskolin–stimulated and N-(2-Naphthalenyl)-((3,5-dibromo-2,4-dihydroxyphenyl)methylene)glycine hydrazide (GlyH-101)–inhibited currents in CF animals due to the lack of CFTR. CFTR mRNA was present throughout all levels of the WT ferret and IBMX/forskolin–inducible ISC was only observed in WT animals. However, despite the lack of CFTR function in the knockout ferret, the luminal pH of the CF ferret gallbladder, stomach, and intestines was not significantly changed relative to WT. The WT stomach and gallbladder exhibited significantly enhanced IBMX/forskolin ISC responses and inhibition by GlyH-101 relative to CF samples. These findings demonstrate that multiple organs affected by disease in the CF ferret have bioelectric abnormalities consistent with the lack of cAMP-mediated chloride transport. PMID:23782101

  17. Biomechanical interpretation of a free-breathing lung motion model

    NASA Astrophysics Data System (ADS)

    Zhao, Tianyu; White, Benjamin; Moore, Kevin L.; Lamb, James; Yang, Deshan; Lu, Wei; Mutic, Sasa; Low, Daniel A.

    2011-12-01

    The purpose of this paper is to develop a biomechanical model for free-breathing motion and compare it to a published heuristic five-dimensional (5D) free-breathing lung motion model. An ab initio biomechanical model was developed to describe the motion of lung tissue during free breathing by analyzing the stress-strain relationship inside lung tissue. The first-order approximation of the biomechanical model was equivalent to a heuristic 5D free-breathing lung motion model proposed by Low et al in 2005 (Int. J. Radiat. Oncol. Biol. Phys. 63 921-9), in which the motion was broken down to a linear expansion component and a hysteresis component. To test the biomechanical model, parameters that characterize expansion, hysteresis and angles between the two motion components were reported independently and compared between two models. The biomechanical model agreed well with the heuristic model within 5.5% in the left lungs and 1.5% in the right lungs for patients without lung cancer. The biomechanical model predicted that a histogram of angles between the two motion components should have two peaks at 39.8° and 140.2° in the left lungs and 37.1° and 142.9° in the right lungs. The data from the 5D model verified the existence of those peaks at 41.2° and 148.2° in the left lungs and 40.1° and 140° in the right lungs for patients without lung cancer. Similar results were also observed for the patients with lung cancer, but with greater discrepancies. The maximum-likelihood estimation of hysteresis magnitude was reported to be 2.6 mm for the lung cancer patients. The first-order approximation of the biomechanical model fit the heuristic 5D model very well. The biomechanical model provided new insights into breathing motion with specific focus on motion trajectory hysteresis.

  18. Foxg1-Cre Mediated Lrp2 Inactivation in the Developing Mouse Neural Retina, Ciliary and Retinal Pigment Epithelia Models Congenital High Myopia

    PubMed Central

    Obry, Antoine; Santin, Mathieu D.; Ben-Yacoub, Sirine; Pâques, Michel; Amsellem-Levera, Sabine; Bribian, Ana; Simonutti, Manuel; Augustin, Sébastien; Debeir, Thomas; Sahel, José Alain; Christ, Annabel; de Castro, Fernando; Lehéricy, Stéphane; Cosette, Pascal; Kozyraki, Renata

    2015-01-01

    Myopia is a common ocular disorder generally due to increased axial length of the eye-globe. Its extreme form high myopia (HM) is a multifactorial disease leading to retinal and scleral damage, visual impairment or loss and is an important health issue. Mutations in the endocytic receptor LRP2 gene result in Donnai-Barrow (DBS) and Stickler syndromes, both characterized by HM. To clearly establish the link between Lrp2 and congenital HM we inactivated Lrp2 in the mouse forebrain including the neural retina and the retinal and ciliary pigment epithelia. High resolution in vivo MRI imaging and ophthalmological analyses showed that the adult Lrp2-deficient eyes were 40% longer than the control ones mainly due to an excessive elongation of the vitreal chamber. They had an apparently normal intraocular pressure and developed chorioretinal atrophy and posterior scleral staphyloma features reminiscent of human myopic retinopathy. Immunomorphological and ultrastructural analyses showed that increased eye lengthening was first observed by post-natal day 5 (P5) and that it was accompanied by a rapid decrease of the bipolar, photoreceptor and retinal ganglion cells, and eventually the optic nerve axons. It was followed by scleral thinning and collagen fiber disorganization, essentially in the posterior pole. We conclude that the function of LRP2 in the ocular tissues is necessary for normal eye growth and that the Lrp2-deficient eyes provide a unique tool to further study human HM. PMID:26107939

  19. Dynamic modeling of lung tumor motion during respiration

    NASA Astrophysics Data System (ADS)

    Kyriakou, E.; McKenzie, D. R.

    2011-05-01

    A dynamic finite element model of the lung that incorporates a simplified geometry with realistic lung material properties has been developed. Observations of lung motion from respiratory-gated computed tomography were used to provide a database against which the predictions of the model are assessed. Data from six patients presenting with lung tumors were processed to give sagittal sections of the lung containing the tumor as a function of the breathing phase. Statistical shape modeling was used to outline the diaphragm, the tumor volume and the thoracic wall at each breathing phase. The motion of the tumor in the superior-inferior direction was plotted against the diaphragm displacement. The finite element model employed a simplified geometry in which the lung material fills a rectangular volume enabling two-dimensional coordinates to be used. The diaphragm is represented as a piston, driving the motion. Plots of lung displacement against diaphragm displacement form hysteresis loops that are a sensitive indicator of the characteristics of the motion. The key parameters of lung material that determine the motion are the density and elastic properties of lung material and the airway permeability. The model predictions of the hysteresis behavior agreed well with observation only when lung material is modeled as viscoelastic. The key material parameters are suggested for use as prognostic indicators of the progression of disease and of changes arising from the response of the lung to radiation treatment.

  20. Functional Roles of Bestrophins in Ocular Epithelia

    PubMed Central

    Marmorstein, Alan D.; Cross, Harold E.; Peachey, Neal S.

    2009-01-01

    There are four members of the bestrophin family of proteins in the human genome, of which two are known to be expressed in the eye. The gene BEST1 (formerly VMD2) which encodes the protein bestrophin-1 (Best1) was first identified in 1998. Mutations in this gene have now been associated with four clinically distinguishable human eye diseases, collectively referred to as “bestrophinopathies”. Over the last decade, laboratories have sought to understand how Best1 mutations could result in eye diseases that range in presentation from macular degeneration to nanophthalmos. The majority of our knowledge comes from studies that have sought to understand how Best1 mutations or dysfunction could induce the classical symptoms of the most common of these diseases: Best vitelliform macular dystrophy (BVMD). BVMD is a dominant trait that is characterized electrophysiologically by a diminished electrooculogram light peak with a normal clinical electroretinogram. This together with the localization of Best1 to the retinal pigment epithelium (RPE) basolateral plasma membrane and data from heterologous expression studies, have led to the proposal that Best1 generates the light peak, and that bestrophins are a family of Ca2+ activated Cl- channels (CaCCs). However, data from Best1 knock-out and knock-in mice, coupled with the recent discovery of a recessive bestrophinopathy suggest that Best1 does not generate the light peak. Recently Best2 was found to be expressed in non-pigmented epithelia in the ciliary body. However, aqueous dynamics in Best2 knock-out mice do not support a role for Best2 as a Cl- channel. Thus, the purported CaCC function of the bestrophins and how loss of this function relates to clinical disease needs to be reassessed. In this article, we examine data obtained from tissue-type and animal models and discuss the current state of bestrophin research, what roles Best1 and Best2 may play in ocular epithelia and ocular electrophysiology, and how perturbation

  1. A mathematical model of lung parenchyma.

    PubMed

    Karakaplan, A D; Bieniek, M P; Skalak, R

    1980-05-01

    The geometry of the proposed model of the parenchyma of a mammalian lung reproduces a cluster of alveoli arranged around a lowest-level air duct. The alveolar walls are assumed to be nonlinear elastic membranes, whose properties are described in terms of a strain energy function which reflects the hardening character of the stress-strain curve. The effect of the surfactant is included in terms of a variable (area-dependent) surface tension. Analyses of various mechanical processes in the parenchyma are performed with the aid of the finite element method, with the geometric and physical nonlinearities of the problem taken into account. PMID:6893348

  2. Characterization of the cell of origin and propagation potential of the fibroblast growth factor 9-induced mouse model of lung adenocarcinoma.

    PubMed

    Arai, Daisuke; Hegab, Ahmed E; Soejima, Kenzo; Kuroda, Aoi; Ishioka, Kota; Yasuda, Hiroyuki; Naoki, Katsuhiko; Kagawa, Shizuko; Hamamoto, Junko; Yin, Yongjun; Ornitz, David M; Betsuyaku, Tomoko

    2015-03-01

    Fibroblast growth factor 9 (FGF9) is essential for lung development and is highly expressed in a subset of human lung adenocarcinomas. We recently described a mouse model in which FGF9 expression in the lung epithelium caused proliferation of the airway epithelium at the terminal bronchioles and led to rapid development of adenocarcinoma. Here, we used this model to characterize the effects of prolonged FGF9 induction on the proximal and distal lung epithelia, and examined the propagation potential of FGF9-induced lung tumours. We showed that prolonged FGF9 over-expression in the lung resulted in the development of adenocarcinomas arising from both alveolar type II and airway secretory cells in the lung parenchyma and airways, respectively. We found that tumour cells harboured tumour-propagating cells that were able to form secondary tumours in recipient mice, regardless of FGF9 expression. However, the highest degree of tumour propagation was observed when unfractionated tumour cells were co-administered with autologous, tumour-associated mesenchymal cells. Although the initiation of lung adenocarcinomas was dependent on activation of the FGF9-FGF receptor 3 (FGFR3) signalling axis, maintenance and propagation of the tumour was independent of this signalling. Activation of an alternative FGF-FGFR axis and the interaction with tumour stromal cells is likely to be responsible for the development of this independence. This study demonstrates the complex role of FGF-FGFR signalling in the initiation, growth and propagation of lung cancer. Our findings suggest that analysing the expressions of FGF-FGFRs in human lung cancer will be a useful tool for guiding customized therapy.

  3. Irreversible Electroporation in a Swine Lung Model

    SciTech Connect

    Dupuy, Damian E.; Aswad, Bassam; Ng, Thomas

    2011-04-15

    Purpose: This study was designed to evaluate the safety and tissue effects of IRE in a swine lung model. Methods: This study was approved by the institutional animal care committee. Nine anesthetized domestic swine underwent 15 percutaneous irreversible electroporation (IRE) lesion creations (6 with bipolar and 3 with 3-4 monopolar electrodes) under fluoroscopic guidance and with pancuronium neuromuscular blockade and EKG gating. IRE electrodes were placed into the central and middle third of the right mid and lower lobes in all animals. Postprocedure PA and lateral chest radiographs were obtained to evaluate for pneumothorax. Three animals were sacrificed at 2 weeks and six at 4 weeks. Animals underwent high-resolution CT scanning and PA and lateral radiographs 1 h before sacrifice. The treated lungs were removed en bloc, perfused with formalin, and sectioned. Gross pathologic and microscopic changes after standard hematoxylin and eosin staining were analyzed within the areas of IRE lesion creation. Results: No significant adverse events were identified. CT showed focal areas of spiculated high density ranging in greatest diameter from 1.1-2.2 cm. On gross inspection of the sectioned lung, focal areas of tan discoloration and increased density were palpated in the areas of IRE. Histological analysis revealed focal areas of diffuse alveolar damage with fibrosis and inflammatory infiltration that respected the boundaries of the interlobular septae. No pathological difference could be discerned between the 2- and 4-week time points. The bronchioles and blood vessels within the areas of IRE were intact and did not show signs of tissue injury. Conclusion: IRE creates focal areas of diffuse alveolar damage without creating damage to the bronchioles or blood vessels. Short-term safety in a swine model appears to be satisfactory.

  4. 4D model generator of the human lung, "Lung4Cer".

    PubMed

    Kitaoka, Hiroko; Koc, Salim; Tetsumoto, Satoshi; Koumo, Satoshi; Hirata, Haruhiko; Kijima, Takashi

    2013-01-01

    We have developed a free software applications which generates 4D (= 3D + time) lung models for the purpose of studying lung anatomy, physiology, and pathophysiology. The coinage of 4C is originated from Japanese words, Catachi (= shape, structure) and Calacli (= machine, function). Lung4Cer makes 4D finite element models from the trachea to alveoli, which allow airflow simulation by means of computational fluid dynamics. Visualization of the generated models is expected to use a popular free software application, ParaView. There are several versions of Lung4Cer from basic lung morphology to advanced airflow computations simulating various clinical pulmonary function tests (PFT4Cer). All versions are designed so as to be operated on a common PC. Users can select model types and the element number according to their purposes and available computer resources.

  5. Dynamic epithelia of the developing vertebrate face

    PubMed Central

    Choe, Chong Pyo; Crump, J. Gage

    2015-01-01

    A segmental series of endoderm-derived pouch and ectoderm-derived cleft epithelia act as signaling centers in the developing face. Their precise morphogenesis is therefore essential for proper patterning of the vertebrate head. Intercellular adhesion and polarity are highly dynamic within developing facial epithelial cells, with signaling from the adjacent mesenchyme controlling both epithelial character and directional migration. Endodermal and ectodermal epithelia fuse to form the primary mouth and gill slits, which involves basement membrane dissolution, cell intercalations, and apoptosis, as well as undergo further morphogenesis to generate the middle ear cavity and glands of the neck. Recent studies of facial epithelia are revealing both core programs of epithelial morphogenesis and insights into the coordinated assembly of the vertebrate head. PMID:25748249

  6. Hepatocyte growth factor/scatter factor effects on epithelia. Regulation of intercellular junctions in transformed and nontransformed cell lines, basolateral polarization of c-met receptor in transformed and natural intestinal epithelia, and induction of rapid wound repair in a transformed model epithelium.

    PubMed Central

    Nusrat, A; Parkos, C A; Bacarra, A E; Godowski, P J; Delp-Archer, C; Rosen, E M; Madara, J L

    1994-01-01

    Intestinal epithelial cells rest on a fibroblast sheath. Thus, factors produced by these fibroblasts may influence epithelial function in a paracrine fashion. We examined modulation of intestinal epithelial function by one such fibroblast product, scatter factor/hepatocyte growth factor (HGF/SF). This effect was studied in vitro by using model T84 intestinal epithelial cells. When applied to confluent T84 monolayers, HGF/SF attenuates transepithelial resistance to passive ion flow in a dose-dependent manner (maximum fall at 300 ng/ml, 28% control monolayer resistance, P < 0.001, ED50 of 1.2 nM), t1/2 of 20 h. This functional effect of HGF/SF and distribution of its receptor, c-met, are polarized to the basolateral membranes of T84 intestinal epithelial cells. HGF/SF effects on resistance are not attributable to altered transcellular resistance (opening of Cl- and/or basolateral K+ channels), cytotoxicity, or enhanced cell proliferation; they therefore represent specific regulation of paracellular tight junction resistance. Analysis with biochemically purified rodent HGF/SF and Madin-Darby canine kidney cells reveals that effects on paracellular tight junctions also occur in other nontransformed epithelia. Binding of HGF/SF to its receptor in T84 intestinal epithelial cells is accompanied by tyrosine phosphorylation of the receptor. Because loosening of intercellular junctions between cells could facilitate separation, spreading, and migration of epithelial cells during physiologic processes such as wound resealing, we determined the effects of HGF/SF on intestinal epithelial wound resealing using our previously published in vitro model (Nusrat, A., C. Delp, and J. L. Madara. 1992. J. Clin. Invest. 89:1501-1511). HGF/SF markedly enhanced wound closure (> 450% increase in rate, P < 0.001) by influencing the migratory and spreading response in not only cells adjoining the wound but also cells many positions removed from the wound. We thus speculate that HGF/SF may

  7. Cholinergic nicotinic receptors in the vestibular epithelia.

    PubMed

    Thornhill, R A

    1991-10-01

    Receptor binding studies specific for nicotinic cholinergic receptors have been carried out on isolated vestibular epithelia of the frogs Rana catesbiana and Rana temporaria. Evidence is presented for the presence of nicotinic-like cholinergic receptors specifically associated with the sensory areas. PMID:1797345

  8. Transgenic models for the study of lung biology and disease.

    PubMed

    Ho, Y S

    1994-04-01

    Transgenic models provide a means of understanding the molecular mechanisms for the temporal, spatial, and stimulus-responsive regulation of gene expression in vivo and importantly the pathophysiological consequences of the altered expression of a normal or mutated gene. To facilitate the application of transgenic models in lung research, this review describes several practical considerations in generation of transgenic mice. The potential of transgenic models in lung research is also illustrated by depicting the current models in lung research including those for understanding lung gene regulation, tumorigenesis, mutation detection, antioxidant defense, emphysema, fibrosis, and hypertension. The impact of important new development of producing transgenic mice carrying large fragments of DNA contained in yeast artificial chromosomes to achieve proper control of transgene expression and gene targeting technology is also discussed. It is anticipated that transgenic models will provide invaluable information in future lung research.

  9. Practical use of advanced mouse models for lung cancer.

    PubMed

    Safari, Roghaiyeh; Meuwissen, Ralph

    2015-01-01

    To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre

  10. Computer modeling of lung cancer diagnosis-to-treatment process

    PubMed Central

    Ju, Feng; Lee, Hyo Kyung; Osarogiagbon, Raymond U.; Yu, Xinhua; Faris, Nick

    2015-01-01

    We introduce an example of a rigorous, quantitative method for quality improvement in lung cancer care-delivery. Computer process modeling methods are introduced for lung cancer diagnosis, staging and treatment selection process. Two types of process modeling techniques, discrete event simulation (DES) and analytical models, are briefly reviewed. Recent developments in DES are outlined and the necessary data and procedures to develop a DES model for lung cancer diagnosis, leading up to surgical treatment process are summarized. The analytical models include both Markov chain model and closed formulas. The Markov chain models with its application in healthcare are introduced and the approach to derive a lung cancer diagnosis process model is presented. Similarly, the procedure to derive closed formulas evaluating the diagnosis process performance is outlined. Finally, the pros and cons of these methods are discussed. PMID:26380181

  11. Finite element modeling of blast lung injury in sheep.

    PubMed

    Gibbons, Melissa M; Dang, Xinglai; Adkins, Mark; Powell, Brian; Chan, Philemon

    2015-04-01

    A detailed 3D finite element model (FEM) of the sheep thorax was developed to predict heterogeneous and volumetric lung injury due to blast. A shared node mesh of the sheep thorax was constructed from a computed tomography (CT) scan of a sheep cadaver, and while most material properties were taken from literature, an elastic-plastic material model was used for the ribs based on three-point bending experiments performed on sheep rib specimens. Anesthetized sheep were blasted in an enclosure, and blast overpressure data were collected using the blast test device (BTD), while surface lung injury was quantified during necropsy. Matching blasts were simulated using the sheep thorax FEM. Surface lung injury in the FEM was matched to pathology reports by setting a threshold value of the scalar output termed the strain product (maximum value of the dot product of strain and strain-rate vectors over all simulation time) in the surface elements. Volumetric lung injury was quantified by applying the threshold value to all elements in the model lungs, and a correlation was found between predicted volumetric injury and measured postblast lung weights. All predictions are made for the left and right lungs separately. This work represents a significant step toward the prediction of localized and heterogeneous blast lung injury, as well as volumetric injury, which was not recorded during field testing for sheep.

  12. Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology.

    PubMed

    Gordon, Sarah; Daneshian, Mardas; Bouwstra, Joke; Caloni, Francesca; Constant, Samuel; Davies, Donna E; Dandekar, Gudrun; Guzman, Carlos A; Fabian, Eric; Haltner, Eleonore; Hartung, Thomas; Hasiwa, Nina; Hayden, Patrick; Kandarova, Helena; Khare, Sangeeta; Krug, Harald F; Kneuer, Carsten; Leist, Marcel; Lian, Guoping; Marx, Uwe; Metzger, Marco; Ott, Katharina; Prieto, Pilar; Roberts, Michael S; Roggen, Erwin L; Tralau, Tewes; van den Braak, Claudia; Walles, Heike; Lehr, Claus-Michael

    2015-01-01

    Models of the outer epithelia of the human body - namely the skin, the intestine and the lung - have found valid applications in both research and industrial settings as attractive alternatives to animal testing. A variety of approaches to model these barriers are currently employed in such fields, ranging from the utilization of ex vivo tissue to reconstructed in vitro models, and further to chip-based technologies, synthetic membrane systems and, of increasing current interest, in silico modeling approaches. An international group of experts in the field of epithelial barriers was convened from academia, industry and regulatory bodies to present both the current state of the art of non-animal models of the skin, intestinal and pulmonary barriers in their various fields of application, and to discuss research-based, industry-driven and regulatory-relevant future directions for both the development of new models and the refinement of existing test methods. Issues of model relevance and preference, validation and standardization, acceptance, and the need for simplicity versus complexity were focal themes of the discussions. The outcomes of workshop presentations and discussions, in relation to both current status and future directions in the utilization and development of epithelial barrier models, are presented by the attending experts in the current report.

  13. Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology.

    PubMed

    Gordon, Sarah; Daneshian, Mardas; Bouwstra, Joke; Caloni, Francesca; Constant, Samuel; Davies, Donna E; Dandekar, Gudrun; Guzman, Carlos A; Fabian, Eric; Haltner, Eleonore; Hartung, Thomas; Hasiwa, Nina; Hayden, Patrick; Kandarova, Helena; Khare, Sangeeta; Krug, Harald F; Kneuer, Carsten; Leist, Marcel; Lian, Guoping; Marx, Uwe; Metzger, Marco; Ott, Katharina; Prieto, Pilar; Roberts, Michael S; Roggen, Erwin L; Tralau, Tewes; van den Braak, Claudia; Walles, Heike; Lehr, Claus-Michael

    2015-01-01

    Models of the outer epithelia of the human body - namely the skin, the intestine and the lung - have found valid applications in both research and industrial settings as attractive alternatives to animal testing. A variety of approaches to model these barriers are currently employed in such fields, ranging from the utilization of ex vivo tissue to reconstructed in vitro models, and further to chip-based technologies, synthetic membrane systems and, of increasing current interest, in silico modeling approaches. An international group of experts in the field of epithelial barriers was convened from academia, industry and regulatory bodies to present both the current state of the art of non-animal models of the skin, intestinal and pulmonary barriers in their various fields of application, and to discuss research-based, industry-driven and regulatory-relevant future directions for both the development of new models and the refinement of existing test methods. Issues of model relevance and preference, validation and standardization, acceptance, and the need for simplicity versus complexity were focal themes of the discussions. The outcomes of workshop presentations and discussions, in relation to both current status and future directions in the utilization and development of epithelial barrier models, are presented by the attending experts in the current report. PMID:26536291

  14. A Lung Segmental Model of Chronic Pseudomonas Infection in Sheep

    PubMed Central

    Collie, David; Govan, John; Wright, Steven; Thornton, Elisabeth; Tennant, Peter; Smith, Sionagh; Doherty, Catherine; McLachlan, Gerry

    2013-01-01

    Background Chronic lung infection with Pseudomonas aeruginosa is a major contributor to morbidity, mortality and premature death in cystic fibrosis. A new paradigm for managing such infections is needed, as are relevant and translatable animal models to identify and test concepts. We sought to improve on limitations associated with existing models of infection in small animals through developing a lung segmental model of chronic Pseudomonas infection in sheep. Methodology/Principal Findings Using local lung instillation of P. aeruginosa suspended in agar beads we were able to demonstrate that such infection led to the development of a suppurative, necrotising and pyogranulomatous pneumonia centred on the instilled beads. No overt evidence of organ or systemic compromise was apparent in any animal during the course of infection. Infection persisted in the lungs of individual animals for as long as 66 days after initial instillation. Quantitative microbiology applied to bronchoalveolar lavage fluid derived from infected segments proved an insensitive index of the presence of significant infection in lung tissue (>104 cfu/g). Conclusions/Significance The agar bead model of chronic P. aeruginosa lung infection in sheep is a relevant platform to investigate both the pathobiology of such infections as well as novel approaches to their diagnosis and therapy. Particular ethical benefits relate to the model in terms of refining existing approaches by compromising a smaller proportion of the lung with infection and facilitating longitudinal assessment by bronchoscopy, and also potentially reducing animal numbers through facilitating within-animal comparisons of differential therapeutic approaches. PMID:23874438

  15. LLPi: Liverpool Lung Project Risk Prediction Model for Lung Cancer Incidence.

    PubMed

    Marcus, Michael W; Chen, Ying; Raji, Olaide Y; Duffy, Stephen W; Field, John K

    2015-06-01

    Identification of high-risk individuals will facilitate early diagnosis, reduce overall costs, and also improve the current poor survival from lung cancer. The Liverpool Lung Project prospective cohort of 8,760 participants ages 45 to 79 years, recruited between 1998 and 2008, was followed annually through the hospital episode statistics until January 31, 2013. Cox proportional hazards models were used to identify risk predictors of lung cancer incidence. C-statistic was used to assess the discriminatory accuracy of the models. Models were internally validated using the bootstrap method. During mean follow-up of 8.7 years, 237 participants developed lung cancer. Age [hazard ratio (HR), 1.04; 95% confidence interval (CI), 1.02-1.06], male gender (HR, 1.48; 95% CI, 1.10-1.98), smoking duration (HR, 1.04; 95% CI, 1.03-1.05), chronic obstructive pulmonary disease (HR, 2.43; 95% CI, 1.79-3.30), prior diagnosis of malignant tumor (HR, 2.84; 95% CI, 2.08-3.89), and early onset of family history of lung cancer (HR, 1.68; 95% CI, 1.04-2.72) were associated with the incidence of lung cancer. The LLPi risk model had a good calibration (goodness-of-fit χ(2) 7.58, P = 0.371). The apparent C-statistic was 0.852 (95% CI, 0.831-0.873) and the optimism-corrected bootstrap resampling C-statistic was 0.849 (95% CI, 0.829-0.873). The LLPi risk model may assist in identifying individuals at high risk of developing lung cancer in population-based screening programs.

  16. Implications of the ICRP Task Group's proposed lung model for internal dose assessments in the mineral sands industry

    SciTech Connect

    James, A.C. ); Birchall, A. )

    1990-09-01

    The ICRP Task Group on Respiratory Tract Models for Radiological Projection is proposing a model to describe the deposition, clearance, retention and dosimetry of inhaled radionuclides for dose-intake calculations and interpretation of bioassay data. The deposition model takes into account new data on the regional deposition of aerosol particles in human lung and the inhalability of large particles. The clearance model treats clearance as competition between mechanical transport, which moves particles to the gastro-intestinal tract and lymph nodes, and the translocation of material to blood. This provides a realistic estimate of the amount of a given material (such as mineral sand) that is absorbed systemically, and its variation with aerosol size. The proposed dosimetry model takes into account the relative sensitivities of the various tissue components of the respiratory tract. A new treatment of dose received by epithelia in the tracheo-bronchiolar and extrathoracic regions is proposed. This paper outlines the novel features of the task group model, and then examines the impact that adoption of the model may have on the assessment of doses from occupational exposures to mineral sands and thoron progeny. 39 refs., 15 figs., 6 tabs.

  17. Animal models of beryllium-induced lung disease

    SciTech Connect

    Finch, G.L.; Hoover, M.D.; Hahn, F.F.

    1996-10-01

    The Inhalation Toxicology Research Institute (ITRI) is conducting research to improve the understanding of chronic beryllium disease (CBD) and beryllium-induced lung cancer. Initial animal studies examined beagle dogs that inhaled BeO calcined at either 500 or 1000{degrees}C. At similar lung burdens, the 500{degrees}C BeO induced more severe and extensive granulomatous pneumonia, lymphocytic infiltration into the lung, and positive Be-specific lymphocyte proliferative responses in vitro than the 1000{degrees}C BeO. However, the progressive nature of human CBD was not duplicated. More recently, Strains A/J and C3H/HeJ mice were exposed to Be metal by inhalation. This produced a marked granulomatous pneumonia, diffuse infiltrates, and multifocal aggregates of interstitial lymphocytes with a pronounced T helper component and pulmonary in situ lymphocyte proliferation. With respect to lung cancer, at a mean lung burden as low as 17 pg Be/g lung, inhaled Be metal induced benign and/or malignant lung tumors in over 50% of male and female F344 rats surviving {ge}1 year on study. Substantial tumor multiplicity was found, but K-ras and p53 gene mutations were virtually absent. In mice, however, a lung burden of approximately 60 {mu}g ({approximately}300 {mu}g Be/g lung) caused only a slight increase in crude lung tumor incidence and multiplicity over controls in strain A/J mice and no elevated incidence in strain C3H mice. Taken together, this research program constitutes a coordinated effort to understand beryllium-induced lung disease in experimental animal models. 47 refs., 1 fig., 3 tabs.

  18. On a PCA-based lung motion model

    NASA Astrophysics Data System (ADS)

    Li, Ruijiang; Lewis, John H.; Jia, Xun; Zhao, Tianyu; Liu, Weifeng; Wuenschel, Sara; Lamb, James; Yang, Deshan; Low, Daniel A.; Jiang, Steve B.

    2011-09-01

    Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772-81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921-9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within 1

  19. Mooney-Rivlin biomechanical modeling of lung with Inhomogeneous material.

    PubMed

    Nasehi Tehrani, J; Wang, J

    2015-01-01

    In this study, the Mooney-Rivlin material with hyperelastic strain energy was proposed for biomechanical modeling of the lung. We modeled the lung as an inhomogeneous Mooney-Rivlin material with uncoupled deviatoric and volumetric behavior. The proposed method was evaluated on the lungs of eight lung cancer patients. For each patient, the lung was segmented from the 4D-CT images and tetrahedral volume mesh of the lung in phase 50% was created by using the adaptive mesh generation toolkit. The demons deformable registration algorithm was used to extract the displacement vector fields (DVFs). The Jacobian of the deformation gradient was calculated from DVFs, and the lung strain energy function was optimized to improve the tumor center of mass (TCM) motion simulation accuracy between respiratory phase 50% and 0%. The average TCM motion simulation error for the proposed strategy is 1.95 mm for eight patients. We observed 13% improvement in the TCM position prediction compared with the homogeneous Mooney-Rivlin modeling. PMID:26738123

  20. Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia

    PubMed Central

    Chen, Jeng-Haur; Stoltz, David A.; Karp, Philip H.; Ernst, Sarah E.; Pezzulo, Alejandro A.; Moninger, Thomas O.; Rector, Michael V.; Reznikov, Leah R.; Launspach, Janice L.; Chaloner, Kathryn; Zabner, Joseph; Welsh, Michael J.

    2011-01-01

    SUMMARY Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR−/− pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and tracheal/bronchial epithelia in tissue, cultures, and in vivo. CFTR−/− epithelia showed markedly reduced Cl− and HCO3− transport. However, in contrast to a widely held view, lack of CFTR did not increase transepithelial Na+ or liquid absorption or reduce periciliary liquid depth. Like human CF, CFTR−/− pigs showed increased amiloride-sensitive voltage and current, but lack of apical Cl− conductance caused the change, not increased Na+ transport. These results indicate that CFTR provides the predominant transcellular pathway for Cl− and HCO3− in porcine airway epithelia, and reduced anion permeability may initiate CF airway disease. PMID:21145458

  1. Lung lobe modeling and segmentation with individualized surface meshes

    NASA Astrophysics Data System (ADS)

    Blaffert, Thomas; Barschdorf, Hans; von Berg, Jens; Dries, Sebastian; Franz, Astrid; Klinder, Tobias; Lorenz, Cristian; Renisch, Steffen; Wiemker, Rafael

    2008-03-01

    An automated segmentation of lung lobes in thoracic CT images is of interest for various diagnostic purposes like the quantification of emphysema or the localization of tumors within the lung. Although the separating lung fissures are visible in modern multi-slice CT-scanners, their contrast in the CT-image often does not separate the lobes completely. This makes it impossible to build a reliable segmentation algorithm without additional information. Our approach uses general anatomical knowledge represented in a geometrical mesh model to construct a robust lobe segmentation, which even gives reasonable estimates of lobe volumes if fissures are not visible at all. The paper describes the generation of the lung model mesh including lobes by an average volume model, its adaptation to individual patient data using a special fissure feature image, and a performance evaluation over a test data set showing an average segmentation accuracy of 1 to 3 mm.

  2. CFTR–SLC26 transporter interactions in epithelia

    PubMed Central

    2012-01-01

    Transport mechanisms that mediate the movements of anions must be coordinated tightly in order to respond appropriately to physiological stimuli. This process is of paramount importance in the function of diverse epithelial tissues of the body, such as, for example, the exocrine pancreatic duct and the airway epithelia. Disruption of any of the finely tuned components underlying the transport of anions such as Cl−, HCO3−, SCN−, and I− may contribute to a plethora of disease conditions. In many anion-secreting epithelia, the interactions between the cystic fibrosis transmembrane conductance regulator (CFTR) and solute carrier family 26 (SLC26) transporters determine the final exit of anions across the apical membrane and into the luminal compartment. The molecular identification of CFTR and many SLC26 members has enabled the acquisition of progressively more detailed structural information about these transport molecules. Studies employing a vast array of increasingly sophisticated approaches have culminated in a current working model which places these key players within an interactive complex, thereby setting the stage for future work. PMID:22685498

  3. Hematopoietic lineage skewing and intestinal epithelia degeneration in aged mice with telomerase RNA component deletion.

    PubMed

    Chen, Jichun; Bryant, Mark A; Dent, James J; Sun, Yu; Desierto, Marie J; Young, Neal S

    2015-12-01

    A deletion of a telomerase RNA component (Terc(-/-)) in C57BL/6 (B6) mice resulted in hematopoietic lineage skewing with increased neutrophils and CD11b(+) myeloid cells and decreased red blood cells and CD45R(+) B lymphocytes when animals reach ages older than 12 months. There was no decline in bone marrow (BM) c-Kit(+)Sca-1(+)Lin(-) (KSL) cells in old Terc(-/-) mice, and the lineage skewing phenomenon was not transferred when BM cells from old Terc(-/-) donors were transplanted into young B6 recipients. Necropsy and histological examinations found minimal to no change in the lung, spleen and liver but detected severe epithelia degeneration, ulceration and infection in small and large intestines, leading to enteritis, typhlitis and colitis in old Terc(-/-) mice. In a mouse model of dextran-sulfate-sodium-induced typhlitis and colitis, development of intestinal pathology was associated with increases in neutrophils and CD11b(+) myeloid cells and a decrease in CD45R(+) B cells, similar to those observed in old Terc(-/-) mice. Treatment of 11-13 month old Terc(-/-) mice with antibiotic trimethoprim-sulfa water reduced neutrophils and myeloid cells and increased B lymphocytes in the blood, indicating that mitigation of intestinal infection and inflammation could alleviate hematological abnormalities in old Terc(-/-) animals. PMID:26523501

  4. Hematopoietic lineage skewing and intestinal epithelia degeneration in aged mice with telomerase RNA component deletion.

    PubMed

    Chen, Jichun; Bryant, Mark A; Dent, James J; Sun, Yu; Desierto, Marie J; Young, Neal S

    2015-12-01

    A deletion of a telomerase RNA component (Terc(-/-)) in C57BL/6 (B6) mice resulted in hematopoietic lineage skewing with increased neutrophils and CD11b(+) myeloid cells and decreased red blood cells and CD45R(+) B lymphocytes when animals reach ages older than 12 months. There was no decline in bone marrow (BM) c-Kit(+)Sca-1(+)Lin(-) (KSL) cells in old Terc(-/-) mice, and the lineage skewing phenomenon was not transferred when BM cells from old Terc(-/-) donors were transplanted into young B6 recipients. Necropsy and histological examinations found minimal to no change in the lung, spleen and liver but detected severe epithelia degeneration, ulceration and infection in small and large intestines, leading to enteritis, typhlitis and colitis in old Terc(-/-) mice. In a mouse model of dextran-sulfate-sodium-induced typhlitis and colitis, development of intestinal pathology was associated with increases in neutrophils and CD11b(+) myeloid cells and a decrease in CD45R(+) B cells, similar to those observed in old Terc(-/-) mice. Treatment of 11-13 month old Terc(-/-) mice with antibiotic trimethoprim-sulfa water reduced neutrophils and myeloid cells and increased B lymphocytes in the blood, indicating that mitigation of intestinal infection and inflammation could alleviate hematological abnormalities in old Terc(-/-) animals.

  5. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia

    PubMed Central

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G.; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S. H.; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-01-01

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies. PMID:26119831

  6. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia

    NASA Astrophysics Data System (ADS)

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G.; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S. H.; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-06-01

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies.

  7. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia.

    PubMed

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S H; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-06-29

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies.

  8. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia.

    PubMed

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S H; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-01-01

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies. PMID:26119831

  9. Radioactivity and lung cancer-mathematical models of radionuclide deposition in the human lungs

    PubMed Central

    Sturm, Robert

    2011-01-01

    The human respiratory tract is regarded as pathway for radionuclides and other hazardous airborne materials to enter the body. Radioactive particles inhaled and deposited in the lungs cause an irradiation of bronchial/alveolar tissues. At the worst, this results in a malignant cellular transformation and, as a consequence of that, the development of lung cancer. In general, naturally occurring radionuclides (e.g., 222Rn, 40K) are attached to so-called carrier aerosols. The aerodynamic diameters of such radioactively labeled particles generally vary between several nanometers (ultrafine particles) and few micrometers, whereby highest particle fractions adopt sizes around 100 nm. Theoretical simulations of radioactive particle deposition in the human lungs were based on a stochastic lung geometry and a particle transport/deposition model using the random-walk algorithm. Further a polydisperse carrier aerosol (diameter: 1 nm–10 µm, ρ ≈ 1 g cm−3) with irregularly shaped particles and the effect of breathing characteristics and certain respiratory parameters on the transport of radioactive particles to bronchial/alveolar tissues were considered. As clearly shown by the results of deposition modeling, distribution patterns of radiation doses mainly depend on the size of the carrier aerosol. Ultrafine (< 10 nm) and large (> 2 µm) aerosol particles are preferentially deposited in the extrathoracic and upper bronchial region, whereas aerosol particles with intermediate size (10 nm–2 µm) may penetrate to deeper lung regions, causing an enhanced damage of the alveolar tissue by the attached radionuclides. PMID:22263097

  10. Fluid Transport Phenomena in Ocular Epithelia

    PubMed Central

    Candia, Oscar A.; Alvarez, Lawrence J.

    2008-01-01

    This article discusses three largely unrecognized aspects related to fluid movement in ocular tissues; namely, a) the dynamic changes in water permeability observed in corneal and conjunctival epithelia under anisotonic conditions; b) the indications that the fluid transport rate exhibited by the ciliary epithelium is insufficient to explain aqueous humor production; and c) the evidence for fluid movement into and out of the lens during accommodation. We have studied each of these subjects in recent years and present an evaluation of our data within the context of the results of others who have also worked on electrolyte and fluid transport in ocular tissues. We propose that 1) the corneal and conjunctival epithelia, with apical aspects naturally exposed to variable tonicities, are capable of regulating their water permeabilities as part of the cell-volume regulatory process, 2) fluid may directly enter the anterior chamber of the eye across the anterior surface of the iris, thereby representing an additional entry pathway for aqueous humor production, and 3) changes in lens volume occur during accommodation, and such changes are best explained by a net influx and efflux of fluid. PMID:18289913

  11. Epithelia, an evolutionary novelty of metazoans.

    PubMed

    Leys, Sally P; Riesgo, Ana

    2012-09-01

    At the point in animal evolution when cells began to adhere to each other they presumably initially functioned as colonies. The formation of an epithelium that enclosed and controlled an internal milieu would have been the first event to distinguish an individual animal from a colony. To better understand when the first epithelium arose and what its characteristics were, we evaluate the morphological, functional, and molecular characters of epithelia in sponges, considered here the extant representatives of the first metazoans. In particular, we show new claudin-like sequences from sponges align most closely with sequences from Drosophila that have a barrier function in septate junctions. We also show that type IV collagen, the main component of the basement membrane (BM), is present in calcareous sponges, and we confirm the presence of type IV-like collagen (spongin short chain collagen) in other sponges. Though in sponges as in other metazoans the epithelium has grades of specialization with varying complexity of junctions and the BM, the main character of a functional epithelium, the ability to seal and control the ionic composition of the internal milieu, is a property of even the simplest sponge epithelium, and therefore the first metazoans likely also had epithelia with these characteristics, which we consider a "true" epithelium.

  12. Models to teach lung sonopathology and ultrasound-guided thoracentesis.

    PubMed

    Wojtczak, Jacek A

    2014-12-01

    Lung sonography allows rapid diagnosis of lung emergencies such as pulmonary edema, hemothorax or pneumothorax. The ability to timely diagnose an intraoperative pneumothorax is an important skill for the anesthesiologist. However, lung ultrasound exams require an interpretation of not only real images but also complex acoustic artifacts such as A-lines and B-lines. Therefore, appropriate training to gain proficiency is important. Simulated environment using ultrasound phantom models allows controlled, supervised learning. We have developed hybrid models that combine dry or wet polyurethane foams, porcine rib cages and human hand simulating a rib cage. These models simulate fairly accurately pulmonary sonopathology and allow supervised teaching of lung sonography with the immediate feedback. In-vitro models can also facilitate learning of procedural skills, improving transducer and needle positioning and movement, rapid recognition of thoracic anatomy and hand - eye coordination skills. We described a new model to teach an ultrasound guided thoracentesis. This model consists of the experimenter's hand placed on top of the water-filled container with a wet foam. Metacarpal bones of the human hand simulate a rib cage and a wet foam simulates a diseased lung immersed in the pleural fluid. Positive fluid flow offers users feedback when a simulated pleural effusion is accurately assessed. PMID:26672739

  13. Pseudomonas aeruginosa biofilm-associated homoserine lactone C12 rapidly activates apoptosis in airway epithelia

    PubMed Central

    Schwarzer, Christian; Fu, Zhu; Patanwala, Maria; Hum, Lauren; Lopez-Guzman, Mirielle; Illek, Beate; Kong, Weidong; Lynch, Susan V.; Machen, Terry E.

    2014-01-01

    Pseudomonas aeruginosa (PA) forms biofilms in lungs of cystic fibrosis CF) patients, a process regulated by quorum sensing molecules including N-(3-oxododecanoyl)-L-homoserine lactone, C12. C12 (10–100 μM) rapidly triggered events commonly associated with the intrinsic apoptotic pathway in JME (CFΔF508CFTR, nasal surface) epithelial cells: depolarization of mitochondrial (mito) membrane potential (Δψmito) and release of cytochrome C (cytoC) from mitos into cytosol and activation of caspases 3/7, 8 and 9. C12 also had novel effects on the endoplasmic reticulum (release of both Ca2+ and ER-targeted GFP and oxidized contents into the cytosol). Effects began within 5 minutes and were complete in 1–2 hrs. C12 caused similar activation of caspases and release of cytoC from mitos in Calu-3 (wtCFTR, bronchial gland) cells, showing that C12-triggered responses occurred similarly in different airway epithelial types. C12 had nearly identical effects on three key aspects of the apoptosis response (caspase 3/7, depolarization of Δψmito and reduction of redox potential in the ER) in JME and CFTR-corrected JME cells (adenoviral expression), showing that CFTR was likely not an important regulator of C12-triggered apoptosis in airway epithelia. Exposure of airway cultures to biofilms from PAO1wt caused depolarization of Δψmito and increases in Cacyto like 10–50 μM C12. In contrast, biofilms from PAO1ΔlasI (C12 deficient) had no effect, suggesting that C12 from P. aeruginosa biofilms may contribute to accumulation of apoptotic cells that cannot be cleared from CF lungs. A model to explain the effects of C12 is proposed. PMID:22233488

  14. Pseudomonas aeruginosa biofilm-associated homoserine lactone C12 rapidly activates apoptosis in airway epithelia.

    PubMed

    Schwarzer, Christian; Fu, Zhu; Patanwala, Maria; Hum, Lauren; Lopez-Guzman, Mirielle; Illek, Beate; Kong, Weidong; Lynch, Susan V; Machen, Terry E

    2012-05-01

    Pseudomonas aeruginosa (PA) forms biofilms in lungs of cystic fibrosis (CF) patients, a process regulated by quorum-sensing molecules including N-(3-oxododecanoyl)-l-homoserine lactone (C12). C12 (10-100 µM) rapidly triggered events commonly associated with the intrinsic apoptotic pathway in JME (CF ΔF508CFTR, nasal surface) epithelial cells: depolarization of mitochondrial (mito) membrane potential (Δψ(mito)) and release of cytochrome C (cytoC) from mitos into cytosol and activation of caspases 3/7, 8 and 9. C12 also had novel effects on the endoplasmic reticulum (release of both Ca(2+) and ER-targeted GFP and oxidized contents into the cytosol). Effects began within 5 min and were complete in 1-2 h. C12 caused similar activation of caspases and release of cytoC from mitos in Calu-3 (wtCFTR, bronchial gland) cells, showing that C12-triggered responses occurred similarly in different airway epithelial types. C12 had nearly identical effects on three key aspects of the apoptosis response (caspase 3/7, depolarization of Δψ(mito) and reduction of redox potential in the ER) in JME and CFTR-corrected JME cells (adenoviral expression), showing that CFTR was likely not an important regulator of C12-triggered apoptosis in airway epithelia. Exposure of airway cultures to biofilms from PAO1wt caused depolarization of Δψ(mito) and increases in Ca(cyto) like 10-50 µM C12. In contrast, biofilms from PAO1ΔlasI (C12 deficient) had no effect, suggesting that C12 from P. aeruginosa biofilms may contribute to accumulation of apoptotic cells that cannot be cleared from CF lungs. A model to explain the effects of C12 is proposed.

  15. Modeling of the Nitric Oxide Transport in the Human Lungs

    PubMed Central

    Karamaoun, Cyril; Van Muylem, Alain; Haut, Benoît

    2016-01-01

    In the human lungs, nitric oxide (NO) acts as a bronchodilatator, by relaxing the bronchial smooth muscles and is closely linked to the inflammatory status of the lungs, owing to its antimicrobial activity. Furthermore, the molar fraction of NO in the exhaled air has been shown to be higher for asthmatic patients than for healthy patients. Multiple models have been developed in order to characterize the NO dynamics in the lungs, owing to their complex structure. Indeed, direct measurements in the lungs are difficult and, therefore, these models are valuable tools to interpret experimental data. In this work, a new model of the NO transport in the human lungs is proposed. It belongs to the family of the morphological models and is based on the morphometric model of Weibel (1963). When compared to models published previously, its main new features are the layered representation of the wall of the airways and the possibility to simulate the influence of bronchoconstriction (BC) and of the presence of mucus on the NO transport in lungs. The model is based on a geometrical description of the lungs, at rest and during a respiratory cycle, coupled with transport equations, written in the layers composing an airway wall and in the lumen of the airways. First, it is checked that the model is able to reproduce experimental information available in the literature. Second, the model is used to discuss some features of the NO transport in healthy and unhealthy lungs. The simulation results are analyzed, especially when BC has occurred in the lungs. For instance, it is shown that BC can have a significant influence on the NO transport in the tissues composing an airway wall. It is also shown that the relation between BC and the molar fraction of NO in the exhaled air is complex. Indeed, BC might lead to an increase or to a decrease of this molar fraction, depending on the extent of the BC and on the possible presence of mucus. This should be confirmed experimentally and might

  16. Genetically manipulated mouse models of lung disease: potential and pitfalls

    PubMed Central

    Choi, Alexander J. S.; Owen, Caroline A.; Choi, Augustine M. K.

    2012-01-01

    Gene targeting in mice (transgenic and knockout) has provided investigators with an unparalleled armamentarium in recent decades to dissect the cellular and molecular basis of critical pathophysiological states. Fruitful information has been derived from studies using these genetically engineered mice with significant impact on our understanding, not only of specific biological processes spanning cell proliferation to cell death, but also of critical molecular events involved in the pathogenesis of human disease. This review will focus on the use of gene-targeted mice to study various models of lung disease including airways diseases such as asthma and chronic obstructive pulmonary disease, and parenchymal lung diseases including idiopathic pulmonary fibrosis, pulmonary hypertension, pneumonia, and acute lung injury. We will attempt to review the current technological approaches of generating gene-targeted mice and the enormous dataset derived from these studies, providing a template for lung investigators. PMID:22198907

  17. Alterations of lung microbiota in a mouse model of LPS-induced lung injury.

    PubMed

    Poroyko, Valeriy; Meng, Fanyong; Meliton, Angelo; Afonyushkin, Taras; Ulanov, Alexander; Semenyuk, Ekaterina; Latif, Omar; Tesic, Vera; Birukova, Anna A; Birukov, Konstantin G

    2015-07-01

    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome are common responses to a variety of infectious and noninfectious insults. We used a mouse model of ALI induced by intratracheal administration of sterile bacterial wall lipopolysaccharide (LPS) to investigate the changes in innate lung microbiota and study microbial community reaction to lung inflammation and barrier dysfunction induced by endotoxin insult. One group of C57BL/6J mice received LPS via intratracheal injection (n = 6), and another received sterile water (n = 7). Bronchoalveolar lavage (BAL) was performed at 72 h after treatment. Bacterial DNA was extracted and used for qPCR and 16S rRNA gene-tag (V3-V4) sequencing (Illumina). The bacterial load in BAL from ALI mice was increased fivefold (P = 0.03). The community complexity remained unchanged (Simpson index, P = 0.7); the Shannon diversity index indicated the increase of community evenness in response to ALI (P = 0.07). Principal coordinate analysis and analysis of similarity (ANOSIM) test (P = 0.005) revealed a significant difference between microbiota of control and ALI groups. Bacteria from families Xanthomonadaceae and Brucellaceae increased their abundance in the ALI group as determined by Metastats test (P < 0.02). In concordance with the 16s-tag data, Stenotrohomonas maltophilia (Xanthomonadaceae) and Ochrobactrum anthropi (Brucellaceae) were isolated from lungs of mice from both groups. Metabolic profiling of BAL detected the presence of bacterial substrates suitable for both isolates. Additionally, microbiota from LPS-treated mice intensified IL-6-induced lung inflammation in naive mice. We conclude that the morbid transformation of ALI microbiota was attributed to the set of inborn opportunistic pathogens thriving in the environment of inflamed lung, rather than the external infectious agents.

  18. Overview of KRAS-Driven Genetically Engineered Mouse Models of Non-Small Cell Lung Cancer.

    PubMed

    Sheridan, Clare; Downward, Julian

    2015-01-01

    KRAS, the most frequently mutated oncogene in non-small cell lung cancer, has been utilized extensively to model human lung adenocarcinomas. The results from such studies have enhanced considerably an understanding of the relationship between KRAS and the development of lung cancer. Detailed in this overview are the features of various KRAS-driven genetically engineered mouse models (GEMMs) of non-small cell lung cancer, their utilization, and the potential of these models for the study of lung cancer biology.

  19. A model of blast overpressure injury to the lung.

    PubMed

    Stuhmiller, J H; Ho, K H; Vander Vorst, M J; Dodd, K T; Fitzpatrick, T; Mayorga, M

    1996-02-01

    Despite decades of animal experiments, data on blast injury to the lung cover only a limited number of circumstances and are in a fragmented form. This paper develops a mathematical model of the chest wall dynamics and the subsequent generation of strong pressure waves within the lung, which have been hypothesized as the mediator of injury. The model has been compared to an extensive database of observed pathologies from animal tests. The incidence of injury and lethality is found to follow a log-normal correlation with the computed total energy in these waves and, when the energy is normalized by the lung volume, the lethality correlation applies to all large animal species. Small animals also correlate with the normalized energy, but at a different value, and it is speculated that structural differences, other than lung volume, may be involved. This relatively simple model allows the potential for blast injury to the lung to be determined from measured or computed pressure traces without additional animal testing. Improved occupational exposure criteria should follow from this methodology. PMID:8849816

  20. Quantification of growth asymmetries in developing epithelia

    NASA Astrophysics Data System (ADS)

    Bittig, T.; Wartlick, O.; González-Gaitán, M.; Jülicher, F.

    2009-09-01

    Many developmental processes of multicellular organisms involve the patterning and growth of two-dimensional tissues, so called epithelia. We have quantified the growth of the wing imaginal disk, which is the precursor of the adult wing, of the fruit fly Drosophila melanogaster. We find that growth follows a simple rule with exponentially decreasing area growth rate. Anisotropies of growth can be precisely determined by comparing experimental results to a continuum theory. Growth anisotropies are to good approximation constant in space and time. They are weak in wild-type wing disks but threefold increased in GFP-Dpp disks in which the morphogen Dpp is overexpressed. Our findings indicate that morphogens such as Dpp control tissue shape via oriented cell divisions that generate anisotropic growth. in here

  1. Influence of exercise on airway epithelia in cystic fibrosis: a review.

    PubMed

    Cholewa, Jason Michael; Paolone, Vincent J

    2012-07-01

    Regular exercise is recommended as part of cystic fibrosis (CF) physiotherapy. Exercise delays the development of pulmonary disease in CF patients; however, the cellular mechanisms responsible for these improvements are unclear. This review expands on the hypothesis that exercise improves CF pathophysiological ion dysregulation via purinergic and adrenergic pathways by describing the effects of 5' adenosine monophosphate-activated protein kinase (AMPK), atrial natriuretic peptide (ANP), and arginine-vasopressin (AVP) on CF airway epithelia. Activation of AMPK decreases Na(+) absorption, increases airway surface liquid, and reduces oxidative stress and inflammation. Plasma ANP inhibits the basolateral Na(+)/K(+)-ATPase and may therefore reduce epithelial water absorption. Airway epithelia respond to plasma AVP and secrete AVP in response to elevated bradykinin. AVP stimulates the basolateral Na(+)/K(+)/2Cl(-) exchanger, thereby increasing Cl(-) secretion, reducing Na(+) absorption, and promoting basolateral to luminal water flux. In addition, AVP may increase cilia beat frequency in airway epithelia via a Ca(2+)-dependent mechanism. This review will describe the effects of exercise on AMPK activation, ANP release, and AVP secretion; we hypothesize that the mechanical and metabolic perturbations that occur with exercise may be beneficial in preventing CF lung pathogenesis by improving airway hydration, mucociliary clearance, and reducing markers of inflammation. PMID:22297805

  2. Web-access to a Lung Deposition Model for radiation protection and physiological modeling.

    PubMed

    Ward, Richard C; Eckerman, Keith F; Ahmad, Lin S

    2003-01-01

    A C++ implementation of the ICRP Lung Deposition Model was validated and made accessible by creating a web interface using Perl. Considerable understanding of this lung deposition model was obtained and a small number of errors identified in the code during this process. Documentation was developed using MathML and scalable vector graphics (SVG). PMID:15455931

  3. Modeling of weak blast wave propagation in the lung.

    PubMed

    D'yachenko, A I; Manyuhina, O V

    2006-01-01

    Blast injuries of the lung are the most life-threatening after an explosion. The choice of physical parameters responsible for trauma is important to understand its mechanism. We developed a one-dimensional linear model of an elastic wave propagation in foam-like pulmonary parenchyma to identify the possible cause of edema due to the impact load. The model demonstrates different injury localizations for free and rigid boundary conditions. The following parameters were considered: strain, velocity, pressure in the medium and stresses in structural elements, energy dissipation, parameter of viscous criterion. Maximum underpressure is the most suitable wave parameter to be the criterion for edema formation in a rabbit lung. We supposed that observed scattering of experimental data on edema severity is induced by the physiological variety of rabbit lungs. The criterion and the model explain this scattering. The model outlines the demands for experimental data to make an unambiguous choice of physical parameters responsible for lung trauma due to impact load.

  4. RECONSTRUCTION OF HUMAN LUNG MORPHOLOGY MODELS FROM MAGNETIC RESONANCE IMAGES

    EPA Science Inventory


    Reconstruction of Human Lung Morphology Models from Magnetic Resonance Images
    T. B. Martonen (Experimental Toxicology Division, U.S. EPA, Research Triangle Park, NC 27709) and K. K. Isaacs (School of Public Health, University of North Carolina, Chapel Hill, NC 27514)

  5. Mathematical model of the human lungs during phonation

    NASA Astrophysics Data System (ADS)

    Meshcheryakov, R. V.

    2012-08-01

    Modeling of the human lungs during phonation is considered. The main relationships during physiological phonation process and air passage through vocal folds are established. Results of investigation are presented for statements of various types corresponding to different intonation patterns of the statement.

  6. Modeling Nanoparticle Transport and Distribution in Lung Vasculature

    NASA Astrophysics Data System (ADS)

    Liu, Yaling; Zheng, Junda

    2013-11-01

    The nanoparticle targeted delivery in vascular system involves interplay of transport, hydrodynamic force, and multivalent interactions with targeted biosurfaces. To estimate the percentage of NPs delivered to the targeted region, properties of the vascular environment must be considered, i.e., the vascular geometry and flow conditions. This paper describes a computational model for NP transport and distribution in a complex lung vasculature through combined NP Brownian dynamics and computational fluid dynamics approaches. MRI sliced lung vasculature images are transferred into vascular geometry, discretized into tetrahedral meshes, and used in blood velocity calculation and particle deposition simulation. A non-uniform NP distribution is observed on the vascular surface, with a high NP concentration in the bifurcation region. The simulation results show that NPs with different size have different distribution pattern in lung vasculature. This study provides a tool to predict NP distribution in a complex vascular network.

  7. A poroelastic model coupled to a fluid network with applications in lung modelling.

    PubMed

    Berger, Lorenz; Bordas, Rafel; Burrowes, Kelly; Grau, Vicente; Tavener, Simon; Kay, David

    2016-01-01

    We develop a lung ventilation model based on a continuum poroelastic representation of lung parenchyma that is strongly coupled to a pipe network representation of the airway tree. The continuous system of equations is discretized using a low-order stabilised finite element method. The framework is applied to a realistic lung anatomical model derived from computed tomography data and an artificially generated airway tree to model the conducting airway region. Numerical simulations produce physiologically realistic solutions and demonstrate the effect of airway constriction and reduced tissue elasticity on ventilation, tissue stress and alveolar pressure distribution. The key advantage of the model is the ability to provide insight into the mutual dependence between ventilation and deformation. This is essential when studying lung diseases, such as chronic obstructive pulmonary disease and pulmonary fibrosis. Thus the model can be used to form a better understanding of integrated lung mechanics in both the healthy and diseased states. Copyright © 2015 John Wiley & Sons, Ltd.

  8. The 34th Annual Fall Meeting of the American Physiological Society and the International Conference on Hydrogen Ion Transport in Epithelia.

    ERIC Educational Resources Information Center

    Physiologist, 1983

    1983-01-01

    Provided are abstracts of papers presented at the annual American Physiological Society meeting and International Conference on Hydrogen Ion Transport in Epithelia. Papers are grouped by such topic areas as lung fluid balance, renal cardiovascular integration, smooth muscle physiology, neuroendocrines (pituitary), exercise physiology, mechanics of…

  9. Epithelia migration: A spatiotemporal interplay between contraction and adhesion

    PubMed Central

    Rubinstein, Boris; Pinto, Inês Mendes

    2015-01-01

    Epithelial tissues represent 60% of the cells that form the human body and where more than 90% of all cancers derived. Epithelia transformation and migration involve altered cell contractile mechanics powered by an actomyosin-based cytoskeleton and influenced by cell-cell and cell-extracellular matrix interactions. A balance between contractile and adhesive forces regulates a large number of cellular and tissue properties crucial for epithelia migration and tumorigenesis. In this review, the forces driving normal epithelia transformation into highly motile and invasive cells and tissues will be discussed. PMID:26176587

  10. Stem cells and lung cancer: future therapeutic targets?

    PubMed

    Alison, Malcolm R; Lebrenne, Arielle C; Islam, Shahriar

    2009-09-01

    In both the UK and USA more people die of lung cancer than any other type of cancer. Lung cancer's high mortality rate is also reflected on a global scale, with lung cancer accounting for more than 1 million deaths per year. In tissues with ordered structure such a lung epithelia, it is likely that the cancers have their origins in normal adult stem cells, and then the tumours themselves are maintained by a population of malignant stem cells - so-called cancer stem cells. This review examines both these postulates in animal models and in the clinical setting, noting that stem cell niches appear to foster tumour development, and that drug resistance can often be attributed to malignant cells with stem cell properties. PMID:19653862

  11. Space radiation-associated lung injury in a murine model.

    PubMed

    Christofidou-Solomidou, Melpo; Pietrofesa, Ralph A; Arguiri, Evguenia; Schweitzer, Kelly S; Berdyshev, Evgeny V; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S; Yu, Yongjia; Globus, Ruth K; Solomides, Charalambos C; Ullrich, Robert L; Petrache, Irina

    2015-03-01

    Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to (137)Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u (56)Fe ions, or 350 MeV/u (28)Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy (56)Fe or (28)Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions. PMID:25526737

  12. Space radiation-associated lung injury in a murine model

    PubMed Central

    Pietrofesa, Ralph A.; Arguiri, Evguenia; Schweitzer, Kelly S.; Berdyshev, Evgeny V.; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S.; Yu, Yongjia; Globus, Ruth K.; Solomides, Charalambos C.; Ullrich, Robert L.; Petrache, Irina

    2014-01-01

    Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to 137Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u 56Fe ions, or 350 MeV/u 28Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy 56Fe or 28Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions. PMID:25526737

  13. Space radiation-associated lung injury in a murine model.

    PubMed

    Christofidou-Solomidou, Melpo; Pietrofesa, Ralph A; Arguiri, Evguenia; Schweitzer, Kelly S; Berdyshev, Evgeny V; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S; Yu, Yongjia; Globus, Ruth K; Solomides, Charalambos C; Ullrich, Robert L; Petrache, Irina

    2015-03-01

    Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to (137)Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u (56)Fe ions, or 350 MeV/u (28)Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy (56)Fe or (28)Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions.

