Science.gov

Sample records for lung scavenger receptor

  1. Standardizing scavenger receptor nomenclature.

    PubMed

    Prabhudas, Mercy; Bowdish, Dawn; Drickamer, Kurt; Febbraio, Maria; Herz, Joachim; Kobzik, Lester; Krieger, Monty; Loike, John; Means, Terry K; Moestrup, Soren K; Post, Steven; Sawamura, Tatsuya; Silverstein, Samuel; Wang, Xiang-Yang; El Khoury, Joseph

    2014-03-01

    Scavenger receptors constitute a large family of proteins that are structurally diverse and participate in a wide range of biological functions. These receptors are expressed predominantly by myeloid cells and recognize a variety of ligands, including endogenous and modified host-derived molecules and microbial pathogens. There are currently eight classes of scavenger receptors, many of which have multiple names, leading to inconsistencies and confusion in the literature. To address this problem, a workshop was organized by the U.S. National Institute of Allergy and Infectious Diseases, National Institutes of Health to help develop a clear definition of scavenger receptors and a standardized nomenclature based on that definition. Fifteen experts in the scavenger receptor field attended the workshop and, after extensive discussion, reached a consensus regarding the definition of scavenger receptors and a proposed scavenger receptor nomenclature. Scavenger receptors were defined as cell surface receptors that typically bind multiple ligands and promote the removal of non-self or altered-self targets. They often function by mechanisms that include endocytosis, phagocytosis, adhesion, and signaling that ultimately lead to the elimination of degraded or harmful substances. Based on this definition, nomenclature and classification of these receptors into 10 classes were proposed. The discussion and nomenclature recommendations described in this report only refer to mammalian scavenger receptors. The purpose of this article is to describe the proposed mammalian nomenclature and classification developed at the workshop and to solicit additional feedback from the broader research community.

  2. Lung macrophage uptake of unopsonized environmental particulates: Role of scavenger-type receptors

    SciTech Connect

    Kobzik, L.

    1995-07-01

    The receptors responsible for avid alveolar macrophage (AM) phagocytosis of unopsonized environmental particulates have not been well defined. This study used flow cytometry to quantitate the effects of a panel of soluble ligands for macrophage adhesion receptors on AM binding of unopsonized environmental dusts (titanium dioxide, TiO{sub 2}; iron oxide, Fe{sub 2}O{sub 3}; {alpha}-quartz, SiO{sub 2}; diesel engine exhaust dust) or fluorescent latex beads. Polyanionic ligands of the macrophage scavenger receptor (SR) for acetylated-LDL caused marked inhibition of AM binding of the oxide particles and latex beads (e.g., TiO{sub 2} binding; polyinosinic acid (polyl), 10 {mu}g/ml: 70.2 {+-} 1.5% inhibition, mean {+-} SE, n = 11). In contrast, no inhibition was seen with the polyanions heparin and chondroitin sulfate (chond-S), or dextran, consistent with the known inhibitor profile of macrophage SRs for acetylated-LDL. AM uptake of latex or SiO{sub 2} beads instilled into lungs of hamsters was inhibited by administration of polyl but not chondroitin sulfate (AM beads per cell: control, 6.1 {+-} 0.7; polyl, 3.5 {+-} 0.2; chond-S, 5.1 {+-} 0.7, n {ge} 4, p < 0.05 for control vs polyl) indicating macrophage SRs operate in vivo as well as in vitro. In contrast, AM binding of the carbonaceous diesel dust particles was not inhibited by any ligand tested. AM uptake of unopsonized TiO{sub 2}, SR ligands or acetylated LDL caused no significant activation of AM respiratory burst or TNF production, consistent with past observations that opsonin-independent phagocytosis of inert particles by normal AMs is not accompanied by pro-inflammatory activation. These data implicate macrophage-type SRs in AM binding of charged environmental particles and indicate that distinct mechanisms mediate binding of carbonaceous dusts. 54 refs., 7 figs., 4 tabs.

  3. Scavenger Receptors and Resistance to Inhaled Allergens

    DTIC Science & Technology

    2007-02-01

    allergic asthma Keywords: Dendritic cell migration, allergic asthma, scavenger receptors Arredouani et al. 2 Abstract The class A scavenger...dendritic cells, MARCO (Macrophage receptor with collagenous structure), and SR-AI/ II (1, 2 , 4). MARCO, like SR-AI/ II , binds acetylated LDL and...backcrossed for at least ten generations to the C57BL/6 background. SR-AI/ II -/- mice were generated by disrupting exon 4 of the SR-A gene, which is

  4. Scavenger Receptors: Emerging Roles in Cancer Biology and Immunology

    PubMed Central

    Yu, Xiaofei; Guo, Chunqing; Fisher, Paul B.; Subjeck, John R.; Wang, Xiang-Yang

    2015-01-01

    Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted. PMID:26216637

  5. Scavenger Receptors: Emerging Roles in Cancer Biology and Immunology.

    PubMed

    Yu, Xiaofei; Guo, Chunqing; Fisher, Paul B; Subjeck, John R; Wang, Xiang-Yang

    2015-01-01

    Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted.

  6. Scavenger Receptors and Resistance to Inhaled Allergens

    DTIC Science & Technology

    2010-02-01

    concentrate on the dendritic cell work, which did allow the productive results shown above. Because the work for in vitro with dendritic cells...or agents to modulate these receptors could be of therapeutic value. We are pursuing screening platforms, such as those illustrated in Appendix 3...resus- pended in PBS, and counted and a fraction was cytospun on microscopic slides for staining with Diff-Quick (Baxter Scientific Products ) for subse

  7. Free Actin Impairs Macrophage Bacterial Defenses via Scavenger Receptor MARCO Interaction, with Reversal by Plasma Gelsolin.

    PubMed

    Ordija, Christine M; Chiou, Terry Ting-Yu; Yang, Zhiping; Deloid, Glen M; de Oliveira Valdo, Melina; Wang, Zhi; Bedugnis, Alice; Noah, Terry L; Jones, Samuel; Koziel, Henry; Kobzik, Lester

    2017-04-06

    Lung injury can release intracellular actin into the alveolar milieu, and is also associated with increased susceptibility to secondary infections. We investigated the effect of free (extracellular) actin on lung macrophage host defense functions. Western blot analysis demonstrated free actin release into the lung lavage fluids of mouse models of ozone injury, influenza infection and secondary pneumococcal pneumonia, and in samples from patients following burn and inhalation injury. Using levels comparable to those observed in lung injury, we found that free actin markedly inhibited murine lung macrophage binding and uptake in vitro of S. pneumoniae, S. aureus and E. coli e.g., S. pneumoniae, mean % inhibition, actin vs vehicle: 85 ± 0.3 (SD), n = 22, p <.001). Similar effects were observed on the ability of primary human macrophages to bind and ingest fluorescent S. aureus (~75 % inhibition). Plasma gelsolin (pGSN), a protein that functions to bind and cleave actin, restored bacterial binding and uptake by both murine and human macrophages. Scavenger receptor inhibitors reduced binding of fluorescent actin by murine macrophages (fluorescence index (x 10-3) after incubation with vehicle, actin, or actin + polyinosinic acid, respectively: 0.8 ± 0.7, 101.7 ± 50.7, 52.7 ± 16.9, n = 5-6, p < 0.05). In addition, actin binding was reduced in a MARCO / SR-AI/II deficient cell line and by normal AMs obtained from MARCO -/- mice. After release from injured cells during lung injury, free actin likely contributes to impaired host defense by blocking scavenger receptor binding of bacteria. This mechanism for increased risk of secondary infections after lung injury or inflammation may represent another target for therapeutic intervention with pGSN.

  8. Fluorescence energy transfer studies on the macrophage scavenger receptor

    NASA Astrophysics Data System (ADS)

    Louie, Angelique Y.; Tromberg, Bruce J.; Berns, Michael W.

    1994-08-01

    The macrophage scavenger receptor is a transmembrane, trimeric glycoprotein which recognizes a number of negatively charged ligands. Cross competition studies of various ligands indicate that the scavenger receptor may bear more than one type of binding site or that there may be more than one type of receptor. In this study we employed resonance energy transfer techniques to identify the location of the binding site for maleylated bovine serum albumin. Using vesicles derived from plasma membrane, we labeled the ligand with a donor probe and labeled the membrane surface with acceptor probes to determine the distance of bound ligand from the membrane surface. Measurements were taken with three different donor-acceptor pairs. Transfer measurements for ligand labeled with dansyl and HAE (hexadecanoylaminoeosin) as the acceptor yielded a distance of 47 angstrom from the surface of the plasma membrane. Similar measurements employing the same donors but using ORB (octadecylrhodamine B) as the acceptor produced a distance of 58 angstrom. Assuming that the receptor extends perpendicularly from the cell surface this distance lies within the two receptor `domains' closest to the cell surface. These domains include the spacer region, with no distinct proposed structure and a region which has sequence similarity to an alpha helical coiled coil. No transfer was observed between ligand monolabeled with fluorescein and DiI in the membrane. This suggests that the orientation of mal-BSA bound to receptor places the fluorescein probe too far from acceptor on the membrane surface to experience energy transfer.

  9. Exploring the link between scavenger receptor B1 expression and chronic obstructive pulmonary disease pathogenesis.

    PubMed

    Valacchi, Giuseppe; Maioli, Emanuela; Sticozzi, Claudia; Cervellati, Franco; Pecorelli, Alessandra; Cervellati, Carlo; Hayek, Joussef

    2015-03-01

    Chronic obstructive pulmonary disease (COPD) has been recognized as one of the major causes of morbidity and mortality in the United States; it is the third leading cause of deaths in the United States, with approximately 15 million Americans affected with COPD. Although exposure to cigarette smoke has been shown to be the main, if not the only, risk factor for COPD, the mechanisms underlying this association remain unclear. Most smokers do not develop COPD, suggesting that a combination of exposure and susceptibility (genetic background) is required. Several mechanisms contribute to the pathogenesis of COPD, such as influx of inflammatory cells into the lung, imbalance between proteolytic and antiproteolytic molecules, disruption of the balance between apoptosis and replenishment of structural cells in the lung, and disruption of oxidant/antioxidant balance. The scavenger receptor BI (SRB1) plays an important role in mediating the uptake of high-density lipoprotein (HDL)-derived cholesterol and cholesteryl ester in tissues. In addition to its role as the HDL receptor, SRB1 is also involved in pathogen recognition, identification of apoptotic cells, tissue antioxidant uptake (tocopherol and carotenoids), and lung surfactant composition, all factors involved in COPD pathogenesis. Therefore, it is possible that lung SRB1 levels are involved in the development of COPD.

  10. CBLB502, an agonist of Toll-like receptor 5, has antioxidant and scavenging free radicals activities in vitro.

    PubMed

    Li, Weiguang; Ge, Changhui; Yang, Liu; Wang, Ruixue; Lu, Yiming; Gao, Yan; Li, Zhihui; Wu, Yonghong; Zheng, Xiaofei; Wang, Zhaoyan; Zhang, Chenggang

    2016-01-01

    The bacterial protein flagellin is the known agonist of Toll-like receptor 5 (TLR5). It has been reported that CBLB502, a novel agonist of TLR5 derived from Salmonella flagellin, could reduce radiation toxicity in mouse and primate models, protect mice from dermatitis and oral mucositis caused by radiation, inhibit acute renal ischemic failure, and inhibit the growth of A549 lung cancer cell. The property of CBLB502 is able to bind to TLR5 and activates NF-κB signaling. In this study, we investigated the antioxidant potential and free radicals scavenging properties of CBLB502 in vitro. Interestingly, we found that CBLB502 has a direct and distinct antioxidant capacity and can efficiently scavenge a variety of free radicals, including superoxide anion, hydroxyl radical, and ABTS cation (ABTS(+)). Through wave scanning and kinetic evaluation of scavenging ABTS(+), we found that the ABTS(+) scavenging process of CBLB502 is relatively slow, and the ABTS(+) scavenging activity of CBLB502 has a consistently kinetics characteristics. In conclusion, our results suggested that CBLB502 has antioxidant and scavenging free radicals activities in vitro. It is implied that CBLB502 might partially promote the beneficial protective effect through its scavenging free radicals.

  11. Intestinal scavenger receptors are involved in vitamin K1 absorption.

    PubMed

    Goncalves, Aurélie; Margier, Marielle; Roi, Stéphanie; Collet, Xavier; Niot, Isabelle; Goupy, Pascale; Caris-Veyrat, Catherine; Reboul, Emmanuelle

    2014-10-31

    Vitamin K1 (phylloquinone) intestinal absorption is thought to be mediated by a carrier protein that still remains to be identified. Apical transport of vitamin K1 was examined using Caco-2 TC-7 cell monolayers as a model of human intestinal epithelium and in transfected HEK cells. Phylloquinone uptake was then measured ex vivo using mouse intestinal explants. Finally, vitamin K1 absorption was compared between wild-type mice and mice overexpressing scavenger receptor class B type I (SR-BI) in the intestine and mice deficient in cluster determinant 36 (CD36). Phylloquinone uptake by Caco-2 cells was saturable and was significantly impaired by co-incubation with α-tocopherol (and vice versa). Anti-human SR-BI antibodies and BLT1 (a chemical inhibitor of lipid transport via SR-BI) blocked up to 85% of vitamin K1 uptake. BLT1 also decreased phylloquinone apical efflux by ∼80%. Transfection of HEK cells with SR-BI and CD36 significantly enhanced vitamin K1 uptake, which was subsequently decreased by the addition of BLT1 or sulfo-N-succinimidyl oleate (CD36 inhibitor), respectively. Similar results were obtained in mouse intestinal explants. In vivo, the phylloquinone postprandial response was significantly higher, and the proximal intestine mucosa phylloquinone content 4 h after gavage was increased in mice overexpressing SR-BI compared with controls. Phylloquinone postprandial response was also significantly increased in CD36-deficient mice compared with wild-type mice, but their vitamin K1 intestinal content remained unchanged. Overall, the present data demonstrate for the first time that intestinal scavenger receptors participate in the absorption of dietary phylloquinone.

  12. Intestinal Scavenger Receptors Are Involved in Vitamin K1 Absorption*

    PubMed Central

    Goncalves, Aurélie; Margier, Marielle; Roi, Stéphanie; Collet, Xavier; Niot, Isabelle; Goupy, Pascale; Caris-Veyrat, Catherine; Reboul, Emmanuelle

    2014-01-01

    Vitamin K1 (phylloquinone) intestinal absorption is thought to be mediated by a carrier protein that still remains to be identified. Apical transport of vitamin K1 was examined using Caco-2 TC-7 cell monolayers as a model of human intestinal epithelium and in transfected HEK cells. Phylloquinone uptake was then measured ex vivo using mouse intestinal explants. Finally, vitamin K1 absorption was compared between wild-type mice and mice overexpressing scavenger receptor class B type I (SR-BI) in the intestine and mice deficient in cluster determinant 36 (CD36). Phylloquinone uptake by Caco-2 cells was saturable and was significantly impaired by co-incubation with α-tocopherol (and vice versa). Anti-human SR-BI antibodies and BLT1 (a chemical inhibitor of lipid transport via SR-BI) blocked up to 85% of vitamin K1 uptake. BLT1 also decreased phylloquinone apical efflux by ∼80%. Transfection of HEK cells with SR-BI and CD36 significantly enhanced vitamin K1 uptake, which was subsequently decreased by the addition of BLT1 or sulfo-N-succinimidyl oleate (CD36 inhibitor), respectively. Similar results were obtained in mouse intestinal explants. In vivo, the phylloquinone postprandial response was significantly higher, and the proximal intestine mucosa phylloquinone content 4 h after gavage was increased in mice overexpressing SR-BI compared with controls. Phylloquinone postprandial response was also significantly increased in CD36-deficient mice compared with wild-type mice, but their vitamin K1 intestinal content remained unchanged. Overall, the present data demonstrate for the first time that intestinal scavenger receptors participate in the absorption of dietary phylloquinone. PMID:25228690

  13. Dietary homocysteine promotes atherosclerosis in apoE-deficient mice by inducing scavenger receptors expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated plasma homocysteine (Hcy) levels have been recognized as an independent risk factor for cardiovascular and cerebrovascular diseases. However, the causative mechanisms have not been delineated. Scavenger receptors such as scavenger receptor-AI/II (SR-A), CD36, and lectin-like oxidized LDL ...

  14. Scavenger Receptors and Their Potential as Therapeutic Targets in the Treatment of Cardiovascular Disease

    PubMed Central

    Stephen, Sam L.; Freestone, Katie; Dunn, Sarah; Twigg, Michael W.; Homer-Vanniasinkam, Shervanthi; Walker, John H.; Wheatcroft, Stephen B.; Ponnambalam, Sreenivasan

    2010-01-01

    Scavenger receptors act as membrane-bound and soluble proteins that bind to macromolecular complexes and pathogens. This diverse supergroup of proteins mediates binding to modified lipoprotein particles which regulate the initiation and progression of atherosclerotic plaques. In vascular tissues, scavenger receptors are implicated in regulating intracellular signaling, lipid accumulation, foam cell development, and cellular apoptosis or necrosis linked to the pathophysiology of atherosclerosis. One approach is using gene therapy to modulate scavenger receptor function in atherosclerosis. Ectopic expression of membrane-bound scavenger receptors using viral vectors can modify lipid profiles and reduce the incidence of atherosclerosis. Alternatively, expression of soluble scavenger receptors can also block plaque initiation and progression. Inhibition of scavenger receptor expression using a combined gene therapy and RNA interference strategy also holds promise for long-term therapy. Here we review our current understanding of the gene delivery by viral vectors to cells and tissues in gene therapy strategies and its application to the modulation of scavenger receptor function in atherosclerosis. PMID:20981357

  15. Defective expression of scavenger receptors in celiac disease mucosa.

    PubMed

    Cupi, Maria Laura; Sarra, Massimiliano; De Nitto, Daniela; Franzè, Eleonora; Marafini, Irene; Monteleone, Ivan; Del Vecchio Blanco, Giovanna; Paoluzi, Omero Alessandro; Di Fusco, Davide; Gentileschi, Paolo; Ortenzi, Angela; Colantoni, Alfredo; Pallone, Francesco; Monteleone, Giovanni

    2014-01-01

    Celiac disease (CD) is a gluten sensitive enteropathy characterized by a marked infiltration of the mucosa with immune cells, over-production of inflammatory cytokines and epithelial cell damage. The factors/mechanisms that sustain and amplify the ongoing mucosal inflammation in CD are not however fully understood. Here, we have examined whether in CD there is a defective clearance of apoptotic cells/bodies, a phenomenon that helps promote tolerogenic signals thus liming pathogenic responses. Accumulation of apoptotic cells and bodies was more pronounced in the epithelial and lamina propria compartments of active CD patients as compared to inactive CD patients and normal controls. Expression of scavenger receptors, which are involved in the clearance of apoptotic cells/bodies, namely thrombospondin (TSP)-1, CD36 and CD61, was significantly reduced in active CD as compared to inactive CD and normal mucosal samples. Consistently, lamina propria mononuclear cells (LPMC) of active CD patients had diminished ability to phagocyte apoptotic cells. Interleukin (IL)-15, IL-21 and interferon-γ, cytokines over-produced in active CD, inhibited the expression of TSP-1, CD36, and CD61 in normal intestinal LPMC. These results indicate that CD-related inflammation is marked by diminished clearance of apoptotic cells/bodies, thus suggesting a role for such a defect in the ongoing mucosal inflammation in this disorder.

  16. Defective Expression of Scavenger Receptors in Celiac Disease Mucosa

    PubMed Central

    Cupi, Maria Laura; Sarra, Massimiliano; De Nitto, Daniela; Franzè, Eleonora; Marafini, Irene; Monteleone, Ivan; Del Vecchio Blanco, Giovanna; Paoluzi, Omero Alessandro; Di Fusco, Davide; Gentileschi, Paolo; Ortenzi, Angela; Colantoni, Alfredo; Pallone, Francesco; Monteleone, Giovanni

    2014-01-01

    Celiac disease (CD) is a gluten sensitive enteropathy characterized by a marked infiltration of the mucosa with immune cells, over-production of inflammatory cytokines and epithelial cell damage. The factors/mechanisms that sustain and amplify the ongoing mucosal inflammation in CD are not however fully understood. Here, we have examined whether in CD there is a defective clearance of apoptotic cells/bodies, a phenomenon that helps promote tolerogenic signals thus liming pathogenic responses. Accumulation of apoptotic cells and bodies was more pronounced in the epithelial and lamina propria compartments of active CD patients as compared to inactive CD patients and normal controls. Expression of scavenger receptors, which are involved in the clearance of apoptotic cells/bodies, namely thrombospondin (TSP)-1, CD36 and CD61, was significantly reduced in active CD as compared to inactive CD and normal mucosal samples. Consistently, lamina propria mononuclear cells (LPMC) of active CD patients had diminished ability to phagocyte apoptotic cells. Interleukin (IL)-15, IL-21 and interferon-γ, cytokines over-produced in active CD, inhibited the expression of TSP-1, CD36, and CD61 in normal intestinal LPMC. These results indicate that CD-related inflammation is marked by diminished clearance of apoptotic cells/bodies, thus suggesting a role for such a defect in the ongoing mucosal inflammation in this disorder. PMID:24971453

  17. The Role of Scavenger Receptor B1 in Infection with Mycobacterium tuberculosis in a Murine Model

    PubMed Central

    Schäfer, Georgia; Guler, Reto; Murray, Graeme; Brombacher, Frank; Brown, Gordon D.

    2009-01-01

    Background The interaction between Mycobacterium tuberculosis (Mtb) and host cells is complex and far from being understood. The role of the different receptor(s) implicated in the recognition of Mtb in particular remains poorly defined, and those that have been found to have activity in vitro were subsequently shown to be redundant in vivo. Methods and Findings To identify novel receptors involved in the recognition of Mtb, we screened a macrophage cDNA library and identified scavenger receptor B class 1 (SR-B1) as a receptor for mycobacteria. SR-B1 has been well-described as a lipoprotein receptor which mediates both the selective uptake of cholesteryl esters and the efflux of cholesterol, and has also recently been implicated in the recognition of other pathogens. We show here that mycobacteria can bind directly to SR-B1 on transfected cells, and that this interaction could be inhibited in the presence of a specific antibody to SR-B1, serum or LDL. We define a variety of macrophage populations, including alveolar macrophages, that express this receptor, however, no differences in the recognition and response to mycobacteria were observed in macrophages isolated from SR-B1−/− or wild type mice in vitro. Moreover, when wild type and SR-B1−/− animals were infected with a low dose of Mtb (100 CFU/mouse) there were no alterations in survival, bacterial burdens, granuloma formation or cytokine production in the lung. However, significant reduction in the production of TNF, IFNγ, and IL10 were observed in SR-B1−/− mice following infection with a high dose of Mtb (1000 CFU/mouse), which marginally affected the size of inflammatory foci but did not influence bacterial burdens. Deficiency of SR-B1 also had no effect on resistance to disease under conditions of varying dietary cholesterol. We did observe, however, that the presence of high levels of cholesterol in the diet significantly enhanced the bacterial burdens in the lung, but this was independent of SR

  18. Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure.

    PubMed

    Murthy, Shubha; Larson-Casey, Jennifer L; Ryan, Alan J; He, Chao; Kobzik, Lester; Carter, A Brent

    2015-08-01

    Alternative activation of alveolar macrophages is linked to fibrosis following exposure to asbestos. The scavenger receptor, macrophage receptor with collagenous structure (MARCO), provides innate immune defense against inhaled particles and pathogens; however, a receptor for asbestos has not been identified. We hypothesized that MARCO acts as an initial signaling receptor for asbestos, polarizes macrophages to a profibrotic M2 phenotype, and is required for the development of asbestos-induced fibrosis. Compared with normal subjects, alveolar macrophages isolated from patients with asbestosis express higher amounts of MARCO and have greater profibrotic polarization. Arginase 1 (40-fold) and IL-10 (265-fold) were higher in patients. In vivo, the genetic deletion of MARCO attenuated the profibrotic environment and pulmonary fibrosis in mice exposed to chrysotile. Moreover, alveolar macrophages from MARCO(-/-) mice polarize to an M1 phenotype, whereas wild-type mice have higher Ym1 (>3.0-fold) and nearly 7-fold more active TGF-β1 in bronchoalveolar lavage (BAL) fluid (BALF). Arg(432) and Arg(434) in domain V of MARCO are required for the polarization of macrophages to a profibrotic phenotype as mutation of these residues reduced FIZZ1 expression (17-fold) compared with cells expressing MARCO. These observations demonstrate that a macrophage membrane protein regulates the fibrotic response to lung injury and suggest a novel target for therapeutic intervention.

  19. Pattern Recognition Scavenger Receptor A/CD204 Regulates Airway Inflammatory Homeostasis Following Organic Dust Extract Exposures

    PubMed Central

    Poole, Jill A.; Anderson, Leigh; Gleason, Angela M.; West, William W.; Romberger, Debra J.; Wyatt, Todd A.

    2014-01-01

    Exposure to agriculture organic dusts, comprised of a diversity of pathogen-associated molecular patterns, results in chronic airway diseases. The multi-functional class A macrophage scavenger receptor (SRA)/CD204 has emerged as an important class of pattern recognition receptors with broad ligand binding ability. Our objective was to determine the role of SRA in mediating repetitive and post-inflammatory organic dust extract (ODE)-induced airway inflammation. Wild-type (WT) and SRA knockout (KO) mice were intra-nasally treated with ODE or saline daily for 3 wk and immediately euthanized or allowed to recover for 1 wk. Results show that lung histopathologic changes were increased in SRA KO mice as compared to WT following repetitive ODE exposures marked predominately by increased size and distribution of lymphoid aggregates. After a 1-wk recovery from daily ODE treatments, there was significant resolution of lung injury in WT mice, but not SRA KO animals. The increased lung histopathology induced by ODE treatment was associated with decreased accumulation of neutrophils, but greater accumulation of CD4+ T-cells. The lung cytokine milieu induced by ODE was consistent with a TH1/TH17 polarization in both WT and SRA KO mice. Overall, our data demonstrate that SRA/CD204 plays an important role in the normative inflammatory lung response to ODE as evidenced by the enhanced dust-mediated injury viewed in the absence of this receptor. PMID:24491035

  20. Scavenger receptor mediates systemic RNA interference in ticks.

    PubMed

    Aung, Kyaw Min; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Xuenan, Xuan; Suzuki, Hiroshi; Galay, Remil Linggatong; Tanaka, Tetsuya; Fujisaki, Kozo

    2011-01-01

    RNA interference is an efficient method to silence gene and protein expressions. Here, the class B scavenger receptor CD36 (SRB) mediated the uptake of exogenous dsRNAs in the induction of the RNAi responses in ticks. Unfed female Haemaphysalis longicornis ticks were injected with a single or a combination of H. longicornis SRB (HlSRB) dsRNA, vitellogenin-1 (HlVg-1) dsRNA, and vitellogenin receptor (HlVgR) dsRNA. We found that specific and systemic silencing of the HlSRB, HlVg-1, and HlVgR genes was achieved in ticks injected with a single dsRNA of HlSRB, HlVg-1, and HlVgR. In ticks injected first with HlVg-1 or HlVgR dsRNA followed 96 hours later with HlSRB dsRNA (HlVg-1/HlSRB or HlVgR/HlSRB), gene silencing of HlSRB was achieved in addition to first knockdown in HlVg-1 or HlVgR, and prominent phenotypic changes were observed in engorgement, mortality, and hatchability, indicating that a systemic and specific double knockdown of target genes had been simultaneously attained in these ticks. However, in ticks injected with HlSRB dsRNA followed 96 hours later with HlVg-1 or HlVgR dsRNAs, silencing of HlSRB was achieved, but no subsequent knockdown in HlVgR or HlVg-1 was observed. The Westernblot and immunohistochemical examinations revealed that the endogenous HlSRB protein was fully abolished in midguts of ticks injected with HlSRB/HlVg-1 dsRNAs but HlVg-1 was normally expressed in midguts, suggesting that HlVg-1 dsRNA-mediated RNAi was fully inhibited by the first knockdown of HlSRB. Similarly, the abolished localization of HlSRB protein was recognized in ovaries of ticks injected with HlSRB/HlVgR, while normal localization of HlVgR was observed in ovaries, suggesting that the failure to knock-down HlVgR could be attributed to the first knockdown of HlSRB. In summary, we demonstrated for the first time that SRB may not only mediate the effective knock-down of gene expression by RNAi but also play essential roles for systemic RNAi of ticks.

  1. Scavenger Receptor Mediates Systemic RNA Interference in Ticks

    PubMed Central

    Aung, Kyaw Min; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Xuenan, Xuan; Suzuki, Hiroshi; Linggatong Galay, Remil; Tanaka, Tetsuya; Fujisaki, Kozo

    2011-01-01

    RNA interference is an efficient method to silence gene and protein expressions. Here, the class B scavenger receptor CD36 (SRB) mediated the uptake of exogenous dsRNAs in the induction of the RNAi responses in ticks. Unfed female Haemaphysalis longicornis ticks were injected with a single or a combination of H. longicornis SRB (HlSRB) dsRNA, vitellogenin-1 (HlVg-1) dsRNA, and vitellogenin receptor (HlVgR) dsRNA. We found that specific and systemic silencing of the HlSRB, HlVg-1, and HlVgR genes was achieved in ticks injected with a single dsRNA of HlSRB, HlVg-1, and HlVgR. In ticks injected first with HlVg-1 or HlVgR dsRNA followed 96 hours later with HlSRB dsRNA (HlVg-1/HlSRB or HlVgR/HlSRB), gene silencing of HlSRB was achieved in addition to first knockdown in HlVg-1 or HlVgR, and prominent phenotypic changes were observed in engorgement, mortality, and hatchability, indicating that a systemic and specific double knockdown of target genes had been simultaneously attained in these ticks. However, in ticks injected with HlSRB dsRNA followed 96 hours later with HlVg-1 or HlVgR dsRNAs, silencing of HlSRB was achieved, but no subsequent knockdown in HlVgR or HlVg-1 was observed. The Westernblot and immunohistochemical examinations revealed that the endogenous HlSRB protein was fully abolished in midguts of ticks injected with HlSRB/HlVg-1 dsRNAs but HlVg-1 was normally expressed in midguts, suggesting that HlVg-1 dsRNA-mediated RNAi was fully inhibited by the first knockdown of HlSRB. Similarly, the abolished localization of HlSRB protein was recognized in ovaries of ticks injected with HlSRB/HlVgR, while normal localization of HlVgR was observed in ovaries, suggesting that the failure to knock-down HlVgR could be attributed to the first knockdown of HlSRB. In summary, we demonstrated for the first time that SRB may not only mediate the effective knock-down of gene expression by RNAi but also play essential roles for systemic RNAi of ticks. PMID:22145043

  2. Scavenger Receptor MARCO Orchestrates Early Defenses and Contributes to Fungal Containment during Cryptococcal Infection.

    PubMed

    Xu, Jintao; Flaczyk, Adam; Neal, Lori M; Fa, Zhenzong; Eastman, Alison J; Malachowski, Antoni N; Cheng, Daphne; Moore, Bethany B; Curtis, Jeffrey L; Osterholzer, John J; Olszewski, Michal A

    2017-03-15

    The scavenger receptor macrophage receptor with collagenous structure (MARCO) promotes protective innate immunity against bacterial and parasitic infections; however, its role in host immunity against fungal pathogens, including the major human opportunistic fungal pathogen Cryptococcus neoformans, remains unknown. Using a mouse model of C. neoformans infection, we demonstrated that MARCO deficiency leads to impaired fungal control during the afferent phase of cryptococcal infection. Diminished fungal containment in MARCO(-/-) mice was accompanied by impaired recruitment of Ly6C(high) monocytes and monocyte-derived dendritic cells (moDC) and lower moDC costimulatory maturation. The reduced recruitment and activation of mononuclear phagocytes in MARCO(-/-) mice was linked to diminished early expression of IFN-γ along with profound suppression of CCL2 and CCL7 chemokines, providing evidence for roles of MARCO in activation of the CCR2 axis during C. neoformans infection. Lastly, we found that MARCO was involved in C. neoformans phagocytosis by resident pulmonary macrophages and DC. We conclude that MARCO facilitates early interactions between C. neoformans and lung-resident cells and promotes the production of CCR2 ligands. In turn, this contributes to a more robust recruitment and activation of moDC that opposes rapid fungal expansion during the afferent phase of cryptococcal infection.

  3. Human macrophage scavenger receptors: Primary structure, expression, and localization in atherosclerotic lesions

    SciTech Connect

    Matsumoto, Akiyo; Itakura, Hiroshige; Kodama, Tatsuhiko National Inst. of Health and Nutrition, Tokyo ); Naito, Makoto; Takahashi, Kiyoshi ); Ikemoto, Shinji; Asaoka, Hitoshi; Hayakawa, Ikuho ); Kanamori, Hiroshi; Takaku, Fumimaro ); Aburatani, Hiroyuki Massachusetts Inst. of Tech., Cambridge, MA ); Suzuki, Hiroshi; Kobari, Yukage; Miyai, Tatsuya ); Cohen, E.H.; Wydro, R. ); Housman, D.E. )

    1990-12-01

    Two types of cDNAs for human macrophage scavenger receptors were cloned from a cDNA library derived from the phorbol ester-treated human monocytic cell line THP-1. The type I and type II human scavenger receptors encoded by these cDNAs are homologous (73% and 71% amino acid identity) to their previously characterized bovine counterparts and consist of six domains: cytoplasmic (I), membrane-spanning (II), spacer (III), {alpha}-helical coiled-coil (IV), collagen-like (V), and a type-specific C-terminal (VI). The receptor gene is located on human chromosome 8. The human receptors expressed in CHO-K1 cells mediated endocytosis of modified low density lipoproteins. Two mRNAs, 4.0 and 3.2 kilobases, have been detected in human liver, placenta, and brain. Immunohistochemical studies using an anti-peptide antibody which recognizes human scavenger receptors indicated the presence of the scavenger receptors in the macrophages of lipid-rich atherosclerotic lesions, suggesting the involvement of scavenger receptors in atherogenesis.

  4. Type I macrophage scavenger receptor contains α-helical and collagen-like coiled coils

    NASA Astrophysics Data System (ADS)

    Kodama, Tatsuhiko; Freeman, Mason; Rohrer, Lucia; Zabrecky, James; Matsudaira, Paul; Krieger, Monty

    1990-02-01

    The macrophage scavenger receptor is a trimeric membrane glycoprotein with unusual ligand-binding properties which has been implicated in the development of atherosclerosis. The trimeric structure of the bovine type I scavenger receptor, deduced by complementary DNA cloning, contains three extracellular C-terminal cysteine-rich domains connected to the transmembrane domain by a long fibrous stalk. This stalk structure, composed of an a-helical coiled coil and a collagen-like triple helix, has not previously been observed in an integral membrane protein.

  5. Regulation of platelet function by class B scavenger receptors in hyperlipidemia

    PubMed Central

    Zimman, Alejandro; Podrez, Eugene A.

    2010-01-01

    Platelets constitutively express class B scavenger receptors CD36 and SR-BI, two closely related pattern recognition receptors best known for their roles in lipoprotein and lipid metabolism. The biological role of scavenger receptors in platelets is poorly understood. However, in vitro and in vivo data suggest that class B scavenger receptors modulate platelet function and contribute significantly to thrombosis by sensing pathological or physiological ligands, inducing prothrombotic signaling, and increasing platelet reactivity. Platelet CD36 recognizes a novel family of endogenous oxidized choline phospholipids that accumulate in plasma of hyperlipidemic mice and in plasma of subjects with low HDL levels. This interaction leads to the activation of specific signaling pathways and promotes platelet activation and thrombosis. Platelet SR-BI, on the other hand, plays a critical role in the induction of platelet hyper-reactivity and accelerated thrombosis in conditions associated with increased platelet cholesterol content. Intriguingly, oxidized HDL, aSR-BI ligand, can suppress platelet function. These recent findings demonstrate that platelet class B scavenger receptors play roles in thrombosis in dyslipidemia and may contribute to acute cardiovascular events in vivo in hypercholesterolemia. PMID:21071700

  6. Malondialdehyde-acetaldehyde (MAA) adducted proteins bind to scavenger receptor A in airway epithelial cells

    PubMed Central

    Berger, John P.; Simet, Samantha M.; DeVasure, Jane M.; Boten, Jessica A.; Sweeter, Jenea M.; Kharbanda, Kusum K.; Sisson, Joseph H.; Wyatt, Todd A.

    2014-01-01

    Co-exposure to cigarette smoke and ethanol generates malondialdehyde and acetaldehyde, which can subsequently lead to the formation of aldehyde-adducted proteins. We have previously shown that exposure of bronchial epithelial cells to malondialdehyde-acetaldehyde (MAA) adducted protein increases protein kinase C (PKC) activity and proinflammatory cytokine release. A specific ligand to scavenger receptor A (SRA), fucoidan, blocks this effect. We hypothesized that MAA-adducted protein binds to bronchial epithelial cells via SRA. Human bronchial epithelial cells (BEAS-2B) were exposed to MAA-adducted protein (either bovine serum albumin [BSA-MAA] or surfactant protein D [SPD-MAA]) and SRA examined using confocal microscopy, fluorescent activated cell sorting (FACS), and immunoprecipitation. Differentiated mouse tracheal epithelial cells (MTEC) cultured by air-liquid interface were assayed for MAA-stimulated PKC activity and keratinocyte-derived chemokine (KC) release. Specific cell surface membrane dye co-localized with upregulated SRA after exposure to MAA for 3–7 min and subsided by 20 min. Likewise, MAA-adducted protein co-localized to SRA from 3–7 min with a subsequent internalization of MAA by 10 min. These results were confirmed using FACS analysis and revealed a reduced mean fluorescence of SRA after 3 min. Furthermore, increased amounts of MAA-adducted protein could be detected by Western blot in immunoprecipitated SRA samples after 3 min treatment with MAA. MAA stimulated PKCε-mediated KC release in wild type, but not SRA knockout mice. These data demonstrate that aldehyde-adducted proteins in the lungs rapidly bind to SRA and internalize this receptor prior to the MAA-adducted protein stimulation of PKC-dependent inflammatory cytokine release in airway epithelium. PMID:24880893

  7. Malondialdehyde-acetaldehyde (MAA) adducted proteins bind to scavenger receptor A in airway epithelial cells.

    PubMed

    Berger, John P; Simet, Samantha M; DeVasure, Jane M; Boten, Jessica A; Sweeter, Jenea M; Kharbanda, Kusum K; Sisson, Joseph H; Wyatt, Todd A

    2014-08-01

    Co-exposure to cigarette smoke and ethanol generates malondialdehyde and acetaldehyde, which can subsequently lead to the formation of aldehyde-adducted proteins. We have previously shown that exposure of bronchial epithelial cells to malondialdehyde-acetaldehyde (MAA) adducted protein increases protein kinase C (PKC) activity and proinflammatory cytokine release. A specific ligand to scavenger receptor A (SRA), fucoidan, blocks this effect. We hypothesized that MAA-adducted protein binds to bronchial epithelial cells via SRA. Human bronchial epithelial cells (BEAS-2B) were exposed to MAA-adducted protein (either bovine serum albumin [BSA-MAA] or surfactant protein D [SPD-MAA]) and SRA examined using confocal microscopy, fluorescent activated cell sorting (FACS), and immunoprecipitation. Differentiated mouse tracheal epithelial cells (MTEC) cultured by air-liquid interface were assayed for MAA-stimulated PKC activity and keratinocyte-derived chemokine (KC) release. Specific cell surface membrane dye co-localized with upregulated SRA after exposure to MAA for 3-7 min and subsided by 20 min. Likewise, MAA-adducted protein co-localized to SRA from 3 to 7 min with a subsequent internalization of MAA by 10 min. These results were confirmed using FACS analysis and revealed a reduced mean fluorescence of SRA after 3 min. Furthermore, increased amounts of MAA-adducted protein could be detected by Western blot in immunoprecipitated SRA samples after 3 min treatment with MAA. MAA stimulated PKCε-mediated KC release in wild type, but not SRA knockout mice. These data demonstrate that aldehyde-adducted proteins in the lungs rapidly bind to SRA and internalize this receptor prior to the MAA-adducted protein stimulation of PKC-dependent inflammatory cytokine release in airway epithelium.

  8. Scavenger receptor function of mouse Fcγ receptor III contributes to progression of atherosclerosis in apolipoprotein E hyperlipidemic mice.

    PubMed

    Zhu, Xinmei; Ng, Hang Pong; Lai, Yen-Chun; Craigo, Jodi K; Nagilla, Pruthvi S; Raghani, Pooja; Nagarajan, Shanmugam

    2014-09-01

    Recent studies showed loss of CD36 or scavenger receptor-AI/II (SR-A) does not ameliorate atherosclerosis in a hyperlipidemic mouse model, suggesting receptors other than CD36 and SR-A may also contribute to atherosclerosis. In this report, we show that apolipoprotein E (apoE)-CD16 double knockout (DKO; apoE-CD16 DKO) mice have reduced atherosclerotic lesions compared with apoE knockout mice. In vivo and in vitro foam cell analyses showed apoE-CD16 DKO macrophages accumulated less neutral lipids. Reduced foam cell formation in apoE-CD16 DKO mice is not due to change in expression of CD36, SR-A, and LOX-1. This led to a hypothesis that CD16 may have scavenger receptor activity. We presented evidence that a soluble form of recombinant mouse CD16 (sCD16) bound to malondialdehyde-modified low-density lipoprotein (MDALDL), and this binding is blocked by molar excess of MDA- modified BSA and anti-MDA mAbs, suggesting CD16 specifically recognizes MDA epitopes. Interestingly, sCD16 inhibited MDALDL binding to macrophage cell line, as well as soluble forms of recombinant mouse CD36, SR-A, and LOX-1, indicating CD16 can cross-block MDALDL binding to other scavenger receptors. Anti-CD16 mAb inhibited immune complex binding to sCD16, whereas it partially inhibited MDALDL binding to sCD16, suggesting MDALDL binding site may be in close proximity to the immune complex binding site in CD16. Loss of CD16 expression resulted in reduced levels of MDALDL-induced proinflammatory cytokine expression. Finally, CD16-deficient macrophages showed reduced MDALDL-induced Syk phosphorylation. Collectively, our findings suggest scavenger receptor activity of CD16 may, in part, contribute to the progression of atherosclerosis.

  9. Expression of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein and scavenger receptor in human atherosclerotic lesions.

    PubMed Central

    Luoma, J; Hiltunen, T; Särkioja, T; Moestrup, S K; Gliemann, J; Kodama, T; Nikkari, T; Ylä-Herttuala, S

    1994-01-01

    Macrophage- and smooth muscle cell (SMC)-derived foam cells are typical constituents of human atherosclerotic lesions. At least three receptor systems have been characterized that could be involved in the development of foam cells: alpha 2-macroglobulin receptor/LDL receptor-related protein (alpha 2 MR/LRP), scavenger receptor, and LDL receptor. We studied the expression of these receptors in human atherosclerotic lesions with in situ hybridization and immunocytochemistry. An abundant expression of alpha 2MR/LRP mRNA and protein was found in SMC and macrophages in both early and advanced lesions in human aortas. alpha 2MR/LRP was also present in SMC in normal aortas. Scavenger receptor mRNA and protein were expressed in lesion macrophages but no expression was found in lesion SMC. LDL receptor was absent from the lesion area but was expressed in some aortas in medial SMC located near the adventitial border. The results demonstrate that (a) alpha 2MR/LRP is, so far, the only lipoprotein receptor expressed in lesions SMC in vivo; (b) scavenger receptors are expressed only in lesion macrophages; and (c) both receptors may play important roles in the development of human atherosclerotic lesions. Images PMID:8182133

  10. Effect of cinnamon water extract on monocyte-to-macrophage differentiation and scavenger receptor activity

    PubMed Central

    2014-01-01

    Background Water soluble cinnamon extract has been shown to increase insulin sensitivity and modulate macrophage activation, a desirable trait for the management of obesity or atherosclerosis. Our present study investigated whether cinnamon water extract (CWE) may influence the differentiation of monocytes into macrophages and the activity of macrophage scavenger receptors, commonly observed in atherosclerotic lesions. Methods We investigated the effect of CWE on the expression of various surface markers and the uptake of acetylated low density lipoprotein (LDL) in phorbol-12-myristate-13-acetate (PMA)-stimulated THP-1 cells. The protein levels of PMA or macrophage-colony stimulating factor (M-CSF)-stimulated type 1 macrophage scavenger receptor (SRA) were analyzed. Finally, the role of extracellar signal-related kinase (ERK) 1/2 in SRA synthesis and the effect of CWE on PMA-stimulated ERK1/2 were determined. Results CWE inhibited the differentiation of monocyte by decreasing the expression of CD11b, CD36 and SRA and the uptake of acetyl LDL. CWE suppressed the upregulation of SRA by M-CSF and modulated ERK1/2 activity, which was required for PMA-induced SRA synthesis. Conclusions Our results demonstrate that CWE was able to interfere with monocyte differentiation and macrophage scavenger activity, indicating its potential in preventing the development of atherosclerotic lesions. PMID:24602512

  11. Aryl Hydrocarbon Receptor and Lung Cancer

    PubMed Central

    Tsay, Junchieh J.; Tchou-Wong, Kam-Meng; Greenberg, Alissa K.; Pass, Harvey; Rom, William N.

    2013-01-01

    The leading cause of lung cancer is exposure to cigarette smoke and other environmental pollutants, which include formaldehyde, acrolein, benzene, dioxin, and polycyclic aromatic hydrocarbons (PAHs). PAHs and dioxins are exogenous ligands that directly bind to the aryl hydrocarbon receptor (AhR), a transcription factor that activates xenobiotic metabolism, histone modification (an important step in DNA methylation), and, ultimately, tumorigenesis. Here we summarize the current understanding of AhR and its role in the development of lung cancer, including its influence on cell proliferation, angiogenesis, inflammation, and apoptosis. PMID:23564762

  12. Scavenger receptor cysteine-rich domains 9 and 11 of WC1 are receptors for the WC1 counter receptor.

    PubMed

    Ahn, J S; Konno, A; Gebe, J A; Aruffo, A; Hamilton, M J; Park, Y H; Davis, W C

    2002-08-01

    Workshop cluster 1 (WC1) is a member of the scavenger receptor cysteine-rich (SRCR) superfamily that includes CD5, CD6, CD163, and M160. Bovine WC1 consists of 11 SRCR domains, a unique domain 1, and two homologous 5 SRCR domain cassettes, WC1 domains 2-6 and 7-11. The porcine orthologue of WC1 contains five SRCR domains with a different domain arrangement. Although the function of WC1 is unknown, WC1 is proposed to be an accessory or homing molecule. Thus, identification of cells that express the counter receptor for WC1 (WC1-CR) is critical to understanding the function of WC1. For this reason, we constructed WC1-human immunoglobulin G1 fusion proteins to identify the binding domain of WC1 and cells that express the WC1-CR. Immunohistochemical analysis revealed WC1 domains 9 and 11 bind cells with macrophage and dendritic cell morphology and cells in ellipsoids in the spleen. These results and the finding of conserved signaling motifs in the cytoplasmic tail suggest WC1 may be an accessory molecule.

  13. Scavenger receptor b2 as a receptor for hand, foot, and mouth disease and severe neurological diseases.

    PubMed

    Yamayoshi, Seiya; Fujii, Ken; Koike, Satoshi

    2012-01-01

    Enterovirus 71 (EV71) is one of the major causative agents of hand, foot, and mouth disease (HFMD). Infection with EV71 is occasionally associated with severe neurological diseases such as acute encephalitis, acute flaccid paralysis, and cardiopulmonary failure. Because cellular receptors for viruses play an important role in cell, tissue, and species tropism, it is important to identify and characterize the receptor molecule. Recently, cellular receptors and host factors that stimulate EV71 infection have been identified. Several lines of evidence suggest that scavenger receptor class B, member 2 (SCARB2) plays critical roles in efficient EV71 infection and the development of disease in humans. In this review, we will summarize the findings of recent studies on EV71 infection and on the roles of SCARB2.

  14. Bismuth increases hydroxyl radical-scavenging activity of histamine H2-receptor antagonists.

    PubMed

    Kirkova, Margarita; Alexandrova, Albena; Yordanova, Neli

    2006-01-01

    The effects of histamine H2-receptor antagonists, alone or in a combination with bismuth, on *OH-provoked degradation of deoxyribose were studied. The histamine H2-receptor antagonists (cimetidine, ranitidine and roxatidine), themselves decreased the deoxyribose damage in Fenton-type systems. In combinations with bismuth, their inhibitory effect in Fenton system (Fe(III)/ascorbic acid + H2O2 was stronger. Moreover, unlike F(III) and Cu(II), which in the presence of ascorbic acid + H2O2 led to an increase in the *OH formation (deoxyribose damage), Bi(III) showed an opposite effect. The present results are interpreted in view of a better ( )OH scavenging activity of bismuth complexes of histamine H2-receptor antagonists as compared to that of the corresponding drugs. These findings might be one more explanation why bismuth salts, in combination with acid-reducing agents, are more effective anti-ulcer agents.

  15. The scavenger receptor SCARF1 mediates apoptotic cell clearance and prevents autoimmunity

    PubMed Central

    Ramirez-Ortiz, Zaida G.; Pendergraft, William F.; Prasad, Amit; Byrne, Michael H.; Iram, Tal; Blanchette, Christopher J.; Luster, Andrew D.; Hacohen, Nir; Khoury, Joseph El; Means, Terry K.

    2013-01-01

    Clearance of apoptotic cells is critical for control of tissue homeostasis however the full range of receptor(s) on phagocytes responsible for recognition of apoptotic cells remains to be identified. Here we show that dendritic cells (DCs), macrophages and endothelial cells use scavenger receptor type F family member 1 (SCARF1) to recognize and engulf apoptotic cells via C1q. Loss of SCARF1 impairs uptake of apoptotic cells. Consequently, in SCARF1-deficient mice, dying cells accumulate in tissues leading to a lupus-like disease with the spontaneous generation of autoantibodies to DNA-containing antigens, immune cell activation, dermatitis and nephritis. The discovery of SCARF1 interactions with C1q and apoptotic cells provides insights into molecular mechanisms involved in maintenance of tolerance and prevention of autoimmune disease. PMID:23892722

  16. LOX-1: a male hormone-regulated scavenger receptor for atherosclerosis.

    PubMed

    Gao, Song; Geng, Yong-Jian

    2013-01-01

    Lectin-like oxidized LDL receptor-1 (LOX-1) is a unique scavenger receptor that mediates the binding and uptake of oxidized LDL (ox-LDL) by vascular cells during the development of atherosclerosis. Exposure to ox-LDL induces LOX-1 expression and LOX-1-dependent biological activities, such as activation of NF-κB, a nuclear factor important for signal transduction in inflammation. Accumulating evidence indicates that male hormones may regulate expression of LOX-1 and NF-κB as well as atherogenesis. Deficiency or low levels of the male hormone testosterone promote LOX-1 expression and NF-κB activation, while testosterone replacement therapy reduces the expression of LOX-1 and the activation of NF-κB, thereby protecting the arterial wall against atherogenesis.

  17. Scavenger receptor A gene regulatory elements target gene expression to macrophages and to foam cells of atherosclerotic lesions.

    PubMed Central

    Horvai, A; Palinski, W; Wu, H; Moulton, K S; Kalla, K; Glass, C K

    1995-01-01

    Transcription of the macrophage scavenger receptor A gene is markedly upregulated during monocyte to macrophage differentiation. In these studies, we demonstrate that 291 bp of the proximal scavenger receptor promoter, in concert with a 400-bp upstream enhancer element, is sufficient to direct macrophage-specific expression of a human growth hormone reporter in transgenic mice. These regulatory elements, which contain binding sites for PU.1, AP-1, and cooperating ets-domain transcription factors, are also sufficient to mediate regulation of transgene expression during the in vitro differentiation of bone marrow progenitor cells in response to macrophage colony-stimulating factor. Mutation of the PU.1 binding site within the scavenger receptor promoter severely impairs transgene expression, consistent with a crucial role of PU.1 in regulating the expression of the scavenger receptor gene. The ability of the scavenger receptor promoter and enhancer to target gene expression to macrophages in vivo, including foam cells of atherosclerotic lesions, suggests that these regulatory elements will be of general utility in the study of macrophage differentiation and function by permitting specific modifications of macrophage gene expression. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7777517

  18. Scavenger Receptor C Mediates Phagocytosis of White Spot Syndrome Virus and Restricts Virus Proliferation in Shrimp.

    PubMed

    Yang, Ming-Chong; Shi, Xiu-Zhen; Yang, Hui-Ting; Sun, Jie-Jie; Xu, Ling; Wang, Xian-Wei; Zhao, Xiao-Fan; Wang, Jin-Xing

    2016-12-01

    Scavenger receptors are an important class of pattern recognition receptors that play several important roles in host defense against pathogens. The class C scavenger receptors (SRCs) have only been identified in a few invertebrates, and their role in the immune response against viruses is seldom studied. In this study, we firstly identified an SRC from kuruma shrimp, Marsupenaeus japonicus, designated MjSRC, which was significantly upregulated after white spot syndrome virus (WSSV) challenge at the mRNA and protein levels in hemocytes. The quantity of WSSV increased in shrimp after knockdown of MjSRC, compared with the controls. Furthermore, overexpression of MjSRC led to enhanced WSSV elimination via phagocytosis by hemocytes. Pull-down and co-immunoprecipitation assays demonstrated the interaction between MjSRC and the WSSV envelope protein. Electron microscopy observation indicated that the colloidal gold-labeled extracellular domain of MjSRC was located on the outer surface of WSSV. MjSRC formed a trimer and was internalized into the cytoplasm after WSSV challenge, and the internalization was strongly inhibited after knockdown of Mjβ-arrestin2. Further studies found that Mjβ-arrestin2 interacted with the intracellular domain of MjSRC and induced the internalization of WSSV in a clathrin-dependent manner. WSSV were co-localized with lysosomes in hemocytes and the WSSV quantity in shrimp increased after injection of lysosome inhibitor, chloroquine. Collectively, this study demonstrated that MjSRC recognized WSSV via its extracellular domain and invoked hemocyte phagocytosis to restrict WSSV systemic infection. This is the first study to report an SRC as a pattern recognition receptor promoting phagocytosis of a virus.

  19. Scavenger Receptor C Mediates Phagocytosis of White Spot Syndrome Virus and Restricts Virus Proliferation in Shrimp

    PubMed Central

    Yang, Ming-Chong; Shi, Xiu-Zhen; Yang, Hui-Ting; Sun, Jie-Jie; Xu, Ling; Wang, Xian-Wei; Zhao, Xiao-Fan

    2016-01-01

    Scavenger receptors are an important class of pattern recognition receptors that play several important roles in host defense against pathogens. The class C scavenger receptors (SRCs) have only been identified in a few invertebrates, and their role in the immune response against viruses is seldom studied. In this study, we firstly identified an SRC from kuruma shrimp, Marsupenaeus japonicus, designated MjSRC, which was significantly upregulated after white spot syndrome virus (WSSV) challenge at the mRNA and protein levels in hemocytes. The quantity of WSSV increased in shrimp after knockdown of MjSRC, compared with the controls. Furthermore, overexpression of MjSRC led to enhanced WSSV elimination via phagocytosis by hemocytes. Pull-down and co-immunoprecipitation assays demonstrated the interaction between MjSRC and the WSSV envelope protein. Electron microscopy observation indicated that the colloidal gold-labeled extracellular domain of MjSRC was located on the outer surface of WSSV. MjSRC formed a trimer and was internalized into the cytoplasm after WSSV challenge, and the internalization was strongly inhibited after knockdown of Mjβ-arrestin2. Further studies found that Mjβ-arrestin2 interacted with the intracellular domain of MjSRC and induced the internalization of WSSV in a clathrin-dependent manner. WSSV were co-localized with lysosomes in hemocytes and the WSSV quantity in shrimp increased after injection of lysosome inhibitor, chloroquine. Collectively, this study demonstrated that MjSRC recognized WSSV via its extracellular domain and invoked hemocyte phagocytosis to restrict WSSV systemic infection. This is the first study to report an SRC as a pattern recognition receptor promoting phagocytosis of a virus. PMID:28027319

  20. Lack of the scavenger receptor CD36 alters microglial phenotypes after neonatal stroke

    PubMed Central

    Li, Fan; Faustino, Joel; Woo, Moon-Sook; Derugin, Nikita; Vexler, Zinaida S

    2016-01-01

    The stage of brain development at the time of stroke has a major impact on the pathophysiological mechanisms of ischemic damage, including the neuroinflammatory response. Microglial cells have been shown to contribute to acute and sub-chronic injury in adult stroke models, whereas in neonatal rodents we showed that microglial cells serve as endogenous neuroprotectants early following transient middle cerebral artery occlusion (tMCAO), limiting neuroinflammation and injury. In the neonate, microglial depletion or lack of the scavenger receptor CD36 exacerbates injury. In this study we asked if lack of CD36 affects microglial phenotypes after neonatal stroke. Using RT-PCR we characterized the patterns of gene expression in microglia isolated from injured regions following acute tMCAO in postnatal day 10 mice and showed that expression of several pro-inflammatory genes, including Toll-like receptors (TLR), remains largely unaffected in activated microglia in injured regions. Using multiple biochemical assays we demonstrated that lack of CD36 alters several functions of microglia in acutely injured neonatal brain: it further enhances accumulation of the chemokine MCP-1, affects the number of CD11b+/CD45+ cells, along with protein expression of its co-receptor, TLR2, but does not affect accumulation of superoxide in microglia or the cytokines TNFα and IL-1β in injured regions. PMID:26223273

  1. Tryptophan 415 Is Critical for the Cholesterol Transport Functions of Scavenger Receptor BI.

    PubMed

    Holme, Rebecca L; Miller, James J; Nicholson, Kay; Sahoo, Daisy

    2016-01-12

    High density lipoproteins (HDL) are anti-atherogenic particles, primarily due to their role in the reverse cholesterol transport pathway whereby HDL delivers cholesteryl esters (CE) to the liver for excretion upon interaction with its receptor, scavenger receptor BI (SR-BI). We designed experiments to test the hypothesis that one or more of the eight highly conserved tryptophan (Trp; W) residues in SR-BI are critical for mediating function. We created a series of Trp-to-phenylalanine (Phe, F) mutant receptors, as well as Trp-less SR-BI (ΔW-SR-BI), and assessed their ability to mediate cholesterol transport. Wild-type (WT) or mutant SR-BI receptors were transiently expressed in COS-7 cells, and cell surface expression was confirmed. Next, we showed that Trp-less- and W415F-SR-BI had significantly decreased abilities to bind HDL and promote selective uptake of HDL-CE, albeit with higher selective uptake efficiency as compared to WT-SR-BI. Interestingly, only Trp-less-, but not W415F-SR-BI, showed an impaired ability to mediate efflux of free cholesterol (FC). Furthermore, both W415F- and Trp-less-SR-BI were unable to reorganize plasma membrane pools of FC based on lack of sensitivity to exogenous cholesterol oxidase. Restoration of Trp 415 into the Trp-less-SR-BI background was unable to rescue Trp-less-SR-BI's impaired functions, suggesting that Trp 415 is critical, but not sufficient for full receptor function. Furthermore, with the exception of Trp 262, restoration of individual extracellular Trp residues, in combination with Trp 415, into the Trp-less-SR-BI background partially rescued SR-BI function, indicating that Trp 415 must be present in combination with other Trp residues for proper cholesterol transport functions.

  2. Amphiphilic Nanoparticles Repress Macrophage Atherogenesis: Novel Core/Shell Designs for Scavenger Receptor Targeting and Down-Regulation

    PubMed Central

    2015-01-01

    Atherosclerosis, an inflammatory lipid-rich plaque disease is perpetuated by the unregulated scavenger-receptor-mediated uptake of oxidized lipoproteins (oxLDL) in macrophages. Current treatments lack the ability to directly inhibit oxLDL accumulation and foam cell conversion within diseased arteries. In this work, we harness nanotechnology to design and fabricate a new class of nanoparticles (NPs) based on hydrophobic mucic acid cores and amphiphilic shells with the ability to inhibit the uncontrolled uptake of modified lipids in human macrophages. Our results indicate that tailored NP core and shell formulations repress oxLDL internalization via dual complementary mechanisms. Specifically, the most atheroprotective molecules in the NP cores competitively reduced NP-mediated uptake to scavenger receptor A (SRA) and also down-regulated the surface expression of SRA and CD36. Thus, nanoparticles can be designed to switch activated, lipid-scavenging macrophages to antiatherogenic phenotypes, which could be the basis for future antiatherosclerotic therapeutics. PMID:24972372

  3. Phospholipids in oxidized LDL not adducted to apoB are recognized by the CD36 scavenger receptor.

    PubMed

    Podrez, Eugene A; Hoppe, George; O'Neil, June; Hoff, Henry F

    2003-02-01

    Previous studies have shown that oxidation of low-density lipoprotein (oxLDL) results in its recognition by scavenger receptors on macrophages. Whereas blockage of lysyl residues on apoB-100 of oxLDL by lipid peroxidation products appears to be critical for recognition by the scavenger receptor class A (SR-A), modification of the lipid moiety has been suggested to be responsible for recognition by the scavenger class B receptor, CD36. We studied the recognition by scavenger receptors of oxidized LDL in which lysyl residues are blocked prior to oxidation through methylation [ox(m)LDL]. This permits us to minimize any contribution of modified apoB-100 to the recognition of oxLDL, but does not disrupt the native configuration of lipids in the particle. We found that ox(m)LDL was recognized by receptors on mouse peritoneal macrophages (MPM) almost as well as oxLDL. Ox(m)LDL was recognized by CD36-transfected cells but not by SR-A-transfected cells. Oxidized phospholipids (oxPC) transferred from oxLDL or directly from oxPC to LDL, conveyed recognition by CD36-transfected cells, confirming that CD36 recognized unbound oxidized phospholipids in ox(m)LDL. Collectively, these results suggest that oxPC not adducted to apoB within the intact oxLDL particle are recognized by the macrophage scavenger receptor CD36, that these lipids are not recognized by SR-A, and that they can transfer from oxidized to unoxidized LDL and induce CD36 recognition.

  4. Mycobacterium tuberculosis lipoarabinomannan enhances LPS-induced TNF-α production and inhibits NO secretion by engaging scavenger receptors.

    PubMed

    Józefowski, Szczepan; Sobota, Andrzej; Pawłowski, Andrzej; Kwiatkowska, Katarzyna

    2011-06-01

    Lipoarabinomannan capped with terminal oligomannosides (ManLAM) is a component of mycobacteria cell wall enabling Mycobacterium tuberculosis to infect macrophages. We found that short treatment (3.5h) of macrophage-like J774 cells and thioglycollate-elicited peritoneal murine macrophages with ManLAM and its deacylated form enhanced LPS-stimulated release of tumor necrosis factor-α (TNF-α). In contrast, prolong incubation of J774 cells with ManLAM (16h) led to inhibition of LPS-stimulated TNF-α production. LPS-triggered secretion of nitric oxide (NO) was suppressed by ManLAM and its deacylated form. Effects of ManLAM and its deacylated derivative were mimicked by dextran sulfate, a general ligand of scavenger receptors. The enhancement of LPS-induced TNF-α production by dextran sulfate was partially reversed by an antibody neutralizing scavenger receptor SR-PSOX/CXCL16 while the stimulatory activity of deacylated ManLAM was reversed by an antibody neutralizing class B scavenger receptor CD36. Our data suggest that CD36 mediates the activity of ManLAM and its deacylated form leading to TNF-α release in LPS-stimulated J774 cells and peritoneal murine macrophages, while NO production is modulated by unknown scavenger receptors.

  5. Identification of nonabsorbable inhibitors of the scavenger receptor-BI (SR-BI) for tissue-specific administration.

    PubMed

    Sparks, Steven M; Zhou, Huiqiang; Generaux, Claudia; Harston, Lindsey; Moncol, David; Jayawickreme, Channa; Parham, Janet; Condreay, Patrick; Rimele, Thomas

    2016-04-15

    The identification of a low-permeability scavenger receptor BI (SR-BI) inhibitor starting from the ITX-5061 template is described. Structure-activity and structure-permeability relationships were assessed for analogs leading to the identification of compound 8 as a potent and nonabsorbable SR-BI inhibitor.

  6. Class A scavenger receptor promotes osteoclast differentiation via the enhanced expression of receptor activator of NF-{kappa}B (RANK)

    SciTech Connect

    Takemura, Kenichi; Sakashita, Naomi; Fujiwara, Yukio; Komohara, Yoshihiro; Lei, XiaoFeng; Ohnishi, Koji; Suzuki, Hiroshi; Kodama, Tatsuhiko; Mizuta, Hiroshi; Takeya, Motohiro

    2010-01-22

    Osteoclasts originate from bone marrow monocyte/macrophage lineage cells, and their differentiation depends on macrophage colony-stimulating factor (M-CSF) and receptor activator nuclear factor kappa B (RANK) ligand. Class A scavenger receptor (SR-A) is one of the principal functional molecules of macrophages, and its level of expression declines during osteoclast differentiation. To investigate the role of SR-A in osteoclastogenesis, we examined pathological changes in femoral bone and the expression levels of osteoclastogenesis-related molecules in SR-A{sup -/-} mice. The femoral osseous density of SR-A{sup -/-} mice was higher than that of SR-A{sup +/+} mice, and the number of multinucleated osteoclasts was significantly decreased. An in vitro differentiation assay revealed that the differentiation of multinucleated osteoclasts from bone marrow-derived progenitor cells is impaired in SR-A{sup -/-} mice. Elimination of SR-A did not alter the expression level of the M-CSF receptor, c-fms; however, the expression levels of RANK and RANK-related osteoclast-differentiation molecules such as nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) and microphthalmia-associated transcription factor (MITF) significantly decreased. Furthermore, acetylated low-density lipoprotein (AcLDL), an SR-A ligand, significantly increased the expression level of RANK and MITF during osteoclast differentiation. These data indicate that SR-A promotes osteoclastogenesis via augmentation of the expression level of RANK and its related molecules.

  7. Cellular Recognition and Trafficking of Amorphous Silica Nanoparticles by Macrophage Scavenger Receptor A

    SciTech Connect

    Orr, Galya; Chrisler, William B.; Cassens, Kaylyn J.; Tan, Ruimin; Tarasevich, Barbara J.; Markillie, Lye Meng; Zangar, Richard C.; Thrall, Brian D.

    2011-09-01

    The internalization of engineered nanoparticles (ENPs) into cells is known to involve active transport mechanisms, yet the precise biological molecules involved are poorly understood. We demonstrate that the uptake of amorphous silica ENPs (92 nm) by macrophage cells is strongly inhibited by silencing expression of scavenger receptor A (SR-A). In addition, ENP uptake is augmented by introducing SR-A expression into human cells that are normally non-phagocytic. Confocal fluorescent microscopy analyses show that the majority of single or small clusters of silica ENPs co-localize intracellularly with SR-A and are internalized through a pathway characteristic of clathrin-dependent endocytosis. In contrast, larger silica NP agglomerates (>500 nm) are poorly co-localized with the receptor, suggesting independent trafficking or internalization pathways are involved. SR-A silencing also caused decreased cellular secretion of pro-inflammatory cytokines in response to silica ENPs. As SR-A is expressed in macrophages throughout the reticulo-endothelial system, this pathway is likely an important determinant of the biodistribution of, and cellular response to ENPs.

  8. Uncoupling scavenger receptor A-mediated phagocytosis of bacteria from endotoxic shock resistance.

    PubMed

    Amiel, Eyal; Acker, Julie L; Collins, Ryan M; Berwin, Brent

    2009-10-01

    Unresolved infection by gram-negative bacteria can result in the potentially lethal condition known as endotoxic shock, whereby uncontrolled inflammation can lead to multiple organ failure and death of the infected host. Previous results have demonstrated that animals deficient in class A scavenger receptor (SRA), a trafficking receptor for bacteria and bacterium-derived molecules, are more susceptible to endotoxic shock. This has been proposed to be a result of impaired SRA-dependent phagocytic clearance of bacteria resulting in stronger proinflammatory stimuli. In this report, we test the hypothesis that there is an obligate reciprocal relationship between SRA-mediated phagocytosis of bacteria and susceptibility to endotoxic shock. Here, we demonstrate that both SRA-dependent and -independent gram-negative bacterial strains elicit SRA-dependent increased cytokine production in vitro and in vivo and increased susceptibility to endotoxic shock in SRA-deficient mice. This is the first evidence showing that SRA-mediated clearance of LPS is functionally distinct from the role of SRA in bacterial phagocytosis and is a formal demonstration that the SRA-dependent cytokine responses and the resultant endotoxic shock are not coupled to SRA-mediated clearance of bacteria.

  9. Interferon alpha bioactivity critically depends on Scavenger receptor class B type I function

    PubMed Central

    Vasquez, Marcos; Fioravanti, Jessica; Aranda, Fernando; Paredes, Vladimir; Gomar, Celia; Ardaiz, Nuria; Fernandez-Ruiz, Veronica; Méndez, Miriam; Nistal-Villan, Estanislao; Larrea, Esther; Gao, Qinshan; Gonzalez-Aseguinolaza, Gloria; Prieto, Jesus; Berraondo, Pedro

    2016-01-01

    ABSTRACT Scavenger receptor class B type I (SR-B1) binds pathogen-associated molecular patterns participating in the regulation of the inflammatory reaction but there is no information regarding potential interactions between SR-B1 and the interferon system. Herein, we report that SR-B1 ligands strongly regulate the transcriptional response to interferon α (IFNα) and enhance its antiviral and antitumor activity. This effect was mediated by the activation of TLR2 and TLR4 as it was annulled by the addition of anti-TLR2 or anti-TLR4 blocking antibodies. In vivo, we maximized the antitumor activity of IFNα co-expressing in the liver a SR-B1 ligand and IFNα by adeno-associated viruses. This gene therapy strategy eradicated liver metastases from colon cancer with reduced toxicity. On the other hand, genetic and pharmacological inhibition of SR-B1 blocks the clathrin-dependent interferon receptor recycling pathway with a concomitant reduction in IFNα signaling and bioactivity. This effect can be applied to enhance cancer immunotherapy with oncolytic viruses. Indeed, SR-B1 antagonists facilitate replication of oncolytic viruses amplifying their tumoricidal potential. In conclusion, SR-B1 agonists behave as IFNα enhancers while SR-B1 inhibitors dampen IFNα activity. These results demonstrate that SR-B1 is a suitable pharmacology target to enhance cancer immunotherapy based on IFNα and oncolytic viruses. PMID:27622065

  10. Albumin-based microbubbles bind up-regulated scavenger receptors following vascular injury.

    PubMed

    Anderson, Daniel R; Duryee, Michael J; Anchan, Rajeev K; Garvin, Robert P; Johnston, Michael D; Porter, Thomas R; Thiele, Geoffrey M; Klassen, Lynell W

    2010-12-24

    We have shown previously that perfluorocarbon-exposed sonicated dextrose albumin (PESDA) microbubbles bind to injured vascular tissue and can be detected with ultrasound imaging techniques. Prior studies have shown that scavenger receptors (SRs) are regulators of innate and adaptive immune responses and are involved in the progression of vascular disease such as atherosclerosis. In this study, we sought to determine the molecular mechanism of PESDA binding to balloon-injured vasculature. RT-PCR analysis of angioplastied aortas demonstrated a significantly (p ≤ 0.01) increased expression of SRs. Binding to SRs was confirmed using SR-expressing CHO cells, and this binding was blocked by competitive inhibition with the SR-binding ligands oxidized LDL and malondialdehyde-acetaldehyde-modified LDL. Confocal imaging confirmed the co-localization of PESDA microbubbles to CD36, SRB-1, and Toll-like receptor 4, but not to monocytes/macrophages. This study demonstrates that PESDA binds to SRs and that this binding is in major part dependent upon the oxidized nature of PESDA microbubble shell proteins. The extent of SR mRNA expression was increased with injury and associated with microbubble retention as defined by scanning electron microscopy and immunohistochemistry. These findings clarify the mechanisms of how albumin-based microbubbles bind to injured and inflamed vasculature and further support the potential of this imaging technique to detect early vascular innate inflammatory pathophysiologic processes.

  11. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease

    PubMed Central

    Zanoni, Paolo; Khetarpal, Sumeet A.; Larach, Daniel B.; Hancock-Cerutti, William F.; Millar, John S.; Cuchel, Marina; DerOhannessian, Stephanie; Kontush, Anatol; Surendran, Praveen; Saleheen, Danish; Trompet, Stella; Jukema, J. Wouter; De Craen, Anton; Deloukas, Panos; Sattar, Naveed; Ford, Ian; Packard, Chris; Majumder, Abdullah al Shafi; Alam, Dewan S.; Di Angelantonio, Emanuele; Abecasis, Goncalo; Chowdhury, Rajiv; Erdmann, Jeanette; Nordestgaard, Børge G.; Nielsen, Sune F.; Tybjærg-Hansen, Anne; Schmidt, Ruth Frikke; Kuulasmaa, Kari; Liu, Dajiang J.; Perola, Markus; Blankenberg, Stefan; Salomaa, Veikko; Männistö, Satu; Amouyel, Philippe; Arveiler, Dominique; Ferrieres, Jean; Müller-Nurasyid, Martina; Ferrario, Marco; Kee, Frank; Willer, Cristen J.; Samani, Nilesh; Schunkert, Heribert; Butterworth, Adam S.; Howson, Joanna M. M.; Peloso, Gina M.; Stitziel, Nathan O.; Danesh, John; Kathiresan, Sekar; Rader, Daniel J.

    2016-01-01

    Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the homozygous subject, and in mice. Large population-based studies revealed that subjects who are heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is statistically significant). PMID:26965621

  12. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease.

    PubMed

    Zanoni, Paolo; Khetarpal, Sumeet A; Larach, Daniel B; Hancock-Cerutti, William F; Millar, John S; Cuchel, Marina; DerOhannessian, Stephanie; Kontush, Anatol; Surendran, Praveen; Saleheen, Danish; Trompet, Stella; Jukema, J Wouter; De Craen, Anton; Deloukas, Panos; Sattar, Naveed; Ford, Ian; Packard, Chris; Majumder, Abdullah al Shafi; Alam, Dewan S; Di Angelantonio, Emanuele; Abecasis, Goncalo; Chowdhury, Rajiv; Erdmann, Jeanette; Nordestgaard, Børge G; Nielsen, Sune F; Tybjærg-Hansen, Anne; Schmidt, Ruth Frikke; Kuulasmaa, Kari; Liu, Dajiang J; Perola, Markus; Blankenberg, Stefan; Salomaa, Veikko; Männistö, Satu; Amouyel, Philippe; Arveiler, Dominique; Ferrieres, Jean; Müller-Nurasyid, Martina; Ferrario, Marco; Kee, Frank; Willer, Cristen J; Samani, Nilesh; Schunkert, Heribert; Butterworth, Adam S; Howson, Joanna M M; Peloso, Gina M; Stitziel, Nathan O; Danesh, John; Kathiresan, Sekar; Rader, Daniel J

    2016-03-11

    Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the homozygous subject, and in mice. Large population-based studies revealed that subjects who are heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is statistically significant).

  13. Scavenger receptor class B, type I (Scarb1) deficiency promotes osteoblastogenesis but stunts terminal osteocyte differentiation

    PubMed Central

    Martineau, Corine; Kevorkova, Olha; Brissette, Louise; Moreau, Robert

    2014-01-01

    Abstract Scavenger receptor class B type I (SR‐BI), the Scarb1 gene product, is a high‐density lipoprotein (HDL) receptor which was shown to influence bone metabolism. Its absence in mice is associated with alterations of the glucocorticoid/adrenocorticotropic hormone axis, and translated in high bone mass and enhanced bone formation. Since the cellular alterations underlying the enhanced bone formation remain unknown, we investigated Scarb1‐deficient marrow stromal cells (MSC) behavior in vitro. No difference in HDL3, cholesteryl ester (CE) or estradiol (E) association/binding was measured between Scarb1‐null and wild‐type (WT) cells. Scarb1 genic expression was down‐regulated twofold following osteogenic treatment. Neither WT nor null cell proliferation was influenced by HDL3 exposure whereas this condition decreased genic expression of osteoblastic marker osterix (Sp7), and osteocyte markers sclerostin (Sost) and dentin matrix protein 1 (Dmp1) independently of genotype. Sost and Dmp1 basal expression in null cells was 40% and 50% that of WT cells; accordingly, osteocyte density was 20% lower in vertebrae from Scarb1‐null mice. Genic expression of co‐receptors for Wnt signaling, namely LDL‐related protein (Lrp) 5 and Lrp8, was increased, respectively, by two‐ and threefold, and of transcription target‐genes axis inhibition protein 2 (Axin2) and lymphoid enhancer‐binding factor 1 (Lef1) over threefold. Gene expression of Wnt signaling agonist Wnt5a and of the antagonist dickkopfs‐related protein 1 (Dkk1) were found to be increased 10‐ to 20‐fold in null MSC. These data suggest alterations of Wnt pathways in Scarb1‐deficient MSC potentially explaining their enhanced function, hence contributing to the high bone mass observed in these mice. PMID:25281615

  14. The Macrophage Scavenger Receptor A Is Host-Protective in Experimental Meningococcal Septicaemia

    PubMed Central

    Makepeace, Katherine; Moxon, E. Richard; Gordon, Siamon

    2009-01-01

    Macrophage Scavenger Receptor A (SR-A) is a major non-opsonic receptor for Neisseria meningitidis on mononuclear phagocytes in vitro, and the surface proteins NMB0278, NMB0667, and NMB1220 have been identified as ligands for SR-A. In this study we ascertain the in vivo role of SR-A in the recognition of N. meningitidis MC58 (serogroup B) in a murine model of meningococcal septicaemia. We infected wild-type and SR-A−/− animals intraperitoneally with N. meningitidis MC58 and monitored their health over a period of 50 hours. We also determined the levels of bacteraemia in the blood and spleen, and measured levels of the pro-inflammatory cytokine interleukin-6 (IL-6). The health of SR-A−/− animals deteriorated more rapidly, and they showed a 33% reduction in survival compared to wild-type animals. SR-A−/− animals consistently exhibited higher levels of bacteraemia and increased levels of IL-6, compared to wild-type animals. Subsequently, we constructed a bacterial mutant (MC58-278-1220) lacking two of the SR-A ligands, NMB0278 and NMB1220. Mutation of NMB0667 proved to be lethal. When mice were infected with the mutant bacteria MC58-278-1220, no significant differences could be observed in the health, survival, bacteraemia, and cytokine production between wild-type and SR-A−/− animals. Overall, mutant bacteria appeared to cause less severe symptoms of septicaemia, and a competitive index assay showed that higher levels of wild-type bacteria were recovered when animals were infected with a 1∶1 ratio of wild-type MC58 and mutant MC58-278-1220 bacteria. These data represent the first report of the protective role of SR-A, a macrophage-restricted, non-opsonic receptor, in meningococcal septicaemia in vivo, and the importance of the recognition of bacterial protein ligands, rather than lipopolysaccharide. PMID:19214213

  15. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation

    NASA Astrophysics Data System (ADS)

    Aldossari, Abdullah A.; Shannahan, Jonathan H.; Podila, Ramakrishna; Brown, Jared M.

    2015-07-01

    Due to increased use of silver nanoparticles (AgNPs) for their antimicrobial activity, concerns have risen regarding potential adverse human health effects. Scavenger receptor B1 (SR-B1), a major receptor for high-density lipoprotein (HDL), is expressed by macrophages and has also been reported to play a role in recognition of negatively charged particles. We, therefore, hypothesized that SR-B1 mediates macrophage uptake of AgNPs and inflammatory activation. To test this hypothesis, we exposed a mouse macrophage cell line RAW264.7 (RAW) and bone marrow-derived macrophages (BMDM) to 20 nm citrate-suspended AgNPs. To verify the role of the SR-B1 receptor, we utilized a SR-B1 inhibitor (Blt2). In vitro studies demonstrated uptake of AgNPs and HDL-coated AgNPs by macrophages which were significantly reduced following pretreatment with Blt2. Inflammatory cytokine arrays revealed that macrophages exposed to AgNPs up-regulated expression of Tnf- α, Oncostatin m (OSM), Ccl4, Il17f, Ccl7, and Ccl2, whereas Il16 was found to be down-regulated. Macrophage activation was observed following AgNP and HDL-coated AgNP exposure as measured by OSM protein production and increased surface expression of CD86. These markers of activation were reduced with Blt2 pretreatment. The in vitro findings were confirmed in vivo through pulmonary instillation of AgNPs in mice. Pulmonary instillation of AgNPs resulted in a recruitment of inflammatory cells that were reduced in SR-B1-deficient mice or following Blt2 pretreatment. This study suggests that SR-B1 plays a major role in cellular recognition of AgNPs and the induction of cell responses that could contribute to inflammation caused by AgNP exposure.

  16. Identification and characterization of class B scavenger receptor CD36 from the hard tick, Haemaphysalis longicornis.

