Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M
2018-02-01
Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue. Additionally, mesenchymal stem cells differently modulated the secretion of biomarkers by macrophages depending on their source. Mesenchymal stem cells from different sources led to variable responses in lungs and distal organs. Bone marrow and adipose tissue mesenchymal stem cells yielded greater beneficial effects than lung tissue mesenchymal stem cells. These findings may be regarded as promising in clinical trials.
Henry, Eric; Cores, Jhon; Hensley, M Taylor; Anthony, Shirena; Vandergriff, Adam; de Andrade, James B M; Allen, Tyler; Caranasos, Thomas G; Lobo, Leonard J; Cheng, Ke
2015-11-01
Lung diseases are devastating conditions and ranked as one of the top five causes of mortality worldwide according to the World Health Organization. Stem cell therapy is a promising strategy for lung regeneration. Previous animal and clinical studies have focused on the use of mesenchymal stem cells (from other parts of the body) for lung regenerative therapies. We report a rapid and robust method to generate therapeutic resident lung progenitors from adult lung tissues. Outgrowth cells from healthy lung tissue explants are self-aggregated into three-dimensional lung spheroids in a suspension culture. Without antigenic sorting, the lung spheroids recapitulate the stem cell niche and contain a natural mixture of lung stem cells and supporting cells. In vitro, lung spheroid cells can be expanded to a large quantity and can form alveoli-like structures and acquire mature lung epithelial phenotypes. In severe combined immunodeficiency mice with bleomycin-induced pulmonary fibrosis, intravenous injection of human lung spheroid cells inhibited apoptosis, fibrosis, and infiltration but promoted angiogenesis. In a syngeneic rat model of pulmonary fibrosis, lung spheroid cells outperformed adipose-derived mesenchymal stem cells in reducing fibrotic thickening and infiltration. Previously, lung spheroid cells (the spheroid model) had only been used to study lung cancer cells. Our data suggest that lung spheroids and lung spheroid cells from healthy lung tissues are excellent sources of regenerative lung cells for therapeutic lung regeneration. The results from the present study will lead to future human clinical trials using lung stem cell therapies to treat various incurable lung diseases, including pulmonary fibrosis. The data presented here also provide fundamental knowledge regarding how injected stem cells mediate lung repair in pulmonary fibrosis. ©AlphaMed Press.
Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.
Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R
2016-01-19
The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.
Shukla, Vivek; Rao, Mahadev; Zhang, Hongen; Beers, Jeanette; Wangsa, Darawalee; Wangsa, Danny; Buishand, Floryne O; Wang, Yonghong; Yu, Zhiya; Stevenson, Holly; Reardon, Emily; McLoughlin, Kaitlin C; Kaufman, Andrew; Payabyab, Eden; Hong, Julie A; Zhang, Mary; Davis, Sean R; Edelman, Daniel C; Chen, Guokai; Miettinen, Markku; Restifo, Nicholas; Ried, Thomas; Meltzer, Paul S; Schrump, David S
2018-04-01
Despite extensive studies, the genetic and epigenetic mechanisms that mediate initiation and progression of lung cancers have not been fully elucidated. Previously, we have demonstrated that via complementary mechanisms, including DNA methylation, polycomb repressive complexes, and noncoding RNAs, cigarette smoke induces stem-like phenotypes that coincide with progression to malignancy in normal respiratory epithelia as well as enhanced growth and metastatic potential of lung cancer cells. To further investigate epigenetic mechanisms contributing to stemness/pluripotency in lung cancers and potentially identify novel therapeutic targets in these malignancies, induced pluripotent stem cells were generated from normal human small airway epithelial cells. Lung induced pluripotent stem cells were generated by lentiviral transduction of small airway epithelial cells of OSKM (Yamanaka) factors (octamer-binding transcription factor 4 [Oct4], sex-determining region Y box 2 [SOX2], Kruppel-like factor 4 [KLF4], and MYC proto-oncogene, bHLH transcription factor [MYC]). Western blot, real-time polymerase chain reaction, and chromatin immunoprecipitation sequencing analysis were performed. The lung induced pluripotent stem cells exhibited hallmarks of pluripotency, including morphology, surface antigen and stem cell gene expression, in vitro proliferation, and teratoma formation. In addition, lung induced pluripotent stem cells exhibited no chromosomal aberrations, complete silencing of reprogramming transgenes, genomic hypermethylation, upregulation of genes encoding components of polycomb repressive complex 2, hypermethylation of stem cell polycomb targets, and modulation of more than 15,000 other genes relative to parental small airway epithelial cells. Additional sex combs like-3 (ASXL3), encoding a polycomb repressive complex 2-associated protein not previously described in reprogrammed cells, was markedly upregulated in lung induced pluripotent stem cell as well as human small cell lung cancer lines and specimens. Overexpression of the additional sex combs like-3 gene correlated with increased genomic copy number in small cell lung cancer lines. Knock-down of the additional sex combs like-3 gene inhibited proliferation, clonogenicity, and teratoma formation by lung induced pluripotent stem cells and significantly diminished in vitro clonogenicity and growth of small cell lung cancer cells in vivo. Collectively, these studies highlight the potential utility of this lung induced pluripotent stem cell model for elucidating epigenetic mechanisms contributing to pulmonary carcinogenesis and suggest that additional sex combs like-3 is a novel target for small cell lung cancer therapy.
Lung epithelial stem cells and their niches: Fgf10 takes center stage.
Volckaert, Thomas; De Langhe, Stijn
2014-01-01
Throughout life adult animals crucially depend on stem cell populations to maintain and repair their tissues to ensure life-long organ function. Stem cells are characterized by their capacity to extensively self-renew and give rise to one or more differentiated cell types. These powerful stem cell properties are key to meet the changing demand for tissue replacement during normal lung homeostasis and regeneration after lung injury. Great strides have been made over the last few years to identify and characterize lung epithelial stem cells as well as their lineage relationships. Unfortunately, knowledge on what regulates the behavior and fate specification of lung epithelial stem cells is still limited, but involves communication with their microenvironment or niche, a local tissue environment that hosts and influences the behaviors or characteristics of stem cells and that comprises other cell types and extracellular matrix. As such, an intimate and dynamic epithelial-mesenchymal cross-talk, which is also essential during lung development, is required for normal homeostasis and to mount an appropriate regenerative response after lung injury. Fibroblast growth factor 10 (Fgf10) signaling in particular seems to be a well-conserved signaling pathway governing epithelial-mesenchymal interactions during lung development as well as between different adult lung epithelial stem cells and their niches. On the other hand, disruption of these reciprocal interactions leads to a dysfunctional epithelial stem cell-niche unit, which may culminate in chronic lung diseases such as chronic obstructive pulmonary disease (COPD), chronic asthma and idiopathic pulmonary fibrosis (IPF).
Stem cells are dispensable for lung homeostasis but restore airways after injury.
Giangreco, Adam; Arwert, Esther N; Rosewell, Ian R; Snyder, Joshua; Watt, Fiona M; Stripp, Barry R
2009-06-09
Local tissue stem cells have been described in airways of the lung but their contribution to normal epithelial maintenance is currently unknown. We therefore developed aggregation chimera mice and a whole-lung imaging method to determine the relative contributions of progenitor (Clara) and bronchiolar stem cells to epithelial maintenance and repair. In normal and moderately injured airways chimeric patches were small in size and not associated with previously described stem cell niches. This finding suggested that single, randomly distributed progenitor cells maintain normal epithelial homeostasis. In contrast we found that repair following severe lung injury resulted in the generation of rare, large clonal cell patches that were associated with stem cell niches. This study provides evidence that epithelial stem cells are dispensable for normal airway homeostasis. We also demonstrate that stem cell activation and robust clonal cellular expansion occur only during repair from severe lung injury.
Harnessing the potential of lung stem cells for regenerative medicine.
McQualter, Jonathan L; Anthony, Desiree; Bozinovski, Steven; Prêle, Cecilia M; Laurent, Geoffrey J
2014-11-01
In response to recurrent exposure to environmental insults such as allergens, pollution, irritants, smoke and viral/bacterial infection, the epithelium of the lung is continually damaged. Homeostasis of the lung requires a balance between immune regulation and promotion of tissue regeneration, which requires the co-ordinated proliferation and differentiation of stem and progenitor cells. In this review we reflect on the current understanding of lung epithelial stem and progenitor cells and advocate a model hierarchy in which self-renewing multipotent lung epithelial stem cells give rise to lineage restricted progenitor cells that repopulate airway and alveolar epithelial cell lineages during homeostasis and repair. We also discuss the role of mesenchymal progenitor cells in maintaining the structural integrity of the lung and propose a model in which mesenchymal cells act as the quintessential architects of lung regeneration by providing molecular signals, such as FGF-10, to regulate the fate and specificity of epithelial stem and progenitor cells. Moreover, we discuss the current status and future prospects for translating lung stem cell therapies to the clinic to replace, repair, or regenerate diseased lung tissue. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mesenchymal stem cells for acute lung injury: Preclinical evidence
Matthay, Michael A.; Goolaerts, Arnaud; Howard, James P.; Lee, Jae Woo
2013-01-01
Several experimental studies have suggested that mesenchymal stem cells may have value for the treatment of clinical disorders, including myocardial infarction, diabetes, acute renal failure, sepsis, and acute lung injury. In preclinical studies, mesenchymal stem cells have been effective in reducing lung injury from endotoxin, live bacteria, bleomycin, and hyperoxia. In some studies, the cultured medium from mesenchymal stem cells has been as effective as the mesenchymal stem cells themselves. Several paracrine mediators that can mediate the effect of mesenchymal stem cells have been identified, including interleukin-10, interleukin-1ra, keratinocyte growth factor, and prostaglandin E2. Further preclinical studies are needed, as is planning for clinical trials for acute lung injury. PMID:21164399
Asymmetric cell division of stem cells in the lung and other systems
Berika, Mohamed; Elgayyar, Marwa E.; El-Hashash, Ahmed H. K.
2014-01-01
New insights have been added to identification, behavior and cellular properties of embryonic and tissue-specific stem cells over the last few years. The modes of stem cell division, asymmetric vs. symmetric, are tightly regulated during development and regeneration. The proper choice of a stem cell to divide asymmetrically or symmetrically has great consequences for development and disease because inappropriate asymmetric division disrupts organ morphogenesis, whereas uncontrolled symmetric division induces tumorigenesis. Therefore, understanding the behavior of lung stem cells could identify innovative solutions for restoring normal morphogenesis and/or regeneration of different organs. In this concise review, we describe recent studies in our laboratory about the mode of division of lung epithelial stem cells. We also compare asymmetric cell division (ACD) in the lung stem cells with other tissues in different organisms. PMID:25364740
Nonaka, Paula N; Uriarte, Juan J; Campillo, Noelia; Oliveira, Vinicius R; Navajas, Daniel; Farré, Ramon
2016-11-28
A current approach to obtain bioengineered lungs as a future alternative for transplantation is based on seeding stem cells on decellularized lung scaffolds. A fundamental question to be solved in this approach is how to drive stem cell differentiation onto the different lung cell phenotypes. Whereas the use of soluble factors as agents to modulate the fate of stem cells was established from an early stage of the research with this type of cells, it took longer to recognize that the physical microenvironment locally sensed by stem cells (e.g. substrate stiffness, 3D architecture, cyclic stretch, shear stress, air-liquid interface, oxygenation gradient) also contributes to their differentiation. The potential role played by physical stimuli would be particularly relevant in lung bioengineering since cells within the organ are physiologically subjected to two main stimuli required to facilitate efficient gas exchange: air ventilation and blood perfusion across the organ. The present review focuses on describing how the cell mechanical microenvironment can modulate stem cell differentiation and how these stimuli could be incorporated into lung bioreactors for optimizing organ bioengineering.
Conese, Massimo; Piro, Donatella; Carbone, Annalucia; Castellani, Stefano; Di Gioia, Sante
2014-01-01
Chronic lung diseases, such as cystic fibrosis (CF), asthma, and chronic obstructive pulmonary disease (COPD) are incurable and represent a very high social burden. Stem cell-based treatment may represent a hope for the cure of these diseases. In this paper, we revise the overall knowledge about the plasticity and engraftment of exogenous marrow-derived stem cells into the lung, as well as their usefulness in lung repair and therapy of chronic lung diseases. The lung is easily accessible and the pathophysiology of these diseases is characterized by injury, inflammation, and eventually by remodeling of the airways. Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal (stem) cells (MSCs), encompass a wide array of cell subsets with different capacities of engraftment and injured tissue regenerating potential. Proof-of-principle that marrow cells administered locally may engraft and give rise to specialized epithelial cells has been given, but the efficiency of this conversion is too limited to give a therapeutic effect. Besides the identification of plasticity mechanisms, the characterization/isolation of the stem cell subpopulations represents a major challenge to improving the efficacy of transplantation protocols used in regenerative medicine for lung diseases.
Stem cell therapy: the great promise in lung disease.
Siniscalco, Dario; Sullo, Nikol; Maione, Sabatino; Rossi, Francesco; D'Agostino, Bruno
2008-06-01
Lung injuries are leading causes of morbidity and mortality worldwide. Pulmonary diseases such as asthma or chronic obstructive pulmonary disease characterized by loss of lung elasticity, small airway tethers, and luminal obstruction with inflammatory mucoid secretions, or idiopathic pulmonary fibrosis characterized by excessive matrix deposition and destruction of the normal lung architecture, have essentially symptomatic treatments and their management is costly to the health care system.Regeneration of tissue by stem cells from endogenous, exogenous, and even genetically modified cells is a promising novel therapy. The use of adult stem cells to help with lung regeneration and repair could be a newer technology in clinical and regenerative medicine. In fact, different studies have shown that bone marrow progenitor cells contribute to repair and remodeling of lung in animal models of progressive pulmonary hypertension.Therefore, lung stem cell biology may provide novel approaches to therapy and could represent a great promise for the future of molecular medicine. In fact, several diseases can be slowed or even blocked by stem cell transplantation.
Dinh, Phuong-Uyen C; Cores, Jhon; Hensley, M Taylor; Vandergriff, Adam C; Tang, Junnan; Allen, Tyler A; Caranasos, Thomas G; Adler, Kenneth B; Lobo, Leonard J; Cheng, Ke
2017-06-30
Resident stem and progenitor cells have been identified in the lung over the last decade, but isolation and culture of these cells remains a challenge. Thus, although these lung stem and progenitor cells provide an ideal source for stem-cell based therapy, mesenchymal stem cells (MSCs) remain the most popular cell therapy product for the treatment of lung diseases. Surgical lung biopsies can be the tissue source but such procedures carry a high risk of mortality. In this study we demonstrate that therapeutic lung cells, termed "lung spheroid cells" (LSCs) can be generated from minimally invasive transbronchial lung biopsies using a three-dimensional culture technique. The cells were then characterized by flow cytometry and immunohistochemistry. Angiogenic potential was tested by in-vitro HUVEC tube formation assay. In-vivo bio- distribution of LSCs was examined in athymic nude mice after intravenous delivery. From one lung biopsy, we are able to derive >50 million LSC cells at Passage 2. These cells were characterized by flow cytometry and immunohistochemistry and were shown to represent a mixture of lung stem cells and supporting cells. When introduced systemically into nude mice, LSCs were retained primarily in the lungs for up to 21 days. Here, for the first time, we demonstrated that direct culture and expansion of human lung progenitor cells from pulmonary tissues, acquired through a minimally invasive biopsy, is possible and straightforward with a three-dimensional culture technique. These cells could be utilized in long-term expansion of lung progenitor cells and as part of the development of cell-based therapies for the treatment of lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).
NASA Astrophysics Data System (ADS)
Wu, Tsai-Jung; Tzeng, Yan-Kai; Chang, Wei-Wei; Cheng, Chi-An; Kuo, Yung; Chien, Chin-Hsiang; Chang, Huan-Cheng; Yu, John
2013-09-01
Lung stem/progenitor cells are potentially useful for regenerative therapy, for example in repairing damaged or lost lung tissue in patients. Several optical imaging methods and probes have been used to track how stem cells incorporate and regenerate themselves in vivo over time. However, these approaches are limited by photobleaching, toxicity and interference from background tissue autofluorescence. Here we show that fluorescent nanodiamonds, in combination with fluorescence-activated cell sorting, fluorescence lifetime imaging microscopy and immunostaining, can identify transplanted CD45-CD54+CD157+ lung stem/progenitor cells in vivo, and track their engraftment and regenerative capabilities with single-cell resolution. Fluorescent nanodiamond labelling did not eliminate the cells' properties of self-renewal and differentiation into type I and type II pneumocytes. Time-gated fluorescence imaging of tissue sections of naphthalene-injured mice indicates that the fluorescent nanodiamond-labelled lung stem/progenitor cells preferentially reside at terminal bronchioles of the lungs for 7 days after intravenous transplantation.
Conese, Massimo; Carbone, Annalucia; Castellani, Stefano; Di Gioia, Sante
2013-01-01
Stem cell-based treatment may represent a hope for the treatment of acute lung injury and pulmonary fibrosis, and other chronic lung diseases, such as cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD). It is well established in preclinical models that bone marrow-derived stem and progenitor cells exert beneficial effects on inflammation, immune responses and repairing of damage in virtually all lung-borne diseases. While it was initially thought that the positive outcome was due to a direct engraftment of these cells into the lung as endothelial and epithelial cells, paracrine factors are now considered the main mechanism through which stem and progenitor cells exert their therapeutic effect. This knowledge has led to the clinical use of marrow cells in pulmonary hypertension with endothelial progenitor cells (EPCs) and in COPD with mesenchymal stromal (stem) cells (MSCs). Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells, MSCs, EPCs and fibrocytes, encompass a wide array of cell subsets with different capacities of engraftment and injured tissue-regenerating potential. The characterization/isolation of the stem cell subpopulations represents a major challenge to improve the efficacy of transplantation protocols used in regenerative medicine and applied to lung disorders. Copyright © 2013 S. Karger AG, Basel.
[The fundamental mechanisms of metastatic spread and chemotherapy resistance in lung cancer].
Tomuleasa, Ciprian; Kacso, Gabriel; Soritau, Olga; Susman, Sergiu; Petrushev, Bobe; Aldea, Mihaela; Buiga, Rareş; Irimie, Alexandru
2011-01-01
Lung cancer is the leading cause of cancer-related death in the European Union and the United States, accounting for about one third of all cancer deaths. Primary lung cancer may arise from the central (bronchial) or peripheral (bronchiolo-alveolar) compartment of the lung, but the origins of the different histological types of primary lung tumours are not well understood and described in medical literature. Current investigation in the field of cancer research have focused on the "cancer stem cell" hypothesis as stem cells are belived to be crucial players in the homeostasis of all adult tissues. Even if the role of stem cells in lung carcinogenesis is not clear yet, numerous studies indicate that lung cancer is not the result of a sudden transforming event, but of a multistep process of molecular changes of the primordial stem cell niche, leading to the development of noeplasia. In the current review, we present state-of-the-art research in the field of lung stem cell biology, with a special emphasis on lung cancer emergence, development, metastasis and multidrug resistance.
Clinical potentials of human pluripotent stem cells in lung diseases
2014-01-01
Lung possesses very limited regenerative capacity. Failure to maintain homeostasis of lung epithelial cell populations has been implicated in the development of many life-threatening pulmonary diseases leading to substantial morbidity and mortality worldwide, and currently there is no known cure for these end-stage pulmonary diseases. Embryonic stem cells (ESCs) and somatic cell-derived induced pluripotent stem cells (iPSCs) possess unlimited self-renewal capacity and great potential to differentiate to various cell types of three embryonic germ layers (ectodermal, mesodermal, and endodermal). Therapeutic use of human ESC/iPSC-derived lung progenitor cells for regeneration of injured or diseased lungs will have an enormous clinical impact. This article provides an overview of recent advances in research on pluripotent stem cells in lung tissue regeneration and discusses technical challenges that must be overcome for their clinical applications in the future. PMID:24995122
Lee, Joo-Hyeon; Bhang, Dong Ha; Beede, Alexander; Huang, Tian Lian; Stripp, Barry R.; Bloch, Kenneth D.; Wagers, Amy J.; Tseng, Yu-Hua; Ryeom, Sandra; Kim, Carla F.
2014-01-01
SUMMARY Lung stem cells are instructed to produce lineage-specific progeny through unknown factors in their microenvironment. We used clonal three-dimensional (3D) co-cultures of endothelial cells and distal lung stem cells, bronchioalveolar stem cells (BASCs), to probe the instructive mechanisms. Single BASCs had bronchiolar and alveolar differentiation potential in lung endothelial cell co-cultures. Gain and loss of function experiments showed BMP4-Bmpr1a signaling triggers calcineurin/NFATc1-dependent expression of Thrombospondin-1 (Tsp1) in lung endothelial cells to drive alveolar lineage-specific BASC differentiation. Tsp1-null mice exhibited defective alveolar injury repair, confirming a crucial role for the BMP4-NFATc1-TSP1 axis in lung epithelial differentiation and regeneration in vivo. Discovery of this pathway points to methods to direct the derivation of specific lung epithelial lineages from multipotent cells. These findings elucidate a pathway that may be a critical target in lung diseases and provide new tools to understand the mechanisms of respiratory diseases at the single cell level. PMID:24485453
Proceedings: Regenerative Medicine for Lung Diseases: A CIRM Workshop Report.
Kadyk, Lisa C; DeWitt, Natalie D; Gomperts, Brigitte
2017-10-01
The mission of the California Institute of Regenerative Medicine (CIRM) is to accelerate treatments to patients with unmet medical needs. In September 2016, CIRM sponsored a workshop held at the University of California, Los Angeles, to discuss regenerative medicine approaches for treatment of lung diseases and to identify the challenges remaining for advancing such treatments to the clinic and market approval. Workshop participants discussed current preclinical and clinical approaches to regenerative medicine in the lung, as well as the biology of lung stem cells and the role of stem cells in the etiology of various lung diseases. The outcome of this effort was the recognition that whereas transient cell delivery approaches are leading the way in the clinic, recent advances in the understanding of lung stem cell biology, in vitro and in vivo disease modeling, gene editing and replacement methods, and cell engraftment approaches raise the prospect of developing cures for some lung diseases in the foreseeable future. In addition, advances in in vitro modeling using lung organoids and "lung on a chip" technology are setting the stage for high quality small molecule drug screening to develop treatments for lung diseases with complex biology. Stem Cells Translational Medicine 2017;6:1823-1828. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
[Regulation of airway stem cell proliferation in idiopathic pulmonary fibrosis].
Yang, S X; Wu, Q; Sun, X; Li, X; Li, K; Xu, L; Li, Y; Zhang, Q Y; Zhang, Y C; Chen, H Y
2016-09-01
To investigate the effect of fibroblasts on regulating airway stem cell proliferation in idiopathic pulmonary fibrosis. Lung cell suspension was prepared from β-actin-GFP mice. Airway stem cells were obtained by fluorescence activated cell sorting and co-cultured with lung fibroblasts. The fibroblasts were treated with TGF-β inhibitor SB43142. The expression of growth factors FGF1/2 and the effect of FGF1/2 on stem cell proliferation were observed. The cloning efficiency of airway stem cells, when co-cultured with normal lung fibroblast cells for 8 days, was (3.5±1.1)%, while the cloning efficiency was reduced to (0.04±0.04)% when co-cultured with lung fibroblasts from idiopathic pulmonary fibrosis patients. The difference between the 2 groups was statistically significant(P=0.002 5). TGF-β receptor inhibitor SB431542 increased lung fibroblast growth factors FGF1/2 expression.FGF1 mRNA expression was increased to the experimental group 0.005 5 from 0.000 2 in the control group.FGF2 mRNA expression of the amount raised to the experimental group 0.000 15 from 0.000 8 in the control group.FGF1/2 promoted the growth of airway stem cells. After FGF1/2 was co-cultured with normal lung fibroblast cells for 8 days, the cloning efficiency of airway stem cells was (0.3±0.1)%. During the development of idiopathic pulmonary fibrosis, fibroblast secreted FGF1/2 regulate airway stem cell proliferation.
The clinical use of regenerative therapy in COPD
Lipsi, Roberto; Rogliani, Paola; Calzetta, Luigino; Segreti, Andrea; Cazzola, Mario
2014-01-01
Regenerative or stem cell therapy is an emerging field of treatment based on stimulation of endogenous resident stem cells or administration of exogenous stem cells to treat diseases or injury and to replace malfunctioning or damaged tissues. Current evidence suggests that in the lung, these cells may participate in tissue homeostasis and regeneration after injury. Animal and human studies have demonstrated that tissue-specific stem cells and bone marrow-derived cells contribute to lung tissue regeneration and protection, and thus administration of exogenous stem/progenitor cells or humoral factors responsible for the activation of endogenous stem/progenitor cells may be a potent next-generation therapy for chronic obstructive pulmonary disease. The use of bone marrow-derived stem cells could allow repairing and regenerate the damaged tissue present in chronic obstructive pulmonary disease by means of their engraftment into the lung. Another approach could be the stimulation of resident stem cells by means of humoral factors or photobiostimulation. PMID:25548520
Stem cells in sepsis and acute lung injury.
Cribbs, Sushma K; Matthay, Michael A; Martin, Greg S
2010-12-01
Sepsis and acute lung injury continue to be major causes of morbidity and mortality worldwide despite advances in our understanding of pathophysiology and the discovery of new management strategies. Recent investigations show that stem cells may be beneficial as prognostic biomarkers and novel therapeutic strategies in these syndromes. This article reviews the potential use of endogenous adult tissue-derived stem cells in sepsis and acute lung injury as prognostic markers and also as exogenous cell-based therapy. A directed systematic search of the medical literature using PubMed and OVID, with particular emphasis on the time period after 2002, was done to evaluate topics related to 1) the epidemiology and pathophysiology of sepsis and acute lung injury; and 2) the definition, characterization, and potential use of stem cells in these diseases. DATA SYNTHESIS AND FINDINGS: When available, preferential consideration was given to prospective nonrandomized clinical and preclinical studies. Stem cells have shown significant promise in the field of critical care both for 1) prognostic value and 2) treatment strategies. Although several recent studies have identified the potential benefit of stem cells in sepsis and acute lung injury, further investigations are needed to more completely understand stem cells and their potential prognostic and therapeutic value.
Xu, Haineng; Mu, Jiasheng; Xiao, Jing; Wu, Xiangsong; Li, Maolan; Liu, Tianrun; Liu, Xinyuan
2016-01-01
Cancer stem cells (CSCs) play vital role in lung cancer progression, resistance, metastasis and relapse. Identifying lung CSCs makers for lung CSCs targeting researches are critical for lung cancer therapy. In this study, utilizing previous identified lung CSCs as model, we compared the expression of CD24, CD133 and CD44 between CSCs and non-stem cancer cells. Increased ratio of CD24- cells were found in CSCs. CD24- cells were then sorted by flow cytometry and their proliferative ability, chemo-resistance property and in vivo tumor formation abilities were detected. A549 CD24- cells formed smaller colonies, slower proliferated in comparison to A549 CD24+ cells. Besides, A549 CD24- exhibited stronger resistance to chemotherapy drug. However, A549 CD24- didn't exert any stronger tumor formation ability in vivo, which is the gold standard of CSCs. These results showed that CD24- A549 cells showed some properties of CSCs but not actually CSCs. This study provides evidence that CD24 cannot be considered as lung CSCs marker.
Anti-Inflammatory Effects of Adult Stem Cells in Sustained Lung Injury: A Comparative Study
Moodley, Yuben; Vaghjiani, Vijesh; Chan, James; Baltic, Svetlana; Ryan, Marisa; Tchongue, Jorge; Samuel, Chrishan S.; Murthi, Padma; Parolini, Ornella; Manuelpillai, Ursula
2013-01-01
Lung diseases are a major cause of global morbidity and mortality that are treated with limited efficacy. Recently stem cell therapies have been shown to effectively treat animal models of lung disease. However, there are limitations to the translation of these cell therapies to clinical disease. Studies have shown that delayed treatment of animal models does not improve outcomes and that the models do not reflect the repeated injury that is present in most lung diseases. We tested the efficacy of amnion mesenchymal stem cells (AM-MSC), bone marrow MSC (BM-MSC) and human amniotic epithelial cells (hAEC) in C57BL/6 mice using a repeat dose bleomycin-induced model of lung injury that better reflects the repeat injury seen in lung diseases. The dual bleomycin dose led to significantly higher levels of inflammation and fibrosis in the mouse lung compared to a single bleomycin dose. Intravenously infused stem cells were present in the lung in similar numbers at days 7 and 21 post cell injection. In addition, stem cell injection resulted in a significant decrease in inflammatory cell infiltrate and a reduction in IL-1 (AM-MSC), IL-6 (AM-MSC, BM-MSC, hAEC) and TNF-α (AM-MSC). The only trophic factor tested that increased following stem cell injection was IL-1RA (AM-MSC). IL-1RA levels may be modulated by GM-CSF produced by AM-MSC. Furthermore, only AM-MSC reduced collagen deposition and increased MMP-9 activity in the lung although there was a reduction of the pro-fibrogenic cytokine TGF-β following BM-MSC, AM-MSC and hAEC treatment. Therefore, AM-MSC may be more effective in reducing injury following delayed injection in the setting of repeated lung injury. PMID:23936322
Guo, Chang-Ying; Yan, Chen; Luo, Lan; Goto, Shinji; Urata, Yoshishige; Xu, Jian-Jun; Wen, Xiao-Ming; Kuang, Yu-Kang; Tou, Fang-Fang; Li, Tao-Sheng
2017-04-01
Cancer cells express the M2 isoform of glycolytic enzyme pyruvate kinase (PKM2) for favoring the survival under a hypoxic condition. Considering the relative low oxygen microenvironment in stem cell niche, we hypothesized that an enhanced PKM2 expression associates with the biological properties of cancer stem cells. We used A549 human lung cancer cell line and surgical resected lung cancer tissue samples from patients for experiments. We confirmed the co-localization of PKM2 and CD44, a popular marker for cancer stem cells in lung cancer tissue samples from patients. The expression of PKM2 was clearly observed in approximately 80% of the A549 human lung cancer cells. Remarkably, enhanced expression of PKM2 was specially observed in these cells that also positively expressed CD44. Downregulation of PKM2 in CD44+ cancer stem cells by siRNA significantly impaired the potency for spheroid formation, decreased the cell survival under fetal bovine serum deprivation and hypoxic conditions, but increased their sensitivity to anti-cancer drug of cisplatin and γ-ray. The enhanced expression of PKM2 seems to associate with the biological properties of cancer stem cells from A549 human lung cancer cells. Selective targeting of PKM2 may provide a new strategy for cancer therapy, especially for patients with therapeutic resistance.
Ninsontia, Chuanpit; Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi
2017-04-01
Highly tumorigenic cancer stem cells (CSCs) residing in most cancers are responsible for cancer progression and treatment failure. Zinc is an element regulator of several cell functions; however, its role in regulation of stem cell program in lung cancer has not been demonstrated. The present study reveals for the first time that zinc can suppress stem cell properties of lung cancer cells. Such findings were proved in different lung cancer cell lines (H460, H23, and H292) and it was found that CSC markers (CD133 and ALDH1A1), stem cell-associated transcription factors (Oct4, Nanog, and Sox-2), and the ability to form tumor spheroid were dramatically suppressed by zinc treatments. Zinc was found to activate protein kinase C-α (PKCα) that further phosphorylated and mediated β-catenin degradation through the ubiquitin-proteasomal pathway. Zinc was found to increase the β-catenin-ubiquitin complex, which can be inhibited by a specific PKC inhibitor, bisindolylmaleimide I. Using specific reactive oxygen species detection and antioxidants, we have demonstrated that superoxide anions generated by zinc are a key upstream mechanism for PKCα activation leading to the subsequent suppression of stem cell features of lung cancer. Zinc increased cellular superoxide anions and the addition of superoxide anion scavenger prevented the activation of PKCα and β-catenin degradation. These findings indicate a novel role for zinc regulation in the PKCα/β-catenin pathway and explain an important mechanism for controlling of stem cell program in lung cancer cells. Copyright © 2017 the American Physiological Society.
Holmboe, Sif; Hansen, Pernille Lund; Thisgaard, Helge; Block, Ines; Müller, Carolin; Langkjær, Niels; Høilund-Carlsen, Poul Flemming; Olsen, Birgitte Brinkmann; Mollenhauer, Jan
2017-01-01
Cancer stem cells represent the putative tumor-driving subpopulation thought to account for drug resistance, relapse, and metastatic spread of epithelial and other cancer types. Accordingly, cell surface markers for therapeutic delivery to cancer stem cells are subject of intense research. Somatostatin receptor 2 and nucleolin are known to be overexpressed by various cancer types, which have elicited comprehensive efforts to explore their therapeutic utilization. Here, we evaluated somatostatin receptor 2 targeting and nucleolin targeting for therapeutic delivery to cancer stem cells from lung cancer. Nucleolin is expressed highly but not selectively, while somatostatin receptor 2 is expressed selectively but not highly by cancer cells. The non-small cell lung cancer cell lines A549 and H1299, displayed average levels of both surface molecules as judged based on analysis of a larger cell line panel. H1299 compared to A549 cells showed significantly elevated sphere-forming capacity, indicating higher cancer stem cell content, thus qualifying as suitable test system. Nucleolin-targeting 57Co-DOTA-AS1411 aptamer showed efficient internalization by cancer cells and, remarkably, at even higher efficiency by cancer stem cells. In contrast, somatostatin receptor 2 expression levels were not sufficiently high in H1299 cells to confer efficient uptake by either non-cancer stem cells or cancer stem cells. The data provides indication that the nucleolin-targeting AS1411 aptamer might be used for therapeutic delivery to non-small cell lung cancer stem cells.
2013-01-01
A conference, “Stem Cells and Cell Therapies in Lung Biology and Lung Diseases,” was held July 25 to 28, 2011 at the University of Vermont to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are rapidly expanding areas of study that provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, to discuss and debate current controversies, and to identify future research directions and opportunities for basic and translational research in cell-based therapies for lung diseases. The goal of this article, which accompanies the formal conference report, is to provide a comprehensive review of the published literature in lung regenerative medicine from the last conference report through December 2012. PMID:23869446
Beers, Michael F; Moodley, Yuben
2017-07-01
Generating mature, differentiated, adult lung cells from pluripotent cells, such as induced pluripotent stem cells and embryonic stem cells, offers the hope of both generating disease-specific in vitro models and creating definitive and personalized therapies for a host of debilitating lung parenchymal and airway diseases. With the goal of advancing lung-regenerative medicine, several groups have developed and reported on protocols using defined media, coculture with mesenchymal components, or sequential treatments mimicking lung development, to obtain distal lung epithelial cells from stem cell precursors. However, there remains significant controversy about the degree of differentiation of these cells compared with their primary counterparts, coupled with a lack of consistency or uniformity in assessing the resultant phenotypes. Given the inevitable, exponential expansion of these approaches and the probable, but yet-to-emerge second and higher generation techniques to create such assets, we were prompted to pose the question, what makes a lung epithelial cell a lung epithelial cell? More specifically for this Perspective, we also posed the question, what are the minimum features that constitute an alveolar type (AT) 2 epithelial cell? In addressing this, we summarize a body of work spanning nearly five decades, amassed by a series of "lung epithelial cell biology pioneers," which carefully describes well characterized molecular, functional, and morphological features critical for discriminately assessing an AT2 phenotype. Armed with this, we propose a series of core criteria to assist the field in confirming that cells obtained following a differentiation protocol are indeed mature and functional AT2 epithelial cells.
Mechanisms of cellular therapy in respiratory diseases.
Abreu, Soraia C; Antunes, Mariana A; Pelosi, Paolo; Morales, Marcelo M; Rocco, Patricia R M
2011-09-01
Stem cells present a variety of clinical implications in the lungs. According to their origin, these cells can be divided into embryonic and adult stem cells; however, due to the important ethical and safety limitations that are involved in the embryonic stem cell use, most studies have chosen to focus on adult stem cell therapy. This article aims to present and clarify the recent advances in the field of stem cell biology, as well as to highlight the effects of mesenchymal stem cell (MSC) therapy in the context of acute lung injury/acute respiratory distress syndrome and chronic disorders such as lung fibrosis and chronic obstructive pulmonary disease. For this purpose, we performed a critical review of adult stem cell therapies, covering the main clinical and experimental studies published in Pubmed databases in the past 11 years. Different characteristics were extracted from these articles, such as: the experimental model, strain, cellular type and administration route used as well as the positive or negative effects obtained. There is evidence for beneficial effects of MSC on lung development, repair, and remodeling. The engraftment in the injured lung does not occur easily, but several studies report that paracrine factors can be effective in reducing inflammation and promoting tissue repair. MSC releases several growth factors and anti-inflammatory cytokines that regulate endothelial and epithelial permeability and reduce the severity of inflammation. A better understanding of the mechanisms that control cell division and differentiation, as well as of their paracrine effects, is required to enable the optimal use of bone marrow-derived stem cell therapy to treat human respiratory diseases.
Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties
Leung, Elaine Lai-Han; Fiscus, Ronald R.; Tung, James W.; Tin, Vicky Pui-Chi; Cheng, Lik Cheung; Sihoe, Alan Dart-Loon; Fink, Louis M.; Ma, Yupo; Wong, Maria Pik
2010-01-01
Background The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential. Methodology/Principal Finding The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44− cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44− cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44− cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas. Conclusion/Significance Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify the role of CD44 in tumor cell renewal and cancer propagation in the in vivo environment. PMID:21124918
Hassan, Khaled A.; Wang, Luo; Korkaya, Hasan; Chen, Guoan; Maillard, Ivan; Beer, David G.; Kalemkerian, Gregory P.; Wicha, Max S.
2013-01-01
Purpose The cancer stem cell theory postulates that tumors contain a subset of cells with stem cell properties of self-renewal, differentiation and tumor-initiation. The purpose of this study is to determine the role of Notch activity in identifying lung cancer stem cells. Experimental Design We investigated the role of Notch activity in lung adenocarcinoma utilizing a Notch GFP-reporter construct and a gamma-secretase inhibitor (GSI), which inhibits Notch pathway activity. Results Transduction of lung cancer cells with Notch GFP-reporter construct identified a subset of cells with high Notch activity (GFP-bright). GFP-bright cells had the ability to form more tumor spheres in serum-free media, and were able to generate both GFP-bright and GFP-dim (lower Notch activity) cell populations. GFP-bright cells were resistant to chemotherapy and were tumorigenic in serial xenotransplantation assays. Tumor xenografts of mice treated with GSI had decreased expression of downstream effectors of Notch pathway and failed to regenerate tumors upon reimplantation in NOD/SCID mice. Using multivariate analysis, we detected a statistically significant correlation between poor clinical outcome and Notch activity (reflected in increased Notch ligand expression or decreased expression of the negative modulators), in a group of 441 lung adenocarcinoma patients. This correlation was further confirmed in an independent group of 89 adenocarcinoma patients where Hes-1 overexpression correlated with poor overall survival. Conclusions Notch activity can identify lung cancer stem cell-like population and its inhibition may be an appropriate target for treating lung adenocarcinoma. PMID:23444212
Ji, Wenxiang; Yu, Yongfeng; Li, Ziming; Wang, Guan; Li, Fan; Xia, Weiliang; Lu, Shun
2016-03-22
Cancer stem cell-like phenotype is critical for tumor formation and treatment resistance. FGFR1 is found to be amplified in non-small cell lung cancer, particularly in the lung squamous cell cancer (LSCC). Whether FGFR1 contributes to the maintenance of stem cell-like phenotype of FGFR1-amplified lung cancer cells remains elusive. In this study, treatment with FGFR1 inhibitor AZD4547 suppressed the growth of tumor spheres and reduced ALDH positive proportion in FGFR1-amplified lung cancer cells in vitro, as well as inhibited the growth of oncospheres and parental cells in xenograft models. Knockdown of FGFR1 recaptured the similar effect as AZD4547 in vitro. Furthermore, activation of FGFR1 and subsequently its downstream ERK signaling enhanced the expression and transcriptional activity of GLI2, which could be blocked by FGFR1 inhibitor/silencing or ERK inhibitor. Knockdown of GLI2 directly inhibited the stem-like phenotype of FGFR1-amilified cells, whereas overexpression of GLI2 sufficiently rescued the phenotype caused by FGFR1 knockdown. Notably we also identified a correlation between FGFR1 and GLI2 expressions from clinical data, as well as an inverse relationship with progression free survival (PFS). Together our study suggests that the FGFR1/GLI2 axis promotes the lung cancer stem cell-like phenotype. These results support a rational strategy of combination of FGFR1 and GLI inhibitors for treatment of FGFR1-amplified lung cancers, especially LSCC.
Adult bone marrow-derived stem cells for the lung: implications for pediatric lung diseases.
van Haaften, Timothy; Thébaud, Bernard
2006-04-01
Bronchopulmonary dysplasia (BPD) and cystic fibrosis (CF) are two common serious chronic respiratory disorders without specific treatments affecting children. BPD is characterized by an arrest in alveolar growth in premature infants requiring respiratory support. CF is the most common fatal inherited genetic disorder characterized by abnormally thick mucus secretions, recurrent infection and ultimately lung destruction. One commonality between these two diseases is the promise of utilizing stem cells therapeutically. Indeed, the use of exogenous cells to supplement the natural repair mechanisms or the possibility of genetic manipulation in vitro before administration are appealing therapeutic options for these diseases. Increasing attention has been focused on the use of adult bone marrow-derived stem cells (BMSC) to regenerate damaged organs such as the heart, the brain, and the liver. However, due to the lung's complexity as well as the low rate of cellular turnover within the lung, progress has been slower in this area compared with the skin or liver. Initial work suggests that BMSC can engraft and differentiate into a variety of lung cells, but these findings have been challenged recently. This article critically reviews the current advances on the therapeutic use of stem cells for lung regeneration.
A novel anticancer agent SNG1153 inhibits growth of lung cancer stem/progenitor cells
Wang, Jing; Zhu, Hai; Han, Yuqing; Jin, Mingji; Wang, Jun; Zhou, Congya; Ma, Junfeng; Lin, Qingcong; Wang, Zhaoyi; Meng, Kun; Fu, Xueqi
2016-01-01
Lung cancer is the leading cause of cancer-related death in both men and women. Lung cancer contains a small population of cancer cells with stem-like features known as cancer stem cells (CSCs). CSCs are often more resistant to current therapeutic treatments. Thus, it is urgent to develop a novel agent that is able to inhibit CSCs growth. In this study, we examined the ability of SNG1153, a novel chemical agent to inhibit the growth of lung CSCs. We found that SNG1153 inhibited growth and induced apoptosis in established lung cancer cells. We also found that SNG1153 inhibited the tumorsphere formation and decreased CD133-positive (lung CSC marker) cancer cells. SNG1153 was able to attenuate tumor formation in NOD/SCID (non-obese diabetic/severe combined immunodeficient) mice injected with lung tumorsphere cells. We further demonstrated that SNG1153 induced β-catenin phosphorylation and down-regulated β-catenin. Our results thus demonstrate that SNG1153 effectively inhibits the growth of lung CSCs and suggest that SNG1153 may be a novel therapeutic agent to treat human lung cancer. PMID:27281614
Murine aggregation chimeras and wholemount imaging in airway stem cell biology.
Rosewell, Ian R; Giangreco, Adam
2012-01-01
Local tissue stem cells are known to exist in mammalian lungs but their role in epithelial maintenance remains unclear. We therefore developed murine aggregation chimera and wholemount imaging techniques to assess the contribution of these cells to lung homeostasis and repair. In this chapter we provide further details regarding the generation of murine aggregation chimera mice and their subsequent use in wholemount lung imaging. We also describe methods related to the interpretation of this data that allows for quantitative assessment of airway stem cell activation versus quiescence. Using these techniques, it is possible to compare the growth and differentiation capacity of various lung epithelial cells in normal, repairing, and diseased states.
Lung cancer stem cells and implications for future therapeutics.
Wang, Jing; Li, Ze-hong; White, James; Zhang, Lin-bo
2014-07-01
Lung cancer is the most dreaded of all cancers because of the higher mortality rates associated with it worldwide. The various subtypes of lung cancer respond differently to a particular treatment regime, which makes the therapeutic interventions all the more complicated. The concept of cancer stem cells (CSCs) is based primarily on the clinical and experimental observations that indicate the existence of a subpopulation of cells with the capacity to self-renew and differentiate as well as show increased resistance to radiation and chemotherapy. They are considered as the factors responsible for the cases of tumor relapse. The CSCs may have significant role in the development of lung tumorigenesis based on the identification of the CSCs which respond during injury. The properties of multi-potency and self-renewal are shared in common by the lung CSCs with the normal pluripotent stem cells which can be isolated using the similar markers. This review deals with the origin and characteristics of the lung cancer stem cells. The role of different markers used to isolate lung CSCs like CD44, ALDH (aldehyde dehydrogenase), CD133 and ABCG2 (ATP binding cassette sub family G member 2) have been discussed in detail. Analysis of the developmental signaling pathways such as Wnt/β-catenin, Notch, hedgehog in the regulation and maintenance of the lung CSCs have been done. Finally, before targeting the lung CSC biomarkers for potential therapeutics, challenges faced in lung cancer stem cell research need to be taken into account. With the accepted notion that the CSCs are to blame for cancer relapse and drug resistance, targeting them can be an important aspect of lung cancer therapy in the future.
Mirza, Sheefa; Jain, Nayan; Rawal, Rakesh
2017-03-01
Lung cancer stem cells are supposed to be the main drivers of tumor initiation, maintenance, drug resistance, and relapse of the disease. Hence, identification of the cellular and molecular aspects of these cells is a prerequisite for targeted therapy of lung cancer. Currently, analysis of circulating tumor cells has the potential to become the main diagnostic technique to monitor disease progression or therapeutic response as it is non-invasive. However, accurate detection of circulating tumor cells has remained a challenge, as epithelial cell markers used so far are not always trustworthy for detecting circulating tumor cells, especially during epithelial-mesenchymal transition. As cancer stem cells are the only culprit to initiate metastatic tumors, our aim was to isolate and characterize circulating tumor stem cells rather than circulating tumor cells from the peripheral blood of NSCLC adenocarcinoma as limited data are available addressing the gene expression profiling of lung cancer stem cells. Here, we reveal that CD44(+)/CD24(-) population in circulation not only exhibit stem cell-related genes but also possess epithelial-mesenchymal transition characteristics. In conclusion, the use of one or more cancer stem cell markers along with epithelial, mesenchymal and epithelial mesenchymal transition markers will prospectively provide the most precise assessment of the threat for recurrence and metastatic disease and has a great potential for forthcoming applications in harvesting circulating tumor stem cells and their downstream applications. Our results will aid in developing diagnostic and prognostic modalities and personalized treatment regimens like dendritic cell-based immunotherapy that can be utilized for targeting and eliminating circulating tumor stem cells, to significantly reduce the possibility of relapse and improve clinical outcomes.
Sha, Shuang; Zhai, Yuanfen; Lin, Chengzhao; Wang, Heyong; Chang, Qing; Song, Shuang; Ren, Mingqiang; Liu, Gentao
2017-08-08
Many studies are based on the hypothesis that recurrence and drug resistance in lung carcinoma are due to a subpopulation of cancer stem-like cells (CSLCs) in solid tumors. Therefore it is crucial to screen for and recognize lung CSLCs. In this study, we stimulated non-small cell lung cancer (NSCLC) A549 cells to display stem cell-like characteristics using a combination of five small molecule compounds. The putative A549 stem cells activated an important CSLC marker, CD133 protein, as well multiple CSLC-related genes including ATP-binding cassette transporter G2 (ABCG2), C-X-C chemokine receptor type 4 (CXCR4), NESTIN, and BMI1. The A549 stem-like cells displayed resistance to the chemotherapeutic drugs etoposide and cisplatin, epithelial-to-mesenchymal transition properties, and increased protein expression levels of NOTCH1 and Hes Family bHLH Transcription Factor 1 (HES1). When A549 cells were pretreated with a NOTCH signaling pathway inhibitor before compound induction, expression of the NOTCH1 target gene HES1 was reduced. This demonstrated that the NOTCH signaling pathway in the putative A549 stem-like cells had been activated. Together, the results of our study showed that a combination of five small molecule agents could transform A549 cells into putative stem-like cells, and that these compounds could also elevate CD133 and ABCG2 protein expression levels in H460 cells. This study provides a convenient method for obtaining lung CSLCs, which may be an effective strategy for developing lung carcinoma treatments.
Song, Wenqiang; Ma, Yufang; Wang, Jialiang; Brantley-Sieders, Dana; Chen, Jin
2014-01-01
Recent genome-wide analyses in human lung cancer revealed that EPHA2 receptor tyrosine kinase is overexpressed in non-small cell lung cancer (NSCLC), and high levels of EPHA2 correlate with poor clinical outcome. However, the mechanistic basis for EPHA2-mediated tumor promotion in lung cancer remains poorly understood. Here we show that the JNK/c-JUN signaling mediates EPHA2-dependent tumor cell proliferation and motility. A screen of phospho-kinase arrays revealed a decrease in phospho-c-JUN levels in EPHA2 knockdown cells. Knockdown of EPHA2 inhibited p-JNK and p-c-JUN levels in approximately 50% of NSCLC lines tested. Treatment of parental cells with SP600125, a JNK inhibitor, recapitulated defects in EPHA2-deficient tumor cells; whereas constitutively activated JNK mutants were sufficient to rescue phenotypes. Knockdown of EPHA2 also inhibited tumor formation and progression in xenograft animal models in vivo. Furthermore, we investigated the role of EPHA2 in cancer stem-like cells. RNAi-mediated depletion of EPHA2 in multiple NSCLC lines decreased the ALDH positive cancer stem-like population and tumor spheroid formation in suspension. Depletion of EPHA2 in sorted ALDH positive populations markedly inhibited tumorigenicity in nude mice. Furthermore, analysis of a human lung cancer tissue microarray revealed a significant, positive association between EPHA2 and ALDH expression, indicating an important role for EPHA2 in human lung cancer stem-like cells. Collectively, these studies revealed a critical role of JNK signaling in EPHA2-dependent lung cancer cell proliferation and motility and a role for EPHA2 in cancer stem-like cell function, providing evidence for EPHA2 as a potential therapeutic target in NSCLC. PMID:24607842
Regeneration of the lung: Lung stem cells and the development of lung mimicking devices.
Schilders, Kim A A; Eenjes, Evelien; van Riet, Sander; Poot, André A; Stamatialis, Dimitrios; Truckenmüller, Roman; Hiemstra, Pieter S; Rottier, Robbert J
2016-04-23
Inspired by the increasing burden of lung associated diseases in society and an growing demand to accommodate patients, great efforts by the scientific community produce an increasing stream of data that are focused on delineating the basic principles of lung development and growth, as well as understanding the biomechanical properties to build artificial lung devices. In addition, the continuing efforts to better define the disease origin, progression and pathology by basic scientists and clinicians contributes to insights in the basic principles of lung biology. However, the use of different model systems, experimental approaches and readout systems may generate somewhat conflicting or contradictory results. In an effort to summarize the latest developments in the lung epithelial stem cell biology, we provide an overview of the current status of the field. We first describe the different stem cells, or progenitor cells, residing in the homeostatic lung. Next, we focus on the plasticity of the different cell types upon several injury-induced activation or repair models, and highlight the regenerative capacity of lung cells. Lastly, we summarize the generation of lung mimics, such as air-liquid interface cultures, organoids and lung on a chip, that are required to test emerging hypotheses. Moreover, the increasing collaboration between distinct specializations will contribute to the eventual development of an artificial lung device capable of assisting reduced lung function and capacity in human patients.
Wagner, Darcy E.; Bonvillain, Ryan W.; Jensen, Todd J.; Girard, Eric D.; Bunnell, Bruce A.; Finck, Christine M.; Hoffman, Andrew M.; Weiss, Daniel J.
2013-01-01
For patients with end-stage lung diseases, lung transplantation is the only available therapeutic option. However, the number of suitable donor lungs is insufficient and lung transplants are complicated by significant graft failure and complications of immunosuppressive regimens. An alternative to classic organ replacement is desperately needed. Engineering of bioartificial organs using either natural or synthetic scaffolds is an exciting new potential option for generation of functional pulmonary tissue for human clinical application. Natural organ scaffolds can be generated by decellularization of native tissues; these acellular scaffolds retain the native organ ultrastructure and can be seeded with autologous cells toward the goal of regenerating functional tissues. Several decellularization strategies have been employed for lung, however, there is no consensus on the optimal approach. A variety of cell types have been investigated as potential candidates for effective recellularization of acellular lung scaffolds. Candidate cells that might be best utilized are those which can be easily and reproducibly isolated, expanded in vitro, seeded onto decellularized matrices, induced to differentiate into pulmonary lineage cells, and which survive to functional maturity. Whole lung cell suspensions, endogenous progenitor cells, embryonic and adult stem cells, and induced pluripotent stem (iPS) cells have been investigated for their applicability to repopulate acellular lung matrices. Ideally, patient-derived autologous cells would be used for lung recellularization as they have the potential to reduce the need for post-transplant immunosuppression. Several studies have performed transplantation of rudimentary bioengineered lung scaffolds in animal models with limited, short-term functionality but much further study is needed. PMID:23614471
Current Status of Stem Cells and Regenerative Medicine in Lung Biology and Diseases
Weiss, Daniel J.
2014-01-01
Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPD), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the 3rd leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and chronic obstructive pulmonary disease (COPD) with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been utilized to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy based clinical trials in lung diseases. PMID:23959715
Concise review: current status of stem cells and regenerative medicine in lung biology and diseases.
Weiss, Daniel J
2014-01-01
Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPDs), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the third leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and COPD with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been used to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy-based clinical trials in lung diseases. © AlphaMed Press.
Suo, Zhenhe; Munthe, Else; Solberg, Steinar; Ma, Liwei; Wang, Mengyu; Westerdaal, Nomdo Anton Christiaan; Kvalheim, Gunnar; Gaudernack, Gustav
2013-01-01
Lung cancer (LC) with its different subtypes is generally known as a therapy resistant cancer with the highest morbidity rate worldwide. Therapy resistance of a tumor is thought to be related to cancer stem cells (CSCs) within the tumors. There have been indications that the lung cancer is propagated and maintained by a small population of CSCs. To study this question we established a panel of 15 primary lung cancer cell lines (PLCCLs) from 20 fresh primary tumors using a robust serum-free culture system. We subsequently focused on identification of lung CSCs by studying these cell lines derived from 4 representative lung cancer subtypes such as small cell lung cancer (SCLC), large cell carcinoma (LCC), squamous cell carcinoma (SCC) and adenocarcinoma (AC). We identified a small population of cells strongly positive for CD44 (CD44high) and a main population which was either weakly positive or negative for CD44 (CD44low/−). Co-expression of CD90 further narrowed down the putative stem cell population in PLCCLs from SCLC and LCC as spheroid-forming cells were mainly found within the CD44highCD90+ sub-population. Moreover, these CD44highCD90+ cells revealed mesenchymal morphology, increased expression of mesenchymal markers N-Cadherin and Vimentin, increased mRNA levels of the embryonic stem cell related genes Nanog and Oct4 and increased resistance to irradiation compared to other sub-populations studied, suggesting the CD44highCD90+ population a good candidate for the lung CSCs. Both CD44highCD90+ and CD44highCD90− cells in the PLCCL derived from SCC formed spheroids, whereas the CD44low/− cells were lacking this potential. These results indicate that CD44highCD90+ sub-population may represent CSCs in SCLC and LCC, whereas in SCC lung cancer subtype, CSC potentials were found within the CD44high sub-population. PMID:23469181
Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey
2007-12-31
Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. Thesemore » cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.« less
Deletion of Pten Expands Lung Epithelial Progenitor Pools and Confers Resistance to Airway Injury
Tiozzo, Caterina; De Langhe, Stijn; Yu, Mingke; Londhe, Vedang A.; Carraro, Gianni; Li, Min; Li, Changgong; Xing, Yiming; Anderson, Stewart; Borok, Zea; Bellusci, Saverio; Minoo, Parviz
2009-01-01
Rationale: Pten is a tumor-suppressor gene involved in stem cell homeostasis and tumorigenesis. In mouse, Pten expression is ubiquitous and begins as early as 7 days of gestation. Pten−/− mouse embryos die early during gestation indicating a critical role for Pten in embryonic development. Objectives: To test the role of Pten in lung development and injury. Methods: We conditionally deleted Pten throughout the lung epithelium by crossing Ptenflox/flox with Nkx2.1-cre driver mice. The resulting PtenNkx2.1-cre mutants were analyzed for lung defects and response to injury. Measurements and Main Results: PtenNkx2.1-cre embryonic lungs showed airway epithelial hyperplasia with no branching abnormalities. In adult mice, PtenNkx2.1-cre lungs exhibit increased progenitor cell pools composed of basal cells in the trachea, CGRP/CC10 double-positive neuroendocrine cells in the bronchi, and CC10/SPC double-positive cells at the bronchioalveolar duct junctions. Pten deletion affected differentiation of various lung epithelial cell lineages, with a decreased number of terminally differentiated cells. Over time, PtenNxk2.1-cre epithelial cells residing in the bronchioalveolar duct junctions underwent proliferation and formed uniform masses, supporting the concept that the cells residing in this distal niche may also be the source of procarcinogenic stem cells. Finally, increased progenitor cells in all the lung compartments conferred an overall selective advantage to naphthalene injury compared with wild-type control mice. Conclusions: Pten has a pivotal role in lung stem cell homeostasis, cell differentiation, and consequently resistance to lung injury. PMID:19574443
Curley, Gerard F; Jerkic, Mirjana; Dixon, Steve; Hogan, Grace; Masterson, Claire; O'Toole, Daniel; Devaney, James; Laffey, John G
2017-02-01
Although mesenchymal stem/stromal cells represent a promising therapeutic strategy for acute respiratory distress syndrome, clinical translation faces challenges, including scarcity of bone marrow donors, and reliance on bovine serum during mesenchymal stem/stromal cell proliferation. We wished to compare mesenchymal stem/stromal cells from human umbilical cord, grown in xeno-free conditions, with mesenchymal stem/stromal cells from human bone marrow, in a rat model of Escherichia coli pneumonia. In addition, we wished to determine the potential for umbilical cord-mesenchymal stem/stromal cells to reduce E. coli-induced oxidant injury. Randomized animal study. University research laboratory. Male Sprague-Dawley rats. Acute respiratory distress syndrome was induced in rats by intratracheal instillation of E. coli (1.5-2 × 10 CFU/kg). "Series 1" compared the effects of freshly thawed cryopreserved umbilical cord-mesenchymal stem/stromal cells with bone marrow-mesenchymal stem/stromal cells on physiologic indices of lung injury, cellular infiltration, and E. coli colony counts in bronchoalveolar lavage. "Series 2" examined the effects of cryopreserved umbilical cord-mesenchymal stem/stromal cells on survival, as well as measures of injury, inflammation and oxidant stress, including production of reactive oxidative species, reactive oxidative species scavenging by superoxide dismutase-1 and superoxide dismutase-2. In "Series 1," animals subjected to E. coli pneumonia who received umbilical cord-mesenchymal stem/stromal cells had improvements in oxygenation, respiratory static compliance, and wet-to-dry ratios comparable to bone marrow-mesenchymal stem/stromal cell treatment. E. coli colony-forming units in bronchoalveolar lavage were reduced in both cell therapy groups, despite a reduction in bronchoalveolar lavage neutrophils. In series 2, umbilical cord-mesenchymal stem/stromal cells enhanced animal survival and decreased alveolar protein and proinflammatory cytokine concentrations, whereas increasing interleukin-10 concentrations. Umbilical cord-mesenchymal stem/stromal cell therapy decreased nicotinamide adenine dinucleotide phosphate-oxidase 2 and inducible nitric oxide synthase and enhanced lung concentrations of superoxide dismutase-2, thereby reducing lung tissue reactive oxidative species concentrations. Our results demonstrate that freshly thawed cryopreserved xeno-free human umbilical cord-mesenchymal stem/stromal cells reduce the severity of rodent E. coli-induced acute respiratory distress syndrome. Umbilical cord-mesenchymal stem/stromal cells, therefore, represent an attractive option for future clinical trials in acute respiratory distress syndrome.
Dong, Li-Hua; Jiang, Yi-Yao; Liu, Yong-Jun; Cui, Shuang; Xia, Cheng-Cheng; Qu, Chao; Jiang, Xin; Qu, Ya-Qin; Chang, Peng-Yu; Liu, Feng
2015-01-01
Radiation-induced pulmonary fibrosis is a common disease and has a poor prognosis owing to the progressive breakdown of gas exchange regions in the lung. Recently, a novel strategy of administering mesenchymal stem cells for pulmonary fibrosis has achieved high therapeutic efficacy. In the present study, we attempted to use human adipose tissue-derived mesenchymal stem cells to prevent disease in Sprague-Dawley rats that received semi-thoracic irradiation (15 Gy). To investigate the specific roles of mesenchymal stem cells in ameliorating radiation-induced pulmonary fibrosis, we treated control groups of irradiated rats with human skin fibroblasts or phosphate-buffered saline. After mesenchymal stem cells were infused, host secretions of hepatocyte growth factor (HGF) and prostaglandin E2 (PGE2) were elevated compared with those of the controls. In contrast, tumour necrosis factor-alpha (TNF-α) and transforming growth factor-beta1 (TGF-β1) levels were decreased after infusion of mesenchymal stem cells. Consequently, the architecture of the irradiated lungs was preserved without marked activation of fibroblasts or collagen deposition within the injured sites. Moreover, mesenchymal stem cells were able to prevent the irradiated type II alveolar epithelial cells from undergoing epithelial-mesenchymal transition. Collectively, these data confirmed that mesenchymal stem cells have the potential to limit pulmonary fibrosis after exposure to ionising irradiation. PMID:25736907
Wu, Xiaodan; Wang, Zhiming; Qian, Mengjia; Wang, Lingyan; Bai, Chunxue; Wang, Xiangdong
2014-01-01
Bone marrow-derived mesenchymal stem cells (BMSCs) could modulate inflammation in experimental lung injury. On the other hand, adrenergic receptor agonists could increase DNA synthesis of stem cells. Therefore, we investigated the therapeutic role of adrenaline-stimulated BMSCs on lipopolysaccharide (LPS)-induced lung injury. BMSCs were cultured with adrenergic receptor agonists or antagonists. Suspensions of lung cells or sliced lung tissue from animals with or without LPS-induced injury were co-cultured with BMSCs. LPS-stimulated alveolar macrophages were co-cultured with BMSCs (with adrenaline stimulation or not) in Transwell for 6 hrs. A preliminary animal experiment was conducted to validate the findings in ex vivo study. We found that adrenaline at 10 μM enhanced proliferation of BMSCs through both α- and β-adrenergic receptors. Adrenaline promoted the migration of BMSCs towards LPS-injured lung cells or lung tissue. Adrenaline-stimulated BMSCs decreased the inflammation of LPS-stimulated macrophages, probably through the expression and secretion of several paracrine factors. Adrenaline reduced the extent of injury in LPS-injured rats. Our data indicate that adrenaline-stimulated BMSCs might contribute to the prevention from acute lung injury through the activation of adrenergic receptors, promotion of proliferation and migration towards injured lung, and modulation of inflammation. PMID:24684532
Bioengineered Lungs: A Challenge and An Opportunity.
Farré, Ramon; Otero, Jordi; Almendros, Isaac; Navajas, Daniel
2018-01-01
Lung biofabrication is a new tissue engineering and regenerative development aimed at providing organs for potential use in transplantation. Lung biofabrication is based on seeding cells into an acellular organ scaffold and on culturing them in an especial purpose bioreactor. The acellular lung scaffold is obtained by decellularizing a non-transplantable donor lung by means of conventional procedures based on application of physical, enzymatic and detergent agents. To avoid immune recipient's rejection of the transplanted bioengineered lung, autologous bone marrow/adipose tissue-derived mesenchymal stem cells, lung progenitor cells or induced pluripotent stem cells are used for biofabricating the bioengineered lung. The bioreactor applies circulatory perfusion and mechanical ventilation with physiological parameters to the lung during biofabrication. These physical stimuli to the organ are translated into the stem cell local microenvironment - e.g. shear stress and cyclic stretch - so that cells sense the physiological conditions in normally functioning mature lungs. After seminal proof of concept in a rodent model was published in 2010, the hypothesis that lungs can be biofabricated is accepted and intense research efforts are being devoted to the topic. The current experimental evidence obtained so far in animal tests and in ex vivo human bioengineered lungs suggests that the date of first clinical tests, although not immediate, is coming. Lung bioengineering is a disrupting concept that poses a challenge for improving our basic science knowledge and is also an opportunity for facilitating lung transplantation in future clinical translation. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.
Growth factors, stem cells and bronchopulmonary dysplasia.
Alphonse, Rajesh S; Thébaud, Bernard
2011-01-01
Bronchopulmonary dysplasia (BPD) is the chronic lung disease of prematurity mainly affecting preterm infants that are born at 24-28 weeks of gestation. Surfactant therapy, antenatal steroids and incremental improvements in perinatal care have modified the pattern of injury and allowed survival of ever more immature infants, but there is still no specific treatment for BPD. As a consequence, this disorder remains the most common complication of extreme prematurity. Arrested alveolar growth and disrupted vasculogenesis, the histological hallmarks of BPD, may persist beyond childhood and lead to chronic lung diseases in adults. Recent advances in our understanding of stem cells and their potential to repair damaged organs offer the possibility for cell-based treatment for intractable diseases. This review summarizes basic concepts of stem cell biology and discusses the recent advances and challenges of stem cell-based therapies for lung diseases, with a particular focus on BPD. Copyright © 2011 S. Karger AG, Basel.
Stem cell treatment for chronic lung diseases.
Tzouvelekis, Argyris; Ntolios, Paschalis; Bouros, Demosthenes
2013-01-01
Chronic lung diseases such as idiopathic pulmonary fibrosis and cystic fibrosis or chronic obstructive pulmonary disease and asthma are leading causes of morbidity and mortality worldwide with a considerable human, societal and financial burden. In view of the current disappointing status of available pharmaceutical agents, there is an urgent need for alternative more effective therapeutic approaches that will not only help to relieve patient symptoms but will also affect the natural course of the respective disease. Regenerative medicine represents a promising option with several fruitful therapeutic applications in patients suffering from chronic lung diseases. Nevertheless, despite relative enthusiasm arising from experimental data, application of stem cell therapy in the clinical setting has been severely hampered by several safety concerns arising from the major lack of knowledge on the fate of exogenously administered stem cells within chronically injured lung as well as the mechanisms regulating the activation of resident progenitor cells. On the other hand, salient data arising from few 'brave' pilot investigations of the safety of stem cell treatment in chronic lung diseases seem promising. The main scope of this review article is to summarize the current state of knowledge regarding the application status of stem cell treatment in chronic lung diseases, address important safety and efficacy issues and present future challenges and perspectives. In this review, we argue in favor of large multicenter clinical trials setting realistic goals to assess treatment efficacy. We propose the use of biomarkers that reflect clinically inconspicuous alterations of the disease molecular phenotype before rigid conclusions can be safely drawn. Copyright © 2013 S. Karger AG, Basel.