  14. Lung flooding enables efficient lung sonography and tumour imaging in human ex vivo and porcine in vivo lung cancer model

    PubMed Central

    2013-01-01

    Background Sonography has become the imaging technique of choice for guiding intraoperative interventions in abdominal surgery. Due to artefacts from residual air content, however, videothoracoscopic and open intraoperative ultrasound-guided thermoablation of lung malignancies are impossible. Lung flooding is a new method that allows complete ultrasound imaging of lungs and their tumours. Methods Fourteen resected tumourous human lung lobes were examined transpleurally with B-mode ultrasound before (in atelectasis) and after lung flooding with isotonic saline solution. In two swine, the left lung was filled with 15 ml/kg isotonic saline solution through the left side of a double-lumen tube. Lung tumours were simulated by transthoracic ultrasound-guided injection of 5 ml of purified bovine serum albumin in glutaraldehyde, centrally into the left lower lung lobe. The rate of tumour detection, the severity of disability caused by residual gas, and sonomorphology of the lungs and tumours were assessed. Results The ex vivo tumour detection rate was 100% in flooded human lung lobes and 43% (6/14) in atelectatic lungs. In all cases of atelectasis, sonographic tumour imaging was impaired by residual gas. Tumours and atelectatic tissue were isoechoic. In 28% of flooded lungs, a little residual gas was observed that did not impair sonographic tumour imaging. In contrast to tumours, flooded lung tissue was hyperechoic, homogeneous, and of fine-grained structure. Because of the bronchial wall three-laminar structure, sonographic differentiation of vessels and bronchi was possible. In all cases, malignant tumours in the flooded lung appeared well-demarcated from the lung parenchyma. Adenocarcinoma, squamous, and large cell carcinomas were hypoechoic. Bronchioloalveolar cell carcinoma was slightly hyperechoic. Transpleural sonography identifies endobronchial tumour growth and bronchial wall destruction. With transthoracic sonography, the flooded animal lung can be completely

  15. Swelling-activated Ca2+ entry via TRPV4 channel is defective in cystic fibrosis airway epithelia.

    PubMed

    Arniges, Maite; Vázquez, Esther; Fernández-Fernández, José M; Valverde, Miguel A

    2004-12-24

    The vertebrate transient receptor potential cationic channel TRPV4 has been proposed as an osmo- and mechanosensor channel. Studies using knock-out animal models have further emphasized the relevance of the TRPV4 channel in the maintenance of the internal osmotic equilibrium and mechanosensation. However, at the cellular level, there is still one important question to answer: does the TRPV4 channel generate the Ca(2+) signal in those cells undergoing a Ca(2+)-dependent regulatory volume decrease (RVD) response? RVD in human airway epithelia requires the generation of a Ca(2+) signal to activate Ca(2+)-dependent K(+) channels. The RVD response is lost in airway epithelia affected with cystic fibrosis (CF), a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator channel. We have previously shown that the defective RVD in CF epithelia is linked to the lack of swelling-dependent activation of Ca(2+)-dependent K(+) channels. In the present study, we show the expression of TRPV4 in normal human airway epithelia, where it functions as the Ca(2+) entry pathway that triggers the RVD response after hypotonic stress, as demonstrated by TRPV4 antisense experiments. However, cell swelling failed to trigger Ca(2+) entry via TRPV4 channels in CF airway epithelia, although the channel's response to a specific synthetic activator, 4 alpha-phorbol 12,13-didecanoate, was maintained. Furthermore, RVD was recovered in CF airway epithelia treated with 4 alpha-phorbol 12,13-didecanoate. Together, these results suggest that defective RVD in CF airway epithelia might be caused by the absence of a TRPV4-mediated Ca(2+) signal and the subsequent activation of Ca(2+)-dependent K(+) channels. PMID:15489228

  16. Advances in Cell and Gene-based Therapies for Cystic Fibrosis Lung Disease

    PubMed Central

    Oakland, Mayumi; Sinn, Patrick L; McCray Jr, Paul B

    2012-01-01

    Cystic fibrosis (CF) is a disease characterized by airway infection, inflammation, remodeling, and obstruction that gradually destroy the lungs. Direct delivery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene to airway epithelia may offer advantages, as the tissue is accessible for topical delivery of vectors. Yet, physical and host immune barriers in the lung present challenges for successful gene transfer to the respiratory tract. Advances in gene transfer approaches, tissue engineering, and novel animal models are generating excitement within the CF research field. This review discusses current challenges and advancements in viral and nonviral vectors, cell-based therapies, and CF animal models. PMID:22371844

  17. Innate immune response in CF airway epithelia: hyperinflammatory?

    PubMed

    Machen, Terry E

    2006-08-01

    The lack of functional cystic fibrosis (CF) transmembrane conductance regulator (CFTR) in the apical membranes of CF airway epithelial cells abolishes cAMP-stimulated anion transport, and bacteria, eventually including Pseudomonas aeruginosa, bind to and accumulate in the mucus. Flagellin released from P. aeruginosa triggers airway epithelial Toll-like receptor 5 and subsequent NF-kappaB signaling and production and release of proinflammatory cytokines that recruit neutrophils to the infected region. This response has been termed hyperinflammatory because so many neutrophils accumulate; a response that damages CF lung tissue. We first review the contradictory data both for and against the idea that epithelial cells exhibit larger-than-normal proinflammatory signaling in CF compared with non-CF cells and then review proposals that might explain how reduced CFTR function could activate such proinflammatory signaling. It is concluded that apparent exaggerated innate immune response of CF airway epithelial cells may have resulted not from direct effects of CFTR on cellular signaling or inflammatory mediator production but from indirect effects resulting from the absence of CFTRs apical membrane channel function. Thus, loss of Cl-, HCO3-, and glutathione secretion may lead to reduced volume and increased acidification and oxidation of the airway surface liquid. These changes concentrate proinflammatory mediators, reduce mucociliary clearance of bacteria and subsequently activate cellular signaling. Loss of apical CFTR will also hyperpolarize basolateral membrane potentials, potentially leading to increases in cytosolic [Ca2+], intracellular Ca2+, and NF-kappaB signaling. This hyperinflammatory effect of CF on intracellular Ca2+ and NF-kappaB signaling would be most prominently expressed during exposure to both P. aeruginosa and also endocrine, paracrine, or nervous agonists that activate Ca2+ signaling in the airway epithelia. PMID:16825601

  18. Toll-Like Receptor 4 Engagement Mediates Prolyl Endopeptidase Release from Airway Epithelia via Exosomes.

    PubMed

    Szul, Tomasz; Bratcher, Preston E; Fraser, Kyle B; Kong, Michele; Tirouvanziam, Rabindra; Ingersoll, Sarah; Sztul, Elizabeth; Rangarajan, Sunil; Blalock, J Edwin; Xu, Xin; Gaggar, Amit

    2016-03-01

    Proteases are important regulators of pulmonary remodeling and airway inflammation. Recently, we have characterized the enzyme prolyl endopeptidase (PE), a serine peptidase, as a critical protease in the generation of the neutrophil chemoattractant tripeptide Pro-Gly-Pro (PGP) from collagen. However, PE has been characterized as a cytosolic enzyme, and the mechanism mediating PE release extracellularly remains unknown. We examined the role of exosomes derived from airway epithelia as a mechanism for PE release and the potential extracellular signals that regulate the release of these exosomes. We demonstrate a specific regulatory pathway of exosome release from airway epithelia and identify PE as novel exosome cargo. LPS stimulation of airway epithelial cells induces release of PE-containing exosomes, which is significantly attenuated by small interfering RNA depletion of Toll-like receptor 4 (TLR4). These differences were recapitulated upon intratracheal LPS administration in mice competent versus deficient for TLR4 signaling. Finally, sputum samples from subjects with cystic fibrosis colonized with Pseudomonas aeruginosa demonstrate elevated exosome content and increased PE levels. This TLR4-based mechanism highlights the first report of nonstochastic release of exosomes in the lung and couples TLR4 activation with matrikine generation. The increased quantity of these proteolytic exosomes in the airways of subjects with chronic lung disease highlights a new mechanism of injury and inflammation in the pathogenesis of pulmonary disorders.

  19. The role of intracellular calcium signals in inflammatory responses of polarised cystic fibrosis human airway epithelia.

    PubMed

    Ribeiro, Carla Maria Pedrosa

    2006-01-01

    Hyperinflammatory host responses to bacterial infection have been postulated to be a key step in the pathogenesis of cystic fibrosis (CF) lung disease. Previous studies have indicated that the CF airway epithelium itself contributes to the hyperinflammation of CF airways via an excessive inflammatory response to bacterial infection. However, it has been controversial whether the hyperinflammation of CF epithelia results from mutations in the CF transmembrane conductance regulator (CFTR) and/or is a consequence of persistent airways infection. Recent studies have demonstrated that intracellular calcium (Ca2+i) signals consequent to activation of apical G protein-coupled receptors (GPCRs) by pro-inflammatory mediators are increased in CF airway epithelia. Because of the relationship between Ca2+i mobilisation and inflammatory responses, the mechanism for the increased Ca2+i signals in CF was investigated and found to result from endoplasmic reticulum (ER) Ca2+ store expansion. The ER Ca2+ store expansion imparts a hyperinflammatory phenotype to chronically infected airway epithelia as a result of the larger Ca2+i mobilisation coupled to an excessive inflammatory response following GPCR activation. The ER expansion is not dependent on ER retention of misfolded DeltaF508 CFTR, but reflects an epithelial response acquired following persistent luminal airway infection. With respect to the mechanism of ER expansion in CF, the current view is that chronic airway epithelial infection triggers an unfolded protein response as a result of the increased flux of newly synthesised inflammatory mediators and defensive factors into the ER compartment. This unfolded protein response is coupled to X-box binding protein 1 (XBP-1) mRNA splicing and transcription of genes associated with the expansion of the protein-folding capacity of the ER (e.g. increases in ER chaperones and ER membranes). These studies have revealed a novel adaptive response in chronically infected airway epithelia

  20. The transient but not resident (TBNR) microbiome: a Yin Yang model for lung immune system.

    PubMed

    Saeedi, Pardis; Salimian, Jafar; Ahmadi, Ali; Imani Fooladi, Abbas Ali

    2015-01-01

    The concept of microbial content of the lung is still controversial. What make this more complicated are controversial results obtaining from different methodologies about lung microbiome and the definition of "lung sterility". Lungs may have very low bacteria but are not completely germ-free. Bacteria are constantly entering from the upper respiratory tract, but are then quickly being cleared. We can find bacterial DNA in the lungs, but it is much harder to ask about living bacteria. Here, we propose that if there is any trafficking of the microorganisms in the lung, it should be a "Transient But Not Resident (TBNR)" model. So, we speculate a "Yin Yang model" for the lung immune system and TBNR. Despite beneficial roles of microbiome on the development of lung immune system, any disruption and alteration in the microbiota composition of upper and lower airways may trigger or lead to several diseases such as asthma, chronic obstructive pulmonary disease and mustard lung disease. PMID:26307905

  1. Analytical modelling of regional radiotherapy dose response of lung

    NASA Astrophysics Data System (ADS)

    Lee, Sangkyu; Stroian, Gabriela; Kopek, Neil; AlBahhar, Mahmood; Seuntjens, Jan; El Naqa, Issam

    2012-06-01

    Knowledge of the dose-response of radiation-induced lung disease (RILD) is necessary for optimization of radiotherapy (RT) treatment plans involving thoracic cavity irradiation. This study models the time-dependent relationship between local radiation dose and post-treatment lung tissue damage measured by computed tomography (CT) imaging. Fifty-eight follow-up diagnostic CT scans from 21 non-small-cell lung cancer patients were examined. The extent of RILD was segmented on the follow-up CT images based on the increase of physical density relative to the pre-treatment CT image. The segmented RILD was locally correlated with dose distribution calculated by analytical anisotropic algorithm and the Monte Carlo method to generate the corresponding dose-response curves. The Lyman-Kutcher-Burman (LKB) model was fit to the dose-response curves at six post-RT time periods, and temporal change in the LKB parameters was recorded. In this study, we observed significant correlation between the probability of lung tissue damage and the local dose for 96% of the follow-up studies. Dose-injury correlation at the first three months after RT was significantly different from later follow-up periods in terms of steepness and threshold dose as estimated from the LKB model. Dependence of dose response on superior-inferior tumour position was also observed. The time-dependent analytical modelling of RILD might provide better understanding of the long-term behaviour of the disease and could potentially be applied to improve inverse treatment planning optimization.

  2. Bayesian analysis of a disability model for lung cancer survival.

    PubMed

    Armero, C; Cabras, S; Castellanos, M E; Perra, S; Quirós, A; Oruezábal, M J; Sánchez-Rubio, J

    2016-02-01

    Bayesian reasoning, survival analysis and multi-state models are used to assess survival times for Stage IV non-small-cell lung cancer patients and the evolution of the disease over time. Bayesian estimation is done using minimum informative priors for the Weibull regression survival model, leading to an automatic inferential procedure. Markov chain Monte Carlo methods have been used for approximating posterior distributions and the Bayesian information criterion has been considered for covariate selection. In particular, the posterior distribution of the transition probabilities, resulting from the multi-state model, constitutes a very interesting tool which could be useful to help oncologists and patients make efficient and effective decisions.

  3. Lung regeneration by fetal lung tissue implantation in a mouse pulmonary emphysema model.

    PubMed

    Uyama, Koh; Sakiyama, Shoji; Yoshida, Mitsuteru; Kenzaki, Koichiro; Toba, Hiroaki; Kawakami, Yukikiyo; Okumura, Kazumasa; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira

    2016-01-01

    The mortality and morbidity of chronic obstructive pulmonary disease are high. However, no radical therapy has been developed to date. The purpose of this study was to evaluate whether fetal mouse lung tissue can grow and differentiate in the emphysematous lung. Fetal lung tissue from green fluorescent protein C57BL/6 mice at 16 days' gestation was used as donor material. Twelve-month-old pallid mice were used as recipients. Donor lungs were cut into small pieces and implanted into the recipient left lung by performing thoracotomy under anesthesia. The recipient mice were sacrificed at day 7, 14, and 28 after implantation and used for histological examination. Well-developed spontaneous pulmonary emphysema was seen in 12-month-old pallid mice. Smooth and continuous connection between implanted fetal lung tissue and recipient lung was recognized. Air space expansion and donor tissue differentiation were observed over time. We could clearly distinguish the border zones between injected tissue and native tissue by the green fluorescence of grafts. Fetal mouse lung fragments survived and differentiated in the emphysematous lung of pallid mice. Implantation of fetal lung tissue in pallid mice might lead to further lung regeneration research from the perspective of respiratory and exercise function. J. Med. Invest. 63: 182-186, August, 2016. PMID:27644555

  4. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture.

    PubMed

    Koehler, Karl R; Mikosz, Andrew M; Molosh, Andrei I; Patel, Dharmeshkumar; Hashino, Eri

    2013-08-01

    The inner ear contains sensory epithelia that detect head movements, gravity and sound. It is unclear how to develop these sensory epithelia from pluripotent stem cells, a process that will be critical for modelling inner ear disorders or developing cell-based therapies for profound hearing loss and balance disorders. So far, attempts to derive inner ear mechanosensitive hair cells and sensory neurons have resulted in inefficient or incomplete phenotypic conversion of stem cells into inner-ear-like cells. A key insight lacking from these previous studies is the importance of the non-neural and preplacodal ectoderm, two critical precursors during inner ear development. Here we report the stepwise differentiation of inner ear sensory epithelia from mouse embryonic stem cells (ESCs) in three-dimensional culture. We show that by recapitulating in vivo development with precise temporal control of signalling pathways, ESC aggregates transform sequentially into non-neural, preplacodal and otic-placode-like epithelia. Notably, in a self-organized process that mimics normal development, vesicles containing prosensory cells emerge from the presumptive otic placodes and give rise to hair cells bearing stereocilia bundles and a kinocilium. Moreover, these stem-cell-derived hair cells exhibit functional properties of native mechanosensitive hair cells and form specialized synapses with sensory neurons that have also arisen from ESCs in the culture. Finally, we demonstrate how these vesicles are structurally and biochemically comparable to developing vestibular end organs. Our data thus establish a new in vitro model of inner ear differentiation that can be used to gain deeper insight into inner ear development and disorder. PMID:23842490

  5. The beetle amnion and serosa functionally interact as apposed epithelia

    PubMed Central

    Hilbrant, Maarten; Horn, Thorsten; Koelzer, Stefan; Panfilio, Kristen A

    2016-01-01

    Unlike passive rupture of the human chorioamnion at birth, the insect extraembryonic (EE) tissues – the amnion and serosa – actively rupture and withdraw in late embryogenesis. Withdrawal is essential for development and has been a morphogenetic puzzle. Here, we use new fluorescent transgenic lines in the beetle Tribolium castaneum to show that the EE tissues dynamically form a basal-basal epithelial bilayer, contradicting the previous hypothesis of EE intercalation. We find that the EE tissues repeatedly detach and reattach throughout development and have distinct roles. Quantitative live imaging analyses show that the amnion initiates EE rupture in a specialized anterior-ventral cap. RNAi phenotypes demonstrate that the serosa contracts autonomously. Thus, apposition in a bilayer enables the amnion as 'initiator' to coordinate with the serosa as 'driver' to achieve withdrawal. This EE strategy may reflect evolutionary changes within the holometabolous insects and serves as a model to study interactions between developing epithelia. DOI: http://dx.doi.org/10.7554/eLife.13834.001 PMID:26824390

  6. A canine model of beryllium-induced granulomatous lung disease

    SciTech Connect

    Haley, P.J.; Finch, G.L.; Mewhinney, J.A.; Harmsen, A.G.; Hahn, F.F.; Hoover, M.D.; Muggenburg, B.A.; Bice, D.E. )

    1989-08-01

    Groups of beagle dogs were exposed by inhalation to attain either low or high initial lung burdens (ILB) of BeO calcined at 500 degrees or 1000 degrees C. Dogs were killed at 8, 32, 64, 180, and 365 days after exposure for evaluation of beryllium tissue burdens and histopathologic examination. Histologic lesions were characterized by perivascular and peribronchiolar infiltrates of lymphocytes and macrophages 8 days after exposure. These lesions progressed to distinct microgranulomas accompanied by patchy granulomatous pneumonia. Lesions were more severe in dogs exposed to 500 degrees C BeO. Additional dogs were sampled by bronchoalveolar lavage at 3, 6, 7, 11, 15, 18, and 22 months after exposure for characterization of lung cytology and lung immune responses. Lymphocyte percentages and numbers were increased in lavage samples 3 months after exposure in dogs with both the high and low ILB of 500 degrees C. Values for both parameters decreased rapidly thereafter. Dogs with either low or high ILB of 1000 degrees C-treated BeO displayed negligible to low and variable changes in both lymphocyte percentages and numbers. In vitro lymphocyte stimulation by beryllium was increased 180 and 210 days after exposure in dogs with the high ILB 500 degrees C BeO only. A marked degree of individual variation in both histologic lesions and lymphocyte responses among dogs was noted. Less soluble 1000 degrees C-treated BeO was retained in the lung longer than the more soluble 500 degrees C-treated material that was cleared almost entirely by 1 year after exposure. Because these changes are similar to those reported in humans with chronic beryllium disease, these data suggest that the beagle represents a good model to study histologic and immunologic aspects of this disease syndrome.

  7. Image-based modeling of lung structure and function

    PubMed Central

    Tawhai, Merryn H.; Lin, Ching-Long

    2010-01-01

    Current state-of-the-art in image-based modeling allows derivation of patient-specific models of the lung, lobes, airways, and pulmonary vascular trees. The application of traditional engineering analyses of fluid and structural mechanics to image-based subject-specific models has the potential to provide new insight into structure-function relationships in the individual via functional interpretation that complements imaging and experimental studies. Three major issues that are encountered in studies of air flow through the bronchial airways are the representation of airway geometry, the imposition of physiological boundary conditions, and the treatment of turbulence. Here we review some efforts to resolve each of these issues, with particular focus on image-based models that have been developed to simulate air flow from the mouth to the terminal bronchiole, and subjected to physiologically meaningful boundary conditions via image registration and soft tissue mechanics models. PMID:21105146

  8. Identification of differentially expressed genes from multipotent epithelia at the onset of an asexual development

    PubMed Central

    Ricci, Lorenzo; Chaurasia, Ankita; Lapébie, Pascal; Dru, Philippe; Helm, Rebecca R.; Copley, Richard R.; Tiozzo, Stefano

    2016-01-01

    Organisms that have evolved alternative modes of reproduction, complementary to the sexual mode, are found across metazoans. The chordate Botryllus schlosseri is an emerging model for asexual development studies. Botryllus can rebuild its entire body from a portion of adult epithelia in a continuous and stereotyped process called blastogenesis. Anatomy and ontogenies of blastogenesis are well described, however molecular signatures triggering this developmental process are entirely unknown. We isolated tissues at the site of blastogenesis onset and from the same epithelia where this process is never triggered. We linearly amplified an ultra-low amount of mRNA (<10ng) and generated three transcriptome datasets. To provide a conservative landscape of transcripts differentially expressed between blastogenic vs. non-blastogenic epithelia we compared three different mapping and analysis strategies with a de novo assembled transcriptome and partially assembled genome as references, additionally a self-mapping strategy on the dataset. A subset of differentially expressed genes were analyzed and validated by in situ hybridization. The comparison of different analyses allowed us to isolate stringent sets of target genes, including transcripts with potential involvement in the onset of a non-embryonic developmental pathway. The results provide a good entry point to approach regenerative event in a basal chordate. PMID:27264734

  9. Identification of differentially expressed genes from multipotent epithelia at the onset of an asexual development.

    PubMed

    Ricci, Lorenzo; Chaurasia, Ankita; Lapébie, Pascal; Dru, Philippe; Helm, Rebecca R; Copley, Richard R; Tiozzo, Stefano

    2016-01-01

    Organisms that have evolved alternative modes of reproduction, complementary to the sexual mode, are found across metazoans. The chordate Botryllus schlosseri is an emerging model for asexual development studies. Botryllus can rebuild its entire body from a portion of adult epithelia in a continuous and stereotyped process called blastogenesis. Anatomy and ontogenies of blastogenesis are well described, however molecular signatures triggering this developmental process are entirely unknown. We isolated tissues at the site of blastogenesis onset and from the same epithelia where this process is never triggered. We linearly amplified an ultra-low amount of mRNA (<10ng) and generated three transcriptome datasets. To provide a conservative landscape of transcripts differentially expressed between blastogenic vs. non-blastogenic epithelia we compared three different mapping and analysis strategies with a de novo assembled transcriptome and partially assembled genome as references, additionally a self-mapping strategy on the dataset. A subset of differentially expressed genes were analyzed and validated by in situ hybridization. The comparison of different analyses allowed us to isolate stringent sets of target genes, including transcripts with potential involvement in the onset of a non-embryonic developmental pathway. The results provide a good entry point to approach regenerative event in a basal chordate. PMID:27264734

  10. Identification of differentially expressed genes from multipotent epithelia at the onset of an asexual development.

    PubMed

    Ricci, Lorenzo; Chaurasia, Ankita; Lapébie, Pascal; Dru, Philippe; Helm, Rebecca R; Copley, Richard R; Tiozzo, Stefano

    2016-06-06

    Organisms that have evolved alternative modes of reproduction, complementary to the sexual mode, are found across metazoans. The chordate Botryllus schlosseri is an emerging model for asexual development studies. Botryllus can rebuild its entire body from a portion of adult epithelia in a continuous and stereotyped process called blastogenesis. Anatomy and ontogenies of blastogenesis are well described, however molecular signatures triggering this developmental process are entirely unknown. We isolated tissues at the site of blastogenesis onset and from the same epithelia where this process is never triggered. We linearly amplified an ultra-low amount of mRNA (<10ng) and generated three transcriptome datasets. To provide a conservative landscape of transcripts differentially expressed between blastogenic vs. non-blastogenic epithelia we compared three different mapping and analysis strategies with a de novo assembled transcriptome and partially assembled genome as references, additionally a self-mapping strategy on the dataset. A subset of differentially expressed genes were analyzed and validated by in situ hybridization. The comparison of different analyses allowed us to isolate stringent sets of target genes, including transcripts with potential involvement in the onset of a non-embryonic developmental pathway. The results provide a good entry point to approach regenerative event in a basal chordate.

  11. Posterior midgut epithelial cells differ in their organization of the membrane skeleton from other drosophila epithelia.

    PubMed

    Baumann, O

    2001-11-01

    In epithelial cells, the various components of the membrane skeleton are segregated within specialized subregions of the plasma membrane, thus contributing to the development and stabilization of cell surface polarity. It has previously been shown that, in various Drosophila epithelia, the membrane skeleton components ankyrin and alphabeta-spectrin reside at the lateral surface, whereas alphabeta(H)-spectrin is restricted to the apical domain. By use of confocal immunofluorescence microscopy, the present study characterizes the membrane skeleton of epithelial cells in the posterior midgut, leading to a number of unexpected results. First, ankyrin and alphabeta-spectrin are not detected on the entire lateral surface but appear to be restricted to the apicolateral area, codistributing with fasciclin III at smooth septate junctions. The presumptive ankyrin-binding proteins neuroglian and Na(+),K(+)-ATPase, however, do not colocalize with ankyrin. Second, alphabeta(H)-spectrin is enriched at the apical domain but is also present in lower amounts on the entire lateral surface, colocalizing apicolaterally with ankyrin/alphabeta-spectrin. Finally, despite the absence of zonulae adherentes, F-actin, beta(H)-spectrin, and nonmuscle myosin-II are enriched in the midlateral region. Thus, the model established for the organization of the membrane skeleton in Drosophila epithelia does not hold for the posterior midgut, and there is quite some variability between the different epithelia with respect to the organization of the membrane skeleton.

  12. Modeling Granulomas in Response to Infection in the Lung.

    PubMed

    Hao, Wenrui; Schlesinger, Larry S; Friedman, Avner

    2016-01-01

    Alveolar macrophages play a large role in the innate immune response of the lung. However, when these highly immune-regulatory cells are unable to eradicate pathogens, the adaptive immune system, which includes activated macrophages and lymphocytes, particularly T cells, is called upon to control the pathogens. This collection of immune cells surrounds, isolates and quarantines the pathogen, forming a small tissue structure called a granuloma for intracellular pathogens like Mycobacterium tuberculosis (Mtb). In the present work we develop a mathematical model of the dynamics of a granuloma by a system of partial differential equations. The 'strength' of the adaptive immune response to infection in the lung is represented by a parameter α, the flux rate by which T cells and M1 macrophages that immigrated from the lymph nodes enter into the granuloma through its boundary. The parameter α is negatively correlated with the 'switching time', namely, the time it takes for the number of M1 type macrophages to surpass the number of infected, M2 type alveolar macrophages. Simulations of the model show that as α increases the radius of the granuloma and bacterial load in the granuloma both decrease. The model is used to determine the efficacy of potential host-directed therapies in terms of the parameter α, suggesting that, with fixed dosing level, an infected individual with a stronger immune response will receive greater benefits in terms of reducing the bacterial load. PMID:26986986

  13. Modeling Granulomas in Response to Infection in the Lung

    PubMed Central

    Hao, Wenrui; Schlesinger, Larry S.; Friedman, Avner

    2016-01-01

    Alveolar macrophages play a large role in the innate immune response of the lung. However, when these highly immune-regulatory cells are unable to eradicate pathogens, the adaptive immune system, which includes activated macrophages and lymphocytes, particularly T cells, is called upon to control the pathogens. This collection of immune cells surrounds, isolates and quarantines the pathogen, forming a small tissue structure called a granuloma for intracellular pathogens like Mycobacterium tuberculosis (Mtb). In the present work we develop a mathematical model of the dynamics of a granuloma by a system of partial differential equations. The ‘strength’ of the adaptive immune response to infection in the lung is represented by a parameter α, the flux rate by which T cells and M1 macrophages that immigrated from the lymph nodes enter into the granuloma through its boundary. The parameter α is negatively correlated with the ‘switching time’, namely, the time it takes for the number of M1 type macrophages to surpass the number of infected, M2 type alveolar macrophages. Simulations of the model show that as α increases the radius of the granuloma and bacterial load in the granuloma both decrease. The model is used to determine the efficacy of potential host-directed therapies in terms of the parameter α, suggesting that, with fixed dosing level, an infected individual with a stronger immune response will receive greater benefits in terms of reducing the bacterial load. PMID:26986986

  14. Biological parameters for lung cancer in mathematical models of carcinogenesis.

    PubMed

    Jacob, P; Jacob, V

    2003-01-01

    Applications of the two-step model of carcinogenesis with clonal expansion (TSCE) to lung cancer data are reviewed, including those on atomic bomb survivors from Hiroshima and Nagasaki. British doctors, Colorado Plateau miners and Chinese tin miners. Different sets of identifiable model parameters are used in the literature. The parameter set which could be determined with the lowest uncertainty consists of the net proliferation rate gamma of intermediate cells, the hazard h55 at an intermediate age and the hazard h(infinity) at an asymptotically large age. Also, the values of these three parameters obtained in the various studies are more consistent than other identifiable combinations of the biological parameters. Based on representative results for these three parameters, implications for the biological parameters in the TSCE model are derived. PMID:14579892

  15. Experimental evolution of sprays in a lung model

    NASA Astrophysics Data System (ADS)

    Burguete, Javier; Aliseda, Alberto

    2015-11-01

    We present the first results of an experiment conceived to observe the evolution of sprays inside the lungs. We have built a model that covers the first 6 generations (from the trachea to segmental bronchi of 5th generation). This setup is placed on a wind tunnel, and the flow inside the model is induced by a vacuum pump that emulates the breathing process using a valve. We inject a previously determined distribution of particles (water droplets), whose average diameter can be modified. Then, we measure the droplet distribution in different branches and compare how the droplet distribution is modified at each generation. The parameters that control the behavior are the average diameter of the original distribution, the airflow rate inside the model and the frequency of the breathing cycle.

  16. Improving the channeler ant model for lung CT analysis

    NASA Astrophysics Data System (ADS)

    Cerello, Piergiorgio; Lopez Torres, Ernesto; Fiorina, Elisa; Oppedisano, Chiara; Peroni, Cristiana; Arteche Diaz, Raul; Bellotti, Roberto; Bosco, Paolo; Camarlinghi, Niccolo; Massafra, Andrea

    2011-03-01

    The Channeler Ant Model (CAM) is an algorithm based on virtual ant colonies, conceived for the segmentation of complex structures with different shapes and intensity in a 3D environment. It exploits the natural capabilities of virtual ant colonies to modify the environment and communicate with each other by pheromone deposition. When applied to lung CTs, the CAM can be turned into a Computer Aided Detection (CAD) method for the identification of pulmonary nodules and the support to radiologists in the identification of early-stage pathological objects. The CAM has been validated with the segmentation of 3D artificial objects and it has already been successfully applied to the lung nodules detection in Computed Tomography images within the ANODE09 challenge. The model improvements for the segmentation of nodules attached to the pleura and to the vessel tree are discussed, as well as a method to enhance the detection of low-intensity nodules. The results on five datasets annotated with different criteria show that the analytical modules (i.e. up to the filtering stage) provide a sensitivity in the 80 - 90% range with a number of FP/scan of the order of 20. The classification module, although not yet optimised, keeps the sensitivity in the 70 - 85% range at about 10 FP/scan, in spite of the fact that the annotation criteria for the training and the validation samples are different.

  17. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse.

    PubMed

    Borges, João Batista; Suarez-Sipmann, Fernando; Bohm, Stephan H; Tusman, Gerardo; Melo, Alexandre; Maripuu, Enn; Sandström, Mattias; Park, Marcelo; Costa, Eduardo L V; Hedenstierna, Göran; Amato, Marcelo

    2012-01-01

    The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology that provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT)-based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6%, with a SD of 2.9%. This method outperformed the estimates of lung perfusion based on impedance pulsatility. In conclusion, we describe a novel method based on EIT for estimating regional lung perfusion at the bedside. In both healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this study has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.

  18. Emergence and Dynamics of Polar Order in Developing Epithelia

    NASA Astrophysics Data System (ADS)

    Farhadifar, Reza

    2011-03-01

    Planar Cell Polarity (PCP) is a conserved process in many vertebrate and invertebrate tissues, and is fundamental for the coordination of cell behavior and patterning. A well-studied example is the orientational pattern of hairs in the wing of the adult fruit fly Drosophila, which is an important model organism in biology. The Drosophila wing is an epithelium, i.e., a two-dimensional sheet of cells, which grows from a few cells to thousands of cells during the course of development. In the wing epithelium, planar polarity is established by an anisotropic distribution of PCP proteins within cells. The distribution of these proteins in a given cell affects the polarity of neighboring cells, such that at the end of wing development a large-scale PCP orientational order emerges. Here we present a theoretical study of planar polarity in developing epithelia based on a vertex model, which takes into account cell mechanics, cell adhesion, and cell division, combined with experimental results obtained from time-lapse imaging of the wing development. We show that in experiment, polarity order does not develop de novo at the end of wing development, but rather cells are initially polarized at an angle with respect to their final polarity axis. During wing development, the polarity axes of cells reorient towards their final direction. We identify a basic mechanism to generate such a large-scale initial polarization, based on the growth of a small number of cells with an initially random PCP distribution. Finally, we study the effect of shear and oriented cell division on dynamics of PCP order, showing that these two processes can robustly reorient the polarity axes of cells.

  19. Evidence of inherent spontaneous polarization in the metazoan integument epithelia.

    PubMed Central

    Athenstaedt, H; Claussen, H

    1983-01-01

    The live integument epithelia of the metazoa have an inherent spontaneous polarization (an inherent permanent electric dipole moment) of corresponding direction perpendicular to the integument surface. The existence of the inherent polarization was proved by their temperature dependence, i.e., by the pyroelectric (PE) effect. Quantitative PE measurements were carried out on a number of integument epithelia of vertebrates (a) in vivo, (b) on fresh epidermis preparations, and (c) on dead, air-dried epidermis specimens of the same species. The demonstrated spontaneous polarization is not dependent on the living state and not caused by a potential difference between the outer and inner integument surface. Dead, dry epidermis samples (potential difference less than 0.01 mV) as well as dead, dry integument appendages (bristles, hairs), and dead cuticles (of arthropoda, annelida, nematoda) showed an inherent dipole moment of the same orientation as the live epidermis. The findings reveal a relationship between the direction (vector) of inherent spontaneous polarization and that of growth (morphogenesis) in the animal epidermis, their appendages, and cuticles. We conclude (a) that the inherent spontaneous polarization is present in live individual epithelial cells of the metazoan integument, and (b) that this physical property is related to the structural and functional cell polarity of integument epithelia and possibly of other epithelia. Images FIGURE 10 PMID:6838974

  20. Mechanisms of regulating cell topology in proliferating epithelia: impact of division plane, mechanical forces, and cell memory.

    PubMed

    Li, Yingzi; Naveed, Hammad; Kachalo, Sema; Xu, Lisa X; Liang, Jie

    2012-01-01

    Regulation of cell growth and cell division has a fundamental role in tissue formation, organ development, and cancer progression. Remarkable similarities in the topological distributions were found in a variety of proliferating epithelia in both animals and plants. At the same time, there are species with significantly varied frequency of hexagonal cells. Moreover, local topology has been shown to be disturbed on the boundary between proliferating and quiescent cells, where cells have fewer sides than natural proliferating epithelia. The mechanisms of regulating these topological changes remain poorly understood. In this study, we use a mechanical model to examine the effects of orientation of division plane, differential proliferation, and mechanical forces on animal epithelial cells. We find that regardless of orientation of division plane, our model can reproduce the commonly observed topological distributions of cells in natural proliferating animal epithelia with the consideration of cell rearrangements. In addition, with different schemes of division plane, we are able to generate different frequency of hexagonal cells, which is consistent with experimental observations. In proliferating cells interfacing quiescent cells, our results show that differential proliferation alone is insufficient to reproduce the local changes in cell topology. Rather, increased tension on the boundary, in conjunction with differential proliferation, can reproduce the observed topological changes. We conclude that both division plane orientation and mechanical forces play important roles in cell topology in animal proliferating epithelia. Moreover, cell memory is also essential for generating specific topological distributions.

  1. Mean lung pressure during adult high-frequency oscillatory ventilation: an experimental study using a lung model.

    PubMed

    Hirayama, Takahiro; Nagano, Osamu; Shiba, Naoki; Yumoto, Tetsuya; Sato, Keiji; Terado, Michihisa; Ugawa, Toyomu; Ichiba, Shingo; Ujike, Yoshihito

    2014-12-01

    In adult high-frequency oscillatory ventilation (HFOV), stroke volume (SV) and mean lung pressure (PLung) are important for lung protection. We measured the airway pressure at the Y-piece and the lung pressure during HFOV using a lung model and HFOV ventilators for adults (R100 and 3100B). The lung model was made of a 20-liter, airtight rigid plastic container (adiabatic compliance: 19.3 ml/cmH2O) with or without a resistor (20 cmH2O/l/sec). The ventilator settings were as follows: mean airway pressure (MAP), 30 cmH2O; frequency, 5-15 Hz (every 1 Hz); airway pressure amplitude (AMP), maximum;and % of inspiratory time (IT), 50% for R100, 33% or 50% for 3100B. The measurements were also performed with an AMP of 2/3 or 1/3 maximum at 5, 10 and 15 Hz. The PLung and the measured MAP were not consistently identical to the setting MAP in either ventilator, and decreasing IT decreased the PLung in 3100B. In conclusion, we must pay attention to the possible discrepancy between the PLung and the setting MAP during adult HFOV. PMID:25519026

  2. A comprehensive computational model of sound transmission through the porcine lung.

    PubMed

    Dai, Zoujun; Peng, Ying; Henry, Brian M; Mansy, Hansen A; Sandler, Richard H; Royston, Thomas J

    2014-09-01

    A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This "subject-specific" model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment. PMID:25190415

  3. A comprehensive computational model of sound transmission through the porcine lung

    PubMed Central

    Dai, Zoujun; Peng, Ying; Henry, Brian M.; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas J.

    2014-01-01

    A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This “subject-specific” model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment. PMID:25190415

  4. Uniform expression of alcohol dehydrogenase 3 in epithelia regenerated with cultured normal, immortalised and malignant human oral keratinocytes.

    PubMed

    Hedberg, J J; Hansson, A; Nilsson, J A; Höög, J O; Grafström, R C

    2001-01-01

    The human oral epithelium is a target for damage from the inhalation of formaldehyde. However, most experimental studies on this chemical have relied on laboratory animals that are obligatory nose breathers, including rats and mice. Therefore, in vitro model systems that mimic the structure of the human oral epithelium and which retain normal tissue-specific metabolic competence are desirable. Based on the established role of alcohol dehydrogenase 3 (ADH3), also known as glutathione-dependent formaldehyde dehydrogenase, as the primary enzyme catalysing the detoxification of formaldehyde, the aim of this study was to investigate the expression of ADH3 in organotypic epithelia regenerated with normal (NOK), immortalised (SVpgC2a) and malignant (SqCC/Y1) human oral keratinocytes. Organotypic epithelia, usually consisting of 5-10 cell layers, were produced at the air-liquid interface of collagen gels containing human oral fibroblasts, after culture for 10 days in a standardised serum-free medium. Immunochemical staining demonstrated uniform expression of ADH3 in these organotypic epithelia, as well as in the epithelial cells of oral tissue. The specificity of the ADH3 antiserum was ascertained from the complete neutralisation of the immunochemical reaction with purified ADH3 protein. Assessment of the staining intensities indicated that the expression levels were similar among the regenerated epithelia. Furthermore, the regenerated epithelia showed similar ADH3 expression to the epithelium in oral tissue. Therefore, a tissue-like expression pattern for ADH3 can be generated from the culture of various oral keratinocyte lines in an organotypic state. Similar expression levels among the various cell lines indicate the preservation of ADH3 during malignant transformation, and therefore that NOK, SVpgC2a and SqCC/Y1 represent functional models for in vitro studies of formaldehyde metabolism in human oral mucosa.

  5. RECONSTRUCTION OF A HUMAN LUNG MORPHOLOGY MODEL FROM MAGNETIC RESONANCE IMAGES

    EPA Science Inventory

    RATIONALE A description of lung morphological structure is necessary for modeling the deposition and fate of inhaled therapeutic aerosols. A morphological model of the lung boundary was generated from magnetic resonance (MR) images with the goal of creating a framework for anato...

  6. COMPUTER RECONSTRUCTION OF A HUMAN LUNG MORPHOLOGY MODEL FROM MAGNETIC RESONANCE (MR) IMAGES

    EPA Science Inventory


    A mathematical description of the morphological structure of the lung is necessary for modeling and analysis of the deposition of inhaled aerosols. A morphological model of the lung boundary was generated from magnetic resonance (MR) images, with the goal of creating a frame...

  7. Directional Multi-scale Modeling of High-Resolution Computed Tomography (HRCT) Lung Images for Diffuse Lung Disease Classification

    NASA Astrophysics Data System (ADS)

    Vo, Kiet T.; Sowmya, Arcot

    A directional multi-scale modeling scheme based on wavelet and contourlet transforms is employed to describe HRCT lung image textures for classifying four diffuse lung disease patterns: normal, emphysema, ground glass opacity (GGO) and honey-combing. Generalized Gaussian density parameters are used to represent the detail sub-band features obtained by wavelet and contourlet transforms. In addition, support vector machines (SVMs) with excellent performance in a variety of pattern classification problems are used as classifier. The method is tested on a collection of 89 slices from 38 patients, each slice of size 512x512, 16 bits/pixel in DICOM format. The dataset contains 70,000 ROIs of those slices marked by experienced radiologists. We employ this technique at different wavelet and contourlet transform scales for diffuse lung disease classification. The technique presented here has best overall sensitivity 93.40% and specificity 98.40%.

  8. Biology Based Lung Cancer Model for Chronic Low Radon Exposures

    NASA Astrophysics Data System (ADS)

    TruÅ£ǎ-Popa, Lucia-Adina; Hofmann, Werner; Fakir, Hatim; Cosma, Constantin

    2008-08-01

    Low dose effects of alpha particles at the tissue level are characterized by the interaction of single alpha particles, affecting only a small fraction of the cells within that tissue. Alpha particle intersections of bronchial target cells during a given exposure period were simulated by an initiation-promotion model, formulated in terms of cellular hits within the cycle time of the cell (dose-rate) and then integrated over the whole exposure period (dose). For a given average number of cellular hits during the lifetime of bronchial cells, the actual number of single and multiple hits was selected from a Poisson distribution. While oncogenic transformation is interpreted as the primary initiation step, stimulated mitosis by killing adjacent cells is assumed to be the primary radiological promotion event. Analytical initiation and promotion functions were derived from experimental in vitro data on oncogenic transformation and cellular survival. To investigate the shape of the lung cancer risk function at chronic, low level exposures in more detail, additional biological factors describing the tissue response and operating specifically at low doses were incorporated into the initiation-promotion model. These mechanisms modifying the initial response at the cellular level were: adaptive response, genomic instability, induction of apoptosis by surrounding cells, and detrimental as well as protective bystander mechanisms. To quantify the effects of these mechanisms as functions of dose, analytical functions were derived from the experimental evidence presently available. Predictions of lung cancer risk, including these mechanisms, exhibit a distinct sublinear dose-response relationship at low exposures, particularly for very low exposure rates.

  9. Biology Based Lung Cancer Model for Chronic Low Radon Exposures

    SciTech Connect

    Truta-Popa, Lucia-Adina; Hofmann, Werner; Fakir, Hatim; Cosma, Constantin

    2008-08-07

    Low dose effects of alpha particles at the tissue level are characterized by the interaction of single alpha particles, affecting only a small fraction of the cells within that tissue. Alpha particle intersections of bronchial target cells during a given exposure period were simulated by an initiation-promotion model, formulated in terms of cellular hits within the cycle time of the cell (dose-rate) and then integrated over the whole exposure period (dose). For a given average number of cellular hits during the lifetime of bronchial cells, the actual number of single and multiple hits was selected from a Poisson distribution. While oncogenic transformation is interpreted as the primary initiation step, stimulated mitosis by killing adjacent cells is assumed to be the primary radiological promotion event. Analytical initiation and promotion functions were derived from experimental in vitro data on oncogenic transformation and cellular survival.To investigate the shape of the lung cancer risk function at chronic, low level exposures in more detail, additional biological factors describing the tissue response and operating specifically at low doses were incorporated into the initiation-promotion model. These mechanisms modifying the initial response at the cellular level were: adaptive response, genomic instability, induction of apoptosis by surrounding cells, and detrimental as well as protective bystander mechanisms. To quantify the effects of these mechanisms as functions of dose, analytical functions were derived from the experimental evidence presently available. Predictions of lung cancer risk, including these mechanisms, exhibit a distinct sublinear dose-response relationship at low exposures, particularly for very low exposure rates.

  10. A novel model of rheumatoid arthritis-associated interstitial lung disease in SKG mice.

    PubMed

    Keith, Rebecca C; Powers, Jennifer L; Redente, Elizabeth F; Sergew, Amen; Martin, Richard J; Gizinski, Alison; Holers, V Michael; Sakaguchi, Shimon; Riches, David W H

    2012-03-01

    Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is associated with increased mortality in up to 10% of patients with rheumatoid arthritis. Lung exposure to cigarette smoke has been implicated in disease development. Little is known about the mechanisms underlying the development of RA-ILD, in part due to the lack of an appropriate mouse model. The objectives of this study were (i) to test the suitability of SKG mice as a model of cellular and fibrotic interstitial pneumonia in the setting of autoimmune arthritis, and (ii) to determine the role of lung injury in the development of arthritis in SKG mice. Lung tissues were evaluated in arthritic SKG mice by quantifying cell accumulation in bronchoalveolar lavage, static compliance, collagen levels, and infiltrating cell phenotypes by flow cytometry and histology. Lung injury was induced by exposure to cigarette smoke or bleomycin. Arthritic SKG mice developed a patchy cellular and fibrotic interstitial pneumonia associated with reduced static compliance, increased collagen levels, and accumulation of inflammatory cells. Infiltrating cells comprised CD4+ T cells, B cells, macrophages, and neutrophils. Chronic exposure to cigarette smoke or initiation of lung injury with bleomycin did not cause arthritis. The pattern of lung disease suggests that arthritic SKG mice represent an authentic model of nonspecific interstitial pneumonia in RA-ILD patients. The lack of arthritis development after cigarette smoke or lung injury suggests that a model where breaches in immunologic tolerance are induced by lung inflammation and injury alone may be overly simplistic.

  11. The NEU1-selective sialidase inhibitor, C9-butyl-amide-DANA, blocks sialidase activity and NEU1-mediated bioactivities in human lung in vitro and murine lung in vivo.

    PubMed

    Hyun, Sang W; Liu, Anguo; Liu, Zhenguo; Cross, Alan S; Verceles, Avelino C; Magesh, Sadagopan; Kommagalla, Yadagiri; Kona, Chandrababunaidu; Ando, Hiromune; Luzina, Irina G; Atamas, Sergei P; Piepenbrink, Kurt H; Sundberg, Eric J; Guang, Wei; Ishida, Hideharu; Lillehoj, Erik P; Goldblum, Simeon E

    2016-08-01

    Neuraminidase-1 (NEU1) is the predominant sialidase expressed in human airway epithelia and lung microvascular endothelia where it mediates multiple biological processes. We tested whether the NEU1-selective sialidase inhibitor, C9-butyl-amide-2-deoxy-2,3-dehydro-N-acetylneuraminic acid (C9-BA-DANA), inhibits one or more established NEU1-mediated bioactivities in human lung cells. We established the IC50 values of C9-BA-DANA for total sialidase activity in human airway epithelia, lung microvascular endothelia and lung fibroblasts to be 3.74 µM, 13.0 µM and 4.82 µM, respectively. In human airway epithelia, C9-BA-DANA dose-dependently inhibited flagellin-induced, NEU1-mediated mucin-1 ectodomain desialylation, adhesiveness for Pseudomonas aeruginosa and shedding. In lung microvascular endothelia, C9-BA-DANA reversed NEU1-driven restraint of cell migration into a wound and disruption of capillary-like tube formation. NEU1 and its chaperone/transport protein, protective protein/cathepsin A (PPCA), were differentially expressed in these same cells. Normalized NEU1 protein expression correlated with total sialidase activity whereas PPCA expression did not. In contrast to eukaryotic sialidases, C9-BA-DANA exerted far less inhibitory activity for three selected bacterial neuraminidases (IC50 > 800 µM). Structural modeling of the four human sialidases and three bacterial neuraminidases revealed a loop between the seventh and eighth strands of the β-propeller fold, that in NEU1, was substantially shorter than that seen in the six other enzymes. Predicted steric hindrance between this loop and C9-BA-DANA could explain its selectivity for NEU1. Finally, pretreatment of mice with C9-BA-DANA completely protected against flagellin-induced increases in lung sialidase activity. Our combined data indicate that C9-BA-DANA inhibits endogenous and ectopically expressed sialidase activity and established NEU1-mediated bioactivities in human airway epithelia, lung microvascular

  12. Human Lung Cancer Cells Grown in an Ex Vivo 3D Lung Model Produce Matrix Metalloproteinases Not Produced in 2D Culture

    PubMed Central

    Mishra, Dhruva K.; Sakamoto, Jason H.; Thrall, Michael J.; Baird, Brandi N.; Blackmon, Shanda H.; Ferrari, Mauro; Kurie, Jonathan M.; Kim, Min P.

    2012-01-01

    We compared the growth of human lung cancer cells in an ex vivo three-dimensional (3D) lung model and 2D culture to determine which better mimics lung cancer growth in patients. A549 cells were grown in an ex vivo 3D lung model and in 2D culture for 15 days. We measured the size and formation of tumor nodules and counted the cells after 15 days. We also stained the tissue/cells for Ki-67, and Caspase-3. We measured matrix metalloproteinase (MMP) levels in the conditioned media and in blood plasma from patients with adenocarcinoma of the lung. Organized tumor nodules with intact vascular space formed in the ex vivo 3D lung model but not in 2D culture. Proliferation and apoptosis were greater in the ex vivo 3D lung model compared to the 2D culture. After 15 days, there were significantly more cells in the 2D culture than the 3D model. MMP-1, MMP-9, and MMP-10 production were significantly greater in the ex vivo 3D lung model. There was no production of MMP-9 in the 2D culture. The patient samples contained MMP-1, MMP-2, MMP-9, and MMP-10. The human lung cancer cells grown on ex vivo 3D model form perfusable nodules that grow over time. It also produced MMPs that were not produced in 2D culture but seen in human lung cancer patients. The ex vivo 3D lung model may more closely mimic the biology of human lung cancer development than the 2D culture. PMID:23028922

  13. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters.

    PubMed

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-21

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation. PMID:26531324

  14. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters

    NASA Astrophysics Data System (ADS)

    Nasehi Tehrani, Joubin; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation.

  15. A simple, closed-form, mathematical model for gas exchange in microchannel artificial lungs.

    PubMed

    Potkay, Joseph A

    2013-06-01

    Microfabrication techniques are attractive for constructing artificial lungs due to the ability to create features similar in size to those in the natural lung. However, a simple and intuitive mathematical model capable of accurately predicting the gas exchange performance of microchannel artificial lungs does not currently exist. Such a model is critical to understanding and optimizing these devices. Here, we describe a simple, closed-form mathematical model for gas exchange in microchannel artificial lungs and qualify it through application to experimental data from several research groups. We utilize lumped parameters and several assumptions to obtain a closed-form set of equations that describe gas exchange. This work is intended to augment computational models by providing a more intuitive, albeit potentially less accurate, understanding of the operation and trade-offs inherent in microchannel artificial lung devices.

  16. Assessing model uncertainty using hexavalent chromium and lung cancer mortality as an example [Abstract 2015

    EPA Science Inventory

    Introduction: The National Research Council recommended quantitative evaluation of uncertainty in effect estimates for risk assessment. This analysis considers uncertainty across model forms and model parameterizations with hexavalent chromium [Cr(VI)] and lung cancer mortality a...

  17. Chloride and potassium channels in cystic fibrosis airway epithelia

    NASA Astrophysics Data System (ADS)

    Welsh, Michael J.; Liedtke, Carole M.

    1986-07-01

    Cystic fibrosis, the most common lethal genetic disease in Caucasians, is characterized by a decreased permeability in sweat gland duct and airway epithelia. In sweat duct epithelium, a decreased Cl- permeability accounts for the abnormally increased salt content of sweat1. In airway epithelia a decreased Cl- permeability, and possibly increased sodium absorption, may account for the abnormal respiratory tract fluid2,3. The Cl- impermeability has been localized to the apical membrane of cystic fibrosis airway epithelial cells4. The finding that hormonally regulated Cl- channels make the apical membrane Cl- permeable in normal airway epithelial cells5 suggested abnormal Cl- channel function in cystic fibrosis. Here we report that excised, cell-free patches of membrane from cystic fibrosis epithelial cells contain Cl- channels that have the same conductive properties as Cl- channels from normal cells. However, Cl- channels from cystic fibrosis cells did not open when they were attached to the cell. These findings suggest defective regulation of Cl- channels in cystic fibrosis epithelia; to begin to address this issue, we performed two studies. First, we found that isoprenaline, which stimulates Cl- secretion, increases cellular levels of cyclic AMP in a similar manner in cystic fibrosis and non-cystic fibrosis epithelial cells. Second, we show that adrenergic agonists open calcium-activated potassium channels, indirectly suggesting that calcium-dependent stimulus-response coupling is intact in cystic fibrosis. These data suggest defective regulation of Cl- channels at a site distal to cAMP accumulation.

  18. Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use.

    PubMed

    Nichols, Joan E; Niles, Jean A; Vega, Stephanie P; Argueta, Lissenya B; Eastaway, Adriene; Cortiella, Joaquin

    2014-09-01

    Respiratory tract specific cell populations, or tissue engineered in vitro grown human lung, have the potential to be used as research tools to mimic physiology, toxicology, pathology, as well as infectious diseases responses of cells or tissues. Studies related to respiratory tract pathogenesis or drug toxicity testing in the past made use of basic systems where single cell populations were exposed to test agents followed by evaluations of simple cellular responses. Although these simple single-cell-type systems provided good basic information related to cellular responses, much more can be learned from cells grown in fabricated microenvironments which mimic in vivo conditions in specialized microfabricated chambers or by human tissue engineered three-dimensional (3D) models which allow for more natural interactions between cells. Recent advances in microengineering technology, microfluidics, and tissue engineering have provided a new approach to the development of 2D and 3D cell culture models which enable production of more robust human in vitro respiratory tract models. Complex models containing multiple cell phenotypes also provide a more reasonable approximation of what occurs in vivo without the confounding elements in the dynamic in vivo environment. The goal of engineering good 3D human models is the formation of physiologically functional respiratory tissue surrogates which can be used as pathogenesis models or in the case of 2D screening systems for drug therapy evaluation as well as human toxicity testing. We hope that this manuscript will serve as a guide for development of future respiratory tract model systems as well as a review of conventional models.

  19. Modeling the nuclear magnetic resonance behavior of lung: from electrical engineering to critical care medicine.

    PubMed

    Cutillo, A G; Ailion, D C

    1999-01-01

    The present article reviews the basic principles of a new approach to the characterization of pulmonary disease. This approach is based on the unique nuclear magnetic resonance (NMR) properties of the lung and combines experimental measurements (using specially developed NMR techniques) with theoretical simulations. The NMR signal from inflated lungs decays very rapidly compared with the signal from completely collapsed (airless) lungs. This phenomenon is due to the presence of internal magnetic field inhomogeneity produced by the alveolar air-tissue interface (because air and water have different magnetic susceptibilities). The air-tissue interface effects can be detected and quantified by magnetic resonance imaging (MRI) techniques using temporally symmetric and asymmetric spin-echo sequences. Theoretical models developed to explain the internal (tissue-induced) magnetic field inhomogeneity in aerated lungs predict the NMR lung behavior as a function of various technical and physiological factors (e.g., the level of lung inflation) and simulate the effects of various lung disorders (in particular, pulmonary edema) on this behavior. Good agreement has been observed between the predictions obtained from the mathematical models and the results of experimental NMR measurements in normal and diseased lungs. Our theoretical and experimental data have important pathophysiological and clinical implications, especially with respect to the characterization of acute lung disease (e.g., pulmonary edema) and the management of critically ill patients.

  20. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    SciTech Connect

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2013-07-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C{sub 1} continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.

  1. Chapter 6: Lung cancer in never smokers: epidemiology and risk prediction models.

    PubMed

    McCarthy, William J; Meza, Rafael; Jeon, Jihyoun; Moolgavkar, Suresh H

    2012-07-01

    In this chapter we review the epidemiology of lung cancer incidence and mortality among never smokers/nonsmokers and describe the never smoker lung cancer risk models used by the Cancer Intervention and Surveillance Network (CISNET) modelers. Our review focuses on those influences likely to have measurable population impact on never smoker risk, such as secondhand smoke, even though the individual-level impact may be small. Occupational exposures may also contribute importantly to the population attributable risk of lung cancer. We examine the following risk factors in this chapter: age, environmental tobacco smoke, cooking fumes, ionizing radiation including radon gas, inherited genetic susceptibility, selected occupational exposures, preexisting lung disease, and oncogenic viruses. We also compare the prevalence of never smokers between the three CISNET smoking scenarios and present the corresponding lung cancer mortality estimates among never smokers as predicted by a typical CISNET model.

  2. COMPUTER SIMULATIONS OF LUNG AIRWAY STRUCTURES USING DATA-DRIVEN SURFACE MODELING TECHNIQUES

    EPA Science Inventory

    ABSTRACT

    Knowledge of human lung morphology is a subject critical to many areas of medicine. The visualization of lung structures naturally lends itself to computer graphics modeling due to the large number of airways involved and the complexities of the branching systems...

  3. Dry Lung as a Physical Model in Studies of Aerosol Deposition.

    PubMed

    Morozov, Victor N; Kanev, Igor L

    2015-10-01

    A new physical model was developed to evaluate the deposition of micro- and nanoaerosol particles (NAPs) into the lungs as a function of size and charges. The model was manufactured of a dry, inflated swine lung produced by Nasco company (Fort Atkinson, WI). The dry lung was cut into two lobes and a conductive tube was glued into the bronchial tube. The upper 1-2-mm-thick layer of the lung lobe was removed with a razor blade to expose the alveoli. The lobe was further enclosed into a plastic bag and placed within a metalized plastic box. The probability of aerosol deposition was calculated by comparing the size distribution of NAPs passed through the lung with that of control, where aerosol passed through a box bypassing the lung. Using this new lung model, it was demonstrated that charged NAPs are deposited inside the lung substantially more efficiently than neutral ones. It was also demonstrated that deposition of neutral NAPs well fits prediction of the Multiple-Path Particle Dosimetry (MPPD) model developed by the Applied Research Associates, Inc. (ARA).

  4. Lung Protective Ventilation (ARDSNet) versus APRV: Ventilatory Management in a Combined Model of Acute Lung and Brain Injury

    PubMed Central

    Davies, Stephen W.; Leonard, Kenji L.; Falls, Randall K.; Mageau, Ronald P.; Efird, Jimmy T.; Hollowell, Joseph P.; Trainor, Wayne E.; Kanaan, Hilal A.; Hickner, Robert C.; Sawyer, Robert G.; Poulin, Nathaniel R.; Waibel, Brett H.; Toschlog, Eric A.

    2014-01-01

    Background Concomitant lung/brain traumatic injury, results in significant morbidity and mortality. Lung protective ventilation (ARDSNet) has become the standard for managing acute respiratory distress syndrome (ARDS); however, the resulting permissive hypercapnea may compound traumatic brain injury (TBI). Airway pressure release ventilation (APRV) offers an alternative strategy for management of this patient population. APRV was hypothesized to retard the progression of acute lung/brain injury to a greater degree than ARDSNet in a swine model. Methods Yorkshire swine were randomized to ARDSNet, APRV, or sham. Ventilatory settings and pulmonary parameters, vitals, blood gases, quantitative histopathology, and cerebral microdialysis were compared between groups using chi-square, Fisher’s exact, Student’s t-test, Wilcoxon rank-sum, and mixed effects repeated measures modeling. Results 22 swine (17 male, 5 female), weighing 25±6.0kg, were randomized to APRV (n=9), ARDSNet (n=12), or sham (n=1). PaO2/FiO2 (P/F) ratio dropped significantly while intracranial pressure increased significantly for all three groups immediately following lung and brain injury. Over time, peak inspiratory pressure, mean airway pressure, and P/F ratio significantly increased, while total respiratory rate significantly decreased within the APRV group compared to the ARDSNet group. Histopathology did not show significant differences between groups in overall brain or lung tissue injury; however, cerebral microdialysis trends suggested increased ischemia within the APRV group compared to ARDSNet over time. Conclusion Previous studies have not evaluated the effects of APRV in this population. While our macroscopic parameters and histopathology did not observe a significant difference between groups, microdialysis data suggest a trend toward increased cerebral ischemia associated with APRV over time. Additional and future studies should focus on extending the time interval for observation to

  5. The Implantable Pediatric Artificial Lung: Interim Report on the Development of an End-Stage Lung Failure Model

    PubMed Central

    Alghanem, Fares; Davis, Ryan P.; Bryner, Benjamin S.; Hoffman, Hayley R.; Trahanas, John; Cornell, Marie; Rojas-Peña, Alvaro; Bartlett, Robert H.; Hirschl, Ronald B.

    2015-01-01

    An implantable pediatric artificial lung (PAL) may serve as a bridge to lung transplantation for children with end-stage lung failure (ESLF); however, an animal model of pediatric lung failure is needed to evaluate a PAL’s efficacy before it can enter clinical trials. The objective of this study was to assess ligation of the right pulmonary artery (rPA) as a model for pediatric ESLF. Seven 20-30kg lambs underwent rPA ligation and were recovered and monitored for up to 4 days. Intraoperatively, rPA ligation significantly increased physiologic deadspace fraction (Vd/Vt: baseline=48.6±5.7%, rPA ligation=60.1±5.2%, p=0.012), mean pulmonary arterial pressure (mPPA: baseline=17.4±2.2mmHg, rPA ligation=28.5±5.2mmHg, p<0.001), and arterial partial pressure of carbon dioxide (PaCO2: baseline=40.4±9.3mmHg, rPA ligation=57.3±12.7mmHg, p=0.026). Of the 7 lambs, 3 were unable to be weaned from mechanical ventilation post-operatively, 3 were successfully weaned but suffered cardiorespiratory failure within 4 days, and 1 survived all 4 days. All 4 animals that were successfully weaned from mechanical ventilation had persistent pulmonary hypertension (mPPA=28.6±2.2mmHg) and remained tachypneic (respiratory rate=63±21min−1). Three of the 4 recovered lambs required supplemental oxygen. We conclude that rPA ligation creates the physiologic derangements commonly seen in pediatric end-stage lung failure and may be suitable for testing and implanting a PAL. PMID:25905495

  6. The Effects of Smoking on the Developing Lung: Insights from a Biologic Model for Lung Development, Homeostasis, and Repair

    PubMed Central

    Asotra, Kamlesh; Torday, John S.

    2010-01-01

    There is extensive epidemiologic and experimental evidence from both animal and human studies that demonstrates detrimental long-term pulmonary outcomes in the offspring of mothers who smoke during pregnancy. However, the molecular mechanisms underlying these associations are not understood. Therefore, it is not surprising that that there is no effective intervention to prevent the damaging effects of perinatal smoke exposure. Using a biologic model of lung development, homeostasis, and repair, we have determined that in utero nicotine exposure disrupts specific molecular paracrine communications between epithelium and interstitium that are driven by parathyroid hormone-related protein and peroxisome proliferator-activated receptor (PPAR)γ, resulting in transdifferentiation of lung lipofibroblasts to myofibroblasts, i.e., the conversion of the lipofibroblast phenotype to a cell type that is not conducive to alveolar homeostasis, and is the cellular hallmark of chronic lung disease, including asthma. Furthermore, we have shown that by molecularly targeting PPARγ expression, nicotine-induced lung injury can not only be significantly averted, it can also be reverted. The concept outlined by us differs from the traditional paradigm of teratogenic and toxicological effects of tobacco smoke that has been proposed in the past. We have argued that since nicotine alters the normal homeostatic epithelial-mesenchymal paracrine signaling in the developing alveolus, rather than causing totally disruptive structural changes, it offers a unique opportunity to prevent, halt, and/or reverse this process through targeted molecular manipulations. PMID:19641967

  7. Response and resistance to NF-κB inhibitors in mouse models of lung adenocarcinoma

    PubMed Central

    Xue, Wen; Meylan, Etienne; Oliver, Trudy G.; Feldser, David M.; Winslow, Monte M.; Bronson, Roderick; Jacks, Tyler

    2011-01-01

    Lung adenocarcinoma is a frequently diagnosed cancer type and a leading cause of cancer death worldwide. We recently demonstrated in an autochthonous mouse model of this disease that genetic inhibition of the NF-κB pathway affects both the initiation and maintenance of lung cancer, identifying this pathway as a promising therapeutic target. In this study, we tested the efficacy of small molecule NF-κB inhibitors in mouse models of lung cancer. In murine lung adenocarcinoma cell lines with high NF-κB activity, the proteasome inhibitor Bortezomib efficiently reduced nuclear p65, repressed NF-κB target genes and rapidly induced apoptosis. Bortezomib also induced lung tumor regression in vivo and prolonged the survival of tumor bearing KrasLSL-G12D/wt;p53flox/flox mice. In contrast, KrasG12D/wt lung tumors, which have low levels of nuclear NF-κB, do not respond to Bortezomib, suggesting that nuclear NF-κB may be a biomarker to predict treatment response to drugs of this class. Following repeated treatment, initially sensitive lung tumors became resistant to Bortezomib. A second NF-κB inhibitor, Bay-117082, showed similar therapeutic efficacy and acquired-resistance in mice. Our results using preclinical mouse models support the NF-κB pathway as a potential therapeutic target for a defined subset of lung adenocarcinoma. PMID:21874163

  8. Cultured corneal epithelia for ocular surface disease.

    PubMed Central

    Schwab, I R

    1999-01-01

    PURPOSE: To evaluate the potential efficacy for autologous and allogeneic expanded corneal epithelial cell transplants derived from harvested limbal corneal epithelial stem cells cultured in vitro for the management of ocular surface disease. METHODS: Human Subjects. Of the 19 human subjects included, 18 (20 procedures) underwent in vitro cultured corneal epithelial cell transplants using various carriers for the epithelial cells to determine the most efficacious approach. Sixteen patients (18 procedures on 17 eyes) received autologous transplants, and 2 patients (1 procedure each) received allogeneic sibling grafts. The presumed corneal epithelial stem cells from 1 patient did not grow in vitro. The carriers for the expanded corneal epithelial cells included corneal stroma, type 1 collagen (Vitrogen), soft contact lenses, collagen shields, and amniotic membrane for the autologous grafts and only amniotic membrane for the allogeneic sibling grafts. Histologic confirmation was reviewed on selected donor grafts. Amniotic membrane as carrier. Further studies were made to determine whether amniotic membrane might be the best carrier for the expanding corneal epithelial cells. Seventeen different combinations of tryspinization, sonication, scraping, and washing were studied to find the simplest, most effective method for removing the amniotic epithelium while still preserving the histologic appearance of the basement membrane of the amnion. Presumed corneal epithelial stem cells were harvested and expanded in vitro and applied to the amniotic membrane to create a composite graft. Thus, the composite graft consisted of the amniotic membrane from which the original epithelium had been removed without significant histologic damage to the basement membrane, and the expanded corneal epithelial stem cells, which had been applied to and had successfully adhered to the denuded amniotic membrane. Animal model. Twelve rabbits had the ocular surface of 1 eye damaged in a standard

  9. Dynamics of Surfactant Liquid Plugs at Bifurcating Lung Airway Models

    NASA Astrophysics Data System (ADS)

    Tavana, Hossein

    2013-11-01

    A surfactant liquid plug forms in the trachea during surfactant replacement therapy (SRT) of premature babies. Under air pressure, the plug propagates downstream and continuously divides into smaller daughter plugs at continuously branching lung airways. Propagating plugs deposit a thin film on airway walls to reduce surface tension and facilitate breathing. The effectiveness of SRT greatly depends on the final distribution of instilled surfactant within airways. To understand this process, we investigate dynamics of splitting of surfactant plugs in engineered bifurcating airway models. A liquid plug is instilled in the parent tube to propagate and split at the bifurcation. A split ratio, R, is defined as the ratio of daughter plug lengths in the top and bottom daughter airway tubes and studied as a function of the 3D orientation of airways and different flow conditions. For a given Capillary number (Ca), orienting airways farther away from a horizontal position reduced R due to the flow of a larger volume into the gravitationally favored daughter airway. At each orientation, R increased with 0.0005 < Ca < 0.05. This effect diminished by decrease in airways diameter. This approach will help elucidate surfactant distribution in airways and develop effective SRT strategies.