    PubMed

    Aung, Kyaw Min; Boldbaatar, Damdinsuren; Liao, Min; Umemiya-Shirafuji, Rika; Nakao, Sumihiro; Matsuoka, Terushige; Tanaka, Tetsuya; Fujisaki, Kozo

    2011-02-01

    Scavenger receptors (SRs) are cell-surface proteins and exhibit distinctive ligand-binding properties, recognizing a wide range of ligands that include microbial surface constituents and intact microbes. The class B scavenger receptor CD36 (SRB) is predominantly expressed by macrophages and is considered important in innate immunity. We here show the identification and characterization of SRB from the hard ixodid tick, Haemaphysalis longicornis (HlSRB). The full-length cDNA was 2,908 bp, including an ORF encoding of 1,518 amino acids with a pI value of 5.83. H. longicornis SRB contains a hydrophobic SRB domain and four centrally clustered cysteine residues for arrangement of disulfide bridges. Deduced amino acid sequence has an identity of 30-38% with the SRB of other organisms. RT-PCR analysis showed that mRNA transcripts were expressed in multiple organs of adult ticks but with a different transcript level in the developmental stages of H. longicornis ticks. His-tagged recombinant HlSRB was expressed in Escherichia coli with an expected molecular mass of 50 kDa. In Western blot analysis, mouse anti-rHlSRB serum recognized a strong reaction with a 50 kDa protein band in lysates prepared from egg and adult tick but showed a weak reaction with lysates of larva and nymph. In an indirect immunofluorescent antibody test, HlSRB antiserum recognized the protein located on the midgut, salivary glands, and ovary of partially fed H. longicornis females. Silencing of the HlSRB gene by RNAi led to a significant reduction in the engorged female body weight. It is noteworthy that more than a dozen SRB orthologs have been identified in the genomes of insect species with functions related to pheromone signaling, innate immunity, phagocytic clearance of apoptotic cells, and various aspects of the fatty acid metabolism. This is the first report of the identification and characterization of the SRB homologue in Chelicerata, including ticks, horseshoe crabs, scorpions, spiders, and

  17. Uptake and catabolism of modified LDL in scavenger-receptor class A type I/II knock-out mice.

    PubMed Central

    Van Berkel, T J; Van Velzen, A; Kruijt, J K; Suzuki, H; Kodama, T

    1998-01-01

    The liver is the major organ responsible for the uptake of modified low-density lipoprotein (LDL) from the blood circulation, with endothelial and Kupffer cells as major cellular uptake sites. Scavenger-receptors, which include various classes, are held responsible for this uptake. Mice deficient in scavenger-receptor class A types I and II were created and the fate of acetylated LDL (Ac-LDL) in vivo and its interaction with liver endothelial, Kupffer and peritoneal macrophages was characterized. Surprisingly, the decay in vivo (t12 < 2 min), tissue distribution and liver uptake (at 5 min it was 77.4 +/- 4.6% of the injected dose) of Ac-LDL in the knock-out mice were not significantly different from control mice (t12 < 2 min and liver uptake 79.1 +/- 4.6% of the injected dose). A separation of mice liver cells into parenchymal, endothelial and Kupffer cells 10 min after injection of Ac-LDL indicated that in both control and knock-out mice the liver endothelial cells were responsible for more than 70% of the liver uptake. Both in control and knock-out mice, preinjection of polyinosinic acid (poly I, 200 microg) completely blocked the liver uptake, indicating that both in control and knock-out mice the scavenger-receptors are sensitive to poly I. Preinjection of suboptimal poly I concentrations (20 and 50 microg) provided evidence that the serum decay and liver uptake of Ac-LDL is more readily inhibited in the knock-out mice as compared with the control mice, indicating less efficient removal of Ac-LDL in vivo in the knock-out mice under these conditions. Studies in vitro with isolated liver endothelial and Kupffer cells from knock-out mice indicate that the cell association of Ac-LDL during 2 h at 37 degrees C is 50 and 53% of the control, respectively, whereas the degradation reaches values of 58 and 63%. For peritoneal macrophages from knock-out mice the cell association of Ac-LDL was identical to the control mice whereas the Ac-LDL degradation in cells from the

  18. Identification of Adenovirus Serotype 5 Hexon Regions That Interact with Scavenger Receptors

    SciTech Connect

    Khare, Reeti; Reddy, Vijay S.; Nemerow, Glen R.; Barry, Michael A.

    2012-05-04

    Most of an intravenous dose of species C adenovirus serotype 5 (Ad5) is destroyed by liver Kupffer cells. In contrast, another species C virus, Ad6, evades these cells to mediate more efficient liver gene delivery. Given that this difference in Kupffer cell interaction is mediated by the hypervariable (HVR) loops of the virus hexon protein, we genetically modified each of the seven HVRs of Ad5 with a cysteine residue to enable conditional blocking of these sites with polyethylene glycol (PEG). We show that these modifications do not affect in vitro virus transduction. In contrast, after intravenous injection, targeted PEGylation at HVRs 1, 2, 5, and 7 increased viral liver transduction up to 20-fold. Elimination or saturation of liver Kupffer cells did not significantly affect this increase in the liver transduction. In vitro, PEGylation blocked uptake of viruses via the Kupffer cell scavenger receptor SRA-II. These data suggest that HVRs 1, 2, 5, and 7 of Ad5 may be involved in Kupffer cell recognition and subsequent destruction. These data also demonstrate that this conditional genetic-chemical mutation strategy is a useful tool for investigating the interactions of viruses with host tissues.

  19. Cooperation between hepatic cholesteryl ester hydrolase and scavenger receptor BI for hydrolysis of HDL-CE.

    PubMed

    Yuan, Quan; Bie, Jinghua; Wang, Jing; Ghosh, Siddhartha S; Ghosh, Shobha

    2013-11-01

    Liver is the sole organ responsible for the final elimination of cholesterol from the body either as biliary cholesterol or bile acids. High density lipoprotein (HDL)-derived cholesterol is the major source of biliary sterols and represents a mechanism for the removal of cholesterol from peripheral tissues including artery wall-associated macrophage foam cells. Via selective uptake through scavenger receptor BI (SR-BI), HDL-cholesterol is thought to be directly secreted into bile, and HDL cholesteryl esters (HDL-CEs) enter the hepatic metabolic pool and need to be hydrolyzed prior to conversion to bile acids. However, the identity of hepatic CE hydrolase (CEH) as well as the role of SR-BI in bile acid synthesis remains elusive. In this study we examined the role of human hepatic CEH (CES1) in facilitating hydrolysis of SR-BI-delivered HDL-CEs. Over-expression of CEH led to increased hydrolysis of HDL-[³H]CE in primary hepatocytes and SR-BI expression was required for this process. Intracellular CEH associated with BODIPY-CE delivered by selective uptake via SR-BI. CEH and SR-BI expression enhanced the movement of [³H]label from HDL-[³H]CE to bile acids in vitro and in vivo. Taken together, these studies demonstrate that SR-BI-delivered HDL-CEs are hydrolyzed by hepatic CEH and utilized for bile acid synthesis.

  20. Hepatic scavenger receptor BI protects against polymicrobial-induced sepsis through promoting LPS clearance in mice.

    PubMed

    Guo, Ling; Zheng, Zhong; Ai, Junting; Huang, Bin; Li, Xiang-An

    2014-05-23

    Recent studies revealed that scavenger receptor BI (SR-BI or Scarb1) plays a critical protective role in sepsis. However, the mechanisms underlying this protection remain largely unknown. In this study, using Scarb1(I179N) mice, a mouse model specifically deficient in hepatic SR-BI, we report that hepatic SR-BI protects against cecal ligation and puncture (CLP)-induced sepsis as shown by 75% fatality in Scarb1(I179N) mice, but only 21% fatality in C57BL/6J control mice. The increase in fatality in Scarb1(I179N) mice was associated with an exacerbated inflammatory cytokine production. Further study demonstrated that hepatic SR-BI exerts its protection against sepsis through its role in promoting LPS clearance without affecting the inflammatory response in macrophages, the glucocorticoid production in adrenal glands, the leukocyte recruitment to peritoneum or the bacterial clearance in liver. Our findings reveal hepatic SR-BI as a critical protective factor in sepsis and point out that promoting hepatic SR-BI-mediated LPS clearance may provide a therapeutic approach for sepsis.

  1. Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops.

    PubMed

    Goncalves, Aurélie; Gontero, Brigitte; Nowicki, Marion; Margier, Marielle; Masset, Gabriel; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2015-06-01

    Scavenger receptors (SRs) like cluster determinant 36 (CD36) and SR class B type I (SR-BI) play a debated role in lipid transport across the intestinal brush border membrane. We used surface plasmon resonance to analyze real-time interactions between the extracellular protein loops and various ligands ranging from single lipid molecules to mixed micelles. Micelles mimicking physiological structures were necessary for optimal binding to both the extracellular loop of CD36 (lCD36) and the extracellular loop of SR-BI (lSR-BI). Cholesterol, phospholipid, and fatty acid micellar content significantly modulated micelle binding to and dissociation from the transporters. In particular, high phospholipid micellar concentrations inhibited micelle binding to both receptors (-53.8 and -74.4% binding at 0.32 mM compared with 0.04 mM for lCD36 and lSR-BI, respectively, P < 0.05). The presence of fatty acids was crucial for micelle interactions with both proteins (94.4 and 81.3% binding with oleic acid for lCD36 and lSR-BI, respectively, P < 0.05) and fatty acid type substitution within the micelles was the component that most impacted micelle binding to the transporters. These effects were partly due to subsequent modifications in micellar size and surface electric charge, and could be correlated to micellar vitamin D uptake by Caco-2 cells. Our findings show for the first time that micellar lipid composition and micellar properties are key factors governing micelle interactions with SRs.

  2. Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops

    PubMed Central

    Goncalves, Aurélie; Gontero, Brigitte; Nowicki, Marion; Margier, Marielle; Masset, Gabriel; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2015-01-01

    Scavenger receptors (SRs) like cluster determinant 36 (CD36) and SR class B type I (SR-BI) play a debated role in lipid transport across the intestinal brush border membrane. We used surface plasmon resonance to analyze real-time interactions between the extracellular protein loops and various ligands ranging from single lipid molecules to mixed micelles. Micelles mimicking physiological structures were necessary for optimal binding to both the extracellular loop of CD36 (lCD36) and the extracellular loop of SR-BI (lSR-BI). Cholesterol, phospholipid, and fatty acid micellar content significantly modulated micelle binding to and dissociation from the transporters. In particular, high phospholipid micellar concentrations inhibited micelle binding to both receptors (−53.8 and −74.4% binding at 0.32 mM compared with 0.04 mM for lCD36 and lSR-BI, respectively, P < 0.05). The presence of fatty acids was crucial for micelle interactions with both proteins (94.4 and 81.3% binding with oleic acid for lCD36 and lSR-BI, respectively, P < 0.05) and fatty acid type substitution within the micelles was the component that most impacted micelle binding to the transporters. These effects were partly due to subsequent modifications in micellar size and surface electric charge, and could be correlated to micellar vitamin D uptake by Caco-2 cells. Our findings show for the first time that micellar lipid composition and micellar properties are key factors governing micelle interactions with SRs. PMID:25833688

  3. Prostaglandin E2 Receptor Subtype 2 Regulation of Scavenger Receptor CD36 Modulates Microglial Aβ42 Phagocytosis

    PubMed Central

    Li, Xianwu; Melief, Erica; Postupna, Nadia; Montine, Kathleen S.; Keene, C. Dirk; Montine, Thomas J.

    2016-01-01

    Recent studies underline the potential relevance of microglial innate immune activation in Alzheimer disease. Primary mouse microglia that lack prostaglandin E2 receptor subtype 2 (EP2) show decreased innate immune-mediated neurotoxicity and increased amyloid β (Aβ) peptide phagocytosis, features that were replicated in vivo. Here, we tested the hypothesis that scavenger receptor CD36 is an effector of EP2-regulated Aβ phagocytosis. CD36 expression was 143-fold greater in mouse primary microglia than in primary astrocytes. Three different means of suppressing EP2 signaling increased and an agonist of EP2 decreased CD36 expression in primary wild-type microglia. Activation of Toll-like receptor (TLR) 3, TLR4, and TLR7, but not TLR2 or TLR9, reduced primary microglial CD36 transcription and cell surface CD36 protein and reduced Aβ42 phagocytosis as well. At each step, the effects of innate immune activation on CD36 were reversed by at least 50% by an EP2 antagonist, and this partial rescue of microglia Aβ42 phagocytosis was largely mediated by CD36 activity. Finally, we showed in hippocampus of wild-type mice that innate immune activation suppressed CD36 expression by an EP2-dependent mechanism. Taken together with results of others that found brain clearance of Aβ peptides and behavioral improvements mediated by CD36 in mice, regulation of CD36-mediated Aβ phagocytosis by suppression of EP2 signaling may provide a new approach to suppressing some aspects of Alzheimer disease pathogenesis. PMID:25452117

  4. Suppression of TLR4-mediated inflammatory response by macrophage class A scavenger receptor (CD204)

    SciTech Connect

    Ohnishi, Koji; Komohara, Yoshihiro; Fujiwara, Yukio; Takemura, Kenichi; Lei, XiaoFeng; Nakagawa, Takenobu; Sakashita, Naomi; Takeya, Motohiro

    2011-08-05

    Highlights: {yields} We focused on the interaction between SR-A and TLR4 signaling in this study. {yields} SR-A deletion promoted NF{kappa}B activation in macrophages in septic model mouse. {yields} SR-A suppresses both MyD88-dependent and -independent TLR4 signaling in vitro. {yields} SR-A clears LPS binding to TLR4 which resulting in the suppression of TLR4 signals. -- Abstract: The class A scavenger receptor (SR-A, CD204), one of the principal receptors expressed on macrophages, has been found to regulate inflammatory response and attenuate septic endotoxemia. However, the detailed mechanism of this process has not yet been well characterized. To clarify the regulative mechanisms of lipopolysaccharide (LPS)-induced macrophage activation by SR-A, we evaluated the activation of Toll-like receptor 4 (TLR4)-mediated signaling molecules in SR-A-deficient (SR-A{sup -/-}) macrophages. In a septic shock model, the blood levels of tumor necrosis factor (TNF)-{alpha}, interleukin (IL)-6 and interferon (IFN)-{beta} were significantly increased in SR-A{sup -/-} mice compared to wild-type mice, and elevated nuclear factor kappa B (NF{kappa}B) activation was detected in SR-A{sup -/-} macrophages. SR-A deletion increased the production of pro-inflammatory cytokines, and the phosphorylation of mitogen-activated protein kinase (MAPK) and NF{kappa}B in vitro. SR-A deletion also promoted the nuclear translocation of NF{kappa}B and IFN regulatory factor (IRF)-3. In addition, a competitive binding assay with acetylated low-density lipoprotein, an SR-A-specific ligand, and anti-SR-A antibody induced significant activation of TLR4-mediated signaling molecules in wild-type macrophages but not in SR-A{sup -/-} macrophages. These results suggest that SR-A suppresses the macrophage activation by inhibiting the binding of LPS to TLR4 in a competitive manner and it plays a pivotal role in the regulation of the LPS-induced inflammatory response.

  5. HSL-knockout mouse testis exhibits class B scavenger receptor upregulation and disrupted lipid raft microdomains[S

    PubMed Central

    Casado, María Emilia; Huerta, Lydia; Ortiz, Ana Isabel; Pérez-Crespo, Mirian; Gutiérrez-Adán, Alfonso; Kraemer, Fredric B.; Lasunción, Miguel Ángel; Busto, Rebeca; Martín-Hidalgo, Antonia

    2012-01-01

    There is a tight relationship between fertility and changes in cholesterol metabolism during spermatogenesis. In the testis, class B scavenger receptors (SR-B) SR-BI, SR-BII, and LIMP II mediate the selective uptake of cholesterol esters from HDL, which are hydrolyzed to unesterified cholesterol by hormone-sensitive lipase (HSL). HSL is critical because HSL knockout (KO) male mice are sterile. The aim of the present work was to determine the effects of the lack of HSL in testis on the expression of SR-B, lipid raft composition, and related cell signaling pathways. HSL-KO mouse testis presented altered spermatogenesis associated with decreased sperm counts, sperm motility, and infertility. In wild-type (WT) testis, HSL is expressed in elongated spermatids; SR-BI, in Leydig cells and spermatids; SR-BII, in spermatocytes and spermatids but not in Leydig cells; and LIMP II, in Sertoli and Leydig cells. HSL knockout male mice have increased expression of class B scavenger receptors, disrupted caveolin-1 localization in lipid raft plasma membrane microdomains, and activated phospho-ERK, phospho-AKT, and phospho-SRC in the testis, suggesting that class B scavenger receptors are involved in cholesterol ester uptake for steroidogenesis and spermatogenesis in the testis. PMID:22988039

  6. Hypoxia-inducible factor-1alpha suppresses the expression of macrophage scavenger receptor 1.

    PubMed

    Shirato, Ken; Kizaki, Takako; Sakurai, Takuya; Ogasawara, Jun-Etsu; Ishibashi, Yoshinaga; Iijima, Takehiko; Okada, Chikako; Noguchi, Izumi; Imaizumi, Kazuhiko; Taniguchi, Naoyuki; Ohno, Hideki

    2009-11-01

    Macrophages are distributed in all peripheral tissues and play a critical role in the first line of the innate immune defenses against bacterial infection by phagocytosis of bacterial pathogens through the macrophage scavenger receptor 1 (MSR1). Within tissues, the partial pressure of oxygen (pO2) decreases depending on the distance of cells from the closest O2-supplying blood vessel. However, it is not clear how the expression of MSR1 in macrophages is regulated by low pO2. On the other hand, hypoxia-inducible factor (HIF)-1alpha is well known to control hypoxic responses through regulation of hypoxia-inducible genes. Therefore, we investigated the effects of hypoxia and HIF-1alpha on MSR1 expression and function in the macrophage cell line RAW264. Exposure to 1% O2 or treatment with the hypoxia-mimetic agent cobalt chloride (CoCl2) significantly suppressed the expression of MSR1 mRNA, accompanied by a markedly increase in levels of nuclear HIF-1alpha protein. The overexpression of HIF-1alpha in RAW264 cells suppressed the expression of MSR1 mRNA and protein, transcriptional activity of the MSR1 gene, and phagocytic capacity against the Gram-positive bacteria Listeria monocytogenes. The suppression of MSR1 mRNA by hypoxia or CoCl2 was inhibited by YC-1, an inhibitor of HIF-1alpha, or by the depletion of HIF-1alpha expression by small interference RNA. These results indicate that hypoxia transcriptionally suppresses MSR1 expression through HIF-1alpha.

  7. Surfactant protein A (SP-A)-mediated clearance of Staphylococcus aureus involves binding of SP-A to the staphylococcal adhesin eap and the macrophage receptors SP-A receptor 210 and scavenger receptor class A.

    PubMed

    Sever-Chroneos, Zvjezdana; Krupa, Agnieszka; Davis, Jeremy; Hasan, Misbah; Yang, Ching-Hui; Szeliga, Jacek; Herrmann, Mathias; Hussain, Muzafar; Geisbrecht, Brian V; Kobzik, Lester; Chroneos, Zissis C

    2011-02-11

    Staphylococcus aureus causes life-threatening pneumonia in hospitals and deadly superinfection during viral influenza. The current study investigated the role of surfactant protein A (SP-A) in opsonization and clearance of S. aureus. Previous studies showed that SP-A mediates phagocytosis via the SP-A receptor 210 (SP-R210). Here, we show that SP-R210 mediates binding and control of SP-A-opsonized S. aureus by macrophages. We determined that SP-A binds S. aureus through the extracellular adhesin Eap. Consequently, SP-A enhanced macrophage uptake of Eap-expressing (Eap(+)) but not Eap-deficient (Eap(-)) S. aureus. In a reciprocal fashion, SP-A failed to enhance uptake of Eap(+) S. aureus in peritoneal Raw264.7 macrophages with a dominant negative mutation (SP-R210(DN)) blocking surface expression of SP-R210. Accordingly, WT mice cleared infection with Eap(+) but succumbed to sublethal infection with Eap- S. aureus. However, SP-R210(DN) cells compensated by increasing non-opsonic phagocytosis of Eap(+) S. aureus via the scavenger receptor scavenger receptor class A (SR-A), while non-opsonic uptake of Eap(-) S. aureus was impaired. Macrophages express two isoforms: SP-R210(L) and SP-R210(S). The results show that WT alveolar macrophages are distinguished by expression of SP-R210(L), whereas SR-A(-/-) alveolar macrophages are deficient in SP-R210(L) expressing only SP-R210(S). Accordingly, SR-A(-/-) mice were highly susceptible to both Eap(+) and Eap(-) S. aureus. The lungs of susceptible mice generated abnormal inflammatory responses that were associated with impaired killing and persistence of S. aureus infection in the lung. In conclusion, alveolar macrophage SP-R210(L) mediates recognition and killing of SP-A-opsonized S. aureus in vivo, coordinating inflammatory responses and resolution of S. aureus pneumonia through interaction with SR-A.

  8. Scavenger Receptor C-Type Lectin Binds to the Leukocyte Cell Surface Glycan Lewis By a Novel Mechanism

    SciTech Connect

    Feinberg, H.; Taylor, M.E.; Weis, W.I.; /Stanford U., Med. School /Imperial Coll., London

    2007-07-10

    The scavenger receptor C-type lectin (SRCL) is unique in the family of class A scavenger receptors, because in addition to binding sites for oxidized lipoproteins it also contains a C-type carbohydrate-recognition domain (CRD) that interacts with specific glycans. Both human and mouse SRCL are highly specific for the Lewis(x) trisaccharide, which is commonly found on the surfaces of leukocytes and some tumor cells. Structural analysis of the CRD of mouse SRCL in complex with Lewis(x) and mutagenesis show the basis for this specificity. The interaction between mouse SRCL and Lewis(x) is analogous to the way that selectins and DC-SIGN bind to related fucosylated glycans, but the mechanism of the interaction is novel, because it is based on a primary galactose-binding site similar to the binding site in the asialoglycoprotein receptor. Crystals of the human receptor lacking bound calcium ions reveal an alternative conformation in which a glycan ligand would be released during receptor-mediated endocytosis.

  9. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36

    PubMed Central

    Mylonakis, Eleftherios; Tampakakis, Emmanouil; Colvin, Richard A.; Seung, Edward; Puckett, Lindsay; Tai, Melissa F.; Stewart, Cameron R.; Pukkila-Worley, Read; Hickman, Suzanne E.; Moore, Kathryn J.; Calderwood, Stephen B.; Hacohen, Nir; Luster, Andrew D.; El Khoury, Joseph

    2009-01-01

    Receptors involved in innate immunity to fungal pathogens have not been fully elucidated. We show that the Caenorhabditis elegans receptors CED-1 and C03F11.3, and their mammalian orthologues, the scavenger receptors SCARF1 and CD36, mediate host defense against two prototypic fungal pathogens, Cryptococcus neoformans and Candida albicans. CED-1 and C03F11.1 mediated antimicrobial peptide production and were necessary for nematode survival after C. neoformans infection. SCARF1 and CD36 mediated cytokine production and were required for macrophage binding to C. neoformans, and control of the infection in mice. Binding of these pathogens to SCARF1 and CD36 was β-glucan dependent. Thus, CED-1/SCARF1 and C03F11.3/CD36 are β-glucan binding receptors and define an evolutionarily conserved pathway for the innate sensing of fungal pathogens. PMID:19237602

  10. NMDA Receptor Antagonist Attenuates Bleomycin-Induced Acute Lung Injury

    PubMed Central

    Li, Yang; Liu, Yong; Peng, XiangPing; Liu, Wei; Zhao, FeiYan; Feng, DanDan; Han, JianZhong; Huang, YanHong; Luo, SiWei; Li, Lian; Yue, Shao Jie; Cheng, QingMei; Huang, XiaoTing; Luo, ZiQiang

    2015-01-01

    Background Glutamate is a major neurotransmitter in the central nervous system (CNS). Large amount of glutamate can overstimulate N-methyl-D-aspartate receptor (NMDAR), causing neuronal injury and death. Recently, NMDAR has been reported to be found in the lungs. The aim of this study is to examine the effects of memantine, a NMDAR channel blocker, on bleomycin-induced lung injury mice. Methods C57BL/6 mice were intratracheally injected with bleomycin (BLM) to induce lung injury. Mice were randomized to receive saline, memantine (Me), BLM, BLM plus Me. Lungs and BALF were harvested on day 3 or 7 for further evaluation. Results BLM caused leukocyte infiltration, pulmonary edema and increase in cytokines, and imposed significant oxidative stress (MDA as a marker) in lungs. Memantine significantly mitigated the oxidative stress, lung inflammatory response and acute lung injury caused by BLM. Moreover, activation of NMDAR enhances CD11b expression on neutrophils. Conclusions Memantine mitigates oxidative stress, lung inflammatory response and acute lung injury in BLM challenged mice. PMID:25942563

  11. Angiotensin receptor blockade attenuates cigarette smoke-induced lung injury and rescues lung architecture in mice.

    PubMed

    Podowski, Megan; Calvi, Carla; Metzger, Shana; Misono, Kaori; Poonyagariyagorn, Hataya; Lopez-Mercado, Armando; Ku, Therese; Lauer, Thomas; McGrath-Morrow, Sharon; Berger, Alan; Cheadle, Christopher; Tuder, Rubin; Dietz, Harry C; Mitzner, Wayne; Wise, Robert; Neptune, Enid

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is a prevalent smoking-related disease for which no disease-altering therapies currently exist. As dysregulated TGF-β signaling associates with lung pathology in patients with COPD and in animal models of lung injury induced by chronic exposure to cigarette smoke (CS), we postulated that inhibiting TGF-β signaling would protect against CS-induced lung injury. We first confirmed that TGF-β signaling was induced in the lungs of mice chronically exposed to CS as well as in COPD patient samples. Importantly, key pathological features of smoking-associated lung disease in patients, e.g., alveolar injury with overt emphysema and airway epithelial hyperplasia with fibrosis, accompanied CS-induced alveolar cell apoptosis caused by enhanced TGF-β signaling in CS-exposed mice. Systemic administration of a TGF-β-specific neutralizing antibody normalized TGF-β signaling and alveolar cell death, conferring improved lung architecture and lung mechanics in CS-exposed mice. Use of losartan, an angiotensin receptor type 1 blocker used widely in the clinic and known to antagonize TGF-β signaling, also improved oxidative stress, inflammation, metalloprotease activation and elastin remodeling. These data support our hypothesis that inhibition of TGF-β signaling through angiotensin receptor blockade can attenuate CS-induced lung injury in an established murine model. More importantly, our findings provide a preclinical platform for the development of other TGF-β-targeted therapies for patients with COPD.

  12. [Ketanserin, an antagonist of 5-HT2 serotoninergic receptors and free-radical scavenger].

    PubMed

    Neri, M S; Stagnaro, S

    1992-12-01

    The authors describe an original clinical method of auscultatory percussion which is easily performed and reliable for bedside evaluation of tissue Co Q10, tissue acidosis, endothelial damage, free radicals and microcirculatory functional reserve. They report data observed in 25 arteriosclerotic patients treated with ketanserin which show the drug to be an excellent scavenger of free radicals.

  13. Determination of in vitro free radical scavenging and antiproliferative effect of Pennisetum alopecuroides on cultured A549 human lung cancer cells

    PubMed Central

    Mathew, Githa Elizabeth; Mathew, Bijo; Gokul, S.; Krishna, Rahul; Farisa, M. P.

    2015-01-01

    Context: Pennisetum alopecuroides (Poaceae) is a grass predominantly distributed in tropics and sub tropics. It is used as a cattle feed in many regions. Aim: The objective of the present study was to investigate the in vitro free radical scavenging and antiproliferative activity of ethanol extract of P. alopecuroides (EEPA) on cultured A549 human lung cancer cell lines. Settings and Design: The anti-oxidant activity of ethanol extract was evaluated at dose level 12.5, 25, 50, 100, and 200 μg/ml. The in vitro antiproliferative activity was measured at doses of 10, 50, and 100 μg/ml. Materials and Methods: The free radical scavenging activity of the EEPA was determined by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) method and in vitro antiproliferative activity on A549 human lung cancer cells was conducted by using MTT assay method. Results: The phytochemical screening revealed that the P. alopecuroides contained alkaloids, tannins, saponins, and flavonoids as the major secondary metabolites. The IC50 value of DPPH scavenging activity was found to be 44.41 μg/ml and 31.02 μg/ml  for a mixture of EEPA and standard ascorbic acid, respectively. In vitro MTT assay showed that EEPA had anti-proliferation effects on A549 cells in a dose dependent manner. Conclusions: This is the 1st time a pharmacological exploration of P. alopecuroides grasses has been conducted. We have shown that P. alopecuroides exhibits good free radical scavenging and strong in vitro cytotoxic activities against human lung cancer cell lines. PMID:26120234

  14. Scavenger Receptor-Mediated Targeted Treatment of Collagen-Induced Arthritis by Dextran Sulfate-Methotrexate Prodrug.

    PubMed

    Yang, Modi; Ding, Jianxun; Feng, Xiangru; Chang, Fei; Wang, Yinan; Gao, Zhongli; Zhuang, Xiuli; Chen, Xuesi

    2017-01-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disorder implicated in multiple joint affection and even disability. The activated macrophages perform a predominant role in onset and persistence of RA. Scavenger receptor (SR), one of several receptors overexpressed on the activated macrophages, is a specific biomarker for targeted therapy of numerous chronic inflammation diseases like RA. In this work, dextran sulfate-graft-methotrexate conjugate (DS-g-MTX) is synthesized and characterized, which exhibits excellent targetability to SR on the activated RAW 264.7 cells. Additionally, the enhanced accumulation and potent inflammatory inhibition are observed in the affected joint after intravenous injection of DS-g-MTX, compared to the treatment with dextran-graft-methotrexate (Dex-g-MTX), as is confirmed by the detection of histopathology and pro-inflammatory cytokines. Our work highlights DS-g-MTX as a potential therapeutic option for RA aiming the SR-expressed activated macrophages.

  15. Scavenger Receptor-Mediated Targeted Treatment of Collagen-Induced Arthritis by Dextran Sulfate-Methotrexate Prodrug

    PubMed Central

    Yang, Modi; Ding, Jianxun; Feng, Xiangru; Chang, Fei; Wang, Yinan; Gao, Zhongli; Zhuang, Xiuli; Chen, Xuesi

    2017-01-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disorder implicated in multiple joint affection and even disability. The activated macrophages perform a predominant role in onset and persistence of RA. Scavenger receptor (SR), one of several receptors overexpressed on the activated macrophages, is a specific biomarker for targeted therapy of numerous chronic inflammation diseases like RA. In this work, dextran sulfate-graft-methotrexate conjugate (DS-g-MTX) is synthesized and characterized, which exhibits excellent targetability to SR on the activated RAW 264.7 cells. Additionally, the enhanced accumulation and potent inflammatory inhibition are observed in the affected joint after intravenous injection of DS-g-MTX, compared to the treatment with dextran-graft-methotrexate (Dex-g-MTX), as is confirmed by the detection of histopathology and pro-inflammatory cytokines. Our work highlights DS-g-MTX as a potential therapeutic option for RA aiming the SR-expressed activated macrophages. PMID:28042319

  16. HlSRB, a Class B scavenger receptor, is key to the granulocyte-mediated microbial phagocytosis in ticks.

    PubMed

    Aung, Kyaw Min; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Tsuji, Naotoshi; Xuenan, Xuan; Suzuki, Hiroshi; Kume, Aiko; Galay, Remil Linggatong; Tanaka, Tetsuya; Fujisaki, Kozo

    2012-01-01

    Ixodid ticks transmit various pathogens of deadly diseases to humans and animals. However, the specific molecule that functions in the recognition and control of pathogens inside ticks is not yet to be identified. Class B scavenger receptor CD36 (SRB) participates in internalization of apoptotic cells, certain bacterial and fungal pathogens, and modified low-density lipoproteins. Recently, we have reported on recombinant HlSRB, a 50-kDa protein with one hydrophobic SRB domain from the hard tick, Haemaphysalis longicornis. Here, we show that HlSRB plays vital roles in granulocyte-mediated phagocytosis to invading Escherichia coli and contributes to the first-line host defense against various pathogens. Data clearly revealed that granulocytes that up-regulated the expression of cell surface HlSRB are almost exclusively involved in hemocyte-mediated phagocytosis for E. coli in ticks, and post-transcriptional silencing of the HlSRB-specific gene ablated the granulocytes' ability to phagocytose E. coli and resulted in the mortality of ticks due to high bacteremia. This is the first report demonstrating that a scavenger receptor molecule contributes to hemocyte-mediated phagocytosis against exogenous pathogens, isolated and characterized from hematophagous arthropods.

  17. HlSRB, a Class B Scavenger Receptor, Is Key to the Granulocyte-Mediated Microbial Phagocytosis in Ticks

    PubMed Central

    Aung, Kyaw Min; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Tsuji, Naotoshi; Xuenan, Xuan; Suzuki, Hiroshi; Kume, Aiko; Galay, Remil Linggatong; Tanaka, Tetsuya; Fujisaki, Kozo

    2012-01-01

    Ixodid ticks transmit various pathogens of deadly diseases to humans and animals. However, the specific molecule that functions in the recognition and control of pathogens inside ticks is not yet to be identified. Class B scavenger receptor CD36 (SRB) participates in internalization of apoptotic cells, certain bacterial and fungal pathogens, and modified low-density lipoproteins. Recently, we have reported on recombinant HlSRB, a 50-kDa protein with one hydrophobic SRB domain from the hard tick, Haemaphysalis longicornis. Here, we show that HlSRB plays vital roles in granulocyte-mediated phagocytosis to invading Escherichia coli and contributes to the first-line host defense against various pathogens. Data clearly revealed that granulocytes that up-regulated the expression of cell surface HlSRB are almost exclusively involved in hemocyte-mediated phagocytosis for E. coli in ticks, and post-transcriptional silencing of the HlSRB-specific gene ablated the granulocytes' ability to phagocytose E. coli and resulted in the mortality of ticks due to high bacteremia. This is the first report demonstrating that a scavenger receptor molecule contributes to hemocyte-mediated phagocytosis against exogenous pathogens, isolated and characterized from hematophagous arthropods. PMID:22479406

  18. Neuromedin B receptors regulate EGF receptor tyrosine phosphorylation in lung cancer cells

    PubMed Central

    Moody, Terry W.; Berna, Marc J.; Mantey, Samuel; Sancho, Veronica; Ridnour, Lisa; Wink, David A.; Chan, Daniel; Giaccone, Giuseppe; Jensen, Robert T.

    2014-01-01

    Neuromedin B (NMB), a member of the bombesin family of peptides, is an autocrine growth factor for many lung cancer cells. The present study investigated the ability of NMB to cause transactivation of the epidermal growth factor (EGF) receptor in lung cancer cells. By Western blot, addition of NMB or related peptides to NCI-H1299 human non-small cell lung cancer (NSCLC) cells, caused phosphorylation of Tyr1068 of the EGF receptor. The signal was amplified using NCI-H1299 cells stably transected with NMB receptors. The transactivation of the EGF receptor or the tyrosine phosphorylation of ERK caused by NMB-like peptides was inhibited by AG1478 or gefitinib (tyrosine kinase inhibitors) and NMB receptor antagonist PD168368 but not the GRP receptor antagonist, BW2258U89. The transactivation of the EGF receptor caused by NMB-like peptides was inhibited by GM6001 (matrix metalloprotease inhibitor), PP2 (Src inhibitor), or transforming growth factor (TGF)α antibody. The transactivation of the EGF receptor and the increase in reactive oxygen species caused by NMB-like peptides was inhibited by N-acetylcysteine (NAC) or Tiron. Gefitinib inhibited the proliferation of NCI-H1299 cells and its sensitivity was increased by the addition of PD168368. The results indicate that the NMB receptor regulates EGF receptor transactivation by a mechanism dependent on Src as well as metalloprotease activation and generation of reactive oxygen species. PMID:20388507

  19. The Scavenger Receptor SSc5D Physically Interacts with Bacteria through the SRCR-Containing N-Terminal Domain

    PubMed Central

    Bessa Pereira, Catarina; Bocková, Markéta; Santos, Rita F.; Santos, Ana Mafalda; Martins de Araújo, Mafalda; Oliveira, Liliana; Homola, Jiří; Carmo, Alexandre M.

    2016-01-01

    The scavenger receptor cysteine-rich (SRCR) family comprises a group of membrane-attached or secreted proteins that contain one or more modules/domains structurally similar to the membrane distal domain of type I macrophage scavenger receptor. Although no all-inclusive biological function has been ascribed to the SRCR family, some of these receptors have been shown to recognize pathogen-associated molecular patterns (PAMP) of bacteria, fungi, or other microbes. SSc5D is a recently described soluble SRCR receptor produced by monocytes/macrophages and T lymphocytes, consisting of an N-terminal portion, which contains five SRCR modules, and a large C-terminal mucin-like domain. Toward establishing a global common role for SRCR domains, we interrogated whether the set of five SRCR domains of SSc5D displayed pattern recognition receptor (PRR) properties. For that purpose, we have expressed in a mammalian expression system the N-terminal SRCR-containing moiety of SSc5D (N-SSc5D), thus excluding the mucin-like domain likely by nature to bind microorganisms, and tested the capacity of the SRCR functional groups to physically interact with bacteria. Using conventional protein–bacteria binding assays, we showed that N-SSc5D had a superior capacity to bind to Escherichia coli strains RS218 and IHE3034 compared with that of the extracellular domains of the SRCR proteins CD5 and CD6 (sCD5 and sCD6, respectively), and similar E. coli-binding properties as Spα, a proven PRR of the SRCR family. We have further designed a more sensitive, real-time, and label-free surface plasmon resonance (SPR)-based assay and examined the capacity of N-SSc5D, Spα, sCD5, and sCD6 to bind to different bacteria. We demonstrated that N-SSc5D compares with Spα in the capacity to bind to E. coli and Listeria monocytogenes, and further that it can distinguish between pathogenic E. coli RS218 and IHE3034 strains and the non-pathogenic laboratory E. coli strain BL21(DE3). Our work thus advocates the

  20. Nicotinic Receptor Polymorphism in Lung Cancer

    DTIC Science & Technology

    2013-10-01

    bronchial cells to the tobacco nitrosamine -induced carcinogenic transformation of human bronchial cells [1-2]. 15. SUBJECT TERMS nicotinic receptor...cells to the tobacco nitrosamine -induced carcinogenic transformation of human bronchial cells [1-2]. Body According to the Statement of Works

  1. Scavenger receptor-targeted photodynamic therapy of J774 tumors in mice: tumor response and concomitant immunity

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.; O'Donnell, David A.; Huzaira, Misbah; Zahra, Touqir

    2002-06-01

    J774 is a cell line derived from Balb/c mice that in vitro behaves as macrophages (including scavenger-receptor expression) and has been widely used to study macrophage cell biology. In vivo it produces histiocytic lymphoma tumors that are invasive and metastatic. We report here on the response of subcutaneous J774 tumors to photodynamic therapy with scavenger-receptor targeted chlorin(e6). Bovine serum albumin was covalently conjugated with chlorin(e6), maleylated and purified by acetone precipitation and both this and free chlorin(e6) were injected IV into mice at 2 mg/kg. When tumors were illuminated with 665 nm laser-light after 24 hours there was a highly significant response (tumor volume and growth rate) for the conjugate, but this led to a relatively small survival increase due to the highly metastatic nature of the tumor. The free chlorin(e6) gave very little tumor response. When light was delivered 3 hours after injection the response from the conjugate disappeared due to insufficient time for the tumor cells to take up the photosensitizer by receptor-mediated endocytosis. Free chlorin(e6) at 3 hours, however, produced a total regression of the tumors due to a primarily vascular effect, but the mice died sooner than control animals. When J774 tumors were surgically removed at different times after implantation the mouse survival was proportional to the length of time they had had the tumor. We interpret this data to show that mice with J774 tumors slowly develop concomitant immunity and a PDT regimen that swiftly ablates the tumor will give worse survival results than a regimen with a slower tumor response.

  2. Ionizing Radiation Induces Macrophage Foam Cell Formation and Aggregation Through JNK-Dependent Activation of CD36 Scavenger Receptors

    SciTech Connect

    Katayama, Ikuo; Hotokezaka, Yuka; Matsuyama, Toshifumi; Sumi, Tadateru; Nakamura, Takashi

    2008-03-01

    Purpose: Irradiated arteries of cancer patients can be associated with atherosclerosis-like lesions containing cholesterol-laden macrophages (foam cells). Endothelial cell damage by irradiation does not completely explain the foam cell formation. We investigated the possible underlying mechanisms for ionizing radiation (IR)-induced foam cell formation. Methods and Materials: Human peripheral blood monocytes were activated by macrophage colony-stimulating factor and then treated with varying doses of IR in vitro in the absence of endothelial cells. Scavenger receptor expression and foam cell formation of IR-treated macrophages were investigated in the presence or absence of oxidized low-density lipoprotein. We also assessed the importance of mitogen-activated protein kinase activity in the macrophage colony-stimulating factor-activated human monocytes (macrophages) for the foam cell formation. Results: We found that IR treatment of macrophage colony-stimulating factor-activated human peripheral blood monocytes resulted in the enhanced expression of CD36 scavenger receptors and that cholesterol accumulated in the irradiated macrophages with resultant foam cell formation in the presence of oxidized low-density lipoprotein. Furthermore, when cultured on collagen gels, human macrophages formed large foam cell aggregates in response to IR. Antibodies against CD36 inhibited the IR-induced foam cell formation and aggregation, indicating that the IR-induced foam cell formation and the subsequent aggregation are dependent on functional CD36. In addition, we found that IR of human macrophages resulted in c-Jun N-terminal kinase activation and that c-Jun N-terminal kinase inhibition suppressed IR-induced CD36 expression and the subsequent foam cell formation and aggregation. Conclusion: Taken together, these results suggest that IR-induced foam cell formation is mediated by c-Jun N-terminal kinase-dependent CD36 activation.

  3. P2X7 from j774 murine macrophages acts as a scavenger receptor for bacteria but not yeast.

    PubMed

    Pérez-Flores, Gabriela; Hernández-Silva, Cesar; Gutiérrez-Escobedo, Guadalupe; De Las Peñas, Alejandro; Castaño, Irene; Arreola, Jorge; Pérez-Cornejo, Patricia

    2016-12-02

    We studied the effects of extracellular ATP and Ca(2+) on uptake of bacteria (Staphylococcus aureus or Escherichia coli) and live yeast (Candida glabrata) by J774 macrophages to determine the role of endogenous P2X7 receptors in phagocytosis. Our findings show that phagocytosis of bio-particles coated with S. aureus or E. coli was blocked by ATP and the P2X7 receptor agonist BzATP, while yeast phagocytosis was not. A438079, an antagonist of P2X7 receptors, partially reverted the effects of ATP on bacterial phagocytosis. To determine if P2X7-mediated Ca(2+) entry into macrophages was blocking the engulfment of bacteria, we measured phagocytic activity in the absence or presence of 2 mM extracellular Ca(2+) with or without ATP. Ca(2+), in the absence of ATP, was required for engulfment of E. coli and C. glabrata but not S. aureus. Adding ATP inhibited phagocytosis of S. aureus and E. coli regardless of Ca(2+), suggesting that Ca(2+) entry was not important for inhibiting phagocytosis. On the other hand, phagocytosis of normal or hyper-adherent C. glabrata mutants had an absolute requirement for extracellular Ca(2+) due to yeast adhesion to macrophages mediated by Ca(2+)-dependent adhesion proteins. We conclude that unstimulated P2X7 from J774 cells act as scavenger receptor for the uptake of S. aureus and E. coli but not of yeast; Ca(2+) entry via P2X7 receptors play no role in phagocytosis of S. aureus and E. coli; while the effect of Ca(2+) on C. glabrata phagocytosis was mediated by the adhesins Epa1, Epa6 and Epa7.

  4. Design and synthesis of novel 3-substituted-indole derivatives as selective H3 receptor antagonists and potent free radical scavengers.

    PubMed

    Tang, Li; Zhao, Liying; Hong, Lingjuan; Yang, Fenyan; Sheng, Rong; Chen, Jianzhong; Shi, Ying; Zhou, Naimin; Hu, Yongzhou

    2013-10-01

    A series of novel 3-substituted-indole derivatives with a benzyl tertiary amino moiety were designed, synthesized and evaluated as H3 receptor antagonists and free radical scavengers for Alzheimer's disease therapy. Most of these synthesized compounds exhibited moderate to potent antagonistic activities in CREs driven luciferase assay. In particular, compound 2d demonstrated the most favorable H3 receptor antagonistic activity with the IC50 value of 0.049μM. Besides, it also displayed high binding affinity to H3 receptor (Ki=4.26±2.55nM) and high selectivity over other three histamine receptors. Moreover, 2d and other two 3-substituted indole derivatives 1d and 3d exerted potent ABTS radical cation scavenging capacities similar to melatonin. Above results illustrate that 2d is an interesting lead for extensive optimization to explore new drug candidate for AD therapy.

  5. Lowbush blueberries inhibit scavenger receptors CD36 and SR-A expression and attenuate foam cell formation in ApoE-deficient mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberries have recently been reported to reduce atherosclerotic lesion progression in apoE deficient (apoE-/-) mice. However, the underlying mechanisms are not fully understood. The objective of this study was to determine whether blueberries altered scavenger receptors expression and foam cell fo...

  6. Scavenger receptor-mediated endocytosis by sinusoidal cells in rat bone marrow

    SciTech Connect

    Geoffroy, J.S.

    1987-01-01

    Endocytosis of serum albumin by sinusoidal endothelial cells in rat bone marrow was investigated initially at the ultrastructural level with subsequent biochemical investigation of the specificity mediating this event. Bovine serum albumin adsorbed to 20nm colloidal gold particles (AuBSA) was chosen as the electron microscopic probe. Morphological data strongly suggested that a receptor was involved in uptake of AuBSA. Confirmation of receptor involvement in the uptake of AuBSA by marrow sinusoidal endothelial cells was achieved utilizing an in situ isolated hind limb perfusion protocol in conjunction with unlabeled, radiolabeled, and radio-/colloidal gold labeled probes. The major findings of competition and saturation experiments were: (1) endocytosis of AuBSA was mediated by a receptor for modified/treated serum albumin; (2) endocytosis of formaldehyde-treated serum albumin was mediated by a binding site which may be the same or closely related to the site responsible for the uptake of AuBSA; and (3) endocytosis of native untreated albumin was not mediated by receptor and probably represents fluid-phase pinocitosis.

  7. Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor.

    PubMed

    Bartosch, Birke; Vitelli, Alessandra; Granier, Christelle; Goujon, Caroline; Dubuisson, Jean; Pascale, Simona; Scarselli, Elisa; Cortese, Riccardo; Nicosia, Alfredo; Cosset, François-Loïc

    2003-10-24

    Several cell surface molecules have been proposed as receptor candidates, mediating cell entry of hepatitis C virus (HCV) on the basis of their physical association with virions or with soluble HCV E2 glycoproteins. However, due to the lack of infectious HCV particles, evidence that these receptor candidates support infection was missing. Using our recently described infectious HCV pseudotype particles (HCVpp) that display functional E1E2 glycoprotein complexes, here we show that HCV is a pH-dependent virus, implying that its receptor component(s) mediate virion internalization by endocytosis. Expression of the CD81 tetraspanin in non-permissive CD81-negative hepato-carcinoma cells was sufficient to restore susceptibility to HCVpp infection, confirming its critical role as a cell attachment factor. As a cell surface molecule likely to mediate endosomal trafficking, we demonstrate that the human scavenger receptor class B type 1 (SR-B1), a high-density lipoprotein-internalization molecule that we previously proposed as a novel HCV receptor candidate due to its affinity with E2 glycoproteins, is required for infection of CD81-expressing hepatic cells. By receptor competition assays, we found that SR-B1 antibodies that blocked binding of soluble E2 could prevent HCVpp infectivity. Furthermore, we establish that the hyper-variable region 1 of the HCV E2 glycoprotein is a critical determinant mediating entry in SR-B1-positive cells. Finally, by correlating expression of HCV receptors and infectivity, we suggest that, besides CD81 and SR-B1, additional hepatocyte-specific co-factor(s) are necessary for HCV entry.

  8. Development and application of a nonradioactive binding assay of oxidized low-density lipoprotein to macrophage scavenger receptors

    PubMed Central

    Montano, Erica N.; Boullier, Agnès; Almazan, Felicidad; Binder, Christoph J.; Witztum, Joseph L.; Hartvigsen, Karsten

    2013-01-01

    Macrophages play a key role in atherogenesis in part through excessive uptake of oxidized LDL (OxLDL) via scavenger receptors. Binding of OxLDL to macrophages has traditionally been assessed using radiolabeled OxLDL. To allow more efficient and convenient measurements, we developed a nonradioactive binding assay in which biotinylated OxLDL (Bt-OxLDL) is added to macrophages in 96-well microtiter culture plates under various conditions and the extent of binding is determined using solid phase chemiluminescent immunoassay techniques. As examples, we show that Bt-OxLDL displayed high and saturable binding to macrophages in contrast to Bt-LDL, which showed very low binding. In competition assays, unlabeled OxLDL and the anti-OxLDL monoclonal antibody E06 inhibited Bt-OxLDL binding to macrophages in a dose-dependent manner. Specific binding of Bt-OxLDL to ApoE/SR-A/CD36 triple knockout macrophages was reduced by 80% as compared with binding to macrophages from ApoE knockout mice. Binding of Bt-OxLDL to CD36 transfected COS-7 cells showed enhanced saturable binding compared with mock-transfected cells. This assay avoids the use of radioactivity and uses small amounts of materials. It can be used to study binding of OxLDL to macrophages and factors that influence this binding. The techniques described should be readily adaptable to study of other ligands, receptors, and cell types. PMID:23997238

  9. Class A scavenger receptor-mediated cell adhesion requires the sequential activation of Lyn and PI3-kinase.

    PubMed

    Nikolic, Dejan M; Cholewa, Jill; Gass, Cecelia; Gong, Ming C; Post, Steven R

    2007-04-01

    Class A scavenger receptors (SR-A) participate in multiple macrophage functions including macrophage adhesion to modified proteins. SR-A-mediated adhesion may therefore contribute to chronic inflammation by promoting macrophage accumulation at sites of protein modification. The mechanisms that couple SR-A binding to modified proteins with increased cell adhesion have not been defined. In this study, SR-A expressing HEK cells and SR-A+/+ or SR-A-/- macrophages were used to delineate the signaling pathways required for SR-A-mediated adhesion to modified protein. Inhibiting G(i/o) activation, which decreases initial SR-A-mediated cell attachment, did not prevent the subsequent spreading of attached cells. In contrast, inhibition of Src kinases or PI3-kinase abolished SR-A-dependent cell spreading without affecting SR-A-mediated cell attachment. Consistent with these results, the Src kinase Lyn and PI3-kinase were sequentially activated during SR-A-mediated cell spreading. Furthermore, activation of both Lyn and PI3-kinase was required for enhancing paxillin phosphorylation. Activation of a Src kinase-PI3-kinase-Akt pathway was also observed in cells expressing a truncated SR-A protein that does not internalize indicating that SR-A-mediated activation of intracellular signaling cascades following adhesion to MDA-BSA is independent of receptor internalization. Thus SR-A binding to modified protein activates signaling cascades that have distinct roles in regulating initial cell attachment and subsequent cell spreading.

  10. Chitosan oligosaccharides promote reverse cholesterol transport and expression of scavenger receptor BI and CYP7A1 in mice.

    PubMed

    Zong, Chuanlong; Yu, Yang; Song, Guohua; Luo, Tian; Li, Luqin; Wang, Xinnong; Qin, Shucun

    2012-02-01

    Chitosan oligosaccharides (COS) are beneficial in improving plasma lipids and diminishing atherosclerotic risks. In this study, we examined the effects of COS on reverse cholesterol transport (RCT) in C57BL/6 mice. (3)H-cholesterol-laden macrophages were injected intraperitoneally into mice fed with various dosage of COS (250, 500, 1000 mg/kg mouse weight, respectively) or vehicle by gastric gavages. Plasma lipid level was determined and (3)H-cholesterol was traced in plasma, liver, bile and feces. The effects of COS on hepatic cholesterol 7 alpha-hydroxylase (CYP7A1) and scavenger receptor BI (SR-BI) expression were also investigated. COS administration led to a significant decrease in plasma total cholesterol and low-density lipoprotein (LDL) cholesterol and a significant increase in peritoneal macrophage-derived (3)H-cholesterol in liver and bile as well as in feces. Liver protein expressions of CYP7A1, SR-BI and LDL receptor (LDL-R) were improved in a dosage-dependent manner in COS-administered mice. Our findings provide the first in vivo demonstration of a positive role for COS in RCT pathway and hepatic CYP7A1 and SR-BI expression in mice. Additionally, the LDL cholesterol lowering effect might be relative to hepatic LDL-R expression stimulated by COS in mice.

  11. The unfolded protein response is a negative regulator of scavenger receptor class B, type I (SR-BI) expression.

    PubMed

    Eberhart, Tanja; Eigner, Karin; Filik, Yüksel; Fruhwürth, Stefanie; Stangl, Herbert; Röhrl, Clemens

    2016-10-21

    Scavenger receptor class B, type I (SR-BI) is the main receptor for high-density lipoprotein (HDL) and an emerging atheroprotective candidate. A central function of SR-BI is the delivery of HDL-derived cholesterol to the liver for subsequent excretion into the bile. Here, we investigated the regulation of SR-BI by the unfolded protein response (UPR), an adaptive mechanism induced by endoplasmic reticulum (ER) stress, which is frequently activated in metabolic disorders. We provide evidence that induction of acute ER stress by well-characterized chemical inducers leads to decreased SR-BI expression in hepatocyte-derived cell lines. This results in a functional reduction of selective lipid uptake from HDL. However, the regulation of SR-BI by ER stress is not a direct consequence of altered cellular cholesterol metabolism. Finally, we show that SR-BI down-regulation by the UPR might be a compensatory mechanism to provide partial adaption to ER stress. The observed down-regulation of SR-BI by ER stress in hepatic cells might contribute to the unfavorable effects of metabolic disorders on cholesterol homeostasis and cardiovascular diseases.

  12. Plant Carbohydrate Scavenging through TonB-Dependent Receptors: A Feature Shared by Phytopathogenic and Aquatic Bacteria

    PubMed Central

    Boulanger, Alice; Lautier, Martine; Guynet, Catherine; Denancé, Nicolas; Vasse, Jacques

    2007-01-01

    TonB-dependent receptors (TBDRs) are outer membrane proteins mainly known for the active transport of iron siderophore complexes in Gram-negative bacteria. Analysis of the genome of the phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc), predicts 72 TBDRs. Such an overrepresentation is common in Xanthomonas species but is limited to only a small number of bacteria. Here, we show that one Xcc TBDR transports sucrose with a very high affinity, suggesting that it might be a sucrose scavenger. This TBDR acts with an inner membrane transporter, an amylosucrase and a regulator to utilize sucrose, thus defining a new type of carbohydrate utilization locus, named CUT locus, involving a TBDR for the transport of substrate across the outer membrane. This sucrose CUT locus is required for full pathogenicity on Arabidopsis, showing its importance for the adaptation to host plants. A systematic analysis of Xcc TBDR genes and a genome context survey suggested that several Xcc TBDRs belong to other CUT loci involved in the utilization of various plant carbohydrates. Interestingly, several Xcc TBDRs and CUT loci are conserved in aquatic bacteria such as Caulobacter crescentus, Colwellia psychrerythraea, Saccharophagus degradans, Shewanella spp., Sphingomonas spp. or Pseudoalteromonas spp., which share the ability to degrade a wide variety of complex carbohydrates and display TBDR overrepresentation. We therefore propose that TBDR overrepresentation and the presence of CUT loci designate the ability to scavenge carbohydrates. Thus CUT loci, which seem to participate to the adaptation of phytopathogenic bacteria to their host plants, might also play a very important role in the biogeochemical cycling of plant-derived nutrients in marine environments. Moreover, the TBDRs and CUT loci identified in this study are clearly different from those characterized in the human gut symbiont Bacteroides thetaiotaomicron, which allow glycan foraging, suggesting a convergent

  13. Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria.

    PubMed

    Blanvillain, Servane; Meyer, Damien; Boulanger, Alice; Lautier, Martine; Guynet, Catherine; Denancé, Nicolas; Vasse, Jacques; Lauber, Emmanuelle; Arlat, Matthieu

    2007-02-21

    TonB-dependent receptors (TBDRs) are outer membrane proteins mainly known for the active transport of iron siderophore complexes in Gram-negative bacteria. Analysis of the genome of the phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc), predicts 72 TBDRs. Such an overrepresentation is common in Xanthomonas species but is limited to only a small number of bacteria. Here, we show that one Xcc TBDR transports sucrose with a very high affinity, suggesting that it might be a sucrose scavenger. This TBDR acts with an inner membrane transporter, an amylosucrase and a regulator to utilize sucrose, thus defining a new type of carbohydrate utilization locus, named CUT locus, involving a TBDR for the transport of substrate across the outer membrane. This sucrose CUT locus is required for full pathogenicity on Arabidopsis, showing its importance for the adaptation to host plants. A systematic analysis of Xcc TBDR genes and a genome context survey suggested that several Xcc TBDRs belong to other CUT loci involved in the utilization of various plant carbohydrates. Interestingly, several Xcc TBDRs and CUT loci are conserved in aquatic bacteria such as Caulobacter crescentus, Colwellia psychrerythraea, Saccharophagus degradans, Shewanella spp., Sphingomonas spp. or Pseudoalteromonas spp., which share the ability to degrade a wide variety of complex carbohydrates and display TBDR overrepresentation. We therefore propose that TBDR overrepresentation and the presence of CUT loci designate the ability to scavenge carbohydrates. Thus CUT loci, which seem to participate to the adaptation of phytopathogenic bacteria to their host plants, might also play a very important role in the biogeochemical cycling of plant-derived nutrients in marine environments. Moreover, the TBDRs and CUT loci identified in this study are clearly different from those characterized in the human gut symbiont Bacteroides thetaiotaomicron, which allow glycan foraging, suggesting a convergent

  14. Characterization of muscarinic cholinergic receptor subtypes in human peripheral lung

    SciTech Connect

    Bloom, J.W.; Halonen, M.; Yamamura, H.I.

    1988-02-01

    The authors have characterized the muscarinic cholinergic receptor subtypes in human peripheral lung membranes using the selective muscarinic antagonist (/sup 3/H)pirenzepine ((/sup 3/H)PZ) and the classical muscarinic antagonist (/sup 3/H)(-)-quinuclidinyl benzilate. High-affinity binding with pharmacologic specificity was demonstrated for both radioligands. The high affinity Kd for (/sup 3/H)PZ binding determined from saturation isotherms was 5.6 nM, and the Kd for (/sup 3/H)(-)-quinuclidinyl benzilate binding was 14.3 pM. Approximately 62% of the total muscarinic binding sites in human peripheral lung bind (/sup 3/H)PZ with high affinity. There was no significant effect of the guanine nucleotide, guanyl-5'-yl imidodiphosphate, on the inhibition of (/sup 3/H)(-)-quinyclidinyl benzilate binding by the muscarinic agonist carbachol in peripheral lung membranes. If the muscarinic receptor with high affinity for PZ has an important role in bronchoconstriction, its characterization could result in the development of more selective bronchodilators.

  15. Tyrosine Kinase Receptor Landscape in Lung Cancer: Therapeutical Implications

    PubMed Central

    Quintanal-Villalonga, A.; Paz-Ares, Luis

    2016-01-01

    Lung cancer is a heterogeneous disease responsible for the most cases of cancer-related deaths. The majority of patients are clinically diagnosed at advanced stages, with a poor survival rate. For this reason, the identification of oncodrivers and novel biomarkers is decisive for the future clinical management of this pathology. The rise of high throughput technologies popularly referred to as “omics” has accelerated the discovery of new biomarkers and drivers for this pathology. Within them, tyrosine kinase receptors (TKRs) have proven to be of importance as diagnostic, prognostic, and predictive tools and, due to their molecular nature, as therapeutic targets. Along this review, the role of TKRs in the different lung cancer histologies, research on improvement of anti-TKR therapy, and the current approaches to manage anti-TKR resistance will be discussed. PMID:27528792

  16. Protease-activated receptors and prostaglandins in inflammatory lung disease

    PubMed Central

    Peters, Terence; Henry, Peter J

    2009-01-01

    Protease-activated receptors (PARs) are a novel family of G protein-coupled receptors. Signalling through PARs typically involves the cleavage of an extracellular region of the receptor by endogenous or exogenous proteases, which reveals a tethered ligand sequence capable of auto-activating the receptor. A considerable body of evidence has emerged over the past 20 years supporting a prominent role for PARs in a variety of human physiological and pathophysiological processes, and thus substantial attention has been directed towards developing drug-like molecules that activate or block PARs via non-proteolytic pathways. PARs are widely expressed within the respiratory tract, and their activation appears to exert significant modulatory influences on the level of bronchomotor tone, as well as on the inflammatory processes associated with a range of respiratory tract disorders. Nevertheless, there is debate as to whether the principal response to PAR activation is an augmentation or attenuation of airways inflammation. In this context, an important action of PAR activators may be to promote the generation and release of prostanoids, such as prostglandin E2, which have well-established anti-inflammatory effects in the lung. In this review, we primarily focus on the relationship between PARs, prostaglandins and inflammatory processes in the lung, and highlight their potential role in selected respiratory tract disorders, including pulmonary fibrosis, asthma and chronic obstructive pulmonary disease. This article is part of a themed issue on Mediators and Receptors in the Resolution of Inflammation. To view this issue visit http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009 PMID:19845685

  17. Role of the scavenger receptor in the uptake of methylamine-activated alpha 2-macroglobulin by rat liver.

    PubMed Central

    van Dijk, M C; Boers, W; Linthorst, C; van Berkel, T J

    1992-01-01

    Alpha 2-Macroglobulin (alpha 2M) requires activation by small nucleophiles (e.g. methylamine; giving alpha 2M-Me) or proteolytic enzymes (e.g. trypsin; giving alpha 2M-Tr) in order to be rapidly removed from the circulation by the liver. Separation of rat liver cells into parenchymal, endothelial and Kupffer cells at 10 min after injection indicates that liver uptake of alpha 2M-Me is shared between parenchymal and endothelial cells, with relative contributions of 51.3% and 48.3% respectively of total liver-associated radioactivity. In contrast, alpha 2M-Tr is almost exclusively taken up by the parenchymal cells (90.1% of liver-associated radioactivity). A preinjection of 5 mg of poly(inosinic acid) decreased liver uptake of alpha 2M-Me to 39.9% of the control value, while it had no effect on liver uptake of alpha 2M-Tr. It appears that poly(inosinic acid) specifically reduces the uptake of alpha 2M-Me in vivo by endothelial cells, leaving uptake by parenchymal cells unaffected. In vitro studies with isolated liver cells indicate that the association of alpha 2M-Me with endothelial cells is 21-fold higher per mg of cell protein than with parenchymal cells. The capacity of endothelial cells to degrade alpha 2M-Me appears to be 46 times higher than that of parenchymal cells. Competition studies show that poly(inosinic acid) or acetylated low-density lipoprotein effectively competes with the association of alpha 2M-Me with endothelial and Kupffer cells, but association with parenchymal cells is unaffected. It is suggested that activation of alpha 2M by methylamine induces a charge distribution on the protein which triggers specific uptake by the scavenger receptor on endothelial cells. It is concluded that the uptake of alpha 2M-Me by the scavenger receptor might function as an additional system for the uptake of activated alpha 2M. Images Fig. 11. PMID:1280102

  18. The scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate symbiosis

    PubMed Central

    Neubauer, Emilie F.; Poole, Angela Z.; Davy, Simon K.

    2016-01-01

    Many cnidarians engage in a mutualism with endosymbiotic photosynthetic dinoflagellates that forms the basis of the coral reef ecosystem. Interpartner interaction and regulation includes involvement of the host innate immune system. Basal metazoans, including cnidarians have diverse and complex innate immune repertoires that are just beginning to be described. Scavenger receptors (SR) are a diverse superfamily of innate immunity genes that recognize a broad array of microbial ligands and participate in phagocytosis of invading microbes. The superfamily includes subclades named SR-A through SR-I that are categorized based on the arrangement of sequence domains including the scavenger receptor cysteine rich (SRCR), the C-type lectin (CTLD) and the CD36 domains. Previous functional and gene expression studies on cnidarian-dinoflagellate symbiosis have implicated SR-like proteins in interpartner communication and regulation. In this study, we characterized the SR repertoire from a combination of genomic and transcriptomic resources from six cnidarian species in the Class Anthozoa. We combined these bioinformatic analyses with functional experiments using the SR inhibitor fucoidan to explore a role for SRs in cnidarian symbiosis and immunity. Bioinformatic searches revealed a large diversity of SR-like genes that resembled SR-As, SR-Bs, SR-Es and SR-Is. SRCRs, CTLDs and CD36 domains were identified in multiple sequences in combinations that were highly homologous to vertebrate SRs as well as in proteins with novel domain combinations. Phylogenetic analyses of CD36 domains of the SR-B-like sequences from a diversity of metazoans grouped cnidarian with bilaterian sequences separate from other basal metazoans. All cnidarian sequences grouped together with moderate support in a subclade separately from bilaterian sequences. Functional experiments were carried out on the sea anemone Aiptasia pallida that engages in a symbiosis with Symbiodinium minutum (clade B1

  19. Purinergic P2X7 receptor regulates lung surfactant secretion in a paracrine manner

    PubMed Central

    Mishra, Amarjit; Chintagari, Narendranath Reddy; Guo, Yujie; Weng, Tingting; Su, Lijing; Liu, Lin

    2011-01-01

    Alveolar epithelium is composed of alveolar epithelial cells of type I (AEC I) and type II (AEC II). AEC II secrete lung surfactant by means of exocytosis. P2X7 receptor (P2X7R), a P2 purinergic receptor, has been implicated in the regulation of synaptic transmission and inflammation. Here, we report that P2X7R, which is expressed in AEC I but not AEC II, is a novel mediator for the paracrine regulation of surfactant secretion in AEC II. In primary co-cultures of AEC I and AEC II benzoyl ATP (BzATP; an agonist of P2X7R) increased surfactant secretion, which was blocked by the P2X7R antagonist Brilliant Blue G. This effect was observed in AEC II co-cultured with human embryonic kidney HEK-293 cells stably expressing rat P2X7R, but not when co-cultured with AEC I in which P2X7R was knocked down or in co-cultures of AEC I and AEC II isolated from P2X7R−/− mice. BzATP-mediated secretion involved P2Y2 receptor signaling because it was reduced by the addition of the ATP scavengers apyrase and adenosine deaminase and the P2Y2 receptor antagonist suramin. However, the stimulation with BzATP might also release other substances that potentially increase surfactant secretion as a greater stimulation of secretion was observed in AEC II incubated with BzATP when co-cultured with E10 or HEK-293-P2X7R cells than with ATP alone. P2X7R−/− mice failed to increase surfactant secretion in response to hyperventilation, pointing to the physiological relevance of P2X7R in maintaining surfactant homeostasis in the lung. These results suggest that the activation of P2X7R increases surfactant secretion by releasing ATP from AEC I and subsequently stimulating P2Y2 receptors in AEC II. PMID:21266468

  20. Identification of vagal sensory receptors in the rat lung: are there subtypes of slowly adapting receptors?

    PubMed Central

    Bergren, D R; Peterson, D F

    1993-01-01

    1. We studied the characteristics of pulmonary sensory receptors whose afferent fibres are in the left vagus nerve of opened-chest rats. The activity of these receptors was recorded during mechanical ventilation approximating eupnoea, as well as during deflation, stepwise inflations and constant-pressure inflations of the lungs. Data were also collected from closed-chest rats and analysed separately. 2. Ninety-four per cent of receptors were located in the ipsilateral lung or airways with the remainder in the contralateral lung. 3. Not only were slowly adapting receptors (SARs) the most abundant pulmonary receptors but 21% of them were either exclusively or predominantly active during the deflationary phase of the ventilatory cycle. Deflationary units were found in opened- and closed-chest rats. The average conduction velocity for all fibres innervating SARs averaged 29.7 m s-1. 4. We found rapidly adapting receptors (RARs) to be extremely rare in the rat. Their activity was sparse and irregular. The conduction velocities of fibres innervating RARs averaged 12.3 m s-1. 5. Far more abundant than RARs in the remaining population of pulmonary fibres were C fibres. They were observed to have an average conduction velocity of 2.1 m s-1, base-level activity which was irregular and a high pressure threshold of activation and were stimulated by intravenous capsaicin injection. 6. Notable differences exist between pulmonary receptors in rats and those reported in other species. The variations include the abundant existence of intrapulmonary SARs with exclusively deflationary modulation and the rarity of RARs. We also encountered C fibres which have not previously been described systematically in the rat. PMID:8229824

  1. Liver growth factor induces testicular regeneration in EDS-treated rats and increases protein levels of class B scavenger receptors.

    PubMed

    Lobo, M V T; Arenas, M I; Huerta, L; Sacristán, S; Pérez-Crespo, M; Gutiérrez-Adán, A; Díaz-Gil, J J; Lasunción, M A; Martín-Hidalgo, A

    2015-01-15

    The aim of the present work was to determine the effects of liver growth factor (LGF) on the regeneration process of rat testes after chemical castration induced by ethane dimethanesulfonate (EDS) by analyzing some of the most relevant proteins involved in cholesterol metabolism, such as hormone sensitive lipase (HSL), 3β-hydroxysteroid dehydrogenase (3β-HSD), scavenger receptor SR-BI, and other components of the SR family that could contribute to the recovery of steroidogenesis and spermatogenesis in the testis. Sixty male rats were randomized to nontreated (controls) and LGF-treated, EDS-treated, and EDS + LGF-treated groups. Testes were obtained on days 10 (T1), 21 (T2), and 35 (T3) after EDS treatment, embedded in paraffin, and analyzed by immunohistochemistry and Western blot. LGF improved the recovery of the seminiferous epithelia, the appearance of the mature pattern of Leydig cell interstitial distribution, and the expression of mature SR-BI. Moreover, LGF treatment resulted in partial recovery of HSL expression in Leydig cells and spermatogonia. No changes in serum testosterone were observed in control or LGF-treated rats, but in EDS-castrated animals LGF treatment induced a progressive increase in serum testosterone levels and 3β-HSD expression. Based on the pivotal role of SR-BI in the uptake of cholesteryl esters from HDL, it is suggested that the observed effects of LGF would facilitate the provision of cholesterol for sperm cell growth and Leydig cell recovery.

  2. Cleavage of Type I Collagen by Fibroblast Activation Protein-α Enhances Class A Scavenger Receptor Mediated Macrophage Adhesion.

    PubMed

    Mazur, Anna; Holthoff, Emily; Vadali, Shanthi; Kelly, Thomas; Post, Steven R

    2016-01-01

    Pathophysiological conditions such as fibrosis, inflammation, and tumor progression are associated with modification of the extracellular matrix (ECM). These modifications create ligands that differentially interact with cells to promote responses that drive pathological processes. Within the tumor stroma, fibroblasts are activated and increase the expression of type I collagen. In addition, activated fibroblasts specifically express fibroblast activation protein-α (FAP), a post-prolyl peptidase. Although FAP reportedly cleaves type I collagen and contributes to tumor progression, the specific pathophysiologic role of FAP is not clear. In this study, the possibility that FAP-mediated cleavage of type I collagen modulates macrophage interaction with collagen was examined using macrophage adhesion assays. Our results demonstrate that FAP selectively cleaves type I collagen resulting in increased macrophage adhesion. Increased macrophage adhesion to FAP-cleaved collagen was not affected by inhibiting integrin-mediated interactions, but was abolished in macrophages lacking the class A scavenger receptor (SR-A/CD204). Further, SR-A expressing macrophages localize with activated fibroblasts in breast tumors of MMTV-PyMT mice. Together, these results demonstrate that FAP-cleaved collagen is a substrate for SR-A-dependent macrophage adhesion, and suggest that by modifying the ECM, FAP plays a novel role in mediating communication between activated fibroblasts and macrophages.

  3. Identification of a novel class B scavenger receptor homologue in Portunus trituberculatus: Molecular cloning and microbial ligand binding.

    PubMed

    Yang, Ning; Zhang, Dan-Feng; Tao, Zhen; Li, Meng; Zhou, Su-Ming; Wang, Guo-Liang

    2016-11-01

    Class B scavenger receptors (SRBs), which are present in mammals and insects, have been implicated in a wide range of functions. Herein, a novel SRB homologue, PtSRB, was cloned from the swimming crab, Portunus trituberculatus. PtSRB has 538 amino acid residues, and it consists of two transmembrane regions, a large extracellular loop, and two intracellular tails. A phylogenetic analysis showed that PtSRB distinctly clustered with Marsupenaeus japonicas SRB-1 and most Drosophila SRB homologues, including Croquemort, Peste, NinaD, and Santa Maria, but was separate from the Drosophila sensory neuron membrane protein, MjSRB-2, and all vertebrate SRBs. Real-time quantitative PCR analyses showed that the PtSRB gene was constitutively expressed in all tissues tested. When PtSRB was overexpressed in human embryonic kidney 293T cells, it was distributed in the membrane and cytoplasm. Moreover, in vitro assays showed that rPtSRB bound microbial lipopolysaccharide with low affinity, and lipoteichoic acid and peptidoglycan with high affinity. PtSRB transcripts were down-regulated after challenge with Vibrio alginolyticus or white spot syndrome virus, but not after a Candida lusitaniae challenge. This study provides valuable data for understanding the role of SRBs in the host defense against microbial pathogens, which will facilitate future studies of host-pathogen interactions in crabs.

  4. Scavenger receptor CD36 mediates uptake of high density lipoproteins in mice and by cultured cells[S

    PubMed Central

    Brundert, May; Heeren, Joerg; Merkel, Martin; Carambia, Antonella; Herkel, Johannes; Groitl, Peter; Dobner, Thomas; Ramakrishnan, Rajasekhar; Moore, Kathryn J.; Rinninger, Franz

    2011-01-01

    The mechanisms of HDL-mediated cholesterol transport from peripheral tissues to the liver are incompletely defined. Here the function of scavenger receptor cluster of differentiation 36 (CD36) for HDL uptake by the liver was investigated. CD36 knockout (KO) mice, which were the model, have a 37% increase (P = 0.008) of plasma HDL cholesterol compared with wild-type (WT) littermates. To explore the mechanism of this increase, HDL metabolism was investigated with HDL radiolabeled in the apolipoprotein (125I) and cholesteryl ester (CE, [3H]) moiety. Liver uptake of [3H] and 125I from HDL decreased in CD36 KO mice and the difference, i. e. hepatic selective CE uptake ([3H]125I), declined (–33%, P = 0.0003) in CD36 KO compared with WT mice. Hepatic HDL holo-particle uptake (125I) decreased (–29%, P = 0.0038) in CD36 KO mice. In vitro, uptake of 125I-/[3H]HDL by primary liver cells from WT or CD36 KO mice revealed a diminished HDL uptake in CD36-deficient hepatocytes. Adenovirus-mediated expression of CD36 in cells induced an increase in selective CE uptake from HDL and a stimulation of holo-particle internalization. In conclusion, CD36 plays a role in HDL uptake in mice and by cultured cells. A physiologic function of CD36 in HDL metabolism in vivo is suggested. PMID:21217164

  5. Scavenger receptor function of mouse FcγRIII contributes to progression of atherosclerosis in apoE hyperlipidemic mice1

    PubMed Central

    Zhu, Xinmei; Ng, Hang Pong; Lai, Yen-Chun; Craigo, Jodi K.; Nagilla, Pruthvi S.; Raghani, Pooja; Nagarajan, Shanmugam

    2014-01-01

    Recent studies showed loss of CD36 or scavenger receptor-AI/II (SR-A) does not ameliorate atherosclerosis in hyperlipidemic mouse model, suggesting receptors other than CD36 and SR-A may also contribute to atherosclerosis. In this report, we show that apoE-CD16 double knockout mice (apoE-CD16 DKO) have reduced atherosclerotic lesions compared with apoE KO mice. In vivo and in vitro foam cells analyses showed apoE-CD16 DKO macrophages accumulated less neutral lipids. Reduced foam cell formation in apoE-CD16 DKO mice is not due to change in expression of CD36, SR-A and LOX-1. This led to a hypothesis that CD16 may have scavenger receptor activity. We presented evidence that a soluble form of recombinant mouse CD16 (sCD16) bound to malondialdehyde-modified low-density lipoprotein (MDALDL), and this binding is blocked by molar excess of MDA-BSA and anti-MDA mAbs, suggesting CD16 specifically recognizes MDA epitopes. Interestingly, sCD16 inhibited MDALDL binding to macrophage cell line as well as sCD36, sSR-A and sLOX-1, indicating CD16 can cross-block MDALDL binding to other scavenger receptors. Anti-CD16 mAb inhibited IC binding to sCD16, while partially inhibited MDALDL binding to sCD16, suggesting MDALDL binding site may be in close proximity to the IC binding site in CD16. Loss of CD16 expression resulted in reduced levels of MDALDL induced pro-inflammatory cytokine expression. Finally, CD16 deficient macrophages showed reduced MDALDL-induced Syk phosphorylation. Collectively our findings suggest scavenger receptor activity of CD16 may in part contribute to the progression of atherosclerosis. PMID:25038257

  6. Class A Scavenger Receptor Exacerbates Osteoclastogenesis by an Interleukin-6-Mediated Mechanism through ERK and JNK Signaling Pathways

    PubMed Central

    Guo, Shuyu; Ni, Yuanyuan; Ben, Jingjing; Xia, Yang; Zhou, Tingting; Wang, Dongyue; Ni, Jieli; Bai, Hui; Wang, Lin; Ma, Junqing; Chen, Qi

    2016-01-01

    Osteoclasts originate from bone marrow monocyte/macrophage lineage cells, which are important for bone health. Class A scavenger receptor (SR-A) is a multifunctional molecule that functions during differentiation of monocyte into macrophages and osteoclasts. To further characterize the role of SR-A in osteoclasts, we used the murine tooth movement model (TM) and the murine anterior cruciate ligament transection model of osteoarthritis (ACLT OA). In these two models the bones involved are of different origin and have different properties. Bone resorption was decreased in SR-A-/- mice compared to SR-A+/+ mice. Further evaluation showed that the number of multinucleated osteoclasts in SR-A-/- mice, compared to SR-A+/+ mice, was significantly decreased both in vivo and in vitro. The levels of interleukin-6 (IL-6) produced by osteoclasts were reduced in SR-A-/- mice compared to SR-A+/+ mice. In the in vitro marrow-derived osteoclast formation assay and in both mouse models, osteoclastogenesis was restored to normal in SR-A-/- mice by administration of recombinant murine IL-6. Moreover, neutralization of IL-6 reduced the number of osteoclasts formed in SR-A+/+ mice of TM model. Both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK), but not p38, signaling pathways were downregulated in receptor activator of nuclear factor-κB ligand (RANKL)-stimulated SR-A-/- osteoclasts. Importantly, when treated with either ERK or JNK inhibitor, the numbers of osteoclasts generated from RANKL-induced bone marrow derived-macrophages of SR-A+/+ mice, and their IL-6 production, were significantly decreased. This suggests that SR-A activates the ERK and JNK signaling pathways, and promotes production of IL-6 by osteoclasts to further stimulate osteoclast formation. PMID:27766031

  7. Age related changes in steroid receptors on cultured lung fibroblasts

    SciTech Connect

    Barile, F.A.; Bienkowski, R.S.

    1986-03-05

    The number of high affinity glucocorticoid receptors (Ro) on human fetal lung fibroblasts decreases as the cells age in vitro, and it has been suggested that these cell systems may be useful models of age-related changes in vivo. They examined the relation between change in Ro with in vitro aging and donor age. Confluent monolayers of lung fibroblasts at various population doubling levels (PDL), were incubated with (/sup 3/H)-dexamethasone ((/sup 3/H)Dex) either alone or with excess (.01 mM) Dex. Specific binding was calculated as the difference between radioactivity in cells incubated with and without unlabeled Dex; Scatchard plots were used to analyze the data. Ro, measured as fmol (/sup 3/H)Dex/10/sup 6/ cells, for two lines of human fetal cells (HFL-1 and MRC-5) decreased with increasing age in vitro. However, human newborn (CRL-1485) and adult (CCL-201) cells and fetal rabbit cells (FAB-290), showed increases in Ro with continuous passage. For each cell line, the affinity constant (K/sub d/) did not change significantly with passage. They conclude that the direction of changes in steroid receptor levels on cells aging in vitro is influenced by donor age and species. Caution should be used in applying results obtained from model systems to aging organisms.

  8. Upregulation of Scavenger Receptor BI by Hepatic Nuclear Factor 4α through a Peroxisome Proliferator-Activated Receptor γ-Dependent Mechanism in Liver

    PubMed Central

    Zhang, Yi; Shen, Chen; Ai, Ding; Xie, Xuefen; Zhu, Yi

    2011-01-01

    Hepatic nuclear factor 4α (HNF4α) modulates the transcriptional activation of numerous metabolic genes in liver. In this study, gene-array analysis revealed that HNF4α overexpression increased peroxisome proliferator-activated receptorγ (PPARγ) greatly in cultured rat primary hepatocytes. PPAR-response-element-driven reporter gene expression could be elevated by HNF4α. Bioinformatics analysis revealed a high-affinity HNF4α binding site in the human PPARγ2 promoter and in vitro experiments showed that this promoter could be transactivated by HNF4α. The presence of HNF4α on the promoter was then confirmed by ChIP assay. In vivo, hepatic overexpression of HNF4α decreased cholesterol levels both in plasma and liver and several hepatic genes related to cholesterol metabolism, including scavenger receptor BI (SR-BI), were upregulated. The upregulation of SR-BI by HNF4α could be inhibited by a PPARγ antagonist in vitro. In conclusion, HNF4α regulates cholesterol metabolism in rat by modulating the expression of SR-BI in the liver, in which the upregulation of PPARγ was involved. PMID:22190905

  9. Silencing of the scavenger receptor (Class B - Type 1) gene using siRNA-loaded chitosan nanaoparticles in a HepG2 cell model.