Zhu, Jianyun; Jiang, Ye; Yang, Xue; Wang, Shijia; Xie, Chunfeng; Li, Xiaoting; Li, Yuan; Chen, Yue; Wang, Xiaoqian; Meng, Yu; Zhu, Mingming; Wu, Rui; Huang, Cong; Ma, Xiao; Geng, Shanshan; Wu, Jieshu; Zhong, Caiyun
2017-01-01
Cancer stem cells (CSCs) play essential role in the progression of many tumors. Wnt/β-catenin pathway is crucial in maintaining the stemness of CSCs. (-)-Epigallocatechin-3-gallate (EGCG), the major bioactive component in green tea, has been shown to possess anti-cancer activity. To date, the interventional effect of EGCG on lung CSCs has not been elucidated yet. In the present study, tumorsphere formation assay was used to enrich lung CSCs from A549 and H1299 cells. We revealed that Wnt/β-catenin pathway was activated in lung CSCs, and downregulation of β-catenin, abolished lung CSCs traits. Our study further illustrated that EGCG effectively diminished lung CSCs activity by inhibiting tumorsphere formation, decreasing lung CSCs markers, suppressing proliferation and inducing apoptosis. Moreover, We showed that EGCG downregulated Wnt/β-catenin activation, while upregulation of Wnt/β-catenin dampened the inhibitory effects of EGCG on lung CSCs. Taken together, these results demonstrated the role of Wnt/β-catenin pathway in regulating lung CSCs traits and EGCG intervention of lung CSCs. Findings from this study could provide new insights into the molecular mechanisms of lung CSCs intervention. Copyright © 2016 Elsevier Inc. All rights reserved.
Amniotic fluid stem cells from EGFP transgenic mice attenuate hyperoxia-induced acute lung injury.
Wen, Shih-Tao; Chen, Wei; Chen, Hsiao-Ling; Lai, Cheng-Wei; Yen, Chih-Ching; Lee, Kun-Hsiung; Wu, Shinn-Chih; Chen, Chuan-Mu
2013-01-01
High concentrations of oxygen aggravate the severity of lung injury in patients requiring mechanical ventilation. Although mesenchymal stem cells have been shown to effectively attenuate various injured tissues, there is limited information regarding a role for amniotic fluid stem cells (AFSCs) in treating acute lung injury. We hypothesized that intravenous delivery of AFSCs would attenuate lung injury in an experimental model of hyperoxia-induced lung injury. AFSCs were isolated from EGFP transgenic mice. The in vitro differentiation, surface markers, and migration of the AFSCs were assessed by specific staining, flow cytometry, and a co-culture system, respectively. The in vivo therapeutic potential of AFSCs was evaluated in a model of acute hyperoxia-induced lung injury in mice. The administration of AFSCs significantly reduced the hyperoxia-induced pulmonary inflammation, as reflected by significant reductions in lung wet/dry ratio, neutrophil counts, and the level of apoptosis, as well as reducing the levels of inflammatory cytokine (IL-1β, IL-6, and TNF-α) and early-stage fibrosis in lung tissues. Moreover, EGFP-expressing AFSCs were detected and engrafted into a peripheral lung epithelial cell lineage by fluorescence microscopy and DAPI stain. Intravenous administration of AFSCs may offer a new therapeutic strategy for acute lung injury (ALI), for which efficient treatments are currently unavailable.
Wu, Xiaodan; Wang, Zhiming; Qian, Mengjia; Wang, Lingyan; Bai, Chunxue; Wang, Xiangdong
2014-08-01
Bone marrow-derived mesenchymal stem cells (BMSCs) could modulate inflammation in experimental lung injury. On the other hand, adrenergic receptor agonists could increase DNA synthesis of stem cells. Therefore, we investigated the therapeutic role of adrenaline-stimulated BMSCs on lipopolysaccharide (LPS)-induced lung injury. BMSCs were cultured with adrenergic receptor agonists or antagonists. Suspensions of lung cells or sliced lung tissue from animals with or without LPS-induced injury were co-cultured with BMSCs. LPS-stimulated alveolar macrophages were co-cultured with BMSCs (with adrenaline stimulation or not) in Transwell for 6 hrs. A preliminary animal experiment was conducted to validate the findings in ex vivo study. We found that adrenaline at 10 μM enhanced proliferation of BMSCs through both α- and β-adrenergic receptors. Adrenaline promoted the migration of BMSCs towards LPS-injured lung cells or lung tissue. Adrenaline-stimulated BMSCs decreased the inflammation of LPS-stimulated macrophages, probably through the expression and secretion of several paracrine factors. Adrenaline reduced the extent of injury in LPS-injured rats. Our data indicate that adrenaline-stimulated BMSCs might contribute to the prevention from acute lung injury through the activation of adrenergic receptors, promotion of proliferation and migration towards injured lung, and modulation of inflammation. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Liu, Pengpeng; Zhang, Rui; Yu, Wenwen; Ye, Yingnan; Cheng, Yanan; Han, Lei; Dong, Li; Chen, Yongzi; Wei, Xiyin; Yu, Jinpu
2017-12-01
Lung cancer stem cells (LCSCs) are considered as the cellular origins of metastasis and relapse of lung cancer. However, routine two-dimensional culture system (2D-culture) hardly mimics the growth and functions of LCSCs in vivo and therefore significantly decreases the stemness activity of LCSCs. In this study, we constructed a special BME-based three-dimensional culture system (3D-culture) to amplify LCSCs in human lung adenocarcinoma cell line A549 cells and found 3D-culture promoted the enrichment and amplification of LCSCs in A549 cells displaying higher proliferation potential and invasion activity, but lower apoptosis. The expression and secretion levels of FGF1 and IGF1 were dramatically elevated in 3D-culture compared to 2D-culture. After growing in FGF1 and IGF1-conditioned 3D-culture, the proportion of LCSCs with specific stemness phenotypes in A549 cells significantly increased compared to that in conventional 3D suspension culture system. Further results indicated that FGF1 and IGF1 promoted the amplification and cancer stemness of LCSCs dependent on MAPK signaling pathway. Our data firstly established a growth factors-conditioned 3D-culture for LCSCs and demonstrated the effects of FGF1 and IGF1 in promoting the enrichment and amplification of LCSCs which might provide a feasible cell model in vitro for both mechanism study and translational research on lung cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.
Weiss, Daniel J; Chambers, Daniel; Giangreco, Adam; Keating, Armand; Kotton, Darrell; Lelkes, Peter I; Wagner, Darcy E; Prockop, Darwin J
2015-04-01
The University of Vermont College of Medicine and the Vermont Lung Center, in collaboration with the NHLBI, Alpha-1 Foundation, American Thoracic Society, European Respiratory Society, International Society for Cell Therapy, and the Pulmonary Fibrosis Foundation, convened a workshop, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," held July 29 to August 1, 2013 at the University of Vermont. The conference objectives were to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are all rapidly expanding areas of study that both provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, discuss and debate current controversies, and identify future research directions and opportunities for both basic and translational research in cell-based therapies for lung diseases. This conference was a follow-up to four previous biennial conferences held at the University of Vermont in 2005, 2007, 2009, and 2011. Each of those conferences, also sponsored by the National Institutes of Health, American Thoracic Society, and Respiratory Disease Foundations, has been important in helping guide research and funding priorities. The major conference recommendations are summarized at the end of the report and highlight both the significant progress and major challenges in these rapidly progressing fields.
Chambers, Daniel; Giangreco, Adam; Keating, Armand; Kotton, Darrell; Lelkes, Peter I.; Wagner, Darcy E.; Prockop, Darwin J.
2015-01-01
The University of Vermont College of Medicine and the Vermont Lung Center, in collaboration with the NHLBI, Alpha-1 Foundation, American Thoracic Society, European Respiratory Society, International Society for Cell Therapy, and the Pulmonary Fibrosis Foundation, convened a workshop, “Stem Cells and Cell Therapies in Lung Biology and Lung Diseases,” held July 29 to August 1, 2013 at the University of Vermont. The conference objectives were to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are all rapidly expanding areas of study that both provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, discuss and debate current controversies, and identify future research directions and opportunities for both basic and translational research in cell-based therapies for lung diseases. This conference was a follow-up to four previous biennial conferences held at the University of Vermont in 2005, 2007, 2009, and 2011. Each of those conferences, also sponsored by the National Institutes of Health, American Thoracic Society, and Respiratory Disease Foundations, has been important in helping guide research and funding priorities. The major conference recommendations are summarized at the end of the report and highlight both the significant progress and major challenges in these rapidly progressing fields. PMID:25897748
Singh, Sandeep; Trevino, Jose; Bora-Singhal, Namrata; Coppola, Domenico; Haura, Eric; Altiok, Soner; Chellappan, Srikumar P
2012-09-25
Cancer stem cells are thought to be responsible for the initiation and progression of cancers. In non-small cell lung cancers (NSCLCs), Hoechst 33342 dye effluxing side population (SP) cells are shown to have stem cell like properties. The oncogenic capacity of cancer stem-like cells is in part due to their ability to self-renew; however the mechanistic correlation between oncogenic pathways and self-renewal of cancer stem-like cells has remained elusive. Here we characterized the SP cells at the molecular level and evaluated its ability to generate tumors at the orthotopic site in the lung microenvironment. Further, we investigated if the self-renewal of SP cells is dependent on EGFR mediated signaling. SP cells were detected and isolated from multiple NSCLC cell lines (H1650, H1975, A549), as well as primary human tumor explants grown in nude mice. SP cells demonstrated stem-like properties including ability to self-renew and grow as spheres; they were able to generate primary and metastatic tumors upon orthotopic implantation into the lung of SCID mice. In vitro study revealed elevated expression of stem cell associated markers like Oct4, Sox2 and Nanog as well as demonstrated intrinsic epithelial to mesenchymal transition features in SP cells. Further, we show that abrogation of EGFR, Src and Akt signaling through pharmacological or genetic inhibitors suppresses the self-renewal growth and expansion of SP-cells and resulted in specific downregulation of Sox2 protein expression. siRNA mediated depletion of Sox2 significantly blocked the SP phenotype as well as its self-renewal capacity; whereas other transcription factors like Oct4 and Nanog played a relatively lesser role in regulating self-renewal. Interestingly, Sox2 was elevated in metastatic foci of human NSCLC samples. Our findings suggest that Sox2 is a novel target of EGFR-Src-Akt signaling in NSCLCs that modulates self-renewal and expansion of stem-like cells from NSCLC. Therefore, the outcome of the EGFR-Src-Akt targeted therapy may rely upon the expression and function of Sox2 within the NSCLC-CSCs.
Zhou, Jing; Jiang, Liyan; Long, Xuan; Fu, Cuiping; Wang, Xiangdong; Wu, Xiaodan; Liu, Zilong; Zhu, Fen; Shi, Jindong; Li, Shanqun
2016-09-01
Gastric aspiration lung injury is one of the most common clinical events. This study investigated the effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on combined acid plus small non-acidified particle (CASP)-induced aspiration lung injury. Enhanced green fluorescent protein (EGFP(+) ) or EGFP(-) BMSCs or 15d-PGJ2 were injected via the tail vein into rats immediately after CASP-induced aspiration lung injury. Pathological changes in lung tissues, blood gas analysis, the wet/dry weight ratio (W/D) of the lung, levels of total proteins and number of total cells and neutrophils in bronchoalveolar lavage fluid (BALF) were determined. The cytokine levels were measured using ELISA. Protein expression was determined by Western blot. Bone-marrow-derived mesenchymal stem cells treatment significantly reduced alveolar oedema, exudation and lung inflammation; increased the arterial partial pressure of oxygen; and decreased the W/D of the lung, the levels of total proteins and the number of total cells and neutrophils in BALF in the rats with CASP-induced lung injury. Bone-marrow-derived mesenchymal stem cells treatment decreased the levels of tumour necrosis factor-α and Cytokine-induced neutrophil chemoattractant (CINC)-1 and the expression of p-p65 and increased the levels of interleukin-10 and 15d-PGJ2 and the expression of peroxisome proliferator-activated receptor (PPAR)-γ in the lung tissue in CASP-induced rats. Tumour necrosis factor-α stimulated BMSCs to secrete 15d-PGJ2 . A tracking experiment showed that EGFP(+) BMSCs were able to migrate to local lung tissues. Treatment with 15d-PGJ2 also significantly inhibited CASP-induced lung inflammation and the production of pro-inflammatory cytokines. Our results show that BMSCs can protect lung tissues from gastric aspiration injury and inhibit lung inflammation in rats. A beneficial effect might be achieved through BMSC-derived 15d-PGJ2 activation of the PPAR-γ receptor, reducing the production of proinflammatory cytokines. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Stem cells for the prevention of neonatal lung disease.
O'Reilly, Megan; Thébaud, Bernard
2015-01-01
Preterm birth affects approximately 11% of all newborns worldwide and is a major risk factor for infant mortality and morbidity. A common complication of preterm birth is the chronic lung disease of prematurity called bronchopulmonary dysplasia (BPD). Due to the lack of a specific treatment for BPD, preterm infants surviving with BPD face a lifelong risk of poor lung health. The therapeutic potential of stem cells in regenerative medicine is being harnessed for many diseases, including BPD. Compelling preclinical data using stem cells to prevent/repair lung damage in animal models of experimental BPD has built the basis for its translation into the clinic in preterm infants. This review highlights the exciting translation from bench to bedside that will hopefully lead in the near future to improved pulmonary outcomes in preterm infants. © 2015 S. Karger AG, Basel.
Generation of Distal Airway Epithelium from Multipotent Human Foregut Stem Cells.
Hannan, Nicholas R F; Sampaziotis, Fotios; Segeritz, Charis-Patricia; Hanley, Neil A; Vallier, Ludovic
2015-07-15
Collectively, lung diseases are one of the largest causes of premature death worldwide and represent a major focus in the field of regenerative medicine. Despite significant progress, only few stem cell platforms are currently available for cell-based therapy, disease modeling, and drug screening in the context of pulmonary disorders. Human foregut stem cells (hFSCs) represent an advantageous progenitor cell type that can be used to amplify large quantities of cells for regenerative medicine applications and can be derived from any human pluripotent stem cell line. Here, we further demonstrate the application of hFSCs by generating a near homogeneous population of early pulmonary endoderm cells coexpressing NKX2.1 and FOXP2. These progenitors are then able to form cells that are representative of distal airway epithelium that express NKX2.1, GATA6, and cystic fibrosis transmembrane conductance regulator (CFTR) and secrete SFTPC. This culture system can be applied to hFSCs carrying the CFTR mutation Δf508, enabling the development of an in vitro model for cystic fibrosis. This platform is compatible with drug screening and functional validations of small molecules, which can reverse the phenotype associated with CFTR mutation. This is the first demonstration that multipotent endoderm stem cells can differentiate not only into both liver and pancreatic cells but also into lung endoderm. Furthermore, our study establishes a new approach for the generation of functional lung cells that can be used for disease modeling as well as for drug screening and the study of lung development.
Hu, Pengfei; Pu, Yabin; Li, Xiayun; Zhu, Zhiqiang; Zhao, Yuhua; Guan, Weijun; Ma, Yuehui
2015-09-01
Lung‑derived mesenchymal stem cells (LMSCs) are considered to be important in lung tissue repair and regenerative processes. However, the biological characteristics and differentiation potential of LMSCs remain to be elucidated. In the present study, fetal lung‑derived mesenchymal stem cells (FLMSCs) were isolated from fetal bovine lung tissues by collagenase digestion. The in vitro culture conditions were optimized and stabilized and the self‑renewal ability and differentiation potential were evaluated. The results demonstrated that the FLMSCs were morphologically consistent with fibroblasts, were able to be cultured and passaged for at least 33 passages and the cell morphology and proliferative ability were stable during the first 10 passages. In addition, FLMSCs were found to express CD29, CD44, CD73 and CD166, however, they did not express hematopoietic cell specific markers, including CD34, CD45 and BOLA‑DRα. The growth kinetics of FLMSCs consisted of a lag phase, a logarithmic phase and a plateau phase, and as the passages increased, the proliferative ability of cells gradually decreased. The majority of FLMSCs were in G0/G1 phase. Following osteogenic induction, FLMSCs were positive for the expression of osteopontin and collagen type I α2. Following neurogenic differentiation, the cells were morphologically consistent with neuronal cells and positive for microtubule‑associated protein 2 and nestin expression. It was concluded that the isolated FLMSCs exhibited typical characteristics of mesenchymal stem cells and that the culture conditions were suitable for their proliferation and the maintenance of stemness. The present study illustrated the potential application of lung tissue as an adult stem cell source for regenerative therapies.
Kim, You-Sun; Kokturk, Nurdan; Kim, Ji-Young; Lee, Sei Won; Lim, Jaeyun; Choi, Soo Jin; Oh, Wonil; Oh, Yeon-Mok
2016-10-01
Mesenchymal stem cells (MSCs) effectively reduce airway inflammation and regenerate the alveolus in cigarette- and elastase-induced chronic obstructive pulmonary disease (COPD) animal models. The effects of stem cells are thought to be paracrine and immune-modulatory because very few stem cells remain in the lung one day after their systemic injection, which has been demonstrated previously. In this report, we analyzed the gene expression profiles to compare mouse lungs with chronic exposure to cigarette smoke with non-exposed lungs. Gene expression profiling was also conducted in a mouse lung tissue with chronic exposure to cigarette smoke following the systemic injection of human cord blood-derived mesenchymal stem cells (hCB-MSCs). Globally, 834 genes were differentially expressed after systemic injection of hCB-MSCs. Seven and 21 genes, respectively, were up-and downregulated on days 1, 4, and 14 after HCB-MSC injection. The Hbb and Hba, genes with oxygen transport and antioxidant functions, were increased on days 1 and 14. A serine protease inhibitor was also increased at a similar time point after injection of hCB-MSCs. Gene Ontology analysis indicated that the levels of genes related to immune responses, metabolic processes, and blood vessel development were altered, indicating host responses after hCB-MSC injection. These gene expression changes suggest that MSCs induce a regeneration mechanism against COPD induced by cigarette smoke. These analyses provide basic data for understanding the regeneration mechanisms promoted by hCB-MSCs in cigarette smoke-induced COPD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jianyun; Jiang, Ye; Yang, Xue
Cancer stem cells (CSCs) play essential role in the progression of many tumors. Wnt/β-catenin pathway is crucial in maintaining the stemness of CSCs. (−)-Epigallocatechin-3-gallate (EGCG), the major bioactive component in green tea, has been shown to possess anti-cancer activity. To date, the interventional effect of EGCG on lung CSCs has not been elucidated yet. In the present study, tumorsphere formation assay was used to enrich lung CSCs from A549 and H1299 cells. We revealed that Wnt/β-catenin pathway was activated in lung CSCs, and downregulation of β-catenin, abolished lung CSCs traits. Our study further illustrated that EGCG effectively diminished lung CSCs activitymore » by inhibiting tumorsphere formation, decreasing lung CSCs markers, suppressing proliferation and inducing apoptosis. Moreover, We showed that EGCG downregulated Wnt/β-catenin activation, while upregulation of Wnt/β-catenin dampened the inhibitory effects of EGCG on lung CSCs. Taken together, these results demonstrated the role of Wnt/β-catenin pathway in regulating lung CSCs traits and EGCG intervention of lung CSCs. Findings from this study could provide new insights into the molecular mechanisms of lung CSCs intervention. - Highlights: • EGCG inhibited lung CSCs activity. • EGCG inhibited lung CSCs activity via Wnt/β-catenin pathway suppression. • EGCG may prove to be a potential therapeutic agent for lung cancer.« less
Cheng, Chun-Chia; Chou, Kuei-Fang; Wu, Cheng-Wen; Su, Nai-Wen; Peng, Cheng-Liang; Su, Ying-Wen; Chang, Jungshan; Ho, Ai-Sheng; Lin, Huan-Chau; Chen, Caleb Gon-Shen; Yang, Bi-Ling; Chang, Yu-Cheng; Chiang, Ya-Wen; Lim, Ken-Hong; Chang, Yi-Fang
2018-02-01
YM155, an inhibitor of interleukin enhancer-binding factor 3 (ILF3), significantly suppresses cancer stemness property, implying that ILF3 contributes to cell survival of cancer stem cells. However, the molecular function of ILF3 inhibiting cancer stemness remains unclear. This study aimed to uncover the potential function of ILF3 involving in cell survival of epidermal growth factor receptor (EGFR)-positive lung stem-like cancer, and to investigate the potential role to improve the efficacy of anti-EGFR therapeutics. The association of EGFR and ILF3 in expression and regulations was first investigated in this study. Lung cancer A549 cells with deprivation of ILF3 were created by the gene-knockdown method and then RNAseq was applied to identify the putative genes regulated by ILF3. Meanwhile, HCC827- and A549-derived cancer stem-like cells were used to investigate the role of ILF3 in the formation of cancer stem-like tumorspheres. We found that EGFR induced ILF3 expression, and YM155 reduced EGFR expression. The knockdown of ILF3 reduced not only EGFR expression in mRNA and protein levels, but also cell proliferation in vitro and in vivo, demonstrating that ILF3 may play an important role in contributing to cancer cell survival. Moreover, the knockdown and inhibition of ILF3 by shRNA and YM155, respectively, reduced the formation and survival of HCC827- and A549-derived tumorspheres through inhibiting ErbB3 (HER3) expression, and synergized the therapeutic efficacy of afatinib, a tyrosine kinase inhibitor, against EGFR-positive A549 lung cells. This study demonstrated that ILF3 plays an oncogenic like role in maintaining the EGFR-mediated cellular pathway, and can be a therapeutic target to improve the therapeutic efficacy of afatinib. Our results suggested that YM155, an ILF3 inhibitor, has the potential for utilization in cancer therapy against EGFR-positive lung cancers. Copyright © 2017 Elsevier B.V. All rights reserved.
Koivunen, Peppi; Koivunen, Jussi P.
2014-01-01
Treatment resistance significantly inhibits the efficiency of targeted cancer therapies in drug-sensitive genotypes. In the current work, we studied mechanisms for rapidly occurring, adaptive resistance in targeted therapy-sensitive lung, breast, and melanoma cancer cell lines. The results show that in ALK translocated lung cancer lines H3122 and H2228, cells with cancer stem-like cell features characterized by high expression of cancer stem cell markers and/or in vivo tumorigenesis can mediate adaptive resistance to oncogene ablative therapy. When pharmacological ablation of ALK oncogene was accompanied with PI3K inhibitor or salinomycin therapy, cancer stem-like cell features were reversed which was accompanied with decreased colony formation. Furthermore, co-targeting was able to block the formation of acquired resistance in H3122 line. The results suggest that cells with cancer stem-like cell features can mediate adaptive resistance to targeted therapies. Since these cells follow the stochastic model, concurrent therapy with an oncogene ablating agent and a stem-like cell-targeting drug is needed for maximal therapeutic efficiency. PMID:25238228
Ma, Yuanyuan; Li, Mingzhen; Si, Jiahui; Xiong, Ying; Lu, Fangliang; Zhang, Jianzhi; Zhang, Liyi; Zhang, Panpan; Yang, Yue
2016-06-01
Acquired resistance to standard chemotherapy causes treatment failure in patients with local advanced and advanced non-small lung cancer (NSCLC). Cancer stem cells (CSCs) are a small subpopulation within cancer that is thought to be resistant to conventional chemotherapy. The Notch pathway is one of the most intensively studied for putative therapeutic targets of CSCs in solid tumors. In our study, suppression of Notch3 decreased colony and sphere formation of stem-like property in lung cancer cells. In addition, Notch3 expression was demonstrated to be upregulated in the patients with chemoresistance and related to poor prognosis of NSCLC patients. Our results also showed that CSC markers ALDH1A1 and CD44 were highly expressed in NSCLC patients with chemoresistance and these two markers were positively correlated with Notch3 expression in lung cancer specimens from TCGA database. Furthermore, the lung cancer cells with drug resistance were shown to be associated with activation of autophagy. All the data support a crucial role of Notch3 in the increase of stem-like property in NSCLC cells that might be associated with upregulation of ALDH1A1 and CD44 and activation of autophagy.
Wei, Hongying; Liang, Fan; Cheng, Wei; Zhou, Ren; Wu, Xiaomeng; Feng, Yan; Wang, Yan
2017-11-01
Fine particulate matter (PM 2.5 ) is a major component of air pollutions that are closely associated with increased risk of lung cancer. However, the role of PM 2.5 in the etiology of lung cancer is largely unknown. In this study, we performed acute (24 hours) and chronic (five passages) exposure models to investigate the carcinogenetic mechanisms of PM 2.5 by targeting the induction of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSC) properties in human non-small cell lung cancer cell line A549. We found that both acute and chronic PM 2.5 exposure enhanced cell migration and invasion, decreased mRNA expression of epithelial markers and increased mRNA expression of mesenchymal markers. Chronic PM 2.5 exposure further induced notable EMT morphology and CSC properties, indicating the developing process of cell malignant behaviors from acute to chronic PM 2.5 exposure. CSC properties induced by chronic PM 2.5 exposure characterized with increased cell-surface markers (CD44, ABCG2), self-renewal genes (SOX2 and OCT4), side population cells and neoplastic capacity. Furthermore, the levels of three stemness-associated microRNAs, Let-7a, miR-16 and miR-34a, were found to be significantly downregulated by chronic PM 2.5 exposure, with microarray data analysis from TCGA database showing their lower expression in human lung adenocarcinoma tissues than that in the adjacent normal lung tissues. These data revealed that the induction of EMT and CSC properties were involved in the lung cancer risk of PM 2.5 , and implicated CSC properties and related microRNAs as possible biomarkers for carcinogenicity prediction of PM 2.5 . © 2017 Wiley Periodicals, Inc.
Siegfried, Jill M; Farooqui, Mariya; Rothenberger, Natalie J; Dacic, Sanja; Stabile, Laura P
2017-04-11
The estrogen receptor (ER) promotes non-small cell lung cancer (NSCLC) proliferation. Since fibroblast growth factors (FGFs) are known regulators of stem cell markers in ER positive breast cancer, we investigated whether a link between the ER, FGFs, and stem cell markers exists in NSCLC. In lung preneoplasias and adenomas of tobacco carcinogen exposed mice, the anti-estrogen fulvestrant and/or the aromatase inhibitor anastrozole blocked FGF2 and FGF9 secretion, and reduced expression of the stem cell markers SOX2 and nanog. Mice administered β-estradiol during carcinogen exposure showed increased FGF2, FGF9, SOX2, and Nanog expression in airway preneoplasias. In normal FGFR1 copy number NSCLC cell lines, multiple FGFR receptors were expressed and secreted several FGFs. β-estradiol caused enhanced FGF2 release, which was blocked by fulvestrant. Upon co-inhibition of ER and FGFRs using fulvestrant and the pan-FGFR inhibitor AZD4547, phosphorylation of FRS2, the FGFR docking protein, was maximally reduced, and enhanced anti-proliferative effects were observed. Combined AZD4547 and fulvestrant enhanced lung tumor xenograft growth inhibition and decreased Ki67 and stem cell marker expression. To verify a link between ERβ, the predominant ER in NSCLC, and FGFR signaling in patient tumors, mRNA analysis was performed comparing high versus low ERβ expressing tumors. The top differentially expressed genes in high ERβ tumors involved FGF signaling and human embryonic stem cell pluripotency. These results suggest interaction between the ER and FGFR pathways in NSCLC promotes a stem-like state. Combined FGFR and ER inhibition may increase the efficacy of FGFR inhibitors for NSCLC patients lacking FGFR genetic alterations.
Wagner, Darcy E; Cardoso, Wellington V; Gilpin, Sarah E; Majka, Susan; Ott, Harald; Randell, Scott H; Thébaud, Bernard; Waddell, Thomas; Weiss, Daniel J
2016-08-01
The University of Vermont College of Medicine, in collaboration with the NHLBI, Alpha-1 Foundation, American Thoracic Society, Cystic Fibrosis Foundation, European Respiratory Society, International Society for Cellular Therapy, and the Pulmonary Fibrosis Foundation, convened a workshop, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," held July 27 to 30, 2015, at the University of Vermont. The conference objectives were to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are all rapidly expanding areas of study that both provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, discuss and debate current controversies, and identify future research directions and opportunities for both basic and translational research in cell-based therapies for lung diseases. This 10th anniversary conference was a follow up to five previous biennial conferences held at the University of Vermont in 2005, 2007, 2009, 2011, and 2013. Each of those conferences, also sponsored by the National Institutes of Health, American Thoracic Society, and respiratory disease foundations, has been important in helping guide research and funding priorities. The major conference recommendations are summarized at the end of the report and highlight both the significant progress and major challenges in these rapidly progressing fields.
Monsel, Antoine; Zhu, Ying-gang; Gudapati, Varun; Lim, Hyungsun; Lee, Jae W.
2017-01-01
Introduction Acute respiratory distress syndrome is a major cause of respiratory failure in critically ill patients. Despite extensive research into its pathophysiology, mortality remains high. No effective pharmacotherapy exists. Based largely on numerous preclinical studies, administration of mesenchymal stem or stromal cell (MSC) as a therapeutic for acute lung injury holds great promise, and clinical trials are currently underway. However, concern for the use of stem cells, specifically the risk of iatrogenic tumor formation, remains unresolved. Accumulating evidence now suggest that novel cell-free therapies including MSC-derived conditioned medium and extracellular vesicles released from MSCs might constitute compelling alternatives. Areas covered The current review summarizes the preclinical studies testing MSC conditioned medium and/or MSC extracellular vesicles as treatment for acute lung injury and other inflammatory lung diseases. Expert opinion While certain logistical obstacles limit the clinical applications of MSC conditioned medium such as the volume required for treatment, the therapeutic application of MSC extracellular vesicles remains promising, primarily due to ability of extracellular vesicles to maintain the functional phenotype of the parent cell. However, utilization of MSC extracellular vesicles will require large-scale production and standardization concerning identification, characterization and quantification. PMID:27011289
Maria, Ola M; Maria, Ahmed M; Ybarra, Norma; Jeyaseelan, Krishinima; Lee, Sangkyu; Perez, Jessica; Shalaby, Mostafa Y; Lehnert, Shirley; Faria, Sergio; Serban, Monica; Seuntjens, Jan; El Naqa, Issam
2016-04-01
Lung tissue exposure to ionizing irradiation can invariably occur during the treatment of a variety of cancers leading to increased risk of radiation-induced lung disease (RILD). Mesenchymal stem cells (MSCs) possess the potential to differentiate into epithelial cells. However, cell culture methods of primary type II pneumocytes are slow and cannot provide a sufficient number of cells to regenerate damaged lungs. Moreover, effects of ablative radiation doses on the ability of MSCs to differentiate in vitro into lung cells have not been investigated yet. Therefore, an in vitro coculture system was used, where MSCs were physically separated from dissociated lung tissue obtained from either healthy or high ablative doses of 16 or 20 Gy whole thorax irradiated rats. Around 10±5% and 20±3% of cocultured MSCs demonstrated a change into lung-specific Clara and type II pneumocyte cells when MSCs were cocultured with healthy lung tissue. Interestingly, in cocultures with irradiated lung biopsies, the percentage of MSCs changed into Clara and type II pneumocytes cells increased to 40±7% and 50±6% at 16 Gy irradiation dose and 30±5% and 40±8% at 20 Gy irradiation dose, respectively. These data suggest that MSCs to lung cell differentiation is possible without cell fusion. In addition, 16 and 20 Gy whole thorax irradiation doses that can cause varying levels of RILD, induced different percentages of MSCs to adopt lung cell phenotype compared with healthy lung tissue, providing encouraging outlook for RILD therapeutic intervention for ablative radiotherapy prescriptions.
Human Umbilical Cord Mesenchymal Stem Cells Reduce Fibrosis of Bleomycin-Induced Lung Injury
Moodley, Yuben; Atienza, Daniel; Manuelpillai, Ursula; Samuel, Chrishan S.; Tchongue, Jorge; Ilancheran, Sivakami; Boyd, Richard; Trounson, Alan
2009-01-01
Acute respiratory distress syndrome is characterized by loss of lung tissue as a result of inflammation and fibrosis. Augmenting tissue repair by the use of mesenchymal stem cells may be an important advance in treating this condition. We evaluated the role of term human umbilical cord cells derived from Wharton’s jelly with a phenotype consistent with mesenchymal stem cells (uMSCs) in the treatment of a bleomycin-induced mouse model of lung injury. uMSCs were administered systemically, and lungs were harvested at 7, 14, and 28 days post-bleomycin. Injected uMSCs were located in the lung 2 weeks later only in areas of inflammation and fibrosis but not in healthy lung tissue. The administration of uMSCs reduced inflammation and inhibited the expression of transforming growth factor-β, interferon-γ, and the proinflammatory cytokines macrophage migratory inhibitory factor and tumor necrosis factor-α. Collagen concentration in the lung was significantly reduced by uMSC treatment, which may have been a consequence of the simultaneous reduction in Smad2 phosphorylation (transforming growth factor-β activity). uMSCs also increased matrix metalloproteinase-2 levels and reduced their endogenous inhibitors, tissue inhibitors of matrix metalloproteinases, favoring a pro-degradative milieu following collagen deposition. Notably, injected human lung fibroblasts did not influence either collagen or matrix metalloproteinase levels in the lung. The results of this study suggest that uMSCs have antifibrotic properties and may augment lung repair if used to treat acute respiratory distress syndrome. PMID:19497992
Schmuck, Eric G; Koch, Jill M; Centanni, John M; Hacker, Timothy A; Braun, Rudolf K; Eldridge, Marlowe; Hei, Derek J; Hematti, Peiman; Raval, Amish N
2016-12-01
: Cell tracking is a critical component of the safety and efficacy evaluation of therapeutic cell products. To date, cell-tracking modalities have been hampered by poor resolution, low sensitivity, and inability to track cells beyond the shortterm. Three-dimensional (3D) cryo-imaging coregisters fluorescent and bright-field microcopy images and allows for single-cell quantification within a 3D organ volume. We hypothesized that 3D cryo-imaging could be used to measure cell biodistribution and clearance after intravenous infusion in a rat lung injury model compared with normal rats. A bleomycin lung injury model was established in Sprague-Dawley rats (n = 12). Human mesenchymal stem cells (hMSCs) labeled with QTracker655 were infused via jugular vein. After 2, 4, or 8 days, a second dose of hMSCs labeled with QTracker605 was infused, and animals were euthanized after 60, 120, or 240 minutes. Lungs, liver, spleen, heart, kidney, testis, and intestine were cryopreserved, followed by 3D cryo-imaging of each organ. At 60 minutes, 82% ± 9.7% of cells were detected; detection decreased to 60% ± 17% and 66% ± 22% at 120 and 240 minutes, respectively. At day 2, 0.06% of cells were detected, and this level remained constant at days 4 and 8 postinfusion. At 60, 120, and 240 minutes, 99.7% of detected cells were found in the liver, lungs, and spleen, with cells primarily retained in the liver. This is the first study using 3D cryo-imaging to track hMSCs in a rat lung injury model. hMSCs were retained primarily in the liver, with fewer detected in lungs and spleen. Effective bench-to-bedside clinical translation of cellular therapies requires careful understanding of cell fate through tracking. Tracking cells is important to measure cell retention so that delivery methods and cell dose can be optimized and so that biodistribution and clearance can be defined to better understand potential off-target toxicity and redosing strategies. This article demonstrates, for the first time, the use of three-dimensional cryo-imaging for single-cell quantitative tracking of intravenous infused clinical-grade mesenchymal stem cells in a clinically relevant model of lung injury. The important information learned in this study will help guide future clinical and translational stem cell therapies for lung injuries. ©AlphaMed Press.
EGFR blockade enriches for lung cancer stem-like cells through Notch3-dependent signaling
Arasada, Rajeswara Rao; Amann, Joseph M.; Rahman, Mohammad A; Huppert, Stacey S.; Carbone, David P.
2014-01-01
Mutations in the epidermal growth factor receptor (EGFR) are the most common actionable genetic abnormalities yet discovered in lung cancer. However, targeting these mutations with kinase inhibitors is not curative in advanced disease and has yet to demonstrate an impact on potentially curable, early-stage disease, with some data suggesting adverse outcomes. Here, we report that treatment of EGFR-mutated lung cancer cell lines with erlotinib, while showing robust cell death, enriches the ALDH+ stem-like cells through EGFR-dependent activation of Notch3. Additionally, we demonstrate that erlotinib treatment increases the clonogenicity of lung cancer cells in a sphere-forming assay, suggesting increased stem-like cell potential. We demonstrate that inhibition of EGFR kinase activity leads to activation of Notch transcriptional targets in a gamma secretase inhibitor sensitive manner and causes Notch activation. leading to an increase in ALDH high+ cells. We also find a kinase-dependent physical association between the Notch3 and EGFR receptors and tyrosine phosphorylation of Notch3. This could explain the worsened survival observed in some studies of erlotinib treatment at early-stage disease, and suggests that specific dual targeting might overcome this adverse effect. PMID:25125655
Comparison of tumor biology of two distinct cell sub-populations in lung cancer stem cells.
Wang, Jianyu; Sun, Zhiwei; Liu, Yongli; Kong, Liangsheng; Zhou, Shixia; Tang, Junlin; Xing, Hongmei Rosie
2017-11-14
Characterization of the stem-like properties of cancer stem cells (CSCs) remain indirect and qualitative, especially the ability of CSCs to undergo asymmetric cell division for self renewal and differentiation, a unique property of cells of stem origin. It is partly due to the lack of stable cellular models of CSCs. In this study, we developed a new approach for CSC isolation and purification to derive a CSC-enriched cell line (LLC-SE). By conducting five consecutive rounds of single cell cloning using the LLC-SE cell line, we obtained two distinct sub-population of cells within the Lewis lung cancer CSCs that employed largely symmetric division for self-renewal (LLC-SD) or underwent asymmetric division for differentiation (LLC-ASD). LLC-SD and LLC-ASD cell lines could be stably passaged in culture and be distinguished by cell morphology, stem cell marker, spheroid formation and subcutaneous tumor initiation efficiency, as well as orthotopic lung tumor growth, progression and survival. The ability LLC-ASD cells to undergo asymmetric division was visualized and quantified by the asymmetric segregation of labeled BrdU and NUMB to one of the two daughter cells in anaphase cell division. The more stem-like LLC-SD cells exhibited higher capacity for tumorigenesis and progression and shorter survival. As few as 10 LLC-SD could initiate subcutaneous tumor growth when transplanted to the athymic mice. Collectively, these observations suggest that the SD-type of cells appear to be on the top of the hierarchical order of the CSCs. Furthermore, they have lead to generated cellular models of CSC self-renewal for future mechanistic investigations.
Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Lincan; Shen, Hongmei; Zhao, Guangqiang
2014-04-18
Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition ofmore » cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.« less
Lu, Jui-Hua; Wei, Hong-Jian; Peng, Bou-Yue; Chou, Hsin-Hua; Chen, Wei-Hong; Liu, Hen-Yu; Deng, Win-Ping
2016-12-01
Adipose-derived stem cells (ADSCs) are multipotent cells that have attracted much recent attention and emerged as therapeutic approaches in several medical fields. Although current knowledge of the biological impacts of ADSCs in cancer research is greatly improved, the underlying effects of ADSCs in tumor development remain controversial and cause the safety concerns in clinical utilization. Hence, we isolated primary ADSCs from the abdominal fat of mice and conducted interaction of ADSCs with Lewis lung carcinoma cells in culture and in mice to investigate the impacts of ADSCs on tumor development. Cytokine array and neutralizing antibody were further utilized to identify the key regulator and downstream signaling pathway. In this study, we demonstrated that ADSCs enhance the malignant characteristics of LLC1 cells, including cell growth ability and especially cancer stem cell property. ADSCs were then identified to promote tumor formation and growth in mice. We further determined that ADSC interaction with LLC1 cells stimulates increased secretion of interleukin-6 mainly from ADSCs, which then act in a paracrine manner on LLC1 cells to enhance their malignant characteristics. Interleukin-6 was also identified to regulate genes related to cell proliferation and cancer stem cell, as well as to activate JAK2/STAT3, a predominant interleukin-6-activated pathway, in LLC1 cells. Collectively, we demonstrated that ADSCs play a pro-malignant role in tumor development of Lewis lung carcinoma cells by particularly promoting cancer stem cell property through interleukin-6 paracrine circuit, which is important for safety considerations regarding the clinical application of ADSCs.
Ionescu, Lavinia; Byrne, Roisin N; van Haaften, Tim; Vadivel, Arul; Alphonse, Rajesh S; Rey-Parra, Gloria J; Weissmann, Gaia; Hall, Adam; Eaton, Farah; Thébaud, Bernard
2012-12-01
Mortality and morbidity of acute lung injury and acute respiratory distress syndrome remain high because of the lack of pharmacological therapies to prevent injury or promote repair. Mesenchymal stem cells (MSCs) prevent lung injury in various experimental models, despite a low proportion of donor-derived cell engraftment, suggesting that MSCs exert their beneficial effects via paracrine mechanisms. We hypothesized that soluble factors secreted by MSCs promote the resolution of lung injury in part by modulating alveolar macrophage (AM) function. We tested the therapeutic effect of MSC-derived conditioned medium (CdM) compared with whole MSCs, lung fibroblasts, and fibroblast-CdM. Intratracheal MSCs and MSC-CdM significantly attenuated lipopolysaccharide (LPS)-induced lung neutrophil influx, lung edema, and lung injury as assessed by an established lung injury score. MSC-CdM increased arginase-1 activity and Ym1 expression in LPS-exposed AMs. In vivo, AMs from LPS-MSC and LPS-MSC CdM lungs had enhanced expression of Ym1 and decreased expression of inducible nitric oxide synthase compared with untreated LPS mice. This suggests that MSC-CdM promotes alternative macrophage activation to an M2 "healer" phenotype. Comparative multiplex analysis of MSC- and fibroblast-CdM demonstrated that MSC-CdM contained several factors that may confer therapeutic benefit, including insulin-like growth factor I (IGF-I). Recombinant IGF-I partially reproduced the lung protective effect of MSC-CdM. In summary, MSCs act through a paracrine activity. MSC-CdM promotes the resolution of LPS-induced lung injury by attenuating lung inflammation and promoting a wound healing/anti-inflammatory M2 macrophage phenotype in part via IGF-I.
Ionescu, Lavinia; Byrne, Roisin N.; van Haaften, Tim; Vadivel, Arul; Alphonse, Rajesh S.; Rey-Parra, Gloria J.; Weissmann, Gaia; Hall, Adam; Eaton, Farah
2012-01-01
Mortality and morbidity of acute lung injury and acute respiratory distress syndrome remain high because of the lack of pharmacological therapies to prevent injury or promote repair. Mesenchymal stem cells (MSCs) prevent lung injury in various experimental models, despite a low proportion of donor-derived cell engraftment, suggesting that MSCs exert their beneficial effects via paracrine mechanisms. We hypothesized that soluble factors secreted by MSCs promote the resolution of lung injury in part by modulating alveolar macrophage (AM) function. We tested the therapeutic effect of MSC-derived conditioned medium (CdM) compared with whole MSCs, lung fibroblasts, and fibroblast-CdM. Intratracheal MSCs and MSC-CdM significantly attenuated lipopolysaccharide (LPS)-induced lung neutrophil influx, lung edema, and lung injury as assessed by an established lung injury score. MSC-CdM increased arginase-1 activity and Ym1 expression in LPS-exposed AMs. In vivo, AMs from LPS-MSC and LPS-MSC CdM lungs had enhanced expression of Ym1 and decreased expression of inducible nitric oxide synthase compared with untreated LPS mice. This suggests that MSC-CdM promotes alternative macrophage activation to an M2 “healer” phenotype. Comparative multiplex analysis of MSC- and fibroblast-CdM demonstrated that MSC-CdM contained several factors that may confer therapeutic benefit, including insulin-like growth factor I (IGF-I). Recombinant IGF-I partially reproduced the lung protective effect of MSC-CdM. In summary, MSCs act through a paracrine activity. MSC-CdM promotes the resolution of LPS-induced lung injury by attenuating lung inflammation and promoting a wound healing/anti-inflammatory M2 macrophage phenotype in part via IGF-I. PMID:23023971
Sette, Giovanni; Salvati, Valentina; Giordani, Ilenia; Pilozzi, Emanuela; Quacquarini, Denise; Duranti, Enrico; De Nicola, Francesca; Pallocca, Matteo; Fanciulli, Maurizio; Falchi, Mario; Pallini, Roberto; De Maria, Ruggero; Eramo, Adriana
2018-07-01
Availability of tumor and non-tumor patient-derived models would promote the development of more effective therapeutics for non-small cell lung cancer (NSCLC). Recently, conditionally reprogrammed cells (CRC) methodology demonstrated exceptional potential for the expansion of epithelial cells from patient tissues. However, the possibility to expand patient-derived lung cancer cells using CRC protocols is controversial. Here, we used CRC approach to expand cells from non-tumoral and tumor biopsies of patients with primary or metastatic NSCLC as well as pulmonary metastases of colorectal or breast cancers. CRC cultures were obtained from both tumor and non-malignant tissues with extraordinary high efficiency. Tumor cells were tracked in vitro through tumorigenicity assay, monitoring of tumor-specific genetic alterations and marker expression. Cultures were composed of EpCAM+ lung epithelial cells lacking tumorigenic potential. NSCLC biopsies-derived cultures rapidly lost patient-specific genetic mutations or tumor antigens. Similarly, pulmonary metastases of colon or breast cancer generated CRC cultures of lung epithelial cells. All CRC cultures examined displayed epithelial lung stem cell phenotype and function. In contrast, brain metastatic lung cancer biopsies failed to generate CRC cultures. In conclusion, patient-derived primary and metastatic lung cancer cells were negatively selected under CRC conditions, limiting the expansion to non-malignant lung epithelial stem cells from either tumor or non-tumor tissue sources. Thus, CRC approach cannot be applied for direct therapeutic testing of patient lung tumor cells, as the tumor-derived CRC cultures are composed of (non-tumoral) airway basal cells. © 2018 UICC.
NASA Astrophysics Data System (ADS)
Perez, Jessica R.; Ybarra, Norma; Chagnon, Frederic; Serban, Monica; Lee, Sangkyu; Seuntjens, Jan; Lesur, Olivier; El Naqa, Issam
2017-01-01
Mesenchymal stem cells (MSCs) have potential for reducing inflammation and promoting organ repair. However, limitations in available techniques to track them and assess this potential for lung repair have hindered their applicability. In this work, we proposed, implemented and evaluated the use of fluorescence endomicroscopy as a novel imaging tool to track MSCs in vivo. MSCs were fluorescently labeled and injected into a rat model of radiation-induced lung injury via endotracheal (ET) or intravascular (IV) administration. Our results show that MSCs were visible in the lungs with fluorescence endomicroscopy. Moreover, we developed an automatic cell counting algorithm to quantify the number of detected cells in each condition. We observed a significantly higher number of detected cells in ET injection compared to IV and a slight increase in the mean number of detected cells in irradiated lungs compared to control, although the latter did not reach statistical significance. Fluorescence endomicroscopy imaging is a powerful new minimally invasive and translatable tool that can be used to track and quantify MSCs in the lungs and help assess their potential in organ repair.
Krishnamurthy, Sangeetha; Ng, Victor W L; Gao, Shujun; Tan, Min-Han; Yang, Yi Yan
2014-11-01
Conventional cancer chemotherapy often fails as most anti-cancer drugs are not effective against drug-resistant cancer stem cells. These surviving cancer stem cells lead to relapse and metastasis. In this study, an anti-diabetic drug, phenformin, capable of eliminating cancer stem cells was loaded into micelles via self-assembly using a mixture of a diblock copolymer of poly(ethylene glycol) (PEG) and urea-functionalized polycarbonate and a diblock copolymer of PEG and acid-functionalized polycarbonate through hydrogen bonding. The phenformin-loaded micelles, having an average diameter of 102 nm with narrow size distribution, were stable in serum-containing solution over 48 h and non-cytotoxic towards non-cancerous cells. More than 90% of phenformin was released from the micelles over 96 h. Lung cancer stem cells (side population cells, i.e. SP cells) and non-SP cells were sorted from H460 human lung cancer cell line, and treated with free phenformin and phenformin-loaded micelles. The results showed that the drug-loaded micelles were more effective in inhibiting the growth of both SP and non-SP cells. In vivo studies conducted in an H460 human lung cancer mouse model demonstrated that the drug-loaded micelles had greater anti-tumor efficacy, and reduced the population of SP cells in the tumor tissues more effectively than free phenformin. Liver function analysis was performed following drug treatments, and the results indicated that the drug-loaded micelles did not cause liver damage, a harmful side-effect of phenformin when used clinically. These phenformin-loaded micelles may be used to target both cancer cells and cancer stem cells in chemotherapy for the prevention of relapse and metastasis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Side population cells and Bcrp1 expression in lung.
Summer, Ross; Kotton, Darrell N; Sun, Xi; Ma, Bei; Fitzsimmons, Kathleen; Fine, Alan
2003-07-01
Side population (SP) cells are a rare subset of cells found in various tissues that are highly enriched for stem cell activity. SP cells can be isolated by dual-wavelength flow cytometry because of their capacity to efflux Hoechst dye, a process mediated by the ATP-binding cassette transporter breast cancer resistance protein (Bcrp) 1. By performing flow cytometry of enzymedigested mouse lung stained with Hoechst dye, we found that SP cells comprise 0.03-0.07% of total lung cells and are evenly distributed in proximal and distal lung regions. By RT-PCR, we found that lung SP cells express hepatocyte nuclear factor-3beta, but not thyroid transcription factor-1. Surface marker analysis revealed lung SP cells to be stem cell antigen 1 positive, Bcrp1 positive, lineage marker negative, and heterogeneous at the CD45 locus. As expected, we did not detect lung SP cells in Bcrp1-deficient animals. We, therefore, employed nonisotopic in situ hybridization and immunostaining for Bcrp1 as a strategy to localize these cells in vivo. Expression was observed in distinct lung cell types: bronchial and vascular smooth muscle cells and round cells within the distal air space. We confirmed the expression of Bcrp1 in primary bronchial smooth muscle cell cultures (BSMC) and in lavaged distal airway cells, but neither possessed the capacity to efflux Hoechst dye. In BSMC, Bcrp1 was localized to an intracellular compartment, suggesting that the molecular site of Bcrp1 expression regulates SP phenotype.
Yang, Jiali; Zhang, Kangjian; Wu, Jing; Shi, Juan; Xue, Jing; Li, Jing; Zhu, Yongzhao; Wei, Jun
2016-01-01
The development of chemoresistance to cisplatin regimens causes a poor prognosis in patients with advanced NSCLC. The role of noncanonical Wnt signaling in the regulation of properties of lung cancer stem cells and chemoresistance was interrogated, by accessing capacities of cell proliferation, migration, invasion, and clonogenicity as well as the apoptosis in A549 cell lines and cisplatin-resistant A549 cells treated with Wnt5a conditional medium or protein kinase C (PKC) inhibitor GF109203X. Results showed that the noncanonical Wnt signaling ligand, Wnt5a, could promote the proliferation, migration, invasion, and colony formation in A549 lung adenocarcinoma cells and cisplatin-resistant A549/DDP cells and increase the fraction of ALDH-positive cell in A549/DDP cells. An exposure of cells to Wnt5a led to a significant reduction of A549/DDP cell apoptosis but not A549 cells. An addition of GF109203X could both strikingly increase the baseline apoptosis and resensitize the Wnt5a-inhibited cell apoptosis. Interestingly, an inhibition of Wnt/PKC signaling pathway could reduce properties of lung cancer stem cells, promote cell apoptosis, and resensitize cisplatin-resistant cells to cisplatin via a caspase/AIF-dependent pathway. These data thus suggested that the Wnt5a could promote lung cancer cell mobility and cisplatin-resistance through a Wnt/PKC signaling pathway and a blockage of this signaling may be an alternative therapeutic strategy for NSCLC patients with resistance to chemotherapies. PMID:27895670
van Haaften, Timothy; Byrne, Roisin; Bonnet, Sebastien; Rochefort, Gael Y; Akabutu, John; Bouchentouf, Manaf; Rey-Parra, Gloria J; Galipeau, Jacques; Haromy, Alois; Eaton, Farah; Chen, Ming; Hashimoto, Kyoko; Abley, Doris; Korbutt, Greg; Archer, Stephen L; Thébaud, Bernard
2009-12-01
Bronchopulmonary dysplasia (BPD) and emphysema are characterized by arrested alveolar development or loss of alveoli; both are significant global health problems and currently lack effective therapy. Bone marrow-derived mesenchymal stem cells (BMSCs) prevent adult lung injury, but their therapeutic potential in neonatal lung disease is unknown. We hypothesized that intratracheal delivery of BMSCs would prevent alveolar destruction in experimental BPD. In vitro, BMSC differentiation and migration were assessed using co-culture assays and a modified Boyden chamber. In vivo, the therapeutic potential of BMSCs was assessed in a chronic hyperoxia-induced model of BPD in newborn rats. In vitro, BMSCs developed immunophenotypic and ultrastructural characteristics of type II alveolar epithelial cells (AEC2) (surfactant protein C expression and lamellar bodies) when co-cultured with lung tissue, but not with culture medium alone or liver. Migration assays revealed preferential attraction of BMSCs toward oxygen-damaged lung versus normal lung. In vivo, chronic hyperoxia in newborn rats led to air space enlargement and loss of lung capillaries, and this was associated with a decrease in circulating and resident lung BMSCs. Intratracheal delivery of BMSCs on Postnatal Day 4 improved survival and exercise tolerance while attenuating alveolar and lung vascular injury and pulmonary hypertension. Engrafted BMSCs coexpressed the AEC2-specific marker surfactant protein C. However, engraftment was disproportionately low for cell replacement to account for the therapeutic benefit, suggesting a paracrine-mediated mechanism. In vitro, BMSC-derived conditioned medium prevented O(2)-induced AEC2 apoptosis, accelerated AEC2 wound healing, and enhanced endothelial cord formation. BMSCs prevent arrested alveolar and vascular growth in part through paracrine activity. Stem cell-based therapies may offer new therapeutic avenues for lung diseases that currently lack efficient treatments.
Intra-Tumour Signalling Entropy Determines Clinical Outcome in Breast and Lung Cancer
Banerji, Christopher R. S.; Severini, Simone; Caldas, Carlos; Teschendorff, Andrew E.
2015-01-01
The cancer stem cell hypothesis, that a small population of tumour cells are responsible for tumorigenesis and cancer progression, is becoming widely accepted and recent evidence has suggested a prognostic and predictive role for such cells. Intra-tumour heterogeneity, the diversity of the cancer cell population within the tumour of an individual patient, is related to cancer stem cells and is also considered a potential prognostic indicator in oncology. The measurement of cancer stem cell abundance and intra-tumour heterogeneity in a clinically relevant manner however, currently presents a challenge. Here we propose signalling entropy, a measure of signalling pathway promiscuity derived from a sample’s genome-wide gene expression profile, as an estimate of the stemness of a tumour sample. By considering over 500 mixtures of diverse cellular expression profiles, we reveal that signalling entropy also associates with intra-tumour heterogeneity. By analysing 3668 breast cancer and 1692 lung adenocarcinoma samples, we further demonstrate that signalling entropy correlates negatively with survival, outperforming leading clinical gene expression based prognostic tools. Signalling entropy is found to be a general prognostic measure, valid in different breast cancer clinical subgroups, as well as within stage I lung adenocarcinoma. We find that its prognostic power is driven by genes involved in cancer stem cells and treatment resistance. In summary, by approximating both stemness and intra-tumour heterogeneity, signalling entropy provides a powerful prognostic measure across different epithelial cancers. PMID:25793737
Wong, Amy P; Chin, Stephanie; Xia, Sunny; Garner, Jodi; Bear, Christine E; Rossant, Janet
2015-03-01
Airway epithelial cells are of great interest for research on lung development, regeneration and disease modeling. This protocol describes how to generate cystic fibrosis (CF) transmembrane conductance regulator protein (CFTR)-expressing airway epithelial cells from human pluripotent stem cells (PSCs). The stepwise approach from PSC culture to differentiation into progenitors and then mature epithelia with apical CFTR activity is outlined. Human PSCs that were inefficient at endoderm differentiation using our previous lung differentiation protocol were able to generate substantial lung progenitor cell populations. Augmented CFTR activity can be observed in all cultures as early as at 35 d of differentiation, and full maturation of the cells in air-liquid interface cultures occurs in <5 weeks. This protocol can be used for drug discovery, tissue regeneration or disease modeling.
Nguyen, Giang Huong; Murph, Mandi M.; Chang, Joe Y.
2011-01-01
Many studies have highlighted the role cancer stem cells (CSC) play in the development and progression of various types of cancer including lung and esophageal cancer. More recently, it has been proposed that the presence of CSCs affects treatment efficacy and patient prognosis. In reviewing this new area of cancer biology, we will give an overview of the current literature regarding lung and esophageal CSCs and radioresistance of CSC, and discuss the potential therapeutic applications of these findings. PMID:21603589
Niyibizi, Christopher; Wang, Sujing; Mi, Zhibao; Robbins, Paul D
2004-06-01
To explore the feasibility of skeletal gene and cell therapies, we transduced murine bone marrow-derived mesenchymal stem cells (MSCs) with a retrovirus carrying the enhanced green fluorescent protein and zeocin-resistance genes prior to transplantation into 2-day-old immunocompetent neonatal mice. Whole-body imaging of the recipient mice at 7 days post-systemic cell injection demonstrated a wide distribution of the cells in vivo. Twenty-five days posttransplantation, most of the infused cells were present in the lung as assessed by examination of the cells cultured from the lungs of the recipient mice. The cells persisted in lung and maintained a high level of gene expression and could be recovered from the recipient mice at 150 days after cell transplantation. A significant number of GFP-positive cells were also present in the bones of the recipient mice at 35 days post-cell transplantation. Recycling of the cells recovered from femurs of the recipient mice at 25 days posttransplantation by repeated injections into different neonatal mice resulted in the isolation of a clone of cells that was detected in bone and cartilage, but not in lung and liver after systemic injection. These data demonstrate that MSCs persist in immunocompetent neonatal mice, maintain a high level of gene expression, and may participate in skeletal growth and development of the recipient animals.
Chakraborty, Chiranjib; Chin, Kok-Yong; Das, Srijit
2016-10-01
Over the last few years, microRNAs (miRNA)-controlled cancer stem cells have drawn enormous attention. Cancer stem cells are a small population of tumor cells that possess the stem cell property of self-renewal. Recent data shows that miRNA regulates this small population of stem cells. In the present review, we explained different characteristics of cancer stem cells as well as miRNA regulation of self-renewal and differentiation in cancer stem cells. We also described the migration and tumor formation. Finally, we described the different miRNAs that regulate various types of cancer stem cells, such as prostate cancer stem cells, head and neck cancer stem cells, breast cancer stem cells, colorectal cancer stem cells, lung cancer stem cells, gastric cancer stem cells, pancreatic cancer stem cells, etc. Extensive research is needed in order to employ miRNA-based therapeutics to control cancer stem cell population in various cancers in the future.
Zhao, Changhong; Setrerrahmane, Sarra; Xu, Hanmei
2015-10-01
Tumor cells from the same origin comprise different cell populations. Among them, cancer stem cells (CSCs) have higher tumorigenicity. It is necessary to enrich CSCs to determine an effective way to suppress and eliminate them. In the present study, using the non-adhesive culture system, tumor spheres were successfully generated from human A549 non-small cell lung cancer (NSCLC) cell line within 2 weeks. Compared to A549 adherent cells, sphere cells had a higher self-renewal ability and increased resistance to cytotoxic drugs. Sphere cells were more invasive and expressed stem cell markers including octamer‑binding transcription factor 4 (Oct4) and sex-determining region Y-box 2 (Sox2) at high levels. CD133, a disputed marker of lung CSCs, was also upregulated. Tumor sphere cells showed higher tumorigenic ability in vivo, indicating that more CSCs were enriched in the sphere cells. More blood vessels were formed in the tumor generated by sphere cells suggesting the interaction between CSCs and blood vessel. A reliable model of enriching CSCs from the human A549 NSCLC cell line was established that was simple and cost-effective compared to other methods.
Koh, Hyebin; Park, Hyeri; Chandimali, Nisansala; Huynh, Do Luong; Zhang, Jiao Jiao; Ghosh, Mrinmoy; Gera, Meeta; Kim, Nameun; Bak, Yesol; Yoon, Do-Young; Park, Yang Ho; Kwon, Taeho; Jeong, Dong Kee
2017-12-15
The existence of cancer stem cells (CSCs) is the main reason for failure of cancer treatment caused by drug resistance. Therefore, eradicating cancers by targeting CSCs remains a significant challenge. In the present study, because of the important role of BMI-1 proto-oncogene, polycomb ring finger (BMI-1) and C-terminal Mucin1 (MUC1-C) in tumor growth and maintenance of CSCs, we aimed to confirm that microRNA miR-128, as an inhibitor of BMI-1 and MUC1-C, could effectively suppress paclitaxel (PTX)-resistant lung cancer stem cells. We showed that CSCs have significantly higher expression levels of BMI-1, MUC1-C, stemness proteins, signaling factors, and higher malignancy compared with normal tumor cells. After transfection with miR-128, the BMI-1 and MUC1-C levels in CSCs were suppressed. When miR-128 was stably expressed in PTX-resistant lung cancer stem cells, the cells showed decreased proliferation, metastasis, self-renewal, migration, invasive ability, clonogenicity, and tumorigenicity in vitro and in vivo and increased apoptosis compared with miR-NC (negative control) CSCs. Furthermore, miR-128 effectively decreased the levels of β-catenin and intracellular signaling pathway-related factors in CSCs. MiR-128 also decreased the luciferase activity of MUC1 reporter constructs and reduced the levels of transmembrane MUC1-C and BMI-1. These results suggested miR-128 as an attractive therapeutic strategy for PTX-resistant lung cancer via inhibition of BMI-1 and MUC1-C.
Cao, Kaiyue; Pan, Yunzhi; Yu, Long; Shu, Xiong; Yang, Jing; Sun, Linxin; Sun, Lichao; Yang, Zhihua; Ran, Yuliang
2017-02-01
Cancer stem cells (CSCs) are a rare subset of cancer cells that play a significant role in cancer initiation, spreading, and recurrence. In this study, a subpopulation of lung cancer stem-like cells (LCSLCs) was identified from non-small cell lung carcinoma cell lines, SPCA-1 and A549, using serum-free suspension sphere-forming culture method. A monoclonal antibody library was constructed using immunized BLAB/c mice with the multipotent CSC cell line T3A-A3. Flow cytometry analysis showed that 33 mAbs targeted antigens can be enriched in sphere cells compared with the parental cells of SPCA-1 and A549 cell lines. Then, we performed functional antibody screening including sphere-forming inhibiting and invasion inhibiting assay. The results showed that two antibodies, 12C7 and 9B8, notably suppressed the self-renewal and invasion of LCSLCs. Fluorescence-activated cell sorting (FACs) found that the positive cells recognized by mAbs, 12C7 or 9B8, displayed features of LCSLCs. Interestingly, we found that these two antibodies recognized different subsets of cells and their combination effect was superior to the individual effect both in vitro and in vivo. Tissue microarrays were applied to detect the expression of the antigens targeted by these two antibodies. The positive expression of 12C7 and 9B8 targeted antigen was 84.4 and 82.5%, respectively, which was significantly higher than that in the non-tumor lung tissues. In conclusion, we screened two potential therapeutic antibodies that target different subsets of LCSLCs.
A three-dimensional model of human lung development and disease from pluripotent stem cells.
Chen, Ya-Wen; Huang, Sarah Xuelian; de Carvalho, Ana Luisa Rodrigues Toste; Ho, Siu-Hong; Islam, Mohammad Naimul; Volpi, Stefano; Notarangelo, Luigi D; Ciancanelli, Michael; Casanova, Jean-Laurent; Bhattacharya, Jahar; Liang, Alice F; Palermo, Laura M; Porotto, Matteo; Moscona, Anne; Snoeck, Hans-Willem
2017-05-01
Recapitulation of lung development from human pluripotent stem cells (hPSCs) in three dimensions (3D) would allow deeper insight into human development, as well as the development of innovative strategies for disease modelling, drug discovery and regenerative medicine. We report here the generation from hPSCs of lung bud organoids (LBOs) that contain mesoderm and pulmonary endoderm and develop into branching airway and early alveolar structures after xenotransplantation and in Matrigel 3D culture. Expression analysis and structural features indicated that the branching structures reached the second trimester of human gestation. Infection in vitro with respiratory syncytial virus, which causes small airway obstruction and bronchiolitis in infants, led to swelling, detachment and shedding of infected cells into the organoid lumens, similar to what has been observed in human lungs. Introduction of mutation in HPS1, which causes an early-onset form of intractable pulmonary fibrosis, led to accumulation of extracellular matrix and mesenchymal cells, suggesting the potential use of this model to recapitulate fibrotic lung disease in vitro. LBOs therefore recapitulate lung development and may provide a useful tool to model lung disease.
Huang, Xiaojia; Sun, Kai; Zhao, Yidan D.; Vogel, Stephen M.; Song, Yuanling; Mahmud, Nadim; Zhao, You-Yang
2014-01-01
Adult stem cell-based therapy is a promising novel approach for treatment of acute lung injury. Here we investigated the therapeutic potential of freshly isolated human umbilical cord blood CD34+ progenitor cells (fCB-CD34+ cells) in a mouse model of acute lung injury. At 3 h post-lipopolysaccharide (LPS) challenge, fCB-CD34+ cells were transplanted i.v. to mice while CD34− cells or PBS were administered as controls in separate cohorts of mice. We observed that fCB-CD34+ cell treatment inhibited lung vascular injury evident by decreased lung vascular permeability. In contrast, CD34− cells had no effects on lung vascular injury. Lung inflammation determined by myeloperoxidase activity, neutrophil sequestration and expression of pro-inflammatory mediators was attenuated in fCB-CD34+ cell-treated mice at 26 h post-LPS challenge compared to PBS or CD34− cell-treated controls. Importantly, lung inflammation in fCB-CD34+ cell-treated mice was returned to normal levels as seen in basal mice at 52 h post-LPS challenge whereas PBS or CD34− cell-treated control mice exhibited persistent lung inflammation. Accordingly, fCB-CD34+ cell-treated mice exhibited a marked increase of survival rate. Employing in vivo 5-bromo-2′-deoxyuridine incorporation assay, we found a drastic induction of lung endothelial proliferation in fCB-CD34+ cell-treated mice at 52 h post-LPS compared to PBS or CD34− cell-treated controls, which contributed to restoration of vascular integrity and thereby inhibition of lung inflammation. Taken together, these data have demonstrated the protective effects of fCB-CD34+ cell on acute lung injury induced by LPS challenge, suggesting fCB-CD34+ cells are an important source of stem cells for the treatment of acute lung injury. PMID:24558433
Huang, Zhaoqin; Yu, Haining; Zhang, Jianbo; Jing, Haiyan; Zhu, Wanqi; Li, Xiaolin; Kong, Lingling; Xing, Ligang; Yu, Jinming; Meng, Xiangjiao
2017-01-01
Background: Recent studies confirmed that immunotherapy showed prominent efficacy in non-small cell lung cancer (NSCLC). Cancer stem cells/cancer initiating cells are resistant to anticancer treatment. The purpose of the study was to analyze the correlation of cancer stem cells/cancer initiating cells and tumor-infiltrating immune cells in NSCLC. Methods: CD133, octamer 4 (OCT-4), CD8, CD56, human leukocyte antigen (HLA) class I and programmed death ligand-1 (PD-L1) were assessed in 172 resected NSCLC samples. The staining was analyzed and scored by the pathologist who was blinded to the clinical pathological data of the patients. Results: High CD8+ T cell infiltration was correlated significantly with squamous cell carcinoma histology (p=0.008). High PD-L1 expression (≥10%) was associated with high tumor status (p=0.043). Pearson's correlation test showed that CD56+ cells were negatively correlated with CD133 expression (r=-0.361, p<0.001) and weakly correlated with negative OCT-4 expression (r=-0.180, p=0.018). There was a strong positive correlation between CD8 and HLA class I (r=0.573, p<0.001). In the survival analysis, high CD8+ T cell infiltration is an independent predictor of improved disease-free survival and overall survival. Patients with low CD133 expression and high CD56 expression had a longer overall survival than those with high CD133 expression and/or low CD56 expression (p=0.013). Conclusion: There is a negative correlation between CD56+ cells and cancer stem cell markers. This correlation may confirm the possibility that natural killer cells can target CD133+ cancer stem cells/cancer initiating cells in non-small cell lung cancer.