  10. Prolactin and teleost ionocytes: new insights into cellular and molecular targets of prolactin in vertebrate epithelia

    PubMed Central

    Breves, Jason P.; McCormick, Stephen D.; Karlstrom, Rolf O.

    2014-01-01

    The peptide hormone prolactin is a functionally versatile hormone produced by the vertebrate pituitary. Comparative studies over the last six decades have revealed that a conserved function for prolactin across vertebrates is the regulation of ion and water transport in a variety of tissues including those responsible for whole-organism ion homeostasis. In teleost fishes, prolactin was identified as the “freshwater-adapting hormone”, promoting ion-conserving and water-secreting processes by acting on the gill, kidney, gut and urinary bladder. In mammals, prolactin is known to regulate renal, intestinal, mammary and amniotic epithelia, with dysfunction linked to hypogonadism, infertility, and metabolic disorders. Until recently, our understanding of the cellular mechanisms of prolactin action in fishes has been hampered by a paucity of molecular tools to define and study ionocytes, specialized cells that control active ion transport across branchial and epidermal epithelia. Here we review work in teleost models indicating that prolactin regulates ion balance through action on ion transporters, tight-junction proteins, and water channels in ionocytes, and discuss recent advances in our understanding of ionocyte function in the genetically and embryonically accessible zebrafish (Danio rerio). Given the high degree of evolutionary conservation in endocrine and osmoregulatory systems, these studies in teleost models are contributing novel mechanistic insight into how prolactin participates in the development, function, and dysfunction of osmoregulatory systems across the vertebrate lineage. PMID:24434597

  11. Prolactin and teleost ionocytes: new insights into cellular and molecular targets of prolactin in vertebrate epithelia

    USGS Publications Warehouse

    Breves, Jason P.; McCormick, Stephen D.; Karlstrom, Rolf O.

    2014-01-01

    The peptide hormone prolactin is a functionally versatile hormone produced by the vertebrate pituitary. Comparative studies over the last six decades have revealed that a conserved function for prolactin across vertebrates is the regulation of ion and water transport in a variety of tissues including those responsible for whole-organism ion homeostasis. In teleost fishes, prolactin was identified as the “freshwater-adapting hormone”, promoting ion-conserving and water-secreting processes by acting on the gill, kidney, gut and urinary bladder. In mammals, prolactin is known to regulate renal, intestinal, mammary and amniotic epithelia, with dysfunction linked to hypogonadism, infertility, and metabolic disorders. Until recently, our understanding of the cellular mechanisms of prolactin action in fishes has been hampered by a paucity of molecular tools to define and study ionocytes, specialized cells that control active ion transport across branchial and epidermal epithelia. Here we review work in teleost models indicating that prolactin regulates ion balance through action on ion transporters, tight-junction proteins, and water channels in ionocytes, and discuss recent advances in our understanding of ionocyte function in the genetically and embryonically accessible zebrafish (Danio rerio). Given the high degree of evolutionary conservation in endocrine and osmoregulatory systems, these studies in teleost models are contributing novel mechanistic insight into how prolactin participates in the development, function, and dysfunction of osmoregulatory systems across the vertebrate lineage.

  12. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume.

    PubMed

    Vande Velde, Greetje; Poelmans, Jennifer; De Langhe, Ellen; Hillen, Amy; Vanoirbeek, Jeroen; Himmelreich, Uwe; Lories, Rik J

    2016-01-01

    In vivo lung micro-computed tomography (micro-CT) is being increasingly embraced in pulmonary research because it provides longitudinal information on dynamic disease processes in a field in which ex vivo assessment of experimental disease models is still the gold standard. To optimize the quantitative monitoring of progression and therapy of lung diseases, we evaluated longitudinal changes in four different micro-CT-derived biomarkers [aerated lung volume, lung tissue (including lesions) volume, total lung volume and mean lung density], describing normal development, lung infections, inflammation, fibrosis and therapy. Free-breathing mice underwent micro-CT before and repeatedly after induction of lung disease (bleomycin-induced fibrosis, invasive pulmonary aspergillosis, pulmonary cryptococcosis) and therapy (imatinib). The four lung biomarkers were quantified. After the last time point, we performed pulmonary function tests and isolated the lungs for histology. None of the biomarkers remained stable during longitudinal follow-up of adult healthy mouse lungs, implying that biomarkers should be compared with age-matched controls upon intervention. Early inflammation and progressive fibrosis led to a substantial increase in total lung volume, which affects the interpretation of aerated lung volume, tissue volume and mean lung density measures. Upon treatment of fibrotic lung disease, the improvement in aerated lung volume and function was not accompanied by a normalization of the increased total lung volume. Significantly enlarged lungs were also present in models of rapidly and slowly progressing lung infections. The data suggest that total lung volume changes could partly reflect a compensatory mechanism that occurs during disease progression in mice. Our findings underscore the importance of quantifying total lung volume in addition to aerated lung or lesion volumes to accurately document growth and potential compensatory mechanisms in mouse models of lung

  13. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume

    PubMed Central

    Vande Velde, Greetje; Poelmans, Jennifer; De Langhe, Ellen; Hillen, Amy; Vanoirbeek, Jeroen; Himmelreich, Uwe; Lories, Rik J.

    2016-01-01

    ABSTRACT In vivo lung micro-computed tomography (micro-CT) is being increasingly embraced in pulmonary research because it provides longitudinal information on dynamic disease processes in a field in which ex vivo assessment of experimental disease models is still the gold standard. To optimize the quantitative monitoring of progression and therapy of lung diseases, we evaluated longitudinal changes in four different micro-CT-derived biomarkers [aerated lung volume, lung tissue (including lesions) volume, total lung volume and mean lung density], describing normal development, lung infections, inflammation, fibrosis and therapy. Free-breathing mice underwent micro-CT before and repeatedly after induction of lung disease (bleomycin-induced fibrosis, invasive pulmonary aspergillosis, pulmonary cryptococcosis) and therapy (imatinib). The four lung biomarkers were quantified. After the last time point, we performed pulmonary function tests and isolated the lungs for histology. None of the biomarkers remained stable during longitudinal follow-up of adult healthy mouse lungs, implying that biomarkers should be compared with age-matched controls upon intervention. Early inflammation and progressive fibrosis led to a substantial increase in total lung volume, which affects the interpretation of aerated lung volume, tissue volume and mean lung density measures. Upon treatment of fibrotic lung disease, the improvement in aerated lung volume and function was not accompanied by a normalization of the increased total lung volume. Significantly enlarged lungs were also present in models of rapidly and slowly progressing lung infections. The data suggest that total lung volume changes could partly reflect a compensatory mechanism that occurs during disease progression in mice. Our findings underscore the importance of quantifying total lung volume in addition to aerated lung or lesion volumes to accurately document growth and potential compensatory mechanisms in mouse models of

  14. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume.

    PubMed

    Vande Velde, Greetje; Poelmans, Jennifer; De Langhe, Ellen; Hillen, Amy; Vanoirbeek, Jeroen; Himmelreich, Uwe; Lories, Rik J

    2016-01-01

    In vivo lung micro-computed tomography (micro-CT) is being increasingly embraced in pulmonary research because it provides longitudinal information on dynamic disease processes in a field in which ex vivo assessment of experimental disease models is still the gold standard. To optimize the quantitative monitoring of progression and therapy of lung diseases, we evaluated longitudinal changes in four different micro-CT-derived biomarkers [aerated lung volume, lung tissue (including lesions) volume, total lung volume and mean lung density], describing normal development, lung infections, inflammation, fibrosis and therapy. Free-breathing mice underwent micro-CT before and repeatedly after induction of lung disease (bleomycin-induced fibrosis, invasive pulmonary aspergillosis, pulmonary cryptococcosis) and therapy (imatinib). The four lung biomarkers were quantified. After the last time point, we performed pulmonary function tests and isolated the lungs for histology. None of the biomarkers remained stable during longitudinal follow-up of adult healthy mouse lungs, implying that biomarkers should be compared with age-matched controls upon intervention. Early inflammation and progressive fibrosis led to a substantial increase in total lung volume, which affects the interpretation of aerated lung volume, tissue volume and mean lung density measures. Upon treatment of fibrotic lung disease, the improvement in aerated lung volume and function was not accompanied by a normalization of the increased total lung volume. Significantly enlarged lungs were also present in models of rapidly and slowly progressing lung infections. The data suggest that total lung volume changes could partly reflect a compensatory mechanism that occurs during disease progression in mice. Our findings underscore the importance of quantifying total lung volume in addition to aerated lung or lesion volumes to accurately document growth and potential compensatory mechanisms in mouse models of lung

  15. Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging.

    PubMed

    Fecher, David; Hofmann, Elisabeth; Buck, Andreas; Bundschuh, Ralph; Nietzer, Sarah; Dandekar, Gudrun; Walles, Thorsten; Walles, Heike; Lückerath, Katharina; Steinke, Maria

    2016-01-01

    Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and -testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET) these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future. PMID:27501455

  16. Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging

    PubMed Central

    Fecher, David; Hofmann, Elisabeth; Buck, Andreas; Bundschuh, Ralph; Nietzer, Sarah; Dandekar, Gudrun; Walles, Thorsten; Walles, Heike; Lückerath, Katharina; Steinke, Maria

    2016-01-01

    Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and –testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET) these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future. PMID:27501455

  17. Numerical modeling of Po-218 deposition in a physiologically realistic lung bifurcation model

    NASA Astrophysics Data System (ADS)

    Mously-Soroujy, Khalid Ahmad

    Experimental data for lung bifurcations reveals complex geometries and distinct asymmetrical characteristic, which affects the localized distribution of particles deposited in the lung. This study is based on recently published numerical results for a symmetric physiological realistic bifurcation geometry Heistracher and Hofmann (1995) which has been extended here to the case of a asymmetric geometry. The asymmetric PRB model was used to study the flow field and the deposition of ultrafine particles for inspiratory and expiratory conditions. In the present study, we investigated the effect of different flow rates, representing human activity and deposition of different ultrafine particles representing radon daughter (Po-218), in the PRB model. Numerical results were compared with the limited available experimental and numerical data. The fluid dynamic computer program FIDAP was used for this purpose.

  18. Relations between fractional-order model parameters and lung pathology in chronic obstructive pulmonary disease.

    PubMed

    Ionescu, Clara M; De Keyser, Robin

    2009-04-01

    In this study, changes in respiratory mechanics from healthy and chronic obstructive pulmonary disease (COPD) diagnosed patients are observed from identified fractional-order (FO) model parameters. The noninvasive forced oscillation technique is employed for lung function testing. Parameters on tissue damping and elastance are analyzed with respect to lung pathology and additional indexes developed from the identified model. The observations show that the proposed model may be used to detect changes in respiratory mechanics and offers a clear-cut separation between the healthy and COPD subject groups. Our conclusion is that an FO model is able to capture changes in viscoelasticity of the soft tissue in lungs with disease. Apart from this, nonlinear effects present in the measured signals were observed and analyzed via signal processing techniques and led to supporting evidence in relation to the expected phenomena from lung pathology in healthy and COPD patients.

  19. The Audible Human Project: Modeling Sound Transmission in the Lungs and Torso

    NASA Astrophysics Data System (ADS)

    Dai, Zoujun

    Auscultation has been used qualitatively by physicians for hundreds of years to aid in the monitoring and diagnosis of pulmonary diseases. Alterations in the structure and function of the pulmonary system that occur in disease or injury often give rise to measurable changes in lung sound production and transmission. Numerous acoustic measurements have revealed the differences of breath sounds and transmitted sounds in the lung under normal and pathological conditions. Compared to the extensive cataloging of lung sound measurements, the mechanism of sound transmission in the pulmonary system and how it changes with alterations of lung structural and material properties has received less attention. A better understanding of sound transmission and how it is altered by injury and disease might improve interpretation of lung sound measurements, including new lung imaging modalities that are based on an array measurement of the acoustic field on the torso surface via contact sensors or are based on a 3-dimensional measurement of the acoustic field throughout the lungs and torso using magnetic resonance elastography. A long-term goal of the Audible Human Project (AHP ) is to develop a computational acoustic model that would accurately simulate generation, transmission and noninvasive measurement of sound and vibration within the pulmonary system and torso caused by both internal (e.g. respiratory function) and external (e.g. palpation) sources. The goals of this dissertation research, fitting within the scope of the AHP, are to develop specific improved theoretical understandings, computational algorithms and experimental methods aimed at transmission and measurement. The research objectives undertaken in this dissertation are as follows. (1) Improve theoretical modeling and experimental identification of viscoelasticity in soft biological tissues. (2) Develop a poroviscoelastic model for lung tissue vibroacoustics. (3) Improve lung airway acoustics modeling and its

  20. p21 suppresses inflammation and tumorigenesis on pRB-deficient stratified epithelia.

    PubMed

    Saiz-Ladera, C; Lara, M F; Garín, M; Ruiz, S; Santos, M; Lorz, C; García-Escudero, R; Martínez-Fernández, M; Bravo, A; Fernández-Capetillo, O; Segrelles, C; Paramio, J M

    2014-09-11

    The retinoblastoma gene product (pRb) controls proliferation and differentiation processes in stratified epithelia. Importantly, and in contrast to other tissues, Rb deficiency does not lead to spontaneous skin tumor formation. As the cyclin-dependent kinase inhibitor p21 regulates proliferation and differentiation in the absence of pRb, we analyzed the consequences of deleting p21 in pRb-ablated stratified epithelia (hereafter pRb(ΔEpi);p21-/-). These mice display an enhancement of the phenotypic abnormalities observed in pRb(ΔEpi) animals, indicating that p21 partially compensates pRb absence. Remarkably, pRb(ΔEpi);p21-/- mice show an acute skin inflammatory phenotype and develop spontaneous epithelial tumors, particularly affecting tongue and oral tissues. Biochemical analyses and transcriptome studies reveal changes affecting multiple pathways, including DNA damage and p53-dependent signaling responses. Comparative metagenomic analyses, together with the histopathological profiles, indicate that these mice constitute a faithful model for human head and neck squamous cell carcinomas. Collectively, our findings demonstrate that p21, in conjunction with pRb, has a central role in regulating multiple epithelial processes and orchestrating specific tumor suppressor functions.

  1. Aurora Kinases Phosphorylate Lgl to Induce Mitotic Spindle Orientation in Drosophila Epithelia

    PubMed Central

    Bell, Graham P.; Fletcher, Georgina C.; Brain, Ruth; Thompson, Barry J.

    2015-01-01

    Summary The Lethal giant larvae (Lgl) protein was discovered in Drosophila as a tumor suppressor in both neural stem cells (neuroblasts) and epithelia. In neuroblasts, Lgl relocalizes to the cytoplasm at mitosis, an event attributed to phosphorylation by mitotically activated aPKC kinase and thought to promote asymmetric cell division. Here we show that Lgl also relocalizes to the cytoplasm at mitosis in epithelial cells, which divide symmetrically. The Aurora A and B kinases directly phosphorylate Lgl to promote its mitotic relocalization, whereas aPKC kinase activity is required only for polarization of Lgl. A form of Lgl that is a substrate for aPKC, but not Aurora kinases, can restore cell polarity in lgl mutants but reveals defects in mitotic spindle orientation in epithelia. We propose that removal of Lgl from the plasma membrane at mitosis allows Pins/LGN to bind Dlg and thus orient the spindle in the plane of the epithelium. Our findings suggest a revised model for Lgl regulation and function in both symmetric and asymmetric cell divisions. PMID:25484300

  2. Lung fibrosis: drug screening and disease biomarker identification with a lung slice culture model and subtracted cDNA Library.

    PubMed

    Guo, Tong; Lok, Ka Yee; Yu, Changhe; Li, Zhuo

    2014-09-01

    Pulmonary fibrosis is a progressive and irreversible disorder with no appropriate cure. A practical and effective experimental model that recapitulates the disease will greatly benefit the research community and, ultimately, patients. In this study, we tested the lung slice culture (LSC) system for its potential use in drug screening and disease biomarker identification. Fibrosis was induced by treating rat lung slices with 1ng/ml TGF-β1 and 2.5μM CdCl2, quantified by measuring the content of hydroxyproline, and confirmed by detecting the expression of collagen type III alpha 1 (Col3α1) and connective tissue growth factor (CTGF) genes. The anti-fibrotic effects of pirfenidone, spironolactone and eplerenone were assessed by their capability to reduce hydroxyproline content. A subtractive hybridisation technique was used to create two cDNA libraries (subtracted and unsubtracted) from lung slices. The housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was employed to assess the subtraction efficiency of the subtracted cDNA library. Clones from the two libraries were sequenced and the genes were identified by performing a BLAST search on the NCBI GenBank database. Furthermore, the relevance of the genes to fibrosis formation was verified. The results presented here show that fibrosis was effectively induced in cultured lung slices, which exhibited significantly elevated levels of hydroxyproline and Col3α1/CTGF gene expression. Several inhibitors have demonstrated their anti-fibrotic effects by significantly reducing hydroxyproline content. The subtracted cDNA library, which was enriched for differentially expressed genes, was used to successfully identify genes associated with fibrosis. Collectively, the results indicate that our LSC system is an effective model for the screening of drug candidates and for disease biomarker identification.

  3. The Implantable Pediatric Artificial Lung: Interim Report on the Development of an End-Stage Lung Failure Model.

    PubMed

    Alghanem, Fares; Davis, Ryan P; Bryner, Benjamin S; Hoffman, Hayley R; Trahanas, John; Cornell, Marie S; Rojas-Peña, Alvaro; Bartlett, Robert H; Hirschl, Ronald B

    2015-01-01

    An implantable pediatric artificial lung (PAL) may serve as a bridge to lung transplantation for children with end-stage lung failure (ESLF); however, an animal model of pediatric lung failure is needed to evaluate the efficacy of PAL before it can enter clinical trials. The objective of this study was to assess ligation of the right pulmonary artery (rPA) as a model for pediatric ESLF. Seven lambs weighing 20-30 kg underwent rPA ligation and were recovered and monitored for up to 4 days. Intraoperatively, rPA ligation significantly increased physiologic dead space fraction (Vd/Vt; baseline = 48.6 ± 5.7%, rPA ligation = 60.1 ± 5.2%, p = 0.012), mean pulmonary arterial pressure (mPPA; baseline = 17.4 ± 2.2 mm Hg, rPA ligation = 28.5 ± 5.2 mm Hg, p < 0.001), and arterial partial pressure of carbon dioxide (baseline = 40.4 ± 9.3 mm Hg, rPA ligation = 57.3 ± 12.7 mm Hg, p = 0.026). Of the seven lambs, three were unable to be weaned from mechanical ventilation postoperatively, three were successfully weaned but suffered cardiorespiratory failure within 4 days, and one survived all 4 days. All four animals that were successfully weaned from mechanical ventilation had persistent pulmonary hypertension (mPPA = 28.6 ± 2.2 mm Hg) and remained tachypneic (respiratory rate = 63 ± 21 min). Three of the four recovered lambs required supplemental oxygen. We conclude that rPA ligation creates the physiologic derangements commonly seen in pediatric ESLF and may be suitable for testing and implanting a PAL.

  4. Conditions for NIR fluorescence-guided tumor resectioning in preclinical lung cancer model (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Minji; Quan, Yuhua; Choi, Byeong Hyun; Choi, Yeonho; Kim, Hyun Koo; Kim, Beop-Min

    2016-03-01

    Pulmonary nodule could be identified by intraoperative fluorescence imaging system from systemic injection of indocyanine green (ICG) which achieves enhanced permeability and retention (EPR) effects. This study was performed to evaluate optimal injection time of ICG for detecting cancer during surgery in rabbit lung cancer model. VX2 carcinoma cell was injected in rabbit lung under fluoroscopic computed tomography-guidance. Solitary lung cancer was confirmed on positron emitting tomography with CT (PET/CT) 2 weeks after inoculation. ICG was administered intravenously and fluorescent intensity of lung tumor was measured using the custom-built intraoperative color and fluorescence merged imaging system (ICFIS) for 15 hours. Solitary lung cancer was resected through thoracoscopic version of ICFIS. ICG was observed in all animals. Because Lung has fast blood pulmonary circulation, Fluorescent signal showed maximum intensity earlier than previous studies in other organs. Fluorescent intensity showed maximum intensity within 6-9 hours in rabbit lung cancer. Overall, Fluorescent intensity decreased with increasing time, however, all tumors were detectable using fluorescent images until 12 hours. In conclusion, while there had been studies in other organs showed that optimal injection time was at least 24 hours before operation, this study showed shorter optimal injection time at lung cancer. Since fluorescent signal showed the maximum intensity within 6-9 hours, cancer resection could be performed during this time. This data informed us that optimal injection time of ICG should be evaluated in each different solid organ tumor for fluorescent image guided surgery.

  5. Suppressive oligonucleotides inhibit inflammation in a murine model of mechanical ventilator induced lung injury

    PubMed Central

    Scheiermann, Julia

    2016-01-01

    Background Mechanical ventilation (MV) is commonly used to improve blood oxygenation in critically ill patients and for general anesthesia. Yet the cyclic mechanical stress induced at even moderate ventilation volume settings [tidal volume (Vt) <10 mL/kg] can injure the lungs and induce an inflammatory response. This work explores the effect of treatment with suppressive oligonucleotides (Sup ODN) in a mouse model of ventilator-induced lung injury (VILI). Methods Balb/cJ mice were mechanically ventilated for 4 h using clinically relevant Vt and a positive end-expiratory pressure of 3 cmH2O under 2–3% isoflurane anesthesia. Lung tissue and bronchoalveolar lavage fluid were collected to assess lung inflammation and lung function was monitored using a FlexiVent®. Results MV induced significant pulmonary inflammation characterized by the influx and activation of CD11c+/F4/80+ macrophages and CD11b+/Ly6G+ polymorphonuclear cells into the lung and bronchoalveolar lavage fluid. The concurrent administration of Sup ODN attenuated pulmonary inflammation as evidenced by reduced cellular influx and production of inflammatory cytokines. Oligonucleotide treatment did not worsen lung function as measured by static compliance or resistance. Conclusions Treatment with Sup ODN reduces the lung injury induced by MV in mice. PMID:27746995

  6. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  7. The injured lung: clinical issues and experimental models

    PubMed Central

    Jugg, B. J. A.; Smith, A. J.; Rudall, S. J.; Rice, P.

    2011-01-01

    Exposure of military and civilian populations to inhaled toxic chemicals can take place as a result of deliberate release (warfare, terrorism) or following accidental releases from industrial concerns or transported chemicals. Exposure to inhaled toxic chemicals can result in an acute lung injury, and in severe cases acute respiratory distress syndrome, for which there is currently no specific medical therapy, treatment remaining largely supportive. This treatment often requires intensive care facilities that may become overwhelmed in mass casualty events and may be of limited benefit in severe cases. There remains, therefore, a need for evidence-based treatment to inform both military and civilian medical response teams on the most appropriate treatment for chemically induced lung injury. This article reviews data used to derive potential clinical management strategies for chemically induced lung injury. PMID:21149368

  8. Lung surfactant protein A (SP-A) interactions with model lung surfactant lipids and an SP-B fragment.

    PubMed

    Sarker, Muzaddid; Jackman, Donna; Booth, Valerie

    2011-06-01

    Surfactant protein A (SP-A) is the most abundant protein component of lung surfactant, a complex mixture of proteins and lipids. SP-A performs host defense activities and modulates the biophysical properties of surfactant in concerted action with surfactant protein B (SP-B). Current models of lung surfactant mechanism generally assume SP-A functions in its octadecameric form. However, one of the findings of this study is that when SP-A is bound to detergent and lipid micelles that mimic lung surfactant phospholipids, it exists predominantly as smaller oligomers, in sharp contrast to the much larger forms observed when alone in water. These investigations were carried out in sodium dodecyl sulfate (SDS), dodecylphosphocholine (DPC), lysomyristoylphosphatidylcholine (LMPC), lysomyristoylphosphatidylglycerol (LMPG), and mixed LMPC + LMPG micelles, using solution and diffusion nuclear magnetic resonance (NMR) spectroscopy. We have also probed SP-A's interaction with Mini-B, a biologically active synthetic fragment of SP-B, in the presence of micelles. Despite variations in Mini-B's own interactions with micelles of different compositions, SP-A is found to interact with Mini-B in all micelle systems and perhaps to undergo a further structural rearrangement upon interacting with Mini-B. The degree of SP-A-Mini-B interaction appears to be dependent on the type of lipid headgroup and is likely mediated through the micelles, rather than direct binding.

  9. Dynamics of Bacterial Community Composition in the Malaria Mosquito's Epithelia

    PubMed Central

    Tchioffo, Majoline T.; Boissière, Anne; Abate, Luc; Nsango, Sandrine E.; Bayibéki, Albert N.; Awono-Ambéné, Parfait H.; Christen, Richard; Gimonneau, Geoffrey; Morlais, Isabelle

    2016-01-01

    The Anopheles midgut hosts diverse bacterial communities and represents a complex ecosystem. Several evidences indicate that mosquito midgut microbiota interferes with malaria parasite transmission. However, the bacterial composition of salivary glands and ovaries, two other biologically important tissues, has not been described so far. In this study, we investigated the dynamics of the bacterial communities in the mosquito tissues from emerging mosquitoes until 8 days after a blood meal containing Plasmodium falciparum gametocytes and described the temporal colonization of the mosquito epithelia. Bacterial communities were identified in the midgut, ovaries, and salivary glands of individual mosquitoes using pyrosequencing of the 16S rRNA gene. We found that the mosquito epithelia share a core microbiota, but some bacteria taxa were more associated with one or another tissue at a particular time point. The bacterial composition in the tissues of emerging mosquitoes varied according to the breeding site, indicating that some bacteria are acquired from the environment. Our results revealed temporal variations in the bacterial community structure, possibly as a result of the mosquito physiological changes. The abundance of Serratia significantly correlated with P. falciparum infection both in the midgut and salivary glands of malaria challenged mosquitoes, which suggests that interactions occur between microbes and parasites. These bacteria may represent promising targets for vector control strategies. Overall, this study points out the importance of characterizing bacterial communities in malaria mosquito vectors. PMID:26779155

  10. Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator-dependent anion and fluid secretion in airway epithelia.

    PubMed

    Turner, Mark J; Saint-Criq, Vinciane; Patel, Waseema; Ibrahim, Salam H; Verdon, Bernard; Ward, Christopher; Garnett, James P; Tarran, Robert; Cann, Martin J; Gray, Michael A

    2016-03-15

    Hypercapnia is clinically defined as an arterial blood partial pressure of CO2 of above 40 mmHg and is a feature of chronic lung disease. In previous studies we have demonstrated that hypercapnia modulates agonist-stimulated cAMP levels through effects on transmembrane adenylyl cyclase activity. In the airways, cAMP is known to regulate cystic fibrosis transmembrane conductance regulator (CFTR)-mediated anion and fluid secretion, which contributes to airway surface liquid homeostasis. The aim of the current work was to investigate if hypercapnia could modulate cAMP-regulated ion and fluid transport in human airway epithelial cells. We found that acute exposure to hypercapnia significantly reduced forskolin-stimulated elevations in intracellular cAMP as well as both adenosine- and forskolin-stimulated increases in CFTR-dependent transepithelial short-circuit current, in polarised cultures of Calu-3 human airway cells. This CO2 -induced reduction in anion secretion was not due to a decrease in HCO3 (-) transport given that neither a change in CFTR-dependent HCO3 (-) efflux nor Na(+) /HCO3 (-) cotransporter-dependent HCO3 (-) influx were CO2 -sensitive. Hypercapnia also reduced the volume of forskolin-stimulated fluid secretion over 24 h, yet had no effect on the HCO3 (-) content of the secreted fluid. Our data reveal that hypercapnia reduces CFTR-dependent, electrogenic Cl(-) and fluid secretion, but not CFTR-dependent HCO3 (-) secretion, which highlights a differential sensitivity of Cl(-) and HCO3 (-) transporters to raised CO2 in Calu-3 cells. Hypercapnia also reduced forskolin-stimulated CFTR-dependent anion secretion in primary human airway epithelia. Based on current models of airways biology, a reduction in fluid secretion, associated with hypercapnia, would be predicted to have important consequences for airways hydration and the innate defence mechanisms of the lungs.

  11. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens

    PubMed Central

    López Hernández, Yamilé; Yero, Daniel; Pinos-Rodríguez, Juan M.; Gibert, Isidre

    2015-01-01

    Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host–pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host–pathogen interactions. PMID:25699030

  12. Toward in vivo lung's tissue incompressibility characterization for tumor motion modeling in radiation therapy

    SciTech Connect

    Shirzadi, Zahra; Sadeghi-Naini, Ali; Samani, Abbas

    2013-05-15

    Purpose: A novel technique is proposed to characterize lung tissue incompressibility variation during respiration. Estimating lung tissue incompressibility parameter variations resulting from air content variation throughout respiration is critical for computer assisted tumor motion tracking. Continuous tumor motion is a major challenge in lung cancer radiotherapy, especially with external beam radiotherapy. If not accounted for, this motion may lead to areas of radiation overdosage for normal tissue. Given the unavailability of imaging modality that can be used effectively for real-time lung tumor tracking, computer assisted approach based on tissue deformation estimation can be a good alternative. This approach involves lung biomechanical model where its fidelity depends on input tissue properties. This investigation shows that considering variable tissue incompressibility parameter is very important for predicting tumor motion accurately, hence improving the lung radiotherapy outcome. Methods: First, an in silico lung phantom study was conducted to demonstrate the importance of employing variable Poisson's ratio for tumor motion predication. After it was established that modeling this variability is critical for accurate tumor motion prediction, an optimization based technique was developed to estimate lung tissue Poisson's ratio as a function of respiration cycle time. In this technique, the Poisson's ratio and lung pressure value were varied systematically until optimal values were obtained, leading to maximum similarity between acquired and simulated 4D CT lung images. This technique was applied in an ex vivo porcine lung study where simulated images were constructed using the end exhale CT image and deformation fields obtained from the lung's FE modeling of each respiration time increment. To model the tissue, linear elastic and Marlow hyperelastic material models in conjunction with variable Poisson's ratio were used. Results: The phantom study showed that

  13. Role of GADD45a in murine models of radiation- and bleomycin-induced lung injury.

    PubMed

    Mathew, Biji; Takekoshi, Daisuke; Sammani, Saad; Epshtein, Yulia; Sharma, Rajesh; Smith, Brett D; Mitra, Sumegha; Desai, Ankit A; Weichselbaum, Ralph R; Garcia, Joe G N; Jacobson, Jeffrey R

    2015-12-15

    We previously reported protective effects of GADD45a (growth arrest and DNA damage-inducible gene 45 alpha) in murine ventilator-induced lung injury (VILI) via effects on Akt-mediated endothelial cell signaling. In the present study we investigated the role of GADD45a in separate murine models of radiation- and bleomycin-induced lung injury. Initial studies of wild-type mice subjected to single-dose thoracic radiation (10 Gy) confirmed a significant increase in lung GADD45a expression within 24 h and persistent at 6 wk. Mice deficient in GADD45a (GADD45a(-/-)) demonstrated increased susceptibility to radiation-induced lung injury (RILI, 10 Gy) evidenced by increased bronchoalveolar lavage (BAL) fluid total cell counts, protein and albumin levels, and levels of inflammatory cytokines compared with RILI-challenged wild-type animals at 2 and 4 wk. Furthermore, GADD45a(-/-) mice had decreased total and phosphorylated lung Akt levels both at baseline and 6 wk after RILI challenge relative to wild-type mice while increased RILI susceptibility was observed in both Akt(+/-) mice and mice treated with an Akt inhibitor beginning 1 wk prior to irradiation. Additionally, overexpression of a constitutively active Akt1 transgene reversed RILI-susceptibility in GADD45a(-/-) mice. In separate studies, lung fibrotic changes 2 wk after treatment with bleomycin (0.25 U/kg IT) was significantly increased in GADD45a(-/-) mice compared with wild-type mice assessed by lung collagen content and histology. These data implicate GADD45a as an important modulator of lung inflammatory responses across different injury models and highlight GADD45a-mediated signaling as a novel target in inflammatory lung injury clinically.

  14. Early recognition of lung cancer by integrin targeted imaging in K-ras mouse model.

    PubMed

    Ermolayev, Vladimir; Mohajerani, Pouyan; Ale, Angelique; Sarantopoulos, Athanasios; Aichler, Michaela; Kayser, Gian; Walch, Axel; Ntziachristos, Vasilis

    2015-09-01

    Non-small cell lung cancer is characterized by slow progression and high heterogeneity of tumors. Integrins play an important role in lung cancer development and metastasis and were suggested as a tumor marker; however their role in anticancer therapy remains controversial. In this work, we demonstrate the potential of integrin-targeted imaging to recognize early lesions in transgenic mouse model of lung cancer based on spontaneous introduction of mutated human gene bearing K-ras mutation. We conducted ex vivo and fluorescence molecular tomography-X-ray computed tomography (FMT-XCT) in vivo imaging and analysis for specific targeting of early lung lesions and tumors in rodent preclinical model for lung cancer. The lesions and tumors were characterized by histology, immunofluorescence and immunohistochemistry using a panel of cancer markers. Ex vivo, the integrin-targeted fluorescent signal significantly differed between wild type lung tissue and K-ras pulmonary lesions (PL) at all ages studied. The panel of immunofluorescence experiments demonstrated that PL, which only partially show cancer cell features were detected by αvβ3-integrin targeted imaging. Human patient material analysis confirmed the specificity of target localization in different lung cancer types. Most importantly, small tumors in the lungs of 4-week-old animals could be noninvasively detected in vivo on the fluorescence channel of FMT-XCT. Our findings demonstrated αvβ3-integrin targeted fluorescent imaging to specifically detect premalignant pleural lesions in K-ras mice. Integrin targeted imaging may find application areas in preclinical research and clinical practice, such as early lung cancer diagnostics, intraoperative assistance or therapy monitoring.

  15. 17beta-Estradiol inhibits Ca2+-dependent homeostasis of airway surface liquid volume in human cystic fibrosis airway epithelia.

    PubMed

    Coakley, Ray D; Sun, Hengrui; Clunes, Lucy A; Rasmussen, Julia E; Stackhouse, James R; Okada, Seiko F; Fricks, Ingrid; Young, Steven L; Tarran, Robert

    2008-12-01

    Normal airways homeostatically regulate the volume of airway surface liquid (ASL) through both cAMP- and Ca2+-dependent regulation of ion and water transport. In cystic fibrosis (CF), a genetic defect causes a lack of cAMP-regulated CFTR activity, leading to diminished Cl- and water secretion from airway epithelial cells and subsequent mucus plugging, which serves as the focus for infections. Females with CF exhibit reduced survival compared with males with CF, although the mechanisms underlying this sex-related disadvantage are unknown. Despite the lack of CFTR, CF airways retain a limited capability to regulate ASL volume, as breathing-induced ATP release activates salvage purinergic pathways that raise intracellular Ca2+ concentration to stimulate an alternate pathway to Cl- secretion. We hypothesized that estrogen might affect this pathway by reducing the ability of airway epithelia to respond appropriately to nucleotides. We found that uridine triphosphate-mediated (UTP-mediated) Cl- secretion was reduced during the periovulatory estrogen maxima in both women with CF and normal, healthy women. Estrogen also inhibited Ca2+ signaling and ASL volume homeostasis in non-CF and CF airway epithelia by attenuating Ca2+ influx. This inhibition of Ca2+ signaling was prevented and even potentiated by estrogen antagonists such as tamoxifen, suggesting that antiestrogens may be beneficial in the treatment of CF lung disease because they increase Cl- secretion in the airways. PMID:19033671

  16. Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid secretion in airway epithelia

    PubMed Central

    Turner, Mark J.; Saint‐Criq, Vinciane; Patel, Waseema; Ibrahim, Salam H.; Verdon, Bernard; Ward, Christopher; Garnett, James P.; Tarran, Robert; Cann, Martin J.

    2015-01-01

    secretion over 24 h, yet had no effect on the HCO3 − content of the secreted fluid. Our data reveal that hypercapnia reduces CFTR‐dependent, electrogenic Cl− and fluid secretion, but not CFTR‐dependent HCO3 − secretion, which highlights a differential sensitivity of Cl− and HCO3 − transporters to raised CO2 in Calu‐3 cells. Hypercapnia also reduced forskolin‐stimulated CFTR‐dependent anion secretion in primary human airway epithelia. Based on current models of airways biology, a reduction in fluid secretion, associated with hypercapnia, would be predicted to have important consequences for airways hydration and the innate defence mechanisms of the lungs. PMID:26574187

  17. A Highly Efficient Gene Expression Programming (GEP) Model for Auxiliary Diagnosis of Small Cell Lung Cancer

    PubMed Central

    Si, Hongzong; Liu, Shihai; Li, Xianchao; Gao, Caihong; Cui, Lianhua; Li, Chuan; Yang, Xue; Yao, Xiaojun

    2015-01-01

    Background Lung cancer is an important and common cancer that constitutes a major public health problem, but early detection of small cell lung cancer can significantly improve the survival rate of cancer patients. A number of serum biomarkers have been used in the diagnosis of lung cancers; however, they exhibit low sensitivity and specificity. Methods We used biochemical methods to measure blood levels of lactate dehydrogenase (LDH), C-reactive protein (CRP), Na+, Cl-, carcino-embryonic antigen (CEA), and neuron specific enolase (NSE) in 145 small cell lung cancer (SCLC) patients and 155 non-small cell lung cancer and 155 normal controls. A gene expression programming (GEP) model and Receiver Operating Characteristic (ROC) curves incorporating these biomarkers was developed for the auxiliary diagnosis of SCLC. Results After appropriate modification of the parameters, the GEP model was initially set up based on a training set of 115 SCLC patients and 125 normal controls for GEP model generation. Then the GEP was applied to the remaining 60 subjects (the test set) for model validation. GEP successfully discriminated 281 out of 300 cases, showing a correct classification rate for lung cancer patients of 93.75% (225/240) and 93.33% (56/60) for the training and test sets, respectively. Another GEP model incorporating four biomarkers, including CEA, NSE, LDH, and CRP, exhibited slightly lower detection sensitivity than the GEP model, including six biomarkers. We repeat the models on artificial neural network (ANN), and our results showed that the accuracy of GEP models were higher than that in ANN. GEP model incorporating six serum biomarkers performed by NSCLC patients and normal controls showed low accuracy than SCLC patients and was enough to prove that the GEP model is suitable for the SCLC patients. Conclusion We have developed a GEP model with high sensitivity and specificity for the auxiliary diagnosis of SCLC. This GEP model has the potential for the wide use

  18. Model-based risk assessment for motion effects in 3D radiotherapy of lung tumors

    NASA Astrophysics Data System (ADS)

    Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Handels, Heinz

    2012-02-01

    Although 4D CT imaging becomes available in an increasing number of radiotherapy facilities, 3D imaging and planning is still standard in current clinical practice. In particular for lung tumors, respiratory motion is a known source of uncertainty and should be accounted for during radiotherapy planning - which is difficult by using only a 3D planning CT. In this contribution, we propose applying a statistical lung motion model to predict patients' motion patterns and to estimate dosimetric motion effects in lung tumor radiotherapy if only 3D images are available. Being generated based on 4D CT images of patients with unimpaired lung motion, the model tends to overestimate lung tumor motion. It therefore promises conservative risk assessment regarding tumor dose coverage. This is exemplarily evaluated using treatment plans of lung tumor patients with different tumor motion patterns and for two treatment modalities (conventional 3D conformal radiotherapy and step-&- shoot intensity modulated radiotherapy). For the test cases, 4D CT images are available. Thus, also a standard registration-based 4D dose calculation is performed, which serves as reference to judge plausibility of the modelbased 4D dose calculation. It will be shown that, if combined with an additional simple patient-specific breathing surrogate measurement (here: spirometry), the model-based dose calculation provides reasonable risk assessment of respiratory motion effects.

  19. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  20. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    PubMed

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. PMID:27345200

  1. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    PubMed

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  2. Impaired Cell Volume Regulation in Intestinal Crypt Epithelia of Cystic Fibrosis Mice

    NASA Astrophysics Data System (ADS)

    Valverde, M. A.; O'Brien, J. A.; Sepulveda, F. V.; Ratcliff, R. A.; Evans, M. J.; Colledge, W. H.

    1995-09-01

    Cystic fibrosis is a disease characterized by abnormalities in the epithelia of the lungs, intestine, salivary and sweat glands, liver, and reproductive systems, often as a result of inadequate hydration of their secretions. The primary defect in cystic fibrosis is the altered activity of a cAMP-activated Cl^- channel, the cystic fibrosis transmembrane conductance regulator (CFTR) channel. However, it is not clear how a defect in the CFTR Cl^- channel function leads to the observed pathological changes. Although much is known about the structural properties and regulation of the CFTR, little is known of its relationship to cellular functions other than the cAMP-dependent Cl^- secretion. Here we report that cell volume regulation after hypotonic challenge is also defective in intestinal crypt epithelial cells isolated from CFTR -/- mutant mice. Moreover, the impairment of the regulatory volume decrease in CFTR -/- crypts appears to be related to the inability of a K^+ conductance to provide a pathway for the exit of this cation during the volume adjustments. This provides evidence that the lack of CFTR protein may have additional consequences for the cellular function other than the abnormal cAMP-mediated Cl^- secretion.

  3. Establishment of a Reverse Genetics System for Studying Human Bocavirus in Human Airway Epithelia

    PubMed Central

    Cheng, Fang; Luo, Yong; Shen, Weiran; Lei-Butters, Diana C. M.; Chen, Aaron Yun; Li, Yi; Tang, Liang; Söderlund-Venermo, Maria; Engelhardt, John F.; Qiu, Jianming

    2012-01-01

    Human bocavirus 1 (HBoV1) has been identified as one of the etiological agents of wheezing in young children with acute respiratory-tract infections. In this study, we have obtained the sequence of a full-length HBoV1 genome (including both termini) using viral DNA extracted from a nasopharyngeal aspirate of an infected patient, cloned the full-length HBoV1 genome, and demonstrated DNA replication, encapsidation of the ssDNA genome, and release of the HBoV1 virions from human embryonic kidney 293 cells. The HBoV1 virions generated from this cell line-based production system exhibits a typical icosahedral structure of approximately 26 nm in diameter, and is capable of productively infecting polarized primary human airway epithelia (HAE) from the apical surface. Infected HAE showed hallmarks of lung airway-tract injury, including disruption of the tight junction barrier, loss of cilia and epithelial cell hypertrophy. Notably, polarized HAE cultured from an immortalized airway epithelial cell line, CuFi-8 (originally derived from a cystic fibrosis patient), also supported productive infection of HBoV1. Thus, we have established a reverse genetics system and generated the first cell line-based culture system for the study of HBoV1 infection, which will significantly advance the study of HBoV1 replication and pathogenesis. PMID:22956907

  4. Expression profile of undifferentiated cell transcription factor 1 in normal and cancerous human epithelia

    PubMed Central

    Mouallif, Mustapha; Albert, Adelin; Zeddou, Mustapha; Ennaji, My Mustapha; Delvenne, Philippe; Guenin, Samuel

    2014-01-01

    Undifferentiated cell Transcription Factor 1 (UTF1) is a chromatin-bound protein involved in stem cell differentiation. It was initially reported to be restricted to stem cells or germinal tissues. However, recent work suggests that UTF1 is also expressed in somatic cells and that its expression may increase during carcinogenesis. To further clarify the expression profile of UTF1, we evaluated UTF1 expression levels immunohistochemically in eight normal human epithelia (from breast, prostate, endometrium, bladder, colon, oesophagus, lung and kidney) and their corresponding tumours as well as in several epithelial cell lines. We showed UTF1 staining in normal and tumour epithelial tissues, but with varying intensities according to the tissue location. In vitro analyses also revealed that UTF1 is expressed in somatic epithelial cell lines even in the absence of Oct4A and Sox2, its two main known regulators. The comparison of UTF1 levels in normal and tumoral tissues revealed significant overexpression in endometrial and prostatic adenocarcinomas, whereas lower intensity of the staining was observed in renal and colic tumours, suggesting a potential tissue-specific function of UTF1. Altogether, these results highlight a potential dual role for UTF1, acting either as an oncogene or as a tumour suppressor depending on the tissue. These findings also question its role as a specific marker for stem cells. PMID:24738751

  5. The MGH-HMS Lung Cancer Policy Model: Tobacco Control versus Screening

    PubMed Central

    McMahon, Pamela M.; Kong, Chung Yin; Johnson, Bruce E.; Weinstein, Milton C.; Weeks, Jane C.; Tramontano, Angela C.; Cipriano, Lauren E.; Bouzan, Colleen; Gazelle, G. Scott

    2012-01-01

    Background The natural history model underlying the MGH Lung Cancer Policy Model (LCPM) does not include the two-stage clonal expansion model employed in other CISNET lung models. We used the LCPM to predict numbers of U.S. lung cancer deaths for ages 30–84 between 1975 and 2000 under 4 scenarios as part of the comparative modeling analysis described in this monograph. Methods The LCPM is a comprehensive microsimulation model of lung cancer development, progression, detection, treatment, and survival. Individual-level patient histories are aggregated to estimate cohort or population-level outcomes. Lung cancer states are defined according to underlying disease variables, test results, and clinical events. By simulating detailed clinical procedures, the LCPM can predict benefits and harms attributable to a variety of patient management practices, including annual screening programs. Results Under the scenario of observed smoking patterns, predicted numbers of deaths from the calibrated LCPM were within 2% of observed over all years (1975–2000). The LCPM estimated that historical tobacco control policies achieved 28.6% (25.2% in men, 30.5% in women) of the potential reduction in U.S. lung cancer deaths had smoking had been eliminated entirely. The hypothetical adoption in 1975 of annual helical CT screening of all persons aged 55–74 with at least 30 pack-years of cigarette exposure to historical tobacco control would have yielded a proportion realized of 39.0% (42.0% in men, 33.3% in women). Conclusions The adoption of annual screening would have prevented less than half as many lung cancer deaths as the elimination of cigarette smoking. PMID:22882882

  6. Glucocorticoid Clearance and Metabolite Profiling in an In Vitro Human Airway Epithelium Lung Model.

    PubMed

    Rivera-Burgos, Dinelia; Sarkar, Ujjal; Lever, Amanda R; Avram, Michael J; Coppeta, Jonathan R; Wishnok, John S; Borenstein, Jeffrey T; Tannenbaum, Steven R

    2016-02-01

    The emergence of microphysiologic epithelial lung models using human cells in a physiologically relevant microenvironment has the potential to be a powerful tool for preclinical drug development and to improve predictive power regarding in vivo drug clearance. In this study, an in vitro model of the airway comprising human primary lung epithelial cells cultured in a microfluidic platform was used to establish a physiologic state and to observe metabolic changes as a function of glucocorticoid exposure. Evaluation of mucus production rate and barrier function, along with lung-specific markers, demonstrated that the lungs maintained a differentiated phenotype. Initial concentrations of 100 nM hydrocortisone (HC) and 30 nM cortisone (C) were used to evaluate drug clearance and metabolite production. Measurements made using ultra-high-performance liquid chromatography and high-mass-accuracy mass spectrometry indicated that HC metabolism resulted in the production of C and dihydrocortisone (diHC). When the airway model was exposed to C, diHC was identified; however, no conversion to HC was observed. Multicompartmental modeling was used to characterize the lung bioreactor data, and pharmacokinetic parameters, including elimination clearance and elimination half-life, were estimated. Polymerse chain reaction data confirmed overexpression of 11-β hydroxysteroid dehydrogenase 2 (11βHSD2) over 11βHSD1, which is biologically relevant to human lung. Faster metabolism was observed relative to a static model on elevated rates of C and diHC formation. Overall, our results demonstrate that this lung airway model has been successfully developed and could interact with other human tissues in vitro to better predict in vivo drug behavior.

  7. HOSVD-Based 3D Active Appearance Model: Segmentation of Lung Fields in CT Images.

    PubMed

    Wang, Qingzhu; Kang, Wanjun; Hu, Haihui; Wang, Bin

    2016-07-01

    An Active Appearance Model (AAM) is a computer vision model which can be used to effectively segment lung fields in CT images. However, the fitting result is often inadequate when the lungs are affected by high-density pathologies. To overcome this problem, we propose a Higher-order Singular Value Decomposition (HOSVD)-based Three-dimensional (3D) AAM. An evaluation was performed on 310 diseased lungs form the Lung Image Database Consortium Image Collection. Other contemporary AAMs operate directly on patterns represented by vectors, i.e., before applying the AAM to a 3D lung volume,it has to be vectorized first into a vector pattern by some technique like concatenation. However, some implicit structural or local contextual information may be lost in this transformation. According to the nature of the 3D lung volume, HOSVD is introduced to represent and process the lung in tensor space. Our method can not only directly operate on the original 3D tensor patterns, but also efficiently reduce the computer memory usage. The evaluation resulted in an average Dice coefficient of 97.0 % ± 0.59 %, a mean absolute surface distance error of 1.0403 ± 0.5716 mm, a mean border positioning errors of 0.9187 ± 0.5381 pixel, and a Hausdorff Distance of 20.4064 ± 4.3855, respectively. Experimental results showed that our methods delivered significant and better segmentation results, compared with the three other model-based lung segmentation approaches, namely 3D Snake, 3D ASM and 3D AAM. PMID:27277277

  8. Molecular polymorphism of a cell surface proteoglycan: distinct structures on simple and stratified epithelia.

    PubMed

    Sanderson, R D; Bernfield, M

    1988-12-01

    Epithelial cells are organized into either a single layer (simple epithelia) or multiple layers (stratified epithelia). Maintenance of these cellular organizations requires distinct adhesive mechanisms involving many cell surface molecules. One such molecule is a cell surface proteoglycan, named syndecan, that contains both heparan sulfate and chondroitin sulfate chains. This proteoglycan binds cells to fibrillar collagens and fibronectin and thus acts as a receptor for interstitial matrix. The proteoglycan is restricted to the basolateral surface of simple epithelial cells, but is located over the entire surface of stratified epithelial cells, even those surfaces not contacting matrix. We now show that the distinct localization in simple and stratified epithelia correlates with a distinct proteoglycan structure. The proteoglycan from simple epithelia (modal molecular size, 160 kDa) is larger than that from stratified epithelia (modal molecular size, 92 kDa), but their core proteins are identical in size and immunoreactivity. The proteoglycan from simple epithelia has more and larger heparan sulfate and chondroitin sulfate chains than the proteoglycan from stratified epithelia. Thus, the cell surface proteoglycan shows a tissue-specific structural polymorphism due to distinct posttranslational modifications. This polymorphism likely reflects distinct proteoglycan functions in simple and stratified epithelia, potentially meeting the different adhesive requirements of the cells in these different organizations.

  9. Early Impairment of Lung Mechanics in a Murine Model of Marfan Syndrome

    PubMed Central

    Uriarte, Juan J.; Meirelles, Thayna; Gorbenko del Blanco, Darya; Nonaka, Paula N.; Campillo, Noelia; Sarri, Elisabet; Navajas, Daniel; Egea, Gustavo; Farré, Ramon

    2016-01-01

    Early morbidity and mortality in patients with Marfan syndrome (MFS) -a connective tissue disease caused by mutations in fibrillin-1 gene- are mainly caused by aorta aneurysm and rupture. However, the increase in the life expectancy of MFS patients recently achieved by reparatory surgery promotes clinical manifestations in other organs. Although some studies have reported respiratory alterations in MFS, our knowledge of how this connective tissue disease modifies lung mechanics is scarce. Hence, we assessed whether the stiffness of the whole lung and of its extracellular matrix (ECM) is affected in a well-characterized MFS mouse model (FBN1C1039G/+). The stiffness of the whole lung and of its ECM were measured by conventional mechanical ventilation and atomic force microscopy, respectively. We studied 5-week and 9-month old mice, whose ages are representative of early and late stages of the disease. At both ages, the lungs of MFS mice were significantly more compliant than in wild type (WT) mice. By contrast, no significant differences were found in local lung ECM stiffness. Moreover, histopathological lung evaluation showed a clear emphysematous-like pattern in MFS mice since alveolar space enlargement was significantly increased compared with WT mice. These data suggest that the mechanism explaining the increased lung compliance in MFS is not a direct consequence of reduced ECM stiffness, but an emphysema-like alteration in the 3D structural organization of the lung. Since lung alterations in MFS are almost fully manifested at an early age, it is suggested that respiratory monitoring could provide early biomarkers for diagnosis and/or follow-up of patients with the Marfan syndrome. PMID:27003297

  10. Early Impairment of Lung Mechanics in a Murine Model of Marfan Syndrome.

    PubMed

    Uriarte, Juan J; Meirelles, Thayna; Gorbenko Del Blanco, Darya; Nonaka, Paula N; Campillo, Noelia; Sarri, Elisabet; Navajas, Daniel; Egea, Gustavo; Farré, Ramon

    2016-01-01

    Early morbidity and mortality in patients with Marfan syndrome (MFS) -a connective tissue disease caused by mutations in fibrillin-1 gene- are mainly caused by aorta aneurysm and rupture. However, the increase in the life expectancy of MFS patients recently achieved by reparatory surgery promotes clinical manifestations in other organs. Although some studies have reported respiratory alterations in MFS, our knowledge of how this connective tissue disease modifies lung mechanics is scarce. Hence, we assessed whether the stiffness of the whole lung and of its extracellular matrix (ECM) is affected in a well-characterized MFS mouse model (FBN1C1039G/+). The stiffness of the whole lung and of its ECM were measured by conventional mechanical ventilation and atomic force microscopy, respectively. We studied 5-week and 9-month old mice, whose ages are representative of early and late stages of the disease. At both ages, the lungs of MFS mice were significantly more compliant than in wild type (WT) mice. By contrast, no significant differences were found in local lung ECM stiffness. Moreover, histopathological lung evaluation showed a clear emphysematous-like pattern in MFS mice since alveolar space enlargement was significantly increased compared with WT mice. These data suggest that the mechanism explaining the increased lung compliance in MFS is not a direct consequence of reduced ECM stiffness, but an emphysema-like alteration in the 3D structural organization of the lung. Since lung alterations in MFS are almost fully manifested at an early age, it is suggested that respiratory monitoring could provide early biomarkers for diagnosis and/or follow-up of patients with the Marfan syndrome. PMID:27003297

  11. Inhibiting Integrin αvβ5 Reduces Ischemia-Reperfusion Injury in an Orthotopic Lung Transplant Model in Mice.

    PubMed

    Mallavia, B; Liu, F; Sheppard, D; Looney, M R

    2016-04-01

    Primary graft dysfunction after lung transplantation is the leading cause of morbidity and mortality in the immediate posttransplant period and is characterized by endothelial and epithelial barrier disruption and the leakage of protein-rich edema fluid. Integrins are cell surface receptors that have an important role in maintenance of the cell barrier, and inhibition of integrins, such as αvβ5, can diminish alveolar flooding in lung injury models. We hypothesized that inhibition of αvβ5 during donor lung cold ischemia would reduce endothelial permeability during reperfusion. Using an orthotopic single lung transplantation model with and without cold ischemia, donor lungs were perfused with αvβ5-blocking antibody (ALULA) or control antibody at the time of collection, followed by transplantation, 8 h of reperfusion, and the measurement of lung injury parameters. Prolonged cold ischemia (18 h) produced increases in extravascular lung water, protein permeability, and neutrophilic alveolitis and decreased oxygenation compared with lungs without cold ischemia. Perfusion of lungs with αvβ5 antibody versus control antibody protected donor lungs from injury and significantly improved oxygenation. In summary, αvβ5 integrin blockade protects from the development of ischemia-reperfusion lung injury and is a promising approach to preventing primary graft dysfunction in human lung transplant procedures.

  12. Lung nodule segmentation and recognition using SVM classifier and active contour modeling: a complete intelligent system.

    PubMed

    Keshani, Mohsen; Azimifar, Zohreh; Tajeripour, Farshad; Boostani, Reza

    2013-05-01

    In this paper, a novel method for lung nodule detection, segmentation and recognition using computed tomography (CT) images is presented. Our contribution consists of several steps. First, the lung area is segmented by active contour modeling followed by some masking techniques to transfer non-isolated nodules into isolated ones. Then, nodules are detected by the support vector machine (SVM) classifier using efficient 2D stochastic and 3D anatomical features. Contours of detected nodules are then extracted by active contour modeling. In this step all solid and cavitary nodules are accurately segmented. Finally, lung tissues are classified into four classes: namely lung wall, parenchyma, bronchioles and nodules. This classification helps us to distinguish a nodule connected to the lung wall and/or bronchioles (attached nodule) from the one covered by parenchyma (solitary nodule). At the end, performance of our proposed method is examined and compared with other efficient methods through experiments using clinical CT images and two groups of public datasets from Lung Image Database Consortium (LIDC) and ANODE09. Solid, non-solid and cavitary nodules are detected with an overall detection rate of 89%; the number of false positive is 7.3/scan and the location of all detected nodules are recognized correctly. PMID:23369568

  13. Detection of mitoses in embryonic epithelia using motion field analysis.

    PubMed

    Siva, Parthipan; Wayne Brodland, G; Clausi, David

    2009-04-01

    Although computer simulations indicate that mitosis may be important to the mechanics of morphogenetic movements, algorithms to identify mitoses in bright field images of embryonic epithelia have not previously been available. Here, the authors present an algorithm that identifies mitoses and their orientations based on the motion field between successive images. Within this motion field, the algorithm seeks 'mitosis motion field prototypes' characterised by convergent motion in one direction and divergent motion in the orthogonal direction, the local motions produced by the division process. The algorithm uses image processing, vector field analyses and pattern recognition to identify occurrences of this prototype and to determine its orientation. When applied to time-lapse images of gastrulation and neurulation-stage amphibian (Ambystoma mexicanum) embryos, the algorithm achieves identification accuracies of 68 and 67%, respectively and angular accuracies of the order of 30 degrees , values sufficient to assess the role of mitosis in these developmental processes. PMID:19051076

  14. Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer.

    PubMed

    Ma, Tian; Galimberti, Fabrizio; Erkmen, Cherie P; Memoli, Vincent; Chinyengetere, Fadzai; Sempere, Lorenzo; Beumer, Jan H; Anyang, Bean N; Nugent, William; Johnstone, David; Tsongalis, Gregory J; Kurie, Jonathan M; Li, Hua; Direnzo, James; Guo, Yongli; Freemantle, Sarah J; Dragnev, Konstantin H; Dmitrovsky, Ethan

    2013-08-01

    Histone deacetylase inhibitor (HDACi; vorinostat) responses were studied in murine and human lung cancer cell lines and genetically engineered mouse lung cancer models. Findings were compared with a window of opportunity trial in aerodigestive tract cancers. In human (HOP62, H522, and H23) and murine transgenic (ED-1, ED-2, LKR-13, and 393P, driven, respectively, by cyclin E, degradation-resistant cyclin E, KRAS, or KRAS/p53) lung cancer cell lines, vorinostat reduced growth, cyclin D1, and cyclin E levels, but induced p27, histone acetylation, and apoptosis. Other biomarkers also changed. Findings from transgenic murine lung cancer models were integrated with those from a window of opportunity trial that measured vorinostat pharmacodynamic responses in pre- versus posttreatment tumor biopsies. Vorinostat repressed cyclin D1 and cyclin E expression in murine transgenic lung cancers and significantly reduced lung cancers in syngeneic mice. Vorinostat also reduced cyclin D1 and cyclin E expression, but increased p27 levels in post- versus pretreatment human lung cancer biopsies. Notably, necrotic and inflammatory responses appeared in posttreatment biopsies. These depended on intratumoral HDACi levels. Therefore, HDACi treatments of murine genetically engineered lung cancer models exert similar responses (growth inhibition and changes in gene expression) as observed in lung cancer cell lines. Moreover, enhanced pharmacodynamic responses occurred in the window of opportunity trial, providing additional markers of response that can be evaluated in subsequent HDACi trials. Thus, combining murine and human HDACi trials is a strategy to translate preclinical HDACi treatment outcomes into the clinic. This study uncovered clinically tractable mechanisms to engage in future HDACi trials.

  15. A novel dual ex vivo lung perfusion technique improves immediate outcomes in an experimental model of lung transplantation.

    PubMed

    Tanaka, Y; Noda, K; Isse, K; Tobita, K; Maniwa, Y; Bhama, J K; D'Cunha, J; Bermudez, C A; Luketich, J D; Shigemura, N

    2015-05-01

    The lungs are dually perfused by the pulmonary artery and the bronchial arteries. This study aimed to test the feasibility of dual-perfusion techniques with the bronchial artery circulation and pulmonary artery circulation synchronously perfused using ex vivo lung perfusion (EVLP) and evaluate the effects of dual-perfusion on posttransplant lung graft function. Using rat heart-lung blocks, we developed a dual-perfusion EVLP circuit (dual-EVLP), and compared cellular metabolism, expression of inflammatory mediators, and posttransplant graft function in lung allografts maintained with dual-EVLP, standard-EVLP, or cold static preservation. The microvasculature in lung grafts after transplant was objectively evaluated using microcomputed tomography angiography. Lung grafts subjected to dual-EVLP exhibited significantly better lung graft function with reduced proinflammatory profiles and more mitochondrial biogenesis, leading to better posttransplant function and compliance, as compared with standard-EVLP or static cold preservation. Interestingly, lung grafts maintained on dual-EVLP exhibited remarkably increased microvasculature and perfusion as compared with lungs maintained on standard-EVLP. Our results suggest that lung grafts can be perfused and preserved using dual-perfusion EVLP techniques that contribute to better graft function by reducing proinflammatory profiles and activating mitochondrial respiration. Dual-EVLP also yields better posttransplant graft function through increased microvasculature and better perfusion of the lung grafts after transplantation.

  16. A Method for Lung Boundary Correction Using Split Bregman Method and Geometric Active Contour Model

    PubMed Central

    Zhang, Jianxun; Liang, Rui

    2015-01-01

    In order to get the extracted lung region from CT images more accurately, a model that contains lung region extraction and edge boundary correction is proposed. Firstly, a new edge detection function is presented with the help of the classic structure tensor theory. Secondly, the initial lung mask is automatically extracted by an improved active contour model which combines the global intensity information, local intensity information, the new edge information, and an adaptive weight. It is worth noting that the objective function of the improved model is converted to a convex model, which makes the proposed model get the global minimum. Then, the central airway was excluded according to the spatial context messages and the position relationship between every segmented region and the rib. Thirdly, a mesh and the fractal theory are used to detect the boundary that surrounds the juxtapleural nodule. Finally, the geometric active contour model is employed to correct the detected boundary and reinclude juxtapleural nodules. We also evaluated the performance of the proposed segmentation and correction model by comparing with their popular counterparts. Efficient computing capability and robustness property prove that our model can correct the lung boundary reliably and reproducibly. PMID:26089976

  17. A Method for Lung Boundary Correction Using Split Bregman Method and Geometric Active Contour Model.

    PubMed

    Feng, Changli; Zhang, Jianxun; Liang, Rui

    2015-01-01

    In order to get the extracted lung region from CT images more accurately, a model that contains lung region extraction and edge boundary correction is proposed. Firstly, a new edge detection function is presented with the help of the classic structure tensor theory. Secondly, the initial lung mask is automatically extracted by an improved active contour model which combines the global intensity information, local intensity information, the new edge information, and an adaptive weight. It is worth noting that the objective function of the improved model is converted to a convex model, which makes the proposed model get the global minimum. Then, the central airway was excluded according to the spatial context messages and the position relationship between every segmented region and the rib. Thirdly, a mesh and the fractal theory are used to detect the boundary that surrounds the juxtapleural nodule. Finally, the geometric active contour model is employed to correct the detected boundary and reinclude juxtapleural nodules. We also evaluated the performance of the proposed segmentation and correction model by comparing with their popular counterparts. Efficient computing capability and robustness property prove that our model can correct the lung boundary reliably and reproducibly. PMID:26089976

  18. Characterization of free breathing patterns with 5D lung motion model

    SciTech Connect

    Zhao Tianyu; Lu Wei; Yang Deshan; Mutic, Sasa; Noel, Camille E.; Parikh, Parag J.; Bradley, Jeffrey D.; Low, Daniel A.