    PubMed

    Farid, Mariane M; Hathout, Rania M; Fawzy, Mahmoud; Abou-Aisha, Khaled

    2014-11-01

    Gene silencing mediated by small interfering RNA (siRNA) has gained increasing interest through the past few decades. However, the partial negative charge and the susceptibility to degradation by nucleases have hampered its use in a naked form. In this study, we investigated the use of chitosan nanoparticles as non-viral delivery carriers of siRNA. As a model target, we selected the scavenger receptor (SR-B1), due to its proposed involvement in hepatitis C virus (HCV) internalization. Low molecular weight (LMW) chitosan nanoparticles were prepared by simple ionic gelation using sodium tripolyphosphate (TPP) as a cross-linking agent; a fixed chitosan and TPP concentration of 0.1% was used, and a chitosan to TPP weight ratios of 3:1, 5:1, and 9:1 were investigated. Nanoparticle uptake efficiency was measured using FITC-labeled chitosan nanoparticles and silencing of scavenger receptor class B type 1 (SR-B1) in HepG2 cell line was tested using Western blot analysis. Nanoparticles produced were spherical in shape with an optimum particle size and distribution. The uptake of FITC-labeled nanoparticles by HepG2 cells was found to be both concentration and time dependent. Furthermore, Western Blot analysis showed that SR-B1 siRNA was able to silence the scavenger receptor for up to 96 h of incubation with HepG2 cells.

  10. Scavenger receptor collectin placenta 1 is a novel receptor involved in the uptake of myelin by phagocytes

    PubMed Central

    Bogie, Jeroen F. J.; Mailleux, Jo; Wouters, Elien; Jorissen, Winde; Grajchen, Elien; Vanmol, Jasmine; Wouters, Kristiaan; Hellings, Niels; Van Horsen, Jack; Vanmierlo, Tim; Hendriks, Jerome J. A.

    2017-01-01

    Myelin-containing macrophages and microglia are the most abundant immune cells in active multiple sclerosis (MS) lesions. Our recent transcriptomic analysis demonstrated that collectin placenta 1 (CL-P1) is one of the most potently induced genes in macrophages after uptake of myelin. CL-P1 is a type II transmembrane protein with both a collagen-like and carbohydrate recognition domain, which plays a key role in host defense. In this study we sought to determine the dynamics of CL-P1 expression on myelin-containing phagocytes and define the role that it plays in MS lesion development. We show that myelin uptake increases the cell surface expression of CL-P1 by mouse and human macrophages, but not by primary mouse microglia in vitro. In active demyelinating MS lesions, CL-P1 immunoreactivity was localized to perivascular and parenchymal myelin-laden phagocytes. Finally, we demonstrate that CL-P1 is involved in myelin internalization as knockdown of CL-P1 markedly reduced myelin uptake. Collectively, our data indicate that CL-P1 is a novel receptor involved in myelin uptake by phagocytes and likely plays a role in MS lesion development. PMID:28317919

  11. Hepatic lipase promotes the selective uptake of high density lipoprotein-cholesteryl esters via the scavenger receptor B1.

    PubMed

    Lambert, G; Chase, M B; Dugi, K; Bensadoun, A; Brewer, H B; Santamarina-Fojo, S

    1999-07-01

    Hepatic lipase (HL) plays a major role in high-density lipoprotein (HDL) metabolism both as a lipolytic enzyme and as a ligand. To investigate whether HL enhances the uptake of HDL-cholesteryl ester (CE) via the newly described scavenger receptor BI (SR-BI), we measured the effects of expressing HL and SR-BI on HDL-cell association as well as uptake of 125I-labeled apoA-I and [3H]CE-HDL, by embryonal kidney 293 cells. As expected, HDL cell association and CE selective uptake were increased in SR-BI transfected cells by 2- and 4-fold, respectively, compared to controls (P < 0.001). Cells transfected with HL alone or in combination with SR-BI expressed similar amounts of HL, 20% of which was bound to cell surface proteoglycans. HL alone increased HDL cell association by 2-fold but had no effect on HDL-CE uptake in 293 cells. However, in cells expressing SR-BI, HL further enhanced the selective uptake of CE from HDL by 3-fold (P < 0.001). To determine whether the lipolytic and/or ligand function of HL are required in this process, we generated a catalytically inactive form of HL (HL-145G). Cells co-transfected with HL-145G and SR-BI increased their HDL cell association and HDL-CE selective uptake by 1.4-fold compared to cells expressing SR-BI only (P < 0.03). Heparin abolished the effect of HL-145G on SR-BI-mediated HDL-CE selective uptake.Thus, the enhanced uptake of HDL-CE by HL is mediated by both its ligand role, which requires interaction with proteoglycans, and by lipolysis with subsequent HDL particle remodeling. These results establish HL as a major modulator of SR-BI mediated selective uptake of HDL-CE.

  12. Regulation of smooth muscle cell scavenger receptor expression in vivo by atherogenic diets and in vitro by cytokines.

    PubMed Central

    Li, H; Freeman, M W; Libby, P

    1995-01-01

    Scavenger receptor (ScR)-mediated uptake of modified lipoproteins may contribute to the transformation of smooth muscle cells into lipid-laden foam cells during atherogenesis. This study examined the in vivo expression of ScRs in aortas, with or without balloon injury, taken from hypercholesterolemic or normocholesterolemic rabbits. Numerous intimal cells in the rabbit aortic lesions expressed ScRs as detected by immunocytochemical staining with a goat anti-rabbit ScR antibody. Single immunostaining for cell identification markers in serial sections, as well as double staining, confirmed the expression of ScRs by both intimal smooth muscle cells and macrophages. To explore potential inducers of ScR expression by smooth muscle cells in vivo, we studied the regulation of ScR expression in vitro by cytokines known to be present in atherosclerotic lesions. Tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma (IFN-gamma) increased ScR mRNA levels, protein expression, and AcLDL degradative activity in cultured rabbit aortic smooth muscle cells. The induction of ScR expression in intimal smooth muscle cells in vivo could be a useful marker of smooth muscle cell activation during atherogenesis and may contribute to foam cell formation by this cell type following balloon injury and/or hypercholesterolemia. Cytokines, such as TNF-alpha or IFN-gamma, may stimulate some of the phenotypic changes that characterize the alteration in gene expression of intimal smooth muscle cells in rabbit atherosclerotic lesions. Images PMID:7814605

  13. Expression and regulation of scavenger receptor class B type 1 in the rat ovary and uterus during the estrous cycle.

    PubMed

    Wang, Yalei; Meng, Chenling; Wei, Quanwei; Shi, Fangxiong; Mao, Dagan

    2015-04-01

    Scavenger receptor class B type 1 (SR-B1) preferentially mediates the selective uptake of high density lipoprotein-cholesterol ester and the delivery of cholesterol for steroidogenesis. Although multiple analyses have investigated the function of SR-B1 in the liver, adrenal and ovary, its expression in rat ovary and uterus during the estrous cycle is lacking. In the present study, real-time PCR, western blot and immunohistochemistry (IHC) were used to investigate SR-B1 expression in the rat ovary and uterus during the estrous cycle. The results demonstrated that ovarian SR-B1 expression was in a stage-dependent manner, continuously increased from proestrus and kept elevated during metoestrus, while uterine SR-B1 expression decreased from proestrus to diestrus. To determine whether ovarian and uterine SR-B1 expression were affected by sex steroid hormones, immature rats were treated with 17 β-estradiol (E2), progesterone (P4), or their antagonists from postnatal days 24-26. Results showed that the levels of SR-B1 mRNA and protein were significantly up-regulated by E2 in both the ovary and uterus. IHC results showed that SR-B1 was primarily localized in the oocytes, theca internal cells (T-I) of follicles, interstitial cells (IC) as well as corpus luteum (CL), but not granulosa cells (GC) in the ovary during the estrous cycle. Uterine SR-B1 was highly expressed in the endometrial luminal epithelial cells (LEC) and glandular epithelial cells (GEC) as well as in the circular muscle (CM) cells, and weak staining in stromal cells (SC) through estrous cycle. Taken together, SR-B1 expression in the ovary and uterus across the estrous cycle demonstrate that SR-B1 may be involved in uterine function, follicular development as well as luteal function.

  14. Molecular determinants of enterovirus 71 viral entry: cleft around GLN-172 on VP1 protein interacts with variable region on scavenge receptor B 2.

    PubMed

    Chen, Pan; Song, Zilin; Qi, Yonghe; Feng, Xiaofeng; Xu, Naiqing; Sun, Yinyan; Wu, Xing; Yao, Xin; Mao, Qunyin; Li, Xiuling; Dong, Wenjuan; Wan, Xiaobo; Huang, Niu; Shen, Xinliang; Liang, Zhenglun; Li, Wenhui

    2012-02-24

    Enterovirus 71 (EV71) is one of the major pathogens that cause hand, foot, and mouth disease outbreaks in young children in the Asia-Pacific region in recent years. Human scavenger receptor class B 2 (SCARB2) is the main cellular receptor for EV71 on target cells. The requirements of the EV71-SCARB2 interaction have not been fully characterized, and it has not been determined whether SCARB2 serves as an uncoating receptor for EV71. Here we compared the efficiency of the receptor from different species including human, horseshoe bat, mouse, and hamster and demonstrated that the residues between 144 and 151 are critical for SCARB2 binding to viral capsid protein VP1 of EV71 and seven residues from the human receptor could convert murine SCARB2, an otherwise inefficient receptor, to an efficient receptor for EV71 viral infection. We also identified that EV71 binds to SCARB2 via a canyon of VP1 around residue Gln-172. Soluble SCARB2 could convert the EV71 virions from 160 S to 135 S particles, indicating that SCARB2 is an uncoating receptor of the virus. The uncoating efficiency of SCARB2 significantly increased in an acidic environment (pH 5.6). These studies elucidated the viral capsid and receptor determinants of enterovirus 71 infection and revealed a possible target for antiviral interventions.

  15. New Insight into Atherosclerosis in Hemodialysis Patients: Overexpression of Scavenger Receptor and Macrophage Colony-Stimulating Factor Genes

    PubMed Central

    Nishida, Miki; Ando, Minoru; Iwamoto, Yusuke; Tsuchiya, Ken; Nitta, Kosaku

    2016-01-01

    Background Scavenger receptors (SRs) play a pivotal role in atherogenesis. The mechanism of atherosclerosis, which is specific to hemodialysis (HD) patients, was studied on the basis of SR gene expressions. Methods The gene expressions of SR type A (SR-A) and CD36 were studied in peripheral monocytes by real-time reverse transcription polymerase chain reaction. Data were compared between HD (n = 30) and age-matched control subjects (n = 10). Serum levels of macrophage colony-stimulating factor (M-CSF) were measured with enzyme-linked immunosorbent assay to test its role in SR expression. The statistical differences and associations between two continuous variables were assessed using the Mann-Whitney U test and Pearson's correlation coefficient, respectively. Results The relative quantities of SR mRNAs were significantly greater in HD patients than in controls [median (interquartile range): SR-A, 1.67 (0.96-2.76) vs. 0.90 (0.60-1.04), p = 0.0060; CD36, 1.09 (0.88-1.74) vs. 0.74 (0.64-0.99), p = 0.0255]. The serum concentration of M-CSF was significantly higher in HD patients than in controls [1, 121 (999-1,342) vs. 176 (155-202) pg/ml, p < 0.0001]. In addition, the relative quantity of M-CSF mRNA was significantly greater in HD patients than in controls [0.79 (0.42-1.53) vs. 0.42 (0.28-0.66), p = 0.0392]. The serum M-CSF levels were positively correlated with both the relative quantity of SR-A mRNA (r2 = 0.1681, p = 0.0086) and that of CD36 mRNA (r2 = 0.1202, p = 0.0284) in all subjects (n = 40). Conclusion HD patients are predisposed to atherosclerosis as a consequence of their enhanced monocyte SR expressions. SRs and M-CSF are potential therapeutic targets for atherosclerosis in this high-risk population. PMID:27721822

  16. Scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte.

    PubMed

    Reboul, Emmanuelle; Klein, Alexis; Bietrix, Florence; Gleize, Béatrice; Malezet-Desmoulins, Christiane; Schneider, Martina; Margotat, Alain; Lagrost, Laurent; Collet, Xavier; Borel, Patrick

    2006-02-24

    Although cellular uptake of vitamin E was initially described as a passive process, recent studies in the liver and brain have shown that SR-BI (scavenger receptor class B type I) is involved in this phenomenon. As SR-BI is expressed at high levels in the intestine, the present study addressed the involvement of SR-BI in vitamin E trafficking across enterocytes. Apical uptake and efflux of the main dietary forms of vitamin E were examined using Caco-2 TC-7 cell monolayers as a model of human intestinal epithelium. (R,R,R)-gamma-tocopherol bioavailability was compared between wild-type mice and mice overexpressing SR-BI in the intestine. The effect of vitamin E on enterocyte SR-BI mRNA levels was measured by real-time quantitative reverse transcription-PCR. Concentration-dependent curves for vitamin E uptake were similar for (R,R,R)-alpha-, (R,R,R)-gamma-, and dl-alpha-tocopherol. (R,R,R)-alpha-tocopherol transport was dependent on incubation temperature, with a 60% reduction in absorption at 4 degrees C compared with 37 degrees C (p < 0.05). Vitamin E flux in enterocytes was directed from the apical to the basal side, with a relative 10-fold reduction in the transfer process when measured in the opposite direction (p < 0.05). Co-incubation with cholesterol, gamma-tocopherol, or lutein significantly impaired alpha-tocopherol absorption. Anti-human SR-BI antibodies and BLT1 (a chemical inhibitor of lipid transport via SR-BI) blocked up to 80% of vitamin E uptake and up to 30% of apical vitamin E efflux (p < 0.05), and similar results were obtained for (R,R,R)-gamma-tocopherol. SR-BI mRNA levels were not significantly modified after a 24-h incubation of Caco-2 cells with vitamin E. Finally, (R,R,R)-gamma-tocopherol bioavailability was 2.7-fold higher in mice overexpressing SR-BI than in wild-type mice (p < 0.05). The present data show for the first time that vitamin E intestinal absorption is, at least in part, mediated by SR-BI.

  17. Investigation of genetic variation in scavenger receptor class B, member 1 (SCARB1) and association with serum carotenoids

    PubMed Central

    McKay, Gareth J; Loane, Edward; Nolan, John M; Patterson, Christopher C; Meyers, Kristin J; Mares, Julie A; Yonova-Doing, Ekaterina; Hammond, Christopher J; Beatty, Stephen; Silvestri, Giuliana

    2013-01-01

    Objective To investigate association of scavenger receptor class B, member 1 (SCARB1) genetic variants with serum carotenoid levels of lutein (L) and zeaxanthin (Z) and macular pigment optical density (MPOD). Design A cross-sectional study of healthy adults aged 20-70. Participants 302 participants recruited following local advertisement. Methods MPOD was measured by customized heterochromatic flicker photometry. Fasting blood samples were taken for serum L and Z measurement by HPLC and lipoprotein analysis by spectrophotometric assay. Forty-seven single nucleotide polymorphisms (SNPs) across SCARB1 were genotyped using Sequenom technology. Association analyses were performed using PLINK to compare allele and haplotype means, with adjustment for potential confounding and correction for multiple comparisons by permutation testing. Replication analysis was performed in the TwinsUK and CAREDS cohorts. Main outcome measures Odds ratios (ORs) for macular pigment optical density area, serum lutein and zeaxanthin concentrations associated with genetic variations in SCARB1 and interactions between SCARB1 and sex. Results Following multiple regression analysis with adjustment for age, body mass index, sex, high-density lipoprotein cholesterol (HDLc), low-density lipoprotein cholesterol (LDLc), triglycerides, smoking, dietary L and Z levels, 5 SNPs were significantly associated with serum L concentration and 1 SNP with MPOD (P<0.01). Only the association between rs11057841 and serum L withstood correction for multiple comparisons by permutation testing (P<0.01) and replicated in the TwinsUK cohort (P=0.014). Independent replication was also observed in the CAREDS cohort with rs10846744 (P=2×10−4), a SNP in high linkage disequilibrium with rs11057841 (r2=0.93). No significant interactions by sex were found. Haplotype analysis revealed no stronger association than obtained with single SNP analyses. Conclusions Our study has identified association between rs11057841 and

  18. Structure-activity relationships of GHRP-6 azapeptide ligands of the CD36 scavenger receptor by solid-phase submonomer azapeptide synthesis.

    PubMed

    Sabatino, David; Proulx, Caroline; Pohankova, Petra; Ong, Huy; Lubell, William D

    2011-08-17

    The cluster of differentiation 36 (CD36) class B scavenger receptor binds a variety of biologically endogenous ligands in addition to synthetic peptides (i.e., growth hormone-releasing peptides, GHRPs), which modulate biological function related to anti-angiogenic and anti-atherosclerotic activities. Affinity labeling had previously shown that GHRP-6 analogues such as hexarelin, [2-Me-W(2)]GHRP-6 (1), bind to the lysine-rich domain of the CD36 receptor. Moreover, the azapeptide analogue [aza-F(4)]GHRP-6, 2, exhibited a characteristic β-turn conformation as described by CD and NMR spectroscopy and a slightly higher CD36 binding affinity relative to hexarelin (1.34 and 2.37 μM, respectively), suggesting receptor binding was mediated by the conformation and the aromatic residues of these peptide sequences. Ligand-receptor binding interactions were thus explored using azapeptides to examine influences of side-chain diversity and backbone conformation. In particular, considering that aromatic cation interactions may contribute to binding affinity, we have explored the potential of introducing salt bridges to furnish GHRP-6 azapeptide ligands of the CD36 receptor. Fifteen aza-glutamic acid analogues related to 2 were prepared by submonomer solid-phase synthesis. The azapeptide side chains were installed by novel approaches featuring alkylation of resin-bound semicarbazone with Michael acceptors and activated allylic acetates in the presence of phosphazene base (BTPP). Moreover, certain Michael adducts underwent intramolecular cyclization during semicarbazone deprotection, leading to novel pyrrazoline and aza-pyroglutamate N-terminal residues. Structural studies indicated that contingent on sequence the [aza-Glu]GHRP-6 analogues exhibited CD spectra characteristic of random coil, polyproline type II and β-turn secondary structures in aqueous media. In covalent competition binding studies with the GHRP-6 prototype hexarelin bearing a radiotracer, certain [aza-Glu]GHRP-6

  19. Neuroendocrine factors regulate retinoic acid receptors in normal and hypoplastic lung development

    PubMed Central

    Pereira-Terra, Patrícia; Moura, Rute S; Nogueira-Silva, Cristina; Correia-Pinto, Jorge

    2015-01-01

    Congenital diaphragmatic hernia (CDH) is characterised by a spectrum of lung hypoplasia and consequent pulmonary hypertension, leading to high morbidity and mortality rates. Moreover, CDH has been associated with an increase in the levels of pulmonary neuroendocrine factors, such as bombesin and ghrelin, and a decrease in the action of retinoic acid (RA). The present study aimed to elucidate the interaction between neuroendocrine factors and RA. In vitro analyses were performed on Sprague–Dawley rat embryos. Normal lung explants were treated with bombesin, ghrelin, a bombesin antagonist, a ghrelin antagonist, dimethylsulfoxide (DMSO), RA dissolved in DMSO, bombesin plus RA and ghrelin plus RA. Hypoplastic lung explants (nitrofen model) were cultured with bombesin, ghrelin, bombesin antagonist or ghrelin antagonist. The lung explants were analysed morphometrically, and retinoic acid receptor (RAR) α, β and γ expression levels were assessed via Western blotting. Immunohistochemistry analysis of RAR was performed in normal and hypoplastic lungs 17.5 days post-conception (dpc). Compared with the controls, hypoplastic lungs exhibited significantly higher RARα/γ expression levels. Furthermore considering hypoplastic lungs, bombesin and ghrelin antagonists decreased RARα/γ expression. Normal lung explants (13.5 dpc) treated with RA, bombesin plus RA, ghrelin plus RA, bombesin or ghrelin exhibited increased lung growth. Moreover, bombesin and ghrelin increased RARα/γ expression levels, whereas the bombesin and ghrelin antagonists decreased RARα/γ expression. This study demonstrates for the first time that neuroendocrine factors function as lung growth regulators, sensitising the lung to the action of RA through up-regulation of RARα and RARγ. Key points Retinoic acid (RA) and ghrelin levels are altered in human hypoplastic lungs when compared to healthy lungs. Although considerable data have been obtained about RA, ghrelin and bombesin in the congenital

  20. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    SciTech Connect

    Wairagu, Peninah M.; Park, Kwang Hwa; Kim, Jihye; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Jung, Soon-Hee; Yong, Suk-Joong; Jeong, Yangsik

    2014-05-09

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs.

  1. Scavenger Receptor Class B, Type I, a CD36 Related Protein in Macrobrachium nipponense: Characterization, RNA Interference, and Expression Analysis with Different Dietary Lipid Sources

    PubMed Central

    Ding, Zhili; Luo, Na; Kong, Youqin; Li, Jingfen; Zhang, Yixiang; Cao, Fang

    2016-01-01

    The scavenger receptor class B, type I (SR-BI), is a member of the CD36 superfamily comprising transmembrane proteins involved in mammalian and fish lipid homeostasis regulation. We hypothesize that this receptor plays an important role in Macrobrachium nipponense lipid metabolism. However, little attention has been paid to SR-BI in commercial crustaceans. In the present study, we report a cDNA encoding M. nipponense scavenger receptor class B, type I (designated as MnSR-BI), obtained from a hepatopancreas cDNA library. The complete MnSR-BI coding sequence was 1545 bp, encoding 514 amino acid peptides. The MnSR-BI primary structure consisted of a CD36 domain that contained two transmembrane regions at the N- and C-terminals of the protein. SR-BI mRNA expression was specifically detected in muscle, gill, ovum, intestine, hepatopancreas, stomach, and ovary tissues. Furthermore, its expression in the hepatopancreas was regulated by dietary lipid sources, with prawns fed soybean and linseed oils exhibiting higher expression levels. RNAi-based SR-BI silencing resulted in the suppression of its expression in the hepatopancreas and variation in the expression of lipid metabolism-related genes. This is the first report of SR-BI in freshwater prawns and provides the basis for further studies on SR-BI in crustaceans. PMID:28003996

  2. Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung

    SciTech Connect

    Mak, J.C.; Barnes, P.J. )

    1990-06-01

    Muscarinic receptor subtypes have been localized in human and guinea pig lung sections by an autoradiographic technique, using (3H)(-)quinuclidinyl benzilate (( 3H)QNB) and selective muscarinic antagonists. (3H)QNB was incubated with tissue sections for 90 min at 25 degrees C, and nonspecific binding was determined by incubating adjacent serial sections in the presence of 1 microM atropine. Binding to lung sections had the characterization expected for muscarinic receptors. Autoradiography revealed that muscarinic receptors were widely distributed in human lung, with dense labeling over submucosal glands and airway ganglia, and moderate labeling over nerves in intrapulmonary bronchi and of airway smooth muscle of large and small airways. In addition, alveolar walls were uniformly labeled. In guinea pig lung, labeling of airway smooth muscle was similar, but in contrast to human airways, epithelium was labeled but alveolar walls were not. The muscarinic receptors of human airway smooth muscle from large to small airways were entirely of the M3-subtype, whereas in guinea pig airway smooth muscle, the majority were the M3-subtype with a very small population of the M2-subtype present. In human bronchial submucosal glands, M1- and M3-subtypes appeared to coexist in the proportions of 36 and 64%, respectively. In human alveolar walls the muscarinic receptors were entirely of the M1-subtype, which is absent from the guinea pig lung. No M2-receptors were demonstrated in human lung. The localization of M1-receptors was confirmed by direct labeling with (3H)pirenzepine. With the exception of the alveolar walls in human lung, the localization of muscarinic receptor subtypes on structures in the lung is consistent with known functional studies.

  3. Genetic Variants at the PDZ-Interacting Domain of the Scavenger Receptor Class B Type I Interact with Diet to Influence the Risk of Metabolic Syndrome in Obese Men and Women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The scaffolding protein PDZ domain containing 1 (PDZK1) regulates the HDL receptor scavenger receptor class B type I. However, the effect of PDZK1 genetic variants on lipids and metabolic syndrome (MetS) traits remains unknown. This study evaluated the association of 3 PDZK1 single nucleotide polymo...

  4. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    SciTech Connect

    Maneckjee, R.; Minna, J.D. Uniformed Services Univ. of the Health Sciences, Bethesda, MD )

    1990-05-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.

  5. The physiological expression of scavenger receptor SR-B1 in canine endometrial and placental epithelial cells and its potential involvement in pathogenesis of pyometra.

    PubMed

    Gabriel, C; Becher-Deichsel, A; Hlavaty, J; Mair, G; Walter, I

    2016-06-01

    Pyometra, the purulent inflammation of the uterus, is a common uterine disease of bitches that has potentially life-threatening consequences. The opportunistic bacterial infection of the uterus often progresses into the serious systemic inflammatory response syndrome. In a previous study, we characterized epithelial foam cells in the canine endometrial surface occurring in metestrus, and we regularly observed pronounced epithelial foam-cell formations in pyometra-affected uteri. Therefore, it was assumed that the mechanism behind lipid droplet accumulation in surface epithelial cells might even increase bacterial binding capacity and promote pyometra development. Lipid droplet accumulation in epithelial cells is accomplished via specialized lipid receptors called scavenger receptors (SR). Scavenger receptor class B type 1 (SR-B1) is an important receptor for lipid accumulation in diverse cell types, but it is also a strong binding partner for bacteria, and thereby enhances bacterial adhesion and clinical signs of systemic inflammatory response syndrome. In the present study, after the isolation of metestrous surface epithelial cells from canine uteri by laser capture microdissection, SR-B1 was identified at the messenger RNA (mRNA) level by quantitative real time polymerase chain reaction and also at the protein level by means of immunohistochemistry. In pyometra-affected uteri, SR-B1 mRNA expression was higher than that in the healthy control samples, and SR-B1 protein was expressed in the surface and crypt epithelial cells. Furthermore, to understand the physiological role of SR-B1 expression in the metestrus surface epithelial cells, we investigated its expression in the epithelial cells of the glandular chambers of canine placenta in different stages of gestation because these cells are also characterized by lipid droplet accumulation. SR-B1 was present in the placental epithelial cells of the glandular chambers from 25 to 30 and 45 to 50 days of gestation

  6. Mediator mechanisms involved in TRPV1, TRPA1 and P2X receptor-mediated sensory transduction of pulmonary ROS by vagal lung C-fibers in rats.

    PubMed

    Lin, Yu-Jung; Hsu, Hsao-Hsun; Ruan, Ting; Kou, Yu Ru

    2013-10-01

    We investigated the mediator mechanisms involved in the sensory transduction of pulmonary reactive oxygen species (ROS) by vagal lung C-fibers in anesthetized rats. Airway challenge of aerosolized H₂O₂ (0.4%) stimulated these afferent fibers. The H₂O₂-induced responses were reduced by a cyclooxygenase inhibitor or ATP scavengers and also attenuated by an antagonist of TRPV1, TRPA1 or P2X receptors. The suppressive effect of the cyclooxygenase inhibitor was not affected by a combined treatment with the TRPV1 or TRPA1 antagonist, but was amplified by a combined treatment with the P2X antagonists. The suppressive effect of ATP scavengers was not affected by a combined treatment with the P2X antagonist, but was amplified by a combined treatment with the TRPV1 or TRPA1 antagonist. Thus, the actions of cyclooxygenase metabolites are mediated through the functioning of the TRPV1 and TRPA1 receptors, whereas the action of ATP is mediated through the functioning of P2X receptors.

  7. Hydrogen scavengers

    DOEpatents

    Carroll, David W.; Salazar, Kenneth V.; Trkula, Mitchell; Sandoval, Cynthia W.

    2002-01-01

    There has been invented a codeposition process for fabricating hydrogen scavengers. First, a .pi.-bonded allylic organometallic complex is prepared by reacting an allylic transition metal halide with an organic ligand complexed with an alkali metal; and then, in a second step, a vapor of the .pi.-bonded allylic organometallic complex is combined with the vapor of an acetylenic compound, irradiated with UV light, and codeposited on a substrate.

  8. Epidermal growth factor receptor and KRAS mutations in Brazilian lung cancer patients

    PubMed Central

    Bacchi, Carlos E.; Ciol, Heloísa; Queiroga, Eduardo M.; Benine, Lucimara C.; Silva, Luciana H.; Ojopi, Elida B.

    2012-01-01

    OBJECTIVE: Epidermal growth factor receptor is involved in the pathogenesis of non-small cell lung cancer and has recently emerged as an important target for molecular therapeutics. The KRAS oncogene also plays an important role in the development of lung cancer. The aim of this study was to evaluate the frequency of epidermal growth factor receptor and KRAS mutations in a population of Brazilian patients with non-small cell lung cancer. METHODS: A total of 207 specimens from Brazilian patients with non-small cell lung cancer were analyzed for activating epidermal growth factor receptor and KRAS somatic mutations, and their associations with clinicopathological characteristics (including age, gender, ethnicity, smoking habits, and histological subtype) were examined. RESULTS: We identified 63 cases (30.4%) with epidermal growth factor receptor mutations and 30 cases (14.6%) with KRAS mutations. The most frequent epidermal growth factor receptor mutation we detected was a deletion in exon 19 (60.3%, 38 patients), followed by an L858R amino acid substitution in exon 21 (27%, 17 patients). The most common types of KRAS mutations were found in codon 12. There were no significant differences in epidermal growth factor receptor or KRAS mutations by gender or primary versus metastatic lung cancer. There was a higher prevalence of KRAS mutations in the non-Asian patients. Epidermal growth factor receptor mutations were more prevalent in adenocarcinomas than in non-adenocarcinoma histological types. Being a non-smoker was significantly associated with the prevalence of epidermal growth factor receptor mutations, but the prevalence of KRAS mutations was significantly associated with smoking. CONCLUSIONS: This study is the first to examine the prevalence of epidermal growth factor receptor and KRAS mutations in a Brazilian population sample with non-small cell lung cancer. PMID:22666783

  9. The Receptor for Advanced Glycation End Products (RAGE) and the Lung

    PubMed Central

    Buckley, Stephen T.; Ehrhardt, Carsten

    2010-01-01

    The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface molecules. As a pattern-recognition receptor capable of binding a diverse range of ligands, it is typically expressed at low levels under normal physiological conditions in the majority of tissues. In contrast, the lung exhibits high basal level expression of RAGE localised primarily in alveolar type I (ATI) cells, suggesting a potentially important role for the receptor in maintaining lung homeostasis. Indeed, disruption of RAGE levels has been implicated in the pathogenesis of a variety of pulmonary disorders including cancer and fibrosis. Furthermore, its soluble isoforms, sRAGE, which act as decoy receptors, have been shown to be a useful marker of ATI cell injury. Whilst RAGE undoubtedly plays an important role in the biology of the lung, it remains unclear as to the exact nature of this contribution under both physiological and pathological conditions. PMID:20145712

  10. Low-density lipoprotein receptor-related protein-1 facilitates heme scavenging after intracerebral hemorrhage in mice.

    PubMed

    Wang, Gaiqing; Manaenko, Anatol; Shao, Anwen; Ou, Yibo; Yang, Peng; Budbazar, Enkhjargal; Nowrangi, Derek; Zhang, John H; Tang, Jiping

    2016-06-17

    Heme-degradation after erythrocyte lysis plays an important role in the pathophysiology of intracerebral hemorrhage. Low-density lipoprotein receptor-related protein-1 is a receptor expressed predominately at the neurovascular interface, which facilitates the clearance of the hemopexin and heme complex. In the present study, we investigated the role of low-density lipoprotein receptor-related protein-1 in heme removal and neuroprotection in a mouse model of intracerebral hemorrhage. Endogenous low-density lipoprotein receptor-related protein-1 and hemopexin were increased in ipsilateral brain after intracerebral hemorrhage, accompanied by increased hemoglobin levels, brain water content, blood-brain barrier permeability and neurological deficits. Exogenous human recombinant low-density lipoprotein receptor-related protein-1 protein reduced hematoma volume, brain water content surrounding hematoma, blood-brain barrier permeability and improved neurological function three days after intracerebral hemorrhage. The expression of malondialdehyde, fluoro-Jade C positive cells and cleaved caspase 3 was increased three days after intracerebral hemorrhage in the ipsilateral brain tissues and decreased with recombinant low-density lipoprotein receptor-related protein-1. Intracerebral hemorrhage decreased and recombinant low-density lipoprotein receptor-related protein-1 increased the levels of superoxide dismutase 1. Low-density lipoprotein receptor-related protein-1 siRNA reduced the effect of human recombinant low-density lipoprotein receptor-related protein-1 on all outcomes measured. Collectively, our findings suggest that low-density lipoprotein receptor-related protein-1 contributed to heme clearance and blood-brain barrier protection after intracerebral hemorrhage. The use of low-density lipoprotein receptor-related protein-1 as supplement provides a novel approach to ameliorating intracerebral hemorrhage brain injury via its pleiotropic neuroprotective effects.

  11. Evidence for impaired retinoic acid receptor-thyroid hormone receptor AF-2 cofactor activity in human lung cancer.

    PubMed Central

    Moghal, N; Neel, B G

    1995-01-01

    Retinoic acid (RA) is required for normal airway epithelial cell growth and differentiation both in vivo and in vitro. One of the earliest events following the exposure of bronchial epithelial cells to RA is the strong induction of RA receptor beta (RAR beta) mRNA. Previous work established that many lung cancer cell lines and primary tumors display abnormal RAR beta mRNA expression, most often absence or weak expression of the RAR beta 2 isoform, even after RA treatment. Restoration of RAR beta 2 into RAR beta-negative lung cancer cell lines has been reported to inhibit tumorigenicity. Since RAR beta 2 inactivation may contribute to lung cancer, we have investigated the molecular mechanism of defective RAR beta 2 expression. Nuclear run-on assays and transient transfections with RAR beta 2 promoter constructs indicate the presence of trans-acting transcriptional defects in most lung cancer cell lines, which map to the RA response element (RARE). These defects cannot be complemented by RAR-retinoid X receptor cotransfection and can be separated into two types: (i) one affecting transcription from direct repeat RAREs, but not palindromic RAREs, and (ii) another affecting transcription from both types of RARE. Studies using chimeras between RAR alpha, TR alpha, and other transcription factors suggest the existence of novel RAR-thyroid hormone receptor AF-2-specific cofactors, which are necessary for high levels of transcription. Furthermore, these factors may be frequently inactivated in human lung cancer. PMID:7791800

  12. Silencing Receptor EphA2 Enhanced Sensitivity to Lipoplatin™ in Lung Tumor and MPM Cells.

    PubMed

    Lee, Hung-Yen; Mohammed, Kamal A; Goldberg, Eugene P; Kaye, Frederic; Najmunnisa, Nasreen

    2016-08-08

    Receptor EphA2 is overexpressed in lung cancer and malignant pleural mesothelioma (MPM) which promote tumorogenesis. Lipoplatin™, a new liposomal cisplatin formulation, is used against resistant tumors. Use of cisplatin-based drugs leads to unacceptable toxicities. To improve the effectiveness of Lipoplatin, enhancing the cellular sensitivity of lung tumor and MPM cells is critical. Therefore, we targeted receptor EphA2 by silencing interference RNA (siRNA) and treated tumor cells with Lipoplatin. The combined effects of siRNA-EphA2 and Lipoplatin were determined. We report that silencing EphA2 significantly enhanced the cellular sensitivity of lung tumor and MPM cells to Lipoplatin and maybe a potential therapy for lung cancer.

  13. Inhibition of mTOR down-regulates scavenger receptor, class B, type I (SR-BI) expression, reduces endothelial cell migration and impairs nitric oxide production.

    PubMed

    Fruhwürth, Stefanie; Krieger, Sigurd; Winter, Katharina; Rosner, Margit; Mikula, Mario; Weichhart, Thomas; Bittman, Robert; Hengstschläger, Markus; Stangl, Herbert

    2014-07-01

    The mammalian target of rapamycin (mTOR) inhibiting drug rapamycin (Sirolimus) has severe side effects in patients including hyperlipidemia, an established risk factor for atherosclerosis. Recently, it was shown that rapamycin decreases hepatic LDL receptor (LDL-R) expression, which likely contributes to hypercholesterolemia. Scavenger receptor, class B, type I (SR-BI) is the major HDL receptor and consequently regulating HDL-cholesterol levels and the athero-protective effects of HDL. By using the mTOR inhibitor rapamycin, we show that SR-BI is down-regulated in human umbilical vein endothelial cells (HUVECs). This reduction of SR-BI protein as well as mRNA levels by about 50% did not alter HDL particle uptake or HDL-derived lipid transfer. However, rapamycin reduced HDL-induced activation of eNOS and stimulation of endothelial cell migration. The effects on cell migration could be counteracted by SR-BI overexpression, indicating that decreased SR-BI expression is in part responsible for the rapamycin-induced effects. We demonstrate that inhibition of mTOR leads to endothelial cell dysfunction and decreased SR-BI expression, which may contribute to atherogenesis during rapamycin treatment.

  14. Effect of the oestrogen receptor antagonist fulvestrant on the cirrhotic rat lung.

    PubMed

    Oswald-Mammosser, Monique; Rashid, Sherzad; Boehm, Nelly; Agin, Arnaud; Geny, Bernard; Schini-Kerth, Valérie; Charloux, Anne

    2015-06-01

    It has been postulated that cirrhosis-related lung vasodilatation and the subsequent hepatopulmonary syndrome are partly explained by an increased estradiol level through an enhanced endothelial formation of nitric oxide (NO). In this study, we assessed whether the oestrogen receptor antagonist fulvestrant (F) improves cirrhosis-related lung abnormalities. Cirrhosis was induced in rats by chronic bile duct ligation (CBDL). Four groups were studied: CBDL, CBDL+F, sham, and sham+F. Histological, immunohistochemical, and Western blot analyses were performed on lung samples. In the lung, the endothelial NO synthase and the nitrotyrosine protein expressions were increased in CBDL as compared to sham rats. Both parameters were significantly reduced by fulvestrant in the CBDL rats. Surprisingly, the level of pVASP (an indirect marker of NO formation and action) was decreased in CBDL rats, and fulvestrant had no effect on this parameter. The level of the vascular endothelial growth factor, the diameter of small lung vessels, and the number of macrophages were increased in CBDL lungs in comparison with sham lungs, and these parameters were unaffected by fulvestrant treatment. In conclusion, fulvestrant may not be relevant to improve lung abnormalities in cirrhosis because NO may not be biologically active and because key events contributing to the lung abnormalities are not affected by fulvestrant.

  15. Acetylcholine receptor pathway in lung cancer: New twists to an old story

    PubMed Central

    Niu, Xiao-Min; Lu, Shun

    2014-01-01

    Genome-wide association studies revealed that allelic variation in the α5-α3-β4 nicotine acetylcholine receptor (nAChR) cluster on chromosome 15q24-15q25.1 was associated with lung cancer risk. nAChRs are membrane ligand-gated cation channels whose activation is triggered by the binding of the endogenous neurotransmitter acetylcholine (ACh) or other biologic compounds including nicotine. nAChRs have been found on lung cancer cells, underscoring the idea that the non-neuronal nAChR pathway has important implications for lung cancer. Several studies focusing on the treatment with nAChR antagonists with improved selectivity might trigger novel strategies for the intervention and prevention of lung cancer. Here we review the genetic risk factors for lung cancer in the nAChR gene cluster, the roles of nicotine receptors, and the molecular mechanisms of acetylcholine receptor pathways to lead to more opportunities for intervention and prevention of lung cancer. PMID:25302169

  16. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    SciTech Connect

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; Liu, Diane D.; Lee, J. Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R. M.; Lobb, Roy R.; Edelman, Martin J.; Sidman, Richard L.; Wistuba, Ignacio I.; Arap, Wadih; Pasqualini, Renata

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.

  17. Regulation of mouse lung development by the extracellular calcium-sensing receptor, CaR.

    PubMed

    Finney, Brenda A; del Moral, Pierre M; Wilkinson, William J; Cayzac, Sebastien; Cole, Martin; Warburton, David; Kemp, Paul J; Riccardi, Daniela

    2008-12-15

    Postnatal lung function is critically dependent upon optimal embryonic lung development. As the free ionized plasma calcium concentration ([Ca(2+)](o)) of the fetus is higher than that of the adult, the process of lung development occurs in a hypercalcaemic environment. In the adult, [Ca(2+)](o) is monitored by the G-protein coupled, extracellular calcium-sensing receptor (CaR), but neither its ontogeny nor its potential role in lung development are known. Here, we demonstrate that CaR is expressed in the mouse lung epithelium, and that its expression is developmentally regulated, with a peak of expression at embryonic day 12.5 (E12.5) and a subsequent decrease by E18, after which the receptor is absent. Experiments carried out using the lung explant culture model in vitro show that lung branching morphogenesis is sensitive to [Ca(2+)](o), being maximal at physiological adult [Ca(2+)](o) (i.e. 1.0-1.3 mM) and lowest at the higher, fetal (i.e. 1.7 mM) [Ca(2+)](o). Administration of the specific CaR positive allosteric modulator, the calcimimetic R-568, mimics the suppressive effects of high [Ca(2+)](o) on branching morphogenesis while both phospholipase C and PI3 kinase inhibition reverse these effects. CaR activation suppresses cell proliferation while it enhances intracellular calcium signalling, lung distension and fluid secretion. Conditions which are restrictive either to branching or to secretion can be rescued by manipulating [Ca(2+)](o) in the culture medium. In conclusion, fetal Ca(2+)(o), acting through a developmentally regulated CaR, is an important extrinsic factor that modulates the intrinsic lung developmental programme. Our observations support a novel role for the CaR in preventing hyperplastic lung disease in utero.

  18. Identification of three muscarinic receptor subtypes in rat lung using binding studies with selective antagonists

    SciTech Connect

    Fryer, A.D.; El-Fakahany, E.E. )

    1990-01-01

    Heterogeneity of the muscarinic receptor population in the rat central and peripheral lung was found in competition binding experiments against ({sup 3}H)quinuclidinyl benzilate (({sup 3}H)QNB) using the selective antagonists pirenzepine, AF-DX 116 and hexahydrosiladifenidol (HHSiD). Pirenzepine displaced ({sup 3}H)QNB with low affinity from preparations of central airways indicating the absence of M{sub 1} receptors in the trachea and bronchi. Muscarinic receptors in the central airways are comprised of both M{sub 2} and M{sub 3} receptors since AF-DX 116, an M{sub 2}-selective antagonist, bound with high affinity to 70% of the available sites while HHSiD, an M{sub 3}-selective antagonist bound with high affinity to the remaining binding sites. In the peripheral lung, pirenzepine bound with high affinity to 14% of the receptor population, AF-DX 116 bound with high affinity 79% of the binding sites while HHSiD bound with high affinity to 18% of the binding sites. The presence of M{sub 1} receptors in the peripheral airways but not in the central airways was confirmed using ({sup 3}H)telenzepine, an M{sub 1} receptor ligand. ({sup 3}H)Telenzepine showed specific saturable binding to 8% of ({sup 3}H)QNB labeled binding sites in homogenates of rat peripheral lung, while there was no detectable specific binding in homogenates of rat trachea or heart.

  19. Effects of Liver × receptor agonist treatment on signal transduction pathways in acute lung inflammation

    PubMed Central

    2010-01-01

    Background Liver × receptor α (LXRα) and β (LXRβ) are members of the nuclear receptor super family of ligand-activated transcription factors, a super family which includes the perhaps better known glucocorticoid receptor, estrogen receptor, thyroid receptor, and peroxisome proliferator-activated receptors. There is limited evidence that LXL activation may reduces acute lung inflammation. The aim of this study was to investigate the effects of T0901317, a potent LXR receptor ligand, in a mouse model of carrageenan-induced pleurisy. Methods Injection of carrageenan into the pleural cavity of mice elicited an acute inflammatory response characterized by: accumulation of fluid containing a large number of neutrophils (PMNs) in the pleural cavity, infiltration of PMNs in lung tissues and subsequent lipid peroxidation, and increased production of nitrite/nitrate (NOx), tumor necrosis factor-α, (TNF-α) and interleukin-1β (IL-1β). Furthermore, carrageenan induced the expression of iNOS, nitrotyrosine and PARP, as well as induced apoptosis (TUNEL staining and Bax and Bcl-2 expression) in the lung tissues. Results Administration of T0901317, 30 min after the challenge with carrageenan, caused a significant reduction in a dose dependent manner of all the parameters of inflammation measured. Conclusions Thus, based on these findings we propose that LXR ligand such as T0901317, may be useful in the treatment of various inflammatory diseases. PMID:20175894

  20. Varenicline enhances oxidized LDL uptake by increasing expression of LOX-1 and CD36 scavenger receptors through α7 nAChR in macrophages.

    PubMed

    Kanaoka, Yuki; Koga, Mitsuhisa; Sugiyama, Keita; Ohishi, Kaoru; Kataoka, Yasufumi; Yamauchi, Atsushi

    2017-04-01

    Varenicline is a widely used and effective drug for smoking cessation. It is a partial agonist of the α4β2 nicotinic acetylcholine receptor (nAChR) and full agonist of α7 nAChR. We have reported that varenicline aggravates formation of atherosclerotic plaques through α7 nAChR in apolipoprotein E knockout mice. However, little is known about its effects on macrophages in atherosclerotic plaques. Here, we ascertained whether varenicline promotes oxidized low-density lipoprotein (oxLDL) uptake in mouse peritoneal macrophages in vitro and clarified its mechanism. We investigated the effects of varenicline (1-10μM) on expression of scavenger receptors (lectin-like oxidized LDL receptor-1 (LOX-1), cluster of differentiation (CD) 36 and scavenger receptor class A (SR-A)) in RAW264.7 cells. Expression of protein and mRNA was determined by western blotting and real-time quantitative reverse transcription-polymerase chain reaction, respectively. Effects of varenicline (10μM) on oxLDL uptake were examined by counting the number of macrophages stained with oil red O and hematoxylin. Varenicline significantly increased expression of the protein and mRNA of LOX-1 and CD36, but not SR-A, in RAW264.7 cells, and increased oxLDL uptake in macrophages. These effects of varenicline were blocked significantly by an α7 nAChR antagonist, methyllycaconitine (MLA) (50nM), but not by an α4β2 nAChR antagonist, dihydro-β-erythroidine hydrobromide (DHβE) (1μM). These data suggest that varenicline promotes oxLDL uptake by upregulating expression of LOX-1 and CD36 through α7 nAChR in macrophages. We found that varenicline significantly activated extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor-kappa B (NF-κB) signaling pathways in RAW264.7 cells. This activation was blocked by MLA but not DHβE. Therefore, ERK1/2-NF-κB signaling pathway is highly likely to be responsible for varenicline-induced upregulation of LOX-1 and CD36 expression through α7 nAChR in

  1. Prostaglandin E₂ inhibits human lung fibroblast chemotaxis through disparate actions on different E-prostanoid receptors.

    PubMed

    Li, Ying-Ji; Wang, Xing-Qi; Sato, Tadashi; Kanaji, Nobuhiro; Nakanishi, Masanori; Kim, Miok; Michalski, Joel; Nelson, Amy J; Sun, Jian-Hong; Farid, Maha; Basma, Hesham; Patil, Amol; Toews, Myron L; Liu, Xiangde; Rennard, Stephen I

    2011-01-01

    The migration of fibroblasts is believed to play a key role in both normal wound repair and abnormal tissue remodeling. Prostaglandin E (PGE)(2), a mediator that can inhibit many fibroblast functions including chemotaxis, was reported to be mediated by the E-prostanoid (EP) receptor EP2. PGE(2), however, can act on four receptors. This study was designed to determine if EP receptors, in addition to EP2, can modulate fibroblast chemotaxis. Using human fetal lung fibroblasts, the expression of all four EP receptors was demonstrated by Western blotting. EP2-selective and EP4-selective agonists inhibited both chemotaxis toward fibronectin in the blindwell assay and migration in a wound-closure assay. In contrast, EP1-selective and EP3-selective agonists stimulated cell migration in both assay systems. These results were confirmed using EP-selective antagonists. The role of both EP2 and EP4 receptors in mediating the PGE(2) inhibition of chemotaxis was also confirmed by small interfering RNA suppression. Furthermore, the role of EP receptors was confirmed by blocking the expected signaling pathways. Taken together, these results demonstrate that PGE(2) can act on multiple EP receptors in human lung fibroblasts, to exert disparate effects. Alterations in EP receptor expression may have the potential to alter PGE(2) action. Targeting specific EP receptors may offer therapeutic opportunities in conditions characterized by abnormal tissue repair and remodeling.

  2. Loss of lysophosphatidic acid receptor-3 enhances cell migration in rat lung tumor cells

    SciTech Connect

    Hayashi, Mai; Okabe, Kyoko; Yamawaki, Yasuna; Teranishi, Miki; Honoki, Kanya; Mori, Toshio; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2011-02-18

    Research highlights: {yields} Loss of the Lpar3 expression due to aberrant DNA methylation occurred in rat lung tumor cells. {yields} The Lpar3 inhibited cell migration of rat lung tumor cells. {yields} The Lpar3 may act as a negative regulator of rat lung tumor cells. -- Abstract: Lysophosphatidic acid (LPA) indicates several biological effects, such as cell proliferation, differentiation and migration. LPA interacts with G protein-coupled transmembrane LPA receptors. In our previous report, we detected that loss of the LPA receptor-1 (Lpar1) expression is due to its aberrant DNA methylation in rat tumor cell lines. In this study, to assess an involvement of the other LPA receptor, Lpar3, in the pathogenesis of rat lung tumor cells, we measured the expression levels of the Lpar3 gene and its DNA methylation status by reverse transcription (RT)-polymerase chain reaction (PCR) and bisulfite sequencing analyses, respectively. RLCNR lung adenocarcinoma cells showed reduced expression of the Lpar3, compared with normal lung tissues. In the 5' upstream region of the Lpar3, normal lung tissues were unmethylated. By contrast, RLCNR cells were highly methylated, correlating with reduced expressions of the Lpar3. Based on these results, we generated the Lpar3-expressing RLCNR-a3 cells and measured the cell migration ability. Interestingly, the cell migration of RLCNR-a3 cells was significantly lower than that of RLCNR cells. This study suggests that loss of the Lpar3 due to aberrant DNA methylation may be involved in the progression of rat lung tumor cells.

  3. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future.

  4. Expression, purification and reconstitution of the C-terminal transmembrane domain of scavenger receptor BI into detergent micelles for NMR analysis.

    PubMed

    Chadwick, Alexandra C; Jensen, Davin R; Peterson, Francis C; Volkman, Brian F; Sahoo, Daisy

    2015-03-01

    Scavenger receptor class B type I (SR-BI), the high density lipoprotein (HDL) receptor, is important for the delivery of HDL-cholesteryl esters to the liver for excretion via bile formation. The focus on therapeutic strategies aimed at reducing cholesterol levels highlights the critical need to understand the structural features of SR-BI that drive cholesterol removal. Yet, in the absence of a high-resolution structure of SR-BI, our understanding of how SR-BI interacts with HDL is limited. In this study, we have optimized the NMR solution conditions for the structural analysis of the C-terminal transmembrane domain of SR-BI that harbors putative domains required for receptor oligomerization. An isotopically-labeled SR-BI peptide encompassing residues 405-475 was bacterially-expressed and purified. [U-(15)N]-SR-BI(405-475) was incorporated into different detergent micelles and assessed by (1)H-(15)N-HSQC in order to determine which detergent micelle best maintained SR-BI(405-475) in a folded, native conformation for subsequent NMR analyses. We also determined the optimal detergent concentration used in micelles, as well as temperature, solution buffer and pH conditions. Based on (1)H-(15)N-HSQC peak dispersion, intensity, and uniformity, we determined that [U-(15)N]-SR-BI(405-475) should be incorporated into 5% detergent micelles consisting of 1-palmitoyl-2-hydroxy-sn-glycero-3-phospho-[1'-rac-glycerol] (LPPG) and data collected at 40°C in a non-buffered solution at pH 6.8. Furthermore, we demonstrate the ability of SR-BI(405-475) to form dimers upon chemical crosslinking. These studies represent the first steps in obtaining high-resolution structural information by NMR for the HDL receptor that plays a critical role in regulating whole body cholesterol removal.

  5. Developmental expression of Toll-like receptors in the guinea pig lung

    PubMed Central

    Ma, Lingjie; Yang, Jiali; Yang, Li; Shi, Juan; Xue, Jing; Li, Yong; Liu, Xiaoming

    2017-01-01

    The guinea pig is a useful model for investigating infectious and non-infectious lung diseases due to the sensitivity of its respiratory system and susceptibility to infectious agents. Toll-like receptors (TLRs) are important components of the innate immune response and are critical for lung immune function. In the present study, the differentiation of epithelial cells in the guinea pig lung was examined during gestation by studying anatomic morphology and the major epithelial cell types using cell type-specific markers. The developmental expression of all 9 TLRs and the TLR signaling adaptors myeloid differentiation factor 88 (MyD88) and tumor necrosis factor receptor associated factor 6 (TRAF-6) were investigated by reverse transcription-quantitative polymerase chain reaction and western blotting analysis. The formation of lung lobes in guinea pigs was observed at 45 days of gestation (dGA), along with the expression of the basal cell marker keratin 14 and the alveolar type II cell marker pro-surfactant protein. However, the cube cell marker secretoglobin family1A member 1 and ciliated cell marker b-tubulin IV were only detected in the lungs from 52 dGA onward. The expression levels of all TLRs, MyD88 and TRAF-6 were determined in lung tissues harvested from embryos, newborn, postnatal and adult animals. The expression levels of all TLR signaling components displayed similar dynamic expression patterns with gestation age and postnatal maturation time, except for TLR-4 and TLR-7. mRNA expression levels of TLR components were significantly increased in the lungs at 45 and 52 dGA, compared with later developmental stages. These results suggest that TLR expression in the guinea pig lung is developmentally regulated, enhancing the understanding of lung biology in guinea pig models. PMID:28098883

  6. Pathways for Modulating Exosome Lipids Identified By High-Density Lipoprotein-Like Nanoparticle Binding to Scavenger Receptor Type B-1.

    PubMed

    Angeloni, Nicholas L; McMahon, Kaylin M; Swaminathan, Suchitra; Plebanek, Michael P; Osman, Iman; Volpert, Olga V; Thaxton, C Shad

    2016-03-11

    Exosomes are produced by cells to mediate intercellular communication, and have been shown to perpetuate diseases, including cancer. New tools are needed to understand exosome biology, detect exosomes from specific cell types in complex biological media, and to modify exosomes. Our data demonstrate a cellular pathway whereby membrane-bound scavenger receptor type B-1 (SR-B1) in parent cells becomes incorporated into exosomes. We tailored synthetic HDL-like nanoparticles (HDL NP), high-affinity ligands for SR-B1, to carry a fluorescently labeled phospholipid. Data show SR-B1-dependent transfer of the fluorescent phospholipid from HDL NPs to exosomes. Modified exosomes are stable in serum and can be directly detected using flow cytometry. As proof-of-concept, human serum exosomes were found to express SR-B1, and HDL NPs can be used to label and isolate them. Ultimately, we discovered a natural cellular pathway and nanoparticle-receptor pair that enables exosome modulation, detection, and isolation.

  7. Chronic psychosocial stress in male mice causes an up-regulation of scavenger receptor class B type 1 protein in the adrenal glands.

    PubMed

    Füchsl, Andrea M; Uschold-Schmidt, Nicole; Reber, Stefan O

    2013-07-01

    Mice exposed to chronic subordinate colony housing (CSC, 19 days) show an exaggerated adrenal corticosterone response to an acute heterotypic stressor (elevated platform (EPF), 5 min) despite no difference from EPF-exposed single-housed control (SHC) mice in corticotropin (ACTH) secretion. In the present study, we asked the question whether this CSC-induced increase in adrenal capability to produce and secrete corticosterone is paralleled by an enhanced adrenal availability and/or mobilization capacity of the corticosterone precursor molecule cholesterol. Employing oil-red staining and western blot analysis we revealed comparable relative density of cortical lipid droplets and relative protein expression of hormone-sensitive lipase, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and low-density lipoprotein receptor (LDL-R) between CSC and SHC mice. However, relative protein expression of the scavenger receptor class B type 1 (SR-BI) was increased following CSC exposure. Moreover, analysis of plasma high-density lipoprotein-cholesterol (HDL-C) and LDL-cholesterol (LDL-C) revealed increased LDL-C levels in CSC mice. Together with the pronounced increase in adrenal weight, evidently mediated by hyperplasia of adrenocortical cells, these data strongly indicate an enhanced adrenal availability of and capacity to mobilize cholesterol in chronic psychosocially-stressed mice, contributing to their increased in vivo corticosterone response during acute heterotypic stressor exposure.

  8. Cholesterol depletion induces PKA-mediated basolateral-to-apical transcytosis of the scavenger receptor class B type I in MDCK cells

    PubMed Central

    Burgos, Patricia V.; Klattenhoff, Carla; de la Fuente, Erwin; Rigotti, Attilio; González, Alfonso

    2004-01-01

    Cholesterol-based membrane microdomains, or lipid rafts, are believed to play important, yet poorly defined, roles in protein trafficking and signal transduction. In polarized epithelial cells, the current view is that rafts are involved in apical but not in basolateral protein transport from the trans-Golgi network (TGN). We report here that cholesterol is required in a post-TGN mechanism of basolateral regionalization. Permanently transfected Madin-Darby canine kidney cells segregated the caveolae/raft-associated high-density lipoprotein scavenger receptor class B type I (SR-BI) predominantly to the basolateral domain where it was constitutively internalized and recycled basolaterally. Acute cholesterol depletion did not significantly alter SR-BI internalization, implying a cholesterol depletion-insensitive endocytic process but instead induced its transcytosis through a protein kinase A (PKA)- and microtubule-dependent mechanism. Forskolin also elicited SR-BI transcytosis. The basolateral distribution of endogenous epidermal growth factor receptor remained unaffected. Strikingly, cholesterol depletion induced PKA activity without increasing the cAMP levels. Thus, our results are consistent with a scenario in which cholesterol-based rafts promote internalization and basolateral recycling of internalized SR-BI whereas a PKA pool sensitive to cholesterol depletion mediates SR-BI transcytosis. Regulated transcytosis of SR-BI may provide an additional mechanism to control cholesterol homeostasis. These results disclose relationships between cholesterol-based rafts and PKA activity operating in a post-TGN mechanism of regulated apical-to-basolateral cell surface protein distribution. PMID:15007173

  9. Human receptor kinetics and lung tissue retention of the enhanced-affinity glucocorticoid fluticasone furoate

    PubMed Central

    Valotis, Anagnostis; Högger, Petra

    2007-01-01

    Fluticasone furoate (FF) – USAN approved name, a new topically active glucocorticoid has been recently identified. The aim of this study was to characterise the binding affinity of this compound to the human lung glucocorticoid receptor in relation to other glucocorticoids. Additionally, we sought to determine the binding behaviour of fluticasone furoate to human lung tissue. The glucocorticoid receptor binding kinetics of fluticasone furoate revealed a remarkably fast association and a slow dissociation resulting in a relative receptor affinity (RRA) of 2989 ± 135 with reference to dexamethasone (RRA: 100 ± 5). Thus, the RRA of FF exceeds the RRAs of all currently clinically used corticosteroids such as mometasone furoate (MF; RRA 2244), fluticasone propionate (FP; RRA 1775), ciclesonide's active metabolite (RRA 1212 – rat receptor data) or budesonide (RRA 855). FP and FF displayed pronounced retention in human lung tissue in vitro. Lowest tissue binding was found for MF. There was no indication of instability or chemical modification of FF in human lung tissue. These advantageous binding attributes may contribute to a highly efficacious profile for FF as a topical treatment for inflammatory disorders of the respiratory tract. PMID:17650349

  10. Divergent Functions of Toll-like Receptors during Bacterial Lung Infections

    PubMed Central

    Baral, Pankaj; Batra, Sanjay; Zemans, Rachel L.; Downey, Gregory P.

    2014-01-01

    Lower respiratory tract infections caused by bacteria are a major cause of death in humans irrespective of sex, race, or geography. Indeed, accumulated data indicate greater mortality and morbidity due to these infections than cancer, malaria, or HIV infection. Successful recognition of, followed by an appropriate response to, bacterial pathogens in the lungs is crucial for effective pulmonary host defense. Although the early recruitment and activation of neutrophils in the lungs is key in the response against invading microbial pathogens, other sentinels, such as alveolar macrophages, epithelial cells, dendritic cells, and CD4+ T cells, also contribute to the elimination of the bacterial burden. Pattern recognition receptors, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain–like receptors, are important for recognizing and responding to microbes during pulmonary infections. However, bacterial pathogens have acquired crafty evasive strategies to circumvent the pattern recognition receptor response and thus establish infection. Increased understanding of the function of TLRs and evasive mechanisms used by pathogens during pulmonary infection will deepen our knowledge of immunopathogenesis and is crucial for developing effective therapeutic and/or prophylactic measures. This review summarizes current knowledge of the multiple roles of TLRs in bacterial lung infections and highlights the mechanisms used by pathogens to modulate or interfere with TLR signaling in the lungs. PMID:25033332

  11. Divergent functions of Toll-like receptors during bacterial lung infections.

    PubMed

    Baral, Pankaj; Batra, Sanjay; Zemans, Rachel L; Downey, Gregory P; Jeyaseelan, Samithamby

    2014-10-01

    Lower respiratory tract infections caused by bacteria are a major cause of death in humans irrespective of sex, race, or geography. Indeed, accumulated data indicate greater mortality and morbidity due to these infections than cancer, malaria, or HIV infection. Successful recognition of, followed by an appropriate response to, bacterial pathogens in the lungs is crucial for effective pulmonary host defense. Although the early recruitment and activation of neutrophils in the lungs is key in the response against invading microbial pathogens, other sentinels, such as alveolar macrophages, epithelial cells, dendritic cells, and CD4(+) T cells, also contribute to the elimination of the bacterial burden. Pattern recognition receptors, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors, are important for recognizing and responding to microbes during pulmonary infections. However, bacterial pathogens have acquired crafty evasive strategies to circumvent the pattern recognition receptor response and thus establish infection. Increased understanding of the function of TLRs and evasive mechanisms used by pathogens during pulmonary infection will deepen our knowledge of immunopathogenesis and is crucial for developing effective therapeutic and/or prophylactic measures. This review summarizes current knowledge of the multiple roles of TLRs in bacterial lung infections and highlights the mechanisms used by pathogens to modulate or interfere with TLR signaling in the lungs.

  12. Fucoidan induces Toll-like receptor 4-regulated reactive oxygen species and promotes endoplasmic reticulum stress-mediated apoptosis in lung cancer

    PubMed Central

    Hsu, Hsien-Yeh; Lin, Tung-Yi; Lu, Mei-Kuang; Leng, Pei-Ju; Tsao, Shu-Ming; Wu, Yu-Chung

    2017-01-01

    Fucoidan, a sulfated polysaccharide extracted from brown algae, exhibits anti-cancer activity. However, the effects and mechanism of fucoidan-induced apoptosis via endoplasmic reticulum (ER) stress is unclear. In this study, we demonstrated that fucoidan prevents tumorigenesis and reduces tumor size in LLC1-xenograft male C57BL/6 mice. Fucoidan induces an ER stress response by activating the PERK-ATF4-CHOP pathway, resulting in apoptotic cell death in vitro and in vivo. Furthermore, ATF4 knockdown abolishes fucoidan-induced CHOP expression and rescues cell viability. Specifically, fucoidan increases intracellular reactive oxygen species (ROS), which increase ATF4 and CHOP in lung cancer cells. Using the ROS scavenger N-acetyl-l-cysteine (NAC), we found that ROS generation is involved in fucoidan-induced ER stress-mediated apoptosis. Moreover, via Toll-like receptor 4 (TLR4) knockdown, we demonstrated that fucoidan-induced ROS and CHOP expression were attenuated. Our study is the first to identify a novel mechanism for the antitumor activity of fucoidan. We showed that fucoidan inhibits tumor viability by activating the TLR4/ROS/ER stress axis and the downstream PERK-ATF4-CHOP pathway, leading to apoptosis and suppression of lung cancer cell progression. Together, these results indicate that fucoidan is a potential preventive and therapeutic agent for lung cancer that acts via activation of ROS-dependent ER stress pathways. PMID:28332554

  13. Fucoidan induces Toll-like receptor 4-regulated reactive oxygen species and promotes endoplasmic reticulum stress-mediated apoptosis in lung cancer.

    PubMed

    Hsu, Hsien-Yeh; Lin, Tung-Yi; Lu, Mei-Kuang; Leng, Pei-Ju; Tsao, Shu-Ming; Wu, Yu-Chung

    2017-03-23

    Fucoidan, a sulfated polysaccharide extracted from brown algae, exhibits anti-cancer activity. However, the effects and mechanism of fucoidan-induced apoptosis via endoplasmic reticulum (ER) stress is unclear. In this study, we demonstrated that fucoidan prevents tumorigenesis and reduces tumor size in LLC1-xenograft male C57BL/6 mice. Fucoidan induces an ER stress response by activating the PERK-ATF4-CHOP pathway, resulting in apoptotic cell death in vitro and in vivo. Furthermore, ATF4 knockdown abolishes fucoidan-induced CHOP expression and rescues cell viability. Specifically, fucoidan increases intracellular reactive oxygen species (ROS), which increase ATF4 and CHOP in lung cancer cells. Using the ROS scavenger N-acetyl-l-cysteine (NAC), we found that ROS generation is involved in fucoidan-induced ER stress-mediated apoptosis. Moreover, via Toll-like receptor 4 (TLR4) knockdown, we demonstrated that fucoidan-induced ROS and CHOP expression were attenuated. Our study is the first to identify a novel mechanism for the antitumor activity of fucoidan. We showed that fucoidan inhibits tumor viability by activating the TLR4/ROS/ER stress axis and the downstream PERK-ATF4-CHOP pathway, leading to apoptosis and suppression of lung cancer cell progression. Together, these results indicate that fucoidan is a potential preventive and therapeutic agent for lung cancer that acts via activation of ROS-dependent ER stress pathways.

  14. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    DOE PAGES

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; ...

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lungmore » cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.« less

  15. Role of epidermal growth factor receptor in lung cancer and targeted therapies

    PubMed Central

    Liu, Tie-Cheng; Jin, Xin; Wang, Yan; Wang, Ke

    2017-01-01

    Lung cancer is the foremost cause of cancer-related deaths world-wide. Both, the major forms of lung cancer, Non-small cell lung cancer (NSCLC) and Small cell lung cancers (SCLC), have responded effectively to chemo-, radiation and adjuvant-therapies. Tumor removal through surgery also appeared as a good therapeutic strategy. However, these therapies demonstrated unfavourable side-effects, and hence novel drugs targeting lung cancer emerged essential. Activation of epidermal growth factor receptor (EGFR)-tyrosine kinases is a key reason for lung cancer progression. Two important strategies that have attenuated lung cancers were through treatments with EGFR-tyrosine kinase-inhibitors, erlotinib and gefitinib, or EGFR-neutralizing antibodies, cetuximab and bevacizumab. A major advantage with erlotinib and gefitinib was their role in second and third-line treatments following chemotherapies. Phase II/III clinical trials showed that combinatorial treatment of tyrosine kinase (TK)-inhibitors with chemotherapeutics, such as docetaxel and pemetrexed, caused significant improvements in progression-free survival and overall survival.Phase I and II clinical studies also revealed that combination of tyrosine kinase-inhibitors with the EGFR-targeted antibodies was an effective approach for treating lung cancer. However, patients having T790M-mutations within EGFR gene were resistant to erlotinib and gefitinib. Alternatively, another second-generation EGFR-tyrosine kinase-inhibitor, afatinib, that could circumvent the problem of drug resistance has been developed as lung cancer therapy. The current review focuses on the role of EGFR in lung cancer progression and apprises about the EGFR-targeted therapies. The review also informs on the adverse side-effects of these therapies and enlightens the need for safer therapeutic regimens to eradicate this dreaded disease. PMID:28337370

  16. VEGF receptor expression decreases during lung development in congenital diaphragmatic hernia induced by nitrofen

    PubMed Central

    Sbragia, L.; Nassr, A.C.C.; Gonçalves, F.L.L.; Schmidt, A.F.; Zuliani, C.C.; Garcia, P.V.; Gallindo, R.M.; Pereira, L.A.V.

    2014-01-01

    Changes in vascular endothelial growth factor (VEGF) in pulmonary vessels have been described in congenital diaphragmatic hernia (CDH) and may contribute to the development of pulmonary hypoplasia and hypertension; however, how the expression of VEGF receptors changes during fetal lung development in CDH is not understood. The aim of this study was to compare morphological evolution with expression of VEGF receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1), in pseudoglandular, canalicular, and saccular stages of lung development in normal rat fetuses and in fetuses with CDH. Pregnant rats were divided into four groups (n=20 fetuses each) of four different gestational days (GD) 18.5, 19.5, 20.5, 21.5: external control (EC), exposed to olive oil (OO), exposed to 100 mg nitrofen, by gavage, without CDH (N-), and exposed to nitrofen with CDH (CDH) on GD 9.5 (term=22 days). The morphological variables studied were: body weight (BW), total lung weight (TLW), left lung weight, TLW/BW ratio, total lung volume, and left lung volume. The histometric variables studied were: left lung parenchymal area density and left lung parenchymal volume. VEGFR1 and VEGFR2 expression were determined by Western blotting. The data were analyzed using analysis of variance with the Tukey-Kramer post hoc test. CDH frequency was 37% (80/216). All the morphological and histometric variables were reduced in the N- and CDH groups compared with the controls, and reductions were more pronounced in the CDH group (P<0.05) and more evident on GD 20.5 and GD 21.5. Similar results were observed for VEGFR1 and VEGFR2 expression. We conclude that N- and CDH fetuses showed primary pulmonary hypoplasia, with a decrease in VEGFR1 and VEGFR2 expression. PMID:24519134

  17. VEGF receptor expression decreases during lung development in congenital diaphragmatic hernia induced by nitrofen.

    PubMed

    Sbragia, L; Nassr, A C C; Gonçalves, F L L; Schmidt, A F; Zuliani, C C; Garcia, P V; Gallindo, R M; Pereira, L A V

    2014-02-01

    Changes in vascular endothelial growth factor (VEGF) in pulmonary vessels have been described in congenital diaphragmatic hernia (CDH) and may contribute to the development of pulmonary hypoplasia and hypertension; however, how the expression of VEGF receptors changes during fetal lung development in CDH is not understood. The aim of this study was to compare morphological evolution with expression of VEGF receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1), in pseudoglandular, canalicular, and saccular stages of lung development in normal rat fetuses and in fetuses with CDH. Pregnant rats were divided into four groups (n=20 fetuses each) of four different gestational days (GD) 18.5, 19.5, 20.5, 21.5: external control (EC), exposed to olive oil (OO), exposed to 100 mg nitrofen, by gavage, without CDH (N-), and exposed to nitrofen with CDH (CDH) on GD 9.5 (term=22 days). The morphological variables studied were: body weight (BW), total lung weight (TLW), left lung weight, TLW/BW ratio, total lung volume, and left lung volume. The histometric variables studied were: left lung parenchymal area density and left lung parenchymal volume. VEGFR1 and VEGFR2 expression were determined by Western blotting. The data were analyzed using analysis of variance with the Tukey-Kramer post hoc test. CDH frequency was 37% (80/216). All the morphological and histometric variables were reduced in the N- and CDH groups compared with the controls, and reductions were more pronounced in the CDH group (P<0.05) and more evident on GD 20.5 and GD 21.5. Similar results were observed for VEGFR1 and VEGFR2 expression. We conclude that N- and CDH fetuses showed primary pulmonary hypoplasia, with a decrease in VEGFR1 and VEGFR2 expression.

  18. Developmental Expression and Glucocorticoid Control of the Leptin Receptor in Fetal Ovine Lung.

    PubMed

    De Blasio, Miles J; Boije, Maria; Vaughan, Owen R; Bernstein, Brett S; Davies, Katie L; Plein, Alice; Kempster, Sarah L; Smith, Gordon C S; Charnock-Jones, D Stephen; Blache, Dominique; Wooding, F B Peter; Giussani, Dino A; Fowden, Abigail L; Forhead, Alison J

    2015-01-01

    The effects of endogenous and synthetic glucocorticoids on fetal lung maturation are well-established, although the role of leptin in lung development before birth is unclear. This study examined mRNA and protein levels of the signalling long-form leptin receptor (Ob-Rb) in fetal ovine lungs towards term, and after experimental manipulation of glucocorticoid levels in utero by fetal cortisol infusion or maternal dexamethasone treatment. In fetal ovine lungs, Ob-Rb protein was localised to bronchiolar epithelium, bronchial cartilage, vascular endothelium, alveolar macrophages and type II pneumocytes. Pulmonary Ob-Rb mRNA abundance increased between 100 (0.69 fractional gestational age) and 144 days (0.99) of gestation, and by 2-4-fold in response to fetal cortisol infusion and maternal dexamethasone treatment. In contrast, pulmonary Ob-Rb protein levels decreased near term and were halved by glucocorticoid treatment, without any significant change in phosphorylated signal transducer and activator of transcription-3 (pSTAT3) at Ser727, total STAT3 or the pulmonary pSTAT3:STAT3 ratio. Leptin mRNA was undetectable in fetal ovine lungs at the gestational ages studied. These findings demonstrate differential control of pulmonary Ob-Rb transcript abundance and protein translation, and/or post-translational processing, by glucocorticoids in utero. Localisation of Ob-Rb in the fetal ovine lungs, including alveolar type II pneumocytes, suggests a role for leptin signalling in the control of lung growth and maturation before birth.

  19. Regulation of brachyury by fibroblast growth factor receptor 1 in lung cancer

    PubMed Central

    Hu, Yunping; Feng, Xin; Mintz, Akiva; Petty, W. Jeffrey; Hsu, Wesley

    2016-01-01

    Recent evidence suggests that T-box transcription factor brachyury plays an important role in lung cancer development and progression. However, the mechanisms underlying brachyury-driven cellular processes remain unclear. Here we found that fibroblast growth factor receptor 1/mitogen-activated protein kinase (FGFR1/MAPK) signaling regulated brachyury in lung cancer. Analysis of FGFR1-4 and brachyury expression in human lung tumor tissue and cell lines found that only expression of FGFR1 was positively correlated with brachyury expression. Specific knockdown of FGFR1 by siRNA suppressed brachyury expression and epithelial–mesenchymal transition (EMT) (upregulation of E-cadherin and β-catenin and downregulation of Snail and fibronectin), whereas forced overexpression of FGFR1 induced brachyury expression and promoted EMT in lung cancer cells. Activation of fibroblast growth factor (FGF)/FGFR1 signaling promoted phosphorylated MAPK extracellular signal-regulated kinase (ERK) 1/2 translocation from cytoplasm to nucleus, upregulated brachyury expression, and increased cell growth and invasion. In addition, human lung cancer cells with higher brachyury expression were more sensitive to inhibitors targeting FGFR1/MAPK pathway. These findings suggest that FGFR1/MAPK may be important for brachyury activation in lung cancer, and this pathway may be an appealing therapeutic target for a subset of brachyury-driven lung cancer. PMID:27893433

  20. Induction of the lung myofibroblast PDGF receptor system by urban ambient particles from Mexico City.

    PubMed

    Bonner, J C; Rice, A B; Lindroos, P M; O'Brien, P O; Dreher, K L; Rosas, I; Alfaro-Moreno, E; Osornio-Vargas, A R

    1998-10-01

    Platelet-derived growth factor (PDGF) and its receptor system regulate mesenchymal cell proliferation. We recently reported that emission-source fly-ash particles and asbestos fibers induce the PDGF alpha-receptor through a macrophage-dependent pathway, and upregulation of this receptor greatly enhances the mitogenic response of lung myofibroblasts to PDGF (Lindroos and colleagues, Am. J. Respir. Cell Mol. Biol. 1997;16:283-292). In the present study we investigated the effect of particulate matter <= 10 micrometers in size (PM10) from the southern, central, and northern regions of Mexico City on PDGF receptor induction and compared these urban, ambient particles with Mt. St. Helen's volcanic ash particles as a negative control. All Mexico City PM10 samples, but not volcanic ash, stimulated rat alveolar macrophages to secrete a soluble, upregulatory factor(s) for the PDGF alpha-receptor on early passage rat lung myofibroblasts. The macrophage-derived upregulatory activity was blocked by the interleukin (IL)-1 receptor antagonist. The ability of PM10 to stimulate IL-1beta release was blocked in part by a recombinant endotoxin neutralizing protein (rENP). Lipopolysaccharide/endotoxin (LPS) and vanadium, both constituents that were present within these PM10 samples, also stimulated macrophages to secrete factor(s) that upregulated PDGF-Ralpha on lung myofibroblasts. Direct exposure of myofibroblasts to PM10 also elicited upregulation of the PDGF alpha-receptor, and this effect was blocked by rENP and mimicked by LPS, but not vanadium. These findings suggest that PM10 particles induce expression of the PDGF receptor system through macrophage-dependent and -independent mechanisms involving endotoxin and metals.

  1. Peripheral 5-HT7 receptors as a new target for prevention of lung injury and mortality in septic rats.

    PubMed

    Cadirci, Elif; Halici, Zekai; Bayir, Yasin; Albayrak, Abdulmecit; Karakus, Emre; Polat, Beyzagul; Unal, Deniz; Atamanalp, Sabri S; Aksak, Selina; Gundogdu, Cemal

    2013-10-01

    Sepsis is a complex pathophysiological event involving metabolic acidosis, systemic inflammatory response syndrome, tissue damage and multiple organ dysfunction syndrome. Although many new mechanisms are being investigated to enlighten the pathophysiology of sepsis, there is no effective treatment protocol yet. Presence of 5-HT7 receptors in immune tissues prompted us to hypothesize that these receptors have roles in inflammation and sepsis. We investigated the effects of 5-HT7 receptor agonists and antagonists on serum cytokine levels, lung oxidative stress, lung histopathology, nuclear factor κB (NF-κB) positivity and lung 5-HT7 receptor density in cecal ligation and puncture (CLP) induced sepsis model of rats. Agonist administration to septic rats increased survival time; decreased serum cytokine response against CLP; decreased oxidative stress and increased antioxidant system in lungs; decreased the tissue NF-κB immunopositivity, which is high in septic rats; and decreased the sepsis-induced lung injury. In septic rats, as a result of high inflammatory response, 5-HT7 receptor expression in lungs increased significantly and agonist administration, which decreased inflammatory response and related mortality, decreased the 5-HT7 receptor expression. In conclusion, all these data suggest that stimulation of 5-HT7 receptors may be a new therapeutic target for prevention of impaired inflammatory response related lung injury and mortality.

  2. Recruitment of GABAA Receptors in Chemoreceptor Pulmonary Neuroepithelial Bodies by Prenatal Nicotine Exposure in Monkey Lung

    PubMed Central

    Fu, XW.; Spindel, E.R.

    2010-01-01

    Pulmonary neuroepithelial bodies (NEB) act as airway oxygen sensors and produce serotonin, a variety of neuropeptides and are involved in autonomic nervous system control of breathing, especially during the neonatal period. We now report that NEB cells also express a GABAegic signaling loop that is increased by prenatal nicotine exposure. In this study, cultured monkey NEB cells show hypoxia-evoked spikes and hypoxia-sensitive K+ current. As shown by both immunofluorescence and RT-PCR, monkey NEB cells synthesize and contain serotonin. The monkey NEB cells express the β2 and β3 GABAA receptor subunits, GAD and also express α7, α4 and β4 nicotinic receptor (nAChR) subunits. The α7 nAChR is co-expressed with GAD in NEB. The numbers of NEB and β3 GABAA receptor subunits expressed in NEB cells in lungs from control newborn monkeys were compared to lungs from animals that received nicotine during gestation. Prenatal nicotine exposure increased the numbers of NEB by 46% in lung and the numbers of NEB cells expressing GAD and GABAA β3 receptors increased by 67% and 66%, respectively. This study suggests that prenatal nicotine exposure can modulate NEB function by increasing the numbers of NEB cells and by increasing both GAD expression and β3 GABAA receptor subunit expression. The interaction of the intrinsic GABAergic system in the lung with nicotinic receptors in PNEC/NEB may provide a mechanism to explain the link between smoking during pregnancy and SIDS. PMID:19536509

  3. Cross-talk between lysophosphatidic acid receptor 1 and tropomyosin receptor kinase A promotes lung epithelial cell migration.