Teroxirone motivates apoptotic death in tumorspheres of human lung cancer cells.
Ni, Yu-Ling; Hsieh, Chang-Heng; Wang, Jing-Ping; Fang, Kang
2018-06-13
Therapy by targeting cancer stem cells (CSCs) is an eligible method to eradicate malignant human tumors. A synthetic triepoxide derivative, teroxirone, was reported effective against growth of human lung cancer cells by injuring cellular mitochondria functions. And yet it remains unclear if the residual but malicious CSCs can be effectively dissipated as a result of treatment. The current study further affirmed that teroxirone inhibited propagation of CSCs as enriched from NSCLC cells by inducing p53 that lead to ultimate apoptosis. More evidence supported that the reduced stemness of the spheroids was associated with apoptotic death. The results consolidate the notion that teroxirone is a viable and effective therapeutic agent for eradicating human lung cancer. Copyright © 2018. Published by Elsevier B.V.
A drug target that stimulates development of healthy stem cells
Scientists have overcome a major impediment to the development of effective stem cell therapies by studying mice that lack CD47, a protein found on the surface of both healthy and cancer cells. They discovered that cells obtained from the lungs of CD47-de
Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi
2016-04-25
Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zhang, Xueyan; Wang, Huimin; Jin, Bo; Dong, Qianggang; Huang, Jinsu; Han, Baohui
2013-04-01
In recent years, cases of lung adenocarcinoma morbidity have consistently grown. OCT4 is the key gene that controls the automatic renewal of stem cells, and regulates the proliferation and differentiation of cancer stem cells. The aim of this study is to detect OCT4 expression in lung adenocarcinoma tissues, and to evaluate its relevance in the metastasis, chemotherapeutic effect, and prognosis in lung adenocarcinoma patients. Immunofluorescence method was employed to detect OCT4 expression in lung adenocarcinoma tissues. The relationship between OCT4 expression and clinical pathological indicators is examined through chi-square test. Moreover, the survival rate is calculated through the Kaplan-Meier survivorship curve. Finally, the relevance between the indicators and patient survival is estimated using Cox analysis. Among the 126 tissue samples of lung adenocarcinoma, 91 showed OCT4 positive cells. OCT4 expression is closely related to metastasis and chemoresistance in lung adenocarcinoma patients, and negatively corresponds to the patients' disease-free survival and survival periods. OCT4 expression is related to metastasis and chemoresistance in lung adenocarcinoma patients, and thus indicates poor prognosis.
Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells
Oh, Se Jin; Noh, Kyung Hee; Lee, Young-Ho; Hong, Soon-Oh; Song, Kwon-Ho; Lee, Hyo-Jung; Kim, Soyeon; Kim, Tae Min; Jeon, Ju-Hong; Seo, Jae Hong; Kim, Dong-Wan; Kim, Tae Woo
2015-01-01
The fusion between anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) is a causative factor in a unique subset of patients with non-small cell lung carcinoma (NSCLC). Although the inhibitor crizotinib, as it blocks the kinase activity of the resulting EML4-ALK fusion protein, displays remarkable initial responses, a fraction of NSCLC cases eventually become resistant to crizotinib by acquiring mutations in the ALK domain or activating bypass pathways via EGFR, KIT, or KRAS. Cancer stem cell (CSC) theory provides a plausible explanation for acquisition of tumorigenesis and resistance. However, the question as to whether EML4-ALK-driven tumorigenesis is linked with the stem-like property and whether the stemness is an effective target in controlling EML4-ALK+ NSCLC including crizotinib-resistant NSCLC cells has not been addressed. Here, we report that stem-like properties stem from ALK activity in EML4-ALK+ NSCLC cells. Notably, treatment with rapamycin, a CSC targeting agent, attenuates stem-like phenotypes of the EML4-ALK+ cells, which increased capability of tumor formation and higher expression of stemness-associated molecules such as ALDH, NANOG, and OCT4. Importantly, combinational treatment with rapamycin and crizotinib leads to synergistic anti-tumor effects on EML4-ALK+ NSCLC cells as well as on those resistant to crizotinib. Thus, we provide a proof of principle that targeting stemness would be a novel strategy to control intractable EML4-ALK+ NSCLC. PMID:26517679
Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells.
Oh, Se Jin; Noh, Kyung Hee; Lee, Young-Ho; Hong, Soon-Oh; Song, Kwon-Ho; Lee, Hyo-Jung; Kim, Soyeon; Kim, Tae Min; Jeon, Ju-Hong; Seo, Jae Hong; Kim, Dong-Wan; Kim, Tae Woo
2015-11-24
The fusion between anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) is a causative factor in a unique subset of patients with non-small cell lung carcinoma (NSCLC). Although the inhibitor crizotinib, as it blocks the kinase activity of the resulting EML4-ALK fusion protein, displays remarkable initial responses, a fraction of NSCLC cases eventually become resistant to crizotinib by acquiring mutations in the ALK domain or activating bypass pathways via EGFR, KIT, or KRAS. Cancer stem cell (CSC) theory provides a plausible explanation for acquisition of tumorigenesis and resistance. However, the question as to whether EML4-ALK-driven tumorigenesis is linked with the stem-like property and whether the stemness is an effective target in controlling EML4-ALK+ NSCLC including crizotinib-resistant NSCLC cells has not been addressed. Here, we report that stem-like properties stem from ALK activity in EML4-ALK+ NSCLC cells. Notably, treatment with rapamycin, a CSC targeting agent, attenuates stem-like phenotypes of the EML4-ALK+ cells, which increased capability of tumor formation and higher expression of stemness-associated molecules such as ALDH, NANOG, and OCT4. Importantly, combinational treatment with rapamycin and crizotinib leads to synergistic anti-tumor effects on EML4-ALK+ NSCLC cells as well as on those resistant to crizotinib. Thus, we provide a proof of principle that targeting stemness would be a novel strategy to control intractable EML4-ALK+ NSCLC.
Barr, Martin P.; Gray, Steven G.; Hoffmann, Andreas C.; Hilger, Ralf A.; Thomale, Juergen; O’Flaherty, John D.; Fennell, Dean A.; Richard, Derek; O’Leary, John J.; O’Byrne, Kenneth J.
2013-01-01
Introduction Inherent and acquired cisplatin resistance reduces the effectiveness of this agent in the management of non-small cell lung cancer (NSCLC). Understanding the molecular mechanisms underlying this process may result in the development of novel agents to enhance the sensitivity of cisplatin. Methods An isogenic model of cisplatin resistance was generated in a panel of NSCLC cell lines (A549, SKMES-1, MOR, H460). Over a period of twelve months, cisplatin resistant (CisR) cell lines were derived from original, age-matched parent cells (PT) and subsequently characterized. Proliferation (MTT) and clonogenic survival assays (crystal violet) were carried out between PT and CisR cells. Cellular response to cisplatin-induced apoptosis and cell cycle distribution were examined by FACS analysis. A panel of cancer stem cell and pluripotent markers was examined in addition to the EMT proteins, c-Met and β-catenin. Cisplatin-DNA adduct formation, DNA damage (γH2AX) and cellular platinum uptake (ICP-MS) was also assessed. Results Characterisation studies demonstrated a decreased proliferative capacity of lung tumour cells in response to cisplatin, increased resistance to cisplatin-induced cell death, accumulation of resistant cells in the G0/G1 phase of the cell cycle and enhanced clonogenic survival ability. Moreover, resistant cells displayed a putative stem-like signature with increased expression of CD133+/CD44+cells and increased ALDH activity relative to their corresponding parental cells. The stem cell markers, Nanog, Oct-4 and SOX-2, were significantly upregulated as were the EMT markers, c-Met and β-catenin. While resistant sublines demonstrated decreased uptake of cisplatin in response to treatment, reduced cisplatin-GpG DNA adduct formation and significantly decreased γH2AX foci were observed compared to parental cell lines. Conclusion Our results identified cisplatin resistant subpopulations of NSCLC cells with a putative stem-like signature, providing a further understanding of the cellular events associated with the cisplatin resistance phenotype in lung cancer. PMID:23349823
HOXB7 overexpression in lung cancer is a hallmark of acquired stem-like phenotype.
Monterisi, Simona; Lo Riso, Pietro; Russo, Karin; Bertalot, Giovanni; Vecchi, Manuela; Testa, Giuseppe; Di Fiore, Pier Paolo; Bianchi, Fabrizio
2018-03-26
HOXB7 is a homeodomain (HOX) transcription factor involved in regional body patterning of invertebrates and vertebrates. We previously identified HOXB7 within a ten-gene prognostic signature for lung adenocarcinoma, where increased expression of HOXB7 was associated with poor prognosis. This raises the question of how HOXB7 overexpression can influence the metastatic behavior of lung adenocarcinoma. Here, we analyzed publicly available microarray and RNA-seq lung cancer expression datasets and found that HOXB7-overexpressing tumors are enriched in gene signatures characterizing adult and embryonic stem cells (SC), and induced pluripotent stem cells (iPSC). Experimentally, we found that HOXB7 upregulates several canonical SC/iPSC markers and sustains the expansion of a subpopulation of cells with SC characteristics, through modulation of LIN28B, an emerging cancer gene and pluripotency factor, which we discovered to be a direct target of HOXB7. We validated this new circuit by showing that HOXB7 enhances reprogramming to iPSC with comparable efficiency to LIN28B or its target c-MYC, which is a canonical reprogramming factor.
GMP-grade human fetal liver-derived mesenchymal stem cells for clinical transplantation.
Larijani, Bagher; Aghayan, Hamid-Reza; Goodarzi, Parisa; Arjmand, Babak
2015-01-01
Stem cell therapy seems a promising avenue in regenerative medicine. Within various stem cells, mesenchymal stem cells have progressively used for cellular therapy. Because of the age-related decreasing in the frequency and differentiating capacity of adult MSCs, fetal tissues such as fetal liver, lung, pancreas, spleen, etc. have been introduced as an alternative source of MSCs for cellular therapy. On the other hand, using stem cells as advanced therapy medicinal products, must be performed in compliance with cGMP as a quality assurance system to ensure the safety, quality, and identity of cell products during translation from the basic stem cell sciences into clinical cell transplantation. In this chapter the authors have demonstrated the manufacturing of GMP-grade human fetal liver-derived mesenchymal stem cells.
A three-dimensional model of human lung development and disease from pluripotent stem cells
Chen, Ya-Wen; Huang, Sarah Xuelian; de Carvalho, Ana Luisa Rodrigues Toste; Ho, Siu-Hong; Islam, Mohammad Naimul; Volpi, Stefano; Notarangelo, Luigi D; Ciancanelli, Michael; Casanova, Jean-Laurent; Bhattacharya, Jahar; Liang, Alice F.; Palermo, Laura M; Porotto, Matteo; Moscona, Anne; Snoeck, Hans-Willem
2017-01-01
Recapitulation of lung development from human pluripotent stem cells (hPSCs) in three dimensions (3D) would allow deeper insight into human development, as well as the development of innovative strategies for disease modeling, drug discovery and regenerative medicine1. We report here the generation from hPSCs of lung bud organoids (LBOs) that contain mesoderm and pulmonary endoderm and develop into branching airway and early alveolar structures after xenotransplantation and in Matrigel 3D culture. Expression analysis and structural features indicated that the branching structures reached the second trimester of human gestation. Infection in vitro with respiratory syncytial virus, which causes small airway obstruction and bronchiolitis in infants2, led to swelling, detachment and shedding of infected cells into the organoid lumens, similar to what has been observed in human lungs3. Introduction of mutation in HPS1, which causes an early-onset form of intractable pulmonary fibrosis4,5, led to accumulation of extracellular matrix and mesenchymal cells, suggesting the potential use of this model to recapitulate fibrotic lung disease in vitro. LBOs therefore recapitulate lung development and may provide a useful tool to model lung disease. PMID:28436965
Li, Xiaoyan; Wang, Junyan; Cao, Jing; Ma, Lijuan; Xu, Jianying
2015-01-01
Impact of bone mesenchymal stem cell (BMSC) transfusion on chronic smoking-induced lung inflammation is poorly understood. In this study, a rat model of smoking-related lung injury was induced and the rats were treated with vehicle or BMSCs for two weeks. Different subsets of CD4+ T cells, cytokines, and anti-elastin in the lungs as well as the lung injury were characterized. Serum and lung inducible nitric oxide synthase (iNOS) and STAT5 phosphorylation in lymphocytes from lung tissue were also analyzed. Results indicated that transfusion of BMSCs significantly reduced the chronic smoking-induced lung injury, inflammation, and levels of lung anti-elastin in rats. The frequency of Th1 and Th17 cells and the levels of IL-2, IL-6, IFN-γ, TNF-α, IL-17, IP-10, and MCP-1 increased, but the frequency of Tregs and IL-10 decreased. Transfusion of BMSCs significantly modulated the imbalance of immune responses by mitigating chronic smoking-increased Th1 and Th17 responses, but enhancing Treg responses in the lungs of rats. Transfusion of BMSCs limited chronic smoking-related reduction in the levels of serum and lung iNOS and mitigated smoking-induced STAT5 phosphorylation in lymphocytes from lung tissue. BMSCs negatively regulated smoking-induced autoimmune responses in the lungs of rats and may be promising for the intervention of chronic smoking-related lung injury. PMID:26665150
Soft fibrin gels promote selection and growth of tumorigenic cells
NASA Astrophysics Data System (ADS)
Liu, Jing; Tan, Youhua; Zhang, Huafeng; Zhang, Yi; Xu, Pingwei; Chen, Junwei; Poh, Yeh-Chuin; Tang, Ke; Wang, Ning; Huang, Bo
2012-08-01
The identification of stem-cell-like cancer cells through conventional methods that depend on stem cell markers is often unreliable. We developed a mechanical method for selecting tumorigenic cells by culturing single cancer cells in fibrin matrices of ~100 Pa in stiffness. When cultured within these gels, primary human cancer cells or single cancer cells from mouse or human cancer cell lines grew within a few days into individual round colonies that resembled embryonic stem cell colonies. Subcutaneous or intravenous injection of 10 or 100 fibrin-cultured cells in syngeneic or severe combined immunodeficiency mice led to the formation of solid tumours at the site of injection or at the distant lung organ much more efficiently than control cancer cells selected using conventional surface marker methods or cultured on conventional rigid dishes or on soft gels. Remarkably, as few as ten such cells were able to survive and form tumours in the lungs of wild-type non-syngeneic mice.
Mesenchymal stem cells alleviate oxidative stress-induced mitochondrial dysfunction in the airways.
Li, Xiang; Michaeloudes, Charalambos; Zhang, Yuelin; Wiegman, Coen H; Adcock, Ian M; Lian, Qizhou; Mak, Judith C W; Bhavsar, Pankaj K; Chung, Kian Fan
2018-05-01
Oxidative stress-induced mitochondrial dysfunction can contribute to inflammation and remodeling in patients with chronic obstructive pulmonary disease (COPD). Mesenchymal stem cells protect against lung damage in animal models of COPD. It is unknown whether these effects occur through attenuating mitochondrial dysfunction in airway cells. We sought to examine the effect of induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) on oxidative stress-induce mitochondrial dysfunction in human airway smooth muscle cells (ASMCs) in vitro and in mouse lungs in vivo. ASMCs were cocultured with iPSC-MSCs in the presence of cigarette smoke medium (CSM), and mitochondrial reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm), and apoptosis were measured. Conditioned medium from iPSC-MSCs and transwell cocultures were used to detect any paracrine effects. The effect of systemic injection of iPSC-MSCs on airway inflammation and hyperresponsiveness in ozone-exposed mice was also investigated. Coculture of iPSC-MSCs with ASMCs attenuated CSM-induced mitochondrial ROS, apoptosis, and ΔΨm loss in ASMCs. iPSC-MSC-conditioned medium or transwell cocultures with iPSC-MSCs reduced CSM-induced mitochondrial ROS but not ΔΨm or apoptosis in ASMCs. Mitochondrial transfer from iPSC-MSCs to ASMCs was observed after direct coculture and was enhanced by CSM. iPSC-MSCs attenuated ozone-induced mitochondrial dysfunction, airway hyperresponsiveness, and inflammation in mouse lungs. iPSC-MSCs offered protection against oxidative stress-induced mitochondrial dysfunction in human ASMCs and in mouse lungs while reducing airway inflammation and hyperresponsiveness. These effects are, at least in part, dependent on cell-cell contact, which allows for mitochondrial transfer, and paracrine regulation. Therefore iPSC-MSCs show promise as a therapy for oxidative stress-dependent lung diseases, such as COPD. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Bone marrow-derived fibrocytes promote stem cell-like properties of lung cancer cells.
Saijo, Atsuro; Goto, Hisatsugu; Nakano, Mayuri; Mitsuhashi, Atsushi; Aono, Yoshinori; Hanibuchi, Masaki; Ogawa, Hirohisa; Uehara, Hisanori; Kondo, Kazuya; Nishioka, Yasuhiko
2018-05-01
Cancer stem cells (CSCs) represent a minor population that have clonal tumor initiation and self-renewal capacity and are responsible for tumor initiation, metastasis, and therapeutic resistance. CSCs reside in niches, which are composed of diverse types of stromal cells and extracellular matrix components. These stromal cells regulate CSC-like properties by providing secreted factors or by physical contact. Fibrocytes are differentiated from bone marrow-derived CD14 + monocytes and have features of both macrophages and fibroblasts. Accumulating evidence has suggested that stromal fibrocytes might promote cancer progression. However, the role of fibrocytes in the CSC niches has not been revealed. We herein report that human fibrocytes enhanced the CSC-like properties of lung cancer cells through secreted factors, including osteopontin, CC-chemokine ligand 18, and plasminogen activator inhibitor-1. The PIK3K/AKT pathway was critical for fibrocytes to mediate the CSC-like functions of lung cancer cells. In human lung cancer specimens, the number of tumor-infiltrated fibrocytes was correlated with high expression of CSC-associated protein in cancer cells. These results suggest that fibrocytes may be a novel cell population that regulates the CSC-like properties of lung cancer cells in the CSC niches. Copyright © 2018. Published by Elsevier B.V.
Intersections of lung progenitor cells, lung disease and lung cancer.
Kim, Carla F
2017-06-30
The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials. Copyright ©ERS 2017.
Lung cells from neonates show a mesenchymal stem cell phenotype.
Hennrick, Kenneth T; Keeton, Angela G; Nanua, Suparna; Kijek, Theresa G; Goldsmith, Adam M; Sajjan, Umadevi S; Bentley, J Kelley; Lama, Vibha N; Moore, Bethany B; Schumacher, Robert E; Thannickal, Victor J; Hershenson, Marc B
2007-06-01
Mesenchymal stem cells have been isolated from adult bone marrow, peripheral blood, adipose tissue, trabecular bone, articular synovium, and bronchial submucosa. We hypothesized that the lungs of premature infants undergoing mechanical ventilation contain fibroblast-like cells with features of mesenchymal stem cells. Tracheal aspirate fluid from mechanically ventilated, premature (< 30 wk gestation) infants 7 days old or younger was obtained from routine suctioning and plated on plastic culture dishes. A total of 11 of 20 patients studied demonstrated fibroblast-like cells, which were identified as early as 6 hours after plating. Cells were found to express the mesenchymal stem cell markers STRO-1, CD73, CD90, CD105, and CD166, as well as CCR2b, CD13, prolyl 4-hydroxylase, and alpha-smooth muscle actin. Cells were negative for the hematopoietic and endothelial cell markers CD11b, CD31, CD34, or CD45. Tracheal aspirate monocyte chemoattractant protein-1/CCL2 levels were ninefold higher in aspirates in which fibroblast-like cells were found, and cells demonstrated chemotaxis in response to monocyte chemoattractant protein. Placement of cells into appropriate media resulted in adipogenic, osteogenic, and myofibroblastic differentiation. Patients from whom mesenchymal stem cells were isolated tended to require more days of mechanical ventilation and supplemental oxygen. Together, these data demonstrate that tracheal aspirate fluid from premature, mechanically ventilated infants contains fibroblasts with cell markers and differentiation potential typically found in mesenchymal stem cells.
Luo, Dan; Hu, Shiyuan; Tang, Chunlan; Liu, Guoxiang
2018-03-01
Mesenchymal stem cells (MSCs) are recruited into the tumour microenvironment and promote tumour growth and metastasis. Tumour microenvironment-induced autophagy is considered to suppress primary tumour formation by impairing migration and invasion. Whether these recruited MSCs regulate tumour autophagy and whether autophagy affects tumour growth are controversial. Our data showed that MSCs promote autophagy activation, reactive oxygen species production, and epithelial-mesenchymal transition (EMT) as well as increased migration and invasion in A549 cells. Decreased expression of E-cadherin and increased expression of vimentin and Snail were observed in A549 cells cocultured with MSCs. Conversely, MSC coculture-mediated autophagy positively promoted tumour EMT. Autophagy inhibition suppressed MSC coculture-mediated EMT and reduced A549 cell migration and invasion slightly. Furthermore, the migratory and invasive abilities of A549 cells were additional increased when autophagy was further enhanced by rapamycin treatment. Taken together, this work suggests that microenvironments containing MSCs can promote autophagy activation for enhancing EMT; MSCs also increase the migratory and invasive abilities of A549 lung adenocarcinoma cells. Mesenchymal stem cell-containing microenvironments and MSC-induced autophagy signalling may be potential targets for blocking lung cancer cell migration and invasion. Copyright © 2018 John Wiley & Sons, Ltd.
Lineage-negative Progenitors Mobilize to Regenerate Lung Epithelium after Major Injury
Vaughan, Andrew E.; Brumwell, Alexis N.; Xi, Ying; Gotts, Jeffrey; Brownfield, Doug G.; Treutlein, Barbara; Tan, Kevin; Tan, Victor; Liu, Fengchun; Looney, Mark R.; Matthay, Michael; Rock, Jason R.; Chapman, Harold A.
2014-01-01
Broadly, tissue regeneration is achieved in two ways: by proliferation of common differentiated cells and/or by deployment of specialized stem/progenitor cells. Which of these pathways applies is both organ and injury-specific1–4. Current paradigms in the lung posit that epithelial repair can be attributed to cells expressing mature lineage markers5–8. In contrast we here define the regenerative role of previously uncharacterized, rare lineage-negative epithelial stem/progenitor (LNEPs) cells present within normal distal lung. Quiescent LNEPs activate a ΔNp63/cytokeratin 5 (Krt5+) remodeling program after influenza or bleomycin injury. Activated cells proliferate and migrate widely to occupy heavily injured areas depleted of mature lineages, whereupon they differentiate toward mature epithelium. Lineage tracing revealed scant contribution of pre-existing mature epithelial cells in such repair, whereas orthotopic transplantation of LNEPs, isolated by a definitive surface profile identified through single cell sequencing, directly demonstrated the proliferative capacity and multipotency of this population. LNEPs require Notch signaling to activate the ΔNp63/Krt5+ program whereas subsequent Notch blockade promotes an alveolar cell fate. Persistent Notch signaling post-injury led to parenchymal micro-honeycombing, indicative of failed regeneration. Lungs from fibrosis patients show analogous honeycomb cysts with evidence of hyperactive Notch signaling. Our findings indicate distinct stem/progenitor cell pools repopulate injured tissue depending on the extent of injury, and the outcomes of regeneration or fibrosis may ride in part on the dynamics of LNEP Notch signaling. PMID:25533958
Autocrine Semaphorin3A signaling is essential for the maintenance of stem-like cells in lung cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Daisuke; Takahashi, Kensuke; Kawahara, Kohichi
Cancer stem-like cells (CSCs) exist in tumor tissues composed of heterogeneous cell population and are characterized by their self-renewal capacity and tumorigenicity. Many studies demonstrate that eradication of CSCs prevents development and recurrences of tumor; yet, molecules critical for the maintenance of CSCs have not been completely understood. We previously reported that Semaphorin3A (Sema3a) knockdown suppressed the tumorigenicity and proliferative capacity of Lewis lung carcinoma (LLC) cells. Therefore, we identified Sema3a as an essential factor for the establishment or maintenance of CSCs derived from LLC (LLC-stem cell). shRNA against Sema3a was introduced into LLC cells to establish a LLC-stem cellmore » line and its effects on tumorigenesis, sphere formation, and mTORC1 activity were tested. Sema3a knockdown completely abolished tumorigenicity and the sphere-formation and self-renewal ability of LLC-stem cells. The Sema3a knockdown was also associated with decreased expression of mRNA for stem cell markers. The self-renewal ability abolished by Sema3a knockdown could not be recovered by exogenous addition of recombinant SEMA3A. In addition, the activity of mammalian target of rapamycin complex 1 (mTORC1) and the expression of its substrate p70S6K1 were also decreased. These results demonstrate that Sema3a is a potential therapeutic target in eradication of CSCs. - Highlights: • Sema3a enhances tumorigenic capacity of cancer stem-like cells. • Sema3a is essential for the maintenance of cancer stem-like cells. • Sema3a can be a therapeutic target to eradicate cancer stem-like cells.« less
Wakayama, Hirotaka; Hashimoto, Naozumi; Matsushita, Yoshihiro; Matsubara, Kohki; Yamamoto, Noriyuki; Hasegawa, Yoshinori; Ueda, Minoru; Yamamoto, Akihito
2015-08-01
Acute respiratory distress syndrome (ARDS) is a severe inflammatory disorder characterized by acute respiratory failure, resulting from severe, destructive lung inflammation and irreversible lung fibrosis. We evaluated the use of stem cells derived from human exfoliated deciduous teeth (SHEDs) or SHED-derived serum-free conditioned medium (SHED-CM) as treatments for bleomycin (BLM)-induced mice acute lung injury (ALI), exhibiting several pathogenic features associated with the human disease ARDS. Mice with BLM-induced ALI with or without SHED or SHED-CM treatment were examined for weight loss and survival. The lung tissue was characterized by histological and real-time quantitative polymerase chain reaction analysis. The effects of SHED-CM on macrophage differentiation in vitro were also assessed. A single intravenous administration of either SHEDs or SHED-CM attenuated the lung injury and weight loss in BLM-treated mice and improved their survival rate. Similar recovery levels were seen in the SHEDs and SHED-CM treatment groups, suggesting that SHED improves ALI by paracrine mechanisms. SHED-CM contained multiple therapeutic factors involved in lung-regenerative mechanisms. Importantly, SHED-CM attenuated the BLM-induced pro-inflammatory response and generated an anti-inflammatory/tissue-regenerating environment, accompanied by the induction of anti-inflammatory M2-like lung macrophages. Furthermore, SHED-CM promoted the in vitro differentiation of bone marrow-derived macrophages into M2-like cells, which expressed high levels of Arginase1, CD206 and Ym-1. Our results suggest that SHED-secreted factors provide multifaceted therapeutic effects, including a strong M2-inducing activity, for treating BLM-induced ALI. This work may open new avenues for research on stem cell-based ARDS therapies. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Grange, Cristina; Tapparo, Marta; Collino, Federica; Vitillo, Loriana; Damasco, Christian; Deregibus, Maria Chiara; Tetta, Ciro; Bussolati, Benedetta; Camussi, Giovanni
2011-08-01
Recent studies suggest that tumor-derived microvesicles (MV) act as a vehicle for exchange of genetic information between tumor and stromal cells, engendering a favorable microenvironment for cancer development. Within the tumor mass, all cell types may contribute to MV shedding, but specific contributions to tumor progression have yet to be established. Here we report that a subset of tumor-initiating cells expressing the mesenchymal stem cell marker CD105 in human renal cell carcinoma releases MVs that trigger angiogenesis and promote the formation of a premetastatic niche. MVs derived only from CD105-positive cancer stem cells conferred an activated angiogenic phenotype to normal human endothelial cells, stimulating their growth and vessel formation after in vivo implantation in immunocompromised severe combined immunodeficient (SCID) mice. Furthermore, treating SCID mice with MVs shed from CD105-positive cells greatly enhanced lung metastases induced by i.v. injection of renal carcinoma cells. Molecular characterization of CD105-positive MVs defines a set of proangiogenic mRNAs and microRNAs implicated in tumor progression and metastases. Our results define a specific source of cancer stem cell-derived MVs that contribute to triggering the angiogenic switch and coordinating metastatic diffusion during tumor progression.
Lymphangioleiomyomatosis Biomarkers Linked to Lung Metastatic Potential and Cell Stemness
Ruiz de Garibay, Gorka; Herranz, Carmen; Llorente, Alicia; Boni, Jacopo; Serra-Musach, Jordi; Mateo, Francesca; Aguilar, Helena; Gómez-Baldó, Laia; Petit, Anna; Vidal, August; Climent, Fina; Hernández-Losa, Javier; Cordero, Álex; González-Suárez, Eva; Sánchez-Mut, José Vicente; Esteller, Manel; Llatjós, Roger; Varela, Mar; López, José Ignacio; García, Nadia; Extremera, Ana I.; Gumà, Anna; Ortega, Raúl; Plà, María Jesús; Fernández, Adela; Pernas, Sònia; Falo, Catalina; Morilla, Idoia; Campos, Miriam; Gil, Miguel; Román, Antonio; Molina-Molina, María; Ussetti, Piedad; Laporta, Rosalía; Valenzuela, Claudia; Ancochea, Julio; Xaubet, Antoni; Casanova, Álvaro; Pujana, Miguel Angel
2015-01-01
Lymphangioleiomyomatosis (LAM) is a rare lung-metastasizing neoplasm caused by the proliferation of smooth muscle-like cells that commonly carry loss-of-function mutations in either the tuberous sclerosis complex 1 or 2 (TSC1 or TSC2) genes. While allosteric inhibition of the mechanistic target of rapamycin (mTOR) has shown substantial clinical benefit, complementary therapies are required to improve response and/or to treat specific patients. However, there is a lack of LAM biomarkers that could potentially be used to monitor the disease and to develop other targeted therapies. We hypothesized that the mediators of cancer metastasis to lung, particularly in breast cancer, also play a relevant role in LAM. Analyses across independent breast cancer datasets revealed associations between low TSC1/2 expression, altered mTOR complex 1 (mTORC1) pathway signaling, and metastasis to lung. Subsequently, immunohistochemical analyses of 23 LAM lesions revealed positivity in all cases for the lung metastasis mediators fascin 1 (FSCN1) and inhibitor of DNA binding 1 (ID1). Moreover, assessment of breast cancer stem or luminal progenitor cell biomarkers showed positivity in most LAM tissue for the aldehyde dehydrogenase 1 (ALDH1), integrin-ß3 (ITGB3/CD61), and/or the sex-determining region Y-box 9 (SOX9) proteins. The immunohistochemical analyses also provided evidence of heterogeneity between and within LAM cases. The analysis of Tsc2-deficient cells revealed relative over-expression of FSCN1 and ID1; however, Tsc2-deficient cells did not show higher sensitivity to ID1-based cancer inhibitors. Collectively, the results of this study reveal novel LAM biomarkers linked to breast cancer metastasis to lung and to cell stemness, which in turn might guide the assessment of additional or complementary therapeutic opportunities for LAM. PMID:26167915
Gotoh, Shimpei; Ito, Isao; Nagasaki, Tadao; Yamamoto, Yuki; Konishi, Satoshi; Korogi, Yohei; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Funato, Michinori; Mae, Shin-Ichi; Toyoda, Taro; Sato-Otsubo, Aiko; Ogawa, Seishi; Osafune, Kenji; Mishima, Michiaki
2014-01-01
Summary No methods for isolating induced alveolar epithelial progenitor cells (AEPCs) from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have been reported. Based on a study of the stepwise induction of alveolar epithelial cells (AECs), we identified carboxypeptidase M (CPM) as a surface marker of NKX2-1+ “ventralized” anterior foregut endoderm cells (VAFECs) in vitro and in fetal human and murine lungs. Using SFTPC-GFP reporter hPSCs and a 3D coculture system with fetal human lung fibroblasts, we showed that CPM+ cells isolated from VAFECs differentiate into AECs, demonstrating that CPM is a marker of AEPCs. Moreover, 3D coculture differentiation of CPM+ cells formed spheroids with lamellar-body-like structures and an increased expression of surfactant proteins compared with 2D differentiation. Methods to induce and isolate AEPCs using CPM and consequently generate alveolar epithelial spheroids would aid human pulmonary disease modeling and regenerative medicine. PMID:25241738
Chen, Hai-Xu; Xiang, Hang; Xu, Wen-Huan; Li, Ming; Yuan, Jie; Liu, Juan; Sun, Wan-Jun; Zhang, Rong; Li, Jun; Ren, Zhao-Qi; Zhang, Xiao-Mei; Du, Bin; Wan, Jun; Wu, Ben-Yan; Zeng, Qiang; He, Kun-Lun; Yang, Chao
2017-06-01
Radiation-induced lung injury (RILI) is a major clinical complication for radiotherapy in thoracic tumors. An immediate effect of lung irradiation is the generation of reactive oxygen that can produce oxidative damage to DNA, lipids, and proteins resulting in lung cell injury or death. Currently, the medical management of RILI remains supportive. Therefore, there is an urgent need for the development of countermeasures. The present study aimed to evaluate the protective effect of manganese superoxide dismutase (MnSOD) gene-modified mesenchymal stem cells (MSCs) to facilitate the improved recovery of RILI. Here, nonobese diabetic/severe combined immunodeficiency mice received a 13 Gy dose of whole-thorax irradiation, and were then transfused intravenously with MnSOD-MSCs and monitored for 30 days. Lung histopathologic analysis, plasma levels of inflammatory cytokines (interleukin [IL]-1, IL-6, IL-10, and tumor necrosis factor-α), profibrotic factor transforming growth factor-β1, and the oxidative stress factor (hydroxyproline) were evaluated after MnSOD-MSC transplant. Apoptotic rates were evaluated by terminal deoxynucleotidyl transferase-mediated nick-end labeling immunohistochemical method. Colonization and differentiation of MnSOD-MSCs in the irradiated lung were analyzed by immunofluorescence staining. Consequently, systemic administration of MnSOD-MSCs significantly attenuated lung inflammation, ameliorated lung damage, and protected the lung cells from apoptosis. MnSOD-MSCs could differentiate into epithelial-like cells in vivo. MnSOD-MSCs were effective in modulating RILI in mice and had great potential for accelerating from bench to bedside.
The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells.
Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe
2015-12-15
Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC.
The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells
Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe
2015-01-01
Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC. PMID:26486080
Production and Assessment of Decellularized Pig and Human Lung Scaffolds
Niles, Jean; Riddle, Michael; Vargas, Gracie; Schilagard, Tuya; Ma, Liang; Edward, Kert; La Francesca, Saverio; Sakamoto, Jason; Vega, Stephanie; Ogadegbe, Marie; Mlcak, Ronald; Deyo, Donald; Woodson, Lee; McQuitty, Christopher; Lick, Scott; Beckles, Daniel; Melo, Esther; Cortiella, Joaquin
2013-01-01
The authors have previously shown that acellular (AC) trachea-lung scaffolds can (1) be produced from natural rat lungs, (2) retain critical components of the extracellular matrix (ECM) such as collagen-1 and elastin, and (3) be used to produce lung tissue after recellularization with murine embryonic stem cells. The aim of this study was to produce large (porcine or human) AC lung scaffolds to determine the feasibility of producing scaffolds with potential clinical applicability. We report here the first attempt to produce AC pig or human trachea-lung scaffold. Using a combination of freezing and sodium dodecyl sulfate washes, pig trachea-lungs and human trachea-lungs were decellularized. Once decellularization was complete we evaluated the structural integrity of the AC lung scaffolds using bronchoscopy, multiphoton microscopy (MPM), assessment of the ECM utilizing immunocytochemistry and evaluation of mechanics through the use of pulmonary function tests (PFTs). Immunocytochemistry indicated that there was loss of collagen type IV and laminin in the AC lung scaffold, but retention of collagen-1, elastin, and fibronectin in some regions. MPM scoring was also used to examine the AC lung scaffold ECM structure and to evaluate the amount of collagen I in normal and AC lung. MPM was used to examine the physical arrangement of collagen-1 and elastin in the pleura, distal lung, lung borders, and trachea or bronchi. MPM and bronchoscopy of trachea and lung tissues showed that no cells or cell debris remained in the AC scaffolds. PFT measurements of the trachea-lungs showed no relevant differences in peak pressure, dynamic or static compliance, and a nonrestricted flow pattern in AC compared to normal lungs. Although there were changes in content of collagen I and elastin this did not affect the mechanics of lung function as evidenced by normal PFT values. When repopulated with a variety of stem or adult cells including human adult primary alveolar epithelial type II cells both pig and human AC scaffolds supported cell attachment and cell viability. Examination of scaffolds produced using a variety of detergents indicated that detergent choice influenced human immune response in terms of T cell activation and chemokine production. PMID:23638920
Production and assessment of decellularized pig and human lung scaffolds.
Nichols, Joan E; Niles, Jean; Riddle, Michael; Vargas, Gracie; Schilagard, Tuya; Ma, Liang; Edward, Kert; La Francesca, Saverio; Sakamoto, Jason; Vega, Stephanie; Ogadegbe, Marie; Mlcak, Ronald; Deyo, Donald; Woodson, Lee; McQuitty, Christopher; Lick, Scott; Beckles, Daniel; Melo, Esther; Cortiella, Joaquin
2013-09-01
The authors have previously shown that acellular (AC) trachea-lung scaffolds can (1) be produced from natural rat lungs, (2) retain critical components of the extracellular matrix (ECM) such as collagen-1 and elastin, and (3) be used to produce lung tissue after recellularization with murine embryonic stem cells. The aim of this study was to produce large (porcine or human) AC lung scaffolds to determine the feasibility of producing scaffolds with potential clinical applicability. We report here the first attempt to produce AC pig or human trachea-lung scaffold. Using a combination of freezing and sodium dodecyl sulfate washes, pig trachea-lungs and human trachea-lungs were decellularized. Once decellularization was complete we evaluated the structural integrity of the AC lung scaffolds using bronchoscopy, multiphoton microscopy (MPM), assessment of the ECM utilizing immunocytochemistry and evaluation of mechanics through the use of pulmonary function tests (PFTs). Immunocytochemistry indicated that there was loss of collagen type IV and laminin in the AC lung scaffold, but retention of collagen-1, elastin, and fibronectin in some regions. MPM scoring was also used to examine the AC lung scaffold ECM structure and to evaluate the amount of collagen I in normal and AC lung. MPM was used to examine the physical arrangement of collagen-1 and elastin in the pleura, distal lung, lung borders, and trachea or bronchi. MPM and bronchoscopy of trachea and lung tissues showed that no cells or cell debris remained in the AC scaffolds. PFT measurements of the trachea-lungs showed no relevant differences in peak pressure, dynamic or static compliance, and a nonrestricted flow pattern in AC compared to normal lungs. Although there were changes in content of collagen I and elastin this did not affect the mechanics of lung function as evidenced by normal PFT values. When repopulated with a variety of stem or adult cells including human adult primary alveolar epithelial type II cells both pig and human AC scaffolds supported cell attachment and cell viability. Examination of scaffolds produced using a variety of detergents indicated that detergent choice influenced human immune response in terms of T cell activation and chemokine production.
REGULATION OF LUNG CANCER METASTASIS BY Klf4-Numb-like SIGNALING
Vaira, Valentina; Faversani, Alice; Martin, Nina M.; Garlick, David S.; Ferrero, Stefano; Nosotti, Mario; Kissil, Joseph L.; Bosari, Silvano; Altieri, Dario C.
2013-01-01
Metastatic traits appear to be acquired by transformed cells with progenitor-like cancer-initiating properties, but there remains little mechanistic insight into this linkage. In this report, we show that the polarity protein Numbl, which is expressed normally in neuronal progenitors, becomes overexpressed and mislocalized in cancer cells from a variety of human tumors. Numbl overexpression relies on loss of the tumor suppressor microRNA-296-5p (miR-296), which actively represses translation of Numbl in normal cells. In turn, deregulated expression of Numbl mediates random tumor cell migration and invasion, blocking anoikis and promoting metastatic dissemination. In clinical specimens of non-small cell lung cancer, we found that Numbl overexpression correlated with a reduction in overall patient survival. Mechanistically, Numbl-mediated tumorigenesis involved suppression of a "stemness" transcriptional program driven by the stem cell programming transcription factor Klf4, thereby preserving a pool of progenitor-like cells in lung cancer. Our results reveal that Numbl-Klf4 signaling is critical to maintain multiple nodes of metastatic progression, including persistence of cancer-initiating cells, rationalizing its therapeutic exploitation to improve the treatment of advanced lung cancer PMID:23440423
Han, Hao-Wei; Hsu, Shan-Hui
2016-09-15
The controversial roles of mesenchymal stem cells (MSCs) in lung cancer development are not yet resolved because of the lack of an extracellular environment that mimics the tumor microenvironment. Three-dimensional (3D) culture system is an emerging research tool for biomedical applications such as drug screening. In this study, MSCs and human non-small cell lung carcinoma cells (A549) were co-cultured on a thin biomaterial-based substratum (hyaluronan-grafted chitosan, CS-HA; ∼2μm), and they were self-organized into the 3D tumor co-spheroids with core-shell structure. The gene expression levels of tumorigenicity markers in cancer cells associated with cancer stemness, epithelial-mesenchymal transition (EMT) property, and cell mobility were up-regulated for more than twofold in the MSC-tumor co-spheroids, through the promoted expression of certain tumor enhancers and the direct cell-cell interaction. To verify the different extents of tumorigenicity, A549 cells or those co-cultured with MSCs were transplanted into zebrafish embryos for evaluation in vivo. The tumorigenicity obtained from the zebrafish xenotransplantation model was consistent with that observed in vitro. These evidences suggest that the CS-HA substrate-based 3D co-culture platform for cancer cells and MSCs may be a convenient tool for studying the cell-cell interaction in a tumor-like microenvironment and potentially for cancer drug testing. Mesenchymal stem cells (MSCs) have been found in several types of tumor tissues. However, the controversial roles of MSCs in cancer development are still unsolved. Chitosan and hyaluronan are commonly used materials in the biomedical field. In the current study, we co-cultured lung cancer cells and MSCs on the planar hyaluronan-grafted chitosan (CS-HA) hybrid substrates, and discovered that lung cancer cells and MSCs were rapidly self-assembled into 3D tumor spheroids with core-shell structure on the substrates after only two days in culture. Therefore, CS-HA based 3D co-culture platform can be applied to exploration of the relationship between cancer cells and MSCs and other cancer-related medical applications such as drug screening. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
[Post-transplantation lymphoproliferative disorder in childhood].
Stréhn, Anita; Szőnyi, László; Kriván, Gergely; Kovács, Lajos; Reusz, György; Szabó, Attila; Rényi, Imre; Kovács, Gábor; Dezsőfi, Antal
2014-02-23
Among possible complications of transplantation the post-transplant lymphoproliferative disease due to immunosuppressive therapy is of paramount importance. In most cases the direct modulating effect of Epstein-Barr virus on immune cells can be documented. The aim of the authors was to evaluate the incidence os post-transplant lymphoproliferative diseases in pediatric transplant patients in Hungary. The study group included kidney, liver and lung transplant children followed up at the 1st Department of Pediatrics, Semmelweis University, Budapest and stem cell transplant children at Szent László Hospital, Budapest. Data were collected from 78 kidney, 109 liver and 17 lung transplant children as well as from 243 children who underwent allogenic stem cell transplantation. Between 1998 and 2012, 13 children developed post-transplant lymphoproliferative disorder (8 solid organ transplanted and 5 stem cell transplanted children). The diagnosis was based on histological findings in all cases. Mortality was 3 out of the 8 solid organ transplant children and 4 out of the 5 stem cell transplant children. The highest incidence was observed among lung transplant children (17.6%). These data indicate that post-transplant lymphoproliferative disease is a rare but devastating complication of transplantation in children. The most important therapeutic approaches are reduction of immunosuppressive therapy, chemotherapy and rituximab. Early diagnosis may improve clinical outcome and, therefore, routine polymerase chain reaction screening for Epstein-Barr virus of high risk patients is recommended.
Modified mesenchymal stem cells using miRNA transduction alter lung injury in a bleomycin model.
Huleihel, Luai; Sellares, Jacobo; Cardenes, Nayra; Álvarez, Diana; Faner, Rosa; Sakamoto, Koji; Yu, Guoying; Kapetanaki, Maria G; Kaminski, Naftali; Rojas, Mauricio
2017-07-01
Although different preclinical models have demonstrated a favorable role for bone marrow-derived mesenchymal stem cells (B-MSC) in preventing fibrosis, this protective effect is not observed with late administration of these cells, when fibrotic changes are consolidated. We sought to investigate whether the late administration of B-MSCs overexpressing microRNAs (miRNAs) let-7d (antifibrotic) or miR-154 (profibrotic) could alter lung fibrosis in a murine bleomycin model. Using lentiviral vectors, we transduced miRNAs (let-7d or miR-154) or a control sequence into human B-MSCs. Overexpression of let-7d or miR-154 was associated with changes in the mesenchymal properties of B-MSCs and in their cytokine expression. Modified B-MSCs were intravenously administered to mice at day 7 after bleomycin instillation, and the mice were euthanized at day 14 Bleomycin-injured animals that were treated with let-7d cells were found to recover quicker from the initial weight loss compared with the other treatment groups. Interestingly, animals treated with miR-154 cells had the lowest survival rate. Although a slight reduction in collagen mRNA levels was observed in lung tissue from let-7d mice, no significant differences were observed in Ashcroft score and OH-proline. However, the distinctive expression in cytokines and CD45-positive cells in the lung suggests that the differential effects observed in both miRNA mice groups were related to an effect on the immunomodulation function. Our results establish the use of miRNA-modified mesenchymal stem cells as a potential future research in lung fibrosis. Copyright © 2017 the American Physiological Society.
Dye, Briana R; Dedhia, Priya H; Miller, Alyssa J; Nagy, Melinda S; White, Eric S; Shea, Lonnie D; Spence, Jason R
2016-09-28
Human pluripotent stem cell (hPSC) derived tissues often remain developmentally immature in vitro, and become more adult-like in their structure, cellular diversity and function following transplantation into immunocompromised mice. Previously we have demonstrated that hPSC-derived human lung organoids (HLOs) resembled human fetal lung tissue in vitro (Dye et al., 2015). Here we show that HLOs required a bioartificial microporous poly(lactide-co-glycolide) (PLG) scaffold niche for successful engraftment, long-term survival, and maturation of lung epithelium in vivo. Analysis of scaffold-grown transplanted tissue showed airway-like tissue with enhanced epithelial structure and organization compared to HLOs grown in vitro. By further comparing in vitro and in vivo grown HLOs with fetal and adult human lung tissue, we found that in vivo transplanted HLOs had improved cellular differentiation of secretory lineages that is reflective of differences between fetal and adult tissue, resulting in airway-like structures that were remarkably similar to the native adult human lung.
Activation of p70S6 Kinase-1 in Mesenchymal Stem Cells Is Essential to Lung Tissue Repair.
Takeda, Katsuyuki; Ning, Fangkun; Domenico, Joanne; Okamoto, Masakazu; Ashino, Shigeru; Kim, Sang-Ha; Jeong, Yi Yeong; Shiraishi, Yoshiki; Terada, Naohiro; Sutherland, Everett Rand; Gelfand, Erwin W
2018-05-05
All-trans retinoic acid (ATRA) or mesenchymal stem cells (MSCs) have been shown to promote lung tissue regeneration in animal models of emphysema. However, the reparative effects of the combination of the two and the role of p70S6 kinase-1 (p70S6k1) activation in the repair process have not been defined. Twenty-one days after intratracheal instillation of porcine pancreatic elastase (PPE), MSC and/or 10 days of ATRA treatment was initiated. Thirty-two days later, static lung compliance (Cst), mean linear intercepts (MLIs), and alveolar surface area (S) were measured. After PPE, mice demonstrated increased values of Cst and MLI, and decreased S values. Both ATRA and MSC transfer were individually effective in improving these outcomes while the combination of ATRA and MSCs was even more effective. The combination of p70S6k1 -/- MSCs transfer followed by ATRA demonstrated only modest effects, and rapamycin treatment of recipients with wild-type (WT) MSCs and ATRA failed to show any effect. However, transfer of p70S6k1 over-expressing-MSCs together with ATRA resulted in further improvements over those seen following WT MSCs together with ATRA. ATRA activated p70S6k1 in MSCs in vitro, which was completely inhibited by rapamycin. Tracking of transferred MSCs following ATRA revealed enhanced accumulation and extended survival of MSCs in recipient lungs following PPE but not vehicle instillation. These data suggest that in MSCs, p70S6k1 activation plays a critical role in ATRA-enhanced lung tissue repair, mediated in part by prolonged survival of transferred MSCs. p70S6k1-activated MSCs may represent a novel therapeutic approach to reverse the lung damage seen in emphysema. Stem Cells Translational Medicine 2018. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Zhang, Fang; Li, Tiepeng; Han, Lu; Qin, Peng; Wu, Zhao; Xu, Benling; Gao, Quanli; Song, Yongping
2018-02-19
The existence of cancer stem cells within the tumor could lead to cancer therapy resistance. TGFβ1 is considered as one of the most powerful players in the generation of CSCs through induction of epithelial-mesenchymal transition in different types of cancer including lung cancer, however, the detailed mechanisms by which TGFβ1 contribute to EMT induction and CSC maintenance remains unclear. Here, we showed primary lung cancer cells treated by TGFβ1 exhibit mesenchymal features, including morphology and expression of mesenchymal marker in a time-dependent manner. We also observed long-term TGFβ1 exposure leads to an enrichment of a sub-population of CD44 + CD90 + cells which represent CSCs in lung cancer cells. Moreover, the differential expression microRNAs between CSCs and non-CSCs were identified using next-generation sequencing to screen key miRNAs which might contribute to TGFβ1-induced EMT and CSCs generation. Among those differentially expressed miRNAs, the expression of microRNA-138 was time-dependently down-regulated by TGFβ1 treatment. We further demonstrated primary lung cancer cells, in which we knockdown the expression of miR-138, exhibit mesenchymal phenotypes and stem cell properties. Taken together, these findings indicate TGFβ1-induced down-regulation of microRNA-138 contributes to EMT in primary lung cancer cells, and suggest that miR-138 might serve as a potential therapeutic target. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Ying; Wang, Xiuwen, E-mail: wangxw12@yahoo.com; Wang, Yawei
Wnt/{beta}-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that {beta}-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of {beta}-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking downmore » the expression of {beta}-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/{beta}-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.« less
Wang, Qiao; Zhu, Hong; Zhou, Wu-Gang; Guo, Xiao-Can; Wu, Min-Juan; Xu, Zhen-Yu; Jiang, Jun-feng; Shen, Ce; Liu, Hou-Qi
2013-08-01
The transplantation of mesenchymal stem cells (MSCs) has been reported to be a promising approach in the treatment of acute lung injury. However, the poor efficacy of transplanted MSCs is one of the serious handicaps in the progress of MSC-based therapy. Therefore, the purpose of this study was to investigate whether the pretreatment of human embryonic MSCs (hMSCs) with an antioxidant, namely N-acetylcysteine (NAC), can improve the efficacy of hMSC transplantation in lung injury. In vitro, the antioxidant capacity of NAC-pretreated hMSCs was assessed using intracellular reactive oxygen species (ROS) and glutathione assays and cell adhesion and spreading assays. In vivo, the therapeutic potential of NAC-pretreated hMSCs was assessed in a bleomycin-induced model of lung injury in nude mice. The pretreatment of hMSCs with NAC improved antioxidant capacity to defend against redox imbalances through the elimination of cellular ROS, increasing cellular glutathione levels, and the enhancement of cell adhesion and spreading when exposed to oxidative stresses in vitro. In addition, the administration of NAC-pretreated hMSCs to nude mice with bleomycin-induced lung injury decreased the pathological grade of lung inflammation and fibrosis, hydroxyproline content and numbers of neutrophils and inflammatory cytokines in bronchoalveolar lavage fluid and apoptotic cells, while enhancing the retention and proliferation of hMSCs in injured lung tissue and improving the survival rate of mice compared with results from untreated hMSCs. The pretreatment of hMSCs with NAC could be a promising therapeutic approach to improving cell transplantation and, therefore, the treatment of lung injury.
Bone marrow-derived mesenchymal stem cells attenuate phosgene-induced acute lung injury in rats.
Chen, Junfeng; Shao, Yiru; Xu, Guoxiong; Lim, ChitChoon; Li, Jun; Xu, Daojian; Shen, Jie
2015-01-01
Accidental phosgene exposure could result in acute lung injury (ALI), effective therapy is needed for the patients with phosgene-induced ALI. As a type of cells with therapeutic potential, mesenchymal stem cells (MSCs) have been showed its efficacy in multiple diseases. Here, we assessed the therapeutic potential of MSCs in phosgene-induced ALI and explored the related mechanisms. After isolation and characterization of rat bone marrow MSCs (BMMSCs), we transplanted BMMSCs into the rats exposed to phosgene and observed significant improvement on the lung wet-to-dry ratio and partial oxygen pressure (PaO2) at 6, 24, 48 h after phosgene exposure. Histological analyses revealed reduced sign of pathological changes in the lungs. Reduced level of pro-inflammatory tumor necrosis factor α and increased level of anti-inflammatory factor interleukin-10 were found in both bronchoalveolar lavage and plasma. Significant increased expression of epithelial cell marker AQP5 and SP-C was also found in the lung tissue. In conclusion, treatment with MSC markedly decreases the severity of phosgene-induced ALI in rats, and these protection effects were closely related to the pulmonary air blood barrier repairment and inflammatory reaction regulation.
Neural stem cell-based dual suicide gene delivery for metastatic brain tumors.
Wang, C; Natsume, A; Lee, H J; Motomura, K; Nishimira, Y; Ohno, M; Ito, M; Kinjo, S; Momota, H; Iwami, K; Ohka, F; Wakabayashi, T; Kim, S U
2012-11-01
In our previous works, we demonstrated that human neural stem cells (NSCs) transduced with the cytosine deaminase (CD) gene showed remarkable 'bystander killer effect' on glioma and medulloblastoma cells after administration of the prodrug 5-fluorocytosine (5-FC). In addition, herpes simplex virus thymidine kinase (TK) is a widely studied enzyme used for suicide gene strategies, for which the prodrug is ganciclovir (GCV). To apply this strategy to brain metastasis treatment, we established here a human NSC line (F3.CD-TK) expressing the dual suicide genes CD and TK. We examined whether F3.CD-TK cells intensified the antitumor effect on lung cancer brain metastases. In vitro studies showed that F3.CD-TK cells exerted a marked bystander effect on human lung cancer cells after treatment with 5-FC and GCV. In a novel experimental brain metastases model, intravenously administered F3 cells migrated near lung cancer metastatic lesions, which were induced by the injection of lung cancer cells via the intracarotid artery. More importantly, F3.CD-TK cells in the presence of prodrugs 5-FC and GCV decreased tumor size and considerably prolonged animal survival. The results of the present study indicate that the dual suicide gene-engineered, NSC-based treatment strategy might offer a new promising therapeutic modality for brain metastases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vulcano, Francesca, E-mail: francesca.vulcano@iss.it; Milazzo, Luisa, E-mail: luisa.milazzo@iss.it; Ciccarelli, Carmela, E-mail: carmela.ciccarelli@univaq.it
Studies on the role of multipotent mesenchymal stromal cells (MSC) on tumor growth have reported both a tumor promoting and a suppressive effect. The aim of the present study was to determine the effect of MSC isolated from Wharton's jelly of umbilical cord (WJMSC) on lung cancer stem cells (LCSC) derived from human lung tumors: two adenocarcinomas (AC) and two squamous cell carcinomas (SCC). LCSC derived from SCC and AC expressed, to varying extents, the more relevant stem cell markers. The effect of WJMSC on LCSC was investigated in vitro using conditioned medium (WJ-CM): a proliferation increase in AC-LCSC wasmore » observed, with an increase in the ALDH+ and in the CD133+ cell population. By contrast, WJ-CM hampered the growth of SCC-LCSC, with an increase in the pre-G1 phase indicating the induction of apoptosis. Furthermore, the ALDH+ and CD133+ population was also reduced. In vivo, subcutaneous co-transplantation of AC-LCSC/WJMSC generated larger tumors than AC-LCSC alone, characterized by an increased percentage of CD133+ and CD166+ cells. By contrast, co-transplantation of WJMSC and SCC-LCSC did not affect the tumor size. Our results strongly suggest that WJMSC exert, both in vitro and in vivo, contrasting effects on LCSC derived from different lung tumor subtypes. - Highlights: • CM from WJMSC induces apoptosis of SCC-LCSC and reduction of ALDH+ and CD133+ cells. • Specificity of SCC-LCSC inhibition by WJ-CM is proved by the use of a CM from NHDF. • WJ-CM enhance AC-LCSC proliferation and increase CD133+ and ALDH+ cell fractions. • Coinjection of WJMSC with AC-LCSC increase tumor growth with SCC-LCSC has no effect.« less
Bora-Singhal, Namrata; Perumal, Deepak; Nguyen, Jonathan; Chellappan, Srikumar
2015-07-01
Non-small cell lung cancer (NSCLC) patients have very low survival rates because the current therapeutic strategies are not fully effective. Although EGFR tyrosine kinase inhibitors are effective for NSCLC patients harboring EGFR mutations, patients invariably develop resistance to these agents. Alterations in multiple signaling cascades have been associated with the development of resistance to EGFR inhibitors. Sonic Hedgehog and associated Gli transcription factors play a major role in embryonic development and have recently been found to be reactivated in NSCLC, and elevated Gli1 levels correlate with poor prognosis. The Hedgehog pathway has been implicated in the functions of cancer stem cells, although the underlying molecular mechanisms are not clear. In this context, we demonstrate that Gli1 is a strong regulator of embryonic stem cell transcription factor Sox2. Depletion of Gli1 or inhibition of the Hedgehog signaling significantly abrogated the self-renewal of stem-like side-population cells from NSCLCs as well as vascular mimicry of such cells. Gli1 was found to transcriptionally regulate Sox2 through its promoter region, and Gli1 could be detected on the Sox2 promoter. Inhibition of Hedgehog signaling appeared to work cooperatively with EGFR inhibitors in markedly reducing the viability of NSCLC cells as well as the self-renewal of stem-like cells. Thus, our study demonstrates a cooperative functioning of the EGFR signaling and Hedgehog pathways in governing the stem-like functions of NSCLC cancer stem cells and presents a novel therapeutic strategy to combat NSCLC harboring EGFR mutations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Recent Advances in Lgr5+ Stem Cell Research.
Leung, Carly; Tan, Si Hui; Barker, Nick
2018-05-01
The discovery of leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) as both a marker of adult stem cells and a critical modulator of their activity via its role as an effector of Wnt/R-spondin (Rspo) signaling has driven major advances in our understanding of stem cell biology during homeostasis, regeneration, and disease. Exciting new mouse and organoid culture models developed to study the endogenous behavior of Lgr5-expressing cells in health and disease settings have revealed the existence of facultative stem cell populations responsible for tissue regeneration, cancer stem cells (CSCs) driving metastasis in the gut, and Lgr5 + niche cells in the lung. Here we review these recent advances and discuss their impact on efforts to harness the therapeutic potential of adult stem cells and their cancer counterparts in the clinic. Copyright © 2018 Elsevier Ltd. All rights reserved.
Curcumin: Updated Molecular Mechanisms and Intervention Targets in Human Lung Cancer
Ye, Ming-Xiang; Li, Yan; Yin, Hong; Zhang, Jian
2012-01-01
Curcumin, a yellow pigment derived from Curcuma longa Linn, has attracted great interest in the research of cancer during the past decades. Extensive studies documented that curcumin attenuates cancer cell proliferation and promotes apoptosis in vivo and in vitro. Curcumin has been demonstrated to interact with multiple molecules and signal pathways, which makes it a potential adjuvant anti-cancer agent to chemotherapy. Previous investigations focus on the mechanisms of action for curcumin, which is shown to manipulate transcription factors and induce apoptosis in various kinds of human cancer. Apart from transcription factors and apoptosis, emerging studies shed light on latent targets of curcumin against epidermal growth factor receptor (EGFR), microRNAs (miRNA), autophagy and cancer stem cell. The present review predominantly discusses significance of EGFR, miRNA, autophagy and cancer stem cell in lung cancer therapy. Curcumin as a natural phytochemicals could communicate with these novel targets and show synergism to chemotherapy. Additionally, curcumin is well tolerated in humans. Therefore, EGFR-, miRNA-, autophagy- and cancer stem cell-based therapy in the presence of curcumin might be promising mechanisms and targets in the therapeutic strategy of lung cancer. PMID:22489192
Chen, Shuchen; Chen, Liangwan; Wu, Xiaonan; Lin, Jiangbo; Fang, Jun; Chen, Xiangqi; Wei, Shijin; Xu, Jianxin; Gao, Qin; Kang, Mingqiang
2012-11-01
It has been reported that ischemic postconditioning (IPO) or mesenchymal stem cell (MSC) engraftment could protect organs from ischemia/reperfusion (I/R) injury. We investigated the synergetic effects of combined treatment on lung injury induced by I/R. Adult Sprague-Dawley rats were randomly assigned to one of the following groups: sham-operated control, I/R, IPO, MSC engraftment, and IPO plus MSC engraftment. Lung injury was assessed by arterial blood gas analysis, the wet/dry lung weight ratio, superoxide dismutase level, malondialdehyde content, myeloperoxidase activity, and tissue histologic changes. Cytokine expression was detected using real-time polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. Cell apoptosis was determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end assay and annexin V staining. MSC engraftment or IPO alone markedly attenuated the lung wet/dry weight ratio, malondialdehyde and myeloperoxidase production, and lung pathologic injury and enhanced arterial partial oxygen pressure, superoxide dismutase content, inhibited pro-inflammatory cytokine levels, and decreased cell apoptosis in lung tissue, compared with the I/R group. In contrast, IPO pretreatment enhanced the protective effects of MSC on I/R-induced lung injury compared with treatment alone. Moreover, in the combined treatment group, the number of MSC engraftments in the lung tissue was increased, associated with enhanced survival of MSCs compared with MSC treatment alone. Additional investigation showed that IPO treatment increased expression of vascular endothelial growth factor and stromal cell-derived factor-1 in I/R lung tissue. IPO might contribute to the homing and survival of transplanted MSCs and enhance their therapeutic effects through improvement of the microenvironment of I/R injury. Copyright © 2012 Elsevier Inc. All rights reserved.
Targeting of Cancer Stem Cells and Their Microenvironment in Early-Stage MutantK-ras Lung Cancer
2015-10-01
a combination of SHH/ALDH/ NOTCH3 as potential stem cell markers. We will also test the hypothesis that SHH+ cell population may be a quiescent stem...and SHH are expressed within the same cell population. We will also test NOTCH3 in combination with 5E1-647 alone or in combination with 5E1-647 and...Aldefluor assays. Anti- NOTCH3 antibody will be labeled with Alexa Fluor 594 (red color spectrum) in an analogous manner to 5E1-594. As ALDH+ and
Targeting of Cancer Stem Cells and Their Microenvironment in Early-Stage Mutant K-ras Lung Cancer
2016-12-01
Aldefluor reagent. (B) A549 control lung cancer cells were incubated with Alde- fluor regent and DEAB, an inhibitor of aldehyde dehydro- genase. (C...increase in liquid colony formation or in cell proliferation compared to SHH- cells. Therefore, we turned to identify aldehyde dehydrogenase (ALDH...in which a green fluorescent BODIPY moiety is linked to aminoacetaldehyde, an aldehyde dehydrogenase substrate, and thus, cells expressing ALDH
Garba, Abubakar; Desmarets, Lowiese M. B.; Acar, Delphine D.; Devriendt, Bert; Nauwynck, Hans J.
2017-01-01
Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes. PMID:29036224
Garba, Abubakar; Desmarets, Lowiese M B; Acar, Delphine D; Devriendt, Bert; Nauwynck, Hans J
2017-01-01
Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes.
Rosen, Chava; Shezen, Elias; Aronovich, Anna; Klionsky, Yael Zlotnikov; Yaakov, Yasmin; Assayag, Miri; Biton, Inbal Eti; Tal, Orna; Shakhar, Guy; Ben-Hur, Herzel; Shneider, David; Vaknin, Zvi; Sadan, Oscar; Evron, Shmuel; Freud, Enrique; Shoseyov, David; Wilschanski, Michael; Berkman, Neville; Fibbe, Willem E; Hagin, David; Hillel-Karniel, Carmit; Krentsis, Irit Milman; Bachar-Lustig, Esther; Reisner, Yair
2015-08-01
Repair of injured lungs represents a longstanding therapeutic challenge. We show that human and mouse embryonic lung tissue from the canalicular stage of development (20-22 weeks of gestation for humans, and embryonic day 15-16 (E15-E16) for mouse) are enriched with progenitors residing in distinct niches. On the basis of the marked analogy to progenitor niches in bone marrow (BM), we attempted strategies similar to BM transplantation, employing sublethal radiation to vacate lung progenitor niches and to reduce stem cell competition. Intravenous infusion of a single cell suspension of canalicular lung tissue from GFP-marked mice or human fetal donors into naphthalene-injured and irradiated syngeneic or SCID mice, respectively, induced marked long-term lung chimerism. Donor type structures or 'patches' contained epithelial, mesenchymal and endothelial cells. Transplantation of differentially labeled E16 mouse lung cells indicated that these patches were probably of clonal origin from the donor. Recipients of the single cell suspension transplant exhibited marked improvement in lung compliance and tissue damping reflecting the energy dissipation in the lung tissues. Our study provides proof of concept for lung reconstitution by canalicular-stage human lung cells after preconditioning of the pulmonary niche.
Loss of Nrf2 promotes alveolar type 2 cell loss in irradiated, fibrotic lung.
Traver, Geri; Mont, Stacey; Gius, David; Lawson, William E; Ding, George X; Sekhar, Konjeti R; Freeman, Michael L
2017-11-01
The development of radiation-induced pulmonary fibrosis represents a critical clinical issue limiting delivery of therapeutic doses of radiation to non-small cell lung cancer. Identification of the cell types whose injury initiates a fibrotic response and the underlying biological factors that govern that response are needed for developing strategies that prevent or mitigate fibrosis. C57BL/6 mice (wild type, Nrf2 null, Nrf2 flox/flox , and Nrf2 Δ/Δ ; SPC-Cre) were administered a thoracic dose of 12Gy and allowed to recover for 250 days. Whole slide digital and confocal microscopy imaging of H&E, Masson's trichrome and immunostaining were used to assess tissue remodeling, collagen deposition and cell renewal/mobilization during the regenerative process. Histological assessment of irradiated, fibrotic wild type lung revealed significant loss of alveolar type 2 cells 250 days after irradiation. Type 2 cell loss and the corresponding development of fibrosis were enhanced in the Nrf2 null mouse. Yet, conditional deletion of Nrf2 in alveolar type 2 cells in irradiated lung did not impair type 2 cell survival nor yield an increased fibrotic phenotype. Instead, radiation-induced ΔNp63 stem/progenitor cell mobilization was inhibited in the Nrf2 null mouse while the propensity for radiation-induced myofibroblasts derived from alveolar type 2 cells was magnified. In summary, these results indicate that Nrf2 is an important regulator of irradiated lung's capacity to maintain alveolar type 2 cells, whose injury can initiate a fibrotic phenotype. Loss of Nrf2 inhibits ΔNp63 stem/progenitor mobilization, a key event for reconstitution of injured lung, while promoting a myofibroblast phenotype that is central for fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.
The rabbit as a model for studying lung disease and stem cell therapy.