    2009-11-15

    Purpose: To determine the quiet respiration breathing motion model parameters for lung cancer and nonlung cancer patients. Methods: 49 free breathing patient 4DCT image datasets (25 scans, cine mode) were collected with simultaneous quantitative spirometry. A cross-correlation registration technique was employed to track the lung tissue motion between scans. The registration results were applied to a lung motion model: X-vector=X-vector{sub 0}+{alpha}-vector{beta}-vector f, where X-vector is the position of a piece of tissue located at reference position X-vector{sub 0} during a reference breathing phase (zero tidal volume v, zero airflow f). {alpha}-vector is a parameter that characterizes the motion due to air filling (motion as a function of tidal volume v) and {beta}-vector is the parameter that accounts for the motion due to the imbalance of dynamical stress distributions during inspiration and exhalation that causes lung motion hysteresis (motion as a function of airflow f). The parameters {alpha}-vector and {beta}-vector together provide a quantitative characterization of breathing motion that inherently includes the complex hysteresis interplay. The {alpha}-vector and {beta}-vector distributions were examined for each patient to determine overall general patterns and interpatient pattern variations. Results: For 44 patients, the greatest values of |{alpha}-vector| were observed in the inferior and posterior lungs. For the rest of the patients, |{alpha}-vector| reached its maximum in the anterior lung in three patients and the lateral lung in two patients. The hysteresis motion {beta}-vector had greater variability, but for the majority of patients, |{beta}-vector| was largest in the lateral lungs. Conclusions: This is the first report of the three-dimensional breathing motion model parameters for a large cohort of patients. The model has the potential for noninvasively predicting lung motion. The majority of patients exhibited similar |{alpha}-vector| maps

  19. Mouse models of human non-small-cell lung cancer: raising the bar.

    PubMed

    Kim, C F B; Jackson, E L; Kirsch, D G; Grimm, J; Shaw, A T; Lane, K; Kissil, J; Olive, K P; Sweet-Cordero, A; Weissleder, R; Jacks, T

    2005-01-01

    Lung cancer is a devastating disease that presents a challenge to basic research to provide new steps toward therapeutic advances. The cell-type-specific responses to oncogenic mutations that initiate and regulate lung cancer remain poorly defined. A better understanding of the relevant signaling pathways and mechanisms that control therapeutic outcome could also provide new insight. Improved conditional mouse models are now available as tools to improve the understanding of the cellular and molecular origins of adenocarcinoma. These models have already proven their utility in proof-of-principle experiments with new technologies including genomics and imaging. Integrated thinking to apply technological advances while using the appropriate mouse model is likely to facilitate discoveries that will significantly improve lung cancer detection and intervention.

  20. Effects of Chinese medicinal herbs on a rat model of chronic Pseudomonas aeruginosa lung infection.

    PubMed

    Song, Z; Johansen, H K; Moser, C; Høiby, N

    1996-05-01

    The aim of the study was to evaluate the effects of two kinds of Chinese medicinal herbs, Isatis tinctoria L (ITL) and Daphne giraldii Nitsche (DGN), on a rat model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis (CF). Compared to the control group, both drugs were able to reduce the incidence of lung abscess (p < 0.05) and to decrease the severity of the macroscopic pathology in lungs (p < 0.05). In the great majority of the rats, the herbs altered the inflammatory response in the lungs from an acute type inflammation, dominated by polymorphonuclear leukocytes (PMN), to a chronic type inflammation, dominated by mononuclear leukocytes (MN). DGN also improved the clearance of P. aeruginosa from the lungs (p < 0.03) compared with the control group. There were no significant differences between the control group and the two herbal groups with regard to serum IgG and IgA anti-P. aeruginosa sonicate antibodies. However, the IgM concentration in the ITL group was significantly lower than in the control group (p < 0.03). These results suggest that the two medicinal herbs might be helpful to CF patients with chronic P. aeruginosa lung infection, DGN being the most favorable. PMID:8703440

  1. Paracrine Factors of Multipotent Stromal Cells Ameliorate Lung Injury in an Elastase-induced Emphysema Model

    PubMed Central

    Katsha, Ahmed M; Ohkouchi, Shinya; Xin, Hong; Kanehira, Masahiko; Sun, Ruowen; Nukiwa, Toshihiro; Saijo, Yasuo

    2011-01-01

    Multipotent stromal cells (MSCs) ameliorate several types of lung injury. The differentiation of MSCs into specific cells at the injury site has been considered as the important process in the MSC effect. However, although MSCs reduce destruction in an elastase-induced lung emphysema model, MSC differentiation is relatively rare, suggesting that MSC differentiation into specific cells does not adequately explain the recuperation observed. Humoral factors secreted by MSCs may also play an important role in ameliorating emphysema. To confirm this hypothesis, emphysema was induced in the lungs of C57BL/6 mice by intratracheal elastase injection 14 days before intratracheal MSC or phosphate-buffered saline (PBS) administration. Thereafter, lungs were collected at several time points and evaluated. Our results showed that MSCs reduced the destruction in elastase-induced emphysema. Furthermore, double immunofluorescence staining revealed infrequent MSC engraftment and differentiation into epithelial cells. Real-time PCR showed increased levels of hepatocyte growth factor (HGF) and epidermal growth factor (EGF). Real-time PCR and western blotting showed enhanced production of secretory leukocyte protease inhibitor (SLPI) in the lung. In-vitro coculture studies confirmed the in vivo observations. Our findings suggest that paracrine factors derived from MSCs is the main mechanism for the protection of lung tissues from elastase injury. PMID:20842104

  2. Early coagulation events induce acute lung injury in a rat model of blunt traumatic brain injury.

    PubMed

    Yasui, Hideki; Donahue, Deborah L; Walsh, Mark; Castellino, Francis J; Ploplis, Victoria A

    2016-07-01

    Acute lung injury (ALI) and systemic coagulopathy are serious complications of traumatic brain injury (TBI) that frequently lead to poor clinical outcomes. Although the release of tissue factor (TF), a potent initiator of the extrinsic pathway of coagulation, from the injured brain is thought to play a key role in coagulopathy after TBI, its function in ALI following TBI remains unclear. In this study, we investigated whether the systemic appearance of TF correlated with the ensuing coagulopathy that follows TBI in ALI using an anesthetized rat blunt trauma TBI model. Blood and lung samples were obtained after TBI. Compared with controls, pulmonary edema and increased pulmonary permeability were observed as early as 5 min after TBI without evidence of norepinephrine involvement. Systemic TF increased at 5 min and then diminished 60 min after TBI. Lung injury and alveolar hemorrhaging were also observed as early as 5 min after TBI. A biphasic elevation of TF was observed in the lungs after TBI, and TF-positive microparticles (MPs) were detected in the alveolar spaces. Fibrin(ogen) deposition was also observed in the lungs within 60 min after TBI. Additionally, preadministration of a direct thrombin inhibitor, Refludan, attenuated lung injuries, thus implicating thrombin as a direct participant in ALI after TBI. The results from this study demonstrated that enhanced systemic TF may be an initiator of coagulation activation that contributes to ALI after TBI. PMID:27190065

  3. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model

    PubMed Central

    2013-01-01

    Background Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Methods Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. Results MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. Conclusions GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk. PMID:24107379

  4. Lung dosimetry and risk assessment of nanoparticles: Evaluating and extending current models in rats and humans

    SciTech Connect

    Kuempel, E.D.; Tran, C.L.; Castranova, V.; Bailer, A.J.

    2006-09-15

    Risk assessment of occupational exposure to nanomaterials is needed. Human data are limited, but quantitative data are available from rodent studies. To use these data in risk assessment, a scientifically reasonable approach for extrapolating the rodent data to humans is required. One approach is allometric adjustment for species differences in the relationship between airborne exposure and internal dose. Another approach is lung dosimetry modeling, which provides a biologically-based, mechanistic method to extrapolate doses from animals to humans. However, current mass-based lung dosimetry models may not fully account for differences in the clearance and translocation of nanoparticles. In this article, key steps in quantitative risk assessment are illustrated, using dose-response data in rats chronically exposed to either fine or ultrafine titanium dioxide (TiO{sub 2}), carbon black (CB), or diesel exhaust particulate (DEP). The rat-based estimates of the working lifetime airborne concentrations associated with 0.1% excess risk of lung cancer are approximately 0.07 to 0.3 mg/m{sup 3} for ultrafine TiO{sub 2}, CB, or DEP, and 0.7 to 1.3 mg/m{sup 3} for fine TiO{sub 2}. Comparison of observed versus model-predicted lung burdens in rats shows that the dosimetry models predict reasonably well the retained mass lung burdens of fine or ultrafine poorly soluble particles in rats exposed by chronic inhalation. Additional model validation is needed for nanoparticles of varying characteristics, as well as extension of these models to include particle translocation to organs beyond the lungs. Such analyses would provide improved prediction of nanoparticle dose for risk assessment.

  5. Method of Isolated Ex Vivo Lung Perfusion in a Rat Model: Lessons Learned from Developing a Rat EVLP Program

    PubMed Central

    Nelson, Kevin; Bobba, Christopher; Eren, Emre; Spata, Tyler; Tadres, Malak; Hayes,, Don; Black, Sylvester M.

    2015-01-01

    The number of acceptable donor lungs available for lung transplantation is severely limited due to poor quality. Ex-Vivo Lung Perfusion (EVLP) has allowed lung transplantation in humans to become more readily available by enabling the ability to assess organs and expand the donor pool. As this technology expands and improves, the ability to potentially evaluate and improve the quality of substandard lungs prior to transplant is a critical need. In order to more rigorously evaluate these approaches, a reproducible animal model needs to be established that would allow for testing of improved techniques and management of the donated lungs as well as to the lung-transplant recipient. In addition, an EVLP animal model of associated pathologies, e.g., ventilation induced lung injury (VILI), would provide a novel method to evaluate treatments for these pathologies. Here, we describe the development of a rat EVLP lung program and refinements to this method that allow for a reproducible model for future expansion. We also describe the application of this EVLP system to model VILI in rat lungs. The goal is to provide the research community with key information and “pearls of wisdom”/techniques that arose from trial and error and are critical to establishing an EVLP system that is robust and reproducible. PMID:25741794

  6. A Drosophila asthma model - what the fly tells us about inflammatory diseases of the lung.

    PubMed

    Roeder, Thomas; Isermann, Kerstin; Kallsen, Kim; Uliczka, Karin; Wagner, Christina

    2012-01-01

    Asthma and COPD are the most relevant inflammatory diseases of the airways. In western countries they show a steeply increasing prevalence, making them to a severe burden for health systems around the world. Although these diseases are typically complex ones, they have an important genetic component. Genome-wide association studies have provided us with a relatively small but comprehensive list of asthma susceptibility genes that will be extended and presumably completed in the near future. To identify the role of these genes in the physiology and pathophysiology of the lung, genetically tractable model organisms are indispensable and murine models were the only ones that have been extensively used. An urgent demand for complementary models is present that provide specific advantages lacking in murine models, especially regarding speed and flexibility. Among the model organisms available, only the fruit fly Drosophila melanogaster shares a comparable organ composition and at least a lung equivalent. It has to be acknowledged that the fruit fly Drosophila has almost completely been ignored as a model organism for lung diseases, simply because it is devoid of lungs. Nevertheless, its airway system shows striking similarities with the one of mammals regarding its physiology and reaction towards pathogens, which holds the potential to function as a versatile model in asthma-related diseases.

  7. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    NASA Astrophysics Data System (ADS)

    Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H.; Meeks, Sanford L.; Kupelian, Patrick A.

    2010-09-01

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  8. A novel approach for global lung registration using 3D Markov-Gibbs appearance model.

    PubMed

    El-Baz, Ayman; Khalifa, Fahmi; Elnakib, Ahmed; Nitzken, Matthew; Soliman, Ahmed; McClure, Patrick; Abou El-Ghar, Mohamed; Gimel'farb, Georgy

    2012-01-01

    A new approach to align 3D CT data of a segmented lung object with a given prototype (reference lung object) using an affine transformation is proposed. Visual appearance of the lung from CT images, after equalizing their signals, is modeled with a new 3D Markov-Gibbs random field (MGRF) with pairwise interaction model. Similarity to the prototype is measured by a Gibbs energy of signal co-occurrences in a characteristic subset of voxel pairs derived automatically from the prototype. An object is aligned by an affine transformation maximizing the similarity by using an automatic initialization followed by a gradient search. Experiments confirm that our approach aligns complex objects better than popular conventional algorithms.

  9. Nerve growth factor enhances Clara cell proliferation after lung injury.

    PubMed

    Sonar, S S; Schwinge, D; Kilic, A; Yildirim, A O; Conrad, M L; Seidler, K; Müller, B; Renz, H; Nockher, W A

    2010-07-01

    The lung epithelia facilitate wound closure by secretion of various cytokines and growth factors. Nerve growth factor (NGF) has been well described in airway inflammation; however, its likely role in lung repair has not been examined thus far. To investigate the repair function of NGF, experiments were performed in vitro using cultured alveolar epithelial cells and in vivo using a naphthalene-induced model of Clara epithelial cell injury. Both in vitro and in vivo experiments revealed airway epithelial cell proliferation following injury to be dependent on NGF and the expression of its receptor, tropomyosin-receptor-kinase A. Additionally, NGF also augmented in vitro migration of alveolar type II cells. In vivo, transgenic mice over-expressing NGF in Clara cells (NGFtg) did not reveal any proliferation or alteration in Clara cell phenotype. However, following Clara cell specific injury, proliferation was increased in NGFtg and impaired upon inhibition of NGF. Furthermore, NGF also promoted the expression of collagen I and fibronectin in vitro and in vivo during repair, where significantly higher levels were measured in re-epithelialising NGFtg mice. Our study demonstrates that NGF promotes the proliferation of lung epithelium in vitro and the renewal of Clara cells following lung injury in vivo.

  10. Effect of air pollution on lung cancer: a Poisson regression model based on vital statistics.

    PubMed Central

    Tango, T

    1994-01-01

    This article describes a Poisson regression model for time trends of mortality to detect the long-term effects of common levels of air pollution on lung cancer, in which the adjustment for cigarette smoking is not always necessary. The main hypothesis to be tested in the model is that if the long-term and common-level air pollution had an effect on lung cancer, the death rate from lung cancer could be expected to increase gradually at a higher rate in the region with relatively high levels of air pollution than in the region with low levels, and that this trend would not be expected for other control diseases in which cigarette smoking is a risk factor. Using this approach, we analyzed the trend of mortality in females aged 40 to 79, from lung cancer and two control diseases, ischemic heart disease and cerebrovascular disease, based on vital statistics in 23 wards of the Tokyo metropolitan area for 1972 to 1988. Ward-specific mean levels per day of SO2 and NO2 from 1974 through 1976 estimated by Makino (1978) were used as the ward-specific exposure measure of air pollution. No data on tobacco consumption in each ward is available. Our analysis supported the existence of long-term effects of air pollution on lung cancer. PMID:7851329

  11. A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis.

    PubMed

    Le Saux, Claude Jourdan; Davy, Philip; Brampton, Christopher; Ahuja, Seema S; Fauce, Steven; Shivshankar, Pooja; Nguyen, Hieu; Ramaseshan, Mahesh; Tressler, Robert; Pirot, Zhu; Harley, Calvin B; Allsopp, Richard

    2013-01-01

    The emergence of diseases associated with telomere dysfunction, including AIDS, aplastic anemia and pulmonary fibrosis, has bolstered interest in telomerase activators. We report identification of a new small molecule activator, GRN510, with activity ex vivo and in vivo. Using a novel mouse model, we tested the potential of GRN510 to limit fibrosis induced by bleomycin in mTERT heterozygous mice. Treatment with GRN510 at 10 mg/kg/day activated telomerase 2-4 fold both in hematopoietic progenitors ex vivo and in bone marrow and lung tissue in vivo, respectively. Telomerase activation was countered by co-treatment with Imetelstat (GRN163L), a potent telomerase inhibitor. In this model of bleomycin-induced fibrosis, treatment with GRN510 suppressed the development of fibrosis and accumulation of senescent cells in the lung via a mechanism dependent upon telomerase activation. Treatment of small airway epithelial cells (SAEC) or lung fibroblasts ex vivo with GRN510 revealed telomerase activating and replicative lifespan promoting effects only in the SAEC, suggesting that the mechanism accounting for the protective effects of GRN510 against induced lung fibrosis involves specific types of lung cells. Together, these results support the use of small molecule activators of telomerase in therapies to treat idiopathic pulmonary fibrosis.

  12. Comparing Benefits from Many Possible Computed Tomography Lung Cancer Screening Programs: Extrapolating from the National Lung Screening Trial Using Comparative Modeling

    PubMed Central

    McMahon, Pamela M.; Meza, Rafael; Plevritis, Sylvia K.; Black, William C.; Tammemagi, C. Martin; Erdogan, Ayca; ten Haaf, Kevin; Hazelton, William; Holford, Theodore R.; Jeon, Jihyoun; Clarke, Lauren; Kong, Chung Yin; Choi, Sung Eun; Munshi, Vidit N.; Han, Summer S.; van Rosmalen, Joost; Pinsky, Paul F.; Moolgavkar, Suresh

    2014-01-01

    Background The National Lung Screening Trial (NLST) demonstrated that in current and former smokers aged 55 to 74 years, with at least 30 pack-years of cigarette smoking history and who had quit smoking no more than 15 years ago, 3 annual computed tomography (CT) screens reduced lung cancer-specific mortality by 20% relative to 3 annual chest X-ray screens. We compared the benefits achievable with 576 lung cancer screening programs that varied CT screen number and frequency, ages of screening, and eligibility based on smoking. Methods and Findings We used five independent microsimulation models with lung cancer natural history parameters previously calibrated to the NLST to simulate life histories of the US cohort born in 1950 under all 576 programs. ‘Efficient’ (within model) programs prevented the greatest number of lung cancer deaths, compared to no screening, for a given number of CT screens. Among 120 ‘consensus efficient’ (identified as efficient across models) programs, the average starting age was 55 years, the stopping age was 80 or 85 years, the average minimum pack-years was 27, and the maximum years since quitting was 20. Among consensus efficient programs, 11% to 40% of the cohort was screened, and 153 to 846 lung cancer deaths were averted per 100,000 people. In all models, annual screening based on age and smoking eligibility in NLST was not efficient; continuing screening to age 80 or 85 years was more efficient. Conclusions Consensus results from five models identified a set of efficient screening programs that include annual CT lung cancer screening using criteria like NLST eligibility but extended to older ages. Guidelines for screening should also consider harms of screening and individual patient characteristics. PMID:24979231

  13. Tracking boundary movement and exterior shape modelling in lung EIT imaging.

    PubMed

    Biguri, A; Grychtol, B; Adler, A; Soleimani, M

    2015-06-01

    Electrical impedance tomography (EIT) has shown significant promise for lung imaging. One key challenge for EIT in this application is the movement of electrodes during breathing, which introduces artefacts in reconstructed images. Various approaches have been proposed to compensate for electrode movement, but no comparison of these approaches is available. This paper analyses boundary model mismatch and electrode movement in lung EIT. The aim is to evaluate the extent to which various algorithms tolerate movement, and to determine if a patient specific model is required for EIT lung imaging. Movement data are simulated from a CT-based model, and image analysis is performed using quantitative figures of merit. The electrode movement is modelled based on expected values of chest movement and an extended Jacobian method is proposed to make use of exterior boundary tracking. Results show that a dynamical boundary tracking is the most robust method against any movement, but is computationally more expensive. Simultaneous electrode movement and conductivity reconstruction algorithms show increased robustness compared to only conductivity reconstruction. The results of this comparative study can help develop a better understanding of the impact of shape model mismatch and electrode movement in lung EIT.

  14. Animal Models, Learning Lessons to Prevent and Treat Neonatal Chronic Lung Disease

    PubMed Central

    Jobe, Alan H.

    2015-01-01

    Bronchopulmonary dysplasia (BPD) is a unique injury syndrome caused by prolonged injury and repair imposed on an immature and developing lung. The decreased septation and decreased microvascular development phenotype of BPD can be reproduced in newborn rodents with increased chronic oxygen exposure and in premature primates and sheep with oxygen and/or mechanical ventilation. The inflammation caused by oxidants, inflammatory agonists, and/or stretch injury from mechanical ventilation seems to promote the anatomic abnormalities. Multiple interventions targeted to specific inflammatory cells or pathways or targeted to decreasing ventilation-mediated injury can substantially prevent the anatomic changes associated with BPD in term rodents and in preterm sheep or primate models. Most of the anti-inflammatory therapies with benefit in animal models have not been tested clinically. None of the interventions that have been tested clinically are as effective as anticipated from the animal models. These inconsistencies in responses likely are explained by the antenatal differences in lung exposures of the developing animals relative to very preterm humans. The animals generally have normal lungs while the lungs of preterm infants are exposed variably to intrauterine inflammation, growth abnormalities, antenatal corticosteroids, and poorly understood effects from the causes of preterm delivery. The animal models have been essential for the definition of the mediators that can cause a BPD phenotype. These models will be necessary to develop and test future-targeted interventions to prevent and treat BPD. PMID:26301222

  15. Lung-On-A-Chip Technologies for Disease Modeling and Drug Development

    PubMed Central

    Konar, Dipasri; Devarasetty, Mahesh; Yildiz, Didem V.; Atala, Anthony; Murphy, Sean V.

    2016-01-01

    Animal and two-dimensional cell culture models have had a profound impact on not only lung research but also medical research at large, despite inherent flaws and differences when compared with in vivo and clinical observations. Three-dimensional (3D) tissue models are a natural progression and extension of existing techniques that seek to plug the gaps and mitigate the drawbacks of two-dimensional and animal technologies. In this review, we describe the transition of historic models to contemporary 3D cell and organoid models, the varieties of current 3D cell and tissue culture modalities, the common methods for imaging these models, and finally, the applications of these models and imaging techniques to lung research. PMID:27127414

  16. Redistribution of pulmonary blood flow impacts thermodilution-based extravascular lung water measurements in a model of acute lung injury

    PubMed Central

    Easley, R. Blaine; Mulreany, Daniel G.; Lancaster, Christopher T.; Custer, Jason W.; Fernandez-Bustamante, Ana; Colantuoni, Elizabeth; Simon, Brett A.

    2009-01-01

    Background Studies using transthoracic thermodilution have demonstrated increased extravascular lung water (EVLW) measurements attributed to progression of edema and flooding during sepsis and acute lung injury. We hypothesize that redistribution of pulmonary blood flow can cause increased apparent EVLW secondary to increased perfusion of thermally silent tissue, not increased lung edema. Methods Anesthetized, mechanically ventilated canines were instrumented with PiCCO® (Pulsion Medical, Munich, Germany) catheters and underwent lung injury by repetitive saline lavage. Hemodynamic and respiratory physiologic data were recorded. After stabilized lung injury, endotoxin was administered to inactivate hypoxic pulmonary vasoconstriction. Computerized tomographic imaging was performed to quantify in vivo lung volume, total tissue (fluid) and air content, and regional distribution of blood flow. Results Lavage injury caused an increase in airway pressures and decreased arterial oxygen content with minimal hemodynamic effects. EVLW and shunt fraction increased after injury and then markedly following endotoxin administration. Computerized tomographic measurements quantified an endotoxin-induced increase in pulmonary blood flow to poorly aerated regions with no change in total lung tissue volume. Conclusions The abrupt increase in EVLW and shunt fraction after endotoxin administration is consistent with inactivation of hypoxic pulmonary vasoconstriction and increased perfusion to already flooded lung regions that were previously thermally silent. Computerized tomographic studies further demonstrate in vivo alterations in regional blood flow (but not lung water) and account for these alterations in shunt fraction and EVLW. PMID:19809280

  17. Development of ferret as a human lung cancer model by injecting4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of new animal lung cancer models that are relevant to human lung carcinogenesis is important for lung cancer research. Previously we have shown the induction of lung tumor in ferrets (Mustela putorius furo) exposed to both tobacco smoke and a tobacco carcinogen (4-(N-methyl-N-nitrosamino...

  18. Multi-Modal Imaging in a Mouse Model of Orthotopic Lung Cancer

    PubMed Central

    Patel, Priya; Kato, Tatsuya; Ujiie, Hideki; Wada, Hironobu; Lee, Daiyoon; Hu, Hsin-pei; Hirohashi, Kentaro; Ahn, Jin Young; Zheng, Jinzi; Yasufuku, Kazuhiro

    2016-01-01

    Background Investigation of CF800, a novel PEGylated nano-liposomal imaging agent containing indocyanine green (ICG) and iohexol, for real-time near infrared (NIR) fluorescence and computed tomography (CT) image-guided surgery in an orthotopic lung cancer model in nude mice. Methods CF800 was intravenously administered into 13 mice bearing the H460 orthotopic human lung cancer. At 48 h post-injection (peak imaging agent accumulation time point), ex vivo NIR and CT imaging was performed. A clinical NIR imaging system (SPY®, Novadaq) was used to measure fluorescence intensity of tumor and lung. Tumor-to-background-ratios (TBR) were calculated in inflated and deflated states. The mean Hounsfield unit (HU) of lung tumor was quantified using the CT data set and a semi-automated threshold-based method. Histological evaluation using H&E, the macrophage marker F4/80 and the endothelial cell marker CD31, was performed, and compared to the liposomal fluorescence signal obtained from adjacent tissue sections Results The fluorescence TBR measured when the lung is in the inflated state (2.0 ± 0.58) was significantly greater than in the deflated state (1.42 ± 0.380 (n = 7, p<0.003). Mean fluorescent signal in tumor was highly variable across samples, (49.0 ± 18.8 AU). CT image analysis revealed greater contrast enhancement in lung tumors (a mean increase of 110 ± 57 HU) when CF800 is administered compared to the no contrast enhanced tumors (p = 0.0002). Conclusion Preliminary data suggests that the high fluorescence TBR and CT tumor contrast enhancement provided by CF800 may have clinical utility in localization of lung cancer during CT and NIR image-guided surgery. PMID:27584018

  19. Optimizing principal component models for representing interfraction variation in lung cancer radiotherapy

    SciTech Connect

    Badawi, Ahmed M.; Weiss, Elisabeth; Sleeman, William C. IV; Yan Chenyu; Hugo, Geoffrey D.

    2010-09-15

    Purpose: To optimize modeling of interfractional anatomical variation during active breath-hold radiotherapy in lung cancer using principal component analysis (PCA). Methods: In 12 patients analyzed, weekly CT sessions consisting of three repeat intrafraction scans were acquired with active breathing control at the end of normal inspiration. The gross tumor volume (GTV) and lungs were delineated and reviewed on the first week image by physicians and propagated to all other images using deformable image registration. PCA was used to model the target and lung variability during treatment. Four PCA models were generated for each specific patient: (1) Individual models for the GTV and each lung from one image per week (week to week, W2W); (2) a W2W composite model of all structures; (3) individual models using all images (weekly plus repeat intrafraction images, allscans); and (4) composite model with all images. Models were reconstructed retrospectively (using all available images acquired) and prospectively (using only data acquired up to a time point during treatment). Dominant modes representing at least 95% of the total variability were used to reconstruct the observed anatomy. Residual reconstruction error between the model-reconstructed and observed anatomy was calculated to compare the accuracy of the models. Results: An average of 3.4 and 4.9 modes was required for the allscans models, for the GTV and composite models, respectively. The W2W model required one less mode in 40% of the patients. For the retrospective composite W2W model, the average reconstruction error was 0.7{+-}0.2 mm, which increased to 1.1{+-}0.5 mm when the allscans model was used. Individual and composite models did not have significantly different errors (p=0.15, paired t-test). The average reconstruction error for the prospective models of the GTV stabilized after four measurements at 1.2{+-}0.5 mm and for the composite model after five measurements at 0.8{+-}0.4 mm. Conclusions

  20. A whole new ball game: Stem cell-derived epithelia in the study of host-microbe interactions.

    PubMed

    Leslie, Jhansi L; Young, Vincent B

    2016-02-01

    Recent advances in developmental and stem cell biology have resulted in techniques that enable the generation and maintenance of complex epithelium in vitro. While these models have been utilized to study host development and disease, a renewed appreciation of host-microbe interactions has sparked interest in employing these new techniques to study microbes at the epithelial interface. Here we review the current advances in host-microbe interactions that have resulted from experiments using these complex epithelia. Furthermore we highlight aspects of these techniques that warrant further development to facilitate the study of host-microbe interactions.

  1. Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema

    NASA Astrophysics Data System (ADS)

    Ford, N. L.; Martin, E. L.; Lewis, J. F.; Veldhuizen, R. A. W.; Holdsworth, D. W.; Drangova, M.

    2009-04-01

    Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.

  2. Effects of Hydrostatic Pressure on Carcinogenic Properties of Epithelia

    PubMed Central

    Tokuda, Shinsaku; Kim, Young Hak; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Mishima, Michiaki; Furuse, Mikio

    2015-01-01

    The relationship between chronic inflammation and cancer is well known. The inflammation increases the permeability of blood vessels and consequently elevates pressure in the interstitial tissues. However, there have been only a few reports on the effects of hydrostatic pressure on cultured cells, and the relationship between elevated hydrostatic pressure and cell properties related to malignant tumors is less well understood. Therefore, we investigated the effects of hydrostatic pressure on the cultured epithelial cells seeded on permeable filters. Surprisingly, hydrostatic pressure from basal to apical side induced epithelial stratification in Madin-Darby canine kidney (MDCK) I and Caco-2 cells, and cavities with microvilli and tight junctions around their surfaces were formed within the multi-layered epithelia. The hydrostatic pressure gradient also promoted cell proliferation, suppressed cell apoptosis, and increased transepithelial ion permeability. The inhibition of protein kinase A (PKA) promoted epithelial stratification by the hydrostatic pressure whereas the activation of PKA led to suppressed epithelial stratification. These results indicate the role of the hydrostatic pressure gradient in the regulation of various epithelial cell functions. The findings in this study may provide clues for the development of a novel strategy for the treatment of the carcinoma. PMID:26716691

  3. Brefeldin A inhibition of apical Na+ channels in epithelia.

    PubMed

    Fisher, R S; Grillo, F G; Sariban-Sohraby, S

    1996-01-01

    Brefeldin A (BFA) is used to probe trafficking of proteins through the central vacuolar system (CVS) in a variety of cells. Transepithelial Na+ transport by high-resistance epithelia, such as A6 cultured cells, is inhibited by BFA. Apical Na+ channels, as well as basolateral pumps and K+ channels, are complex proteins that probably traverse the CVS for routing to the plasma membrane. BFA (5 micrograms/ml) decreases transepithelial Na+ current near zero and increases resistance reversibly after 4 h. Longer exposures are toxic. When tissues were treated for 20 h with 0.2 microgram/ml BFA, Na+ transport also was reversibly inhibited. Using noise analysis, we found that BFA drastically reduced apical Na+ channel density. The increase in single channel current was consistent with cell hyperpolarization. After apical permeabilization with nystatin, changes in transepithelial current reflect changes in basolateral membrane transport. Transport at this membrane was inhibited by ouabain and cycloheximide, but not by BFA. After BFA, aldosterone was ineffective, suggesting that an intact CVS is required for stimulation by this hormone. Thus BFA inhibition of Na+ transport is localized at the apical membrane. Implications for channel turnover as a mechanism for regulating the Na+ transport rate are discussed.

  4. Functional Differences between Keratins of Stratified and Simple Epithelia

    PubMed Central

    Hutton, Elizabeth; Paladini, Rudolph D.; Yu, Qian-Chun; Yen, Mei; Coulombe, Pierre A.; Fuchs, Elaine

    1998-01-01

    Dividing populations of stratified and simple epithelial tissues express keratins 5 and 14, and keratins 8 and 18, respectively. It has been suggested that these keratins form a mechanical framework important to cellular integrity, since their absence gives rise to a blistering skin disorder in neonatal epidermis, and hemorrhaging within the embryonic liver. An unresolved fundamental issue is whether different keratins perform unique functions in epithelia. We now address this question using transgenic technology to express a K16-14 hybrid epidermal keratin transgene and a K18 simple epithelial keratin transgene in the epidermis of mice null for K14. Under conditions where the hybrid epidermal keratin restored a wild-type phenotype to newborn epidermis, K18 partially but not fully rescued. The explanation does not appear to reside in an inability of K18 to form 10-nm filaments with K5, which it does in vitro and in vivo. Rather, it appears that the keratin network formed between K5 and K18 is deficient in withstanding mechanical stress, leading to perturbations in the keratin network in regions of the skin that are subjected either to natural or to mechanically induced trauma. Taken together, these findings suggest that the loss of a type I epidermal keratin cannot be fully compensated by its counterpart of simple epithelial cells, and that in vivo, all keratins are not equivalent. PMID:9786957

  5. Derivation of muscles of the Aristotle's lantern from coelomic epithelia.

    PubMed

    Dolmatov, Igor Y; Mashanov, Vladimir S; Zueva, Olga R

    2007-02-01

    Transmission electron microscopy was employed to study structural changes in the lantern muscles occurring during the transition from young to adult in the sea urchin Strongylocentrotus nudus. A comparative examination of four major lantern muscles (compass depressors, compass elevators, protractors and retractors) suggests that myogenesis involves four consecutive stages. At the initial stage, the muscles show the organization of a mesentery delimited by pseudostratified coelomic epithelia, which are composed of peritoneal cells spanning the whole height of each epithelium, and myoepithelial cells, which are clustered together to fill the interstices between the basal processes of the peritoneal cells. During the next stage, the clusters of myoepithelial cells partly "sink" into the underlying connective tissue. At the third stage of muscularization, the myoepithelial cells increase in size and further invade the underlying connective tissue so that the myoepithelium splits into an apical peritoneal layer and a deeper mass of myoepithelial cells immersed in the connective tissue. However, these two layers are connected by a continuous basal lamina. This is thus the first description of an intermediate developmental stage between pseudostratified myoepithelim and genuine echinoderm muscles. For such a myoepithelium, we propose the term "immersed myoepithelium". At the most advanced stage of myogenesis, the myocytes detach completely from the epithelium to form subepithelial muscle bundles. Myogenesis in the sea urchin takes a long time during which continuous myogenic differentiation occurs in the coelomic epithelium and the newly formed myocytes and associated neurons penetrate into the underlying connective tissue.

  6. Epigenetic Analysis of Laser Capture Microdissected Fetal Epithelia1

    PubMed Central

    Seelan, Ratnam S.; Warner, Dennis R.; Mukhopadhyay, Partha M.; Andres, Sarah A.; Smolenkova, Irina A.; Wittliff, James L.; Pisano, M. Michele; Greene, Robert M.

    2013-01-01

    Laser capture microdissection (LCM) is a superior method for non-destructive collection of specific cell populations from tissue sections. While DNA, RNA and protein have been analyzed from LCM-procured samples, epigenetic analyses, particularly of fetal, highly hydrated tissue, have not been attempted. A standardized protocol with quality assurance measures was established to procure cells by LCM of the medial edge epithelia (MEE) of the fetal palatal processes for isolation of intact microRNA for expression analyses and genomic DNA for CpG methylation analyses. MicroRNA preparations, obtained using the RNAqueous® Micro kit (Life Technologies), exhibited better yields and higher quality than those obtained using the Arcturus® PicoPure® RNA Isolation kit (Life Technologies). The approach was validated using real-time PCR to determine expression of selected microRNAs (miR-99a and miR-200b) and pyrosequencing to determine CpG methylation status of selected genes (Aph1a and Dkk4) in the MEE. These studies describe an optimized approach for employing LCM of epithelial cells from fresh frozen fetal tissue that enables quantitative analyses of miRNA expression levels and CpG methylation. PMID:23911529

  7. Optimal Determination of Respiratory Airflow Patterns Using a Nonlinear Multicompartment Model for a Lung Mechanics System

    PubMed Central

    Li, Hancao; Haddad, Wassim M.

    2012-01-01

    We develop optimal respiratory airflow patterns using a nonlinear multicompartment model for a lung mechanics system. Specifically, we use classical calculus of variations minimization techniques to derive an optimal airflow pattern for inspiratory and expiratory breathing cycles. The physiological interpretation of the optimality criteria used involves the minimization of work of breathing and lung volume acceleration for the inspiratory phase, and the minimization of the elastic potential energy and rapid airflow rate changes for the expiratory phase. Finally, we numerically integrate the resulting nonlinear two-point boundary value problems to determine the optimal airflow patterns over the inspiratory and expiratory breathing cycles. PMID:22719793

  8. Novel electrospun gelatin/oxycellulose nanofibers as a suitable platform for lung disease modeling.

    PubMed

    Švachová, Veronika; Vojtová, Lucy; Pavliňák, David; Vojtek, Libor; Sedláková, Veronika; Hyršl, Pavel; Alberti, Milan; Jaroš, Josef; Hampl, Aleš; Jančář, Josef

    2016-10-01

    Novel hydrolytically stable gelatin nanofibers modified with sodium or calcium salt of oxycellulose were prepared by electrospinning method. The unique inhibitory effect of these nanofibers against Escherichia coli bacteria was examined by luminometric method. Biocompatibility of these gelatin/oxycellulose nanofibers with eukaryotic cells was tested using human lung adenocarcinoma cell line NCI-H441. Cells firmly adhered to nanofiber surface, as determined by scanning electron microscopy, and no signs of cell dying were detected by fluorescent live/dead assay. We propose that the newly developed gelatin/oxycellulose nanofibers could be used as promising scaffold for lung disease modeling and anti-cancer drug testing.

  9. The Audible Human Project: Modeling Sound Transmission in the Lungs and Torso

    NASA Astrophysics Data System (ADS)

    Dai, Zoujun

    Auscultation has been used qualitatively by physicians for hundreds of years to aid in the monitoring and diagnosis of pulmonary diseases. Alterations in the structure and function of the pulmonary system that occur in disease or injury often give rise to measurable changes in lung sound production and transmission. Numerous acoustic measurements have revealed the differences of breath sounds and transmitted sounds in the lung under normal and pathological conditions. Compared to the extensive cataloging of lung sound measurements, the mechanism of sound transmission in the pulmonary system and how it changes with alterations of lung structural and material properties has received less attention. A better understanding of sound transmission and how it is altered by injury and disease might improve interpretation of lung sound measurements, including new lung imaging modalities that are based on an array measurement of the acoustic field on the torso surface via contact sensors or are based on a 3-dimensional measurement of the acoustic field throughout the lungs and torso using magnetic resonance elastography. A long-term goal of the Audible Human Project (AHP ) is to develop a computational acoustic model that would accurately simulate generation, transmission and noninvasive measurement of sound and vibration within the pulmonary system and torso caused by both internal (e.g. respiratory function) and external (e.g. palpation) sources. The goals of this dissertation research, fitting within the scope of the AHP, are to develop specific improved theoretical understandings, computational algorithms and experimental methods aimed at transmission and measurement. The research objectives undertaken in this dissertation are as follows. (1) Improve theoretical modeling and experimental identification of viscoelasticity in soft biological tissues. (2) Develop a poroviscoelastic model for lung tissue vibroacoustics. (3) Improve lung airway acoustics modeling and its

  10. Testing of an intrathoracic artificial lung in a pig model.

    PubMed

    Cook, K E; Makarewicz, A J; Backer, C L; Mockros, L F; Przybylo, H J; Crawford, S E; Hernandez, J M; Leonard, R J; Mavroudis, C

    1996-01-01

    A low input impedance, intrathoracic artificial lung is being developed for use in acute respiratory failure or as a bridge to transplantation. The device uses microporous, hollow fibers in a 0.74 void fraction, 1.83 m2 surface area bundle. The bundle is placed within a thermoformed polyethylene terephthalate glucose modified housing with a gross volume of 800 cm3. The blood inlet and outlet are 18 mm inner diameter vascular grafts. Between the inlet graft and the device is a 1 inch inner diameter, thin-walled, latex tubing compliance chamber. These devices were implanted in Yorkshire pigs via median sternotomy with an end to side anastomosis to the pulmonary artery and left atrium. The distal pulmonary artery was occluded to divert the right ventricular output to the device. Pigs 1 and 2 were supported fully for 24 hrs and then killed. Pig 3 was supported partially for 20 hrs and died from bleeding complications. The first implant, in a 55 kg male pig, transferred an average of 176 ml/min +/- 42.4 of O2 and 190 ml/min +/- 39.7 of CO2 with an average blood flow rate of 2.71/min +/- 0.46. The normalized average right ventricular output power, Pn, was 0.062 W/(L/min) +/- 0.0082, and the average device resistance, R, was 3.5 mmHg/(L/min) +/- 0.62. The second implant, in a 60 kg male pig, transferred an average of 204 ml/min +/- 22.5 of O2 and 242 ml/min +/- 17.2 of CO2 with an average blood flow rate of 3.7 L/min +/- 0.45, Pn of 0.064 W/(L/min) +/- 0.0067, and R of 4.3 mmHg/(L/min) +/- 0.89. The third implant, in an 89 kg male pig, transferred an average of 156 ml/min +/- 39.6 of O2 and 187 ml/min +/- 21.4 of CO2 with an average blood flow rate of 2.5 L/min +/- 0.49, Pn of 0.052 W/(l/min) +/- 0.0067, and R of 3.4 mmHg/(L/min) +/- 0.74. These experiments suggest that such an artificial lung can temporarily support the gas transfer requirements of adult humans without over-loading the right ventricle.

  11. Erlotinib resistance in mouse models of epidermal growth factor receptor-induced lung adenocarcinoma

    PubMed Central

    Politi, Katerina; Fan, Pang-Dian; Shen, Ronglai; Zakowski, Maureen; Varmus, Harold

    2010-01-01

    SUMMARY Seventy-five percent of lung adenocarcinomas with epidermal growth factor receptor (EGFR) mutations respond to treatment with the tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib; however, drug-resistant tumors eventually emerge. In 60% of cases, resistant tumors carry a secondary mutation in EGFR (T790M), amplification of MET, or both. Here, we describe the establishment of erlotinib resistance in lung tumors, which were induced by mutant EGFR, in transgenic mice after multiple cycles of drug treatment; we detect the T790M mutation in five out of 24 tumors or Met amplification in one out of 11 tumors in these mice. This preclinical mouse model, therefore, recapitulates the molecular changes responsible for resistance to TKIs in human tumors and holds promise for the discovery of additional mechanisms of drug resistance in lung cancer. PMID:20007486

  12. Erlotinib resistance in mouse models of epidermal growth factor receptor-induced lung adenocarcinoma.

    PubMed

    Politi, Katerina; Fan, Pang-Dian; Shen, Ronglai; Zakowski, Maureen; Varmus, Harold

    2010-01-01

    Seventy-five percent of lung adenocarcinomas with epidermal growth factor receptor (EGFR) mutations respond to treatment with the tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib; however, drug-resistant tumors eventually emerge. In 60% of cases, resistant tumors carry a secondary mutation in EGFR (T790M), amplification of MET, or both. Here, we describe the establishment of erlotinib resistance in lung tumors, which were induced by mutant EGFR, in transgenic mice after multiple cycles of drug treatment; we detect the T790M mutation in five out of 24 tumors or Met amplification in one out of 11 tumors in these mice. This preclinical mouse model, therefore, recapitulates the molecular changes responsible for resistance to TKIs in human tumors and holds promise for the discovery of additional mechanisms of drug resistance in lung cancer.

  13. [A nonlinear multi-compartment lung model for optimization of breathing airflow pattern].

    PubMed

    Cai, Yongming; Gu, Lingyan; Chen, Fuhua

    2015-02-01

    It is difficult to select the appropriate ventilation mode in clinical mechanical ventilation. This paper presents a nonlinear multi-compartment lung model to solve the difficulty. The purpose is to optimize respiratory airflow patterns and get the minimum of the work of inspiratory phrase and lung volume acceleration, minimum of the elastic potential energy and rapidity of airflow rate changes of expiratory phrase. Sigmoidal function is used to smooth the respiratory function of nonlinear equations. The equations are established to solve nonlinear boundary conditions BVP, and finally the problem was solved with gradient descent method. Experimental results showed that lung volume and the rate of airflow after optimization had good sensitivity and convergence speed. The results provide a theoretical basis for the development of multivariable controller monitoring critically ill mechanically ventilated patients. PMID:25997262

  14. The Rabbit as a Model for Studying Lung Disease and Stem Cell Therapy

    PubMed Central

    Kamaruzaman, Nurfatin Asyikhin; Kamaldin, Nurulain ‘Atikah; Latahir, Ahmad Zaeri; Yahaya, Badrul Hisham

    2013-01-01

    No single animal model can reproduce all of the human features of both acute and chronic lung diseases. However, the rabbit is a reliable model and clinically relevant facsimile of human disease. The similarities between rabbits and humans in terms of airway anatomy and responses to inflammatory mediators highlight the value of this species in the investigation of lung disease pathophysiology and in the development of therapeutic agents. The inflammatory responses shown by the rabbit model, especially in the case of asthma, are comparable with those that occur in humans. The allergic rabbit model has been used extensively in drug screening tests, and this model and humans appear to be sensitive to similar drugs. In addition, recent studies have shown that the rabbit serves as a good platform for cell delivery for the purpose of stem-cell-based therapy. PMID:23653896

  15. Comparison of two lung clearance models based on the dissolution rates of oxidized depleted uranium

    SciTech Connect

    Crist, K.C.

    1984-10-01

    An in-vitro dissolution study was conducted on two respirable oxidized depleted uranium samples. The dissolution rates generated from this study were then utilized in the International Commission on Radiological Protection Task Group lung clearance model and a lung clearance model proposed by Cuddihy. Predictions from both models based on the dissolution rates of the amount of oxidized depleted uranium that would be cleared to blood from the pulmonary region following an inhalation exposure were compared. It was found that the predictions made by both models differed considerably. The difference between the predictions was attributed to the differences in the way each model perceives the clearance from the pulmonary region. 33 references, 11 figures, 9 tables.

  16. Fractal Geometry Enables Classification of Different Lung Morphologies in a Model of Experimental Asthma

    NASA Astrophysics Data System (ADS)

    Obert, Martin; Hagner, Stefanie; Krombach, Gabriele A.; Inan, Selcuk; Renz, Harald

    2015-06-01

    Animal models represent the basis of our current understanding of the pathophysiology of asthma and are of central importance in the preclinical development of drug therapies. The characterization of irregular lung shapes is a major issue in radiological imaging of mice in these models. The aim of this study was to find out whether differences in lung morphology can be described by fractal geometry. Healthy and asthmatic mouse groups, before and after an acute asthma attack induced by methacholine, were studied. In vivo flat-panel-based high-resolution Computed Tomography (CT) was used for mice's thorax imaging. The digital image data of the mice's lungs were segmented from the surrounding tissue. After that, the lungs were divided by image gray-level thresholds into two additional subsets. One subset contained basically the air transporting bronchial system. The other subset corresponds mainly to the blood vessel system. We estimated the fractal dimension of all sets of the different mouse groups using the mass radius relation (mrr). We found that the air transporting subset of the bronchial lung tissue enables a complete and significant differentiation between all four mouse groups (mean D of control mice before methacholine treatment: 2.64 ± 0.06; after treatment: 2.76 ± 0.03; asthma mice before methacholine treatment: 2.37 ± 0.16; after treatment: 2.71 ± 0.03; p < 0.05). We conclude that the concept of fractal geometry allows a well-defined, quantitative numerical and objective differentiation of lung shapes — applicable most likely also in human asthma diagnostics.

  17. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia

    PubMed Central

    Bragulla, Hermann H; Homberger, Dominique G

    2009-01-01

    Historically, the term ‘keratin’ stood for all of the proteins extracted from skin modifications, such as horns, claws and hooves. Subsequently, it was realized that this keratin is actually a mixture of keratins, keratin filament-associated proteins and other proteins, such as enzymes. Keratins were then defined as certain filament-forming proteins with specific physicochemical properties and extracted from the cornified layer of the epidermis, whereas those filament-forming proteins that were extracted from the living layers of the epidermis were grouped as ‘prekeratins’ or ‘cytokeratins’. Currently, the term ‘keratin’ covers all intermediate filament-forming proteins with specific physicochemical properties and produced in any vertebrate epithelia. Similarly, the nomenclature of epithelia as cornified, keratinized or non-keratinized is based historically on the notion that only the epidermis of skin modifications such as horns, claws and hooves is cornified, that the non-modified epidermis is a keratinized stratified epithelium, and that all other stratified and non-stratified epithelia are non-keratinized epithelia. At this point in time, the concepts of keratins and of keratinized or cornified epithelia need clarification and revision concerning the structure and function of keratin and keratin filaments in various epithelia of different species, as well as of keratin genes and their modifications, in view of recent research, such as the sequencing of keratin proteins and their genes, cell culture, transfection of epithelial cells, immunohistochemistry and immunoblotting. Recently, new functions of keratins and keratin filaments in cell signaling and intracellular vesicle transport have been discovered. It is currently understood that all stratified epithelia are keratinized and that some of these keratinized stratified epithelia cornify by forming a Stratum corneum. The processes of keratinization and cornification in skin modifications are

  18. Multiscale Airflow Model and Aerosol Deposition in Healthy and Emphysematous Rat Lungs

    NASA Astrophysics Data System (ADS)

    Oakes, Jessica; Marsden, Alison; Grandmont, Celine; Darquenne, Chantal; Vignon-Clementel, Irene

    2012-11-01

    The fate of aerosol particles in healthy and emphysematic lungs is needed to determine the toxic or therapeutic effects of inhalable particles. In this study we used a multiscale numerical model that couples a 0D resistance and capacitance model to 3D airways generated from MR images. Airflow simulations were performed using an in-house 3D finite element solver (SimVascular, simtk.org). Seven simulations were performed; 1 healthy, 1 uniform emphysema and 5 different cases of heterogeneous emphysema. In the heterogeneous emphysema cases the disease was confined to a single lobe. As a post processing step, 1 micron diameter particles were tracked in the flow field using Lagrangian particle tracking. The simulation results showed that the inhaled flow distribution was equal for the healthy and uniform emphysema cases. However, in the heterogeneous emphysema cases the delivery of inhaled air was larger in the diseased lobe. Additionally, there was an increase in delivery of aerosol particles to the diseased lobe. This suggests that as the therapeutic particles would reach the diseased areas of the lung, while toxic particles would increasingly harm the lung. The 3D-0D model described here is the first of its kind to be used to study healthy and emphysematic lungs. NSF Graduate Fellowship (Oakes), Burroughs Wellcome Fund (Marsden, Oakes) 1R21HL087805-02 from NHLBI at NIH, INRIA Team Grant.

  19. A Human-Mouse Chimeric Model of Obliterative Bronchiolitis after Lung Transplantation

    PubMed Central

    Xue, Jianmin; Zhu, Xuehai; George, M. Patricia; Myerburg, Michael M.; Stoner, Michael W.; Pilewski, Joseph W.; Duncan, Steven R.

    2011-01-01

    Obliterative bronchiolitis is a frequent, morbid, and usually refractory complication of lung transplantation. Mechanistic study of obliterative bronchiolitis would be aided by development of a relevant model that uses human immune effector cells and airway targets. Our objective was to develop a murine chimera model that mimics obliterative bronchiolitis of lung allograft recipients in human airways in vivo. Human peripheral blood mononuclear cells were adoptively transferred to immunodeficient mice lacking activity of T, B, and NK cells, with and without concurrent transplantations of human small airways dissected from allogeneic cadaveric lungs. Chimerism with human T cells occurred in the majority of recipient animals. The chimeric T cells became highly activated, rapidly infiltrated into the small human airway grafts, and caused obliterative bronchiolitis. In contrast, airways implanted into control mice that did not also receive human peripheral blood mononuclear cell transfers remained intact. In vitro proliferation assays indicated that the chimeric T cells had enhanced specific proliferative responses to donor airway alloantigens. This model confirms the critical role of T cells in development of obliterative bronchiolitis among human lung allograft recipients and provides a novel and easily implemented mechanism for detailed, reductionist in vivo studies of human T-cell responses to allogeneic human small airways. PMID:21801868

  20. Lung cancer mortality trends in Chile and six-year projections using Bayesian dynamic linear models.

    PubMed

    Torres-Avilés, Francisco; Moraga, Tomás; Núñez, Loreto; Icaza, Gloria

    2015-09-01

    The objectives were to analyze lung cancer mortality trends in Chile from 1990 to 2009, and to project the rates six years forward. Lung cancer mortality data were obtained from the Chilean Ministry of Health. To obtain mortality rates, population projections were used, based on the 2002 National Census. Rates were adjusted using the world standard population as reference. Bayesian dynamic linear models were fitted to estimate trends from 1990 to 2009 and to obtain projections for 2010-2015. During the period under study, there was a 19.9% reduction in the lung cancer mortality rate in men. In women, there was increase of 28.4%. The second-order model showed a better fit for men, and the first-order model a better fit for women. Between 2010 and 2015 the downward trend continued in men, while a trend to stabilization was projected for lung cancer mortality in women in Chile. This analytical approach could be useful implement surveillance systems for chronic non-communicable disease and to evaluate preventive strategies. PMID:26578021

  1. Late gestational lung hypoplasia in a mouse model of the Smith-Lemli-Opitz syndrome

    PubMed Central

    Yu, Hongwei; Wessels, Andy; Chen, Jianliang; Phelps, Aimee L; Oatis, John; Tint, G Stephen; Patel, Shailendra B

    2004-01-01

    Background Normal post-squalene cholesterol biosynthesis is important for mammalian embryonic development. Neonatal mice lacking functional dehydrocholesterol Δ7-reductase (Dhcr7), a model for the human disease of Smith-Lemli-Opitz syndrome, die within 24 hours of birth. Although they have a number of biochemical and structural abnormalities, one cause of death is from apparent respiratory failure due to developmental pulmonary abnormalities. Results In this study, we characterized further the role of cholesterol deficiency in lung development of these mice. Significant growth retardation, beginning at E14.5~E16.5, was observed in Dhcr7-/- embryos. Normal lobation but smaller lungs with a significant decrease in lung-to-body weight ratio was noted in Dhcr7-/- embryos, compared to controls. Lung branching morphogenesis was comparable between Dhcr7-/- and controls at early stages, but delayed saccular development was visible in all Dhcr7-/- embryos from E17.5 onwards. Impaired pre-alveolar development of varying severity, inhibited cell proliferation, delayed differentiation of type I alveolar epithelial cells (AECs) and delayed vascular development were all evident in knockout lungs. Differentiation of type II AECs was apparently normal as judged by surfactant protein (SP) mRNAs and SP-C immunostaining. A significant amount of cholesterol was detectable in knockout lungs, implicating some maternal transfer of cholesterol. No significant differences of the spatial-temporal localization of sonic hedgehog (Shh) or its downstream targets by immunohistochemistry were detected between knockout and wild-type lungs and Shh autoprocessing occurred normally in tissues from Dhcr7-/- embryos. Conclusion Our data indicated that cholesterol deficiency caused by Dhcr7 null was associated with a distinct lung saccular hypoplasia, characterized by failure to terminally differentiate alveolar sacs, a delayed differentiation of type I AECs and an immature vascular network at late

  2. Assessing lung cancer risk in railroad workers using a first hitting time regression model

    PubMed Central

    Lee, Mei-Ling Ting; Whitmore, G. A.; Laden, Francine; Hart, Jaime E.; Garshick, Eric

    2005-01-01

    SUMMARY This article examines the application of a first hitting time (FHT) model, using an operational time scale, to assess mortality risk differentials of the work environment. A major case application is presented that applies the model to three job categories of railroad workers. The data set involves a study of more than 50 000 workers with mortality assessed from 1959 to 1996. Lung cancer mortality was assessed because of a suspected link to diesel exhaust exposure. Based on a model that stipulates that death occurs when the disease state of a subject first hits a threshold value, the FHT model provides insights into factors influencing disease progression. In this application, in particular, the findings suggest that a job category in 1959 alters the risk of death from lung cancer. PMID:16741563

  3. Soluble mediators, not cilia, determine airway surface liquid volume in normal and cystic fibrosis superficial airway epithelia.

    PubMed

    Tarran, Robert; Trout, Laura; Donaldson, Scott H; Boucher, Richard C

    2006-05-01

    A key aspect of the lung's innate defense system is the ability of the superficial epithelium to regulate airway surface liquid (ASL) volume to maintain a 7-mum periciliary liquid layer (PCL), which is required for cilia to beat and produce mucus flow. The mechanisms whereby airway epithelia regulate ASL height to >or=7 microm are poorly understood. Using bumetanide as an inhibitor of Cl- secretion, and nystatin as an activator of Na+ absorption, we found that a coordinated "blending" of both Cl- secretion and Na+ absorption must occur to effect ASL volume homeostasis. We then investigated how ASL volume status is regulated by the underlying epithelia. Cilia were not critical to this process as (a) ASL volume was normal in cultures from patients with primary ciliary dyskinesia with immotile cilia, and (b) in normal cultures that had not yet undergone ciliogenesis. However, we found that maneuvers that mimic deposition of excess ASL onto the proximal airways, which occurs during mucociliary clearance and after glandular secretion, acutely stimulated Na+ absorption, suggesting that volume regulation was sensitive to changes in concentrations of soluble mediators in the ASL rather than alterations in ciliary beating. To investigate this hypothesis further, we added potential "soluble mediators" to the ASL. ASL volume regulation was sensitive to a channel-activating protein (CAP; trypsin) and a CAP inhibitor (aprotinin), which regulated Na+ absorption via changes in epithelial Na+ channel (ENaC) activity in both normal and cystic fibrosis cultures. ATP was also found to acutely regulate ASL volume by inducing secretion in normal and cystic fibrosis (CF) cultures, while its metabolite adenosine (ADO) evoked secretion in normal cultures but stimulated absorption in CF cultures. Interestingly, the amount of ASL/Cl- secretion elicited by ATP/ADO was influenced by the level of CAP-induced Na+ absorption, suggesting that there are important interactions between the soluble

  4. Inhaled Hydrogen Sulfide Improves Graft Function in an Experimental Model of Lung Transplantation

    PubMed Central

    George, Timothy J.; Arnaoutakis, George J.; Beaty, Claude A.; Jandu, Simran K.; Santhanam, Lakshmi; Berkowitz, Dan E.; Shah, Ashish S.

    2014-01-01

    Objectives: Ischemia-reperfusion(IRI) is a common complication of lung transplantation(LTx). Hydrogen sulfide(H2S) is a novel agent previously shown to slow metabolism and scavenge reactive oxygen species, potentially mitigating IRI. We hypothesized that pre-treatment with inhaled H2S would improve graft function in an ex vivo model of LTx. Methods: Rabbits(n=10) were ventilated for 2 hours prior to heart-lung bloc procurement. The treatment group(n=5) inhaled room air(21% O2) supplemented with 150 ppm H2S while the control group(n=5) inhaled room air alone. Both groups were gradually cooled to 34 C. All heart-lung blocs were then recovered and cold-stored in low potassium dextran solution for 18 hours. Following storage, the blocs were reperfused with donor rabbit blood in an ex vivo apparatus. Serial clinical parameters were assessed and serial tissue biochemistry was examined. Results: Prior to heart-lung bloc procurement, rabbits pre-treated with H2S exhibited similar oxygenation(p=0.1), ventilation(p=0.7), and heart rate(p=0.5); however, treated rabbits exhibited consistently higher mean arterial blood pressures(p=0.01). During reperfusion, lungs pre-treated with H2S had better oxygenation(p<0.01) and ventilation(p=0.02) as well as lower pulmonary artery pressures(p<0.01). Reactive oxygen species levels were lower in treated lungs during reperfusion(p=0.01). Additionally, prior to reperfusion, treated lungs demonstrated more preserved mitochondrial cytochrome c oxidase activity(p=0.01). Conclusions: To our knowledge, this study represents the first reported therapeutic use of inhaled H2S in an experimental model of LTx. After prolonged ischemia, lungs pre-treated with inhaled H2S exhibited improved graft function during reperfusion. Donor pre-treatment with inhaled H2S represents a potentially novel adjunct to conventional preservation techniques and merits further exploration. PMID:22771242

  5. Development and validation of risk models to select ever-smokers for CT lung-cancer screening

    PubMed Central

    Katki, Hormuzd A.; Kovalchik, Stephanie A.; Berg, Christine D.; Cheung, Li C.; Chaturvedi, Anil K.

    2016-01-01

    Importance The US Preventive Services Task Force (USPSTF) recommends computed-tomography (CT) lung-cancer screening for ever-smokers ages 55-80 years who smoked at least 30 pack-years with no more than 15 years since quitting. However, selecting ever-smokers for screening using individualized lung-cancer risk calculations may be more effective and efficient than current USPSTF recommendations. Objective Comparison of modeled outcomes from risk-based CT lung-screening strategies versus USPSTF recommendations. Design/Setting/Participants Empirical risk models for lung-cancer incidence and death in the absence of CT screening using data on ever-smokers from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO; 1993-2009) control group. Covariates included age, education, sex, race, smoking intensity/duration/quit-years, Body Mass Index, family history of lung-cancer, and self-reported emphysema. Model validation in the chest radiography groups of the PLCO and the National Lung Screening Trial (NLST; 2002-2009), with additional validation of the death model in the National Health Interview Survey (NHIS; 1997-2001), a representative sample of the US. Models applied to US ever-smokers ages 50-80 (NHIS 2010-2012) to estimate outcomes of risk-based selection for CT lung-screening, assuming screening for all ever-smokers yields the percent changes in lung-cancer detection and death observed in the NLST. Exposure Annual CT lung-screening for 3 years. Main Outcomes and Measures Model validity: calibration (number of model-predicted cases divided by number of observed cases (Estimated/Observed)) and discrimination (Area-Under-Curve (AUC)). Modeled screening outcomes: estimated number of screen-avertable lung-cancer deaths, estimated screening effectiveness (number needed to screen (NNS) to prevent 1 lung-cancer death). Results Lung-cancer incidence and death risk models were well-calibrated in PLCO and NLST. The lung-cancer death model calibrated and

  6. High Inorganic Phosphate Intake Promotes Tumorigenesis at Early Stages in a Mouse Model of Lung Cancer

    PubMed Central

    Lee, Somin; Kim, Ji-Eun; Hong, Seong-Ho; Lee, Ah-Young; Park, Eun-Jung; Seo, Hwi Won; Chae, Chanhee; Doble, Philip; Bishop, David; Cho, Myung-Haing

    2015-01-01

    Inorganic phosphate (Pi) is required by all living organisms for the development of organs such as bone, muscle, brain, and lungs, regulating the expression of several critical genes as well as signal transduction. However, little is known about the effects of prolonged dietary Pi consumption on lung cancer progression. This study investigated the effects of a high-phosphate diet (HPD) in a mouse model of adenocarcinoma. K-rasLA1 mice were fed a normal diet (0.3% Pi) or an HPD (1% Pi) for 1, 2, or 4 months. Mice were then sacrificed and subjected to inductively coupled plasma mass/optical emission spectrometry and laser ablation inductively coupled plasma mass-spectrometry analyses, western blot analysis, histopathological, immunohistochemical, and immunocytochemical analyses to evaluate tumor formation and progression (including cell proliferation, angiogenesis, and apoptosis), changes in ion levels and metabolism, autophagy, epithelial-to-mesenchymal transition, and protein translation in the lungs. An HPD accelerated tumorigenesis, as evidenced by increased adenoma and adenocarcinoma rates as well as tumor size. However, after 4 months of the HPD, cell proliferation was arrested, and marked increases in liver and lung ion levels and in energy production via the tricarboxylic acid cycle in the liver were observed, which were accompanied by increased autophagy and decreased angiogenesis and apoptosis. These results indicate that an HPD initially promotes but later inhibits lung cancer progression because of metabolic adaptation leading to tumor cell quiescence. Moreover, the results suggest that carefully regulated Pi consumption are effective in lung cancer prevention. PMID:26285136

  7. High Inorganic Phosphate Intake Promotes Tumorigenesis at Early Stages in a Mouse Model of Lung Cancer.

    PubMed

    Lee, Somin; Kim, Ji-Eun; Hong, Seong-Ho; Lee, Ah-Young; Park, Eun-Jung; Seo, Hwi Won; Chae, Chanhee; Doble, Philip; Bishop, David; Cho, Myung-Haing

    2015-01-01

    Inorganic phosphate (Pi) is required by all living organisms for the development of organs such as bone, muscle, brain, and lungs, regulating the expression of several critical genes as well as signal transduction. However, little is known about the effects of prolonged dietary Pi consumption on lung cancer progression. This study investigated the effects of a high-phosphate diet (HPD) in a mouse model of adenocarcinoma. K-rasLA1 mice were fed a normal diet (0.3% Pi) or an HPD (1% Pi) for 1, 2, or 4 months. Mice were then sacrificed and subjected to inductively coupled plasma mass/optical emission spectrometry and laser ablation inductively coupled plasma mass-spectrometry analyses, western blot analysis, histopathological, immunohistochemical, and immunocytochemical analyses to evaluate tumor formation and progression (including cell proliferation, angiogenesis, and apoptosis), changes in ion levels and metabolism, autophagy, epithelial-to-mesenchymal transition, and protein translation in the lungs. An HPD accelerated tumorigenesis, as evidenced by increased adenoma and adenocarcinoma rates as well as tumor size. However, after 4 months of the HPD, cell proliferation was arrested, and marked increases in liver and lung ion levels and in energy production via the tricarboxylic acid cycle in the liver were observed, which were accompanied by increased autophagy and decreased angiogenesis and apoptosis. These results indicate that an HPD initially promotes but later inhibits lung cancer progression because of metabolic adaptation leading to tumor cell quiescence. Moreover, the results suggest that carefully regulated Pi consumption are effective in lung cancer prevention. PMID:26285136

  8. Automatic lung tumor segmentation on PET/CT images using fuzzy Markov random field model.

    PubMed

    Guo, Yu; Feng, Yuanming; Sun, Jian; Zhang, Ning; Lin, Wang; Sa, Yu; Wang, Ping

    2014-01-01

    The combination of positron emission tomography (PET) and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF) model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC) patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice's similarity coefficient (DSC) was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.