    PubMed

    Nan, Ling; Wei, Jianxin; Jacko, Anastasia M; Culley, Miranda K; Zhao, Jing; Natarajan, Viswanathan; Ma, Haichun; Zhao, Yutong

    2016-02-01

    Lysophosphatidic acid (LPA) is a bioactive lysophospholipid, which plays a crucial role in the regulation of cell proliferation, migration, and differentiation. LPA exerts its biological effects mainly through binding to cell-surface LPA receptors (LPA1-6), which belong to the G protein-coupled receptor (GPCR) family. Recent studies suggest that cross-talk between receptor tyrosine kinases (RTKs) and GPCRs modulates GPCRs-mediated signaling. Tropomyosin receptor kinase A (TrkA) is a RTK, which mediates nerve growth factor (NGF)-induced biological functions including cell migration in neuronal and non-neuronal cells. Here, we show LPA1 transactivation of TrkA in murine lung epithelial cells (MLE12). LPA induced tyrosine phosphorylation of TrkA in both time- and dose-dependent manners. Down-regulation of LPA1 by siRNA transfection attenuated LPA-induced phosphorylation of TrkA, suggesting a cross-talk between LPA1 and TrkA. To investigate the molecular regulation of the cross-talk, we focused on the interaction between LPA1 and TrkA. We found that LPA induced interaction between LPA1 and TrkA. The LPA1/TrkA complex was localized on the plasma membrane and in the cytoplasm. The C-terminus of LPA1 was identified as the binding site for TrkA. Inhibition of TrkA attenuated LPA-induced phosphorylation of TrkA and LPA1 internalization, as well as lung epithelial cell migration. These studies provide a molecular mechanism for the transactivation of TrkA by LPA, and suggest that the cross-talk between LPA1 and TrkA regulates LPA-induced receptor internalization and lung epithelial cell migration.

  4. Sensitization by pulmonary reactive oxygen species of rat vagal lung C-fibers: the roles of the TRPV1, TRPA1, and P2X receptors.

    PubMed

    Ruan, Ting; Lin, Yu-Jung; Hsu, Tien-Huan; Lu, Shing-Hwa; Jow, Guey-Mei; Kou, Yu Ru

    2014-01-01

    Sensitization of vagal lung C-fibers (VLCFs) induced by mediators contributes to the pathogenesis of airway hypersensitivity, which is characterized by exaggerated sensory and reflex responses to stimulants. Reactive oxygen species (ROS) are mediators produced during airway inflammation. However, the role of ROS in VLCF-mediated airway hypersensitivity has remained elusive. Here, we report that inhalation of aerosolized 0.05% H2O2 for 90 s potentiated apneic responses to intravenous capsaicin (a TRPV1 receptor agonist), α,β-methylene-ATP (a P2X receptor agonist), and phenylbiguanide (a 5-HT3 receptor agonist) in anesthetized rats. The apneic responses to these three stimulants were abolished by vagatomy or by perivagal capsaicin treatment, a procedure that blocks the neural conduction of VLCFs. The potentiating effect of H2O2 on the apneic responses to these VLCF stimulants was prevented by catalase (an enzyme that degrades H2O2) and by dimethylthiourea (a hydroxyl radical scavenger). The potentiating effect of H2O2 on the apneic responses to capsaicin was attenuated by HC-030031 (a TRPA1 receptor antagonist) and by iso-pyridoxalphosphate-6-azophenyl-2',5'-disulphonate (a P2X receptor antagonist). The potentiating effect of H2O2 on the apneic responses to α,β-methylene-ATP was reduced by capsazepine (a TRPV1 receptor antagonist), and by HC-030031. The potentiating effect of H2O2 on the apneic responses to phenylbiguanide was totally abolished when all three antagonists were combined. Consistently, our electrophysiological studies revealed that airway delivery of aerosolized 0.05% H2O2 for 90 s potentiated the VLCF responses to intravenous capsaicin, α,β-methylene-ATP, and phenylbiguanide. The potentiating effect of H2O2 on the VLCF responses to phenylbiguanide was totally prevented when all antagonists were combined. Inhalation of 0.05% H2O2 indeed increased the level of ROS in the lungs. These results suggest that 1) increased lung ROS sensitizes VLCFs

  5. [The role of the class A scavenger receptors, SR-A and MARCO, in the immune system. Part 1. The structure of receptors, their ligand binding repertoires and ability to initiate intracellular signaling].

    PubMed

    Józefowski, Szczepan

    2012-02-29

    Recognition of pathogens by innate immune cells is mediated by pattern recognition receptors (PRR), which include scavenger receptors (SR). The class A SR, SR-A/CD204 and MARCO, are characterized by the presence of collagenous and SR cysteine-rich domains in their extracellular portions. Both receptors are expressed mainly on macrophages and dendritic cells. Thanks to their ability to bind to a wide range of polyanionic ligands, the class A SR may participate in numerous functions of these cells, such as endocytosis, and adhesion to extracellular matrix and to other cells. Among SR-A ligands are oxidized lipoproteins and β-amyloid fibrils, which link SR-A to the pathogenesis of arteriosclerosis and Alzheimer's disease. Despite the demonstration of class A SR involvement in so many processes, the lack of selective ligands precluded reaching definite conclusions concerning their signaling abilities. Using specific receptor ligation with antibodies, we showed that SR-A and MARCO trigger intracellular signaling, modulating pro-inflammatory and microbicidal activities of macrophages. Surprisingly, despite similarities in structure and ligand binding repertoires, SR-A and MARCO exert opposite effects on interleukin-12 (IL-12) production in macrophages. SR-A ligation also stimulated H₂O₂ and IL-10 production, but had no effect on the release of several other cytokines. These limited effects of specific SR-A ligation contrast with generalized enhancement of immune responses observed in SR-A-deficient mice. Recent studies have revealed that many of these effects of SR-A deficiency may be caused by compensatory changes in the expression of other receptors and/or disinhibition of signal transduction from receptors belonging to the Toll/IL-1R family, rather than by the loss of the receptor function of SR-A.

  6. Assessment of glucocorticoid lung targeting by ex-vivo receptor binding studies in rats.

    PubMed

    Hochhaus, G; Gonzalez-Rothi, R J; Lukyanov, A; Derendorf, H; Schreier, H; Dalla Costa, T

    1995-01-01

    Triamcinolone acetonide (TA, 22 micrograms) was given to rats by intravenous (i.v.) injection or intratracheal (IT) instillation. Free glucocorticoid receptors were monitored over time in liver and lung using an ex-vivo receptor binding technique. After i.v. administration of a TA solution, the reduction of free receptors over time was very similar in lung and liver (AUCLung = 280 +/- 47% h; AUCLiver = 320 +/- 76% h). Intratracheal instillation of the same solution produced time profiles which mirrored those of i.v. injection (AUCLung = 260 +/- 41% h; AUCLiver = 330 +/- 50% h). The lack of lung targeting was also reflected in the failure to show any significant difference in the pulmonary targeting factor T (AUCLung/AUCLiver) between i.v. (T = 0.84 +/- 0.18) and IT (T = 0.78 +/- 0.03) administration. In contrast, a certain degree of lung specificity was observed after IT instillation of a glucocorticoid suspension (22 micrograms; AUCLung = 160 +/- 135% h; AUCLiver = 65 +/- 91% h, T = 2.3 +/- 0.5) as indicated by significant differences in T between i.v. injection and IT instillation (p = 0.038). The method presented provides a means of simultaneously assessing pulmonary and systemic effects after different forms and routes of administration and might be of value in further studying multiple aspects of inhalation glucocorticoid therapy.

  7. Fulvestrant-mediated inhibition of estrogen receptor signaling slows lung cancer progression.

    PubMed

    Tang, Hexiao; Liao, Yongde; Zhang, Chao; Chen, Guang; Xu, Liqiang; Liu, Zhaoguo; Fu, Shengling; Yu, Li; Zhou, Sheng

    2014-01-01

    Estrogens are key signaling molecules that regulate various physiological processes such as cell growth, development, and differentiation. They also play a major role in many pathological conditions, such as hormone-dependent cancer. The importance of inhibiting estrogen receptor signaling in diseases of estrogen target tissues, such as breast cancer, is well documented. However, the role of estrogen signaling in diseases of nontarget tissues, such as lung cancer, is not well characterized. The aim of the current study is to examine the expression of estrogen receptor β (ERβ) and the roles of estradiol (E2) and fulvestrant on the progression of lung cancer. Tissue microarray (TMA) and immunohistochemistry (IHC) analyses were used to detect the expression of aromatase, ERα, and ERβ in 198 patients. We performed analyses to determine if there was any correlation among these three proteins. A mouse model of urethane-induced lung adenocarcinoma was used in the study. Mice were divided into three treatment groups: blank control, E2 alone, and E2 + fulvestrant (ERβ antagonist). Western blot analysis and fluorescence quantitative PCR (FQ-PCR) were used to measure expression of ERβ protein and mRNA levels, respectively. ERβ, but not ERα, was overexpressed in NSCLC samples. Lung cancer progression in mice treated with E2 was significantly increased compared to either the control group or the E2 + fulvestrant group. Mice in the E2 treatment group had significantly increased expression of ERβ at both the mRNA and protein levels compared to mice treated with E2 + fulvestrant or control. Our data suggest that ERβ promotes lung cancer progression in mice and that this progression can be inhibited with fulvestrant. These findings may help elucidate the role of ERβ in lung cancer and suggest that estrogen receptor antagonists, such as fulvestrant, may be therapeutically beneficial for the treatment of the disease.

  8. BURN-INDUCED ACUTE LUNG INJURY REQUIRES A FUNCTIONAL TOLL-LIKE RECEPTOR 4

    PubMed Central

    Krzyzaniak, Michael; Cheadle, Gerald; Peterson, Carrie; Loomis, William; Putnam, James; Wolf, Paul; Baird, Andrew; Eliceiri, Brian; Bansal, Vishal; Coimbra, Raul

    2014-01-01

    The role of the Toll-like receptor 4 (TLR4), a component of the innate immune system, in the development of burn-induced acute lung injury (ALI) has not been completely defined. Recent data suggested that an intact TLR4 plays a major role in the development of organ injury in sterile inflammation. We hypothesized that burn-induced ALI is a TLR4-dependent process. Male C57BL/6J (TLR4 wild-type [WT]) and C57BL/10ScN (TLR4 knockout [KO]) mice were subjected to a 30% total body surface area steam burn. Animals were killed at 6 and 24 h after the insult. Lung specimens were harvested for histological examination after hematoxylin-eosin staining. In addition, lung myeloperoxidase (MPO) and intercellular adhesion molecule 1 immunostaining was performed. Lung MPO was measured by an enzymatic assay. Total lung keratinocyte-derived chemoattractant (IL-8) content was measured by enzyme-linked immunosorbent assay. Western blot was performed to quantify phosphorylated IκBα, phosphorylated nuclear factor κB p65 (NF-κBp65), and high mobility group box 1 expression. Acute lung injury, characterized by thickening of the alveolar-capillary membrane, hyaline membrane formation, intraalveolar hemorrhage, and neutrophil infiltration, was seen in WT but not KO animals at 24 h. Myeloperoxidase and intercellular adhesion molecule 1 immunostaining of KO animals was also similar to sham but elevated in WT animals. In addition, a reduction in MPO enzymatic activity was observed in KO mice as well as a reduction in IL-8 levels compared with their WT counterparts. Burn-induced ALI develops within 24 h after the initial thermal insult in our model. Toll-like receptor 4 KO animals were clearly protected and had a much less severe lung injury. Our data suggest that burn-induced ALI is a TLR4-dependent process. PMID:21330948

  9. Epidermal Growth Factor Receptor Mutated Advanced Non-Small Cell Lung Cancer: A Changing Treatment Paradigm.

    PubMed

    Pakkala, Suchita; Ramalingam, Suresh S

    2017-02-01

    Activating mutations in the epidermal growth factor receptor (EGFR) are present in approximately 15% of US patients with lung adenocarcinoma. EGFR tyrosine kinase inhibitors are associated with high response rate and progression-free survival for patients with non-small cell lung cancer with this genotype. Gefitinib, erlotinib, and afatinib are the EGFR tyrosine kinase inhibitors that are presently in clinical use. Understanding resistance mechanisms has led to the identification of a secondary mutational target, T790M, in more than half of patients, for which osimertinib has been approved. This article reviews the current treatments, resistance mechanisms, and strategies to overcome resistance.

  10. EGF receptor mutations in lung cancer: from humans to mice and maybe back to humans.

    PubMed

    Arteaga, Carlos L

    2006-06-01

    Deletions in exon 19 and nucleotide substitutions in exon 21 are the most common mutations of the EGFR (ErbB1) in NSCLC. These mutations endow the receptor with constitutive kinase activity. Most tumors expressing these mutants respond well to EGFR tyrosine kinase inhibitors, suggesting that they are dependent on mutant EGFR signaling. Two groups developed transgenic mice in which expression of these mutants is temporally induced in mouse lung. Mice expressing EGFR mutants develop bronchioloalveolar cancer and lung adenocarcinoma, which are highly sensitive to EGFR inhibitors. These mouse models provide important opportunities for studying the biology of NSCLC and the refinement of anti-EGFR therapies.

  11. N-Methyl-D-aspartate Receptor Excessive Activation Inhibited Fetal Rat Lung Development In Vivo and In Vitro

    PubMed Central

    Liao, Zhengchang; Zhou, Xiaocheng; Luo, Ziqiang; Huo, Huiyi; Wang, Mingjie; Yu, Xiaohe; Cao, Chuanding; Ding, Ying; Xiong, Zeng

    2016-01-01

    Background. Intrauterine hypoxia is a common cause of fetal growth and lung development restriction. Although N-methyl-D-aspartate receptors (NMDARs) are distributed in the postnatal lung and play a role in lung injury, little is known about NMDAR's expression and role in fetal lung development. Methods. Real-time PCR and western blotting analysis were performed to detect NMDARs between embryonic days (E) 15.5 and E21.5 in fetal rat lungs. NMDAR antagonist MK-801's influence on intrauterine hypoxia-induced retardation of fetal lung development was tested in vivo, and NMDA's direct effect on fetal lung development was observed using fetal lung organ culture in vitro. Results. All seven NMDARs are expressed in fetal rat lungs. Intrauterine hypoxia upregulated NMDARs expression in fetal lungs and decreased fetal body weight, lung weight, lung-weight-to-body-weight ratio, and radial alveolar count, whereas MK-801 alleviated this damage in vivo. In vitro experiments showed that NMDA decreased saccular circumference and area per unit and downregulated thyroid transcription factor-1 and surfactant protein-C mRNA expression. Conclusions. The excessive activation of NMDARs contributed to hypoxia-induced fetal lung development retardation and appropriate blockade of NMDAR might be a novel therapeutic strategy for minimizing the negative outcomes of prenatal hypoxia on lung development. PMID:27478831

  12. Molecular cloning, genomic structure, and tissue distribution of EW135, a novel chicken egg white protein with group B scavenger receptor cysteine-rich domains.

    PubMed

    Yoo, Whayoung; Nakamura, Tomohiro; Asanuma, Hideki; Matsushita, Misao

    2013-11-01

    Approximately 80 proteins are reported to be present in chicken egg white. The major function of egg white proteins isolated so far is to defend the egg yolk against infections. We recently isolated a novel protein termed EW135 from chicken egg white. In this paper, we have determined the complete amino acid sequence of EW135 based on cDNA cloning. EW135 consists of 970 amino acids with a putative signal peptide of 17 amino acids. It is composed exclusively of tandem repeats of nine group B scavenger receptor cysteine-rich (SRCR) domains separated by eight seven-amino acid peptides. The features of consensus sequences found in the group B SRCR domain were well conserved in EW135. The EW135 gene consists of putative 11 exons, with each SRCR domain being encoded by a single exon. Reverse transcription PCR showed that EW135 is expressed in only the oviduct among the 11 types of tissues tested. EW135 is a second soluble protein belonging to the group B SRCR domain superfamily identified in chickens. One of the important functions of proteins belonging to the group B SRCR domain superfamily is to recognize pathogens in innate immunity. It is, therefore, conceivable that EW135 could be involved in host defense in egg white.

  13. Antagonism of scavenger receptor CD36 by 5A peptide prevents chronic kidney disease progression in mice independent of blood pressure regulation.

    PubMed

    Souza, Ana Carolina P; Bocharov, Alexander V; Baranova, Irina N; Vishnyakova, Tatyana G; Huang, Yuning G; Wilkins, Kenneth J; Hu, Xuzhen; Street, Jonathan M; Alvarez-Prats, Alejandro; Mullick, Adam E; Patterson, Amy P; Remaley, Alan T; Eggerman, Thomas L; Yuen, Peter S T; Star, Robert A

    2016-04-01

    Scavenger receptor CD36 participates in lipid metabolism and inflammatory pathways important for cardiovascular disease and chronic kidney disease (CKD). Few pharmacological agents are available to slow the progression of CKD. However, apolipoprotein A-I-mimetic peptide 5A antagonizes CD36 in vitro. To test the efficacy of 5A, and to test the role of CD36 during CKD, we compared wild-type to CD36 knockout mice and wild-type mice treated with 5A, in a progressive CKD model that resembles human disease. Knockout and 5A-treated wild-type mice were protected from CKD progression without changes in blood pressure and had reductions in cardiovascular risk surrogate markers that are associated with CKD. Treatment with 5A did not further protect CD36 knockout mice from CKD progression, implicating CD36 as its main site of action. In a separate model of kidney fibrosis, 5A-treated wild-type mice had less macrophage infiltration and interstitial fibrosis. Peptide 5A exerted anti-inflammatory effects in the kidney and decreased renal expression of inflammasome genes. Thus, CD36 is a new therapeutic target for CKD and its associated cardiovascular risk factors. Peptide 5A may be a promising new agent to slow CKD progression.

  14. Scavenger receptor for lipoteichoic acid is involved in the potent ability of Lactobacillus plantarum strain L-137 to stimulate production of interleukin-12p40.

    PubMed

    Hatano, Shinya; Hirose, Yoshitaka; Yamamoto, Yoshihiro; Murosaki, Shinji; Yoshikai, Yasunobu

    2015-04-01

    Heat-killed Lactobacillus plantarum strain L-137 (HK L-137) is a more potent inducer of interleukin (IL)-12 than other heat-killed Lactobacillus strains. To elucidate the mechanism involved in this IL-12p40 induction, we compared HK L-137 with heat-killed L. plantarum strain JCM1149 (HK JCM1149) by nuclear magnetic resonance and mass spectrometry. Results showed that HK L-137 contained lipoteichoic acid (LTA) with a chemical structure similar to that of JCM1149, except for a lower degree of glucosyl substitution in the poly(glycerol phosphate) backbone. Lysozyme sensitivity and electrophoretic moiety analysis revealed that HK L-137 exposed more LTA on its cell surface than HK JCM1149. Phagocytosis of HK L-137 by splenic adherent cells was significantly greater than that of HK JCM1149. Anti-LTA antibody and anti-scavenger receptor-A (SR-A) antibody selectively inhibited phagocytosis of HK L-137, as well as IL-12p40 production, by splenic adherent cells. Thus, a higher efficiency of phagocytosis of HK L-137 via SR-A for LTA is responsible for the potent IL-12p40 induction.

  15. Increased Susceptibility of  Thymocytes to Apoptosis in Mice Lacking AIM, a Novel Murine Macrophage-derived Soluble Factor Belonging to the Scavenger Receptor Cysteine-rich Domain Superfamily

    PubMed Central

    Miyazaki, Toru; Hirokami, Yumiko; Matsuhashi, Nobuyuki; Takatsuka, Hisakazu; Naito, Makoto

    1999-01-01

    Apoptosis of cells must be regulated both positively and negatively in response to a variety of stimuli in the body. Various environmental stresses are known to initiate apoptosis via differential signal transduction cascades. However, induction of signals that may inhibit apoptosis is poorly understood, although a number of intracellular molecules that mediate inhibition of apoptosis have been identified. Here we present a novel murine macrophage-specific 54-kD secreted protein which inhibits apoptosis (termed AIM, for apoptosis inhibitor expressed by macrophages). AIM belongs to the macrophage scavenger receptor cysteine-rich domain superfamily (SRCR-SF), members of which share a highly homologous conserved cysteine-rich domain. In AIM-deficient mice, the thymocyte numbers were diminished to half those in wild-type mice, and CD4/CD8 double-positive (DP) thymocytes were strikingly more susceptible to apoptosis induced by both dexamethasone and irradiation in vivo. Recombinant AIM protein significantly inhibited cell death of DP thymocytes in response to a variety of stimuli in vitro. These results indicate that in the thymus, AIM functions in trans to induce resistance to apoptosis within DP cells, and thus supports the viability of DP thymocytes before thymic selection. PMID:9892623

  16. Class A scavenger receptor-mediated dsRNA internalization is independent of innate antiviral signaling and does not require PI3K activity1

    PubMed Central

    Nellimarla, Srinivas; Baid, Kaushal; Loo, Yueh-Ming; Gale, Michael; Bowdish, Dawn M.; Mossman, Karen L.

    2016-01-01

    Double-stranded RNA is a potent trigger of innate immune signaling, eliciting effects within virally infected cells and following release from dying cells. Given its inherent stability, extracellular dsRNA induces both local and systemic effects. Although the class A scavenger receptors (SR-As)3 mediate dsRNA entry, it is unknown if they contribute to signaling beyond ligand internalization. Here, we investigated if SR-As contribute to innate immune signaling independent of the classic TLR and RLR pathways. We generated a stable A549 human epithelial cell line with inducible expression of the Hepatitis C virus protease NS3/4A, which efficiently cleaves TRIF and IPS-1, adaptors for TLR3 and the RLRs respectively. Cells expressing NS3/4A as well as TLR3/MDA5/IPS-1−/− mouse embryonic fibroblasts completely lacked antiviral activity to extracellular dsRNA relative to control cells, suggesting that SR-As do not possess signaling capacity independent of TLR3 or the RLRs. Previous studies implicated PI3K signaling in SR-A-mediated activities and in downstream production of type I interferon. We found that SR-A-mediated dsRNA internalization occurs independent of PI3K activation, while downstream signaling leading to interferon production was partially dependent on PI3K activity. Overall, these findings suggest that SR-A-mediated dsRNA internalization is independent of innate antiviral signaling. PMID:26363049

  17. Salvianolic acid B inhibits macrophage uptake of modified low density lipoprotein (mLDL) in a scavenger receptor CD36-dependent manner

    PubMed Central

    Bao, Yi; Wang, Li; Xu, Yanni; Yang, Yuan; Wang, Lifei; Si, Shuyi; Cho, Sunghee; Hong, Bin

    2012-01-01

    CD36, a class B scavenger receptor, has been implicated in the pathogenesis of a host of vascular inflammatory diseases. Through a high-throughput screening (HTS) assay for CD36 antagonist, we previously identified salvianolic acid B (SAB), a hydrophilic component derived from the herb Danshen, as a potential candidate. Danshen, the dried roots of Salvia miltiorrhiza, has been widely used in China for the prevention and treatment of atherosclerosis-related disorders. Previous studies showed that SAB acted as an anti-oxidant by preventing lipid peroxidation and oxidized LDL (oxLDL) formation. The present study was to investigate the specificity and efficacy of SAB in the inhibition of CD36-mediated lipid uptake. SAB reduced modified LDL (mLDL) uptake in a dose-dependent manner in phorbol-12-myristate-13-acetate (PMA)-stimulated THP-1 and RAW 264.7 cells. In the CD36 silenced THP-1 cells, SAB had no effect in reducing mLDL uptake, whereas its over-expression in CHO cells reinstates the effect, indicating a specific involvement of SAB in antagonizing the CD36's function. Surface plasmon resonance (SPR) analysis revealed a direct binding of SAB to CD36 with a high affinity (KD =3.74 μM), confirming physical interactions of SAB with the receptor. Additionally, SAB reduced oxLDL-induced CD36 gene expression in the cultured cell lines and primary macrophages. In ApoE KO mice fed a high fat diet, SAB reduced CD36 gene expression and lipid uptake in macrophages, showing its ability to antagonize CD36 pathways in vivo. These results demonstrate that SAB is an effective CD36 antagonist and suggest SAB as a potential anti-atherosclerotic agent. PMID:22658257

  18. Brain ischaemia induces shedding of a BDNF-scavenger ectodomain from TrkB receptors by excitotoxicity activation of metalloproteinases and γ-secretases.

    PubMed

    Tejeda, Gonzalo S; Ayuso-Dolado, Sara; Arbeteta, Raquel; Esteban-Ortega, Gema M; Vidaurre, Oscar G; Díaz-Guerra, Margarita

    2016-04-01

    Stroke remains a leading cause of death and disability in the world with limited therapies available to restrict brain damage or improve functional recovery after cerebral ischaemia. A promising strategy currently under investigation is the promotion of brain-derived neurotrophic factor (BDNF) signalling through tropomyosin-related kinase B (TrkB) receptors, a pathway essential for neuronal survival and function. However, TrkB and BDNF-signalling are impaired by excitotoxicity, a primary pathological process in stroke also associated with neurodegenerative diseases. Pathological imbalance of TrkB isoforms is critical in neurodegeneration and is caused by calpain processing of BDNF high affinity full-length receptor (TrkB-FL) and an inversion of the transcriptional pattern of the Ntrk2 gene, to favour expression of the truncated isoform TrkB-T1 over TrkB-FL. We report here that both TrkB-FL and neuronal TrkB-T1 also undergo ectodomain shedding by metalloproteinases activated after ischaemic injury or excitotoxic damage of cortical neurons. Subsequently, the remaining membrane-bound C-terminal fragments (CTFs) are cleaved by γ-secretases within the transmembrane region, releasing their intracellular domains (ICDs) into the cytosol. Therefore, we identify TrkB-FL and TrkB-T1 as new substrates of regulated intramembrane proteolysis (RIP), a mechanism that highly contributes to TrkB-T1 regulation in ischaemia but is minor for TrkB-FL which is mainly processed by calpain. However, since the secreted TrkB ectodomain acts as a BDNF scavenger and significantly alters BDNF/TrkB signalling, the mechanism of RIP could contribute to neuronal death in excitotoxicity. These results are highly relevant since they reveal new targets for the rational design of therapies to treat stroke and other pathologies with an excitotoxic component.

  19. Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing antibodies by modulating binding to scavenger receptor B1

    PubMed Central

    El-Diwany, Ramy; Mankowski, Madeleine C.; Wasilewski, Lisa N.; Brady, Jillian K.; Snider, Anna E.; Osburn, William O.; Murrell, Ben; Ray, Stuart C.

    2017-01-01

    Broadly-neutralizing monoclonal antibodies (bNAbs) may guide vaccine development for highly variable viruses including hepatitis C virus (HCV), since they target conserved viral epitopes that could serve as vaccine antigens. However, HCV resistance to bNAbs could reduce the efficacy of a vaccine. HC33.4 and AR4A are two of the most potent anti-HCV human bNAbs characterized to date, binding to highly conserved epitopes near the amino- and carboxy-terminus of HCV envelope (E2) protein, respectively. Given their distinct epitopes, it was surprising that these bNAbs showed similar neutralization profiles across a panel of natural HCV isolates, suggesting that some viral polymorphisms may confer resistance to both bNAbs. To investigate this resistance, we developed a large, diverse panel of natural HCV envelope variants and a novel computational method to identify bNAb resistance polymorphisms in envelope proteins (E1 and E2). By measuring neutralization of a panel of HCV pseudoparticles by 10 μg/mL of each bNAb, we identified E1E2 variants with resistance to one or both bNAbs, despite 100% conservation of the AR4A binding epitope across the panel. We discovered polymorphisms outside of either binding epitope that modulate resistance to both bNAbs by altering E2 binding to the HCV co-receptor, scavenger receptor B1 (SR-B1). This study is focused on a mode of neutralization escape not addressed by conventional analysis of epitope conservation, highlighting the contribution of extra-epitopic polymorphisms to bNAb resistance and presenting a novel mechanism by which HCV might persist even in the face of an antibody response targeting multiple conserved epitopes. PMID:28235087

  20. Evaluation of glucocorticoid receptor function in COPD lung macrophages using beclomethasone-17-monopropionate.

    PubMed

    Plumb, Jonathan; Robinson, Laura; Lea, Simon; Banyard, Antonia; Blaikley, John; Ray, David; Bizzi, Andrea; Volpi, Giorgina; Facchinetti, Fabrizio; Singh, Dave

    2013-01-01

    Previous studies of glucocorticoid receptor (GR) function in COPD lung macrophages have used dexamethasone to evaluate inhibition of cytokine production. We have now used the clinically relevant corticosteroid beclomethasone-17-monopropionate (17-BMP) to assess GR function in COPD lung macrophages, and investigated the transactivation of glucocorticoid sensitive genes and GR phosphorylation in addition to cytokine production. Lung macrophages were purified from surgically acquired lung tissue, from patients with COPD, smokers, and non-smokers. The transactivation of glucocorticoid sensitive genes (FKBP51 and GILZ) by 17-BMP were analysed by polymerase chain reaction. 17-BMP suppression of LPS-induced TNFα, IL-6 and CXCL8 was measured by ELISA and GR phosphorylation was measured by immunohistochemistry and Western blot. 17-BMP reduced cytokine release in a concentration dependent manner, with >70% inhibition of all cytokines, and no difference between COPD patients and controls. Similarly, the transactivation of FKBP51 and GILZ, and GR phosphorylation was similar between COPD patients and controls. In this context, GR function in COPD lung macrophages is unaltered. 17-BMP effectively suppresses cytokine production in COPD lung macrophages.

  1. Epidermal growth factor receptor mutation enhances expression of vascular endothelial growth factor in lung cancer.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; Lin, Paul-Yann; Lung, Jr-Hau; Li, Ya-Chin; Lin, Yu-Ching; Yang, Cheng-Ta; Tsai, Ying-Huang

    2016-12-01

    Epidermal growth factor receptor (EGFR) activation has been demonstrated to have a critical role in tumor angiogenesis. In the present study, the correlation between EGFR mutations and vascular endothelial growth factor (VEGF) was investigated in lung cancer cell lines and non-small-cell lung cancer (NSCLC) tumor tissues. VEGF levels were significantly increased in culture medium of lung cancer cells and NSCLC tissues with EGFR mutations (H1650 vs. A549, P=0.0399; H1975 vs. A549, P<0.0001). Stable lung cancer cell lines expressing mutant (exon 19 deletion, E746-A750; exon 21 missense mutation, L858R) and wild-type EGFR genes were established. Significantly increased expression of VEGF and stronger inhibitory effects of gefitinib to VEGF expression were observed in exon 19 deletion stable lung cancer cells (exon 19 deletion vs. wild-type EGFR, P=0.0005). The results of the present study may provide an insight into the association of mutant EGFR and VEGF expression in lung cancer, and may assist with further development of targeted therapy for NSCLC in the future.

  2. Lung injury after hemorrhage is age-dependent: role of peroxisome proliferator activated receptor γ

    PubMed Central

    Zingarelli, Basilia; Hake, Paul W.; O’Connor, Michael; Burroughs, Timothy J.; Wong, Hector R.; Solomkin, Joseph S.; Lentsch, Alex B.

    2009-01-01

    Objective The incidence of multiple organ failure in pediatric trauma victims is lower than in the adult population. However, the molecular mechanisms are not yet defined. We investigated whether the pathophysiologic characteristics of hemorrhage-induced lung injury may be age-dependent and may be regulated by the peroxisome proliferator activator receptor γ (PPARγ). Design Prospective, laboratory investigation that used an established rodent model of hemorrhagic shock. Setting University hospital laboratory. Subjects Young (n=67; 3–5 months old) and mature (n=66; 11–13 months old) male rats. Interventions Hemorrhagic shock was induced in young and mature rats by withdrawing blood to a mean arterial blood pressure of 50 mmHg. After 3 hrs, rats were rapidly resuscitated by infusing the shed blood and sacrificed 3 hrs thereafter. Measurements and Main Results In young rats, lung injury was characterized by accumulation of red cells and neutrophils at the end of the resuscitation period; at Western blot analysis, lung expression of intercellular adhesion molecule-1 (ICAM-1) was increased. In contrast, the severity of lung injury was more pronounced in mature rats. Lung myeloperoxidase activity and expression of constitutive and inducible ICAM-1 was significantly higher in mature rats when compared to young rats. Mature rats also had higher plasma levels of cytokines and chemokines when compared to young rats. This heightened inflammation was associated with higher degree of activation of nuclear factor-κB and down-regulation of PPARγ and heat shock factor-1 in the lung of mature rats when compared to young rats. Treatment with the PPARγ ligand, the cyclopentenone prostaglandin 15-deoxy-Δ12,14-prostaglandin J2, ameliorated lung injury in young, but not in mature animals. Conclusions Lung injury after severe hemorrhage is age-dependent and may be secondary to a diverse regulation of PPARγ. PMID:19384226

  3. Detection of Sendai virus receptor, the ganglioside GDla, in target tissue (mouse lung)

    SciTech Connect

    Markwell, M.A.K.; Sato, E.

    1986-05-01

    Previously the authors had shown that the gangliosides GDla, GTlb, and GQlb derived from brain function as receptors for the paramyxovirus Sendai virus by their ability to induce infection when incubated with receptor-deficient cells. Analyses of MDBK, HeLa, and MDCK cells in culture demonstrated that these putative receptors were present in host cells in the quantities required for infection. The primary site of infection for Sendai virus in the whole animal is the respiratory tract, culminating in the lung. Therefore, the ganglioside content of this target organ was analyzed to determine the endogenous receptor population available to Sendai virus. The total ganglioside fraction of lung was resolved into individual species by HPTLC. Gangliosides of the gangliotetraose series were identified by the specific binding of /sup 125/I-labeled tetanus and cholera toxins before and after exposure with sialidase. In this manner one of the major resorcinol-positive bands was identified as GDla. Evidence of the more complex ganglioside receptors for Sendai virus was also seen.

  4. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease

    PubMed Central

    Karmouty-Quintana, Harry; Zhong, Hongyan; Acero, Luis; Weng, Tingting; Melicoff, Ernestina; West, James D.; Hemnes, Anna; Grenz, Almut; Eltzschig, Holger K.; Blackwell, Timothy S.; Xia, Yang; Johnston, Richard A.; Zeng, Dewan; Belardinelli, Luiz; Blackburn, Michael R.

    2012-01-01

    Development of pulmonary hypertension is a common and deadly complication of interstitial lung disease. Little is known regarding the cellular and molecular mechanisms that lead to pulmonary hypertension in patients with interstitial lung disease, and effective treatment options are lacking. The purpose of this study was to examine the adenosine 2B receptor (A2BR) as a regulator of vascular remodeling and pulmonary hypertension secondary to pulmonary fibrosis. To accomplish this, cellular and molecular changes in vascular remodeling were monitored in mice exposed to bleomycin in conjunction with genetic removal of the A2BR or treatment with the A2BR antagonist GS-6201. Results demonstrated that GS-6201 treatment or genetic removal of the A2BR attenuated vascular remodeling and hypertension in our model. Furthermore, direct A2BR activation on vascular cells promoted interleukin-6 and endothelin-1 release. These studies identify a novel mechanism of disease progression to pulmonary hypertension and support the development of A2BR antagonists for the treatment of pulmonary hypertension secondary to interstitial lung disease.—Karmouty-Quintana, H., Zhong, H., Acero, L., Weng, T., Melicoff, E., West, J. D., Hemnes, A., Grenz, A., Eltzschig, H. K., Blackwell, T. S., Xia, Y., Johnston, R. A., Zeng, D., Belardinelli, L., Blackburn, M. R. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease. PMID:22415303

  5. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    PubMed Central

    Yin, Yongjun; Ren, Xiaodi; Smith, Craig; Guo, Qianxu; Malabunga, Maria; Guernah, Ilhem; Zhang, Yiwei; Shen, Juqun; Sun, Haijun; Chehab, Nabil; Loizos, Nick; Ludwig, Dale L.; Ornitz, David M.

    2016-01-01

    ABSTRACT Activating mutations in fibroblast growth factor receptor 3 (FGFR3) have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9), a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC) specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11) with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3. PMID:27056048

  6. Comparative characterization of lung muscarinic receptor binding after intratracheal administration of tiotropium, ipratropium, and glycopyrrolate.

    PubMed

    Ogoda, Masaki; Niiya, Ryo; Koshika, Tadatsura; Yamada, Shizuo

    2011-01-01

    The aim of the current study was to characterize comparatively the binding of muscarinic receptor in the lung of rats intratracheally administered anticholinergic agents (tiotropium, ipratropium, glycopyrrolate) used clinically to treat chronic obstructive pulmonary disease (COPD) and asthma. Binding parameters of [N-methyl-(3)H]scopolamine methyl chloride ([(3)H]NMS) were determined in tissues (lung, bladder, submaxillary gland) of rats intratracheally administered tiotropium, ipratropium, and glycopyrrolate. The in vitro binding affinity of tiotropium for the receptors was 10-11-fold higher than those of ipratropium and glycopyrrolate. Intratracheal administration of tiotropium (0.6-6.4 nmol/kg) caused sustained (lasting at least 24 h) increase in the apparent dissociation constant (K(d)) for [(3)H]NMS binding in rat lung compared with the control value. Concomitantly, there was a long-lasting decrease in the maximal number of binding sites (B(max)) for [(3)H]NMS. Similary, ipratropium and glycopyrrolate at 7.3 and 7.5 nmol/kg, respectively, brought about a significant increase in K(d) for [(3)H]NMS binding. The effect by ipratropium was observed at 2 h but not 12 h, and that by glycopyrrolate lasted for 24 h. Both agents had little influence on the muscarinic receptors in the bladder and submaxillary gland. The present study provides the first evidence that tiotropium, ipratropium, and glycopyrrolate administered intratracheally in rats selectively bound muscarinic receptors of the lung, and tiotropium and glycopyrrolate had a much longer-lasting effect than ipratropium.

  7. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and T regulatory cells

    PubMed Central

    Olkhanud, Purevdorj B.; Baatar, Dolgor; Bodogai, Monica; Hakim, Fran; Gress, Ronald; Anderson, Robin L.; Deng, Jie; Xu, Mai; Briest, Susanne; Biragyn, Arya

    2009-01-01

    Cancer metastasis is a leading cause of cancer morbidity and mortality. More needs to be learned about mechanisms that control this process. In particular, the role of chemokine receptors in metastasis remains controversial. Here, using a highly metastatic breast cancer (4T1) model, we demonstrate that lung metastasis is a feature of only a proportion of the tumor cells that express CCR4. Moreover, the primary tumor growing in mammary pads activates remotely the expression of TARC/CCL17 and MDC/CCL22 in the lungs. These chemokines acting through CCR4 attract both tumor and immune cells. However, CCR4 mediated chemotaxis was not sufficient to produce metastasis, as tumor cells in the lung were efficiently eliminated by NK cells. Lung metastasis required CCR4+ Tregs which directly killed NK cells utilizing beta-galactoside-binding protein. Thus, strategies that abrogate any part of this process should improve the outcome through activation of effector cells and prevention of tumor cell migration. We confirm this prediction by killing CCR4+ cells through delivery of TARC-fused toxins or depleting Tregs and preventing lung metastasis. PMID:19567680

  8. Developmental Expression and Glucocorticoid Control of the Leptin Receptor in Fetal Ovine Lung

    PubMed Central

    De Blasio, Miles J.; Boije, Maria; Vaughan, Owen R.; Bernstein, Brett S.; Davies, Katie L.; Plein, Alice; Kempster, Sarah L.; Smith, Gordon C. S.; Charnock-Jones, D. Stephen; Blache, Dominique; Wooding, F. B. Peter; Giussani, Dino A.; Fowden, Abigail L.; Forhead, Alison J.

    2015-01-01

    The effects of endogenous and synthetic glucocorticoids on fetal lung maturation are well-established, although the role of leptin in lung development before birth is unclear. This study examined mRNA and protein levels of the signalling long-form leptin receptor (Ob-Rb) in fetal ovine lungs towards term, and after experimental manipulation of glucocorticoid levels in utero by fetal cortisol infusion or maternal dexamethasone treatment. In fetal ovine lungs, Ob-Rb protein was localised to bronchiolar epithelium, bronchial cartilage, vascular endothelium, alveolar macrophages and type II pneumocytes. Pulmonary Ob-Rb mRNA abundance increased between 100 (0.69 fractional gestational age) and 144 days (0.99) of gestation, and by 2–4-fold in response to fetal cortisol infusion and maternal dexamethasone treatment. In contrast, pulmonary Ob-Rb protein levels decreased near term and were halved by glucocorticoid treatment, without any significant change in phosphorylated signal transducer and activator of transcription-3 (pSTAT3) at Ser727, total STAT3 or the pulmonary pSTAT3:STAT3 ratio. Leptin mRNA was undetectable in fetal ovine lungs at the gestational ages studied. These findings demonstrate differential control of pulmonary Ob-Rb transcript abundance and protein translation, and/or post-translational processing, by glucocorticoids in utero. Localisation of Ob-Rb in the fetal ovine lungs, including alveolar type II pneumocytes, suggests a role for leptin signalling in the control of lung growth and maturation before birth. PMID:26287800

  9. Role of Transient Receptor Potential Vanilloid 4 in Neutrophil Activation and Acute Lung Injury.

    PubMed

    Yin, Jun; Michalick, Laura; Tang, Christine; Tabuchi, Arata; Goldenberg, Neil; Dan, Qinghong; Awwad, Khader; Wang, Liming; Erfinanda, Lasti; Nouailles, Geraldine; Witzenrath, Martin; Vogelzang, Alexis; Lv, Lu; Lee, Warren L; Zhang, Haibo; Rotstein, Ori; Kapus, Andras; Szaszi, Katalin; Fleming, Ingrid; Liedtke, Wolfgang B; Kuppe, Hermann; Kuebler, Wolfgang M

    2016-03-01

    The cation channel transient receptor potential vanilloid (TRPV) 4 is expressed in endothelial and immune cells; however, its role in acute lung injury (ALI) is unclear. The functional relevance of TRPV4 was assessed in vivo, in isolated murine lungs, and in isolated neutrophils. Genetic deficiency of TRPV4 attenuated the functional, histological, and inflammatory hallmarks of acid-induced ALI. Similar protection was obtained with prophylactic administration of the TRPV4 inhibitor, GSK2193874; however, therapeutic administration of the TRPV4 inhibitor, HC-067047, after ALI induction had no beneficial effect. In isolated lungs, platelet-activating factor (PAF) increased vascular permeability in lungs perfused with trpv4(+/+) more than with trpv4(-/-) blood, independent of lung genotype, suggesting a contribution of TRPV4 on blood cells to lung vascular barrier failure. In neutrophils, TRPV4 inhibition or deficiency attenuated the PAF-induced increase in intracellular calcium. PAF induced formation of epoxyeicosatrienoic acids by neutrophils, which, in turn, stimulated TRPV4-dependent Ca(2+) signaling, whereas inhibition of epoxyeicosatrienoic acid formation inhibited the Ca(2+) response to PAF. TRPV4 deficiency prevented neutrophil responses to proinflammatory stimuli, including the formation of reactive oxygen species, neutrophil adhesion, and chemotaxis, putatively due to reduced activation of Rac. In chimeric mice, however, the majority of protective effects in acid-induced ALI were attributable to genetic deficiency of TRPV4 in parenchymal tissue, whereas TRPV4 deficiency in circulating blood cells primarily reduced lung myeloperoxidase activity. Our findings identify TRPV4 as novel regulator of neutrophil activation and suggest contributions of both parenchymal and neutrophilic TRPV4 in the pathophysiology of ALI.

  10. Photoperiod regulates lung-associated immunological parameters and melatonin receptor (Mel1a and Mel1b) in lungs of a tropical bird, Perdicula asiatica.

    PubMed

    Kharwar, Rajesh Kumar; Haldar, Chandana

    2011-01-01

    We accessed the effects of different photoperiodic regimes, i.e. long (LP; 20L:4D), short (SP; 4L:20D) and natural day photoperiod during reproductively inactive and reproductively active phase on immune parameters of lungs and general immunity of Perdicula asiatica. SP increased bronchus-associated lymphoid tissue (BALT) and non-BALT nodule size, total leukocyte count, lymphocyte count, plasma melatonin level, percent stimulation ratio of lymphocytes and decreased testicular activity (weight and testosterone level). LP during both the reproductive phases decreased the above-mentioned immune parameters suggesting that photoperiod might be regulating lung-associated immune system (LAIS) via melatonin. We also extended our study to note the expression of melatonin receptor types Mel(1a) and Mel(1b) in lung tissue to support our above statement. Western blot analysis showed significant increase in expression of Mel(1a) and Mel(1b) receptor types under SP conditions and decreased expression under LP condition when compared with control group of both reproductive phases. This suggests the probable involvement of Mel(1a) and Mel(1b) receptors in mediation of photoperiodic signals to LAIS. P. asiatica is a photoperiodic bird hence photoperiodically regulated melatonin hormone and its receptors in the lung might be responsible for modulation of lung-associated immunity.

  11. Increased DNA methylation of scavenger receptor class B type I contributes to inhibitory effects of prenatal caffeine ingestion on cholesterol uptake and steroidogenesis in fetal adrenals

    SciTech Connect

    Wu, Dong-Mei; He, Zheng; Ma, Liang-Peng; Wang, Lin-Long; Ping, Jie; Wang, Hui

    2015-06-01

    Steroid hormones synthesized from cholesterol in the fetal adrenal are crucial for fetal development. We have observed the inhibited fetal adrenal corticosterone synthesis and increased intrauterine growth retardation (IUGR) rate in rats under prenatal caffeine ingestion. The aim of this study is to evaluate the effects of prenatal caffeine ingestion on cholesterol supply in fetal adrenal steroidogenesis in rats and explore the underlying epigenetic mechanisms. Pregnant Wistar rats were treated with 60 mg/kg·d caffeine from gestational day (GD) 7 to GD17. Histological changes of fetal adrenals and increased IUGR rates were observed in the caffeine group. There were significantly decreased steroid hormone contents and cholesterol supply in caffeine-treated fetal adrenals. Data from the gene expression array suggested that prenatal caffeine ingestion caused increased expression of genes related to DNA methylation and decreased expression of genes related to cholesterol uptake. The following conjoint analysis of DNA methylation array with these differentially expressed genes suggested that scavenger receptor class B type I (SR-BI) may play an important role in caffeine-induced cholesterol supply deficiency. Moreover, real-time RT-PCR and immunohistochemical detection certified the inhibitory effects of caffeine on both mRNA expression and protein expression of SR-BI in the fetal adrenal. And the increased DNA methylation frequency in the proximal promoter of SR-BI was confirmed by bisulfite-sequencing PCR. In conclusion, prenatal caffeine ingestion can induce DNA hypermethylation of the SR-BI promoter in the rat fetal adrenal. These effects may lead to decreased SR-BI expression and cholesterol uptake, which inhibits steroidogenesis in the fetal adrenal. - Highlights: • Prenatal caffeine ingestion inhibits steroid hormone production in the fetal adrenal. • Prenatal caffeine ingestion inhibits cholesterol uptake in the fetal adrenal. • Prenatal caffeine

  12. Cell-specific expression of the macrophage scavenger receptor gene is dependent on PU.1 and a composite AP-1/ets motif.

    PubMed Central

    Moulton, K S; Semple, K; Wu, H; Glass, C K

    1994-01-01

    The type I and II scavenger receptors (SRs) are highly restricted to cells of monocyte origin and become maximally expressed during the process of monocyte-to-macrophage differentiation. In this report, we present evidence that SR genomic sequences from -245 to +46 bp relative to the major transcriptional start site were sufficient to confer preferential expression of a reporter gene to cells of monocyte and macrophage origin. This profile of expression resulted from the combinatorial actions of multiple positive and negative regulatory elements. Positive transcriptional control was primarily determined by two elements, located 181 and 46 bp upstream of the major transcriptional start site. Transcriptional control via the -181 element was mediated by PU.1/Spi-1, a macrophage and B-cell-specific transcription factor that is a member of the ets domain gene family. Intriguingly, the -181 element represented a relatively low-affinity binding site for Spi-B, a closely related member of the ets domain family that has been shown to bind with relatively high affinity to other PU.1/Spi-1 binding sites. These observations support the idea that PU.1/Spi-1 and Spi-B regulate overlapping but nonidentical sets of genes. The -46 element represented a composite binding site for a distinct set of ets domain proteins that were preferentially expressed in monocyte and macrophage cell lines and that formed ternary complexes with members of the AP-1 gene family. In concert, these observations suggest a model for how interactions between cell-specific and more generally expressed transcription factors function to dictate the appropriate temporal and cell-specific patterns of SR expression during the process of macrophage differentiation. Images PMID:8007948

  13. Regulation of expression and function of scavenger receptor class B, type I (SR-BI) by Na+/H+ exchanger regulatory factors (NHERFs).

    PubMed

    Hu, Zhigang; Hu, Jie; Zhang, Zhonghua; Shen, Wen-Jun; Yun, C Chris; Berlot, Catherine H; Kraemer, Fredric B; Azhar, Salman

    2013-04-19

    Scavenger receptor class B, type I (SR-BI) binds HDL and mediates selective delivery of cholesteryl esters (CEs) to the liver, adrenals, and gonads for product formation (bile acids and steroids). Because relatively little is known about SR-BI posttranslational regulation in steroidogenic cells, we examined the roles of Na(+)/H(+) exchanger regulatory factors (NHERFs) in regulating SR-BI expression, SR-BI-mediated selective CE uptake, and steroidogenesis. NHERF1 and NHERF2 mRNA and protein are expressed at varying levels in model steroidogenic cell lines and the adrenal, with only low expression of PDZK1 (NHERF3) and NHERF4. Dibutyryl cyclic AMP decreased NHERF1 and NHERF2 and increased SR-BI mRNA expression in primary rat granulosa cells and MLTC-1 cells, whereas ACTH had no effect on NHERF1 and NHERF2 mRNA levels but decreased their protein levels in rat adrenals. Co-immunoprecipitation, colocalization, bimolecular fluorescence complementation, and mutational analysis indicated that SR-BI associates with NHERF1 and NHERF2. NHERF1 and NHERF2 down-regulated SR-BI protein expression through inhibition of its de novo synthesis. NHERF1 and NHERF2 also inhibited SR-BI-mediated selective CE transport and steroidogenesis, which were markedly attenuated by partial deletions of the PDZ1 or PDZ2 domain of NHERF1, the PDZ2 domain of NHERF2, or the MERM domains of NHERF1/2 or by gene silencing of NHERF1/2. Moreover, an intact COOH-terminal PDZ recognition motif (EAKL) in SR-BI is needed. Transient transfection of hepatic cell lines with NHERF1 or NHERF2 caused a significant reduction in endogenous protein levels of SR-BI. Collectively, these data establish NHERF1 and NHERF2 as SR-BI protein binding partners that play a negative role in the regulation of SR-BI expression, selective CE transport, and steroidogenesis.

  14. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    SciTech Connect

    Gan, Lu; Xue, Jian-Xin; Li, Xin; Liu, De-Song; Ge, Yan; Ni, Pei-Yan; Deng, Lin; Lu, You; Jiang, Wei

    2011-05-27

    Highlights: {yields} Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. {yields} Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. {yields} VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. {yields} LPA-LPAR1/3 signaling regulated TGF{beta}1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. {yields} LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGF{beta}1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy for lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor {beta}1 (TGF{beta}1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA-LPAR1

  15. Non-small cell lung cancer cell survival crucially depends on functional insulin receptors.

    PubMed

    Frisch, Carolin Maria; Zimmermann, Katrin; Zilleßen, Pia; Pfeifer, Alexander; Racké, Kurt; Mayer, Peter

    2015-08-01

    Insulin plays an important role as a growth factor and its contribution to tumor proliferation is intensely discussed. It acts via the cognate insulin receptor (IR) but can also activate the IGF1 receptor (IGF1R). Apart from increasing proliferation, insulin might have additional effects in lung cancer. Therefore, we investigated insulin action and effects of IR knockdown (KD) in three (NCI-H292, NCI-H226 and NCI-H460) independent non-small cell lung cancer (NSCLC) cell lines. All lung cancer lines studied were found to express IR, albeit with marked differences in the ratio of the two variants IR-A and IR-B. Insulin activated the classical signaling pathway with IR autophosphorylation and Akt phosphorylation. Moreover, activation of MAPK was observed in H292 cells, accompanied by enhanced proliferation. Lentiviral shRNA IR KD caused strong decrease in survival of all three lines, indicating that the effects of insulin in lung cancer go beyond enhancing proliferation. Unspecific effects were ruled out by employing further shRNAs and different insulin-responsive cells (human pre-adipocytes) for comparison. Caspase assays demonstrated that IR KD strongly induced apoptosis in these lung cancer cells, providing the physiological basis of the rapid cell loss. In search for the underlying mechanism, we analyzed alterations in the gene expression profile in response to IR KD. A strong induction of certain cytokines (e.g. IL20 and tumour necrosis factor) became obvious and it turned out that these cytokines trigger apoptosis in the NSCLC cells tested. This indicates a novel role of IR in tumor cell survival via suppression of pro-apoptotic cytokines.

  16. Aryl Hydrocarbon Receptor Protects Lungs from Cockroach Allergen Induced Inflammation by Modulating Mesenchymal Stem Cells

    PubMed Central

    Xu, Ting; Zhou, Yufeng; Qiu, Lipeng; Do, Danh C; Zhao, Yilin; Cui, Zhuang; Wang, Heng; Liu, Xiaopeng; Saradna, Arjun; Cao, Xu; Wan, Mei; Gao, Peisong

    2015-01-01

    Exposure to cockroach allergen leads to allergic sensitization and increased risk of developing asthma. Aryl hydrocarbon receptor (AhR), a receptor for many common environmental contaminants, can sense not only environmental pollutants but also microbial insults. Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the capacity to modulate immune responses. In this study, we investigated whether AhR can sense cockroach allergens and modulate allergen-induced lung inflammation through MSCs. We found that cockroach allergen treated AhR-deficient (AhR−/−) mice showed exacerbation of lung inflammation when compared to wild-type (WT) mice. In contrast, 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an AhR agonist, significantly suppressed allergen-induced mouse lung inflammation. MSCs were significantly reduced in cockroach allergen challenged AhR−/− mice as compared to WT mice, but increased in cockroach allergen-challenged WT mice when treated with TCDD. Moreover, MSCs express AhR and AhR signaling can be activated by cockroach allergen with increased expression of its downstream genes, cyp1a1 and cyp1b1. Furthermore, we tracked the migration of intravenously injected GFP+ MSCs and found that cockroach allergen-challenged AhR−/− mice displayed less migration of MSCs to the lungs compared to WT. The AhR mediated MSC migration was further verified by an in vitro Transwell migration assay. Epithelial conditioned medium (ECM) prepared from CRE-challenged epithelial cells significantly induced MSC migrations, which was further enhanced by TCDD. The administration of MSCs significantly attenuated cockroach allergen-induced inflammation, which was abolished by TGFβ1 neutralizing antibody. These results suggest that AhR plays an important role in protecting lungs from allergen-induced inflammation by modulating MSC recruitment and their immune-suppressive activity. PMID:26561548

  17. Aryl Hydrocarbon Receptor Protects Lungs from Cockroach Allergen-Induced Inflammation by Modulating Mesenchymal Stem Cells.

    PubMed

    Xu, Ting; Zhou, Yufeng; Qiu, Lipeng; Do, Danh C; Zhao, Yilin; Cui, Zhuang; Wang, Heng; Liu, Xiaopeng; Saradna, Arjun; Cao, Xu; Wan, Mei; Gao, Peisong

    2015-12-15

    Exposure to cockroach allergen leads to allergic sensitization and increased risk of developing asthma. Aryl hydrocarbon receptor (AhR), a receptor for many common environmental contaminants, can sense not only environmental pollutants but also microbial insults. Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the capacity to modulate immune responses. In this study, we investigated whether AhR can sense cockroach allergens and modulate allergen-induced lung inflammation through MSCs. We found that cockroach allergen-treated AhR-deficient (AhR(-/-)) mice showed exacerbation of lung inflammation when compared with wild-type (WT) mice. In contrast, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an AhR agonist, significantly suppressed allergen-induced mouse lung inflammation. MSCs were significantly reduced in cockroach allergen-challenged AhR(-/-) mice as compared with WT mice, but increased in cockroach allergen-challenged WT mice when treated with TCDD. Moreover, MSCs express AhR, and AhR signaling can be activated by cockroach allergen with increased expression of its downstream genes cyp1a1 and cyp1b1. Furthermore, we tracked the migration of i.v.-injected GFP(+) MSCs and found that cockroach allergen-challenged AhR(-/-) mice displayed less migration of MSCs to the lungs compared with WT. The AhR-mediated MSC migration was further verified by an in vitro Transwell migration assay. Epithelial conditioned medium prepared from cockroach extract-challenged epithelial cells significantly induced MSC migration, which was further enhanced by TCDD. The administration of MSCs significantly attenuated cockroach allergen-induced inflammation, which was abolished by TGF-β1-neutralizing Ab. These results suggest that AhR plays an important role in protecting lungs from allergen-induced inflammation by modulating MSC recruitment and their immune-suppressive activity.

  18. Low density lipoprotein receptor-independent hepatic uptake of a synthetic, cholesterol-scavenging lipoprotein: implications for the treatment of receptor-deficient atherosclerosis

    SciTech Connect

    Williams, K.J.; Vallabhajosula, S.; Rahman, I.U.; Donnelly, T.M.; Parker, T.S.; Weinrauch, M.; Goldsmith, S.J.

    1988-01-01

    The metabolism of infused /sup 111/In-labeled phospholipid liposomes was examined in Watanabe heritable hyperlipidemic (WHHL) rabbits, which lack low density lipoprotein (LDL) receptors, and in normal control rabbits. The half-times (t/sub 1/2/) for clearance of /sup 111/In and excess phospholipid from plasma were 20.8 +/- 0.9 hr and 20.3 +/- 4.6 hr in WHHL and 20.0 +/- 0.8 hr and 19.6 +/- 2.2 hr in the normal rabbits. By 6 hr postinfusion, the plasma concentration of unesterified cholesterol increased by 2.2 +/- 0.23 mmol/liter in WHHL and 2.1 +/- 0.04 mmol/liter in normal rabbits, presumably reflecting mobilization of tissue sores. Disappearance of excess plasma cholesterol was > 90% complete in both groups of rabbits by 70 hr postinfusion. By quantitative ..gamma.. camera imaging, hepatic trapping of /sup 111/In-labeled liposomes over time was indistinguishable between the two groups. At autopsy, the liver was the major organ of clearance. Aortic uptake of /sup 111/In was < 0.02%. Thus, mobilization of cholesterol and hepatic uptake of phospholipid liposomes do not require LDL receptors. Because phospholipid infusions produce rapid substantial regression of atherosclerosis in genetically normal animals, the results suggest that phospholipid liposomes or triglyceride phospholipid emulsions (e.g., Intralipid) might reduce atherosclerosis in WHHL rabbits and in humans with familial hypercholesterolemia.

  19. The Nicotinic Receptor Alpha7 Impacts the Mouse Lung Response to LPS through Multiple Mechanisms

    PubMed Central

    Enioutina, Elena Y.; Myers, Elizabeth J.; Tvrdik, Petr; Hoidal, John R.; Rogers, Scott W.; Gahring, Lorise C.

    2015-01-01

    The nicotinic acetylcholine receptor alpha7 (α7) is expressed by neuronal and non-neuronal cells throughout the body. We examined the mechanisms of the lung inflammatory response to intranasal (i.n.) lipopolysaccharide (LPS) regulated by α7. This was done in mice using homologous recombination to introduce a point mutation in the α7 receptor that replaces the glutamate residue 260 that lines the pore with alanine (α7E260A), which has been implicated in controlling the exceptional calcium ion conductance of this receptor. The α7E260A mice exhibit normal inflammatory cell recruitment to the blood in response to i.n. LPS administration. This differs from the α7knock-out (α7KO) in which upstream signaling to initiate the recruitment to the blood following i.n. LPS is significantly impaired. While hematopoietic cells are recruited to the bloodstream in the α7E260A mouse, they fail to be recruited efficiently into both the interstitium and alveolar spaces of the lung. Bone marrow reconstitution experiments demonstrate that the responsiveness of both CD45+ and CD45- cells of the α7E260A mouse are impaired. The expression of several pro-inflammatory cytokine and chemokine RNAs including TNFα, IL-1α, Ccl2 and Cxcl10 are decreased in the α7E260A mouse. However, there is a substantial increase in IL-13 expression by CD45- lung interstitial cells in the α7E260A mouse. Our results support the conclusion that α7 functional pleiotropy contributes to modulating the tissue response to an inflammatory insult through impacting upon a variety of mechanisms reflecting the individual cell composition of the lung. PMID:25803612

  20. The Scientist Scavenger Hunt.

    ERIC Educational Resources Information Center

    Morphew, Valerie N.; Key, Kathleen

    1994-01-01

    Using a well-planned scavenger hunt, students' awareness of the significance of minorities and women in science is enhanced. Provides a sample scavenger hunt and resource list as well as activities for extension. (ZWH)

  1. Low density lipoprotein receptor-independent hepatic uptake of a synthetic, cholesterol-scavenging lipoprotein: implications for the treatment of receptor-deficient atherosclerosis.

    PubMed Central

    Williams, K J; Vallabhajosula, S; Rahman, I U; Donnelly, T M; Parker, T S; Weinrauch, M; Goldsmith, S J

    1988-01-01

    The metabolism of infused 111In-labeled phospholipid liposomes was examined in Watanabe heritable hyperlipidemic (WHHL) rabbits, which lack low density lipoprotein (LDL) receptors, and in normal control rabbits. The half-times (t1/2) for clearance of 111In and excess phospholipid from plasma were 20.8 +/- 0.9 hr and 20.3 +/- 4.6 hr in WHHL and 20.0 +/- 0.8 hr and 19.6 +/- 2.2 hr in the normal rabbits (means +/- SEM; n = 4). By 6 hr postinfusion, the plasma concentration of unesterified cholesterol increased by 2.2 +/- 0.23 mmol/liter in WHHL and 2.1 +/- 0.04 mmol/liter in normal rabbits, presumably reflecting mobilization of tissue stores. Disappearance of excess plasma cholesterol was greater than 90% complete in both groups of rabbits by 70 hr postinfusion. By quantitative gamma camera imaging, hepatic trapping of 111In-labeled liposomes over time was indistinguishable between the two groups. At autopsy, the liver was the major organ of clearance, acquiring 22.0% +/- 1.7% (WHHL) and 16.8% +/- 1.0% (normal of total 111In. Aortic uptake of 111In was less than 0.02%. Thus, mobilization of cholesterol and hepatic uptake of phospholipid liposomes do not require LDL receptors. Because phospholipid infusions produce rapid substantial regression of atherosclerosis in genetically normal animals, our results suggest that phospholipid liposomes or triglyceride phospholipid emulsions (e.g., Intralipid) might reduce atherosclerosis in WHHL rabbits and in humans with familial hypercholesterolemia. PMID:3422421

  2. Scavenging for the Past.

    ERIC Educational Resources Information Center

    McMahon, Sue; Strubbe, Mary

    1988-01-01

    Discusses the goals and planning of a scavenger hunt which was designed to increase enthusiasm in students and promote active learning. States that a scavenger hunt instills a sense of community pride in students and that the community cooperation fosters a positive relationship with the school. Provides a sample scavenger hunt checklist. (GEA)

  3. Expression of glucocorticoid receptors α and ß in steroid sensitive and steroid insensitive interstitial lung diseases

    PubMed Central

    Pujols, L; Xaubet, A; Ramirez, J; Mullol, J; Roca-Ferrer, J; Torrego, A; Cidlowski, J; Picado, C

    2004-01-01

    Background: Sensitivity to glucocorticoids may be related to the concentration of glucocorticoid receptors α (GRα) and ß (GRß). A study was undertaken to assess GRα and GRß expression in steroid insensitive interstitial lung disease (idiopathic pulmonary fibrosis (IPF)) and steroid sensitive interstitial lung diseases (sarcoidosis and cryptogenic organising pneumonia (COP)). Methods: Lung tissue was obtained from control subjects and from patients with IPF, sarcoidosis, and COP. Pulmonary function tests were carried out at the time of lung biopsy and every 3 months. GRα and GRß expression was evaluated by both competitive RT-PCR and immunohistochemistry. Data are presented as median and 25–75th percentile. Results: GRα mRNA expression (105 cDNA copies/µg total RNA) was higher in patients with steroid sensitive interstitial lung diseases (10.0; 7.8–14.9; n = 11) than in patients with IPF (4.4; 3.2–6.6; n = 19; p<0.001). GRß expression was at least 1000 times lower than that of GRα and did not differ between the three groups. A negative correlation was found between GRα mRNA levels and the fibrotic pathology score of the tissue (r = –0.484, p<0.01) and a positive correlation was found between GRα mRNA levels and improvement in forced vital capacity (r = 0.633; p<0.01) after treatment of patients with glucocorticoids. Immunoreactivity for GR protein was also higher in patients with sarcoidosis and COP than in those with IPF. Conclusion: The variable response of some interstitial lung diseases to steroid treatment may be the result of differences in the expression of GRα. PMID:15282390

  4. Effect of an epidermal growth factor receptor inhibitor in mouse models of lung cancer.

    PubMed

    Yan, Ying; Lu, Yan; Wang, Min; Vikis, Haris; Yao, Ruisheng; Wang, Yian; Lubet, Ronald A; You, Ming

    2006-12-01

    Gefitinib (Iressa, ZD1839) is a potent high-affinity competitive tyrosine kinase inhibitor aimed primarily at epidermal growth factor receptor (EGFR). Inhibitors in this class have recently been approved for clinical use in the treatment of advanced non-small cell lung cancer as monotherapy following failure of chemotherapy. We examined the efficacy of gefitinib on lung tumorigenesis in mouse models using both postinitiation and progression protocols. Gefitinib was given at a dose of 200 mg/kg body weight (i.g.) beginning either 2 or 12 weeks following carcinogen initiation. In the postinitiation protocol, gefitinib significantly inhibited both tumor multiplicity (approximately 70%) and tumor load (approximately 90%) in A/J or p53-mutant mice (P < 0.0001). Interestingly, gefitinib was also highly effective against lung carcinogenesis in the progression protocol when individual animals already have multiple preinvasive lesions in the lung. Gefitinib exhibited approximately 60% inhibition of tumor multiplicity and approximately 80% inhibition of tumor load when compared with control mice (both P < 0.0001). These data show that gefitinib is a potent chemopreventive agent in both wild-type and p53-mutant mice and that a delayed administration was still highly effective. Analyses of mutations in the EGFR and K-ras genes in lung tumors from either control or treatment groups showed no mutations in EGFR and consistent mutation in K-ras. Using an oligonucleotide array on control and gefitinib-treated lesions showed that gefitinib treatment failed to alter the activity or the expression level of EGFR. In contrast, gefitinib treatment significantly altered the expression of a series of genes involved in cell cycle, cell proliferation, cell transformation, angiogenesis, DNA synthesis, cell migration, immune responses, and apoptosis. Thus, gefitinib showed highly promising chemopreventive and chemotherapeutic activity in this mouse model of lung carcinogenesis.

  5. NK cell activating receptor ligand expression in lymphangioleiomyomatosis is associated with lung function decline

    PubMed Central

    Osterburg, Andrew R.; Nelson, Rebecca L.; Yaniv, Benyamin Z.; Foot, Rachel; Donica, Walter R.F.; Nashu, Madison A.; Liu, Huan; Wikenheiser-Brokamp, Kathryn A.; Moss, Joel; McCormack, Francis X.; Borchers, Michael T.

    2016-01-01

    Lymphangioleiomyomatosis (LAM) is a rare lung disease of women that leads to progressive cyst formation and accelerated loss of pulmonary function. Neoplastic smooth muscle cells from an unknown source metastasize to the lung and drive destructive remodeling. Given the role of NK cells in immune surveillance, we postulated that NK cell activating receptors and their cognate ligands are involved in LAM pathogenesis. We found that ligands for the NKG2D activating receptor UL-16 binding protein 2 (ULBP2) and ULBP3 are localized in cystic LAM lesions and pulmonary nodules. We found elevated soluble serum ULBP2 (mean = 575 pg/ml ± 142) in 50 of 100 subjects and ULBP3 in 30 of 100 (mean = 8,300 pg/ml ± 1,515) subjects. LAM patients had fewer circulating NKG2D+ NK cells and decreased NKG2D surface expression. Lung function decline was associated with soluble NKG2D ligand (sNKG2DL) detection. The greatest rate of decline forced expiratory volume in 1 second (FEV1, –124 ± 30 ml/year) in the 48 months after enrollment (NHLBI LAM Registry) occurred in patients expressing both ULBP2 and ULBP3, whereas patients with undetectable sNKG2DL levels had the lowest rate of FEV1 decline (–32.7 ± 10 ml/year). These data suggest a role for NK cells, sNKG2DL, and the innate immune system in LAM pathogenesis. PMID:27734028

  6. Current and future targeted therapies for non-small-cell lung cancers with aberrant EGF receptors

    PubMed Central

    Kanthala, Shanthi; Pallerla, Sandeep; Jois, Seetharama

    2015-01-01

    Expression of the EGF receptors (EGFRs) is abnormally high in many types of cancer, including 25% of lung cancers. Successful treatments target mutations in the EGFR tyrosine kinase domain with EGFR tyrosine kinase inhibitors (TKIs). However, almost all patients develop resistance to this treatment, and acquired resistance to first-generation TKI has prompted the clinical development of a second generation of EGFR TKI. Because of the development of resistance to treatment of TKIs, there is a need to collect genomic information about EGFR levels in non-small-cell lung cancer patients. Herein, we focus on current molecular targets that have therapies available as well as other targets for which therapies will be available in the near future. PMID:25757687

  7. TGF-β/SMAD3 Pathway Stimulates Sphingosine-1 Phosphate Receptor 3 Expression: IMPLICATION OF SPHINGOSINE-1 PHOSPHATE RECEPTOR 3 IN LUNG ADENOCARCINOMA PROGRESSION.

    PubMed

    Zhao, Jiawei; Liu, Jingjing; Lee, Jen-Fu; Zhang, Wenliang; Kandouz, Mustapha; VanHecke, Garrett C; Chen, Shiyou; Ahn, Young-Hoon; Lonardo, Fulvio; Lee, Menq-Jer

    2016-12-30

    Previously, we showed that levels of sphingosine-1 phosphate receptor 3 (S1PR3) are increased in a panel of cultured human lung adenocarcinoma cell lines, and that S1PR3-mediated signaling pathways regulate proliferation, soft agar growth, and invasion of human lung adenocarcinoma cells in vitro In the present study, we examine S1PR3 levels in human lung adenocarcinoma specimens. cDNA array and tumor microarray analysis shows that mRNA and protein levels of S1PR3 are significantly increased in human lung adenocarcinomas when compared with normal lung epithelial cells. Promoter analysis shows 16 candidate SMAD3 binding sites in the promoter region of S1PR3. ChIP indicates that TGF-β treatment stimulates the binding of SMAD3 to the promoter region of S1PR3. Luciferase reporter assay demonstrates that SMAD3 transactivates S1PR3 promoter. TGF-β stimulation or ectopic expression of TGF-β up-regulates S1PR3 levels in vitro and ex vivo Pharmacologic inhibition of TGF-β receptor or SMAD3 abrogates the TGF-β-stimulated S1PR3 up-regulation. Moreover, S1PR3 knockdown dramatically inhibits tumor growth and lung metastasis, whereas ectopic expression of S1PR3 promotes the growth of human lung adenocarcinoma cells in animals. Pharmacological inhibition of S1PR3 profoundly inhibits the growth of lung carcinoma in mice. Our studies suggest that levels of S1PR3 are up-regulated in human lung adenocarcinomas, at least in part due to the TGF-β/SMAD3 signaling axis. Furthermore, S1PR3 activity promotes the progression of human lung adenocarcinomas. Therefore, S1PR3 may represent a novel therapeutic target for the treatment of deadly lung adenocarcinomas.

  8. The effects of sodium cromoglycate on lung irritant receptors and left ventricular cardiac receptors in the anaesthetized dog

    PubMed Central

    Dixon, M.; Jackson, D.M.; Richards, I.M.

    1979-01-01

    1 The time from the injection of sodium cromoglycate 10 to 50 μg/kg into a saphenous vein, the cervical carotid arteries, the left ventricle and the aortic arch, to the onset of reflex hypotension has been measured in anaesthetized dogs. The shortest latency was 16.9 s on injection of sodium cromoglycate into the left ventricle. 2 Instillation of 2% lignocaine into the pericardium of an anaesthetized dog blocked the reflex hypotensive response to sodium cromoglycate (10 to 50 μg/kg i.v.), and also prevented sodium cromoglycate (100 μg/kg) from reversing reflex bronchoconstriction induced by inhalation of an aerosol of histamine. 3 The effect of sodium cromoglycate (100 μg/kg i.v.) on resting discharge and histamine-induced discharge (20 μg/kg i.v.) of five lung irritant receptors in five anaesthetized dogs has been studied. Sodium cromoglycate (100 μg/kg i.v.) did not affect the resting discharge of these receptors or their ability to respond to histamine. 4 Sodium cromoglycate (100 μg/kg i.v.) increased the rate of discharge of three receptors found in the endocardium of the left ventricle of the canine heart. A solution of sodium cromoglycate (0.1%) was applied topically to one receptor and its rate of discharge was increased. 5 It is suggested that in the dog, sodium cromoglycate produces reflex hypotension and reverses histamine-induced reflex bronchoconstriction by activating receptors in the left ventricle of the heart. PMID:117865

  9. Bench-to-bedside review: Adenosine receptors – promising targets in acute lung injury?

    PubMed Central

    Schepp, Carsten P; Reutershan, Jörg

    2008-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening disorders that have substantial adverse effects on outcomes in critically ill patients. ALI/ARDS develops in response to pulmonary or extrapulmonary injury and is characterized by increased leakage from the pulmonary microvasculature and excessive infiltration of polymorphonuclear cells into the lung. Currently, no therapeutic strategies are available to control these fundamental pathophysiological processes in human ALI/ARDS. In a variety of animal models and experimental settings, the purine nucleoside adenosine has been demonstrated to regulate both endothelial barrier integrity and polymorphonuclear cell trafficking in the lung. Adenosine exerts its effects through four G-protein-coupled receptors (A1, A2A, A2B, and A3) that are expressed on leukocytes and nonhematopoietic cells, including endothelial and epithelial cells. Each type of adenosine receptor (AR) is characterized by a unique pharmacological and physiological profile. The development of selective AR agonists and antagonists, as well as the generation of gene-deficient mice, has contributed to a growing understanding of the cellular and molecular processes that are critically involved in the development of ALI/ARDS. Adenosine-dependent pathways are involved in both protective and proinflammatory effects, highlighting the need for a detailed characterization of the distinct pathways. This review summarizes current experimental observations on the role of adenosine signaling in the development of acute lung injury and illustrates that adenosine and ARs are promising targets that may be exploited in the development of innovative therapeutic strategies. PMID:18828873

  10. Lutein transport by Caco-2 TC-7 cells occurs partly by a facilitated process involving the scavenger receptor class B type I (SR-BI).

    PubMed

    Reboul, Emmanuelle; Abou, Lydia; Mikail, Céline; Ghiringhelli, Odette; André, Marc; Portugal, Henri; Jourdheuil-Rahmani, Dominique; Amiot, Marie-Josèphe; Lairon, Denis; Borel, Patrick

    2005-04-15

    The carotenoid lutein is thought to play a role in the human eye and to protect against age-related macular degeneration. Lutein transport in the human intestine has not been characterized. We examined lutein transport processes using Caco-2 TC-7 monolayers as a model for human intestinal epithelium. Purified lutein was mixed with phospholipids, lysophospholipids, cholesterol, mono-olein, oleic acid and taurocholate to obtain lutein-rich mixed micelles that mimicked those found under physiological conditions. The micelles were added to the apical side of Caco-2 TC-7 cell monolayers for 30 min or 3 h at 37 degrees C. Absorbed lutein, i.e. the sum of lutein recovered in the scraped cells and in the basolateral chamber, was quantified by HPLC. Transport rate was measured (i) as a function of time (from 15 to 60 min), (ii) as a function of micellar lutein concentration (from 1.5 to 15 microM), (iii) at 4 degrees C, (iv) in the basolateral to apical direction, (v) after trypsin pretreatment, (vi) in the presence of beta-carotene and/or lycopene, (vii) in the presence of increasing concentrations of antibody against SR-BI (scavenger receptor class B type 1) and (viii) in the presence of increasing concentrations of a chemical inhibitor of the selective transfer of lipids mediated by SR-BI, i.e. BLT1 (blocks lipid transport 1). The rate of transport of lutein as a function of time and as a function of concentration was saturable. It was significantly lower at 4 degrees C than at 37 degrees C (approx. 50%), in the basal to apical direction than in the opposite direction (approx. 85%), and after trypsin pretreatment (up to 45%). Co-incubation with beta-carotene, but not lycopene, decreased the lutein absorption rate (approx. 20%) significantly. Anti-SR-BI antibody and BLT1 significantly impaired the absorption rate (approx. 30% and 57% respectively). Overall, these results indicate that lutein absorption is, at least partly, protein-mediated and that some lutein is taken up

  11. Down-regulation of intestinal scavenger receptor class B, type I (SR-BI) expression in rodents under conditions of deficient bile delivery to the intestine.

    PubMed Central

    Voshol, P J; Schwarz, M; Rigotti, A; Krieger, M; Groen, A K; Kuipers, F

    2001-01-01

    Scavenger receptor class B, type I (SR-BI) is expressed in the intestines of rodents and has been suggested to be involved in the absorption of dietary cholesterol. The aim of this study was to determine whether intestinal SR-BI expression is affected in animal models with altered bile delivery to the intestine and impaired cholesterol absorption. SR-BI protein and mRNA levels were determined in proximal and distal small intestine from control, bile-duct-ligated and bile-diverted rats and from control and bile-duct-ligated mice. Two genetically altered mouse models were studied: multidrug resistance-2 P-glycoprotein-deficient [Mdr2((-/-))] mice that produce phospholipid/cholesterol-free bile, and cholesterol 7alpha-hydroxylase-deficient [Cyp7a((-/-))] mice, which exhibit qualitative and quantitative changes in the bile-salt pool. Cholesterol-absorption efficiency was quantified using a dual-isotope ratio method. SR-BI was present at the apical membrane of enterocytes in control rats and mice and was more abundant in proximal than in distal segments of the intestine. In bile-duct-ligated animals, levels of SR-BI protein were virtually absent and mRNA levels were decreased by approximately 50%. Bile-diverted rats, Mdr2((-/-)) mice and Cyp7a((-/-)) mice showed decreased levels of intestinal SR-BI protein while mRNA levels were unaffected. Cholesterol absorption was reduced by >90% in bile-duct-ligated and bile-diverted animals and in Cyp7a((-/-)) mice, whereas Mdr2((-/-)) mice showed an approximately 50% reduction. This study shows that SR-BI is expressed at the apical membrane of enterocytes of rats and mice, mainly in the upper intestine where cholesterol absorption is greatest, and indicates that bile components play a role in post-transcriptional regulation of SR-BI expression. Factors associated with cholestasis appear to be involved in transcriptional control of intestinal SR-BI expression. The role of SR-BI in the cholesterol-absorption process remains to be

  12. Lutein transport by Caco-2 TC-7 cells occurs partly by a facilitated process involving the scavenger receptor class B type I (SR-BI)

    PubMed Central

    2004-01-01

    The carotenoid lutein is thought to play a role in the human eye and to protect against age-related macular degeneration. Lutein transport in the human intestine has not been characterized. We examined lutein transport processes using Caco-2 TC-7 monolayers as a model for human intestinal epithelium. Purified lutein was mixed with phospholipids, lysophospholipids, cholesterol, mono-olein, oleic acid and taurocholate to obtain lutein-rich mixed micelles that mimicked those found under physiological conditions. The micelles were added to the apical side of Caco-2 TC-7 cell monolayers for 30 min or 3 h at 37 °C. Absorbed lutein, i.e. the sum of lutein recovered in the scraped cells and in the basolateral chamber, was quantified by HPLC. Transport rate was measured (i) as a function of time (from 15 to 60 min), (ii) as a function of micellar lutein concentration (from 1.5 to 15 μM), (iii) at 4 °C, (iv) in the basolateral to apical direction, (v) after trypsin pretreatment, (vi) in the presence of β-carotene and/or lycopene, (vii) in the presence of increasing concentrations of antibody against SR-BI (scavenger receptor class B type 1) and (viii) in the presence of increasing concentrations of a chemical inhibitor of the selective transfer of lipids mediated by SR-BI, i.e. BLT1 (blocks lipid transport 1). The rate of transport of lutein as a function of time and as a function of concentration was saturable. It was significantly lower at 4 °C than at 37 °C (approx. 50%), in the basal to apical direction than in the opposite direction (approx. 85%), and after trypsin pretreatment (up to 45%). Co-incubation with β-carotene, but not lycopene, decreased the lutein absorption rate (approx. 20%) significantly. Anti-SR-BI antibody and BLT1 significantly impaired the absorption rate (approx. 30% and 57% respectively). Overall, these results indicate that lutein absorption is, at least partly, protein-mediated and that some lutein is taken up through SR

  13. Coexpression of receptor tyrosine kinase AXL and EGFR in human primary lung adenocarcinomas.

    PubMed

    Wu, Zhenzhou; Bai, Fan; Fan, Liyun; Pang, Wenshuai; Han, Ruiyu; Wang, Juan; Liu, Yueping; Yan, Xia; Duan, Huijun; Xing, Lingxiao

    2015-12-01

    AXL has been identified as a tyrosine kinase switch that causes resistance to inhibitors targeting epidermal growth factor receptor (EGFR) signaling in non-small cell lung cancer (NSCLC). However, the relationship between 2 receptor tyrosine kinases, AXL and EGFR, and the relevance of AXL expression with EGFR mutation status in treatment-naive human NSCLCs remain uncertain. In this study, we evaluated the coexpression pattern of AXL, EGFR, and pEGFR(1068) in 109 lung adenocarcinoma patients with or without an EGFR mutation. There were 68 (62.4%) patients with tumors harboring EGFR mutations such as 19 del and/or L858R; 2 patients were T790M positive. The expression of AXL, EGFR, and pEGFR(1068) was detected in 60 (55%), 68 (62.4%), and 57 (52.3%) of 109 patients, respectively. The positive rates of EGFR and pEGFR(1068) were associated with the L858R mutation alone or with the 19 del and L858R mutation status. Further analysis indicated that the percentage of AXL(+)/EGFR(+)/pEGFR(1068) coexpression in 68 EGFR-activating mutations patients was significantly higher than that in 39 EGFR wild-type patients (30.9% versus 10.3%, P=.015). Furthermore, in the subgroup of AXL(+) patients (35 mutation(+) and 23 wild-type patients), the coexpression rates of AXL(+)/pEGFR(1068+) and AXL(+)/EGFR(+)/pEGFR(1068+) in patients with EGFR mutations were significantly higher compared with those in wild-type patients (both P<.05). Our study emphasized that the AXL and EGFR receptor tyrosine kinases were coexpressed in a subgroup of treatment-naive lung adenocarcinomas with or without EGFR mutations. Anti-AXL therapeutics delivered up front in combination with an EGFR inhibitor might prevent or delay resistance in patients with AXL-positive, EGFR-mutant, or wild-type NSCLC.