Kamaruzaman, Nurfatin Asyikhin; Kardia, Egi; Kamaldin, Nurulain 'Atikah; Latahir, Ahmad Zaeri; Yahaya, Badrul Hisham
2013-01-01
No single animal model can reproduce all of the human features of both acute and chronic lung diseases. However, the rabbit is a reliable model and clinically relevant facsimile of human disease. The similarities between rabbits and humans in terms of airway anatomy and responses to inflammatory mediators highlight the value of this species in the investigation of lung disease pathophysiology and in the development of therapeutic agents. The inflammatory responses shown by the rabbit model, especially in the case of asthma, are comparable with those that occur in humans. The allergic rabbit model has been used extensively in drug screening tests, and this model and humans appear to be sensitive to similar drugs. In addition, recent studies have shown that the rabbit serves as a good platform for cell delivery for the purpose of stem-cell-based therapy.
The Rabbit as a Model for Studying Lung Disease and Stem Cell Therapy
Kamaruzaman, Nurfatin Asyikhin; Kamaldin, Nurulain ‘Atikah; Latahir, Ahmad Zaeri; Yahaya, Badrul Hisham
2013-01-01
No single animal model can reproduce all of the human features of both acute and chronic lung diseases. However, the rabbit is a reliable model and clinically relevant facsimile of human disease. The similarities between rabbits and humans in terms of airway anatomy and responses to inflammatory mediators highlight the value of this species in the investigation of lung disease pathophysiology and in the development of therapeutic agents. The inflammatory responses shown by the rabbit model, especially in the case of asthma, are comparable with those that occur in humans. The allergic rabbit model has been used extensively in drug screening tests, and this model and humans appear to be sensitive to similar drugs. In addition, recent studies have shown that the rabbit serves as a good platform for cell delivery for the purpose of stem-cell-based therapy. PMID:23653896
A gene therapy induced emphysema model and the protective role of stem cells.
Zarogoulidis, Paul; Hohenforst-Schmidt, Wolfgang; Huang, Haidong; Sahpatzidou, Despoina; Freitag, Lutz; Sakkas, Leonidas; Rapti, Aggeliki; Kioumis, Ioannis; Pitsiou, Georgia; Kouzi-Koliakos, Kokkona; Papamichail, Anna; Papaiwannou, Antonis; Tsiouda, Theodora; Tsakiridis, Kosmas; Porpodis, Konstantinos; Lampaki, Sofia; Organtzis, John; Gschwendtner, Andreas; Zarogoulidis, Konstantinos
2014-11-14
Chronic obstructive pulmonary disease presents with two different phenotypes: chronic bronchitis and emphysema with parenchymal destruction. Decreased expression of vascular endothelial growth factor and increased endothelial cell apoptosis are considered major factors for emphysema. Stem cells have the ability of vascular regeneration and function as a repair mechanism for the damaged endothelial cells. Currently, minimally invasive interventional procedures such as placement of valves, bio-foam or coils are performed in order to improve the disturbed mechanical function in emphysema patients. However, these procedures cannot restore functional lung tissue. Additionally stem cell instillation into the parenchyma has been used in clinical studies aiming to improve overall respiratory function and quality of life. In our current experiment we induced emphysema with a DDMC non-viral vector in BALBC mice and simultaneously instilled stem cells testing the hyposthesis that they might have a protective role against the development of emphysema. The mice were divided into four groups: a) control, b) 50.000 cells, c) 75.000 and d) 100.000 cells. Lung pathological findings revealed that all treatment groups had less damage compared to the control group. Additionally, we observed that emphysema lesions were less around vessels in an area of 10 μm. Our findings indicate that stem cell instillation can have a regenerative role if applied upon a tissue scaffold with vessel around. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_195.
Tian, Jian; Zhao, WeiLing; Tian, Sisi; Slater, James M; Deng, Zhiyong; Gridley, Daila S
2011-11-01
The goal of this study was to compare the effects of acute 2 Gy irradiation with photons (0.8 Gy/min) or protons (0.9 Gy/min), both with and without pre-exposure to low-dose/low-dose-rate γ rays (0.01 Gy at 0.03 cGy/h), on 84 genes involved in stem cell differentiation or regulation in mouse lungs on days 21 and 56. Genes with a ≥1.5-fold difference in expression and P < 0.05 compared to 0 Gy controls are emphasized. Two proteins specific for lung stem cells/progenitors responsible for local tissue repair were also compared. Overall, striking differences were present between protons and photons in modulating the genes. More genes were affected by protons than by photons (22 compared to 2 and 6 compared to 2 on day 21 and day 56, respectively) compared to 0 Gy. Preirradiation with low-dose-rate γ rays enhanced the acute photon-induced gene modulation on day 21 (11 compared to 2), and all 11 genes were significantly downregulated on day 56. On day 21, seven genes (aldh2, bmp2, cdc2a, col1a1, dll1, foxa2 and notch1) were upregulated in response to most of the radiation regimens. Immunoreactivity of Clara cell secretory protein was enhanced by all radiation regimens. The number of alveolar type 2 cells positive for prosurfactant protein C in irradiated groups was higher on day 56 (12.4-14.6 cells/100) than on day 21 (8.5-11.2 cells/100) (P < 0.05). Taken together, these results showed that acute photons and protons induced different gene expression profiles in the lungs and that pre-exposure to low-dose-rate γ rays sometimes had modulatory effects. In addition, proteins associated with lung-specific stem cells/progenitors were highly sensitive to radiation.
Hou, Chen; Peng, Danyi; Gao, Li; Tian, Daiyin; Dai, Jihong; Luo, Zhengxiu; Liu, Enmei; Chen, Hong; Zou, Lin; Fu, Zhou
2018-01-08
The incidence and mortality rates of bronchopulmonary dysplasia (BPD) remain very high. Therefore, novel therapies are imminently needed to improve the outcome of this disease. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) show promising therapeutic effects on oxygen-induced model of BPD. In our experiment, UC-MSCs were intratracheally delivered into the newborn rats exposed to hyperoxia, a well-established BPD model. This study demonstrated that UC-MSCs reduce elastin expression stimulated by 90% O 2 in human lung fibroblasts-a (HLF-a), and inhibit HLF-a transdifferentiation into myofibroblasts. In addition, the therapeutic effects of UC-MSCs in neonatal rats with BPD, UC-MSCs could inhibit lung elastase activity and reduce aberrant elastin expression and deposition in the lung of BPD rats. Overall, this study suggested that UC-MSCs could ameliorate aberrant elastin expression in the lung of hyperoxia-induced BPD model which may be associated with suppressing increased TGFβ1 activation. Copyright © 2017. Published by Elsevier Inc.
Dye, Briana R; Dedhia, Priya H; Miller, Alyssa J; Nagy, Melinda S; White, Eric S; Shea, Lonnie D; Spence, Jason R
2016-01-01
Human pluripotent stem cell (hPSC) derived tissues often remain developmentally immature in vitro, and become more adult-like in their structure, cellular diversity and function following transplantation into immunocompromised mice. Previously we have demonstrated that hPSC-derived human lung organoids (HLOs) resembled human fetal lung tissue in vitro (Dye et al., 2015). Here we show that HLOs required a bioartificial microporous poly(lactide-co-glycolide) (PLG) scaffold niche for successful engraftment, long-term survival, and maturation of lung epithelium in vivo. Analysis of scaffold-grown transplanted tissue showed airway-like tissue with enhanced epithelial structure and organization compared to HLOs grown in vitro. By further comparing in vitro and in vivo grown HLOs with fetal and adult human lung tissue, we found that in vivo transplanted HLOs had improved cellular differentiation of secretory lineages that is reflective of differences between fetal and adult tissue, resulting in airway-like structures that were remarkably similar to the native adult human lung. DOI: http://dx.doi.org/10.7554/eLife.19732.001 PMID:27677847
Pederiva, F; Ghionzoli, M; Pierro, A; De Coppi, P; Tovar, J A
2013-01-01
Lung hypoplasia can be prevented in vitro by retinoic acid (RA). Recent evidence suggests that amniotic fluid stem (AFS) cells may integrate injured lungs and influence their recovery. We tested the hypothesis that AFS cells might improve lung growth and motility by paracrine mechanisms. Pregnant rats received either nitrofen or vehicle on E9.5. In vitro E13 embryonic lungs were cultured in the presence of culture medium alone or with RA, basophils, or AFS cells. In vivo green fluorescent protein-expressing (GFP(+)) rat AFS cells were transplanted in nitrofen-exposed rats on E10.5. E13 lung explants were cultured before analysis. The surface, the number of terminal buds, and the frequency of bronchial contractions were assessed. Protein gene product 9.5 (PGP 9.5) and α-actin protein levels were measured. The lung explants transplanted with AFS cells were stained for α-actin, PGP 9.5, and TTF-1. The levels of FGF-10, VEGFα, and TGF-β1 secreted by the AFS cells in the culture medium were measured. Comparison between groups was made by ANOVA. In vitro, the surface, the number of terminal buds, and the bronchial peristalsis were increased in nitrofen+AFS cell explants in comparison with nitrofen-exposed lungs. While nitrofen+RA lungs were similar to nitrofen+AFS ones, basophils did not normalize these measurements. PGP 9.5 protein was decreased in nitrofen lungs, but after adding AFS cells, the value was similar to controls. No differences were found in the expression of α-actin. In vivo, the surface, number of terminal buds, and peristalsis were similar to control after injection of AFS cells in nitrofen-exposed rats. Colocalization with TTF-1-positive cells was found. The levels of FGF-10 and VEGFα were increased in nitrofen+AFS cell explants, while the levels of TGF-β1 were similar to controls. Lung growth, bronchial motility, and innervation were decreased in nitrofen explants and rescued by AFS cells both in vitro and in vivo, similarly to that observed before with RA. The AFS cell beneficial effect was probably related to paracrine action of growth factor secretion.
Ethics and Policy Issues for Stem Cell Research and Pulmonary Medicine
Lowenthal, Justin
2015-01-01
Stem cell research and related initiatives in regenerative medicine, cell-based therapy, and tissue engineering have generated considerable scientific and public interest. Researchers are applying stem cell technologies to chest medicine in a variety of ways: using stem cells as models for drug discovery, testing stem cell-based therapies for conditions as diverse as COPD and cystic fibrosis, and producing functional lung and tracheal tissue for physiologic modeling and potential transplantation. Although significant scientific obstacles remain, it is likely that stem cell-based regenerative medicine will have a significant clinical impact in chest medicine. However, stem cell research has also generated substantial controversy, posing a variety of ethical and regulatory challenges for research and clinical practice. Some of the most prominent ethical questions related to the use of stem cell technologies in chest medicine include (1) implications for donors, (2) scientific prerequisites for clinical testing and use, (3) stem cell tourism, (4) innovation and clinical use of emerging stem cell-based interventions, (5) responsible translation of stem cell-based therapies to clinical use, and (6) appropriate and equitable access to emerging therapies. Having a sense of these issues should help to put emerging scientific advances into appropriate context and to ensure the responsible clinical translation of promising therapeutics. PMID:25732448
Ethics and policy issues for stem cell research and pulmonary medicine.
Lowenthal, Justin; Sugarman, Jeremy
2015-03-01
Stem cell research and related initiatives in regenerative medicine, cell-based therapy, and tissue engineering have generated considerable scientific and public interest. Researchers are applying stem cell technologies to chest medicine in a variety of ways: using stem cells as models for drug discovery, testing stem cell-based therapies for conditions as diverse as COPD and cystic fibrosis, and producing functional lung and tracheal tissue for physiologic modeling and potential transplantation. Although significant scientific obstacles remain, it is likely that stem cell-based regenerative medicine will have a significant clinical impact in chest medicine. However, stem cell research has also generated substantial controversy, posing a variety of ethical and regulatory challenges for research and clinical practice. Some of the most prominent ethical questions related to the use of stem cell technologies in chest medicine include (1) implications for donors, (2) scientific prerequisites for clinical testing and use, (3) stem cell tourism, (4) innovation and clinical use of emerging stem cell-based interventions, (5) responsible translation of stem cell-based therapies to clinical use, and (6) appropriate and equitable access to emerging therapies. Having a sense of these issues should help to put emerging scientific advances into appropriate context and to ensure the responsible clinical translation of promising therapeutics.
Stankic, Marko; Pavlovic, Svetlana; Chin, Yvette; Brogi, Edi; Padua, David; Norton, Larry; Massague, Joan; Benezra, Robert
2014-01-01
SUMMARY ID genes are required for breast cancer colonization of the lungs, but the mechanism remains poorly understood. Here, we show that Id1 expression induces a stem-like phenotype in breast cancer cells, while retaining epithelial properties, contrary to the notion that cancer stem-like properties are inextricably linked to the mesenchymal state. During metastatic colonization, Id1 induces a mesenchymal-to-epithelial transition (MET), specifically in cells whose mesenchymal state is dependent on the Id1 target protein Twist1 but not at the primary site, where this state is controlled by the zinc-finger protein Snail1. Knockdown of Id expression in metastasizing cells prevents MET and dramatically reduces lung colonization. Furthermore, Id1 is induced by TGFβ only in cells that have first undergone EMT, demonstrating that EMT is a pre-requisite for subsequent Id1-induced MET during lung colonization. Collectively, these studies underscore the importance of Id-mediated phenotypic switching during distinct stages of breast cancer metastasis. PMID:24332369
Jeong, Youngtae; Hoang, Ngoc T.; Lovejoy, Alexander; Stehr, Henning; Newman, Aaron M.; Gentles, Andrew J.; Kong, William; Truong, Diana; Martin, Shanique; Chaudhuri, Aadel; Heiser, Diane; Zhou, Li; Say, Carmen; Carter, Justin N.; Hiniker, Susan M.; Loo, Billy W.; West, Robert B.; Beachy, Philip; Alizadeh, Ash A.; Diehn, Maximilian
2016-01-01
Lung squamous cell carcinomas (LSCC) pathogenesis remains incompletely understood and biomarkers predicting treatment response remain lacking. Here we describe novel murine LSCC models driven by loss of Trp53 and Keap1, both of which are frequently mutated in human LSCCs. Homozygous inactivation of Keap1 or Trp53 promoted airway basal stem cell (ABSC) self-renewal, suggesting that mutations in these genes lead to expansion of mutant stem cell clones. Deletion of Trp53 and Keap1 in ABSCs, but not more differentiated tracheal cells, produced tumors recapitulating histological and molecular features of human LSCCs, indicating that they represent the likely cell of origin in this model. Deletion of Keap1 promoted tumor aggressiveness, metastasis, and resistance to oxidative stress and radiotherapy (RT). KEAP1/NRF2 mutation status predicted risk of local recurrence after RT in non-small lung cancer (NSCLC) patients and could be non-invasively identified in circulating tumor DNA. Thus, KEAP1/NRF2 mutations could serve as predictive biomarkers for personalization of therapeutic strategies for NSCLCs. PMID:27663899
Mirzaei, Hamed; Salehi, Hossein; Oskuee, Reza Kazemi; Mohammadpour, Ali; Mirzaei, Hamid Reza; Sharifi, Mohammad Reza; Salarinia, Reza; Darani, Hossein Yousofi; Mokhtari, Mojgan; Masoudifar, Aria; Sahebkar, Amirhossein; Salehi, Rasoul; Jaafari, Mahmoud Reza
2018-04-10
Interferon γ-induced protein 10 kDa (IP-10) is a potent chemoattractant and has been suggested to enhance antitumor activity and mediate tumor regression through multiple mechanisms of action. Multiple lines of evidence have indicated that genetically-modified adult stem cells represent a potential source for cell-based cancer therapy. In the current study, we assessed therapeutic potential of human adipose derived mesenchymal stem cells (hADSC) genetically-modified to express IP-10 for the treatment of lung metastasis in an immunocompetent mouse model of metastatic melanoma. A Piggybac vector encoding IP-10 was employed to transfect hADSC ex vivo. Expression and bioactivity of the transgenic protein from hADSCs expressing IP-10 were confirmed prior to in vivo studies. Our results indicated that hADSCs expressing IP-10 could inhibit the growth of B16F10 melanoma cells and significantly prolonged survival. Immunohistochemistry analysis, TUNEL assay and western blot analysis indicated that hADSCs expressing IP-10 inhibited tumor cell growth, hindered tumor infiltration of Tregs, restricted angiogenesis and significantly prolonged survival. In conclusion, our results demonstrated that targeting metastatic tumor sites by hADSC expressing IP-10 could reduce melanoma tumor growth and lung metastasis. Copyright © 2018 Elsevier B.V. All rights reserved.
76 FR 68200 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-03
...: National Heart, Lung, and Blood Institute Special Emphasis Panel; NHLBI Career Enhancement Grants for Stem Cell Research. Date: November 29, 2011. Time: 1 p.m. to 3 p.m. Agenda: To review and evaluate grant...
Fgf10-positive cells represent a progenitor cell population during lung development and postnatally
El Agha, Elie; Herold, Susanne; Alam, Denise Al; Quantius, Jennifer; MacKenzie, BreAnne; Carraro, Gianni; Moiseenko, Alena; Chao, Cho-Ming; Minoo, Parviz; Seeger, Werner; Bellusci, Saverio
2014-01-01
The lung mesenchyme consists of a widely heterogeneous population of cells that play crucial roles during development and homeostasis after birth. These cells belong to myogenic, adipogenic, chondrogenic, neuronal and other lineages. Yet, no clear hierarchy for these lineages has been established. We have previously generated a novel Fgf10iCre knock-in mouse line that allows lineage tracing of Fgf10-positive cells during development and postnatally. Using these mice, we hereby demonstrate the presence of two waves of Fgf10 expression during embryonic lung development: the first wave, comprising Fgf10-positive cells residing in the submesothelial mesenchyme at early pseudoglandular stage (as well as their descendants); and the second wave, comprising Fgf10-positive cells from late pseudoglandular stage (as well as their descendants). Our lineage-tracing data reveal that the first wave contributes to the formation of parabronchial and vascular smooth muscle cells as well as lipofibroblasts at later developmental stages, whereas the second wave does not give rise to smooth muscle cells but to lipofibroblasts as well as an Nkx2.1- E-Cad- Epcam+ Pro-Spc+ lineage that requires further in-depth analysis. During alveologenesis, Fgf10-positive cells give rise to lipofibroblasts rather than alveolar myofibroblasts, and during adult life, a subpopulation of Fgf10-expressing cells represents a pool of resident mesenchymal stromal (stem) cells (MSCs) (Cd45- Cd31- Sca-1+). Taken together, we show for the first time that Fgf10-expressing cells represent a pool of mesenchymal progenitors in the embryonic and postnatal lung. Our findings suggest that Fgf10-positive cells could be useful for developing stem cell-based therapies for treating interstitial lung diseases. PMID:24353064
Biology of lung cancer: genetic mutation, epithelial-mesenchymal transition, and cancer stem cells.
Aoi, Takashi
2016-09-01
At present, most cases of unresectable cancer cannot be cured. Genetic mutations, EMT, and cancer stem cells are three major issues linked to poor prognosis in such cases, all connected by inter- and intra-tumor heterogeneity. Issues on inter-/intra-tumor heterogeneity of genetic mutation could be resolved with recent and future technologies of deep sequencers, whereas, regarding such issues as the "same genome, different epigenome/phenotype", we expect to solve many of these problems in the future through further research in stem cell biology. We herein review and discuss the three major issues in the biology of cancers, especially from the standpoint of stem cell biology.
Yamagata, Kazuo; Izawa, Yuri; Onodera, Daiki; Tagami, Motoki
2018-04-01
Previous studies indicated that chlorogenic acid, a compound present in many fruits and vegetables, has anti-cancer activities. We report that chlorogenic acid regulates the expression of apoptosis-related genes and self-renewal-related stem cell markers in cancer cells. The lung cancer cell line A549 was cultured with or without chlorogenic acid. The presence of chlorogenic acid decreased cell proliferation as measured by MTT activity. Polymerase chain reaction (PCR) showed that treatment of cells with chlorogenic acid reduced the expression of BCL2 but increased that of both BAX and CASP3. Chlorogenic acid enhanced annexin V expression as measured using fluorescently labeled annexin V. Chlorogenic acid also induced p38 MAPK and JNK gene expression. Meanwhile, several agents, including SB203580 (p38 MAP kinase inhibitor), N-acetylcysteine (antioxidant inhibitor), dipyridamole (phosphodiesterase inhibitor), and apocynin (NADPH-oxidase inhibitor) blocked chlorogenic acid-induced BAX gene expression. Chlorogenic acid reduced gene expression levels of stem cell-associated markers NANOG, POU5F1, and SOX2. Together these results indicate that chlorogenic acid affects the expression of apoptosis-related genes that are part of oxidative stress and p38 MAP-dependent pathways, as well as genes encoding stem cell markers. In conclusion, chlorogenic acid may contribute to the polyphenolic anti-cancer effect associated with consumption of vegetables and fruits.
Properties of resistant cells generated from lung cancer cell lines treated with EGFR inhibitors.
Ghosh, Gargi; Lian, Xiaojun; Kron, Stephen J; Palecek, Sean P
2012-03-20
Epidermal growth factor receptor (EGFR) signaling plays an important role in non-small cell lung cancer (NSCLC) and therapeutics targeted against EGFR have been effective in treating a subset of patients bearing somatic EFGR mutations. However, the cancer eventually progresses during treatment with EGFR inhibitors, even in the patients who respond to these drugs initially. Recent studies have identified that the acquisition of resistance in approximately 50% of cases is due to generation of a secondary mutation (T790M) in the EGFR kinase domain. In about 20% of the cases, resistance is associated with the amplification of MET kinase. In the remaining 30-40% of the cases, the mechanism underpinning the therapeutic resistance is unknown. An erlotinib resistant subline (H1650-ER1) was generated upon continuous exposure of NSCLC cell line NCI-H1650 to erlotinib. Cancer stem cell like traits including expression of stem cell markers, enhanced ability to self-renew and differentiate, and increased tumorigenicity in vitro were assessed in erlotinib resistant H1650-ER1 cells. The erlotinib resistant subline contained a population of cells with properties similar to cancer stem cells. These cells were found to be less sensitive towards erlotinib treatment as measured by cell proliferation and generation of tumor spheres in the presence of erlotinib. Our findings suggest that in cases of NSCLC accompanied by mutant EGFR, treatment targeting inhibition of EGFR kinase activity in differentiated cancer cells may generate a population of cancer cells with stem cell properties.
The novel JNK inhibitor AS602801 inhibits cancer stem cells in vitro and in vivo.
Okada, Masashi; Kuramoto, Kenta; Takeda, Hiroyuki; Watarai, Hikaru; Sakaki, Hirotsugu; Seino, Shizuka; Seino, Manabu; Suzuki, Shuhei; Kitanaka, Chifumi
2016-05-10
A phase 2 clinical trial investigating the efficacy and safety of AS602801, a newly developed JNK inhibitor, in the treatment of inflammatory endometriosis is complete. We are now examining whether AS602801 acts against human cancer cells in vitro and in vivo. In vitro, AS602801 exhibited cytotoxicity against both serum-cultured non-stem cancer cells and cancer stem cells derived from human pancreatic cancer, non-small cell lung cancer, ovarian cancer and glioblastoma at concentrations that did not decrease the viability of normal human fibroblasts. AS602801 also inhibited the self-renewal and tumor-initiating capacity of cancer stem cells surviving AS602801 treatment. Cancer stem cells in established xenograft tumors were reduced by systemic administration of AS602801 at a dose and schedule that did not adversely affect the health of the tumor-bearing mice. These findings suggest AS602801 is a promising anti-cancer stem cell agent, and further investigation of the utility of AS602801 in the treatment of cancer seems warranted.
Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V.; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K.; Bellusci, Saverio
2015-01-01
Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10+ progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. PMID:26511927
Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K; Bellusci, Saverio
2015-12-01
Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10(+) progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. © 2015. Published by The Company of Biologists Ltd.
Liu, Jing; Xiao, Zhijie; Wong, Sunny Kit-Man; Tin, Vicky Pui-Chi; Ho, Ka-Yan; Wang, Junwen; Sham, Mai-Har; Wong, Maria Pik
2013-10-01
Limited improvement in long term survival of lung cancer patients has been achieved by conventional chemotherapy or targeted therapy. To explore the potentials of tumor initiating cells (TIC)-directed therapy, it is essential to identify the cell targets and understand their maintenance mechanisms. We have analyzed the performance of ALDH/CD44 co-expression as TIC markers and treatment targets of lung cancer using well-validated in vitro and in vivo analyses in multiple established and patient-derived lung cancer cells. The ALDH(hi)CD44(hi) subset showed the highest enhancement of stem cell phenotypic properties compared to ALDH(hi)CD44(lo), ALDH(lo)CD44(hi), ALDH(lo)CD44(lo) cells and unsorted controls. They showed higher invasion capacities, pluripotency genes and epithelial-mesenchymal transition transcription factors expression, lower intercellular adhesion protein expression and higher G2/M phase cell cycle fraction. In immunosuppressed mice, the ALDH(hi)CD44(hi)xenografts showed the highest tumor induction frequency, serial transplantability, shortest latency, largest volume and highest growth rates. Inhibition of sonic Hedgehog and Notch developmental pathways reduced ALDH+CD44+ compartment. Chemotherapy and targeted therapy resulted in higher AALDH(hi)CD44(hi) subset viability and ALDH(lo)CD44(lo) subset apoptosis fraction. ALDH inhibition and CD44 knockdown led to reduced stemness gene expression and sensitization to drug treatment. In accordance, clinical lung cancers containing a higher abundance of ALDH and CD44-coexpressing cells was associated with lower recurrence-free survival. Together, results suggested theALDH(hi)CD44(hi)compartment was the cellular mediator of tumorigenicity and drug resistance. Further investigation of the regulatory mechanisms underlying ALDH(hi)CD44(hi)TIC maintenance would be beneficial for the development of long term lung cancer control.
Tian, Weijun; Liu, Yi; Zhang, Bai; Dai, Xiangchen; Li, Guang; Li, Xiaochun; Zhang, Zhixiang; Du, Caigan; Wang, Hao
2015-02-01
Cold ischemia-reperfusion injury (IRI) is a major cause of graft failure in lung transplantation. Despite therapeutic benefits of mesenchymal stem cells (MSCs) in attenuating acute lung injury, their protection of lung transplants from cold IRI remains elusive. The present study was to test the efficacy of MSCs in the prevention of cold IRI using a novel murine model of orthotopic lung transplantation. Donor lungs from C57BL/6 mice were exposed to 6 h of cold ischemia before transplanted to syngeneic recipients. MSCs were isolated from the bone marrows of C57BL/6 mice for recipient treatment. Gas exchange was determined by the measurement of blood oxygenation, and lung injury and inflammation were assessed by histological analyses. Intravenously delivered MSC migration/trafficking to the lung grafts occurred within 4-hours post-transplantation. As compared to untreated controls, the graft arterial blood oxygenation (PaO2/FiO2) capacity was significantly improved in MSC-treated recipients as early as 4 h post-reperfusion and such improvement continued over time. By 72 h, oxygenation reached normal level that was not seen in controls. MSCs treatment conferred significant protection of the grafts from cold IRI and cell apoptosis, which is correlated with less cellular infiltration, a decrease in proinflammatory cytokines (TNF-α, IL-6) and toll-like receptor 4, and an increase in anti-inflammatory TSG-6 generation. MSCs provide significant protection against cold IRI in lung transplants, and thus may be a promising strategy to improve outcomes after lung transplantation.
Stem cell-like ALDHbright cellular states in EGFR-mutant non-small cell lung cancer
Corominas-Faja, Bruna; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; Segura-Carretero, Antonio; Joven, Jorge; Martin-Castillo, Begoña; Barrajón-Catalán, Enrique; Micol, Vicente; Bosch-Barrera, Joaquim; Menendez, Javier A
2013-01-01
The enrichment of cancer stem cell (CSC)-like cellular states has not previously been considered to be a causative mechanism in the generalized progression of EGFR-mutant non-small cell lung carcinomas (NSCLC) after an initial response to the EGFR tyrosine kinase inhibitor erlotinib. To explore this possibility, we utilized a pre-clinical model of acquired erlotinib resistance established by growing NSCLC cells containing a TKI-sensitizing EGFR exon 19 deletion (ΔE746-A750) in the continuous presence of high doses of erlotinib. Genome-wide analyses using Agilent 44K Whole Human Genome Arrays were evaluated via bioinformatics analyses through GSEA-based screening of the KEGG pathway database to identify the molecular circuitries that were over-represented in the transcriptomic signatures of erlotinib-refractory cells. The genomic spaces related to erlotinib resistance included a preponderance of cell cycle genes (E2F1, -2, CDC2, -6) and DNA replication-related genes (MCM4, -5, -6, -7), most of which are associated with early lung development and poor prognosis. In addition, metabolic genes such as ALDH1A3 (a candidate marker for lung cancer cells with CSC-like properties) were identified. Thus, we measured the proportion of erlotinib-resistant cells expressing very high levels of aldehyde dehydrogenase (ALDH) activity attributed to ALDH1/3 isoforms. Using flow cytometry and the ALDEFLUOR® reagent, we confirmed that erlotinib-refractory cell populations contained drastically higher percentages (>4500%) of ALDHbright cells than the parental erlotinib-responsive cells. Notably, strong decreases in the percentages of ALDHbright cells were observed following incubation with silibinin, a bioactive flavonolignan that can circumvent erlotinib resistance in vivo. The number of lung cancer spheres was drastically suppressed by silibinin in a dose-dependent manner, thus confirming the ability of this agent to inhibit the self-renewal of erlotinib-refractory CSC-like cells. This report is the first to show that: (1) loss of responsiveness to erlotinib in EGFR-mutant NSCLC can be explained in terms of erlotinib-refractory ALDHbright cells, which have been shown to exhibit stem cell-like properties; and (2) erlotinib-refractory ALDHbright cells are sensitive to the natural agent silibinin. Our findings highlight the benefit of administration of silibinin in combination with EGFR TKIs to target CSCs and minimize the ability of tumor cells to escape cell death in EGFR-mutant NSCLC patients. PMID:24047698
... kidney or lung problems after receiving a hematopoietic stem-cell transplant (HSCT; procedure in which certain blood cells ... any products such as vitamins, minerals, or other dietary supplements. You should bring this list with you each ...
Ni, Ke; Liu, Ming; Zheng, Jian; Wen, Liyan; Chen, Qingyun; Xiang, Zheng; Lam, Kowk-Tai; Liu, Yinping; Chan, Godfrey Chi-Fung; Lau, Yu-Lung; Tu, Wenwei
2018-06-01
Pulmonary fibrosis is a chronic progressive lung disease with few treatments. Human mesenchymal stem cells (MSCs) have been shown to be beneficial in pulmonary fibrosis because they have immunomodulatory capacity. However, there is no reliable model to test the therapeutic effect of human MSCs in vivo. To mimic pulmonary fibrosis in humans, we established a novel bleomycin-induced pulmonary fibrosis model in humanized mice. With this model, the benefit of human MSCs in pulmonary fibrosis and the underlying mechanisms were investigated. In addition, the relevant parameters in patients with pulmonary fibrosis were examined. We demonstrate that human CD8 + T cells were critical for the induction of pulmonary fibrosis in humanized mice. Human MSCs could alleviate pulmonary fibrosis and improve lung function by suppressing bleomycin-induced human T-cell infiltration and proinflammatory cytokine production in the lungs of humanized mice. Importantly, alleviation of pulmonary fibrosis by human MSCs was mediated by the PD-1/programmed death-ligand 1 pathway. Moreover, abnormal PD-1 expression was found in circulating T cells and lung tissues of patients with pulmonary fibrosis. Our study supports the potential benefit of targeting the PD-1/programmed death-ligand 1 pathway in the treatment of pulmonary fibrosis.
Wang, Jiankang; Luo, Bingling; Li, Xiaobing; Lu, Wenhua; Yang, Jing; Hu, Yumin; Huang, Peng; Wen, Shijun
2017-06-22
Reactive oxygen species (ROS) have a crucial role in cell signaling and cellular functions. Mounting evidences suggest that abnormal increase of ROS is often observed in cancer cells and that this biochemical feature can be exploited for selective killing of the malignant cells. A naturally occurring compound phenethyl isothiocyanate (PEITC) has been shown to have promising anticancer activity by modulating intracellular ROS. Here we report a novel synthetic analog of PEITC with superior in vitro and in vivo antitumor effects. Mechanistic study showed that LBL21 induced a rapid depletion of intracellular glutathione (GSH), leading to abnormal ROS accumulation and mitochondrial dysfunction, evident by a decrease in mitochondrial respiration and transmembrane potential. Importantly, LBL21 exhibited the ability to abrogate stem cell-like cancer side population (SP) cells in non-small cell lung cancer A549 cells associated with a downregulation of stem cell markers including OCT4, ABCG2, SOX2 and CD133. Functionally, LBL21 inhibited the ability of cancer cells to form colonies in vitro and develop tumor in vivo. The therapeutic efficacy of LBL21 was further demonstrated in mice bearing A549 lung cancer xenografts. Our study suggests that the novel ROS-modulating agent LBL21 has promising anticancer activity with an advantage of elimination of stem-like cancer cells. This compound merits further study to evaluate its potential for use in cancer treatment.
Tirino, Virginia; Camerlingo, Rosa; Franco, Renato; Malanga, Donatella; La Rocca, Antonello; Viglietto, Giuseppe; Rocco, Gaetano; Pirozzi, Giuseppe
2009-09-01
Emerging evidence suggests that specific sub-populations of cancer cells with stem cell characteristics within the bulk of tumours are implicated in the pathogenesis of heterogeneous malignant tumours. The cells that drive tumour growth have been denoted cancer-initiating cells or cancer stem cells (hereafter CSCs). CSCs have been isolated initially from leukaemias and subsequently from several solid tumours including brain, breast, prostate, colon and lung cancer. This study aimed at isolating and characterising the population of tumour-initiating cells in non-small-cell lung cancer (NSCLC). Specimens of NSCLC obtained from 89 patients undergoing tumour resection at the Cancer National Institute of Naples were analysed. Three methods to isolate the tumour-initiating cells were used: (1) flow cytometry analysis for identification of positive cells for surface markers such as CD24, CD29, CD31, CD34, CD44, CD133 and CD326; (2) Hoechst 33342 dye exclusion test for the identification of a side-population characteristic for the presence of stem cells; (3) non-adherent culture condition able to form spheres with stem cell-like characteristics. Definition of the tumourigenic potential of the cells through soft agar assay and injection into NOD/SCID mice were used to functionally define (in vitro and in vivo) putative CSCs isolated from NSCLC samples. Upon flow cytometry analysis of NSCLC samples, CD133-positive cells were found in 72% of 89 fresh specimens analysed and, on average, represented 6% of the total cells. Moreover, the number of CD133-positive cells increased markedly when the cells, isolated from NSCLC specimens, were grown as spheres in non-adherent culture conditions. Cells from NSCLC, grown as spheres, when assayed in soft agar, give rise to a 3.8-fold larger number of colonies in culture and are more tumourigenic in non-obese diabetic (NOD)/severe combined immunodeficiency (SCID) mice compared with the corresponding adherent cells. We have isolated and characterised a population of CD133-positive cells from NSCLC that is able to give rise to spheres and can act as tumour-initiating cells.
Wang, Jinhan; Wang, Liwen; Ho, Chi-Tang; Zhang, Kunsheng; Liu, Qiang; Zhao, Hui
2017-05-10
Nonsmall cell lung cancer (NSCLC) is the predominant type of lung cancer. Patients with NSCLC show high mortality rates because of failure to clean up cancer stem cells (CSCs). The anticancer activity of phytochemical garcinol has been identified in various cancer cell models. However, the effect of garcinol on NSCLC cell lines is still lacking. Of the NSCLC cell lines we tested, A549 cells were the most sensitive to garcinol. Interestingly, Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) was preferentially expressed in A549 cells and downregulated by the addition of garcinol. We also found that garcinol enriched DNA damage-inducible transcript 3 (DDIT3) and then altered DDIT3-CCAAT-enhancer-binding proteins beta (C/EBPβ) interaction resulting in a decreased binding of C/EBPβ to the endogenous ALDH1A1 promoter. Furthermore, garcinol's inhibition of ALDH1A1 was identified in a xenograft mice model. Garcinol repressed ALDH1A1 transcription in A549 cells through alterations in the interaction between DDIT3 and C/EBPβ. Garcinol could be a potential dietary phytochemical candidate for NSCLCs patients whose tumors harbored high ALDH1A1 expression.
Extracellular matrix in lung development, homeostasis and disease
Zhou, Yong; Horowitz, Jeffrey C.; Naba, Alexandra; ...
2018-03-08
Here, the lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECMmore » in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.« less
Extracellular matrix in lung development, homeostasis and disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yong; Horowitz, Jeffrey C.; Naba, Alexandra
Here, the lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECMmore » in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.« less
Extracellular matrix in lung development, homeostasis and disease
Zhou, Yong; Horowitz, Jeffrey C.; Naba, Alexandra; ...
2018-03-08
The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this paper, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM inmore » normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. Finally, we identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.« less
Angelini, Daniel J; Dorsey, Russell M; Willis, Kristen L; Hong, Charles; Moyer, Robert A; Oyler, Jonathan; Jensen, Neil S; Salem, Harry
2013-01-01
Chemical warfare agents (CWAs) as well as biological toxins present a significant inhalation injury risk to both deployed warfighters and civilian targets of terrorist attacks. Inhalation of many CWAs and biological toxins can induce severe pulmonary toxicity leading to the development of acute lung injury (ALI) as well as acute respiratory distress syndrome (ARDS). The therapeutic options currently used to treat these conditions are very limited and mortality rates remain high. Recent evidence suggests that human stem cells may provide significant therapeutic options for ALI and ARDS in the near future. The threat posed by CWAs and biological toxins for both civilian populations and military personnel is growing, thus understanding the mechanisms of toxicity and potential therapies is critical. This review will outline the pulmonary toxic effects of some of the most common CWAs and biological toxins as well as the potential role of stem cells in treating these types of toxic lung injuries.
Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis
2010-01-01
Background No effective treatment for acute lung injury and fibrosis currently exists. Aim of this study was to investigate the time-dependent effect of bone marrow-derived mesenchymal stem cells (BMDMSCs) on bleomycin (BLM)-induced acute lung injury and fibrosis and nitric oxide metabolites and inflammatory cytokine production. Methods BMDMSCs were transferred 4 days after BLM inhalation. Wet/dry ratio, bronchoalveolar lavage cell profiles, histologic changes and deposition of collagen were analyzed. Results Nitrite, nitrate and cytokines were measured weekly through day 28. At day 7, the wet/dry ratio, neutrophilic inflammation, and amount of collagen were elevated in BLM-treated rats compared to sham rats (p = 0.05-0.002). Levels nitrite, nitrate, IL-1β, IL-6, TNF-α, TGF-β and VEGF were also higher at day 7 (p < 0.05). Degree of lymphocyte and macrophage infiltration increased steadily over time. BMDMSC transfer significantly reduced the BLM-induced increase in wet/dry ratio, degree of neutrophilic infiltration, collagen deposition, and levels of the cytokines, nitrite, and nitrate to those in sham-treated rats (p < 0.05). Fluorescence in situ hybridization localized the engrafted cells to areas of lung injury. Conclusion Systemic transfer of BMDMSCs effectively reduced the BLM-induced lung injury and fibrosis through the down-regulation of nitric oxide metabolites, and proinflammatory and angiogenic cytokines. PMID:20137099
Zheng, Bo; von See, Marc P.; Yu, Elaine; Gunel, Beliz; Lu, Kuan; Vazin, Tandis; Schaffer, David V.; Goodwill, Patrick W.; Conolly, Steven M.
2016-01-01
Stem cell therapies have enormous potential for treating many debilitating diseases, including heart failure, stroke and traumatic brain injury. For maximal efficacy, these therapies require targeted cell delivery to specific tissues followed by successful cell engraftment. However, targeted delivery remains an open challenge. As one example, it is common for intravenous deliveries of mesenchymal stem cells (MSCs) to become entrapped in lung microvasculature instead of the target tissue. Hence, a robust, quantitative imaging method would be essential for developing efficacious cell therapies. Here we show that Magnetic Particle Imaging (MPI), a novel technique that directly images iron-oxide nanoparticle-tagged cells, can longitudinally monitor and quantify MSC administration in vivo. MPI offers near-ideal image contrast, depth penetration, and robustness; these properties make MPI both ultra-sensitive and linearly quantitative. Here, we imaged, for the first time, the dynamic trafficking of intravenous MSC administrations using MPI. Our results indicate that labeled MSC injections are immediately entrapped in lung tissue and then clear to the liver within one day, whereas standard iron oxide particle (Resovist) injections are immediately taken up by liver and spleen. Longitudinal MPI-CT imaging also indicated a clearance half-life of MSC iron oxide labels in the liver at 4.6 days. Finally, our ex vivo MPI biodistribution measurements of iron in liver, spleen, heart, and lungs after injection showed excellent agreement (R2 = 0.943) with measurements from induction coupled plasma spectrometry. These results demonstrate that MPI offers strong utility for noninvasively imaging and quantifying the systemic distribution of cell therapies and other therapeutic agents. PMID:26909106
Zhang, Yan-na; Duan, Xiao-gang; Zhang, Wen-hui; Wu, Ai-ling; Yang, Huan-Huan; Wu, Dong-ming; Wei, Yu-Quan; Chen, Xian-cheng
2016-01-01
Cancer stem cells (CSCs) are critical for tumor initiation/maintenance and recurrence or metastasis, so they may serve as a potential therapeutic target. However, CSC-established multitherapy resistance and immune tolerance render tumors resistant to current tumor-targeted strategies. To address this, renewable multiepitope-integrated spheroids based on placenta-derived mesenchymal stem cells (pMSCs) were X-ray-modified, at four different irradiation levels, including 80, 160, 240, and 320 Gy, as pluripotent biologics, to inoculate hosts bearing Lewis lung carcinoma (LL2) and compared with X-ray-modified common LL2 cells as control. We show that the vaccines at the 160/240 Gy irradiation levels could rapidly trigger tumor cells into the apoptosis loop and evidently prolong the tumor-bearing host’s survival cycle, in contrast to vaccines irradiated at other levels (P<0.05), with tumor-sustaining stromal cell-derived factor-1/CXCR4 pathway being selectively blockaded. Meanwhile, almost no or minimal toxicity was detected in the vaccinated hosts. Importantly, 160/240 Gy-irradiated vaccines could provoke significantly higher killing of CSCs and non-CSCs, which may provide an access to developing a novel biotherapy against lung carcinoma. PMID:27042111
Recruited Monocytes and Type 2 Immunity Promote Lung Regeneration following Pneumonectomy.
Lechner, Andrew J; Driver, Ian H; Lee, Jinwoo; Conroy, Carmen M; Nagle, Abigail; Locksley, Richard M; Rock, Jason R
2017-07-06
To investigate the role of immune cells in lung regeneration, we used a unilateral pneumonectomy model that promotes the formation of new alveoli in the remaining lobes. Immunofluorescence and single-cell RNA sequencing found CD115+ and CCR2+ monocytes and M2-like macrophages accumulating in the lung during the peak of type 2 alveolar epithelial stem cell (AEC2) proliferation. Genetic loss of function in mice and adoptive transfer studies revealed that bone marrow-derived macrophages (BMDMs) traffic to the lung through a CCL2-CCR2 chemokine axis and are required for optimal lung regeneration, along with Il4ra-expressing leukocytes. Our data suggest that these cells modulate AEC2 proliferation and differentiation. Finally, we provide evidence that group 2 innate lymphoid cells are a source of IL-13, which promotes lung regeneration. Together, our data highlight the potential for immunomodulatory therapies to stimulate alveologenesis in adults. Copyright © 2017 Elsevier Inc. All rights reserved.
Optimal flow conditions of a tracheobronchial model to reengineer lung structures
NASA Astrophysics Data System (ADS)
Casarin, Stefano; Aletti, Federico; Baselli, Giuseppe; Garbey, Marc
2017-04-01
The high demand for lung transplants cannot be matched by an adequate number of lungs from donors. Since fully ex-novo lungs are far from being feasible, tissue engineering is actively considering implantation of engineered lungs where the devitalized structure of a donor is used as scaffold to be repopulated by stem cells of the receiving patient. A decellularized donated lung is treated inside a bioreactor where transport through the tracheobronchial tree (TBT) will allow for both deposition of stem cells and nourishment for their subsequent growth, thus developing new lung tissue. The key concern is to set optimally the boundary conditions to utilize in the bioreactor. We propose a predictive model of slow liquid ventilation, which combines a one-dimensional (1-D) mathematical model of the TBT and a solute deposition model strongly dependent on fluid velocity across the tree. With it, we were able to track and drive the concentration of a generic solute across the airways, looking for its optimal distribution. This was given by properly adjusting the pumps' regime serving the bioreactor. A feedback system, created by coupling the two models, allowed us to derive the optimal pattern. The TBT model can be easily invertible, thus yielding a straightforward flow/pressure law at the inlet to optimize the efficiency of the bioreactor.
Hypoxia-preconditioned mesenchymal stem cells ameliorate ischemia/reperfusion-induced lung injury.
Liu, Yung-Yang; Chiang, Chi-Huei; Hung, Shih-Chieh; Chian, Chih-Feng; Tsai, Chen-Liang; Chen, Wei-Chih; Zhang, Haibo
2017-01-01
Hypoxia preconditioning has been proven to be an effective method to enhance the therapeutic action of mesenchymal stem cells (MSCs). However, the beneficial effects of hypoxic MSCs in ischemia/reperfusion (I/R) lung injury have yet to be investigated. In this study, we hypothesized that the administration of hypoxic MSCs would have a positive therapeutic impact on I/R lung injury at molecular, cellular, and functional levels. I/R lung injury was induced in isolated and perfused rat lungs. Hypoxic MSCs were administered in perfusate at a low (2.5×105 cells) and high (1×106 cells) dose. Rats ventilated with a low tidal volume of 6 ml/kg served as controls. Hemodynamics, lung injury indices, inflammatory responses and activation of apoptotic pathways were determined. I/R induced permeability pulmonary edema with capillary leakage and increased levels of reactive oxygen species (ROS), pro-inflammatory cytokines, adhesion molecules, cytosolic cytochrome C, and activated MAPK, NF-κB, and apoptotic pathways. The administration of a low dose of hypoxic MSCs effectively attenuated I/R pathologic lung injury score by inhibiting inflammatory responses associated with the generation of ROS and anti-apoptosis effect, however this effect was not observed with a high dose of hypoxic MSCs. Mechanistically, a low dose of hypoxic MSCs down-regulated P38 MAPK and NF-κB signaling but upregulated glutathione, prostaglandin E2, IL-10, mitochondrial cytochrome C and Bcl-2. MSCs infused at a low dose migrated into interstitial and alveolar spaces and bronchial trees, while MSCs infused at a high dose aggregated in the microcirculation and induced pulmonary embolism. Hypoxic MSCs can quickly migrate into extravascular lung tissue and adhere to other inflammatory or structure cells and attenuate I/R lung injury through anti-oxidant, anti-inflammatory and anti-apoptotic mechanisms. However, the dose of MSCs needs to be optimized to prevent pulmonary embolism and thrombosis.
Hypoxia-preconditioned mesenchymal stem cells ameliorate ischemia/reperfusion-induced lung injury
Chiang, Chi-Huei; Hung, Shih-Chieh; Chian, Chih-Feng; Tsai, Chen-Liang; Chen, Wei-Chih; Zhang, Haibo
2017-01-01
Background Hypoxia preconditioning has been proven to be an effective method to enhance the therapeutic action of mesenchymal stem cells (MSCs). However, the beneficial effects of hypoxic MSCs in ischemia/reperfusion (I/R) lung injury have yet to be investigated. In this study, we hypothesized that the administration of hypoxic MSCs would have a positive therapeutic impact on I/R lung injury at molecular, cellular, and functional levels. Methods I/R lung injury was induced in isolated and perfused rat lungs. Hypoxic MSCs were administered in perfusate at a low (2.5×105 cells) and high (1×106 cells) dose. Rats ventilated with a low tidal volume of 6 ml/kg served as controls. Hemodynamics, lung injury indices, inflammatory responses and activation of apoptotic pathways were determined. Results I/R induced permeability pulmonary edema with capillary leakage and increased levels of reactive oxygen species (ROS), pro-inflammatory cytokines, adhesion molecules, cytosolic cytochrome C, and activated MAPK, NF-κB, and apoptotic pathways. The administration of a low dose of hypoxic MSCs effectively attenuated I/R pathologic lung injury score by inhibiting inflammatory responses associated with the generation of ROS and anti-apoptosis effect, however this effect was not observed with a high dose of hypoxic MSCs. Mechanistically, a low dose of hypoxic MSCs down-regulated P38 MAPK and NF-κB signaling but upregulated glutathione, prostaglandin E2, IL-10, mitochondrial cytochrome C and Bcl-2. MSCs infused at a low dose migrated into interstitial and alveolar spaces and bronchial trees, while MSCs infused at a high dose aggregated in the microcirculation and induced pulmonary embolism. Conclusions Hypoxic MSCs can quickly migrate into extravascular lung tissue and adhere to other inflammatory or structure cells and attenuate I/R lung injury through anti-oxidant, anti-inflammatory and anti-apoptotic mechanisms. However, the dose of MSCs needs to be optimized to prevent pulmonary embolism and thrombosis. PMID:29117205
Park, Jae-Hyun; Inoue, Hiroyuki; Kato, Taigo; Zewde, Makda; Miyamoto, Takashi; Matsuo, Yo; Salgia, Ravi; Nakamura, Yusuke
2017-03-01
T-lymphokine-activated killer cell-originated protein kinase (TOPK) plays critical roles in cancer cell proliferation as well as maintenance of cancer stem cells (CSC). Small cell lung cancer (SCLC) has highly aggressive phenotype, reveals early spread to distant sites, and results in dismal prognosis with little effective treatment. In this study, we demonstrate that TOPK expression was highly upregulated in both SCLC cell lines and primary tumors. Similar to siRNA-mediated TOPK knockdown effects, treatment with a potent TOPK inhibitor, OTS514, effectively suppressed growth of SCLC cell lines (IC 50 ; 0.4-42.6 nM) and led to their apoptotic cell death. TOPK inhibition caused cell morphologic changes in SCLC cells, elongation of intercellular bridges caused by cytokinesis defects or neuronal protrusions induced by neuronal differentiation in a subset of CSC-like SCLC cells. Treatment with OTS514 suppressed forkhead box protein M1 (FOXM1) activity, which was involved in stemness of CSC. Furthermore, OTS514 treatment reduced CD90-positive SCLC cells and showed higher cytotoxic effect against lung sphere-derived CSC-like SCLC cells. Collectively, our results suggest that targeting TOPK is a promising approach for SCLC therapy. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Paraneoplastic brain stem encephalitis in a woman with anti-Ma2 antibody.
Barnett, M; Prosser, J; Sutton, I; Halmagyi, G M; Davies, L; Harper, C; Dalmau, J
2001-02-01
A woman developed brain stem encephalopathy in association with serum anti-Ma2 antibodies and left upper lobe lung mass. T2 weighted MRI of the brain showed abnormalities involving the pons, left middle and superior cerebellar peduncles, and bilateral basal ganglia. Immunohistochemical analysis for serum antineuronal antibodies was confounded by the presence of a non-neuronal specific antinuclear antibody. Immunoblot studies showed the presence of anti-Ma2 antibodies. A premortem tissue diagnosis of the lung mass could not be established despite two CT guided needle biopsies, and the patient died as a result of rapid neurological deterioration. The necropsy showed that the lung lesion was an adenocarcinoma which expressed Ma2 immunoreactive protein. Neuropathological findings included prominent perivascular inflammatory infiltrates, glial nodules, and neuronophagia involving the brain stem, basal ganglia, hippocampus and the dentate nucleus of the cerebellum. Ma2 is an autoantigen previously identified in patients with germ cell tumours of the testis and paraneoplastic brain stem and limbic encephalitis. Our patient's clinical and immunopathological findings indicate that this disorder can affect women with lung adenocarcinoma, and that the encephalitic changes predominate in those regions of the brain known to express high concentrations of Ma proteins.
Paraneoplastic brain stem encephalitis in a woman with anti-Ma2 antibody
Barnett, M; Prosser, J; Sutton, I; Halmagyi, G; Davies, L; Harper, C; Dalmau, J
2001-01-01
A woman developed brain stem encephalopathy in association with serum anti-Ma2 antibodies and left upper lobe lung mass. T2 weighted MRI of the brain showed abnormalities involving the pons, left middle and superior cerebellar peduncles, and bilateral basal ganglia. Immunohistochemical analysis for serum antineuronal antibodies was confounded by the presence of a non-neuronal specific antinuclear antibody. Immunoblot studies showed the presence of anti-Ma2 antibodies. A premortem tissue diagnosis of the lung mass could not be established despite two CT guided needle biopsies, and the patient died as a result of rapid neurological deterioration. The necropsy showed that the lung lesion was an adenocarcinoma which expressed Ma2 immunoreactive protein. Neuropathological findings included prominent perivascular inflammatory infiltrates, glial nodules, and neuronophagia involving the brain stem, basal ganglia, hippocampus and the dentate nucleus of the cerebellum. Ma2 is an autoantigen previously identified in patients with germ cell tumours of the testis and paraneoplastic brain stem and limbic encephalitis. Our patient's clinical and immunopathological findings indicate that this disorder can affect women with lung adenocarcinoma, and that the encephalitic changes predominate in those regions of the brain known to express high concentrations of Ma proteins. PMID:11160472
Sphere-derived tumor cells exhibit impaired metastasis by a host-mediated quiescent phenotype
Bleau, Anne-Marie; Zandueta, Carolina; Redrado, Miriam; Martínez-Canarias, Susana; Larzábal, Leyre; Montuenga, Luis M.
2015-01-01
The spread of lung cancer cells to distant sites represents a common event associated with poor prognosis. A fraction of tumor cells named cancer stem cells (CSCs) have the ability to overcome therapeutic stress and remain quiescent. However, whether these CSCs have also the capacity to initiate and sustain metastasis remains unclear. Here, we used tumor sphere cultures (TSC) isolated from mouse and human lung cancer models to enrich for CSCs, and assessed their metastatic potential as compared to non-CSCs. As expected, TSC overexpressed a variety of stem cell markers and displayed chemoresistance. The CSC phenotype of TSC was confirmed by their higher growth ability in soft agar and tumorigenic potential in vivo, despite their reduced in vitro cell growth kinetics. Surprisingly, the appearance of spontaneous lung metastases was strongly delayed in mice injected with TSC as compared to non-TSC cells. Similarly, this finding was confirmed in several other models of metastasis, an effect associated with a retarded colonization activity. Interestingly, such delay correlated with a quiescent phenotype whose underlined mechanisms included an increase in p27 protein and lower phospho-ERK1/2 levels. Thus, these data suggest that cells enriched for CSC properties display an impaired metastatic activity, a finding with potential clinical implications. PMID:26318423
RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer
Rao, Shuan; Sigl, Verena; Wimmer, Reiner Alois; Novatchkova, Maria; Jais, Alexander; Wagner, Gabriel; Handschuh, Stephan; Uribesalgo, Iris; Hagelkruys, Astrid; Kozieradzki, Ivona; Tortola, Luigi; Nitsch, Roberto; Cronin, Shane J.; Orthofer, Michael; Branstetter, Daniel; Canon, Jude; Rossi, John; D'Arcangelo, Manolo; Botling, Johan; Micke, Patrick; Fleur, Linnea La; Edlund, Karolina; Bergqvist, Michael; Ekman, Simon; Lendl, Thomas; Popper, Helmut; Takayanagi, Hiroshi; Kenner, Lukas; Hirsch, Fred R.; Dougall, William
2017-01-01
Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRasG12D in mouse lung epithelial cells markedly impairs the progression of KRasG12D-driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRasG12D-driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer. PMID:29118048
Controlling Differentiation of Stem Cells for Developing Personalized Organ-on-Chip Platforms.
Geraili, Armin; Jafari, Parya; Hassani, Mohsen Sheikh; Araghi, Behnaz Heidary; Mohammadi, Mohammad Hossein; Ghafari, Amir Mohammad; Tamrin, Sara Hasanpour; Modarres, Hassan Pezeshgi; Kolahchi, Ahmad Rezaei; Ahadian, Samad; Sanati-Nezhad, Amir
2018-01-01
Organ-on-chip (OOC) platforms have attracted attentions of pharmaceutical companies as powerful tools for screening of existing drugs and development of new drug candidates. OOCs have primarily used human cell lines or primary cells to develop biomimetic tissue models. However, the ability of human stem cells in unlimited self-renewal and differentiation into multiple lineages has made them attractive for OOCs. The microfluidic technology has enabled precise control of stem cell differentiation using soluble factors, biophysical cues, and electromagnetic signals. This study discusses different tissue- and organ-on-chip platforms (i.e., skin, brain, blood-brain barrier, bone marrow, heart, liver, lung, tumor, and vascular), with an emphasis on the critical role of stem cells in the synthesis of complex tissues. This study further recaps the design, fabrication, high-throughput performance, and improved functionality of stem-cell-based OOCs, technical challenges, obstacles against implementing their potential applications, and future perspectives related to different experimental platforms. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Krassikova, Lyudmila S; Karshieva, Saida S; Cheglakov, Ivan B; Belyavsky, Alexander V
2016-09-01
The combination of stem cell-based gene therapy with chemotherapy comprises an advantageous strategy that results in a reduction of system toxicity effects and an improvement in the general efficacy of treatment. In the present study, we estimated the efficacy of adipose tissue-derived mesenchymal stem cells (AT-MSCs) expressing cytosine deaminase (CDA) combined with lysomustine chemotherapy in mice bearing late stage Lewis lung carcinoma (LLC). Adipose tissue-derived mesenchymal stem cells were transfected with non-insert plasmid construct transiently expressing fused cytosine deaminase-uracil phosphoribosyltransferase protein (CDA/UPRT) or the same construct fused with Herpes Simplex Virus Type1 tegument protein VP22 (CDA/UPRT/VP22). Systemic administration of 5-fluorocytosine (5FC) and lysomustine was implemented after a single intratumoral injection of transfected AT-MSCs. We demonstrated that direct intratumoral transplantation of AT-MSCs expressing CDA/UPRT or CDA/UPRT/VP22 followed by systemic administration of 5FC resulted in a significant tumor growth inhibition. There was a 56% reduction in tumor volume in mice treated by AT-MSCs-CDA/UPRT + 5FC or with AT-MSCs-CDA/UPRT/VP22 + 5FC compared to control animals grafted with lung carcinoma alone. Transplantation of AT-MSCs-CDA/UPRT + 5FC and AT-MSCs-CDA/UPRT/VP22 + 5FC prolonged the life span of mice bearing LLC by 27% and 31%, respectively. Co-administration of lysomustine and AT-MSCs-CDA/UPRT + 5FC led to tumor growth inhibition (by 86%) and life span extension (by 60%) compared to the control group. Our data indicate that a combination CDA/UPRT-expressing AT-MSCs with lysomustine has a superior antitumor effect in the murine lung carcinoma model compared to monotherapies with transfected AT-MSCs or lysomustine alone, possibly because of a synergistic effect of the combination therapy. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Luan, Yun; Ding, Wei; Ju, Zhi-Ye; Zhang, Zhao-Hua; Zhang, Xue; Kong, Feng
2015-03-01
The aim of the present study was to investigate the effect of bone marrow‑derived mesenchymal stem cells (BMSCs) in the treatment of lung injury in a mouse model of bronchopulmonary dysplasia (BPD) and examine the underlying mechanisms. A mouse model of BPD was created using continuous exposure to high oxygen levels for 14 days. BMSCs were isolated, cultured and then labeled with green fluorescent protein. Cells (1x106) were subsequently injected intravenously 1 h prior to high oxygen treatment. Animals were randomly divided into three groups (n=5 in each): Control group, BPD model group and BMSC injection group. At two weeks post‑treatment, the expression of transforming growth factor‑β1 (TGF‑β1), vascular endothelial growth factor (VEGF) and von Willebrand factor (vWF) was detected using immunohistochemical staining and immunofluorescence. Compared with the BPD model group, the body weight, airway structure and levels of TGF‑β1 and VEGF were significantly improved in the BMSC‑treated group. Immunofluorescence observations indicated that BMSCs were able to differentiate into cells expressing vWF and VEGF, which are markers of vascular tissues. The present study demonstrated that intravenous injection of BMSCs significantly improved lung damage in a neonatal mouse model of BPD at 14 days following hyperoxia‑induced injury. This provides novel information which may be used to guide further investigation into the use of stem cells in BPD.
Airway Basal Cell Heterogeneity and Lung Squamous Cell Carcinoma.
Hynds, Robert E; Janes, Sam M
2017-09-01
Basal cells are stem/progenitor cells that maintain airway homeostasis, enact repair following epithelial injury, and are a candidate cell-of-origin for lung squamous cell carcinoma. Heterogeneity of basal cells is recognized in terms of gene expression and differentiation capacity. In this Issue, Pagano and colleagues isolate a subset of immortalized basal cells that are characterized by high motility, suggesting that they might also be heterogeneous in their biophysical properties. Motility-selected cells displayed an increased ability to colonize the lung in vivo The possible implications of these findings are discussed in terms of basal cell heterogeneity, epithelial cell migration, and modeling of metastasis that occurs early in cancer evolution. Cancer Prev Res; 10(9); 491-3. ©2017 AACR See related article by Pagano et al., p. 514 . ©2017 American Association for Cancer Research.
Automatic Stem Cell Detection in Microscopic Whole Mouse Cryo-imaging
Wuttisarnwattana, Patiwet; Gargesha, Madhusudhana; Hof, Wouter van’t; Cooke, Kenneth R.
2016-01-01
With its single cell sensitivity over volumes as large as or larger than a mouse, cryo-imaging enables imaging of stem cell biodistribution, homing, engraftment, and molecular mechanisms. We developed and evaluated a highly automated software tool to detect fluorescently labeled stem cells within very large (~200GB) cryo-imaging datasets. Cell detection steps are: preprocess, remove immaterial regions, spatially filter to create features, identify candidate pixels, classify pixels using bagging decision trees, segment cell patches, and perform 3D labeling. There are options for analysis and visualization. To train the classifier, we created synthetic images by placing realistic digital cell models onto cryo-images of control mice devoid of cells. Very good cell detection results were (precision=98.49%, recall=99.97%) for synthetic cryo-images, (precision=97.81%, recall=97.71%) for manually evaluated, actual cryo-images, and <1% false positives in control mice. An α-multiplier applied to features allows one to correct for experimental variations in cell brightness due to labeling. On dim cells (37% of standard brightness), with correction, we improved recall (49.26%→99.36%) without a significant drop in precision (99.99%→99.75%). With tail vein injection, multipotent adult progenitor cells in a graft-versus-host-disease model in the first days post injection were predominantly found in lung, liver, spleen, and bone marrow. Distribution was not simply related to blood flow. The lung contained clusters of cells while other tissues contained single cells. Our methods provided stem cell distribution anywhere in mouse with single cell sensitivity. Methods should provide a rational means of evaluating dosing, delivery methods, cell enhancements, and mechanisms for therapeutic cells. PMID:26552080
Yang, Fan; Li, Yang; Liu, Bin; You, Jiacong; Zhou, Qinghua
2018-01-01
Although the epidermal growth factor receptor (EGFR) and Wnt/β-catenin signaling systems synergistically regulate many essential developmental and regenerative processes in lung cancer, the mechanisms of their crosstalk remain poorly defined. Our study aimed to investigate an interaction between EGFR and the β-catenin signal. In this study, we described a potent activation of β-catenin by EGFR, which is dependent of the PtdIns3K/AKT pathway. We found EGF activated β-catenin signaling via phosphorylation of EGFR and AKT in EGFR-mutated PC-9 lung cancer cells. Meanwhile, EGFR tyrosine kinase inhibitors (EGFR-TKIs) regulated cancer stem-like cells (CSCs) by inhibiting autophosphorylation of EGFR and downstream signaling proteins, as well as β-catenin. Further, β-catenin depletion by RNA interference virtually eliminated cancer stem cell-like population in PC-9 cells in vitro. The nude mice transplantation model was also performed to confirm EGFR-TKIs strongly inhibited the β-catenin signal and decreased CSCs. Importantly, the reduction of CSCs that sorted out by side population (SP) cells significantly reduced the migration capability. Thus, our results improved the understanding of this process to provide insights into mechanisms of responding to EGFR-TKIs. Our discoveries raise an intriguing question of the role of β-catenin in EGFR-TKIs-treated cancer stem cell-like population(s) and its potential as a new therapeutic target for NSCLC in the future. Copyright © 2017 Elsevier Inc. All rights reserved.
Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem
2016-05-01
Persistent pulmonary hypertension(PPH) in congenital diaphragmatic hernia (CDH) is caused by increased vascular cell proliferation and endothelial cell (EC) dysfunction, thus leading to obstructive changes in the pulmonary vasculature. C-Kit and its ligand, stem cell factor(SCF), are expressed by ECs in the developing lung mesenchyme, suggesting an important role during lung vascular formation. Conversely, absence of c-Kit expression has been demonstrated in ECs of dysplastic alveolar capillaries. We hypothesized that c-Kit and SCF expression is increased in the pulmonary vasculature of nitrofen-induced CDH. Timed-pregnant rats received nitrofen or vehicle on gestational day 9(D9). Fetuses were sacrificed on D15, D18, and D21, and divided into control and CDH group. Pulmonary gene expression levels of c-Kit and SCF were analyzed by qRT-PCR. Immunofluorescence double staining for c-Kit and SCF was combined with CD34 to evaluate protein expression in ECs of the pulmonary vasculature. Relative mRNA levels of c-Kit and SCF were significantly increased in lungs of CDH fetuses on D15, D18, and D21 compared to controls. Confocal laser scanning microscopy confirmed markedly increased vascular c-Kit and SCF expression in mesenchymal ECs of CDH lungs on D15, D18, and D21 compared to controls. Increased expression of c-Kit and SCF in the pulmonary vasculature of nitrofen-induced CDH lungs suggest that increased c-Kit signaling during lung vascular formation may contribute to vascular remodeling and thus to PPH. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Fuchun; Liu, Xiaoke, E-mail: liuxk57@163.com; Qing, Qin, E-mail: qinqingscu@126.com
2015-04-10
The echinoderm microtubule-associated protein-like 4(EML4) – anaplastic lymphoma kinase (ALK) fusion gene has been identified as a driver mutation in non-small-cell lung cancer (NSCLC). However, the role of EML4-ALK in malignant transformation is not entirely clear. Here, for the first time, we showed that H1299 NSCLC cells stably expressing EML4-ALK acquire EMT phenotype, associated with enhanced invasive migration and increased expression of EMT-inducing transcription factors. H1299-EML4-ALK cells also displayed cancer stem cell-like properties with a concomitant up-regulation of CD133 and enhanced ability of mammospheres formation. Moreover, we found that inhibition of ERK1/2 reversed EMT induced by EML4-ALK in H1299 cells.more » Taken together, these results suggested that EML4-ALK induced ERK activation is mechanistically associated with EMT phenotype. Thus, inhibition of ERK signaling pathway could be a potential strategy in treatment of NSCLC patients with EML4-ALK translocation. - Highlights: • EML4-ALK induced epithelial–mesenchymal transition in H1299 cells. • Expression of EML4-ALK promotes invasion and migration in vitro. • EML4-ALK enhanced sphere formation and stem cell-like properties in H1299 cells. • Blockage of ERK1/2 reverse Epithelial–Mesenchymal transition induced by EML4-ALK.« less
Cheng, Xinghua; Chen, Haiquan
2014-01-01
Lung cancer, mostly nonsmall cell lung cancer, continues to be the leading cause of cancer-related death worldwide. With the development of tyrosine kinase inhibitors that selectively target lung cancer-related epidermal growth factor receptor mutations, management of advanced nonsmall cell lung cancer has been greatly transformed. Improvements in progression-free survival and life quality of the patients were observed in numerous clinical studies. However, overall survival is not prolonged because of later-acquired drug resistance. Recent studies reveal a heterogeneous subclonal architecture of lung cancer, so it is speculated that the tumor may rapidly adapt to environmental changes via a Darwinian selection mechanism. In this review, we aim to provide an overview of both spatial and temporal tumor heterogeneity as potential mechanisms underlying epidermal growth factor receptor tyrosine kinase inhibitor resistance in nonsmall cell lung cancer and summarize the possible origins of tumor heterogeneity covering theories of cancer stem cells and clonal evolution, as well as genomic instability and epigenetic aberrations in lung cancer. Moreover, investigational measures that overcome heterogeneity-associated drug resistance and new assays to improve tumor assessment are also discussed. PMID:25285017
Zhang, Quanhui; Yang, Junping; Bai, Jie; Ren, Jianzhuang
2018-04-01
The tumor microenvironment orchestrates the sustained growth, metastasis and recurrence of cancer. As an indispensable component of the tumor microenvironment, cancer-associated fibroblasts (CAF) are considered as an essential synthetic machine producing various tumor components, leading to cancer sustained stemness, drug resistance and tumor recurrence. Here, we developed a sustainable primary culture of lung cancer cells fed with lung cancer-associated fibroblasts, resulting in enrichment and acquisition of drug resistance in cancer cells. Moreover, IGF2/AKT/Sox2/ABCB1 signaling activation in cancer cells was observed in the presence of CAF, which induces upregulation of P-glycoprotein expression and the drug resistance of non-small cell lung cancer cells. Our results demonstrated that CAF cells constitute a mechanism for cancer drug resistance. Thus, traditional chemotherapy combined with insulin-like growth factor 2 (IGF2) signaling inhibitor may present an innovative therapeutic strategy for non-small cell lung cancer therapy. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
77 FR 1941 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-12
... Emphasis Panel; NHLBI Career Enhancement Grants for Stem Cell Research. Date: February 1, 2012. Time: 1 p.m... Disorders Research; 93.837, Heart and Vascular Diseases Research; 93.838, Lung Diseases Research; 93.839, Blood Diseases and Resources Research, National Institutes of Health, HHS) Dated: January 6, 2012...