  9. The Effect of Different Doses of Cigarette Smoke in a Mouse Lung Tumor Model

    PubMed Central

    Santiago, Ludmilla Nadir; de Camargo Fenley, Juliana; Braga, Lúcia Campanario; Cordeiro, José Antônio; Cury, Patrícia M.

    2009-01-01

    Few studies have used Balb/c mice as an animal model for lung carcinogenesis. In this study, we investigated the effect of different doses of cigarette smoking in the urethane-induced Balb/c mouse lung cancer model. After injection of 3mg/kg urethane intraperitoneally, the mice were then exposed to tobacco smoke once or twice a day, five times a week, in a closed chamber. The animals were randomly divided into four groups. The control group (G0) received urethane only. The experimental groups (G1, G2 and G3) received urethane and exposure to the smoke of 3 cigarettes for 10 minutes once a day, 3 cigarettes for 10 minutes twice a day, and 6 cigarettes for 10 minutes twice a day, respectively. The mice were sacrificed after 16 weeks of exposure, and the number of nodules and hyperplasia in the lungs was counted. The results showed no statistically significant difference in the mean number of nodules and hyperplasia among the different groups, suggesting that the Balb/c mice are not suitable to study the pathogenesis of tobacco smoking-induced tumor progression in the lungs. PMID:19079653

  10. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    PubMed Central

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  11. Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology.

    PubMed

    Mairpady Shambat, Srikanth; Chen, Puran; Nguyen Hoang, Anh Thu; Bergsten, Helena; Vandenesch, Francois; Siemens, Nikolai; Lina, Gerard; Monk, Ian R; Foster, Timothy J; Arakere, Gayathri; Svensson, Mattias; Norrby-Teglund, Anna

    2015-11-01

    Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D) tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of α-toxin and Panton-Valentine leukocidin (PVL), and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of α-toxin, and triggered limited tissue damage. α-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure α-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of α-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of α-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against α-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a human setting. The

  12. Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology.

    PubMed

    Mairpady Shambat, Srikanth; Chen, Puran; Nguyen Hoang, Anh Thu; Bergsten, Helena; Vandenesch, Francois; Siemens, Nikolai; Lina, Gerard; Monk, Ian R; Foster, Timothy J; Arakere, Gayathri; Svensson, Mattias; Norrby-Teglund, Anna

    2015-11-01

    Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D) tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of α-toxin and Panton-Valentine leukocidin (PVL), and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of α-toxin, and triggered limited tissue damage. α-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure α-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of α-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of α-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against α-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a human setting. The

  13. Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology

    PubMed Central

    Mairpady Shambat, Srikanth; Chen, Puran; Nguyen Hoang, Anh Thu; Bergsten, Helena; Vandenesch, Francois; Siemens, Nikolai; Lina, Gerard; Monk, Ian R.; Foster, Timothy J.; Arakere, Gayathri; Svensson, Mattias; Norrby-Teglund, Anna

    2015-01-01

    ABSTRACT Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D) tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of α-toxin and Panton-Valentine leukocidin (PVL), and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of α-toxin, and triggered limited tissue damage. α-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure α-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of α-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of α-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against α-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a human

  14. Role of TNFR1 in lung injury and altered lung function induced by the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    SciTech Connect

    Sunil, Vasanthi R.; Patel-Vayas, Kinal; Shen, Jianliang; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2011-02-01

    Lung toxicity induced by sulfur mustard is associated with inflammation and oxidative stress. To elucidate mechanisms mediating pulmonary damage, we used 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. Male mice (B6129) were treated intratracheally with CEES (3 or 6 mg/kg) or control. Animals were sacrificed 3, 7 or 14 days later and bronchoalveolar lavage (BAL) fluid and lung tissue collected. Treatment of mice with CEES resulted in an increase in BAL protein, an indication of alveolar epithelial damage, within 3 days. Expression of Ym1, an oxidative stress marker also increased in the lung, along with inducible nitric oxide synthase, and at 14 days, cyclooxygenase-2 and monocyte chemotactic protein-1, inflammatory proteins implicated in tissue injury. These responses were attenuated in mice lacking the p55 receptor for TNF{alpha} (TNFR1-/-), demonstrating that signaling via TNFR1 is key to CEES-induced injury, oxidative stress, and inflammation. CEES-induced upregulation of CuZn-superoxide dismutase (SOD) and MnSOD was delayed or absent in TNFR1-/- mice, relative to WT mice, suggesting that TNF{alpha} mediates early antioxidant responses to lung toxicants. Treatment of WT mice with CEES also resulted in functional alterations in the lung including decreases in compliance and increases in elastance. Additionally, methacholine-induced alterations in total lung resistance and central airway resistance were dampened by CEES. Loss of TNFR1 resulted in blunted functional responses to CEES. These effects were most notable in the airways. These data suggest that targeting TNF{alpha} signaling may be useful in mitigating lung injury, inflammation and functional alterations induced by vesicants.

  15. RC-3095, a Selective Gastrin-Releasing Peptide Receptor Antagonist, Does Not Protect the Lungs in an Experimental Model of Lung Ischemia-Reperfusion Injury

    PubMed Central

    Oliveira-Freitas, Vera L.; Thomaz, Leonardo Dalla Giacomassa Rocha; Simoneti, Lucas Elias Lise; Malfitano, Christiane; De Angelis, Kátia; Ulbrich, Jane Maria; Schwartsmann, Gilberto; Andrade, Cristiano Feijó

    2015-01-01

    RC-3095, a selective GRPR antagonist, has been shown to have anti-inflammatory properties in different models of inflammation. However, its protective effect on lungs submitted to lung ischemia-reperfusion injury has not been addressed before. Then, we administrated RC-3095 intravenously before and after lung reperfusion using an animal model of lung ischemia-reperfusion injury (LIRI) by clamping the pulmonary hilum. Twenty Wistar rats were subjected to an experimental model in four groups: SHAM, ischemia-reperfusion (IR), RC-Pre, and RC-Post. The final mean arterial pressure significantly decreased in IR and RC-Pre compared to their values before reperfusion (P < 0.001). The RC-Post group showed significant decrease of partial pressure of arterial oxygen at the end of the observation when compared to baseline (P = 0.005). Caspase-9 activity was significantly higher in the RC-Post as compared to the other groups (P < 0.013). No significant differences were observed in eNOS activity among the groups. The groups RC-Pre and RC-Post did not show any significant decrease in IL-1β (P = 0.159) and TNF-α (P = 0.260), as compared to IR. The histological score showed no significant differences among the groups. In conclusion, RC-3095 does not demonstrate a protective effect in our LIRI model. Additionally, its use after reperfusion seems to potentiate cell damage, stimulating apoptosis. PMID:25893195

  16. Viscoelastic Model for Lung Parenchyma for Multi-Scale Modeling of Respiratory System Phase I: Hypo-Elastic Model for CFD Implementation

    SciTech Connect

    Freed, Alan D.; Einstein, Daniel R.

    2011-04-14

    An isotropic constitutive model for the parenchyma of lung has been derived from the theory of hypo-elasticity. The intent is to use it to represent the mechanical response of this soft tissue in sophisticated, computational, fluid-dynamic models of the lung. This demands that the continuum model be accurate, yet simple and effcient. An objective algorithm for its numeric integration is provided. The response of the model is determined for several boundary-value problems whose experiments are used for material characterization. The effective elastic, bulk, and shear moduli, and Poisson’s ratio, as tangent functions, are also derived. The model is characterized against published experimental data for lung. A bridge between this continuum model and a dodecahedral model of alveolar geometry is investigated, with preliminary findings being reported.

  17. A decremental PEEP trial for determining open-lung PEEP in a rabbit model of acute lung injury.

    PubMed

    Hua, Yi-Ming; Lien, Shao-Hung; Liu, Tao-Yuan; Lee, Chuen-Ming; Yuh, Yeong-Seng

    2008-04-01

    A positive end-expiratory pressure (PEEP) above the lower inflection point (LIP) of the pressure-volume curve has been thought necessary to maintain recruited lung volume in acute lung injury (ALI). We used a strategy to identify the level of open-lung PEEP (OLP) by detecting the maximum tidal compliance during a decremental PEEP trial (DPT). We performed a randomized controlled study to compare the effect of the OLP to PEEP above LIP and zero PEEP on pulmonary mechanics, gas exchange, hemodynamic change, and lung injury in 26 rabbits with ALI. After recruitment maneuver, the lavage-injured rabbits received DPTs to identify the OLP. Animals were randomized to receive volume controlled ventilation with either: (a) PEEP = 0 cm H2O (ZEEP); (b) PEEP = 2 cm H2O above OLP (OLP + 2); or (c) PEEP = 2 cm H2O above LIP (LIP + 2). Peak inspiratory pressure and mean airway pressure were recorded and arterial blood gases were analyzed every 30 min. Mean blood pressure and heart rate were monitored continuously. Lung injury severity was assessed by lung wet/dry weight ratio. Animals in OLP + 2 group had less lung injury as well as relatively better compliance, more stable pH, and less hypercapnia compared to the LIP + 2 and ZEEP groups. We concluded that setting PEEP according to the OLP identified by DPTs is an effective method to attenuate lung injury. This strategy could be used as an indicator for optimal PEEP. The approach is simple and noninvasive and may be of clinical interest. PMID:18293413

  18. Therapeutic Effects of Bone Marrow-Derived Mesenchymal Stem Cells in Models of Pulmonary and Extrapulmonary Acute Lung Injury.

    PubMed

    Liu, Ling; He, Hongli; Liu, Airan; Xu, Jingyuan; Han, Jibin; Chen, Qihong; Hu, Shuling; Xu, Xiuping; Huang, Yingzi; Guo, Fengmei; Yang, Yi; Qiu, Haibo

    2015-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) offer a promising therapy for acute lung injury (ALI). However, whether the same MSC treatments possess similar potential for different ALI models is not fully clear. The present study evaluated the distribution and therapeutic effects of intravenous MSC administration for the treatment of intratracheal lipopolysaccharide (LPS)-induced intrapulmonary ALI and intravenous LPS/zymosan-induced extrapulmonary ALI, matched with lung injury severity, at 30 min and 1, 3, and 7 days. We found that MSC transplantation attenuated lung injury and inhibited lung inflammation in both ALI models. The benefits of MSCs were more significant in the intrapulmonary ALI mice. In vivo and ex vivo fluorescence imaging showed that MSCs primarily homed into the lung. However, more MSCs were recruited into the lungs of the intrapulmonary ALI mice than those of the extrapulmonary ALI mice over the time course. A few MSCs were also detected in the liver and spleen at days 3 and 7. In addition, the two ALI models showed different extrapulmonary organ dysfunction. A lower percentage of cell apoptosis and SDF-1α levels was found in the liver and spleen of the intrapulmonary ALI mice than in those of the extrapulmonary ALI mice. These results suggested that the two ALI models were accompanied with different degrees of extrapulmonary organ damage, which resulted in differences in the trafficking and accumulation of MSCs to the injured lung and consequently accounted for different therapeutic effects of MSCs for lung repair in the two ALI models. These data suggest that intravenous administration of MSCs has a greater potential for the treatment of intrapulmonary ALI than extrapulmonary ALI matched with lung injury severity; these differences were due to more recruitment of MSCs in the lungs of intrapulmonary ALI mice than those of extrapulmonary ALI mice. This finding may contribute to the clinical use of MSCs for the treatment of ALI. PMID

  19. Scaling of lunge feeding in rorqual whales: an integrated model of engulfment duration.

    PubMed

    Potvin, J; Goldbogen, J A; Shadwick, R E

    2010-12-01

    Rorqual whales (Balaenopteridae) obtain their food by lunge feeding, a dynamic process that involves the intermittent engulfment and filtering of large amounts of water and prey. During a lunge, whales accelerate to high speed and open their mouth wide, thereby exposing a highly distensible buccal cavity to the flow and facilitating its inflation. Unsteady hydrodynamic models suggest that the muscles associated with the ventral groove blubber undergo eccentric contraction in order to stiffen and control the inflation of the buccal cavity; in doing so the engulfed water mass is accelerated forward as the whale's body slows down. Although the basic mechanics of lunge feeding are relatively well known, the scaling of this process remains poorly understood, particularly with regards to its duration (from mouth opening to closure). Here we formulate a new theory of engulfment time which integrates prey escape behavior with the mechanics of the whale's body, including lunge speed and acceleration, gape angle dynamics, and the controlled inflation of the buccal cavity. Given that the complex interaction between these factors must be highly coordinated in order to maximize engulfment volume, the proposed formulation rests on the scenario of Synchronized Engulfment, whereby the filling of the cavity (posterior to the temporomandibular joint) coincides with the moment of maximum gape. When formulated specifically for large rorquals feeding on krill, our analysis predicts that engulfment time increases with body size, but in amounts dictated by the specifics of krill escape and avoidance kinematics. The predictions generated by the model are corroborated by limited empirical data on a species-specific basis, particularly for humpback and blue whales chasing krill. A sensitivity analysis applied to all possible sized fin whales also suggests that engulfment duration and lunge speed will increase intra-specifically with body size under a wide range of predator-prey scenarios

  20. Scaling of lunge feeding in rorqual whales: an integrated model of engulfment duration.

    PubMed

    Potvin, J; Goldbogen, J A; Shadwick, R E

    2010-12-01

    Rorqual whales (Balaenopteridae) obtain their food by lunge feeding, a dynamic process that involves the intermittent engulfment and filtering of large amounts of water and prey. During a lunge, whales accelerate to high speed and open their mouth wide, thereby exposing a highly distensible buccal cavity to the flow and facilitating its inflation. Unsteady hydrodynamic models suggest that the muscles associated with the ventral groove blubber undergo eccentric contraction in order to stiffen and control the inflation of the buccal cavity; in doing so the engulfed water mass is accelerated forward as the whale's body slows down. Although the basic mechanics of lunge feeding are relatively well known, the scaling of this process remains poorly understood, particularly with regards to its duration (from mouth opening to closure). Here we formulate a new theory of engulfment time which integrates prey escape behavior with the mechanics of the whale's body, including lunge speed and acceleration, gape angle dynamics, and the controlled inflation of the buccal cavity. Given that the complex interaction between these factors must be highly coordinated in order to maximize engulfment volume, the proposed formulation rests on the scenario of Synchronized Engulfment, whereby the filling of the cavity (posterior to the temporomandibular joint) coincides with the moment of maximum gape. When formulated specifically for large rorquals feeding on krill, our analysis predicts that engulfment time increases with body size, but in amounts dictated by the specifics of krill escape and avoidance kinematics. The predictions generated by the model are corroborated by limited empirical data on a species-specific basis, particularly for humpback and blue whales chasing krill. A sensitivity analysis applied to all possible sized fin whales also suggests that engulfment duration and lunge speed will increase intra-specifically with body size under a wide range of predator-prey scenarios

  1. Local Origin of Mesenchymal Cells in a Murine Orthotopic Lung Transplantation Model of Bronchiolitis Obliterans

    PubMed Central

    Mimura, Takeshi; Walker, Natalie; Aoki, Yoshiro; Manning, Casey M.; Murdock, Benjamin J.; Myers, Jeffery L.; Lagstein, Amir; Osterholzer, John J.; Lama, Vibha N.

    2016-01-01

    Bronchiolitis obliterans is the leading cause of chronic graft failure and long-term mortality in lung transplant recipients. Here, we used a novel murine model to characterize allograft fibrogenesis within a whole-lung microenvironment. Unilateral left lung transplantation was performed in mice across varying degrees of major histocompatibility complex mismatch combinations. B6D2F1/J (a cross between C57BL/6J and DBA/2J) (Haplotype H2b/d) lungs transplanted into DBA/2J (H2d) recipients were identified to show histopathology for bronchiolitis obliterans in all allogeneic grafts. Time course analysis showed an evolution from immune cell infiltration of the bronchioles and vessels at day 14, consistent with acute rejection and lymphocytic bronchitis, to subepithelial and intraluminal fibrotic lesions of bronchiolitis obliterans by day 28. Allografts at day 28 showed a significantly higher hydroxyproline content than the isografts (33.21 ± 1.89 versus 22.36 ± 2.33 μg/mL). At day 40 the hydroxyproline content had increased further (48.91 ± 7.09 μg/mL). Flow cytometric analysis was used to investigate the origin of mesenchymal cells in fibrotic allografts. Collagen I–positive cells (89.43% ± 6.53%) in day 28 allografts were H2Db positive, showing their donor origin. This novel murine model shows consistent and reproducible allograft fibrogenesis in the context of single-lung transplantation and represents a major step forward in investigating mechanisms of chronic graft failure. PMID:25848843

  2. Treatment of malignant effusion by oncolytic virotherapy in an experimental subcutaneous xenograft model of lung cancer

    PubMed Central

    2013-01-01

    Background Malignant pleural effusion (MPE) is associated with advanced stages of lung cancer and is mainly dependent on invasion of the pleura and expression of vascular endothelial growth factor (VEGF) by cancer cells. As MPE indicates an incurable disease with limited palliative treatment options and poor outcome, there is an urgent need for new and efficient treatment options. Methods In this study, we used subcutaneously generated PC14PE6 lung adenocarcinoma xenografts in athymic mice that developed subcutaneous malignant effusions (ME) which mimic pleural effusions of the orthotopic model. Using this approach monitoring of therapeutic intervention was facilitated by direct observation of subcutaneous ME formation without the need of sacrificing mice or special imaging equipment as in case of MPE. Further, we tested oncolytic virotherapy using Vaccinia virus as a novel treatment modality against ME in this subcutaneous PC14PE6 xenograft model of advanced lung adenocarcinoma. Results We demonstrated significant therapeutic efficacy of Vaccinia virus treatment of both advanced lung adenocarcinoma and tumor-associated ME. We attribute the efficacy to the virus-mediated reduction of tumor cell-derived VEGF levels in tumors, decreased invasion of tumor cells into the peritumoral tissue, and to viral infection of the blood vessel-invading tumor cells. Moreover, we showed that the use of oncolytic Vaccinia virus encoding for a single-chain antibody (scAb) against VEGF (GLAF-1) significantly enhanced mono-therapy of oncolytic treatment. Conclusions Here, we demonstrate for the first time that oncolytic virotherapy using tumor-specific Vaccinia virus represents a novel and promising treatment modality for therapy of ME associated with advanced lung cancer. PMID:23635329

  3. Targeting interleukin-13 with tralokinumab attenuates lung fibrosis and epithelial damage in a humanized SCID idiopathic pulmonary fibrosis model.

    PubMed

    Murray, Lynne A; Zhang, Huilan; Oak, Sameer R; Coelho, Ana Lucia; Herath, Athula; Flaherty, Kevin R; Lee, Joyce; Bell, Matt; Knight, Darryl A; Martinez, Fernando J; Sleeman, Matthew A; Herzog, Erica L; Hogaboam, Cory M

    2014-05-01

    The aberrant fibrotic and repair responses in the lung are major hallmarks of idiopathic pulmonary fibrosis (IPF). Numerous antifibrotic strategies have been used in the clinic with limited success, raising the possibility that an effective therapeutic strategy in this disease must inhibit fibrosis and promote appropriate lung repair mechanisms. IL-13 represents an attractive target in IPF, but its disease association and mechanism of action remains unknown. In the present study, an overexpression of IL-13 and IL-13 pathway markers was associated with IPF, particularly a rapidly progressive form of this disease. Targeting IL-13 in a humanized experimental model of pulmonary fibrosis using tralokinumab (CAT354) was found to therapeutically block aberrant lung remodeling in this model. However, targeting IL-13 was also found to promote lung repair and to restore epithelial integrity. Thus, targeting IL-13 inhibits fibrotic processes and enhances repair processes in the lung.

  4. Dynamic Characteristics of Mechanical Ventilation System of Double Lungs with Bi-Level Positive Airway Pressure Model

    PubMed Central

    Shen, Dongkai; Zhang, Qian

    2016-01-01

    In recent studies on the dynamic characteristics of ventilation system, it was considered that human had only one lung, and the coupling effect of double lungs on the air flow can not be illustrated, which has been in regard to be vital to life support of patients. In this article, to illustrate coupling effect of double lungs on flow dynamics of mechanical ventilation system, a mathematical model of a mechanical ventilation system, which consists of double lungs and a bi-level positive airway pressure (BIPAP) controlled ventilator, was proposed. To verify the mathematical model, a prototype of BIPAP system with a double-lung simulators and a BIPAP ventilator was set up for experimental study. Lastly, the study on the influences of key parameters of BIPAP system on dynamic characteristics was carried out. The study can be referred to in the development of research on BIPAP ventilation treatment and real respiratory diagnostics.

  5. Dynamic Characteristics of Mechanical Ventilation System of Double Lungs with Bi-Level Positive Airway Pressure Model

    PubMed Central

    Shen, Dongkai; Zhang, Qian

    2016-01-01

    In recent studies on the dynamic characteristics of ventilation system, it was considered that human had only one lung, and the coupling effect of double lungs on the air flow can not be illustrated, which has been in regard to be vital to life support of patients. In this article, to illustrate coupling effect of double lungs on flow dynamics of mechanical ventilation system, a mathematical model of a mechanical ventilation system, which consists of double lungs and a bi-level positive airway pressure (BIPAP) controlled ventilator, was proposed. To verify the mathematical model, a prototype of BIPAP system with a double-lung simulators and a BIPAP ventilator was set up for experimental study. Lastly, the study on the influences of key parameters of BIPAP system on dynamic characteristics was carried out. The study can be referred to in the development of research on BIPAP ventilation treatment and real respiratory diagnostics. PMID:27660646

  6. Regional pulmonary inflammation in an endotoxemic ovine acute lung injury model.

    PubMed

    Fernandez-Bustamante, A; Easley, R B; Fuld, M; Mulreany, D; Chon, D; Lewis, J F; Simon, B A

    2012-08-15

    The regional distribution of inflammation during acute lung injury (ALI) is not well known. In an ovine ALI model we studied regional alveolar inflammation, surfactant composition, and CT-derived regional specific volume change (sVol) and specific compliance (sC). 18 ventilated adult sheep received IV lipopolysaccharide (LPS) until severe ALI was achieved. Blood and bronchoalveolar lavage (BAL) samples from apical and basal lung regions were obtained at baseline and injury time points, for analysis of cytokines (IL-6, IL-1β), BAL protein and surfactant composition. Whole lung CT images were obtained in 4 additional sheep. BAL protein and IL-1β were significantly higher in injured apical vs. basal regions. No significant regional surfactant composition changes were observed. Baseline sVol and sC were lower in apex vs. base; ALI enhanced this cranio-caudal difference, reaching statistical significance only for sC. This study suggests that apical lung regions show greater inflammation than basal ones during IV LPS-induced ALI which may relate to differences in regional mechanical events.

  7. The protective effects of glutamine in a rat model of ventilator-induced lung injury

    PubMed Central

    Chen, Chin-Ming; Cheng, Kuo-Chen; Li, Chien-Feng

    2014-01-01

    Background The mortality rate of patients with acute respiratory distress syndrome (ARDS) is still high despite the use of protective ventilatory strategies. We sought to examine the pharmacological effects of glutamine (GLN) in a two-hit model of endotoxin-induced inflammation followed by ventilator-induced lung injury (VILI). We hypothesized that the administration of GLN ameliorates the VILI. Methods Sprague-Dawley rats were anesthetized and given lipopolysaccharide (LPS) intratracheally as a first hit to induce lung inflammation, followed 24 h later by a second hit of mechanical ventilation (MV) with either low tidal volume (6 mL/kg) with 5 cmH2O of positive end-expiratory pressure (PEEP) or high tidal volume (22 mL/kg) with zero PEEP for 4 h. GLN or lactated Ringer’s solution as the placebo was administered intravenously 15 min prior to MV. Results In the LPS-challenged rats ventilated with high tidal volume, the treatment with GLN improved lung injury indices, lung mechanics and cytokine responses compared with the placebo group. Conclusions The administration of GLN given immediately prior to MV may be beneficial in the context of reducing VILI. PMID:25589963

  8. Evaluation of Lung Metastasis in Mouse Mammary Tumor Models by Quantitative Real-time PCR

    PubMed Central

    Abt, Melissa A.; Grek, Christina L.; Ghatnekar, Gautam S.; Yeh, Elizabeth S.

    2016-01-01

    Metastatic disease is the spread of malignant tumor cells from the primary cancer site to a distant organ and is the primary cause of cancer associated death 1. Common sites of metastatic spread include lung, lymph node, brain, and bone 2. Mechanisms that drive metastasis are intense areas of cancer research. Consequently, effective assays to measure metastatic burden in distant sites of metastasis are instrumental for cancer research. Evaluation of lung metastases in mammary tumor models is generally performed by gross qualitative observation of lung tissue following dissection. Quantitative methods of evaluating metastasis are currently limited to ex vivo and in vivo imaging based techniques that require user defined parameters. Many of these techniques are at the whole organism level rather than the cellular level 3–6. Although newer imaging methods utilizing multi-photon microscopy are able to evaluate metastasis at the cellular level 7, these highly elegant procedures are more suited to evaluating mechanisms of dissemination rather than quantitative assessment of metastatic burden. Here, a simple in vitro method to quantitatively assess metastasis is presented. Using quantitative Real-time PCR (QRT-PCR), tumor cell specific mRNA can be detected within the mouse lung tissue. PMID:26862835

  9. Predicting lung dosimetry of inhaled particleborne benzo[a]pyrene using physiologically based pharmacokinetic modeling.

    PubMed

    Campbell, Jerry; Franzen, Allison; Van Landingham, Cynthia; Lumpkin, Michael; Crowell, Susan; Meredith, Clive; Loccisano, Anne; Gentry, Robinan; Clewell, Harvey

    2016-09-01

    Benzo[a]pyrene (BaP) is a by-product of incomplete combustion of fossil fuels and plant/wood products, including tobacco. A physiologically based pharmacokinetic (PBPK) model for BaP for the rat was extended to simulate inhalation exposures to BaP in rats and humans including particle deposition and dissolution of absorbed BaP and renal elimination of 3-hydroxy benzo[a]pyrene (3-OH BaP) in humans. The clearance of particle-associated BaP from lung based on existing data in rats and dogs suggest that the process is bi-phasic. An initial rapid clearance was represented by BaP released from particles followed by a slower first-order clearance that follows particle kinetics. Parameter values for BaP-particle dissociation were estimated using inhalation data from isolated/ventilated/perfused rat lungs and optimized in the extended inhalation model using available rat data. Simulations of acute inhalation exposures in rats identified specific data needs including systemic elimination of BaP metabolites, diffusion-limited transfer rates of BaP from lung tissue to blood and the quantitative role of macrophage-mediated and ciliated clearance mechanisms. The updated BaP model provides very good prediction of the urinary 3-OH BaP concentrations and the relative difference between measured 3-OH BaP in nonsmokers versus smokers. This PBPK model for inhaled BaP is a preliminary tool for quantifying lung BaP dosimetry in rat and humans and was used to prioritize data needs that would provide significant model refinement and robust internal dosimetry capabilities.

  10. Predicting lung dosimetry of inhaled particleborne benzo[a]pyrene using physiologically based pharmacokinetic modeling

    PubMed Central

    Campbell, Jerry; Franzen, Allison; Van Landingham, Cynthia; Lumpkin, Michael; Crowell, Susan; Meredith, Clive; Loccisano, Anne; Gentry, Robinan; Clewell, Harvey

    2016-01-01

    Abstract Benzo[a]pyrene (BaP) is a by-product of incomplete combustion of fossil fuels and plant/wood products, including tobacco. A physiologically based pharmacokinetic (PBPK) model for BaP for the rat was extended to simulate inhalation exposures to BaP in rats and humans including particle deposition and dissolution of absorbed BaP and renal elimination of 3-hydroxy benzo[a]pyrene (3-OH BaP) in humans. The clearance of particle-associated BaP from lung based on existing data in rats and dogs suggest that the process is bi-phasic. An initial rapid clearance was represented by BaP released from particles followed by a slower first-order clearance that follows particle kinetics. Parameter values for BaP-particle dissociation were estimated using inhalation data from isolated/ventilated/perfused rat lungs and optimized in the extended inhalation model using available rat data. Simulations of acute inhalation exposures in rats identified specific data needs including systemic elimination of BaP metabolites, diffusion-limited transfer rates of BaP from lung tissue to blood and the quantitative role of macrophage-mediated and ciliated clearance mechanisms. The updated BaP model provides very good prediction of the urinary 3-OH BaP concentrations and the relative difference between measured 3-OH BaP in nonsmokers versus smokers. This PBPK model for inhaled BaP is a preliminary tool for quantifying lung BaP dosimetry in rat and humans and was used to prioritize data needs that would provide significant model refinement and robust internal dosimetry capabilities. PMID:27569524

  11. Predicting lung dosimetry of inhaled particleborne benzo[a]pyrene using physiologically based pharmacokinetic modeling.

    PubMed

    Campbell, Jerry; Franzen, Allison; Van Landingham, Cynthia; Lumpkin, Michael; Crowell, Susan; Meredith, Clive; Loccisano, Anne; Gentry, Robinan; Clewell, Harvey

    2016-09-01

    Benzo[a]pyrene (BaP) is a by-product of incomplete combustion of fossil fuels and plant/wood products, including tobacco. A physiologically based pharmacokinetic (PBPK) model for BaP for the rat was extended to simulate inhalation exposures to BaP in rats and humans including particle deposition and dissolution of absorbed BaP and renal elimination of 3-hydroxy benzo[a]pyrene (3-OH BaP) in humans. The clearance of particle-associated BaP from lung based on existing data in rats and dogs suggest that the process is bi-phasic. An initial rapid clearance was represented by BaP released from particles followed by a slower first-order clearance that follows particle kinetics. Parameter values for BaP-particle dissociation were estimated using inhalation data from isolated/ventilated/perfused rat lungs and optimized in the extended inhalation model using available rat data. Simulations of acute inhalation exposures in rats identified specific data needs including systemic elimination of BaP metabolites, diffusion-limited transfer rates of BaP from lung tissue to blood and the quantitative role of macrophage-mediated and ciliated clearance mechanisms. The updated BaP model provides very good prediction of the urinary 3-OH BaP concentrations and the relative difference between measured 3-OH BaP in nonsmokers versus smokers. This PBPK model for inhaled BaP is a preliminary tool for quantifying lung BaP dosimetry in rat and humans and was used to prioritize data needs that would provide significant model refinement and robust internal dosimetry capabilities. PMID:27569524

  12. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis.

    PubMed

    Wollin, Lutz; Maillet, Isabelle; Quesniaux, Valérie; Holweg, Alexander; Ryffel, Bernhard

    2014-05-01

    The tyrosine kinase inhibitor nintedanib (BIBF 1120) is in clinical development for the treatment of idiopathic pulmonary fibrosis. To explore its mode of action, nintedanib was tested in human lung fibroblasts and mouse models of lung fibrosis. Human lung fibroblasts expressing platelet-derived growth factor (PDGF) receptor-α and -β were stimulated with platelet-derived growth factor BB (homodimer) (PDGF-BB). Receptor activation was assessed by autophosphorylation and cell proliferation by bromodeoxyuridine incorporation. Transforming growth factor β (TGFβ)-induced fibroblast to myofibroblast transformation was determined by α-smooth muscle actin (αSMA) mRNA analysis. Lung fibrosis was induced in mice by intratracheal bleomycin or silica particle administration. Nintedanib was administered every day by gavage at 30, 60, or 100 mg/kg. Preventive nintedanib treatment regimen started on the day that bleomycin was administered. Therapeutic treatment regimen started at various times after the induction of lung fibrosis. Bleomycin caused increased macrophages and lymphocytes in the bronchoalveolar lavage (BAL) and elevated interleukin-1β (IL-1β), tissue inhibitor of metalloproteinase-1 (TIMP-1), and collagen in lung tissue. Histology revealed chronic inflammation and fibrosis. Silica-induced lung pathology additionally showed elevated BAL neutrophils, keratinocyte chemoattractant (KC) levels, and granuloma formation. Nintedanib inhibited PDGF receptor activation, fibroblast proliferation, and fibroblast to myofibroblast transformation. Nintedanib significantly reduced BAL lymphocytes and neutrophils but not macrophages. Furthermore, interleukin-1β, KC, TIMP-1, and lung collagen were significantly reduced. Histologic analysis showed significantly diminished lung inflammation, granuloma formation, and fibrosis. The therapeutic effect was dependent on treatment start and duration. Nintedanib inhibited receptor tyrosine kinase activation and the proliferation and

  13. Lung cancer risk prediction to select smokers for screening CT--a model based on the Italian COSMOS trial.

    PubMed

    Maisonneuve, Patrick; Bagnardi, Vincenzo; Bellomi, Massimo; Spaggiari, Lorenzo; Pelosi, Giuseppe; Rampinelli, Cristiano; Bertolotti, Raffaella; Rotmensz, Nicole; Field, John K; Decensi, Andrea; Veronesi, Giulia

    2011-11-01

    Screening with low-dose helical computed tomography (CT) has been shown to significantly reduce lung cancer mortality but the optimal target population and time interval to subsequent screening are yet to be defined. We developed two models to stratify individual smokers according to risk of developing lung cancer. We first used the number of lung cancers detected at baseline screening CT in the 5,203 asymptomatic participants of the COSMOS trial to recalibrate the Bach model, which we propose using to select smokers for screening. Next, we incorporated lung nodule characteristics and presence of emphysema identified at baseline CT into the Bach model and proposed the resulting multivariable model to predict lung cancer risk in screened smokers after baseline CT. Age and smoking exposure were the main determinants of lung cancer risk. The recalibrated Bach model accurately predicted lung cancers detected during the first year of screening. Presence of nonsolid nodules (RR = 10.1, 95% CI = 5.57-18.5), nodule size more than 8 mm (RR = 9.89, 95% CI = 5.84-16.8), and emphysema (RR = 2.36, 95% CI = 1.59-3.49) at baseline CT were all significant predictors of subsequent lung cancers. Incorporation of these variables into the Bach model increased the predictive value of the multivariable model (c-index = 0.759, internal validation). The recalibrated Bach model seems suitable for selecting the higher risk population for recruitment for large-scale CT screening. The Bach model incorporating CT findings at baseline screening could help defining the time interval to subsequent screening in individual participants. Further studies are necessary to validate these models.

  14. In Vivo Evaluation of Lung Microwave Ablation in a Porcine Tumor Mimic Model

    SciTech Connect

    Planche, Olivier; Teriitehau, Christophe; Boudabous, Sana; Robinson, Joey Marie; Rao, Pramod; Deschamps, Frederic; Farouil, Geoffroy; Baere, Thierry de

    2013-02-15

    To evaluate the microwave ablation of created tumor mimics in the lung of a large animal model (pigs), with examination of the ablative synergy of multiple antennas. Fifty-six tumor-mimic models of various sizes were created in 15 pigs by using barium-enriched minced collected thigh muscle injected into the lung of the same animal. Tumors were ablated under fluoroscopic guidance by single-antenna and multiple-antenna microwaves. Thirty-five tumor models were treated in 11 pigs with a single antenna at 75 W for 15 min, with 15 measuring 20 mm in diameter, 10 measuring 30 mm, and 10 measuring 40 mm. Mean circularity of the single-antenna ablation zones measured 0.64 {+-} 0.12, with a diameter of 35.7 {+-} 8.7 mm along the axis of the antenna and 32.7 {+-} 12.8 mm perpendicular to the feeding point. Multiple-antenna delivery of 75 W for 15 min caused intraprocedural death of 2 animals; modified protocol to 60 W for 10 min resulted in an ablation zone with a diameter of 43.0 {+-} 7.7 along the axis of the antenna and 54.8 {+-} 8.5 mm perpendicular to the feeding point; circularity was 0.70 {+-} 0.10. A single microwave antenna can create ablation zones large enough to cover lung tumor mimic models of {<=}4 cm with no heat sink effect from vessels of {<=}6 mm. Synergic use of 3 antennas allows ablation of larger volumes than single-antenna or radiofrequency ablation, but great caution must be taken when 3 antennas are used simultaneously in the lung in clinical practice.

  15. Bioaerosols in the lungs of subjects with different ages-part 1: deposition modeling

    PubMed Central

    2016-01-01

    Background In this contribution the inhalation and deposition of bioaerosols including particles with various shapes and sizes were investigated for probands with different ages (1, 5, 15 and 20 y). The study should help to increase our knowledge with regard to the behavior of variably shaped and sized particles in lungs being subject to different developmental stages. Methods Simulation of particle transport and deposition in single structures of the respiratory tract was conducted by using a stochastic model of the tracheobronchial tree and well-validated analytical and empirical deposition formulae. Possible effects of particle geometry on deposition were taken into consideration by application of the aerodynamic diameter concept. Age-dependent lung morphometry and breathing parameters were computed by using appropriate scaling factors. Results Theoretical simulations came to the result that bioparticle deposition in infants and children clearly differs from that in adolescents and adults insofar as the amount of deposited mass exhibits a positive correlation with age. Nose breathing results in higher extrathoracic deposition rates than mouth breathing and, as a consequence of that, lower particle amounts are enabled to enter the lung structures after passing the nasal airways. Under sitting breathing conditions highest alveolar deposition rates were calculated for particles adopting aerodynamic diameters of 10 nm and 4 µm, respectively. Conclusions The study comes to the conclusion that bioparticles have a lower chance to reach the alveoli in infants’ and children’s lungs, but show a higher alveolar deposition probability in the lungs of adolescents and adults. Despite of this circumstance also young subjects may increasingly suffer from biogenic particle burden, when they are subject to a long-term exposure to certain bioaerosols. PMID:27386485

  16. Pulmonary Delivery of Butyrylcholinesterase as a Model Protein to the Lung.

    PubMed

    Rahhal, Tojan B; Fromen, Catherine A; Wilson, Erin M; Kai, Marc P; Shen, Tammy W; Luft, J Christopher; DeSimone, Joseph M

    2016-05-01

    Pulmonary delivery has great potential for delivering biologics to the lung if the challenges of maintaining activity, stability, and ideal aerosol characteristics can be overcome. To study the interactions of a biologic in the lung, we chose butyrylcholinesterase (BuChE) as our model enzyme, which has application for use as a bioscavenger protecting against organophosphate exposure or for use with pseudocholinesterase deficient patients. In mice, orotracheal administration of free BuChE resulted in 72 h detection in the lungs and 48 h in the broncheoalveolar lavage fluid (BALF). Free BuChE administered to the lung of all mouse backgrounds (Nude, C57BL/6, and BALB/c) showed evidence of an acute cytokine (IL-6, TNF-α, MIP2, and KC) and cellular immune response that subsided within 48 h, indicating relatively safe administration of this non-native biologic. We then developed a formulation of BuChE using Particle Replication in Non-Wetting Templates (PRINT). Aerosol characterization demonstrated biologically active BuChE 1 μm cylindrical particles with a mass median aerodynamic diameter of 2.77 μm, indicative of promising airway deposition via dry powder inhalers (DPI). Furthermore, particulate BuChE delivered via dry powder insufflation showed residence time of 48 h in the lungs and BALF. The in vivo residence time, immune response, and safety of particulate BuChE delivered via a pulmonary route, along with the cascade impaction distribution of dry powder PRINT BuChE, showed promise in the ability to deliver active enzymes with ideal deposition characteristics. These findings provide evidence for the feasibility of optimizing the use of BuChE in the clinic; PRINT BuChE particles can be readily formulated for use in DPIs, providing a convenient and effective treatment option. PMID:27012934

  17. Enhanced cough reflex in a model of bleomycin-induced lung fibrosis in guinea pigs.

    PubMed

    Fernández-Blanco, Joan Antoni; Aguilera, Mònica; Domènech, Anna; Tarrasón, Gema; Prats, Neus; Miralpeix, Montse; De Alba, Jorge

    2015-12-01

    Fibrotic lung diseases, such as idiopathic pulmonary fibrosis, are associated with spontaneous dry cough and hypersensitivity to tussive agents. Understanding the pathophysiology driving enhanced cough may help us to define better therapies for patients. We hypothesized that lung fibrosis induced by intratracheal bleomycin would exacerbate the cough reflex induced by tussive agents in guinea pigs. Disease progression in the lungs was characterized at days 1, 7, 14, 21 and 28 after bleomycin administration. Inflammatory and fibrotic markers, as well as neurotrophin levels, were assessed in bronchoalveolar lavage fluid and/or lung tissue. Cough sensitivity to citric acid, capsaicin and allylisothiocyanate was evaluated in conscious animals at days 14 and 21 after bleomycin administration. Pulmonary lesions evolved from an early inflammatory phase (from day 1 to day 7) to a fibrotic stage (between days 14 and 28). Fibrosis was related to increased levels of matrix metalloproteinase-2 in bronchoalveolar lavage fluid (day 21: saline, 0.26 ng/ml; bleomycin, 0.49 ng/ml). At day 14, we also observed increased cough reflexes to citric acid (163%), capsaicin (125%) and allylisothiocyanate (178%). Cough exacerbation persisted, but at a lower extent, by day 21 for capsaicin (100%) and allylisothiocyanate (54%). Moreover, bronchoalveolar lavage fluid concentrations of brain-derived neurotrophic factor, suggested to induce nerve remodelling in chronic cough, were also enhanced (day 1: saline, 14.21 pg/ml; bleomycin, 30.09 pg/ml). In summary, our model of bleomycin-induced cough exacerbation may be a valuable tool to investigate cough hypersensitivity and develop antitussive therapies for fibrotic lung diseases.

  18. Modeling Lung Carcinogenesis in Radon-Exposed Miner Cohorts: Accounting for Missing Information on Smoking.

    PubMed

    van Dillen, Teun; Dekkers, Fieke; Bijwaard, Harmen; Brüske, Irene; Wichmann, H-Erich; Kreuzer, Michaela; Grosche, Bernd

    2016-05-01

    Epidemiological miner cohort data used to estimate lung cancer risks related to occupational radon exposure often lack cohort-wide information on exposure to tobacco smoke, a potential confounder and important effect modifier. We have developed a method to project data on smoking habits from a case-control study onto an entire cohort by means of a Monte Carlo resampling technique. As a proof of principle, this method is tested on a subcohort of 35,084 former uranium miners employed at the WISMUT company (Germany), with 461 lung cancer deaths in the follow-up period 1955-1998. After applying the proposed imputation technique, a biologically-based carcinogenesis model is employed to analyze the cohort's lung cancer mortality data. A sensitivity analysis based on a set of 200 independent projections with subsequent model analyses yields narrow distributions of the free model parameters, indicating that parameter values are relatively stable and independent of individual projections. This technique thus offers a possibility to account for unknown smoking habits, enabling us to unravel risks related to radon, to smoking, and to the combination of both.

  19. An orthotopic mouse model of small cell lung cancer reflects the clinical course in patients.

    PubMed

    Taromi, Sanaz; Kayser, Gian; von Elverfeldt, Dominik; Reichardt, Wilfried; Braun, Friederike; Weber, Wolfgang A; Zeiser, Robert; Burger, Meike

    2016-10-01

    Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer with very poor prognosis due to early metastatic spread and development of chemoresistance. In the last 30 years the study of SCLC has been constrained by a lack of primary human tumor specimen thus highlighting the need of a suitable mouse model. In this article we present the establishment of an orthotopic xenograft mouse model which accurately reproduced the clinical course of SCLC. Orthotopic implantation enabled engraftment of primary lung tumors in all injected mice. Furthermore, immunodeficiency of mice allowed formation of spontaneous metastases in characteristic organs. Bioluminescence Imaging, Magnetic Resonance Imaging and Positron emission tomography were applied to monitor engraftment, metabolism and the exact growth of tumors over time. In order to mimic the extensive disease stage, mice were injected with aggressive human chemoresistant cells leading to development of chemoresistant tumors and early metastatic spread. As a proof of concept treatment of tumor-bearing mice with conventional chemotherapeutics reduced tumor volumes, but a complete regression of tumors was not achieved. By mimicking the extensive disease stage our mouse model can facilitate the study of mechanisms contributing to chemoresistance and metastasis formation, as well as drug screening and evaluation of new treatment strategies for SCLC patients. PMID:27380917

  20. Modeling Lung Carcinogenesis in Radon-Exposed Miner Cohorts: Accounting for Missing Information on Smoking.

    PubMed

    van Dillen, Teun; Dekkers, Fieke; Bijwaard, Harmen; Brüske, Irene; Wichmann, H-Erich; Kreuzer, Michaela; Grosche, Bernd

    2016-05-01

    Epidemiological miner cohort data used to estimate lung cancer risks related to occupational radon exposure often lack cohort-wide information on exposure to tobacco smoke, a potential confounder and important effect modifier. We have developed a method to project data on smoking habits from a case-control study onto an entire cohort by means of a Monte Carlo resampling technique. As a proof of principle, this method is tested on a subcohort of 35,084 former uranium miners employed at the WISMUT company (Germany), with 461 lung cancer deaths in the follow-up period 1955-1998. After applying the proposed imputation technique, a biologically-based carcinogenesis model is employed to analyze the cohort's lung cancer mortality data. A sensitivity analysis based on a set of 200 independent projections with subsequent model analyses yields narrow distributions of the free model parameters, indicating that parameter values are relatively stable and independent of individual projections. This technique thus offers a possibility to account for unknown smoking habits, enabling us to unravel risks related to radon, to smoking, and to the combination of both. PMID:27198876

  1. A Prediction Model for ROS1-Rearranged Lung Adenocarcinomas based on Histologic Features

    PubMed Central

    Zheng, Jing; Kong, Mei; Sun, Ke; Wang, Bo; Chen, Xi; Ding, Wei; Zhou, Jianying

    2016-01-01

    Aims To identify the clinical and histological characteristics of ROS1-rearranged non-small-cell lung carcinomas (NSCLCs) and build a prediction model to prescreen suitable patients for molecular testing. Methods and Results We identified 27 cases of ROS1-rearranged lung adenocarcinomas in 1165 patients with NSCLCs confirmed by real-time PCR and FISH and performed univariate and multivariate analyses to identify predictive factors associated with ROS1 rearrangement and finally developed prediction model. Detected with ROS1 immunochemistry, 59 cases of 1165 patients had a certain degree of ROS1 expression. Among these cases, 19 cases (68%, 19/28) with 3+ and 8 cases (47%, 8/17) with 2+ staining were ROS1 rearrangement verified by real-time PCR and FISH. In the resected group, the acinar-predominant growth pattern was the most commonly observed (57%, 8/14), while in the biopsy group, solid patterns were the most frequently observed (78%, 7/13). Based on multiple logistic regression analysis, we determined that female sex, cribriform structure and the presence of psammoma body were the three most powerful indicators of ROS1 rearrangement, and we have developed a predictive model for the presence of ROS1 rearrangements in lung adenocarcinomas. Conclusions Female, cribriform structure and presence of psammoma body were the three most powerful indicator of ROS1 rearrangement status, and predictive formula was helpful in screening ROS1-rearranged NSCLC, especially for ROS1 immunochemistry equivocal cases. PMID:27648828

  2. Two alternative models concerning the perialveolar microcirculation in mammalian lungs.

    PubMed

    Günther, Bruno; Morgado, Enrique; Cociña, Manuela

    2005-01-01

    Despite the fact that the concept of sheet-flow in the pulmonary microcirculation of mammals was introduced more than three decades ago, the capillary circulatory model still prevails in the physiological literature. Since cardiac output is identical in the systemic and in pulmonary circulations, it is noteworthy that in the former, the resulting arterial pressure is five times higher than that of the latter, which means that the corresponding microcirculations must be radically different. The present study addresses this problem from both morphological and physiological perspectives.

  3. Interferon-gamma increases hPepT1-mediated uptake of di-tripeptides including the bacterial tripeptide fMLP in polarized intestinal epithelia.

    PubMed

    Buyse, Marion; Charrier, Laetitia; Sitaraman, Shanthi; Gewirtz, Andrew; Merlin, Didier

    2003-11-01

    Interferon-gamma causes a global phenotypic switch in intestinal epithelial function, in which enterocytes become immune accessory cells. The phenotypic switch is characterized by a down-regulation of membrane transporters and up-regulation of immune accessory molecules in intestinal epithelial cells. However, the effect of interferon-gamma on the intestinal epithelia di-tripeptide hPepT1 transporter has not been investigated. In this study we demonstrate that 1) interferon-gamma increases di-tripeptide uptake in dose- and time-dependent manner in model intestinal epithelia (Caco-2 BBE cell monolayers), 2) the increase in di-tripeptides induced by interferon-gamma is hPepT1 mediated, 3) interferon-gamma does not affect the hPept1 expression at the mRNA and protein levels 4) interferon-gamma increases the intracellular pH and consequently enhances the H+-electrochemical gradient across apical plasma membrane in model intestinal epithelia (Caco2-BBE monolayers). We suggest that interferon-gamma could increase the hPepT1 mediated di-tripeptides uptake in inflamed epithelial cells. Under these conditions, interferon-gamma will increase the intracellular amount of such diverse prokaryotic and eucaryotic small di-tripeptides in inflamed epithelial cells. The intracellular accumulation of such di-tripeptides may be important in enterocytes becoming immune accessory cells.

  4. Lipoxin A4 Stimulates Calcium-Activated Chloride Currents and Increases Airway Surface Liquid Height in Normal and Cystic Fibrosis Airway Epithelia

    PubMed Central

    Al-Alawi, Mazen; Costello, Richard W.; McNally, Paul; Chiron, Raphaël; Harvey, Brian J.; Urbach, Valérie

    2012-01-01

    Cystic Fibrosis (CF) is a genetic disease characterised by a deficit in epithelial Cl− secretion which in the lung leads to airway dehydration and a reduced Airway Surface Liquid (ASL) height. The endogenous lipoxin LXA4 is a member of the newly identified eicosanoids playing a key role in ending the inflammatory process. Levels of LXA4 are reported to be decreased in the airways of patients with CF. We have previously shown that in normal human bronchial epithelial cells, LXA4 produced a rapid and transient increase in intracellular Ca2+. We have investigated, the effect of LXA4 on Cl− secretion and the functional consequences on ASL generation in bronchial epithelial cells obtained from CF and non-CF patient biopsies and in bronchial epithelial cell lines. We found that LXA4 stimulated a rapid intracellular Ca2+ increase in all of the different CF bronchial epithelial cells tested. In non-CF and CF bronchial epithelia, LXA4 stimulated whole-cell Cl− currents which were inhibited by NPPB (calcium-activated Cl− channel inhibitor), BAPTA-AM (chelator of intracellular Ca2+) but not by CFTRinh-172 (CFTR inhibitor). We found, using confocal imaging, that LXA4 increased the ASL height in non-CF and in CF airway bronchial epithelia. The LXA4 effect on ASL height was sensitive to bumetanide, an inhibitor of transepithelial Cl− secretion. The LXA4 stimulation of intracellular Ca2+, whole-cell Cl− currents, conductances and ASL height were inhibited by Boc-2, a specific antagonist of the ALX/FPR2 receptor. Our results provide, for the first time, evidence for a novel role of LXA4 in the stimulation of intracellular Ca2+ signalling leading to Ca2+-activated Cl− secretion and enhanced ASL height in non-CF and CF bronchial epithelia. PMID:22662206

  5. Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia

    PubMed Central

    2014-01-01

    Background TiO2 particles are commonly used as dietary supplements and may contain up to 36% of nano-sized particles (TiO2-NPs). Still impact and translocation of NPs through the gut epithelium is poorly documented. Results We show that, in vivo and ex vivo, agglomerates of TiO2-NPs cross both the regular ileum epithelium and the follicle-associated epithelium (FAE) and alter the paracellular permeability of the ileum and colon epithelia. In vitro, they accumulate in M-cells and mucus-secreting cells, much less in enterocytes. They do not cause overt cytotoxicity or apoptosis. They translocate through a model of FAE only, but induce tight junctions remodeling in the regular ileum epithelium, which is a sign of integrity alteration and suggests paracellular passage of NPs. Finally we prove that TiO2-NPs do not dissolve when sequestered up to 24 h in gut cells. Conclusions Taken together these data prove that TiO2-NPs would possibly translocate through both the regular epithelium lining the ileum and through Peyer’s patches, would induce epithelium impairment, and would persist in gut cells where they would possibly induce chronic damage. PMID:24666995

  6. Tubal Ligation Induces Quiescence in the Epithelia of the Fallopian Tube Fimbria.

    PubMed

    Tiourin, Ekaterina; Velasco, Victor S; Rosales, Miguel A; Sullivan, Peggy S; Janzen, Deanna M; Memarzadeh, Sanaz

    2015-10-01

    Tubal ligation keeps the fimbriated end of the fallopian tube intact while interrupting the conduit for sperm and egg between the uterus and ovary. Tubal ligation is associated with an approximately 20% decreased risk of high-grade serous ovarian cancers, which mounting evidence suggests arise from the distal fallopian tube epithelium. We postulated that biological changes at the epithelial cellular level of the distal fallopian tube may account for the surgical procedure's observed risk reduction. We compared the histology, presence of epithelial progenitors (basally located CD44-positive cells), and degree of epithelial proliferation (Ki67-positive cells) of distal fallopian tube from 10 patients with previous tubal ligation and 10 age-matched patients with uncut fallopian tubes. A significantly reduced population of proliferating epithelial progenitors (basally located CD44/Ki67 dual-positive cells) was detected in the tubal ligated specimens (P = .0002). To functionally assess the effect of tubal ligation, a murine model was utilized to compare the growth capacity of distal fallopian tube epithelial cells isolated from either ligated or sham-operated tubal epithelia. Murine fallopian tube epithelial cells isolated after tubal ligation showed a significantly reduced capacity to grow organoids in culture compared to sham-operated controls (P = .002). The findings of this study show that tubal ligation is associated with a reduced presence and decreased proliferation of progenitor cells in the distal fallopian tube epithelium. These compositional and functional changes suggest that tubal ligation induces quiescence of distal fallopian tube epithelial cells.

  7. Semi-empirical stochastic model of aerosol bolus dispersion in the human lung.

    PubMed

    Hofmann, Werner; Pawlak, Elzbieta; Sturm, Robert

    2008-09-01

    Aerosol bolus dispersion, that is, the broadening of an inhaled narrow aerosol bolus upon exhalation, was simulated by Monte Carlo methods using a stochastic, asymmetric morphometric model of the human lung. Physical mechanisms considered to contribute to bolus dispersion were (1) axial diffusion in conductive airways, approximated by effective diffusivities, (2) convective mixing at airway bifurcation sites, (3) differences in inspiratory and expiratory velocity profiles, (4) mixing with residual air in alveoli, and (5) inhomogeneous ventilation of the lung lobes due to asymmetric flow spitting at bifurcations and asymmetric and asynchronous filling of the five lung lobes. Theoretical predictions of the bolus dispersion model were compared to experimental data for 79 healthy volunteers, which provide detailed information on statistical bolus parameters (half-width, standard deviation, skewness, and mode shift) and total bolus deposition as a function of the depth of bolus penetration into the airway system. Predicted bolus dispersion and deposition data show excellent agreement with the published experimental data, suggesting that axial diffusion in conductive airways and convective mixing in alveoli, resulting in irreversible particle transport, are the major determinants of bolus dispersion. The variability and asymmetry of the branching airway network, leading to asymmetric flow splitting at airway bifurcations, greatly enhances the effect of irreversibility and the resulting dispersion of the inhaled bolus.

  8. Application of an artificial neural network model for selection of potential lung cancer biomarkers.

    PubMed

    Ligor, Tomasz; Pater, Łukasz; Buszewski, Bogusław

    2015-06-01

    Determination of volatile organic compounds (VOCs) in the exhaled breath samples of lung cancer patients and healthy controls was carried out by SPME-GC/MS (solid phase microextraction- gas chromatography combined with mass spectrometry) analyses. In order to compensate for the volatile exogenous contaminants, ambient air blank samples were also collected and analyzed. We recruited a total of 123 patients with biopsy-confirmed lung cancer and 361 healthy controls to find the potential lung cancer biomarkers. Automatic peak deconvolution and identification were performed using chromatographic data processing software (AMDIS with NIST database). All of the VOCs sample data operation, storage and management were performed using the SQL (structured query language) relational database. The selected eight VOCs could be possible biomarker candidates. In cross-validation on test data sensitivity was 63.5% and specificity 72.4% AUC 0.65. The low performance of the model has been mainly due to overfitting and the exogenous VOCs that exist in breath. The dedicated software implementing a multilayer neural network using a genetic algorithm for training was built. Further work is needed to confirm the performance of the created experimental model. PMID:25944812

  9. An advanced stochastic model for mucociliary particle clearance in cystic fibrosis lungs

    PubMed Central

    Sturm, Robert

    2012-01-01

    Background A mathematical model describing mucociliary clearance in cystic fibrosis (CF) patients and its development with progressing course of the disease was developed. The approach should support the prediction of the disease state on the basis of measured bronchial clearance efficiencies. Methods The approach is based on the assumption of a steady-state steady-flow mucus transport through the tracheobronchial tree which enables the determination of airway generation-specific mucus velocities by using a measured tracheal mucus velocity and a realistic morphometric dataset of the human lung. Architecture of the tracheobronchial tree was approximated by a stochastic model, reflecting the intra-subject variability of geometric parameters within a given lung generation. Results As predicted by the appropriately validated mathematical approach, mucociliary clearance efficiency in CF patients is partly significantly decreased with respect to healthy controls. 24-h retention of patients with mild CF (FEV1 >70% of predicted) is reduced by 10% compared to healthy subjects, whilst 24-h retention of patients with moderate to severe CF (FEV1 <70% of predicted) differs by 25% from that of the healthy controls. These discrepancies are further enhanced with continuation of the clearance process. Conclusions The theoretical results lead to the conclusion that CF patients have a higher risk of inhaled particle accumulation and related particle overload in specific lung compartments than healthy subjects. PMID:22295167

  10. A deformable lung tumor tracking method in fluoroscopic video using active shape models: a feasibility study.

    PubMed

    Xu, Qianyi; Hamilton, Russell J; Schowengerdt, Robert A; Jiang, Steve B

    2007-09-01

    A dynamic multi-leaf collimator (DMLC) can be used to track a moving target during radiotherapy. One of the major benefits for DMLC tumor tracking is that, in addition to the compensation for tumor translational motion, DMLC can also change the aperture shape to conform to a deforming tumor projection in the beam's eye view. This paper presents a method that can track a deforming lung tumor in fluoroscopic video using active shape models (ASM) (Cootes et al 1995 Comput. Vis. Image Underst. 61 38-59). The method was evaluated by comparing tracking results against tumor projection contours manually edited by an expert observer. The evaluation shows the feasibility of using this method for precise tracking of lung tumors with deformation, which is important for DMLC-based real-time tumor tracking.

  11. Application to Rat Lung of the Extended Rorschach-Hazlewood Model of Spin-Lattice Relaxation

    NASA Astrophysics Data System (ADS)

    Hackmann, Andreas; Ailion, David C.; Ganesan, Krishnamurthy; Goodrich, K. Craig; Chen, Songhua; Laicher, Gernot; Cutillo, Antonio G.

    1996-02-01

    The spin-lattice relaxation timeT1was measured in excised degassed (airless) rat lungs over the frequency range 6.7 to 80.5 MHz. The observed frequency dependence was fitted successfully to the water-biopolymer cross-relaxation theory proposed by H. E. Rorschach and C. F. Hazlewood (RH) [J. Magn. Reson.70,79 (1986)]. The rotating frame spin-lattice relaxation timeT1ρwas also measured in rat lung fragments over the frequency range 0.56 to 5.6 kHz, and the observed frequency dependence was explained with an extension of the RH model. The agreement between the theory and the experimental data in both cases is good.

  12. Cellular targets of estrogen signaling in regeneration of inner ear sensory epithelia

    PubMed Central

    McCullar, Jennifer S.; Oesterle, Elizabeth C.

    2010-01-01

    Estrogen signaling in auditory and vestibular sensory epithelia is a newly emerging focus propelled by the role of estrogen signaling in many other proliferative systems. Understanding the pathways with which estrogen interacts can provide a means to identify how estrogen may modulate proliferative signaling in inner ear sensory epithelia. Reviewed herein are two signaling families, EGF and TGFβ. Both pathways are involved in regulating proliferation of supporting cells in mature vestibular sensory epithelia and have well characterized interactions with estrogen signaling in other systems. It is becoming increasingly clear that elucidating the complexity of signaling in regeneration will be necessary for development of therapeutics that can initiate regeneration and prevent progression to a pathogenic state. PMID:19450430

  13. Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts.

    PubMed

    Hong, Y; Stronach, B; Perrimon, N; Jan, L Y; Jan, Y N

    2001-12-01

    Establishing cellular polarity is critical for tissue organization and function. Initially discovered in the landmark genetic screen for Drosophila developmental mutants, bazooka, crumbs, shotgun and stardust mutants exhibit severe disruption in apicobasal polarity in embryonic epithelia, resulting in multilayered epithelia, tissue disintegration, and defects in cuticle formation. Here we report that stardust encodes single PDZ domain MAGUK (membrane-associated guanylate kinase) proteins that are expressed in all primary embryonic epithelia from the onset of gastrulation. Stardust colocalizes with Crumbs at the apicolateral boundary, although their expression patterns in sensory organs differ. Stardust binds to the carboxy terminus of Crumbs in vitro, and Stardust and Crumbs are mutually dependent in their stability, localization and function in controlling the apicobasal polarity of epithelial cells. However, for the subset of ectodermal cells that delaminate and form neuroblasts, their polarity requires the function of Bazooka, but not of Stardust or Crumbs.

  14. Ablation of Coactivator Med1 Switches the Cell Fate of Dental Epithelia to That Generating Hair

    PubMed Central

    Nguyen, Thai; Sakai, Kiyoshi; He, Bing; Fong, Chak; Oda, Yuko

    2014-01-01

    Cell fates are determined by specific transcriptional programs. Here we provide evidence that the transcriptional coactivator, Mediator 1 (Med1), is essential for the cell fate determination of ectodermal epithelia. Conditional deletion of Med1 in vivo converted dental epithelia into epidermal epithelia, causing defects in enamel organ development while promoting hair formation in the incisors. We identified multiple processes by which hairs are generated in Med1 deficient incisors: 1) dental epithelial stem cells lacking Med 1 fail to commit to the dental lineage, 2) Sox2-expressing stem cells extend into the differentiation zone and remain multi-potent due to reduced Notch1 signaling, and 3) epidermal fate is induced by calcium as demonstrated in dental epithelial cell cultures. These results demonstrate that Med1 is a master regulator in adult stem cells to govern epithelial cell fate. PMID:24949995

  15. Loss of TGFβ Signaling Destabilizes Homeostasis and Promotes Squamous Cell Carcinomas in Stratified Epithelia

    PubMed Central

    Guasch, Géraldine; Schober, Markus; Pasolli, H. Amalia; Conn, Emily Belmont; Polak, Lisa; Fuchs, Elaine

    2008-01-01

    SUMMARY Although TGFβ is a potent inhibitor of proliferation, epithelia lacking the essential receptor (TβRII) for TGFβ signaling display normal tissue homeostasis. By studying asymptomatic TβRII-deficient stratified epithelia, we show that tissue homeostasis is maintained by balancing hyperproliferation with elevated apoptosis. Moreover, rectal and genital epithelia, which are naturally proliferative, develop spontaneous squamous cell carcinomas with age when TβRII is absent. This progression is associated with a reduction in apoptosis and can be accelerated in phenotypically normal epidermis by oncogenic mutations in Ras. We show that TβRII deficiency leads to enhanced keratinocyte motility and integrin-FAK-Src signaling. Together, these mechanisms provide a molecular framework to account for many of the characteristics of TβRII-deficient invasive SQCCs. PMID:17936557

  16. Lamb Model of Respiratory Syncytial Virus–Associated Lung Disease: Insights to Pathogenesis and Novel Treatments

    PubMed Central

    Ackermann, Mark R.