  14. Modulation of Bleomycin-Induced Lung Fibrosis by Pegylated Hyaluronidase and Dopamine Receptor Antagonist in Mice

    PubMed Central

    Pershina, Olga Victorovna; Reztsova, Alena Mikhaylovna; Ermakova, Natalia Nikolaevna; Khmelevskaya, Ekaterina Sergeevna; Krupin, Vycheslav Andreevich; Stepanova, Inna Ernestovna; Artamonov, Andrew Vladimirovich; Bekarev, Andrew Alexandrovich; Madonov, Pavel Gennadjevich

    2015-01-01

    Hyaluronidases are groups of enzymes that degrade hyaluronic acid (HA). To stop enzymatic hydrolysis we modified testicular hyaluronidase (HYAL) by activated polyethylene oxide with the help of electron-beam synthesis. As a result we received pegylated hyaluronidase (pegHYAL). Spiperone is a selective D2 dopamine receptor antagonist. It was demonstrated on the model of a single bleomycin damage of alveolar epithelium that during the inflammatory phase monotherapy by pegHYAL or spiperone reduced the populations of hematopoietic stem /progenitor cells in the lung parenchyma. PegHYAL also reduced the levels of transforming growth factor (TGF)-β, interleukin (IL)-1β, tumor necrosis factor (TNF)-α in the serum and lungs, while spiperone reduced the level of the serum IL-1β. Polytherapy by spiperone and pegHYAL caused the increase of the quantity of hematopoietic stem/ progenitor cells in the lungs. Such an influx of blood cell precursors was observed on the background of considerable fall level of TGF-β and the increase level of TNF-α in the serum and lungs. These results show pegHYAL reduced the bleomycin-induced fibrosis reaction (production and accumulation of collagen) in the lung parenchyma. This effect was observed at a single and repetitive bleomycin damage of alveolar epithelium, the antifibrotic activity of pegHYAL surpassing the activity of testicular HYAL. The antifibrotic effect of pegHYAL is enhanced by an additional instillation of spiperone. Therapy by pegHYAL causes the flow of CD31‒CD34‒CD45‒CD44+CD73+CD90+CD106+-cells into the fibrous lungs. These cells are incapable of differentiating into fibroblast cells. Spiperone instillation separately or together with pegHYAL reduced the MSC-like cells considerably. These data enable us to assume, that pegHYAL is a new and promising instrument both for preventive and therapy of toxic pneumofibrosis. The blockage of D2 dopamine receptors with the following change of hyaluronan matrix can be considered

  15. Soluble complement receptor type 1 (CD35) in bronchoalveolar lavage of inflammatory lung diseases.

    PubMed

    Hamacher, J; Sadallah, S; Schifferli, J A; Villard, J; Nicod, L P

    1998-01-01

    Complement receptor type 1 (CR1) (CD35; C3b/C4b receptor) is a transmembrane protein of many haematopoietic cells. Once cleaved, soluble complement receptor type 1 (sCR1) exerts opposite effects as a powerful inhibitor of complement. This study addressed both the question of whether sCR1 was found in bronchoalveolar lavage (BAL) of normals and patients with various inflammatory disease, and its possible origin. In this retrospective study covering specimen and clinical data of 124 patients with acute and chronic inflammatory lung pathologies, BAL supernatants were analysed by enzyme-linked immunosorbent assay technique for sCR1. Correlations were made between the sCR1 levels obtained and the constituents of BAL. Human alveolar macrophages were cultivated in order to determine their secretory capacity of sCR1. Alveolar macrophages from normal subjects were shown to release sCR1 in vitro. In addition, sCR1 was present in BAL of normal controls and was significantly increased in acute inflammatory lung diseases such as acute respiratory distress syndrome (ARDS), bacterial and Pneumocystis carinii pneumonia, as well as in chronic inflammatory diseases such as interstitial lung fibrosis and sarcoidosis. In BAL of ARDS, bacterial, and P. carinii pneumonia, there was a good correlation between sCR1 and the absolute neutrophil counts. In sarcoidosis, a correlation was found with BAL lymphocyte counts. Serum sCR1 was not increased in patients compared to controls. Soluble complement receptor type 1 (sCR1) is found in the bronchoalveolar lavage in health as well as in acute and chronic inflammatory disease. Alveolar macrophages are capable of releasing sCR1 in vitro and may be the main physiological source of sCR1 in the alveoli. The good correlation between sCR1 and the absolute neutrophil or lymphocyte numbers in bronchoalveolar lavage of inflammatory diseases suggests a predominant role of leucocytes for the release of sCR1 in such conditions. The release of this

  16. Chemokine receptor 2-mediated accumulation of fungicidal exudate macrophages in mice that clear cryptococcal lung infection.

    PubMed

    Osterholzer, John J; Chen, Gwo-Hsiao; Olszewski, Michal A; Zhang, Yan-Mei; Curtis, Jeffrey L; Huffnagle, Gary B; Toews, Galen B

    2011-01-01

    Clearance of pulmonary infection with the fungal pathogen Cryptococcus neoformans is associated with the accumulation and activation of lung macrophages. However, the phenotype of these macrophages and the mechanisms contributing to their accumulation are not well-defined. In this study, we used an established murine model of cryptococcal lung infection and flow cytometric analysis to identify alveolar macrophages (AMs) and the recently described exudate macrophages (ExMs). Exudate macrophages are distinguished from AMs by their strong expression of CD11b and major histocompatibility complex class II and modest expression of costimulatory molecules. Exudate macrophages substantially outnumber AMs during the effector phase of the immune response; and accumulation of ExMs, but not AMs, was chemokine receptor 2 (CCR2) dependent and attributable to the recruitment and subsequent differentiation of Ly-6C(high) monocytes originating from the bone marrow and possibly the spleen. Peak ExM accumulation in wild-type (CCR2(+/+)) mice coincided with maximal lung expression of mRNA for inducible nitric oxide synthase and correlated with the known onset of cryptococcal clearance in this strain of mice. Exudate macrophages purified from infected lungs displayed a classically activated effector phenotype characterized by cryptococcal-enhanced production of inducible nitric oxide synthase and tumor necrosis factor α. Cryptococcal killing by bone marrow-derived ExMs was CCR2 independent and superior to that of AMs. We conclude that clearance of cryptococcal lung infection requires the CCR2-mediated massive accumulation of fungicidal ExMs derived from circulating Ly-6C(high) monocytes.

  17. Bacterial Fucose-Rich Polysaccharide Stabilizes MAPK-Mediated Nrf2/Keap1 Signaling by Directly Scavenging Reactive Oxygen Species during Hydrogen Peroxide-Induced Apoptosis of Human Lung Fibroblast Cells

    PubMed Central

    Roy Chowdhury, Sougata; Sinha, Tridib Kumar; Sen, Ramkrishna; Basak, Ratan Kumar; Adhikari, Basudam; Bhattacharyya, Arindam

    2014-01-01

    Continuous free radical assault upsets cellular homeostasis and dysregulates associated signaling pathways to promote stress-induced cell death. In spite of the continuous development and implementation of effective therapeutic strategies, limitations in treatments for stress-induced toxicities remain. The purpose of the present study was to determine the potential therapeutic efficacy of bacterial fucose polysaccharides against hydrogen peroxide (H2O2)-induced stress in human lung fibroblast (WI38) cells and to understand the associated molecular mechanisms. In two different fermentation processes, Bacillus megaterium RB-05 biosynthesized two non-identical fucose polysaccharides; of these, the polysaccharide having a high-fucose content (∼42%) conferred the maximum free radical scavenging efficiency in vitro. Structural characterizations of the purified polysaccharides were performed using HPLC, GC-MS, and 1H/13C/2D-COSY NMR. H2O2 (300 µM) insult to WI38 cells showed anti-proliferative effects by inducing intracellular reactive oxygen species (ROS) and by disrupting mitochondrial membrane permeability, followed by apoptosis. The polysaccharide (250 µg/mL) attenuated the cell death process by directly scavenging intracellular ROS rather than activating endogenous antioxidant enzymes. This process encompasses inhibition of caspase-9/3/7, a decrease in the ratio of Bax/Bcl2, relocalization of translocated Bax and cytochrome c, upregulation of anti-apoptotic members of the Bcl2 family and a decrease in the phosphorylation of MAPKs (mitogen activated protein kinases). Furthermore, cellular homeostasis was re-established via stabilization of MAPK-mediated Nrf2/Keap1 signaling and transcription of downstream cytoprotective genes. This molecular study uniquely introduces a fucose-rich bacterial polysaccharide as a potential inhibitor of H2O2-induced stress and toxicities. PMID:25412177

  18. Bacterial fucose-rich polysaccharide stabilizes MAPK-mediated Nrf2/Keap1 signaling by directly scavenging reactive oxygen species during hydrogen peroxide-induced apoptosis of human lung fibroblast cells.

    PubMed

    Roy Chowdhury, Sougata; Sengupta, Suman; Biswas, Subir; Sinha, Tridib Kumar; Sen, Ramkrishna; Basak, Ratan Kumar; Adhikari, Basudam; Bhattacharyya, Arindam

    2014-01-01

    Continuous free radical assault upsets cellular homeostasis and dysregulates associated signaling pathways to promote stress-induced cell death. In spite of the continuous development and implementation of effective therapeutic strategies, limitations in treatments for stress-induced toxicities remain. The purpose of the present study was to determine the potential therapeutic efficacy of bacterial fucose polysaccharides against hydrogen peroxide (H2O2)-induced stress in human lung fibroblast (WI38) cells and to understand the associated molecular mechanisms. In two different fermentation processes, Bacillus megaterium RB-05 biosynthesized two non-identical fucose polysaccharides; of these, the polysaccharide having a high-fucose content (∼ 42%) conferred the maximum free radical scavenging efficiency in vitro. Structural characterizations of the purified polysaccharides were performed using HPLC, GC-MS, and (1)H/(13)C/2D-COSY NMR. H2O2 (300 µM) insult to WI38 cells showed anti-proliferative effects by inducing intracellular reactive oxygen species (ROS) and by disrupting mitochondrial membrane permeability, followed by apoptosis. The polysaccharide (250 µg/mL) attenuated the cell death process by directly scavenging intracellular ROS rather than activating endogenous antioxidant enzymes. This process encompasses inhibition of caspase-9/3/7, a decrease in the ratio of Bax/Bcl2, relocalization of translocated Bax and cytochrome c, upregulation of anti-apoptotic members of the Bcl2 family and a decrease in the phosphorylation of MAPKs (mitogen activated protein kinases). Furthermore, cellular homeostasis was re-established via stabilization of MAPK-mediated Nrf2/Keap1 signaling and transcription of downstream cytoprotective genes. This molecular study uniquely introduces a fucose-rich bacterial polysaccharide as a potential inhibitor of H2O2-induced stress and toxicities.

  19. The Crystal Structure of the Fifth Scavenger Receptor Cysteine-Rich Domain of Porcine CD163 Reveals an Important Residue Involved in Porcine Reproductive and Respiratory Syndrome Virus Infection.

    PubMed

    Ma, Hongfang; Jiang, Longguang; Qiao, Songlin; Zhi, Yubao; Chen, Xin-Xin; Yang, Yanyan; Huang, Xiaojing; Huang, Mingdong; Li, Rui; Zhang, Gai-Ping

    2017-02-01

    Porcine reproductive and respiratory syndrome (PRRS) has become an economically critical factor in swine industry since its worldwide spread in the 1990s. Infection by its causative agent, PRRS virus (PRRSV), was proven to be mediated by an indispensable receptor, porcine CD163 (pCD163), and the fifth scavenger receptor cysteine-rich domain (SRCR5) is essential for virus infection. However, the structural details and specific residues of pCD163 SRCR5 involved in infection have not been defined yet. In this study, we prepared recombinant pCD163 SRCR5 in Drosophila melanogaster Schneider 2 (S2) cells and determined its crystal structure at a high resolution of 2.0 Å. This structure includes a markedly long loop region and shows a special electrostatic potential, and these are significantly different from those of other members of the scavenger receptor cysteine-rich superfamily (SRCR-SF). Subsequently, we carried out structure-based mutational studies to identify that the arginine residue at position 561 (Arg561) in the long loop region is important for PRRSV infection. Further, we showed Arg561 probably takes effect on the binding of pCD163 to PRRSV during virus invasion. Altogether the current work provides the first view of the CD163 SRCR domain, expands our knowledge of the invasion mechanism of PRRSV, and supports a molecular basis for prevention and control of the virus.

  20. Noncanonical Role of the PDZ4 Domain of the Adaptor Protein PDZK1 in the Regulation of the Hepatic High Density Lipoprotein Receptor Scavenger Receptor Class B, Type I (SR-BI)*

    PubMed Central

    Tsukamoto, Kosuke; Wales, Thomas E.; Daniels, Kathleen; Pal, Rinku; Sheng, Ren; Cho, Wonhwa; Stafford, Walter; Engen, John R.; Krieger, Monty; Kocher, Olivier

    2013-01-01

    The four PDZ (PDZ1 to PDZ4) domain-containing adaptor protein PDZK1 controls the expression, localization, and function of the HDL receptor scavenger receptor class B, type I (SR-BI), in hepatocytes in vivo. This control depends on both the PDZ4 domain and the binding of SR-BI's cytoplasmic C terminus to the canonical peptide-binding sites of either the PDZ1 or PDZ3 domain (no binding to PDZ2 or PDZ4). Using transgenic mice expressing in the liver domain deletion (ΔPDZ2 or ΔPDZ3), domain replacement (PDZ2→1), or target peptide binding-negative (PDZ4(G389P)) mutants of PDZK1, we found that neither PDZ2 nor PDZ3 nor the canonical target peptide binding activity of PDZ4 were necessary for hepatic SR-BI regulatory activity. Immunohistochemical studies established that the localization of PDZK1 on hepatocyte cell surface membranes in vivo is dependent on its PDZ4 domain and the presence of SR-BI. Analytical ultracentrifugation and hydrogen deuterium exchange mass spectrometry suggested that the requirement of PDZ4 for localization and SR-BI regulation is not due to PDZ4-mediated oligomerization or induction of conformational changes in the PDZ123 portion of PDZK1. However, surface plasmon resonance analysis showed that PDZ4, but not the other PDZ domains, can bind vesicles that mimic the plasma membrane. Thus, PDZ4 may potentiate PDZK1's regulation of SR-BI by promoting its lipid-mediated attachment to the cytoplasmic membrane. Our results show that not all of the PDZ domains of a multi-PDZ domain-containing adaptor protein are required for its biological activities and that both canonical target peptide binding and noncanonical (peptide binding-independent) capacities of PDZ domains may be employed by a single such adaptor for optimal in vivo activity. PMID:23720744

  1. Scavenger Receptor Class B Type 1 Deletion Led to Coronary Atherosclerosis and Ischemic Heart Disease in Low-density Lipoprotein Receptor Knockout Mice on Modified Western-type Diet

    PubMed Central

    Liao, Jiawei; Guo, Xin; Wang, Mengyu; Dong, Chengyan; Gao, Mingming; Wang, Huan; Kayoumu, Abudurexiti; Shen, Qiang; Wang, Yuhui; Wang, Fan; Liu, George

    2017-01-01

    Aim: Atherosclerosis-prone apolipoprotein E (apoE) or low-density lipoprotein receptor (LDL-R) knockout (KO) mice are generally resistant to developing coronary atherosclerosis (CA) and ischemic heart disease (IHD). However, studies have demonstrated the occurrence of spontaneous CA and IHD in scavenger receptor class B type 1 (SR-BI)/apoE double KO (dKO) mice, which suggests that SR-BI could be a potential target for the prevention and therapy of CA and IHD. This possibility was later investigated in SR-BI/LDL-R dKO mice, but no signs of CA or IHD was identified when mice were fed a normal western-type diet. Here we explored whether SR-BI deletion could result in CA and IHD in LDL-R KO mice when fed a modified western-type diet containing higher (0.5%) cholesterol. Methods: Cardiac functions were detected by electrocardiography, single photon emission computed tomography (SPECT), echocardiography (Echo) and 2,3,5-triphenyltetrazolium chloride staining. CA was visualized by hematoxylin-eosin staining. Results: After 12 weeks on the modified diet, SR-BI/LDL-R dKO mice developed cardiac ischemia/infarction, together with systolic dysfunction and left ventricular dilatation. CA was most severe at the aortic sinus level to an extent that no dKO mice survived to 20 weeks on the modified diet. None of control mice, however, developed CA or IHD. Conclusions: SR-BI deletion led to CA and IHD in LDL-R KO mice when fed the modified western-type diet. We established SR-BI/LDL-R dKO mice as a diet-induced murine model of human IHD and developed detection methods, using a combination of SPECT and Echo, for effective in vivo evaluation of cardiac functions. PMID:27373983

  2. Prenatal Exposure to Nicotine and Childhood Asthma: Role of Nicotine Acetylcholine Receptors, Neuropeptides and Fibronectin Expression in Lung

    DTIC Science & Technology

    2006-12-01

    acetylcholine receptors (nAChRs) that are expressed by lung cells termed fibroblasts and pulmonary neuroendocrine cells ( PNEC ). In fibroblasts, this...interaction triggers the exaggerated expression of a connective tissue protein called fibronectin. In PNECs , nicotine stimulates cell growth and the...nAChRs) expressed by fibroblasts and pulmonary neuroendocrine cells ( PNECs ), among other embryonic lung cells. In fibroblasts, this interaction triggers

  3. Prenatal Exposure to Nicotine and Childhood Asthma: Role of Nicotine Acetylcholine Receptors, Neuropeptides, and Fibronectin Expression in Lung

    DTIC Science & Technology

    2005-12-01

    nAChRs) that are expressed by lung cells termed fibroblasts and pulmonary neuroendocrine cells ( PNEC ). In fibroblasts, this interaction triggers the...exaggerated expression of a connective tissue protein called fibronectin. In PNECs , nicotine stimulates cell growth and the excessive secretion of...acetylcholine receptors (nAChRs) expressed by fibroblasts and pulmonary neuroendocrine cells ( PNECs ), among other embryonic lung cells. In

  4. Activation of A1, A2A, or A3 adenosine receptors attenuates lung ischemia-reperfusion injury

    PubMed Central

    Gazoni, Leo M.; Walters, Dustin M.; Unger, Eric B.; Linden, Joel; Kron, Irving L.; Laubach, Victor E.

    2010-01-01

    Objective Adenosine and the activation of specific adenosine receptors are implicated in the attenuation of inflammation and organ ischemia-reperfusion (IR) injury. We hypothesized that activation of A1, A2A, or A3 adenosine receptors would provide protection against lung IR injury. Methods Using an isolated, ventilated, blood-perfused rabbit lung model, lungs underwent 18 hours cold ischemia followed by 2 hours reperfusion. Lungs were administered either vehicle, adenosine, or selective A1, A2A, or A3 receptor agonists (CCPA, ATL-313, or IB-MECA, respectively) alone or with their respective antagonists (DPCPX, ZM241385, or MRS1191) during reperfusion. Results Compared to the vehicle-treated control group, treatment with A1, A2A, or A3 agonists significantly improved function (increased lung compliance and oxygenation and decreased pulmonary artery pressure), decreased neutrophil infiltration by myeloperoxidase activity, decreased edema, and reduced TNF-α production. Adenosine treatment was also protective but not to the level of the agonists. When each agonist was paired with its respective antagonist, all protective effects were blocked. The A2A agonist reduced pulmonary artery pressure and myeloperoxidase activity and increased oxygenation to a greater degree than the A1 or A3 agonists. Conclusions Selective activation of A1, A2A, or A3 adenosine receptors provides significant protection against lung IR injury. The decreased elaboration of the potent proinflammatory cytokine, TNF-α, and decreased neutrophil sequestration likely contribute to the overall improvement in pulmonary function. These results provide evidence for the therapeutic potential of specific adenosine receptor agonists in lung transplant recipients. PMID:20398911

  5. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease.

    PubMed

    Karmouty-Quintana, Harry; Zhong, Hongyan; Acero, Luis; Weng, Tingting; Melicoff, Ernestina; West, James D; Hemnes, Anna; Grenz, Almut; Eltzschig, Holger K; Blackwell, Timothy S; Xia, Yang; Johnston, Richard A; Zeng, Dewan; Belardinelli, Luiz; Blackburn, Michael R

    2012-06-01

    Development of pulmonary hypertension is a common and deadly complication of interstitial lung disease. Little is known regarding the cellular and molecular mechanisms that lead to pulmonary hypertension in patients with interstitial lung disease, and effective treatment options are lacking. The purpose of this study was to examine the adenosine 2B receptor (A(2B)R) as a regulator of vascular remodeling and pulmonary hypertension secondary to pulmonary fibrosis. To accomplish this, cellular and molecular changes in vascular remodeling were monitored in mice exposed to bleomycin in conjunction with genetic removal of the A(2B)R or treatment with the A(2B)R antagonist GS-6201. Results demonstrated that GS-6201 treatment or genetic removal of the A(2B)R attenuated vascular remodeling and hypertension in our model. Furthermore, direct A(2B)R activation on vascular cells promoted interleukin-6 and endothelin-1 release. These studies identify a novel mechanism of disease progression to pulmonary hypertension and support the development of A(2B)R antagonists for the treatment of pulmonary hypertension secondary to interstitial lung disease.

  6. Ligand independent aryl hydrocarbon receptor inhibits lung cancer cell invasion by degradation of Smad4.

    PubMed

    Lee, Chen-Chen; Yang, Wen-Hao; Li, Ching-Hao; Cheng, Yu-Wen; Tsai, Chi-Hao; Kang, Jaw-Jou

    2016-07-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent-activated transcriptional factor that regulates the metabolism of xenobiotic and endogenous compounds. Although AhR plays a crucial role in air toxicant-induced carcinogenesis, AhR expression was shown to negatively regulate tumorigenesis. Therefore, in the present study, we investigated the effect of AhR without ligand treatment on cancer invasion in lung cancer cell lines. Lung cancer cells expressing lower levels of AhR showed higher invasion ability (H1299 cells) compared with cells expressing higher levels of AhR (A549 cells). Overexpression of AhR in H1299 cells inhibited the invasion ability. We found that vimentin expression was inhibited in AhR-overexpressing H1299 cells. Additionally, the expression of EMT-related transcriptional factors Snail and ID-1 decreased. Interestingly, we found that Smad4 degradation was induced in AhR-overexpressing H1299 cells. Our data showed that AhR could interact with Jun-activation domain binding protein (Jab1) and Smad4, which may cause degradation of Smad4 by the proteasome. Our data suggest that AhR affects the transforming growth factor-β signaling pathway by inducing Smad4 degradation by the proteasome and suppressing tumor metastasis via epithelial to mesenchymal transition reduction in lung cancer cells.

  7. Fibroblast Growth Factor Receptor (FGFR): A New Target for Non-small Cell Lung Cancer Therapy.

    PubMed

    Biello, Federica; Burrafato, Giovanni; Rijavec, Erika; Genova, Carlo; Barletta, Giulia; Truini, Anna; Coco, Simona; Bello, Maria Giovanna Dal; Alama, Angela; Boccardo, Francesco; Grossi, Francesco

    2016-01-01

    Lung cancer is still the leading cause of cancer related death worldwide. Fibroblast growth factor receptor (FGFR) is a tirosine-kinase receptor that is seen to be amplified or mutated in non-small cell lung cancer (NSCLC) and it plays a crucial role in tumour development and maintenance. The authors analyzed the state of the art of FGFR by reviewing the current literature. Fibroblast growth factor (FGF)-FGFR pathway and their aberrations are described, with the evaluation of their possible prognostic role in NSCLC and in particular in squamous cell carcinomas, in which FGFR is more often amplified. New therapeutic agents targeting FGFR signaling have been developed and are now in clinical evaluation. Dysregulation of FGF signaling in tumour cells is related to FGFR gene amplification or mutation, although it is still uncertain which of these aberrations represents a real predictor of response to specific inhibitors. However, recent evidence has questioned whether FGFR is a real target in squamous cell histology. The effectiveness of FGFR inhibitors is also still unclear since there are no clinical data on selected patients. Moreover, the management of specific side effects related to inhibition of the physiological role of FGF should be more thorough.

  8. Mutations of lysophosphatidic acid receptor-1 gene during progression of lung tumors in rats

    SciTech Connect

    Yamada, Takanori; Obo, Yumi; Furukawa, Mami; Hotta, Mayuko; Yamasaki, Ayako; Honoki, Kanya; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2009-01-16

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. In this study, mutations of lysophosphatidic acid receptor-1 (LPA1) gene were investigated to clarify the possible molecular mechanisms underlying the development of lung tumors induced by N-nitrosobis(2-hydroxypropyl)amine (BHP) in rats. Male Wistar rats, 6 weeks of age, were given 2000 ppm BHP in their drinking water for 12 weeks and then maintained without further treatment until sacrifice at 25 weeks. Genomic DNAs were extracted from paraffin-embedded tissues and exons 2-4 were examined for mutations, using polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) analysis. No LPA1 mutations were detected in 15 hyperplasias, but 2 out of 12 adenomas (16.7%) and 7 out of 17 adenocarcinomas (41.2%). These results suggest that mutations of LPA1 gene may be involved in the acquisition of growth advantage from adenomas to adenocarcinomas in lung carcinogenesis induced in rats by BHP.

  9. Comparison of two radiolabeled quinuclidinyl benzilate ligands for the characterization of the human peripheral lung muscarinic receptor

    SciTech Connect

    Joad, J.P.; Casale, T.B.

    1987-09-28

    Quinuclidinyl benzilate, a muscarinic antagonist, has previously been used in its tritiated form ((/sup 3/H)-QNB) to study the lung muscarinic receptor. The authors investigated whether a newer iodinated form of QNB ((/sup 125/I)-QNB) of higher specific activity would be an appropriate ligand to study the human peripheral lung muscarinic receptor. Both the tritiated and iodinated ligands bound specifically to human lung at 23/sup 0/C. At 37/sup 0/C the specific binding of (/sup 3/H)-QNB increased slightly, but no specific binding of (/sup 125/I)-QNB was found. The data from multiple equilibrium binding experiments covering a wide range of radiolabeled QNB concentrations were combined and analyzed using the computer modeling program, LIGAND. The tritiated QNB identified a single affinity human lung binding site with a Kd of 46 +/- 9 pM. The iodinated QNB identified a single higher affinity human lung binding site of much smaller quantity. Competition studies comparing the binding of unlabeled QNB relative to labeled QNB indicated that unlabeled QNB had the same Kd as that measured for (/sup 3/H)-QNB, but a 5 log greater Kd than that measured for (/sup 125/I)-QNB. Other muscarinic receptor agonists and antagonists competed with (/sup 3/H)QNB, but not (/sup 125/I)-QNB for binding to muscarinic receptors with the expected magnitude and rank order of potency. 17 references, 2 figures, 2 tables.

  10. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling

    NASA Astrophysics Data System (ADS)

    Cheng, C.-Y.; Perevedentseva, E.; Tu, J.-S.; Chung, P.-H.; Cheng, C.-L.; Liu, K.-K.; Chao, J.-I.; Chen, P.-H.; Chang, C.-C.

    2007-04-01

    This letter presents direct observation of growth hormone receptor in one single cancer cell using nanodiamond-growth hormone complex as a specific probe. The interaction of surface growth hormone receptor of A549 human lung epithelial cells with growth hormone was observed using nanodiamond's unique spectroscopic signal via confocal Raman mapping. The growth hormone molecules were covalent conjugated to 100nm diameter carboxylated nanodiamonds, which can be recognized specifically by the growth hormone receptors of A549 cell. The Raman spectroscopic signal of diamond provides direct and in vitro observation of growth hormone receptors in physiology condition in a single cell level.

  11. Ozone Exposure Alters Serotonin and Serotonin Receptor Expression in the Developing Lung

    PubMed Central

    Van Winkle, Laura S.

    2013-01-01

    Ozone, a pervasive environmental pollutant, adversely affects functional lung growth in children. Animal studies demonstrate that altered lung development is associated with modified signaling within the airway epithelial mesenchymal trophic unit, including mediators that can change nerve growth. We hypothesized that ozone exposure alters the normal pattern of serotonin, its transporter (5-HTT), and two key receptors (5-HT2A and 5-HT4), a pathway involved in postnatal airway neural, epithelial, and immune processes. We exposed monkeys to acute or episodic ozone during the first 2 or 6 months of life. There were three exposure groups/age: (1) filtered air, (2) acute ozone challenge, and (3) episodic ozone + acute ozone challenge. Lungs were prepared for compartment-specific qRT-PCR, immunohistochemistry, and stereology. Airway epithelial serotonin immunopositive staining increased in all exposure groups with the most prominent in 2-month midlevel and 6-month distal airways. Gene expression of 5-HTT, 5-HT2AR, and 5-HT4R increased in an age-dependent manner. Overall expression was greater in distal compared with midlevel airways. Ozone exposure disrupted both 5-HT2AR and 5-HT4R protein expression in airways and enhanced immunopositive staining for 5-HT2AR (2 months) and 5-HT4R (6 months) on smooth muscle. Ozone exposure increases serotonin in airway epithelium regardless of airway level, age, and exposure history and changes the spatial pattern of serotonin receptor protein (5-HT2A and 5-HT4) and 5-HTT gene expression depending on compartment, age, and exposure history. Understanding how serotonin modulates components of reversible airway obstruction exacerbated by ozone exposure sets the foundation for developing clinically relevant therapies for airway disease. PMID:23570994

  12. p53 protein, EGF receptor, and anti-p53 antibodies in serum from patients with occupationally derived lung cancer

    PubMed Central

    Schneider, J; Presek, P; Braun, A; Bauer, P; Konietzko, N; Wiesner, B; Woitowitz, H-J

    1999-01-01

    The oncogene product epidermal growth factor receptor (EGF-R), the tumour suppressor gene product p53 and anti-p53 antibodies are detectable in the serum of certain cancer patients. Increased levels of some of these products were reported in lung cancer patients after occupational asbestos exposure and after exposure to polycyclic aromatic hydrocarbons or vinylchloride. In the first step, this study investigated the possible diagnostic value of serum EGF-R, p53-protein and anti-p53 antibodies, measured by an enzyme-linked immunosorbent assay, in lung tumour patients. In addition to being investigated on a molecular epidemiological basis, these parameters were examined as biomarkers of carcinogenesis, especially with regard to asbestos incorporation effects or of radon-induced lung cancers. Also, a possible effect of cigarette smoking and age dependence were studied. A total of 116 male patients with lung or pleural tumours were examined. The histological classification was four small-cell cancers, six large-cell cancers, 32 adenocarcinomas, 47 squamous carcinomas, 12 mixed lung carcinomas, five diffuse malignant mesotheliomas and ten lung metastasis of extrapulmonary tumours. Twenty-two lung cancers and all mesotheliomas were related to asbestos, 22 lung cancers were related to ionizing radiation and 61 patients had cigarette smoke-related lung cancer. Besides these patients 50 male patients with non-malignant lung or pleural diseases were included; of the latter eight subjects suffered from asbestosis. Controls were 129 male subjects without any lung disease. No significantly elevated or decreased serum values for p53 protein, EGF-R, or anti-p53 antibodies as a function of histological tumour type, age, or degree and type of exposure (asbestos, smoking, ionizing radiation) could be found. The utility of p53-protein, EGF-R and anti-p53 antibodies as routine biomarkers for screening occupationally derived lung cancers is limited. © 1999 Cancer Research Campaign

  13. Lung injury and lung cancer caused by cigarette smoke-induced oxidative stress: Molecular mechanisms and therapeutic opportunities involving the ceramide-generating machinery and epidermal growth factor receptor.

    PubMed

    Goldkorn, Tzipora; Filosto, Simone; Chung, Samuel

    2014-11-20

    Chronic obstructive pulmonary disease (COPD) and lung cancer are frequently caused by tobacco smoking. However, these diseases present opposite phenotypes involving redox signaling at the cellular level. While COPD is characterized by excessive airway epithelial cell death and lung injury, lung cancer is caused by uncontrolled epithelial cell proliferation. Notably, epidemiological studies have demonstrated that lung cancer incidence is significantly higher in patients who have preexisting emphysema/lung injury. However, the molecular link and common cell signaling events underlying lung injury diseases and lung cancer are poorly understood. This review focuses on studies of molecular mechanism(s) underlying smoking-related lung injury (COPD) and lung cancer. Specifically, the role of the ceramide-generating machinery during cigarette smoke-induced oxidative stress leading to both apoptosis and proliferation of lung epithelial cells is emphasized. Over recent years, it has been established that ceramide is a sphingolipid playing a major role in lung epithelia structure/function leading to lung injury in chronic pulmonary diseases. However, new and unexpected findings draw attention to its potential role in lung development, cell proliferation, and tumorigenesis. To address this dichotomy in detail, evidence is presented regarding several protein targets, including Src, p38 mitogen-activated protein kinase, and neutral sphingomyelinase 2, the major sphingomyelinase that controls ceramide generation during oxidative stress. Furthermore, their roles are presented not only in apoptosis and lung injury but also in enhancing cell proliferation, lung cancer development, and resistance to epidermal growth factor receptor-targeted therapy for treating lung cancer.

  14. Suppression of prostaglandin E2 receptor subtype EP2 by PPARgamma ligands inhibits human lung carcinoma cell growth.

    PubMed

    Han, ShouWei; Roman, Jesse

    2004-02-20

    Prostaglandin E(2) (PGE(2)), a major cyclooxygenase (COX-2) metabolite, plays important roles in tumor biology and its functions are mediated through one or more of its receptors EP1, EP2, EP3, and EP4. We have shown that the matrix glycoprotein fibronectin stimulates lung carcinoma cell proliferation via induction of COX-2 expression with subsequent PGE(2) protein biosynthesis. Ligands of peroxisome proliferator-activated receptor gamma (PPARgamma) inhibited this effect and induced cellular apoptosis. Here, we explore the role of the PGE(2) receptor EP2 in this process and whether the inhibition observed with PPARgamma ligands is related to effects on this receptor. We found that human non-small cell lung carcinoma cell lines (H1838 and H2106) express EP2 receptors, and that the inhibition of cell growth by PPARgamma ligands (GW1929, PGJ2, ciglitazone, troglitazone, and rosiglitazone [also known as BRL49653]) was associated with a significant decrease in EP2 mRNA and protein levels. The inhibitory effects of BRL49653 and ciglitazone, but not PGJ2, were reversed by a specific PPARgamma antagonist GW9662, suggesting the involvement of PPARgamma-dependent and -independent mechanisms. PPARgamma ligand treatment was associated with phosphorylation of extracellular regulated kinase (Erk), and inhibition of EP2 receptor expression by PPARgamma ligands was prevented by PD98095, an inhibitor of the MEK-1/Erk pathway. Butaprost, an EP2 agonist, like exogenous PGE(2) (dmPGE(2)), increased lung carcinoma cell growth, however, GW1929 and troglitazone blocked their effects. Our studies reveal a novel role for EP2 in mediating the proliferative effects of PGE(2) on lung carcinoma cells. PPARgamma ligands inhibit human lung carcinoma cell growth by decreasing the expression of EP2 receptors through Erk signaling and PPARgamma-dependent and -independent pathways.

  15. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    SciTech Connect

    Cheng, Ya-Hsin; Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan; Li, Lih-Ann

    2012-03-15

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  16. Adult Lysophosphatidic Acid Receptor 1-Deficient Rats with Hyperoxia-Induced Neonatal Chronic Lung Disease Are Protected against Lipopolysaccharide-Induced Acute Lung Injury

    PubMed Central

    Chen, Xueyu; Walther, Frans J.; Laghmani, El H.; Hoogeboom, Annemarie M.; Hogen-Esch, Anne C. B.; van Ark, Ingrid; Folkerts, Gert; Wagenaar, Gerry T. M.

    2017-01-01

    Aim: Survivors of neonatal chronic lung disease or bronchopulmonary dysplasia (BPD) suffer from compromised lung function and are at high risk for developing lung injury by multiple insults later in life. Because neonatal lysophosphatidic acid receptor-1 (LPAR1)-deficient rats are protected against hyperoxia-induced lung injury, we hypothesize that LPAR1-deficiency may protect adult survivors of BPD from a second hit response against lipopolysaccharides (LPS)-induced lung injury. Methods: Directly after birth, Wistar control and LPAR1-deficient rat pups were exposed to hyperoxia (90%) for 8 days followed by recovery in room air. After 7 weeks, male rats received either LPS (2 mg kg−1) or 0.9% NaCl by intraperitoneal injection. Alveolar development and lung inflammation were investigated by morphometric analysis, IL-6 production, and mRNA expression of cytokines, chemokines, coagulation factors, and an indicator of oxidative stress. Results: LPAR1-deficient and control rats developed hyperoxia-induced neonatal emphysema, which persisted into adulthood, as demonstrated by alveolar enlargement and decreased vessel density. LPAR1-deficiency protected against LPS-induced lung injury. Adult controls with BPD exhibited an exacerbated response toward LPS with an increased expression of pro-inflammatory mRNAs, whereas LPAR1-deficient rats with BPD were less sensitive to this “second hit” with a decreased pulmonary influx of macrophages and neutrophils, interleukin-6 (IL-6) production, and mRNA expression of IL-6, monocyte chemoattractant protein-1, cytokine-induced neutrophil chemoattractant 1, plasminogen activator inhibitor-1, and tissue factor. Conclusion: LPAR1-deficient rats have increased hyperoxia-induced BPD survival rates and, despite the presence of neonatal emphysema, are less sensitive to an aggravated “second hit” than Wistar controls with BPD. Intervening in LPA-LPAR1-dependent signaling may not only have therapeutic potential for neonatal chronic

  17. Somatostatin receptor expression in small cell lung cancer as a prognostic marker and a target for peptide receptor radionuclide therapy

    PubMed Central

    Lapa, Constantin; Hänscheid, Heribert; Wild, Vanessa; Pelzer, Theo; Schirbel, Andreas; Werner, Rudolf A.; Droll, Sabine; Herrmann, Ken; Buck, Andreas K.; Lückerath, Katharina

    2016-01-01

    Despite initial responsiveness to both chemotherapy and radiotherapy, small cell lung cancer (SCLC) commonly relapses within months. Although neuroendocrine characteristics may be difficult to demonstrate in individual cases, a relevant expression of somatostatin receptors (SSTR) on the cell surface has been described. We aimed to evaluate the prognostic value of SSTR-expression in advanced SCLC. We further examined pre-requisites for successful peptide receptor radionuclide therapy (PRRT). 21 patients with extensive stage SCLC were enrolled. All patients underwent positron emission tomography/computed tomography (PET/CT) with 68Ga-DOTATATE to select patients for SSTR-directed therapy. PET scans were visually and semi-quantitatively assessed and compared to SSTR2a and SSTR5 expression in biopsy samples. Peak standardized uptake values (SUVpeak) of tumors as well as tumor-to-liver ratios were correlated to progression-free (PFS) and overall survival (OS). In 4/21 patients all SCLC lesions were PET-positive. 6/21 subjects were rated “intermediate” with the majority of lesions positive, the remaining 11/21 patients were PET-negative. PET-positivity correlated well with histologic SSTR2a, but not with SSTR5 expression. Neither PET-positivity nor SUVpeak were predictors of PFS or OS. In 4 patients with intensive SSTR2a-receptor expression, PRRT was performed with one partial response and one stable disease, respectively. SSTR-expression as detected by 68Ga-DOTATATE-PET and/or histology is not predictive of PFS or OS in patients with advanced SCLC. However, in patients exhibiting sufficient tracer uptake, PRRT might be a treatment option given its low toxicity and the absence of effective alternatives. PMID:26936994

  18. Botanical Scavenger Hunt

    ERIC Educational Resources Information Center

    Walker-Livingston, Wendy

    2009-01-01

    Why not combine the use of technology with the excitement of a scavenger hunt that moves middle-level students out into the "wilds" of their school campus to classify plants? In the lesson plan described here, students embark on a botanical scavenger hunt and then document their findings using a digital camera. This project was designed to allow…

  19. Expression of P2Y receptors in cell lines derived from the human lung.

    PubMed

    Communi, D; Paindavoine, P; Place, G A; Parmentier, M; Boeynaems, J M

    1999-05-01

    1. Northern blotting experiments have been performed with RNA extracted from several cell lines derived from the human lung in order to detect P2Y1, P2Y2, P2Y4 and P2Y6 mRNA. We have investigated the 1HAEo- and 16HBE14o- epithelial cell lines derived from the airway epithelium, the A549 cell line displaying properties of type II alveolar epithelial cells, the CALU-3 serous cells, the 6CFSMEo- submucosal cells and the HASMSC1 airway smooth muscle cells. We have also evaluated one pancreatic epithelial cell line called CFPAC-1. These experiments revealed that P2Y2 and P2Y6 mRNA are co-expressed in the IHAEo-, 16HBE14o- and A549 epithelial cell lines. The CFPAC-1 pancreatic cell line was strongly positive for the P2Y2 receptor. No signal was obtained for the P2Y1 and P2Y4 receptors. 2. We have then performed RT-PCR experiments with specific oligonucleotides of these last two P2Y receptors with the RNA used for the Northern blotting experiments. P2Y4 mRNA was detected in five cell lines: 1HAEo-, 16HBE14o-, 6CFSMEo-, HASMSC1 and CFPAC-1. P2Y1 mRNA was only detected in the CALU-3 cell line. 3. Inositol trisphosphates assays have identified a response typical of the P2Y2 receptor in the 1HAEo- and the 16HBE14o- airway epithelial cell lines which co-express P2Y2 and P2Y6 mRNA. By contrast, the 6CFSMEo- submucosal cells expressed a UTP-specific response which displayed pharmacological characteristics compatible with the human P2Y4 receptor: in particular, there was no response to UDP or ATP and the UTP effect was totally inhibited by pertussis toxin.

  20. Expression of von Willebrand factor, pulmonary intravascular macrophages, and Toll-like receptors in lungs of septic foals

    PubMed Central

    Harrison, Jacqueline M. E.; Quanstrom, Leah M.; Robinson, Alex R.; Wobeser, Bruce; Anderson, Stacy L.

    2017-01-01

    Sepsis causes significant mortality in neonatal foals; however, there is little data describing the cellular and molecular pathways of lung inflammation in septic foals. This study was conducted to characterize lung inflammation in septic foals. Lung tissue sections from control (n = 6) and septic (n = 17) foals were compared using histology and immunohistology. Blinded pathologic scoring of hematoxylin and eosin stained samples revealed increased features of lung inflammation such as thickened alveolar septa and sequestered inflammatory cells in septic foals. Septic foal lungs showed increased expression of von Willebrand factor in blood vessels, demonstrating vascular inflammation. Use of MAC387 antibody to detect calprotectin as a reflection of mononuclear cell infiltration revealed a significant increase in their numbers in alveolar septa of lungs from septic foals compared to those from control foals. The mononuclear cells appeared to be mature macrophages and were located in the septal capillaries, suggesting they were pulmonary intravascular macrophages (PIMs). Finally, lungs from septic foals showed increased expression of Toll-like receptor 4 and 9 in mononuclear cells relative to the control. Taken together, this study is the first to show the expression of inflammatory molecules and an increase in PIMs in lungs from foals that died from sepsis. PMID:27297419

  1. REACTOR FUEL SCAVENGING MEANS

    DOEpatents

    Coffinberry, A.S.

    1962-04-10

    A process for removing fission products from reactor liquid fuel without interfering with the reactor's normal operation or causing a significant change in its fuel composition is described. The process consists of mixing a liquid scavenger alloy composed of about 44 at.% plutoniunm, 33 at.% lanthanum, and 23 at.% nickel or cobalt with a plutonium alloy reactor fuel containing about 3 at.% lanthanum; removing a portion of the fuel and scavenger alloy from the reactor core and replacing it with an equal amount of the fresh scavenger alloy; transferring the portion to a quiescent zone where the scavenger and the plutonium fuel form two distinct liquid layers with the fission products being dissolved in the lanthanum-rich scavenger layer; and the clean plutonium-rich fuel layer being returned to the reactor core. (AEC)

  2. Peroxisome proliferator-activated receptor ligands regulate lipid content, metabolism, and composition in fetal lungs of diabetic rats.

    PubMed

    Kurtz, M; Capobianco, E; Careaga, V; Martinez, N; Mazzucco, M B; Maier, M; Jawerbaum, A

    2014-03-01

    Maternal diabetes impairs fetal lung development. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors relevant in lipid homeostasis and lung development. This study aims to evaluate the effect of in vivo activation of PPARs on lipid homeostasis in fetal lungs of diabetic rats. To this end, we studied lipid concentrations, expression of lipid metabolizing enzymes and fatty acid composition in fetal lungs of control and diabetic rats i) after injections of the fetuses with Leukotriene B4 (LTB4, PPARα ligand) or 15deoxyΔ(12,14)prostaglandin J2 (15dPGJ2, PPARγ ligand) and ii) fed during pregnancy with 6% olive oil- or 6% safflower oil-supplemented diets, enriched with PPAR ligands were studied. Maternal diabetes increased triglyceride concentrations and decreased expression of lipid-oxidizing enzymes in fetal lungs of diabetic rats, an expression further decreased by LTB4 and partially restored by 15dPGJ2 in lungs of male fetuses in the diabetic group. In lungs of female fetuses in the diabetic group, maternal diets enriched with olive oil increased triglyceride concentrations and fatty acid synthase expression, while those enriched with safflower oil increased triglyceride concentrations and fatty acid transporter expression. Both olive oil- and safflower oil-supplemented diets decreased cholesterol and cholesteryl ester concentrations and increased the expression of the reverse cholesterol transporter ATP-binding cassette A1 in fetal lungs of female fetuses of diabetic rats. In fetal lungs of control and diabetic rats, the proportion of polyunsaturated fatty acids increased with the maternal diets enriched with olive and safflower oils. Our results revealed important changes in lipid metabolism in fetal lungs of diabetic rats, and in the ability of PPAR ligands to modulate the composition of lipid species relevant in the lung during the perinatal period.

  3. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25.

    PubMed

    Hung, Rayjean J; McKay, James D; Gaborieau, Valerie; Boffetta, Paolo; Hashibe, Mia; Zaridze, David; Mukeria, Anush; Szeszenia-Dabrowska, Neonilia; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Mates, Dana; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Chen, Chu; Goodman, Gary; Field, John K; Liloglou, Triantafillos; Xinarianos, George; Cassidy, Adrian; McLaughlin, John; Liu, Geoffrey; Narod, Steven; Krokan, Hans E; Skorpen, Frank; Elvestad, Maiken Bratt; Hveem, Kristian; Vatten, Lars; Linseisen, Jakob; Clavel-Chapelon, Françoise; Vineis, Paolo; Bueno-de-Mesquita, H Bas; Lund, Eiliv; Martinez, Carmen; Bingham, Sheila; Rasmuson, Torgny; Hainaut, Pierre; Riboli, Elio; Ahrens, Wolfgang; Benhamou, Simone; Lagiou, Pagona; Trichopoulos, Dimitrios; Holcátová, Ivana; Merletti, Franco; Kjaerheim, Kristina; Agudo, Antonio; Macfarlane, Gary; Talamini, Renato; Simonato, Lorenzo; Lowry, Ray; Conway, David I; Znaor, Ariana; Healy, Claire; Zelenika, Diana; Boland, Anne; Delepine, Marc; Foglio, Mario; Lechner, Doris; Matsuda, Fumihiko; Blanche, Helene; Gut, Ivo; Heath, Simon; Lathrop, Mark; Brennan, Paul

    2008-04-03

    Lung cancer is the most common cause of cancer death worldwide, with over one million cases annually. To identify genetic factors that modify disease risk, we conducted a genome-wide association study by analysing 317,139 single-nucleotide polymorphisms in 1,989 lung cancer cases and 2,625 controls from six central European countries. We identified a locus in chromosome region 15q25 that was strongly associated with lung cancer (P = 9 x 10(-10)). This locus was replicated in five separate lung cancer studies comprising an additional 2,513 lung cancer cases and 4,752 controls (P = 5 x 10(-20) overall), and it was found to account for 14% (attributable risk) of lung cancer cases. Statistically similar risks were observed irrespective of smoking status or propensity to smoke tobacco. The association region contains several genes, including three that encode nicotinic acetylcholine receptor subunits (CHRNA5, CHRNA3 and CHRNB4). Such subunits are expressed in neurons and other tissues, in particular alveolar epithelial cells, pulmonary neuroendocrine cells and lung cancer cell lines, and they bind to N'-nitrosonornicotine and potential lung carcinogens. A non-synonymous variant of CHRNA5 that induces an amino acid substitution (D398N) at a highly conserved site in the second intracellular loop of the protein is among the markers with the strongest disease associations. Our results provide compelling evidence of a locus at 15q25 predisposing to lung cancer, and reinforce interest in nicotinic acetylcholine receptors as potential disease candidates and chemopreventative targets.

  4. Estrogen receptors as the novel therapeutic biomarker in non-small cell lung cancer

    PubMed Central

    Kawai, Hideki

    2014-01-01

    Although a wide range of studies have addressed the relationship between estrogen receptor (ER) expression and prognosis in non-small cell lung cancer (NSCLC), that relationship remains controversial. This is in large part because there is no consensus on the rate of ER expression in NSCLC or on the intracellular distribution of ER expression. This suggests that establishing the relationship between ER expression and prognosis will require standardization of the antibodies used as well as the definition of a positive response. For example, it is supposed from previous studies that ERs in the cytoplasm and nucleus have different relationships to prognosis than ERs in the cytoplasm. Moreover, ER signaling in NSCLC is known to be affected by aromatase, progesterone receptor and epidermal growth factor receptor mutation. However, there has been little functional analysis these mutants and subtypes. This review will focus on what is known about the role of ERs in NSCLC and whether ER can be a useful prognostic marker or therapeutic target in NSCLC. PMID:25493237

  5. Receptor-mediated antiproliferative effects of corticosteroids in Lewis lung tumors.

    PubMed

    Braunschweiger, P G; Ting, H L; Schiffer, L M

    1984-03-01

    Dextran-coated charcoal competitive binding assays and Scatchard analysis revealed the presence of high-affinity, low capacity binding sites for dexamethasone in cytosol preparations from Lewis lung tumors. In vitro studies with live cells indicated approximately 9000 nuclear binding sites/cell for the ligand-receptor complex. In vivo inhibition of cell proliferation by dexamethasone, methylprednisolone and triamcinolone acetonide was found to be dose-dependent. Changes in the [3H]-TdR labeling index, mitotic index and saturable cytosol receptor sites after dexamethasone treatment in vivo suggested a dose-dependent G1 progression delay which, after cessation of dexamethasone treatments, was apparently reversible. Resumption of cell-cycle progression was characterized by synchronous progression through S-phase and correlated temporally with receptor site desaturation. In vivo studies indicated that the effectiveness of vincristine given after dexamethasone was highly sequence-dependent, with the most effective sequence interval being coincident with the interval of maximal S-phase cellularity. Other studies indicated sequential chemotherapy with dexamethasone, vincristine and 5-Fu could be effectively employed, following primary tumor excision, to increase animal survival.

  6. Contribution of the Purinergic Receptor P2X7 to Development of Lung Immunopathology during Influenza Virus Infection

    PubMed Central

    Ermler, Megan E.; Schotsaert, Michael; Gonzalez, Ma G.; Gillespie, Virginia; Lim, Jean K.; García-Sastre, Adolfo

    2017-01-01

    ABSTRACT An exacerbated immune response is one of the main causes of influenza-induced lung damage during infection. The molecular mechanisms regulating the fate of the initial immune response to infection, either as a protective response or as detrimental immunopathology, are not well understood. The purinergic receptor P2X7 is an ionotropic nucleotide-gated ion channel receptor expressed on immune cells that has been implicated in induction and maintenance of excessive inflammation. Here, we analyze the role of this receptor in a mouse model of influenza virus infection using a receptor knockout (KO) mouse strain. Our results demonstrate that the absence of the P2X7 receptor results in a better outcome to influenza virus infection characterized by reduced weight loss and increased survival upon experimental influenza challenge compared to wild-type mice. This effect was not virus strain specific. Overall lung pathology and apoptosis were reduced in virus-infected KO mice. Production of proinflammatory cytokines and chemokines such as interleukin-10 (IL-10), gamma interferon (IFN-γ), and CC chemokine ligand 2 (CCL2) was also reduced in the lungs of the infected KO mice. Infiltration of neutrophils and depletion of CD11b+ macrophages, characteristic of severe influenza virus infection in mice, were lower in the KO animals. Together, these results demonstrate that activation of the P2X7 receptor is involved in the exacerbated immune response observed during influenza virus infection. PMID:28351919

  7. Activation of the protein-tyrosine kinase associated with the bombesin receptor complex in small cell lung carcinomas.

    PubMed Central

    Gaudino, G; Cirillo, D; Naldini, L; Rossino, P; Comoglio, P M

    1988-01-01

    It has been hypothesized that bombesin-like peptides produced by small cell lung carcinomas may sustain deregulated proliferation through an autocrine mechanism. We have shown that the neuropeptide bombesin leads to the activation of a protein-tyrosine kinase that phosphorylates a 115-kDa protein (p115) associated with the bombesin receptor complex in mouse Swiss 3T3 fibroblasts. We now report that phosphotyrosine antibodies recognize a 115-kDa protein, phosphorylated on tyrosine, in four human small cell lung carcinoma cell lines producing bombesin but not in a nonproducer "variant" line. p115 from detergent-treated small cell lung carcinoma cells binds to bombesin-Sepharose and can be phosphorylated on tyrosine in the presence of radiolabeled ATP and Mn2+. As for the p115 immunoprecipitated from mouse fibroblast, the small cell lung carcinoma p115 can be phosphorylated in an immunocomplex kinase assay. However, the latter does not require the presence of exogenous bombesin for activity. Binding data, obtained by using radiolabeled ligand, suggest receptor occupancy in the cell lines producing bombesin. These observations are consistent with the hypothesis that proliferation in some human small cell lung carcinoma lines is under autocrine control, regulated through activation of bombesin receptors. Images PMID:2451242

  8. The nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster: Dual role in nicotine addiction and lung cancer

    PubMed Central

    Improgo, Ma. Reina D.; Scofield, Michael D.; Tapper, Andrew R.; Gardner, Paul D.

    2010-01-01

    More than 1 billion people around the world smoke, with 10 million cigarettes sold every minute. Cigarettes contain thousands of harmful chemicals including the psychoactive compound, nicotine. Nicotine addiction is initiated by the binding of nicotine to nicotinic acetylcholine receptors, ligand-gated cation channels activated by the endogenous neurotransmitter, acetylcholine. These receptors serve as prototypes for all ligand-gated ion channels and have been extensively studied in an attempt to elucidate their role in nicotine addiction. Many of these studies have focused on heteromeric nicotinic acetylcholine receptors containing α4 and β2 subunits and homomeric nicotinic acetylcholine receptors containing the α7 subunit, two of the most abundant subtypes expressed in the brain. Recently however, a series of linkage analyses, candidate-gene analyses and genome-wide association studies have brought attention to three other members of the nicotinic acetylcholine receptor family: the α5, α3 and β4 subunits. The genes encoding these subunits lie in a genomic cluster that contains variants associated with increased risk for several diseases including nicotine dependence and lung cancer. The underlying mechanisms for these associations have not yet been elucidated but decades of research on the nicotinic receptor gene family as well as emerging data provide insight on how these receptors may function in pathological states. Here, we review this body of work, focusing on the clustered nicotinic acetylcholine receptor genes and evaluating their role in nicotine addiction and lung cancer. PMID:20685379

  9. In vitro and in vivo Analysis of the Binding of the C Terminus of the HDL Receptor Scavenger Receptor Class B type I (SR-BI) to the PDZ1 Domain of its Cytoplasmic Adaptor Protein PDZK1

    SciTech Connect

    O Kocher; G Birrane; K Tsukamoto; S Fenske; A Yesilaltay; R Pal; K Daniels; J Ladias; M Krieger

    2011-12-31

    The PDZ1 domain of the four PDZ domain-containing protein PDZK1 has been reported to bind the C terminus of the HDL receptor scavenger receptor class B, type I (SR-BI), and to control hepatic SR-BI expression and function. We generated wild-type (WT) and mutant murine PDZ1 domains, the mutants bearing single amino acid substitutions in their carboxylate binding loop (Lys(14)-Xaa(4)-Asn(19)-Tyr-Gly-Phe-Phe-Leu(24)), and measured their binding affinity for a 7-residue peptide corresponding to the C terminus of SR-BI ((503)VLQEAKL(509)). The Y20A and G21Y substitutions abrogated all binding activity. Surprisingly, binding affinities (K(d)) of the K14A and F22A mutants were 3.2 and 4.0 ?M, respectively, similar to 2.6 ?M measured for the WT PDZ1. To understand these findings, we determined the high resolution structure of WT PDZ1 bound to a 5-residue sequence from the C-terminal SR-BI ((505)QEAKL(509)) using x-ray crystallography. In addition, we incorporated the K14A and Y20A substitutions into full-length PDZK1 liver-specific transgenes and expressed them in WT and PDZK1 knock-out mice. In WT mice, the transgenes did not alter endogenous hepatic SR-BI protein expression (intracellular distribution or amount) or lipoprotein metabolism (total plasma cholesterol, lipoprotein size distribution). In PDZK1 knock-out mice, as expected, the K14A mutant behaved like wild-type PDZK1 and completely corrected their hepatic SR-BI and plasma lipoprotein abnormalities. Unexpectedly, the 10-20-fold overexpressed Y20A mutant also substantially, but not completely, corrected these abnormalities. The results suggest that there may be an additional site(s) within PDZK1 that bind(s) SR-BI and mediate(s) productive SR-BI-PDZK1 interaction previously attributed exclusively to the canonical binding of the C-terminal SR-BI to PDZ1.

  10. Toll-like receptor 4 promotes fibrosis in bleomycin-induced lung injury in mice.

    PubMed

    Li, X X; Jiang, D Y; Huang, X X; Guo, S L; Yuan, W; Dai, H P

    2015-12-21

    The specific role of Toll-like receptor 4 (TLR4) in bleomycin-induced lung fibrosis of mice, a model of human idiopathic pulmonary fibrosis, has not been characterized. We injected bleomycin intratracheally into TLR4 knockout (TLR4(-/-)) and wild-type (WT) mice. Twenty-one days after injection, mice were sacrificed and their lungs were harvested for pathological, hydroxyproline, mRNA expression, and collagen I analyses. Body weight changes and mortality were observed. Light microscopy showed that lung fibrosis was minimal in TLR4(-/-) compared to that in WT mice on day 21 after bleomycin instillation. The Ashcroft score was significantly lower in TLR4(-/-) than in WT mice (3.667 ± 0.730 vs 4.945 ± 0.880, P < 0.05). Hydroxyproline content was significantly lower in TLR4(-/-) than in WT mice on day 21 after bleomycin injection (0.281 ± 0.022 vs 0.371 ± 0.047, P < 0.05). Compared to WT mice, bleomycin-treated TLR4(-/-) mice expressed significantly lower type I collagen mRNA levels (mesenchymal marker; 11.069 ± 2.627 vs 4.589 ± 1.440, P < 0.05). Collagen I was significantly lower in TLR4(-/-) than in WT mice (0.838 ± 0.352 vs 2.427 ± 0.551, P < 0.05). Bleomycin-treated TLR4(-/-) mice had a significantly lower mortality rate on day 21 than WT mice (33 vs 75%, P < 0.05). Body weight reduction was lower in TLR4(-/-) mice than in WT mice; this difference was not statistically significant (-3.735 ± 5.276 vs -6.698 ± 3.218, P > 0.05). Thus, bleomycin-induced pulmonary fibrosis is TLR4-dependent and TLR4 promoted fibrosis in bleomycin-challenged mice.

  11. Blockade of interleukin-6 receptor suppresses the proliferation of H460 lung cancer stem cells.

    PubMed

    Yi, Hee; Cho, Hee-Jung; Cho, Soo-Min; Jo, Kyul; Park, Jin-A; Kim, Na-Hyun; Amidon, Gordon L; Kim, Jin-Suk; Shin, Ho-Chul

    2012-07-01

    IL-6/6R signaling is closely associated with tumor growth and poor prognosis. Although there is evidence that interleukin-6 receptor (IL-6R)-mediated signaling promotes the growth and malignancy of cancer, the role of IL-6R in cancer stem cells (CSCs) is poorly defined. This study investigated the role of IL-6R in the proliferation of CSCs. Sphere-forming cells were isolated from the H460 non-small cell lung cancer (NSCLC) cell line and identified as CSCs using confocal microscopy, RT-PCR and WST-1 assay. The H460 spheres demonstrated the typical characteristics of CSCs, including CD133 expression, upregulation of Nanog, self-renewal, and drug resistance to methotrexate (MTX) and fluorouracil (5-FU). The release of IL-6R and its ligand, IL-6, were quantitatively determined and compared between CSCs and non-CSCs. The concentration of soluble IL-6R (sIL-6R) was remarkably high in CSCs compared to that in non-CSCs. Furthermore, significant upregulation of the IL-6R gene was also observed in the CSCs. The growth of CSCs was significantly inhibited by transfection with IL-6R small-interfering RNA (siRNA), as well as with the IL-6R monoclonal antibody (mAb). In addition, blocking both IL-6R and IL-6 using siRNA or mAbs intensified the inhibition of CSC proliferation. These findings indicate that IL-6R is present in CSCs and has an important role in the proliferation of CSCs in the H460 lung cancer cell line. Therefore, we suggest that IL-6R is both a viable target for the development of CSC-directed lung cancer therapeutics and a potential CSC marker in NSCLC.

  12. Intracellular presence of insulin and its phosphorylated receptor in non-small cell lung cancer.

    PubMed

    Mattarocci, Stefano; Abbruzzese, Claudia; Mileo, Anna M; Visca, Paolo; Antoniani, Barbara; Alessandrini, Gabriele; Facciolo, Francesco; Felsani, Armando; Radulescu, Razvan T; Paggi, Marco G

    2009-12-01

    Insulin has been known for a long time to influence the growth and differentiation of normal and transformed cells. In order to delineate the role of insulin specifically in non-small cell lung cancer (NSCLC), we have now searched by immunohistochemistry (IHC) for the presence of insulin in NSCLC samples. Among the 112 samples we studied, 30 were found to contain insulin, which was detected in the form of intracytoplasmic granula. Moreover, its expression significantly correlated with (a) the morphological/histopathological subtype of NSCLC, being more frequent in adenocarcinomas; (b) the grade of tumor differentiation, displaying an increase in low-grade carcinomas; (c) tumor size, occurring predominantly in smaller tumors; (d) the presence of phosphorylated, activated insulin receptor; (e) the median patient age, being present in relatively younger individuals. Furthermore and interestingly, surrounding atypical adenomatous hyperplastic areas and normal alveolar pneumocytes scored insulin-positive in some of the insulin-negative tumors. In addition, PCR exploration for insulin transcripts in some samples positive for immunoreactive insulin was negative, indicating a possibly exogenous origin for the intracellular insulin in our NSCLC cohort. Taken together, our data suggest that an intracellular insulin activity is important for the progression of low-grade human lung adenocarcinomas.

  13. The glucocorticoid-glucocorticoid receptor signal transduction pathway, transforming growth factor-beta, and embryonic mouse lung development in vivo.

    PubMed

    Jaskoll, T; Choy, H A; Melnick, M

    1996-05-01

    Lung morphogenesis has been shown to be regulated by glucocorticoids (CORT). Because CORT has been primarily thought to affect fetal lung development, previous studies have focused on the role of CORT receptor (GR)-mediated regulation of fetal lung development. Although endogenous CORT increases during embryonic and fetal stages and exogenous CORT treatment in vivo and in vitro clearly accelerates embryonic lung development, little is known about the morphoregulatory role of the embryonic CORT-GR signal transduction pathway during lung development. In this study, we characterize the embryonic mouse CORT-GR pathway and demonstrate: stage-specific in situ patterns of GR immunolocalization; similarity in GR relative mobility with progressive (E13 --> E17) development; that embryonic GR can be activated to bind a GR response element (GRE); significantly increasing levels of functional GR with increasing lung maturation; and the presence of heat shock protein (hsp) 70 and hsp90 from early (E13) to late (E17) developmental stages. These results support the purported importance of the embryonic CORT-GR signal transduction pathway in progressive lung differentiation. To demonstrate that the embryonic CORT-GR directed pathway plays a role in lung development, early embryonic (E12) lungs were exposed to CORT in utero and surfactant-associated protein A (SP-A) expression was analyzed; CORT treatment up-regulates SP-A mRNA expression and spatiotemporal protein distribution. Finally, to determine whether CORT-GR-directed pulmonary morphogenesis in vivo involves the modulation of growth factors, we studied the effect of CORT on TGF-beta gene expression. Northern analysis of TGF-beta 1, TGF-beta 2, and TGF-beta 3 transcript levels in vivo indicates that CORT regulates the rate of lung morpho- and histodifferentiation by down-regulating TGF-beta 3 gene expression.

  14. Ex vivo Perfusion with Adenosine A2A Receptor Agonist Enhances Rehabilitation of Murine Donor Lungs after Circulatory Death

    PubMed Central

    Stone, Mathew L.; Sharma, Ashish K.; Mas, Valeria. R.; Gehrau, Ricardo C.; Mulloy, Daniel P.; Zhao, Yunge; Lau, Christine L.; Kron, Irving L.; Laubach, Victor E.

    2015-01-01

    Background Ex vivo lung perfusion (EVLP) enables assessment and rehabilitation of marginal donor lungs prior to transplantation. We previously demonstrated that adenosine A2A receptor (A2AR) agonism attenuates lung ischemia-reperfusion injury. The current study utilizes a novel murine EVLP model to test the hypothesis that A2AR agonist enhances EVLP-mediated rehabilitation of donation after circulatory death (DCD) lungs. Methods Mice underwent euthanasia and 60 min warm ischemia, and lungs were flushed with Perfadex and underwent cold static preservation (CSP, 60 min). Three groups were studied: no EVLP (CSP), EVLP with Steen solution for 60 min (EVLP), and EVLP with Steen solution supplemented with ATL1223, a selective A2AR agonist (EVLP+ATL1223). Lung function, wet/dry weight, cytokines and neutrophil numbers were measured. Microarrays were performed using the Affymetrix GeneChip Mouse Genome 430A 2.0 Array. Results EVLP significantly improved lung function versus CSP, which was further, significantly improved by EVLP+ATL1223. Lung edema, cytokines and neutrophil counts were reduced after EVLP and further, significantly reduced after EVLP+ATL1223. Gene array analysis revealed differential expression of 1,594 genes after EVLP, which comprise canonical pathways involved in inflammation and innate immunity including IL-1, IL-8, IL-6 and IL-17 signaling. Several pathways were uniquely regulated by EVLP+ATL1223 including the downregulation of genes involved in IL-1 signaling such as ADCY9, ECSIT, IRAK1, MAPK12 and TOLLIP. Conclusion EVLP modulates pro-inflammatory genes and reduces pulmonary dysfunction, edema and inflammation in DCD lungs, which are further reduced by A2AR agonism. This murine EVLP model provides a novel platform to study rehabilitative mechanisms of DCD lungs. PMID:26262504

  15. Cigarette smoke induces aberrant EGF receptor activation that mediates lung cancer development and resistance to tyrosine kinase inhibitors.

    PubMed

    Filosto, Simone; Becker, Cathleen R; Goldkorn, Tzipora

    2012-04-01

    The EGF receptor (EGFR) and its downstream signaling are implicated in lung cancer development. Therefore, much effort was spent in developing specific tyrosine kinase inhibitors (TKI) that bind to the EGFR ATP-pocket, blocking EGFR phosphorylation/signaling. Clinical use of TKIs is effective in a subset of lung cancers with mutations in the EGFR kinase domain, rendering the receptor highly susceptible to TKIs. However, these benefits are limited, and emergence of additional EGFR mutations usually results in TKI resistance and disease progression. Previously, we showed one mechanism linking cigarette smoke to EGFR-driven lung cancer. Specifically, exposure of lung epithelial cells to cigarette smoke-induced oxidative stress stimulates aberrant EGFR phosphorylation/activation with impaired receptor ubiquitination/degradation. The abnormal stabilization of the activated receptor leads to uncontrolled cell growth and tumorigenesis. Here, we describe for the first time a novel posttranslational mechanism of EGFR resistance to TKIs. Exposure of airway epithelial cells to cigarette smoke causes aberrant phosphorylation/activation of EGFR, resulting in a conformation that is different from that induced by the ligand EGF. Unlike EGF-activated EGFR, cigarette smoke-activated EGFR binds c-Src and caveolin-1 and does not undergo canonical dimerization. Importantly, the cigarette smoke-activated EGFR is not inhibited by TKIs (AG1478; erlotinib; gefitinib); in fact, the cigarette smoke exposure induces TKI-resistance even in the TKI-sensitive EGFR mutants. Our findings show that cigarette smoke exposure stimulates not only aberrant EGFR phosphorylation impairing receptor degradation, but also induces a different EGFR conformation and signaling that are resistant to TKIs. Together, these findings offer new insights into cigarette smoke-induced lung cancer development and TKI resistance.

  16. Receptor for advanced glycation end products contributes to postnatal pulmonary development and adult lung maintenance program in mice.

    PubMed

    Fineschi, Silvia; De Cunto, Giovanna; Facchinetti, Fabrizio; Civelli, Maurizio; Imbimbo, Bruno P; Carnini, Chiara; Villetti, Gino; Lunghi, Benedetta; Stochino, Stefania; Gibbons, Deena L; Hayday, Adrian; Lungarella, Giuseppe; Cavarra, Eleonora

    2013-02-01

    The role of the receptor for advanced glycation end products (RAGE) in promoting the inflammatory response through activation of NF-κB pathway is well established. Recent findings indicate that RAGE may also have a regulative function in apoptosis, as well as in cellular proliferation, differentiation, and adhesion. Unlike other organs, lung tissue in adulthood and during organ development shows relatively high levels of RAGE expression. Thus a role for the receptor in lung organogenesis and homeostasis may be proposed. To evaluate the role of RAGE in lung development and adult lung homeostasis, we generated hemizygous and homozygous transgenic mice overexpressing human RAGE, and analyzed their lungs from the fourth postnatal day to adulthood. Moderate RAGE hyperexpression during lung development influenced secondary septation, resulting in an impairment of alveolar morphogenesis and leading to significant changes in morphometric parameters such as airspace number and the size of alveolar ducts. An increase in alveolar cell apoptosis and a decrease in cell proliferation were demonstrated by the terminal deoxy-nucleotidyltransferase-mediated dUTP nick end labeling reaction, active caspase-3, and Ki-67 immunohistochemistry. Alterations in elastin organization and deposition and in TGF-β expression were observed. In homozygous mice, the hyperexpression of RAGE resulted in histological changes resembling those changes characterizing human bronchopulmonary dysplasia (BPD). RAGE hyperexpression in the adult lung is associated with an increase of the alveolar destructive index and persistent inflammatory status leading to "destructive" emphysema. These results suggest an important role for RAGE in both alveolar development and lung homeostasis, and open new doors to working hypotheses on the pathogenesis of BPD and chronic obstructive pulmonary disease.

  17. Antenatal endotoxin disrupts lung vitamin D receptor and 25-hydroxyvitamin D 1α-hydroxylase expression in the developing rat.

    PubMed

    Mandell, Erica; Seedorf, Gregory J; Ryan, Sharon; Gien, Jason; Cramer, Scott D; Abman, Steven H

    2015-11-01

    Vitamin D [vit D; 1,25-(OH)2D] treatment improves survival and lung alveolar and vascular growth in an experimental model of bronchopulmonary dysplasia (BPD) after antenatal exposure to endotoxin (ETX). However, little is known about lung-specific 1,25-(OH)2D3 regulation during development, especially regarding maturational changes in lung-specific expression of the vitamin D receptor (VDR), 1α-hydroxylase (1α-OHase), and CYP24A1 during late gestation and the effects of antenatal ETX exposure on 1,25-(OH)2D3 metabolism in the lung. We hypothesized that vit D regulatory proteins undergo maturation regulation in the late fetal and early neonatal lung and that prenatal exposure to ETX impairs lung growth partly through abnormal endogenous vit D metabolism. Normal fetal rat lungs were harvested between embryonic day 15 and postnatal day 14. Lung homogenates were assayed for VDR, 1α-OHase, and CYP24A1 protein contents by Western blot analysis. Fetal rats were injected on embryonic day 20 with intra-amniotic ETX, ETX + 1,25-(OH)2D3, or saline and delivered 2 days later. Pulmonary artery endothelial cells (PAECs) from fetal sheep were assessed for VDR, 1α-OHase, and CYP24A1 expression after treatment with 25-(OH)D3, 1,25-(OH)2D3, ETX, ETX + 25-(OH)D3, or ETX + 1,25-(OH)2D3. We found that lung VDR, 1α-OHase, and CYP2741 protein expression dramatically increase immediately before birth (P < 0.01 vs. early fetal values). Antenatal ETX increases CYP24A1 expression (P < 0.05) and decreases VDR and 1α-OHase expression at birth (P < 0.001), but these changes are prevented with concurrent vit D treatment (P < 0.001). ETX-induced reduction of fetal PAEC growth and tube formation and lung 1α-OHase expression are prevented by vit D treatment (P < 0.001). We conclude that lung VDR, 1α-OHase, and CYP24A1 protein content markedly increase before birth and that antenatal ETX disrupts lung vit D metabolism through downregulation of VDR and increased vit D catabolic enzyme

  18. Alpha/Beta Interferon Receptor Signaling Amplifies Early Proinflammatory Cytokine Production in the Lung during Respiratory Syncytial Virus Infection

    PubMed Central

    Goritzka, Michelle; Durant, Lydia R.; Pereira, Catherine; Salek-Ardakani, Samira; Openshaw, Peter J. M.

    2014-01-01

    ABSTRACT Type I interferons (IFNs) are produced early upon virus infection and signal through the alpha/beta interferon (IFN-α/β) receptor (IFNAR) to induce genes that encode proteins important for limiting viral replication and directing immune responses. To investigate the extent to which type I IFNs play a role in the local regulation of inflammation in the airways, we examined their importance in early lung responses to infection with respiratory syncytial virus (RSV). IFNAR1-deficient (IFNAR1−/−) mice displayed increased lung viral load and weight loss during RSV infection. As expected, expression of IFN-inducible genes was markedly reduced in the lungs of IFNAR1−/− mice. Surprisingly, we found that the levels of proinflammatory cytokines and chemokines in the lungs of RSV-infected mice were also greatly reduced in the absence of IFNAR signaling. Furthermore, low levels of proinflammatory cytokines were also detected in the lungs of IFNAR1−/− mice challenged with noninfectious innate immune stimuli such as selected Toll-like receptor (TLR) agonists. Finally, recombinant IFN-α was sufficient to potentiate the production of inflammatory mediators in the lungs of wild-type mice challenged with innate immune stimuli. Thus, in addition to its well-known role in antiviral resistance, type I IFN receptor signaling acts as a central driver of early proinflammatory responses in the lung. Inhibiting the effects of type I IFNs may therefore be useful in dampening inflammation in lung diseases characterized by enhanced inflammatory cytokine production. IMPORTANCE The initial response to viral infection is characterized by the production of interferons (IFNs). One group of IFNs, the type I IFNs, are produced early upon virus infection and signal through the IFN-α/β receptor (IFNAR) to induce proteins important for limiting viral replication and directing immune responses. Here we examined the importance of type I IFNs in early responses to respiratory

  19. Clarifying CB2 receptor-dependent and independent effects of THC on human lung epithelial cells

    SciTech Connect

    Sarafian, Theodore Montes, Cindy; Harui, Airi; Beedanagari, Sudheer R.; Kiertscher, Sylvia; Stripecke, Renata; Hossepian, Derik; Kitchen, Christina; Kern, Rita; Belperio, John; Roth, Michael D.

    2008-09-15

    Marijuana smoking is associated with a number of abnormal findings in the lungs of habitual smokers. Previous studies revealed that {delta}{sup 9}-tetrahydrocannabinol (THC) caused mitochondrial injury in primary lung epithelial cells and in the cell line, A549 [Sarafian, T. A., Kouyoumjian, S., Khoshaghideh, F., Tashkin, D. P., and Roth, M. D. (2003). Delta 9-tetrahydrocannabinol disrupts mitochondrial function and cell energetics. Am J Physiol Lung Cell Mol Physiol 284, L298-306; Sarafian, T., Habib, N., Mao, J. T., Tsu, I. H., Yamamoto, M. L., Hsu, E., Tashkin, D. P., and Roth, M. D. (2005). Gene expression changes in human small airway epithelial cells exposed to Delta9-tetrahydrocannabinol. Toxicol Lett 158, 95-107]. The role of cannabinoid receptors in this injury was unclear, as was the potential impact on cell function. In order to investigate these questions, A549 cells were engineered to over-express the type 2 cannabinoid receptor (CB2R) using a self-inactivating lentiviral vector. This transduction resulted in a 60-fold increase in CB2R mRNA relative to cells transduced with a control vector. Transduced cell lines were used to study the effects of THC on chemotactic activity and mitochondrial function. Chemotaxis in response to a 10% serum gradient was suppressed in a concentration-dependent manner by exposure to THC. CB2R-transduced cells exhibited less intrinsic chemotactic activity (p < 0.05) and were 80- to 100-fold more sensitive to the inhibitory effects of THC. Studies using SR144528, a selective CB2R antagonist, verified that these effects were mediated by the CB2R. Marijuana smoke extract, but not smoke extracts from tobacco or placebo marijuana cigarettes, reproduced these effects (p < 0.05). THC decreased ATP level and mitochondrial membrane potential ({psi}{sub m}) in both control and CB2R-transduced cells. However, these decreases did not play a significant role in chemotaxis inhibition since cyclosporine A, which protected against ATP loss

  20. Hypertonic saline up-regulates A3 adenosine receptors expression of activated neutrophils and increases acute lung injury after sepsis

    PubMed Central

    Inoue, Yoshiaki; Chen, Yu; Pauzenberger, Reinhard; Mark, Hirsh I.; Junger, Wolfgang G.