Lange, Alexander W.; Sridharan, Anusha; Xu, Yan; Stripp, Barry R.; Perl, Anne-Karina; Whitsett, Jeffrey A.
2015-01-01
The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells. PMID:25480985
Non-Small-Cell Lung Cancer Molecular Signatures Recapitulate Lung Developmental Pathways
Borczuk, Alain C.; Gorenstein, Lyall; Walter, Kristin L.; Assaad, Adel A.; Wang, Liqun; Powell, Charles A.
2003-01-01
Current paradigms hold that lung carcinomas arise from pleuripotent stem cells capable of differentiation into one or several histological types. These paradigms suggest lung tumor cell ontogeny is determined by consequences of gene expression that recapitulate events important in embryonic lung development. Using oligonucleotide microarrays, we acquired gene profiles from 32 microdissected non-small-cell lung tumors. We determined the 100 top-ranked marker genes for adenocarcinoma, squamous cell, large cell, and carcinoid using nearest neighbor analysis. Results were validated by immunostaining for 11 selected proteins using a tissue microarray representing 80 tumors. Gene expression data of lung development were accessed from a publicly available dataset generated with the murine Mu11k genome microarray. Self-organized mapping identified two temporally distinct clusters of murine orthologues. Supervised clustering of lung development data showed large-cell carcinoma gene orthologues were in a cluster expressed in pseudoglandular and canalicular stages whereas adenocarcinoma homologues were predominantly in a cluster expressed later in the terminal sac and alveolar stages of murine lung development. Representative large-cell genes (E2F3, MYBL2, HDAC2, CDK4, PCNA) are expressed in the nucleus and are associated with cell cycle and proliferation. In contrast, adenocarcinoma genes are associated with lung-specific transcription pathways (SFTPB, TTF-1), cell adhesion, and signal transduction. In sum, non-small-cell lung tumors histology gene profiles suggest mechanisms relevant to ontogeny and clinical course. Adenocarcinoma genes are associated with differentiation and glandular formation whereas large-cell genes are associated with proliferation and differentiation arrest. The identification of developmentally regulated pathways active in tumorigenesis provides insights into lung carcinogenesis and suggests early steps may differ according to the eventual tumor morphology. PMID:14578194
Swan, Melanie
2011-12-01
Stem cell research and related therapies (including regenerative medicine and cellular therapies) could have a significant near-term impact on worldwide public health and aging. One reason is the industry's strong linkage between policy, science, industry, and patient advocacy, as was clear in the attendance and programming at the 7(th) annual World Stem Cell Summit held in Pasadena, California, October 3-5, 2011. A special conference session sponsored by the SENS Foundation discussed how stem cell therapies are being used to extend healthy life span. Stem cells are useful not only in cell-replacement therapies, but also in disease modeling, drug discovery, and drug toxicity screening. Stem cell therapies are currently being applied to over 50 diseases, including heart, lung, neurodegenerative, and eye disease, cancer, and human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS). Dozens of companies are developing therapeutic solutions that are in different stages of clinical use and clinical trials. Some high-profile therapies include Dendreon's Provenge for prostate cancer, Geron's first-ever embryonic stem cell trials for spinal cord injury, Fibrocell's laViv cellular therapy for wrinkles, and well-established commercial skin substitutes (Organogenesis' Apligraf and Advanced BioHealing's Dermagraft). Stem cell policy issues under consideration include medical tourism, standards for large-scale stem cell manufacturing, and lingering ethical debates over the use of embryonic stem cells. Contemporary stem cell science advances include a focus on techniques for the direct reprogramming of cells from one lineage to another without returning to pluripotency as an intermediary step, improved means of generating and characterizing induced pluripotent cells, and progress in approaches to neurodegenerative disease.
2015-01-01
The 57th annual Thomas L. Petty Aspen Lung Conference, entitled “Rebuilding the Injured Lung,” was held from June 4 to 7, 2014 at the Gant Conference Center in Aspen, Colorado. Investigators from a wide range of disciplines and perspectives convened to discuss the biology of lung injury, how the lung repairs itself, how and why repair fails, and how the repair process can be enhanced. Among the challenges identified in the course of the conference was how to develop more predictive experimental models that capture the multidimensional complexity of lung injury and repair in a tractable manner. From such approaches that successfully fuse the biological and physical sciences, the group envisioned that new therapies for acute and chronic lung injury would emerge. The discussion of experimental therapeutics ranged from pharmaceuticals and cells that interdict fibrosis and enhance repair to a de novo lung derived from stem cells repopulating a decellularized matrix. PMID:25830839
Maman, Shelly; Edry-Botzer, Liat; Sagi-Assif, Orit; Meshel, Tsipi; Yuan, Weirong; Lu, Wuyuan; Witz, Isaac P
2013-11-15
Recent data suggest that the mechanisms determining whether a tumor cell reaching a secondary organ will enter a dormant state, progress toward metastasis, or go through apoptosis are regulated by the microenvironment of the distant organ. In neuroblastoma, 60-70% of children with high-risk disease will ultimately experience relapse due to the presence of micrometastases. The main goal of this study is to evaluate the role of the lung microenvironment in determining the fate of neuroblastoma lung metastases and micrometastases. Utilizing an orthotopic mouse model for human neuroblastoma metastasis, we were able to generate two neuroblastoma cell populations-lung micrometastatic (MicroNB) cells and lung macrometastatic (MacroNB) cells. These two types of cells share the same genetic background, invade the same distant organ, but differ in their ability to create metastasis in the lungs. We hypothesize that factors present in the lung microenvironment inhibit the propagation of MicroNB cells preventing them from forming overt lung metastasis. This study indeed shows that lung-derived factors significantly reduce the viability of MicroNB cells by up regulating the expression of pro-apoptotic genes, inducing cell cycle arrest and decreasing ERK and FAK phosphorylation. Lung-derived factors affected various additional progression-linked cellular characteristics of neuroblastoma cells, such as the expression of stem-cell markers, morphology, and migratory capacity. An insight into the microenvironmental effects governing neuroblastoma recurrence and progression would be of pivotal importance as they could have a therapeutic potential for the treatment of neuroblastoma residual disease. Copyright © 2013 UICC.
Campos, Adriana; Vendramini-Costa, Débora Barbosa; Longato, Giovanna Barbarini; Zermiani, Tailyn; Ruiz, Ana Lúcia Tasca Gois; de Carvalho, João Ernesto; Pandiella, Atanasio; Cechinel Filho, Valdir
2016-11-01
Synadenium grantii is frequently used for the treatment of various diseases such as allergies, gastric disorders, and especially cancer. The aim of this study was to evaluate the possible antiproliferative potential of the methanol extract, fractions, and pure compounds from the stems of S grantii Phytochemical analysis was carried out by conventional chromatographic techniques, and the antiproliferative activity was analyzed using the sulforhodamine B assay and an MTT-based assay. Nonpolar fraction and its subfractions from the stems of S grantii exhibited promising cytostatic effect against several human tumor cell lines (glioma, breast, kidney, and lung), with total grown inhibition values ranging from 0.37 to 2.9 μg/mL. One of the active principles of this plant was identified as a rare phorbol diterpene ester, denoted as 3,4,12,13-tetraacetylphorbol-20-phenylacetate. This compound demonstrated antiproliferative activity against glioma, kidney, lung, and triple-negative breast cancer cell lines. These results demonstrate that S grantii stems produce active principles with relevant antiproliferative potential. © The Author(s) 2016.
RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer.
Rao, Shuan; Sigl, Verena; Wimmer, Reiner Alois; Novatchkova, Maria; Jais, Alexander; Wagner, Gabriel; Handschuh, Stephan; Uribesalgo, Iris; Hagelkruys, Astrid; Kozieradzki, Ivona; Tortola, Luigi; Nitsch, Roberto; Cronin, Shane J; Orthofer, Michael; Branstetter, Daniel; Canon, Jude; Rossi, John; D'Arcangelo, Manolo; Botling, Johan; Micke, Patrick; Fleur, Linnea La; Edlund, Karolina; Bergqvist, Michael; Ekman, Simon; Lendl, Thomas; Popper, Helmut; Takayanagi, Hiroshi; Kenner, Lukas; Hirsch, Fred R; Dougall, William; Penninger, Josef M
2017-10-15
Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRas G12D in mouse lung epithelial cells markedly impairs the progression of KRas G12D -driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRas G12D -driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer. © 2017 Rao et al.; Published by Cold Spring Harbor Laboratory Press.
Khalid, Mohammed; Aljurf, Mahmoud; Saleemi, Sarfraz; Khan, Mohammed Qaseem; Khan, Basha; Ahmed, Shad; Ibrahim, Khalid El Tayeb; Mobeireek, Abdullah; Al Mohareb, Fahad; Chaudhri, Naeem
2013-06-01
Bronchiolitis obliterans syndrome is a significant postallogeneic hematopoietic stem cell transplant problem. Recent data in lung transplant patients suggest an association with gastroesophageal reflux disease and bronchiolitis obliterans syndrome. We studied posthematopoietic stem cell transplant patients with bronchiolitis obliterans syndrome for gastroesophageal reflux disease and its response to a proton pump inhibitor. Seven postallogeneic hematopoietic stem cell transplant patients with bronchiolitis obliterans syndrome were studied. Gastroesophageal reflux disease was assessed by 24-hour pH monitoring with a Bravo catheter-free radio pH capsule. Patients with positive gastroesophageal reflux disease were started on omeprazole. Pretreatment and posttreatment pulmonary function tests were done at 3-month intervals. Of 7 patients, 5 had positive results for gastroesophageal reflux disease (71%). Omeprazole had a disease-stabilizing effect on the patients' pulmonary function tests. Our study shows a significant association between bronchiolitis obliterans syndrome and gastroesophageal reflux disease in postallogeneic hematopoietic stem cell transplant patients. Use of omeprazole may have a disease-stabilizing effect in short-term follow-up.
Ahn, So Yoon; Chang, Yun Sil; Kim, Soo Yoon; Sung, Dong Kyung; Kim, Eun Sun; Rime, So Yub; Yu, Wook Joon; Choi, Soo Jin; Oh, Won Il; Park, Won Soon
2013-03-01
This study was performed to evaluate the long-term effects and safety of intratracheal (IT) transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in neonatal hyperoxic lung injury at postnatal day (P)70 in a rat model. Newborn Sprague Dawley rat pups were subjected to 14 days of hyperoxia (90% oxygen) within 10 hours after birth and allowed to recover at room air until sacrificed at P70. In the transplantation groups, hUCB-MSCs (5×10⁵) were administered intratracheally at P5. At P70, various organs including the heart, lung, liver, and spleen were histologically examined, and the harvested lungs were assessed for morphometric analyses of alveolarization. ED-1, von Willebrand factor, and human-specific nuclear mitotic apparatus protein (NuMA) staining in the lungs and the hematologic profile of blood were evaluated. Impaired alveolar and vascular growth, which evidenced by an increased mean linear intercept and decreased amount of von Willebrand factor, respectively, and the hyperoxia-induced inflammatory responses, as evidenced by inflammatory foci and ED-1 positive alveolar macrophages, were attenuated in the P70 rat lungs by IT transplantation of hUCB-MSCs. Although rare, donor cells with human specific NuMA staining were persistently present in the P70 rat lungs. There were no gross or microscopic abnormal findings in the heart, liver, or spleen, related to the MSCs transplantation. The protective and beneficial effects of IT transplantation of hUCB-MSCs in neonatal hyperoxic lung injuries were sustained for a prolonged recovery period without any long-term adverse effects up to P70.
Hu, Yue; Xiong, Liu-Lin; Zhang, Piao; Wang, Ting-Hua
2017-01-01
Ischemia-induced stroke is the most common disease of the nervous system and is associated with a high mortality rate worldwide. Cerebral ischemia may lead to remote organ dysfunction, particular in the lungs, resulting in lung injury. Nowadays, bone marrow-derived mesenchymal stem cells (BMSCs) are widely studied in clinical trials as they may provide an effective solution to the treatment of neurological and cardiac diseases; however, the underlying molecular mechanisms remain unknown. In this study, a model of permanent focal cerebral ischemia-induced lung injury was successfully established and confirmed by neurological evaluation and lung injury scores. We demonstrated that the transplantation of BMSCs (passage 3) via the tail vein into the lung tissues attenuated lung injury. In order to elucidate the underlying molecular mechanisms, we analyzed the gene expression profiles in lung tissues from the rats with focal cerebral ischemia and transplanted with BMSCs using a Gene microarray. Moreover, the Gene Ontology database was employed to determine gene function. We found that the phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF) were downregulated in the BMSC transplantation groups, compared with the control group. These results suggested that BMSC transplantation may attenuate lung injury following focal cerebral ischemia and that this effect is associated with the downregulation of TGF-β, PDGF and the PI3K-AKT pathway.
Chang, Yun Sil; Oh, Wonil; Choi, Soo Jin; Sung, Dong Kyung; Kim, Soo Yoon; Choi, Eun Yang; Kang, Saem; Jin, Hye Jin; Yang, Yoon Sun; Park, Won Soon
2009-01-01
Recent evidence suggests mesenchymal stem cells (MSCs) can downmodulate bleomycin-induced lung injury, and umbilical cord blood (UCB) is a promising source for human MSCs. This study examined whether intratracheal or intraperitoneal transplantation of human UCB-derived MSCs can attenuate hyperoxia-induced lung injury in immunocompetent newborn rats. Wild-type Sprague-Dawley rats were randomly exposed to 95% oxygen or air from birth. In the transplantation groups, a single dose of PKH26-labeled human UCB-derived MSCs was administered either intratracheally (2 x 10(6) cells) or intraperitoneally (5 x 10(5) cells) at postnatal day (P) 5. At P14, the harvested lungs were examined for morphometric analyses of alveolarization and TUNEL staining, as well as the myeoloperoxidase activity, the level of tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and transforming growth factor (TGF)-beta mRNA, alpha-smooth muscle actin (SMA) protein, and collagen levels. Differentiation of MSCs to the respiratory epithelium was also evaluated both in vitro before transplantation and in vivo after transplantation. Despite one fourth dosage of MSCs, significantly more PKH26-labeled donor cells were recovered with intratracheal administration than with intraperitoneal administration both during normoxia and hyperoxia. The hyperoxia-induced increase in the number of TUNEL-positive cells, myeloperoixdase activity, and the level of IL-6 mRNA were significantly attenuated with both intratracheal and intraperitoneal MSCs transplantation. However, the hyperoxia-induced impaired alveolarization and increased the level of TNF-alpha and TGF-beta mRNA, alpha-SMA protein, and collagen were significantly attenuated only with intratracheal MSCs transplantation. MSCs differentiated into respiratory epithelium in vitro and a few PKH26-positive donor cells were colocalized with pro surfactant protein C in the damaged lungs. In conclusion, intratracheal transplantation of human UCB-derived MSCs is more effective than intraperitoneal transplantation in attenuating the hyperoxia-induced lung injury in neonatal rats.
Qian, Hui; Ding, Xiaoqing; Zhang, Jiao; Mao, Fei; Sun, Zixuan; Jia, Haoyuan; Yin, Lei; Wang, Mei; Zhang, Xu; Zhang, Bin; Yan, Yongmin; Zhu, Wei; Xu, Wenrong
2017-06-13
Mesenchymal stem cells (MSCs) transplantation has been used for therapeutic applications in various diseases. Here we report MSCs can malignantly transform in vivo. The novel neoplasm was found on the tail of female rat after injection with male rat bone marrow-derived MSCs (rBM-MSCs) and the new tumor cell line, K3, was isolated from the neoplasm. The K3 cells expressed surface antigens and pluripotent genes similar to those of rBM-MSCs and presented tumor cell features. Moreover, the K3 cells contained side population cells (SP) like cancer stem cells (CSCs), which might contribute to K3 heterogeneity and tumorigenic capacity. To investigate the metastatic potential of K3 cells, we established the nude mouse models of liver and lung metastases and isolated the corresponding metastatic cell lines K3-F4 and K3-B6. Both K3-F4 and K3-B6 cell lines with higher metastatic potential acquired more mesenchymal and stemness-related features. Epithelial-mesenchymal transition is a potential mechanism of K3-F4 and K3-B6 formation.
MSCs with ACE II gene affect apoptosis pathway of acute lung injury induced by bleomycin.
Zhang, Xiaomiao; Gao, Fengying; Li, Qian; Dong, Zhixia; Sun, Bo; Hou, Lili; Li, Zhuozhe; Liu, Zhenwei
2015-02-01
The aim of this study was to evaluate the effect and related mechanisms of Mesenchymal stem cells (MSCs) and Angiotensin converting enzyme II (ACE II) on acute lung injury (ALI). MSCs were separated from umbilical cord cells, and the changes of phenotype before and after ACE II silence were observed using Flow Cytometer. ALI model was induced by 10 mg/mL bleomycin in 60 Balb/c mice, and the rest 8 mice were regarded as the baseline group. The mice were randomly divided into four groups (n = 15): control, ACE II, stem, and stem + ACE II. The apoptotic index (AI) was calculated using TUNEL, and the detection of protein and mRNA of Bax, Bak and p53, Bcl-2, Grp78, CHOP and Caspase 12 were used by western-blot and RT-PCR, respectively. The umbilical cord cells differentiated into stable MSCs about 14 days, and ACE II transfection reached a peak at the 5th day after transfection. ACE II silence did not affect the phenotype of MSCs. All the proteins and mRNAs expression except Bcl-2 in the stem and stem + ACE II were significantly lower than those in control from 8 h (p < 0.05, p < 0.01), while Bcl-2 exhibited an opposite trend. Stem + ACE II performed a better effect than single stem in most indexes, including AI (p < 0.05, p < 0.01). The co-administration of MSCs and ACE II can significantly suppress apoptosis in ALI mice, and may be an effective clinical treatment for ALI.
Guo, Fuchun; Liu, Xiaoke; Qing, Qin; Sang, Yaxiong; Feng, Chengjun; Li, Xiaoyu; Jiang, Li; Su, Pei; Wang, Yongsheng
2015-04-10
The echinoderm microtubule-associated protein-like 4(EML4)--anaplastic lymphoma kinase (ALK) fusion gene has been identified as a driver mutation in non-small-cell lung cancer (NSCLC). However, the role of EML4-ALK in malignant transformation is not entirely clear. Here, for the first time, we showed that H1299 NSCLC cells stably expressing EML4-ALK acquire EMT phenotype, associated with enhanced invasive migration and increased expression of EMT-inducing transcription factors. H1299-EML4-ALK cells also displayed cancer stem cell-like properties with a concomitant up-regulation of CD133 and enhanced ability of mammospheres formation. Moreover, we found that inhibition of ERK1/2 reversed EMT induced by EML4-ALK in H1299 cells. Taken together, these results suggested that EML4-ALK induced ERK activation is mechanistically associated with EMT phenotype. Thus, inhibition of ERK signaling pathway could be a potential strategy in treatment of NSCLC patients with EML4-ALK translocation. Copyright © 2015 Elsevier Inc. All rights reserved.
Lung Squamous Cell Carcinoma Stem Cells as Immunotherapy Targets
2017-08-01
will examine the importance of candidate genes in CSC activity using blocking antibodies, knockdown or CRISPR strategies coupled with transplantation...Aim 1. Engineer isogenic human and murine BRG1 mutant cell lines using CRISPR -Cas9 to dissect the mechanisms behind the sensitivity to combined EZH2
Navarro, Alfons; Tejero, Rut; Viñolas, Nuria; Cordeiro, Anna; Marrades, Ramon M; Fuster, Dolors; Caritg, Oriol; Moises, Jorge; Muñoz, Carmen; Molins, Laureano; Ramirez, Josep; Monzo, Mariano
2015-10-13
The expression of Piwi-interacting RNAs, small RNAs that bind to PIWI proteins, was until recently believed to be limited to germinal stem cells. We have studied the expression of PIWI genes during human lung embryogenesis and in paired tumor and normal tissue prospectively collected from 71 resected non-small-cell lung cancer patients. The mRNA expression analysis showed that PIWIL1 was highly expressed in 7-week embryos and downregulated during the subsequent weeks of development. PIWIL1 was expressed in 11 of the tumor samples but in none of the normal tissue samples. These results were validated by immunohistochemistry, showing faint cytoplasmic reactivity in the PIWIL1-positive samples. Interestingly, the patients expressing PIWIL1 had a shorter time to relapse (TTR) (p = 0.006) and overall survival (OS) (p = 0.0076) than those without PIWIL1 expression. PIWIL2 and 4 were downregulated in tumor tissue in comparison to the normal tissue (p < 0.001) and the patients with lower levels of PIWIL4 had shorter TTR (p = 0.048) and OS (p = 0.033). In the multivariate analysis, PIWIL1 expression emerged as an independent prognostic marker. Using 5-Aza-dC treatment and bisulfite sequencing, we observed that PIWIL1 expression could be regulated in part by methylation. Finally, an in silico study identified a stem-cell expression signature associated with PIWIL1 expression.
Gene Editing and Genetic Lung Disease. Basic Research Meets Therapeutic Application.
Alapati, Deepthi; Morrisey, Edward E
2017-03-01
Although our understanding of the genetics and pathology of congenital lung diseases such as surfactant protein deficiency, cystic fibrosis, and alpha-1 antitrypsin deficiency is extensive, treatment options are lacking. Because the lung is a barrier organ in direct communication with the external environment, targeted delivery of gene corrective technologies to the respiratory system via intratracheal or intranasal routes is an attractive option for therapy. CRISPR/Cas9 gene-editing technology is a promising approach to repairing or inactivating disease-causing mutations. Recent reports have provided proof of concept by using CRISPR/Cas9 to successfully repair or inactivate mutations in animal models of monogenic human diseases. Potential pulmonary applications of CRISPR/Cas9 gene editing include gene correction of monogenic diseases in pre- or postnatal lungs and ex vivo gene editing of patient-specific airway stem cells followed by autologous cell transplant. Strategies to enhance gene-editing efficiency and eliminate off-target effects by targeting pulmonary stem/progenitor cells and the assessment of short-term and long-term effects of gene editing are important considerations as the field advances. If methods continue to advance rapidly, CRISPR/Cas9-mediated gene editing may provide a novel opportunity to correct monogenic diseases of the respiratory system.
76 FR 20358 - National Heart, Lung, and Blood Institute; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-12
... Emphasis Panel; Career Enhancement Award for Stem Cell Research. Date: May 4, 2011. Time: 12:30 p.m. to 3 p... Federal Domestic Assistance Program Nos. 93.233, National Center for Sleep Disorders Research; 93.837, Heart and Vascular Diseases Research; 93.838, Lung Diseases Research; 93.839, Blood Diseases and...
Advances in tissue engineering through stem cell-based co-culture.
Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A
2015-05-01
Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.
Hmga2 is required for canonical WNT signaling during lung development
2014-01-01
Background The high-mobility-group (HMG) proteins are the most abundant non-histone chromatin-associated proteins. HMG proteins are present at high levels in various undifferentiated tissues during embryonic development and their levels are strongly reduced in the corresponding adult tissues, where they have been implicated in maintaining and activating stem/progenitor cells. Here we deciphered the role of the high-mobility-group AT-hook protein 2 (HMGA2) during lung development by analyzing the lung of Hmga2-deficient mice (Hmga2 −/− ). Results We found that Hmga2 is expressed in the mouse embryonic lung at the distal airways. Analysis of Hmga2 −/− mice showed that Hmga2 is required for proper cell proliferation and distal epithelium differentiation during embryonic lung development. Hmga2 knockout led to enhanced canonical WNT signaling due to an increased expression of secreted WNT glycoproteins Wnt2b, Wnt7b and Wnt11 as well as a reduction of the WNT signaling antagonizing proteins GATA-binding protein 6 and frizzled homolog 2. Analysis of siRNA-mediated loss-of-function experiments in embryonic lung explant culture confirmed the role of Hmga2 as a key regulator of distal lung epithelium differentiation and supported the causal involvement of enhanced canonical WNT signaling in mediating the effect of Hmga2-loss-of-fuction. Finally, we found that HMGA2 directly regulates Gata6 and thereby modulates Fzd2 expression. Conclusions Our results support that Hmga2 regulates canonical WNT signaling at different points of the pathway. Increased expression of the secreted WNT glycoproteins might explain a paracrine effect by which Hmga2-knockout enhanced cell proliferation in the mesenchyme of the developing lung. In addition, HMGA2-mediated direct regulation of Gata6 is crucial for fine-tuning the activity of WNT signaling in the airway epithelium. Our results are the starting point for future studies investigating the relevance of Hmga2-mediated regulation of WNT signaling in the adult lung within the context of proper balance between differentiation and self-renewal of lung stem/progenitor cells during lung regeneration in both homeostatic turnover and repair after injury. PMID:24661562
Potential for a pluripotent adult stem cell treatment for acute radiation sickness
Rodgerson, Denis O; Reidenberg, Bruce E; Harris, Alan G; Pecora, Andrew L
2012-01-01
Accidental radiation exposure and the threat of deliberate radiation exposure have been in the news and are a public health concern. Experience with acute radiation sickness has been gathered from atomic blast survivors of Hiroshima and Nagasaki and from civilian nuclear accidents as well as experience gained during the development of radiation therapy for cancer. This paper reviews the medical treatment reports relevant to acute radiation sickness among the survivors of atomic weapons at Hiroshima and Nagasaki, among the victims of Chernobyl, and the two cases described so far from the Fukushima Dai-Ichi disaster. The data supporting the use of hematopoietic stem cell transplantation and the new efforts to expand stem cell populations ex vivo for infusion to treat bone marrow failure are reviewed. Hematopoietic stem cells derived from bone marrow or blood have a broad ability to repair and replace radiation induced damaged blood and immune cell production and may promote blood vessel formation and tissue repair. Additionally, a constituent of bone marrow-derived, adult pluripotent stem cells, very small embryonic like stem cells, are highly resistant to ionizing radiation and appear capable of regenerating radiation damaged tissue including skin, gut and lung. PMID:24520532
Development of decellularized scaffolds for stem cell-driven tissue engineering.
Rana, Deepti; Zreiqat, Hala; Benkirane-Jessel, Nadia; Ramakrishna, Seeram; Ramalingam, Murugan
2017-04-01
Organ transplantation is an effective treatment for chronic organ dysfunctioning conditions. However, a dearth of available donor organs for transplantation leads to the death of numerous patients waiting for a suitable organ donor. The potential of decellularized scaffolds, derived from native tissues or organs in the form of scaffolds has been evolved as a promising approach in tissue-regenerative medicine for translating functional organ replacements. In recent years, donor organs, such as heart, liver, lung and kidneys, have been reported to provide acellular extracellular matrix (ECM)-based scaffolds through the process called 'decellularization' and proved to show the potential of recellularization with selected cell populations, particularly with stem cells. In fact, decellularized stem cell matrix (DSCM) has also emerged as a potent biological scaffold for controlling stem cell fate and function during tissue organization. Despite the proven potential of decellularized scaffolds in tissue engineering, the molecular mechanism responsible for stem cell interactions with decellularized scaffolds is still unclear. Stem cells interact with, and respond to, various signals/cues emanating from their ECM. The ability to harness the regenerative potential of stem cells via decellularized ECM-based scaffolds has promising implications for tissue-regenerative medicine. Keeping these points in view, this article reviews the current status of decellularized scaffolds for stem cells, with particular focus on: (a) concept and various methods of decellularization; (b) interaction of stem cells with decellularized scaffolds; (c) current recellularization strategies, with associated challenges; and (iv) applications of the decellularized scaffolds in stem cell-driven tissue engineering and regenerative medicine. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Powan, Phattrakorn; Luanpitpong, Sudjit; He, Xiaoqing; Rojanasakul, Yon; Chanvorachote, Pithi
2017-11-01
The epithelial-to-mesenchymal transition is proposed to be a key mechanism responsible for metastasis-related deaths. Similarly, cancer stem cells (CSCs) have been proposed to be a key driver of tumor metastasis. However, the link between the two events and their control mechanisms is unclear. We used a three-dimensional (3D) tumor spheroid assay and other CSC-indicating assays to investigate the role of E-cadherin in CSC regulation and its association to epithelial-to-mesenchymal transition in lung cancer cells. Ectopic overexpression and knockdown of E-cadherin were found to promote and retard, respectively, the formation of tumor spheroids in vitro but had opposite effects on tumor formation and metastasis in vivo in a xenograft mouse model. We explored the discrepancy between the in vitro and in vivo results and demonstrated, for the first time, that E-cadherin is required as a component of a major survival pathway under detachment conditions. Downregulation of E-cadherin increased the stemness of lung cancer cells but had an adverse effect on their survival, particularly on non-CSCs. Such downregulation also promoted anoikis resistance and invasiveness of lung cancer cells. These results suggest that anoikis assay could be used as an alternative method for in vitro assessment of CSCs that involves dysregulated adhesion proteins. Our data also suggest that agents that restore E-cadherin expression may be used as therapeutic agents for metastatic cancers. Copyright © 2017 the American Physiological Society.
Progress in the research on the mechanism of bone metastasis in lung cancer
Luo, Qinqin; Xu, Zhenye; Wang, Lifang; Ruan, Mingyu; Jin, Guiyu
2016-01-01
Lung cancer is still the predominant cause of cancer-associated mortality worldwide. The bone metastasis of lung cancer brings great suffering to the patient. Previous advances have provided insights into the mechanism of bone metastasis. Previous research has investigated lung cancer stem cells and three steps were determined for the lung cancer cells to metastasize to the bone: i) Escaping from the primary tumor; ii) moving in the circulation; iii) colonizing in the bone. Key molecules are involved in each of these process. Although there is a close association and similarity, dynamic microenvironments affect these processes. The receptor activator of nuclear factor-κB (RANK)/RANKL axis serves a vital role in the regulation of the generation and activation of osteoclasts during the osteolytic lesion. However, the specific molecules for the lung cancer cells to metastasize to the bone require further research and exploration. The present study aimed to investigate the relative molecular mechanisms of bone metastasis in lung cancer in recent years, providing a general understanding about the features of lung cancer preferences to bone, and discussing other things that require investigation. PMID:27446555
Yu, Shi-huan; Liu, Li-jie; Lv, Bin; Che, Chun-li; Fan, Da-ping; Wang, Li-feng; Zhang, Yi-mei
2015-08-01
The study was aimed to investigate the mechanism and administration timing of bone marrow-derived mesenchymal stem cells (BMSCs) in bleomycin (BLM)-induced pulmonary fibrosis mice. Thirty-six mice were divided into six groups: control group (saline), model group (intratracheal administration of BLM), day 1, day 3 and day 6 BMSCs treatment groups and hormone group (hydrocortisone after BLM treatment). BMSCs treatment groups received BMSCs at day 1, 3 or 6 following BLM treatment, respectively. Haematoxylin and eosin and Masson staining were conducted to measure lung injury and fibrosis, respectively. Matrix metalloproteinase (MMP9), tissue inhibitor of metalloproteinase-1 (TIMP-1), γ-interferon (INF-γ) and transforming growth factor β1 (TGF-β) were detected in both lung tissue and serum. Histologically, the model group had pronounced lung injury, increased inflammatory cells and collagenous fibres and up-regulated MMP9, TIMP-1, INF-γ and TGF-β compared with control group. The histological appearance of lung inflammation and fibrosis and elevation of these parameters were inhibited in BMSCs treatment groups, among which, day 3 and day 6 treatment groups had less inflammatory cells and collagenous fibres than day 1 treatment group. BMSCs might suppress lung fibrosis and inflammation through down-regulating MMP9, TIMP-1, INF-γ and TGF-β. Delayed BMSCs treatment might exhibit a better therapeutic effect. Highlights are as follows: 1. BMSCs repair lung injury induced by BLM. 2. BMSCs attenuate pulmonary fibrosis induced by BLM. 3. BMSCs transplantation down-regulates MMP9 and TIMP-1. 4. BMSCs transplantation down-regulates INF-γ and TGF-β. 5. Delayed transplantation timing of BMSCs might exhibit a better effect against BLM. Copyright © 2015 John Wiley & Sons, Ltd.
Lange, Alexander W; Sridharan, Anusha; Xu, Yan; Stripp, Barry R; Perl, Anne-Karina; Whitsett, Jeffrey A
2015-02-01
The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.
Protein Kinase Cι Drives a NOTCH3-dependent Stem-like Phenotype in Mutant KRAS Lung Adenocarcinoma.
Ali, Syed A; Justilien, Verline; Jamieson, Lee; Murray, Nicole R; Fields, Alan P
2016-03-14
We report that the protein kinase Cι (PKCι) oncogene controls expression of NOTCH3, a key driver of stemness, in KRAS-mediated lung adenocarcinoma (LADC). PKCι activates NOTCH3 expression by phosphorylating the ELF3 transcription factor and driving ELF3 occupancy on the NOTCH3 promoter. PKCι-ELF3-NOTCH3 signaling controls the tumor-initiating cell phenotype by regulating asymmetric cell division, a process necessary for tumor initiation and maintenance. Primary LADC tumors exhibit PKCι-ELF3-NOTCH3 signaling, and combined pharmacologic blockade of PKCι and NOTCH synergistically inhibits tumorigenic behavior in vitro and LADC growth in vivo demonstrating the therapeutic potential of PKCι-ELF3-NOTCH3 signal inhibition to more effectively treat KRAS LADC. Copyright © 2016 Elsevier Inc. All rights reserved.
Rodilla, Ananda M; Korrodi-Gregório, Luís; Hernando, Elsa; Manuel-Manresa, Pilar; Quesada, Roberto; Pérez-Tomás, Ricardo; Soto-Cerrato, Vanessa
2017-02-15
Current pharmacological treatments for lung cancer show very poor clinical outcomes, therefore, the development of novel anticancer agents with innovative mechanisms of action is urgently needed. Cancer cells have a reversed pH gradient compared to normal cells, which favours cancer progression by promoting proliferation, metabolic adaptation and evasion of apoptosis. In this regard, the use of ionophores to modulate intracellular pH appears as a promising new therapeutic strategy. Indeed, there is a growing body of evidence supporting ionophores as novel antitumour drugs. Despite this, little is known about the implications of pH deregulation and homeostasis imbalance triggered by ionophores at the cellular level. In this work, we deeply analyse for the first time the anticancer effects of tambjamine analogues, a group of highly effective anion selective ionophores, at the cellular and molecular levels. First, their effects on cell viability were determined in several lung cancer cell lines and patient-derived cancer stem cells, demonstrating their potent cytotoxic effects. Then, we have characterized the induced lysosomal deacidification, as well as, the massive cytoplasmic vacuolization observed after treatment with these compounds, which is consistent with mitochondrial swelling. Finally, the activation of several proteins involved in stress response, autophagy and apoptosis was also detected, although they were not significantly responsible for the cell death induced. Altogether, these evidences suggest that tambjamine analogues provoke an imbalance in cellular ion homeostasis that triggers mitochondrial dysfunction and lysosomal deacidification leading to a potent cytotoxic effect through necrosis in lung cancer cell lines and cancer stem cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Lai, Tian-Shun; Wang, Zhi-Hong; Cai, Shao-Xi
2015-01-01
Background: Subsequent neutrophil (polymorphonuclear neutrophil [PMN])-predominant inflammatory response is a predominant feature of ventilator-induced lung injury (VILI), and mesenchymal stem cell (MSC) can improve mice survival model of endotoxin-induced acute lung injury, reduce lung impairs, and enhance the repair of VILI. However, whether MSC could attenuate PMN-predominant inflammatory in the VILI is still unknown. This study aimed to test whether MSC intervention could attenuate the PMN-predominate inflammatory in the mechanical VILI. Methods: Sprague-Dawley rats were ventilated for 2 hours with large tidal volume (20 mL/kg). MSCs were given before or after ventilation. The inflammatory chemokines and gas exchange were observed and compared dynamically until 4 hours after ventilation, and pulmonary pathological change and activation of PMN were observed and compared 4 hours after ventilation. Results: Mechanical ventilation (MV) caused significant lung injury reflected by increasing in PMN pulmonary sequestration, inflammatory chemokines (tumor necrosis factor-alpha, interleukin-6 and macrophage inflammatory protein 2) in the bronchoalveolar lavage fluid, and injury score of the lung tissue. These changes were accompanied with excessive PMN activation which reflected by increases in PMN elastase activity, production of radical oxygen series. MSC intervention especially pretreatment attenuated subsequent lung injury, systemic inflammation response and PMN pulmonary sequestration and excessive PMN activation initiated by injurious ventilation. Conclusions: MV causes profound lung injury and PMN-predominate inflammatory responses. The protection effect of MSC in the VILI rat model is related to the suppression of the PMN activation. PMID:25635432
Murphy, Sean V.; Hale, Austin; Reid, Tanya; Olson, John; Kidiyoor, Amritha; Tan, Josh; Zhou, Zhiguo; Jackson, John; Atala, Anthony
2016-01-01
Magnetic Resonance Imaging (MRI) is a commonly used, non-invasive imaging technique that provides visualization of soft tissues with high spatial resolution. In both a research and clinical setting, the major challenge has been identifying a non-invasive and safe method for longitudinal tracking of delivered cells in vivo. The labeling and tracking of contrast agent labeled cells using MRI has the potential to fulfill this need. Contrast agents are often used to enhance the image contrast between the tissue of interest and surrounding tissues with MRI. The most commonly used MRI contrast agents contain Gd(III) ions. However, Gd(III) ions are highly toxic in their ionic form, as they tend to accumulate in the liver, spleen, kidney and bones and block calcium channels. Endohedral metallofullerenes such as trimetallic nitride endohedral metallofullerenes (Trimetasphere®) are one unique class of fullerene molecules where a Gd3N cluster is encapsulated inside a C80 carbon cage referred to as Gd3N@C80. These endohedral metallofullerenes have several advantages over small chelated Gd(III) complexes such as increased stability of the Gd(III) ion, minimal toxic effects, high solubility in water and high proton relativity. In this study, we describe the evaluation of gadolinium-based Trimetasphere® positive contrast agent for the in vitro labeling and in vivo tracking of human amniotic fluid-derived stem cells within lung tissue. In addition, we conducted a ‘proof-of-concept’ experiment demonstrating that this methodology can be used to track the homing of stem cells to injured lung tissue and provide longitudinal analysis of cell localization over an extended time course. PMID:26546729
Murphy, Sean V; Hale, Austin; Reid, Tanya; Olson, John; Kidiyoor, Amritha; Tan, Josh; Zhou, Zhiguo; Jackson, John; Atala, Anthony
2016-04-15
Magnetic Resonance Imaging (MRI) is a commonly used, non-invasive imaging technique that provides visualization of soft tissues with high spatial resolution. In both a research and clinical setting, the major challenge has been identifying a non-invasive and safe method for longitudinal tracking of delivered cells in vivo. The labeling and tracking of contrast agent labeled cells using MRI has the potential to fulfill this need. Contrast agents are often used to enhance the image contrast between the tissue of interest and surrounding tissues with MRI. The most commonly used MRI contrast agents contain Gd(III) ions. However, Gd(III) ions are highly toxic in their ionic form, as they tend to accumulate in the liver, spleen, kidney and bones and block calcium channels. Endohedral metallofullerenes such as trimetallic nitride endohedral metallofullerenes (Trimetasphere®) are one unique class of fullerene molecules where a Gd3N cluster is encapsulated inside a C80 carbon cage referred to as Gd3N@C80. These endohedral metallofullerenes have several advantages over small chelated Gd(III) complexes such as increased stability of the Gd(III) ion, minimal toxic effects, high solubility in water and high proton relativity. In this study, we describe the evaluation of gadolinium-based Trimetasphere® positive contrast agent for the in vitro labeling and in vivo tracking of human amniotic fluid-derived stem cells within lung tissue. In addition, we conducted a 'proof-of-concept' experiment demonstrating that this methodology can be used to track the homing of stem cells to injured lung tissue and provide longitudinal analysis of cell localization over an extended time course. Copyright © 2015 Elsevier Inc. All rights reserved.
Lung development: orchestrating the generation and regeneration of a complex organ
Herriges, Michael; Morrisey, Edward E.
2014-01-01
The respiratory system, which consists of the lungs, trachea and associated vasculature, is essential for terrestrial life. In recent years, extensive progress has been made in defining the temporal progression of lung development, and this has led to exciting discoveries, including the derivation of lung epithelium from pluripotent stem cells and the discovery of developmental pathways that are targets for new therapeutics. These discoveries have also provided new insights into the regenerative capacity of the respiratory system. This Review highlights recent advances in our understanding of lung development and regeneration, which will hopefully lead to better insights into both congenital and acquired lung diseases. PMID:24449833
Pershina, Olga Victorovna; Reztsova, Alena Mikhaylovna; Ermakova, Natalia Nikolaevna; Khmelevskaya, Ekaterina Sergeevna; Krupin, Vycheslav Andreevich; Stepanova, Inna Ernestovna; Artamonov, Andrew Vladimirovich; Bekarev, Andrew Alexandrovich; Madonov, Pavel Gennadjevich
2015-01-01
Hyaluronidases are groups of enzymes that degrade hyaluronic acid (HA). To stop enzymatic hydrolysis we modified testicular hyaluronidase (HYAL) by activated polyethylene oxide with the help of electron-beam synthesis. As a result we received pegylated hyaluronidase (pegHYAL). Spiperone is a selective D2 dopamine receptor antagonist. It was demonstrated on the model of a single bleomycin damage of alveolar epithelium that during the inflammatory phase monotherapy by pegHYAL or spiperone reduced the populations of hematopoietic stem /progenitor cells in the lung parenchyma. PegHYAL also reduced the levels of transforming growth factor (TGF)-β, interleukin (IL)-1β, tumor necrosis factor (TNF)-α in the serum and lungs, while spiperone reduced the level of the serum IL-1β. Polytherapy by spiperone and pegHYAL caused the increase of the quantity of hematopoietic stem/ progenitor cells in the lungs. Such an influx of blood cell precursors was observed on the background of considerable fall level of TGF-β and the increase level of TNF-α in the serum and lungs. These results show pegHYAL reduced the bleomycin-induced fibrosis reaction (production and accumulation of collagen) in the lung parenchyma. This effect was observed at a single and repetitive bleomycin damage of alveolar epithelium, the antifibrotic activity of pegHYAL surpassing the activity of testicular HYAL. The antifibrotic effect of pegHYAL is enhanced by an additional instillation of spiperone. Therapy by pegHYAL causes the flow of CD31‒CD34‒CD45‒CD44+CD73+CD90+CD106+-cells into the fibrous lungs. These cells are incapable of differentiating into fibroblast cells. Spiperone instillation separately or together with pegHYAL reduced the MSC-like cells considerably. These data enable us to assume, that pegHYAL is a new and promising instrument both for preventive and therapy of toxic pneumofibrosis. The blockage of D2 dopamine receptors with the following change of hyaluronan matrix can be considered as a new strategy in treatment of pneumofibrosis. PMID:25927611
Mimeault, M; Hauke, R; Batra, S K
2007-09-01
Basic and clinical research accomplished during the last few years on embryonic, fetal, amniotic, umbilical cord blood, and adult stem cells has constituted a revolution in regenerative medicine and cancer therapies by providing the possibility of generating multiple therapeutically useful cell types. These new cells could be used for treating numerous genetic and degenerative disorders. Among them, age-related functional defects, hematopoietic and immune system disorders, heart failures, chronic liver injuries, diabetes, Parkinson's and Alzheimer's diseases, arthritis, and muscular, skin, lung, eye, and digestive disorders as well as aggressive and recurrent cancers could be successfully treated by stem cell-based therapies. This review focuses on the recent advancements in adult stem cell biology in normal and pathological conditions. We describe how these results have improved our understanding on critical and unique functions of these rare sub-populations of multipotent and undifferentiated cells with an unlimited self-renewal capacity and high plasticity. Finally, we discuss some major advances to translate the experimental models on ex vivo and in vivo expanded and/or differentiated stem cells into clinical applications for the development of novel cellular therapies aimed at repairing genetically altered or damaged tissues/organs in humans. A particular emphasis is made on the therapeutic potential of different tissue-resident adult stem cell types and their in vivo modulation for treating and curing specific pathological disorders.
Paraneoplastic brain stem encephalitis.
Blaes, Franz
2013-04-01
Paraneoplastic brain stem encephalitis can occur as an isolated clinical syndrome or, more often, may be part of a more widespread encephalitis. Different antineuronal autoantibodies, such as anti-Hu, anti-Ri, and anti-Ma2 can be associated with the syndrome, and the most frequent tumors are lung and testicular cancer. Anti-Hu-associated brain stem encephalitis does not normally respond to immunotherapy; the syndrome may stabilize under tumor treatment. Brain stem encephalitis with anti-Ma2 often improves after immunotherapy and/or tumor therapy, whereas only a minority of anti-Ri positive patients respond to immunosuppressants or tumor treatment. The Opsoclonus-myoclonus syndrome (OMS) in children, almost exclusively associated with neuroblastoma, shows a good response to steroids, ACTH, and rituximab, some patients do respond to intravenous immunoglobulins or cyclophosphamide. In adults, OMS is mainly associated with small cell lung cancer or gynecological tumors and only a small part of the patients show improvement after immunotherapy. Earlier diagnosis and treatment seem to be one major problem to improve the prognosis of both, paraneoplastic brain stem encephalitis, and OMS.
The stem cell division theory of cancer.
López-Lázaro, Miguel
2018-03-01
All cancer registries constantly show striking differences in cancer incidence by age and among tissues. For example, lung cancer is diagnosed hundreds of times more often at age 70 than at age 20, and lung cancer in nonsmokers occurs thousands of times more frequently than heart cancer in smokers. An analysis of these differences using basic concepts in cell biology indicates that cancer is the end-result of the accumulation of cell divisions in stem cells. In other words, the main determinant of carcinogenesis is the number of cell divisions that the DNA of a stem cell has accumulated in any type of cell from the zygote. Cell division, process by which a cell copies and separates its cellular components to finally split into two cells, is necessary to produce the large number of cells required for living. However, cell division can lead to a variety of cancer-promoting errors, such as mutations and epigenetic mistakes occurring during DNA replication, chromosome aberrations arising during mitosis, errors in the distribution of cell-fate determinants between the daughter cells, and failures to restore physical interactions with other tissue components. Some of these errors are spontaneous, others are promoted by endogenous DNA damage occurring during quiescence, and others are influenced by pathological and environmental factors. The cell divisions required for carcinogenesis are primarily caused by multiple local and systemic physiological signals rather than by errors in the DNA of the cells. As carcinogenesis progresses, the accumulation of DNA errors promotes cell division and eventually triggers cell division under permissive extracellular environments. The accumulation of cell divisions in stem cells drives not only the accumulation of the DNA alterations required for carcinogenesis, but also the formation and growth of the abnormal cell populations that characterize the disease. This model of carcinogenesis provides a new framework for understanding the disease and has important implications for cancer prevention and therapy. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhou, Beiyun; Flodby, Per; Luo, Jiao; Castillo, Dan R; Liu, Yixin; Yu, Fa-Xing; McConnell, Alicia; Varghese, Bino; Li, Guanglei; Chimge, Nyam-Osor; Sunohara, Mitsuhiro; Koss, Michael N; Elatre, Wafaa; Conti, Peter; Liebler, Janice M; Yang, Chenchen; Marconett, Crystal N; Laird-Offringa, Ite A; Minoo, Parviz; Guan, Kunliang; Stripp, Barry R; Crandall, Edward D; Borok, Zea
2018-03-01
Claudins, the integral tight junction (TJ) proteins that regulate paracellular permeability and cell polarity, are frequently dysregulated in cancer; however, their role in neoplastic progression is unclear. Here, we demonstrated that knockout of Cldn18, a claudin family member highly expressed in lung alveolar epithelium, leads to lung enlargement, parenchymal expansion, increased abundance and proliferation of known distal lung progenitors, the alveolar epithelial type II (AT2) cells, activation of Yes-associated protein (YAP), increased organ size, and tumorigenesis in mice. Inhibition of YAP decreased proliferation and colony-forming efficiency (CFE) of Cldn18-/- AT2 cells and prevented increased lung size, while CLDN18 overexpression decreased YAP nuclear localization, cell proliferation, CFE, and YAP transcriptional activity. CLDN18 and YAP interacted and colocalized at cell-cell contacts, while loss of CLDN18 decreased YAP interaction with Hippo kinases p-LATS1/2. Additionally, Cldn18-/- mice had increased propensity to develop lung adenocarcinomas (LuAd) with age, and human LuAd showed stage-dependent reduction of CLDN18.1. These results establish CLDN18 as a regulator of YAP activity that serves to restrict organ size, progenitor cell proliferation, and tumorigenesis, and suggest a mechanism whereby TJ disruption may promote progenitor proliferation to enhance repair following injury.
Mesenchymal Stem Cells Enhance Lung Recovery After Injury, Shock, and Chronic Stress
Gore, Amy V.; Bible, Letitia E.; Livingston, David H.; Mohr, Alicia M.; Sifri, Ziad C.
2016-01-01
Background Normal lung healing is impaired when lung contusion (LC) is followed by hemorrhagic shock (HS) and chronic stress (CS). Mesenchymal stem cells (MSCs) are immunomodulatory, pluripotent cells that are under investigation for use in wound healing and tissue regeneration. We hypothesized that treatment with MSCs can reverse the impaired healing seen after LC combined with HS and CS (LCHS/CS). Methods Male Sprague-Dawley (SD) rats (n=6/group) underwent LCHS with or without a single iv dose of 5 × 106 SD rat MSCs following resuscitation. Thereafter, rats were subjected to two hours of CS daily on days 1–6 and were killed on day 7. Lung histology was scored according to a well-established lung injury score (LIS) that included interstitial and pulmonary edema, alveolar integrity, and inflammatory cells. Scoring ranges from 0 (normal lung) to 11 (most severely injured). Whole blood was analyzed for the presence of CD4+CD25+FoxP3+ T regulatory cells (Treg) by flow cytometry. Results Seven days after isolated LC, LIS had returned to 0.8 ± 0.4, however, after LCHS/CS healing is significantly delayed (7.2 ± 2.2; p<0.05). Addition of MSC to LCHS/CS decreased LIS to 2.0 ± 1.3 (p<0.05) and decreased all subgroup scores (inflammatory cells, interstitial and pulmonary edema, and alveolar integrity) significantly as compared to LCHS/CS (p<0.05). The percentage of Tregs found in the peripheral blood of animals undergoing LCHS/CS did not significantly change from LC alone (10.5 ± 3.3% vs 6.7 ± 1.7%; p>0.05). Treatment with MSCs significantly increased the Treg population as compared to LCHS/CS alone (11.7 ± 2.7% vs 6.7 ± 1.7%; p<0.05) Conclusion In this model, the severe impairment of wound healing observed one week after LCHS/CS is reversed by a single treatment with MSCs immediately after resuscitation. This improvement in lung healing is associated with a decrease in the number of inflammatory cells and lung edema and a significant increase in peripheral Tregs. Further study into timing of administration and mechanisms by which cell-based therapy using MSCs modulate the immune system and improve wound healing is warranted. PMID:26830071
Coming to terms with tissue engineering and regenerative medicine in the lung
Tschumperlin, Daniel J.; Stenmark, Kurt R.
2015-01-01
Lung diseases such as emphysema, interstitial fibrosis, and pulmonary vascular diseases cause significant morbidity and mortality, but despite substantial mechanistic understanding, clinical management options for them are limited, with lung transplantation being implemented at end stages. However, limited donor lung availability, graft rejection, and long-term problems after transplantation are major hurdles to lung transplantation being a panacea. Bioengineering the lung is an exciting and emerging solution that has the ultimate aim of generating lung tissues and organs for transplantation. In this article we capture and review the current state of the art in lung bioengineering, from the multimodal approaches, to creating anatomically appropriate lung scaffolds that can be recellularized to eventually yield functioning, transplant-ready lungs. Strategies for decellularizing mammalian lungs to create scaffolds with native extracellular matrix components vs. de novo generation of scaffolds using biocompatible materials are discussed. Strengths vs. limitations of recellularization using different cell types of various pluripotency such as embryonic, mesenchymal, and induced pluripotent stem cells are highlighted. Current hurdles to guide future research toward achieving the clinical goal of transplantation of a bioengineered lung are discussed. PMID:26254424
Targeting Notch signalling pathway of cancer stem cells.
Venkatesh, Vandana; Nataraj, Raghu; Thangaraj, Gopenath S; Karthikeyan, Murugesan; Gnanasekaran, Ashok; Kaginelli, Shanmukhappa B; Kuppanna, Gobianand; Kallappa, Chandrashekrappa Gowdru; Basalingappa, Kanthesh M
2018-01-01
Cancer stem cells (CSCs) have been defined as cells within tumor that possess the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. CSCs have been increasingly identified in blood cancer, prostate, ovarian, lung, melanoma, pancreatic, colon, brain and many more malignancies. CSCs have slow growth rate and are resistant to chemotherapy and radiotherapy that lead to the failure of traditional current therapy. Eradicating the CSCs and recurrence, is promising aspect for the cure of cancer. The CSCs like any other stem cells activate the signal transduction pathways that involve the development and tissue homeostasis, which include Notch signaling pathway. The new treatment targets these pathway that control stem-cell replication, survival and differentiation that are under development. Notch inhibitors either single or in combination with chemotherapy drugs have been developed to treat cancer and its recurrence. This approach of targeting signaling pathway of CSCs represents a promising future direction for the therapeutic strategy to cure cancer.
Krishnamurthy, Sangeetha; Ng, Victor W L; Gao, Shujun; Tan, Min-Han; Hedrick, James L; Yang, Yi Yan
2015-01-01
Phenformin-loaded micelles (Phen M) were used in combination with gemcitabine-loaded micelles (Gem M) to study their combined effect against H460 human lung cancer cells and cancer stem cells (CSCs) in vitro and in vivo. Gem M and Phen M were prepared via self-assembly of a mixture of a diblock copolymer of PEG and urea-functionalized polycarbonate (PEG-PUC) and a diblock copolymer of PEG and acid-functionalized polycarbonate (PEG-PAC) through hydrogen bonding and ionic interactions. Gem M and Phen M were characterized and tested for efficacy both in vitro and in vivo against cancer cells and CSCs. The combination of Gem M/Phen M exhibited higher cytotoxicity against CSCs and non-CSCs than Gem M and Phen M alone, and showed significant cell cycle growth arrest in vitro. The combination therapy had superior tumor suppression and apoptosis in vivo without inducing toxicity to liver and kidney. The combination of Gem M and Phen M may be potentially used in lung cancer therapy.
Exosomal microRNA Signatures in the Diagnosis and Prognosis of Ovarian Cancer
2013-04-01
types, including CLL ,41 breast cancer,42 glioblastoma,43 thyroid papillary carcinoma,44 hepatocellular carcinoma,45 ovarian cancer,46 colon...vesicles derived from cancer stem cells were shown to contain pro-angiogenic RNAs able to induce a pre-metastatic niche in the lungs, whereas those...cancer stem cells contained miR29a, miR650, and miR151, all associated with tumor invasion and metastases, along with miR19b, miR29c, and miR151
Polydimethylsiloxane SlipChip for mammalian cell culture applications.
Chang, Chia-Wen; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung
2015-11-07
This paper reports a polydimethylsiloxane (PDMS) SlipChip for in vitro cell culture applications, multiple-treatment assays, cell co-cultures, and cytokine detection assays. The PDMS SlipChip is composed of two PDMS layers with microfluidic channels on each surface that are separated by a thin silicone fluid (Si-fluid) layer. The integration of Si-fluid enables the two PDMS layers to be slid to different positions; therefore, the channel patterns can be re-arranged for various applications. The SlipChip design significantly reduces the complexity of sample handling, transportation, and treatment processes. To apply the developed SlipChip for cell culture applications, human lung adenocarcinoma epithelial cells (A549) and lung fibroblasts (MRC-5) were cultured to examine the biocompatibility of the developed PDMS SlipChip. Moreover, embryonic pluripotent stem cells (ES-D3) were also cultured in the device to evaluate the retention of their stemness in the device. The experimental results show that cell morphology, viability and proliferation are not affected when the cells are cultured in the SlipChip, indicating that the device is highly compatible with mammalian cell culture. In addition, the stemness of the ES-D3 cells was highly retained after they were cultured in the device, suggesting the feasibility of using the SlipChip for stem cell research. Various cell experiments, such as simultaneous triple staining of cells and co-culture of MRC-5 with A549 cells, were also performed to demonstrate the functionalities of the PDMS SlipChip. Furthermore, we used a cytokine detection assay to evaluate the effect of endotoxin (lipopolysaccharides, LPS) treatment on the cytokine secretion of A549 cells using the SlipChip. The developed PDMS SlipChip provides a straightforward and effective platform for various on-chip in vitro cell cultures and consequent analysis, which is promising for a number of cell biology studies and biomedical applications.
Silva, Luisa H A; da Silva, Jaqueline R; Ferreira, Guilherme A; Silva, Renata C; Lima, Emilia C D; Azevedo, Ricardo B; Oliveira, Daniela M
2016-07-18
Nanoparticles' unique features have been highly explored in cellular therapies. However, nanoparticles can be cytotoxic. The cytotoxicity can be overcome by coating the nanoparticles with an appropriated surface modification. Nanoparticle coating influences biocompatibility between nanoparticles and cells and may affect some cell properties. Here, we evaluated the biocompatibility of gold and maghemite nanoparticles functionalized with 2,3-dimercaptosuccinic acid (DMSA), Au-DMSA and γ-Fe2O3-DMSA respectively, with human mesenchymal stem cells. Also, we tested these nanoparticles as tracers for mesenchymal stem cells in vivo tracking by computed tomography and as agents for mesenchymal stem cells magnetic targeting. Significant cell death was not observed in MTT, Trypan Blue and light microscopy analyses. However, ultra-structural alterations as swollen and degenerated mitochondria, high amounts of myelin figures and structures similar to apoptotic bodies were detected in some mesenchymal stem cells. Au-DMSA and γ-Fe2O3-DMSA labeling did not affect mesenchymal stem cells adipogenesis and osteogenesis differentiation, proliferation rates or lymphocyte suppression capability. The uptake measurements indicated that both inorganic nanoparticles were well uptaken by mesenchymal stem cells. However, Au-DMSA could not be detected in microtomograph after being incorporated by mesenchymal stem cells. γ-Fe2O3-DMSA labeled cells were magnetically responsive in vitro and after infused in vivo in an experimental model of lung silicosis. In terms of biocompatibility, the use of γ-Fe2O3-DMSA and Au-DMSA as tracers for mesenchymal stem cells was assured. However, Au-DMSA shown to be not suitable for visualization and tracking of these cells in vivo by standard computed microtomography. Otherwise, γ-Fe2O3-DMSA shows to be a promising agent for mesenchymal stem cells magnetic targeting.
Reddy, Manoj; Fonseca, Lyle; Gowda, Shashank; Chougule, Basavraj; Hari, Aarya; Totey, Satish
2016-01-01
Background and Objectives Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, invariably fatal fibrotic lung disease with no lasting option for therapy. Mesenchymal stem cells (MSCs) could be a promising modality for the treatment of IPF. Aim of the study was to investigate improvement in survivability and anti-fibrotic efficacy of human adipose-derived mesenchymal stem cells (AD-MSCs) in comparison with pirfenidone in the bleomycin-induced pulmonary fibrosis model. Methods Human AD-MSCs were administered intravenously on day 3, 6 and 9 after an intra-tracheal challenge with bleomycin, whereas, pirfenidone was given orally in drinking water at the rate of 100 mg/kg body weight three times a day daily from day 3 onward. AD-MSCs were labelled with PKH-67 before administration to detect engraftment. Disease severity and improvement was assessed and compared between sham control and vehicle control groups using Kaplan-Meier survival analysis, biochemical and molecular analysis, histopathology and high resolution computed tomography (HRCT) parameters at the end of study. Results Results demonstrated that AD-MSCs significantly increase survivability; reduce organ weight and collagen deposition better than pirfenidone group. Histological analyses and HRCT of the lung revealed that AD-MSCs afforded protection against bleomycin induced fibrosis and protect architecture of the lung. Gene expression analysis revealed that AD-MSCs potently suppressed pro-fibrotic genes induced by bleomycin. More importantly, AD-MSCs were found to inhibit pro-inflammatory related transcripts. Conclusions Our results provided direct evidence that AD-MSC-mediated immunomodulation and anti-fibrotic effect in the lungs resulted in marked protection in pulmonary fibrosis, but at an early stage of disease. PMID:27871152
Transcription factor Etv5 is essential for the maintenance of alveolar type II cells.
Zhang, Zhen; Newton, Kim; Kummerfeld, Sarah K; Webster, Joshua; Kirkpatrick, Donald S; Phu, Lilian; Eastham-Anderson, Jeffrey; Liu, Jinfeng; Lee, Wyne P; Wu, Jiansheng; Li, Hong; Junttila, Melissa R; Dixit, Vishva M
2017-04-11
Alveolar type II (AT2) cell dysfunction contributes to a number of significant human pathologies including respiratory distress syndrome, lung adenocarcinoma, and debilitating fibrotic diseases, but the critical transcription factors that maintain AT2 cell identity are unknown. Here we show that the E26 transformation-specific (ETS) family transcription factor Etv5 is essential to maintain AT2 cell identity. Deletion of Etv5 from AT2 cells produced gene and protein signatures characteristic of differentiated alveolar type I (AT1) cells. Consistent with a defect in the AT2 stem cell population, Etv5 deficiency markedly reduced recovery following bleomycin-induced lung injury. Lung tumorigenesis driven by mutant KrasG12D was also compromised by Etv5 deficiency. ERK activation downstream of Ras was found to stabilize Etv5 through inactivation of the cullin-RING ubiquitin ligase CRL4 COP1/DET1 that targets Etv5 for proteasomal degradation. These findings identify Etv5 as a critical output of Ras signaling in AT2 cells, contributing to both lung homeostasis and tumor initiation.
Wang, Xu; Hu, Ji-Fan; Tan, Yehui; Cui, Jiuwei; Wang, Guanjun; Mrsny, Randall J; Li, Wei
2014-01-01
Gene single nucleotide polymorphisms (SNPs) have been extensively studied in association with development and prognosis of various malignancies. However, the potential role of genetic polymorphisms of cancer stem cell (CSC) marker genes with respect to cancer risk has not been examined. We conducted a case-control study involving a total of 1000 subjects (500 lung cancer patients and 500 age-matched cancer-free controls) from northeastern China. Lung cancer risk was analyzed in a logistic regression model in association with genotypes of four lung CSC marker genes (CD133, ALDH1, Musashi-1, and EpCAM). Using univariate analysis, the Musashi-1 rs2522137 GG genotype was found to be associated with a higher incidence of lung cancer compared with the TT genotype. No significant associations were observed for gene variants of CD133, ALDH1, or EpCAM. In multivariate analysis, Musashi-1 rs2522137 was still significantly associated with lung cancer when environmental and lifestyle factors were incorporated in the model, including lower BMI; family history of cancer; prior diagnosis of chronic obstructive pulmonary disease, pneumonia, or pulmonary tuberculosis; occupational exposure to pesticide; occupational exposure to gasoline or diesel fuel; heavier smoking; and exposure to heavy cooking emissions. The value of the area under the receiver-operating characteristic (ROC) curve (AUC) was 0.7686. To our knowledge, this is the first report to show an association between a Musashi-1 genotype and lung cancer risk. Further, the prediction model in this study may be useful in determining individuals with high risk of lung cancer.
Epigenetic Therapy in Lung Cancer - Role of microRNAs.
Rothschild, Sacha I
2013-01-01
Lung cancer is the leading cause of cancer deaths worldwide. microRNAs (miRNAs) are a class of small non-coding RNA species that have been implicated in the control of many fundamental cellular and physiological processes such as cellular differentiation, proliferation, apoptosis, and stem cell maintenance. Some miRNAs have been categorized as "oncomiRs" as opposed to "tumor suppressor miRs." This review focuses on the role of miRNAs in the lung cancer carcinogenesis and their potential as diagnostic, prognostic, or predictive markers.
NASA Astrophysics Data System (ADS)
Bhargava, Maneesh
Rationale: In rodent model systems, the sequential changes in lung morphology resulting from hyperoxic injury are well characterized, and are similar to changes in human acute respiratory distress syndrome (ARDS). In the injured lung, alveolar type two (AT2) epithelial cells play a critical role restoring the normal alveolar structure. Thus characterizing the changes in AT2 cells will provide insights into the mechanisms underpinning the recovery from lung injury. Methods: We applied an unbiased systems level proteomics approach to elucidate molecular mechanisms contributing to lung repair in a rat hyperoxic lung injury model. AT2 cells were isolated from rat lungs at predetermined intervals during hyperoxic injury and recovery. Protein expression profiles were determined by using iTRAQRTM with tandem mass spectrometry. Results: Of 959 distinct proteins identified, 183 significantly changed in abundance during the injury-recovery cycle. Gene Ontology enrichment analysis identified cell cycle, cell differentiation, cell metabolism, ion homeostasis, programmed cell death, ubiquitination, and cell migration to be significantly enriched by these proteins. Gene Set Enrichment Analysis of data acquired during lung repair revealed differential expression of gene sets that control multicellular organismal development, systems development, organ development, and chemical homeostasis. More detailed analysis identified activity in two regulatory pathways, JNK and miR 374. A Short Time-series Expression Miner (STEM) algorithm identified protein clusters with coherent changes during injury and repair. Conclusion: Coherent changes occur in the AT2 cell proteome in response to hyperoxic stress. These findings offer guidance regarding the specific molecular mechanisms governing repair of the injured lung.
SOX2 regulates common and specific stem cell features in the CNS and endoderm derived organs.