    2014-01-01

    Preterm birth is a risk factor for respiratory syncytial virus (RSV) bronchiolitis and hospitalization. The pathogenesis underlying this is not fully understood, and in vivo studies are needed to better clarify essential cellular features and molecular mechanisms. Such studies include analysis of lung tissue from affected human infants and various animal models. The preterm and newborn lamb lung has developmental, structural, cellular, physiologic, and immunologic features similar to that of human infants. Also, the lamb lung is susceptible to various strains of RSV that infect infants and cause similar bronchiolar lesions. Studies in lambs suggest that viral replication in airways (especially bronchioles) is extensive by 4 days after infection, along with bronchiolitis characterized by degeneration and necrosis of epithelial cells, syncytial cell formation, neutrophil infiltration, epithelial cell hypertrophy and hyperplasia, and innate and adaptive immune responses. RSV bronchiolitis greatly affects airflow and gaseous exchange. RSV disease severity is increased in preterm lambs compared with full-term lambs; similar to human infants. The lamb is conducive to experimental assessment of novel, mechanistic therapeutic interventions such as delivery of vascular endothelial growth factor and enhancement of airway epithelial oxidative responses, Club (Clara) cell protein 10, and synthesized compounds such as nanobodies. In contrast, exposure of the fetal ovine lung in vivo to ethanol, a risk factor for preterm birth, reduces pulmonary alveolar development and surfactant protein A expression. Because the formalin-inactivated RSV vaccination enhances some inflammatory responses to RSV infection in lambs, this model has the potential to assess mechanisms of formalin-inactivated RSV enhanced disease as well as newly developed vaccines. PMID:24936027

  17. Size Influences the Effect of Hydrophobic Nanoparticles on Lung Surfactant Model Systems

    PubMed Central

    Dwivedi, Mridula V.; Harishchandra, Rakesh Kumar; Koshkina, Olga; Maskos, Michael; Galla, Hans-Joachim

    2014-01-01

    The alveolar lung surfactant (LS) is a complex lipid protein mixture that forms an interfacial monolayer reducing the surface tension to near zero values and thus preventing the lungs from collapse. Due to the expanding field of nanotechnology and the corresponding unavoidable exposure of human beings from the air, it is crucial to study the potential effects of nanoparticles (NPs) on the structural organization of the lung surfactant system. In the present study, we investigated both, the domain structure in pure DPPC monolayers as well as in lung surfactant model systems. In the pure lipid system we found that two different sized hydrophobic polymeric nanoparticles with diameter of ∼12 nm and ∼136 nm have contrasting effect on the functional and structural behavior. The small nanoparticles inserted into fluid domains at the LE-LC phase transition are not visibly disturbing the phase transition but disrupting the domain morphology of the LE phase. The large nanoparticles led to an expanded isotherm and to a significant decrease in the line tension and thus to a drastic disruption of the domain structures at a much lower number of nanoparticles with respect to the lipid. The surface activity of the model LS films again showed drastic variations due to presence of different sized NPs illustrated by the film balance isotherms and the atomic force microscopy. AFM revealed laterally profuse multilayer protrusion formation on compression but only in the presence of 136 nm sized nanoparticles. Moreover we investigated the vesicle insertion process into a preformed monolayer. A severe inhibition was observed only in the presence of ∼136 nm NPs compared to minor effects in the presence of ∼12 nm NPs. Our study clearly shows that the size of the nanoparticles made of the same material determines the interaction with biological membranes. PMID:24411261

  18. Home energy efficiency and radon related risk of lung cancer: modelling study

    PubMed Central

    Milner, James; Shrubsole, Clive; Das, Payel; Jones, Benjamin; Ridley, Ian; Chalabi, Zaid; Hamilton, Ian; Armstrong, Ben; Davies, Michael

    2014-01-01

    Objective To investigate the effect of reducing home ventilation as part of household energy efficiency measures on deaths from radon related lung cancer. Design Modelling study. Setting England. Intervention Home energy efficiency interventions, motivated in part by targets for reducing greenhouse gases, which entail reduction in uncontrolled ventilation in keeping with good practice guidance. Main outcome measures Modelled current and future distributions of indoor radon levels for the English housing stock and associated changes in life years due to lung cancer mortality, estimated using life tables. Results Increasing the air tightness of dwellings (without compensatory purpose-provided ventilation) increased mean indoor radon concentrations by an estimated 56.6%, from 21.2 becquerels per cubic metre (Bq/m3) to 33.2 Bq/m3. After the lag in lung cancer onset, this would result in an additional annual burden of 4700 life years lost and (at peak) 278 deaths. The increases in radon levels for the millions of homes that would contribute most of the additional burden are below the threshold at which radon remediation measures are cost effective. Fitting extraction fans and trickle ventilators to restore ventilation will help offset the additional burden but only if the ventilation related energy efficiency gains are lost. Mechanical ventilation systems with heat recovery may lower radon levels and the risk of cancer while maintaining the advantage of energy efficiency for the most airtight dwellings but there is potential for a major adverse impact on health if such systems fail. Conclusion Unless specific remediation is used, reducing the ventilation of dwellings will improve energy efficiency only at the expense of population wide adverse impact on indoor exposure to radon and risk of lung cancer. The implications of this and other consequences of changes to ventilation need to be carefully evaluated to ensure that the desirable health and environmental benefits of

  19. Increased intestinal protein permeability in a model of lung injury induced by phorbol myristate acetate.

    PubMed

    St John, R C; Mizer, L A; Weisbrode, S E; Dorinsky, P M

    1991-11-01

    Multiple nonpulmonary organ failure is a frequent complication of the adult respiratory distress syndrome (ARDS), and contributes significantly to the high mortality rate associated with this disorder. Although previous studies suggest that systemic organ injury may be an integral component of ARDS, little is known about the specific functional alterations that occur in these target organs. The present study was designed, therefore, to test the hypothesis that endothelial damage, as assessed by microvascular permeability changes, develops in systemic organs in a model of acute lung injury. To test this postulate, the microvascular permeability for total protein was estimated using the steady-state relationship between the lymph (CL) to plasma (Cp) protein concentration ratio (i.e., CL/Cp) and lymph flow in autoperfused cat ileum preparations. Specifically, CL/Cp was measured in five cats, 2 h after acute lung injury was induced by intravenously administered phorbol myristate acetate (PMA), 15 micrograms/kg, and the results were compared with those of seven time-matched control animals. Prior to PMA infusion, the PaO2/FIO2 ratio was 451 +/- 28 in both groups and remained unchanged (486 +/- 26) in the control group. By contrast, the PaO2/FIO2 ratio fell to 275 +/- 95 after PMA infusion (p less than 0.05). In addition, whereas CL/Cp was 0.099 +/- 0.008 in the control animals, it increased to 0.36 +/- 0.06 in the PMA-injured animals (p less than 0.01). In summary, this study demonstrated that in this model of acute lung injury produced by PMA-induced activation of circulating inflammatory cells, both acute lung injury and systemic organ injury (i.e., morphologic and permeability alterations) occurred.

  20. Hydrogen Sulfide Decreases Reactive Oxygen in a Model of Lung Transplantation

    PubMed Central

    George, Timothy J.; Arnaoutakis, George J.; Beaty, Claude A.; Jandu, Simran K.; Santhanam, Lakshmi; Berkowitz, Dan E.; Shah, Ashish S.

    2012-01-01

    Objectives Ischemia-reperfusion injury(IRI) is a common complication following lung transplantation(LTx). IRI is thought to be mediated by reactive oxygen species(ROS). Hydrogen sulfide(H2S) is a novel agent that has been previously shown to scavenge ROS and slow metabolism. We evaluated the impact of infused H2S on the presence of ROS after reperfusion in an ex vivo model of LTx. Methods Heart-Lung blocks were recovered from New Zealand White rabbits(n=12) and cold stored in Perfadex solution for 18 hours. Following storage, the heart-lung blocks were reperfused ex vivo with donor rabbit blood. In the treatment group(n=7), a bolus of sodium hydrogen sulfide was added at the beginning of reperfusion(100ug/kg) and continuously infused throughout the two hour experiment(1mg/kg/hr). The vehicle group(n=5) received an equivalent volume of saline. Serial airway and pulmonary artery pressures were measured along with arterial and venous blood gases. Results Oxygenation and pulmonary artery pressures were similar between the two groups. However, treatment with H2S resulted in a dramatic reduction in the presence of ROS after 2 hours of reperfusion(4851 ± 2139 vs. 235 ± 462 RFU/mg protein, p=0.003). There was a trend toward increased levels of cGMP in the H2S treated group(3.08 ± 1.69 vs. 1.73 ± 1.41 fmol/mg tissue, p=0.23). Conclusions After prolonged ischemia, infusion of H2S during reperfusion is associated with a significant decrease in the presence of ROS, a suspected mediator of IRI. To our knowledge, this study represents the first reported therapeutic use of H2S in an experimental model of lung transplant. PMID:22464394

  1. Models for comparing lung-cancer risks in radon- and plutonium-exposed experimental animals

    SciTech Connect

    Gilbert, E.S.; Cross, F.T.; Sanders, C.L.; Dagle, G.E.

    1990-10-01

    Epidemiologic studies of radon-exposed underground miners have provided the primary basis for estimating human lung-cancer risks resulting from radon exposure. These studies are sometimes used to estimate lung-cancer risks resulting from exposure to other alpha- emitters as well. The latter use, often referred to as the dosimetric approach, is based on the assumption that a specified dose to the lung produces the same lung-tumor risk regardless of the substance producing the dose. At Pacific Northwest Laboratory, experiments have been conducted in which laboratory rodents have been given inhalation exposures to radon and to plutonium ({sup 239}PuO{sub 2}). These experiments offer a unique opportunity to compare risks, and thus to investigate the validity of the dosimetric approach. This comparison is made most effectively by modeling the age-specific risk as a function of dose in a way that is comparable to analyses of human data. Such modeling requires assumptions about whether tumors are the cause of death or whether they are found incidental to death from other causes. Results based on the assumption that tumors are fatal indicate that the radon and plutonium dose-response curves differ, with a linear function providing a good description of the radon data, and a pure quadratic function providing a good description of the plutonium data. However, results based on the assumption that tumors are incidental to death indicate that the dose-response curves for the two exposures are very similar, and thus support the dosimetric approach. 14 refs., 2 figs., 6 tabs.

  2. Respiratory tract lung geometry and dosimetry model for male Sprague-Dawley rats.

    SciTech Connect

    Miller, Frederick J.; Asgharian, Bahman; Schroeter, Jeffry D.; Price, Owen; Corley, Richard A.; Einstein, Daniel R.; Jacob, Rick E.; Cox, Timothy C.; Kabilan, Senthil; Bentley, Timothy

    2014-08-26

    While inhalation toxicological studies of various compounds have been conducted using a number of different strains of rats, mechanistic dosimetry models have only had tracheobronchial (TB) structural data for Long-Evans rats, detailed morphometric data on the alveolar region of Sprague-Dawley rats and limited alveolar data on other strains. Based upon CT imaging data for two male Sprague-Dawley rats, a 15-generation, symmetric typical path model was developed for the TB region. Literature data for the alveolar region of Sprague-Dawley rats were analyzed to develop an eight-generation model, and the two regions were joined to provide a complete lower respiratory tract model for Sprague-Dawley rats. The resulting lung model was used to examine particle deposition in Sprague-Dawley rats and to compare these results with predicted deposition in Long-Evans rats. Relationships of various physiologic variables and lung volumes were either developed in this study or extracted from the literature to provide the necessary input data for examining particle deposition. While the lengths, diameters and branching angles of the TB airways differed between the two Sprague- Dawley rats, the predicted deposition patterns in the three major respiratory tract regions were very similar. Between Sprague-Dawley and Long-Evans rats, significant differences in TB and alveolar predicted deposition fractions were observed over a wide range of particle sizes, with TB deposition fractions being up to 3- to 4-fold greater in Sprague-Dawley rats and alveolar deposition being significantly greater in Long-Evans rats. Thus, strain-specific lung geometry models should be used for particle deposition calculations and interspecies dose comparisons.

  3. Respiratory Tract Lung Geometry and Dosimetry Model for Male Sprague-Dawley Rats

    SciTech Connect

    Miller, Frederick J.; Asgharian, Bahman; Schroeter, Jeffry D.; Price, Owen; Corley, Richard A.; Einstein, Daniel R.; Jacob, Rick E.; Cox, Timothy C.; Kabilan, Senthil; Bentley, Timothy

    2015-07-24

    While inhalation toxicological studies of various compounds have been conducted using a number of different strains of rats, mechanistic dosimetry models have only had tracheobronchial (TB) structural data for Long-Evans rats, detailed morphometric data on the alveolar region of Sprague-Dawley rats and limited alveolar data on other strains. Based upon CT imaging data for two male Sprague-Dawley rats, a 15-generation, symmetric typical path model was developed for the TB region. Literature data for the alveolar region of Sprague-Dawley rats were analyzed to develop an eight-generation model, and the two regions were joined to provide a complete lower respiratory tract model for Sprague-Dawley rats. The resulting lung model was used to examine particle deposition in Sprague-Dawley rats and to compare these results with predicted deposition in Long-Evans rats. Relationships of various physiologic variables and lung volumes were either developed in this study or extracted from the literature to provide the necessary input data for examining particle deposition. While the lengths, diameters and branching angles of the TB airways differed between the two Sprague-Dawley rats, the predicted deposition patterns in the three major respiratory tract regions were very similar. Between Sprague-Dawley and Long-Evans rats, significant differences in TB and alveolar predicted deposition fractions were observed over a wide range of particle sizes, with TB deposition fractions being up to 3- to 4-fold greater in Sprague-Dawley rats and alveolar deposition being significantly greater in Long-Evans rats. Thus, strain-specific lung geometry models should be used for particle deposition calculations and interspecies dose comparisons.

  4. Numerical simulation of air flow in a model of lungs with mouth cavity

    NASA Astrophysics Data System (ADS)

    Elcner, Jakub; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav

    2012-04-01

    The air flow in a realistic geometry of human lung is simulated with computational flow dynamics approach as stationary inspiration. Geometry used for the simulation includes oral cavity, larynx, trachea and bronchial tree up to the seventh generation of branching. Unsteady RANS approach was used for the air flow simulation. Velocities corresponding to 15, 30 and 60 litres/min of flow rate were set as boundary conditions at the inlet to the model. These flow rates are frequently used as a representation of typical human activities. Character of air flow in the model for these different flow rates is discussed with respect to future investigation of particle deposition.

  5. Prognostic modeling in early stage lung cancer: an evolving process from histopathology to genomics.

    PubMed

    Harpole, David H

    2007-05-01

    The goal is to validate a molecular-based tumor model that identifies patients at low-risk for cancer recurrence and who will not benefit from adjuvant chemotherapy. The remaining patients will be randomized to observation (present standard of care) or adjuvant chemotherapy to determine efficacy of adjuvant in this population. Investigators have focused on the identification of markers that may predict poor prognosis as a way to "enrich" the population by separating those likely to have early recurrence and cancer death from those not needing additional treatment after resection. The initial projects refined predictive models of cancer recurrence after resection for patients with early stage non-small cell lung cancer.

  6. Expression of keratins in normal, immortalized and malignant oral epithelia in organotypic culture.

    PubMed

    Hansson, A; Bloor, B K; Haig, Y; Morgan, P R; Ekstrand, J; Grafström, R C

    2001-07-01

    Keratins have been extensively studied in tissues and cultured keratinocytes but limited information is available on epithelia reconstructed in vitro. The aim of this study was to examine keratin expression in organotypic epithelia with normal (NOK), immortalized (SVpgC2a) and malignant (SqCC/Y1) human buccal cells. Organotypic epithelia were derived from 10 days of culture at the air-liquid interface of collagen gels containing human oral fibroblasts using a standardized serum-free medium. Sections were stained immunohistochemically with selected mono-specific antibodies to a range of keratins. Organotypic epithelia showed sharp differences in keratin expression and distribution. K4/K13, K1/K10, K6/K16 were variably expressed in NOK and SqCC/Y1 but were not detected in SVpgC2a. K5 was expressed in all organotypic epithelia but K14 was absent in SVpgC2a. K7 and K8 showed variable expression while K18 was expressed uniformly in all epithelia. K19 was expressed consistently in NOK and K20 was distributed heterogeneously in SVpgC2a. Overall, organotypic cultures of normal keratinocytes express many of the same keratins as buccal mucosa. Further, the loss of keratins in SVpgC2a and their retention in SqCC/Y1 have several features in common with the respective keratin profile of oral epithelial dysplasia and well-differentiated oral squamous cell carcinoma. Although qualitative and quantitative differences exist compared to keratin expression in vivo, these cell lines in organotypic culture may serve in studies of the multi-step progression of oral cancer.

  7. Hierarchical Bayesian modeling of spatio-temporal patterns of lung cancer incidence risk in Georgia, USA: 2000-2007

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Mu, Lan; Madden, Marguerite; Vena, John E.

    2014-10-01

    Lung cancer is the second most commonly diagnosed cancer in both men and women in Georgia, USA. However, the spatio-temporal patterns of lung cancer risk in Georgia have not been fully studied. Hierarchical Bayesian models are used here to explore the spatio-temporal patterns of lung cancer incidence risk by race and gender in Georgia for the period of 2000-2007. With the census tract level as the spatial scale and the 2-year period aggregation as the temporal scale, we compare a total of seven Bayesian spatio-temporal models including two under a separate modeling framework and five under a joint modeling framework. One joint model outperforms others based on the deviance information criterion. Results show that the northwest region of Georgia has consistently high lung cancer incidence risk for all population groups during the study period. In addition, there are inverse relationships between the socioeconomic status and the lung cancer incidence risk among all Georgian population groups, and the relationships in males are stronger than those in females. By mapping more reliable variations in lung cancer incidence risk at a relatively fine spatio-temporal scale for different Georgian population groups, our study aims to better support healthcare performance assessment, etiological hypothesis generation, and health policy making.

  8. Proteomic Analysis of Lung Tissue in a Rat Acute Lung Injury Model: Identification of PRDX1 as a Promoter of Inflammation

    PubMed Central

    Liu, Dongdong; Mao, Pu; Huang, Yongbo; Liu, Yiting; Liu, Xiaoqing; Pang, Xiaoqing; Li, Yimin

    2014-01-01

    Acute respiratory distress syndrome (ARDS) remains a high morbidity and mortality disease entity in critically ill patients, despite decades of numerous investigations into its pathogenesis. To obtain global protein expression changes in acute lung injury (ALI) lung tissues, we employed a high-throughput proteomics method to identify key components which may be involved in the pathogenesis of ALI. In the present study, we analyzed lung tissue proteomes of Pseudomonas aeruginosa-induced ALI rats and identified eighteen proteins whose expression levels changed more than twofold as compared to normal controls. In particular, we found that PRDX1 expression in culture medium was elevated by a lipopolysaccharide (LPS) challenge in airway epithelial cells in vitro. Furthermore, overexpression of PRDX1 increased the expression of proinflammatory cytokines interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α), whereas knockdown of PRDX1 led to downregulated expression of cytokines induced by LPS. In conclusion, our findings provide a global alteration in the proteome of lung tissues in the ALI rat model and indicate that PRDX1 may play a critical role in the pathogenesis of ARDS by promoting inflammation and represent a novel strategy for the development of new therapies against ALI. PMID:25024510

  9. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia.

    PubMed

    Windoffer, Reinhard; Beil, Michael; Magin, Thomas M; Leube, Rudolf E

    2011-09-01

    Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type-specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis-independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function.

  10. Stable Small Animal Mechanical Ventilation for Dynamic Lung Imaging to Support Computational Fluid Dynamics Models

    SciTech Connect

    Jacob, Rick E.; Lamm, W. J.

    2011-11-08

    Pulmonary computational fluid dynamics models require 3D images to be acquired over multiple points in the dynamic breathing cycle, with no breath holds or changes in ventilatory mechanics. With small animals, these requirements result in long imaging times ({approx}90 minutes), over which lung mechanics, such as compliance, can gradually change if not carefully monitored and controlled. These changes, caused by derecruitment of parenchymal tissue, are manifested as an upward drift in peak inspiratory pressure or by changes in the pressure waveform and/or lung volume over the course of the experiment. We demonstrate highly repeatable mechanical ventilation in anesthetized rats over a long duration for pulmonary CT imaging throughout the dynamic breathing cycle. We describe significant updates to a basic commercial ventilator that was acquired for these experiments. Key to achieving consistent results was the implementation of periodic deep breaths, or sighs, of extended duration to maintain lung recruitment. In addition, continuous monitoring of breath-to-breath pressure and volume waveforms and long-term trends in peak inspiratory pressure and flow provide diagnostics of changes in breathing mechanics.

  11. The Peter Brojde Lung Cancer Centre: a model of integrative practice

    PubMed Central

    Grossman, M.; Agulnik, J.; Batist, G.

    2012-01-01

    Background The generally poor prognosis and poor quality of life for lung cancer patients have highlighted the need for a conceptual model of integrative practice. Although the philosophy of integrative oncology is well described, conceptual models that could guide the implementation and scientific evaluation of integrative practice are lacking. Purpose The present paper describes a conceptual model of integrative practice in which the philosophical underpinnings derive mainly from integrative oncology, with important contributions from Traditional Chinese Medicine (tcm) and the discipline of nursing. The conceptual model is described in terms of its purpose, values, concepts, dynamic components, scientific evidence, clinical approach, and theoretical underpinnings. The model argues that these components delineate the initial scope and orientation of integrative practice. They serve as the needed context for evaluating and interpreting the effectiveness of clinical interventions in enhancing patient outcomes in lung cancer at various phases of the illness. Furthermore, the development of relevant and effective integrative clinical interventions requires new research methods based on whole-systems research. An initial focus would be the identification of interrelationship patterns among variables that influence clinical interventions and their targeted patient outcomes. PMID:22670104

  12. Rapamycin decreases airway remodeling and hyperreactivity in a transgenic model of noninflammatory lung disease.

    PubMed

    Kramer, Elizabeth L; Hardie, William D; Mushaben, Elizabeth M; Acciani, Thomas H; Pastura, Patricia A; Korfhagen, Thomas R; Hershey, Gurjit Khurana; Whitsett, Jeffrey A; Le Cras, Timothy D

    2011-12-01

    Airway hyperreactivity (AHR) and remodeling are cardinal features of asthma and chronic obstructive pulmonary disease. New therapeutic targets are needed as some patients are refractory to current therapies and develop progressive airway remodeling and worsening AHR. The mammalian target of rapamycin (mTOR) is a key regulator of cellular proliferation and survival. Treatment with the mTOR inhibitor rapamycin inhibits inflammation and AHR in allergic asthma models, but it is unclear if rapamycin can directly inhibit airway remodeling and AHR, or whether its therapeutic effects are entirely mediated through immunosuppression. To address this question, we utilized transforming growth factor-α (TGF-α) transgenic mice null for the transcription factor early growth response-1 (Egr-1) (TGF-α Tg/Egr-1(ko/ko) mice). These mice develop airway smooth muscle thickening and AHR in the absence of altered lung inflammation, as previously reported. In this study, TGF-α Tg/Egr-1(ko/ko) mice lost body weight and developed severe AHR after 3 wk of lung-specific TGF-α induction. Rapamycin treatment prevented body weight loss, airway wall thickening, abnormal lung mechanics, and increases in airway resistance to methacholine after 3 wk of TGF-α induction. Increases in tissue damping and airway elastance were also attenuated in transgenic mice treated with rapamycin. TGF-α/Egr-1(ko/ko) mice on doxycycline for 8 wk developed severe airway remodeling. Immunostaining for α-smooth muscle actin and morphometric analysis showed that rapamycin treatment prevented airway smooth muscle thickening around small airways. Pentachrome staining, assessments of lung collagen and fibronectin mRNA levels, indicated that rapamycin also attenuated fibrotic pathways induced by TGF-α expression for 8 wk. Thus rapamycin reduced airway remodeling and AHR, demonstrating an important role for mTOR signaling in TGF-α-induced/EGF receptor-mediated reactive airway disease. PMID:21903885

  13. Rapamycin decreases airway remodeling and hyperreactivity in a transgenic model of noninflammatory lung disease.

    PubMed

    Kramer, Elizabeth L; Hardie, William D; Mushaben, Elizabeth M; Acciani, Thomas H; Pastura, Patricia A; Korfhagen, Thomas R; Hershey, Gurjit Khurana; Whitsett, Jeffrey A; Le Cras, Timothy D

    2011-12-01

    Airway hyperreactivity (AHR) and remodeling are cardinal features of asthma and chronic obstructive pulmonary disease. New therapeutic targets are needed as some patients are refractory to current therapies and develop progressive airway remodeling and worsening AHR. The mammalian target of rapamycin (mTOR) is a key regulator of cellular proliferation and survival. Treatment with the mTOR inhibitor rapamycin inhibits inflammation and AHR in allergic asthma models, but it is unclear if rapamycin can directly inhibit airway remodeling and AHR, or whether its therapeutic effects are entirely mediated through immunosuppression. To address this question, we utilized transforming growth factor-α (TGF-α) transgenic mice null for the transcription factor early growth response-1 (Egr-1) (TGF-α Tg/Egr-1(ko/ko) mice). These mice develop airway smooth muscle thickening and AHR in the absence of altered lung inflammation, as previously reported. In this study, TGF-α Tg/Egr-1(ko/ko) mice lost body weight and developed severe AHR after 3 wk of lung-specific TGF-α induction. Rapamycin treatment prevented body weight loss, airway wall thickening, abnormal lung mechanics, and increases in airway resistance to methacholine after 3 wk of TGF-α induction. Increases in tissue damping and airway elastance were also attenuated in transgenic mice treated with rapamycin. TGF-α/Egr-1(ko/ko) mice on doxycycline for 8 wk developed severe airway remodeling. Immunostaining for α-smooth muscle actin and morphometric analysis showed that rapamycin treatment prevented airway smooth muscle thickening around small airways. Pentachrome staining, assessments of lung collagen and fibronectin mRNA levels, indicated that rapamycin also attenuated fibrotic pathways induced by TGF-α expression for 8 wk. Thus rapamycin reduced airway remodeling and AHR, demonstrating an important role for mTOR signaling in TGF-α-induced/EGF receptor-mediated reactive airway disease.

  14. Robust Unidirectional Airflow through Avian Lungs: New Insights from a Piecewise Linear Mathematical Model.

    PubMed

    Harvey, Emily P; Ben-Tal, Alona

    2016-02-01

    Avian lungs are remarkably different from mammalian lungs in that air flows unidirectionally through rigid tubes in which gas exchange occurs. Experimental observations have been able to determine the pattern of gas flow in the respiratory system, but understanding how the flow pattern is generated and determining the factors contributing to the observed dynamics remains elusive. It has been hypothesized that the unidirectional flow is due to aerodynamic valving during inspiration and expiration, resulting from the anatomical structure and the fluid dynamics involved, however, theoretical studies to back up this hypothesis are lacking. We have constructed a novel mathematical model of the airflow in the avian respiratory system that can produce unidirectional flow which is robust to changes in model parameters, breathing frequency and breathing amplitude. The model consists of two piecewise linear ordinary differential equations with lumped parameters and discontinuous, flow-dependent resistances that mimic the experimental observations. Using dynamical systems techniques and numerical analysis, we show that unidirectional flow can be produced by either effective inspiratory or effective expiratory valving, but that both inspiratory and expiratory valving are required to produce the high efficiencies of flows observed in avian lungs. We further show that the efficacy of the inspiratory and expiratory valving depends on airsac compliances and airflow resistances that may not be located in the immediate area of the valving. Our model provides additional novel insights; for example, we show that physiologically realistic resistance values lead to efficiencies that are close to maximum, and that when the relative lumped compliances of the caudal and cranial airsacs vary, it affects the timing of the airflow across the gas exchange area. These and other insights obtained by our study significantly enhance our understanding of the operation of the avian respiratory

  15. SU-E-J-163: A Biomechanical Lung Model for Respiratory Motion Study

    SciTech Connect

    Liu, X; Belcher, AH; Grelewicz, Z; Wiersma, RD

    2015-06-15

    Purpose: This work presents a biomechanical model to investigate the complex respiratory motion for the lung tumor tracking in radiosurgery by computer simulation. Methods: The models include networked massspring-dampers to describe the tumor motion, different types of surrogate signals, and the force generated by the diaphragm. Each mass-springdamper has the same mechanical structure and each model can have different numbers of mass-spring-dampers. Both linear and nonlinear stiffness parameters were considered, and the damping ratio was tuned in a range so that the tumor motion was over-damped (no natural tumor oscillation occurs without force from the diaphragm). The simulation was run by using ODE45 (ordinary differential equations by Runge-Kutta method) in MATLAB, and all time courses of motions and inputs (force) were generated and compared. Results: The curvature of the motion time courses around their peaks was sensitive to the damping ratio. Therefore, the damping ratio can be determined based on the clinical data of a high sampling rate. The peak values of different signals and the time the peaks occurred were compared, and it was found that the diaphragm force had a time lead over the tumor motion, and the lead time (0.1–0.4 seconds) depended on the distance between the tumor and the diaphragm. Conclusion: We reported a model based analysis approach for the spatial and temporal relation between the motion of the lung tumor and the surrogate signals. Due to the phase lead of the diaphragm in comparing with the lung tumor motion, the measurement of diaphragm motion (or its electromyography signal) can be used as a beam gating signal in radiosurgery, and it can also be an additional surrogate signal for better tumor motion tracking. The research is funded by the American Cancer Society (ACS) grant. The grant name is: Frameless SRS Based on Robotic Head Motion Cancellation. The grant number is: RSG-13-313-01-CCE.

  16. Robust Unidirectional Airflow through Avian Lungs: New Insights from a Piecewise Linear Mathematical Model

    PubMed Central

    Harvey, Emily P.; Ben-Tal, Alona

    2016-01-01

    Avian lungs are remarkably different from mammalian lungs in that air flows unidirectionally through rigid tubes in which gas exchange occurs. Experimental observations have been able to determine the pattern of gas flow in the respiratory system, but understanding how the flow pattern is generated and determining the factors contributing to the observed dynamics remains elusive. It has been hypothesized that the unidirectional flow is due to aerodynamic valving during inspiration and expiration, resulting from the anatomical structure and the fluid dynamics involved, however, theoretical studies to back up this hypothesis are lacking. We have constructed a novel mathematical model of the airflow in the avian respiratory system that can produce unidirectional flow which is robust to changes in model parameters, breathing frequency and breathing amplitude. The model consists of two piecewise linear ordinary differential equations with lumped parameters and discontinuous, flow-dependent resistances that mimic the experimental observations. Using dynamical systems techniques and numerical analysis, we show that unidirectional flow can be produced by either effective inspiratory or effective expiratory valving, but that both inspiratory and expiratory valving are required to produce the high efficiencies of flows observed in avian lungs. We further show that the efficacy of the inspiratory and expiratory valving depends on airsac compliances and airflow resistances that may not be located in the immediate area of the valving. Our model provides additional novel insights; for example, we show that physiologically realistic resistance values lead to efficiencies that are close to maximum, and that when the relative lumped compliances of the caudal and cranial airsacs vary, it affects the timing of the airflow across the gas exchange area. These and other insights obtained by our study significantly enhance our understanding of the operation of the avian respiratory

  17. A novel method for right one-lung ventilation modeling in rabbits

    PubMed Central

    Xu, Ze-Ping; Gu, Lian-Bing; Bian, Qing-Ming; Li, Peng-Yi; Wang, Li-Jun; Chen, Xiao-Xiang; Zhang, Jing-Yuan

    2016-01-01

    There is no standard method by which to establish a right one-lung ventilation (OLV) model in rabbits. In the present study, a novel method is proposed to compare with two other methods. After 0.5 h of baseline two-lung ventilation (TLV), 40 rabbits were randomly divided into sham group (TLV for 3 h as a contrast) and three right-OLV groups (right OLV for 3 h with different methods): Deep intubation group, clamp group and blocker group (deeply intubate the self-made bronchial blocker into the left main bronchus, the novel method). These three methods were compared using a number of variables: Circulation by heart rate (HR), mean arterial pressure (MAP); oxygenation by arterial blood gas analysis; airway pressure; lung injury by histopathology; and time, blood loss, success rate of modeling. Following OLV, compared with the sham group, arterial partial pressure of oxygen and arterial hemoglobin oxygen saturation decreased, peak pressure increased and lung injury scores were higher in three OLV groups at 3 h of OLV. All these indexes showed no differences between the three OLV groups. During right-OLV modeling, less time was spent in the blocker group (6±2 min), compared with the other two OLV groups (13±4 min in deep intubation group, P<0.05; 33±9 min in clamp group, P<0.001); more blood loss was observed in clamp group (11.7±2.8 ml), compared with the other two OLV groups (2.3±0.5 ml in deep intubation group, P<0.001; 2.1±0.6 ml in blocker group, P<0.001). The first-time and final success rate of modeling showed no differences among the three OLV groups. Deep intubation of the self-made bronchial blocker into the left main bronchus is an easy, effective and reliable method to establish a right-OLV model in rabbits. PMID:27446346

  18. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    SciTech Connect

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.; Bell, Matthew W.; Waalkes, Michael P.; Tokar, Erik J.

    2015-07-01

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a

  19. Imatinib attenuates inflammation and vascular leak in a clinically relevant two-hit model of acute lung injury.

    PubMed

    Rizzo, Alicia N; Sammani, Saad; Esquinca, Adilene E; Jacobson, Jeffrey R; Garcia, Joe G N; Letsiou, Eleftheria; Dudek, Steven M

    2015-12-01

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), an illness characterized by life-threatening vascular leak, is a significant cause of morbidity and mortality in critically ill patients. Recent preclinical studies and clinical observations have suggested a potential role for the chemotherapeutic agent imatinib in restoring vascular integrity. Our prior work demonstrates differential effects of imatinib in mouse models of ALI, namely attenuation of LPS-induced lung injury but exacerbation of ventilator-induced lung injury (VILI). Because of the critical role of mechanical ventilation in the care of patients with ARDS, in the present study we pursued an assessment of the effectiveness of imatinib in a "two-hit" model of ALI caused by combined LPS and VILI. Imatinib significantly decreased bronchoalveolar lavage protein, total cells, neutrophils, and TNF-α levels in mice exposed to LPS plus VILI, indicating that it attenuates ALI in this clinically relevant model. In subsequent experiments focusing on its protective role in LPS-induced lung injury, imatinib attenuated ALI when given 4 h after LPS, suggesting potential therapeutic effectiveness when given after the onset of injury. Mechanistic studies in mouse lung tissue and human lung endothelial cells revealed that imatinib inhibits LPS-induced NF-κB expression and activation. Overall, these results further characterize the therapeutic potential of imatinib against inflammatory vascular leak.

  20. A Biomathematical Model of Pneumococcal Lung Infection and Antibiotic Treatment in Mice

    PubMed Central

    Schirm, Sibylle; Ahnert, Peter; Wienhold, Sandra; Mueller-Redetzky, Holger; Nouailles-Kursar, Geraldine; Loeffler, Markus; Witzenrath, Martin; Scholz, Markus

    2016-01-01

    Pneumonia is considered to be one of the leading causes of death worldwide. The outcome depends on both, proper antibiotic treatment and the effectivity of the immune response of the host. However, due to the complexity of the immunologic cascade initiated during infection, the latter cannot be predicted easily. We construct a biomathematical model of the murine immune response during infection with pneumococcus aiming at predicting the outcome of antibiotic treatment. The model consists of a number of non-linear ordinary differential equations describing dynamics of pneumococcal population, the inflammatory cytokine IL-6, neutrophils and macrophages fighting the infection and destruction of alveolar tissue due to pneumococcus. Equations were derived by translating known biological mechanisms and assuming certain response kinetics. Antibiotic therapy is modelled by a transient depletion of bacteria. Unknown model parameters were determined by fitting the predictions of the model to data sets derived from mice experiments of pneumococcal lung infection with and without antibiotic treatment. Time series of pneumococcal population, debris, neutrophils, activated epithelial cells, macrophages, monocytes and IL-6 serum concentrations were available for this purpose. The antibiotics Ampicillin and Moxifloxacin were considered. Parameter fittings resulted in a good agreement of model and data for all experimental scenarios. Identifiability of parameters is also estimated. The model can be used to predict the performance of alternative schedules of antibiotic treatment. We conclude that we established a biomathematical model of pneumococcal lung infection in mice allowing predictions regarding the outcome of different schedules of antibiotic treatment. We aim at translating the model to the human situation in the near future. PMID:27196107

  1. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models.

    PubMed

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2014-02-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  2. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models.

    PubMed

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2014-02-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  3. Development of an experimental model of brain tissue heterotopia in the lung

    PubMed Central

    Quemelo, Paulo Roberto Veiga; Sbragia, Lourenço; Peres, Luiz Cesar

    2007-01-01

    Summary The presence of heterotopic brain tissue in the lung is a rare abnormality. The cases reported thus far are usually associated with neural tube defects (NTD). As there are no reports of experimental models of NTD that present this abnormality, the objective of the present study was to develop a surgical method of brain tissue heterotopia in the lung. We used 24 pregnant Swiss mice divided into two groups of 12 animals each, denoted 17GD and 18GD according to the gestational day (GD) when caesarean section was performed to collect the fetuses. Surgery was performed on the 15th GD, one fetus was removed by hysterectomy and its brain tissue was cut into small fragments and implanted in the lung of its litter mates. Thirty-four live fetuses were obtained from the 17GD group. Of these, eight (23.5%) were used as control (C), eight (23.5%) were sham operated (S) and 18 (52.9%) were used for pulmonary brain tissue implantation (PBI). Thirty live fetuses were obtained from the females of the 18GD group. Of these, eight (26.6%) were C, eight (26.6%) S and 14 (46.6%) were used for PBI. Histological examination of the fetal trunks showed implantation of GFAP-positive brain tissue in 85% of the fetuses of the 17GD group and in 100% of those of the 18GD group, with no significant difference between groups for any of the parameters analysed. The experimental model proved to be efficient and of relatively simple execution, showing complete integration of the brain tissue with pulmonary and pleural tissue and thus representing a model that will permit the study of different aspects of cell implantation and interaction. PMID:17877535

  4. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models

    PubMed Central

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2013-01-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  5. Striatins as plaque molecules of zonulae adhaerentes in simple epithelia, of tessellate junctions in stratified epithelia, of cardiac composite junctions and of various size classes of lateral adherens junctions in cultures of epithelia- and carcinoma-derived cells.

    PubMed

    Franke, Werner W; Rickelt, Steffen; Zimbelmann, Ralf; Dörflinger, Yvette; Kuhn, Caecilia; Frey, Norbert; Heid, Hans; Rosin-Arbesfeld, Rina

    2015-03-01

    Proteins of the striatin family (striatins 1-4; sizes ranging from 90 to 110 kDa on SDS-polyacrylamide gel electrophoresis) are highly homologous in their amino acid sequences but can differ in their cell-type-specific gene expression patterns and biological functions. In various cell types, we have found one, two or three polypeptides of this evolutionarily old and nearly ubiquitous family of proteins known to serve as scaffold proteins for diverse protein complexes. Light and electron microscopic immunolocalization methods have revealed striatins in mammalian cell-cell adherens junctions (AJs). In simple epithelia, we have localized striatins as constitutive components of the plaques of the subapical zonulae adhaerentes of cells, including intestinal, glandular, ductal and urothelial cells and hepatocytes. Striatins colocalize with E-cadherin or E-N-cadherin heterodimers and with the plaque proteins α- and β-catenin, p120 and p0071. In some epithelia and carcinomas and in cultured cells derived therefrom, striatins are also seen in lateral AJs. In stratified epithelia and in corresponding squamous cell carcinomas, striatins can be found in plaques of some forms of tessellate junctions. Moreover, striatins are major plaque proteins of composite junctions (CJs; areae compositae) in the intercalated disks connecting cardiomyocytes, colocalizing with other CJ molecules, including plectin and ankyrin-G. We discuss the "multimodulator" scaffold roles of striatins in the initiation and regulation of the formation of various complex particles and structures. We propose that striatins are included in the diagnostic candidate list of proteins that, in the CJs of human hearts, can occur in mutated forms in the pathogeneses of hereditary cardiomyopathies, as seen in some types of genetically determined heart damage in boxer dogs. PMID:25501894

  6. KL4 Peptide Induces Reversible Collapse Structures on Multiple Length Scales in Model Lung Surfactant

    PubMed Central

    Holten-Andersen, Niels; Michael Henderson, J.; Walther, Frans J.; Waring, Alan J.; Ruchala, Piotr; Notter, Robert H.; Lee, Ka Yee C.

    2011-01-01

    We investigated the effects of KL4, a 21-residue amphipathic peptide approximating the overall ratio of positively charged to hydrophobic amino acids in surfactant protein B (SP-B), on the structure and collapse of dipalmitoylphosphatidylcholine and palmitoyl-oleoyl-phosphatidylglycerol monolayers. As reported in prior work on model lung surfactant phospholipid films containing SP-B and SP-B peptides, our experiments show that KL4 improves surfactant film reversibility during repetitive interfacial cycling in association with the formation of reversible collapse structures on multiple length scales. Emphasis is on exploring a general mechanistic connection between peptide-induced nano- and microscale reversible collapse structures (silos and folds). PMID:22208194

  7. Branching patterns emerge in a mathematical model of the dynamics of lung development

    PubMed Central

    Guo, Yina; Chen, Ting-Hsuan; Zeng, Xingjuan; Warburton, David; Boström, Kristina I; Ho, Chih-Ming; Zhao, Xin; Garfinkel, Alan

    2014-01-01

    Recent experimental work has described an elegant pattern of branching in the development of the lung. Multiple forms of branching have been identified, including side branching and tip bifurcation. A particularly interesting feature is the phenomenon of ‘orthogonal rotation of the branching plane’. The lung must fill 3D space with the essentially 2D phenomenon of branching. It accomplishes this by rotating the branching plane by 90° with each generation. The mechanisms underlying this rotation are not understood. In general, the programmes that underlie branching have been hypothetically attributed to genetic ‘subroutines’ under the control of a ‘global master routine’ to invoke particular subroutines at the proper time and location, but the mechanisms of these routines are not known. Here, we demonstrate that fundamental mechanisms, the reaction and diffusion of biochemical morphogens, can create these patterns. We used a partial differential equation model that postulates three morphogens, which we identify with specific molecules in lung development. We found that cascades of branching events, including side branching, tip splitting and orthogonal rotation of the branching plane, all emerge immediately from the model, without further assumptions. In addition, we found that one branching mode can be easily switched to another, by increasing or decreasing the values of key parameters. This shows how a ‘global master routine’ could work by the alteration of a single parameter. Being able to simulate cascades of branching events is necessary to understand the critical features of branching, such as orthogonal rotation of the branching plane between successive generations, and branching mode switch during lung development. Thus, our model provides a paradigm for how genes could possibly act to produce these spatial structures. Our low-dimensional model gives a qualitative understanding of how generic physiological mechanisms can produce branching

  8. Acute regulation of tight junction ion selectivity in human airway epithelia

    PubMed Central

    Flynn, Andrea N.; Itani, Omar A.; Moninger, Thomas O.; Welsh, Michael J.

    2009-01-01

    Electrolyte transport through and between airway epithelial cells controls the quantity and composition of the overlying liquid. Many studies have shown acute regulation of transcellular ion transport in airway epithelia. However, whether ion transport through tight junctions can also be acutely regulated is poorly understood both in airway and other epithelia. To investigate the paracellular pathway, we used primary cultures of differentiated human airway epithelia and assessed expression of claudins, the primary determinants of paracellular permeability, and measured transepithelial electrical properties, ion fluxes, and La3+ movement. Like many other tissues, airway epithelia expressed multiple claudins. Moreover, different cell types in the epithelium expressed the same pattern of claudins. To evaluate tight junction regulation, we examined the response to histamine, an acute regulator of airway function. Histamine stimulated a rapid and transient increase in the paracellular Na+ conductance, with a smaller increase in Cl− conductance. The increase was mediated by histamine H1 receptors and depended on an increase in intracellular Ca2+ concentration. These results suggest that ion flow through the paracellular pathway can be acutely regulated. Such regulation could facilitate coupling of the passive flow of counter ions to active transcellular transport, thereby controlling net transepithelial salt and water transport. PMID:19208806

  9. Lypd8 promotes the segregation of flagellated microbiota and colonic epithelia.

    PubMed

    Okumura, Ryu; Kurakawa, Takashi; Nakano, Takashi; Kayama, Hisako; Kinoshita, Makoto; Motooka, Daisuke; Gotoh, Kazuyoshi; Kimura, Taishi; Kamiyama, Naganori; Kusu, Takashi; Ueda, Yoshiyasu; Wu, Hong; Iijima, Hideki; Barman, Soumik; Osawa, Hideki; Matsuno, Hiroshi; Nishimura, Junichi; Ohba, Yusuke; Nakamura, Shota; Iida, Tetsuya; Yamamoto, Masahiro; Umemoto, Eiji; Sano, Koichi; Takeda, Kiyoshi

    2016-04-01

    Colonic epithelial cells are covered by thick inner and outer mucus layers. The inner mucus layer is free of commensal microbiota, which contributes to the maintenance of gut homeostasis. In the small intestine, molecules critical for prevention of bacterial invasion into epithelia such as Paneth-cell-derived anti-microbial peptides and regenerating islet-derived 3 (RegIII) family proteins have been identified. Although there are mucus layers providing physical barriers against the large number of microbiota present in the large intestine, the mechanisms that separate bacteria and colonic epithelia are not fully elucidated. Here we show that Ly6/PLAUR domain containing 8 (Lypd8) protein prevents flagellated microbiota invading the colonic epithelia in mice. Lypd8, selectively expressed in epithelial cells at the uppermost layer of the large intestinal gland, was secreted into the lumen and bound flagellated bacteria including Proteus mirabilis. In the absence of Lypd8, bacteria were present in the inner mucus layer and many flagellated bacteria invaded epithelia. Lypd8(-/-) mice were highly sensitive to intestinal inflammation induced by dextran sulfate sodium (DSS). Antibiotic elimination of Gram-negative flagellated bacteria restored the bacterial-free state of the inner mucus layer and ameliorated DSS-induced intestinal inflammation in Lypd8(-/-) mice. Lypd8 bound to flagella and suppressed motility of flagellated bacteria. Thus, Lypd8 mediates segregation of intestinal bacteria and epithelial cells in the colon to preserve intestinal homeostasis. PMID:27027293

  10. Freshwater Sponges Have Functional, Sealing Epithelia with High Transepithelial Resistance and Negative Transepithelial Potential

    PubMed Central

    Adams, Emily D. M.; Goss, Greg G.; Leys, Sally P.

    2010-01-01

    Epithelial tissue — the sealed and polarized layer of cells that regulates transport of ions and solutes between the environment and the internal milieu — is a defining characteristic of the Eumetazoa. Sponges, the most ancient metazoan phylum [1], [2], are generally believed to lack true epithelia [3], [4], [5], but their ability to occlude passage of ions has never been tested. Here we show that freshwater sponges (Demospongiae, Haplosclerida) have functional epithelia with high transepithelial electrical resistance (TER), a transepithelial potential (TEP), and low permeability to small-molecule diffusion. Curiously, the Amphimedon queenslandica sponge genome lacks the classical occluding genes [5] considered necessary to regulate sealing and control of ion transport. The fact that freshwater sponge epithelia can seal suggests that either occluding molecules have been lost in some sponge lineages, or demosponges use novel molecular complexes for epithelial occlusion; if the latter, it raises the possibility that mechanisms for occlusion used by sponges may exist in other metazoa. Importantly, our results imply that functional epithelia evolved either several times, or once, in the ancestor of the Metazoa. PMID:21124779

  11. Effect of surfactant on regional lung function in an experimental model of respiratory distress syndrome in rabbit.

    PubMed

    Bayat, Sam; Porra, Liisa; Broche, Ludovic; Albu, Gergely; Malaspinas, Iliona; Doras, Camille; Strengell, Satu; Peták, Ferenc; Habre, Walid

    2015-08-01

    We assessed the changes in regional lung function following instillation of surfactant in a model of respiratory distress syndrome (RDS) induced by whole lung lavage and mechanical ventilation in eight anaesthetized, paralyzed, and mechanically ventilated New Zealand White rabbits. Regional specific ventilation (sV̇) was measured by K-edge subtraction synchrotron computed tomography during xenon washin. Lung regions were classified as poorly aerated (PA), normally aerated (NA), or hyperinflated (HI) based on regional density. A functional category was defined within each class based on sV̇ distribution (High, Normal, and Low). Airway resistance (Raw), respiratory tissue damping (G), and elastance (H) were measured by forced oscillation technique at low frequencies before and after whole lung saline lavage-induced (100 ml/kg) RDS, and 5 and 45 min after intratracheal instillation of beractant (75 mg/kg). Surfactant instillation improved Raw, G, and H (P < 0.05 each), and gas exchange and decreased atelectasis (P < 0.001). It also significantly improved lung aeration and ventilation in atelectatic lung regions. However, in regions that had remained normally aerated after lavage, it decreased regional aeration and increased sV̇ (P < 0.001) and sV̇ heterogeneity. Although surfactant treatment improved both central airway and tissue mechanics and improved regional lung function of initially poorly aerated and atelectatic lung, it deteriorated regional lung function when local aeration was normal prior to administration. Local mechanical and functional heterogeneity can potentially contribute to the worsening of RDS and gas exchange. These data underscore the need for reassessing the benefits of routine prophylactic vs. continuous positive airway pressure and early "rescue" surfactant therapy in very immature infants. PMID:25997942

  12. Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment

    PubMed Central

    Mitran, Sorin

    2013-01-01

    The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale. PMID:23729842

  13. Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment

    NASA Astrophysics Data System (ADS)

    Mitran, Sorin

    2013-07-01

    The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.

  14. Expression and polarization of intercellular adhesion molecule-1 on human intestinal epithelia: consequences for CD11b/CD18-mediated interactions with neutrophils.

    PubMed Central

    Parkos, C. A.; Colgan, S. P.; Diamond, M. S.; Nusrat, A.; Liang, T. W.; Springer, T. A.; Madara, J. L.

    1996-01-01

    BACKGROUND: Epithelial dysfunction and patient symptoms in inflammatory intestinal diseases such as ulcerative colitis and Crohn's disease correlate with migration of neutrophils (PMN) across the intestinal epithelium. In vitro modeling of PMN transepithelial migration has revealed distinct differences from transendothelial migration. By using polarized monolayers of human intestinal epithelia (T84), PMN transepithelial migration has been shown to be dependent on the leukocyte integrin CD11b/CD18 (Mac-1), but not on CD11a/CD18 (LFA-1). Since intercellular adhesion molecule-I (ICAM-1) is an important endothelial counterreceptor for these integrins, its expression in intestinal epithelia and role in PMN-intestinal epithelial interactions was investigated. MATERIALS AND METHODS: A panel of antibodies against different domains of ICAM-1, polarized monolayers of human intestinal epithelia (T84), and natural human colonic epithelia were used to examine the polarity of epithelial ICAM-1 surface expression and the functional role of ICAM-1 in neutrophil-intestinal epithelial adhesive interactions. RESULTS: While no surface expression of ICAM-1 was detected on unstimulated T84 cells, interferon-gamma (IFN gamma) elicited a marked expression of ICAM-1 that selectively polarized to the apical epithelial membrane. Similarly, apically restricted surface expression of ICAM-1 was detected in natural human colonic epithelium only in association with active inflammation. With or without IFN gamma pre-exposure, physiologically directed (basolateral-to-apical) transepithelial migration of PMN was unaffected by blocking monoclonal antibodies (mAbs) to ICAM-1. In contrast, PMN migration across IFN gamma-stimulated monolayers in the reverse (apical-to-basolateral) direction was inhibited by anti-ICAM-1 antibodies. Adhesion studies revealed that T84 cells adhered selectively to purified CD11b/CD18 and such adherence, with or without IFN gamma pre-exposure, was unaffected by ICAM-1 m

  15. Lung cancer stem cell: fancy conceptual model of tumor biology or cornerstone of a forthcoming therapeutic breakthrough?

    PubMed

    Sourisseau, Tony; Hassan, Khaled A; Wistuba, Ignacio; Penault-Llorca, Frédérique; Adam, Julien; Deutsch, Eric; Soria, Jean-Charles

    2014-01-01

    Cancer research has received a fresh impetus from the concept of cancer stem cell (CSC) which postulates the existence of a tumor cell population uniquely endowed with self-renewal capacity and therapy resistance. Despite recent progresses including targeted therapy, lung cancer treatment remains a challenge owing largely to disease recurrence. Providing a conceptual model of tumor resistance and disease relapse, the lung CSC has received extensive attention, leading to a flourishing literature and several ongoing clinical trials. In this study, we will discuss the data suggesting the existence of CSC in lung tumors and the potential clinical utility of CSCs as prognostic markers or cellular targets of new therapeutic strategies. We will also touch on the new fundamental developments of the CSC concept that ought to be considered if the integration of the CSC concept into clinical practice is to be successful and impact on lung cancer treatment.

  16. Liquid ventilation improves pulmonary function, gas exchange, and lung injury in a model of respiratory failure.

    PubMed Central

    Hirschl, R B; Parent, A; Tooley, R; McCracken, M; Johnson, K; Shaffer, T H; Wolfson, M R; Bartlett, R H

    1995-01-01

    OBJECTIVE: The authors evaluated gas exchange, pulmonary function, and lung histology during perfluorocarbon liquid ventilation (LV) when compared with gas ventilation (GV) in the setting of severe respiratory failure. BACKGROUND: The efficacy of LV in the setting of respiratory failure has been evaluated in premature animals with surfactant deficiency. However, very little work has been performed in evaluating the efficacy of LV in older animal models of the adult respiratory distress syndrome (ARDS). METHODS: A stable model of lung injury was induced in 12 young sheep weighing 16.4 +/- 3.0 kg using right atrial injection of 0.07 mL/kg of oleic acid followed by saline pulmonary lavage and bijugular venovenous extracorporeal life support (ECLS). For the first 30 minutes on ECLS, all animals were ventilated with gas. Animals were then ventilated with either 15 mL/kg gas (GV, n = 6) or perflubron ([PFC], LV, n = 6) over the ensuing 2.5 hours. Subsequently, ECLS was discontinued in five of the GV animals and five of the LV animals, and GV or LV continued for 1 hour or until death. MAIN FINDINGS: Physiologic shunt (Qps/Qt) was significantly reduced in the LV animals when compared with the GV animals (LV = 31 +/- 10%; GV = 93 +/- 4%; p < 0.001) after 3 hours of ECLS. At the same time point, pulmonary compliance (CT) was significantly increased in the LV group when compared with the GV group (LV = 1.04 +/- 0.19 mL/cm H2O/kg; GV = 0.41 +/- 0.02 mL/cm H2O/kg; p < 0.001). In addition, the ECLS flow rate required to maintain the PaO2 in the 50- to 80-mm Hg range was substantially and significantly lower in the LV group when compared with that of the GV group (LV = 14 +/- 5 mL/kg/min; GV = 87 +/- 15 mL/kg/min; p < 0.001). All of the GV animals died after discontinuation of ECLS, whereas all the LV animals demonstrated effective gas exchange without extracorporeal support for 1 hour (p < 0.01). Lung biopsy light microscopy demonstrated a marked reduction in alveolar hemorrhage

  17. Toward the modeling of mucus draining from human lung: role of airways deformation on air-mucus interaction.

    PubMed

    Mauroy, Benjamin; Flaud, Patrice; Pelca, Dominique; Fausser, Christian; Merckx, Jacques; Mitchell, Barrett R

    2015-01-01

    Chest physiotherapy is an empirical technique used to help secretions to get out of the lung whenever stagnation occurs. Although commonly used, little is known about the inner mechanisms of chest physiotherapy and controversies about its use are coming out regularly. Thus, a scientific validation of chest physiotherapy is needed to evaluate its effects on secretions. We setup a quasi-static numerical model of chest physiotherapy based on thorax and lung physiology and on their respective biophysics. We modeled the lung with an idealized deformable symmetric bifurcating tree. Bronchi and their inner fluids mechanics are assumed axisymmetric. Static data from the literature is used to build a model for the lung's mechanics. Secretions motion is the consequence of the shear constraints apply by the air flow. The input of the model is the pressure on the chest wall at each time, and the output is the bronchi geometry and air and secretions properties. In the limit of our model, we mimicked manual and mechanical chest physiotherapy techniques. We show that for secretions to move, air flow has to be high enough to overcome secretion resistance to motion. Moreover, the higher the pressure or the quicker it is applied, the higher is the air flow and thus the mobilization of secretions. However, pressures too high are efficient up to a point where airways compressions prevents air flow to increase any further. Generally, the first effects of manipulations is a decrease of the airway tree hydrodynamic resistance, thus improving ventilation even if secretions do not get out of the lungs. Also, some secretions might be pushed deeper into the lungs; this effect is stronger for high pressures and for mechanical chest physiotherapy. Finally, we propose and tested two a dimensional numbers that depend on lung properties and that allow to measure the efficiency and comfort of a manipulation.

  18. Toward the modeling of mucus draining from human lung: role of airways deformation on air-mucus interaction.

    PubMed

    Mauroy, Benjamin; Flaud, Patrice; Pelca, Dominique; Fausser, Christian; Merckx, Jacques; Mitchell, Barrett R

    2015-01-01

    Chest physiotherapy is an empirical technique used to help secretions to get out of the lung whenever stagnation occurs. Although commonly used, little is known about the inner mechanisms of chest physiotherapy and controversies about its use are coming out regularly. Thus, a scientific validation of chest physiotherapy is needed to evaluate its effects on secretions. We setup a quasi-static numerical model of chest physiotherapy based on thorax and lung physiology and on their respective biophysics. We modeled the lung with an idealized deformable symmetric bifurcating tree. Bronchi and their inner fluids mechanics are assumed axisymmetric. Static data from the literature is used to build a model for the lung's mechanics. Secretions motion is the consequence of the shear constraints apply by the air flow. The input of the model is the pressure on the chest wall at each time, and the output is the bronchi geometry and air and secretions properties. In the limit of our model, we mimicked manual and mechanical chest physiotherapy techniques. We show that for secretions to move, air flow has to be high enough to overcome secretion resistance to motion. Moreover, the higher the pressure or the quicker it is applied, the higher is the air flow and thus the mobilization of secretions. However, pressures too high are efficient up to a point where airways compressions prevents air flow to increase any further. Generally, the first effects of manipulations is a decrease of the airway tree hydrodynamic resistance, thus improving ventilation even if secretions do not get out of the lungs. Also, some secretions might be pushed deeper into the lungs; this effect is stronger for high pressures and for mechanical chest physiotherapy. Finally, we propose and tested two a dimensional numbers that depend on lung properties and that allow to measure the efficiency and comfort of a manipulation. PMID:26300780

  19. Toward the modeling of mucus draining from human lung: role of airways deformation on air-mucus interaction

    PubMed Central

    Mauroy, Benjamin; Flaud, Patrice; Pelca, Dominique; Fausser, Christian; Merckx, Jacques; Mitchell, Barrett R.

    2015-01-01

    Chest physiotherapy is an empirical technique used to help secretions to get out of the lung whenever stagnation occurs. Although commonly used, little is known about the inner mechanisms of chest physiotherapy and controversies about its use are coming out regularly. Thus, a scientific validation of chest physiotherapy is needed to evaluate its effects on secretions. We setup a quasi-static numerical model of chest physiotherapy based on thorax and lung physiology and on their respective biophysics. We modeled the lung with an idealized deformable symmetric bifurcating tree. Bronchi and their inner fluids mechanics are assumed axisymmetric. Static data from the literature is used to build a model for the lung's mechanics. Secretions motion is the consequence of the shear constraints apply by the air flow. The input of the model is the pressure on the chest wall at each time, and the output is the bronchi geometry and air and secretions properties. In the limit of our model, we mimicked manual and mechanical chest physiotherapy techniques. We show that for secretions to move, air flow has to be high enough to overcome secretion resistance to motion. Moreover, the higher the pressure or the quicker it is applied, the higher is the air flow and thus the mobilization of secretions. However, pressures too high are efficient up to a point where airways compressions prevents air flow to increase any further. Generally, the first effects of manipulations is a decrease of the airway tree hydrodynamic resistance, thus improving ventilation even if secretions do not get out of the lungs. Also, some secretions might be pushed deeper into the lungs; this effect is stronger for high pressures and for mechanical chest physiotherapy. Finally, we propose and tested two a dimensional numbers that depend on lung properties and that allow to measure the efficiency and comfort of a manipulation. PMID:26300780

  20. A microfluidic model to study fluid dynamics of mucus plug rupture in small lung airways

    PubMed Central

    Hu, Yingying; Bian, Shiyao; Grotberg, John; Filoche, Marcel; White, Joshua; Takayama, Shuichi; Grotberg, James B.

    2015-01-01

    Fluid dynamics of mucus plug rupture is important to understand mucus clearance in lung airways and potential effects of mucus plug rupture on epithelial cells at lung airway walls. We established a microfluidic model to study mucus plug rupture in a collapsed airway of the 12th generation. Mucus plugs were simulated using Carbopol 940 (C940) gels at concentrations of 0.15%, 0.2%, 0.25%, and 0.3%, which have non-Newtonian properties close to healthy and diseased lung mucus. The airway was modeled with a polydimethylsiloxane microfluidic channel. Plug motion was driven by pressurized air. Global strain rates and shear stress were defined to quantitatively describe plug deformation and rupture. Results show that a plug needs to overcome yield stress before deformation and rupture. The plug takes relatively long time to yield at the high Bingham number. Plug length shortening is the more significant deformation than shearing at gel concentration higher than 0.15%. Although strain rates increase dramatically at rupture, the transient shear stress drops due to the shear-thinning effect of the C940 gels. Dimensionless time-averaged shear stress, Txy, linearly increases from 3.7 to 5.6 times the Bingham number as the Bingham number varies from 0.018 to 0.1. The dimensionless time-averaged shear rate simply equals to Txy/2. In dimension, shear stress magnitude is about one order lower than the pressure drop, and one order higher than yield stress. Mucus with high yield stress leads to high shear stress, and therefore would be more likely to cause epithelial cell damage. Crackling sounds produced with plug rupture might be more detectable for gels with higher concentration. PMID:26392827

  1. Opposite angiogenic outcome of curcumin against ischemia and Lewis lung cancer models: in silico, in vitro and in vivo studies.

    PubMed

    Fan, Shengjun; Xu, Yan; Li, Xin; Tie, Lu; Pan, Yan; Li, Xuejun

    2014-09-01

    The aim of this study was to investigate the angiogenic effects of curcumin on an ischemia and lung cancer model. To induce ischemia combined with lung cancer models, unilateral femoral arteries of C57BL/6 mice were disconnected on one side of the mouse and Lewis lung carcinoma (LLC) cells were xenografted on the opposite side. Angiogenic effects and underlying mechanisms associated with curcumin were investigated. Molecular target(s), signaling cascades and binding affinities were detected by Western blot, two-dimensional gel electrophoresis (2-DE), computer simulations and surface plasmon resonance (SPR) techniques. Curcumin promoted post-ischemic blood recirculation and suppressed lung cancer progression in inbred C57BL/6 mice via regulation of the HIF1α/mTOR/VEGF/VEGFR cascade oppositely. Inflammatory stimulation induced by neutrophil elastase (NE) promoted angiogenesis in lung cancer tissues, but these changes were reversed by curcumin through directly reducing NE secretion and stimulating α1-antitrypsin (α1-AT) and insulin receptor substrate-1 (IRS-1) production. Meanwhile, curcumin dose-dependently influenced endothelial cells (EC) tube formation and chicken embryo chorioallantoic membrane (CAM) neovascularization. Curcumin had opposite effects on blood vessel regeneration under physiological and pathological angiogenesis, which was effected through negative or positive regulation of the HIF1α/mTOR/VEGF/VEGFR cascade. Curcumin had the promise as a new treatment modality for both ischemic conditions and lung cancer simultaneously in the clinic.

  2. Beyond Two-Stage Models for Lung Carcinogenesis in the Mayak Workers: Implications for Plutonium Risk

    PubMed Central

    Zöllner, Sascha; Sokolnikov, Mikhail E.; Eidemüller, Markus

    2015-01-01

    Mechanistic multi-stage models are used to analyze lung-cancer mortality after Plutonium exposure in the Mayak-workers cohort, with follow-up until 2008. Besides the established two-stage model with clonal expansion, models with three mutation stages as well as a model with two distinct pathways to cancer are studied. The results suggest that three-stage models offer an improved description of the data. The best-fitting models point to a mechanism where radiation increases the rate of clonal expansion. This is interpreted in terms of changes in cell-cycle control mediated by bystander signaling or repopulation following cell killing. No statistical evidence for a two-pathway model is found. To elucidate the implications of the different models for radiation risk, several exposure scenarios are studied. Models with a radiation effect at an early stage show a delayed response and a pronounced drop-off with older ages at exposure. Moreover, the dose-response relationship is strongly nonlinear for all three-stage models, revealing a marked increase above a critical dose. PMID:26000637

  3. Beyond two-stage models for lung carcinogenesis in the Mayak workers: implications for plutonium risk.

    PubMed

    Zöllner, Sascha; Sokolnikov, Mikhail E; Eidemüller, Markus

    2015-01-01

    Mechanistic multi-stage models are used to analyze lung-cancer mortality after Plutonium exposure in the Mayak-workers cohort, with follow-up until 2008. Besides the established two-stage model with clonal expansion, models with three mutation stages as well as a model with two distinct pathways to cancer are studied. The results suggest that three-stage models offer an improved description of the data. The best-fitting models point to a mechanism where radiation increases the rate of clonal expansion. This is interpreted in terms of changes in cell-cycle control mediated by bystander signaling or repopulation following cell killing. No statistical evidence for a two-pathway model is found. To elucidate the implications of the different models for radiation risk, several exposure scenarios are studied. Models with a radiation effect at an early stage show a delayed response and a pronounced drop-off with older ages at exposure. Moreover, the dose-response relationship is strongly nonlinear for all three-stage models, revealing a marked increase above a critical dose.