    2008-01-01

    Objective Hypertonic saline resuscitation reduces tissue damage by inhibiting polymorphonuclear neutrophils. Hypertonic saline triggers polymorphonuclear neutrophils to release adenosine triphosphate that is converted to adenosine, inhibiting polymorphonuclear neutrophils through A2a adenosine receptors. polymorphonuclear neutrophils also express A3 adenosine receptors that enhance polymorphonuclear neutrophils functions. Here we investigated whether A3 receptors may diminish the efficacy of hypertonic saline in a mouse model of acute lung injury. Design Randomized animal study and laboratory investigation. Setting University research laboratory. Interventions The effect of A3 receptors on the efficacy of hypertonic saline resuscitation was assessed in A3 receptor knockout and wild-type mice. Animals were treated with hypertonic saline (7.5% NaCl, 4 mL/kg) before or after cecal ligation and puncture, and acute lung injury and mortality were determined. The effect of timing of hypertonic saline exposure on A3 receptor expression and degranulation was studied in vitro with isolated human polymorphonuclear neutrophils. Measurements and main results Treatment of human polymorphonuclear neutrophils with hypertonic saline before stimulation with formyl methionyl-leucyl-phenylalanine inhibited A3 receptor expression and degranulation, whereas hypertonic saline-treatment after formyl methionyl-leucyl-phenylalanine-stimulation augmented A3 receptor expression and degranulation. Acute lung injury in wild-type mice treated with hypertonic saline after cecal ligation and puncture was significantly greater than in wild-type mice pretreated with hypertonic saline. This aggravating effect of delayed hypertonic saline-treatment was absent in A3 receptor knockout mice. Similarly, mortality in wild-type mice with delayed hypertonic saline-treatment was significantly higher (88%) than in animals treated with hypertonic saline before cecal ligation and puncture (50%). Mortality in A3

  1. Combining chemotherapy with epidermal growth factor receptor inhibition in advanced non-small cell lung cancer

    PubMed Central

    Leung, Linda; Loong, Herbert

    2012-01-01

    Treatment of advanced stage lung cancer is changing rapidly. With the new found knowledge on molecular targets such as the epidermal growth factor receptor (EGFR), effective therapy is now available in a selected population with the target mutation. Single-agent epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is a standard first-line therapy for patients with activating-EGFR mutation such as base-pair deletion in exon 19 or point mutation at exon 21. At the same time, this class of drugs may be combined with chemotherapy. Studies on the concurrent combination of chemotherapy and EGFR-TKI confirmed a lack of efficacy. A phase II study on sequential intercalated combination has demonstrated an improvement in progression-free survival (PFS), but this needs to be validated by the ongoing phase III study. The third approach is to combine EGFR-TKI as maintenance therapy after tumour response or stable disease to cytotoxic chemotherapy. Two phase III studies have shown improvement in PFS, but the use of biomarkers for the selection of maintenance therapy remains debatable. Cetuximab is a monoclonal antibody against EGFR and its combination with chemotherapy was shown to improve overall survival in an unselected population. A new biomarker using the H-score will help to select patients for this combination. PMID:22754591

  2. Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis.

    PubMed

    Mou, Haiwei; Moore, Jill; Malonia, Sunil K; Li, Yingxiang; Ozata, Deniz M; Hough, Soren; Song, Chun-Qing; Smith, Jordan L; Fischer, Andrew; Weng, Zhiping; Green, Michael R; Xue, Wen

    2017-04-04

    Genetic lesions that activate KRAS account for ∼30% of the 1.6 million annual cases of lung cancer. Despite clinical need, KRAS is still undruggable using traditional small-molecule drugs/inhibitors. When oncogenic Kras is suppressed by RNA interference, tumors initially regress but eventually recur and proliferate despite suppression of Kras Here, we show that tumor cells can survive knockout of oncogenic Kras, indicating the existence of Kras-independent survival pathways. Thus, even if clinical KRAS inhibitors were available, resistance would remain an obstacle to treatment. Kras-independent cancer cells exhibit decreased colony formation in vitro but retain the ability to form tumors in mice. Comparing the transcriptomes of oncogenic Kras cells and Kras knockout cells, we identified 603 genes that were specifically up-regulated in Kras knockout cells, including the Fas gene, which encodes a cell surface death receptor involved in physiological regulation of apoptosis. Antibodies recognizing Fas receptor efficiently induced apoptosis of Kras knockout cells but not oncogenic Kras-expressing cells. Increased Fas expression in Kras knockout cells was attributed to decreased association of repressive epigenetic marks at the Fas promoter. Concordant with this observation, treating oncogenic Kras cells with histone deacetylase inhibitor and Fas-activating antibody efficiently induced apoptosis, thus bypassing the need to inhibit Kras. Our results suggest that activation of Fas could be exploited as an Achilles' heel in tumors initiated by oncogenic Kras.

  3. Acanthamoeba infection in lungs of mice expressed by toll-like receptors (TLR2 and TLR4).

    PubMed

    Derda, Monika; Wojtkowiak-Giera, Agnieszka; Kolasa-Wołosiuk, Agnieszka; Kosik-Bogacka, Danuta; Hadaś, Edward; Jagodziński, Paweł P; Wandurska-Nowak, Elżbieta

    2016-06-01

    Toll-like receptors (TLRs) play a key role in the innate immune responses to a variety of pathogens including parasites. TLRs are among the most highly conserved in the evolution of the receptor family, localized mainly on cells of the immune system and on other cells such as lung cells. The aim of this study was to determine for the first time the expression of TLR2 and TLR4 in the lung of Acanthamoeba spp. infected mice using quantitative real-time polymerase chain reaction (Q-PCR) and immunohistochemical (IHC) staining. The Acanthamoeba spp. were isolated from a patient with Acanthamoeba keratitis (AK) (strain Ac 55) and from environmental samples of water from Malta Lake (Poznań, Poland - strain Ac 43). We observed a significantly increased level of expression of TLR2 as well as TLR4 mRNA from 2 to 30 days post Acanthamoeba infection (dpi) in the lungs of mice infected with Ac55 (KP120880) and Ac43 (KP120879) strains. According to our observations, increased TLR2 and TLR4 expression in the pneumocytes, interstitial cells and epithelial cells of the bronchial tree may suggest an important role of these receptors in protective immunity against Acanthamoeba infection in the lung. Moreover, increased levels of TLR2 and TLR4 mRNA expression in infected Acanthamoeba mice may suggest the involvement of these TLRs in the recognition of this amoeba pathogen-associated molecular pattern (PAMP).

  4. P2X7 Receptor-mediated Scavenger Activity of Mononuclear Phagocytes toward Non-opsonized Particles and Apoptotic Cells Is Inhibited by Serum Glycoproteins but Remains Active in Cerebrospinal Fluid*

    PubMed Central

    Gu, Ben J.; Duce, James A.; Valova, Valentina A.; Wong, Bruce; Bush, Ashley I.; Petrou, Steven; Wiley, James S.

    2012-01-01

    Rapid phagocytosis of non-opsonized particles including apoptotic cells is an important process that involves direct recognition of the target by multiple scavenger receptors including P2X7 on the phagocyte surface. Using a real-time phagocytosis assay, we studied the effect of serum proteins on this phagocytic process. Inclusion of 1–5% serum completely abolished phagocytosis of non-opsonized YG beads by human monocytes. Inhibition was reversed by pretreatment of serum with 1–10 mm tetraethylenepentamine, a copper/zinc chelator. Inhibitory proteins from the serum were determined as negatively charged glycoproteins (pI < 6) with molecular masses between 100 and 300 kDa. A glycoprotein-rich inhibitory fraction of serum not only abolished YG bead uptake but also inhibited phagocytosis of apoptotic lymphocytes or neuronal cells by human monocyte-derived macrophages. Three copper- and/or zinc-containing serum glycoproteins, ceruloplasmin, serum amyloid P-component, and amyloid precursor protein, were identified, and the purified proteins were shown to inhibit the phagocytosis of beads by monocytes as well as phagocytosis of apoptotic neuronal cells by macrophages. Human adult cerebrospinal fluid, which contains very little glycoprotein, had no inhibitory effect on phagocytosis of either beads or apoptotic cells. These data suggest for the first time that metal-interacting glycoproteins present within serum are able to inhibit the scavenger activity of mononuclear phagocytes toward insoluble debris and apoptotic cells. PMID:22461619

  5. Effects of prolonged lung inflation or deflation on pulmonary stretch receptor discharge in the alligator (Alligator mississippiensis).

    PubMed

    Marschand, Rachel E; Wilson, Jenna L; Burleson, Mark L; Crossley, Dane A; Hedrick, Michael S

    2014-08-15

    The American alligator (Alligator mississippiensis) is a semi-aquatic diving reptile that has a periodic breathing pattern. Previous work identified pulmonary stretch receptors, that are rapidly and slowly adapting, as well as intrapulmonary chemoreceptors (IPC), sensitive to CO2, that modulate breathing patterns in alligators. The purpose of the present study was to quantify the effects of prolonged lung inflation and deflation (simulated dives) on pulmonary stretch receptors (PSR) and/or IPC discharge characteristics. The effects of airway pressure (0-20 cm H2O), hypercapnia (7% CO2), and hypoxia (5% O2) on dynamic and static responses of PSR were studied in juvenile alligators (mean mass=246 g) at 24°C. Alligators were initially anesthetized with isoflurane, cranially pithed, tracheotomized and artificially ventilated. Vagal afferent tonic and phasic activity was recorded with platinum hook electrodes. Receptor activity was a mixture of slowly adapting PSR (SAR) and rapidly adapting PSR (RAR) with varying thresholds and degrees of adaptation, without CO2 sensitivity. Receptor activity before, during and after 1 min periods of lung inflation and deflation was quantified to examine the effect of simulated breath-hold dives. Some PSR showed a change in dynamic response, exhibiting inhibition for several breaths after prolonged lung inflation. Following 1 min deflation, RAR, but not SAR, exhibited a significant potentiation of burst frequency relative to control. For SAR, the post-inflation receptor inhibition was blocked by CO2 and hypoxia; for RAR, the post-inflation inhibition was potentiated by CO2 and blocked by hypoxia. These results suggest that changes in PSR firing following prolonged inflation and deflation may promote post-dive ventilation in alligators. We hypothesize that PSR in alligators may be involved in recovery of breathing patterns and lung volume during pre- and post-diving behavior and apneic periods in diving reptiles.

  6. Receptor-Independent Ectopic Activity of Prolactin Predicts Aggressive Lung Tumors and Indicates HDACi-Based Therapeutic Strategies

    PubMed Central

    Le Bescont, Aurore; Vitte, Anne-Laure; Debernardi, Alexandra; Curtet, Sandrine; Buchou, Thierry; Vayr, Jessica; de Reyniès, Aurélien; Ito, Akihiro; Guardiola, Philippe; Brambilla, Christian; Yoshida, Minoru; Brambilla, Elisabeth

    2015-01-01

    Abstract Aims: Ectopic activation of tissue-specific genes accompanies malignant transformation in many cancers. Prolactin (PRL) aberrant activation in lung cancer was investigated here to highlight its value as a biomarker. Results: PRL is ectopically activated in a subset of very aggressive lung tumors, associated with a rapid fatal outcome, in our cohort of 293 lung tumor patients and in an external independent series of patients. Surprisingly PRL receptor expression was not detected in the vast majority of PRL-expressing lung tumors. Additionally, the analysis of the PRL transcripts in lung tumors and cell lines revealed systematic truncations of their 5′ regions, including the signal peptide-encoding portions. PRL expression was found to sustain cancer-specific gene expression circuits encompassing genes that are normally responsive to hypoxia. Interestingly, this analysis also indicated that histone deacetylase (HDAC) inhibitors could counteract the PRL-associated transcriptional activity. Innovation and Conclusion: Altogether, this work not only unravels a yet unknown oncogenic mechanism but also indicates that the specific category of PRL-expressing aggressive lung cancers could be particularly responsive to an HDAC inhibitor-based treatment. Antioxid. Redox Signal. 23, 1–14. PMID:24512221

  7. Epidermal Growth Factor Receptor Inhibition in the Management of Squamous Cell Carcinoma of the Lung

    PubMed Central

    Spaans, Johanna N.

    2016-01-01

    Molecular therapies targeting epidermal growth factor receptor (EGFR) have had a profound impact on the management of advanced non-small cell lung cancer (NSCLC). EGFR inhibition with EGFR tyrosine kinase inhibitors (EGFR-TKIs) and anti-EGFR monoclonal antibodies (mAbs) in squamous NSCLC (sqNSCLC) remains controversial in patients whose tumors are not known to harbor EGFR mutations. Recent meta-analyses of EGFR-inhibition randomized trials that are adequately powered for histological subgroup analysis and anti-EGFR trials limited to patients with squamous histology afford the opportunity to revisit EGFR treatment in sqNSCLC. In unselected patients with sqNSCLC who are not eligible for chemotherapy, EGFR-TKI therapy is a valid treatment option over placebo or best supportive care, with improved progression-free survival noted in randomized controlled trials in both the first- and second-line setting and improved overall survival (OS) in the second-line setting. In patients eligible for chemotherapy, first-line combination regimens with anti-EGFR mAbs have been shown to improve OS over chemotherapy alone in patients with squamous histology in meta-analysis and more recently in the SQUIRE sqNSCLC trial (chemotherapy with and without necitumumab). In sqNSCLC patients who respond to induction chemotherapy, maintenance therapy with erlotinib delays disease progression and may improve the survival of patients with stable disease. In the second-line setting, survival outcomes are comparable between chemotherapy and EGFR-TKIs in meta-analysis, with the latter being more tolerable as a second-line therapy. Newer-generation EGFR-TKI therapies may further benefit patients with sqNSCLC who have failed first-line chemotherapy, given the positive trial results from LUX-Lung 8 (afatinib vs. erlotinib). EGFR is a valid therapeutic target in unselected/EGFR wild-type patients with squamous cell carcinoma of the lung. With the recent approval of immune checkpoint inhibitors in the

  8. [The role of the class A scavenger receptors, SR-A and MARCO, in the immune system. Part 2. Contribution to recognition and phagocytosis of pathogens as well as induction of immune response].

    PubMed

    Józefowski, Szczepan

    2012-02-29

    Recognition of pathogens by innate immune cells is mediated by pattern recognition receptors (PRR), which include the class A scavenger receptors (SR), SR-A/CD204 and MARCO. It seems that in addition to activating innate immune responses, phagocytosis and inflammation, this initial, PRR-mediated recognition also determines polarization of adaptive immune responses (Th1, Th2, Th17 or Treg). It has been demonstrated that class A SR are major PRR mediating opsonin-independent phagocytosis. SR-A- or MARCO-deficient mice exhibit impaired ability to control bacterial infections, resulting in increased mortality. Our results suggest that in addition to impaired bacterial destruction by macrophages, dysregulation of immune responses may contribute to defective antibacterial defense in class A SR-deficient mice. Using specific receptor ligation with antibodies, we showed that SR-A and MARCO regulate in an opposite manner production of IL-12 in macrophages, the cytokine playing a crucial role in Th1/Th2 polarization of adaptive immune responses. Together with the observation that expression of MARCO is increased by different Th1-polarizing factors and decreased by Th2-polarizing factors, these results suggest that changes in relative expression levels of SR-A and MARCO may be a mechanism of sustained polarization of adaptive immune responses.

  9. Epigenetic and Glucocorticoid Receptor-Mediated Regulation of Glutathione Peroxidase 3 in Lung Cancer Cells

    PubMed Central

    An, Byung Chull; Jung, Nak-Kyun; Park, Chun Young; Oh, In-Jae; Choi, Yoo-Duk; Park, Jae-Il; Lee, Seung-won

    2016-01-01

    Glutathione peroxidase 3 (GPx3), an antioxidant enzyme, acts as a modulator of redox signaling, has immunomodulatory function, and catalyzes the detoxification of reactive oxygen species (ROS). GPx3 has been identified as a tumor suppressor in many cancers. Although hyper-methylation of the GPx3 promoter has been shown to down-regulate its expression, other mechanisms by which GPx3 expression is regulated have not been reported. The aim of this study was to further elucidate the mechanisms of GPx3 regulation. GPx3 gene analysis predicted the presence of ten glucocorticoid response elements (GREs) on the GPx3 gene. This result prompted us to investigate whether GPx3 expression is regulated by the glucocorticoid receptor (GR), which is implicated in tumor response to chemotherapy. The corticosteroid dexamethasone (Dex) was used to examine the possible relationship between GR and GPx3 expression. Dex significantly induced GPx3 expression in H1299, H1650, and H1975 cell lines, which exhibit low levels of GPx3 expression under normal conditions. The results of EMSA and ChIP-PCR suggest that GR binds directly to GRE 6 and 7, both of which are located near the GPx3 promoter. Assessment of GPx3 transcription efficiency using a luciferase reporter system showed that blocking formation of the GR-GRE complexes reduced luciferase activity by 7–8-fold. Suppression of GR expression by siRNA transfection also induced down-regulation of GPx3. These data indicate that GPx3 expression can be regulated independently via epigenetic or GR-mediated mechanisms in lung cancer cells, and suggest that GPx3 could potentiate glucocorticoid (GC)-mediated anti-inflammatory signaling in lung cancer cells. PMID:27484907

  10. Regulation of IL-4 Receptor Signaling by STUB1 in Lung Inflammation

    PubMed Central

    Wei, Qin; Sha, Youbao; Bhattacharya, Abhisek; Fattah, Elmoataz Abdel; Bonilla, Diana; Jyothula, Soma S. S. K.; Pandit, Lavannya; Khurana Hershey, Gurjit K.

    2014-01-01

    Rationale: IL-4Rα, the common receptor component for IL-4 and IL-13, plays a critical role in IL-4– and IL-13–mediated signaling pathways that regulate airway inflammation and remodeling. However, the regulatory mechanisms underlying IL-4Rα turnover and its signal termination remain elusive. Objectives: To evaluate the role of STUB1 (STIP1 homology and U-Box containing protein 1) in regulating IL-4R signaling in airway inflammation. Methods: The roles of STUB1 in IL-4Rα degradation and its signaling were investigated by immunoblot, immunoprecipitation, and flow cytometry. The involvement of STUB1 in airway inflammation was determined in vivo by measuring lung inflammatory cells infiltration, mucus production, serum lgE levels, and alveolar macrophage M2 activation in STUB1−/− mice. STUB1 expression was evaluated in airway epithelium of patients with asthma and lung tissues of subjects with chronic obstructive pulmonary disease. Measurements and Main Results: STUB1 interacted with IL-4Rα and targeted it for ubiquitination-mediated proteasomal degradation, terminating IL-4 or IL-13 signaling. STUB1 knockout cells showed increased levels of IL-4Rα and sustained STAT6 activation, whereas STUB1 overexpression reduced IL-4Rα levels. Mice deficient in STUB1 had spontaneous airway inflammation, alternative M2 activation of alveolar macrophage, and increased serum IgE. STUB1 levels were increased in airways of subjects with asthma or chronic obstructive pulmonary disease, suggesting that up-regulation of STUB1 might be an important feedback mechanism to dampen IL-4R signaling in airway inflammation. Conclusions: Our study identified a previously uncharacterized role for STUB1 in regulating IL-4R signaling, which might provide a new strategy for attenuating airway inflammation. PMID:24251647

  11. Effect of IL-2-Bax, a novel interleukin-2-receptor-targeted chimeric protein, on bleomycin lung injury.

    PubMed

    Segel, Michael J; Aqeilan, Rami; Zilka, Keren; Lorberboum-Galski, Haya; Wallach-Dayan, Shulamit B; Conner, Michael W; Christensen, Thomas G; Breuer, Raphael

    2005-10-01

    The role of lymphocytes in the pathogenesis of lung fibrosis is not clear, but the weight of the evidence supports a pro-fibrotic effect for lymphocytes. The high-affinity interleukin-2 receptor (haIL-2R) is expressed on activated, but not quiescent, T lymphocytes. This selective expression of haIL-2R provides the basis for therapeutic strategies that target IL-2R-expressing cells. We hypothesized that elimination of activated lymphocytes by IL-2R-targeted chimeric proteins might ameliorate lung fibrosis. We investigated the effects of IL-2-Bax, a novel apoptosis-inducing IL-2R-targeted chimeric protein, on bleomycin-induced lung injury in mice. Treatment groups included (i) a single intratracheal instillation of bleomycin and twice-daily intraperitoneal injections of IL-2-Bax; (ii) intratracheal bleomycin and intraperitoneal IL-2-PE66(4Glu), an older-generation chimeric protein; (iii) intratracheal bleomycin/intraperitoneal PBS; (iv) intratracheal saline/intraperitoneal PBS. Lung injury was evaluated 14 days after intratracheal instillation by cell count in bronchoalveolar lavage (BAL) fluid, semi-quantitative and quantitative histomorphological measurements and by biochemical analysis of lung hydroxyproline. Bleomycin induced a BAL lymphocytosis that was significantly attenuated by IL-2-Bax and IL-2-PE66(4Glu). However, morphometric parameters and lung hydroxyproline were unaffected by the chimeric proteins. These results show that IL-2-Bax reduces the lymphocytic infiltration of the lungs in response to bleomycin, but this effect is not accompanied by a decrease in lung fibrosis.

  12. Gender-dependent expression of alpha and beta estrogen receptors in human nontumor and tumor lung tissue.

    PubMed

    Fasco, Michael J; Hurteau, Gregory J; Spivack, Simon D

    2002-02-25

    Estrogen receptor (ER) expression in human lung has been understudied, particularly in light of its potential biological importance in the female lung cancer epidemic. Reverse transcription-polymerase chain reaction was used to probe mRNA expression of wild-type ERalpha and ERbeta and their splice variants in human bronchogenic tumor and adjacent nontumor specimens. In tumor tissue from 13 women and 13 men, ERalpha was expressed in 85% of women versus 15% in men [P=0.001]. ERbeta was expressed equally in tumors from women versus men [92% vs. 69%, P=ns]. Both ERalpha and beta forms were expressed simultaneously in the lung tumors of 77% of women versus 15% of men [P=0.005]. Among adjacent nontumor lung specimens, 31% of the women expressed ERalpha mRNA versus 0% of men [P=0.101], and 39% of women expressed ERbeta mRNA versus 31% of men [P=ns]; only one woman and no men expressed both ERalpha and beta in nontumor tissue. Females expressed ERalpha [P=0.017], ERbeta [P=0.013], and ERalpha+beta [P=0.002] more frequently in tumor versus nontumor tissue, whereas in males expression of ERalpha, beta and both alpha+beta was not clearly different for tumor versus nontumor tissue. In specimens expressing ERalpha mRNA, the transcript lacking exon 7 (delta7) was the major splice variant with varying contributions from the transcripts delta4, delta3+4, delta5 and others unidentified. Alternative splicing of ERbeta mRNA was observed, but not to as great an extent as for ERalpha mRNA. ERalpha promoter usage in tumors varied among individuals. When the ER receptors were co-expressed in tumors, ERalpha was quantitatively more abundant in the majority of cases than ERbeta. Within this small group of 26 patients, no correlation was found between age, smoking history, plasma nicotine, cotinine, estradiol concentrations or histopathologic type with tumor or nontumor estrogen receptor status of any type. However, several positive correlations imply that: (1) ERalpha expression occurs

  13. Cystic Fibrosis Transmembrane Conductance Regulator is an Epithelial Cell Receptor for Clearance of Pseudomonas aeruginosa from the Lung

    NASA Astrophysics Data System (ADS)

    Pier, Gerald B.; Grout, Martha; Zaidi, Tanweer S.

    1997-10-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel, but its relationship to the primary clinical manifestation of CF, chronic Pseudomonas aeruginosa pulmonary infection, is unclear. We report that CFTR is a cellular receptor for binding, endocytosing, and clearing P. aeruginosa from the normal lung. Murine cells expressing recombinant human wild-type CFTR ingested 30-100 times as many P. aeruginosa as cells lacking CFTR or expressing mutant Δ F508 CFTR protein. Purified CFTR inhibited ingestion of P. aeruginosa by human airway epithelial cells. The first extracellular domain of CFTR specifically bound to P. aeruginosa and a synthetic peptide of this region inhibited P. aeruginosa internalization in vivo, leading to increased bacterial lung burdens. CFTR clears P. aeruginosa from the lung, indicating a direct connection between mutations in CFTR and the clinical consequences of CF.

  14. A current review of folate receptor alpha as a potential tumor target in non-small-cell lung cancer

    PubMed Central

    Shi, Huan; Guo, Jun; Li, Changzheng; Wang, Zhehai

    2015-01-01

    Lung cancer remains the leading common cause of cancer-related death, with non-small-cell lung cancer (NSCLC) accounting for 80% of all cases. To date, platinum-based doublet chemotherapy is the cornerstone of first-line therapy. However, these agents have limited use in patients who have relapsed and have metastatic disease. Therefore, novel strategies are required to improve the clinical outcome. Folate receptor alpha (FRA) is overexpressed in the majority of NSCLC, particularly in lung adenocarcinomas. FRA is largely absent from normal tissue, making it an attractive therapeutic target. In this review, we discuss FRA expression in NSCLC, conjugated FRA agents, monoclonal antibody, and FRA-specific T-cell-based therapeutic strategies aiming to improve the cure rate of FRA-expressing NSCLC. PMID:26357465

  15. Inhaled P2Y2 receptor agonists as a treatment for patients with Cystic Fibrosis lung disease.

    PubMed

    Kellerman, Don; Evans, Richard; Mathews, Dave; Shaffer, Christy

    2002-12-05

    P2Y(2) receptor agonists are a new class of compounds that are being evaluated as a treatment for the pulmonary manifestations of Cystic Fibrosis (CF). Results of preclinical research suggest that these compounds inhibit sodium absorption, restore chloride conductance and rehydrate the CF airway surface. In addition, P2Y(2) receptor agonists have been shown to enhance ciliary beat frequency and increase mucociliary clearance in animals and subjects with impaired mucociliary clearance. The normalization of airway surface liquid and enhancement of lung clearance is expected to provide a clinical benefit to CF patients. A number of P2Y(2) agonist compounds have been evaluated in healthy subjects and patients with CF. Most recently, INS37217, a metabolically stable and potent P2Y(2) agonist has been developed and studies have shown it to be well-tolerated when given via inhalation. This compound is currently being evaluated in children and adults with CF lung disease.

  16. Identification of mRNA splicing factors as the endothelial receptor for carbohydrate-dependent lung colonization of cancer cells

    PubMed Central

    Hatakeyama, Shingo; Sugihara, Kazuhiro; Nakayama, Jun; Akama, Tomoya O.; Wong, Shuk-Man Annie; Kawashima, Hiroto; Zhang, Jianing; Smith, David F.; Ohyama, Chikara; Fukuda, Minoru; Fukuda, Michiko N.

    2009-01-01

    Cell surfaces of epithelial cancer are covered by complex carbohydrates, whose structures function in malignancy and metastasis. However, the mechanism underlying carbohydrate-dependent cancer metastasis has not been defined. Previously, we identified a carbohydrate-mimicry peptide designated I-peptide, which inhibits carbohydrate-dependent lung colonization of sialyl Lewis X-expressing B16-FTIII-M cells in E/P-selectin doubly-deficient mice. We hypothesized that lung endothelial cells express an unknown carbohydrate receptor, designated as I-peptide receptor (IPR), responsible for lung colonization of B16-FTIII-M cells. Here, we visualized IPR by in vivo biotinylation, which revealed that the major IPR is a group of 35-kDa proteins. IPR proteins isolated by I-peptide affinity chromatography were identified by proteomics as Ser/Arg-rich alternative pre-mRNA splicing factors or Sfrs1, Sfrs2, Sfrs5, and Sfrs7 gene products. Bacterially expressed Sfrs1 protein bound to B16-FTIII-M cells but not to parental B16 cells. Recombinant Sfrs1 protein bound to a series of fucosylated oligosaccharides in glycan array and plate-binding assays. When anti-Sfrs antibodies were injected intravenously into mice, antibodies labeled a subset of lung capillaries. Anti-Sfrs antibodies inhibited homing of I-peptide-displaying phage to the lung colonization of B16-FTIII-M cells in vivo in the mouse. These results strongly suggest that Sfrs proteins are responsible for fucosylated carbohydrate-dependent lung metastasis of epithelial cancers. PMID:19218444

  17. Addressing epidermal growth factor receptor tyrosine kinase inhibitor resistance in non-small cell lung cancer.

    PubMed

    Noda, Shoko; Kanda, Shintaro

    2016-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have significantly improved the survival of patients with advanced non-small cell lung cancer (NSCLC) harboring EGFR activating mutations. However, nearly all EGFR-mutant NSCLC tumors eventually acquire resistance to the currently used EGFR-TKIs and subsequently progress clinically. Acquired resistance to EGFR-TKIs is thus a huge issue in the treatment of EGFR-mutant NSCLC at present. On one hand, T790M second-site mutation has been recognized as a key mechanism of EGFR-TKI resistance, and third generation EGFR-TKIs such as osimertinib and rociletinib have been developed to overcome tumor cells harboring the T790M mutation. On the other hand, combination with cytotoxic chemotherapy is also expected as another strategy for preventing the acquired resistance to current EGFR-TKIs and prolonging the survival benefits by EGFR-TKIs. Here, we review updated strategies for preventing or overcoming acquired resistance to EGFR-TKIs.

  18. Genetic profiling and epidermal growth factor receptor-directed therapy in nonsmall cell lung cancer.

    PubMed

    Cadranel, J; Zalcman, G; Sequist, L

    2011-01-01

    The principle of preferentially selecting patients most likely to benefit from therapy according to their genetic profile has led to substantial clinical benefit in some tumour types, and has potential to considerably refine treatment in advanced nonsmall cell lung cancer (NSCLC). Effective, reliable use of molecular biomarkers to inform clinical practice requires the standardisation of testing methods and careful assessment of biomarkers' predictive and prognostic value. Although a number of studies have shown that patients with activating mutations in exons 18-21 of the epidermal growth factor receptor (EGFR) gene respond particularly well to gefitinib and erlotinib, a prospective, randomised study was needed to differentiate between the prognostic and predictive value of EGFR mutations. From one such study, it appeared that mutational testing should become standard at diagnosis, at least for adenocarcinoma patients with a never or low smoking history, as clinical predictors are insufficient to optimise treatment. However, outstanding questions remain: what are the treatment options for patients with tumours resistant to erlotinib/gefitinib? What conclusions about treatment can we draw from EGFR copy number or KRAS mutation status? What role should anti-EGFR antibodies play in NSCLC treatment, and in which patients? This review considers current evidence linking biomarker profile to efficacy of EGFR-targeted therapy in NSCLC, and clinical implications of recent findings.

  19. Toll Like Receptor 3 modulates immunopathology during a Schistosoma mansoni egg-driven Th2 response in the lung

    PubMed Central

    Joshi, Amrita D.; Schaller, Matthew; Lukacs, Nicholas W.; Kunkel, Steven L.; Hogaboam, Cory M.

    2010-01-01

    We examined the role of Toll Like Receptor 3 (TLR3) in Th2-driven pulmonary granulomatous disease, using wildtype (TLR3+/+) and TLR3 gene deficient (TLR3−/−) mice in a well-established model of S. mansoni egg induced pulmonary granuloma. The intravenous bolus injection of S. mansoni eggs into S. mansoni-sensitized TLR3+/+ mice was associated with an increase in TLR3 transcript expression in alveolar macrophages and ex vivo spleen and lung cultures at day 8 after egg injection. Lungs from TLR3−/− mice showed an increase in granuloma size, greater collagen deposition around the granuloma, and increased Th2 cytokine and chemokine levels compared with similarly sensitized and challenged TLR3+/+ mice. Macrophages from TLR3−/− mice exhibited a M2 phenotype characterized by increased arginase and CCL2 expression. Significantly greater numbers of CD4+CD25+ T cells were present in the lungs of TLR3−/− mice compared with TLR3+/+ mice at day 8 after egg embolization. Cells derived from granulomatous lung and lung draining lymph nodes of TLR3−/− mice released significantly higher levels of IL-17 levels relative to TLR3+/+ cells. Thus, our data suggest that TLR3 has a major regulatory role during a Th2-driven granulomatous response as its absence enhanced immunopathology. PMID:19009529

  20. Characterization of the platelet-derived growth factor receptor-α-positive cell lineage during murine late lung development.

    PubMed

    Ntokou, Aglaia; Klein, Friederike; Dontireddy, Daria; Becker, Sven; Bellusci, Saverio; Richardson, William D; Szibor, Marten; Braun, Thomas; Morty, Rory E; Seeger, Werner; Voswinckel, Robert; Ahlbrecht, Katrin

    2015-11-01

    A reduced number of alveoli is the structural hallmark of diseases of the neonatal and adult lung, where alveoli either fail to develop (as in bronchopulmonary dysplasia), or are progressively destroyed (as in chronic obstructive pulmonary disease). To correct the loss of alveolar septa through therapeutic regeneration, the mechanisms of septa formation must first be understood. The present study characterized platelet-derived growth factor receptor-α-positive (PDGFRα(+)) cell populations during late lung development in mice. PDGFRα(+) cells (detected using a PDGFRα(GFP) reporter line) were noted around the proximal airways during the pseudoglandular stage. In the canalicular stage, PDGFRα(+) cells appeared in the more distal mesenchyme, and labeled α-smooth muscle actin-positive tip cells in the secondary crests and lipofibroblasts in the primary septa during alveolarization. Some PDGFRα(+) cells appeared in the mesenchyme of the adult lung. Over the course of late lung development, PDGFRα(+) cells consistently expressed collagen I, and transiently expressed markers of mesenchymal stem cells. With the use of both, a constitutive and a conditional PDGFRα(Cre) line, it was observed that PDGFRα(+) cells generated alveolar myofibroblasts including tip cells of the secondary crests, and lipofibroblasts. These lineages were committed before secondary septation. The present study provides new insights into the time-dependent commitment of the PDGFRα(+) cell lineage to lipofibroblasts and myofibroblasts during late lung development that is needed to better understand the cellular contribution to the process of alveolarization.

  1. Protease-activated receptor-2 deficient mice have reduced house dust mite-evoked allergic lung inflammation.

    PubMed

    de Boer, J Daan; Van't Veer, Cornelis; Stroo, Ingrid; van der Meer, Anne J; de Vos, Alex F; van der Zee, Jaring S; Roelofs, Joris J T H; van der Poll, Tom

    2014-08-01

    Protease-activated receptor-2 (PAR2) is abundantly expressed in the pulmonary compartment. House dust mite (HDM) is a common cause of allergic asthma and contains multiple PAR2 agonistic proteases. The aim of this study was to determine the role of PAR2 in HDM-induced allergic lung inflammation. For this, the extent of allergic lung inflammation was studied in wild type (Wt) and PAR2 knockout (KO) mice after repeated airway exposure to HDM. HDM exposure of Wt mice resulted in a profound influx of eosinophils in bronchoalveolar lavage fluid (BALF) and accumulation of eosinophils in lung tissue, which both were strongly reduced in PAR2 KO mice. PAR2 KO mice demonstrated attenuated lung pathology and protein leak in the bronchoalveolar space, accompanied by lower BALF levels of the anaphylatoxins C3a and C5a. This study reveals, for the first time, an important role for PAR2 in allergic lung inflammation induced by the clinically relevant allergens contained in HDM.

  2. Epidermal growth factor receptor mutation in adenocarcinoma lung in a North Indian population: Prevalence and relation with different clinical variables

    PubMed Central

    Kasana, Basharat Ahmad; Dar, Waseem Raja; Aziz, Sheikh Aijaz; Lone, Abdul Rashid; Sofi, Najeeb Ullah; Dar, Imtiyaz Ahmad; Latief, Muzamil; Arshad, Faheem; Hussain, Moomin; Hussain, Mir

    2016-01-01

    Introduction: Lung cancer is one of the most common causes of cancer deaths worldwide. Adenocarcinoma is taking over squamous cell lung cancer as the predominant histological subtype. Several cytotoxic drugs are available for the treatment of lung cancer, but side effects limit their use. Recently, targeted therapies for cancers have come into clinical practice. Aims and Objectives: To determine the prevalence of epidermal growth factor receptor (EGFR) mutation in adenocarcinoma lung in a North Indian population and its relation with different clinical variables. Materials and Methods: A total of 57 patients who met inclusion criteria were recruited into the study. Relevant history, clinical examination and investigations were done. EGFR mutation was done in all patients. Results: A total of twenty patients tested positive for EGFR mutation. EGFR was more frequently detected in female patients (53.8%), while as only 19.4% of the male patients expressed EGFR mutation, which was statistically very significant (P = 0.007). EGFR mutation was more frequently detected in nonsmokers (52%) as compared to smokers (21.9%) which also was statistically significant (P value of 0.018). EGFR mutation was more common in Stage III and IV adenocarcinomas (48%) as compared to Stage I and II (21.4%) which was statistically significant (P value 0.034). Conclusion: EGFR mutation should be routinely done in all patients of adenocarcinoma lung particularly non-smoker females with Stage III and IV disease. PMID:27688613

  3. A Geospatial Scavenger Hunt

    ERIC Educational Resources Information Center

    Martinez, Adriana E.; Williams, Nikki A.; Metoyer, Sandra K.; Morris, Jennifer N.; Berhane, Stephen A.

    2009-01-01

    With the use of technology such as Global Positioning System (GPS) units and Google Earth for a simple-machine scavenger hunt, you will transform a standard identification activity into an exciting learning experience that motivates students, incorporates practical skills in technology, and enhances students' spatial-thinking skills. In the…

  4. A Geometric Scavenger Hunt

    ERIC Educational Resources Information Center

    Smart, Julie; Marshall, Jeff

    2007-01-01

    Children possess a genuine curiosity for exploring the natural world around them. One third grade teacher capitalized on this inherent trait by leading her students on "A Geometric Scavenger Hunt." The four-lesson inquiry investigation described in this article integrates mathematics and science. Among the students' discoveries was the fact that…

  5. The effect of albumin on podocytes: The role of the fatty acid moiety and the potential role of CD36 scavenger receptor

    SciTech Connect

    Pawluczyk, I.Z.A.; Pervez, A.; Ghaderi Najafabadi, M.; Saleem, M.A.; Topham, P.S.

    2014-08-15

    Evidence is emerging that podocytes are able to endocytose proteins such as albumin using kinetics consistent with a receptor-mediated process. To date the role of the fatty acid moiety on albumin uptake kinetics has not been delineated and the receptor responsible for uptake is yet to be identified. Albumin uptake studies were carried out on cultured human podocytes exposed to FITC-labelled human serum albumin either carrying fatty acids (HSA{sub +FA}) or depleted of them (HSA{sub −FA}). Receptor-mediated endocytosis of FITC-HSA{sub +FA} over 60 min was 5 times greater than that of FITC-HSA{sub −FA}. 24 h exposure of podocytes to albumin up-regulated nephrin expression and induced the activation of caspase-3. These effects were more pronounced in response to HSA{sub −FA.} Individually, anti-CD36 antibodies had no effect upon endocytosis of FITC-HSA. However, a cocktail of 2 antibodies reduced uptake by nearly 50%. Albumin endocytosis was enhanced in the presence of the CD36 specific inhibitor sulfo-N-succinimidyl oleate (SSO) while knock-down of CD36 using CD36siRNA had no effect on uptake. These data suggest that receptor-mediated endocytosis of albumin by podocytes is regulated by the fatty acid moiety, although, some of the detrimental effects are induced independently of it. CD36 does not play a direct role in the uptake of albumin. - Highlights: • The fatty acid moiety is essential for receptor mediated endocytosis of albumin. • Fatty acid depleted albumin is more pathogenic to podocytes. • CD36 is not directly involved in albumin uptake by podocytes.

  6. Heterogeneity of the M1 muscarinic receptor subtype between peripheral lung and cerebral cortex demonstrated by the selective antagonist AF-DX 116

    SciTech Connect

    Bloom, J.W.; Halonen, M.; Seaver, N.A.; Yamamura, H.I.

    1987-07-27

    Recent studies have demonstrated that the majority of muscarinic receptors in rabbit peripheral lung homogenates bind pirenzepine with high affinity (putative M1 subtype). In experiments of AF-DX 116 inhibiting (TH)(-)quinuclidinyl benzilate or (TH)pirenzepine, the authors found similar inhibitory constants for AF-DX 116 binding in rat heart and rabbit peripheral lung that were 4-fold smaller (i.e. of higher affinity) than the inhibitory constant for rat cerebral cortex. This results demonstrates heterogeneity of the M1 muscarinic receptor subtype between peripheral lung and cerebral cortex. 20 references, 1 figure, 2 tables.

  7. Association between vascular-poor area of primary tumors and epidermal growth factor receptor gene status in advanced lung adenocarcinoma.

    PubMed

    Togashi, Yosuke; Masago, Katsuhiro; Kubo, Takeshi; Fujimoto, Daichi; Sakamori, Yuichi; Nagai, Hiroki; Kim, Young Hak; Togashi, Kaori; Mishima, Michiaki

    2012-12-01

    Mutation of the epidermal growth factor receptor gene (EGFR mutation) is a very important marker in the treatment for non-small cell lung cancer. Since signaling from this receptor induces tumor-associated angiogenesis, we hypothesized that lung cancers with EGFR mutations tend to develop locally with increased angiogenesis. Thus, the association between vascular-poor area of primary tumors and EGFR status was retrospectively investigated in advanced lung adenocarcinomas. To assess vascular-poor area, contrast-enhanced computed tomography scans taken before initial treatment for lung cancer were analyzed, together with primary tumor location (peripheral or central) and size. We analyzed 178 patients with advanced lung adenocarcinoma. EGFR mutations were detected in 95 of the 178 patients (53.4 %). EGFR mutation was found to be significantly related to women (P = 0.0070), never-smokers (P < 0.0001), and tumors without vascular-poor area (P < 0.0001). Based on a multivariate analysis, presence of EGFR mutations was independently associated with never-smokers (P = 0.0046), lack of vascular-poor area (P = 0.0001), and tumor size >30 mm (P = 0.0080). EGFR mutations were found in 41 of 51 never-smokers without vascular-poor area (80.4 %), 19 of 36 never-smokers with vascular-poor area (52.8 %), 19 of 37 current or former-smokers without vascular-poor area (51.4 %), and 16 of 54 current or former-smokers with vascular-poor area (29.6 %). This study showed an association between vascular-poor area of primary tumors and EGFR status. As a consequence, evaluation using a combination of smoking status and vascular-poor area allows us to predict presence of EGFR mutations at a high frequency.

  8. Diverse activation states of RhoA in human lung cancer cells: contribution of G protein coupled receptors.

    PubMed

    Touge, Hirokazu; Chikumi, Hiroki; Igishi, Tadashi; Kurai, Jun; Makino, Haruhiko; Tamura, Yoshisato; Takata, Miyako; Yoneda, Kazuhiko; Nakamoto, Masaki; Suyama, Hisashi; Gutkind, J Silvio; Shimizu, Eiji

    2007-03-01

    Rho GTPases play an essential role in the control of various cellular functions. Accumulating evidence suggests that RhoA overexpression contributes to human cancer development. However, the activation states of RhoA are poorly defined in cancer cells. In this study, we examined both the expression levels and the activation states of RhoA in various lung cancer cells by quantitative real-time reverse transcriptase-polymerase chain reaction and in vivo Rho guanine nucleotide exchange assay, respectively. Moreover, we dissected the signaling pathway from the cell surface receptors to RhoA using a broad-spectrum G protein coupled receptor (GPCR) antagonist, [D-Arg1,D-Trp5,7,9,Leu11]Substance P (SP), and a recently reported Galphaq/11-selective inhibitor, YM-254890. We found that RhoA was expressed highly in large cell carcinoma cells but only weakly in adenocarcinoma cells. The activation states of RhoA are considerably different from its expression profiles. We found that four of six small cell lung carcinoma (SCLC) cell lines exhibited a moderate to high activation rate of RhoA. The addition of [D-Arg1,D-Trp5,7,9,Leu11]SP reduced RhoA activity by almost 60% in H69 SCLC cells. The addition of YM-254890 had no effect on RhoA activity in H69 cells. Our results suggest that RhoA is activated in various lung cancer cells independent of its expression levels, and the high activation state of RhoA in SCLC cells mainly depends on a neuroendocrine peptide autocrine system which signals through Galpha12 coupled GPCR to RhoA. This study provides new insights into RhoA signaling in lung cancer cells and may help in developing novel therapeutic strategies against lung cancer.

  9. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    SciTech Connect

    Leung, F.L.; Park, J.F.; Dagle, G.E.

    1993-06-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 of 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.

  10. Is there a role for epidermal growth factor receptor tyrosine kinase inhibitors in epidermal growth factor receptor wild-type non-small cell lung cancer?

    PubMed Central

    Arriola, Edurne; Taus, Álvaro; Casadevall, David

    2015-01-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer with a world-wide annual incidence of around 1.3 million. The majority of patients are diagnosed with advanced disease and survival remains poor. However, relevant advances have occurred in recent years through the identification of biomarkers that predict for benefit of therapeutic agents. This is exemplified by the efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors for the treatment of EGFR mutant patients. These drugs have also shown efficacy in unselected populations but this point remains controversial. Here we have reviewed the clinical data that demonstrate a small but consistent subgroup of EGFR wild-type patients with NSCLC that obtain a clinical benefit from these drugs. Moreover, we review the biological rationale that may explain this benefit observed in the clinical setting. PMID:26266101

  11. C5L2, the Second C5a Anaphylatoxin Receptor, Suppresses LPS-Induced Acute Lung Injury.

    PubMed

    Wang, Ruobing; Lu, Bao; Gerard, Craig; Gerard, Norma P

    2016-11-01

    LPS-induced lung injury in the mouse is one of the most robust experimental models used for studies of acute lung injury (ALI) and acute respiratory distress syndrome in humans. Prior clinical and experimental studies support an important role for complement activation, particularly production of C5a, in the pathophysiology of human ALI/acute respiratory distress syndrome. In the mouse model, however, the precise role of C5a and its receptors is unclear. C5L2, an enigmatic second receptor for C5a, has been characterized, and results have generated substantial debate regarding its in vivo function. Our previous work with human neutrophils revealed a unique role for C5L2 in negatively modulating C5a-C5a receptor (C5aR)-mediated cellular activation, in which antibody-mediated blockade of C5L2 resulted in augmented C5a-C5aR responses. Here, we demonstrate that C5L2(-/-) mice (BALB/c background) administered intranasal LPS exhibit significantly more airway edema and hemorrhage than do wild-type animals. Bronchoalveolar lavage fluid and lung homogenates have significantly more neutrophils and myeloperoxidase activity, as well as proinflammatory cytokines and chemokines. When a blocking antibody against the C5aR was administered before LPS administration, the increased neutrophilic infiltration and cytokine levels were reversed. Thus, our data show not only that C5a contributes significantly to LPS-induced ALI in the mouse, but also that C5L2 plays an important antiinflammatory role in this model through actions resulting at least in part from negative modulation of C5a receptor activation.

  12. Exome sequencing deciphers a germline MET mutation in familial epidermal growth factor receptor-mutant lung cancer.

    PubMed

    Tode, Naoki; Kikuchi, Toshiaki; Sakakibara, Tomohiro; Hirano, Taizou; Inoue, Akira; Ohkouchi, Shinya; Tamada, Tsutomu; Okazaki, Tatsuma; Koarai, Akira; Sugiura, Hisatoshi; Niihori, Tetsuya; Aoki, Yoko; Nakayama, Keiko; Matsumoto, Kunio; Matsubara, Yoichi; Yamamoto, Masayuki; Watanabe, Akira; Nukiwa, Toshihiro; Ichinose, Masakazu

    2017-03-13

    Lung cancer accompanied by somatic activating mutations in the epidermal growth factor receptor (EGFR) gene, which is associated with a significant clinical response to the targeted therapy, is frequently found in never-smoking Asian women with adenocarcinoma. Although this implies genetic factors underlying the carcinogenesis, the etiology remains unclear. To gain insight into the pathogenic mechanisms, we sequenced the exomes in the peripheral-blood DNA from six siblings, four affected and two unaffected siblings, of a kindred with familial EGFR-mutant lung adenocarcinoma. We identified a heterozygous missense mutation in MET proto-oncogene, p.Asn375Lys, in all four affected siblings. Combined with somatic loss of heterozygosity for MET, the higher allele frequency in a Japanese sequencing database supports a causative role of the MET mutation in EGFR-mutant lung cancer. Functional assays showed that the mutation reduces the binding affinity of MET for its ligand, hepatocyte growth factor, and damages the subsequent cellular processes including proliferation, clonogenicity, motility, and tumorigenicity. The MET mutation was further observed to abrogate the ERBB3-mediated AKT signal transduction, which is shared downstream by EGFR. These findings provide an etiological view that the MET mutation is involved in the pathogenesis of EGFR-mutant lung cancer because it generates oncogenic stress that induces compensatory EGFR activation. The identification of MET in a kindred with familial EGFR-mutant lung cancer is insightful to explore the pathogenic mechanism of not only familial, but also sporadic EGFR-mutant lung cancer by underscoring MET-related signaling molecules. This article is protected by copyright. All rights reserved.

  13. Intra-Peritoneal Administration of Mitochondrial DNA Provokes Acute Lung Injury and Systemic Inflammation via Toll-Like Receptor 9

    PubMed Central

    Zhang, Lemeng; Deng, Songyun; Zhao, Shuangping; Ai, Yuhang; Zhang, Lina; Pan, Pinhua; Su, Xiaoli; Tan, Hongyi; Wu, Dongdong

    2016-01-01

    The pathogenesis of sepsis is complex. Mitochondrial dysfunction, which is responsible for energy metabolism, intrinsic apoptotic pathway, oxidative stress, and systemic inflammatory responses, is closely related with severe sepsis induced death. Mitochondria DNA (mtDNA) contain un-methylated cytosine phosphate guanine (CpG) motifs, which exhibit immune stimulatory capacities. The aim of this study was to investigate the role and mechanism of mtDNA release on lipopolysaccharide (LPS) induced acute lung injury (ALI) and systemic inflammation. Following LPS injection, plasma mtDNA copies peak at 8 h. Compared with wild-type (WT) mice, mtDNA in toll like receptor 4 knockout (TLR4 KO) mice were significantly decreased. MtDNA intra-peritoneal administration causes apparent ALI as demonstrated by increased lung injury score, bronchoalveolar lavage fluid (BALF) total protein and wet/dry (W/D) ratio; mtDNA injection also directly provokes systemic inflammation, as demonstrated by increased IL-1β, IL-6, high-mobility group protein B1 (HMGB1) level; while nuclear DNA (nDNA) could not induce apparent ALI and systemic inflammation. However, compared with WT mice, TLR4 KO could not protect from mtDNA induced ALI and systemic inflammation. Specific TLR9 inhibitor, ODN 2088 pretreatment can significantly attenuate mtDNA induced ALI and systemic inflammation, as demonstrated by improved lung injury score, decreased lung wet/dry ratio, BALF total protein concentration, and decreased systemic level of IL-1β, IL-6 and HMGB1. MtDNA administration activates the expression of p-P38 mitogen-activated protein kinases (MAPK) in lung tissue and specific TLR9 inhibitor pretreatment can attenuate this activation. Thus, LPS-induced mtDNA release occurs in a TLR4-dependent manner, and mtDNA causes acute lung injury and systemic inflammation in a TLR9-dependent and TLR4-independent manner. PMID:27589725

  14. Kaempferol suppresses lipid accumulation in macrophages through the downregulation of cluster of differentiation 36 and the upregulation of scavenger receptor class B type I and ATP-binding cassette transporters A1 and G1.

    PubMed

    Li, Xiu-Ying; Kong, Ling-Xi; Li, Juan; He, Hai-Xia; Zhou, Yuan-Da

    2013-02-01

    The accumulation of foam cells in atherosclerotic lesions is a hallmark of early-stage atherosclerosis. Kaempferol has been shown to inhibit oxidized low-density lipoprotein (oxLDL) uptake by macrophages; however, the underlying molecular mechanisms are not yet fully investigated. In this study, we shown that treatment with kaempferol markedly suppresses oxLDL-induced macrophage foam cell formation, which occurs due to a decrease in lipid accumulation and an increase in cholesterol efflux from THP-1-derived macrophages. Additionally, the kaempferol treatment of macrophages led to the downregulation of cluster of differentiation 36 (CD36) protein levels, the upregulation of ATP-binding cassette (ABC) transporter A1 (ABCA1), scavenger receptor class B type I (SR-BI) and ABCG1 protein levels, while no effects on scavenger receptor A (SR-A) expression were observed. Kaempferol had similar effects on the mRNA and protein expression of ABCA1, SR-BI, SR-A, CD36 and ABCG1. The reduced CD36 expression following kaempferol treatment involved the inhibition of c-Jun-activator protein-1 (AP-1) nuclear translocation. The inhibition of AP-1 using the inhibitor, SP600125, confirmed this involvement, as the AP-1 inhibition significantly augmented the kaempferol-induced reduction in CD36 expression. Accordingly, the kaempferol-mediated suppression of lipid accumulation in macrophages was also augmented by SP600125. The increased expression of ABCA1, SR-BI and ABCG1 following kaempferol treatment was accompanied by the enhanced protein expression of heme oxygenase-1 (HO-1). This increase was reversed following the knockdown of the HO-1 gene using small hairpin RNA (shRNA). Moreover, the kaempferol-mediated attenuation of lipid accumulation and the promotion of cholesterol efflux was also inhibited by HO-1 shRNA. In conclusion, the c-Jun-AP‑1-dependent downregulation of CD36 and the HO-1-dependent upregulation of ABCG1, SR-BI and ABCA1 may mediate the beneficial effects of

  15. Loss of Mig6 accelerates initiation and progression of mutant epidermal growth factor receptor-driven lung adenocarcinoma

    PubMed Central

    Maity, Tapan K.; Venugopalan, Abhilash; Linnoila, Ilona; Cultraro, Constance M.; Giannakou, Andreas; Nemati, Roxanne; Zhang, Xu; Webster, Joshua D.; Ritt, Daniel; Ghosal, Sarani; Hoschuetzky, Heinz; Simpson, R. Mark; Biswas, Romi; Politi, Katerina; Morrison, Deborah K.; Varmus, Harold E.; Guha, Udayan

    2015-01-01

    Somatic mutations in the epidermal growth factor receptor (EGFR) kinase domain drive lung adenocarcinoma. We have previously identified MIG6, an inhibitor of ERBB signaling and a potential tumor suppressor, as a target for phosphorylation by mutant EGFRs. Here we demonstrate that Mig6 is a tumor suppressor for the initiation and progression of mutant EGFR-driven lung adenocarcinoma in mouse models. Mutant EGFR-induced lung tumor formation was accelerated in Mig6-deficient mice, even with Mig6 haploinsufficiency. We demonstrate that constitutive phosphorylation of MIG6 at Y394/395 in EGFR-mutant human lung adenocarcinoma cell lines is associated with an increased interaction of MIG6 with mutant EGFR, which may stabilize EGFR protein. MIG6 also fails to promote mutant EGFR degradation. We propose a model whereby increased tyrosine phosphorylation of MIG6 decreases its capacity to inhibit mutant EGFR. Nonetheless, the residual inhibition is sufficient for Mig6 to delay mutant EGFR-driven tumor initiation and progression in mouse models. PMID:25735773

  16. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors

    PubMed Central

    Staiano, Rosaria I.; Loffredo, Stefania; Borriello, Francesco; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Orlando, Pierangelo; Secondo, Agnese; Granata, Francescopaolo; Lepore, Maria Teresa; Fiorelli, Alfonso; Varricchi, Gilda; Santini, Mario; Triggiani, Massimo; Di Marzo, Vincenzo; Marone, Gianni

    2016-01-01

    Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol, N-arachidonoyl-ethanolamine, N-palmitoyl-ethanolamine, and N-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular

  17. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors.

    PubMed

    Staiano, Rosaria I; Loffredo, Stefania; Borriello, Francesco; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Orlando, Pierangelo; Secondo, Agnese; Granata, Francescopaolo; Lepore, Maria Teresa; Fiorelli, Alfonso; Varricchi, Gilda; Santini, Mario; Triggiani, Massimo; Di Marzo, Vincenzo; Marone, Gianni

    2016-04-01

    Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol,N-arachidonoyl-ethanolamine,N-palmitoyl-ethanolamine, and N-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular remodeling

  18. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines.

    PubMed Central

    Nørgaard, P.; Spang-Thomsen, M.; Poulsen, H. S.

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII and beta-glycan (RIII) was examined. The results showed that loss of RII mRNA correlated with TGF-beta 1 resistance. In contrast, RI-and beta-glycan mRNA was expressed by all cell lines, including those lacking expression of these proteins. According to Southern blot analysis, the loss of type II mRNA was not due to gross structural changes in the gene. The effect of TGF-beta 1 on expression of TGF-beta receptor mRNA (receptor autoregulation) was examined by quantitative Northern blotting in four cell lines with different expression of TGF-beta receptor proteins. In two cell lines expressing all three TGF-beta receptor proteins beta-glycan mRNA was rapidly down-regulated and this effect was sustained throughout the 24 h observation period. RI and RII mRNAs were slightly increased 24 h after treatment. In one cell line sensitive to growth inhibition by TGF-beta, 1 but lacking beta-glycan expression, and one cell line expressing only beta-glycan and thus TGF-beta 1 -resistant, no autoregulation of mRNA of either TGF-beta receptor was demonstrated. The results suggest that TGF-beta 1 regulates the expression of its receptors, in particular beta-glycan, and that this effect is dependent on co-expression of beta-glycan, RI and RII. Images Figure 1 Figure 2 Figure 4 PMID:8624260

  19. Levels of Soluble Receptor for Advanced Glycation End Products in Bronchoalveolar Lavage Fluid in Patients with Various Inflammatory Lung Diseases

    PubMed Central

    Kamo, Tetsuro; Tasaka, Sadatomo; Tokuda, Yuriko; Suzuki, Shoji; Asakura, Takanori; Yagi, Kazuma; Namkoong, Ho; Ishii, Makoto; Hasegawa, Naoki; Betsuyaku, Tomoko

    2015-01-01

    Receptor for advanced glycation end products (RAGE) is a multiligand receptor of S100/calgranulins, high-mobility group box 1, and others, and it is associated with the pathogenesis of various inflammatory and circulatory diseases. The soluble form of RAGE (sRAGE) is a decoy receptor and competitively inhibits membrane-bound RAGE activation. In this study, we measured sRAGE levels in bronchoalveolar lavage fluid (BALF) of 78 patients, including 41 with interstitial pneumonia, 11 with sarcoidosis, 9 with respiratory infection, 7 with ARDS, 5 with lung cancer, and 5 with vasculitis. Among them, sRAGE was detectable in BALF of 73 patients (94%). In patients with ARDS and vasculitis, the sRAGE levels were significantly higher than in the control subjects and those with interstitial pneumonia. The sRAGE levels were positively correlated with total cell counts in BALF and serum levels of surfactant protein-D, lactate dehydrogenase, and C-reactive protein. There was an inverse correlation between PaO2/FIO2 ratio and sRAGE levels. These results indicate that sRAGE in BALF might be considered as a biomarker of lung inflammatory disorders, especially ARDS and vasculitis. PMID:27147899

  20. Activation and Molecular Targets of Peroxisome Proliferator-Activated Receptor-γ Ligands in Lung Cancer

    PubMed Central

    Nemenoff, Raphael A.; Weiser-Evans, Mary; Winn, Robert A.

    2008-01-01

    Lung cancer is the leading cause of cancer death, and five-year survival remains poor, raising the urgency for new treatment strategies. Activation of PPARγ represents a potential target for both the treatment and prevention of lung cancer. Numerous studies have examined the effect of thiazolidinediones such as rosiglitazone and pioglitazone on lung cancer cells in vitro and in xenograft models. These studies indicate that activation of PPARγ inhibits cancer cell proliferation as well as invasiveness and metastasis. While activation of PPARγ can occur by direct binding of pharmacological ligands to the molecule, emerging data indicate that PPARγ activation can occur through engagement of other signal transduction pathways, including Wnt signaling and prostaglandin production. Data, both from preclinical models and retrospective clinical studies, indicate that activation of PPARγ may represent an attractive chemopreventive strategy. This article reviews the existing biological and mechanistic experiments focusing on the role of PPARγ in lung cancer, focusing specifically on nonsmall cell lung cancer. PMID:18509496

  1. CD36/fatty acid translocase in rats: distribution, isolation from hepatocytes, and comparison with the scavenger receptor SR-B1.

    PubMed

    Zhang, Xingqi; Fitzsimmons, Rebecca L; Cleland, Leslie G; Ey, Peter L; Zannettino, Andrew C W; Farmer, Elizabeth-Anne; Sincock, Paul; Mayrhofer, Graham

    2003-03-01

    The new mAb UA009 recognizes an antigen expressed by microvascular endothelium, by lymphatic endothelium, and by some epithelia in a number of organs, including the small intestine, lactating mammary gland, kidney, lung, sebaceous glands, and circumvallate papillae of the tongue. This antigen is also expressed abundantly in the splenic red pulp and marginal zone and by monocytes, macrophages, and erythrocytes (but not by platelets). Among tissues that store or metabolize fatty acids, the antigen is expressed by adipocytes, cardiomyocytes, and red skeletal muscle. Importantly, it is expressed by steroidogenic cells in the adrenal gland, testis, and ovary, whereas in the liver it is expressed by hepatocytes in a pattern that is dependent on gender and genetic background. mAb UA009 immunoprecipitated a mol wt 85-kDa surface protein from detergent extracts of hepatocytes from Dark Agouti female rats. The N-terminal amino acid sequence of this protein was identical to fatty acid translocase (FAT), the rat cluster of differentiation 36 (CD36) ortholog. The mAb also reacted with COS-7 cells transfected with cDNA encoding FAT. cDNAs encoding a CD36/FAT-like polypeptide were prepared from both liver and heart RNA by RT-PCR. The nucleotide sequences obtained from these cDNAs (Dark Agouti rats) revealed identity and 99% similarity, respectively, with the published sequences of Cd36/Fat in rats of the Wistar and Sprague-Dawley strains. The absence of the UA009 antigen in CD36/FAT-deficient SHR/N rats confirmed the identity of the UA009 antigen and CD36/FAT. We suggest that CD36/FAT might function in the liver as a sex-regulated accessory molecule, either in reverse cholesterol transport and/or in fatty acid uptake.

  2. Omeprazole Attenuates Pulmonary Aryl Hydrocarbon Receptor Activation and Potentiates Hyperoxia-Induced Developmental Lung Injury in Newborn Mice

    PubMed Central

    Shivanna, Binoy; Zhang, Shaojie; Patel, Ananddeep; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula

    2015-01-01

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in human preterm infants and a similar lung phenotype characterized by alveolar simplification in newborn mice. Omeprazole (OM) is a proton pump inhibitor that is used to treat humans with gastric acid related disorders. OM-mediated aryl hydrocarbon receptor (AhR) activation attenuates acute hyperoxic lung injury (HLI) in adult mice. Whether OM activates pulmonary AhR and protects C57BL/6J newborn mice against hyperoxia-induced developmental lung (alveolar and pulmonary vascular simplification, inflammation, and oxidative stress) injury (HDLI) is unknown. Therefore, we tested the hypothesis that OM will activate pulmonary AhR and mitigate HDLI in newborn mice. Newborn mice were treated daily with i.p. injections of OM at doses of 10 (OM10) or 25 (OM25) mg/kg while being exposed to air or hyperoxia (FiO2 of 85%) for 14 days, following which their lungs were harvested to determine alveolarization, pulmonary vascularization, inflammation, oxidative stress, vascular injury, and AhR activation. To our surprise, hyperoxia-induced alveolar and pulmonary vascular simplification, inflammation, oxidative stress, and vascular injury were augmented in OM25-treated animals. These findings were associated with attenuated pulmonary vascular endothelial growth factor receptor 2 expression and decreased pulmonary AhR activation in the OM25 group. We conclude that contrary to our hypothesis, OM decreases functional activation of pulmonary AhR and potentiates HDLI in newborn mice. These observations are consistent with our previous findings, which suggest that AhR activation plays a protective role in HDLI in newborn mice. PMID:26272953

  3. Progression of Lung Cancer Is Associated with Increased Dysfunction of T Cells Defined by Coexpression of Multiple Inhibitory Receptors.

    PubMed

    Thommen, Daniela S; Schreiner, Jens; Müller, Philipp; Herzig, Petra; Roller, Andreas; Belousov, Anton; Umana, Pablo; Pisa, Pavel; Klein, Christian; Bacac, Marina; Fischer, Ozana S; Moersig, Wolfgang; Savic Prince, Spasenija; Levitsky, Victor; Karanikas, Vaios; Lardinois, Didier; Zippelius, Alfred

    2015-12-01

    Dysfunctional T cells present in malignant lesions are characterized by a sustained and highly diverse expression of inhibitory receptors, also referred to as immune checkpoints. Yet, their relative functional significance in different cancer types remains incompletely understood. In this study, we provide a comprehensive characterization of the diversity and expression patterns of inhibitory receptors on tumor-infiltrating T cells from patients with non-small cell lung cancer. In spite of the large heterogeneity observed in the amount of PD-1, Tim-3, CTLA-4, LAG-3, and BTLA expressed on intratumoral CD8(+) T cells from 32 patients, a clear correlation was established between increased expression of these inhibitory coreceptors and progression of the disease. Notably, the latter was accompanied by a progressively impaired capacity of T cells to respond to polyclonal activation. Coexpression of several inhibitory receptors was gradually acquired, with early PD-1 and late LAG-3/BTLA expression. PD-1 blockade was able to restore T-cell function only in a subset of patients. A high percentage of PD-1(hi) T cells was correlated with poor restoration of T-cell function upon PD-1 blockade. Of note, PD-1(hi) expression marked a particularly dysfunctional T-cell subset characterized by coexpression of multiple inhibitory receptors and thus may assist in identifying patients likely to respond to inhibitory receptor-specific antibodies. Overall, these data may provide a framework for future personalized T-cell-based therapies aiming at restoration of tumor-infiltrating lymphocyte effector functions.

  4. Activation of cytokine production by secreted phospholipase A2 in human lung macrophages expressing the M-type receptor.

    PubMed

    Granata, Francescopaolo; Petraroli, Angelica; Boilard, Eric; Bezzine, Sofiane; Bollinger, James; Del Vecchio, Luigi; Gelb, Michael H; Lambeau, Gerard; Marone, Gianni; Triggiani, Massimo

    2005-01-01

    Secreted phospholipases A(2) (sPLA(2)) are enzymes released in plasma and extracellular fluids during inflammatory diseases. Because human group IB and X sPLA(2)s are expressed in the lung, we examined their effects on primary human lung macrophages (HLM). Both sPLA(2)s induced TNF-alpha and IL-6 release in a concentration-dependent manner by increasing their mRNA expression. This effect was independent of their enzymatic activity because 1) the capacity of sPLA(2)s to mobilize arachidonic acid from HLM was unrelated to their ability to induce cytokine production; and 2) two catalytically inactive isoforms of group IB sPLA(2) (bromophenacyl bromide-inactivated human sPLA(2) and the H48Q mutant of the porcine sPLA(2)) were as effective as the catalytically active sPLA(2)s in inducing cytokine production. HLM expressed the M-type receptor for sPLA(2)s at both mRNA and protein levels, as determined by RT-PCR, immunoblotting, immunoprecipitation, and flow cytometry. Me-indoxam, which decreases sPLA(2) activity as well as binding to the M-type receptor, suppressed sPLA(2)-induced cytokine production. Incubation of HLM with the sPLA(2)s was associated with phosphorylation of ERK1/2, and a specific inhibitor of this pathway, PD98059, significantly reduced the production of IL-6 elicited by sPLA(2)s. In conclusion, two distinct sPLA(2)s produced in the human lung stimulate cytokine production by HLM via a mechanism that is independent of their enzymatic activity and involves activation of the ERK1/2 pathway. HLM express the M-type receptor, but its involvement in eliciting cytokine production deserves further investigation.

  5. An interplay between hypervariable region 1 of the hepatitis C virus E2 glycoprotein, the scavenger receptor BI, and high-density lipoprotein promotes both enhancement of infection and protection against neutralizing antibodies.

    PubMed

    Bartosch, Birke; Verney, Géraldine; Dreux, Marlène; Donot, Peggy; Morice, Yoann; Penin, François; Pawlotsky, Jean-Michel; Lavillette, Dimitri; Cosset, Francois-Loïc

    2005-07-01

    Hepatitis C virus (HCV) circulates in the bloodstream in different forms, including complexes with immunoglobulins and/or lipoproteins. To address the significance of such associations, we produced or treated HCV pseudoparticles (HCVpp), a valid model of HCV cell entry and its inhibition, with naïve or patient-derived sera. We demonstrate that infection of hepatocarcinoma cells by HCVpp is increased more than 10-fold by human serum factors, of which high-density lipoprotein (HDL) is a major component. Infection enhancement requires scavenger receptor BI, a molecule known to mediate HDL uptake into cells as well as HCVpp entry, and involves conserved amino acid positions in hypervariable region 1 (HVR1) of the E2 glycoprotein. Additionally, we show that the interaction with human serum or HDL, but not with low-density lipoprotein, leads to the protection of HCVpp from neutralizing antibodies, including monoclonal antibodies and antibodies present in patient sera. Finally, the deletion or mutation of HVR1 in HCVpp abolishes infection enhancement and leads to increased sensitivity to neutralizing antibodies/sera compared to that of parental HCVpp. Altogether, these results assign to HVR1 new roles which are complementary in helping HCV to survive within its host. Besides immune escape by mutation, HRV1 can mediate the enhancement of cell entry and the protection of virions from neutralizing antibodies. By preserving a balance between these functions, HVR1 may be essential for the viral persistence of HCV.

  6. Molecular cloning, mapping to human chromosome 1 q21-q23, and cell binding characteristics of Spalpha, a new member of the scavenger receptor cysteine-rich (SRCR) family of proteins.

    PubMed

    Gebe, J A; Kiener, P A; Ring, H Z; Li, X; Francke, U; Aruffo, A

    1997-03-07

    CD5 and CD6, two type I cell surface antigens predominantly expressed by T cells and a subset of B cells, have been shown to function as accessory molecules capable of modulating T cell activation. Here we report the cloning of a cDNA encoding Spalpha, a secreted protein that is highly homologous to CD5 and CD6. Spalpha has the same domain organization as the extracellular region of CD5 and CD6 and is composed of three SRCR (scavenger receptor cysteine rich) domains. Chromosomal mapping by fluorescence in situ hybridization and radiation hybrid panel analysis indicated that the gene encoding Spalpha is located on the long arm of human chromosome 1 at q21-q23 within contig WC1.17. RNA transcripts encoding Spalpha were found in human bone marrow, spleen, lymph node, thymus, and fetal liver but not in non-lymphoid tissues. Cell binding studies with an Spalpha immunoglobulin (Spalpha-mIg) fusion protein indicated that Spalpha is capable of binding to peripheral monocytes but not to T or B cells. Spalpha-mIg was also found to bind to the monocyte precursor cell lines K-562 and weakly to THP-1 but not to U937. Spalpha-mIg also bound to the B cell line Raji and weakly to the T cell line HUT-78. These findings indicate that Spalpha, a novel secreted protein produced in lymphoid tissues, may regulate monocyte activation, function, and/or survival.

  7. Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine A(2A) receptor.

    PubMed

    Ribeiro, Alison; Ferraz-de-Paula, Viviane; Pinheiro, Milena L; Vitoretti, Luana B; Mariano-Souza, Domenica P; Quinteiro-Filho, Wanderley M; Akamine, Adriana T; Almeida, Vinícius I; Quevedo, João; Dal-Pizzol, Felipe; Hallak, Jaime E; Zuardi, Antônio W; Crippa, José A; Palermo-Neto, João

    2012-03-05

    Acute lung injury is an inflammatory condition for which treatment is mainly supportive because effective therapies have not been developed. Cannabidiol, a non-psychotropic cannabinoid component of marijuana (Cannabis sativa), has potent immunosuppressive and anti-inflammatory properties. Therefore, we investigated the possible anti-inflammatory effect of cannabidiol in a murine model of acute lung injury. Analysis of total inflammatory cells and differential in bronchoalveolar lavage fluid was used to characterize leukocyte migration into the lungs; myeloperoxidase activity of lung tissue and albumin concentration in the bronchoalveolar lavage fluid were analyzed by colorimetric assays; cytokine/chemokine production in the bronchoalveolar lavage fluid was also analyzed by Cytometric Bead Arrays and Enzyme-Linked Immunosorbent Assay (ELISA). A single dose of cannabidiol (20mg/kg) administered prior to the induction of LPS (lipopolysaccharide)-induced acute lung injury decreases leukocyte (specifically neutrophil) migration into the lungs, albumin concentration in the bronchoalveolar lavage fluid, myeloperoxidase activity in the lung tissue, and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) 1, 2, and 4days after the induction of LPS-induced acute lung injury. Additionally, adenosine A(2A) receptor is involved in the anti-inflammatory effects of cannabidiol on LPS-induced acute lung injury because ZM241385 (4-(2-[7-Amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol) (a highly selective antagonist of adenosine A(2A) receptor) abrogated all of the anti-inflammatory effects of cannabidiol previously described. Thus, we show that cannabidiol has anti-inflammatory effects in a murine model of acute lung injury and that this effect is most likely associated with an increase in the extracellular adenosine offer and signaling through adenosine A(2A) receptor.

  8. An overlapping set of genes is regulated by both NFIB and the glucocorticoid receptor during lung maturation

    PubMed Central

    2014-01-01

    Background Lung maturation is a late fetal developmental event in both mice and humans. Because of this, lung immaturity is a serious problem in premature infants. Disruption of genes for either the glucocorticoid receptor (Nr3c1) or the NFIB transcription factors results in perinatal lethality due to lung immaturity. In both knockouts, the phenotype includes excess cell proliferation, failure of saccularization and reduced expression of markers of epithelial differentiation. This similarity suggests that the two genes may co-regulate a specific set of genes essential for lung maturation. Results We analyzed the roles of these two transcription factors in regulating transcription using ChIP-seq data for NFIB, and RNA expression data and motif analysis for both. Our new ChIP-seq data for NFIB in lung at E16.5 shows that NFIB binds to a NFI motif. This motif is over-represented in the promoters of genes that are under-expressed in Nfib-KO mice at E18.5, suggesting an activator role for NFIB. Using available microarray data from Nr3c1-KO mice, we further identified 52 genes that are under-expressed in both Nfib and Nr3c1 knockouts, an overlap which is 13.1 times larger than what would be expected by chance. Finally, we looked for enrichment of 738 recently published transcription factor motifs in the promoters of these putative target genes and found that the NFIB and glucocorticoid receptor motifs were among the most enriched, suggesting that a subset of these genes may be directly activated by Nfib and Nr3c1. Conclusions Our data provide the first evidence for Nfib and Nr3c1 co-regulating genes related to lung maturation. They also establish that the in vivo DNA-binding specificity of NFIB is the same as previously seen in vitro, and highly similar to that of the other NFI-family members NFIA, NFIC and NFIX. PMID:24661679

  9. Transient receptor potential vanilloid-1 (TRPV1) is a mediator of lung toxicity for coal fly ash particulate material.

    PubMed

    Deering-Rice, Cassandra E; Johansen, Mark E; Roberts, Jessica K; Thomas, Karen C; Romero, Erin G; Lee, Jeewoo; Yost, Garold S; Veranth, John M; Reilly, Christopher A

    2012-03-01

    Environmental particulate matter (PM) pollutants adversely affect human health, but the molecular basis is poorly understood. The ion channel transient receptor potential vanilloid-1 (TRPV1) has been implicated as a sensor for environmental PM and a mediator of adverse events in the respiratory tract. The objectives of this study were to determine whether TRPV1 can distinguish chemically and physically unique PM that represents important sources of air pollution; to elucidate the molecular basis of TRPV1 activation by PM; and to ascertain the contributions of TRPV1 to human lung cell and mouse lung tissue responses exposed to an insoluble PM agonist, coal fly ash (CFA1). The major findings of this study are that TRPV1 is activated by some, but not all of the prototype PM materials evaluated, with rank-ordered responses of CFA1 > diesel exhaust PM > crystalline silica; TRP melastatin-8 is also robustly activated by CFA1, whereas other TRP channels expressed by airway sensory neurons and lung epithelial cells that may also be activated by CFA1, including TRPs ankyrin 1 (A1), canonical 4α (C4α), M2, V2, V3, and V4, were either slightly (TRPA1) or not activated by CFA1; activation of TRPV1 by CFA1 occurs via cell surface interactions between the solid components of CFA1 and specific amino acid residues of TRPV1 that are localized in the putative pore-loop region; and activation of TRPV1 by CFA1 is not exclusive in mouse lungs but represents a pathway by which CFA1 affects the expression of selected genes in lung epithelial cells and airway tissue.

  10. CXC Receptor 1 and 2 and Neutrophil Elastase Inhibitors Alter Radiation-induced Lung Disease in the Mouse

    SciTech Connect

    Fox, Jessica; Haston, Christina K.

    2013-01-01

    Purpose: We previously reported increased numbers of neutrophils to be associated with the development of the radiation-induced lung responses of alveolitis (pneumonitis) and fibrosis in mice. In the present study we investigated whether CXC receptor 1 and 2 antagonism with DF2156A, a small molecule inhibitor of neutrophil chemotaxis, or the neutrophil elastase inhibitor sivelestat decreases the lung response to irradiation. Methods and Materials: KK/HIJ mice received 14 Gy whole-thorax irradiation, and a subset of them received drug treatment 3 times per week from the day of irradiation until they were killed because of respiratory distress symptoms. Results: Irradiated mice receiving sivelestat survived 18% longer than did mice receiving radiation alone (73 vs 60 days for female mice, 91 vs 79 days for male mice), whereas postirradiation survival times did not differ between the group of mice receiving DF2156A and the radiation-only group. The numbers of neutrophils in lung tissue and in bronchoalveolar lavage fluid did not differ among groups of irradiated mice, but they significantly exceeded the levels in unirradiated control mice. The extent of alveolitis, assessed histologically, did not differ between irradiated mice treated with either drug and those receiving radiation alone, when assessed at the end of the experiment, but it was significantly reduced, as were the neutrophil measures, in sivelestat-treated mice at the common kill time of 60 days after irradiation. Mice treated with radiation and DF2156A developed significantly less fibrosis than did mice receiving radiation alone, and this difference was associated with decreased expression of interleukin-13 in lung tissue. Conclusions: We conclude that neutrophil elastase inhibition affects alveolitis and prolongs survival, whereas CXCR1/2 antagonism reduces radiation-induced fibrotic lung disease in mice without affecting the onset of distress.

  11. Activating Peroxisome Proliferator-Activated Receptors (PPARs): a New Sight for Chrysophanol to Treat Paraquat-Induced Lung Injury.

    PubMed

    Li, Ang; Liu, Yuguang; Zhai, Lu; Wang, Liying; Lin, Zhe; Wang, Shumin

    2016-04-01

    The aim of this study is to evaluate the protective effects of chrysophanol (CH) against paraquat (PQ)-induced pulmonary injury. Fifty BALB/C mice were randomized into five groups: (1) control, (2) PQ, (3) PQ + dexamethasone (Dex, 2 mg/kg), (4) PQ + CH (10 mg/kg), and (5) PQ + CH (20 mg/kg). A single dose of PQ (50 mg/kg, i.p.) was intraperitoneally given to induce acute lung injury. Then mice were treated with CH (10 and 20 mg/kg/day, orally) for 7 days. At the end of the experiment, animals were euthanized and then bronchoalveolar lavage fluid (BALF) and lung tissues were collected for histological observation, biochemical analysis, and Western blot analysis. Malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) levels in BALF were determined. The levels of SOD and MDA in the lung were also detected. The peroxisome proliferator-activated receptor (PPAR)-γ and nuclear factor-kappaB (NF-κB) pathway proteins in the lung were determined by Western blot. Histological examination indicated that CH attenuated lung inflammation caused by PQ. Biochemical results showed that CH treatment significantly reduced the levels of MDA, MPO, and inflammatory cytokines and increased the level of SOD, compared to those in the PQ group. Meanwhile, Western Blot results revealed that CH increased PPAR-γ expression and inhibited NF-κB pathway activation after PQ challenge. These findings suggested the potential therapeutic effects of CH which is derived from a natural product on PQ-induced pulmonary injury.

  12. Heterogeneity of lung mononuclear phagocytes during pneumonia: contribution of chemokine receptors.

    PubMed

    Chen, Lanlin; Zhang, Zhimin; Barletta, Kathryn E; Burdick, Marie D; Mehrad, Borna

    2013-11-15

    Bacterial pneumonia is a common and dangerous illness. Mononuclear phagocytes, which comprise monocyte, resident and recruited macrophage, and dendritic cell subsets, are critical to antimicrobial defenses, but the dynamics of their recruitment to the lungs in pneumonia is not established. We hypothesized that chemokine-mediated traffic of mononuclear phagocytes is important in defense against bacterial pneumonia. In a mouse model of Klebsiella pneumonia, circulating Ly6C(hi) and, to a lesser extent, Ly6C(lo) monocytes expanded in parallel with accumulation of inflammatory macrophages and CD11b(hi) dendritic cells and plasmacytoid dendritic cells in the lungs, whereas numbers of alveolar macrophages remained constant. CCR2 was expressed by Ly6C(hi) monocytes, recruited macrophages, and airway dendritic cells; CCR6 was prominently expressed by airway dendritic cells; and CX3CR1 was ubiquitously expressed by blood monocytes and lung CD11b(hi) dendritic cells during infection. CCR2-deficient, but not CCL2-, CX3CR1-, or CCR6-deficient animals exhibited worse outcomes of infection. The absence of CCR2 had no detectable effect on neutrophils but resulted in reduction of all subsets of lung mononuclear phagocytes in the lungs, including alveolar macrophages and airway and plasmacytoid dendritic cells. In addition, absence of CCR2 skewed the phenotype of lung mononuclear phagocytes, abrogating the appearance of M1 macrophages and TNF-producing dendritic cells in the lungs. Taken together, these data define the dynamics of mononuclear phagocytes during pneumonia.

  13. Cryogenic Propellant Scavenging

    NASA Technical Reports Server (NTRS)

    Louie, B.; Kemp, N. J.; Daney, D. E.

    1985-01-01

    A detailed description of a computer model that has been developed for assessing the feasibility of low g cryogen propellant scavenging from the space shuttle External Tank (ET) is given. Either pump-assisted or pressure-induced propellant transfer may be selected. The program will accept a wide range of input variables, including the fuel to be transferred (LOX or LH2), heat leaks, tank temperatures, and piping and equipment specifications. The model has been parametrically analyzed to determine initial design specification for the system.