Hagey, Daniel W; Klum, Susanne; Kurtsdotter, Idha; Zaouter, Cecile; Topcic, Danijal; Andersson, Olov; Bergsland, Maria; Muhr, Jonas
2018-02-01
Stem cells are defined by their capacities to self-renew and generate progeny of multiple lineages. The transcription factor SOX2 has key roles in the regulation of stem cell characteristics, but whether SOX2 achieves these functions through similar mechanisms in distinct stem cell populations is not known. To address this question, we performed RNA-seq and SOX2 ChIP-seq on embryonic mouse cortex, spinal cord, stomach and lung/esophagus. We demonstrate that, although SOX2 binds a similar motif in the different cell types, its target regions are primarily cell-type-specific and enriched for the distinct binding motifs of appropriately expressed interacting co-factors. Furthermore, cell-type-specific SOX2 binding in endodermal and neural cells is most often found around genes specifically expressed in the corresponding tissue. Consistent with this, we demonstrate that SOX2 target regions can act as cis-regulatory modules capable of directing reporter expression to appropriate tissues in a zebrafish reporter assay. In contrast, SOX2 binding sites found in both endodermal and neural tissues are associated with genes regulating general stem cell features, such as proliferation. Notably, we provide evidence that SOX2 regulates proliferation through conserved mechanisms and target genes in both germ layers examined. Together, these findings demonstrate how SOX2 simultaneously regulates cell-type-specific, as well as core transcriptional programs in neural and endodermal stem cells.
Navarro, Alfons; Tejero, Rut; Viñolas, Nuria; Cordeiro, Anna; Marrades, Ramon M.; Fuster, Dolors; Caritg, Oriol; Moises, Jorge; Muñoz, Carmen; Molins, Laureano; Ramirez, Josep; Monzo, Mariano
2015-01-01
The expression of Piwi-interacting RNAs, small RNAs that bind to PIWI proteins, was until recently believed to be limited to germinal stem cells. We have studied the expression of PIWI genes during human lung embryogenesis and in paired tumor and normal tissue prospectively collected from 71 resected non-small-cell lung cancer patients. The mRNA expression analysis showed that PIWIL1 was highly expressed in 7-week embryos and downregulated during the subsequent weeks of development. PIWIL1 was expressed in 11 of the tumor samples but in none of the normal tissue samples. These results were validated by immunohistochemistry, showing faint cytoplasmic reactivity in the PIWIL1-positive samples. Interestingly, the patients expressing PIWIL1 had a shorter time to relapse (TTR) (p = 0.006) and overall survival (OS) (p = 0.0076) than those without PIWIL1 expression. PIWIL2 and 4 were downregulated in tumor tissue in comparison to the normal tissue (p < 0.001) and the patients with lower levels of PIWIL4 had shorter TTR (p = 0.048) and OS (p = 0.033). In the multivariate analysis, PIWIL1 expression emerged as an independent prognostic marker. Using 5-Aza-dC treatment and bisulfite sequencing, we observed that PIWIL1 expression could be regulated in part by methylation. Finally, an in silico study identified a stem-cell expression signature associated with PIWIL1 expression. PMID:25742785
Halim, Noor Hanis Abu; Zakaria, Norashikin; Satar, Nazilah Abdul; Yahaya, Badrul Hisham
2016-01-01
Cancer is a major health problem worldwide. The failure of current treatments to completely eradicate cancer cells often leads to cancer recurrence and dissemination. Studies have suggested that tumor growth and spread are driven by a minority of cancer cells that exhibit characteristics similar to those of normal stem cells, thus these cells are called cancer stem cells (CSCs). CSCs are believed to play an important role in initiating and promoting cancer. CSCs are resistant to currently available cancer therapies, and understanding the mechanisms that control the growth of CSCs might have great implications for cancer therapy. Cancer cells are consist of heterogeneous population of cells, thus methods of identification, isolation, and characterisation of CSCs are fundamental to obtain a pure CSC populations. Therefore, this chapter describes in detail a method for isolating and characterizing a pure population of CSCs from heterogeneous population of cancer cells and CSCs based on specific cell surface markers.
[High dosage therapy with stem cell transplantation in neuroendocrine carcinoma].
Buxhofer, V; Ruckser, R; Kier, P; Habertheuer, K H; Zelenka, P; Tatzreiter, G; Dorner, S; Vedovelli, H; Sebesta, C; Hinterberger, W
2000-01-01
Neuroendocrine carcinoma and small-cell lung cancer (SCLC) are highly responsive to chemo- and radiotherapy. Nevertheless, most patients (pts.) experience relapse. At the 2nd department of medicine in the Donauspital, 4 pts. with neuroendocrine carcinomas of different primary sites underwent high-dose chemotherapy with autologous stem-cell transplantation (ASTx). Pt. 1 suffered from neuroendocrine lung cancer, pt. 2 from a small-cell carcinoma of the pancreas. Pt. 3 had a metastatic small-cell abdominal bulky tumor and pt. 4 presented with neuroendocrine carcinoma of the prostate. After 4-6 cycles induction chemotherapy pts. were consolidated with 1 cycle of HDCht and ASTx. Prior to HDCht pt. 1 and pt. 2 were in complete remission (CR) and pt. 3 and pt. 4 in partial remission. Pt. 3 converted in CR after HDCht. He is still in CR with a disease-free survival of 23 month after ASTx and 30 month after diagnosis. Pt. 1, 2 and 4 died from relapse 10, 16 and 5 month after ASTx and 16, 22 and 9 month after diagnosis. Pts. with neuroendocrine carcinomas might be suitable candidates for HDCht and ASTx.
Lin, Hai-Yan; Xu, Lei; Xie, Shuan-Shuan; Yu, Fei; Hu, Hai-Yang; Song, Xiao-Lian; Wang, Chang-Hui
2015-01-01
Background: Mesenchymal stem cells (MSCs) came out to attract wide attention and had become one of the hotspots of most diseases’ research in decades. But at present, the mechanisms of how MSCs work on chronic asthma remain undefined. Our study aims at verifying whether MSCs play a role in preventing inflammation and airway remodeling via PI3K/AKT signaling pathway in the chronic asthma rats model. Methods: First, an ovalbumin (OVA)-induced asthma model was built. MSCs were administered to ovalbumin-induced asthma rats. The total cells in a bronchial alveolar lavage fluid (BALF) and inflammatory mediators in BALF and serum were measured. Histological examination of lung tissue was performed to estimate the pathological changes. Additionally, the expression of phosphorylated-Akt (p-Akt) in all groups was measured by western blot and immunohistochemistry (IHC). Results: Compared to normal control group, the degree of airway inflammation and airway remodeling was significantly increased in asthma group. On the contrary, they were obviously inhibited in MSCs transplantation group. Moreover, the expression of p-Akt was increased in lung tissues of asthmatic rats, and suppressed by MSCs transplantation. Conclusion: Our results demonstrated that MSCs transplantation could suppress lung inflammation and airway remodeling via PI3K/Akt signaling pathway in rat asthma model. PMID:26464637
Su, Tao; Yang, Xia; Deng, Jian-Hua; Huang, Qiu-Ju; Huang, Su-Chao; Zhang, Yan-Min; Zheng, Hong-Ming; Wang, Ying; Lu, Lin-Lin; Liu, Zhong-Qiu
2018-01-01
Lung cancer is a leading cause of cancer-related deaths worldwide. NOTCH3 signaling is mainly expressed in non-small cell lung carcinoma (NSCLC), and has been proposed as a therapeutic target of NSCLC. While, few agents for preventing or treating NSCLC via targeting NOTCH3 signaling are used in modern clinical practice. Evodiamine (EVO), an alkaloid derived from Euodiae Fructus, possesses low toxicity and has long been shown to exert anti-lung cancer activity. However, the underlying anti-lung cancer mechanisms of EVO are not yet fully understood. In this study, we explored the involvement of NOTCH3 signaling in the anti-lung cancer effects of EVO. Urethane-induced lung cancer mouse model and two NSCLC cell models, A549 and H1299, were used to evaluate the in vivo and in vitro anti-lung cancer action of EVO. A DNA methyltransferase inhibitor was employed to investigate the role of NOTCH3 signaling in the anti-lung cancer effects of EVO. Results showed that EVO potently reduced tumor size and tumor numbers in mice, and inhibited NOTCH3 in the tumors. EVO also dramatically reduced cell viability, induced G2/M cell cycle arrest, inhibited cell migration and reduced stemness in cultured NSCLC cells. Mechanistic studies showed that EVO potently inhibited NOTCH3 signaling by activation of DNMTs-induced NOTCH3 methylation. Importantly, inhibition of NOTCH3 methylation in NSCLC cells diminished EVO's anti-NSCLC effects. Collectively, EVO, a novel NOTCH3 methylation stimulator, exerted potent anti-lung cancer effects partially by inhibiting NOTCH3 signaling. These findings provide new insight into the EVO's anti-NSCLC action, and suggest a potential role of EVO in lung cancer prevention and treatment.
Su, Tao; Yang, Xia; Deng, Jian-Hua; Huang, Qiu-Ju; Huang, Su-Chao; Zhang, Yan-Min; Zheng, Hong-Ming; Wang, Ying; Lu, Lin-Lin; Liu, Zhong-Qiu
2018-01-01
Lung cancer is a leading cause of cancer-related deaths worldwide. NOTCH3 signaling is mainly expressed in non-small cell lung carcinoma (NSCLC), and has been proposed as a therapeutic target of NSCLC. While, few agents for preventing or treating NSCLC via targeting NOTCH3 signaling are used in modern clinical practice. Evodiamine (EVO), an alkaloid derived from Euodiae Fructus, possesses low toxicity and has long been shown to exert anti-lung cancer activity. However, the underlying anti-lung cancer mechanisms of EVO are not yet fully understood. In this study, we explored the involvement of NOTCH3 signaling in the anti-lung cancer effects of EVO. Urethane-induced lung cancer mouse model and two NSCLC cell models, A549 and H1299, were used to evaluate the in vivo and in vitro anti-lung cancer action of EVO. A DNA methyltransferase inhibitor was employed to investigate the role of NOTCH3 signaling in the anti-lung cancer effects of EVO. Results showed that EVO potently reduced tumor size and tumor numbers in mice, and inhibited NOTCH3 in the tumors. EVO also dramatically reduced cell viability, induced G2/M cell cycle arrest, inhibited cell migration and reduced stemness in cultured NSCLC cells. Mechanistic studies showed that EVO potently inhibited NOTCH3 signaling by activation of DNMTs-induced NOTCH3 methylation. Importantly, inhibition of NOTCH3 methylation in NSCLC cells diminished EVO’s anti-NSCLC effects. Collectively, EVO, a novel NOTCH3 methylation stimulator, exerted potent anti-lung cancer effects partially by inhibiting NOTCH3 signaling. These findings provide new insight into the EVO’s anti-NSCLC action, and suggest a potential role of EVO in lung cancer prevention and treatment. PMID:29765324
Weeden, Clare E.; Chen, Yunshun; Ma, Stephen B.; Hu, Yifang; Ramm, Georg; Sutherland, Kate D.; Smyth, Gordon K.
2017-01-01
Lung squamous cell carcinoma (SqCC), the second most common subtype of lung cancer, is strongly associated with tobacco smoking and exhibits genomic instability. The cellular origins and molecular processes that contribute to SqCC formation are largely unexplored. Here we show that human basal stem cells (BSCs) isolated from heavy smokers proliferate extensively, whereas their alveolar progenitor cell counterparts have limited colony-forming capacity. We demonstrate that this difference arises in part because of the ability of BSCs to repair their DNA more efficiently than alveolar cells following ionizing radiation or chemical-induced DNA damage. Analysis of mice harbouring a mutation in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key enzyme in DNA damage repair by nonhomologous end joining (NHEJ), indicated that BSCs preferentially repair their DNA by this error-prone process. Interestingly, polyploidy, a phenomenon associated with genetically unstable cells, was only observed in the human BSC subset. Expression signature analysis indicated that BSCs are the likely cells of origin of human SqCC and that high levels of NHEJ genes in SqCC are correlated with increasing genomic instability. Hence, our results favour a model in which heavy smoking promotes proliferation of BSCs, and their predilection for error-prone NHEJ could lead to the high mutagenic burden that culminates in SqCC. Targeting DNA repair processes may therefore have a role in the prevention and therapy of SqCC. PMID:28125611
Nash;, Richard A.; Yunosov;, Murad; Abrams;, Kraig; Hwang;, Billanna; Castilla-Llorente;, Cristina; Chen;, Peter; Farivar;, Alexander S.; Georges;, George E.; Hackman;, Robert C.; Lamm;, Wayne J.E.; Lesnikova;, Marina; Ochs;, Hans D.; Randolph-Habecker;, Julie; Ziegler;, Stephen F.; Storb;, Rainer; Storer;, Barry; Madtes;, David K.; Glenny;, Robb; Mulligan, Michael S.
2010-01-01
Long-term survival after lung transplantation is limited by acute and chronic graft rejection. Induction of immune tolerance by first establishing mixed hematopoietic chimerism (MC) is a promising strategy to improve outcomes. In a preclinical canine model, stable MC was established in recipients after reduced-intensity conditioning and hematopoietic cell transplantation from a DLA-identical donor. Delayed lung transplantation was performed from the stem cell donor without pharmacological immunosuppression. Lung graft survival without loss of function was prolonged in chimeric (n=5) vs. nonchimeric (n=7) recipients (p≤0.05, Fisher’s test). There were histological changes consistent with low grade rejection in 3/5 of the lung grafts in chimeric recipients at ≥1 year. Chimeric recipients after lung transplantation had a normal immune response to a T-dependent antigen. Compared to normal dogs, there were significant increases of CD4+INFγ+, CD4+IL-4+ and CD8+ INFγ+ T-cell subsets in the blood (p <0.0001 for each of the 3 T-cell subsets). Markers for regulatory T-cell subsets including foxP3, IL10 and TGFβ were also increased in CD3+ T cells from the blood and peripheral tissues of chimeric recipients after lung transplantation. Establishing MC is immunomodulatory and observed changes were consistent with activation of both the effector and regulatory immune response. PMID:19422333
Gore, Amy V.; Bible, Letitia E.; Song, Kimberly; Livingston, David H.; Mohr, Alicia M.; Sifri, Ziad C.
2015-01-01
Background Rodent lungs undergo full histologic recovery within one week following unilateral lung contusion (LC). However, when LC is followed by hemorrhagic shock (HS), healing is impaired. We hypothesize that the intravenous administration of mesenchymal stem cells (MSC) to animals undergoing combined LC followed by HS (LCHS) will improve wound healing. Methods Male Sprague-Dawley rats (n=5-6/group) were subjected to LCHS with or without the injection of a single iv dose of 5 × 106 MSCs following return of shed blood after HS. Rats were sacrificed seven days following injury. Flow cytometry was used to determine the T regulatory (Treg) cell population in peripheral blood (PB). Lung histology was graded using a well-established lung injury score (LIS). Components of the LIS include average inflammatory cells/high power field (hpf) over 30 fields, interstitial edema, pulmonary edema, and alveolar integrity with total scores ranging from 0-11. Data analyzed by ANOVA followed by Tukey's multiple comparison test, expressed as mean ± SD. p<0.05 considered significant. Results Seven days following isolated LC animals demonstrate lung healing with a LIS unchanged from naive. The addition of HS results in a persistently elevated LIS score, whereas addition of MSC to LCHS decreased the LIS score back to naïve levels. The change in LIS was driven by a significant decrease in edema scores. In rats undergoing LC alone, 10.5 ± 3.3% of CD4+ cells were Tregs. The addition of HS caused no significant change in Treg population (9.3±0.7%), whereas LCHS+MSC significantly increased the population to 18.2±6.8% in PB (p<0.05 vs LCHS). Conclusion Impaired wound healing following trauma and hemorrhagic shock is improved by a single dose of MSCs given immediately after injury. This enhanced healing is associated with an increase in the T regulatory cell population and a significant decrease in lung edema score as compared to animals undergoing LCHS. Further study into the role of Tregs in MSC-mediated wound healing is warranted. PMID:26091313
Airway Basal Cells. The “Smoking Gun” of Chronic Obstructive Pulmonary Disease
2014-01-01
The earliest abnormality in the lung associated with smoking is hyperplasia of airway basal cells, the stem/progenitor cells of the ciliated and secretory cells that are central to pulmonary host defense. Using cell biology and ’omics technologies to assess basal cells isolated from bronchoscopic brushings of nonsmokers, smokers, and smokers with chronic obstructive pulmonary disease (COPD), compelling evidence has been provided in support of the concept that airway basal cells are central to the pathogenesis of smoking-associated lung diseases. When confronted by the chronic stress of smoking, airway basal cells become disorderly, regress to a more primitive state, behave as dictated by their inheritance, are susceptible to acquired changes in their genome, lose the capacity to regenerate the epithelium, are responsible for the major changes in the airway that characterize COPD, and, with persistent stress, can undergo malignant transformation. Together, these observations led to the conclusion that accelerated loss of lung function in susceptible individuals begins with disordered airway basal cell biology (i.e., that airway basal cells are the “smoking gun” of COPD, a potential target for the development of therapies to prevent smoking-related lung disorders). PMID:25354273
Wang, Yang; Weng, Tingting; Gou, Deming; Chen, Zhongming; Chintagari, Narendranath Reddy; Liu, Lin
2007-01-24
An important mechanism for gene regulation utilizes small non-coding RNAs called microRNAs (miRNAs). These small RNAs play important roles in tissue development, cell differentiation and proliferation, lipid and fat metabolism, stem cells, exocytosis, diseases and cancers. To date, relatively little is known about functions of miRNAs in the lung except lung cancer. In this study, we utilized a rat miRNA microarray containing 216 miRNA probes, printed in-house, to detect the expression of miRNAs in the rat lung compared to the rat heart, brain, liver, kidney and spleen. Statistical analysis using Significant Analysis of Microarray (SAM) and Tukey Honestly Significant Difference (HSD) revealed 2 miRNAs (miR-195 and miR-200c) expressed specifically in the lung and 9 miRNAs co-expressed in the lung and another organ. 12 selected miRNAs were verified by Northern blot analysis. The identified lung-specific miRNAs from this work will facilitate functional studies of miRNAs during normal physiological and pathophysiological processes of the lung.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Juntao; Mao, Zhangfan; Huang, Jie
2014-02-21
Highlights: • Notch signaling pathway members are expressed lower levels in CD133+ cells. • CD133+ cells are not as sensitive as CD133− cells to chemotherapy. • GSI could inhibit the growth of both CD133+ and CD133− cells. • Blockade of Notch signaling pathway enhanced the effect of chemotherapy with CDDP. • DAPT/CDDP co-therapy caused G2/M arrest and elimination in CD133+ cells. - Abstract: Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatmentsmore » that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G{sub 2}/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were enhanced when combined with GSI. Interestingly, this effect was especially significant in CD133+ cells, suggesting that Notch pathway blockade may be a useful CSC-targeted therapy in lung cancer.« less
Pedrazza, Leonardo; Cunha, Aline Andrea; Luft, Carolina; Nunes, Nailê Karine; Schimitz, Felipe; Gassen, Rodrigo Benedetti; Breda, Ricardo Vaz; Donadio, Marcio Vinícius Fagundes; de Souza Wyse, Angela Terezinha; Pitrez, Paulo Marcio Condessa; Rosa, Jose Luis; de Oliveira, Jarbas Rodrigues
2017-12-01
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are syndromes of acute hypoxemic respiratory failure resulting from a variety of direct and indirect injuries to the gas exchange parenchyma of the lungs. During the ALI, we have an increase release of proinflammatory cytokines and high reactive oxygen species (ROS) formation. These factors are responsible for the release and activation of neutrophil-derived proteases and the formation of neutrophil extracellular traps (NETs). The excessive increase in the release of NETs cause damage to lung tissue. Recent studies have studies involving the administration of mesenchymal stem cells (MSCs) for the treatment of experimental ALI has shown promising results. In this way, the objective of our study is to evaluate the ability of MSCs, in a lipopolysaccharide (LPS)-induced ALI model, to reduce inflammation, oxidative damage, and consequently decrease the release of NETs. Mice were submitted lung injury induced by intratracheal instillation of LPS and subsequently treated or not with MSCs. Treatment with MSCs was able to modulate pulmonary inflammation, decrease oxidative damage, and reduce the release of NETs. These benefits from treatment are evident when we observe a significant increase in the survival curve in the treated animals. Our results demonstrate that MSCs treatment is effective for the treatment of ALI. For the first time, it is described that MSCs can reduce the formation of NETs and an experimental model of ALI. This finding is directly related to these cells modulate the inflammatory response and oxidative damage in the course of the pathology. © 2017 Wiley Periodicals, Inc.
Kim, Seong-Kwan; Park, Jin-A; Zhang, Dan; Cho, Sang-Hyun; Yi, Hee; Cho, Soo-Min; Chang, Byung-Joon; Kim, Jin-Suk; Shim, Jae-Han; Abd El-Aty, A M; Shin, Ho-Chul
2017-08-01
Epithelial-mesenchymal transition (EMT) is a notable mechanism underlying cancer cell metastasis. Transforming growth factor β1 (TGF-β1) has been used to induce EMT; however, there is a lack of information regarding the role of TGF-β1 in mesenchymal-epithelial transition (MET). In the present study, EMT was induced in A549 lung cancer cells using TGF-β1 (TGF-β1-treated group) and MET was induced sequentially from the TGF-β1-treated group by removing the TGF-β1 (MET/return group). Untreated A549 lung cancer cells were used as a control. Characteristic features, including cancer stem cell markers [cluster of differentiation (CD)24, CD44 and CD133], cell proliferation and migration and diverse intracellular mechanisms, were observed in all groups. Using western blot analysis, the TGF-β1-treated group demonstrated increased vimentin and reduced E-cadherin expression, whereas the MET/return group demonstrated the opposite trend. Among cancer stem cell markers, the population of CD24 low cells was reduced in the TGF-β1-treated group. Furthermore, the G2/M phase cell cycle population, cisplatin-sensitivity, and cell proliferation and migration ability were increased in the TGF-β1-treated group. These features were unaltered in the MET/return group when compared to the TGF-β1-treated group. Immunoblotting revealed an increase in the levels of SMAD3, phosphorylated SMAD3, phosphorylated extracellular signal-regulated kinase and caspase-3, and a decrease in active caspase-3 levels in the TGF-β1-treated group. Increased caspase-3 and reduced active caspase-3 levels were observed in the MET/return group, similar to those in the TGF-β1-treated group; however, levels of other signalling proteins were unchanged compared with the control group. EMT induced by TGF-β1 was not preserved; however, stemness-associated properties (CD24 expression, caspase-3 expression, cell proliferation and cisplatin-resistance) were sustained following removal of TGF-β1.
Van de Laar, Emily; Clifford, Monica; Hasenoeder, Stefan; Kim, Bo Ram; Wang, Dennis; Lee, Sharon; Paterson, Josh; Vu, Nancy M; Waddell, Thomas K; Keshavjee, Shaf; Tsao, Ming-Sound; Ailles, Laurie; Moghal, Nadeem
2014-12-31
The large airways of the lungs (trachea and bronchi) are lined with a pseudostratified mucociliary epithelium, which is maintained by stem cells/progenitors within the basal cell compartment. Alterations in basal cell behavior can contribute to large airway diseases including squamous cell carcinomas (SQCCs). Basal cells have traditionally been thought of as a uniform population defined by basolateral position, cuboidal cell shape, and expression of pan-basal cell lineage markers like KRT5 and TP63. While some evidence suggests that basal cells are not all functionally equivalent, few heterogeneously expressed markers have been identified to purify and study subpopulations. In addition, few signaling pathways have been identified that regulate their cell behavior. The goals of this work were to investigate tracheal basal cell diversity and to identify new signaling pathways that regulate basal cell behavior. We used flow cytometry (FACS) to profile cell surface marker expression at a single cell level in primary human tracheal basal cell cultures that maintain stem cell/progenitor activity. FACS results were validated with tissue staining, in silico comparisons with normal basal cell and lung cancer datasets, and an in vitro proliferation assay. We identified 105 surface markers, with 47 markers identifying potential subpopulations. These subpopulations generally fell into more (~ > 13%) or less abundant (~ < 6%) groups. Microarray gene expression profiling supported the heterogeneous expression of these markers in the total population, and immunostaining of large airway tissue suggested that some of these markers are relevant in vivo. 24 markers were enriched in lung SQCCs relative to adenocarcinomas, with four markers having prognostic significance in SQCCs. We also identified 33 signaling receptors, including the MST1R/RON growth factor receptor, whose ligand MST1/MSP was mitogenic for basal cells. This work provides the largest description to date of molecular diversity among human large airway basal cells. Furthermore, these markers can be used to further study basal cell function in repair and disease, and may aid in the classification and study of SQCCs.
Diverse Profiles of Ricin-Cell Interactions in the Lung Following Intranasal Exposure to Ricin
Sapoznikov, Anita; Falach, Reut; Mazor, Ohad; Alcalay, Ron; Gal, Yoav; Seliger, Nehama; Sabo, Tamar; Kronman, Chanoch
2015-01-01
Ricin, a plant-derived exotoxin, inhibits protein synthesis by ribosomal inactivation. Due to its wide availability and ease of preparation, ricin is considered a biothreat, foremost by respiratory exposure. We examined the in vivo interactions between ricin and cells of the lungs in mice intranasally exposed to the toxin and revealed multi-phasic cell-type-dependent binding profiles. While macrophages (MΦs) and dendritic cells (DCs) displayed biphasic binding to ricin, monophasic binding patterns were observed for other cell types; epithelial cells displayed early binding, while B cells and endothelial cells bound toxin late after intoxication. Neutrophils, which were massively recruited to the intoxicated lung, were refractive to toxin binding. Although epithelial cells bound ricin as early as MΦs and DCs, their rates of elimination differed considerably; a reduction in epithelial cell counts occurred late after intoxication and was restricted to alveolar type II cells only. The differential binding and cell-elimination patterns observed may stem from dissimilar accessibility of the toxin to different cells in the lung and may also reflect unequal interactions of the toxin with different cell-surface receptors. The multifaceted interactions observed in this study between ricin and the various cells of the target organ should be considered in the future development of efficient post-exposure countermeasures against ricin intoxication. PMID:26593946
Diverse profiles of ricin-cell interactions in the lung following intranasal exposure to ricin.
Sapoznikov, Anita; Falach, Reut; Mazor, Ohad; Alcalay, Ron; Gal, Yoav; Seliger, Nehama; Sabo, Tamar; Kronman, Chanoch
2015-11-17
Ricin, a plant-derived exotoxin, inhibits protein synthesis by ribosomal inactivation. Due to its wide availability and ease of preparation, ricin is considered a biothreat, foremost by respiratory exposure. We examined the in vivo interactions between ricin and cells of the lungs in mice intranasally exposed to the toxin and revealed multi-phasic cell-type-dependent binding profiles. While macrophages (MΦs) and dendritic cells (DCs) displayed biphasic binding to ricin, monophasic binding patterns were observed for other cell types; epithelial cells displayed early binding, while B cells and endothelial cells bound toxin late after intoxication. Neutrophils, which were massively recruited to the intoxicated lung, were refractive to toxin binding. Although epithelial cells bound ricin as early as MΦs and DCs, their rates of elimination differed considerably; a reduction in epithelial cell counts occurred late after intoxication and was restricted to alveolar type II cells only. The differential binding and cell-elimination patterns observed may stem from dissimilar accessibility of the toxin to different cells in the lung and may also reflect unequal interactions of the toxin with different cell-surface receptors. The multifaceted interactions observed in this study between ricin and the various cells of the target organ should be considered in the future development of efficient post-exposure countermeasures against ricin intoxication.
Tumor-stem cells interactions by fluorescence imaging
NASA Astrophysics Data System (ADS)
Meleshina, Aleksandra V.; Cherkasova, Elena I.; Sergeeva, Ekaterina; Turchin, Ilya V.; Kiseleva, Ekaterina V.; Dashinimaev, Erdem B.; Shirmanova, Marina V.; Zagaynova, Elena V.
2013-02-01
Recently, great deal of interest is investigation the function of the stem cells (SC) in tumors. In this study, we studied «recipient-tumor- fluorescent stem cells » system using the methods of in vivo imaging and laser scanning microscopy (LSM). We used adipose-derived adult stem (ADAS) cells of human lentiviral transfected with the gene of fluorescent protein Turbo FP635. ADAS cells were administrated into nude mice with transplanted tumor HeLa Kyoto (human cervical carcinoma) at different stages of tumor growth (0-8 days) intravenously or into tumor. In vivo imaging was performed on the experimental setup for epi - luminescence bioimaging (IAP RAS, Nizhny Novgorod). The results of the imaging showed localization of fluorophore tagged stem cells in the spleen on day 5-9 after injection. The sensitivity of the technique may be improved by spectral separation autofluorescence and fluorescence of stem cells. We compared the results of in vivo imaging and confocal laser scanning microscopy (LSM 510 META, Carl Zeiss, Germany). Internal organs of the animals and tumor tissue were investigated. It was shown that with i.v. injection of ADAS, bright fluorescent structures with spectral characteristics corresponding to TurboFP635 protein are locally accumulated in the marrow, lungs and tumors of animals. These findings indicate that ADAS cells integrate in the animal body with transplanted tumor and can be identified by fluorescence bioimaging techniques in vivo and ex vivo.
Upadhyay, Kiran; Fine, Richard N
2014-08-01
Hematopoietic stem cell transplantation (HSCT) is an accepted treatment modality for various malignant and non-malignant disorders of the lympho-hematopoietic system. Patient survival rate has increased significantly with the use of this procedure. However, with the increase in disease-free patient survival rates, complications including various organ toxicities are also common. Kidney, liver, lung, heart, and skin are among those solid organs that are commonly affected and frequently lead to organ dysfunction and eventually end-organ disease. Conservative measures may or may not be successful in managing the organ failure in these patients. Solid organ transplantation has been shown to be promising in those patients who fail conservative management. This review will summarize the causes of solid organ (kidney, liver, and lung) dysfunction and the available data on transplantation of these solid organs in post-HSCT recipients.
NASA Astrophysics Data System (ADS)
Fang, Shengtao; Wu, Lei; Li, Mingxing; Yi, Huqiang; Gao, Guanhui; Sheng, Zonghai; Gong, Ping; Ma, Yifan; Cai, Lintao
2014-08-01
Metastasis and drug resistance are the main causes for the failure in clinical cancer therapy. Emerging evidence suggests an intricate role of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) in metastasis and drug resistance. The EMT-activator ZEB1 is crucial in malignant tumor progression by linking EMT-activation and stemness-maintenance. Here, we used multifunctional polypeptide micelle nanoparticles (NP) as nanocarriers for the delivery of ZEB1 siRNA and doxorubicin (DOX). The nanocarriers could effectively deliver siRNA to the cytoplasm and knockdown the target gene in H460 cells and H460 xenograft tumors, leading to reduced EMT and repressed CSC properties in vitro and in vivo. The complex micelle nanoparticles with ZEB1 siRNA (siRNA-NP) significantly reduced metastasis in the lung. When DOX and siRNA were co-delivered by the nanocarriers (siRNA-DOX-NP), a synergistic therapeutic effect was observed, resulting in dramatic inhibition of tumor growth in a H460 xenograft model. These results demonstrated that the siRNA-NP or siRNA-DOX-NP complex targeting ZEB1 could be developed into a new therapeutic approach for non-small cell lung cancer (NSCLC) treatment.Metastasis and drug resistance are the main causes for the failure in clinical cancer therapy. Emerging evidence suggests an intricate role of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) in metastasis and drug resistance. The EMT-activator ZEB1 is crucial in malignant tumor progression by linking EMT-activation and stemness-maintenance. Here, we used multifunctional polypeptide micelle nanoparticles (NP) as nanocarriers for the delivery of ZEB1 siRNA and doxorubicin (DOX). The nanocarriers could effectively deliver siRNA to the cytoplasm and knockdown the target gene in H460 cells and H460 xenograft tumors, leading to reduced EMT and repressed CSC properties in vitro and in vivo. The complex micelle nanoparticles with ZEB1 siRNA (siRNA-NP) significantly reduced metastasis in the lung. When DOX and siRNA were co-delivered by the nanocarriers (siRNA-DOX-NP), a synergistic therapeutic effect was observed, resulting in dramatic inhibition of tumor growth in a H460 xenograft model. These results demonstrated that the siRNA-NP or siRNA-DOX-NP complex targeting ZEB1 could be developed into a new therapeutic approach for non-small cell lung cancer (NSCLC) treatment. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01518e
Xu, Ting; Zhou, Yufeng; Qiu, Lipeng; Do, Danh C; Zhao, Yilin; Cui, Zhuang; Wang, Heng; Liu, Xiaopeng; Saradna, Arjun; Cao, Xu; Wan, Mei; Gao, Peisong
2015-12-15
Exposure to cockroach allergen leads to allergic sensitization and increased risk of developing asthma. Aryl hydrocarbon receptor (AhR), a receptor for many common environmental contaminants, can sense not only environmental pollutants but also microbial insults. Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the capacity to modulate immune responses. In this study, we investigated whether AhR can sense cockroach allergens and modulate allergen-induced lung inflammation through MSCs. We found that cockroach allergen-treated AhR-deficient (AhR(-/-)) mice showed exacerbation of lung inflammation when compared with wild-type (WT) mice. In contrast, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an AhR agonist, significantly suppressed allergen-induced mouse lung inflammation. MSCs were significantly reduced in cockroach allergen-challenged AhR(-/-) mice as compared with WT mice, but increased in cockroach allergen-challenged WT mice when treated with TCDD. Moreover, MSCs express AhR, and AhR signaling can be activated by cockroach allergen with increased expression of its downstream genes cyp1a1 and cyp1b1. Furthermore, we tracked the migration of i.v.-injected GFP(+) MSCs and found that cockroach allergen-challenged AhR(-/-) mice displayed less migration of MSCs to the lungs compared with WT. The AhR-mediated MSC migration was further verified by an in vitro Transwell migration assay. Epithelial conditioned medium prepared from cockroach extract-challenged epithelial cells significantly induced MSC migration, which was further enhanced by TCDD. The administration of MSCs significantly attenuated cockroach allergen-induced inflammation, which was abolished by TGF-β1-neutralizing Ab. These results suggest that AhR plays an important role in protecting lungs from allergen-induced inflammation by modulating MSC recruitment and their immune-suppressive activity. Copyright © 2015 by The American Association of Immunologists, Inc.
Epigenetic Therapy in Lung Cancer – Role of microRNAs
Rothschild, Sacha I.
2013-01-01
Lung cancer is the leading cause of cancer deaths worldwide. microRNAs (miRNAs) are a class of small non-coding RNA species that have been implicated in the control of many fundamental cellular and physiological processes such as cellular differentiation, proliferation, apoptosis, and stem cell maintenance. Some miRNAs have been categorized as “oncomiRs” as opposed to “tumor suppressor miRs.” This review focuses on the role of miRNAs in the lung cancer carcinogenesis and their potential as diagnostic, prognostic, or predictive markers. PMID:23802096
2014-12-22
Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Solid Neoplasm; Male Breast Carcinoma; Recurrent Adult Brain Neoplasm; Recurrent Breast Carcinoma; Recurrent Colon Carcinoma; Recurrent Melanoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Carcinoma; Recurrent Rectal Carcinoma; Recurrent Renal Cell Carcinoma; Stage III Pancreatic Cancer; Stage III Renal Cell Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Rectal Cancer; Stage IIIA Skin Melanoma; Stage IIIB Breast Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Rectal Cancer; Stage IIIB Skin Melanoma; Stage IIIC Breast Cancer; Stage IIIC Colon Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Rectal Cancer; Stage IIIC Skin Melanoma; Stage IV Breast Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IV Ovarian Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer
Targeting the vascular and perivascular niches as a regenerative therapy for lung and liver fibrosis
Cao, Zhongwei; Ye, Tinghong; Sun, Yue; Ji, Gaili; Shido, Koji; Chen, Yutian; Luo, Lin; Na, Feifei; Li, Xiaoyan; Huang, Zhen; Ko, Jane L.; Mittal, Vivek; Qiao, Lina; Chen, Chong; Martinez, Fernando J.; Rafii, Shahin; Ding, Bi-Sen
2017-01-01
The regenerative capacity of lung and liver is sometimes impaired by chronic or overwhelming injury. Orthotopic transplantation of parenchymal stem cells to damaged organs might reinstate their self-repair ability. However, parenchymal cell engraftment is frequently hampered by the microenvironment in diseased recipient organs. Here, we show that targeting both the vascular niche and perivascular fibroblasts establishes “hospitable soil” to foster incorporation of “seed”, in this case the engraftment of parenchymal cells in injured organs. Specifically, ectopic induction of endothelial cell (EC)-expressed paracrine/angiocrine hepatocyte growth factor (HGF) and inhibition of perivascular NADPH Oxidase 4 (NOX4) synergistically enabled reconstitution of mouse and human parenchymal cells in damaged organs. Reciprocally, genetic knockout of Hgf in mouse ECs (HgfiΔEC/iΔEC) aberrantly upregulated perivascular NOX4 during liver and lung regeneration. Dysregulated HGF and NOX4 pathways subverted the function of vascular and perivascular cells from an epithelially-inductive niche to a microenvironment that inhibited parenchymal reconstitution. Perivascular NOX4 induction in HgfiΔEC/iΔEC mice recapitulated the phenotype of human and mouse fibrotic livers and lungs. Consequently, EC-directed HGF and NOX4 inhibitor GKT137831 stimulated regenerative integration of mouse and human parenchymal cells in chronically injured lung and liver. Our data suggest that targeting dysfunctional perivascular and vascular cells in diseased organs can bypass fibrosis and enable reparative cell engraftment to reinstate lung and liver regeneration. PMID:28855398
In vitro generation of type-II pneumocytes can be initiated in human CD34(+) stem cells.
Srikanth, Lokanathan; Venkatesh, Katari; Sunitha, Manne Mudhu; Kumar, Pasupuleti Santhosh; Chandrasekhar, Chodimella; Vengamma, Bhuma; Sarma, Potukuchi Venkata Gurunadha Krishna
2016-02-01
Human CD34(+) stem cells differentiated into type-II pneumocytes in Dulbecco's modified Eagle medium (DMEM) having hydrocortisone, insulin, fibroblast growth factor (FGF), epidermal growth factor (EGF) and bovine serum albumin (BSA), expressing surfactant proteins-B (SP-B) and C (SP-C), alkaline phosphatase (ALP) and lysozyme. FACS-enumerated pure CD34(+) cells, isolated from human peripheral blood, were cultured in DMEM and showed positive reaction with anti-human CD34 monoclonal antibodies in immunocytochemistry. These cells were cultured in DMEM having hydrocortisone, insulin, FGF, EGF and BSA (HIFEB-D) medium having an air-liquid interface. They differentiated into type-II pneumocytes with expression of SP-B and SP-C genes and disappearance of CD34 expression as assessed using real-time PCR. In reverse transcription-PCR amplicons showed 208 and 907 bp confirming SP-B and SP-C expressions. These cells expressed ALP with an activity of 1.05 ± 0.09 mM ml(-1) min(-1) and lysozyme that killed E. coli. The successful differentiation of human CD34(+) stem cells into type-II pneumocytes, and transplantation of such cells obtained from the patient's stem cell could be the futuristic approach to regenerate diseased lung alveoli.
Mesenchymal stem cells ameliorate the histopathological changes in a murine model of chronic asthma.
Firinci, Fatih; Karaman, Meral; Baran, Yusuf; Bagriyanik, Alper; Ayyildiz, Zeynep Arikan; Kiray, Muge; Kozanoglu, Ilknur; Yilmaz, Osman; Uzuner, Nevin; Karaman, Ozkan
2011-08-01
Asthma therapies are effective in reducing inflammation but airway remodeling is poorly responsive to these agents. New therapeutic options that have fewer side effects and reverse chronic changes in the lungs are essential. Mesenchymal stem cells (MSCs) are promising for the development of novel therapies in regenerative medicine. This study aimed to examine the efficacy of MSCs on lung histopathology in a murine model of chronic asthma. BALB/c mice were divided into four groups: Group 1 (control group, n=6), Group 2 (ovalbumin induced asthma only, n=10), Group 3 (ovalbumin induced asthma + MSCs, n=10), and Group 4 (MSCs only, n=10). Histological findings (basement membrane, epithelium, subepithelial smooth muscle thickness, numbers of goblet and mast cells) of the airways and MSC migration were evaluated by light, electron, and confocal microscopes. In Group 3, all early histopathological changes except epithelial thickness and all of the chronic changes were significantly ameliorated when compared with Group 2. Evaluation with confocal microscopy showed that no noteworthy amount of MSCs were present in the lung tissues of Group 4 while significant amount of MSCs was detected in Group 3. Serum NO levels in Group 3, were significantly lower than Group 2. The results of this study revealed that MSCs migrated to lung tissue and ameliorated bronchial asthma in murine model. Further studies are needed to evaluate the efficacy of MSCs for the treatment of asthma. Copyright © 2011 Elsevier B.V. All rights reserved.
Directed Differentiation of Human-Induced Pluripotent Stem Cells to Mesenchymal Stem Cells.
Lian, Qizhou; Zhang, Yuelin; Liang, Xiaoting; Gao, Fei; Tse, Hung-Fat
2016-01-01
Multipotent stromal cells, also known as mesenchymal stem cells (MSCs), possess great potential to generate a wide range of cell types including endothelial cells, smooth muscle cells, bone, cartilage, and lipid cells. This protocol describes in detail how to perform highly efficient, lineage-specific differentiation of human-induced pluripotent stem cells (iPSCs) with an MSCs fate. The approach uses a clinically compliant protocol with chemically defined media, feeder-free conditions, and a CD105 positive and CD24 negative selection to achieve a single cell-based MSCs derivation from differentiating human pluripotent cells in approximately 20 days. Cells generated with this protocol express typical MSCs surface markers and undergo adipogenesis, osteogenesis, and chondrogenesis similar to adult bone marrow-derived MSCs (BM-MSCs). Nonetheless, compared with adult BM-MSCs, iPSC-MSCs display a higher proliferative capacity, up to 120 passages, without obvious loss of self-renewal potential and constitutively express MSCs surface antigens. MSCs generated with this protocol have numerous applications, including expansion to large scale cell numbers for tissue engineering and the development of cellular therapeutics. This approach has been used to rescue limb ischemia, allergic disorders, and cigarette smoke-induced lung damage and to model mesenchymal and vascular disorders of Hutchinson-Gilford progeria syndrome (HGPS).
Monsel, Antoine; Zhu, Ying-gang; Gennai, Stephane; Hao, Qi; Liu, Jia; Lee, Jae W.
2014-01-01
Critically ill patients often suffer from multiple organ failures involving lung, kidney, liver or brain. Genomic, proteomic and metabolomic approaches highlight common injury mechanisms leading to acute organ failure. This underlines the need to focus on therapeutic strategies affecting multiple injury pathways. The use of adult stem cells such as mesenchymal stem or stromal cells (MSC) may represent a promising new therapeutic approach as increasing evidence shows that MSC can exert protective effects following injury through the release of pro-mitotic, anti-apoptotic, anti-inflammatory and immunomodulatory soluble factors. Furthermore, they can mitigate metabolomic and oxidative stress imbalance. In this work, we review the biological capabilities of MSC and the results of clinical trials using MSC as therapy in acute organ injuries. Although preliminary results are encouraging, more studies concerning safety and efficacy of MSC therapy are needed to determine their optimal clinical use. PMID:25211170
Regenerative medicine for the respiratory system: distant future or tomorrow's treatment?
Brouwer, Katrien M; Hoogenkamp, Henk R; Daamen, Willeke F; van Kuppevelt, Toin H
2013-03-01
Regenerative medicine (RM) is a new field of biomedical science that focuses on the regeneration of tissues and organs and the restoration of organ function. Although regeneration of organ systems such as bone, cartilage, and heart has attracted intense scientific research over recent decades, RM research regarding the respiratory system, including the trachea, the lung proper, and the diaphragm, has lagged behind. However, the last 5 years have witnessed novel approaches and initial clinical applications of tissue-engineered constructs to restore organ structure and function. In this regard, this article briefly addresses the basics of RM and introduces the key elements necessary for tissue regeneration, including (stem) cells, biomaterials, and extracellular matrices. In addition, the current status of the (clinical) application of RM to the respiratory system is discussed, and bottlenecks and recent approaches are identified. For the trachea, several initial clinical studies have been reported and have used various combinations of cells and scaffolds. Although promising, the methods used in these studies require optimization and standardization. For the lung proper, only (stem) cell-based approaches have been probed clinically, but it is becoming apparent that combinations of cells and scaffolds are required to successfully restore the lung's architecture and function. In the case of the diaphragm, clinical applications have focused on the use of decellularized scaffolds, but novel scaffolds, with or without cells, are clearly needed for true regeneration of diaphragmatic tissue. We conclude that respiratory treatment with RM will not be realized tomorrow, but its future looks promising.
NASA Astrophysics Data System (ADS)
Ogihara, Yusuke; Yukawa, Hiroshi; Kameyama, Tatsuya; Nishi, Hiroyasu; Onoshima, Daisuke; Ishikawa, Tetsuya; Torimoto, Tsukasa; Baba, Yoshinobu
2017-01-01
The facile synthesis of ZnS-AgInS2 (ZAIS) as cadmium-free QDs and their application, mainly in solar cells, has been reported by our groups. In the present study, we investigated the safety and the usefulness for labeling and in vivo imaging of a newly synthesized aqueous ZnS-coated ZAIS (ZnS-ZAIS) carboxylated nanoparticles (ZZC) to stem cells. ZZC shows the strong fluorescence in aqueous solutions such as PBS and cell culture medium, and a complex of ZZC and octa-arginine (R8) peptides (R8-ZZC) can achieve the highly efficient labeling of adipose tissue-derived stem cells (ASCs). The cytotoxicity of R8-ZZC to ASCs was found to be extremely low in comparison to that of CdSe-based QDs, and R8-ZZC was confirmed to have no influence on the proliferation rate or the differentiation ability of ASCs. Moreover, R8-ZZC was not found to induce the production of major inflammatory cytokines (TNF-α, IFN-γ, IL-12p70, IL-6 and MCP-1) in ASCs. Transplanted R8-ZZC-labeled ASCs could be quantitatively detected in the lungs and liver mainly using an in vivo imaging system. In addition, high-speed multiphoton confocal laser microscopy revealed the presence of aggregates of transplanted ASCs at many sites in the lungs, whereas individual ASCs were found to have accumulated in the liver.
Gore, Amy V.; Bible, Letitia E.; Livingston, David H.; Mohr, Alicia M.; Sifri, Ziad C.
2015-01-01
Intro One week following unilateral lung contusion (LC), rat lungs demonstrate full histologic recovery. When animals undergo LC plus the addition of chronic restraint stress (CS), wound healing is significantly delayed. Mesenchymal stem cells (MSC) are pluripotent cells capable of immunomodulation that have been the focus of much research in wound healing and tissue regeneration. We hypothesize that the addition of MSCs will improve wound healing in the setting of CS. Methods Male Sprague-Dawley rats (n=6-7/group) were subjected to LC/CS with or without the injection of MSCs. MSCs were given as a single IV dose of 5 × 106 cells in 1mL IMDM media at the time of LC. Rats were subjected to two hours of restraint stress on days 1-6 following LC. Seven days following injury, rats were sacrificed and lungs examined for histologic evidence of wound healing using a well-established histologic lung injury score (LIS) to grade injury. LIS examines inflammatory cells/high power field (hpf) averaged over 30 fields, interstitial edema, pulmonary edema, and alveolar integrity with scores ranging from 0 (normal) to 11 (highly damaged). Peripheral blood was analyzed by flow cytometry for the presence of T-regulatory (C4+CD25+FoxP3+) cells. Data analyzed by ANOVA followed by Tukey’s multiple comparison test, expressed as mean ± SD. Results As previously shown, seven days following isolated LC, LIS has returned to 0.83 ± 0.41, with a subscore of zero for inflammatory cells/hpf. The addition of CS results in a LIS score of 4.4 ± 2.2, with a subscore of 1.9 ± 0.7 for inflammatory cells/hpf. Addition of MSC to LC/CS decreased LIS score to 1.7 ± 0.8 with a subscore of zero for inflammatory cells/hpf. Furthermore, treatment of animals undergoing LC/CS with MSCs increased the %T-regulatory cells by 70% in animals undergoing LC/CS alone (12.9 ± 2.4% vs 6.2 ± 1.3%) Conclusion Stress-induced impairment of wound healing is reversed by addition of MSCs given at the time of injury in this rat lung contusion model. This improvement in lung healing is associated with a decrease in the number of inflammatory cells and an increase in the number of T regulatory cells. Further study into the mechanisms by which MSCs hasten wound healing is warranted. PMID:25807405
Kim, Bo Ram; Van de Laar, Emily; Tarumi, Shintaro; Hasenoeder, Stefan; Wang, Dennis; Virtanen, Carl; Bandarchi, Bizhan; Pham, Nhu An; Lee, Sharon; Keshavjee, Shaf; Tsao, Ming-Sound; Moghal, Nadeem
2016-01-01
Although cancers are considered stem cell diseases, mechanisms involving stem cell alterations are poorly understood. Squamous cell carcinoma (SQCC) is the second most common lung cancer, and its pathogenesis appears to hinge on changes in the stem cell behavior of basal cells in the bronchial airways. Basal cells are normally quiescent and differentiate into mucociliary epithelia. Smoking triggers a hyperproliferative response resulting in progressive premalignant epithelial changes ranging from squamous metaplasia to dysplasia. These changes can regress naturally, even with chronic smoking. However, for unknown reasons, dysplasias have higher progression rates than earlier stages. We used primary human tracheobronchial basal cells to investigate how copy number gains in SOX2 and PIK3CA at 3q26-28, which co-occur in dysplasia and are observed in 94% of SQCCs, may promote progression. We find that SOX2 cooperates with PI3K signaling, which is activated by smoking, to initiate the squamous injury response in basal cells. This response involves SOX9 repression, and, accordingly, SOX2 and PI3K signaling levels are high during dysplasia, while SOX9 is not expressed. By contrast, during regeneration of mucociliary epithelia, PI3K signaling is low and basal cells transiently enter a SOX2LoSOX9Hi state, with SOX9 promoting proliferation and preventing squamous differentiation. Transient reduction in SOX2 is necessary for ciliogenesis, although SOX2 expression later rises and drives mucinous differentiation, as SOX9 levels decline. Frequent coamplification of SOX2 and PIK3CA in dysplasia may, thus, promote progression by locking basal cells in a SOX2HiSOX9Lo state with active PI3K signaling, which sustains the squamous injury response while precluding normal mucociliary differentiation. Surprisingly, we find that, although later in invasive carcinoma SOX9 is generally expressed at low levels, its expression is higher in a subset of SQCCs with less squamous identity and worse clinical outcome. We propose that early pathogenesis of most SQCCs involves stabilization of the squamous injury state in stem cells through copy number gains at 3q, with the pro-proliferative activity of SOX9 possibly being exploited in a subset of SQCCs in later stages. PMID:27880766
Jayakumar, Sundarraj; Patwardhan, Raghavendra S; Pal, Debojyoti; Singh, Babita; Sharma, Deepak; Kutala, Vijay Kumar; Sandur, Santosh Kumar
2017-12-01
Mitocurcumin is a derivative of curcumin, which has been shown to selectively enter mitochondria. Here we describe the anti-tumor efficacy of mitocurcumin in lung cancer cells and its mechanism of action. Mitocurcumin, showed 25-50 fold higher efficacy in killing lung cancer cells as compared to curcumin as demonstrated by clonogenic assay, flow cytometry and high throughput screening assay. Treatment of lung cancer cells with mitocurcumin significantly decreased the frequency of cancer stem cells. Mitocurcumin increased the mitochondrial reactive oxygen species (ROS), decreased the mitochondrial glutathione levels and induced strand breaks in the mitochondrial DNA. As a result, we observed increased BAX to BCL-2 ratio, cytochrome C release into the cytosol, loss of mitochondrial membrane potential and increased caspase-3 activity suggesting that mitocurcumin activates the intrinsic apoptotic pathway. Docking studies using mitocurcumin revealed that it binds to the active site of the mitochondrial thioredoxin reductase (TrxR2) with high affinity. In corroboration with the above finding, mitocurcumin decreased TrxR activity in cell free as well as the cellular system. The anti-cancer activity of mitocurcumin measured in terms of apoptotic cell death and the decrease in cancer stem cell frequency was accentuated by TrxR2 overexpression. This was due to modulation of TrxR2 activity to NADPH oxidase like activity by mitocurcumin, resulting in higher ROS accumulation and cell death. Thus, our findings reveal mitocurcumin as a potent anticancer agent with better efficacy than curcumin. This study also demonstrates the role of TrxR2 and mitochondrial DNA damage in mitocurcumin mediated killing of cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Madariaga, Maria Lucia L.; Michel, Sebastian G.; La Muraglia, Glenn M.; Sihag, Smita; Leonard, David A.; Farkash, Evan A.; Colvin, Robert B.; Cetrulo, Curtis L.; Huang, Christene A.; Sachs, David H.; Madsen, Joren C.; Allan, James S.
2014-01-01
Background Allograft rejection continues to be a vexing problem in clinical lung transplantation, and the role played by passenger leukocytes in the rejection or acceptance of an organ is unclear. Here we tested whether recipient-matching of donor graft passenger leukocytes would impact graft survival in a preclinical model of orthotopic left lung transplantation. Methods In the experimental group (Group 1), donor lungs were obtained from chimeric swine, in which the passenger leukocytes (but not the parenchyma) were MHC-matched to the recipients (n=3). In the control group (Group 2), both the donor parenchyma and the passenger leukocytes were MHC-mismatched to the recipients (n = 3). Results Lungs harvested from swine previously rendered chimeric by hematopoietic stem cell transplantation using recipient-type cells showed a high degree of passenger leukocyte chimerism by immunohistochemistry and flow cytometry. The chimeric lungs containing passenger leukocytes matched to the lung recipient (Group 1) survived on average 107 days (range 80–156). Control lung allografts (Group 2) survived on average 45 days (range 29–64; p<0.05). Conclusion Our data indicate that recipient-matching of passenger leukocytes significantly prolongs lung allograft survival. PMID:25757217
Zhao, Yidan D.; Huang, Xiaojia; Yi, Fan; Dai, Zhiyu; Qian, Zhijian; Tiruppathi, Chinnaswamy; Tran, Khiem; Zhao, You-Yang
2015-01-01
Adult stem cell treatment is a potential novel therapeutic approach for acute respiratory distress syndrome. Given the extremely low rate of cell engraftment, it is believed that these cells exert their beneficial effects via paracrine mechanisms. However, the endogenous mediator(s) in the pulmonary vasculature remains unclear. Employing the mouse model with endothelial cell (EC)-restricted disruption of FoxM1 (FoxM1 CKO), here we show that endothelial expression of the reparative transcriptional factor FoxM1 is required for the protective effects of bone marrow progenitor cells (BMPC) against LPS-induced inflammatory lung injury and mortality. BMPC treatment resulted in rapid induction of FoxM1 expression in WT but not FoxM1 CKO lungs. BMPC-induced inhibition of lung vascular injury, resolution of lung inflammation, and survival, as seen in WT mice, were abrogated in FoxM1 CKO mice following LPS challenge. Mechanistically, BMPC treatment failed to induce lung EC proliferation in FoxM1 CKO mice, which was associated with impaired expression of FoxM1 target genes essential for cell cycle progression. We also observed that BMPC treatment enhanced endothelial barrier function in WT, but not in FoxM1-deficient EC monolayers. Restoration of β-catenin expression in FoxM1-deficient ECs normalized endothelial barrier enhancement in response to BMPC treatment. These data demonstrate the requisite role of endothelial FoxM1 in the mechanism of BMPC-induced vascular repair to restore vascular integrity and accelerate resolution of inflammation, thereby promoting survival following inflammatory lung injury. PMID:24578354
de Aberasturi, Arrate L; Redrado, Miriam; Villalba, Maria; Larzabal, Leyre; Pajares, Maria J; Garcia, Javier; Evans, Stephanie R; Garcia-Ros, David; Bodegas, Maria Elena; Lopez, Lissett; Montuenga, Luis; Calvo, Alfonso
2016-01-28
Metastasis involves a series of changes in cancer cells that promote their escape from the primary tumor and colonization to a new organ. This process is related to the transition from an epithelial to a mesenchymal phenotype (EMT). Recently, some authors have shown that migratory cells with an EMT phenotype share properties of cancer stem cells (CSCs), which allow them to form a new tumor mass. The type II transmembrane serine protease TMPRSS4 is highly expressed in some solid tumors, promotes metastasis and confers EMT features to cancer cells. We hypothesized that TMPRSS4 could also provide CSC properties. Overexpression of TMPRSS4 reduces E-cadherin and induces N-cadherin and vimentin in A549 lung cancer cells, supporting an EMT phenotype. These changes are accompanied by enhanced migration, invasion and tumorigenicity in vivo. TMPRSS4 expression was highly increased in a panel of lung cancer cells cultured as tumorspheres (a typical assay to enrich for CSCs). H358 and H441 cells with knocked-down TMPRSS4 levels were significantly less able to form primary and secondary tumorspheres than control cells. Moreover, they showed a lower proportion of ALDH+ cells (examined by FACS analysis) and lower expression of some CSC markers than controls. A549 cells overexpressing TMPRSS4 conferred the opposite phenotype and were also more sensitive to the CSC-targeted drug salinomycin than control cells, but were more resistant to regular chemotherapeutic drugs (cisplatin, gemcitabine and 5-fluorouracil). Analysis of 70 NSCLC samples from patients revealed a very significant correlation between TMPRSS4 expression and CSC markers ALDH (p = 0.0018) and OCT4 (p = 0.0004), suggesting that TMPRSS4 is associated with a CSC phenotype in patients' tumors. These results show that TMPRSS4, in addition to inducing EMT, can also promote CSC features in lung cancer; therefore, CSC-targeting drugs could be an appropriate treatment for TMPRSS4+ tumors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Exosomes as a liquid biopsy for lung cancer.
Cui, Shaohua; Cheng, Zhuoan; Qin, Wenxin; Jiang, Liyan
2018-02-01
In lung cancer and other malignancies, the so-called "liquid biopsy" is quickly moving into clinical practice. Its full potential has not yet been fully identified, but the "liquid biopsy" is no longer a promise but has become a reality that allows for better treatment selection and monitoring of lung cancer. This emerging field has significant potential to make up for the limitations of the traditional tissue-derived biomaterials. Exosomes are spherical nano-sized vesicles with a diameter of 40-100 nm and a density of 1.13-1.19 g/ml. In both physiological and pathological conditions, exosomes can be released by different cell types, including immune cells, stem cells and tumor cells. These small molecules may serve as promising biomarkers in lung cancer "liquid biopsy" as they can be easily obtained from most body fluids. In addition, the lipid bilayer of exosomes allows for stable cargoes which are relatively hard to degrade. Furthermore, the composition of exosomes reflects that of their parental cells, suggesting that exosomes are potential surrogates of the original cells and, therefore, are useful for understanding cell biology. Previous studies have demonstrated that exosomes play important roles in cell-to-cell communication. Moreover, tumor-derived exosomes are evolved in tumor-specific biological process, including tumor proliferation and progression. Recently, a growing number of studies has focused on exosomal cargo and their use in lung cancer genesis and progression. In addition, their utility as lung cancer diagnostic, prognostic and predictive biomarkers have also been studied. The current review primarily summaries lung cancer-related exosomal biomarkers that have recently been identified and discusses their potential in clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.
McCauley, Heather A; Chevrier, Véronique; Birnbaum, Daniel; Guasch, Géraldine
2017-01-01
Squamous cell carcinomas occurring at transition zones are highly malignant tumors with poor prognosis. The identity of the cell population and the signaling pathways involved in the progression of transition zone squamous cell carcinoma are poorly understood, hence representing limited options for targeted therapies. Here, we identify a highly tumorigenic cancer stem cell population in a mouse model of transitional epithelial carcinoma and uncover a novel mechanism by which loss of TGFβ receptor II (Tgfbr2) mediates invasion and metastasis through de-repression of ELMO1, a RAC-activating guanine exchange factor, specifically in cancer stem cells of transition zone tumors. We identify ELMO1 as a novel target of TGFβ signaling and show that restoration of Tgfbr2 results in a complete block of ELMO1 in vivo. Knocking down Elmo1 impairs metastasis of carcinoma cells to the lung, thereby providing insights into the mechanisms of progression of Tgfbr2-deficient invasive transition zone squamous cell carcinoma. DOI: http://dx.doi.org/10.7554/eLife.22914.001 PMID:28219480
Mesothelioma: Identification of the Key Molecular Events Triggered by BAP1
2016-04-01
with 5ml of phosphate-buffered saline. The peritoneal cells obtained were pelleted and supernatant was removed for later cytokine analysis. Cells were...Interestingly, BAP1 has been recently shown to regulate the myeloid stem cell compartment via complex alterations of the transcriptional profile, possibly via...regulation of IL-6 activation by asbestos in lung epithelial cells : role of reactive oxygen species. J Immunol 1997; 159: 3921–3928. 43 Occupational
Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells
Wang, Feng; Ma, Ling; Zhang, Zhengkui; Liu, Xiaoran; Gao, Hongqiao; Zhuang, Yan; Yang, Pei; Kornmann, Marko; Tian, Xiaodong; Yang, Yinmo
2016-01-01
Hedgehog (Hh) signaling is crucially involved in tumorigenesis. This study aimed to assess the role of Hh signaling in the regulation of epithelial-mesenchymal transition (EMT), stemness properties and chemoresistance of human pancreatic Panc-1 cancer stem cells (CSCs). Panc-1 cells were transfected with recombinant lentiviral vectors to silence SMO and serum-free floating-culture system was used to isolate Panc-1 tumorspheres. The expression of CSC and EMT markers was detected by flow cytometry, real-time RT-PCR and Western blot analysis. Malignant behaviors of Panc-1 CSC were evaluated by tumorigenicity assays and nude mouse lung metastasis model. We found that tumorspheres derived from pancreatic cancer cell line Panc-1 possessed self-renewal, differentiation and stemness properties. Hh pathway and EMT were active in Panc-1 tumorspheres. Inhibition of Hh signaling by SMO knockdown inhibited self-renewal, EMT, invasion, chemoresistance, pulmonary metastasis, tumorigenesis of pancreatic CSCs. In conclusion, Hh signaling contributes to the maintenance of stem-like properties and chemoresistance of pancreatic CSC and promotes the tumorigenesis and metastasis of pancreatic cancer. Hh pathway is a potential molecular target for the development of therapeutic strategies for pancreatic CSCs. PMID:26918054
Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells.
Wang, Feng; Ma, Ling; Zhang, Zhengkui; Liu, Xiaoran; Gao, Hongqiao; Zhuang, Yan; Yang, Pei; Kornmann, Marko; Tian, Xiaodong; Yang, Yinmo
2016-01-01
Hedgehog (Hh) signaling is crucially involved in tumorigenesis. This study aimed to assess the role of Hh signaling in the regulation of epithelial-mesenchymal transition (EMT), stemness properties and chemoresistance of human pancreatic Panc-1 cancer stem cells (CSCs). Panc-1 cells were transfected with recombinant lentiviral vectors to silence SMO and serum-free floating-culture system was used to isolate Panc-1 tumorspheres. The expression of CSC and EMT markers was detected by flow cytometry, real-time RT-PCR and Western blot analysis. Malignant behaviors of Panc-1 CSC were evaluated by tumorigenicity assays and nude mouse lung metastasis model. We found that tumorspheres derived from pancreatic cancer cell line Panc-1 possessed self-renewal, differentiation and stemness properties. Hh pathway and EMT were active in Panc-1 tumorspheres. Inhibition of Hh signaling by SMO knockdown inhibited self-renewal, EMT, invasion, chemoresistance, pulmonary metastasis, tumorigenesis of pancreatic CSCs. In conclusion, Hh signaling contributes to the maintenance of stem-like properties and chemoresistance of pancreatic CSC and promotes the tumorigenesis and metastasis of pancreatic cancer. Hh pathway is a potential molecular target for the development of therapeutic strategies for pancreatic CSCs.
Endothelial cells are not required for specification of respiratory progenitors
Havrilak, Jamie A.; Melton, Kristin R.; Shannon, John M.
2017-01-01
Crosstalk between mesenchymal and epithelial cells influences organogenesis in multiple tissues, such as lung, pancreas, liver, and the nervous system. Lung mesenchyme comprises multiple cell types, however, and precise identification of the mesenchymal cell type(s) that drives early events in lung development remains unknown. Endothelial cells have been shown to be required for some aspects of lung epithelial patterning, lung stem cell differentiation, and regeneration after injury. Furthermore, endothelial cells are involved in early liver and pancreas development. From these observations we hypothesized that endothelial cells might also be required for early specification of the respiratory field and subsequent lung bud initiation. We first blocked VEGF signaling in E8.5 cultured foreguts with small molecule VEGFR inhibitors and found that lung specification and bud formation were unaltered. However, when we examined E9.5 mouse embryos carrying a mutation in the VEGFR Flk-1, which do not develop endothelial cells, we found that respiratory progenitor specification was impeded. Because the E9.5 embryos were substantially smaller than control littermates, suggesting the possibility of developmental delay, we isolated and cultured foreguts from mutant and control embryos on E8.5, when no size differences were apparent. We found that both specification of the respiratory field and lung bud formation occurred in mutant and control explants. These observations were unaffected by the presence or absence of serum. We also observed that hepatic specification and initiation occurred in the absence of endothelial cells, and that expansion of the liver epithelium in culture did not differ between mutant and control explants. Consistent with previously published results, we also found that pancreatic buds were not maintained in cultured foreguts when endothelial cells were absent. Our observations support the conclusion that endothelial cells are not required for early specification of lung progenitors and bud initiation, and that the diminished lung specification seen in E9.5 Flk−/− embryos is likely due to developmental delay resulting from the insufficient delivery of oxygen, nutrients, and other factors in the absence of a vasculature. PMID:28501476
Cai, Xiongwei; Xiao, Ting; James, Sharon Y; Da, Jiping; Lin, Dongmei; Liu, Yu; Zheng, Yang; Zou, Shuangmei; Di, Xuebing; Guo, Suping; Han, Naijun; Lu, Yong-Jie; Cheng, Shujun; Gao, Yanning; Zhang, Kaitai
2009-09-01
The small protein, HSPC300 (haematopoietic stem/progenitor cell protein 300), is associated with reorganization of actin filaments and cell movement, but its activity has not been reported in human cancer cells. Here, we investigated the association of HSPC300 expression with clinical features of lung squamous cell carcinoma. High levels of HSPC300 protein were detected in 84.1% of tumour samples, and in 30.8% of adjacent morphologically normal tissues. The number of primary tumours with elevated HSPC300 levels was significantly higher in primary tumours with lymph node metastases as opposed to those without, and also in tumours from patients with more advanced disease. HSPC300 modulates the morphology and motility of cells, as siRNA knockdown caused the reorganization of actin filaments, decreased the formation of pseudopodia, and inhibited the migration of a lung cancer cell line. We further showed that HSPC300 interacted with the WAVE2 protein, and HSPC300 silencing resulted in the degradation of WAVE2 in vitro. HSPC300 and WAVE2 were co-expressed in approximately 85.7% of primary tumours with lymph node metastases. We hypothesize that HSPC300 is associated with metastatic potential of lung squamous cell carcinoma through its interaction with WAVE2.