  4. Fluid transport across leaky epithelia: central role of the tight junction and supporting role of aquaporins.

    PubMed

    Fischbarg, Jorge

    2010-10-01

    The mechanism of epithelial fluid transport remains unsolved, which is partly due to inherent experimental difficulties. However, a preparation with which our laboratory works, the corneal endothelium, is a simple leaky secretory epithelium in which we have made some experimental and theoretical headway. As we have reported, transendothelial fluid movements can be generated by electrical currents as long as there is tight junction integrity. The direction of the fluid movement can be reversed by current reversal or by changing junctional electrical charges by polylysine. Residual endothelial fluid transport persists even when no anions (hence no salt) are being transported by the tissue and is only eliminated when all local recirculating electrical currents are. Aquaporin (AQP) 1 is the only AQP present in these cells, and its deletion in AQP1 null mice significantly affects cell osmotic permeability (by ∼40%) but fluid transport much less (∼20%), which militates against the presence of sizable water movements across the cell. In contrast, AQP1 null mice cells have reduced regulatory volume decrease (only 60% of control), which suggests a possible involvement of AQP1 in either the function or the expression of volume-sensitive membrane channels/transporters. A mathematical model of corneal endothelium we have developed correctly predicts experimental results only when paracellular electro-osmosis is assumed rather than transcellular local osmosis. Our evidence therefore suggests that the fluid is transported across this layer via the paracellular route by a mechanism that we attribute to electro-osmotic coupling at the junctions. From our findings we have developed a novel paradigm for this preparation that includes 1) paracellular fluid flow; 2) a crucial role for the junctions; 3) hypotonicity of the primary secretion; and 4) an AQP role in regulation rather than as a significant water pathway. These elements are remarkably similar to those proposed by the

  5. Evaluating the impacts of screening and smoking cessation programmes on lung cancer in a high-burden region of the USA: a simulation modelling study

    PubMed Central

    Tramontano, Angela C; Sheehan, Deirdre F; McMahon, Pamela M; Dowling, Emily C; Holford, Theodore R; Ryczak, Karen; Lesko, Samuel M; Levy, David T; Kong, Chung Yin

    2016-01-01

    Objective While the US Preventive Services Task Force has issued recommendations for lung cancer screening, its effectiveness at reducing lung cancer burden may vary at local levels due to regional variations in smoking behaviour. Our objective was to use an existing model to determine the impacts of lung cancer screening alone or in addition to increased smoking cessation in a US region with a relatively high smoking prevalence and lung cancer incidence. Setting Computer-based simulation model. Participants Simulated population of individuals 55 and older based on smoking prevalence and census data from Northeast Pennsylvania. Interventions Hypothetical lung cancer control from 2014 to 2050 through (1) screening with CT, (2) intensified smoking cessation or (3) a combination strategy. Primary and secondary outcome measures Primary outcomes were lung cancer mortality rates. Secondary outcomes included number of people eligible for screening and number of radiation-induced lung cancers. Results Combining lung cancer screening with increased smoking cessation would yield an estimated 8.1% reduction in cumulative lung cancer mortality by 2050. Our model estimated that the number of screening-eligible individuals would progressively decrease over time, indicating declining benefit of a screening-only programme. Lung cancer screening achieved a greater mortality reduction in earlier years, but was later surpassed by smoking cessation. Conclusions Combining smoking cessation programmes with lung cancer screening would provide the most benefit to a population, especially considering the growing proportion of patients ineligible for screening based on current recommendations. PMID:26928026

  6. Development and characterization of a preclinical model of breast cancer lung micrometastatic to macrometastatic progression.

    PubMed

    Bailey-Downs, Lora C; Thorpe, Jessica E; Disch, Bryan C; Bastian, Anja; Hauser, Paul J; Farasyn, Taleah; Berry, William L; Hurst, Robert E; Ihnat, Michael A

    2014-01-01

    Most cancer patients die with metastatic disease, thus, good models that recapitulate the natural process of metastasis including a dormancy period with micrometastatic cells would be beneficial in developing treatment strategies. Herein we report a model of natural metastasis that balances time to complete experiments with a reasonable dormancy period, which can be used to better study metastatic progression. The basis for the model is a 4T1 triple negative syngeneic breast cancer model without resection of the primary tumor. A cell titration from 500 to 15,000 GFP tagged 4T1 cells implanted into fat pad number four of immune proficient eight week female BALB/cJ mice optimized speed of the model while possessing metastatic processes including dormancy and beginning of reactivation. The frequency of primary tumors was less than 50% in animals implanted with 500-1500 cells. Although implantation with over 10,000 cells resulted in 100% primary tumor development, the tumors and macrometastases formed were highly aggressive, lacked dormancy, and offered no opportunity for treatment. Implantation of 7,500 cells resulted in >90% tumor take by 10 days; in 30-60 micrometastases in the lung (with many animals also having 2-30 brain micrometastases) two weeks post-implantation, with the first small macrometastases present at five weeks; many animals displaying macrometastases at five weeks and animals becoming moribund by six weeks post-implantation. Using the optimum of 7,500 cells the efficacy of a chemotherapeutic agent for breast cancer, doxorubicin, given at its maximal tolerated dose (MTD; 1 mg/kg weekly) was tested for an effect on metastasis. Doxorubicin treatment significantly reduced primary tumor growth and lung micrometastases but the number of macrometastases at experiment end was not significantly affected. This model should prove useful for development of drugs to target metastasis and to study the biology of metastasis. PMID:24878664

  7. Lung Motion Model Validation Experiments, Free-Breathing Tissue Densitometry, and Ventilation Mapping using Fast Helical CT Imaging

    NASA Astrophysics Data System (ADS)

    Dou, Hsiang-Tai

    The uncertainties due to respiratory motion present significant challenges to accurate characterization of cancerous tissues both in terms of imaging and treatment. Currently available clinical lung imaging techniques are subject to inferior image quality and incorrect motion estimation, with consequences that can systematically impact the downstream treatment delivery and outcome. The main objective of this thesis is the development of the techniques of fast helical computed tomography (CT) imaging and deformable image registration for the radiotherapy applications in accurate breathing motion modeling, lung tissue density modeling and ventilation imaging. Fast helical CT scanning was performed on 64-slice CT scanner using the shortest available gantry rotation time and largest pitch value such that scanning of the thorax region amounts to just two seconds, which is less than typical breathing cycle in humans. The scanning was conducted under free breathing condition. Any portion of the lung anatomy undergoing such scanning protocol would be irradiated for only a quarter second, effectively removing any motion induced image artifacts. The resulting CT data were pristine volumetric images that record the lung tissue position and density in a fraction of the breathing cycle. Following our developed protocol, multiple fast helical CT scans were acquired to sample the tissue positions in different breathing states. To measure the tissue displacement, deformable image registration was performed that registers the non-reference images to the reference one. In modeling breathing motion, external breathing surrogate signal was recorded synchronously with the CT image slices. This allowed for the tissue-specific displacement to be modeled as parametrization of the recorded breathing signal using the 5D lung motion model. To assess the accuracy of the motion model in describing tissue position change, the model was used to simulate the original high-pitch helical CT scan

  8. Lung Motion Model Validation Experiments, Free-Breathing Tissue Densitometry, and Ventilation Mapping using Fast Helical CT Imaging

    NASA Astrophysics Data System (ADS)

    Dou, Hsiang-Tai

    The uncertainties due to respiratory motion present significant challenges to accurate characterization of cancerous tissues both in terms of imaging and treatment. Currently available clinical lung imaging techniques are subject to inferior image quality and incorrect motion estimation, with consequences that can systematically impact the downstream treatment delivery and outcome. The main objective of this thesis is the development of the techniques of fast helical computed tomography (CT) imaging and deformable image registration for the radiotherapy applications in accurate breathing motion modeling, lung tissue density modeling and ventilation imaging. Fast helical CT scanning was performed on 64-slice CT scanner using the shortest available gantry rotation time and largest pitch value such that scanning of the thorax region amounts to just two seconds, which is less than typical breathing cycle in humans. The scanning was conducted under free breathing condition. Any portion of the lung anatomy undergoing such scanning protocol would be irradiated for only a quarter second, effectively removing any motion induced image artifacts. The resulting CT data were pristine volumetric images that record the lung tissue position and density in a fraction of the breathing cycle. Following our developed protocol, multiple fast helical CT scans were acquired to sample the tissue positions in different breathing states. To measure the tissue displacement, deformable image registration was performed that registers the non-reference images to the reference one. In modeling breathing motion, external breathing surrogate signal was recorded synchronously with the CT image slices. This allowed for the tissue-specific displacement to be modeled as parametrization of the recorded breathing signal using the 5D lung motion model. To assess the accuracy of the motion model in describing tissue position change, the model was used to simulate the original high-pitch helical CT scan

  9. A model of end-expiratory lung impedance dependency on total extracellular body water

    NASA Astrophysics Data System (ADS)

    Suchomel, J.; Sobota, V.

    2013-04-01

    Electrical impedance tomography (EIT) is an attractive method for clinical monitoring of patients during mechanical ventilation. This study evaluates lung impedance measurements using Dräger PulmoVista 500 EIT system on an animal model. Mechanically ventilated model was created. Vital signs were monitored as well as mechanical ventilation parameters. Extracellular fluid balance and blood volume were handled as follows: 30-40% of total blood volume were removed and returned back, 0.5 to 1 litre of Ringer's solution was injected afterwards. The quantity of injected fluids was recorded for each animal. During this process thoracic electrical impedance measurement was performed. Recorded data from PulmoVista 500 EIT system were analysed using the official Dräger EIT Data Analysis Tool. The dependency of end-expiratory lung impedance on the change of fluid balance was observed. The relation between end-expiratory (minimum impedance value) frames and changes of fluid balance is shown. Preliminary results strongly support the expectation that electrical impedance of thorax can be affected by total extracellular fluid change.

  10. Evaluation of allergic lung inflammation by computed tomography in a rat model in vivo.

    PubMed

    Jobse, B N; Johnson, J R; Farncombe, T H; Labiris, R; Walker, T D; Goncharova, S; Jordana, M

    2009-06-01

    The ability of micro-computed tomography (CT) to noninvasively evaluate allergic pulmonary inflammation in an experimental model was investigated. In addition, two image segmentation methods and the value of respiratory gating were investigated in the context of this model. Brown Norway rats were exposed to one of four doses of house dust mite (HDM) extract (0, 0.15, 15 or 150 microg) delivered intratracheally every 24 h for 10 days. CT scanning was performed at baseline and after several longitudinal HDM exposures. Both thoracic- and lung-segmentation methods yielded similar results when standardisation practices were employed. While tissue histology correlated well with CT images, cell counts from bronchoalveolar lavage depicted greater inflammation than did density measures from CT images. Evidence from representative CT slices and transaxial density distribution indicated that inflammation was primarily associated with major airways and extended into the periphery from these focal points. Respiratory gating demonstrated that images of the inspiratory state provided greater contrast of inflammatory processes. Lastly, decreases in tidal volumes indicated significant mechanical respiratory changes in animals exposed to both 15 and 150 microg. In summary, CT image segmentation can extract pertinent data on in vivo allergic airway/lung inflammation. Furthermore, respiratory gating provides additional contrast and insight into these quantification practices.

  11. Interfacial reactions of ozone with surfactant protein B in a model lung surfactant system.

    PubMed

    Kim, Hugh I; Kim, Hyungjun; Shin, Young Shik; Beegle, Luther W; Jang, Seung Soon; Neidholdt, Evan L; Goddard, William A; Heath, James R; Kanik, Isik; Beauchamp, J L

    2010-02-24

    Oxidative stresses from irritants such as hydrogen peroxide and ozone (O(3)) can cause dysfunction of the pulmonary surfactant (PS) layer in the human lung, resulting in chronic diseases of the respiratory tract. For identification of structural changes of pulmonary surfactant protein B (SP-B) due to the heterogeneous reaction with O(3), field-induced droplet ionization (FIDI) mass spectrometry has been utilized. FIDI is a soft ionization method in which ions are extracted from the surface of microliter-volume droplets. We report structurally specific oxidative changes of SP-B(1-25) (a shortened version of human SP-B) at the air-liquid interface. We also present studies of the interfacial oxidation of SP-B(1-25) in a nonionizable 1-palmitoyl-2-oleoyl-sn-glycerol (POG) surfactant layer as a model PS system, where competitive oxidation of the two components is observed. Our results indicate that the heterogeneous reaction of SP-B(1-25) at the interface is quite different from that in the solution phase. In comparison with the nearly complete homogeneous oxidation of SP-B(1-25), only a subset of the amino acids known to react with ozone are oxidized by direct ozonolysis in the hydrophobic interfacial environment, both with and without the lipid surfactant layer. Combining these experimental observations with the results of molecular dynamics simulations provides an improved understanding of the interfacial structure and chemistry of a model lung surfactant system subjected to oxidative stress.

  12. [Measuring pulmonary CO2 elimination--studies with the lung model using various mixed gases].

    PubMed

    Gehring, H; Nahm, W; Hufker, D; Mertins, W; Konecny, E; Frankenberger, H; Schmucker, P

    1996-11-01

    One way of determining pulmonary CO2 elimination during anaesthesia is the breath-by-breath method. With this technique, CO2 analysis is carried out using either the mainstream method (MSM), that is, directly in the expired air flow, or in samples of expired air. A disadvantage of MSM is the lack of sensor signal correction for changes in the composition of the gas mixture and barometric pressure. Sidestream systems (SSM) measure respiratory gas flow and gas concentration with adequate accuracy, and also correct the measured values for gas composition and ambient parameters. Disadvantages of breath-by-breath analysis are the SSM-system-related delay and distortion of the CO2 curves. In the present study, a computer-assisted comparative analysis of CO2 elimination measurement by the sidestream and mainstream methods was carried out using different mixtures of gases in a lung model. Under the selected conditions simulated in the lung model, evaluation of CO2 elimination using SSM and MSM is possible with an error of between 0 and 10% versus reference systems. Measuring accuracy of the MSM system in particular is found to depend directly on the composition of the gas mixture. Using the method described here, the measuring error of an SSM system in terms of delay and response time can be compensated with adequate accuracy. PMID:9063955

  13. AIRWAY IDENTIFICATION WITHIN PLANAR GAMMA CAMERA IMAGES USING COMPUTER MODELS OF LUNG MORPHOLOGY

    EPA Science Inventory

    The quantification of inhaled aerosols could be improved if a more comprehensive assessment of their spatial distribution patterns among lung airways were obtained. A common technique for quantifying particle deposition in human lungs is with planar gamma scintigraphy. However, t...

  14. A biomathematical model of particle clearance and retention in the lungs of coal miners. II. Evaluation of variability and uncertainty.

    PubMed

    Kuempel, E D; Tran, C L; Smith, R J; Bailer, A J

    2001-08-01

    The objective of this study is to investigate the sources of variability and uncertainty in a previously developed human lung dosimetry model. That three-compartment model describes the retention and clearance kinetics of respirable particles in the gas-exchange region of the lungs. It was calibrated using exposure histories and lung dust burden data in U.S. coal miners. A multivariate parameter estimation and optimization method was developed for fitting the dosimetry model to these human data. Models with various assumptions about overloading of alveolar clearance and interstitialization (sequestration) of particles were evaluated. Variability in the estimated clearance rate coefficients was assessed empirically by fitting the model to groups' and to each miner's data. Distributions of lung and lymph node particle burdens were computed at working lifetime exposures, using the variability in the estimated individual clearance rate coefficients. These findings confirm those of the earlier analysis; i.e., the best-fitting exposure-dose model to these data has substantial interstitialization/sequestration of particles and no dose-dependent decline in alveolar clearance. Among miners with different characteristics for smoking, disease, and race, the group median estimated alveolar clearance rate coefficients varied by a factor of approximately 4. Adjustment for these group differences provided some improvement in the dosimetry model fit to all miners (up to 25% reduction in MSE), although unexplained interindividual differences made up the largest source of variability. The predicted mean lung and lymph node particle burdens at age 75 after exposure to respirable coal mine dust at 2 mg/m(2) for a 45-year working lifetime were 12 g (5th and 95th percentiles, 3.0-26 g) and 1.9 g (0.26-5.3), respectively. This study provides quantitative information on variability in particle retention and clearance kinetics in humans. It is useful for risk assessment by providing

  15. Intranasal Administration of Type V Collagen Reduces Lung Carcinogenesis through Increasing Endothelial and Epithelial Apoptosis in a Urethane-Induced Lung Tumor Model.

    PubMed

    Parra, Edwin Roger; Alveno, Renata Antunes; Faustino, Carolina Brito; Corrêa, Paula Yume Sato Serzedello; Vargas, Camilla Mutai; de Morais, Jymenez; Rangel, Maristela Peres; Velosa, Ana Paula Pereira; Fabro, Alexandre Todorovic; Teodoro, Walcy Rosolia; Capelozzi, Vera Luiza

    2016-08-01

    Type V collagen (Col V) is a "minor" component of normal lung extracellular matrix, which is subjected to decreased and abnormal synthesis in human lung infiltrating adenocarcinoma. We previously reported that a direct link between low amounts of Col V and decreased cell apoptosis may favor cancer cell growth in the mouse lung after chemical carcinogenesis. Moreover, this collagen species was able to trigger DNA fragmentation and impair survival of neoplastic cells. In this study, we have extended our investigation with the aim to obtain further evidence that the death induced by Col V-treatment is of the caspase-9 apoptotic type. We used (1) optical and electron microscopy, (2) quantitation of TUNEL-labeled cells and (3) analysis of the expression levels of Col V and selected genes coding for apoptosis-linked factors, by conventional RT-PCR. BALB/c mice were injected intraperitoneally with 1.5 g/kg body weight of urethane. After urethane injection, the animals received intranasal administration of 20 µg/20 µl of Col V every day during 2 months. We report here that Col V treatment was able to determine significant increase in Col V protein and gene expression and in the percentage of TUNEL-positive cells, to up-regulate caspase-9, resulting in low growth of tumor cells. Our data validate chemical carcinogenesis as a suitable "in vivo" model for further and more detailed studies on the molecular mechanisms of the death response induced by Col V in lung infiltrating adenocarcinoma opening new strategies for treatment.

  16. Exhaled Aerosol Pattern Discloses Lung Structural Abnormality: A Sensitivity Study Using Computational Modeling and Fractal Analysis

    PubMed Central

    Xi, Jinxiang; Si, Xiuhua A.; Kim, JongWon; Mckee, Edward; Lin, En-Bing

    2014-01-01

    Background Exhaled aerosol patterns, also called aerosol fingerprints, provide clues to the health of the lung and can be used to detect disease-modified airway structures. The key is how to decode the exhaled aerosol fingerprints and retrieve the lung structural information for a non-invasive identification of respiratory diseases. Objective and Methods In this study, a CFD-fractal analysis method was developed to quantify exhaled aerosol fingerprints and applied it to one benign and three malign conditions: a tracheal carina tumor, a bronchial tumor, and asthma. Respirations of tracer aerosols of 1 µm at a flow rate of 30 L/min were simulated, with exhaled distributions recorded at the mouth. Large eddy simulations and a Lagrangian tracking approach were used to simulate respiratory airflows and aerosol dynamics. Aerosol morphometric measures such as concentration disparity, spatial distributions, and fractal analysis were applied to distinguish various exhaled aerosol patterns. Findings Utilizing physiology-based modeling, we demonstrated substantial differences in exhaled aerosol distributions among normal and pathological airways, which were suggestive of the disease location and extent. With fractal analysis, we also demonstrated that exhaled aerosol patterns exhibited fractal behavior in both the entire image and selected regions of interest. Each exhaled aerosol fingerprint exhibited distinct pattern parameters such as spatial probability, fractal dimension, lacunarity, and multifractal spectrum. Furthermore, a correlation of the diseased location and exhaled aerosol spatial distribution was established for asthma. Conclusion Aerosol-fingerprint-based breath tests disclose clues about the site and severity of lung diseases and appear to be sensitive enough to be a practical tool for diagnosis and prognosis of respiratory diseases with structural abnormalities. PMID:25105680

  17. Superoxide dismutase 3 dysregulation in a murine model of neonatal lung injury.

    PubMed

    Poonyagariyagorn, Hataya K; Metzger, Shana; Dikeman, Dustin; Mercado, Armando Lopez; Malinina, Alla; Calvi, Carla; McGrath-Morrow, Sharon; Neptune, Enid R

    2014-09-01

    Bronchopulmonary dysplasia (BPD), a common chronic respiratory disease that occurs after premature birth, is believed to be secondary to oxidative damage from hyperoxia and inflammation, which leads to impaired alveolar formation and chronic lung dysfunction. We hypothesized that extracellular superoxide dismutase (SOD)3, an antioxidant uniquely targeted to the extracellular matrix (ECM) and alveolar fluid, might have a different response (down-regulation) to hyperoxic injury and recovery in room air (RA), thereby contributing to the persistent airspace injury and inflammation. We used a murine BPD model using postnatal hyperoxia (O2) (4 or 5 d) followed by short-term recovery (14 d) in RA, which mimics the durable effects after injury during alveolar development. This was associated with significantly increased mRNA expression for antioxidant genes mediated by nuclear factor erythroid 2-related factor (Nrf2) in the O2 (n = 4) versus RA group (n = 5). SOD3, an Nrf2-independent antioxidant, was significantly reduced in the O2-exposed mice compared with RA. Immunohistochemistry revealed decreased and disrupted SOD3 deposition in the alveolar ECM of O2-exposed mice. Furthermore, this distinct hyperoxic antioxidant and injury profile was reproducible in murine lung epithelial 12 cells exposed to O2. Overexpression of SOD3 rescued the injury measures in the O2-exposed cells. We establish that reduced SOD3 expression correlates with alveolar injury measures in the recovered neonatal hyperoxic lung, and SOD3 overexpression attenuates hyperoxic injury in an alveolar epithelial cell line. Such findings suggest a candidate mechanism for the pathogenesis of BPD that may lead to targeted interventions.

  18. A preterm pig model of lung immaturity and spontaneous infant respiratory distress syndrome.

    PubMed

    Caminita, Frank; van der Merwe, Marie; Hance, Brittany; Krishnan, Ramesh; Miller, Sarah; Buddington, Karyl; Buddington, Randal K

    2015-01-15

    Respiratory distress syndrome (RDS) and bronchopulmonary dysplasia remain the leading causes of preterm infant morbidity, mortality, and lifelong disability. Research to improve outcomes requires translational large animal models for RDS. Preterm pigs delivered by caesarian section at gestation days (GD) 98, 100, 102, and 104 were provided 24 h of neonatal intensive care, monitoring (pulse oximetry, blood gases, serum biomarkers, radiography), and nutritional support, with or without intubation and mechanical ventilation (MV; pressure control ventilation with volume guarantee). Spontaneous development of RDS and mortality without MV are inversely related with GD at delivery and correspond with inadequacy of tidal volume and gas exchange. GD 98 and 100 pigs have consolidated lungs, immature alveolar architecture, and minimal surfactant protein-B expression, and MV is essential at GD 98. Although GD 102 pigs had some alveoli lined by pneumocytes and surfactant was released in response to MV, blood gases and radiography revealed limited recruitment 1-2 h after delivery, and mortality at 24 h was 66% (35/53) with supplemental oxygen provided by a mask and 69% (9/13) with bubble continuous positive airway pressure (8-9 cmH2O). The lungs at GD 104 had higher densities of thin-walled alveoli that secreted surfactant, and MV was not essential. Between GD 98 and 102, preterm pigs have ventilation inadequacies and risks of RDS that mimic those of preterm infants born during the saccular phase of lung development, are compatible with standards of neonatal intensive care, and are alternative to fetal nonhuman primates and lambs.

  19. Population modeling and simulation study of the pharmacokinetics and antituberculosis pharmacodynamics of isoniazid in lungs.

    PubMed

    Lalande, L; Bourguignon, L; Bihari, S; Maire, P; Neely, M; Jelliffe, R; Goutelle, S

    2015-09-01

    Among first-line antituberculosis drugs, isoniazid (INH) displays the greatest early bactericidal activity (EBA) and is key to reducing contagiousness in treated patients. The pulmonary pharmacokinetics and pharmacodynamics of INH have not been fully characterized with modeling and simulation approaches. INH concentrations measured in plasma, epithelial lining fluid, and alveolar cells for 89 patients, including fast acetylators (FAs) and slow acetylators (SAs), were modeled by use of population pharmacokinetic modeling. Then the model was used to simulate the EBA of INH in lungs and to investigate the influences of INH dose, acetylator status, and M. tuberculosis MIC on this effect. A three-compartment model adequately described INH concentrations in plasma and lungs. With an MIC of 0.0625 mg/liter, simulations showed that the mean bactericidal effect of a standard 300-mg daily dose of INH was only 11% lower for FA subjects than for SA subjects and that dose increases had little influence on the effects in either FA or SA subjects. With an MIC value of 1 mg/liter, the mean bactericidal effect associated with a 300-mg daily dose of INH in SA subjects was 41% greater than that in FA subjects. With the same MIC, increasing the daily INH dose from 300 mg to 450 mg resulted in a 22% increase in FA subjects. These results suggest that patients infected with M. tuberculosis with low-level resistance, especially FA patients, may benefit from higher INH doses, while dose adjustment for acetylator status has no significant impact on the EBA in patients with low-MIC strains.

  20. Population modeling and simulation study of the pharmacokinetics and antituberculosis pharmacodynamics of isoniazid in lungs.

    PubMed

    Lalande, L; Bourguignon, L; Bihari, S; Maire, P; Neely, M; Jelliffe, R; Goutelle, S

    2015-09-01

    Among first-line antituberculosis drugs, isoniazid (INH) displays the greatest early bactericidal activity (EBA) and is key to reducing contagiousness in treated patients. The pulmonary pharmacokinetics and pharmacodynamics of INH have not been fully characterized with modeling and simulation approaches. INH concentrations measured in plasma, epithelial lining fluid, and alveolar cells for 89 patients, including fast acetylators (FAs) and slow acetylators (SAs), were modeled by use of population pharmacokinetic modeling. Then the model was used to simulate the EBA of INH in lungs and to investigate the influences of INH dose, acetylator status, and M. tuberculosis MIC on this effect. A three-compartment model adequately described INH concentrations in plasma and lungs. With an MIC of 0.0625 mg/liter, simulations showed that the mean bactericidal effect of a standard 300-mg daily dose of INH was only 11% lower for FA subjects than for SA subjects and that dose increases had little influence on the effects in either FA or SA subjects. With an MIC value of 1 mg/liter, the mean bactericidal effect associated with a 300-mg daily dose of INH in SA subjects was 41% greater than that in FA subjects. With the same MIC, increasing the daily INH dose from 300 mg to 450 mg resulted in a 22% increase in FA subjects. These results suggest that patients infected with M. tuberculosis with low-level resistance, especially FA patients, may benefit from higher INH doses, while dose adjustment for acetylator status has no significant impact on the EBA in patients with low-MIC strains. PMID:26077251

  1. Development of a Multicomponent Prediction Model for Acute Esophagitis in Lung Cancer Patients Receiving Chemoradiotherapy

    SciTech Connect

    De Ruyck, Kim; Sabbe, Nick; Oberije, Cary; Vandecasteele, Katrien; Thas, Olivier; De Ruysscher, Dirk; Lambin, Phillipe; Van Meerbeeck, Jan; De Neve, Wilfried; Thierens, Hubert

    2011-10-01

    Purpose: To construct a model for the prediction of acute esophagitis in lung cancer patients receiving chemoradiotherapy by combining clinical data, treatment parameters, and genotyping profile. Patients and Methods: Data were available for 273 lung cancer patients treated with curative chemoradiotherapy. Clinical data included gender, age, World Health Organization performance score, nicotine use, diabetes, chronic disease, tumor type, tumor stage, lymph node stage, tumor location, and medical center. Treatment parameters included chemotherapy, surgery, radiotherapy technique, tumor dose, mean fractionation size, mean and maximal esophageal dose, and overall treatment time. A total of 332 genetic polymorphisms were considered in 112 candidate genes. The predicting model was achieved by lasso logistic regression for predictor selection, followed by classic logistic regression for unbiased estimation of the coefficients. Performance of the model was expressed as the area under the curve of the receiver operating characteristic and as the false-negative rate in the optimal point on the receiver operating characteristic curve. Results: A total of 110 patients (40%) developed acute esophagitis Grade {>=}2 (Common Terminology Criteria for Adverse Events v3.0). The final model contained chemotherapy treatment, lymph node stage, mean esophageal dose, gender, overall treatment time, radiotherapy technique, rs2302535 (EGFR), rs16930129 (ENG), rs1131877 (TRAF3), and rs2230528 (ITGB2). The area under the curve was 0.87, and the false-negative rate was 16%. Conclusion: Prediction of acute esophagitis can be improved by combining clinical, treatment, and genetic factors. A multicomponent prediction model for acute esophagitis with a sensitivity of 84% was constructed with two clinical parameters, four treatment parameters, and four genetic polymorphisms.

  2. Epidemiology of Lung Cancer

    PubMed Central

    Brock, Malcolm V.; Ford, Jean G.; Samet, Jonathan M.; Spivack, Simon D.

    2013-01-01

    Background: Ever since a lung cancer epidemic emerged in the mid-1900s, the epidemiology of lung cancer has been intensively investigated to characterize its causes and patterns of occurrence. This report summarizes the key findings of this research. Methods: A detailed literature search provided the basis for a narrative review, identifying and summarizing key reports on population patterns and factors that affect lung cancer risk. Results: Established environmental risk factors for lung cancer include smoking cigarettes and other tobacco products and exposure to secondhand tobacco smoke, occupational lung carcinogens, radiation, and indoor and outdoor air pollution. Cigarette smoking is the predominant cause of lung cancer and the leading worldwide cause of cancer death. Smoking prevalence in developing nations has increased, starting new lung cancer epidemics in these nations. A positive family history and acquired lung disease are examples of host factors that are clinically useful risk indicators. Risk prediction models based on lung cancer risk factors have been developed, but further refinement is needed to provide clinically useful risk stratification. Promising biomarkers of lung cancer risk and early detection have been identified, but none are ready for broad clinical application. Conclusions: Almost all lung cancer deaths are caused by cigarette smoking, underscoring the need for ongoing efforts at tobacco control throughout the world. Further research is needed into the reasons underlying lung cancer disparities, the causes of lung cancer in never smokers, the potential role of HIV in lung carcinogenesis, and the development of biomarkers. PMID:23649439

  3. Creation of a Tumor-Mimic Model Using a Muscle Paste for Radiofrequency Ablation of the Lung

    SciTech Connect

    Kawai, T. Kaminou, T.; Sugiura, K.; Hashimoto, M.; Ohuchi, Y.; Adachi, A.; Fujioka, S.; Ito, H.; Nakamura, K.; Ogawa, T.

    2009-03-15

    The purpose of this study was to develop an easily created tumor-mimic model and evaluate its efficacy for radiofrequency ablation (RFA) of the lung. The bilateral lungs of eight living adult swine were used. A tumor-mimic model was made by percutaneous injection of 1.0 ml muscle paste through the bone biopsy needle into the lung. An RFA probe was then inserted into the tumor mimics immediately after tumor creation. Ablation time, tissue impedance, and temperature were recorded. The tumor mimics and their coagulated regions were evaluated microscopically and macroscopically. The muscle paste was easily injected into the lung parenchyma through the bone biopsy needle and well visualized under fluoroscopy. In 10 of 12 sites the tumor mimics were oval shaped, localized, and homogeneous on gross specimens. Ten tumor mimics were successfully ablated, and four locations were ablated in the normal lung parenchyma as controls. In the tumor and normal lung parenchyma, ablation times were 8.9 {+-} 3.5 and 4.4 {+-} 1.6 min, respectively; tissue impedances at the start of ablation were 100.6 {+-} 16.6 and 145.8 {+-} 26.8 {Omega}, respectively; and temperatures at the end of ablation were 66.0 {+-} 7.9 and 57.5 {+-} 7.6{sup o}C, respectively. The mean size of tumor mimics was 13.9 x 8.2 mm, and their coagulated area was 18.8 x 13.1 mm. In the lung parenchyma, the coagulated area was 15.3 x 12.0 mm. In conclusion, our tumor-mimic model using muscle paste can be easily and safely created and can be ablated using the ablation algorithm in the clinical setting.

  4. Characterization of particle deposition in a lung model using an individual path

    NASA Astrophysics Data System (ADS)

    Tena, A. M.; Casan, P.; Fernández, J.; Ferrera, C.; Marcos, A.

    2013-04-01

    Suspended particles can cause a wide range of chronic respiratory illnesses such as asthma and chronic obstructive pulmonary diseases, as well as worsening heart conditions and other conditions. To know the particle depositions in realistic models of the human respiratory system is fundamental to prevent these diseases. The main objective of this work is to study the lung deposition of inhaled particles through a numerical model using UDF (User Defined Function) to impose the boundary conditions in the truncated airways. For each generation, this UDF puts the values of velocity profile of the flow path to symmetrical truncated outlet. The flow rates tested were 10, 30 and 60 ℓ/min, with a range of particles between 0.1 µm and 20 µm.

  5. A simple numerical model for membrane oxygenation of an artificial lung machine

    NASA Astrophysics Data System (ADS)

    Subraveti, Sai Nikhil; Sai, P. S. T.; Viswanathan Pillai, Vinod Kumar; Patnaik, B. S. V.

    2015-11-01

    Optimal design of membrane oxygenators will have far reaching ramification in the development of artificial heart-lung systems. In the present CFD study, we simulate the gas exchange between the venous blood and air that passes through the hollow fiber membranes on a benchmark device. The gas exchange between the tube side fluid and the shell side venous liquid is modeled by solving mass, momentum conservation equations. The fiber bundle was modelled as a porous block with a bundle porosity of 0.6. The resistance offered by the fiber bundle was estimated by the standard Ergun correlation. The present numerical simulations are validated against available benchmark data. The effect of bundle porosity, bundle size, Reynolds number, non-Newtonian constitutive relation, upstream velocity distribution etc. on the pressure drop, oxygen saturation levels etc. are investigated. To emulate the features of gas transfer past the alveoli, the effect of pulsatility on the membrane oxygenation is also investigated.

  6. Valproic acid improves second-line regimen of small cell lung carcinoma in preclinical models

    PubMed Central

    Hubaux, Roland; Vandermeers, Fabian; Cosse, Jean-Philippe; Crisanti, Cecilia; Kapoor, Veena; Albelda, Steven M.; Mascaux, Céline; Delvenne, Philippe; Hubert, Pascale

    2015-01-01

    With 5-year survival rates below 5%, small cell lung carcinoma (SCLC) has very poor prognosis and requires improved therapies. Despite an excellent overall response to first-line therapy, relapses are frequent and further treatments are disappointing. The goal of the study was to improve second-line therapy of SCLC. The effect of chemotherapeutic agents was evaluated in cell lines (apoptosis, reactive oxygen species, and RNA and protein expression) and in mouse models (tumour development). We demonstrate here that valproic acid, a histone deacetylase inhibitor, improves the efficacy of a second-line regimen (vindesine, doxorubicin and cyclophosphamide) in SCLC cells and in mouse models. Transcriptomic profiling integrating microRNA and mRNA data identifies key signalling pathways in the response of SCLC cells to valproic acid, opening new prospects for improved therapies. PMID:27730151

  7. Erythronium japonicum attenuates histopathological lung abnormalities in a mouse model of ovalbumin-induced asthma

    PubMed Central

    SEO, JI-HYE; BANG, MI-AE; KIM, GYEYEOP; CHO, SEUNG SIK; PARK, DAE-HUN

    2016-01-01

    Asthma is a chronic lung condition that can induce mucus hypersecretion and pulmonary obstruction and may even cause death, particularly in children and older individuals. Erythronium japonicum (E. japonicum) is a traditional herb used in Korea and East Asian countries that has been found to exert free radical scavenging activity and anti-proliferative effects in human colorectal carcinoma cells. In the present study, we evaluated the anti-asthmatic effects of an extract of E. japonicum in a mouse model of ovalbumin (OVA)-induced asthma. Female BALB/c mice were sensitized with an intraperitoneal injection of OVA and aluminum hydroxide hydrate on days 1 and 8 and then received the following treatments on days 21 to 25: i) control (no treatment), ii) sterilized tap water (given orally), iii) 1 mg/kg/day dexamethasone (administered orally), iv) 60 mg/kg/day E. japonicum extract, and v) 600 mg/kg/day E. japonicum extract. On the same days, all the mice except those in the control group were challenged 1 h later with nebulized 5% OVA for 30 min. We found that treatment with E. japonicum extract suppressed the OVA-induced increase in the number of white blood cells and decreased the IgE level in the bronchoalveolar lavage fluid samples obtained from the mice. Histopathological analysis of the lung tissues revealed that E. japonicum attenuated the asthma-related morphological changes in the mouse lung tissue, including the increased secretion of mucus in the bronchioles, eosinophil infiltration around the bronchioles and vessels, and goblet cell and epithelial cell hyperplasia. Immunohistochemical analysis revealed that treatment with E. japonicum extract suppressed the OVA-induced proliferation of T helper cells (CD4+) and B cells (CD19+) in the mouse lung tissue. Furthermore, treatment with E. japonicum extract modulated the expression of both T helper 2 cell-related factors [GATA binding protein 3 (GATA-3), tumor necrosis factor-α (TNF-α), interleukin (IL)-4, IL-5

  8. A stochastic Markov chain model to describe lung cancer growth and metastasis.

    PubMed

    Newton, Paul K; Mason, Jeremy; Bethel, Kelly; Bazhenova, Lyudmila A; Nieva, Jorge; Kuhn, Peter

    2012-01-01

    A stochastic Markov chain model for metastatic progression is developed for primary lung cancer based on a network construction of metastatic sites with dynamics modeled as an ensemble of random walkers on the network. We calculate a transition matrix, with entries (transition probabilities) interpreted as random variables, and use it to construct a circular bi-directional network of primary and metastatic locations based on postmortem tissue analysis of 3827 autopsies on untreated patients documenting all primary tumor locations and metastatic sites from this population. The resulting 50 potential metastatic sites are connected by directed edges with distributed weightings, where the site connections and weightings are obtained by calculating the entries of an ensemble of transition matrices so that the steady-state distribution obtained from the long-time limit of the Markov chain dynamical system corresponds to the ensemble metastatic distribution obtained from the autopsy data set. We condition our search for a transition matrix on an initial distribution of metastatic tumors obtained from the data set. Through an iterative numerical search procedure, we adjust the entries of a sequence of approximations until a transition matrix with the correct steady-state is found (up to a numerical threshold). Since this constrained linear optimization problem is underdetermined, we characterize the statistical variance of the ensemble of transition matrices calculated using the means and variances of their singular value distributions as a diagnostic tool. We interpret the ensemble averaged transition probabilities as (approximately) normally distributed random variables. The model allows us to simulate and quantify disease progression pathways and timescales of progression from the lung position to other sites and we highlight several key findings based on the model.

  9. A stochastic Markov chain model to describe lung cancer growth and metastasis.

    PubMed

    Newton, Paul K; Mason, Jeremy; Bethel, Kelly; Bazhenova, Lyudmila A; Nieva, Jorge; Kuhn, Peter

    2012-01-01

    A stochastic Markov chain model for metastatic progression is developed for primary lung cancer based on a network construction of metastatic sites with dynamics modeled as an ensemble of random walkers on the network. We calculate a transition matrix, with entries (transition probabilities) interpreted as random variables, and use it to construct a circular bi-directional network of primary and metastatic locations based on postmortem tissue analysis of 3827 autopsies on untreated patients documenting all primary tumor locations and metastatic sites from this population. The resulting 50 potential metastatic sites are connected by directed edges with distributed weightings, where the site connections and weightings are obtained by calculating the entries of an ensemble of transition matrices so that the steady-state distribution obtained from the long-time limit of the Markov chain dynamical system corresponds to the ensemble metastatic distribution obtained from the autopsy data set. We condition our search for a transition matrix on an initial distribution of metastatic tumors obtained from the data set. Through an iterative numerical search procedure, we adjust the entries of a sequence of approximations until a transition matrix with the correct steady-state is found (up to a numerical threshold). Since this constrained linear optimization problem is underdetermined, we characterize the statistical variance of the ensemble of transition matrices calculated using the means and variances of their singular value distributions as a diagnostic tool. We interpret the ensemble averaged transition probabilities as (approximately) normally distributed random variables. The model allows us to simulate and quantify disease progression pathways and timescales of progression from the lung position to other sites and we highlight several key findings based on the model. PMID:22558094

  10. Cytosolic PhospholipaseA2 Inhibition with PLA-695 Radiosensitizes Tumors in Lung Cancer Animal Models

    PubMed Central

    Ferraro, Daniel J.; Kotipatruni, Rama P.; Bhave, Sandeep R.; Jaboin, Jerry J.; Hallahan, Dennis E.

    2013-01-01

    Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted. PMID:23894523

  11. Cytosolic phospholipaseA2 inhibition with PLA-695 radiosensitizes tumors in lung cancer animal models.

    PubMed

    Thotala, Dinesh; Craft, Jeffrey M; Ferraro, Daniel J; Kotipatruni, Rama P; Bhave, Sandeep R; Jaboin, Jerry J; Hallahan, Dennis E

    2013-01-01

    Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted.

  12. Cytosolic phospholipaseA2 inhibition with PLA-695 radiosensitizes tumors in lung cancer animal models.

    PubMed

    Thotala, Dinesh; Craft, Jeffrey M; Ferraro, Daniel J; Kotipatruni, Rama P; Bhave, Sandeep R; Jaboin, Jerry J; Hallahan, Dennis E

    2013-01-01

    Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted. PMID:23894523

  13. Thoracic artificial lung impedance studies using computational fluid dynamics and in vitro models.

    PubMed

    Schewe, Rebecca E; Khanafer, Khalil M; Orizondo, Ryan A; Cook, Keith E

    2012-03-01

    Current thoracic artificial lungs (TALs) possess blood flow impedances greater than the natural lungs, resulting in abnormal pulmonary hemodynamics when implanted. This study sought to reduce TAL impedance using computational fluid dynamics (CFD). CFD was performed on TAL models with inlet and outlet expansion and contraction angles, θ, of 15°, 45°, and 90°. Pulsatile blood flow was simulated for flow rates of 2-6 L/min, heart rates of 80 and 100 beats/min, and inlet pulsatilities of 3.75 and 2. Pressure and flow data were used to calculate the zeroth and first harmonic impedance moduli, Z(0) and Z(1), respectively. The 45° and 90° models were also tested in vitro under similar conditions. CFD results indicate Z(0) increases as stroke volume and θ increase. At 4 L/min, 100 beats/min, and a pulsatility of 3.75, Z(0) was 0.47, 0.61, and 0.79 mmHg/(L/min) for the 15°, 45°, and 90° devices, respectively. Velocity band and vector plots also indicate better flow patterns in the 45° device. At the same conditions, in vitro Z (0) were 0.69 ± 0.13 and 0.79 ± 0.10 mmHg/(L/min), respectively, for the 45° and 90° models. These Z(0) are 65% smaller than previous TAL designs. In vitro, Z(1) increased with flow rate but was small and unlikely to significantly affect hemodynamics. The optimal design for flow patterns and low impedance was the 45° model. PMID:22009316

  14. Drosophila Lung Cancer Models Identify Trametinib Plus Statin as Candidate Therapeutic

    PubMed Central

    Levine, Benjamin D.

    2016-01-01

    Summary We have developed a Drosophila lung cancer model by targeting Ras1G12V—alone or in combination with PTEN knockdown—to the Drosophila tracheal system. This led to overproliferation of tracheal tissue, formation of tumor-like growths, and animal lethality. Screening a library of FDA approved drugs identified several that improved overall animal survival. We explored two hits: the MEK inhibitor trametinib and the HMG-CoA reductase inhibitor fluvastatin. Oral administration of these drugs inhibited Ras and PI3K pathway activity, respectively; in addition, fluvastatin inhibited protein prenylation downstream of HMG-CoA reductase to promote survival. Combining drugs led to synergistic suppression of tumor formation and rescue lethality; similar synergy was observed in human A549 lung adenocarcinoma cells. Notably, fluvastatin acted both within transformed cells and also to reduce whole body trametinib toxicity in flies. Our work supports and provides further context for exploring the potential of combining statins with MAPK inhibitors such as trametinib to improve overall therapeutic index. PMID:26832408

  15. Effects on lung stress of position and different doses of perfluorocarbon in a model of ARDS.

    PubMed

    López-Aguilar, Josefina; Lucangelo, Umberto; Albaiceta, Guillermo M; Nahum, Avi; Murias, Gastón; Cañizares, Rosario; Oliva, Joan Carles; Romero, Pablo V; Blanch, Lluís

    2015-05-01

    We determined whether the combination of low dose partial liquid ventilation (PLV) with perfluorocarbons (PFC) and prone positioning improved lung function while inducing minimal stress. Eighteen pigs with acute lung injury were assigned to conventional mechanical ventilation (CMV) or PLV (5 or 10 ml/kg of PFC). Positive end-expiratory pressure (PEEP) trials in supine and prone positions were performed. Data were analyzed by a multivariate polynomial regression model. The interplay between PLV and position depended on the PEEP level. In supine PLV dampened the stress induced by increased PEEP during the trial. The PFC dose of 5 ml/kg was more effective than the dose 10 ml/kg. This effect was not observed in prone. Oxygenation was significantly higher in prone than in supine position mainly at lower levels of PEEP. In conclusion, MV settings should take both gas exchange and stress/strain into account. When protective CMV fails, rescue strategies combining prone positioning and PLV with optimal PEEP should improve gas exchange with minimal stress.

  16. A probabilistic model of biological ageing of the lungs for analysing the effects of smoking, asthma and COPD

    PubMed Central

    2013-01-01

    Background Although a large body of literature is available that describes the effects of smoking, asthma and COPD on lung function, most studies are restricted to a small age range and to one factor. As a consequence, available results are incomplete and often difficult to compare, also due to the ways the effects are expressed. Furthermore, current approaches consider one type of measurement only or several types separately. Methods We propose a probabilistic model that expresses the effects as number of years added to chronological age or, in other words, that estimates the biological age of the lungs. Using biological age as a measure of the effects has the advantage of facilitating the understanding of their severity and comparison of results. In our model, chronological age and other factors affecting the health status of the lungs generate biological age, which in turn generates lung function measurements. This structure enables the use of multiple types of measurement to obtain a more precise estimate of the effects and parameter sharing for characterization over large age ranges and of co-occurrence of factors with little data. We treat the parameters that model smoking habits and lung diseases as random variables to obtain uncertainty in the estimated effects. Results We use the model to investigate the effects of smoking, asthma and COPD on the TwinsUK Registry. Our results suggest that the combination of smoking with lung disease(s) has higher effect than smoking or lung disease(s) alone, and that in smokers, co-occurrence of asthma and COPD is more detrimental than asthma or COPD alone. Conclusions The proposed model or other models based on a similar approach could be of help in improving the understanding of factors affecting lung function by enabling characterizations over large age ranges and of co-occurrence of factors with little data and the use of multiple types of measurement. The software implementing the model can be downloaded at the first

  17. Lung Emergencies

    MedlinePlus

    ... Emergencies Cardiac Emergencies Eye Emergencies Lung Emergencies Surgeries Lung Emergencies People with Marfan syndrome can be at ... should be considered an emergency. Symptoms of sudden lung collapse (pneumothorax) Symptoms of a sudden lung collapse ...

  18. Lung Cancer

    MedlinePlus

    ... version of this page please turn Javascript on. Lung Cancer What is Lung Cancer? How Tumors Form The body is made ... button on your keyboard.) Two Major Types of Lung Cancer There are two major types of lung ...

  19. Lung metastases

    MedlinePlus

    Metastases to the lung; Metastatic cancer to the lung ... Metastatic tumors in the lungs are cancers that developed at other places in the body (or other parts of the lungs) and spread through the ...

  20. TU-F-17A-03: An Analytical Respiratory Perturbation Model for Lung Motion Prediction

    SciTech Connect

    Li, G; Yuan, A; Wei, J

    2014-06-15

    Purpose: Breathing irregularity is common, causing unreliable prediction in tumor motion for correlation-based surrogates. Both tidal volume (TV) and breathing pattern (BP=ΔVthorax/TV, where TV=ΔVthorax+ΔVabdomen) affect lung motion in anterior-posterior and superior-inferior directions. We developed a novel respiratory motion perturbation (RMP) model in analytical form to account for changes in TV and BP in motion prediction from simulation to treatment. Methods: The RMP model is an analytical function of patient-specific anatomic and physiologic parameters. It contains a base-motion trajectory d(x,y,z) derived from a 4-dimensional computed tomography (4DCT) at simulation and a perturbation term Δd(ΔTV,ΔBP) accounting for deviation at treatment from simulation. The perturbation is dependent on tumor-specific location and patient-specific anatomy. Eleven patients with simulation and treatment 4DCT images were used to assess the RMP method in motion prediction from 4DCT1 to 4DCT2, and vice versa. For each patient, ten motion trajectories of corresponding points in the lower lobes were measured in both 4DCTs: one served as the base-motion trajectory and the other as the ground truth for comparison. In total, 220 motion trajectory predictions were assessed. The motion discrepancy between two 4DCTs for each patient served as a control. An established 5D motion model was used for comparison. Results: The average absolute error of RMP model prediction in superior-inferior direction is 1.6±1.8 mm, similar to 1.7±1.6 mm from the 5D model (p=0.98). Some uncertainty is associated with limited spatial resolution (2.5mm slice thickness) and temporal resolution (10-phases). Non-corrected motion discrepancy between two 4DCTs is 2.6±2.7mm, with the maximum of ±20mm, and correction is necessary (p=0.01). Conclusion: The analytical motion model predicts lung motion with accuracy similar to the 5D model. The analytical model is based on physical relationships, requires no

  1. A large animal model to evaluate the effects of Hsp90 inhibitors for the treatment of lung adenocarcinoma

    SciTech Connect

    Varela, Mariana; Golder, Matthew; Archer, Fabienne; Heras, Marcelo de las; Leroux, Caroline; Palmarini, Massimo

    2008-02-05

    Ovine pulmonary adenocarcinoma (OPA) is a naturally occurring lung cancer of sheep caused by Jaagsiekte sheep retrovirus (JSRV). The JSRV envelope glycoprotein (Env) functions as a dominant oncoprotein in vitro and in vivo. In order to develop the basis for the use of OPA as a lung cancer model, we screened a variety of signal transduction inhibitors for their ability to block transformation by the JSRV Env. Most inhibitors were not effective in blocking JSRV Env-induced transformation. On the contrary, various Hsp90 inhibitors efficiently blocked JSRV transformation. This phenomenon was at least partly due to Akt degradation, which is activated in JSRV-transformed cells. Hsp90 was found expressed in tumor cells of sheep with naturally occurring OPA. In addition, Hsp90 inhibitors specifically inhibited proliferation of immortalized and moreover primary cells derived from OPA tumors. Thus, OPA could be used as a large animal model for comprehensive studies investigating the effects of Hsp90 inhibitors in lung adenocarcinoma.

  2. Deterministic and Stochastic Study for a Microscopic Angiogenesis Model: Applications to the Lewis Lung Carcinoma

    PubMed Central

    Bodnar, Marek; Piotrowska, Monika J.

    2016-01-01

    Angiogenesis modelling is an important tool to understand the underlying mechanisms yielding tumour growth. Nevertheless, there is usually a gap between models and experimental data. We propose a model based on the intrinsic microscopic reactions defining the angiogenesis process to link experimental data with previous macroscopic models. The microscopic characterisation can describe the macroscopic behaviour of the tumour, which stability analysis reveals a set of predicted tumour states involving different morphologies. Additionally, the microscopic description also gives a framework to study the intrinsic stochasticity of the reactive system through the resulting Langevin equation. To follow the goal of the paper, we use available experimental information on the Lewis lung carcinoma to infer meaningful parameters for the model that are able to describe the different stages of the tumour growth. Finally we explore the predictive capabilities of the fitted model by showing that fluctuations are determinant for the survival of the tumour during the first week and that available treatments can give raise to new stable tumour dormant states with a reduced vascular network. PMID:27182891

  3. Proteoglycans maintain lung stability in an elastase-treated mouse model of emphysema.

    PubMed

    Takahashi, Ayuko; Majumdar, Arnab; Parameswaran, Harikrishnan; Bartolák-Suki, Erzsébet; Suki, Béla

    2014-07-01

    Extracellular matrix remodeling and tissue rupture contribute to the progression of emphysema. Lung tissue elasticity is governed by the tensile stiffness of fibers and the compressive stiffness of proteoglycans. It is not known how proteoglycan remodeling affects tissue stability and destruction in emphysema. The objective of this study was to characterize the role of remodeled proteoglycans in alveolar stability and tissue destruction in emphysema. At 30 days after treatment with porcine pancreatic elastase, mouse lung tissue stiffness and alveolar deformation were evaluated under varying tonicity conditions that affect the stiffness of proteoglycans. Proteoglycans were stained and measured in the alveolar walls. Computational models of alveolar stability and rupture incorporating the mechanical properties of fibers and proteoglycans were developed. Although absolute tissue stiffness was only 24% of normal, changes in relative stiffness and alveolar shape distortion due to changes in tonicity were increased in emphysema (P < 0.01 and P < 0.001). Glycosaminoglycan amount per unit alveolar wall length, which is responsible for proteoglycan stiffness, was higher in emphysema (P < 0.001). Versican expression increased in the tissue, but decorin decreased. Our network model predicted that the rate of tissue deterioration locally governed by mechanical forces was reduced when proteoglycan stiffness was increased. Consequently, this general network model explains why increasing proteoglycan deposition protects the alveolar walls from rupture in emphysema. Our results suggest that the loss of proteoglycans observed in human emphysema contributes to disease progression, whereas treatments that promote proteoglycan deposition in the extracellular matrix should slow the progression of emphysema. PMID:24450478

  4. Enhancement of radiation effects by pXLG-mEndo in a lung carcinoma model

    SciTech Connect

    Luo Xian; Slater, James M.; Gridley, Daila S. . E-mail: dgridley@dominion.llumc.edu

    2005-10-01

    Purpose: Endostatin is a potent antiangiogenesis protein with little or no toxicity that has potential to enhance radiotherapy. The major goal of this study was to evaluate the combination of radiation and endostatin gene therapy in a preclinical lung cancer model. Methods: Plasmid pXLG-mEndo, constructed in our laboratory, includes the mouse endostatin gene cloned into the pWS4 vector. The kinetics of endostatin expression and efficacy of the pXLG-mEndo and radiation ({sup 60}Co {gamma}-rays) combination was evaluated in the C57BL/6 mouse-Lewis lung carcinoma (LLC) model. The LLC cells were implanted s.c. and pXLG-mEndo was injected intratumorally 12-14 days later without any transfection agent; a dose of 10 Gy radiation was applied approximately 16 h thereafter. Some groups received each modality twice. Endostatin, vascular endothelial growth factor (VEGF), and transforming growth factor-{beta}1 (TGF-{beta}1) were quantified in plasma and tumors, and tumor vasculature was examined. Results: Endostatin expression within LLC tumors peaked on Day 7 after pXLG-mEndo injection. Addition of radiation to pXLG-mEndo significantly enhanced the level of tumor endostatin compared with plasmid alone (p < 0.05). Tumor growth was significantly delayed in mice receiving pXLG-mEndo plus radiation compared with no treatment (p < 0.005), radiation (p < 0.05), and control plasmid (p < 0.05). The number of LLC tumor vessels was reduced after combined treatment (p < 0.05), and significant treatment-related changes were observed in both VEGF and TGF-{beta}1. Conclusions: The data demonstrate that delivery of endostatin by pXLG-mEndo as an adjuvant to radiation can significantly enhance the antitumor efficacy of radiotherapy in the LLC mouse tumor model and support further investigation of this unique combination therapy.

  5. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    PubMed Central

    Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan; Orihuela, Ruben; Olive Ngalame, Ntube N.; Waalkes, Michael P.

    2013-01-01

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell’s ability to adapt to chronic cadmium exposure. PMID:23811327

  6. Isolated lung perfusion.

    PubMed

    Cypel, Marcelo; Keshavjee, Shaf

    2012-01-01

    Isolated lung perfusion (ILP) has been historically used as a method to study basic lung physiologic concepts using animal models. More recently, ILP has been applied in lung transplantation and thoracic oncology. In lung transplantation, ILP has been used to assess physiological integrity of donor lungs after the organ is removed from the donor. This procedure is called Ex vivo Lung Perfusion (EVLP), and it has also been proposed as a method for active treatment and repair of injured unsuitable donor organs ex vivo. In oncology, ILP is an attractive method to deliver high dose chemotherapy to treat pulmonary metastatic disease. Since the lung vasculature is isolated in vivo, this technique is called in vivo lung perfusion (IVLP). This review will focus on the rationale, technical aspects, experimental and clinical experience of EVLP and IVLP. A perspective on the future use of these techniques is described. PMID:22202033

  7. Mechanisms of membrane transport of folates into cells and across epithelia.

    PubMed

    Zhao, Rongbao; Diop-Bove, Ndeye; Visentin, Michele; Goldman, I David

    2011-08-21

    Until recently, the transport of folates into cells and across epithelia has been interpreted primarily within the context of two transporters with high affinity and specificity for folates, the reduced folate carrier and the folate receptors. However, there were discrepancies between the properties of these transporters and characteristics of folate transport in many tissues, most notably the intestinal absorption of folates, in terms of pH dependency and substrate specificity. With the recent cloning of the proton-coupled folate transporter (PCFT) and the demonstration that this transporter is mutated in hereditary folate malabsorption, an autosomal recessive disorder, the molecular basis for this low-pH transport activity is now understood. This review focuses on the properties of PCFT and briefly addresses the two other folate-specific transporters along with other facilitative and ATP-binding cassette (ABC) transporters with folate transport activities. The role of these transporters in the vectorial transport of folates across epithelia is considered. PMID:21568705

  8. Cellular Barriers after Extravasation: Leukocyte Interactions with Polarized Epithelia in the Inflamed Tissue

    PubMed Central

    Reglero-Real, Natalia; García-Weber, Diego; Millán, Jaime

    2016-01-01

    During the inflammatory response, immune cells egress from the circulation and follow a chemotactic and haptotactic gradient within the tissue, interacting with matrix components in the stroma and with parenchymal cells, which guide them towards the sites of inflammation. Polarized epithelial cells compartmentalize tissue cavities and are often exposed to inflammatory challenges such as toxics or infections in non-lymphoid tissues. Apicobasal polarity is critical to the specialized functions of these epithelia. Indeed, a common feature of epithelial dysfunction is the loss of polarity. Here we review evidence showing that apicobasal polarity regulates the inflammatory response: various polarized epithelia asymmetrically secrete chemotactic mediators and polarize adhesion receptors that dictate the route of leukocyte migration within the parenchyma. We also discuss recent findings showing that the loss of apicobasal polarity increases leukocyte adhesion to epithelial cells and the consequences that this could have for the inflammatory response towards damaged, infected or transformed epithelial cells. PMID:26941485

  9. CT image construction of a totally deflated lung using deformable model extrapolation

    SciTech Connect

    Sadeghi Naini, Ali; Pierce, Greg; Lee, Ting-Yim; and others

    2011-02-15

    Purpose: A novel technique is proposed to construct CT image of a totally deflated lung from a free-breathing 4D-CT image sequence acquired preoperatively. Such a constructed CT image is very useful in performing tumor ablative procedures such as lung brachytherapy. Tumor ablative procedures are frequently performed while the lung is totally deflated. Deflating the lung during such procedures renders preoperative images ineffective for targeting the tumor. Furthermore, the problem cannot be solved using intraoperative ultrasound (U.S.) images because U.S. images are very sensitive to small residual amount of air remaining in the deflated lung. One possible solution to address these issues is to register high quality preoperative CT images of the deflated lung with their corresponding low quality intraoperative U.S. images. However, given that such preoperative images correspond to an inflated lung, such CT images need to be processed to construct CT images pertaining to the lung's deflated state. Methods: To obtain the CT images of deflated lung, we present a novel image construction technique using extrapolated deformable registration to predict the deformation the lung undergoes during full deflation. The proposed construction technique involves estimating the lung's air volume in each preoperative image automatically in order to track the respiration phase of each 4D-CT image throughout a respiratory cycle; i.e., the technique does not need any external marker to form a respiratory signal in the process of curve fitting and extrapolation. The extrapolated deformation field is then applied on a preoperative reference image in order to construct the totally deflated lung's CT image. The technique was evaluated experimentally using ex vivo porcine lung. Results: The ex vivo lung experiments led to very encouraging results. In comparison with the CT image of the deflated lung we acquired for the purpose of validation, the constructed CT image was very similar. The

  10. Chapter 10: A macro-model of smoking and lung cancer: examining aggregate trends in lung cancer rates using the CPS-I and CPS-II and two-stage clonal expansion models.

    PubMed

    Levy, David T; Blackman, Kenneth; Zaloshnja, Eduard

    2012-07-01

    Past studies have examined the relationship of lung cancer to smoking using longitudinal data for select samples. This study applies the two-stage clonal expansion (TSCE) model to U.S. +xsmoking data over a 25-year period. Smoking Base Case (SBC) data on actual smoking duration and intensity from the years 1975-2000 are applied by gender to separate TSCE models, which are then calibrated to historical trends in lung cancer death rates using regression analysis. The uncalibrated and calibrated TSCE models are also applied to SBC data for two scenarios: (1) no tobacco control and (2) complete tobacco control. The results are used to develop estimates of the number of lives saved as a result of tobacco control and how many lives would be saved if cigarette use had ceased in 1965. Predictions of lung cancer from the TSCE models with CPS-II and the CPS-I data for males and especially females are considerably below historical rates with the deviations from historical rates increasing over time. Residual trends unrelated to the smoking models were also found. Tobacco control activities saved approximately 625,000 lives between the years 1975 and 2000. An additional 2,110,000 lives would have been saved if all smoking was stopped in 1965. Tobacco control has successfully prevented lung cancer deaths, but many more lives could be saved with further reductions in smoking rates. Systematic biases were observed from TSCE models using CPS-I and CPS-II data to estimate smoking-related lung cancer deaths.

  11. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    SciTech Connect

    Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan; Orihuela, Ruben; Ngalame, Ntube N. Olive; Waalkes, Michael P.

    2013-12-01

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the relationship

  12. Lung cancer

    SciTech Connect

    Aisner, J.

    1985-01-01

    This book contains 13 chapters. Some of the chapter titles are: The Pathology of Lung Cancer; Radiotherapy for Non-Small-Cell Cancer of the Lung; Chemotherapy for Non-Small-Cell Lung Cancer; Immunotherapy in the Management of Lung Cancer; Preoperative Staging and Surgery for Non-Small-Cell Lung Cancer; and Prognostic Factors in Lung Cancer.

  13. The Porcine Chloride Channel Calcium-Activated Family Member pCLCA4a Mirrors Lung Expression of the Human hCLCA4

    PubMed Central

    Plog, Stephanie; Grötzsch, Tanja; Klymiuk, Nikolai; Kobalz, Ursula; Gruber, Achim D.

    2012-01-01

    Pig models of cystic fibrosis (CF) have recently been established that are expected to mimic the human disease closer than mouse models do. The human CLCA (originally named chloride channels, calcium-activated) member hCLCA4 is considered a potential modifier of disease severity in CF, but its murine ortholog, mCLCA6, is not expressed in the mouse lung. Here, we have characterized the genomic structure, protein processing, and tissue expression patterns of the porcine ortholog to hCLCA4, pCLCA4a. The genomic structure and cellular protein processing of pCLCA4a were found to closely mirror those of hCLCA4 and mCLCA6. Similar to human lung, pCLCA4a mRNA was strongly expressed in porcine lungs, and the pCLCA4a protein was immunohistochemically detected on the apical membranes of tracheal and bronchial epithelial cells. This stands in sharp contrast to mouse mCLCA6, which has been detected exclusively in intestinal epithelia but not the murine lung. The results may add to the understanding of species-specific differences in the CF phenotype and support the notion that the CF pig model may be more suitable than murine models to study the role of hCLCA4. PMID:22205680

  14. Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT

    NASA Astrophysics Data System (ADS)

    Artaechevarria, X.; Pérez-Martín, D.; Ceresa, M.; de Biurrun, G.; Blanco, D.; Montuenga, L. M.; van Ginneken, B.; Ortiz-de-Solorzano, C.; Muñoz-Barrutia, A.