  14. CysLT2 receptor activation is involved in LTC4-induced lung air-trapping in guinea pigs.

    PubMed

    Sekioka, Tomohiko; Kadode, Michiaki; Yonetomi, Yasuo; Kamiya, Akihiro; Fujita, Manabu; Nabe, Takeshi; Kawabata, Kazuhito

    2017-01-05

    CysLT1 receptors are known to be involved in the pathogenesis of asthma. However, the functional roles of CysLT2 receptors in this condition have not been determined. The purpose of this study is to develop an experimental model of CysLT2 receptor-mediated LTC4-induced lung air-trapping in guinea pigs and use this model to clarify the mechanism underlying response to such trapping. Because LTC4 is rapidly converted to LTD4 by γ-glutamyltranspeptidase (γ-GTP) under physiological conditions, S-hexyl GSH was used as a γ-GTP inhibitor. In anesthetized artificially ventilated guinea pigs with no S-hexyl GSH treatment, i.v. LTC4-induced bronchoconstriction was almost completely inhibited by montelukast, a CysLT1 receptor antagonist, but not by BayCysLT2RA, a CysLT2 receptor antagonist. The inhibitory effect of montelukast was diminished by treatment with S-hexyl GSH, whereas the effect of BayCysLT2RA was enhanced with increasing dose of S-hexyl GSH. Macroscopic and histological examination of lung tissue isolated from LTC4-/S-hexyl-GSH-treated guinea pigs revealed air-trapping expansion, particularly at the alveolar site. Inhaled LTC4 in conscious guinea pigs treated with S-hexyl GSH increased both airway resistance and airway hyperinflation. On the other hand, LTC4-induced air-trapping was only partially suppressed by treatment with the bronchodilator salmeterol. Although montelukast inhibition of LTC4-induced air-trapping was weak, treatment with BayCysLT2RA resulted in complete suppression of this air-trapping. Furthermore, BayCysLT2RA completely suppressed LTC4-induced airway vascular hyperpermeability. In conclusion, we found in this study that CysLT2 receptors mediate LTC4-induced bronchoconstriction and air-trapping in S-hexyl GSH-treated guinea pigs. It is therefore believed that CysLT2 receptors contribute to asthmatic response involving air-trapping.

  15. EGF-independent activation of cell-surface EGF receptors harboring mutations found in gefitinib-sensitive lung cancer.

    PubMed

    Choi, S H; Mendrola, J M; Lemmon, M A

    2007-03-08

    Several somatic mutations within the tyrosine kinase domain of epidermal growth factor receptor (EGFR) have been identified that predict clinical response of non-small-cell lung carcinoma (NSCLC) patients to gefitinib. To test the hypothesis that these mutations cause constitutive EGF receptor signaling, and to investigate its mechanistic basis, we expressed representative examples in a null background and analysed their biochemical properties. Each mutation caused significant EGF-independent tyrosine phosphorylation of EGFR, and allowed the receptor to promote Ba/F3 cell mitogenesis in the absence of EGF, arguing that these are oncogenic mutations. Active mutated receptors are present at the cell surface and are fully competent to bind EGF. Recent structural studies show that the inactive EGFR tyrosine kinase domain is autoinhibited by intramolecular interactions between its activation loop and alphaC helix. We find that mutations predicted to disrupt this autoinhibitory interaction (including several that have not been described in NSCLC) elevate EGF-independent tyrosine kinase activity, thus providing new insight into how somatic mutations activate EGFR and other ErbB family members.

  16. Three generations of epidermal growth factor receptor tyrosine kinase inhibitors developed to revolutionize the therapy of lung cancer

    PubMed Central

    Zhang, Haijun

    2016-01-01

    Lung cancer, ~80%–85% of which is non-small-cell lung cancer (NSCLC), is the leading cause of cancer-related mortality worldwide. Sensitizing mutations in epidermal growth factor receptor (EGFR) gene (EGFRm+), such as exon 19 deletions and exon 21 L858R point mutations, are the most important drivers in NSCLC patients. In this respect, small-molecule EGFR tyrosine kinase inhibitors (TKIs) have been designed and developed, which launched the era of targeted, personalized and precise medicine for lung cancer. Patients with EGFRm+ could achieve good responses to the treatment with the first-generation EGFR TKIs, such as erlotinib and gefitinib. However, most patients develop acquired drug resistance mostly driven by the T790M mutation occurring within exon 20. Although the second-generation EGFR TKIs, such as afatinib, dacomitinib and neratinib, demonstrated promising activity against T790M in preclinical models, they have failed to overcome resistance in patients due to dose-limiting toxicity. Recently, the third-generation EGFR TKIs have shown to be effective against cell lines and murine models harboring T790M mutations while sparing wild-type EGFR, which represents a promising breakthrough approach in overcoming T790M-mediated resistance in NSCLC patients. This article provides a comprehensive review of the therapy revolution for NSCLC with three generations of EGFR TKIs. PMID:27920501

  17. Sinomenine Protects against Lipopolysaccharide-Induced Acute Lung Injury in Mice via Adenosine A2A Receptor Signaling

    PubMed Central

    Li, Jun; Zhao, Li; He, Xie; Zeng, Yi-Jun; Dai, Shuang-Shuang

    2013-01-01

    Sinomenine (SIN) is a bioactive alkaloid extracted from the Chinese medicinal plant Sinomenium acutum, which is widely used in the clinical treatment of rheumatoid arthritis (RA). However, its role in acute lung injury (ALI) is unclear. In this study, we investigate the role of SIN in lipopolysaccharide (LPS)-induced ALI in mice. After ALI, lung water content and histological signs of pulmonary injury were attenuated, whereas the PaO2/FIO2 (P/F) ratios were elevated significantly in the mice pretreated with SIN. Additionally, SIN markedly inhibited inflammatory cytokine TNF-α and IL-1β expression levels as well as neutrophil infiltration in the lung tissues of the mice. Microarray analysis and real-time PCR showed that SIN treatment upregulated adenosine A2A receptor (A2AR) expression, and the protective effect of SIN was abolished in A2AR knockout mice. Further investigation in isolated mouse neutrophils confirmed the upregulation of A2AR by SIN and showed that A2AR-cAMP-PKA signaling was involved in the anti-inflammatory effect of SIN. Taken together, these findings demonstrate an A2AR-associated anti-inflammatory effect and the protective role of SIN in ALI, which suggests a potential novel approach to treat ALI. PMID:23555007

  18. Sinomenine protects against lipopolysaccharide-induced acute lung injury in mice via adenosine A(2A) receptor signaling.

    PubMed

    Li, Jun; Zhao, Li; He, Xie; Zeng, Yi-Jun; Dai, Shuang-Shuang

    2013-01-01

    Sinomenine (SIN) is a bioactive alkaloid extracted from the Chinese medicinal plant Sinomenium acutum, which is widely used in the clinical treatment of rheumatoid arthritis (RA). However, its role in acute lung injury (ALI) is unclear. In this study, we investigate the role of SIN in lipopolysaccharide (LPS)-induced ALI in mice. After ALI, lung water content and histological signs of pulmonary injury were attenuated, whereas the PaO2/FIO2 (P/F) ratios were elevated significantly in the mice pretreated with SIN. Additionally, SIN markedly inhibited inflammatory cytokine TNF-α and IL-1β expression levels as well as neutrophil infiltration in the lung tissues of the mice. Microarray analysis and real-time PCR showed that SIN treatment upregulated adenosine A(2A) receptor (A(2A)R) expression, and the protective effect of SIN was abolished in A(2A)R knockout mice. Further investigation in isolated mouse neutrophils confirmed the upregulation of A(2A)R by SIN and showed that A(2A)R-cAMP-PKA signaling was involved in the anti-inflammatory effect of SIN. Taken together, these findings demonstrate an A(2A)R-associated anti-inflammatory effect and the protective role of SIN in ALI, which suggests a potential novel approach to treat ALI.

  19. Cerebral venous sinus thrombosis concomitant with leptomeningeal carcinomatosis, in a patient with epidermal growth factor receptor-mutated lung cancer.

    PubMed

    Oda, Naohiro; Sakugawa, Makoto; Bessho, Akihiro; Horiuchi, Takeshi; Hosokawa, Shinobu; Toyota, Yosuke; Fukamatsu, Nobuaki; Nishii, Kazuya; Watanabe, Yoichi

    2014-12-01

    A 64-year-old woman presented with dizziness, after two weeks of experiencing symptoms. Chest computed tomography revealed a peripheral nodule in her left upper lobe, and brain magnetic resonance imaging (MRI) demonstrated the presence of multiple brain masses. The patient underwent whole-brain radiotherapy based on a tentative diagnosis of lung cancer with multiple brain metastases. The diagnosis was confirmed by endobronchial biopsy as T4N3M1b, stage IV lung adenocarcinoma with an epidermal growth factor receptor mutation. On the 31st day of hospitalization, the patient developed severe headache. Subsequent magnetic resonance venography revealed defects in the superior sagittal, right sigmoid, and right transverse venous sinuses and the right internal jugular vein. Anticoagulation therapy with unfractionated heparin and warfarin was immediately administered following diagnosis of cerebral venous sinus thrombosis (CVST). Brain MRI demonstrated leptomeningeal gadolinium enhancement in front of the pons and medulla. Positive cerebrospinal fluid tumor cytology confirmed the diagnosis of leptomeningeal carcinomatosis. Following four weeks of antithrombotic therapy, complete thrombolysis was confirmed by magnetic resonance venography. Effective treatment with gefitinib was administered, and the patient survived for 10 months after the diagnosis of CVST and leptomeningeal carcinomatosis. Adequate early diagnosis and treatment of CVST enabled an excellent survival rate for the patient, despite leptomeningeal carcinomatosis. Following the development of headaches in patients with lung cancer, CVST, although rare, should be considered. Furthermore, following a diagnosis of CVST, leptomeningeal carcinomatosis should be investigated as an underlying cause.

  20. Unique Toll-Like Receptor 4 Activation by NAMPT/PBEF Induces NFκB Signaling and Inflammatory Lung Injury

    PubMed Central

    Camp, Sara M.; Ceco, Ermelinda; Evenoski, Carrie L.; Danilov, Sergei M.; Zhou, Tong; Chiang, Eddie T.; Moreno-Vinasco, Liliana; Mapes, Brandon; Zhao, Jieling; Gursoy, Gamze; Brown, Mary E.; Adyshev, Djanybek M.; Siddiqui, Shahid S.; Quijada, Hector; Sammani, Saad; Letsiou, Eleftheria; Saadat, Laleh; Yousef, Mohammed; Wang, Ting; Liang, Jie; Garcia, Joe G. N.

    2015-01-01

    Ventilator-induced inflammatory lung injury (VILI) is mechanistically linked to increased NAMPT transcription and circulating levels of nicotinamide phosphoribosyl-transferase (NAMPT/PBEF). Although VILI severity is attenuated by reduced NAMPT/PBEF bioavailability, the precise contribution of NAMPT/PBEF and excessive mechanical stress to VILI pathobiology is unknown. We now report that NAMPT/PBEF induces lung NFκB transcriptional activities and inflammatory injury via direct ligation of Toll–like receptor 4 (TLR4). Computational analysis demonstrated that NAMPT/PBEF and MD-2, a TLR4-binding protein essential for LPS-induced TLR4 activation, share ~30% sequence identity and exhibit striking structural similarity in loop regions critical for MD-2-TLR4 binding. Unlike MD-2, whose TLR4 binding alone is insufficient to initiate TLR4 signaling, NAMPT/PBEF alone produces robust TLR4 activation, likely via a protruding region of NAMPT/PBEF (S402-N412) with structural similarity to LPS. The identification of this unique mode of TLR4 activation by NAMPT/PBEF advances the understanding of innate immunity responses as well as the untoward events associated with mechanical stress-induced lung inflammation. PMID:26272519

  1. Targeted therapy in non-small cell lung cancer: a focus on epidermal growth factor receptor mutations.

    PubMed

    Milano, Gérard A

    2015-12-01

    The main molecular targeting of lung cancer [non-small cell lung cancer (NSCLC)] concerns mutations of epidermal growth factor receptor (EGFR). The awaited responsiveness of tumors carrying these mutations is high with for instance 60% to 80% with tyrosine kinase inhibitors hitting EGFR mutations. The EGFR T790M as a secondary mutation is responsible for the occurrence of a resistance phenomenon. A multitude of drugs have been produced and tested with the property of a specific binding at the EGFR T790M site. There is currently an evolution oriented to a robust genotyping methods allowing the identification of given molecular anomalies (pyrosequencing for instance) towards the consideration of a much larger set of molecular anomalies under the form of a global genotyping realized with the use of next-generation sequencing (NGS). This phase of whole genome analysis necessitates the introduction of a specialized staff for data treatment. A possible substitution plasma/tumor for the mutation analyses is perceptible in lung cancer, a preference being however given to the intratumoral direct investigation when this is feasible. EGFR mutations as targetable anomalies are illustrative examples, that the management of NSCLC is currently drawing a significant benefit from personalized therapy.

  2. Protease activated receptor 4 limits bacterial growth and lung pathology during late stage Streptococcus pneumoniae induced pneumonia in mice.

    PubMed

    de Stoppelaar, S F; Van't Veer, C; van den Boogaard, F E; Nieuwland, R; Hoogendijk, A J; de Boer, O J; Roelofs, J J T H; van der Poll, T

    2013-09-01

    Streptococcus pneumoniae is a common causative pathogen of pneumonia and sepsis. Pneumonia and sepsis are associated with enhanced activation of coagulation, resulting in the production of several host-derived proteases at the primary site of infection and in the circulation. Serine proteases cleave protease activated receptors (PARs), which form a molecular link between coagulation and inflammation. PAR4 is one of four subtypes of PARs and is widely expressed by multiple cell types in the respiratory tract implicated in pulmonary inflammation, by immune cells and by platelets. In mice, mouse (m)PAR4 is the only thrombin receptor expressed by platelets. We here sought to determine the contribution of mPAR4 to the host response during pneumococcal pneumonia. Pneumonia was induced by intranasal inoculation with S. pneumoniae in mPAR4-deficient (par4-/-) and wild-type mice. Mice were sacrificed after 6, 24 or 48 hours (h). Blood, lungs, liver and spleen were collected for analyses. Ex vivo stimulation assays were performed with S. pneumoniae and mPAR4 activating peptides. At 48 h after infection, higher bacterial loads were found in the lungs and blood of par4-/- mice (p < 0.05), accompanied by higher histopathology scores and increased cytokine levels (p < 0.05) in the lungs. Ex vivo, co-stimulation with mPAR4 activating peptide enhanced the whole blood cytokine response to S. pneumoniae. Thrombin inhibition resulted in decreased cytokine release after S. pneumoniae stimulation in human whole blood. Our findings suggest that mPAR4 contributes to antibacterial defence during murine pneumococcal pneumonia.

  3. Identification of a long non-coding RNA gene, growth hormone secretagogue receptor opposite strand, which stimulates cell migration in non-small cell lung cancer cell lines.

    PubMed

    Whiteside, Eliza J; Seim, Inge; Pauli, Jana P; O'Keeffe, Angela J; Thomas, Patrick B; Carter, Shea L; Walpole, Carina M; Fung, Jenny N T; Josh, Peter; Herington, Adrian C; Chopin, Lisa K

    2013-08-01

    The molecular mechanisms involved in non‑small cell lung cancer tumourigenesis are largely unknown; however, recent studies have suggested that long non-coding RNAs (lncRNAs) are likely to play a role. In this study, we used public databases to identify an mRNA-like, candidate long non-coding RNA, GHSROS (GHSR opposite strand), transcribed from the antisense strand of the ghrelin receptor gene, growth hormone secretagogue receptor (GHSR). Quantitative real-time RT-PCR revealed higher expression of GHSROS in lung cancer tissue compared to adjacent, non-tumour lung tissue. In common with many long non-coding RNAs, GHSROS is 5' capped and 3' polyadenylated (mRNA-like), lacks an extensive open reading frame and harbours a transposable element. Engineered overexpression of GHSROS stimulated cell migration in the A549 and NCI-H1299 non-small cell lung cancer cell lines, but suppressed cell migration in the Beas-2B normal lung-derived bronchoepithelial cell line. This suggests that GHSROS function may be dependent on the oncogenic context. The identification of GHSROS, which is expressed in lung cancer and stimulates cell migration in lung cancer cell lines, contributes to the growing number of non-coding RNAs that play a role in the regulation of tumourigenesis and metastatic cancer progression.

  4. Impact of active smoking on survival of patients with metastatic lung adenocarcinoma harboring an epidermal growth factor receptor (EGFR) mutation.

    PubMed

    Erdogan, Bulent; Kodaz, Hilmi; Karabulut, Senem; Cinkaya, Ahmet; Tozkir, Hilmi; Tanriverdi, Ozgur; Cabuk, Devrim; Hacioglu, Muhammed Bekir; Turkmen, Esma; Hacibekiroglu, Ilhan; Uzunoglu, Sernaz; Cicin, Irfan

    2016-11-10

    Lung cancer in smokers and non-smokers demonstrates distinct genetic profiles, and cigarette smoking affects epidermal growth factor receptor (EGFR) function and causes secondary EGFR tyrosine kinase resistance. We evaluated the effect of active smoking in patients with metastatic lung adenocarcinoma. A total of 132 metastatic lung adenocarcinoma patients, diagnosed between 2008 and 2013, with known EGFR mutation status, were evaluated retrospectively. Among these patients, 40 had an activating EGFR mutation. Patients who continued smoking during the treatment were defined as active smokers. Former smokers and never smokers were together defined as non-smokers. The outcomes of the treatment in relation to the EGFR mutation and smoking status were evaluated. The median follow-up time was 10.5 months. The overall response rate for the first-line therapy was significantly higher among the EGFR-mutant patients (p = 0.01), however, smoking status had no impact on the response rate (p = 0.1). The EGFR-mutant active smokers progressed earlier than the non-smokers (p < 0.01). The overall survival (OS) of the non-smokers and patients treated with erlotinib was significantly longer (p = 0.02 and p = 0.01, respectively). Smoking status did not affect the OS in EGFR wild type tumors (p = 0.49) but EGFR-mutant non-smokers had a longer OS than the active smokers (p = 0.01).The active smokers treated with erlotinib had poorer survival than the non-smokers (p = 0.03). Multivariate analysis of EGFR-mutant patients showed that erlotinib treatment at any line and non-smoking were independent prognostic factors for the OS (p = 0.04 and p = 0.01, respectively). Smoking during treatment is a negative prognostic factor in metastatic lung adenocarcinoma with an EGFR mutation.

  5. Deficiency or inhibition of lysophosphatidic acid receptor 1 protects against hyperoxia-induced lung injury in neonatal rats

    PubMed Central

    Chen, Xueyu; Walther, Frans J; van Boxtel, Ruben; Laghmani, El Houari; Sengers, Rozemarijn M A; Folkerts, Gert; DeRuiter, Marco C.; Cuppen, Edwin; Wagenaar, Gerry T M

    2015-01-01

    Aim Blocking of lysophosphatidic acid (LPA) receptor (LPAR) 1 may be a novel therapeutic option for bronchopulmonary dysplasia (BPD) by preventing the LPAR1-mediated adverse effects of its ligand (LPA), consisting of lung inflammation, pulmonary arterial hypertension (PAH) and fibrosis. Methods In Wistar rats with experimental BPD, induced by continuous exposure to 100% oxygen for 10 days, we determined the beneficial effects of LPAR1 deficiency in neonatal rats with a missense mutation in cytoplasmic helix 8 of LPAR1 and of LPAR1 and -3 blocking with Ki16425. Parameters investigated included survival, lung and heart histopathology, fibrin and collagen deposition, vascular leakage, and differential mRNA expression in the lungs of key genes involved in LPA signalling and BPD pathogenesis. Results LPAR1 mutant rats were protected against experimental BPD and mortality with reduced alveolar septal thickness, lung inflammation (reduced influx of macrophages and neutrophils, and CINC1 expression), and collagen III deposition. However, LPAR1 mutant rats were not protected against alveolar enlargement, increased medial wall thickness of small arterioles, fibrin deposition, and vascular alveolar leakage. Treatment of experimental BPD with Ki16425 confirmed the data observed in LPAR1 mutant rats, but did not reduce the pulmonary influx of neutrophils, CINC1 expression, and mortality in rats with experimental BPD. In addition, Ki16425 treatment protected against PAH and right ventricular hypertrophy. Conclusion LPAR1 deficiency attenuates pulmonary injury by reducing pulmonary inflammation and fibrosis, thereby reducing mortality, but does not affect alveolar and vascular development and, unlike Ki16425 treatment, does not prevent PAH in neonatal rats with experimental BPD. PMID:26495902

  6. Atmospheric scavenging exhaust

    NASA Technical Reports Server (NTRS)

    Fenton, D. L.; Purcell, R. Y.

    1977-01-01

    Solid propellant rocket exhaust was directly utilized to ascertain raindrop scavenging rates for hydrogen chloride. The airborne HCl concentration varied from 0.2 to 10.0 ppm and the raindrop sizes tested included 0.55 mm, 1.1 mm, and 3.0 mm. Two chambers were used to conduct the experiments. A large, rigid walled, spherical chamber stored the exhaust constituents while the smaller chamber housing all the experiments was charged as required with rocket exhaust HCl. Surface uptake experiments demonstrated an HCl concentration dependence for distilled water. Sea water and brackish water HCl uptake was below the detection limit of the chlorine-ion analysis technique employed. Plant life HCl uptake experiments were limited to corn and soybeans. Plant age effectively correlated the HCl uptake data. Metallic corrosion was not significant for single 20 minute exposures to the exhaust HCl under varying relative humidity.

  7. Maternal exposure to secondhand cigarette smoke primes the lung for induction of phosphodiesterase-4D5 isozyme and exacerbated Th2 responses: rolipram attenuates the airway hyperreactivity and muscarinic receptor expression but not lung inflammation and atopy.

    PubMed

    Singh, Shashi P; Mishra, Neerad C; Rir-Sima-Ah, Jules; Campen, Mathew; Kurup, Viswanath; Razani-Boroujerdi, Seddigheh; Sopori, Mohan L

    2009-08-01

    Airway hyperreactivity (AHR), lung inflammation, and atopy are clinical signs of allergic asthma. Gestational exposure to cigarette smoke (CS) markedly increases the risk for childhood allergic asthma. Muscarinic receptors regulate airway smooth muscle tone, and asthmatics exhibit increased AHR to muscarinic agonists. We have previously reported that in a murine model of bronchopulmonary aspergillosis, maternal exposure to mainstream CS increases AHR after acute intratracheal administration of Aspergillus fumigatus extract. However, the mechanism by which gestational CS induces allergic asthma is unclear. We now show for the first time that, compared with controls, mice exposed prenatally to secondhand CS exhibit increased lung inflammation (predominant infiltration by eosinophils and polymorphs), atopy, and airway resistance, and produce proinflammatory cytokines (IL-4, IL-5, IL-6, and IL-13, but not IL-2 or IFN-gamma). These changes, which occur only after an allergen (A. fumigatus extract) treatment, are correlated with marked up-regulated lung expression of M1, M2, and M3 muscarinic receptors and phosphodiesterase (PDE)4D5 isozyme. Interestingly, the PDE4-selective inhibitor rolipram attenuates the increase in AHR, muscarinic receptors, and PDE4D5, but fails to down-regulate lung inflammation, Th2 cytokines, or serum IgE levels. Thus, the fetus is extraordinarily sensitive to CS, inducing allergic asthma after postnatal exposure to allergens. Although the increased AHR might reflect increased PDE4D5 and muscarinic receptor expression, the mechanisms underlying atopy and lung inflammation are unrelated to the PDE4 activity. Thus, PDE4 inhibitors might ease AHR, but are unlikely to attenuate lung inflammation and atopy associated with childhood allergic asthma.

  8. Inhibition of the colony-stimulating-factor-1 receptor affects the resistance of lung cancer cells to cisplatin

    PubMed Central

    Pass, Harvey I.; Lavilla, Carmencita; Canino, Claudia; Goparaju, Chandra; Preiss, Jordan; Noreen, Samrah; Blandino, Giovanni; Cioce, Mario

    2016-01-01

    In the present work we show that multiple lung cancer cell lines contain cisplatin resistant cell subpopulations expressing the Colony-Stimulating-Factor-Receptor-1 (CSF-1R) and surviving chemotherapy-induced stress. By exploiting siRNA-mediated knock down in vitro and the use of an investigational CSF-1R TKI (JNJ-40346527) in vitro and in vivo, we show that expression and function of the receptor are required for the clonogenicity and chemoresistance of the cell lines. Thus, inhibition of the kinase activity of the receptor reduced the levels of EMT-associated genes, stem cell markers and chemoresistance genes. Additionally, the number of high aldehyde dehydrogenase (ALDH) expressing cells was reduced, consequent to the lack of cisplatin-induced increase of ALDH isoforms. This affected the collective chemoresistance of the treated cultures. Treatment of tumor bearing mice with JNJ-40346527, at pharmacologically relevant doses, produced strong chemo-sensitizing effects in vivo. These anticancer effects correlated with a reduced number of CSF-1Rpos cells, in tumors excised from the treated mice. Depletion of the CD45pos cells within the treated tumors did not, apparently, play a major role in mediating the therapeutic response to the TKI. Thus, lung cancer cells express a functional CSF-1 and CSF-1R duo which mediates pro-tumorigenic effects in vivo and in vitro and can be targeted in a therapeutically relevant way. These observations complement the already known role for the CSF-1R at mediating the pro-tumorigenic properties of tumor-infiltrating immune components. PMID:27486763

  9. Bilirubin inhibits the up-regulation of inducible nitric oxide synthase by scavenging reactive oxygen species generated by the toll-like receptor 4-dependent activation of NADPH oxidase.

    PubMed

    Idelman, Gila; Smith, Darcey L H; Zucker, Stephen D

    2015-08-01

    It has been previously shown that bilirubin prevents the up-regulation of inducible nitric oxide synthase (iNOS) in response to LPS. The present study examines whether this effect is exerted through modulation of Toll-Like Receptor-4 (TLR4) signaling. LPS-stimulated iNOS and NADPH oxidase (Nox) activity in RAW 264.7 murine macrophages was assessed by measuring cellular nitrate and superoxide ( [Formula: see text] ) production, respectively. The generation of both nitrate and [Formula: see text] in response to LPS was suppressed by TLR4 inhibitors, indicating that activation of iNOS and Nox is TLR4-dependent. While treatment with superoxide dismutase (SOD) and bilirubin effectively abolished LPS-mediated [Formula: see text] production, hydrogen peroxide and nitrate release were inhibited by bilirubin and PEG-catalase, but not SOD, supporting that iNOS activation is primarily dependent upon intracellular H2O2. LPS treatment increased nuclear translocation of the redox-sensitive transcription factor Hypoxia Inducible Factor-1α (HIF-1α), an effect that was abolished by bilirubin. Cells transfected with murine iNOS reporter constructs in which the HIF-1α-specific hypoxia response element was disrupted exhibited a blunted response to LPS, supporting that HIF-1α mediates Nox-dependent iNOS expression. Bilirubin, but not SOD, blocked the cellular production of interferon-β, while interleukin-6 production remained unaffected. These data support that bilirubin inhibits the TLR4-mediated up-regulation of iNOS by preventing activation of HIF-1α through scavenging of Nox-derived reactive oxygen species. Bilirubin also suppresses interferon-β release via a ROS-independent mechanism. These findings characterize potential mechanisms for the anti-inflammatory effects of bilirubin.

  10. A Library of Infectious Hepatitis C Viruses with Engineered Mutations in the E2 Gene Reveals Growth-Adaptive Mutations That Modulate Interactions with Scavenger Receptor Class B Type I.

    PubMed

    Zuiani, Adam; Chen, Kevin; Schwarz, Megan C; White, James P; Luca, Vincent C; Fremont, Daved H; Wang, David; Evans, Matthew J; Diamond, Michael S

    2016-12-01

    While natural hepatitis C virus (HCV) infection results in highly diverse quasispecies of related viruses over time, mutations accumulate more slowly in tissue culture, in part because of the inefficiency of replication in cells. To create a highly diverse population of HCV particles in cell culture and identify novel growth-enhancing mutations, we engineered a library of infectious HCV with all codons represented at most positions in the ectodomain of the E2 gene. We identified many putative growth-adaptive mutations and selected nine highly represented E2 mutants for further study: Q412R, T416R, S449P, T563V, A579R, L619T, V626S, K632T, and L644I. We evaluated these mutants for changes in particle-to-infectious-unit ratio, sensitivity to neutralizing antibody or CD81 large extracellular loop (CD81-LEL) inhibition, entry factor usage, and buoyant density profiles. Q412R, T416R, S449P, T563V, and L619T were neutralized more efficiently by anti-E2 antibodies and T416R, T563V, and L619T by CD81-LEL. Remarkably, all nine variants showed reduced dependence on scavenger receptor class B type I (SR-BI) for infection. This shift from SR-BI usage did not correlate with a change in the buoyant density profiles of the variants, suggesting an altered E2-SR-BI interaction rather than changes in the virus-associated lipoprotein-E2 interaction. Our results demonstrate that residues influencing SR-BI usage are distributed across E2 and support the development of large-scale mutagenesis studies to identify viral variants with unique functional properties.

  11. Delta-Opioid Receptor (δOR) Targeted Near-Infrared Fluorescent Agent for Imaging of Lung Cancer: Synthesis and Evaluation In Vitro and In Vivo.

    PubMed

    Cohen, Allison S; Patek, Renata; Enkemann, Steven A; Johnson, Joseph O; Chen, Tingan; Toloza, Eric; Vagner, Josef; Morse, David L

    2016-02-17

    In the United States, lung cancer is the leading cause of cancer death and ranks second in the number of new cases annually among all types of cancers. Better methods or tools for diagnosing and treating this disease are needed to improve patient outcomes. The delta-opioid receptor (δOR) is reported to be overexpressed in lung cancers and not expressed in normal lung. Thus, we decided to develop a lung cancer-specific imaging agent targeting this receptor. We have previously developed a δOR-targeted fluorescent imaging agent based on a synthetic peptide antagonist (Dmt-Tic) conjugated to a Cy5 fluorescent dye. In this work, we describe the synthesis of Dmt-Tic conjugated to a longer wavelength near-infrared fluorescent (NIRF) dye, Li-cor IR800CW. Binding affinity of Dmt-Tic-IR800 for the δOR was studied using lanthanide time-resolved fluorescence (LTRF) competitive binding assays in cells engineered to overexpress the δOR. In addition, we identified lung cancer cell lines with high and low endogenous expression of the δOR. We confirmed protein expression in these cell lines using confocal fluorescence microscopy imaging and used this technique to estimate the cell-surface receptor number in the endogenously expressing lung cancer cell lines. The selectivity of Dmt-Tic-IR800 for imaging of the δOR in vivo was shown using both engineered cell lines and endogenously expressing lung cancer cells in subcutaneous xenograft models in mice. In conclusion, the δOR-specific fluorescent probe developed in this study displays excellent potential for imaging of lung cancer.

  12. Clinical Significance of Folate Receptor-positive Circulating Tumor Cells Detected by Ligand-targeted Polymerase Chain Reaction in Lung Cancer

    PubMed Central

    Wang, Lin; Wu, Chuanyong; Qiao, Lihua; Yu, Wenjun; Guo, Qiaomei; Zhao, Mingna; Yang, Guohua; Zhao, Hang; Lou, Jiatao

    2017-01-01

    Background: As the heterogeneity of CTCs is becoming increasingly better understood, it is clear that identifying particular subtypes of CTCs would be more relevant. Methods: We detected folate receptor (FR)-positive circulating tumor cells (FR+-CTCs) by a novel ligand-targeted polymerase chain reaction (LT-PCR) detection technique. Results: In the none-dynamic study, FR+-CTC levels of patients with lung cancer were significantly higher than controls (patients with benign lung diseases and healthy controls). With a threshold of 8.7 CTC units, FR+-CTC showed a sensitivity of 77.7% and specificity of 89.5% in the diagnosis of lung cancer. When compared with established clinical biomarkers including carcinoembryonic antigen (CEA), cytokeratin 19 fragment (CYFRA21-1), and neuron-specific enolase (NSE), FR+-CTC showed the highest diagnostic efficiency. Notably, the combination of FR+-CTC, CEA, NSE, and CYFRA21-1 could significantly improve the diagnostic efficacy in differentiating patients with lung cancer from benign lung disease. In our dynamic surveillance study, the CTC levels of 62 non-small cell lung cancer (NSCLC) patients decreased significantly after tumor resection. Conclusion: We established a LT-PCR-based FR+-CTC detection platform for patients with lung cancer that exhibits high sensitivity and specificity. This platform would be clinical useful in lung cancer diagnosis and treatment response assessment. PMID:28123603

  13. Identification and characterization of a cell surface scavenger receptor cysteine-rich protein of Sciaenops ocellatus: bacterial interaction and its dependence on the conserved structural features of the SRCR domain.

    PubMed

    Qiu, Reng; Sun, Bo-Guang; Li, Jun; Liu, Xiao; Sun, Li

    2013-03-01

    The scavenger receptor cysteine-rich (SRCR) proteins are secreted or membrane-bound receptors with one or multiple SRCR domains. Members of the SRCR superfamily are known to have diverse functions that include pathogen recognition and immunoregulation. In teleost, although protein sequences with SRCR structure have been identified in some species, very little functional investigation has been carried out. In this study, we identified and characterized a teleost SRCR protein from red drum Sciaenops ocellatus. The protein was named S. ocellatus SRCR1 (SoSRCRP1). SoSRCRP1 is 410-residue in length and was predicted to be a transmembrane protein, with the extracellular region containing a collagen triple helix repeat and a SRCR domain. The SRCR domain has six conserved cysteines, of which, C338 and C399, C351 and C409, and C379 and C389 were predicted to form three disulfide bonds. SoSRCRP1 expression was detected mainly in immune-relevant tissues and upregulated by bacterial and viral infection. In head kidney leukocytes, bacterial infection stimulated the expression of SoSRCRP1, and the expressed SoSRCRP1 was localized on cell surface. Recombinant SoSRCRP1 (rSoSRCRP1) corresponding to the SRCR domain was purified from Escherichia coli and found to be able to bind Gram-negative and Gram-positive bacteria. To examine the structure-function relationship of SoSRCRP1, the mutant proteins SoSRCRP1M1, SoSRCRP1M2, SoSRCRP1M3, and SoSRCRP1M4 were created, which bear C351S and C409S, C338S, C379S, and R325A mutations respectively. Compared to rSoSRCRP1, all mutants were significantly reduced in the ability of bacterial interaction, with the highest reduction observed with SoSRCRP1M4. Taken together, these results indicate that SoSRCRP1 is a cell surface-localized SRCR protein that binds bacterial ligands in a manner that depends on the conserved structural features of the SRCR domain.

  14. Isolation and characterisation of the human lung NK-2 receptor gene using rapid amplification of cDNA ends.

    PubMed

    Graham, A; Hopkins, B; Powell, S J; Danks, P; Briggs, I

    1991-05-31

    Functional cDNA clones for human NK-2 receptor were isolated from human lung RNA using a polymerase chain reaction (PCR) based method (RACE-PCR). In this method the cDNA was isolated as 5' end and 3'-end fragments; the entire cDNA was obtained by RNA-PCR. The sequence derived was 398 amino acids in length encoding an open-reading frame that was highly homologous to both the bovine and rat NK-2 receptor. The entire human cDNA sequence was cloned into a mammalian expression vector and mRNA was synthesised by in vitro transcription. Applications of tachykinins caused membrane current responses in Xenopus oocytes injected with the in vitro synthesised mRNA. The most potent of the three tachykinin peptides tested was neurokinin A. We have screened a human cosmid library and isolated a clone which contains the entire NK-2 receptor gene. The gene contains five exons and we have determined the complete sequence of the exons and the intron-exon junctions.

  15. Acceleration of Lung Regeneration by Platelet-Rich Plasma Extract through the Low-Density Lipoprotein Receptor-Related Protein 5-Tie2 Pathway.

    PubMed

    Mammoto, Tadanori; Chen, Zhao; Jiang, Amanda; Jiang, Elisabeth; Ingber, Donald E; Mammoto, Akiko

    2016-01-01

    Angiogenesis, the growth of new blood vessels, plays a key role in organ development, homeostasis, and regeneration. The cooperation of multiple angiogenic factors, rather than a single factor, is required for physiological angiogenesis. Recently, we have reported that soluble platelet-rich plasma (PRP) extract, which contains abundant angiopoietin-1 and multiple other angiogenic factors, stimulates angiogenesis and maintains vascular integrity in vitro and in vivo. In this report, we have demonstrated that mouse PRP extract increases phosphorylation levels of the Wnt coreceptor low-density lipoprotein receptor-related protein 5 (LRP5) and thereby activates angiogenic factor receptor Tie2 in endothelial cells (ECs) and accelerates EC sprouting and lung epithelial cell budding in vitro. PRP extract also increases phosphorylation levels of Tie2 in the mouse lungs and accelerates compensatory lung growth and recovery of exercise capacity after unilateral pneumonectomy in mice, whereas soluble Tie2 receptor or Lrp5 knockdown attenuates the effects of PRP extract. Because human PRP extract is generated from autologous peripheral blood and can be stored at -80°C, our findings may lead to the development of novel therapeutic interventions for various angiogenesis-related lung diseases and to the improvement of strategies for lung regeneration.

  16. Mechanisms of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Resistance and Strategies to Overcome Resistance in Lung Adenocarcinoma

    PubMed Central

    Chang, Yoon Soo; Choi, Chang-Min

    2016-01-01

    Somatic mutations that lead to hyperactivation of epidermal growth factor receptor (EGFR) signaling are detected in approximately 50% of lung adenocarcinoma in people from the Far East population and tyrosine kinase inhibitors are now the standard first line treatment for advanced disease. They have led to a doubling of progression-free survival and an increase in overall survival by more than 2 years. However, emergence of resistant clones has become the primary cause for treatment failure, and has created a new challenge in the daily management of patients with EGFR mutations. Identification of mechanisms leading to inhibitor resistance has led to new therapeutic modalities, some of which have now been adapted for patients with unsuccessful tyrosine kinase inhibitor treatment. In this review, we describe mechanisms of tyrosine kinase inhibitor resistance and the available strategies to overcoming resistance. PMID:27790276

  17. Bazex Syndrome in Lung Squamous Cell Carcinoma: High Expression of Epidermal Growth Factor Receptor in Lesional Keratinocytes with Th2 Immune Shift

    PubMed Central

    Amano, Maki; Hanafusa, Takaaki; Chikazawa, Sakiko; Ueno, Makiko; Namiki, Takeshi; Igawa, Ken; Miura, Keiko; Yokozeki, Hiroo

    2016-01-01

    An 82-year-old Japanese man was referred for detailed examination of hyperkeratotic erythematous plaques on his palms and soles for 6 months. Two weeks before his first visit, he had undergone lung lobectomy for right lung squamous cell carcinoma (SCC). Laboratory findings showed elevations of eosinophil counts, serum IgE, thymus and activation-regulated chemokine, SCC antigen, and soluble interleukin-2 receptor levels. Histological results of a skin biopsy involving the left palm showed psoriasiform dermatitis. Before lung lobectomy, the hyperkeratotic erythematous plaques on the palms and soles and the erythemas on the trunk and extremities were difficult to treat with topical steroids. After lobectomy, the skin symptoms dramatically and rapidly subsided with topical steroids. Therefore, we diagnosed Bazex syndrome (BS), also known as acrokeratosis paraneoplastica, as a paraneoplastic cutaneous disease in lung SCC. The mild eosinophilia subsided and levels of SCC antigen, IgE, and soluble interleukin-2 receptor were reduced. BS is a paraneoplastic cutaneous disease characterized by acral psoriasiform lesions associated with an underlying neoplasm. In a previous report, a shift to the Th2 immune condition was found in patients with non-small cell lung cancer, as shown in our patient. Epidermal growth factor receptor (EGFR) is also known as tumor growth factor-α receptor; it is increased in psoriatic keratinocytes. In our case, EGFR expression increased in lesional keratinocytes 2 weeks after surgery and decreased 4 weeks after surgery. We speculate that a shift to Th2 immune reactions in lung SCC may be the pathogenesis of BS, whereby lesional keratinocytes highly express EGFR in parallel with disease activity. PMID:28101024

  18. Serum estrogen and tumor-positive estrogen receptor-alpha are strong prognostic classifiers of non-small-cell lung cancer survival in both men and women.

    PubMed

    Olivo-Marston, Susan E; Mechanic, Leah E; Mollerup, Steen; Bowman, Elise D; Remaley, Alan T; Forman, Michele R; Skaug, Vidar; Zheng, Yun-Ling; Haugen, Aage; Harris, Curtis C

    2010-10-01

    The role of tumor estrogen receptors (ERs) and serum estrogen in lung cancer is inconclusive. We investigated the hypothesis that ERs and functional single-nucleotide polymorphisms in the estrogen biosynthesis pathway are associated with poorer lung cancer survival. Lung cancer patients (n = 305) from a National Cancer Institute-Maryland (NCI-MD) case-case cohort in the Baltimore metropolitan area were used as a test cohort. To validate, 227 cases from the NCI-MD case-control cohort and 293 cases from a Norwegian lung cancer cohort were studied. Information on demographics, tobacco and reproductive histories was collected in an interviewer-administered questionnaire. Serum estrogen, progesterone, tumor messenger RNA expression of hormone receptors and germ line DNA polymorphisms were analyzed for associations with lung cancer survival. Patients in the highest tertile of serum estrogen had worse survival in all three cohorts (P combined < 0.001). Furthermore, the variant allele of estrogen receptor alpha (ER-α) polymorphism (rs2228480) was significantly associated with increased tumor ER-α levels and worse survival in all three cohorts [hazard ratio (HR) = 2.59, 95% confidence interval (CI): 1.20- 4.01; HR = 1.76, 95% CI: 1.08-2.87 and HR = 2.85, 95% CI: 1.31-4.36). Other polymorphisms associated with lower serum estrogen correlated with improved survival. Results were independent of gender and hormone replacement therapy. We report a significant association of increased serum estrogen with poorer survival among lung cancer male and female patients. Understanding the genetic control of estrogen biosynthesis and response in lung cancer could lead to improved prognosis and therapy.

  19. Expression of Toll-like receptor 4 in lungs of immune-suppressed rat with Acinetobacter baumannii infection

    PubMed Central

    Wang, Yanmei; Zhang, Xiaohong; Feng, Xuanlin; Liu, Xiaoshu; Deng, Lei; Liang, Zong-An

    2016-01-01

    Toll-like receptor 4 (TLR4) is involved in the regulation of host responses to Acinetobacter baumannii (A. baumannii). The aim of the present study was to examine the function of TLR4 in lung inflammation in immune-suppressed rats with A. baumannii infection. A total of 72 Sprague-Dawley male rats were randomly divided into the control, A. baumannii infection and immune-suppressed infection groups. The immune-suppressed infection group was treated with 100 mg/kg hydrocortisone by subcutaneous injection every other day for 2 weeks prior to A. baumannii infection. Lung tissue was obtained on the 3rd and 7th day after tracheal inoculation with A. baumannii. The expression of TLR4 in bronchial and alveolar epithelial cells, and alveolar macrophage was examined using immunohistochemistry. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α in bronchoalveolar lavage fluid were detected using ELISA. The results showed that in the control group, the expression of TLR4 was upregulated in the bronchial and alveolar epithelial, and alveolar macrophages, and the levels of IL-6 and TNF-α were increased in the early phase of A. baumannii infection. On the 7th day, no significant difference in the levels of IL-6 and TNF-α was observed between the A. baumannii infection and control groups. Conversely, the expression of TLR4 was downregulated in the immune-suppressed group, and the levels of IL-6 and TNF-α were reduced on the 3rd day after infection. In the subsequent observation period, the expression of TLR4 was upregulated and the levels of IL-6 and TNF-α were increased. In conclusion, the results show a critical role of TLR4 in mediating effective immune response in the lung of rat with A. baumannii infection. PMID:27703512

  20. TGF-β1 Upregulates the Expression of Triggering Receptor Expressed on Myeloid Cells 1 in Murine Lungs.

    PubMed

    Peng, Li; Zhou, Yong; Dong, Liang; Chen, Rui-Qi; Sun, Guo-Ying; Liu, Tian; Ran, Wen-Zhuo; Fang, Xiang; Jiang, Jian-Xin; Guan, Cha-Xiang

    2016-01-07

    Triggering receptor expressed on myeloid cells 1 (TREM-1) increases the expression of TGF-β family genes, which are known as profibrogenic cytokines in the pathogenesis of pulmonary fibrosis. In this study, we determined whether TGF-β1 regulated the expression of TREM-1 in a mouse model of pulmonary fibrosis. The expression of TGF-β1 and TREM-1 was increased on day 7, 14, and 21 after single intratracheal injection of bleomycin (BLM). And there was positive correlation between the expression of TGF-β1 and TREM-1. TGF-β1 increased expression of TREM-1 mRNA and protein in a time- and dose-dependent manner in mouse macrophages. The expression of the activator protein 1 (AP-1) was increased in lung tissues from mouse after BLM injection and in mouse macrophages after TGF-β1 treatment, respectively. TGF-β1 significantly increased the relative activity of luciferase in the cells transfected with plasmid contenting wild type-promoter of TREM-1. But TGF-β1 had no effect on the activity of luciferase in the cells transfected with a mutant-TREM1 plasmid carrying mutations in the AP-1 promoter binding site. In conclusion, we found the expression of TREM-1 was increased in lung tissues from mice with pulmonary fibrosis. TGF-β1 increased the expression of TREM-1 in mouse macrophages partly via the transcription factor AP-1.

  1. Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca(2+)-ATPase, and inositol trisphosphate receptor.

    PubMed Central

    Schnitzer, J E; Oh, P; Jacobson, B S; Dvorak, A M

    1995-01-01

    A distinctive feature of many endothelia is an abundant population of noncoated plasmalemmal vesicles, or caveolae. Caveolae have been implicated in many important cellular processes, including transcytosis, endocytosis, potocytosis, and even signal transduction. Because caveolae have not been purified from endothelial cell surfaces, little is known directly about their structure and function in the endothelium. To delineate the transport role of these caveolae, we purified them from isolated luminal endothelial plasma membranes of rat lung. The rat lung luminal endothelial cell surfaces were isolated after coating them, in situ, with positively charged colloidal silica. The caveolae were then separated from these coated membranes and purified to yield a homogeneous population of morphologically distinct vesicles enriched in the structural protein caveolin. As with caveolae found on the endothelial cell surface in vivo, these highly purified caveolae contained the plasmalemmal Ca(2+)-ATPase and inositol 1,4,5-trisphosphate surface receptors. By contrast, other plasma membrane proteins were excluded from the caveolae, including angiotensin-converting enzyme, beta-actin, and band 4.1. The purified caveolae appeared to represent specific microdomains of the cell surface with their own unique molecular topography. Images Fig. 2 Fig. 3 Fig. 5 PMID:7878055

  2. Toll-Like Receptor 4 Agonistic Antibody Promotes Host Defense against Chronic Pseudomonas aeruginosa Lung Infection in Mice

    PubMed Central

    Iwanaga, Naoki; Seki, Masafumi; Fukudome, Kenji; Oshima, Kazuhiro; Miyazaki, Taiga; Izumikawa, Koichi; Yanagihara, Katsunori; Miyazaki, Yoshitsugu; Mukae, Hiroshi; Kohno, Shigeru

    2016-01-01

    Chronic lower respiratory tract infection with Pseudomonas aeruginosa is difficult to treat due to enhanced antibiotic resistance and decreased efficacy of drug delivery to destroyed lung tissue. To determine the potential for restorative immunomodulation therapies, we evaluated the effect of Toll-like receptor 4 (TLR4) stimulation on the host immune response to Pseudomonas infection in mice. We implanted sterile plastic tubes precoated with P. aeruginosa in the bronchi of mice, administered the TLR4/MD2 agonistic monoclonal antibody UT12 intraperitoneally every week, and subsequently analyzed the numbers of viable bacteria and inflammatory cells and the levels of cytokines. We also performed flow cytometry-based phagocytosis and opsonophagocytic killing assays in vitro using UT12-treated murine peritoneal neutrophils. UT12-treated mice showed significantly enhanced bacterial clearance, increased numbers of Ly6G+ neutrophils, and increased concentrations of macrophage inflammatory protein 2 (MIP-2) in the lungs (P < 0.05). Depletion of CD4+ T cells eliminated the ability of the UT12 treatment to improve bacterial clearance and promote neutrophil recruitment and MIP-2 production. Additionally, UT12-pretreated peritoneal neutrophils exhibited increased opsonophagocytic killing activity via activation of the serine protease pathway, specifically neutrophil elastase activity, in a TLR4-dependent manner. These data indicated that UT12 administration significantly augmented the innate immune response against chronic bacterial infection, in part by promoting neutrophil recruitment and bactericidal function. PMID:27091927

  3. Ozone-induced airway epithelial cell death, the neurokinin-1 receptor pathway, and the postnatal developing lung

    PubMed Central

    Murphy, Shannon R.; Oslund, Karen L.; Hyde, Dallas M.; Miller, Lisa A.; Van Winkle, Laura S.

    2014-01-01

    Children are uniquely susceptible to ozone because airway and lung growth continue for an extensive period after birth. Early-life exposure of the rhesus monkey to repeated ozone cycles results in region-specific disrupted airway/lung growth, but the mediators and mechanisms are poorly understood. Substance P (SP), neurokinin-1 receptor (NK-1R); and nuclear receptor Nur77 (NR4A1) are signaling pathway components involved in ozone-induced cell death. We hypothesize that acute ozone (AO) exposure during postnatal airway development disrupts SP/NK-1R/Nur77 pathway expression and that these changes correlate with increased ozone-induced cell death. Our objectives were to 1) spatially define the normal development of the SP/NK-1R/Nur77 pathway in conducting airways; 2) compare how postnatal age modulates responses to AO exposure; and 3) determine how concomitant, episodic ozone exposure modifies age-specific acute responses. Male infant rhesus monkeys were assigned at age 1 mo to two age groups, 2 or 6 mo, and then to one of three exposure subgroups: filtered air (FA), FA+AO (AO: 8 h/day × 2 days), or episodic biweekly ozone exposure cycles (EAO: 8 h/day × 5 days/14-day cycle+AO). O3 = 0.5 ppm. We found that 1) ozone increases SP/NK-1R/Nur77 pathway expression in conducting airways, 2) an ozone exposure cycle (5 days/cycle) delivered early at age 2 mo resulted in an airway that was hypersensitive to AO exposure at the end of 2 mo, and 3) continued episodic exposure (11 cycles) resulted in an airway that was hyposensitive to AO exposure at 6 mo. These observations collectively associate with greater overall inflammation and epithelial cell death, particularly in early postnatal (2 mo), distal airways. PMID:25063800

  4. Identification of novel driver mutations of the discoidin domain receptor 2 (DDR2) gene in squamous cell lung cancer of Chinese patients

    PubMed Central

    2014-01-01

    Background Although many of the recently approved genomically targeted therapies have improved outcomes for patients in non–small-cell lung cancer (NSCLC) with lung adenocarcinoma, little is known about the genomic alterations that drive lung squamous cell cancer (SCC) and development of effective targeted therapies in lung SCC is a promising area to be further investigated. Discoidin domain receptor 2 (DDR2), is a novel receptor tyrosine kinases that respond to several collagens and involved in tissue repair, primary and metastatic cancer progression. Methods Expression of DDR2 mRNA was analyzed in 54 lung SCC tissues by qRT-PCR. Over-expression approaches were used to investigate the biological functions of DDR2 and its’ mutations in lung SCC cells. Conventional Sanger sequencing was used to investigate the mutations of DDR2 gene in 86 samples. The effect of DDR2 and its’ mutations on proliferation was evaluated by MTT and colony formation assays; cell migration and invasion was evaluated by trasnwell assays. Lung SCC cells stably transfected with pEGFP-DDR2 WT, pEGFP-DDR2-S131C or empty vector were injection into nude mice to study the effect of DDR2 and its’ mutation on tumorigenesis in vivo. Protein and mRNA expression levels of E-cadherin and MMP2 were determined by qRT-PCR and western blot analysis. Differences between groups were tested for significance using Student’s t-test (two-tailed). Results In this study, we found that DDR2 mRNA levels were significantly decreased in 54 lung SCC tissues compared with normal lung tissues. Moreover, there were 3 novel DDR2 mutations (G531V, S131C, T681I) in 4 patients and provide the mutation rate of 4.6% in the 86 patients with lung SCC. The mutation of S131C in DDR2 could promote lung SCC cells proliferation, migration and invasion via inducing MMP-2, but reducing E-cadherin expression. Conclusions These data indicated that the novel DDR2 mutation may contribute to the development and progression of lung

  5. Possible role of the α7 nicotinic receptors in mediating nicotine’s effect on developing lung – implications in unexplained human perinatal death

    PubMed Central

    2014-01-01

    Background It is well known that maternal smoking during pregnancy is very harmful to the fetus. Prenatal nicotine absorption, in particular, is associated with alterations in lung development and functions at birth and with respiratory disorders in infancy. Many of the pulmonary disorders are mediated by the interaction of nicotine with the nicotinic receptors (nAChRs), above all with the α7 nAChR subunits that are widely expressed in the developing lung. To determine whether the lung hypoplasia frequently observed in victims of sudden fetal and neonatal death with a smoker mother may result from nicotine interacting with lung nicotinic receptors, we investigated by immunohistochemistry the possible presence of the α7 nAChR subunit overexpression in these pathologies. Methods In lung histological sections from 45 subjects who died of sudden intrauterine unexplained death syndrome (SIUDS) and 15 subjects who died of sudden infant death syndrome (SIDS), we applied the radial alveolar count (RAC) to evaluate the degree of lung maturation, and the immunohistochemical technique for nAChRs, in particular for the α7 nAChR subunit identification. In the same cases, an in-depth study of the autonomic nervous system was performed to highlight possible developmental alterations of the main vital centers located in the brainstem. Results We diagnosed a “lung hypoplasia”, on the basis of RAC values lower than the normal reference values, in 63% of SIUDS/SIDS cases and 8% of controls. In addition, we observed a significantly higher incidence of strong α7 nAChR immunostaining in lung epithelial cells and lung vessel walls in sudden fetal and infant death cases with a smoker mother than in age-matched controls. Hypoplasia of the raphe, the parafacial, the Kölliker-Fuse, the arcuate and the pre-Bötzinger nuclei was at the same time present in the brainstem of these victims. Conclusions These findings demonstrate that when crossing the placenta, nicotine can interact with

  6. Respective contributions of intestinal Niemann-Pick C1-like 1 and scavenger receptor class B type I to cholesterol and tocopherol uptake: in vivo v. in vitro studies.

    PubMed

    Reboul, Emmanuelle; Soayfane, Zeina; Goncalves, Aurélie; Cantiello, Michela; Bott, Romain; Nauze, Michel; Tercé, François; Collet, Xavier; Coméra, Christine

    2012-05-01

    The intestinal absorption of cholesterol and lipid micronutrients such as vitamin E has been shown to share some common pathways. The present study aims to further compare the uptake of cholesterol ([3H]cholesterol v. 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3-ol (NBD-cholesterol)) and tocopherol in Caco-2 TC-7 cells and in mouse intestine, with special focus on the respective roles of scavenger receptor class B type I (SR-BI) and Niemann-Pick C1-like 1 (NPC1L1). Conversely to NBD-cholesterol, the uptakes of [3H]cholesterol and tocopherol by Caco-2 cells were impaired by both block lipid transport-1 and ezetimibe, which inhibit SR-BI and NPC1L1, respectively. These inhibitions occurred only when cholesterol or tocopherol was delivered to cells included in micelles that contained biliary acid and at least oleic acid as a lipid. In vivo, after 2 h of digestion in mice, the uptake of the two cholesterol analogues and of tocopherol all showed distinct patterns along the duodenum-jejunum axis. [3H]Cholesterol uptake, which correlated closely to NPC1L1 mRNA expression in wild-type (wt) mice, was strongly inhibited by ezetimibe. Intestinal SR-BI overexpression did not change NPC1L1 expression and led to a significant increase in [3H]cholesterol uptake in the distal jejunum. Conversely, neither ezetimibe treatment nor SR-BI overexpression had an effect on NBD-cholesterol uptake. However, in contrast with SR-BI mRNA expression, tocopherol absorption increased strongly up to the distal jejunum in wt mice where it was specifically inhibited by ezetimibe, and was increased in the proximal intestine of intestinal SR-BI-overexpressing mice. Thus, cholesterol and tocopherol uptakes share common pathways in cell culture models, but display different in vivo absorption patterns associated with distinct contributions of SR-BI and NPC1L1.

  7. Scavenging for Better Library Instruction.

    ERIC Educational Resources Information Center

    Cocking, Terry S.; Schafer, Susan A.

    1994-01-01

    Describes the Library Scavenger Hunt program at Baylor University (part of the reading and study skills program) which emphasizes learning what sources are available in a college library, where they are located, and how to use them. (SR)

  8. Epidermal Growth Factor Receptor targeting in non-small cell lung cancer: revisiting different strategies against the same target.

    PubMed

    Castañón, Eduardo; Martín, Patricia; Rolfo, Christian; Fusco, Juan P; Ceniceros, Lucía; Legaspi, Jairo; Santisteban, Marta; Gil-Bazo, Ignacio

    2014-01-01

    Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) have changed the paradigm of treatment in non-small cell lung cancer (NSCLC). The molecular biology study of EGFR has led to clinical trials that select patients more accurately, regarding the presence of EGFR activating mutations. Nonetheless, a lack of response or a temporary condition of the response has been detected in patients on EGFR TKIs. This has urged to study potential resistance mechanisms underneath. The most important ones are the presence of secondary mutations in EGFR, such as T790M, or the overexpression of mesenchymal-epithelial transition factor (MET) that may explain why patients who initially respond to EGFR TKIs, may ultimately become refractory. Several approaches have been taken and new drugs both targeting EGFR resistance-mutation or MET are currently being developed. Here we review and update the EGFR biological pathway as well as the clinical data leading to approval of the EGFR TKIs currently in the market. New compounds under investigation targeting resistance mutations or dually targeting EGFR and other relevant receptors are also reviewed and discussed.

  9. Frequent overexpression of ErbB--receptor family members in brain metastases of non-small cell lung cancer patients.

    PubMed

    Berghoff, Anna Sophie; Magerle, Manuel; Ilhan-Mutlu, Ayseguel; Dinhof, Carina; Widhalm, Georg; Dieckman, Karin; Marosi, Christine; Wöhrer, Adelheid; Hackl, Monika; Zöchbauer-Müller, Sabine; Preusser, Matthias; Birner, Peter

    2013-12-01

    The ErbB receptor family has been implicated in brain metastases (BM) formation in various cancer types and specific targeted therapies are available. We investigated the overexpression of EGFR, HER2 and HER3 in BM of non-small cell lung cancer (NSCLC) patients to get a better insight on pathobiology of BM and potential drugable targets. We performed immunohistochemical analysis of EGFR, HER2 and HER3 on tissue microarrays of 131 NSCLC-BM. Fifty-one of 131 (38.9%) specimens were considered as positive for EGFR overexpression, 12/131 (9.2%) for HER2 and 27/131 (20.6%) for HER3 respectively. Sixty-nine of 131 (52.7%) of the cases showed overexpression of at least one marker. Four of 131 (3.1%) were positive for all three markers. Strong correlation was observed between HER2 and HER3 overexpression (p = 0.009; Chi-square test after Bonferroni-Holmes correction). No statistically significant correlation of EGFR, HER2 or HER3 overexpression with clinico-pathological parameters including overall survival times was observed. We observed overexpression of ErbB receptor family members, which represent established therapeutic targets in various primary tumours, in approximately half of NSCLC-BM. Further studies should investigate the role of the ErbB pathway in development of and as a therapeutic target in BM of NSCLC patients.

  10. Receptor for advanced glycation end products involved in lung ischemia reperfusion injury in cardiopulmonary bypass attenuated by controlled oxygen reperfusion in a canine model.

    PubMed

    Rong, Jian; Ye, Sheng; Liang, Meng-ya; Chen, Guang-xian; Liu, Hai; Zhang, Jin-Xin; Wu, Zhong-kai

    2013-01-01

    Controlled oxygen reperfusion could protect the lung against ischemia-reperfusion injury in cardiopulmonary bypass (CPB) by downregulating high mobility group box 1 (HMGB1), a high affinity receptor of HMGB1. This study investigated the effect of controlled oxygen reperfusion on receptor for advanced glycation end products (RAGE) expression and its downstream effects on lung ischemia-reperfusion injury. Fourteen canines received CPB with 60 minutes of aortic clamping and cardioplegic arrest followed by 90 minutes of reperfusion. Animals were randomized to receive 80% FiO2 during the entire procedure (control group) or to a test group receiving a controlled oxygen reperfusion protocol. Pathologic changes in lung tissues, RAGE expression, serum interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were evaluated. The lung pathologic scores after 25 and 90 minutes of reperfusion were significantly lower in the test group compared with the control group (p < 0.001). RAGE expression, TNF-α, and IL-6 were downregulated by controlled oxygen treatment (p < 0.001). RAGE might be involved in the lung ischemia-reperfusion injury in canine model of CPB, which was downregulated by controlled oxygen reperfusion.

  11. Mesenchymal stem cells protects hyperoxia-induced lung injury in newborn rats via inhibiting receptor for advanced glycation end-products/nuclear factor κB signaling.

    PubMed

    Tian, Zhaofang; Li, Yuhong; Ji, Ping; Zhao, Sai; Cheng, Huaipin

    2013-02-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown recently to ameliorate hyperoxia-induced lung injury, but the underlying mechanism remains unclear. This study aimed to determine whether BMSCs attenuate hyperoxia-induced lung injury by down-modulating the inflammatory RAGE/NF-κB (receptor for advanced glycation end-products/nuclear factor-κB) signaling. Thirty Sprague-Dawley newborn rats were randomly divided into three groups (n = 10): sham control (C); hyperoxia-induced acute lung injury (ALI) (B) and ALI with BMSCs transplantation (A). Rats were sacrificed at three-day post-transplantation. RAGE and NF-κB expression in lung tissue was detected by reverse transcription polymerase chain reaction, Western blot and immunohistochemistry analysis. The levels of tumor necrosis factor α (TNF-α) and RAGE in bronchoalveolar lavage fluid (BALF) and in serum were detected by enzyme-linked immunosorbent assay. The lung damage was evaluated by histological examination. The results showed that RAGE and TNF-α concentrations in BALF were significantly lower in Group A than in Group B. Moreover, RAGE and NF-κB expression in lung tissue at mRNA and protein concentrations was significantly lower in Group A than in Group B. The lung damage score was significantly lower in Group A than in Group B. These data demonstrate that hyperoxia induces the inflammation and causes damage in the lung but BMSC transplantation could alleviate hyperoxia-induced lung injury by inhibiting the inflammatory process mediated by RAGE/NF-κB signaling.

  12. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib-resistance of EML4-ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors.

    PubMed

    Taniguchi, Hirokazu; Takeuchi, Shinji; Fukuda, Koji; Nakagawa, Takayuki; Arai, Sachiko; Nanjo, Shigeki; Yamada, Tadaaki; Yamaguchi, Hiroyuki; Mukae, Hiroshi; Yano, Seiji

    2017-01-01

    Crizotinib, a first-generation anaplastic lymphoma kinase (ALK) tyrosine-kinase inhibitor, is known to be effective against echinoderm microtubule-associated protein-like 4 (EML4)-ALK-positive non-small cell lung cancers. Nonetheless, the tumors subsequently become resistant to crizotinib and recur in almost every case. The mechanism of the acquired resistance needs to be deciphered. In this study, we established crizotinib-resistant cells (A925LPE3-CR) via long-term administration of crizotinib to a mouse model of pleural carcinomatous effusions; this model involved implantation of the A925LPE3 cell line, which harbors the EML4-ALK gene rearrangement. The resistant cells did not have the secondary ALK mutations frequently occurring in crizotinib-resistant cells, and these cells were cross-resistant to alectinib and ceritinib as well. In cell clone #2, which is one of the clones of A925LPE3-CR, crizotinib sensitivity was restored via the inhibition of epidermal growth factor receptor (EGFR) by means of an EGFR tyrosine-kinase inhibitor (erlotinib) or an anti-EGFR antibody (cetuximab) in vitro and in the murine xenograft model. Cell clone #2 did not have an EGFR mutation, but the expression of amphiregulin (AREG), one of EGFR ligands, was significantly increased. A knockdown of AREG with small interfering RNAs restored the sensitivity to crizotinib. These data suggest that overexpression of EGFR ligands such as AREG can cause resistance to crizotinib, and that inhibition of EGFR signaling may be a promising strategy to overcome crizotinib resistance in EML4-ALK lung cancer.

  13. Attenuation of amiodarone induced lung fibrosis and phospholipidosis in hamsters, by treatment with the platelet activating factor receptor antagonist, WEB 2086

    PubMed Central

    Hyde, D. M.; Haynam, D. R.; Casias, M.

    1993-01-01

    Therapeutic use of amiodarone (AMD), a Class III antiarrhythmic drug is complicated by the development of lung fibrosis (LF) and phospholipidosis (PL). In the present study, the effectiveness of a PAF antagonist, WEB 2086, against AMD induced LF and PL has been tested in hamsters. The animals were randomly divided into four groups: (1) saline + H2O; (2) WEB + H2O; (3) saline + AMD; and (4) WEB + AMD. Saline or WEB (10 mg/kg i.p.) was given 2 days prior to intratracheal instillation of water or AMD (1.5 μmol/0.25 ml/100 g BW) and thereafter daily throughout the study. Twenty-eight days after intratracheal instillation, the animals were killed and the lungs processed for various assays. The amount of lung hydroxyproline, an index of LF, in saline + H2O, WEB + H2O, saline + AMD, and WEB + AMD groups were 959 ± 46, 1035 ± 51, 1605 ± 85 and 1374 ± 69 μg/lung, respectively. Total lung PL, an index of phospholipidosis, in the corresponding groups were 8.4 ± 0.4, 8.3 ± 0.3, 11.7 ± 0.3 and 9.9 μg/lung. Lung malondialdehyde, an index of lipid peroxidation and superoxide dismutase activity in saline + H2O WEB + H2O, saline + AMD, and WEB + AMD were 93.0 ± 4.3, 93.0 ± 2.7, 138.9 ± 6.0 and 109.0 ± 3.8 nmol/lung and 359.7 ± 13.9, 394.0 ± 22.8, 497.5 ± 19.7 and 425.5 ± 4.9 units/lung, respectively. Administration of AMD alone caused significant increases in all the above indexes of lung toxicity, and treatment with WEB 2086 minimized the AMD induced toxicity as reflected by significant decreases in these indexes. Histopathological studies revealed a marked reduction in the extent and severity of lung lesions in the WEB + AMD group compared with the saline + AMD group. Treatment with WEB 2086 also reduced the acute mortality from 35% in saline + AMD group to 22% in WEB + AMD group. It was concluded that PAF is involved in the AMD induced lung fibrosis and phospholipidosis and that the PAF receptor antagonist may, therefore, be potentially useful in reducing AMD

  14. Fucoidan inhibition of lung cancer in vivo and in vitro : role of the Smurf2-dependent ubiquitin proteasome pathway in TGFβ receptor degradation.

    PubMed

    Hsu, Hsien-Yeh; Lin, Tung-Yi; Wu, Yu-Chung; Tsao, Shu-Ming; Hwang, Pai-An; Shih, Yu-Wei; Hsu, Jason

    2014-09-15

    Fucoidan, a polysaccharide extracted from brown seaweeds, reduces tumor cell proliferation. In this study, we demonstrate that fucoidan reduces tumor size in LLC1-xenograft male C57BL/6 mice. Moreover, we found that LLC1-bearing mice continuously fed fucoidan showed greater antitumor activity than mice with discontinuous feeding. Fucoidan inhibited the in vitro growth of lung cancer cells. Transforming growth factor β (TGFβ) receptors (TGFRs) play important roles in the regulation of proliferation and progression, and high TGFRI expression in lung cancer specimens is associated with a worse prognosis. Herein, using lung cancer cells, we found that fucoidan effectively reduces TGFRI and TGFRII protein levels in vivo and in vitro. Moreover, fucoidan reduces TGFR downstream signaling events, including those in Smad2/3 and non-Smad pathways: Akt, Erk1/2, and FAK phosphorylation. Furthermore, fucoidan suppresses lung cancer cell mobility upon TGFβ stimulation. To elucidate how fucoidan decreases TGFR proteins in lung cancer cells, we found that fucoidan enhances the ubiquitination proteasome pathway (UPP)-mediated degradation of TGFRs in A549 and CL1-5 cells. Mechanistically, fucoidan promotes Smurf2 and Smad7 to conjugate TGFRs, resulting in TGF degradation; however, Smurf2-shRNA abolishes fucoidan-enhanced UPP-mediated TGFR degradation. Our study is the first to identify a novel mechanism for the antitumor activity of fucoidan, namely decreasing tumor growth by modulating the TGFR/Smad7/Smurf2-dependent axis, leading to TGFR protein degradation and inhibition of lung cancer cell progression in vitro and in vivo. Our current findings indicate that fucoidan is a potential therapeutic agent or dietary supplementation for lung cancer, acting via the Smurf2-dependent ubiquitin degradation of TGFβ receptors.

  15. Establishment and characterization of a singaporean chinese lung adenocarcinoma cell line with four copies of the epidermal growth factor receptor gene.

    PubMed

    Choong, Meng Ling; Yong, Jacklyn; Wang, Yu; Lee, May Ann

    2014-08-01

    We have established a lung adenocarcinoma cell line, ETCC016, from lung pleural effusion of a male Singaporean Chinese with advanced lung adenocarcinoma. The subject smoked 20 cigarettes per day for more than 30 years. The cell line arose from spontaneous transformation of cells grown in a collagen-coated culture dish. Transformed characteristics of the cell line include the ability to reach high confluency in a culture dish, low cell doubling time, ability to form colonies in soft agar, and ability to form solid tumor in immune-compromised SCID mice. Immunostaining showed that the cells originated from lung epithelial cells. Genomic analysis revealed a large amount of chromosomal aberrations (gain and loss of genetic materials, and loss of heterozygosity [LOH]), indicative of a long history of smoking. The cells have four copies of epidermal growth factor receptor (EGFR) and three copies of MYC, but have lost one copy of the RB1 gene. LOH was detected in TP53 and BRAF genes. There is no anaplastic lymphoma kinase (ALK) gene rearrangement. The ETCC016 lung adenocarcinoma cell line has demonstrated susceptibility towards inhibitors specific for EGFR/HER2 and ALK targets, but resistance to MYC-specific inhibitor. This cell line will be a useful model for further understanding of lung adenocarcinoma.

  16. AM966, an Antagonist of Lysophosphatidic Acid Receptor 1, Increases Lung Microvascular Endothelial Permeability through Activation of Rho Signaling Pathway and Phosphorylation of VE-Cadherin

    PubMed Central

    Cai, Junting; Suber, Tomeka

    2017-01-01

    Maintenance of pulmonary endothelial barrier integrity is important for reducing severity of lung injury. Lysophosphatidic acid (LPA) regulates cell motility, cytoskeletal rearrangement, and cell growth. Knockdown of LPA receptor 1 (LPA1) has been shown to mitigate lung injury and pulmonary fibrosis. AM966, an LPA1 antagonist exhibiting an antifibrotic property, has been considered to be a future antifibrotic medicine. Here, we report an unexpected effect of AM966, which increases lung endothelial barrier permeability. An electric cell-substrate sensing (ECIS) system was used to measure permeability in human lung microvascular endothelial cells (HLMVECs). AM966 decreased the transendothelial electrical resistance (TEER) value immediately in a dose-dependent manner. VE-cadherin and f-actin double immunostaining reveals that AM966 increases stress fibers and gap formation between endothelial cells. AM966 induced phosphorylation of myosin light chain (MLC) through activation of RhoA/Rho kinase pathway. Unlike LPA treatment, AM966 had no effect on phosphorylation of extracellular signal-regulated kinases (Erk). Further, in LPA1 silencing cells, we observed that AM966-increased lung endothelial permeability as well as phosphorylation of VE-cadherin and focal adhesion kinase (FAK) were attenuated. This study reveals that AM966 induces lung endothelial barrier dysfunction, which is regulated by LPA1-mediated activation of RhoA/MLC and phosphorylation of VE-cadherin. PMID:28348461

  17. Discordance of Mutation Statuses of Epidermal Growth Factor Receptor and K-ras between Primary Adenocarcinoma of Lung and Brain Metastasis.

    PubMed

    Rau, Kun-Ming; Chen, Han-Ku; Shiu, Li-Yen; Chao, Tsai-Ling; Lo, Yi-Ping; Wang, Chin-Chou; Lin, Meng-Chih; Huang, Chao-Cheng

    2016-04-07

    Mutations on epidermal growth factor receptor (EGFR) of adenocarcinomas of lung have been found to be associated with increased sensitivity to EGFR tyrosine kinase inhibitors and K-ras mutations may correlate with primary resistance. We aimed to explore the discordant mutation statuses of EGFR and K-ras between primary tumors and matched brain metastases in adenocarcinomas of lung. We used a sensitive Scorpion ARMS method to analyze EGFR mutation, and Sanger sequencing followed by allele-specific real-time polymerase chain reaction to analyze K-ras mutation. Forty-nine paired tissues with both primary adenocarcinoma of lung and matched brain metastasis were collected. Thirteen patients (26.5%) were discordant for the status of EGFR between primary and metastatic sites. K-ras gene could be checked in paired specimens from 33 patients, thirteen patients (39.6%) were discordant for the status of K-ras. In primary lung adenocarcinoma, there were 14 patients of mutant EGFR had mutant K-ras synchronously. This study revealed that the status of EGFR mutation in lung adenocarcinomas is relatively consistent between primary and metastatic sites compared to K-ras mutation. However, there are still a few cases of adenocarcinoma of lung showing discordance for the status of EGFR mutation. Repeated analysis of EGFR mutation is highly recommended if tissue from metastatic or recurrent site is available for the evaluation of target therapy.

  18. Not all epidermal growth factor receptor mutations in lung cancer are created equal: Perspectives for individualized treatment strategy.

    PubMed

    Kobayashi, Yoshihisa; Mitsudomi, Tetsuya

    2016-09-01

    Somatic mutations in the epidermal growth factor receptor (EGFR) gene are present in approximately 20% (in Caucasians) to 40% (in East Asians) of adenocarcinomas of the lung. Targeted therapy for these lung cancers has been established based on evidence regarding mainly common mutations; that is, exon 19 deletions (Del19) and L858R. EGFR-tyrosine kinase inhibitors (TKI), gefitinib, erlotinib or afatinib showed high objective response rates (ORR) of approximately 60%. Several studies suggested that Del19 might be more sensitive to EGFR-TKI than L858R. On the other hand, it has been difficult to establish evidence for other less common mutations, accounting for 12% of all EGFR mutations, because there are many variants and many studies have excluded patients with these uncommon mutations. However, recent studies revealed that these rare genotypes could be targetable if appropriate TKI are selected. For example, G719X (X denotes A, S, C and so on), Del18, E709K, insertions in exon 19 (Ins19), S768I or L861Q showed moderate sensitivities to gefitinib or erlotinb with ORR of 30%-50%. However, afatinib appeared to be especially effective for these tumors. Although Ins20s (except for insFQEA) have been regarded as resistant mutations, osimertinib may be effective for rare subtypes of them and nazartinib (EGF816) is promising for the majority of them. For the further development of targeted therapy in all EGFR mutations, it is important to precisely detect targetable mutations, to select the most appropriate TKI for each mutation, and to continue investigating in vitro studies and collecting clinical data on even rare mutations.

  19. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor.

    PubMed Central

    Damstrup, L.; Rude Voldborg, B.; Spang-Thomsen, M.; Brünner, N.; Skovgaard Poulsen, H.

    1998-01-01

    Formation of metastasis is a multistep process involving attachment to the basement membrane, local proteolysis and migration into surrounding tissues, lymph or bloodstream. In the present study, we have analysed the correlation between in vitro invasion and presence of the epidermal growth factor receptor (EGFR) in a panel of 21 small-cell lung cancer (SCLC) cell lines. We have previously reported that ten of these cell lines expressed EGFR protein detected by radioreceptor and affinity labelling assays. In 11 small-cell lung cancer (SCLC) cell lines, EGFR mRNA was detected by Northern blot analysis. In vitro invasion in a Boyden chamber assay was found in all EGFR-positive cell lines, whereas no invasion was detected in the EGFR-negative cell lines. Quantification of the in vitro invasion in 12 selected SCLC cell lines demonstrated that, in the EGFR-positive cell lines, between 5% and 16% of the cells added to the upper chamber were able to traverse the Matrigel membrane. Expression of several matrix metalloproteases (MMP), of tissue inhibitor of MMP (TIMP) and of cathepsin B was evaluated by immunoprecipitation, Western blot analysis and reverse transcriptase polymerase chain reaction (RT-PCR). However, in vitro invasive SCLC cell lines could not be distinguished from non-invasive cell lines based on the expression pattern of these molecules. In six SCLC cell lines, in vitro invasion was also determined in the presence of the EGFR-neutralizing monoclonal antibody mAb528. The addition of this antibody resulted in a significant reduction of the in vitro invasion in three selected EGFR-positive cell lines. Our results show that only EGFR-positive SCLC cell lines had the in vitro invasive phenotype, and it is therefore suggested that the EGFR might play an important role for the invasion potential of SCLC cell lines. Images Figure 1 Figure 3 Figure 4 PMID:9744504

  20. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer.

    PubMed

    Jackman, David; Pao, William; Riely, Gregory J; Engelman, Jeffrey A; Kris, Mark G; Jänne, Pasi A; Lynch, Thomas; Johnson, Bruce E; Miller, Vincent A

    2010-01-10

    Ten percent of North American patients with non-small-cell lung cancer have tumors with somatic mutations in the gene for the epidermal growth factor receptor (EGFR). Approximately 70% of patients whose lung cancers harbor somatic mutations in exons encoding the tyrosine kinase domain of EGFR experience significant tumor regressions when treated with the EGFR tyrosine kinase inhibitors (TKIs) gefitinib or erlotinib. However, the overwhelming majority of these patients inevitably acquire resistance to either drug. Currently, the clinical definition of such secondary or acquired resistance is not clear. We propose the following criteria be used to define more precisely acquired resistance to EGFR TKIs. All patients should have the following criteria: previous treatment with a single-agent EGFR TKI (eg, gefitinib or erlotinib); either or both of the following: a tumor that harbors an EGFR mutation known to be associated with drug sensitivity or objective clinical benefit from treatment with an EGFR TKI; systemic progression of disease (Response Evaluation Criteria in Solid Tumors [RECIST] or WHO) while on continuous treatment with gefitinib or erlotinib within the last 30 days; and no intervening systemic therapy between cessation of gefitinib or erlotinib and initiation of new therapy. The relatively simple definition proposed here will lead to a more uniform approach to investigating the problem of acquired resistance to EGFR TKIs in this unique patient population. These guidelines should minimize reporting of false-positive and false-negative activity in these clinical trials and would facilitate the identification of agents that truly overcome acquired resistance to gefitinib and erlotinib.

  1. Progesterone receptor (PR) polyproline domain (PPD) mediates inhibition of epidermal growth factor receptor (EGFR) signaling in non-small cell lung cancer cells.

    PubMed

    Kawprasertsri, Sornsawan; Pietras, Richard J; Marquez-Garban, Diana C; Boonyaratanakornkit, Viroj

    2016-05-01

    Recent evidence has suggested a possible role for progesterone receptor (PR) in the progression of non-small cell lung cancer (NSCLC). However, little is known concerning roles of PR in NSCLC. PR contains a polyproline domain (PPD), which directly binds to the SH3 domain of signaling molecules. Because PPD-SH3 interactions are essential for EGFR signaling, we hypothesized that the presence of PR-PPD interfered with EGFR-mediated signaling and cell proliferation. We examined the role of PR-PPD in cell proliferation and signaling by stably expressing PR-B, or PR-B with disrupting mutations in the PPD (PR-BΔSH3), from a tetracycline-regulated promoter in A549 NSCLC cells. PR-B dose-dependently inhibited cell growth in the absence of ligand, and progestin (R5020) treatment further suppressed the growth. Treatment with RU486 abolished PR-B- and R5020-mediated inhibition of cell proliferation. Expression of PR-BΔSH3 and treatment with R5020 or RU486 had no effect on cell proliferation. Furthermore, PR-B expression but not PR-BΔSH3 expression reduced EGF-induced A549 proliferation and activation of ERK1/2, in the absence of ligand. Taken together, our data demonstrated the significance of PR extranuclear signaling through PPD interactions in EGFR-mediated proliferation and signaling in NSCLC.