Ablett, Matthew P; O'Brien, Ciara S; Sims, Andrew H; Farnie, Gillian; Clarke, Robert B
2014-02-15
C-X-C chemokine receptor type 4 (CXCR4) is known to regulate lung, pancreatic and prostate cancer stem cells. In breast cancer, CXCR4 signalling has been reported to be a mediator of metastasis, and is linked to poor prognosis. However its role in normal and malignant breast stem cell function has not been investigated. Anoikis resistant (AR) cells were collected from immortalised (MCF10A, 226L) and malignant (MCF7, T47D, SKBR3) breast cell lines and assessed for stem cell enrichment versus unsorted cells. AR cells had significantly higher mammosphere forming efficiency (MFE) than unsorted cells. The AR normal cells demonstrated increased formation of 3D structures in Matrigel compared to unsorted cells. In vivo, SKBR3 and T47D AR cells had 7- and 130-fold enrichments for tumour formationrespectively, compared with unsorted cells. AR cells contained significantly elevated CXCR4 transcript and protein levels compared to unsorted cells. Importantly, CXCR4 mRNA was higher in stem cell-enriched CD44+/CD24- patient-derived breast cancer cells compared to non-enriched cells. CXCR4 stimulation by its ligand SDF-1 reduced MFE of the normal breast cells lines but increased the MFE in T47D and patient-derived breast cancer cells. CXCR4 inhibition by AMD3100 increased stem cell activity but reduced the self-renewal capacity of the malignant breast cell line T47D. CXCR4+ FACS sorted MCF7 cells demonstrated a significantly increased MFE compared with CXCR4- cells. This significant increase in MFE was further demonstrated in CXCR4 over-expressing MCF7 cells which also had an increase in self-renewal compared to parental cells. A greater reduction in self-renewal following CXCR4 inhibition in the CXCR4 over-expressing cells compared with parental cells was also observed. Our data establish for the first time that CXCR4 signalling has contrasting effects on normal and malignant breast stem cell activity. Here, we demonstrate that CXCR4 signalling specifically regulates breast cancer stem cell activities and may therefore be important in tumour formation at the sites of metastases.
Ogulur, Ismail; Gurhan, Gulben; Aksoy, Ayca; Duruksu, Gokhan; Inci, Cigdem; Filinte, Deniz; Kombak, Faruk Erdem; Karaoz, Erdal; Akkoc, Tunc
2014-05-01
New therapeutic strategies are needed in the treatment of asthma besides vaccines and pharmacotherapies. For the development of novel therapies, the use of mesenchymal stem cells (MSCs) is a promising approach in regenerative medicine. Delivery of compact bone (CB) derived MSCs to the injured lungs is an alternative treatment strategy for chronic asthma. In this study, we aimed to isolate highly enriched population of MSCs from mouse CB with regenerative capacity, and to investigate the impact of these cells in airway remodeling and inflammation in experimental ovalbumin-induced mouse model of chronic asthma. mCB-MSCs were isolated, characterized, labeled with GFP and then transferred into mice with chronic asthma developed by ovalbumin (OVA) provocation. Histopathological changes including basement membrane, epithelium, subepithelial smooth thickness and goblet cell hyperplasia, and MSCs migration to lung tissues were evaluated. These histopathological alterations were increased in ovalbumin-treated mice compared to PBS group (P<0.001). Intravenous administration of mCB-MSC significantly reduced these histopathological changes in both distal and proximal airways (P<0.001). We showed that GFP-labeled MSCs were located in the lungs of OVA group 2weeks after intravenous induction. mCB-MSCs also significantly promoted Treg response in ovalbumin-treated mice (OVA+MSC group) (P<0.037). Our studies revealed that mCB-MSCs migrated to lung tissue and suppressed histopathological changes in murine model of asthma. The results reported here provided evidence that mCB-MSCs may be an alternative strategy for the treatment of remodeling and inflammation associated with chronic asthma. Copyright © 2014 Elsevier B.V. All rights reserved.
Yan, Ting; Mizutani, Akifumi; Chen, Ling; Takaki, Mai; Hiramoto, Yuki; Matsuda, Shuichi; Shigehiro, Tsukasa; Kasai, Tomonari; Kudoh, Takayuki; Murakami, Hiroshi; Masuda, Junko; Hendrix, Mary J. C.; Strizzi, Luigi; Salomon, David S.; Fu, Li; Seno, Masaharu
2014-01-01
Several studies have shown that cancer niche can perform an active role in the regulation of tumor cell maintenance and progression through extracellular vesicles-based intercellular communication. However, it has not been reported whether this vesicle-mediated communication affects the malignant transformation of normal stem cells/progenitors. We have previously reported that the conditioned medium derived from the mouse Lewis Lung Carcinoma (LLC) cell line can convert mouse induced pluripotent stem cells (miPSCs) into cancer stem cells (CSCs), indicating that normal stem cells when placed in an aberrant microenvironment can give rise to functionally active CSCs. Here, we focused on the contribution of tumor-derived extracellular vesicles (tEVs) that are secreted from LLC cells to induce the transformation of miPSCs into CSCs. We isolated tEVs from the conditioned medium of LLC cells, and then the differentiating miPSCs were exposed to tEVs for 4 weeks. The resultant tEV treated cells (miPS-LLCev) expressed Nanog and Oct3/4 proteins comparable to miPSCs. The frequency of sphere formation of the miPS-LLCev cells in suspension culture indicated that the self-renewal capacity of the miPS-LLCev cells was significant. When the miPS-LLCev cells were subcutaneously transplanted into Balb/c nude mice, malignant liposarcomas with extensive angiogenesis developed. miPS-LLCevPT and miPS-LLCevDT, the cells established from primary site and disseminated liposarcomas, respectively, showed their capacities to self-renew and differentiate into adipocytes and endothelial cells. Moreover, we confirmed the secondary liposarcoma development when these cells were transplanted. Taken together, these results indicate that miPS-LLCev cells possess CSC properties. Thus, our current study provides the first evidence that tEVs have the potential to induce CSC properties in normal tissue stem cells/progenitors. PMID:25057308
Fiorillo, Marco; Verre, Andrea F.; Iliut, Maria; Peiris-Pagés, Maria; Ozsvari, Bela; Gandara, Ricardo; Cappello, Anna Rita; Sotgia, Federica; Vijayaraghavan, Aravind; Lisanti, Michael P.
2015-01-01
Tumor-initiating cells (TICs), a.k.a. cancer stem cells (CSCs), are difficult to eradicate with conventional approaches to cancer treatment, such as chemo-therapy and radiation. As a consequence, the survival of residual CSCs is thought to drive the onset of tumor recurrence, distant metastasis, and drug-resistance, which is a significant clinical problem for the effective treatment of cancer. Thus, novel approaches to cancer therapy are needed urgently, to address this clinical need. Towards this end, here we have investigated the therapeutic potential of graphene oxide to target cancer stem cells. Graphene and its derivatives are well-known, relatively inert and potentially non-toxic nano-materials that form stable dispersions in a variety of solvents. Here, we show that graphene oxide (of both big and small flake sizes) can be used to selectively inhibit the proliferative expansion of cancer stem cells, across multiple tumor types. For this purpose, we employed the tumor-sphere assay, which functionally measures the clonal expansion of single cancer stem cells under anchorage-independent conditions. More specifically, we show that graphene oxide effectively inhibits tumor-sphere formation in multiple cell lines, across 6 different cancer types, including breast, ovarian, prostate, lung and pancreatic cancers, as well as glioblastoma (brain). In striking contrast, graphene oxide is non-toxic for “bulk” cancer cells (non-stem) and normal fibroblasts. Mechanistically, we present evidence that GO exerts its striking effects on CSCs by inhibiting several key signal transduction pathways (WNT, Notch and STAT-signaling) and thereby inducing CSC differentiation. Thus, graphene oxide may be an effective non-toxic therapeutic strategy for the eradication of cancer stem cells, via differentiation-based nano-therapy. PMID:25708684
Koniusz, Sylwia; Andrzejewska, Anna; Muraca, Maurizio; Srivastava, Amit K.; Janowski, Miroslaw; Lukomska, Barbara
2016-01-01
Extracellular vesicles (EVs) are membrane-surrounded structures released by most cell types. They are characterized by a specific set of proteins, lipids and nucleic acids. EVs have been recognized as potent vehicles of intercellular communication to transmit biological signals between cells. In addition, pathophysiological roles of EVs in conditions like cancer, infectious diseases and neurodegenerative disorders are well established. In recent years focus has been shifted on therapeutic use of stem cell derived-EVs. Use of stem cell derived-EVs present distinct advantage over the whole stem cells as EVs do not replicate and after intravenous administration, they are less likely to trap inside the lungs. From the therapeutic perspective, the most promising cellular sources of EVs are mesenchymal stem cells (MSCs), which are easy to obtain and maintain. Therapeutic activity of MSCs has been shown in numerous animal models and the beneficial paracrine effect of MSCs may be mediated by EVs. The various components of MSC derived-EVs such as proteins, lipids, and RNA might play a specific therapeutic role. In this review, we characterize the role of EVs in immune and central nervous system (CNS); present evidences for defective signaling of these vesicles in neurodegeneration and therapeutic role of EVs in CNS. PMID:27199663
Madlambayan, Gerard J.; Butler, Jason M.; Hosaka, Koji; Jorgensen, Marda; Fu, Dongtao; Guthrie, Steven M.; Shenoy, Anitha K.; Brank, Adam; Russell, Kathryn J.; Otero, Jaclyn; Siemann, Dietmar W.
2009-01-01
Adult bone marrow (BM) contributes to neovascularization in some but not all settings, and reasons for these discordant results have remained unexplored. We conducted novel comparative studies in which multiple neovascularization models were established in single mice to reduce variations in experimental methodology. In different combinations, BM contribution was detected in ischemic retinas and, to a lesser extent, Lewis lung carcinoma cells, whereas B16 melanomas showed little to no BM contribution. Using this spectrum of BM contribution, we demonstrate the necessity for site-specific expression of stromal-derived factor-1α (SDF-1α) and its mobilizing effects on BM. Blocking SDF-1α activity with neutralizing antibodies abrogated BM-derived neovascularization in lung cancer and retinopathy. Furthermore, secondary transplantation of single hematopoietic stem cells (HSCs) showed that HSCs are a long-term source of neovasculogenesis and that CD133+CXCR4+ myeloid progenitor cells directly participate in new blood vessel formation in response to SDF-1α. The varied BM contribution seen in different model systems is suggestive of redundant mechanisms governing postnatal neovasculogenesis and provides an explanation for contradictory results observed in the field. PMID:19717647
2013-01-01
Introduction We tested the hypothesis that apoptotic adipose-derived mesenchymal stem cells (A-ADMSC) are superior to healthy (H)-ADMSC in attenuating cecal ligation puncture (CLP)-induced sepsis-mediated lung and kidney injuries. Methods Adult male rats divided into group 1 (sham controls), group 2 (CLP), group 3 [CLP + H-ADMSC administered at 0.5, 6, and 18 hours after CLP], and group 4 [CLP + A-ADMSC administered as in group 3] were sacrificed 72 hours after CLP with blood, lung, and kidney collected for studies. Results White blood cell (WBC) count, circulating TNF-α and creatinine levels were higher in groups 2 and 3 than in groups 1 and 4 (all P < 0.001). Kidney and lung damage scores were highest in group 2, lowest in group 1, significantly higher in group 3 than in group 4 (all P < 0.0001). Protein expressions of inflammatory (ICAM-1, MMP-9, TNF-α, NF-κB), oxidative, and apoptotic (Bax, caspase-3, PARP) biomarkers were higher in groups 2 and 3 than groups 1 and 4, whereas anti-apoptotic (Bcl-2) and mitochondrial integrity (cytochrome-C) biomarkers were lower in groups 2 and 3 than in groups 1 and 4 (all P < 0.001). Expressions of anti-oxidant biomarkers at protein (GR, GPx, NQO-1, HO-1) and cellular (GR, GPx) levels were highest in group 4 (all P < 0.001). The number of inflammatory cells (CD3+) in lungs and levels of DNA damage marker (γ-H2AX) in kidneys were higher in groups 2 and 3 than in groups 1 and 4 (all P < 0.001). Conclusions A-ADMSC therapy was superior to H-ADMSC therapy in protecting major organs from damage in rats with CLP-induced sepsis syndrome. PMID:24451364
Layek, Buddhadev; Sadhukha, Tanmoy; Panyam, Jayanth; Prabha, Swayam
2018-06-01
Tumor-targeted drug delivery has the potential to improve therapeutic efficacy and mitigate non-specific toxicity of anticancer drugs. However, current drug delivery approaches rely on inefficient passive accumulation of the drug carrier in the tumor. We have developed a unique, truly active tumor-targeting strategy that relies on engineering mesenchymal stem cells (MSC) with drug-loaded nanoparticles. Our studies using the A549 orthotopic lung tumor model show that nano-engineered MSCs carrying the anticancer drug paclitaxel (PTX) home to tumors and create cellular drug depots that release the drug payload over several days. Despite significantly lower doses of PTX, nano-engineered MSCs resulted in significant inhibition of tumor growth and superior survival. Anticancer efficacy of nano-engineered MSCs was confirmed in immunocompetent C57BL/6 albino female mice bearing orthotopic Lewis Lung Carcinoma (LL/2-luc) tumors. Furthermore, at doses that resulted in equivalent therapeutic efficacy, nano-engineered MSCs had no effect on white blood cell count, whereas PTX solution and PTX nanoparticle treatments caused leukopenia. Biodistribution studies showed that nano-engineered MSCs resulted in greater than 9-fold higher AUC lung of PTX (1.5 μg.day/g) than PTX solution and nanoparticles (0.2 and 0.1 μg.day/g tissue, respectively) in the target lung tumors. Furthermore, the lung-to-liver and the lung-to-spleen ratios of PTX were several folds higher for nano-engineered MSCs relative to those for PTX solution and nanoparticle groups, suggesting that nano-engineered MSCs demonstrate significantly less off-target deposition. In summary, our results demonstrate that nano-engineered MSCs can serve as an efficient carrier for tumor-specific drug delivery and significantly improved anti-cancer efficacy of conventional chemotherapeutic drugs. Mol Cancer Ther; 17(6); 1196-206. ©2018 AACR . ©2018 American Association for Cancer Research.
Chang, Yun Sil; Choi, Soo Jin; Sung, Dong Kyung; Kim, Soo Yoon; Oh, Wonil; Yang, Yoon Sun; Park, Won Soon
2011-01-01
Intratracheal transplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) attenuates the hyperoxia-induced neonatal lung injury. The aim of this preclinical translation study was to optimize the dose of human UCB-derived MSCs in attenuating hyperoxia-induced lung injury in newborn rats. Newborn Sprague-Dawley rats were randomly exposed to hyperoxia (95% oxygen) or normoxia after birth for 14 days. Three different doses of human UCB-derived MSCs, 5 × 10(3) (HT1), 5 × 10(4) (HT2), and 5 × 10(5) (HT3), were delivered intratracheally at postnatal day (P) 5. At P14, lungs were harvested for analyses including morphometry for alveolarization, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) staining, myeoloperoxidase activity, mRNA level of tumor necross factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and transforming growth factor-β (TGF-β), human glyceradehyde-3-phosphate dehydrogenase (GAPDH), and p47(phox), and collagen levels. Increases in TUNEL-positive cells were attenuated in all transplantation groups. However, hyperoxia-induced lung injuries, such as reduced alveolarization, as evidenced by increased mean linear intercept and mean alveolar volume, and increased collagen levels were significantly attenuated in both HT2 and HT3, but not in HT1, with better attenuation in HT3 than in HT2. Dose-dependent human GAPDH expression, indicative of the presence of human RNA in lung tissue, was observed only in the transplantation groups, with higher expression in HT3 than in HT2, and higher expression in HT2 than in HT1. Hyperoxia-induced inflammatory responses such as increased myeloperoxidase acitivity, mRNA levels of TNF-α, IL-1β, IL-6, and TGF-β of the lung tissue, and upregulation of both cytosolic and membrane p47(phox), indicative of oxidative stress, were significantly attenuated in both HT2 and HT3 but not in HT1. These results demonstrate that intratracheal transplantation of human UCB-derived MSCs with appropriate doses may attenuate hyperoxia-induced lung injury through active involvement of these cells in modulating host inflammatory responses and oxidative stress in neonatal rats.
Luan, Yun; Zhang, Luan; Chao, Sun; Liu, Xiaoli; Li, Kaili; Wang, Yibiao; Zhang, Zhaohua
2016-07-26
The aim of the present study is to investigate the protection effects of bone marrow mesenchymal stem cells (MSCs) in combination with EPO against hyperoxia-induced bronchopulmonary dysplasia (BPD) injury in neonatal mice. BPD model was prepared by continuous high oxygen exposure, 1×106 bone marrow MSCs and 5000U/kg recombinant human erythropoietin (EPO) were injected respectively. Results showed that administration of MSCs, EPO especially MSCs+EPO significant attenuated hyperoxia-induced lung damage with a decrease of fibrosis, radical alveolar counts and inhibition of the occurrence of epithelial-mesenchymal transition (EMT). Furthermore, MSCs+EPO co-treatment more significantly suppressed the levels of transforming growth factor-β1(TGF-β1) than MSCs or EPO alone. Collectively, these results suggested that MSCs, EPO in particular MSCs+EPO co-treatment could promote lung repair in hyperoxia-induced alveoli dysplasia injury via inhibition of TGF-β1 signaling pathway to further suppress EMT process and may be a promising therapeutic strategy.
Telomere Damage Response and Low-Grade Inflammation.
Wang, Lihui; Yu, Xianhua; Liu, Jun-Ping
2017-01-01
Telomeres at the ends of chromosomes safeguard genome integrity and stability in human nucleated cells. However, telomere repeats shed off during cell proliferation and other stress responses. Our recent studies show that telomere attrition induces not only epithelial stem cell senescence but also low-grade inflammation in the lungs. The senescence-associated low-grade inflammation (SALI) is characteristic of alveolar stem cell replicative senescence, increased proinflammatory and anti-inflammatory cytokines, infiltrated immune cells, and spillover effects. To date, the mechanisms underlying SALI remain unclear. Investigations demonstrate that senescent epithelial stem cells with telomere erosion are not the source of secreted cytokines, containing no significant increase in expression of the genes coding for increased cytokines, suggesting an alternative senescence-associated secretory phenotype (A-SASP). Given that telomere loss results in significant alterations in the genomes and accumulations of the cleaved telomeric DNA in the cells and milieu externe, we conclude that telomere position effects (TPEs) on gene expression and damage-associated molecular patterns (DAMPs) in antigen presentation are involved in A-SASP and SALI in response to telomere damage in mammals.
Hetzel, Miriam; Mucci, Adele; Blank, Patrick; Nguyen, Ariane Hai Ha; Schiller, Jan; Halle, Olga; Kühnel, Mark-Philipp; Billig, Sandra; Meineke, Robert; Brand, Daniel; Herder, Vanessa; Baumgärtner, Wolfgang; Bange, Franz-Christoph; Goethe, Ralph; Jonigk, Danny; Förster, Reinhold; Gentner, Bernhard; Casanova, Jean-Laurent; Bustamante, Jacinta; Schambach, Axel; Kalinke, Ulrich; Lachmann, Nico
2018-02-01
Mendelian susceptibility to mycobacterial disease is a rare primary immunodeficiency characterized by severe infections caused by weakly virulent mycobacteria. Biallelic null mutations in genes encoding interferon gamma receptor 1 or 2 ( IFNGR1 or IFNGR2 ) result in a life-threatening disease phenotype in early childhood. Recombinant interferon γ (IFN-γ) therapy is inefficient, and hematopoietic stem cell transplantation has a poor prognosis. Thus, we developed a hematopoietic stem cell (HSC) gene therapy approach using lentiviral vectors that express Ifnγr1 either constitutively or myeloid specifically. Transduction of mouse Ifnγr1 -/- HSCs led to stable IFNγR1 expression on macrophages, which rescued their cellular responses to IFN-γ. As a consequence, genetically corrected HSC-derived macrophages were able to suppress T-cell activation and showed restored antimycobacterial activity against Mycobacterium avium and Mycobacterium bovis Bacille Calmette-Guérin (BCG) in vitro. Transplantation of genetically corrected HSCs into Ifnγr1 -/- mice before BCG infection prevented manifestations of severe BCG disease and maintained lung and spleen organ integrity, which was accompanied by a reduced mycobacterial burden in lung and spleen and a prolonged overall survival in animals that received a transplant. In summary, we demonstrate an HSC-based gene therapy approach for IFNγR1 deficiency, which protects mice from severe mycobacterial infections, thereby laying the foundation for a new therapeutic intervention in corresponding human patients. © 2018 by The American Society of Hematology.
Hematopoietic cell transplantation and HIV cure: where we are and what next?
Zou, Shimian; Glynn, Simone; Kuritzkes, Daniel; Shah, Monica; Cook, Nakela; Berliner, Nancy
2013-10-31
The report of the so-called Berlin patient cured of HIV with hematopoietic stem cell transplantation and a few other studies raised tremendous hope, excitement, and curiosity in the field. The National Heart, Lung and Blood Institute of the National Institutes of Health convened a Working Group to address emerging heart, lung, and blood research priorities related to HIV infection. Hematopoietic cells could contribute to HIV cure through allogeneic or autologous transplantation of naturally occurring or engineered cells with anti-HIV moieties. Protection of central memory T cells from HIV infection could be a critical determinant of achieving a functional cure. HIV cure can only be achieved if the virus is eradicated from reservoirs in resting T cells and possibly other hematopoietic cells. The Working Group recommended multidisciplinary efforts leveraging HIV and cell therapy expertise to answer the critical need to support research toward an HIV cure.
α-Mannan induces Th17-mediated pulmonary graft-versus-host disease in mice.
Uryu, Hidetaka; Hashimoto, Daigo; Kato, Koji; Hayase, Eiko; Matsuoka, Satomi; Ogasawara, Reiki; Takahashi, Shuichiro; Maeda, Yoshinobu; Iwasaki, Hiromi; Miyamoto, Toshihiro; Saijo, Shinobu; Iwakura, Yoichiro; Hill, Geoffrey R; Akashi, Koichi; Teshima, Takanori
2015-05-07
Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative therapy for various hematopoietic disorders. Graft-versus-host disease (GVHD) and infections are the major obstacles of HSCT, and their close relationship has been suggested. Although roles of bacterial and viral infections in the pathophysiology of GVHD are well described, impacts of fungal infection on GVHD remain to be elucidated. In mouse models of GVHD, injection of α-mannan (Mn), a major component of fungal cell wall, or heat-killed Candida albicans exacerbated GVHD, particularly in the lung. Mn-induced donor T-cell polarization toward Th17 and lung-specific chemokine environment in GVHD led to accumulation of Th17 cells in the lung. The detrimental effects of Mn on GVHD depended on donor IL-17A production and host C-type lectin receptor Dectin-2. These results suggest a previously unrecognized link between pulmonary GVHD and fungal infection after allogeneic HSCT. © 2015 by The American Society of Hematology.
Angelini, Daniel J; Su, Qingning; Kolosova, Irina A; Fan, Chunling; Skinner, John T; Yamaji-Kegan, Kazuyo; Collector, Michael; Sharkis, Saul J; Johns, Roger A
2010-06-22
Pulmonary hypertension (PH) is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD) progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha) is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling in vivo. We used a mouse bone marrow transplant model in which lethally irradiated mice were rescued with bone marrow transplanted from green fluorescent protein (GFP)(+) transgenic mice to determine the role of HIMF in recruiting BMD cells to the lung vasculature during PH development. Exposure to chronic hypoxia and pulmonary gene transfer of HIMF were used to induce PH. Both models resulted in markedly increased numbers of BMD cells in and around the pulmonary vasculature; in several neomuscularized small (approximately 20 microm) capillary-like vessels, an entirely new medial wall was made up of these cells. We found these GFP(+) BMD cells to be positive for stem cell antigen-1 and c-kit, but negative for CD31 and CD34. Several of the GFP(+) cells that localized to the pulmonary vasculature were alpha-smooth muscle actin(+) and localized to the media layer of the vessels. This finding suggests that these cells are of mesenchymal origin and differentiate toward myofibroblast and vascular smooth muscle. Structural location in the media of small vessels suggests a functional role in the lung vasculature. To examine a potential mechanism for HIMF-dependent recruitment of mesenchymal stem cells to the pulmonary vasculature, we performed a cell migration assay using cultured human mesenchymal stem cells (HMSCs). The addition of recombinant HIMF induced migration of HMSCs in a phosphoinosotide-3-kinase-dependent manner. These results demonstrate HIMF-dependent recruitment of BMD mesenchymal-like cells to the remodeling pulmonary vasculature.
Emmert, Maximilian Y; Weber, Benedikt; Wolint, Petra; Frauenfelder, Thomas; Zeisberger, Steffen M; Behr, Luc; Sammut, Sebastien; Scherman, Jacques; Brokopp, Chad E; Schwartländer, Ruth; Vogel, Viola; Vogt, Peter; Grünenfelder, Jürg; Alkadhi, Hatem; Falk, Volkmar; Boss, Andreas; Hoerstrup, Simon P
2013-01-01
Although stem-cell therapies have been suggested for cardiac-regeneration after myocardial-infarction (MI), key-questions regarding the in-vivo cell-fate remain unknown. While most available animal-models require immunosuppressive-therapy when applying human cells, the fetal-sheep being pre-immune until day 75 of gestation has been proposed for the in-vivo tracking of human cells after intra-peritoneal transplantation. We introduce a novel intra-uterine myocardial-infarction model to track human mesenchymal stem cells after direct intra-myocardial transplantation into the pre-immune fetal-sheep. Thirteen fetal-sheep (gestation age: 70-75 days) were included. Ten animals either received an intra-uterine induction of MI only (n = 4) or MI+intra-myocardial injection (IMI;n = 6) using micron-sized, iron-oxide (MPIO) labeled human mesenchymal stem cells either derived from the adipose-tissue (ATMSCs;n = 3) or the bone-marrow (BMMSCs;n = 3). Three animals received an intra-peritoneal injection (IPI;n = 3; ATMSCs;n = 2/BMMSCs;n = 1). All procedures were performed successfully and follow-up was 7-9 days. To assess human cell-fate, multimodal cell-tracking was performed via MRI and/or Micro-CT, Flow-Cytometry, PCR and immunohistochemistry. After IMI, MRI displayed an estimated amount of 1×10(5)-5×10(5) human cells within ventricular-wall corresponding to the injection-sites which was further confirmed on Micro-CT. PCR and IHC verified intra-myocardial presence via detection of human-specific β-2-microglobulin, MHC-1, ALU-Sequence and anti-FITC targeting the fluorochrome-labeled part of the MPIOs. The cells appeared viable, integrated and were found in clusters or in the interstitial-spaces. Flow-Cytometry confirmed intra-myocardial presence, and showed further distribution within the spleen, lungs, kidneys and brain. Following IPI, MRI indicated the cells within the intra-peritoneal-cavity involving the liver and kidneys. Flow-Cytometry detected the cells within spleen, lungs, kidneys, thymus, bone-marrow and intra-peritoneal lavage, but not within the heart. For the first time we demonstrate the feasibility of intra-uterine, intra-myocardial stem-cell transplantation into the pre-immune fetal-sheep after MI. Utilizing cell-tracking strategies comprising advanced imaging-technologies and in-vitro tracking-tools, this novel model may serve as a unique platform to assess human cell-fate after intra-myocardial transplantation without the necessity of immunosuppressive-therapy.
Wolint, Petra; Frauenfelder, Thomas; Zeisberger, Steffen M.; Behr, Luc; Sammut, Sebastien; Scherman, Jacques; Brokopp, Chad E.; Schwartländer, Ruth; Vogel, Viola; Vogt, Peter; Grünenfelder, Jürg; Alkadhi, Hatem; Falk, Volkmar; Boss, Andreas; Hoerstrup, Simon P.
2013-01-01
Although stem-cell therapies have been suggested for cardiac-regeneration after myocardial-infarction (MI), key-questions regarding the in-vivo cell-fate remain unknown. While most available animal-models require immunosuppressive-therapy when applying human cells, the fetal-sheep being pre-immune until day 75 of gestation has been proposed for the in-vivo tracking of human cells after intra-peritoneal transplantation. We introduce a novel intra-uterine myocardial-infarction model to track human mesenchymal stem cells after direct intra-myocardial transplantation into the pre-immune fetal-sheep. Thirteen fetal-sheep (gestation age: 70–75 days) were included. Ten animals either received an intra-uterine induction of MI only (n = 4) or MI+intra-myocardial injection (IMI;n = 6) using micron-sized, iron-oxide (MPIO) labeled human mesenchymal stem cells either derived from the adipose-tissue (ATMSCs;n = 3) or the bone-marrow (BMMSCs;n = 3). Three animals received an intra-peritoneal injection (IPI;n = 3; ATMSCs;n = 2/BMMSCs;n = 1). All procedures were performed successfully and follow-up was 7–9 days. To assess human cell-fate, multimodal cell-tracking was performed via MRI and/or Micro-CT, Flow-Cytometry, PCR and immunohistochemistry. After IMI, MRI displayed an estimated amount of 1×105–5×105 human cells within ventricular-wall corresponding to the injection-sites which was further confirmed on Micro-CT. PCR and IHC verified intra-myocardial presence via detection of human-specific β-2-microglobulin, MHC-1, ALU-Sequence and anti-FITC targeting the fluorochrome-labeled part of the MPIOs. The cells appeared viable, integrated and were found in clusters or in the interstitial-spaces. Flow-Cytometry confirmed intra-myocardial presence, and showed further distribution within the spleen, lungs, kidneys and brain. Following IPI, MRI indicated the cells within the intra-peritoneal-cavity involving the liver and kidneys. Flow-Cytometry detected the cells within spleen, lungs, kidneys, thymus, bone-marrow and intra-peritoneal lavage, but not within the heart. For the first time we demonstrate the feasibility of intra-uterine, intra-myocardial stem-cell transplantation into the pre-immune fetal-sheep after MI. Utilizing cell-tracking strategies comprising advanced imaging-technologies and in-vitro tracking-tools, this novel model may serve as a unique platform to assess human cell-fate after intra-myocardial transplantation without the necessity of immunosuppressive-therapy. PMID:23533575
Lu, Hongyan; Cook, Todd; Poirier, Christophe; Merfeld-Clauss, Stephanie; Petrache, Irina; March, Keith L; Bogatcheva, Natalia V
2016-01-01
Transplantation of mesenchymal stromal cells (MSCs) has been shown to effectively prevent lung injury in several preclinical models of acute respiratory distress syndrome (ARDS). Since MSC therapy is tested in clinical trials for ARDS, there is an increased need to define the dynamics of cell trafficking and organ-specific accumulation. We examined how the presence of ARDS changes retention and organ-specific distribution of intravenously delivered MSCs isolated from subcutaneous adipose tissue [adipose-derived stem cells (ADSCs)]. This type of cell therapy was previously shown to ameliorate ARDS pathology. ARDS was triggered by lipopolysaccharide (LPS) aspiration, 4 h after which 300,000 murine CRE + ADSCs were delivered intravenously. The distribution of ADSCs in the lungs and other organs was assessed by real-time polymerase chain reaction (PCR) of genomic DNA. As anticipated, the majority of delivered ADSCs accumulated in the lungs of both control and LPS-challenged mice, with minor amounts distributed to the liver, kidney, spleen, heart, and brain. Interestingly, within 2 h following ADSC administration, LPS-challenged lungs retained significantly lower levels of ADSCs compared to control lungs (∼7% vs. 15% of the original dose, respectively), whereas the liver, kidney, spleen, and brain of ARDS-affected animals retained significantly higher numbers of ADSCs compared to control animals. In contrast, 48 h later, only LPS-challenged lungs continued to retain ADSCs (∼3% of the original dose), whereas the lungs of control animals and nonpulmonary organs in either control or ARDS mice had no detectable levels of ADSCs. Our data suggest that the pulmonary microenvironment during ARDS may lessen the pulmonary capillary occlusion by MSCs immediately following cell delivery while facilitating pulmonary retention of the cells.
A Model of Cancer Stem Cells Derived from Mouse Induced Pluripotent Stem Cells
Chen, Ling; Kasai, Tomonari; Li, Yueguang; Sugii, Yuh; Jin, Guoliang; Okada, Masashi; Vaidyanath, Arun; Mizutani, Akifumi; Satoh, Ayano; Kudoh, Takayuki; Hendrix, Mary J. C.; Salomon, David S.; Fu, Li; Seno, Masaharu
2012-01-01
Cancer stem cells (CSCs) are capable of continuous proliferation and self-renewal and are proposed to play significant roles in oncogenesis, tumor growth, metastasis and cancer recurrence. CSCs are considered derived from normal stem cells affected by the tumor microenvironment although the mechanism of development is not clear yet. In 2007, Yamanaka's group succeeded in generating Nanog mouse induced pluripotent stem (miPS) cells, in which green fluorescent protein (GFP) has been inserted into the 5′-untranslated region of the Nanog gene. Usually, iPS cells, just like embryonic stem cells, are considered to be induced into progenitor cells, which differentiate into various normal phenotypes depending on the normal niche. We hypothesized that CSCs could be derived from Nanog miPS cells in the conditioned culture medium of cancer cell lines, which is a mimic of carcinoma microenvironment. As a result, the Nanog miPS cells treated with the conditioned medium of mouse Lewis lung carcinoma acquired characteristics of CSCs, in that they formed spheroids expressing GFP in suspension culture, and had a high tumorigenicity in Balb/c nude mice exhibiting angiogenesis in vivo. In addition, these iPS-derived CSCs had a capacity of self-renewal and expressed the marker genes, Nanog, Rex1, Eras, Esg1 and Cripto, associated with stem cell properties and an undifferentiated state. Thus we concluded that a model of CSCs was originally developed from miPS cells and proposed the conditioned culture medium of cancer cell lines might perform as niche for producing CSCs. The model of CSCs and the procedure of their establishment will help study the genetic alterations and the secreted factors in the tumor microenvironment which convert miPS cells to CSCs. Furthermore, the identification of potentially bona fide markers of CSCs, which will help the development of novel anti-cancer therapies, might be possible though the CSC model. PMID:22511923
Salmaso, Natalina; Silbereis, John; Komitova, Mila; Mitchell, Patrick; Chapman, Katherine; Ment, Laura R; Schwartz, Michael L; Vaccarino, Flora M
2012-06-27
Premature children born with very low birth weight (VLBW) can suffer chronic hypoxic injury as a consequence of abnormal lung development and cardiovascular abnormalities, often leading to grave neurological and behavioral consequences. Emerging evidence suggests that environmental enrichment improves outcome in animal models of adult brain injury and disease; however, little is known about the impact of environmental enrichment following developmental brain injury. Intriguingly, data on socio-demographic factors from longitudinal studies that examined a number of VLBW cohorts suggest that early environment has a substantial impact on neurological and behavioral outcomes. In the current study, we demonstrate that environmental enrichment significantly enhances behavioral and neurobiological recovery from perinatal hypoxic injury. Using a genetic fate-mapping model that allows us to trace the progeny of GFAP+ astroglial cells, we show that hypoxic injury increases the proportion of astroglial cells that attain a neuronal fate. In contrast, environmental enrichment increases the stem cell pool, both through increased stem cell proliferation and stem cell survival. In mice subjected to hypoxia and subsequent enrichment there is an additive effect of both conditions on hippocampal neurogenesis from astroglia, resulting in a robust increase in the number of neurons arising from GFAP+ cells by the time these mice reach full adulthood.
Testa, Jacqueline E; Chrastina, Adrian; Oh, Phil; Li, Yan; Witkiewicz, Halina; Czarny, Malgorzata; Buss, Tim; Schnitzer, Jan E
2009-08-01
Mapping protein expression of endothelial cells (EC) in vivo is fundamental to understanding cellular function and may yield new tissue-selective targets. We have developed a monoclonal antibody, MAb J120, to a protein expressed primarily in rat lung and heart endothelium. The antigen was identified as CD34, a marker of hematopoietic stem cells and global marker of endothelial cells in human and mouse tissues. PCR-based cloning identified two CD34 variant proteins, full length and truncated, both of which are expressed on luminal endothelial cell plasma membranes (P) isolated from lung. Truncated CD34 predominated in heart P, and neither variant was detected in P from kidney or liver. CD34 in lung was readily accessible to (125)I-J120 inoculated intravenously, and immunohistochemistry showed strong CD34 expression in lung EC. Few microvessels stained in heart and kidney, and no CD34 was detected in vessels of other organs or in lymphatics. We present herein the first complete sequence of a rat CD34 variant and show for the first time that the encoded truncated variant is endogenously expressed on EC in vivo. We also demonstrate that CD34 expression in rat EC, unlike mouse and human, is restricted in its distribution enabling quite specific lung targeting in vivo.
Lee, Joo-Hyeon; Kim, Jonghwan; Gludish, David; Roach, Rebecca R.; Saunders, Arven H.; Barrios, Juliana; Woo, Andrew Jonghan; Chen, Huaiyong; Conner, David A.; Fujiwara, Yuko; Stripp, Barry R.
2013-01-01
The regeneration of alveolar epithelial cells is a critical aspect of alveolar reorganization after lung injury. Although alveolar Type II (AT2) cells have been described as progenitor cells for alveolar epithelia, more remains to be understood about how their progenitor cell properties are regulated. A nuclear, chromatin-bound green fluorescence protein reporter (H2B-GFP) was driven from the murine surfactant protein–C (SPC) promoter to generate SPC H2B-GFP transgenic mice. The SPC H2B-GFP allele allowed the FACS-based enrichment and gene expression profiling of AT2 cells. Approximately 97% of AT2 cells were GFP-labeled on Postnatal Day 1, and the percentage of GFP-labeled AT2 cells decreased to approximately 63% at Postnatal Week 8. Isolated young adult SPC H2B-GFP+ cells displayed proliferation, differentiation, and self-renewal capacity in the presence of lung fibroblasts in a Matrigel-based three-dimensional culture system. Heterogeneity within the GFP+ population was revealed, because cells with distinct alveolar and bronchiolar gene expression arose in three-dimensional cultures. CD74, a surface marker highly enriched on GFP+ cells, was identified as a positive selection marker, providing 3-fold enrichment for AT2 cells. In vivo, GFP expression was induced within other epithelial cell types during maturation of the distal lung. The utility of the SPC H2B-GFP murine model for the identification of AT2 cells was greatest in early postnatal lungs and more limited with age, when some discordance between SPC and GFP expression was observed. In adult mice, this allele may allow for the enrichment and future characterization of other SPC-expressing alveolar and bronchiolar cells, including putative stem/progenitor cell populations. PMID:23204392
Cao, Zhongwei; Ye, Tinghong; Sun, Yue; Ji, Gaili; Shido, Koji; Chen, Yutian; Luo, Lin; Na, Feifei; Li, Xiaoyan; Huang, Zhen; Ko, Jane L; Mittal, Vivek; Qiao, Lina; Chen, Chong; Martinez, Fernando J; Rafii, Shahin; Ding, Bi-Sen
2017-08-30
The regenerative capacity of lung and liver is sometimes impaired by chronic or overwhelming injury. Orthotopic transplantation of parenchymal stem cells to damaged organs might reinstate their self-repair ability. However, parenchymal cell engraftment is frequently hampered by the microenvironment in diseased recipient organs. We show that targeting both the vascular niche and perivascular fibroblasts establishes "hospitable soil" to foster the incorporation of "seed," in this case, the engraftment of parenchymal cells in injured organs. Specifically, ectopic induction of endothelial cell (EC)-expressed paracrine/angiocrine hepatocyte growth factor (HGF) and inhibition of perivascular NOX4 [NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 4] synergistically enabled reconstitution of mouse and human parenchymal cells in damaged organs. Reciprocally, genetic knockout of Hgf in mouse ECs ( Hgf iΔEC/iΔEC ) aberrantly up-regulated perivascular NOX4 during liver and lung regeneration. Dysregulated HGF and NOX4 pathways subverted the function of vascular and perivascular cells from an epithelially inductive niche to a microenvironment that inhibited parenchymal reconstitution. Perivascular NOX4 induction in Hgf iΔEC/iΔEC mice recapitulated the phenotype of human and mouse liver and lung fibrosis. Consequently, EC-directed HGF and NOX4 inhibitor GKT137831 stimulated regenerative integration of mouse and human parenchymal cells in chronically injured lung and liver. Our data suggest that targeting dysfunctional perivascular and vascular cells in diseased organs can bypass fibrosis and enable reparative cell engraftment to reinstate lung and liver regeneration. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Biochemical responses of isolated lung CSCs after application of low intensity laser irradiation
NASA Astrophysics Data System (ADS)
Abrahamse, Heidi; Crous, Anine
2016-03-01
Studies have shown that using high fluences of Low Intensity Laser Irradiation (HF-LILI) produce apoptotic effects on normal and neoplastic cells. This study aimed to determine whether HF-LILI induce cell death in lung CSCs. Lung CSCs were isolated using the stem cell marker CD 133, characterized using flow cytometry, and applied in experiments which included treatment with LILI at wavelengths of 636, 825 and 1060 nm with fluences ranging from 5 J/cm2 to 40 J/cm2. Viability and proliferation studies, using Alamar blue assay and adenosine triphosphate luminescence (ATP), indicated an increase when treating lung CSCs with low fluences of 5 - 20 J/cm2 and a decrease in viability and proliferation as well as an increase in apoptosis when applying a fluence of 40 J/cm2 indicated by flow cytometry using Annexin V and propidium iodide (PI) dyes. Results indicate that LILI, when treating lung CSCs, can induce either a bio-stimulatory or bio-inhibitory effect depending on the wavelength and fluence used. This study indicated successful apoptotic induction of lung CSCs. Future experiments should be able to conclude the exact mechanism behind HF-LILI, which can be used in the targeted treatments of CSC elimination, implementing HF-LILI in the same manner as PDT in the absence of a photosensitizer.
Hsu, Ya-Ling; Hung, Jen-Yu; Tsai, Ying-Ming; Tsai, Eing-Mei; Huang, Ming-Shyan; Hou, Ming-Feng; Kuo, Po-Lin
2015-02-18
This study has two novel findings: it is not only the first to demonstrate that tumor-associated dendritic cells (TADCs) facilitate lung and breast cancer metastasis in vitro and in vivo by secreting inflammatory mediator CC-chemokine ligand 2 (CCL2), but it is also the first to reveal that 6-shogaol can decrease cancer development and progression by inhibiting the production of TADC-derived CCL2. Human lung cancer A549 and breast cancer MDA-MB-231 cells increase TADCs to express high levels of CCL2, which increase cancer stem cell features, migration, and invasion, as well as immunosuppressive tumor-associated macrophage infiltration. 6-Shogaol decreases cancer-induced up-regulation of CCL2 in TADCs, preventing the enhancing effects of TADCs on tumorigenesis and metastatic properties in A549 and MDA-MB-231 cells. A549 and MDA-MB-231 cells enhance CCL2 expression by increasing the phosphorylation of signal transducer and activator of transcription 3 (STAT3), and the activation of STAT3 induced by A549 and MDA-MB-231 is completely inhibited by 6-shogaol. 6-Shogaol also decreases the metastasis of lung and breast cancers in mice. 6-Shogaol exerts significant anticancer effects on lung and breast cells in vitro and in vivo by targeting the CCL2 secreted by TADCs. Thus, 6-shogaol may have the potential of being an efficacious immunotherapeutic agent for cancers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Sung-Keum; Kim, Jae-Hee; Choi, Ha-Na
Highlights: • Knockdown of TWIST1 enhanced ATO- and IR-induced cell death in NSCLCs. • Intracellular ROS levels were increased in cells treated with TWIST1 siRNA. • TWIST1 siRNA induced MMP loss and mitochondrial fragmentation. • TWIST1 siRNA upregulated the fission-related proteins FIS1 and DRP1. - Abstract: TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cellmore » lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.« less
Organ reconstruction: Dream or reality for the future.
Stoltz, J-F; Zhang, L; Ye, J S; De Isla, N
2017-01-01
The relevance of research on reconstructed organs is justified by the lack of organs available for transplant and the growing needs for the ageing population. The development of a reconstructed organ involves two parallel complementary steps: de-cellularization of the organ with the need to maintain the structural integrity of the extracellular matrix and vascular network and re-cellularization of the scaffold with stem cells or resident cells.Whole organ engineering for liver, heart, lung or kidneys, is particularly difficult because of the structural complexity of organs and heterogeneity of cells. Rodent, porcine and rhesus monkey organs have been de-cellularized to obtain a scaffold with preserved extracellular matrix and vascular network. As concern the cells for re-cellularization, embryonic, foetal, adult, progenitor stem cells and also iPS have been proposed.Heart construction could be an alternative option for the treatment of cardiac insufficiency. It is based on the use of an extra-cellular matrix coming from an animal's heart and seeded with cells likely to reconstruct a normal cardiac function. Though de-cellularization techniques now seem controlled, the issues posed by the selection of cells capable of generating the various components of cardiac tissue are not settled yet. In addition, the recolonisation of the matrix does not only depend on the phenotype of cells that are used, but it is also impacted by the nature of biochemical signals emitted.Recent researches have shown that it is possible to use decellularized whole liver treated by detergents as scaffold, which keeps the entire network of blood vessels and the integrated extracellular matrix (ECM). Beside of decellularized whole organ scaffold seeding cells selected to repopulate a decellularized liver scaffold are critical for the function of the bioengineered liver. At present, potential cell sources are hepatocyte, and mesenchymal stem cells.Pulmonary regeneration using engineering approaches is complex. In fact, several types of local progenitor cells that contribute to cell repair have been described at different levels of the respiratory tract. Moving towards the alveoles, one finds bronchioalveolar stem cells as well as epithelial cells and pneumocytes. A promising option to increase the donor organ pool is to use allogeneic or xenogeneic decellularized lungs as a scaffold to engineer functional lung tissue ex vivo.The kidney is certainly one of the most difficult organs to reconstruct due to its complex nature and the heterogeneous nature of the cells. There is relatively little research on auto-construction, and experiments have been performed on rats, pigs and monkeys.Nevertheless, before these therapeutic approaches can be applied in clinical practice, many researches are necessary to understand and in particular the behaviour of cells on the decellularized organs as well as the mechanisms of their interaction with the microenvironment. Current knowledges allow optimism for the future but definitive answers can only be given after long term animal studies and controlled clinical studies.
Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles
Hu, Chenxia; Niestroj, Martin; Yuan, Daniel; Chang, Steven; Chen, Jie
2015-01-01
Cancer ranks among the leading causes of human mortality. Cancer becomes intractable when it spreads from the primary tumor site to various organs (such as bone, lung, liver, and then brain). Unlike solid tumor cells, cancer stem cells and metastatic cancer cells grow in a non-attached (suspension) form when moving from their source to other locations in the body. Due to the non-attached growth nature, metastasis is often first detected in the circulatory systems, for instance in a lymph node near the primary tumor. Cancer research over the past several decades has primarily focused on treating solid tumors, but targeted therapy to treat cancer stem cells and cancer metastasis has yet to be developed. Because cancers undergo faster metabolism and consume more glucose than normal cells, glucose was chosen in this study as a reagent to target cancer cells. In particular, by covalently binding gold nanoparticles (GNPs) with thio-PEG (polyethylene glycol) and thio-glucose, the resulting functionalized GNPs (Glu-GNPs) were created for targeted treatment of cancer metastasis and cancer stem cells. Suspension cancer cell THP-1 (human monocytic cell line derived from acute monocytic leukemia patients) was selected because it has properties similar to cancer stem cells and has been used as a metastatic cancer cell model for in vitro studies. To take advantage of cancer cells’ elevated glucose consumption over normal cells, different starvation periods were screened in order to achieve optimal treatment effects. Cancer cells were then fed using Glu-GNPs followed by X-ray irradiation treatment. For comparison, solid tumor MCF-7 cells (breast cancer cell line) were studied as well. Our irradiation experimental results show that Glu-GNPs are better irradiation sensitizers to treat THP-1 cells than MCF-7 cells, or Glu-GNPs enhance the cancer killing of THP-1 cells 20% more than X-ray irradiation alone and GNP treatment alone. This finding can help oncologists to design therapeutic strategies to target cancer stem cells and cancer metastasis. PMID:25844037
Regenerative abilities of mesenchymal stem cells through mitochondrial transfer.
Paliwal, Swati; Chaudhuri, Rituparna; Agrawal, Anurag; Mohanty, Sujata
2018-03-30
The past decade has witnessed an upsurge in studies demonstrating mitochondrial transfer as one of the emerging mechanisms through which mesenchymal stem cells (MSCs) can regenerate and repair damaged cells or tissues. It has been found to play a critical role in healing several diseases related to brain injury, cardiac myopathies, muscle sepsis, lung disorders and acute respiratory disorders. Several studies have shown that various mechanisms are involved in mitochondrial transfer that includes tunnel tube formation, micro vesicle formation, gap junctions, cell fusion and others modes of transfer. Few studies have investigated the mechanisms that contribute to mitochondrial transfer, primarily comprising of signaling pathways involved in tunnel tube formation that facilitates tunnel tube formation for movement of mitochondria from one cell to another. Various stress signals such as release of damaged mitochondria, mtDNA and mitochondrial products along with elevated reactive oxygen species levels trigger the transfer of mitochondria from MSCs to recipient cells. However, extensive cell signaling pathways that lead to mitochondrial transfer from healthy cells are still under investigation and the changes that contribute to restoration of mitochondrial bioenergetics in recipient cells remain largely elusive. In this review, we have discussed the phenomenon of mitochondrial transfer from MSCs to neighboring stressed cells, and how this aids in cellular repair and regeneration of different organs such as lung, heart, eye, brain and kidney. The potential scope of mitochondrial transfer in providing novel therapeutic strategies for treatment of various pathophysiological conditions has also been discussed.
Novel Functions of NF-kappaB2/p52 in Androgen Receptor Signaling in CRPC
2015-09-01
cells . Endocr Relat Cancer 17:241–253 59. Taguchi Y, Yamamoto M, Yamate T et al (1998) Interleukin- 6-type cytokines stimulate mesenchymal progenitor... stem cells ”. Thus, it is conceivable that the benign prostate gland exhibits high expression of Lin28 in the basal cell layer. It is interesting to...Epithelial- Mesenchymal Transition in Lung Cancer Cell Lines. Cancer Research, 2010. 70(18): p. 7137-7147. 10. Kumar, M.S., et al., Impaired microRNA
Murgia, Claudio; Caporale, Marco; Ceesay, Ousman; Di Francesco, Gabriella; Ferri, Nicola; Varasano, Vincenzo; de las Heras, Marcelo; Palmarini, Massimo
2011-03-01
Jaagsiekte sheep retrovirus (JSRV) is a unique oncogenic virus with distinctive biological properties. JSRV is the only virus causing a naturally occurring lung cancer (ovine pulmonary adenocarcinoma, OPA) and possessing a major structural protein that functions as a dominant oncoprotein. Lung cancer is the major cause of death among cancer patients. OPA can be an extremely useful animal model in order to identify the cells originating lung adenocarcinoma and to study the early events of pulmonary carcinogenesis. In this study, we demonstrated that lung adenocarcinoma in sheep originates from infection and transformation of proliferating type 2 pneumocytes (termed here lung alveolar proliferating cells, LAPCs). We excluded that OPA originates from a bronchioalveolar stem cell, or from mature post-mitotic type 2 pneumocytes or from either proliferating or non-proliferating Clara cells. We show that young animals possess abundant LAPCs and are highly susceptible to JSRV infection and transformation. On the contrary, healthy adult sheep, which are normally resistant to experimental OPA induction, exhibit a relatively low number of LAPCs and are resistant to JSRV infection of the respiratory epithelium. Importantly, induction of lung injury increased dramatically the number of LAPCs in adult sheep and rendered these animals fully susceptible to JSRV infection and transformation. Furthermore, we show that JSRV preferentially infects actively dividing cell in vitro. Overall, our study provides unique insights into pulmonary biology and carcinogenesis and suggests that JSRV and its host have reached an evolutionary equilibrium in which productive infection (and transformation) can occur only in cells that are scarce for most of the lifespan of the sheep. Our data also indicate that, at least in this model, inflammation can predispose to retroviral infection and cancer.
NASA Astrophysics Data System (ADS)
Grotberg, James B.
2011-02-01
This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from "capillary-elastic instabilities," as well as nonlinear stabilization from oscillatory core flow which we call the "oscillating butter knife;" liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg-Borgas-Gaver shock.
Ayub, Fatima; Saif, Muhammad W
2017-06-26
Mounier-Kuhn syndrome is a relatively rare condition, mostly involving the trachea and main stem bronchi. It is caused either by the atrophy of elastic fibers or faulty fetal development of cartilage and smooth muscles, hence leading to an overall increase in the diameter of lower respiratory tract. No certain etiology was found in the majority of cases reported previously, however, several other connective tissue diseases have also been implicated with the congenital tracheobronchomegaly. One anecdotal case report mentioned the development of lung malignancy in a patient who had previously received external beam radiotherapy. Herein, we report the first case of Mounier-Kuhn syndrome in a 62-year-old male with a recent diagnosis of metastatic squamous cell carcinoma (SCC) of the lung.
The Role of Lymphocytes in Radiotherapy-Induced Adverse Late Effects in the Lung
Wirsdörfer, Florian; Jendrossek, Verena
2016-01-01
Radiation-induced pneumonitis and fibrosis are dose-limiting side effects of thoracic irradiation. Thoracic irradiation triggers acute and chronic environmental lung changes that are shaped by the damage response of resident cells, by the resulting reaction of the immune system, and by repair processes. Although considerable progress has been made during the last decade in defining involved effector cells and soluble mediators, the network of pathophysiological events and the cellular cross talk linking acute tissue damage to chronic inflammation and fibrosis still require further definition. Infiltration of cells from the innate and adaptive immune systems is a common response of normal tissues to ionizing radiation. Herein, lymphocytes represent a versatile and wide-ranged group of cells of the immune system that can react under specific conditions in various ways and participate in modulating the lung environment by adopting pro-inflammatory, anti-inflammatory, or even pro- or anti-fibrotic phenotypes. The present review provides an overview on published data about the role of lymphocytes in radiation-induced lung disease and related damage-associated pulmonary diseases with a focus on T lymphocytes and B lymphocytes. We also discuss the suspected dual role of specific lymphocyte subsets during the pneumonitic phase and fibrotic phase that is shaped by the environmental conditions as well as the interaction and the intercellular cross talk between cells from the innate and adaptive immune systems and (damaged) resident epithelial cells and stromal cells (e.g., endothelial cells, mesenchymal stem cells, and fibroblasts). Finally, we highlight potential therapeutic targets suited to counteract pathological lymphocyte responses to prevent or treat radiation-induced lung disease. PMID:28018357
Zhou, Xiaofeng; Loomis-King, Hillary; Gurczynski, Stephen J.; Wilke, Carol A.; Konopka, Kristine E.; Ptaschinski, Catherine; Coomes, Stephanie M; Iwakura, Yoichiro; van Dyk, Linda F.; Lukacs, Nicholas W.; Moore, Bethany B.
2015-01-01
Hematopoietic stem cell transplantation (HSCT) efficacy is limited by numerous pulmonary complications. We developed a model of syngeneic bone marrow transplant (BMT) followed by infection with murine gamma herpesvirus (γHV-68) that results in pneumonitis and fibrosis and mimics human “non-infectious” HSCT complications. BMT mice experience increased early lytic replication, but establish viral latency by 21 days post infection (dpi). CD4 T cells in BMT mice are skewed towards IL-17A rather than IFN-γ production. Transplantation of bone marrow from Il-17a−/− donors or treatment with anti-IL-17A neutralization antibodies at late stages attenuates pneumonitis and fibrosis in infected BMT mice, suggesting that hematopoietic-derived IL-17A is essential for development of pathology. IL-17A directly influences activation and extracellular matrix production by lung mesenchymal cells. Lung CD11c+ cells of BMT mice secrete more TGF-β1, and pro-TH17 mRNAs for IL-23 and IL-6, and less TH1-promoting cytokine mRNA for IFN-γ but slightly more IL-12 mRNA in response to viral infection. Adoptive transfer of non-BMT lung CD11c-enriched cells restores robust TH1 response and suppresses aberrant TH17 response in BMT mice to improve lung pathology. Our data suggest “non-infectious” HSCT lung complications may reflect preceding viral infections and demonstrate that IL-17A neutralization may offer therapeutic advantage even after disease onset. PMID:26376362
Matsui, Takahiro; Maeda, Tetsuo; Kida, Toru; Fujita, Jiro; Tsuji, Hiromi; Morii, Eiichi; Kanakura, Yuzuru
2016-10-01
Late-onset noninfectious pulmonary complication after allogenic hematopoietic stem cell transplantation is an important contributing factor associated with high rate morbidity and mortality. We report a case with pleuroparenchymal fibroelastosis (PPFE) occurred after allogenic bone marrow transplantation. The onset was infiltrative shadows in upper lobes, and the haziness spread gradually throughout the lungs with recurrent episodes of pneumothorax in both lungs. Progressive respiratory failure in course of adrenocortical steroid administration eventually caused death. Histological examination in general autopsy showed patchy subpleural fibrosis predominantly distributed in the upper lobes with substantial density rise of elastic fibers in the subpleural area, consistent with the diagnosis of PPFE. PPFE after allogenic transplantation has been seldom reported to date, but it is one of the most important histological components of late-onset noninfectious pulmonary complication after allogenic transplantation characterized by recurrent pneumothorax. Retrospective analysis in our case indicates early diagnosis may be possible by histological evaluation of elastic fibers in lung specimen when pneumothorax is treated surgically. This case suspects that it is important for hematologist and pathologist to aware this progressive disease along with information of histological characteristics, therefore, leading to the establishment of therapeutic strategies and the improvement of poor prognosis.
Chen, Xu; Wu, Lei; Li, Dezhi; Xu, Yanmei; Zhang, Luping; Niu, Kai; Kong, Rui; Gu, Jiaoyang; Xu, Zihan; Chen, Zhengtang; Sun, Jianguo
2018-06-02
Lung cancer is one of the main causes of cancer mortality globally. Most patients received radiotherapy during the course of disease. However, radioresistance generally occurs in the majority of these patients, leading to poor curative effect, and the underlying mechanism remains unclear. In the present study, miR-18a-5p expression was downregulated in irradiated lung cancer cells. Overexpression of miR-18a-5p increased the radiosensitivity of lung cancer cells and inhibited the growth of A549 xenografts after radiation exposure. Dual luciferase report system and miR-18a-5p overexpression identified ataxia telangiectasia mutated (ATM) and hypoxia inducible factor 1 alpha (HIF-1α) as the targets of miR-18a-5p. The mRNA and protein expressions of ATM and HIF-1α were dramatically downregulated by miR-18a-5p in vitro and in vivo. Clinically, plasma miR-18a-5p expression was significantly higher in radiosensitive than in radioresistant group (P < .001). The cutoff value of miR-18a-5p >2.28 was obtained from receiver operating characteristic (ROC) curve. The objective response rate (ORR) was significantly higher in miR-18a-5p-high group than in miR-18a-5p-low group (P < .001). A tendency demonstrated that the median local progression-free survival (PFS) from radiotherapy was longer in miR-18a-5p-high than in miR-18a-5p-low group (P = .082). The median overall survival (OS) from radiotherapy was numerically longer in miR-18a-5p-high than in miR-18a-5p-low group (P = .281). The sensitivity and specificity of plasma miR-18a-5p to predict radiosensitivity was 87% and 95%, respectively. Collectively, these results indicate that miR-18a-5p increases the radiosensitivity in lung cancer cells and CD133 + stem-like cells via downregulating ATM and HIF-1α expressions. Plasma miR-18a-5p would be an available indicator of radiosensitivity in lung cancer patients. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Hu, Zhiwei; Xu, Jie; Cheng, Jijun; McMichael, Elizabeth; Yu, Lianbo; Carson, William E
2017-01-03
Targeting cancer stem cell (CSC) represents a promising therapeutic approach as it can potentially fight cancer at its root. The challenge is to identify a surface therapeutic oncotarget on CSC. Tissue factor (TF) is known as a common yet specific surface target for cancer cells and tumor neovasculature in several solid cancers. However, it is unknown if TF is expressed by CSCs. Here we demonstrate that TF is constitutively expressed on CD133 positive (CD133+) or CD24-CD44+ CSCs isolated from human cancer cell lines, tumor xenografts from mice and breast tumor tissues from patients. TF-targeted agents, i.e., a factor VII (fVII)-conjugated photosensitizer (fVII-PS for targeted photodynamic therapy) and fVII-IgG1Fc (Immunoconjugate or ICON for immunotherapy), can eradicate CSC via the induction of apoptosis and necrosis and via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, respectively. In conclusion, these results demonstrate that TF is a novel surface therapeutic oncotarget for CSC, in addition to cancer cell TF and tumor angiogenic vascular endothelial TF. Moreover, this research highlights that TF-targeting therapeutics can effectively eradicate CSCs, without drug resistance, isolated from breast, lung and ovarian cancer with potential to translate into other most commonly diagnosed solid cancer, in which TF is also highly expressed.
Uncommon CHEK2 mis-sense variant and reduced risk of tobacco-related cancers: case control study.
Brennan, Paul; McKay, James; Moore, Lee; Zaridze, David; Mukeria, Anush; Szeszenia-Dabrowska, Neonilia; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Mates, Dana; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Chow, Wong-Ho; Rothman, Nathanial; Chabrier, Amelie; Gaborieau, Valerie; Odefrey, Fabrice; Southey, Melissa; Hashibe, Mia; Hall, Janet; Boffetta, Paolo; Peto, Julian; Peto, Richard; Hung, Rayjean J
2007-08-01
CHEK2 is a key cell cycle control gene encoding a pluripotent kinase that can cause arrest or apoptosis in response to unrepaired DNA damage. We report a large case-control study of a non-functional variant that had previously been expected to increase cancer rates. Four thousand and fifteen cancer patients (2250 lung, 811 squamous upper aero-digestive and 954 kidney) and 3052 controls in central Europe were genotyped for the mis-sense variant rs17879961 (replacement of T by C), which changes an amino acid (I157T) in an active site of the gene product. The heterozygous (T/C) genotype was associated with a highly significantly lower incidence of lung cancer than the common T/T genotype [relative risk (RR), T/C versus T/T, 0.44, with 95% confidence interval (CI) 0.31-0.63, P < 0.00001] and with a significantly lower incidence of upper aero-digestive cancer (RR 0.44, CI 0.26-0.73, P = 0.001; P = 0.000001 for lung or upper aero-digestive cancer). Protection was significantly greater for squamous than adenomatous lung cancer (P = 0.001). There was an increase of borderline significance in kidney cancer (RR 1.44, CI 0.99-2.00, P = 0.06). This unexpected halving of tobacco-related cancer (since replicated independently) implies much greater absolute risk reduction in smokers than in non-smokers. The mechanism is unknown: perhaps squamous stem cell apoptosis following smoke exposure causes net harm (e.g. by forcing nearby stem cells to divide before they have repaired their own DNA damage from tobacco smoke). If so, reducing the rate of apoptosis by reducing CHEK2 activity could be protective-although not smoking would be far more so.
Das, Hiranmoy; George, Jon C.; Joseph, Matthew; Das, Manjusri; Abdulhameed, Nasreen; Blitz, Anna; Khan, Mahmood; Sakthivel, Ramasamy; Mao, Hai-Quan; Hoit, Brian D.; Kuppusamy, Periannan; Pompili, Vincent J.
2009-01-01
Background Therapeutic potential was evaluated in a rat model of myocardial infarction using nanofiber-expanded human cord blood derived hematopoietic stem cells (CD133+/CD34+) genetically modified with VEGF plus PDGF genes (VIP). Methods and Findings Myocardial function was monitored every two weeks up to six weeks after therapy. Echocardiography revealed time dependent improvement of left ventricular function evaluated by M-mode, fractional shortening, anterior wall tissue velocity, wall motion score index, strain and strain rate in animals treated with VEGF plus PDGF overexpressed stem cells (VIP) compared to nanofiber expanded cells (Exp), freshly isolated cells (FCB) or media control (Media). Improvement observed was as follows: VIP>Exp> FCB>media. Similar trend was noticed in the exercise capacity of rats on a treadmill. These findings correlated with significantly increased neovascularization in ischemic tissue and markedly reduced infarct area in animals in the VIP group. Stem cells in addition to their usual homing sites such as lung, spleen, bone marrow and liver, also migrated to sites of myocardial ischemia. The improvement of cardiac function correlated with expression of heart tissue connexin 43, a gap junctional protein, and heart tissue angiogenesis related protein molecules like VEGF, pNOS3, NOS2 and GSK3. There was no evidence of upregulation in the molecules of oncogenic potential in genetically modified or other stem cell therapy groups. Conclusion Regenerative therapy using nanofiber-expanded hematopoietic stem cells with overexpression of VEGF and PDGF has a favorable impact on the improvement of rat myocardial function accompanied by upregulation of tissue connexin 43 and pro-angiogenic molecules after infarction. PMID:19809493
2012-03-01
respectively, the com pounds that overcom e the effects of m iR-19a/b and m iR-221/222 on the luciferase activity will be considered as candida tes of...Chellappan SP , Haura EB, Cheng JQ. IKBKE is induced by S TAT3 and tobacco carcinogen and determ ines chemosensitivity in n on-small cell lung cancer
Sung, Dong Kyung; Chang, Yun Sil; Ahn, So Yoon; Sung, Se In; Yoo, Hye Soo; Choi, Soo Jin; Kim, Soo Yoon; Park, Won Soon
2015-01-01
The aim of this study was to determine the optimal route of mesenchymal stem cell (MSC) transplantation. To this end, gene expression profiling was performed to compare the effects of intratracheal (i.t.) versus intravenous (i.v.) MSC administration. Furthermore, the therapeutic efficacy of each route to protect against neonatal hyperoxic lung injury was also determined. Newborn Sprague-Dawley rats were exposed to hyperoxia (90% oxygen) from birth for 14 days. Human umbilical cord blood-derived MSCs labeling with PKH26 were transplanted through either the i.t. (5×10(5)) or i.v. (2×10(6)) route at postnatal day (P) 5. At P14, lungs were harvested for histological, biochemical and microarray analyses. Hyperoxic conditions induced an increase in the mean linear intercept and mean alveolar volume (MAV), indicative of impaired alveolarization. The number of ED-1 positive cells was significantly decreased by both i.t. and i.v. transplantations. However, i.t. administration of MSCs resulted in a greater decrease in MAV and ED-1 positive cells compared to i.v. administration. Moreover, the number of TUNEL-positive cells was significantly decreased in the i.t. group, but not in the i.v. group. Although the i.t. group received only one fourth of the number of MSCs that the i.v. group did, a significantly higher number of donor cell-derived red PKH 26 positivity were recovered in the i.t. group. Hyperoxic conditions induced the up regulation of genes associated with the inflammatory response, such as macrophage inflammatory protein-1 α, tumor necrosis factor-α and inter leukin-6; genes associated with cell death, such as p53 and caspases; and genes associated with fibrosis, such as connective tissue growth factor. In contrast, hyperoxic conditions induced the dwon-regulation of vascular endothelial growth factor and hepatocyte growth factor. These hyperoxia-induced changes in gene expression were decreased in the i.t. group, but not in the i.v. group. Thus, local i.t. MSC transplantation was more effective than systemic i.v. MSC administration in protecting against neonatal hyperoxic lung injury.