    2009-11-01

    Animal models of lung disease are gaining importance in understanding the underlying mechanisms of diseases such as emphysema and lung cancer. Micro-CT allows in vivo imaging of these models, thus permitting the study of the progression of the disease or the effect of therapeutic drugs in longitudinal studies. Automated analysis of micro-CT images can be helpful to understand the physiology of diseased lungs, especially when combined with measurements of respiratory system input impedance. In this work, we present a fast and robust murine airway segmentation and reconstruction algorithm. The algorithm is based on a propagating fast marching wavefront that, as it grows, divides the tree into segments. We devised a number of specific rules to guarantee that the front propagates only inside the airways and to avoid leaking into the parenchyma. The algorithm was tested on normal mice, a mouse model of chronic inflammation and a mouse model of emphysema. A comparison with manual segmentations of two independent observers shows that the specificity and sensitivity values of our method are comparable to the inter-observer variability, and radius measurements of the mainstem bronchi reveal significant differences between healthy and diseased mice. Combining measurements of the automatically segmented airways with the parameters of the constant phase model provides extra information on how disease affects lung function.

  15. TH-E-BRF-07: Raman Spectroscopy for Radiation Treatment Response Assessment in a Lung Metastases Mouse Model

    SciTech Connect

    Devpura, S; Barton, K; Brown, S; Siddiqui, F; Chetty, I; Sethi, S; Klein, M

    2014-06-15

    Purpose: Raman spectroscopy is an optical spectroscopic method used to probe chemical information about a target tissue. Our goal was to investigate whether Raman spectroscopy is able to distinguish lung tumors from normal lung tissue and whether this technique can identify the molecular changes induced by radiation. Methods: 4T1 mouse breast cancer cells were implanted subcutaneously into the flanks of 6 Balb/C female mice. Four additional mice were used as “normal lung” controls. After 14 days, 3 mice bearing tumors received 6Gy to the left lung with 6MV photons and the other three were treated as “unirradiated tumor” controls. At a 24-hour time point, lungs were excised and the specimens were sectioned using a cryostat; alternating sections were either stained with hematoxylin and eosin (H and E) for evaluation by a pathologist or unstained for Raman measurements. 240 total Raman spectra were collected; 84 from normal lung controls; 63 from unirradiated tumors and 64 from tumors irradiated with 6Gy in a single fraction. Raman spectra were also collected from normal lung tissues of mice with unirradiated tumors. Principal component analysis (PCA) and discriminant function analysis (DFA) were performed to analyze the data. Results: Raman bands assignable to DNA/RNA showed prominent contributions in tumor tissues while Raman bands associated with hemoglobin showed strong contributions in normal lung tissue. PCA/DFA analysis identified normal lung tissue and tumor with 100% and 98.4% accuracy, respectively, relative to pathologic scoring. Additionally, normal lung tissues from unirradiated mice bearing tumors were classified as normal with 100% accuracy. In a model consisting of unirradiated and irradiated tumors identification accuracy was 79.4% and 93.8% respectively, relative to pathologic assessment. Conclusion: Initial results demonstrate the promise for Raman spectroscopy in the diagnosis normal vs. lung metastases as well as the assessment of

  16. Experimental investigation of particle deposition mechanisms in the lung acinus using microfluidic models.

    NASA Astrophysics Data System (ADS)

    Fishler, Rami; Mulligan, Molly; Dubowski, Yael; Sznitman, Josue; Sznitman Lab-department of Biomedical Engineering Team; Dubowski Lab-faculty of Civil; Environmental Engineering Team

    2014-11-01

    In order to experimentally investigate particle deposition mechanisms in the deep alveolated regions of the lungs, we have developed a novel microfluidic device mimicking breathing acinar flow conditions directly at the physiological scale. The model features an anatomically-inspired acinar geometry with five dichotomously branching airway generations lined with periodically expanding and contracting alveoli. Deposition patterns of airborne polystyrene microspheres (spanning 0.1 μm to 2 μm in diameter) inside the airway tree network compare well with CFD simulations and reveal the roles of gravity and Brownian motion on particle deposition sites. Furthermore, measured trajectories of incense particles (0.1-1 μm) inside the breathing device show a critical role for Brownian diffusion in determining the fate of inhaled sub-micron particles by enabling particles to cross from the acinar ducts into alveolar cavities, especially during the short time lag between inhalation and exhalation phases.

  17. Development of an Ex Vivo Porcine Lung Model for Studying Growth, Virulence, and Signaling of Pseudomonas aeruginosa

    PubMed Central

    Muruli, Aneesha; Higgins, Steven; Diggle, Stephen P.

    2014-01-01

    Research into chronic infection by bacterial pathogens, such as Pseudomonas aeruginosa, uses various in vitro and live host models. While these have increased our understanding of pathogen growth, virulence, and evolution, each model has certain limitations. In vitro models cannot recapitulate the complex spatial structure of host organs, while experiments on live hosts are limited in terms of sample size and infection duration for ethical reasons; live mammal models also require specialized facilities which are costly to run. To address this, we have developed an ex vivo pig lung (EVPL) model for quantifying Pseudomonas aeruginosa growth, quorum sensing (QS), virulence factor production, and tissue damage in an environment that mimics a chronically infected cystic fibrosis (CF) lung. In a first test of our model, we show that lasR mutants, which do not respond to 3-oxo-C12-homoserine lactone (HSL)-mediated QS, exhibit reduced virulence factor production in EVPL. We also show that lasR mutants grow as well as or better than a corresponding wild-type strain in EVPL. lasR mutants frequently and repeatedly arise during chronic CF lung infection, but the evolutionary forces governing their appearance and spread are not clear. Our data are not consistent with the hypothesis that lasR mutants act as social “cheats” in the lung; rather, our results support the hypothesis that lasR mutants are more adapted to the lung environment. More generally, this model will facilitate improved studies of microbial disease, especially studies of how cells of the same and different species interact in polymicrobial infections in a spatially structured environment. PMID:24866798

  18. Modeling of photon migration in the human lung using a finite volume solver

    NASA Astrophysics Data System (ADS)

    Sikorski, Zbigniew; Furmanczyk, Michal; Przekwas, Andrzej J.

    2006-02-01

    The application of the frequency domain and steady-state diffusive optical spectroscopy (DOS) and steady-state near infrared spectroscopy (NIRS) to diagnosis of the human lung injury challenges many elements of these techniques. These include the DOS/NIRS instrument performance and accurate models of light transport in heterogeneous thorax tissue. The thorax tissue not only consists of different media (e.g. chest wall with ribs, lungs) but its optical properties also vary with time due to respiration and changes in thorax geometry with contusion (e.g. pneumothorax or hemothorax). This paper presents a finite volume solver developed to model photon migration in the diffusion approximation in heterogeneous complex 3D tissues. The code applies boundary conditions that account for Fresnel reflections. We propose an effective diffusion coefficient for the void volumes (pneumothorax) based on the assumption of the Lambertian diffusion of photons entering the pleural cavity and accounting for the local pleural cavity thickness. The code has been validated using the MCML Monte Carlo code as a benchmark. The code environment enables a semi-automatic preparation of 3D computational geometry from medical images and its rapid automatic meshing. We present the application of the code to analysis/optimization of the hybrid DOS/NIRS/ultrasound technique in which ultrasound provides data on the localization of thorax tissue boundaries. The code effectiveness (3D complex case computation takes 1 second) enables its use to quantitatively relate detected light signal to absorption and reduced scattering coefficients that are indicators of the pulmonary physiologic state (hemoglobin concentration and oxygenation).

  19. Differential and Cooperative Cell Adhesion Regulates Cellular Pattern in Sensory Epithelia

    PubMed Central

    Togashi, Hideru

    2016-01-01

    Animal tissues are composed of multiple cell types arranged in complex and elaborate patterns. In sensory epithelia, including the auditory epithelium and olfactory epithelium, different types of cells are arranged in unique mosaic patterns. These mosaic patterns are evolutionarily conserved, and are thought to be important for hearing and olfaction. Recent progress has provided accumulating evidence that the cellular pattern formation in epithelia involves cell rearrangements, movements, and shape changes. These morphogenetic processes are largely mediated by intercellular adhesion systems. Differential adhesion and cortical tension have been proposed to promote cell rearrangements. Many different types of cells in tissues express various types of cell adhesion molecules. Although cooperative mechanisms between multiple adhesive systems are likely to contribute to the production of complex cell patterns, our current understanding of the cooperative roles between multiple adhesion systems is insufficient to entirely explain the complex mechanisms underlying cellular patterning. Recent studies have revealed that nectins, in cooperation with cadherins, are crucial for the mosaic cellular patterning in sensory organs. The nectin and cadherin systems are interacted with one another, and these interactions provide cells with differential adhesive affinities for complex cellular pattern formations in sensory epithelia, which cannot be achieved by a single mechanism.

  20. Ultrastructural aspects of otoliths and sensory epithelia of fish inner ear exposed to hypergravity

    NASA Astrophysics Data System (ADS)

    Ibsch, M.; Nindl, G.; Anken, R. H.; Körtje, K. H.; Rahmann, H.

    The present electron microscopical investigations were directed to the question, whether alterations in the gravitational force might induce structural changes in the morphology of otoliths or/and inner ear sensory epithelia of developing and adult swordtail fish (Xiphophorus helleri) that had been kept either under long-term moderate hypergravity (8 days; 3g) or under short-time extreme hypergravity (10 minutes up to 9g). The otoliths of adult and neonate swordtail fish were investigated by means of scanning electron microscopy (SEM). Macular epithelia of adult fish were examined both by SEM and transmission electron microscopy (TEM). The saccular otoliths (sagittae) of normally hatched adult fish revealed an enormous inter- (and even intra-; i.e. left vs. right) individual diversity in shape and size, whereas the otoliths of utricles (lapilli) and lagenae (asterisci) seemed to be more constant regarding morphological parameters. The structural diversity of juvenile otoliths was found to be less prominent as compared to the adults, differing from the latter regarding their peculiar crystalline morphology. Qualitative differences in the fine structure (SEM) of otoliths taken from adult and larval animals kept under 3g in comparison to 1g controls could not be observed. The SEM and TEM investigations of sensory epithelia also did not reveal any effects due to 3g stimulation. Even extreme hypergravity (more than 7g) for 10 minutes did not result in distinct pathological changes.

  1. Differential and Cooperative Cell Adhesion Regulates Cellular Pattern in Sensory Epithelia

    PubMed Central

    Togashi, Hideru

    2016-01-01

    Animal tissues are composed of multiple cell types arranged in complex and elaborate patterns. In sensory epithelia, including the auditory epithelium and olfactory epithelium, different types of cells are arranged in unique mosaic patterns. These mosaic patterns are evolutionarily conserved, and are thought to be important for hearing and olfaction. Recent progress has provided accumulating evidence that the cellular pattern formation in epithelia involves cell rearrangements, movements, and shape changes. These morphogenetic processes are largely mediated by intercellular adhesion systems. Differential adhesion and cortical tension have been proposed to promote cell rearrangements. Many different types of cells in tissues express various types of cell adhesion molecules. Although cooperative mechanisms between multiple adhesive systems are likely to contribute to the production of complex cell patterns, our current understanding of the cooperative roles between multiple adhesion systems is insufficient to entirely explain the complex mechanisms underlying cellular patterning. Recent studies have revealed that nectins, in cooperation with cadherins, are crucial for the mosaic cellular patterning in sensory organs. The nectin and cadherin systems are interacted with one another, and these interactions provide cells with differential adhesive affinities for complex cellular pattern formations in sensory epithelia, which cannot be achieved by a single mechanism. PMID:27695692

  2. Existing General Population Models Inaccurately Predict Lung Cancer Risk in Patients Referred for Surgical Evaluation

    PubMed Central

    Isbell, James M.; Deppen, Stephen; Putnam, Joe B.; Nesbitt, Jonathan C.; Lambright, Eric S.; Dawes, Aaron; Massion, Pierre P.; Speroff, Theodore; Jones, David R.; Grogan, Eric L.

    2013-01-01

    Background atients undergoing resections for suspicious pulmonary lesions have a 9-55% benign rate. Validated prediction models exist to estimate the probability of malignancy in a general population and current practice guidelines recommend their use. We evaluated these models in a surgical population to determine the accuracy of existing models to predict benign or malignant disease. Methods We conducted a retrospective review of our thoracic surgery quality improvement database (2005-2008) to identify patients who underwent resection of a pulmonary lesion. Patients were stratified into subgroups based on age, smoking status and fluorodeoxyglucose positron emission tomography (PET) results. The probability of malignancy was calculated for each patient using the Mayo and SPN prediction models. Receiver operating characteristic (ROC) and calibration curves were used to measure model performance. Results 89 patients met selection criteria; 73% were malignant. Patients with preoperative PET scans were divided into 4 subgroups based on age, smoking history and nodule PET avidity. Older smokers with PET-avid lesions had a 90% malignancy rate. Patients with PET- non-avid lesions, or PET-avid lesions with age<50 years or never smokers of any age had a 62% malignancy rate. The area under the ROC curve for the Mayo and SPN models was 0.79 and 0.80, respectively; however, the models were poorly calibrated (p<0.001). Conclusions Despite improvements in diagnostic and imaging techniques, current general population models do not accurately predict lung cancer among patients ref erred for surgical evaluation. Prediction models with greater accuracy are needed to identify patients with benign disease to reduce non-therapeutic resections. PMID:21172518

  3. A NOVEL PNYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODEL FOR DIMETHYLARSINIC ACID (DMA): THE LUNG AS A STORAGE COMPARTMENT

    EPA Science Inventory

    A NOVEL PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODEL FOR DIMETHYLARSINIC ACID (DMA): THE LUNG AS A STORAGE COMPARTMENT. Evans, M.V., Hughes, M.F., and Kenyon, E.M. USEPA, ORD, NHEERL, RTP, NC 27711

    DMA is the major methylated metabolite of inorganic arsenic, a kno...

  4. DO ACUTE PHASE PROTEINS REFLECT SEVERITY OF INFLAMMATION IN RAT MODELS OF POLLUTANT-INDUCED LUNG INJURY?

    EPA Science Inventory

    Title: DO ACUTE PHASE PROTEINS REFLECT THE SEVERITY OF INFLAMMATION IN RAT MODELS OF POLLUTANT-INDUCED LUNG INJURY?

    M. C. Schladweiler, BS 1, P. S. Gilmour, PhD 2, D. L. Andrews, BS 1, D. L. Costa, ScD 1, A. D. Ledbetter, BS 1, K. E. Pinkerton, PhD 3 and U. P. Kodavanti, ...

  5. DEVELOPMENT OF 3-D COMPUTER MODELS OF HUMAN LUNG MORPHOLOGY FOR IMPROOVED RISK ASSESSMENT OF INHALED PARTICULATE MATTER

    EPA Science Inventory

    DEVELOPMENT OF 3-D COMPUTER MODELS OF HUMAN LUNG MORPHOLOGY FOR IMPROVED RISK ASSESSMENT OF INHALED PARTICULATE MATTER

    Jeffry D. Schroeter, Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599; Ted B. Martonen, ETD, NHEERL, USEPA, RTP, NC 27711; Do...

  6. Visualization of HIV-1 interactions with penile and foreskin epithelia: clues for female-to-male HIV transmission.

    PubMed

    Dinh, Minh H; Anderson, Meegan R; McRaven, Michael D; Cianci, Gianguido C; McCoombe, Scott G; Kelley, Z L; Gioia, Casey J; Fought, Angela J; Rademaker, Alfred W; Veazey, Ronald S; Hope, Thomas J

    2015-03-01

    To gain insight into female-to-male HIV sexual transmission and how male circumcision protects against this mode of transmission, we visualized HIV-1 interactions with foreskin and penile tissues in ex vivo tissue culture and in vivo rhesus macaque models utilizing epifluorescent microscopy. 12 foreskin and 14 cadaveric penile specimens were cultured with R5-tropic photoactivatable (PA)-GFP HIV-1 for 4 or 24 hours. Tissue cryosections were immunofluorescently imaged for epithelial and immune cell markers. Images were analyzed for total virions, proportion of penetrators, depth of virion penetration, as well as immune cell counts and depths in the tissue. We visualized individual PA virions breaching penile epithelial surfaces in the explant and macaque model. Using kernel density estimated probabilities of localizing a virion or immune cell at certain tissue depths revealed that interactions between virions and cells were more likely to occur in the inner foreskin or glans penis (from local or cadaveric donors, respectively). Using statistical models to account for repeated measures and zero-inflated datasets, we found no difference in total virions visualized at 4 hours between inner and outer foreskins from local donors. At 24 hours, there were more virions in inner as compared to outer foreskin (0.0495 +/- 0.0154 and 0.0171 +/- 0.0038 virions/image, p = 0.001). In the cadaveric specimens, we observed more virions in inner foreskin (0.0507 +/- 0.0079 virions/image) than glans tissue (0.0167 +/- 0.0033 virions/image, p<0.001), but a greater proportion was seen penetrating uncircumcised glans tissue (0.0458 +/- 0.0188 vs. 0.0151 +/- 0.0100 virions/image, p = 0.099) and to significantly greater mean depths (29.162 +/- 3.908 vs. 12.466 +/- 2.985 μm). Our in vivo macaque model confirmed that virions can breach penile squamous epithelia in a living model. In summary, these results suggest that the inner foreskin and glans epithelia may be important sites for HIV

  7. Estimation of the effects of smoking and DNA repair capacity on coefficients of a carcinogenesis model for lung cancer

    PubMed Central

    Deng, Li; Kimmel, Marek; Foy, Millennia; Spitz, Margaret; Wei, Qingyi; Gorlova, Olga

    2009-01-01

    Numerous prospective and retrospective studies have clearly demonstrated a dose-related increased lung cancer risk associated with cigarette smoking, with evidence also for a genetic component to risk. In this study, using the two-stage clonal expansion stochastic model framework, for the first time we investigated the roles of both genetic susceptibility and smoking history in the initiation, clonal expansion, and malignant transformation processes in lung carcinogenesis, integrating information collected by a case–control study and a large-scale prospective cohort study. Our results show that individuals with suboptimal DNA repair capacity have enhanced transition rates of key events in carcinogenesis. PMID:19123470

  8. Comparison of methods for evaluation of aerosol deposition in the model of human lungs

    NASA Astrophysics Data System (ADS)

    Belka, Miloslav; Lippay, Josef; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav

    2014-03-01

    It seems to be very convenient to receive a medicine by inhalation instead of injection. Unfortunately transport of particles and targeted delivery of a drug in human respiratory airways is very complicated task. Therefore we carried out experiments and tested different methods for evaluation of particle deposition in a model of human lungs. The model included respiratory airways from oral cavity to 7th generation of branching. Particles were dispersed by TSI Small-scale Powder Disperser 3433 and delivered to the model. The model was disassembled into segments after the deposition of the particles and local deposition was measured. Two methods were used to analyse the samples, fluorescence spectroscopy and optical microscopy. The first method was based on measuring the intensity of luminescence, which represented the particle deposition. The second method used the optical microscope with phase-contrast objective. A dispersion of isopropanol and particles was filtrated using a vacuum filtration unit, a filter was placed on glass slide and made transparent. The particles on the filter were counted manually and the deposition was calculated afterwards. The results of the methods were compared and both methods proved to be useful.

  9. Toll-like receptor 4-dependent responses to lung injury in a murine model of pulmonary contusion.

    PubMed

    Hoth, J Jason; Wells, Jonathan D; Brownlee, Noel A; Hiltbold, Elizabeth M; Meredith, J Wayne; McCall, Charles E; Yoza, Barbara K

    2009-04-01

    Blunt chest trauma resulting in pulmonary contusion with an accompanying acute inflammatory response is a common but poorly understood injury. We previously demonstrated that toll-like receptor 2 (TLR-2) participates in the inflammatory response to lung injury. We hypothesized that the TLR-4, in an MyD88-dependent manner, may also participate in the response to lung injury. To investigate this, we used a model of pulmonary contusion in the mouse that is similar to that observed clinically in humans and evaluated postinjury lung function, pulmonary neutrophil recruitment, and the systemic innate immune response. Comparisons were made between wild-type mice and mice deficient in TLR-4 or MyD88. We found TLR-4-dependent responses to pulmonary contusion that include hypoxemia, edema, and neutrophil infiltration. Increased expression of IL-6 and chemokine (C-X-C motif) ligand 1 in the bronchoalveolar lavage and serum was also dependent on TLR-4 activation. We further demonstrated that these responses to pulmonary contusion were dependent on MyD88, an adapter protein in the signal transduction pathway mediated by TLRs. These results show that TLRs have a primary role in the response to acute lung injury. Lung inflammation and systemic innate immune responses are dependent on TLR activation by pulmonary contusion.

  10. Comparative Plasma Exposure and Lung Distribution of Two Human Use Commercial Azithromycin Formulations Assessed in Murine Model: A Preclinical Study

    PubMed Central

    Rivulgo, Virginia; Sparo, Mónica; Ceci, Mónica; Fumuso, Elida; Confalonieri, Alejandra; Sánchez Bruni, Sergio F.

    2013-01-01

    Azithromycin (AZM) therapeutic failure and relapses of patients treated with generic formulations have been observed in clinical practice. The main goal of this research was to compare in a preclinical study the serum exposure and lung tissue concentration of two commercial formulations AZM-based in murine model. The current study involved 264 healthy Balb-C. Mice were divided into two groups (n = 44): animals of Group A (reference formulation -R-) were orally treated with AZM suspension at 10 mg/kg of b.w. Experimental animals of Group B (generic formulation -G-) received identical treatment than Group A with a generic formulation AZM-based. The study was repeated twice as Phase II and III. Serum and lung tissue samples were taken 24 h post treatment. Validated microbiological assay was used to determine the serum pharmacokinetic and lung distribution of AZM. After the pharmacokinetic analysis was observed, a similar serum exposure for both formulations of AZM assayed. In contrast, statistical differences (P < 0.001) were obtained after comparing the concentrations of both formulations in lung tissue, being the values obtained for AUC and Cmax (AZM-R-) +1586 and 122%, respectively, than those obtained for AZM-G- in lung. These differences may indicate large differences on the distribution process of both formulations, which may explain the lack of efficacy/therapeutic failure observed on clinical practice. PMID:24073402

  11. Selection of Reference Genes for Gene Expression Studies related to lung injury in a preterm lamb model.

    PubMed

    Pereira-Fantini, Prue M; Rajapaksa, Anushi E; Oakley, Regina; Tingay, David G

    2016-05-23

    Preterm newborns often require invasive support, however even brief periods of supported ventilation applied inappropriately to the lung can cause injury. Real-time quantitative reverse transcriptase-PCR (qPCR) has been extensively employed in studies of ventilation-induced lung injury with the reference gene 18S ribosomal RNA (18S RNA) most commonly employed as the internal control reference gene. Whilst the results of these studies depend on the stability of the reference gene employed, the use of 18S RNA has not been validated. In this study the expression profile of five candidate reference genes (18S RNA, ACTB, GAPDH, TOP1 and RPS29) in two geographical locations, was evaluated by dedicated algorithms, including geNorm, Normfinder, Bestkeeper and ΔCt method and the overall stability of these candidate genes determined (RefFinder). Secondary studies examined the influence of reference gene choice on the relative expression of two well-validated lung injury markers; EGR1 and IL1B. In the setting of the preterm lamb model of lung injury, RPS29 reference gene expression was influenced by tissue location; however we determined that individual ventilation strategies influence reference gene stability. Whilst 18S RNA is the most commonly employed reference gene in preterm lamb lung studies, our results suggest that GAPDH is a more suitable candidate.

  12. Secondary flow measurements and passive tracer dispersion in multi-generational models of conducting airways of the lung

    NASA Astrophysics Data System (ADS)

    Fresconi, Frank; Prasad, Ajay

    2006-11-01

    A detailed knowledge of the flow and dispersion within the human respiratory tract is desirable for numerous reasons. Both risk assessments of exposure to toxic particles in the environment and the design of medical delivery systems targeting both lung-specific conditions (asthma, cystic fibrosis, and chronic obstructive pulmonary disease (COPD)) and system-wide ailments (diabetes, cancer, hormone replacement) would profit from such an understanding. The present work features experimental efforts aimed at elucidating the fluid mechanics of the lung. Particle image velocimetry (PIV) and laser induced fluorescence (LIF) measurements of steady and oscillatory flows were undertaken in anatomically accurate models (single and multi-generational) of the conductive region of the lung. PIV results captured primary and secondary velocity fields. LIF allowed visualization of the time-dependent deformation of a passive tracer and also quantified convective dispersion through the usage of a transport profile.

  13. Pulmonary targeting microparticulate camptothecin delivery system: anti-cancer evaluation in a rat orthotopic lung cancer model

    PubMed Central

    Chao, Piyun; Deshmukh, Manjeet; Kutscher, Hilliard L.; Gao, Dayuan; Sundara Rajan, Sujata; Hu, Peidi; Laskin, Debra L.; Stein, Stanley; Sinko, Patrick J.

    2013-01-01

    Large (>6 µm) rigid microparticles (MPs) become passively entrapped within the lungs following intravenous injection making them an attractive and highly efficient alternative to inhalation for pulmonary delivery. In the current studies, PEGylated 6 μm polystyrene MPs with multiple copies of the norvaline (Nva) α-amino acid prodrug of camptothecin (CPT) were prepared. Surface morphology was characterized using a scanning electron microscope (SEM). CPT was released from the CPT-Nva-MPs over 24 hours in rat plasma at 37°C. In vivo CPT plasma concentrations were low (~1 ng/mL or less) and constant over a period of 4 days after a single intravenous injection of CPT-Nva-MPs as compared to high but short-lived systemic exposures after an IV injection of free CPT. This suggests that sustained local CPT concentrations were achieved in the lung after administration of the MP delivery system. Anti-cancer efficacy was evaluated in an orthotopic lung cancer animal model and compared to a bolus injection of CPT. Animals receiving either free CPT (2 mg/kg) or CPT-Nva-MPs (0.22 mg/kg CPT, 100 mg/kg MPs) were found to have statistically significant smaller areas of lung cancer (P<0.05, P<0.01, respectively) than untreated animals. In addition, 40% of the animals receiving CPT-Nva-MPs were found to be free of cancer. The CPT dose using targeted MPs was ten fold lower than after IV injection of free CPT but was more effective in reducing the amount of cancerous areas. In conclusion, CPT-Nva-MPs were able to achieve effective local lung and low systemic CPT concentrations at a dose that was ten times lower than systemically administered CPT resulting in a significant improvement in anticancer efficacy in an orthotopic rat model of lung cancer. PMID:19966540

  14. Calculation of lifetime lung cancer risks associated with radon exposure, based on various models and exposure scenarios.

    PubMed

    Hunter, Nezahat; Muirhead, Colin R; Bochicchio, Francesco; Haylock, Richard G E

    2015-09-01

    The risk of lung cancer mortality up to 75 years of age due to radon exposure has been estimated for both male and female continuing, ex- and never-smokers, based on various radon risk models and exposure scenarios. We used risk models derived from (i) the BEIR VI analysis of cohorts of radon-exposed miners, (ii) cohort and nested case-control analyses of a European cohort of uranium miners and (iii) the joint analysis of European residential radon case-control studies. Estimates of the lifetime lung cancer risk due to radon varied between these models by just over a factor of 2 and risk estimates based on models from analyses of European uranium miners exposed at comparatively low rates and of people exposed to radon in homes were broadly compatible. For a given smoking category, there was not much difference in lifetime lung cancer risk between males and females. The estimated lifetime risk of radon-induced lung cancer for exposure to a concentration of 200 Bq m(-3) was in the range 2.98-6.55% for male continuing smokers and 0.19-0.42% for male never-smokers, depending on the model used and assuming a multiplicative relationship for the joint effect of radon and smoking. Stopping smoking at age 50 years decreases the lifetime risk due to radon by around a half relative to continuing smoking, but the risk for ex-smokers remains about a factor of 5-7 higher than that for never-smokers. Under a sub-multiplicative model for the joint effect of radon and smoking, the lifetime risk of radon-induced lung cancer was still estimated to be substantially higher for continuing smokers than for never smokers. Radon mitigation-used to reduce radon concentrations at homes-can also have a substantial impact on lung cancer risk, even for persons in their 50 s; for each of continuing smokers, ex-smokers and never-smokers, radon mitigation at age 50 would lower the lifetime risk of radon-induced lung cancer by about one-third. To maximise risk reductions, smokers in high

  15. Calculation of lifetime lung cancer risks associated with radon exposure, based on various models and exposure scenarios.

    PubMed

    Hunter, Nezahat; Muirhead, Colin R; Bochicchio, Francesco; Haylock, Richard G E

    2015-09-01

    The risk of lung cancer mortality up to 75 years of age due to radon exposure has been estimated for both male and female continuing, ex- and never-smokers, based on various radon risk models and exposure scenarios. We used risk models derived from (i) the BEIR VI analysis of cohorts of radon-exposed miners, (ii) cohort and nested case-control analyses of a European cohort of uranium miners and (iii) the joint analysis of European residential radon case-control studies. Estimates of the lifetime lung cancer risk due to radon varied between these models by just over a factor of 2 and risk estimates based on models from analyses of European uranium miners exposed at comparatively low rates and of people exposed to radon in homes were broadly compatible. For a given smoking category, there was not much difference in lifetime lung cancer risk between males and females. The estimated lifetime risk of radon-induced lung cancer for exposure to a concentration of 200 Bq m(-3) was in the range 2.98-6.55% for male continuing smokers and 0.19-0.42% for male never-smokers, depending on the model used and assuming a multiplicative relationship for the joint effect of radon and smoking. Stopping smoking at age 50 years decreases the lifetime risk due to radon by around a half relative to continuing smoking, but the risk for ex-smokers remains about a factor of 5-7 higher than that for never-smokers. Under a sub-multiplicative model for the joint effect of radon and smoking, the lifetime risk of radon-induced lung cancer was still estimated to be substantially higher for continuing smokers than for never smokers. Radon mitigation-used to reduce radon concentrations at homes-can also have a substantial impact on lung cancer risk, even for persons in their 50 s; for each of continuing smokers, ex-smokers and never-smokers, radon mitigation at age 50 would lower the lifetime risk of radon-induced lung cancer by about one-third. To maximise risk reductions, smokers in high

  16. Monitoring the initial pulmonary absorption of two different beclomethasone dipropionate aerosols employing a human lung reperfusion model

    PubMed Central

    Freiwald, Matthias; Valotis, Anagnostis; Kirschbaum, Andreas; McClellan, Monika; Mürdter, Thomas; Fritz, Peter; Friedel, Godehard; Thomas, Michael; Högger, Petra

    2005-01-01

    Background The pulmonary residence time of inhaled glucocorticoids as well as their rate and extend of absorption into systemic circulation are important facets of their efficacy-safety profile. We evaluated a novel approach to elucidate the pulmonary absorption of an inhaled glucocorticoid. Our objective was to monitor and compare the combined process of drug particle dissolution, pro-drug activation and time course of initial distribution from human lung tissue into plasma for two different glucocorticoid formulations. Methods We chose beclomethasone dipropionate (BDP) delivered by two different commercially available HFA-propelled metered dose inhalers (Sanasthmax®/Becloforte™ and Ventolair®/Qvar™). Initially we developed a simple dialysis model to assess the transfer of BDP and its active metabolite from human lung homogenate into human plasma. In a novel experimental setting we then administered the aerosols into the bronchus of an extracorporally ventilated and reperfused human lung lobe and monitored the concentrations of BDP and its metabolites in the reperfusion fluid. Results Unexpectedly, we observed differences between the two aerosol formulations Sanasthmax®/Becloforte™ and Ventolair®/Qvar™ in both the dialysis as well as in the human reperfusion model. The HFA-BDP formulated as Ventolair®/Qvar™ displayed a more rapid release from lung tissue compared to Sanasthmax®/Becloforte™. We succeeded to explain and illustrate the observed differences between the two aerosols with their unique particle topology and divergent dissolution behaviour in human bronchial fluid. Conclusion We conclude that though the ultrafine particles of Ventolair®/Qvar™ are beneficial for high lung deposition, they also yield a less desired more rapid systemic drug delivery. While the differences between Sanasthmax®/Becloforte™ and Ventolair®/Qvar™ were obvious in both the dialysis and lung perfusion experiments, the latter allowed to record time courses

  17. KGF-2 targets alveolar epithelia and capillary endothelia to reduce high altitude pulmonary oedema in rats

    PubMed Central

    She, Jun; Goolaerts, Arnaud; Shen, Jun; Bi, Jing; Tong, Lin; Gao, Lei; Song, Yuanlin; Bai, Chunxue

    2012-01-01

    High altitude pulmonary oedema (HAPE) severely affects non-acclimatized individuals and is characterized by alveolar flooding with protein- rich oedema as a consequence of blood-gas barrier disruption. Limited choice for prophylactic treatment warrants effective therapy against HAPE. Keratinocyte growth factor-2 (KGF-2) has shown efficiency in preventing alveolar epithelial cell DNA damages in vitro. In the current study, the effects of KGF-2 intratracheal instillation on mortality, lung liquid balance and lung histology were evaluated in our previously developed rat model of HAPE. We found that pre-treatment with KGF-2 (5 mg/kg) significantly decreased mortality, improved oxygenation and reduced lung wet-to-dry weight ratio by preventing alveolar-capillary barrier disruption demonstrated by histological examination and increasing alveolar fluid clearance up to 150%. In addition, KGF-2 significantly inhibited decrease of transendothelial permeability after exposure to hypoxia, accompanied by a 10-fold increase of Akt activity and inhibited apoptosis in human pulmonary microvascular endothelial cells, demonstrating attenuated endothelial apoptosis might contribute to reduction of endothelial permeability. These results showed the efficacy of KGF-2 on inhibition of endothelial cell apoptosis, preservation of alveolar-capillary barrier integrity and promotion of pulmonary oedema absorption in HAPE. Thus, KGF-2 may represent a potential drug candidate for the prevention of HAPE. PMID:22568566

  18. Pathogenesis pathways of idiopathic pulmonary fibrosis in bleomycin-induced lung injury model in mice.

    PubMed

    Shi, Keyun; Jiang, Jianzhong; Ma, Tieliang; Xie, Jing; Duan, Lirong; Chen, Ruhua; Song, Ping; Yu, Zhixin; Liu, Chao; Zhu, Qin; Zheng, Jinxu

    2014-01-01

    Our objective was to investigate the pathogenesis pathways of idiopathic pulmonary fibrosis (IPF). Bleomycin (BLM) induced animal models of experimental lung fibrosis were used. CHIP assay was executed to find the link between Smad3 and IL-31, and the expressions of TGF-β1, Smad3, IL-31 and STAT1 were detected to find whether they were similar with each other. We found that in the early injury or inflammation of the animal model, BLM promoted the development of inflammation, leading to severe pulmonary fibrosis. Then the expression of TGF-β1 and Smad3 increased. Activated Smad3 bound to the IL-31 promoter region, followed by the activation of JAK-STAT pathways. The inhibitor of TGF-β1 receptor decreased the IL-31 expression and knocking-down of IL-31 also decreased the STAT1 expression. We conclude that there is a pathway of pathogenesis in BLM-induced mouse model that involves the TGF-β, IL-31 and JAKs/STATs pathway.

  19. Towards the validation of a lung tumorigenesis model with mainstream cigarette smoke inhalation using the A/J mouse.

    PubMed

    Stinn, Walter; Berges, An; Meurrens, Kris; Buettner, Ansgar; Gebel, Stephan; Lichtner, Rosemarie B; Janssens, Kris; Veljkovic, Emilija; Xiang, Yang; Roemer, Ewald; Haussmann, Hans-Juergen

    2013-03-01

    A generally accepted and validated laboratory model for smoking-associated pulmonary tumorigenesis would be useful for both basic and applied research applications, such as the development of early diagnostic endpoints or the evaluation of modified risk tobacco products, respectively. The A/J mouse is susceptible for developing both spontaneous and induced lung adenomas and adenocarcinomas, and increased lung tumor multiplicities were also observed in previous cigarette smoke inhalation studies. The present study was designed to collect data useful towards the validation of an 18-month mainstream smoke (MS) inhalation model. Male and female A/J mice were exposed whole-body at three MS concentration levels for 6h/day, and the results were compared to a previous study in the same laboratory and with a similar design. A linear MS concentration-dependent increase in lung tumorigenesis was observed with similar slopes for both sexes and both studies and a maximal 5-fold increase in multiplicity beyond sham control. The minimal detectable difference in lung tumor multiplicity for the current study was 37%. In the larynx, papillomas were detectable in all MS-exposed groups in a non-concentration dependent manner. No other extra-pulmonary MS-dependent neoplastic lesions were found. Gene expression signatures of lung tumor tissues allowed a clear differentiation of sham- and high dose MS-exposed mice. In combination with data from previous smoke inhalation studies with A/J mice, the current data suggest that this model for MS inhalation-induced pulmonary tumorigenesis is reliable and relevant, two crucial requirements towards validation of such a model. PMID:23357402

  20. Biodistribution of the boron carriers boronophenylalanine (BPA) and/or decahydrodecaborate (GB-10) for Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases

    SciTech Connect

    D.W. Nigg; Various Others

    2014-06-01

    BNCT was proposed for the treatment of diffuse, non-resectable tumors in the lung. We performed boron biodistribution studies with 5 administration protocols employing the boron carriers BPA and/or GB-10 in an experimental model of disseminated lung metastases in rats. All 5 protocols were non-toxic and showed preferential tumor boron uptake versus lung. Absolute tumor boron concentration values were therapeutically useful (25–76 ppm) for 3 protocols. Dosimetric calculations indicate that BNCT at RA-3 would be potentially therapeutic without exceeding radiotolerance in the lung.

  1. Protective effect of hydrogen sulfide on hyperbaric hyperoxia-induced lung injury in a rat model.

    PubMed

    Liu, Wenwu; Liu, Kehuan; Ma, Chunqing; Yu, Jiangang; Peng, Zhaoyun; Huang, Guoyang; Cai, Zhiyu; Li, Runping; Xu, Weigang; Sun, Xuejun; Liu, Kan; Zheng, Juan

    2014-01-01

    Hyperbaric oxygen therapy is one of the most widely used clinical interventions to counteract insufficient pulmonary oxygen delivery in patients with severe lung injury. However, prolonged exposure to hyperoxia leads to inflammation and acute lung injury. This study aimed to investigate the protective effect of hydrogen sulfide on hyperbaric hyperoxia-induced lung injury. Rats were intraperitoneally treated with sodium hydrosulphide (NaHS) at 28 μmol/kg immediately before hyperoxia exposure and then exposed to pure oxygen at 2.5 atmospheres absolute (atm abs) with continuous ventilation for six hours, Immediately after hyperoxia exposure, rats were sacrificed via anesthesia. The bronchoalveolar lavage fluid (BALF) was harvested for the detection of protein concentration and IL-1 content, and the lungs were collected for HE staining, TUNEL staining and detection of wet/dry weight ratio. Our results showed hyperbaric hyperoixa exposure could significantly damage the lung (HE staining), increase the protein and IL-13 in the BALF, elevate the wet/dry Weight ratio and raise the TUNEL positive cells. However, pre-treatment with hydrogen sulfide improved the lung morphology, reduced the TUNEL positive cells and attenuated the lung inflammation (reduction in IL-13 of BALF and HE staining). Taken together, our findings indicate that hydrogen sulfide pretreatment may exert protective effects on hyperbaric hyperoxia-induced lung injury.

  2. Deposition of aerosol particles in human lungs: in vivo measurements and modeling

    EPA Science Inventory

    The deposition dose and site of inhaled particles within the lung are the key determinants in health risk assessment of particulate pollutants. Accurate dose estimation, however, is a formidable task because aerosol transport and deposition in the lung are governed by many factor...

  3. Sensory epithelia of the fish inner ear in 3D: studied with high-resolution contrast enhanced microCT

    PubMed Central

    2013-01-01

    Introduction While a number of studies have illustrated and analyzed 3D models of inner ears in higher vertebrates, inner ears in fishes have rarely been investigated in 3D, especially with regard to the sensory epithelia of the end organs, the maculae. It has been suggested that the 3D curvature of these maculae may also play an important role in hearing abilities in fishes. We therefore set out to develop a fast and reliable approach for detailed 3D visualization of whole inner ears as well as maculae. Results High-resolution microCT imaging of black mollies Poecilia sp. (Poeciliidae, Teleostei) and Steatocranus tinanti (Cichlidae, Teleostei) stained with phosphotungstic acid (PTA) resulted in good tissue contrast, enabling us to perform a reliable 3D reconstruction of all three sensory maculae of the inner ears. Comparison with maculae that have been 3D reconstructed based on histological serial sections and phalloidin-stained maculae showed high congruence in overall shape of the maculae studied here. Conclusions PTA staining and subsequent high-resolution contrast enhanced microCT imaging is a powerful method to obtain 3D models of fish inner ears and maculae in a fast and more reliable manner. Future studies investigating functional morphology, phylogenetic potential of inner ear features, or evolution of hearing and inner ear specialization in fishes may benefit from the use of 3D models of inner ears and maculae. PMID:24160754

  4. Potential usefulness of a topic model-based categorization of lung cancers as quantitative CT biomarkers for predicting the recurrence risk after curative resection

    NASA Astrophysics Data System (ADS)

    Kawata, Y.; Niki, N.; Ohmatsu, H.; Satake, M.; Kusumoto, M.; Tsuchida, T.; Aokage, K.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2014-03-01

    In this work, we investigate a potential usefulness of a topic model-based categorization of lung cancers as quantitative CT biomarkers for predicting the recurrence risk after curative resection. The elucidation of the subcategorization of a pulmonary nodule type in CT images is an important preliminary step towards developing the nodule managements that are specific to each patient. We categorize lung cancers by analyzing volumetric distributions of CT values within lung cancers via a topic model such as latent Dirichlet allocation. Through applying our scheme to 3D CT images of nonsmall- cell lung cancer (maximum lesion size of 3 cm) , we demonstrate the potential usefulness of the topic model-based categorization of lung cancers as quantitative CT biomarkers.

  5. Development of a 3D to 1D Particle Transport Model to Predict Deposition in the Lungs

    NASA Astrophysics Data System (ADS)

    Oakes, Jessica M.; Grandmont, Celine; Shadden, Shawn C.; Vignon-Clementel, Irene E.

    2014-11-01

    Aerosolized particles are commonly used for therapeutic drug delivery as they can be delivered to the body systemically or be used to treat lung diseases. Recent advances in computational resources have allowed for sophisticated pulmonary simulations, however it is currently impossible to solve for airflow and particle transport for all length and time scales of the lung. Instead, multi-scale methods must be used. In our recent work, where computational methods were employed to solve for airflow and particle transport in the rat airways (Oakes et al. (2014), Annals of Biomedical Engineering 42, 899), the number of particles to exit downstream of the 3D domain was determined. In this current work, the time-dependent Lagrangian description of particles was used to numerically solve a 1D convection-diffusion model (trumpet model, Taulbee and Yu (1975), Journal of Applied Physiology, 38, 77) parameterized specifically for the lung. The expansion of the airway dimensions was determined based on data collected from our aerosol exposure experiments (Oakes et al. (2014), Journal of Applied Physiology, 116, 1561). This 3D-1D framework enables us to predict the fate of particles in the whole lung. This work was supported by the Whitaker Foundation at the IIE, a INRIA Associated Team Postdoc Grant, and a UC Presidential Fellowship.

  6. Antioxidant Effect of MnTE-2-PyP on Lung in Asthma Mice Model

    PubMed Central

    Terziev, Lyudmil; Dancheva, Violeta; Shopova, Veneta; Stavreva, Galya

    2012-01-01

    Aim. To investigate the effects of MnTE-2-PyP on some markers of antioxidant defence system in asthma mice model. Material and Methods. The animals were divided into four groups: group 1, controls; group 2, injected with ovalbumin, group 3, treated with MnTE-2-PyP, and group 4, treated with ovalbumin and MnTE-2-PyP. The activities of superoxide dismutase, catalase, glutathione peroxidase and nonprotein sulfhydryl groups content (NPSH) were determined in lung homogenate. Results. The activities of superoxide dismutase and catalase in group 2 decreased significantly as compared to control group. The decrease of the same enzymes in group 4 was lower and significant as compared to group 2. Changes in the glutathione peroxidase activity showed a similar dynamics. The NPSH groups content decreased in group 2. In group 4 this decrease was relatively lower as compared to group 2. Conclusions. The application of MnTE-2-PyP mitigated the effects of oxidative stress in asthma mice model. PMID:22654599

  7. Lung ischaemia–reperfusion injury in a canine model: dual-energy CT findings with pathophysiological correlation

    PubMed Central

    Xu, K; Zhang, L J; Morelli, J; Krazinski, A W; Silverman, J R; Schoepf, U J; Lu, G M

    2014-01-01

    Objective: To evaluate dual-energy CT (DECT) findings of pulmonary ischaemic–reperfusion injury (PIRI) and its pathophysiological correlation in the canine model. Methods: A PIRI model was established in 11 canines, utilizing closed pectoral balloon occlusion. Two control canines were also included. For the PIRI model, the left pulmonary artery was occluded with a balloon, which was deflated and removed after 2 h. DECT was performed before, during occlusion and at 2, 3 and 4 h thereafter and was utilized to construct pulmonary perfusion maps. Immediately after the CT scan at the fourth hour post reperfusion, the canines were sacrificed, and lung specimens were harvested for pathological analysis. CT findings, pulmonary artery pressure and blood gas results were then analysed. Results: Data at every time point were available for 10 animals (experimental group, n = 8; control group, n = 2). Quantitative measurements from DECT pulmonary perfusion maps found iodine attenuation values of the left lung to be the lowest at 2 h post embolization and the highest at 1 h post reperfusion. In the contralateral lung, perfusion values also peaked at 1 h post reperfusion. Continuous hypoxia and acid–based disorders were observed during PIRI, and comprehensive analysis showed physiological changes to be worst at 3 h post reperfusion. Conclusion: DECT pulmonary perfusion mapping demonstrated pulmonary perfusion of the bilateral lungs to be the greatest at 1 h post reperfusion. These CT findings corresponded with pathophysiological changes. Advances in knowledge: DECT pulmonary perfusion mapping can be used to evaluate lung ischaemia–reperfusion injury. PMID:24611753

  8. Probability of causation for lung cancer after exposure to radon progeny: A comparison of models and data

    SciTech Connect

    Chmelevsky, D.; Barclay, D.; Kellerer, A.M. |; Tomasek, L.; Kunz, E.; Placek, V.

    1994-07-01

    The estimates of lung cancer risk due to the exposure to radon decay products are based on different data sets from underground mining and on different mathematical models that are used to fit the data. Diagrams of the excess relative rate per 100 working level months in its dependence on age at exposure and age attained are shown to be a useful tool to elucidate the influence that is due to the choice of the model, and to assess the differences between the data from the major western cohorts and those from the Czech uranium miners. It is seen that the influence of the choice of the model is minor compared to the difference between the data sets. The results are used to derive attributable lifetime risks and probabilities of causation for lung cancer following radon progeny exposures. 23 refs., 9 figs.

  9. Assessment of anti-metastatic effects of anticoagulant and antiplatelet agents using animal models of experimental lung metastasis.

    PubMed

    Amirkhosravi, Ali; Mousa, Shaker A; Amaya, Mildred; Meyer, Todd; Davila, Monica; Robson, Theresa; Francis, John L

    2010-01-01

    It is well established that the blood coagulation system is activated in cancer. In addition, there is considerable evidence to suggest that clotting activation plays an important role in the biology of malignant tumors, including the process of blood-borne metastasis. For many years our laboratory has used experimental models of lung metastasis to study the events that follow the introduction of procoagulant-bearing tumor cells into circulating blood. This chapter focuses on the basic methods involved in assessing the anti-metastatic effects of anticoagulants and anti-platelet agents using rodent models of experimental metastasis. In addition, it summarizes our experience with these models, which collectively suggests that intravascular coagulation and platelet activation are a necessary prelude to lung tumor formation and that interruption of coagulation pathways or platelet aggregation may be an effective anti-metastatic strategy. PMID:20617422

  10. Flaxseed Mitigates Acute Oxidative Lung Damage in a Mouse Model of Repeated Radiation and Hyperoxia Exposure Associated with Space Exploration

    PubMed Central

    Pietrofesa, Ralph A.; Solomides, Charalambos C.; Christofidou-Solomidou, Melpo

    2015-01-01

    Background Spaceflight missions may require crewmembers to conduct extravehicular activities (EVA). Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours and be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health. We have developed a mouse model of total body radiation and hyperoxia exposure and identified acute damage of lung tissues. In the current study we evaluated the usefulness of dietary flaxseed (FS) as a countermeasure agent for such double-hit exposures. Methods We evaluated lung tissue changes 2 weeks post-initiation of exposure challenges. Mouse cohorts (n=5/group) were pre-fed diets containing either 0% FS or 10% FS for 3 weeks and exposed to: a) normoxia (Untreated); b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) 3 times per week for 2 consecutive weeks, where 8-hour hyperoxia treatments were spanned by normoxic intervals. Results At 2 weeks post challenge, while control-diet fed mice developed significant lung injury and inflammation across all challenges, FS protected lung tissues by decreasing bronchoalveolar lavage fluid (BALF) neutrophils (p<0.003) and protein levels, oxidative tissue damage, as determined by levels of malondialdehyde (MDA) (p<0.008) and nitrosative stress as determined by nitrite levels. Lung hydroxyproline levels, a measure of lung fibrosis, were significantly elevated in mice fed 0% FS (p<0.01) and exposed to hyperoxia/radiation or the combination treatment, but not in FS-fed mice. FS also decreased levels of a pro-inflammatory, pro-fibrogenic cytokine (TGF-β1) gene expression levels in lung. Conclusion Flaxseed mitigated adverse effects in lung of repeat exposures to radiation/hyperoxia. This data will provide useful information in the design of countermeasures to early

  11. Aerosolised 5-azacytidine suppresses tumour growth and reprogrammes the epigenome in an orthotopic lung cancer model

    PubMed Central

    Reed, M D; Tellez, C S; Grimes, M J; Picchi, M A; Tessema, M; Cheng, Y S; March, T H; Kuehl, P J; Belinsky, S A

    2013-01-01

    Background: Epigenetic silencing by promoter methylation and chromatin remodelling affects hundreds of genes and is a causal event for lung cancer. Treatment of patients with low doses of the demethylating agent 5-azacytidine in combination with the histone deacetylase inhibitor entinostat has yielded clinical responses. The subcutaneous dosing route for consecutive days and reduced bioavailability of 5-azacytidine because of inactivation by cytidine deaminase may limit the expansion of epigenetic therapy into Phase III trials. To mitigate these barriers, an aerosol of 5-azacytidine was generated and characterised. Methods: The effect of aerosol vs systemic delivery of 5-azacytidine on tumour burden and molecular response of engrafted lung tumours in the nude rat was compared. Results: Pharmacokinetics revealed major improvement in the half-life of 5-azacytidine in lung tissue with aerosol delivery. Aerosolised 5-azacytidine significantly reduced lung tumour burden and induced global demethylation of the epigenome at one-third of the comparable effective systemic dose. High commonality for demethylation of genes was seen in tumours sampled throughout lung lobes and across treated animals receiving the aerosolised drug. Conclusion: Collectively, these findings show that aerosolised 5-azacytidine targets the lung, effectively reprogrammes the epigenome of tumours, and is a promising approach to combine with other drugs for treating lung cancer. PMID:24045660

  12. Combination treatment with ABT-737 and chloroquine in preclinical models of small cell lung cancer

    PubMed Central

    2013-01-01

    Background New therapies are urgently needed for patients with small cell lung cancer (SCLC). Chemotherapy and targeted therapies, including the Bcl-2 inhibitor ABT-737, may induce tumor cell autophagy. Autophagy can promote survival of cancer cells under stress and comprise a pathway of escape from cytotoxic therapies. Methods We explored the combination of ABT-737 and chloroquine, an inhibitor of autophagy, in preclinical models of SCLC. These included cell culture analyses of viability and of autophagic and apoptotic pathway induction, as well as in vivo analyses of efficacy in multiple xenograft models. Results Combination treatment of SCLC lines with ABT-737 and chloroquine decreased viability and increased caspase-3 activation over treatment with either single agent. ABT-737 induced several hallmarks of autophagy. However, knockdown of beclin-1, a key regulator of entry into autophagy, diminished the efficacy of ABT-737, suggesting either that the effects of chloroquine were nonspecific or that induction but not completion of autophagy is necessary for the combined effect of ABT-737 and chloroquine. ABT-737 and chloroquine in SCLC cell lines downregulated Mcl-1 and upregulated NOXA, both of which may promote apoptosis. Treatment of tumor-bearing mice demonstrated that chloroquine could enhance ABT-737-mediated tumor growth inhibition against NCI-H209 xenografts, but did not alter ABT-737 response in three primary patient-derived xenograft models. Conclusion These data suggest that although ABT-737 can induce autophagy in SCLC, autophagic inhibition by choroquine does not markedly alter in vivo response to ABT-737 in relevant preclinical models, arguing against this as a treatment strategy for SCLC. PMID:23452820

  13. Lung disease

    MedlinePlus

    ... the lungs to take in oxygen and release carbon dioxide. People with this type of lung disorder often ... the lungs to take up oxygen and release carbon dioxide. These diseases may also affect heart function. An ...

  14. Collapsed Lung

    MedlinePlus

    A collapsed lung happens when air enters the pleural space, the area between the lung and the chest wall. If it is a ... is called pneumothorax. If only part of the lung is affected, it is called atelectasis. Causes of ...

  15. SU-F-BRF-02: Automated Lung Segmentation Method Using Atlas-Based Sparse Shape Composition with a Shape Constrained Deformable Model

    SciTech Connect

    Zhou, J; Yan, Z; Zhang, S; Zhang, B; Lasio, G; Prado, K; D'Souza, W

    2014-06-15

    Purpose: To develop an automated lung segmentation method, which combines the atlas-based sparse shape composition with a shape constrained deformable model in thoracic CT for patients with compromised lung volumes. Methods: Ten thoracic computed tomography scans for patients with large lung tumors were collected and reference lung ROIs in each scan was manually segmented to assess the performance of the method. We propose an automated and robust framework for lung tissue segmentation by using single statistical atlas registration to initialize a robust deformable model in order to perform fine segmentation that includes compromised lung tissue. First, a statistical image atlas with sparse shape composition is constructed and employed to obtain an approximate estimation of lung volume. Next, a robust deformable model with shape prior is initialized from this estimation. Energy terms from ROI edge potential and interior ROI region based potential as well as the initial ROI are combined in this model for accurate and robust segmentation. Results: The proposed segmentation method is applied to segment right lung on three CT scans. The quantitative results of our segmentation method achieved mean dice score of (0.92–0.95), mean accuracy of (0.97,0.98), and mean relative error of (0.10,0.16) with 95% CI. The quantitative results of previously published RASM segmentation method achieved mean dice score of (0.74,0.96), mean accuracy of (0.66,0.98), and mean relative error of (0.04, 0.38) with 95% CI. The qualitative and quantitative comparisons show that our proposed method can achieve better segmentation accuracy with less variance compared with a robust active shape model method. Conclusion: The atlas-based segmentation approach achieved relatively high accuracy with less variance compared to RASM in the sample dataset and the proposed method will be useful in image analysis applications for lung nodule or lung cancer diagnosis and radiotherapy assessment in thoracic

  16. Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia

    SciTech Connect

    Sukseree, Supawadee; Rossiter, Heidemarie; Mildner, Michael; Pammer, Johannes; Buchberger, Maria; Gruber, Florian; Watanapokasin, Ramida; Tschachler, Erwin; Eckhart, Leopold

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We generated mice lacking Atg5 and autophagy in keratin K5-positive epithelia. Black-Right-Pointing-Pointer Suppression of autophagy in thymic epithelium was not associated with signs of autoimmunity. Black-Right-Pointing-Pointer Autophagy was required for normal terminal differentiation of preputial gland cells. Black-Right-Pointing-Pointer Autophagy-deficient cells of the preputial glands degraded nuclear DNA prematurely. -- Abstract: Autophagy contributes to the homeostasis of many tissues, yet its role in epithelia is incompletely understood. A recent report proposed that Atg5-dependent autophagy in thymic epithelial cells is essential for their function in the negative selection of self-reactive T-cells and, thus, for the suppression of tissue inflammation. Here we crossed mice carrying floxed alleles of the Atg5 gene with mice expressing the Cre recombinase under the control of the keratin K5 promoter to suppress autophagy in all K5-positive epithelia. The efficiency of autophagy abrogation was confirmed by immunoanalyses of LC3, which was converted to the autophagy-associated LC3-II form in normal but not Atg5-deficient cells, and of p62, which accumulated in Atg5-deficient cells. Mice carrying the epithelium-specific deletion of Atg5 showed normal weight gain, absence of tissue inflammation, and a normal morphology of the thymic epithelium. By contrast, autophagy-deficient epithelial cells of the preputial gland showed aberrant eosinophilic staining in histology and premature degradation of nuclear DNA during terminal differentiation. Taken together, the results of this study suggest that autophagy is dispensable for the suppression of autoimmunity by thymic epithelial cells but essential for normal differentiation of the preputial gland in mice.

  17. Ultrastructural and immunohistochemical localization of plasma membrane Ca2+-ATPase 4 in Ca2+-transporting epithelia.

    PubMed

    Alexander, R Todd; Beggs, Megan R; Zamani, Reza; Marcussen, Niels; Frische, Sebastian; Dimke, Henrik

    2015-10-01

    Plasma membrane Ca(2+)-ATPases (PMCAs) participate in epithelial Ca(2+) transport and intracellular Ca(2+) signaling. The Pmca4 isoform is enriched in distal nephron isolates and decreased in mice lacking the epithelial transient receptor potential vanilloid 5 Ca(2+) channel. We therefore hypothesized that Pmca4 plays a significant role in transcellular Ca(2+) flux and investigated the localization and regulation of Pmca4 in Ca(2+)-transporting epithelia. Using antibodies directed specifically against Pmca4, we found it expressed only in the smooth muscle layer of mouse and human intestines, whereas pan-specific Pmca antibodies detected Pmca1 in lateral membranes of enterocytes. In the kidney, Pmca4 showed broad localization to the distal nephron. In the mouse, expression was most abundant in segments coexpressing the epithelial ransient receptor potential vanilloid 5 Ca(2+) channel. Significant, albeit lower, expression was also evident in the region encompassing the cortical thick ascending limbs, macula densa, and early distal tubules as well as smooth muscle layers surrounding renal vessels. In the human kidney, a similar pattern of distribution was observed, with the highest PMCA4 expression in Na(+)-Cl(-) cotransporter-positive tubules. Electron microscopy demonstrated Pmca4 localization in distal nephron cells at both the basolateral membrane and intracellular perinuclear compartments but not submembranous vesicles, suggesting rapid trafficking to the plasma membrane is unlikely to occur in vivo. Pmca4 expression was not altered by perturbations in Ca(2+) balance, pointing to a housekeeping function of the pump in Ca(2+)-transporting epithelia. In conclusion, Pmca4 shows a divergent expression pattern in Ca(2+)-transporting epithelia, inferring diverse roles for this isoform not limited to transepithelial Ca(2+) transport. PMID:26180241

  18. Proteomic analysis of rainbow trout (Oncorhynchus mykiss) intestinal epithelia: physiological acclimation to short-term starvation.

    PubMed

    Baumgarner, Bradley L; Bharadwaj, Anant S; Inerowicz, Dorota; Goodman, Angela S; Brown, Paul B

    2013-03-01

    The intestinal epithelia form the first line of defense against harmful agents in the gut lumen of most monogastric vertebrates, including teleost fishes. Previous investigations into the effect of starvation on the intestinal epithelia of teleost fishes have focused primarily on changes in morphological characteristics and targeted molecular analysis of specific enzymes. The goal of this study was to use a comprehensive approach to help reveal how the intestinal epithelia of carnivorous teleost fishes acclimate to short-term nutrient deprivation. We utilized two-dimensional gel electrophoresis (2-DE) to conduct the proteomic analysis of the mucosal and epithelial layer of the anterior gut intestinal tract (GIT) from satiation fed vs. 4 week starved rainbow trout (Oncorhynchus mykiss). A total of 40 proteins were determined to be differentially expressed and were subsequently picked for in-gel trypsin digestion. Peptide mass fingerprint analysis was conducted using matrix assisted laser desorption time-of-flight/time-of-flight. Nine of the 11 positively identified proteins were directly related to innate immunity. The expression of α-1 proteinase inhibitor decreased in starved vs. fed fish. Also, the concentration of one leukocyte elastase inhibitor (LEI) isomer decreased in starved fish, though the concentration of another LEI isomer increased in due to starvation. In addition, starvation promoted an increased concentration of the important xenobiotic-transporter p-glycoprotein. Finally, starvation resulted in a significant increase in type II keratin E2. Overall, our results indicate that starvation promoted a reduced capacity to inhibit enzymatic stress but increased xenobiotic resistance and paracellular permeability of epithelial cells in the anterior intestine of rainbow trout.

  19. Expression and localization of aqua-glyceroporins AQP3 and AQP9 in rat oral epithelia.

    PubMed

    Poveda, Marlene; Hashimoto, Sadamitsu; Enokiya, Yasunobu; Matsuki-Fukushima, Miwako; Sasaki, Hodaka; Sakurai, Kaoru; Shimono, Masaki

    2014-01-01

    Aquaporins (AQPs) are a family of small integral membrane proteins made up of 6 hydrophobic, a-helical, membrane-spanning domains surrounding a highly selective aqueous pore. AQP3, AQP7, and AQP9, termed aqua-glyceroporins, are known to be involved in the transport of water, glycerol, and other small molecules. In this study, we investigated the expression and localization of aqua-glyceroporins in rat oral stratified squamous epithelia of the palate, the buccal mucosa, the inferior aspect of the tongue, and the oral floor by using RT-PCR, immunofluorescence, and immunogold electron microscopy. AQP3 and AQP9 mRNAs were expressed in whole oral epithelium. Immunostaining for AQP3 was recognized in each type of epithelium. The results suggest that AQP3 synthesis begins predominantly in the cytoplasm of the basal cells. During the process of epithelial cell differentiation, AQP3 protein appears to accumulate and be transported to the plasma membrane, from where it is incorporated into the cornified or surface layers. The intracellular localization of AQP3 appears to correlate with the differentiation of keratinocytes, suggesting that it acts as an enhancer of the physiological permeability barrier together with membrane coating granules. The distribution pattern of AQP9 was limited to the marginal areas of the basal and suprabasal layers, which was different from that of AQP3. This difference in distribution between AQP3 and AQP9 suggests that AQP9 in rat oral epithelia acts as a channel by facilitating glycerol uptake from the blood through the endothelial cells of the capillary vessels to the oral stratified squamous epithelium. AQP3 and AQP9 facilitate both transcellular osmotic water flow and glycerol transport as pore-like passive transporters in the keratinocytes of oral epithelia, and may play a key role in not only hydration and the permeability barrier, but also cell proliferation, differentiation, migration, development, and wound healing by generating ATP.

  20. Ovine pulmonary adenocarcinoma as an animal model of progressive lung cancer and the impact of nutritional selenium supply.

    PubMed

    Humann-Ziehank, Esther; Wolf, Petra; Renko, Kostja; Schomburg, Lutz; Ludwig Bruegmann, Michael; Andreae, Arnim; Brauer, Carsten; Ganter, Martin

    2011-01-01

    Jaagsiekte sheep retrovirus (JSRV) is known to induce ovine pulmonary adenocarcinoma (OPA). Several studies have suggested an influence of selenium (Se) status on cancer progression. Thus, combining OPA with a defined Se supply might serve as a suitable animal model to study the impact of Se on lung cancer progression. 16 naturally JSRV-infected sheep were divided into 2 treatment groups receiving (a) <0.05 and (b) 0.2 mg Se/kg dry matter in diet, respectively. Computed tomography (CT) was performed repeatedly and evaluated using a CT-OPA-score system. Liver biopsies were taken three-monthly, blood samples were collected biweekly to study treatment effects on Se concentrations and glutathione peroxidase (GPx) activity. Cell pellets from bronchoalveolar lavage fluid (BALF) were tested for JSRV by PCR to approve the infection. To date, four animals of the ongoing study have been euthanised. Autopsy and histopathology were performed and correlated to CT analysis. JSRV was detected in BALF cell pellets. Progression of lung tumours was monitored successfully by repeated CT examinations, enabling the detection of even small nodules or increased lung density. Histopathology revealed bronchioloalveolar adenocarcinoma in lung areas suspicious to be OPA from CT evaluation. Score-based analysis of CT images for quantifying tumour progression proved as a valuable tool. Se concentration and GPx activity increased in liver and serum of group b and verified the efficiency of different feeding regime. In conclusion, OPA along with CT, autopsy/histopathology, trace element and enzyme activity analysis provide a suitable large animal model to examine the impact of Se supply on lung tumourigenesis.