  2. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells

    PubMed Central

    Salopiata, Florian; Depner, Sofia; Wäsch, Marvin; Böhm, Martin E.; Mücke, Oliver; Plass, Christoph; Lehmann, Wolf D.; Kreutz, Clemens; Timmer, Jens; Klingmüller, Ursula

    2016-01-01

    Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid

  3. Skeletal manifestations of bear scavenging.

    PubMed

    Carson, E A; Stefan, V H; Powell, J F

    2000-05-01

    In many partially or fully skeletonized forensic cases, postmortem animal damage is simply attributed to rodents or carnivores; little effort is made to determine the general size or assign a genus to the scavenger. As one of the largest wild carnivores to inhabit mountainous and forested areas throughout the continental United States, Alaska, and Canada, black bears (Ursus americanus) must be considered possible suspects when skeletonized remains are located showing marks of carnivore damage. Since 1995, three cases of known bear scavenging have been referred to the Maxwell Museum's Laboratory of Human Osteology by the New Mexico Office of the Medical Investigator for skeletal analysis. These cases comprise a total of seven individuals, and all of the remains were deposited in high altitude forests of New Mexico along the western border with Arizona with a minimum of 4 months exposure before recovery. When analyzed, all cases shared a similar pattern of element survivorship and damage. We suggest that bears can be distinguished from members of the canid family, the other common scavenger of human remains, based on the representation of skeletal elements at the scene. Rates and patterns of damage are not as accurate as element recovery in the discrimination of scavenger genus. Use of this information should allow forensic anthropologists to better understand the postmortem taphonomic processes that shaped the skeletal remains, and hopefully prevent misdiagnoses of perimortem trauma on elements not typically scavenged by canids.

  4. Growth inhibition of human lung adenocarcinoma cells by antibodies against epidermal growth factor receptor and by ganglioside GM3: involvement of receptor-directed protein tyrosine phosphatase(s).

    PubMed

    Suarez Pestana, E; Greiser, U; Sánchez, B; Fernández, L E; Lage, A; Perez, R; Böhmer, F D

    1997-01-01

    Growth of the EGF receptor-expressing non-small-cell lung carcinoma cell line H125 seems to be at least partially driven by autocrine activation of the resident EGF receptors. Thus, the possibility of an EGF receptor-directed antiproliferative treatment was investigated in vitro using a monoclonal antibody (alpha EGFR ior egf/r3) against the human EGF receptor and gangliosides which are known to possess antiproliferative and anti-tyrosine kinase activity. The moderate growth-inhibitory effect of alpha EGFR ior egf/r3 was strongly potentiated by the addition of monosialoganglioside GM3. Likewise, the combination of alpha EGFR ior egf/r3 and GM3 inhibited EGF receptor autophosphorylation activity in H125 cells more strongly than either agent alone. A synergistic inhibition of EGF receptor autophosphorylation by alpha EGFR ior egf/r3 and GM3 was also observed in the human epidermoid carcinoma cell line A431. In both cell lines, the inhibition of EGF receptor autophosphorylation by GM3 was prevented by pretreatment of the cells with pervanadate, a potent inhibitor of protein tyrosine phosphatases (PTPases). Also, GM3 accelerated EGF receptor dephosphorylation in isolated A431 cell membranes. These findings indicate that GM3 has the capacity to activate EGF receptor-directed PTPase activity and suggest a novel possible mechanism for the regulation of cellular PTPases.

  5. Growth inhibition of human lung adenocarcinoma cells by antibodies against epidermal growth factor receptor and by ganglioside GM3: involvement of receptor-directed protein tyrosine phosphatase(s).

    PubMed Central

    Suarez Pestana, E.; Greiser, U.; Sánchez, B.; Fernández, L. E.; Lage, A.; Perez, R.; Böhmer, F. D.

    1997-01-01

    Growth of the EGF receptor-expressing non-small-cell lung carcinoma cell line H125 seems to be at least partially driven by autocrine activation of the resident EGF receptors. Thus, the possibility of an EGF receptor-directed antiproliferative treatment was investigated in vitro using a monoclonal antibody (alpha EGFR ior egf/r3) against the human EGF receptor and gangliosides which are known to possess antiproliferative and anti-tyrosine kinase activity. The moderate growth-inhibitory effect of alpha EGFR ior egf/r3 was strongly potentiated by the addition of monosialoganglioside GM3. Likewise, the combination of alpha EGFR ior egf/r3 and GM3 inhibited EGF receptor autophosphorylation activity in H125 cells more strongly than either agent alone. A synergistic inhibition of EGF receptor autophosphorylation by alpha EGFR ior egf/r3 and GM3 was also observed in the human epidermoid carcinoma cell line A431. In both cell lines, the inhibition of EGF receptor autophosphorylation by GM3 was prevented by pretreatment of the cells with pervanadate, a potent inhibitor of protein tyrosine phosphatases (PTPases). Also, GM3 accelerated EGF receptor dephosphorylation in isolated A431 cell membranes. These findings indicate that GM3 has the capacity to activate EGF receptor-directed PTPase activity and suggest a novel possible mechanism for the regulation of cellular PTPases. Images Figure 5 Figure 6 PMID:9010029

  6. Methylation of the estrogen receptor CpG island distinguishes spontaneous and plutonium-induced tumors from nitrosamine-induced lung tumors

    SciTech Connect

    Belinsky, S.A.; Baylin, S.B.; Issa, J.J.

    1995-12-01

    CpG islands located in the promoter region of genes constitute one mechanism for regulating transcription. These islands are normally free of methylation, regardless of the expression state of the gene. Hypermethylation of CpG islands, the addition of a methyl group to the internal cytosine within CpG dinucleotides, can cause silencing of a gene. Hypermethylation has been detected as an early event at specific chromosome loci during the development of colon cancer and represents one mechanism used by neoplatic cells to inactivate tumor suppressor genes. Recent studies have demonstrated this mechanism in inactivation of the VHL tumor suppressor gene in 19% of sporadic renal tumors and the p16 {sup INK4a} tumor suppressor gene in 30% of non-small cell lung cancers. A recent report indicates that the estrogen receptor gene could also be inactivated through methylation. In addition, estrogen receptor CpG island methylation arises as a direct function of age in normal colonic mucosa and is present in virtually all colonic tumors. In cultured colon cancer cells, methylation-associated loss of expression of the estrogen receptor gene results in deregulated growth, suggesting a role for the estrogen receptor in colon cancer development. These results provide further evidence that gene silencing through methylation could be a predominant epigenetic mechanism underlying the development of many different types of cancer. The purpose of the current investigation was to determine whether estrogen receptor CpG island methylation is involved in the development of lung cancer. The frequency for methylation of the estrogen receptor CpG island in rodent lung tumors is summarized.

  7. Targeting of a common receptor shared by CXCL8 and N-Ac-PGP as a therapeutic strategy to alleviate chronic neutrophilic lung diseases.

    PubMed

    Snelgrove, Robert J

    2011-09-30

    Persistent neutrophilia is implicated in the pathology of several chronic lung diseases and consequently targeting the signals that drive the recruitment of these cells offers a plausible therapeutic strategy. The tripeptide Pro-Gly-Pro (PGP) is a neutrophil chemoattractant derived from extracellular matrix collagen and implicated in diseases such as COPD and cystic fibrosis. It was anticipated that PGP exerts its chemoatactic activity by mimicking key sequences found within classical neutrophil chemokines, such as CXCL8, and binding their receptors, CXCR1/2. Recently, however, the role of CXCR1/2 as the receptors for PGP has been questioned. In this issue of European Journal of Pharmacology, three studies address this controversy and demonstrate CXCR1/2 to be a common receptor for CXCL8 and PGP. Accordingly, these studies demonstrate the therapeutic potential of targeting this shared receptor to simultaneously alleviate neutrophilic inflammation driven by multiple neutrophil chemoattractants.

  8. Sustained activation of toll-like receptor 9 induces an invasive phenotype in lung fibroblasts: possible implications in idiopathic pulmonary fibrosis.

    PubMed

    Kirillov, Varvara; Siler, Jonathan T; Ramadass, Mahalakshmi; Ge, Lingyin; Davis, James; Grant, Geraldine; Nathan, Steven D; Jarai, Gabor; Trujillo, Glenda

    2015-04-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by excessive scarring of the lung parenchyma, resulting in a steady decline of lung function and ultimately respiratory failure. The disease course of IPF is extremely variable, with some patients exhibiting stability of symptoms for prolonged periods of time, whereas others exhibit rapid progression and loss of lung function. Viral infections have been implicated in IPF and linked to disease severity; however, whether they directly contribute to progression is unclear. We previously classified patients as rapid and slow progressors on the basis of clinical features and expression of the pathogen recognition receptor, Toll-like receptor 9 (TLR9). Activation of TLR9 in vivo exacerbated IPF in mice and induced differentiation of myofibroblasts in vitro, but the mechanism of TLR9 up-regulation and progression of fibrosis are unknown. Herein, we investigate whether transforming growth factor (TGF)-β, a pleiotropic cytokine central to IPF pathogenesis, regulates TLR9 in lung myofibroblasts. Results showed induction of TLR9 expression by TGF-β in lung myofibroblasts and a distinct profibrotic myofibroblast phenotype driven by stimulation with the TLR9 agonist, CpG-DNA. Chronic TLR9 stimulation resulted in stably differentiated α-smooth muscle actin(+)/platelet-derived growth factor receptor α(+)/CD44(+)/matrix metalloproteinase-14(+)/matrix metalloproteinase-2(+) myofibroblasts, which secrete inflammatory cytokines, invade Matrigel toward platelet-derived growth factor, and resist hypoxia-induced apoptosis. These results suggest a mechanism by which TGF-β and TLR9 responses in myofibroblasts collaborate to drive rapid progression of IPF.

  9. Resolution of Toll-like receptor 4-mediated acute lung injury is linked to eicosanoids and suppressor of cytokine signaling 3

    PubMed Central

    Hilberath, Jan N.; Carlo, Troy; Pfeffer, Michael A.; Croze, Roxanne H.; Hastrup, Frantz; Levy, Bruce D.

    2011-01-01

    The purpose of this study was to investigate roles for Toll-like receptor 4 (TLR4) in host responses to sterile tissue injury. Hydrochloric acid was instilled into the left mainstem bronchus of TLR4-defective (both C3H/HeJ and congenic C.C3-Tlr4Lps-d/J) and control mice to initiate mild, self-limited acute lung injury (ALI). Outcome measures included respiratory mechanics, barrier integrity, leukocyte accumulation, and levels of select soluble mediators. TLR4-defective mice were more resistant to ALI, with significantly decreased perturbations in lung elastance and resistance, resulting in faster resolution of these parameters [resolution interval (Ri); ∼6 vs. 12 h]. Vascular permeability changes and oxidative stress were also decreased in injured HeJ mice. These TLR4-defective mice paradoxically displayed increased lung neutrophils [(HeJ) 24×103 vs. (control) 13×103 cells/bronchoalveolar lavage]. Proresolving mechanisms for TLR4-defective animals included decreased eicosanoid biosynthesis, including cysteinyl leukotrienes (80% mean decrease) that mediated CysLT1 receptor-dependent vascular permeability changes; and induction of lung suppressor of cytokine signaling 3 (SOCS3) expression that decreased TLR4-driven oxidative stress. Together, these findings indicate pivotal roles for TLR4 in promoting sterile ALI and suggest downstream provocative roles for cysteinyl leukotrienes and protective roles for SOCS3 in the intensity and duration of host responses to ALI.—Hilberath, J N., Carlo, T., Pfeffer, M. A., Croze, R. H., Hastrup, F., Levy, B. D. Resolution of Toll-like receptor 4-mediated acute lung injury is linked to eicosanoids and suppressor of cytokine signaling 3. PMID:21321188

  10. Tyrosine kinase inhibitors for epidermal growth factor receptor gene mutation-positive non-small cell lung cancers: an update for recent advances in therapeutics.

    PubMed

    Chung, Clement

    2016-06-01

    The presence of activating gene mutations in the epidermal growth factor receptor of non-small cell lung cancer patients is predictive (improved progression-free survival and improved response rate) when treated with small molecule tyrosine kinase inhibitors such as gefitinib, erlotinib and afatinib. The two most common mutations that account for greater than 85% of all EGFR gene mutations are in-frame deletions in exon 19 (LREA deletions) and substitution in exon 21 (L858R). Exon 18 mutations occur much less frequently at about 4% of all EGFR gene mutations. Together, exon 19 deletion and exon 21 L858R gene substitution are present in about 10% of Caucasian patients and 20-40% of Asian patients with non-small cell lung cancer. T790M gene mutation at exon 20 is associated with acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Early studies showed that activating EGFR gene mutations are most common in patients with adenocarcinoma histology, women, never smokers and those of Asian ethnicity. A recent multi-center phase III trial suggested that frontline epidermal growth factor receptor tyrosine kinase inhibitor therapy with afatinib is associated with improved progression-free survival compared to chemotherapy regardless of race. Moreover, guidelines now suggest EGFR gene mutation testing should be conducted in all patients with lung adenocarcinoma or mixed lung cancers with an adenocarcinoma component, regardless of characteristics such as smoking status, gender or race. The success of targeted therapies in non-small cell lung cancer patients has changed the treatment paradigm in metastatic non-small cell lung cancer. However, despite a durable response of greater than a year, resistance to epidermal growth factor receptor tyrosine kinase inhibitors inevitably occurs. This mini-review describes the clinically relevant EGFR gene mutations and the efficacy/toxicity of small molecule epidermal growth factor receptor tyrosine kinase

  11. Inhibition of discoidin domain receptor 2-mediated lung cancer cells progression by gold nanoparticle-aptamer-assisted delivery of peptides containing transmembrane-juxtamembrane 1/2 domain.

    PubMed

    Kim, Daehwan; Yeom, Ji-Hyun; Lee, Boeun; Lee, Kangseok; Bae, Jeehyeon; Rhee, Sangmyung

    2015-08-21

    The delivery of biologically functional peptides into mammalian cells can be a direct and effective method for cancer therapy and treatment of other diseases. Discoidin domain receptor 2 (DDR2) is a collagen-induced receptor tyrosine kinase recently identified as a novel therapeutic target in lung cancer. In this study, we report that peptides containing the functional domain of DDR2 can be efficiently delivered into lung malignant cancer cells via a gold nanoparticle-DNA aptamer conjugate (AuNP-Apt)-based system. Peptide delivery resulted in the abrogation of DDR2 activation triggered by collagen. Moreover, the peptide delivered by the AuNP-Apt system inhibited cancer cell proliferation and invasion mediated by DDR2 activation. Thus, these results suggest that peptide loaded onto AuNP-Apt conjugates can be used for the development of peptide-based biomedical applications for the treatment of DDR2-positive cancer.

  12. Sphingosine-1-Phosphate Receptor Subtype 3: A Novel Therapeutic Target of K-Ras Mutant Driven Non-Small Cell Lung Carcinoma

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0346 TITLE: Sphingosine-1-Phosphate Receptor Subtype 3: A Novel Therapeutic Target of K-Ras Mutant Driven Non-Small... Mutant Driven Non-Small Cell Lung Carcinoma 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0346 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Lee...14. ABSTRACT: This award aims to characterize the functional role of sphingosine-1-phosphate receptor subtype 3 (S1PR3) in oncogenic K-Ras mutant

  13. Downregulation of Fzd6 and Cthrc1 and upregulation of olfactory receptors and protocadherins by dietary beta-carotene in lungs of Bcmo1-/- mice.

    PubMed

    van Helden, Yvonne G J; Godschalk, Roger W; Heil, Sandra G; Bunschoten, Annelies; Hessel, Susanne; Amengual, Jaume; Bonet, M Luisa; von Lintig, Johannes; van Schooten, Frederik J; Keijer, Jaap

    2010-08-01

    An ongoing controversy exists on beneficial versus harmful effects of high beta-carotene (BC) intake, especially for the lung. To elucidate potential mechanisms, we studied effects of BC on lung gene expression. We used a beta-carotene 15,15'-monooxygenase 1 (Bcmo1) knockout mouse (Bcmo1(-/-)) model, unable to convert BC to retinoids, and wild-type mice (Bcmo1(+/+)) mice to dissect the effects of intact BC from effects of BC metabolites. As expected, BC supplementation resulted in a higher BC accumulation in lungs of Bcmo1(-/-) mice than in lungs of Bcmo1(+/+) mice. Whole mouse genome transcriptome analysis on lung tissue revealed that more genes were regulated in Bcmo1(-/-) mice than Bcmo1(+/+) mice upon BC supplementation. Frizzled homolog 6 (Fzd6) and collagen triple helix repeat containing 1 (Cthrc1) were significantly downregulated (fold changes -2.99 and -2.60, respectively, false discovery rate < 0.05) by BC in Bcmo1(-/-). Moreover, many olfactory receptors and many members of the protocadherin family were upregulated. Since both olfactory receptors and protocadherins have an important function in sensory nerves and Fzd6 and Cthrc1 are important in stem cell development, we hypothesize that BC might have an effect on the highly innervated pulmonary neuroendocrine cell (PNEC) cluster. PNECs are highly associated with sensory nerves and are important cells in the control of stem cells. A role for BC in the innervated PNEC cluster might be of particular importance in smoke-induced carcinogenesis since PNEC-derived lung cancer is highly associated with tobacco smoke.

  14. CI-988 Inhibits EGFR Transactivation and Proliferation Caused by Addition of CCK/Gastrin to Lung Cancer Cells.

    PubMed

    Moody, Terry W; Nuche-Berenguer, Bernardo; Moreno, Paola; Jensen, Robert T

    2015-07-01

    Cholecystokinin (CCK) receptors are G-protein coupled receptors (GPCR) which are present on lung cancer cells. CCK-8 stimulates the proliferation of lung cancer cells, whereas the CCK2R receptor antagonist CI-988 inhibits proliferation. GPCR for some gastrointestinal hormones/neurotransmitters mediate lung cancer growth by causing epidermal growth factor receptor (EGFR) transactivation. Here, the role of CCK/gastrin and CI-988 on EGFR transactivation and lung cancer proliferation was investigated. Addition of CCK-8 or gastrin-17 (100 nM) to NCI-H727 human lung cancer cells increased EGFR Tyr(1068) phosphorylation after 2 min. The ability of CCK-8 to cause EGFR tyrosine phosphorylation was blocked by CI-988, gefitinib (EGFR tyrosine kinase inhibitor), PP2 (Src inhibitor), GM6001 (matrix metalloprotease inhibitor), and tiron (superoxide scavenger). CCK-8 nonsulfated and gastrin-17 caused EGFR transactivation and bound with high affinity to NCI-H727 cells, suggesting that the CCK2R is present. CI-988 inhibited the ability of CCK-8 to cause ERK phosphorylation and elevate cytosolic Ca(2+). CI-988 or gefitinib inhibited the basal growth of NCI-H727 cells or that stimulated by CCK-8. The results indicate that CCK/gastrin may increase lung cancer proliferation in an EGFR-dependent manner.

  15. Endothelin-1 induces proliferation of human lung fibroblasts and IL-11 secretion through an ET(A) receptor-dependent activation of MAP kinases.

    PubMed

    Gallelli, Luca; Pelaia, Girolamo; D'Agostino, Bruno; Cuda, Giovanni; Vatrella, Alessandro; Fratto, Donatella; Gioffrè, Vincenza; Galderisi, Umberto; De Nardo, Marilisa; Mastruzzo, Claudio; Salinaro, Elisa Trovato; Maniscalco, Mauro; Sofia, Matteo; Crimi, Nunzio; Rossi, Francesco; Caputi, Mario; Costanzo, Francesco S; Maselli, Rosario; Marsico, Serafino A; Vancheri, Carlo

    2005-11-01

    Endothelin-1 (ET-1) is implicated in the fibrotic responses characterizing interstitial lung diseases, as well as in the airway remodeling process occurring in asthma. Within such a context, the aim of our study was to investigate, in primary cultures of normal human lung fibroblasts (NHLFs), the ET-1 receptor subtypes, and the intracellular signal transduction pathways involved in the proliferative effects of this peptide. Therefore, cells were exposed to ET-1 in the presence or absence of an overnight pre-treatment with either ET(A) or ET(B) selective receptor antagonists. After cell lysis, immunoblotting was performed using monoclonal antibodies against the phosphorylated, active forms of mitogen-activated protein kinases (MAPK). ET-1 induced a significant increase in MAPK phosphorylation pattern, and also stimulated fibroblast proliferation and IL-6/IL-11 release into cell culture supernatants. All these effects were inhibited by the selective ET(A) antagonist BQ-123, but not by the specific ET(B) antagonist BQ-788. The stimulatory influence of ET-1 on IL-11, but not on IL-6 secretion, was prevented by MAPK inhibitors. Therefore, such results suggest that in human lung fibroblasts ET-1 exerts a profibrogenic action via an ET(A) receptor-dependent, MAPK-mediated induction of IL-11 release and cell proliferation.

  16. Expression Levels of Some Antioxidant and Epidermal Growth Factor Receptor Genes in Patients with Early-Stage Non-Small Cell Lung Cancer

    PubMed Central

    De Palma, Giuseppe; Mozzoni, Paola; Acampa, Olga; Internullo, Eveline; Carbognani, Paolo; Rusca, Michele; Goldoni, Matteo; Corradi, Massimo; Tiseo, Marcello; Apostoli, Pietro; Mutti, Antonio

    2010-01-01

    This study was aimed at: (i) investigating the expression profiles of some antioxidant and epidermal growth factor receptor genes in cancerous and unaffected tissues of patients undergoing lung resection for non-small cell lung cancer (NSCLC) (cross-sectional phase), (ii) evaluating if gene expression levels at the time of surgery may be associated to patients' survival (prospective phase). Antioxidant genes included heme oxygenase 1 (HO-1), superoxide dismutase-1 (SOD-1), and -2 (SOD-2), whereas epidermal growth factor receptor genes consisted of epidermal growth factor receptor (EGFR) and v-erb-b2 erythroblastic leukaemia viral oncogene homolog 2 (HER-2). Twenty-eight couples of lung biopsies were obtained and gene transcripts were quantified by Real Time RT-PCR. The average follow-up of patients lasted about 60 months. In the cancerous tissues, antioxidant genes were significantly hypo-expressed than in unaffected tissues. The HER-2 transcript levels prevailed in adenocarcinomas, whereas EGFR in squamocellular carcinomas. Patients overexpressing HER-2 in the cancerous tissues showed significantly lower 5-year survival than the others. PMID:20700416

  17. Low-dose megavoltage cone-beam computed tomography for lung tumors using a high-efficiency image receptor

    SciTech Connect

    Sillanpaa, Jussi; Chang Jenghwa; Mageras, Gikas; Yorke, Ellen; Arruda, Fernando De; Rosenzweig, Kenneth E.; Munro, Peter; Seppi, Edward; Pavkovich, John; Amols, Howard

    2006-09-15

    We report on the capabilities of a low-dose megavoltage cone-beam computed tomography (MV CBCT) system. The high-efficiency image receptor consists of a photodiode array coupled to a scintillator composed of individual CsI crystals. The CBCT system uses the 6 MV beam from a linear accelerator. A synchronization circuit allows us to limit the exposure to one beam pulse [0.028 monitor units (MU)] per projection image. 150-500 images (4.2-13.9 MU total) are collected during a one-minute scan and reconstructed using a filtered backprojection algorithm. Anthropomorphic and contrast phantoms are imaged and the contrast-to-noise ratio of the reconstruction is studied as a function of the number of projections and the error in the projection angles. The detector dose response is linear (R{sup 2} value 0.9989). A 2% electron density difference is discernible using 460 projection images and a total exposure of 13 MU (corresponding to a maximum absorbed dose of about 12 cGy in a patient). We present first patient images acquired with this system. Tumors in lung are clearly visible and skeletal anatomy is observed in sufficient detail to allow reproducible registration with the planning kV CT images. The MV CBCT system is shown to be capable of obtaining good quality three-dimensional reconstructions at relatively low dose and to be clinically usable for improving the accuracy of radiotherapy patient positioning.

  18. Optimizing the use of epidermal growth factor receptor inhibitors in advanced non-small-lung cancer (NSCLC)

    PubMed Central

    Shash, Emad; Peccatori, Fedro Alessandro; Azim, Hatem A

    2011-01-01

    Lung cancer is the leading cause of cancer-related death in US and Europe. Treatment with a platinum-based chemotherapy remains the standard of care, however with modest effect on quality of life and overall survival which seldom reaches 1 year. Recently, several classes of targeted agents have emerged showing promising results. In particular, agents targeting the epidermal growth factor receptor (EGFR) showed impressive clinical activity both in the first line and salvage settings. However, it is evident that these drugs are not effective in all patients. Putting into consideration the very high cost of these agents, there is an urgent need to provide reliable tools to identify those patients that would derive the maximum benefit from these drugs. Several predictive biomarkers were developed to identify those patients who would derive the maximal benefit of these drugs. In this review we will discuss the recent updates on the role of EGFR inhibitors in the treatment of advanced NSCLC and the role of predictive bio-markers in patient selection. PMID:22263061

  19. Role of iron in inactivation of epidermal growth factor receptor after asbestos treatment of human lung and pleural target cells.

    PubMed

    Baldys, Aleksander; Aust, Ann E

    2005-05-01

    Although the mechanism by which asbestos causes cancer remains unknown, iron associated with asbestos is thought to play a role in the pathogenic effects of fibers. Here, we examined the effects of asbestos on the epidermal growth factor receptor (EGFR) in human lung epithelial (A549) cells, human pleural mesothelial (MET5A) cells, and normal human small airway epithelial (SAEC) cells. Treatment of A549, MET5A, and SAEC cells with asbestos caused a significant reduction of EGFR tyrosine phosphorylation. This was both time- (15 min to 24 h) and concentration-dependent (1.5, 3, and 6 mug/cm(2)) in A549 cells. Also, treatment with 6 mug/cm(2) crocidolite for 24 h diminished the phosphorylation levels of human EGFR 2 (HER2). Exposure of A549 cells to 6 mug/cm(2) crocidolite for 3-24 h resulted in no detectable Y1045 phosphorylation and no apparent degradation of the EGFR. Inhibition of fiber endocytosis resulted in a considerable inhibition of EGFR dephosphorylation. Removal of iron from asbestos by desferrioxamine B or phytic acid inhibited asbestos-induced decreases in EGFR phosphorylation. The effects of crocidolite, amosite, and chrysotile on the EGFR phosphorylation state appeared to be directly related to the amount of iron mobilized from these fibers. These results strongly suggest that iron plays an important role in asbestos-induced inactivation of EGFR.

  20. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology

    PubMed Central

    Larsen, Jeppe M; Musavian, Hanieh S; Butt, Tariq M; Ingvorsen, Camilla; Thysen, Anna H; Brix, Susanne

    2015-01-01

    Recent studies of healthy human airways have revealed colonization by a distinct commensal bacterial microbiota containing Gram-negative Prevotella spp. However, the immunological properties of these bacteria in the respiratory system remain unknown. Here we compare the innate respiratory immune response to three Gram-negative commensal Prevotella strains (Prevotella melaninogenica, Prevotella nanceiensis and Prevotella salivae) and three Gram-negative pathogenic Proteobacteria known to colonize lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma (Haemophilus influenzae B, non-typeable Haemophilus influenzae and Moraxella catarrhalis). The commensal Prevotella spp. and pathogenic Proteobacteria were found to exhibit intrinsic differences in innate inflammatory capacities on murine lung cells in vitro. In vivo in mice, non-typeable H. influenzae induced severe Toll-like receptor 2 (TLR2)-independent COPD-like inflammation characterized by predominant airway neutrophilia, expression of a neutrophilic cytokine/chemokine profile in lung tissue, and lung immunopathology. In comparison, P. nanceiensis induced a diminished neutrophilic airway inflammation and no detectable lung pathology. Interestingly, the inflammatory airway response to the Gram-negative bacteria P. nanceiensis was completely TLR2-dependent. These findings demonstrate weak inflammatory properties of Gram-negative airway commensal Prevotella spp. that may make colonization by these bacteria tolerable by the respiratory immune system. PMID:25179236

  1. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology.

    PubMed

    Larsen, Jeppe M; Musavian, Hanieh S; Butt, Tariq M; Ingvorsen, Camilla; Thysen, Anna H; Brix, Susanne

    2015-02-01

    Recent studies of healthy human airways have revealed colonization by a distinct commensal bacterial microbiota containing Gram-negative Prevotella spp. However, the immunological properties of these bacteria in the respiratory system remain unknown. Here we compare the innate respiratory immune response to three Gram-negative commensal Prevotella strains (Prevotella melaninogenica, Prevotella nanceiensis and Prevotella salivae) and three Gram-negative pathogenic Proteobacteria known to colonize lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma (Haemophilus influenzae B, non-typeable Haemophilus influenzae and Moraxella catarrhalis). The commensal Prevotella spp. and pathogenic Proteobacteria were found to exhibit intrinsic differences in innate inflammatory capacities on murine lung cells in vitro. In vivo in mice, non-typeable H. influenzae induced severe Toll-like receptor 2 (TLR2)-independent COPD-like inflammation characterized by predominant airway neutrophilia, expression of a neutrophilic cytokine/chemokine profile in lung tissue, and lung immunopathology. In comparison, P. nanceiensis induced a diminished neutrophilic airway inflammation and no detectable lung pathology. Interestingly, the inflammatory airway response to the Gram-negative bacteria P. nanceiensis was completely TLR2-dependent. These findings demonstrate weak inflammatory properties of Gram-negative airway commensal Prevotella spp. that may make colonization by these bacteria tolerable by the respiratory immune system.

  2. Effects of ω-3 fatty acids on toll-like receptor 4 and nuclear factor-κB p56 in lungs of rats with severe acute pancreatitis

    PubMed Central

    Wang, Bin; Wu, Xiao-Wei; Guo, Mei-Xia; Li, Min-Li; Xu, Xiao-Bing; Jin, Xin-Xin; Zhang, Xiao-Hua

    2016-01-01

    AIM To determine the effects of ω-3 fatty acids (ω-3FA) on the toll-like receptor 4 (TLR4)/nuclear factor κB p56 (NF-κBp56) signal pathway in the lungs of rats with severe acute pancreatitis (SAP). METHODS A total of 56 Sprague-Dawley rats were randomly divided into 4 groups: control group, SAP-saline group, SAP-soybean oil group and SAP-ω-3FA group. SAP was induced by the retrograde infusion of sodium taurocholate into the pancreatic duct. The expression of TLR4 and NF-κBp56 in the lungs was evaluated by immunohistochemistry and Western blot analysis. The levels of inflammatory cytokines interleukin-6 and tumor necrosis factor-alpha in the lungs were measured by enzyme-linked immunosorbent assay. RESULTS The expression of TLR4 and NF-κBp56 in lungs and of inflammatory cytokines in serum significantly increased in the SAP group compared with the control group (P < 0.05), but was significantly decreased in the ω-3FA group compared with the soybean oil group at 12 and 24 h (P < 0.05). CONCLUSION During the initial stage of SAP, ω-3FA can efficiently lower the inflammatory response and reduce lung injury by triggering the TLR4/NF-κBp56 signal pathway. PMID:27956802

  3. Gallic acid inhibition of Src-Stat3 signaling overcomes acquired resistance to EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer

    PubMed Central

    Phan, Ai N.H.; Hua, Tuyen N.M.; Kim, Min-Kyu; Vo, Vu T.A.; Choi, Jong-Whan; Kim, Hyun-Won; Rho, Jin Kyung; Kim, Ki Woo; Jeong, Yangsik

    2016-01-01

    Tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) have clinically benefited to lung cancer patients harboring a subset of activating EGFR mutations. However, even with the remarkable therapeutic response at the initial TKI treatment, most lung cancer patients eventually have relapsed aggressive tumors due to acquired resistance to the TKIs. Here, we report that 3, 4, 5-trihydroxybenzoic acid or gallic acid (GA), a natural polyphenolic compound, shows anti-tumorigenic effects in TKI-resistant non-small cell lung cancer (NSCLC). Using both in vitro growth assay and in vivo xenograft animal model, we demonstrated tumor suppressive effect of GA was more selective for the TKI-resistant cancer compared to the TKI-sensitive one. Mechanistically, GA treatment inhibited Src-Stat3-mediated signaling and decreased the expression of Stat3-regulated tumor promoting genes, subsequently inducing apoptosis and cell cycle arrest in the TKI-resistant lung cancer but not in the TKI-sensitive one. Consistent with the in vitro results, in vivo xenograft experiments showed the TKI-resistant tumor-selective growth inhibition and suppression of Src-Stat3-dependent signaling in the GA-treated tumors isolated from the xenograft model. This finding identified an importance of Src-Stat3 signaling cascade in GA-mediated tumor-suppression activity and, more importantly, provides a novel therapeutic insight of GA for advanced TKI-resistant lung cancer. PMID:27419630

  4. Silencing of Receptor Tyrosine Kinase ROR1 Inhibits Tumor-Cell Proliferation via PI3K/AKT/mTOR Signaling Pathway in Lung Adenocarcinoma

    PubMed Central

    Liu, Yanchun; Yang, Hui; Chen, Tianxing; Luo, Yongbin; Xu, Zheyuan; Li, Ying; Yang, Jiahui

    2015-01-01

    Receptor tyrosine kinase ROR1, an embryonic protein involved in organogenesis, is expressed in certain hematological malignancies and solid tumors, but is generally absent in adult tissues. This makes the protein an ideal drug target for cancer therapy. In order to assess the suitability of ROR1 as a cell surface antigen for targeted therapy of lung adenocarcinoma, we carried out a comprehensive analysis of ROR1 protein expression in human lung adenocarcinoma tissues and cell lines. Our data show that ROR1 protein is selectively expressed on lung adenocarcinoma cells, but do not support the hypothesis that expression levels of ROR1 are associated with aggressive disease. However silencing of ROR1 via siRNA treatment significantly down-regulates the activity of the PI3K/AKT/mTOR signaling pathway. This is associated with significant apoptosis and anti-proliferation of tumor cells. We found ROR1 protein expressed in lung adenocarcinoma but almost absent in tumor-adjacent tissues of the patients. The finding of ROR1-mediated proliferation signals in both tyrosine kinase inhibitor (TKI)-sensitive and -resistant tumor cells provides encouragement to develop ROR1-directed targeted therapy in lung adenocarcinoma, especially those with TKI resistance. PMID:25978653

  5. Influence of age, sex and rearing systems on Toll-like receptor 7 (TLR7) expression pattern in gut, lung and lymphoid tissues of indigenous ducks.

    PubMed

    Kolluri, Gautham; Ramamurthy, N; Churchil, R R; Dhinakar Raj, G; Kannaki, T R

    2014-02-01

    Abstract 1. The objective of the experiment was to determine the influence of age, sex and rearing system on Toll-like receptor 7 (TLR7) gene expression in gut, lung and lymphoid tissues and physiological responses to stress in male and female indigenous ducks of Tamil Nadu, India. 2. A total of 36 ducks (12 males and 24 females) were obtained from local farmers and tissue samples of gut tissues (duodenum, jejunum, ileum and caecum), lymphoid organs (spleen and bursa) and lungs were collected in RNAlater solution followed by RNA extraction. 3. After normalisation to β-actin (endogenous control) qPCR analysis identified a significant effect of age, sex and rearing system on TLR7 expression in the ducks. 4. A significant up-regulation of TLR7 expression was observed in lungs, duodenum, jejunum, ileum and caecum of sexually mature (45 wk) compared with that of immature ducks (16 wk). Among sexes, male ducks had significantly higher TLR7 expression than female ducks. 5. Age and sex interactions were significant in lungs, duodenum, jejunum and caecum. Ducks reared in an extensive housing system showed significantly higher TLR7 expression in bursa, lungs, duodenum, ileum and caecum compared to intensively reared ducks. There were no effects of age, sex and rearing systems on TLR7 expression in the spleen. 6. The heterophil-to-lymphocyte ratio and serum corticosterone were higher in ducks reared on an intensive system compared with ducks from an extensive rearing system.

  6. Sphingosine-1–Phosphate, FTY720, and Sphingosine-1–Phosphate Receptors in the Pathobiology of Acute Lung Injury

    PubMed Central

    Dudek, Steven M.; Jacobson, Jeffrey R.; Moreno-Vinasco, Liliana; Huang, Long Shuang; Abassi, Taimur; Mathew, Biji; Zhao, Yutong; Wang, Lichun; Bittman, Robert; Weichselbaum, Ralph; Berdyshev, Evgeny; Garcia, Joe G. N.

    2013-01-01

    Acute lung injury (ALI) attributable to sepsis or mechanical ventilation and subacute lung injury because of ionizing radiation (RILI) share profound increases in vascular permeability as a key element and a common pathway driving increased morbidity and mortality. Unfortunately, despite advances in the understanding of lung pathophysiology, specific therapies do not yet exist for the treatment of ALI or RILI, or for the alleviation of unremitting pulmonary leakage, which serves as a defining feature of the illness. A critical need exists for new mechanistic insights that can lead to novel strategies, biomarkers, and therapies to reduce lung injury. Sphingosine 1–phosphate (S1P) is a naturally occurring bioactive sphingolipid that acts extracellularly via its G protein–coupled S1P1–5 as well as intracellularly on various targets. S1P-mediated cellular responses are regulated by the synthesis of S1P, catalyzed by sphingosine kinases 1 and 2, and by the degradation of S1P mediated by lipid phosphate phosphatases, S1P phosphatases, and S1P lyase. We and others have demonstrated that S1P is a potent angiogenic factor that enhances lung endothelial cell integrity and an inhibitor of vascular permeability and alveolar flooding in preclinical animal models of ALI. In addition to S1P, S1P analogues such as 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol (FTY720), FTY720 phosphate, and FTY720 phosphonates offer therapeutic potential in murine models of lung injury. This translational review summarizes the roles of S1P, S1P analogues, S1P-metabolizing enzymes, and S1P receptors in the pathophysiology of lung injury, with particular emphasis on the development of potential novel biomarkers and S1P-based therapies for ALI and RILI. PMID:23449739

  7. Lung cancer susceptibility among atomic bomb survivors in relation to CA repeat number polymorphism of epidermal growth factor receptor gene and radiation dose.

    PubMed

    Yoshida, Kengo; Nakachi, Kei; Imai, Kazue; Cologne, John B; Niwa, Yasuharu; Kusunoki, Yoichiro; Hayashi, Tomonori

    2009-12-01

    Lung cancer is a leading cause of cancer death worldwide. Prevention could be improved by identifying susceptible individuals as well as improving understanding of interactions between genes and etiological environmental agents, including radiation exposure. The epidermal growth factor receptor (EGFR)-signaling pathway, regulating cellular radiation sensitivity, is an oncogenic cascade involved in lung cancer, especially adenocarcinoma. The cytosine adenine (CA) repeat number polymorphism in the first intron of EGFR has been shown to be inversely correlated with EGFR production. It is hypothesized that CA repeat number may modulate individual susceptibility to lung cancer. Thus, we carried out a case-cohort study within the Japanese atomic bomb (A-bomb) survivor cohort to evaluate a possible association of CA repeat polymorphism with lung cancer risk in radiation-exposed or negligibly exposed (<5 mGy) A-bomb survivors. First, by dividing study subjects into Short and Long genotypes, defined as the summed CA repeat number of two alleles < or = 37 and > or = 38, respectively, we found that the Short genotype was significantly associated with an increased risk of lung cancer, specifically adenocarcinoma, among negligibly exposed subjects. Next, we found that prior radiation exposure significantly enhanced lung cancer risk of survivors with the Long genotype, whereas the risk for the Short genotype did not show any significant increase with radiation dose, resulting in indistinguishable risks between these genotypes at a high radiation dose. Our findings imply that the EGFR pathway plays a crucial role in assessing individual susceptibility to lung adenocarcinoma in relation to radiation exposure.

  8. Downregulation of protease-activated receptor-1 in human lung fibroblasts is specifically mediated by the prostaglandin E receptor EP2 through cAMP elevation and protein kinase A.

    PubMed

    Sokolova, Elena; Hartig, Roland; Reiser, Georg

    2008-07-01

    Many cellular functions of lung fibroblasts are controlled by protease-activated receptors (PARs). In fibrotic diseases, PAR-1 plays a major role in controlling fibroproliferative and inflammatory responses. Therefore, in these diseases, regulation of PAR-1 expression plays an important role. Using the selective prostaglandin EP2 receptor agonist butaprost and cAMP-elevating agents, we show here that prostaglandin (PG)E(2), via the prostanoid receptor EP2 and subsequent cAMP elevation, downregulates mRNA and protein levels of PAR-1 in human lung fibroblasts. Under these conditions, the functional response of PAR-1 in fibroblasts is reduced. These effects are specific for PGE(2). Activation of other receptors coupled to cAMP elevation, such as beta-adrenergic and adenosine receptors, does not reproduce the effects of PGE(2). PGE(2)-mediated downregulation of PAR-1 depends mainly on protein kinase A activity, but does not depend on another cAMP effector, the exchange protein activated by cAMP. PGE(2)-induced reduction of PAR-1 level is not due to a decrease of PAR-1 mRNA stability, but rather to transcriptional regulation. The present results provide further insights into the therapeutic potential of PGE(2) to specifically control fibroblast function in fibrotic diseases.

  9. Prostaglandin E2 suppresses allergic sensitization and lung inflammation by targeting the E prostanoid 2 receptor on T cells

    PubMed Central

    Zaslona, Zbigniew; Okunishi, Katsuhide; Bourdonnay, Emilie; Domingo-Gonzalez, Racquel; Moore, Bethany B.; Lukacs, Nicholas W.; Aronoff, David M.; Peters-Golden, Marc

    2013-01-01

    Background Endogenous prostanoids have been suggested to modulate sensitization during experimental allergic asthma, but the specific role of prostaglandin E2 (PGE2) or of specific E prostanoid (EP) receptors is not known. Objective Here we tested the role of EP2 signaling in allergic asthma. Methods Wild type (WT) and EP2−/− mice were subjected to ovalbumin sensitization and acute airway challenge. The PGE2 analog misoprostol was administered during sensitization in both genotypes. In vitro culture of splenocytes and of flow-sorted dendritic cells and T cells defined the mechanism by which EP2 exerted its protective effect. Adoptive transfer of WT and EP2−/− CD4 T cells was used to validate the importance of EP2 expression on T cells. Results As compared to WT mice, EP2−/− mice had exaggerated airway inflammation in this model. Splenocytes and lung lymph node cells from sensitized EP2−/− mice produced more IL-13 than did WT cells, suggesting increased sensitization. In WT but not EP2−/− mice, subcutaneous administration of a stable PGE2 analog during sensitization inhibited allergic inflammation. PGE2 decreased cytokine production and inhibited STAT6 phosphorylation by CD3/CD28-stimulated CD4pos T cells. Co-culture of flow cytometry-sorted splenic CD4pos T cells and CD11cpos dendritic cells from WT or EP2−/− mice suggested that the increased IL-13 production in EP2−/− mice was due to the lack of EP2 specifically on T cells. Adoptive transfer of CD4pos EP2−/− T cells caused greater cytokine production in the lungs of WT mice than did transfer of WT CD4pos T cells. Conclusion We conclude that the PGE2-EP2 axis is an important endogenous brake on allergic airway inflammation, primarily targets T cells, and its agonism represents a potential novel therapeutic approach to asthma. PMID:24075232

  10. Biological characteristics and epidermal growth factor receptor tyrosine kinase inhibitors efficacy of EGFR mutation and its subtypes in lung adenocarcinoma.

    PubMed

    Lu, Rong-Li; Hu, Cheng-Ping; Yang, Hua-Ping; Li, Yuan-Yuan; Gu, Qi-Hua; Wu, Lielin

    2014-04-01

    Mutation of epidermal growth factor receptor (EGFR) gene has been reported to be present in lung adenocarcinoma (LAC). In this study, we extensively investigated the impact of patients' biological characteristics on EGFR mutation and the impact of EGFR mutation subtypes on targeted therapy of advanced LAC. We examined EGFR exons18to21status in169 LAC patients by direct sequencing to study the impact of patients' biological characteristics on the EGFR mutational spectrum. And then, 59 patients with advanced LAC harboring EGFR exon 19 deletions(del 19) or exon 21 point mutation(L858R) mutations received first-line treatment of gefitinib or erlotinib, the efficacy of treatment, and the progression-free survival (PFS) of these patients were recorded. The frequency of the EGFR mutation and its subtypes and the variables associated with the EGFR mutation after removing the confound factors were investigated by the logistic analysis using all samples (n = 169). The EGFR mutation was significantly associated with well-differentiated tumor and excessive household cooking fumes(P < 0.05). The deletions in exon 19 were more frequently associated with well-differentiated tumor (P < 0.05). The overall frequency of the EGFR mutation was 49 %. Then the impact of EGFR mutation subtypes on targeted therapy were investigated by the retrospective analysis on 59 advanced LAC patients with del 19 or L858R mutations and treated first-line with erlotinib or gefitinib. The deletions in exon 19 got longer PFS (P < 0.05). But there were no differences in PFS between erlotinib therapy and gefitinib therapy. EGFR mutations were more frequently in high tumor differentiation and excessive household cooking fumes LAC. The del 19 mutation rate is relatively high with a high differentiation degree in advanced lung adenocarcinoma. The deletions in exon 19 may benefit more from first-line targeted therapy of advanced LAC compared with exon 21 point mutation L858R. There was no

  11. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    SciTech Connect

    Hecht, Emelia; Zago, Michela; Sarill, Miles; Rico de Souza, Angela; Gomez, Alvin; Matthews, Jason; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.

    2014-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR{sup −/−}) and wild-type (AhR{sup +/+}) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR{sup −/−} cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR{sup −/−} compared to AhR{sup +/+} cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR{sup +/+} fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR{sup +/+} lung fibroblasts in response to serum, corresponding to a decrease in p27{sup KIP1} protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27{sup KIP1} in AhR{sup −/−} fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the

  12. Combined Treatment With Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Ligands and Gamma Radiation Induces Apoptosis by PPARγ-Independent Up-Regulation of Reactive Oxygen Species-Induced Deoxyribonucleic Acid Damage Signals in Non-Small Cell Lung Cancer Cells

    SciTech Connect

    Han, Eun Jong; Im, Chang-Nim; Park, Seon Hwa; Moon, Eun-Yi; Hong, Sung Hee

    2013-04-01

    Purpose: To investigate possible radiosensitizing activities of the well-known peroxisome proliferator-activated receptor (PPAR)γ ligand ciglitazone and novel PPARγ ligands CAY10415 and CAY10506 in non-small cell lung cancer (NSCLC) cells. Methods and Materials: Radiosensitivity was assessed using a clonogenic cell survival assay. To investigate the mechanism underlying PPARγ ligand-induced radiosensitization, the subdiploid cellular DNA fraction was analyzed by flow cytometry. Activation of the caspase pathway by combined PPARγ ligands and γ-radiation treatment was detected by immunoblot analysis. Reactive oxygen species (ROS) were measured using 2,7-dichlorodihydrofluorescein diacetate and flow cytometry. Results: The 3 PPARγ ligands induced cell death and ROS generation in a PPARγ-independent manner, enhanced γ-radiation–induced apoptosis and caspase-3–mediated poly (ADP-ribose) polymerase (PARP) cleavage in vitro. The combined PPARγ ligand/γ-radiation treatment triggered caspase-8 activation, and this initiator caspase played an important role in the combination-induced apoptosis. Peroxisome proliferator-activated receptor-γ ligands may enhance the γ-radiation-induced DNA damage response, possibly by increasing γ-H2AX expression. Moreover, the combination treatment significantly increased ROS generation, and the ROS scavenger N-acetylcysteine inhibited the combined treatment-induced ROS generation and apoptotic cell death. Conclusions: Taken together, these results indicated that the combined treatment of PPARγ ligands and γ-radiation synergistically induced DNA damage and apoptosis, which was regulated by ROS.

  13. Role of Krev Interaction Trapped-1 in Prostacyclin-Induced Protection against Lung Vascular Permeability Induced by Excessive Mechanical Forces and Thrombin Receptor Activating Peptide 6

    PubMed Central

    Meliton, Angelo; Meng, Fanyong; Tian, Yufeng; Shah, Alok A.; Birukova, Anna A.

    2015-01-01

    Mechanisms of vascular endothelial cell (EC) barrier regulation during acute lung injury (ALI) or other pathologies associated with increased vascular leakiness are an active area of research. Adaptor protein krev interaction trapped-1 (KRIT1) participates in angiogenesis, lumen formation, and stabilization of EC adherens junctions (AJs) in mature vasculature. We tested a role of KRIT1 in the regulation of Rho-GTPase signaling induced by mechanical stimulation and barrier dysfunction relevant to ventilator-induced lung injury and investigated KRIT1 involvement in EC barrier protection by prostacyclin (PC). PC stimulated Ras-related protein 1 (Rap1)–dependent association of KRIT1 with vascular endothelial cadherin at AJs, with KRIT1-dependent cortical cytoskeletal remodeling leading to EC barrier enhancement. KRIT1 knockdown exacerbated Rho-GTPase activation and EC barrier disruption induced by pathologic 18% cyclic stretch and thrombin receptor activating peptide (TRAP) 6 and attenuated the protective effects of PC. In the two-hit model of ALI caused by high tidal volume (HTV) mechanical ventilation and TRAP6 injection, KRIT1 functional deficiency in KRIT1+/− mice increased basal lung vascular leak and augmented vascular leak and lung injury caused by exposure to HTV and TRAP6. Down-regulation of KRIT1 also diminished the protective effects of PC against TRAP6/HTV-induced lung injury. These results demonstrate a KRIT1-dependent mechanism of vascular EC barrier control in basal conditions and in the two-hit model of ALI caused by excessive mechanical forces and TRAP6 via negative regulation of Rho activity and enhancement of cell junctions. We also conclude that the stimulation of the Rap1-KRIT1 signaling module is a major mechanism of vascular endothelial barrier protection by PC in the injured lung. PMID:25923142

  14. Crosstalk with cancer-associated fibroblasts induces resistance of non-small cell lung cancer cells to epidermal growth factor receptor tyrosine kinase inhibition

    PubMed Central

    Choe, Chungyoul; Shin, Yong-Sung; Kim, Changhoon; Choi, So-Jung; Lee, Jinseon; Kim, So Young; Cho, Yong Beom; Kim, Jhingook

    2015-01-01

    Although lung cancers with activating mutations in the epidermal growth factor receptor (EGFR) are highly sensitive to selective EGFR tyrosine kinase inhibitors (TKIs), these tumors invariably develop acquired drug resistance. Host stromal cells have been found to have a considerable effect on the sensitivity of cancer cells to EGFR TKIs. Little is known, however, about the signaling mechanisms through which stromal cells contribute to the response to EGFR TKI in non-small cell lung cancer. This work examined the role of hedgehog signaling in cancer-associated fibroblast (CAF)-mediated resistance of lung cancer cells to the EGFR TKI erlotinib. PC9 cells, non-small cell lung cancer cells with EGFR-activating mutations, became resistant to the EGFR TKI erlotinib when cocultured in vitro with CAFs. Polymerase chain reaction and immunocytochemical assays showed that CAFs induced epithelial to mesenchymal transition phenotype in PC9 cells, with an associated change in the expression of epithelial to mesenchymal transition marker proteins including vimentin. Importantly, CAFs induce upregulation of the 7-transmembrane protein smoothened, the central signal transducer of hedgehog, suggesting that the hedgehog signaling pathway is active in CAF-mediated drug resistance. Indeed, downregulation of smoothened activity with the smoothened antagonist cyclopamine induces remodeling of the actin cytoskeleton independently of Gli-mediated transcriptional activity in PC9 cells. These findings indicate that crosstalk with CAFs plays a critical role in resistance of lung cancer to EGFR TKIs through induction of the epithelial to mesenchymal transition and may be an ideal therapeutic target in lung cancer. PMID:26676152

  15. Is it feasible to detect epidermal growth factor receptor mutations in circulating tumor cells in nonsmall cell lung cancer?

    PubMed Central

    Liu, Yafang; Xing, Ze; Zhan, Ping; Liu, Hongbing; Ye, Wei; Lv, Tangfeng; Song, Yong

    2016-01-01

    Abstract Background: The value of circulating tumor cells (CTCs) in detecting epidermal growth factor receptor (EGFR) mutations in patients with nonsmall cell lung cancer (NSCLC) is controversial. We performed a meta-analysis to investigate the diagnostic significance of CTCs with tumor tissues as the standard control. Methods: A systematic literature search, including papers published until November 26, 2015, was performed using PubMed, Medline, Embase, Web of Science, and the China National Knowledge Infrastructure, and the references of retrieved articles were screened. The pooled sensitivity, specificity, and diagnostic odds ratio (DOR) were calculated according to the data selection from the included studies. The evaluation indexes of the diagnostic performance were the summary receiver operating characteristic curve (SROC) and area under the SROC (AUSROC). Results: Eight eligible articles with a total of 170 participants were identified in our meta-analysis. The pooled sensitivity and specificity were 0.91 [95% CI: 0.55–0.99] and 0.99 [95% CI: 0.59–1.00]. The positive likelihood ratio and negative likelihood ratio were 68 [95% CI: 1.4–3364] and 0.09 [95% CI: 0.01–0.64], respectively. The DOR was 788 [95% CI: 9–71884]. The high diagnostic performance of CTCs in detecting EGFR mutations was indicated by the AUSROC of 0.99 [95% CI: 0.98–1.00]. Conclusions: CTCs are a feasible and highly specific biomarker for detecting the EGFR mutation status in NSCLC patients. PMID:27893656

  16. Intercalated chemotherapy and erlotinib for non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutations

    PubMed Central

    Zwitter, Matjaz; Rajer, Mirjana; Stanic, Karmen; Vrankar, Martina; Doma, Andrej; Cuderman, Anka; Grmek, Marko; Kern, Izidor; Kovac, Viljem

    2016-01-01

    ABSTRACT Among attempts to delay development of resistance to tyrosine kinase inhibitors (TKIs) in patients with advanced non-small cell lung cancer (NSCLC) with activating mutations of epidermal growth factor receptor (EGFR), intercalated therapy has not been properly evaluated. In a phase II trial, 38 patients with EGFR mutated NSCLC in advanced stage were treated with 4 to 6 3-weekly cycles of intercalated schedule with gemcitabine (1250 mg/m2, days 1 and 4), cisplatin (75 mg/m2, day 2) and erlotinib (150 mg, days 5 – 15), followed by continuous erlotinib as maintenance. In addition to standard radiologic evaluation according to RECIST, PET/CT was done prior to treatment and at 6 months, using PERCIST as a method for assessment of response. The primary endpoint was progression-free survival (PFS). In general, tolerance to treatment was good, even among 8 patients with performance status 2–3 and 13 patients with brain metastases; grade 4 toxicity included 2 cases of neutropenia and 4 thrombo-embolic events. Complete response (CR) or partial response (PR) were seen in 15 (39.5%) and 17 (44.7%) cases, respectively. All cases of CR were confirmed also by PET/CT. Median PFS was 23.4 months and median overall survival (OS) was 38.3  months. After a median follow-up of 35 months, 8 patients are still in CR and on maintenance erlotinib. In conclusion, intercalated treatment for treatment-naive patients with EGFR activating mutations leads to excellent response rate and prolonged PFS and survival. Comparison of the intercalated schedule to monotherapy with TKIs in a randomized trial is warranted. PMID:27261103

  17. Association between thyroid cancer and epidermal growth factor receptor mutation in female with nonsmall cell lung cancer

    PubMed Central

    Kim, Seo Yun; Kim, Hye-Ryoun; Kim, Cheol Hyeon; Koh, Jae Soo; Baek, Hee Jong; Choi, Chang-Min; Song, Joon Seon; Lee, Jae Cheol; Na, Im II

    2017-01-01

    BACKGROUND: The aim of this study was to investigate the association between epidermal growth factor receptor (EGFR) mutation and thyroid cancer in female patients with nonsmall-cell lung cancer (NSCLC). METHODS: In a retrospective study, we examined 835 female patients who were diagnosed with NSCLC and underwent an EGFR mutation test between June 2003 and August 2013. The associations of EGFR mutation with thyroid cancer and a family history of thyroid cancer were evaluated using logistic regression models. RESULTS: EGFR mutation was found in 378 of 835 patients. In addition to adenocarcinoma (P < 0.001), EGFR mutations were positively associated with a personal history of thyroid cancer (5.8% versus 2.6%; P = 0.020), while showing a trend toward inverse association with a personal history of nonthyroid cancer (5.8% vs. 9.0%; P = 0.086). Likewise, the incidence of EGFR mutations was associated with a family history of thyroid cancer (2.9% vs. 0.9%; P = 0.028), while showing a trend toward inverse association with a family history of nonthyroid cancer (27.8% vs. 33.7%; P = 0.066). Multivariate logistic regression showed that the incidence of EGFR mutations was different in women with thyroid or nonthyroid cancer (P = 0.035) and in women with a family history of thyroid or nonthyroid cancer (P = 0.023). CONCLUSIONS: Our data suggest that thyroid cancer and a family history of thyroid cancer are associated with EGFR-mutated NSCLC in female patients. The differences in the incidence of thyroid cancer and a family history of thyroid cancer by EGFR mutational status provide new insight into pathogenesis of this genetic change. PMID:28197220

  18. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer.

    PubMed

    Yasuda, Hiroyuki; Park, Eunyoung; Yun, Cai-Hong; Sng, Natasha J; Lucena-Araujo, Antonio R; Yeo, Wee-Lee; Huberman, Mark S; Cohen, David W; Nakayama, Sohei; Ishioka, Kota; Yamaguchi, Norihiro; Hanna, Megan; Oxnard, Geoffrey R; Lathan, Christopher S; Moran, Teresa; Sequist, Lecia V; Chaft, Jamie E; Riely, Gregory J; Arcila, Maria E; Soo, Ross A; Meyerson, Matthew; Eck, Michael J; Kobayashi, Susumu S; Costa, Daniel B

    2013-12-18

    Epidermal growth factor receptor (EGFR) gene mutations (G719X, exon 19 deletions/insertions, L858R, and L861Q) predict favorable responses to EGFR tyrosine kinase inhibitors (TKIs) in advanced non-small cell lung cancer (NSCLC). However, EGFR exon 20 insertion mutations (~10% of all EGFR mutations) are generally associated with insensitivity to available TKIs (gefitinib, erlotinib, and afatinib). The basis of this primary resistance is poorly understood. We studied a broad subset of exon 20 insertion mutations, comparing in vitro TKI sensitivity with responses to gefitinib and erlotinib in NSCLC patients, and found that most are resistant to EGFR TKIs. The crystal structure of a representative TKI-insensitive mutant (D770_N771insNPG) reveals an unaltered adenosine triphosphate-binding pocket, and the inserted residues form a wedge at the end of the C helix that promotes the active kinase conformation. Unlike EGFR-L858R, D770_N771insNPG activates EGFR without increasing its affinity for EGFR TKIs. Unexpectedly, we find that EGFR-A763_Y764insFQEA is highly sensitive to EGFR TKIs in vitro, and patients whose NSCLCs harbor this mutation respond to erlotinib. Analysis of the A763_Y764insFQEA mutant indicates that the inserted residues shift the register of the C helix in the N-terminal direction, altering the structure in the region that is also affected by the TKI-sensitive EGFR-L858R. Our studies reveal intricate differences between EGFR mutations, their biology, and their response to EGFR TKIs.

  19. Co-active receptor tyrosine kinases mitigate the effect of FGFR inhibitors in FGFR1-amplified lung cancers with low FGFR1 protein expression.

    PubMed

    Kotani, H; Ebi, H; Kitai, H; Nanjo, S; Kita, K; Huynh, T G; Ooi, A; Faber, A C; Mino-Kenudson, M; Yano, S

    2016-07-07

    Targeted therapies are effective in subsets of lung cancers with EGFR mutations and anaplastic lymphoma kinase (ALK) translocations. Large-scale genomics have recently expanded the lung cancer landscape with FGFR1 amplification found in 10-20% of squamous cell carcinomas (SCCs). However, the response rates have been low for biomarker-directed fibroblast growth factor receptor (FGFR) inhibitor therapy in SCC, which contrasts to the relatively high rates of response seen in EGFR mutant and ALK-translocated lung cancers treated with epidermal growth factor receptor (EGFR) inhibitors and ALK inhibitors, respectively. In order to better understand the low response rates of FGFR1-amplified lung cancers to FGFR inhibitors, relationships between gene copy number, mRNA expression and protein expression of FGFR1 were assessed in cell lines, tumor specimens and data from The Cancer Genome Atlas. The importance of these factors for the sensitivity to FGFR inhibitors was determined by analyzing drug screen data and conducting in vitro and in vivo experiments. We report that there was a discrepancy between FGFR1 amplification level and FGFR1 protein expression in a number of these cell lines, and the cancers with unexpectedly low FGFR1 expression were uniformly resistant to the different FGFR inhibitors. Further interrogation of the receptor tyrosine kinase activity in these discordant cell lines revealed co-activation of HER2 and platelet-derived growth factor receptor-α (PDGFRα) caused by gene amplification or ligand overexpression maintained phosphoinositide 3-kinase (PI3K) and MEK/ERK signaling even in the presence of FGFR inhibitor. Accordingly, co-inhibition of FGFR1 and HER2 or PDGFRα led to enhanced drug responses. In contrast, FGFR1-amplified high FGFR1 protein-expressing lung cancers are sensitive to FGFR inhibitor monotherapy by downregulating ERK signaling. Addition of a PI3K inhibitor to these high FGFR1 protein-expressing cancers further sensitized them to FGFR

  20. Diverse effects of G-protein-coupled free fatty acid receptors on the regulation of cellular functions in lung cancer cells.

    PubMed

    Kita, Tsubasa; Kadochi, Yui; Takahashi, Kaede; Fukushima, Kaori; Yamasaki, Eri; Uemoto, Taiki; Hirane, Miku; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2016-03-15

    Free fatty acids (FFAs) are dietary nutrients which mediate a variety of biological effects through binding to G-protein-coupled FFA receptors (FFARs). G-protein-coupled receptor 120 (GPR120) and GPR40 are identified as FFARs for long- and medium-chain fatty acids. Here we investigated whether GPR120 and GPR40 are involved in the acquisition of malignant properties in lung cancer cells. Three lung cancer RLCNR, LL/2 and A549 cells used in this study expressed GPR120 and GPR40 genes. The cell motile activities of all cells were significantly suppressed by a GPR40 antagonist GW1100. In addition, GPR40 knockdown inhibited the cell motile activity of A549 cells. In gelatin zymography, matrix metalloproteinase-2 (MMP-2) activity in GPR40 knockdown was significantly lower than that in control cells. Next, to evaluate effects of GPR120 and GPR40 on cellular functions induced by anti-cancer drug, the long-term cisplatin (CDDP) treated (A549-CDDP) cells were generated. The expression levels of GPR120 and GPR40 were significantly decreased in A549-CDDP cells. While A549-CDDP cells showed the high cell motile activity, GW1100 suppressed the cell motile activity of A549-CDDP cells. These results demonstrate that GPR120 negatively and GPR40 positively regulate cellular functions during tumor progression in lung cancer cells.

  1. Beta-cryptoxanthin reduced lung tumor multiplicity and inhibited lung cancer cell motility by downregulating nicotinic acetylcholine receptor alpha7 signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite the consistent association between a higher intake of the provitamin A carotenoid beta-cryptoxanthin (BCX) and a lower risk of lung cancer among smokers, potential mechanisms supporting BCX as a chemopreventive agent are needed. We first examined the effects of BCX on 4-[methyl nitrosamino]-...

  2. Berberine inhibits cytosolic phospholipase A2 and protects against LPS-induced lung injury and lethality independent of the alpha2-adrenergic receptor in mice.

    PubMed

    Zhang, Hao-qing; Wang, Hua-dong; Lu, Da-xiang; Qi, Ren-bin; Wang, Yan-ping; Yan, Yu-xia; Fu, Yong-mei

    2008-05-01

    Acute lung injury is still a significant clinical problem having a high mortality rate despite significant advances in antimicrobial therapy and supportive care made in the past few years. Our previous study demonstrated that berberine (Ber) remarkably decreased mortality and attenuated the lung injury in mice challenged with LPS, but the mechanism behind this remains unclear. Here, we report that pretreatment with Ber significantly reduced pulmonary edema, neutrophil infiltration, and histopathological alterations; inhibited protein expression and phosphorylation of cytosolic phospholipase A2; and decreased thromboxane A2 release induced by LPS. Yohimbine, an alpha2-adrenergic receptor antagonist, did not antagonize these actions of Ber. Furthermore, pretreatment with Ber decreased TNF-alpha production and mortality in mice challenged with LPS, which were enhanced by yohimbine, and Ber combined with yohimbine also improved survival rate in mice subjected to cecal ligation and puncture. Taken together, these observations indicate that Ber attenuates LPS-induced lung injury by inhibiting TNF-alpha production and cytosolic phospholipase A2 expression and activation in an alpha2-adrenoceptor-independent manner. Berberine combined with yohimbine might provide an effective therapeutic approach to acute lung injury during sepsis.

  3. Long non-coding RNA stabilizes the Y-box-binding protein 1 and regulates the epidermal growth factor receptor to promote lung carcinogenesis

    PubMed Central

    Huang, Yun-Chao; Wang, Gui-Zhen; Zhao, Xin-Chun; Pan, Hong-Li; Qu, Li-Wei; Zhang, Jian; Zhang, Chen; Cheng, Xin; Zhou, Guang-Biao

    2016-01-01

    Indoor and outdoor air pollution has been classified as group I carcinogen in humans, but the underlying tumorigenesis remains unclear. Here, we screened for abnormal long noncoding RNAs (lncRNAs) in lung cancers from patients living in Xuanwei city which has the highest lung cancer incidence in China due to smoky coal combustion-generated air pollution. We reported that Xuanwei patients had much more dysregulated lncRNAs than patients from control regions where smoky coal was not used. The lncRNA CAR intergenic 10 (CAR10) was up-regulated in 39/62 (62.9%) of the Xuanwei patients, which was much higher than in patients from control regions (32/86, 37.2%; p=0.002). A multivariate regression analysis showed an association between CAR10 overexpression and air pollution, and a smoky coal combustion-generated carcinogen dibenz[a,h]anthracene up-regulated CAR10 by increasing transcription factor FoxF2 expression. CAR10 bound and stabilized transcription factor Y-box-binding protein 1 (YB-1), leading to up-regulation of the epidermal growth factor receptor (EGFR) and proliferation of lung cancer cells. Knockdown of CAR10 inhibited cell growth in vitro and tumor growth in vivo. These results demonstrate the role of lncRNAs in environmental lung carcinogenesis, and CAR10-YB-1 represents a potential therapeutic target. PMID:27322209

  4. Duox2 is required for the transcription of pattern recognition receptors in acute viral lung infection: An interferon-independent regulatory mechanism.

    PubMed

    Hong, Seung-No; Kim, Ji Young; Kim, Hanna; Kim, Dong-Young; Won, Tae-Bin; Han, Doo Hee; Rhee, Chae-Seo; Kim, Hyun Jik

    2016-10-01

    The innate immune response, which constitutes the first line of defense against influenza A virus (IAV) infection, is activated by pattern recognition receptors (PRRs) that recognize viral structures. We found that the PRRs, retinoic acid-inducible gene 1 (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), which have been implicated as interferon (IFN)-stimulated genes, were dominantly responsible for the recognition of IAV in lungs of mice at 3 and 7 days post infection (dpi). Intranasal administration of IFNs enhanced RIG-I and MDA5 gene expression after IAV infection and mRNA levels of RIG-I and MDA5 were significantly reduced at 7 dpi in mice with neutralization of secreted IFNs. However, blockade of IFNs did not alter the transcription of RIG-I and MDA5 at 3 dpi. We studied the antiviral effect of Duox2 in vivo lung to elucidate the role of Duox2 in respiratory mucosa. RIG-I and MDA5 mRNA levels were induced to a lower extent in lungs of mice that were inoculated with Duox2 small hairpin RNA regardless of secreted IFNs at 3 dpi. We propose that Duox2 is responsible for IFN-independent signaling for induction of PRRs transcription and can control acute IAV lung infection at the beginning of infection.

  5. Toll-like receptor 5 agonist inhibition of growth of A549 lung cancer cells in vivo in a Myd88 dependent manner.

    PubMed

    Zhou, Shi-Xiang; Li, Feng-Sheng; Qiao, Yu-Lei; Zhang, Xue-Qing; Wang, Zhi-Dong

    2012-01-01

    The purpose of this study was to examine the effect of a Toll-like receptor 5 (TLR5) agonist, CBLB502, on the growth and radiosensitivity of A549 lung cancer cells in vivo. Expression of myeloid differentiation factor 88 (MyD88) or TLR5 was stably knocked down in human lung cancer cells (A549) using lentivirus expressing short hairpin RNA targeting human MyD88 or TLR5. Lack of MyD88 or TLR5 expression enhanced tumor growth in mouse xenografts of A549 lung cancer cells. CBLB502 inhibited the growth of A549 lung cancer cells, not A549-MyD88-KD cells in vivo in the murine xenograft model. Our results showed that the inhibition of A549 by CBLB502 in vivo was realized through regulating the expression of neutrophil recruiting cytokines and neutrophil infiltration. Finally, we found that activation of TLR5 signaling did not affect the radiosensitivity of tumors in vivo.

  6. Downregulation of the neonatal Fc receptor expression in non-small cell lung cancer tissue is associated with a poor prognosis

    PubMed Central

    Dalloneau, Emilie; Baroukh, Nadine; Mavridis, Konstantinos; Maillet, Agnès; Gueugnon, Fabien; Courty, Yves; Petit, Agnès; Kryza, Thomas; Del Rio, Maguy; Guyetant, Serge; Castaneda, Diana Carolina Cadena; Dhommée, Christine; Arnoult, Christophe; Scorilas, Andreas

    2016-01-01

    Lung cancer is the leading cause of cancer-related death worldwide. Although the recommended tumor, node and metastasis (TNM) classification and stage determination are important to select therapeutic options for patients with non-small cell lung carcinoma (NSCLC), additional molecular markers are required to indicate the prognosis, in particular within a specific stage, and help with the management of patients. Because neonatal Fc receptor (FcRn) has recently been involved in colon cancer immunosurveillance, we measured its expression in non-cancerous and NSCLC lung tissues and evaluated its prognostic value in overall survival for patient with NSCLC. FcRn expression was determined at both mRNA and protein levels on cancerous and adjacent non-cancerous tissues from 80 NSCLC patients. In NSCLC, FcRn was mainly found in resident and tumor infiltrating immune cells. The corresponding mRNA and protein were significantly less abundant in lung tumor than non-cancerous tissue. Moreover, analysis of our cohort and datasets from the public data bases show that FCGRT mRNA down-regulation is a robust and independent, unfavorable predictive factor of NSCLC patient survival. We conclude that FCGRT mRNA expression may be a useful additional marker for immunoscoring, reflecting tumor immune system, and help in the decision-making process for NSCLC patients. PMID:27384673

  7. Radical scavengers from heavy hydrocarbons

    SciTech Connect

    Kubo, Junichi

    1996-10-01

    The hydrogen-donating properties of some hydrocarbons form the basis for processes such as coal liquefaction and heavy oil upgrading. However, these hydrocarbons have seldom been used for other purposes, because their potential applications have not been well recognized. Research has indicated that these hydrogen-donating hydrocarbons can be used in important reactions as radical scavengers and have properties particular to those of pure hydrocarbons without functional groups containing heteroatoms. Over years of study researchers have found that pure hydrocarbons with radical-scavenging effects nearly as high as those in conventional hindered phenolic antioxidants can be produced from petroleum, and these hydrogen-donating hydrocarbons exhibit such effects even in oxidative atmospheres (i.e., they function as antioxidants). He has also shown that these mixtures have some properties particular to pure hydrocarbons without functional groups containing heteroatoms, and they`ve seen that a mechanism based on the steric effects appears when these hydrocarbons are used in heavy oil hydroprocessing. Hydrogen-donating hydrocarbons should be a viable resource in many applications. In this article, he presents radical-scavenging abilities, characteristics as pure hydrocarbons, and applications on the basis of the studies.

  8. Complete remission through icotinib treatment in Non-small cell lung cancer epidermal growth factor receptor mutation patient with brain metastasis: A case report

    PubMed Central

    Wang, Tao; Wang, Ruimin; Dong, Zhouhuan; Liang, Naichao

    2016-01-01

    Abstract Brain metastasis (BM) has been universally recognized as a poor prognostic factor in non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown efficacy in treating BM with an EGFR mutation. This paper reports a case of BM patient with EGFR-mutated NSCLC. According to the findings, a complete remission (CR) of the BM was achieved by icotinib treatment without conducting a radiotherapy, which was followed by a resection of the primary lung cancer lesion and lymph nodes. After one-year follow-up, the disease progressed to liver metastasis and liver lesion biopsy showed a T790M mutation. The patient responded well to the combination treatment of AZD9291 and icotinib after the failure of transcatheter arterial chemoembolization (TACE). This case report suggests that icotinib has a sustainable anticancer response to BM and the combination with icotinib and AZD9291 is effective for liver metastasis with T790M.

  9. Development of epidermal growth factor receptor tyrosine kinase inhibitors against EGFR T790M. Mutation in non small-cell lung carcinoma

    PubMed Central

    Wang, Yuli; Guo, Zhitao; Li, Yang

    2016-01-01

    Abstract Individualized therapies targeting epidermal growth factor receptor (EGFR) mutations show promises for the treatment of non small-cell lung carcinoma (NSCLC). However, disease progression almost invariably occurs 1 year after tyrosine kinase inhibitor (TKI) treatment. The most prominent mechanism of acquired resistance involves the secondary EGFR mutation, namely EGFR T790M, which accounts for 50%–60% of resistant tumors. A large amount of studies have focused on the development of effective strategies to treat TKI-resistant EGFR T790M mutation in lung tumors. Novel generations of EGFR inhibitors are producing encouraging results in patients with acquired resistance against EGFR T790M mutation. This review will summarize the novel inhibitors, which might overcome resistance against EGFR T790M mutation. PMID:28352770

  10. Radiotherapy of non-small-cell lung cancer in the era of EGFR gene mutations and EGF receptor tyrosine kinase inhibitors.

    PubMed

    Moschini, Ilaria; Dell'Anna, Cristina; Losardo, Pier Luigi; Bordi, Paola; D'Abbiero, Nunziata; Tiseo, Marcello

    2015-01-01

    Non-small-cell lung cancer (NSCLC) occurs, approximately, in 80-85% of all cases of lung cancer. The majority of patients present locally advanced or metastatic disease when diagnosed, with poor prognosis. The discovery of activating mutations in the EGFR gene has started a new era of personalized treatment for NSCLC patients. To improve the treatment outcome in patients with unresectable NSCLC and, in particular, EGFR mutated, a combined strategy of radiotherapy and medical treatment can be undertaken. In this review we will discuss preclinical data regarding EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) and radiotherapy, available clinical trials investigating efficacy and toxicity of combined treatment (thoracic or whole brain radiotherapy and EGFR-TKIs) and, also, the role of local radiation in mutated EGFR patients who developed EGFR-TKI resistance.

  11. Expression of Tumor-Derived Vascular Endothelial Growth Factor and Its Receptors Is Associated With Outcome in Early Squamous Cell Carcinoma of the Lung

    PubMed Central

    Pajares, María J.; Agorreta, Jackeline; Larrayoz, Marta; Vesin, Aurélien; Ezponda, Teresa; Zudaire, Isabel; Torre, Wenceslao; Lozano, María D.; Brambilla, Elisabeth; Brambilla, Christian; Wistuba, Ignacio I.; Behrens, Carmen; Timsit, Jean-Francois; Pio, Ruben; Field, John K.; Montuenga, Luis M.

    2012-01-01

    Purpose Antiangiogenic therapies targeting the vascular endothelial growth factor (VEGF) pathway have yielded more modest clinical benefit to patients with non–small-cell lung cancer (NSCLC) than initially expected. Clinical data suggest a distinct biologic role of the VEGF pathway in the different histologic subtypes of lung cancer. To clarify the influence of histologic differentiation in the prognostic relevance of VEGF-mediated signaling in NSCLC, we performed a concomitant analysis of the expression of three key elements of the VEGF pathway in the earliest stages of the following two principal histologic subtypes: squamous cell carcinoma (SCC) and adenocarcinoma (ADC). Patients and Methods We evaluated tumor cell expression of VEGF, VEGF receptor (VEGFR) 1, and VEGFR2 using automatic immunostaining in a series of 298 patients with early-stage NSCLC recruited as part of the multicenter European Early Lung Cancer Detection Group project. A score measuring the VEGF signaling pathway was calculated by adding the tumor cell expression value of VEGF and its two receptors. The results were validated in two additional independent cohorts of patients with NSCLC. Results The combination of high VEGF, VEGFR1, and VEGFR2 protein expression was associated with lower risk of disease progression in early SCC (univariate analysis, P = .008; multivariate analysis, hazard ratio, 0.62; 95% CI, 0.42 to 0.92; P = .02). The results were validated in two independent patient cohorts, confirming the favorable prognostic value of high VEGF signaling score in early lung SCC. Conclusion Our results clearly indicate that the combination of high expression of the three key elements in the VEGF pathway is associated with a good prognosis in patients with early SCC but not in patients with ADC. PMID:22355056

  12. Conditional overexpression of receptors for advanced glycation end-products in the adult murine lung causes airspace enlargement and induces inflammation.

    PubMed

    Stogsdill, Megan P; Stogsdill, Jeffrey A; Bodine, B Garrett; Fredrickson, Ali C; Sefcik, Tayler L; Wood, Tyler T; Kasteler, Stephen D; Reynolds, Paul R

    2013-07-01

    Receptors for advanced glycation end-products (RAGE) are multiligand surface receptors detected abundantly in pulmonary tissue. Our previous work revealed increased RAGE expression in cells and lungs exposed to tobacco smoke and RAGE-mediated cytokine expression via proinflammatory mechanisms involving NF-κB. RAGE expression is elevated in various pathological states, including chronic obstructive pulmonary disease; however, precise contributions of RAGE to the progression of emphysema and pulmonary inflammation in the adult lung are unknown. In the current study, we generated a RAGE transgenic (RAGE TG) mouse and conditionally induced adult alveolar epithelium to overexpress RAGE. RAGE was induced after the period of alveologenesis, from weaning (20 d of age) until animals were killed at 50, 80, and 110 days (representing 30, 60, and 90 d of RAGE overexpression). Hematoxylin and eosin staining and mean chord length revealed incremental dilation of alveolar spaces as RAGE overexpression persisted. TUNEL staining and electron microscopy confirmed increased apoptosis and blebbing of alveolar epithelium in lungs from RAGE TG mice when compared with control mice. Immunohistochemistry for matrix metalloproteinase 9 revealed an overall increase in matrix metalloproteinase 9, which correlated with decreased elastin expression in RAGE TG mice. Furthermore, RAGE TG mice manifested significant inflammation measured by elevated bronchoalveolar lavage protein, leukocyte infiltration, and secreted cytokines. These data support the concept that innovative transgenic mice that overexpress RAGE may model pulmonary inflammation and alveolar destabilization independent of tobacco smoke and validate RAGE signaling as a target pathway in the prevention or attenuation of smoke-related inflammatory lung diseases.

  13. Antioxidants as Potential Therapeutics for Lung Fibrosis

    PubMed Central

    DAY, BRIAN J.

    2009-01-01

    Interstitial lung disease encompasses a large group of chronic lung disorders associated with excessive tissue remodeling, scarring, and fibrosis. The evidence of a redox imbalance in lung fibrosis is substantial, and the rationale for testing antioxidants as potential new therapeutics for lung fibrosis is appealing. Current animal models of lung fibrosis have clear involvement of ROS in their pathogenesis. New classes of antioxidant agents divided into catalytic antioxidant mimetics and antioxidant scavengers are being developed. The catalytic antioxidant class is based on endogenous antioxidant enzymes and includes the manganese-containing macrocyclics, porphyrins, salens, and the non–metal-containing nitroxides. The antioxidant scavenging class is based on endogenous antioxidant molecules and includes the vitamin E analogues, thiols, lazaroids, and polyphenolic agents. Numerous studies have shown oxidative stress to be associated with many interstitial lung diseases and that these agents are effective in attenuating fibroproliferative responses in the lung of animals and humans. PMID:17999627

  14. Understanding how mammalian scavengers use information from avian scavengers: cue from above.

    PubMed

    Kane, Adam; Kendall, Corinne J

    2017-03-15

    Interspecific social information transfer can play a key role in many aspects of animal ecology from foraging to habitat selection to predator avoidance. Within scavenging communities, avian scavengers often act as producers and mammalian scavengers act as scroungers, but we predict that species-specific cueing will allow for mammalian scavengers to utilize particular avian scavenger species using preferred food sources similar to their own preferences. We use empirical and theoretic approaches to assess interactions between mammalian and avian scavengers in one of the most diverse scavenging guilds in Masai Mara National Reserve, Kenya. Using a spatially explicit model and data from experimental carcasses, we found evidence that mammals benefit from local enhancement provided by vultures and that mammalian-avian following patterns are consistent with the idea that species-specific cueing is occurring. Results suggest that ongoing population declines in avian scavengers may have significant impacts on mammalian scavengers and potentially create trophic cascades.

  15. Phosphoproteomics of collagen receptor networks reveals SHP-2 phosphorylation downstream of wild-type DDR2 and its lung cancer mutants.

    PubMed

    Iwai, Leo K; Payne, Leo S; Luczynski, Maciej T; Chang, Francis; Xu, Huifang; Clinton, Ryan W; Paul, Angela; Esposito, Edward A; Gridley, Scott; Leitinger, Birgit; Naegle, Kristen M; Huan