Ahn, So Yoon; Sung, Se In; Yoo, Hye Soo; Choi, Soo Jin; Kim, Soo Yoon; Park, Won Soon
2015-01-01
The aim of this study was to determine the optimal route of mesenchymal stem cell (MSC) transplantation. To this end, gene expression profiling was performed to compare the effects of intratracheal (IT) versus intravenous (IV) MSC administration. Furthermore, the therapeutic efficacy of each route to protect against neonatal hyperoxic lung injury was also determined. Newborn Sprague-Dawley rats were exposed to hyperoxia (90% oxygen) from birth for 14 days. Human umbilical cord blood-derived MSCs labeling with PKH26 were transplanted through either the IT (5×105) or IV (2×106) route at postnatal day (P) 5. At P14, lungs were harvested for histological, biochemical and microarray analyses. Hyperoxic conditions induced an increase in the mean linear intercept and mean alveolar volume (MAV), indicative of impaired alveolarization. The number of ED-1 positive cells was significantly decreased by both IT and IV transplantations. However, IT administration of MSCs resulted in a greater decrease in MAV and ED-1 positive cells compared to IV administration. Moreover, the number of TUNEL-positive cells was significantly decreased in the IT group, but not in the IV group. Although the IT group received only one fourth of the number of MSCs that the IV group did, a significantly higher number of donor cell-derived red PKH 26 positivity were recovered in the IT group. Hyperoxic conditions induced the up regulation of genes associated with the inflammatory response, such as macrophage inflammatory protein-1 α, tumor necrosis factor-α and inter leukin-6; genes associated with cell death, such as p53 and caspases; and genes associated with fibrosis, such as connective tissue growth factor. In contrast, hyperoxic conditions induced the dwon-regulation of vascular endothelial growth factor and hepatocyte growth factor. These hyperoxia-induced changes in gene expression were decreased in the IT group, but not in the IV group. Thus, local IT MSC transplantation was more effective than systemic IV MSC administration in protecting against neonatal hyperoxic lung injury. PMID:26305093
Liu, Hong; Ding, Yingwei; Hou, Yuehui; Zhao, Guangju; Lu, Yang; Chen, Xiao; Cai, Qiqi; Hong, Guangliang; Qiu, Qiaomeng; Lu, Zhongqiu
2016-01-01
To explore the possible mechanism and protective effect of BMSCs (bone mesenchymal stem cells) carrying superoxide dismutase (SOD) gene on mice with paraquat-induced acute lung injury. To establish the cell line of BMSCs bringing SOD gene, lentiviral vector bringing SOD gene was built and co-cultured with BMSCs. A total of 100 BALB/c mice were randomly divided into five groups, namely Control group, poisoning group (PQ group) , BMSCs therapy group (BMSC group) , BMSCs-Cherry therapy group (BMSC-Cherry group) , BMSCs-SOD therapy group (BMSC-SOD group) . PQ poisoning model was produced by stomach lavaged once with 1 ml of 25 mg/kg PQ solution, and the equal volume of normal saline (NS) was given to Control group mice instead of PQ. The corresponding BMSCs therapy cell lines were delivered to mice through the tail vein of mice 4h after PQ treatment.Five mice of each group were sacrificed 3 d, 7 d, 14 d and 21 days after corresponding BMSCs therapy cell lines administration, and lung tissues of mice were taken to make sections for histological analysis. The serum levels of glutathione (GSH) , malondialdehyde (MDA) , SOD, and the levels of transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α) in lung tissue were determined. The level of SOD was assayed by Westen-blot. Compared with Control group, the early (3 days) levels of SOD protein in lung tissue of PQ group obviously decreased, and the late (21 days) levels of SOD obviously increased, while in therapy groups, that was higher than that in PQ group, and the BMSCs-SOD group showed most obvious (all P<0.05) . Compared with Control group, the levels of plasma GSH and SOD of PQ group and each therapy group wae significantly lower than those in Control group, while in therapy groups, those were higher than those of PQ group, and the BMSCs-SOD group showed most obvious (all P<0.05) .Compared with Control group, the level of plasma MDA, TNF-α and TGF-β in PQ group and therapy groups were significantly higher, while in therapy groups, that was lower than that in PQ group, and the BMSCs-SOD group showed most obvious (all P<0.05) . Lung biopsy showed that, the degree of lung tissue damage in each therapy group obviously reduced. SOD is the key factor of the removal of reactive oxygen species (ROS) in cells, that can obviously inhibit the oxidative stress damage and the apoptosis induced by PQ, thus significantly increasing alveolar epithelial cell ability to fight outside harmful environment.
Sokal, Etienne M; Lombard, Catherine Anne; Roelants, Véronique; Najimi, Mustapha; Varma, Sharat; Sargiacomo, Camillo; Ravau, Joachim; Mazza, Giuseppe; Jamar, François; Versavau, Julia; Jacobs, Vanessa; Jacquemin, Marc; Eeckhoudt, Stéphane; Lambert, Catherine; Stéphenne, Xavier; Smets, Françoise; Hermans, Cédric
2017-08-01
With the exception of liver transplantation, there is no cure for hemophilia, which is currently managed by preemptive replacement therapy. Liver-derived stem cells are in clinical development for inborn and acquired liver diseases and could represent a curative treatment for hemophilia A. The liver is a major factor VIII (FVIII) synthesis site, and mesenchymal stem cells have been shown to control joint bleeding in animal models of hemophilia. Adult-derived human liver stem cells (ADHLSCs) have mesenchymal characteristics and have been shown able to engraft in and repopulate both animal and human livers. Thus, the objectives were to evaluate the potency of ADHLSCs to control bleeding in a hemophilia A patient and assess the biodistribution of the cells after intravenous injection. A patient suffering from hemophilia A was injected with repeated doses of ADHLSCs via a peripheral vein (35 million In-oxine-labeled cells, followed by 125 million cells the next day, and 3 infusions of 250 million cells every 2 weeks thereafter; total infusion period, 50 days). After cell therapy, we found a temporary (15 weeks) decrease in the patient's FVIII requirements and severe bleeding complications, despite a lack of increase in circulating FVIII. The cells were safely administered to the patient via a peripheral vein. Biodistribution analysis revealed an initial temporary entrapment of the cells in the lungs, followed by homing to the liver and to a joint afflicted with hemarthrosis. These results suggest the potential use of ADHLSCs in the treatment of hemophilia A.
Biological characterization of metanephric mesenchymal stem cells from the Beijing duck.
Chen, Jia; Pu, Yabin; Sun, Yujiao; Zhang, Ping; Li, Qian; Wang, Kunfu; Wang, Wenjie; Ma, Yuehui; Guan, Weijun
2016-02-01
Mesenchymal stem cells (MSCs) possess self-proliferation and multi-directional differentiation abilities. Previous studies on MSCs have mostly focused on the bone marrow, lungs, pancreas and umbilical cord blood, with few studies on metanephric tissues in ducks. For the present study, the Beijing duck was selected as an experimental animal. Duck embryo metanephric mesenchymal stem cells (MMSCs) were studied. MMSC isolation culture, analysis of biological characteristics, induced differentiation and identification were performed in preliminary experiments. In the current study, surface antigens and gene expression patterns were detected using immunofluorescence, reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry. The induced cells, adipocytes, hepatocytes, epithelial cells and islet cells were identified by oil red O staining, periodic acid-Schiff staining, immunofluorescence and dithizone staining, respectively. RT-PCR was performed for detection of specific marker genes. The results suggested that the biological characteristics of MMSCs were similar to those of the MSCs previously analyzed. Primary MMSCs were sub-cultured to passage 21. The induced cells exhibit typical staining and immunofluorescence indicating the expression of specific genes. This demonstrates that MMSCs may be a novel alternative source of MSCs for experimental and clinical applications.
Mizota, Toshiyuki; Matsukawa, Shino; Fukagawa, Hiroshi; Daijo, Hiroki; Tanaka, Tomoharu; Chen, Fengshi; Date, Hiroshi; Fukuda, Kazuhiko
2015-08-01
We examined the clinical course of anesthetic induction in lung transplant recipients with pulmonary complications after hematopoietic stem cell transplantation (post-HSCT), focusing on ventilatory management. We aimed to determine the incidence of oxygen desaturation during anesthetic induction and severe respiratory acidosis after anesthetic induction in post-HSCT lung transplant recipients, and to explore factors associated with their development. Nineteen consecutive patients who underwent lung transplantation post-HSCT at Kyoto University Hospital (Japan) were retrospectively studied. Data regarding patient characteristics, preoperative examination, and clinical course during anesthetic induction were analyzed. The incidence of oxygen desaturation (SpO2 < 90 %) during anesthetic induction and severe respiratory acidosis (pH < 7.2) after anesthetic induction were 21.1 and 26.3 %, respectively. Reduced dynamic compliance (Cdyn) during mechanical ventilation was significantly associated with oxygen desaturation during anesthetic induction (p = 0.01), as well as severe respiratory acidosis after anesthetic induction (p = 0.01). The preoperative partial pressure of carbon dioxide in arterial blood (PaCO2; r = -0.743, p = 0.002) and body mass index (BMI; r = 0.61, p = 0.021) significantly correlated with Cdyn, and multivariate analysis revealed that both PaCO2 and BMI were independently associated with Cdyn. Oxygen desaturation during anesthetic induction and severe respiratory acidosis after anesthetic induction frequently occur in post-HSCT lung transplant recipients. Low Cdyn may, at least partially, explain oxygen desaturation during anesthetic induction and severe respiratory acidosis after anesthetic induction. Moreover, preoperative hypercapnia and low BMI were predictive of low Cdyn.
Szigyarto, Cristina A.; Sibbons, Paul; Williams, Gill; Uhlen, Mathias; Metcalfe, Su M.
2010-01-01
Axotrophin/MARCH-7 was first identified in mouse embryonic stem cells as a neural stem cell gene. Using the axotrophin/MARCH-7 null mouse, we discovered profound effects on T lymphocyte responses, including 8-fold hyperproliferation and 5-fold excess release of the stem cell cytokine leukemia inhibitory factor (LIF). Our further discovery that axotrophin/MARCH-7 is required for targeted degradation of the LIF receptor subunit gp190 implies a direct role in the regulation of LIF signaling. Bioinformatics studies revealed a highly conserved RING-CH domain in common with the MARCH family of E3-ubiquitin ligases, and accordingly, axotrophin was renamed “MARCH-7.” To probe protein expression of human axotrophin/MARCH-7, we prepared antibodies against different domains of the protein. Each antibody bound its specific target epitope with high affinity, and immunohistochemistry cross-validated target specificity. Forty-eight human tissue types were screened. Epithelial cells stained strongly, with trophoblasts having the greatest staining. In certain tissues, specific cell types were selectively positive, including neurons and neuronal progenitor cells in the hippocampus and cerebellum, endothelial sinusoids of the spleen, megakaryocytes in the bone marrow, crypt stem cells of the small intestine, and alveolar macrophages in the lung. Approximately 20% of central nervous system neuropils were positive. Notably, axotrophin/MARCH-7 has an expression profile that is distinct from that of other MARCH family members. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. (J Histochem Cytochem 58:301–308, 2010) PMID:19901269
Bora-Singhal, Namrata; Nguyen, Jonathan; Schaal, Courtney; Perumal, Deepak; Singh, Sandeep; Coppola, Domenico; Chellappan, Srikumar
2015-06-01
Non-small cell lung cancer (NSCLC) is highly correlated with smoking and has very low survival rates. Multiple studies have shown that stem-like cells contribute to the genesis and progression of NSCLC. Our results show that the transcriptional coactivator yes-associated protein 1 (YAP1), which is the oncogenic component of the Hippo signaling pathway, is elevated in the stem-like cells from NSCLC and contributes to their self-renewal and ability to form angiogenic tubules. Inhibition of YAP1 by a small molecule or depletion of YAP1 by siRNAs suppressed self-renewal and vascular mimicry of stem-like cells. These effects of YAP1 were mediated through the embryonic stem cell transcription factor, Sox2. YAP1 could transcriptionally induce Sox2 through a physical interaction with Oct4; Sox2 induction occurred independent of TEAD2 transcription factor, which is the predominant mediator of YAP1 functions. The binding of Oct4 to YAP1 could be detected in cell lines as well as tumor tissues; the interaction was elevated in NSCLC samples compared to normal tissue as seen by proximity ligation assays. YAP1 bound to Oct4 through the WW domain, and a peptide corresponding to this region could disrupt the interaction. Delivery of the WW domain peptide to stem-like cells disrupted the interaction and abrogated Sox2 expression, self-renewal, and vascular mimicry. Depleting YAP1 reduced the expression of multiple epithelial-mesenchymal transition genes and prevented the growth and metastasis of tumor xenografts in mice; overexpression of Sox2 in YAP1 null cells rescued these functions. These results demonstrate a novel regulation of stem-like functions by YAP1, through the modulation of Sox2 expression. © 2015 AlphaMed Press.
Rowan, Courtney M; Smith, Lincoln S; Loomis, Ashley; McArthur, Jennifer; Gertz, Shira J; Fitzgerald, Julie C; Nitu, Mara E; Moser, Elizabeth A S; Hsing, Deyin D; Duncan, Christine N; Mahadeo, Kris M; Moffet, Jerelyn; Hall, Mark W; Pinos, Emily L; Tamburro, Robert F; Cheifetz, Ira M
2017-04-01
Immunodeficiency is both a preexisting condition and a risk factor for mortality in pediatric acute respiratory distress syndrome. We describe a series of pediatric allogeneic hematopoietic stem cell transplant patients with pediatric acute respiratory distress syndrome based on the recent Pediatric Acute Lung Injury Consensus Conference guidelines with the objective to better define survival of this population. Secondary analysis of a retrospective database. Twelve U.S. pediatric centers. Pediatric allogeneic hematopoietic stem cell transplant recipients requiring mechanical ventilation. None. During the first week of mechanical ventilation, patients were categorized as: no pediatric acute respiratory distress syndrome or mild, moderate, or severe pediatric acute respiratory distress syndrome based on oxygenation index or oxygen saturation index. Univariable logistic regression evaluated the association between pediatric acute respiratory distress syndrome and PICU mortality. A total of 91.5% of the 211 patients met criteria for pediatric acute respiratory distress syndrome using the Pediatric Acute Lung Injury Consensus Conference definition: 61.1% were severe, 27.5% moderate, and 11.4% mild. Overall survival was 39.3%. Survival decreased with worsening pediatric acute respiratory distress syndrome: no pediatric acute respiratory distress syndrome 66.7%, mild 63.6%, odds ratio = 1.1 (95% CI, 0.3-4.2; p = 0.84), moderate 52.8%, odds ratio = 1.8 (95% CI, 0.6-5.5; p = 0.31), and severe 24.6%, odds ratio = 6.1 (95% CI, 2.1-17.8; p < 0.001). Nonsurvivors were more likely to have multiple consecutive days at moderate and severe pediatric acute respiratory distress syndrome (p < 0.001). Moderate and severe patients had longer PICU length of stay (p = 0.01) and longer mechanical ventilation course (p = 0.02) when compared with those with mild or no pediatric acute respiratory distress syndrome. Nonsurvivors had a higher median maximum oxygenation index than survivors at 28.6 (interquartile range, 15.5-49.9) versus 15.0 (interquartile range, 8.4-29.6) (p < 0.0001). In this multicenter cohort, the majority of pediatric allogeneic hematopoietic stem cell transplant patients with respiratory failure met oxygenation criteria for pediatric acute respiratory distress syndrome based on the Pediatric Acute Lung Injury Consensus Conference definition within the first week of invasive mechanical ventilation. Length of invasive mechanical ventilation, length of PICU stay, and mortality increased as the severity of pediatric acute respiratory distress syndrome worsened.
[Advance on human umbilical cord mesenchymal stem cells for treatment of ALI in severe burns].
Wang, Yu; Hu, Xiaohong
2017-01-01
Severe burn is often accompanied by multiple organ damage. Acute lung injury (ALI) is one of the most common complications, and often occurs in the early stage of severe burns. If it is not treated in time, it will progress to acute respiratory distress syndrome (ARDS), which will be a serious threat to the lives of patients. At present, the treatment of ALI in patients with severe burn is still remained in some common ways, such as the liquid resuscitation, the primary wound treatment, ventilation support, and anti-infection. In recently, human umbilical cord mesenchymal stem cells (hUCMSCs) have been found having some good effects on ALI caused by various causes, but few reports on the efficacy of ALI caused by severe burns were reported. By reviewing the mechanism of stem cell therapy for ALI, therapeutic potential of hUCMSCs in the treatment of severe burns with ALI and a new approach for clinical treatment was provided.
Behre, Gerhard; Theurich, Sebastian; Christopeit, Maximilian; Weber, Thomas
2009-03-10
We report a case of sinusoidal obstruction syndrome, a typical and life-threatening complication after allogeneic stem-cell transplantation, successfully treated with defibrotide despite massive multiple organ failure. A 64-year-old Caucasian woman underwent allogeneic peripheral blood stem-cell transplantation from her human leukocyte antigen-identical sister against aggressive lymphoplasmocytoid immunocytoma. Seven days later, the patient developed severe sinusoidal obstruction syndrome according to the modified Seattle criteria. We initiated treatment with defibrotide. Despite early treatment, multiple organ failure with kidney failure requiring dialysis and ventilator-dependent lung failure aggravated the clinical course. Furthermore, central nervous dysfunction occurred as well as transfusion refractory thrombocytopenia. As highlighted in our report, defibrotide is the most promising drug in the treatment of the formerly, almost lethal, severe sinusoidal obstruction syndrome to date. This is demonstrated very clearly in our patient. She improved completely, even after renal, cerebral and respiratory failure.
2009-01-01
Introduction We report a case of sinusoidal obstruction syndrome, a typical and life-threatening complication after allogeneic stem-cell transplantation, successfully treated with defibrotide despite massive multiple organ failure. Case presentation A 64-year-old Caucasian woman underwent allogeneic peripheral blood stem-cell transplantation from her human leukocyte antigen-identical sister against aggressive lymphoplasmocytoid immunocytoma. Seven days later, the patient developed severe sinusoidal obstruction syndrome according to the modified Seattle criteria. We initiated treatment with defibrotide. Despite early treatment, multiple organ failure with kidney failure requiring dialysis and ventilator-dependent lung failure aggravated the clinical course. Furthermore, central nervous dysfunction occurred as well as transfusion refractory thrombocytopenia. Conclusion As highlighted in our report, defibrotide is the most promising drug in the treatment of the formerly, almost lethal, severe sinusoidal obstruction syndrome to date. This is demonstrated very clearly in our patient. She improved completely, even after renal, cerebral and respiratory failure. PMID:19830097
Perez, Jessica R; Lee, Sangkyu; Ybarra, Norma; Maria, Ola; Serban, Monica; Jeyaseelan, Krishinima; Wang, Li Ming; Seuntjens, Jan; Naqa, Issam El
2017-08-22
Radiation-induced pulmonary fibrosis (RIPF) is a debilitating side effect that occurs in up to 30% of thoracic irradiations in breast and lung cancer patients. RIPF remains a major limiting factor to dose escalation and an obstacle to applying more promising new treatments for cancer cure. Limited treatment options are available to mitigate RIPF once it occurs, but recently, mesenchymal stem cells (MSCs) and a drug treatment stimulating endogenous stem cells (GM-CSF) have been investigated for their potential in preventing this disease onset. In a pre-clinical rat model, we contrasted the application of longitudinal computed tomography (CT) imaging and classical histopathology to quantify RIPF and to evaluate the potential of MSCs in mitigating RIPF. Our results on histology demonstrate promises when MSCs are injected endotracheally (but not intravenously). While our CT analysis highlights the potential of GM-CSF treatment. Advantages and limitations of both analytical methods are contrasted in the context of RIPF.
76 FR 37134 - National Heart, Lung, and Blood Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-24
... Blood Institute Special Emphasis Panel, NHLBI Career Enhancement Grants for Stem Cell Research. Date..., Short Term Research Training Program. Date: July 20, 2011. Time: 1 p.m. to 4 p.m. Agenda: To review and... . (Catalogue of Federal Domestic Assistance Program Nos. 93.233, National Center for Sleep Disorders Research...
Grotberg, James B.
2011-01-01
This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from “capillary-elastic instabilities,” as well as nonlinear stabilization from oscillatory core flow which we call the “oscillating butter knife;” liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg–Borgas–Gaver shock. PMID:21403768
Al-Rubaie, Ali; Wise, Andrea F; Sozo, Foula; De Matteo, Robert; Samuel, Chrishan S; Harding, Richard; Ricardo, Sharon D
2018-06-08
Exposure to high levels of oxygen (hyperoxia) after birth leads to lung injury. Our aims were to investigate the modulation of myeloid cell sub-populations and the reduction of fibrosis in the lungs following administration of human mesenchymal stem cells (hMSC) to neonatal mice exposed to hyperoxia. Newborn mice were exposed to 90% O 2 (hyperoxia) or 21% O 2 (normoxia) from postnatal days 0-4. A sub-group of hyperoxia mice were injected intratracheally with 2.5X10 5 hMSCs. Using flow cytometry we assessed pulmonary immune cells at postnatal days 0, 4, 7 and 14. The following markers were chosen to identify these cells: CD45 + (leukocytes), Ly6C + Ly6G + (granulocytes), CD11b + CD11c + (macrophages); macrophage polarisation was assessed by F4/80 and CD206 expression. hMSCs expressing enhanced green fluorescent protein (eGFP) and firefly luciferase (fluc) were administered via the trachea at day 4. Lung macrophages in all groups were profiled using next generation sequencing (NGS) to assess alterations in macrophage phenotype. Pulmonary collagen deposition and morphometry were assessed at days 14 and 56 respectively. At day 4, hyperoxia increased the number of pulmonary Ly6C + Ly6G + granulocytes and F4/80 low CD206 low macrophages but decreased F4/80 high CD206 high macrophages. At days 7 and 14, hyperoxia increased numbers of CD45 + leukocytes, CD11b + CD11c + alveolar macrophages and F4/80 low CD206 low macrophages but decreased F4/80 high CD206 high macrophages. hMSCs administration ameliorated these effects of hyperoxia, notably reducing numbers of CD11b + CD11c + and F4/80 low CD206 low macrophages; in contrast, F4/80 high CD206 high macrophages were increased. Genes characteristic of anti-inflammatory 'M2' macrophages (Arg1, Stat6, Retnla, Mrc1, Il27ra, Chil3, and Il12b) were up-regulated, and pro-inflammatory 'M1' macrophages (Cd86, Stat1, Socs3, Slamf1, Tnf, Fcgr1, Il12b, Il6, Il1b, and Il27ra) were downregulated in isolated lung macrophages from hyperoxia-exposed mice administered hMSCs, compared to mice without hMSCs. Hydroxyproline assay at day 14 showed that the 2-fold increase in lung collagen following hyperoxia was reduced to control levels in mice administered hMSCs. By day 56 (early adulthood), hMSC administration had attenuated structural changes in hyperoxia-exposed lungs. Our findings suggest that hMSCs reduce neonatal lung injury caused by hyperoxia by modulation of macrophage phenotype. Not only did our cell-based therapy using hMSC induce structural repair, it limited the progression of pulmonary fibrosis.
Fatal BK virus pneumonia following stem cell transplantation.
Akazawa, Y; Terada, Y; Yamane, T; Tanaka, S; Aimoto, M; Koh, H; Nakane, T; Koh, K-R; Nakamae, H; Ohsawa, M; Wakasa, K; Hino, M
2012-12-01
We report the case of a 39-year-old male patient who died of severe BK virus (BKV) pneumonia 168 days after hematopoietic stem cell transplantation (HSCT) for acute lymphoblastic leukemia. After suffering from BKV-associated late-onset hemorrhagic cystitis (HC) with long-term sustained BKV viremia, he died of rapidly progressive pneumonia. On autopsy, numerous viral intranuclear inclusions were seen in his lungs and bladder. An immunohistochemical examination of his lungs was positive for simian virus 40. Based on these pathological results and the high sustained BKV viral load in his blood, we reached a diagnosis of BKV pneumonia. Viral infection can occasionally become life threatening among HSCT recipients. It is widely known that BKV can cause late-onset HC, but BKV-associated pneumonia is rare. Because of its rapid progression and poor prognosis, it is difficult to make an antemortem diagnosis of BKV pneumonia. A treatment strategy for BKV pneumonia also needs to be formulated. Similar to other viral pathogens, BKV can cause pneumonia and the clinician should therefore be aware of it in immunocompromised patients. © 2012 John Wiley & Sons A/S.
Blaivas, Michael; Tsung, James W
2008-05-01
Determining the correct position of endotracheal tubes in critically ill patients may be complicated by external factors such as noise, body habitus, and the need for ongoing resuscitation. Multiple detection techniques have been developed to determine the correct endotracheal tube position, recently including the use of sonography to evaluate lung expansion and diaphragmatic excursion. These techniques have also been applied to diagnosis of right endobronchial main stem intubation, which may be confused with a unilateral pneumothorax in some cases. We describe the sonographic findings in a case series of endobronchial main stem intubations and obstruction, highlighting the utility of this sonographic application. Previous literature and future applications are discussed. Sonographic detection of the sliding lung sign, the lung pulse, and diaphragmatic excursion can accurately detect main stem bronchial intubation as well as bronchial obstruction. Clinical use of lung sonography may decrease the need for chest radiography and may allow more rapid diagnosis of main stem intubation and bronchial obstruction.
Biology of teeth and implants: Host factors - pathology, regeneration, and the role of stem cells.
Eggert, F-Michael; Levin, Liran
2018-01-01
In chronic periodontitis and peri-implantitis, cells of the innate and adaptive immune systems are involved directly in the lesions within the tissues of the patient. Absence of a periodontal ligament around implants does not prevent a biologic process similar to that of periodontitis from affecting osseointegration. Our first focus is on factors in the biology of individuals that are responsible for the susceptibility of such individuals to chronic periodontitis and to peri-implantitis. Genetic factors are of significant importance in susceptibility to these diseases. Genetic factors of the host affect the composition of the oral microbiome in the same manner that they influence other microbiomes, such as those of the intestines and of the lungs. Our second focus is on the central role of stem cells in tissue regeneration, in the functioning of innate and adaptive immune systems, and in metabolism of bone. Epithelial cell rests of Malassez (ERM) are stem cells of epithelial origin that maintain the periodontal ligament as well as the cementum and alveolar bone associated with the ligament. The tissue niche within which ERM are found extends into the supracrestal areas of collagen fiber-containing tissues of the gingivae above the bony alveolar crest. Maintenance and regeneration of all periodontal tissues involves the activity of a variety of stem cells. The success of dental implants indicates that important groups of stem cells in the periodontium are active to enable that biologic success. Successful replantation of avulsed teeth and auto-transplantation of teeth is comparable to placing dental implants, and so must also involve periodontal stem cells. Biology of teeth and biology of implants represents the biology of the various stem cells that inhabit specialized niches within the periodontal tissues. Diverse biologic processes must function together successfully to maintain periodontal health. Osseointegration of dental implants does not involve formation of cementum or collagen fibers inserted into cementum - indicating that some stem cells are not active around dental implants or their niches are not available. Investigation of these similarities and differences between teeth and implants will help to develop a better understanding of the biology and physiologic functioning of the periodontium.
Le Nail, Louis-Romée; Brennan, Meadhbh; Rosset, Philippe; Piloquet, Philippe; Pichon, Olivier; Le Caignec, Cédric; Crenn, Vincent; Layrolle, Pierre; Hérault, Olivier; De Pinieux, Gonzague
2018-01-01
Osteosarcoma (OS) is suspected to originate from dysfunctional mesenchymal stromal/stem cells (MSC). We sought to identify OS-derived cells (OSDC) with potential cancer stem cell (CSC) properties by comparing OSDC to MSC derived from bone marrow of patients. This study included in vitro characterization with sphere forming assays, differentiation assays, cytogenetic analysis, and in vivo investigations of their tumorigenicity and tumor supportive capacities. Primary cell lines were isolated from nine high-grade OS samples. All primary cell lines demonstrated stromal cell characteristics. Compared to MSC, OSDC presented a higher ability to form sphere clones, indicating a potential CSC phenotype, and were more efficient at differentiation towards osteoblasts. None of the OSDC displayed the complex chromosome rearrangements typical of high grade OS and none of them induced tumors in immunodeficient mice. However, two OSDC demonstrated focused genomic abnormalities. Three out of seven, and six out of seven OSDC showed a supportive role on local tumor development, and on metastatic progression to the lungs, respectively, when co-injected with OS cells in nude mice. The observation of OS-associated stromal cells with rare genetic abnormalities and with the capacity to sustain tumor progression may have implications for future tumor treatments. PMID:29494553
Head and neck cancer stem cells: the effect of HPV--an in vitro and mouse study.
Tang, Alice L; Owen, John H; Hauff, Samantha J; Park, Jung Je; Papagerakis, Silvana; Bradford, Carol R; Carey, Thomas E; Prince, Mark E
2013-08-01
To determine if the behavior of cancer stem cells (CSCs) is affected by human papillomavirus (HPV) status. An in vitro and in vivo analysis of HPV and CSCs. University laboratory. We isolated CSCs from HPV-positive and HPV-negative cell lines. Two HPV-negative cell lines underwent lentiviral transduction of E6/E7. Chemoresistence was determined using colony formation assays. Native HPV-positive and HPV E6/E7-transduced cells were compared for lung colonization after tail vein injection in NOD/SCID mice. The proportion of CSC is not significantly different in HPV-positive or HPV-negative head and neck squamous cell carcinoma (HNSCC) cell lines. The HNSCC CSCs are more resistant to cisplatin than the non-CSCs, but there were no significant differences between HPV-positive and HPV-negative cells. The HPV-negative cancer cells yielded low colony formation after cell sorting. After transduction with HPV E6/E7, increased colony formation was observed in both CSCs and non-CSCs. Results from tail vein injections yielded no differences in development of lung colonies between HPV E6/E7-transduced cells and nontransduced cells. Human papillomavirus status does not correlate with the proportion of CSCs present in HNSCC. The HPV-positive cells and those transduced with HPV E6/E7 have a greater clonogenicity than HPV-negative cells. The HNSCC CSCs are more resistant to cisplatin than non-CSCs. This suggests that common chemotherapeutic agents may shrink tumor bulk by eliminating non-CSCs, whereas CSCs have mechanisms that facilitate evasion of cell death. Human papillomavirus status does not affect CSC response to cisplatin therapy, suggesting that other factors explain the better outcomes for patients with HPV-positive cancer.
Zhang, Shirong; Wu, Kan; Feng, Jianguo; Wu, Zhibing; Deng, Qinghua; Guo, Chao; Xia, Bing; Zhang, Jing; Huang, Haixiu; Zhu, Lucheng; Zhang, Ke; Shen, Binghui; Chen, Xufeng; Ma, Shenglin
2016-10-18
Metastasis is the reason for most cancer death, and a crucial primary step for cancer metastasis is invasion of the surrounding tissue, which may be initiated by some rare tumor cells that escape the heterogeneous primary tumor. In this study, we isolated invasive subpopulations of cancer cells from human non-small cell lung cancer (NSCLC) H460 and H1299 cell lines, and determined the gene expression profiles and the responses of these invasive cancer cells to treatments of ionizing radiation and chemotherapeutic agents. The subpopulation of highly invasive NSCLC cells showed epigenetic signatures of epithelial-mesenchymal transition, cancer cell stemness, increased DNA damage repair and cell survival signaling. We also investigated the epigenetic therapy potential of suberoylanilide hydroxamic acid (SAHA) on invasive cancer cells, and found that SAHA suppresses cancer cell invasiveness and sensitizes cancer cells to treatments of IR and chemotherapeutic agents. Our results provide guidelines for identification of metastatic predictors and for clinical management of NSCLC. This study also suggests a beneficial clinical potential of SAHA as a chemotherapeutic agent for NSCLC patients.
O’Dwyer, David N.; Duvall, Adam S.; Xia, Meng; Hoffman, Timothy C.; Bloye, Kiernan S.; Bulte, Camille A.; Zhou, Xiaofeng; Murray, Susan; Moore, Bethany B.; Yanik, Gregory A.
2017-01-01
The utility of transbronchial biopsy in the management of pulmonary complications following hematopoietic stem cell transplantation has shown variable results. Herein, we examine the largest case series of patients undergoing transbronchial biopsy following hematopoietic stem cell transplantation. We performed a retrospective analysis of 130 transbronchial biopsy cases performed in patients with pulmonary complications post-hematopoietic stem cell transplantation. Logistic regression models were applied to examine diagnostic yield, odds of therapy change and complications. The most common histologic finding on transbronchial biopsy was a non-specific interstitial pneumonitis (n= 24 cases, 18%). Pathogens identified by transbronchial biopsy were rare, occurring in < 5% of cases. A positive transbronchial biopsy significantly increased the odds of a subsequent change in corticosteroid therapy (OR=3.12, 95% CI 1.18–8.23; p=0.02) but was not associated with a change in antibiotic therapy (OR=1.01, 95% CI 0.40–2.54; p=0.98) or changes in overall therapy (OR=1.92, 95% CI 0.79–4.70; p=0.15). Patients who underwent a transbronchial biopsy had increased odds of complications related to the bronchoscopy (OR=3.33, 95% CI 1.63–6.79; p=0.001). In conclusion, transbronchial biopsy may contribute to the diagnostic management of non-infectious lung injury post-hematopoietic stem cell transplantation, while its utility in the management of infectious pulmonary complications of HSCT remains low. PMID:29058699
Popescu, Laurentiu M; Gherghiceanu, Mihaela; Suciu, Laura C; Manole, Catalin G; Hinescu, Mihail E
2011-09-01
This study describes a novel type of interstitial (stromal) cell - telocytes (TCs) - in the human and mouse respiratory tree (terminal and respiratory bronchioles, as well as alveolar ducts). TCs have recently been described in pleura, epicardium, myocardium, endocardium, intestine, uterus, pancreas, mammary gland, etc. (see www.telocytes.com ). TCs are cells with specific prolongations called telopodes (Tp), frequently two to three per cell. Tp are very long prolongations (tens up to hundreds of μm) built of alternating thin segments known as podomers (≤ 200 nm, below the resolving power of light microscope) and dilated segments called podoms, which accommodate mitochondria, rough endoplasmic reticulum and caveolae. Tp ramify dichotomously, making a 3-dimensional network with complex homo- and heterocellular junctions. Confocal microscopy reveals that TCs are c-kit- and CD34-positive. Tp release shed vesicles or exosomes, sending macromolecular signals to neighboring cells and eventually modifying their transcriptional activity. At bronchoalveolar junctions, TCs have been observed in close association with putative stem cells (SCs) in the subepithelial stroma. SCs are recognized by their ultrastructure and Sca-1 positivity. Tp surround SCs, forming complex TC-SC niches (TC-SCNs). Electron tomography allows the identification of bridging nanostructures, which connect Tp with SCs. In conclusion, this study shows the presence of TCs in lungs and identifies a TC-SC tandem in subepithelial niches of the bronchiolar tree. In TC-SCNs, the synergy of TCs and SCs may be based on nanocontacts and shed vesicles.
Metastatic Potential of Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma
Davis, Samantha J.; Divi, Vasu; Owen, John H.; Papagerakis, Silvana; Bradford, Carol R.; Carey, Thomas E.; Prince, Mark E. P.
2012-01-01
Objective Subpopulations of highly tumorigenic cells, which have the unique capacity to self-renew and produce differentiated progeny, have been identified in multiple malignancies. In head and neck squamous cell carcinoma (HNSCC), this subpopulation of cells, termed cancer stem cells (CSCs) are contained within the population with high CD44 expression. It has been postulated that CSCs play a role in invasion and metastasis; however, there is little evidence to support this theory. We designed in vitro and in vivo models of metastasis to study the behavior of CSCs in HNSCC. Design Cells were sorted for CD44 expression using flow cytometry. Sorted cells were used in an in vitro invasion assay. For in vivo studies, CSCs and non-CSCs were injected into the tail veins of mice, and lungs were either harvested or imaged to evaluate for metastases. Results In vitro, CD44high cells were more motile but less invasive than CD44low cells. In vivo, 4/5 mice injected with CD44high cells and 0/5 mice injected with CD44low cells formed lung metastases. Two of the metastases arose from CSCs from a primary tumor and three from CSCs from HNSCC cell lines. Conclusions In vitro, CSCs do not have an increased ability to invade through basement membrane, but they do migrate more efficiently through a porous barrier. In contrast, CSCs formed metastases quite efficiently in vivo, whereas non-CSCs did not form metastases at all. This phenomenon could be due to enhanced migratory capacity of CSCs, which may be more important than basement membrane degradation in vivo. PMID:21173377
2013-01-01
Introduction The acute respiratory distress syndrome (ARDS), affects up to 150,000 patients per year in the United States. We and other groups have demonstrated that bone marrow derived mesenchymal stromal stem cells prevent ARDS induced by systemic and local administration of endotoxin (lipopolysaccharide (LPS)) in mice. Methods A study was undertaken to determine the effects of the diverse populations of bone marrow derived cells on the pathophysiology of ARDS, using a unique ex-vivo swine preparation, in which only the ventilated lung and the liver are perfused with autologous blood. Six experimental groups were designated as: 1) endotoxin alone, 2) endotoxin + total fresh whole bone marrow nuclear cells (BMC), 3) endotoxin + non-hematopoietic bone marrow cells (CD45 neg), 4) endotoxin + hematopoietic bone marrow cells (CD45 positive), 5) endotoxin + buffy coat and 6) endotoxin + in vitro expanded swine CD45 negative adherent allogeneic bone marrow cells (cultured CD45neg). We measured at different levels the biological consequences of the infusion of the different subsets of cells. The measured parameters were: pulmonary vascular resistance (PVR), gas exchange (PO2), lung edema (lung wet/dry weight), gene expression and serum concentrations of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6. Results Infusion of freshly purified autologous total BMCs, as well as non-hematopoietic CD45(-) bone marrow cells significantly reduced endotoxin-induced pulmonary hypertension and hypoxemia and reduced the lung edema. Also, in the groups that received BMCs and cultured CD45neg we observed a decrease in the levels of IL-1β and TNF-α in plasma. Infusion of hematopoietic CD45(+) bone marrow cells or peripheral blood buffy coat cells did not protect against LPS-induced lung injury. Conclusions We conclude that infusion of freshly isolated autologous whole bone marrow cells and the subset of non-hematopoietic cells can suppress the acute humoral and physiologic responses induced by endotoxemia by modulating the inflammatory response, mechanisms that do not involve engraftment or trans-differentiation of the cells. These observations may have important implications for the design of future cell therapies for ARDS. PMID:23497755
Novel therapeutic strategies for lung disorders associated with airway remodelling and fibrosis.
Royce, Simon G; Moodley, Yuben; Samuel, Chrishan S
2014-03-01
Inflammatory cell infiltration, cytokine release, epithelial damage, airway/lung remodelling and fibrosis are central features of inflammatory lung disorders, which include asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome and idiopathic pulmonary fibrosis. Although the lung has some ability to repair itself from acute injury, in the presence of ongoing pathological stimuli and/or insults that lead to chronic disease, it no longer retains the capacity to heal, resulting in fibrosis, the final common pathway that causes an irreversible loss of lung function. Despite inflammation, genetic predisposition/factors, epithelial-mesenchymal transition and mechanotransduction being able to independently contribute to airway remodelling and fibrosis, current therapies for inflammatory lung diseases are limited by their ability to only target the inflammatory component of the disease without having any marked effects on remodelling (epithelial damage and fibrosis) that can cause lung dysfunction independently of inflammation. Furthermore, as subsets of patients suffering from these diseases are resistant to currently available therapies (such as corticosteroids), novel therapeutic approaches are required to combat all aspects of disease pathology. This review discusses emerging therapeutic approaches, such as trefoil factors, relaxin, histone deacetylase inhibitors and stem cells, amongst others that have been able to target airway inflammation and airway remodelling while improving related lung dysfunction. A better understanding of the mode of action of these therapies and their possible combined effects may lead to the identification of their clinical potential in the setting of lung disease, either as adjunct or alternative therapies to currently available treatments. © 2013.
Yuniartha, Ratih; Alatas, Fatima Safira; Nagata, Kouji; Kuda, Masaaki; Yanagi, Yusuke; Esumi, Genshiro; Yamaza, Takayoshi; Kinoshita, Yoshiaki; Taguchi, Tomoaki
2014-09-01
The aim of this study was to evaluate the efficacy of mesenchymal stem cells (MSCs) in a nitrofen-induced congenital diaphragmatic hernia (CDH) rat model. Pregnant rats were exposed to nitrofen on embryonic day 9.5 (E9.5). MSCs were isolated from the enhanced green fluorescent protein (eGFP) transgenic rat lungs. The MSCs were transplanted into the nitrofen-induced E12.5 rats via the uterine vein, and the E21 lung explants were harvested. The study animals were divided into three: the control group, the nitrofen-induced left CDH (CDH group), and the MSC-treated nitrofen-induced left CDH (MSC-treated CDH group). The specimens were morphologically analyzed using HE and immunohistochemical staining with proliferating cell nuclear antigen (PCNA), surfactant protein-C (SP-C), and α-smooth muscle actin. The alveolar and medial walls of the pulmonary arteries were significantly thinner in the MSC-treated CDH group than in the CDH group. The alveolar air space areas were larger, while PCNA and the SP-C positive cells were significantly higher in the MSC-treated CDH group, than in the CDH group. MSC engraftment was identified on immunohistochemical staining of the GFP in the MSC-treated CDH group. MSC transplantation potentially promotes alveolar and pulmonary artery development, thereby reducing the severity of pulmonary hypoplasia.
Filip, S; Mokrý, J; Karbanová, J; Vávrová, J; Vokurková, J; Bláha, M; English, D
2005-04-01
A number of surprising observations have shown that stem cells, in suitable conditions, have the ability to produce a whole spectrum of cell types, regardless, whether these tissues are derived from the same germ layer or not. This phenomenon is called stem cell plasticity, which means that tissue-specific stem cells are mutually interchangeable. In our experiments, as a model, we used neural stem cells (NSCs) harvested from fetal (E14-15) neocortex and beta-galactosidase positive. In the first experiment we found that on days 12 and 30 after sub-lethal irradiation (LD 8.5 Gy) and (beta-galactosidase(+)) NSCs transplantation all mice survived, just as the group with bone marrow transplantation. Moreover, the bone marrow of mice transplanted NSCs contained the number of CFU-GM colonies with beta-galactosidase(+) cells which was as much as 50% higher. These differences were statistically significant, p<0.001. In the second experiment, we studied kinetics of (beta-galactosidase(+)) NSCs after their transplantation to sub-lethally irradiated mice. Histochemistry of tissues was performed on days 12 and 30 post-transplantation, and beta-galactosidase(+) cells were detected with the help of histochemical examination of removed tissues (lung, liver, spleen, thymus, and skeletal muscle). In tissues removed on day 12 post-transplantation, we found a significantly higher number of beta-galactosidase(+) cells in the spleen and thymus on day 30. While we presumed the presence beta-galactosidase(+) cells in the spleen, as spleen and reticuloendothelial system represent an important retaining system for different cell types, the presence of beta-galactosidase(+) cells in the thymus was rather surprising but very interesting. This indicates a certain mutual and close interconnection of transplanted stem cells and immune system in an adult organism. In the third experiment, we verified the mutual interchange of Sca-1 surface antigen in the bone marrow cells and NSCs before transplantation. Analysis of this antigen showed 24.8% Sca-1 positive cells among the bone marrow cells, while NSCs were Sca-1 negative. Our experiments show that NSCs share hemopoietic identity and may significantly influence the recovery of damaged hematopoiesis but do not have typical superficial markers as HSCs. This result is important for the determination of predictive factors for hemopoiesis recovery, for stem cell plasticity and for their use in the cell therapy.
Ramalingam, Sivaprakash; London, Viktoriya; Kandavelou, Karthikeyan; Cebotaru, Liudmila; Guggino, William; Civin, Curt; Chandrasegaran, Srinivasan
2013-02-15
Zinc finger nucleases (ZFNs) have become powerful tools to deliver a targeted double-strand break at a pre-determined chromosomal locus in order to insert an exogenous transgene by homology-directed repair. ZFN-mediated gene targeting was used to generate both single-allele chemokine (C-C motif) receptor 5 (CCR5)-modified human induced pluripotent stem cells (hiPSCs) and biallele CCR5-modified hiPSCs from human lung fibroblasts (IMR90 cells) and human primary cord blood mononuclear cells (CBMNCs) by site-specific insertion of stem cell transcription factor genes flanked by LoxP sites into the endogenous CCR5 locus. The Oct4 and Sox2 reprogramming factors, in combination with valproic acid, induced reprogramming of human lung fibroblasts to form CCR5-modified hiPSCs, while 5 factors, Oct4/Sox2/Klf4/Lin28/Nanog, induced reprogramming of CBMNCs. Subsequent Cre recombinase treatment of the CCR5-modified IMR90 hiPSCs resulted in the removal of the Oct4 and Sox2 transgenes. Further genetic engineering of the single-allele CCR5-modified IMR90 hiPSCs was achieved by site-specific addition of the large CFTR transcription unit to the remaining CCR5 wild-type allele, using CCR5-specific ZFNs and a donor construct containing tdTomato and CFTR transgenes flanked by CCR5 homology arms. CFTR was expressed efficiently from the endogenous CCR5 locus of the CCR5-modified tdTomato/CFTR hiPSCs. These results suggest that it might be feasible to use ZFN-evoked strategies to (1) generate precisely targeted genetically well-defined patient-specific hiPSCs, and (2) then to reshape their function by targeted addition and expression of therapeutic genes from the CCR5 chromosomal locus for autologous cell-based transgene-correction therapy to treat various recessive monogenic human diseases in the future.
RAGE and tobacco smoke: insights into modeling chronic obstructive pulmonary disease
Robinson, Adam B.; Stogsdill, Jeffrey A.; Lewis, Joshua B.; Wood, Tyler T.; Reynolds, Paul R.
2012-01-01
Chronic obstructive pulmonary disease (COPD) is a progressive condition characterized by chronic airway inflammation and airspace remodeling, leading to airflow limitation that is not completely reversible. Smoking is the leading risk factor for compromised lung function stemming from COPD pathogenesis. First- and second-hand cigarette smoke contain thousands of constituents, including several carcinogens and cytotoxic chemicals that orchestrate chronic lung inflammation and destructive alveolar remodeling. Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors primarily expressed by diverse lung cells. RAGE expression increases following cigarette smoke exposure and expression is elevated in the lungs of patients with COPD. RAGE is responsible in part for inducing pro-inflammatory signaling pathways that culminate in expression and secretion of several cytokines, chemokines, enzymes, and other mediators. In the current review, new transgenic mouse models that conditionally over-express RAGE in pulmonary epithelium are discussed. When RAGE is over-expressed throughout embryogenesis, apoptosis in the peripheral lung causes severe lung hypoplasia. Interestingly, apoptosis in RAGE transgenic mice occurs via conserved apoptotic pathways also known to function in advanced stages of COPD. RAGE over-expression in the adult lung models features of COPD including pronounced inflammation and loss of parenchymal tissue. Understanding the biological contributions of RAGE during cigarette smoke-induced inflammation may provide critically important insight into the pathology of COPD. PMID:22934052
Noia, Giuseppe; Pierelli, Luca; Bonanno, Giuseppina; Monego, Giovanni; Perillo, Alessandro; Rutella, Sergio; Cavaliere, Anna Franca; De Santis, Marco; Ligato, Maria Serena; Fortunato, Giuseppe; Scambia, Giovanni; Terzano, Giuseppina Maria; Iannace, Enrico; Zelano, Giovanni; Michetti, Fabrizio; Leone, Giuseppe; Mancuso, Salvatore; Terzano, Marinela; Fotunato, Giuseppe
2003-01-01
The intracelomic route for in utero hematopoietic stem cell transplantation was evaluated in preimmune fetal sheep and the engraftment characteristics were defined. Twelve twin ovine fetuses (gestational age: 40-45 days) received intracelomic transplants of human CD3-depleted (50 x 10(6) per lamb) or CD34-selected (1-2 x 10(5) per lamb) cord blood hematopoietic stem cells. Engraftment was evaluated from cell suspensions of the liver, spleen, bone marrow, and thymus by flow cytometry, cloning assays, and polymerase chain reaction (PCR) analyses of human beta2-microglobulin. Four fetuses (33%) aborted shortly after intracelomic transplantation and were not evaluable for engraftment. Engraftment was detected in four fetuses obtained from cesarean delivery on day 70 after transplantation of CD3-depleted cord blood cells. The degrees of engraftment in these four fetuses ranged from 6%-22% in the different organs (as revealed by antigenic analysis of human CD45 with flow cytometry). Three fetuses obtained after cesarean section at 102 (no. 435184) and 105 (no. 915293, no. 037568) days and one fetus delivered at term that received CD34-selected cord blood cells had human engraftment with 10%, 32%, 20%, and 10% CD45(+) cells in bone marrow, respectively. In six of eight fetuses evaluable for human engraftment, chimerism was confirmed by PCR analysis for human beta2-microglobulin, which also identified human cells in brain, spinal cord, heart, lung, and skeletal muscle. This preliminary study indicates that intracelomic transplantation of human hematopoietic stem cells in fetal lambs is feasible and effective in terms of hematopoietic engraftment.
Zhang, Peng; Dong, Ling; Yan, Kang; Long, Hua; Yang, Tong-Tao; Dong, Ming-Qing; Zhou, Yong; Fan, Qing-Yu; Ma, Bao-An
2013-10-01
Chemokines and chemokine receptor 4 (CXCR4) play an important role in metastasis. CXCR4 is also expressed in the human osteosarcoma cell line 9607-F5M2 (F5M2), which has a high tumorigenic ability and potential for spontaneous pulmonary metastasis. Mesenchymal stem cells (MSCs) contribute to the formation of the tumor stroma and promote metastasis. However, mechanisms underlying the promotion of osteosarcoma growth and pulmonary metastasis by MSCs are still elusive. Our study co-injected the human MSCs and F5M2 cells into the caudal vein of nude mice. The total number of tumor nodules per lung was significantly increased in the F5M2+MSC group compared to the other groups (control, F5M2 cells alone and MSCs alone) at week six. Moreover, a high number of Dil-labeled MSCs was present also at the osteosarcoma metastasis sites in the lung. Using Transwell assays, we found that F5M2 cells migrate towards MSCs, while the CXCR4 inhibitor AMD3100 decreased the migration potential of F5M2 cells towards MSCs. Furthermore, upon treatment with F5M2-conditioned medium, MSCs expressed and secreted higher levels of VEGF as determined by immunohistochemistry, western blotting and ELISA, respectively. Importantly, co-cultured with F5M2 cells, MSCs expressed and secreted higher VEGF levels, while AMD3100 dramatically decreased the VEGF secretion by MSCs. However, CXCR4 expression on F5M2 cells was not significantly increased in the co-culture system. Additionally, VEGF increased the proliferation of both MSCs and F5M2 cells. These findings suggest that CXCR4-mediated osteosarcoma growth and pulmonary metastasis are promoted by MSCs through VEGF.
PTEN expression and function in adult cancer stem cells and prospects for therapeutic targeting.
Ciuffreda, Ludovica; Falcone, Italia; Incani, Ursula Cesta; Del Curatolo, Anais; Conciatori, Fabiana; Matteoni, Silvia; Vari, Sabrina; Vaccaro, Vanja; Cognetti, Francesco; Milella, Michele
2014-09-01
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a non-redundant lipid phosphatase that restrains and fine tunes the phosphatidylinositol-3-kinase (PI3K) signaling pathway. PTEN is involved in inherited syndromes, which predispose to different types of cancers and is among the most frequently inactivated tumor suppressor genes in sporadic cancers. Indeed, loss of PTEN function occurs in a wide spectrum of human cancers through a variety of mechanisms, including mutations, deletions, transcriptional silencing, or protein instability. PTEN prevents tumorigenesis through multiple mechanisms and regulates a plethora of cellular processes, including survival, proliferation, energy metabolism and cellular architecture. Moreover, recent studies have demonstrated that PTEN is able to exit, exist, and function outside the cell, allowing for inhibition of the PI3K pathway in neighboring cells in a paracrine fashion. Most recently, studies have shown that PTEN is also critical for stem cell maintenance and that PTEN loss can lead to the emergence and proliferation of cancer stem cell (CSC) clones. Depending on the cellular and tissue context of origin, PTEN deletion may result in increased self-renewal capacity or normal stem cell exhaustion and PTEN-defìcient stem and progenitor cells have been reported in prostate, lung, intestinal, and pancreatic tissues before tumor formation; moreover, reversible or irreversible PTEN loss is frequently observed in CSC from a variety of solid and hematologic malignancies, where it may contribute to the functional phenotype of CSC. In this review, we will focus on the role of PTEN expression and function and downstream pathway activation in cancer stem cell biology and regulation of the tumorigenic potential; the emerging role of PTEN in mediating the crosstalk between the PI3K and MAPK pathways will also be discussed, together with prospects for the therapeutic targeting of tumors lacking PTEN expression. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gautam, Uma S.; Foreman, Taylor W.; Bucsan, Allison N.; Veatch, Ashley V.; Alvarez, Xavier; Adekambi, Toidi; Golden, Nadia A.; Gentry, Kaylee M.; Doyle-Meyers, Lara A.; Didier, Peter J.; Blanchard, James L.; Kousoulas, K. Gus; Lackner, Andrew A.; Kalman, Daniel; Rengarajan, Jyothi; Khader, Shabaana A.; Kaushal, Deepak
2018-01-01
Mycobacterium tuberculosis continues to cause devastating levels of mortality due to tuberculosis (TB). The failure to control TB stems from an incomplete understanding of the highly specialized strategies that M. tuberculosis utilizes to modulate host immunity and thereby persist in host lungs. Here, we show that M. tuberculosis induced the expression of indoleamine 2,3-dioxygenase (IDO), an enzyme involved in tryptophan catabolism, in macrophages and in the lungs of animals (mice and macaque) with active disease. In a macaque model of inhalation TB, suppression of IDO activity reduced bacterial burden, pathology, and clinical signs of TB disease, leading to increased host survival. This increased protection was accompanied by increased lung T cell proliferation, induction of inducible bronchus-associated lymphoid tissue and correlates of bacterial killing, reduced checkpoint signaling, and the relocation of effector T cells to the center of the granulomata. The enhanced killing of M. tuberculosis in macrophages in vivo by CD4+ T cells was also replicated in vitro, in cocultures of macaque macrophages and CD4+ T cells. Collectively, these results suggest that there exists a potential for using IDO inhibition as an effective and clinically relevant host-directed therapy for TB. PMID:29255022
Lee, Sheen-Woo; Padmanabhan, Parasuraman; Ray, Pritha; Gambhir, Sanjiv Sam; Doyle, Timothy; Contag, Christopher; Goodman, Stuart B; Biswal, Sandip
2009-03-01
Adult stem cells are promising therapeutic reagents for skeletal regeneration. We hope to validate by molecular imaging technologies the in vivo life cycle of adipose-derived multipotent cells (ADMCs) in an animal model of skeletal injury. Primary ADMCs were lentivirally transfected with a fusion reporter gene and injected intravenously into mice with bone injury or sham operation. Bioluminescence imaging (BLI), [(18)F]FHBG (9-(fluoro-hydroxy-methyl-butyl-guanine)-micro-PET, [(18)F]Fluoride ion micro-PET and micro-CT were performed to monitor stem cells and their effect. Bioluminescence microscopy and immunohistochemistry were done for histological confirmation. BLI showed ADMC's traffic from the lungs then to the injury site. BLI microscopy and immunohistochemistry confirmed the ADMCs in the bone defect. Micro-CT measurements showed increased bone healing in the cell-injected group compared to the noninjected group at postoperative day 7 (p < 0.05). Systemically administered ADMC's traffic to the site of skeletal injury and facilitate bone healing, as demonstrated by molecular and small animal imaging. Molecular imaging technologies can validate the usage of adult adipose tissue-derived multipotent cells to promote fracture healing. Imaging can in the future help establish therapeutic strategies including dosage and administration route. (c) 2008 Orthopaedic Research Society.
Cancer Stem Cells: Cellular Plasticity, Niche, and its Clinical Relevance.
Lee, Gina; Hall, Robert R; Ahmed, Atique U
2016-10-01
Cancer handles an estimated 7.6 million deaths worldwide per annum. A recent theory focuses on the role Cancer Stem Cells (CSCs) in driving tumorigenesis and disease progression. This theory hypothesizes that a population of the tumor cell with similar functional and phenotypic characteristics as normal tissue stem cells are responsible for formation and advancement of many human cancers. The CSCs subpopulation can differentiate into non-CSC tumor cells and promote phenotypic and functional heterogeneity within the tumor. The presence of CSCs has been reported in a number of human cancers including blood, breast, brain, colon, lung, pancreas prostate and liver. Although the origin of CSCs remains a mystery, recent reports suggest that the phenotypic characteristics of CSCs may be plastic and are influenced by the microenvironment specific for the individual tumor. Such factors unique to each tumor preserve the dynamic balance between CSCs to non-CSCs cell fate, as well as maintain the proper equilibrium. Alternating such equilibrium via dedifferentiation can result in aggressiveness, as CSCs are considered to be more resistant to the conventional cancer treatments of chemotherapy and radiation. Understanding how the tumoral microenvironment affects the plasticity driven CSC niche will be critical for developing a more effective treatment for cancer by eliminating its aggressive and recurring nature that now is believed to be perpetuated by CSCs.
Choi, Seon Young; Kim, Hang-Rae; Ryu, Pan Dong; Lee, So Yeong
2017-02-21
Side-population (SP) cells that exclude anti-cancer drugs have been found in various tumor cell lines. Moreover, SP cells have a higher proliferative potential and drug resistance than main population cells (Non-SP cells). Also, several ion channels are responsible for the drug resistance and proliferation of SP cells in cancer. To confirm the expression and function of voltage-gated potassium (Kv) channels of SP cells, these cells, as well as highly expressed ATP-binding cassette (ABC) transporters and stemness genes, were isolated from a gefitinib-resistant human lung adenocarcinoma cell line (NCI-H460), using Hoechst 33342 efflux. In the present study, we found that mRNA expression of Kv channels in SP cells was different compared to Non-SP cells, and the resistance of SP cells to gefitinib was weakened with a combination treatment of gefitinib and Kv channel blockers or a Kv7 opener, compared to single-treatment gefitinib, through inhibition of the Ras-Raf signaling pathway. The findings indicate that Kv channels in SP cells could be new targets for reducing the resistance to gefitinib.
2013-06-01
transplanted into the mammary fat pad of NUDE mice to establish tumorigenicity in vivo. At 3 months post- injection , micrometastases to the lung, liver...E-cadherin, nuclear β catenin and fibronectin but were negative for ERα and vimentin. The injection of bone marrow isolated from mice previously... injected with tumorspheres into the mammary fat pad, resulted in large tumor formation in the mammary fat pad 2 months post- injection . The tumors
Leukemia inhibitory factor in the neuroimmune communication pathways in allergic asthma.
Lin, Min-Juan; Lao, Xue-Jun; Liu, Sheng-Ming; Xu, Zhen-Hua; Zou, Wei-Feng
2014-03-20
In the pathogenesis of asthma, central sensitization is suggested to be an important neural mechanism, and neurotrophins and cytokines are likely to be the major mediators in the neuroimmune communication pathways of asthma. However, their impact on the central nervous system in allergic asthma remains unclear. We hypothesize that central neurogenic inflammation develops in the pathogenesis of allergic asthma, and nerve growth factor (NGF) and leukemia inhibitory factor (LIF) are important mediators in its development. An asthma model of rats was established by sensitization and challenged with ovalbumin (OVA). For further confirmation of the role of LIF in neurogenic inflammation, a subgroup was pretreated with intraperitoneally (i.p.) LIF antibody before OVA challenge. The levels of LIF and NGF were measured with reverse transcription and polymerase chain reaction (RT-PCR), in situ hybridization (ISH) and immunohistochemistry stain in lung tissue, airway-specific dorsal root ganglia (DRG, C7-T5) and brain stem of asthmatic rats, anti-LIF pretreated rats and controls. A significantly increased number of LIF- and NGF-immunoreactive cells were detected in lung tissue, DRG and the brain stem of asthmatic rats. In the asthma group a significantly increase level of mRNA encoding LIF and NGF in lung tissue was detected, but not in DRG and the brain stem. Pretreatment with LIF antibody decreased the level of LIF and NGF in all tissues. LIF is an important mediator in the crosstalk between nerve and immune systems. Our study demonstrate that the increased level of LIF and NGF in DRG and brain stem may be not based on result from de novo synthesis, but rather on result from retrograde nerve transport or passage across the blood-brain-barrier. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Li, Dequan; Pan, Xuebo; Zhao, Jing; Chi, Chuang; Wu, Guangyu; Wang, Yuanyuan; Liao, Shiyao; Wang, Cong; Ma, Jihong; Pan, Jingye
2016-06-01
Multiple trauma normally leads to acute lung injury (ALI) and other multiple organ dysfunction syndrome (MODS). Finding effective treatments for ALI remains a medical as well as socioeconomic challenge. Several studies show that bone marrow mesenchymal stem cells (BMSCs) have the potent anti-inflammation activity and transfusion of BMSCs can effectively inhibit inflammatory and autoimmune diseases. In this study, we investigated the TLR2, 4/NF-κB signaling pathway to determine the therapeutic value of BMSCs on lipopolysaccharide (LPS)-induced ALI. To investigate the immunosuppression effects of BMSCs, rats subjected to multiple trauma were administrated with LPS to induce ALI and then treated with BMSCs. The histology of the lung was examined. Serum levels of the pro-inflammatory factors TNFα, interleukin (IL)-6, and IL-1β, as well as anti-inflammatory factor IL-10 were measured at 3, 6, 12, and 24 h after the treatment. Moreover, expressions of TLR2 and TLR4 at the mRNA and protein levels, as well as phosphorylation of p65 in the lungs, were assessed at these time points. We found that BMSCs reduced inflammatory injury, inhibited LPS-induced upregulation of TLR2 and TLR4 expression at the mRNA and protein levels, and compromised p65 phosphorylation. In addition, infusion of BMSCs also downregulated the abundance of pro-inflammatory TNFα, IL-6, and IL-1β and upregulated the abundance of anti-inflammatory IL-10 levels in the serum. Our results suggest that BMSCs suppress the inflammatory reactions through inhibition of the TLR2, 4 mediated NF-κB signal pathway, which hints that BMSCs can potentially be used to treat ALI in multiple trauma.
Li, Zhang-hua; Liao, Wen; Cui, Xi-long; Zhao, Qiang; Liu, Ming; Chen, You-hao; Liu, Tian-shu; Liu, Nong-le; Wang, Fang; Yi, Yang; Shao, Ning-sheng
2011-01-09
In this study, we investigated the feasibility and safety of intravenous transplantation of allogeneic bone marrow mesenchymal stem cells (MSCs) for femoral head repair, and observed the migration and distribution of MSCs in hosts. MSCs were labeled with green fluorescent protein (GFP) in vitro and injected into nude mice via vena caudalis, and the distribution of MSCs was dynamically monitored at 0, 6, 24, 48, 72 and 96 h after transplantation. Two weeks after the establishment of a rabbit model of femoral head necrosis, GFP labeled MSCs were injected into these rabbits via ear vein, immunological rejection and graft versus host disease were observed and necrotic and normal femoral heads, bone marrows, lungs, and livers were harvested at 2, 4 and 6 w after transplantation. The sections of these tissues were observed under fluorescent microscope. More than 70 % MSCs were successfully labeled with GFP at 72 h after labeling. MSCs were uniformly distributed in multiple organs and tissues including brain, lungs, heart, kidneys, intestine and bilateral hip joints of nude mice. In rabbits, at 6 w after intravenous transplantation, GFP labeled MSCs were noted in the lungs, liver, bone marrow and normal and necrotic femoral heads of rabbits, and the number of MSCs in bone marrow was higher than that in the, femoral head, liver and lungs. Furthermore, the number of MSCs peaked at 6 w after transplantation. Moreover, no immunological rejection and graft versus host disease were found after transplantation in rabbits. Our results revealed intravenously implanted MSCs could migrate into the femoral head of hosts, and especially migrate directionally and survive in the necrotic femoral heads. Thus, it is feasible and safe to treat femoral head necrosis by intravenous transplantation of allogeneic MSCs.
Design and synthesis of emodin derivatives as novel inhibitors of ATP-citrate lyase.
Koerner, Steffi K; Hanai, Jun-Ichi; Bai, Sha; Jernigan, Finith E; Oki, Miwa; Komaba, Chieko; Shuto, Emi; Sukhatme, Vikas P; Sun, Lijun
2017-01-27
Aberrant cellular metabolism drives cancer proliferation and metastasis. ATP citrate lyase (ACL) plays a critical role in generating cytosolic acetyl CoA, a key building block for de novo fatty acid and cholesterol biosynthesis. ACL is overexpressed in cancer cells, and siRNA knockdown of ACL limits cancer cell proliferation and reduces cancer stemness. We characterized a new class of ACL inhibitors bearing the key structural feature of the natural product emodin. Structure-activity relationship (SAR) study led to the identification of 1d as a potent lead that demonstrated dose-dependent inhibition of proliferation and cancer stemness of the A549 lung cancer cell line. Computational modeling indicates this class of inhibitors occupies an allosteric binding site and blocks the entrance of the substrate citrate to its binding site. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Development and Stem Cells of the Esophagus
Zhang, Yongchun; Jiang, Ming; Kim, Eugene; Lin, Sijie; Liu, Kuancan; Lan, Xiaopeng; Que, Jianwen
2017-01-01
The esophagus is derived from the anterior portion of the developmental intermediate foregut, a structure that also gives rise to other organs including the trachea, lung, and stomach. Genetic studies have shown that multiple signaling pathways (e.g. Bmp) and transcription factors (e.g. SOX2) are required for the separation of the esophagus from the neighboring respiratory system. Notably, some of these signaling pathways and transcription factors continue to play essential roles in the subsequent morphogenesis of the esophageal epithelium which undergoes a simple columnar-to-stratified squamous conversion. Reactivation of the relevant signaling pathways has also been associated with pathogenesis of esophageal diseases that affect the epithelium and its stem cells in adults. In this review we will summarize these findings. We will also discuss new data regarding the cell-of-origin for the striated and smooth muscles surrounding the esophagus and how they are differentiated from the mesenchyme during development. PMID:28007661
Cryopreservation of Viable Human Lung Tissue for Versatile Post-thaw Analyses and Culture
Baatz, John E.; Newton, Danforth A.; Riemer, Ellen C.; Denlinger, Chadrick E.; Jones, E. Ellen; Drake, Richard R.; Spyropoulos, Demetri D.
2018-01-01
Clinical trials are currently used to test therapeutic efficacies for lung cancer, infections and diseases. Animal models are also used as surrogates for human disease. Both approaches are expensive and time-consuming. The utility of human biospecimens as models is limited by specialized tissue processing methods that preserve subclasses of analytes (e.g. RNA, protein, morphology) at the expense of others. We present a rapid and reproducible method for the cryopreservation of viable lung tissue from patients undergoing lobectomy or transplant. This method involves the pseudo-diaphragmatic expansion of pieces of fresh lung tissue with cryoprotectant formulation (pseudo-diaphragmatic expansion-cryoprotectant perfusion or PDX-CP) followed by controlled-rate freezing in cryovials. Expansion-perfusion rates, volumes and cryoprotectant formulation were optimized to maintain tissue architecture, decrease crystal formation and increase long-term cell viability. Rates of expansion of 4 cc/min or less and volumes ranging from 0.8–1.2 × tissue volume were well-tolerated by lung tissue obtained from patients with chronic obstructive pulmonary disease or idiopathic pulmonary fibrosis, showing minimal differences compared to standard histopathology. Morphology was greatly improved by the PDX-CP procedure compared to simple fixation. Fresh versus post-thawed lung tissue showed minimal differences in histology, RNA integrity numbers and post-translational modified protein integrity (2-dimensional differential gel electrophoresis). It was possible to derive numerous cell types, including alveolar epithelial cells, fibroblasts and stem cells, from the tissue for at least three months after cryopreservation. This new method should provide a uniform, cost-effective approach to the banking of biospecimens, with versatility to be amenable to any post-acquisition process applicable to fresh tissue samples. PMID:24982205
Endophytic fungi from mangrove inhibit lung cancer cell growth and angiogenesis in vitro.
Liu, Xin; Wu, Xin; Ma, Yuefan; Zhang, Wenzhang; Hu, Liang; Feng, Xiaowei; Li, Xiangyong; Tang, Xudong
2017-03-01
The secondary metabolites of mangrove-derived endophytic fungi contain multiple substances with novel structures and biological activities. In the present study, three types of mangrove plants, namely Kandelia candel, Rhizophora stylosa and Rhizophoraceae from Zhanjiang region including the leaves, roots and stems were collected, and endophytic fungi were isolated, purified and identified from these mangrove plants. MTT assay was used to observe the effects of the isolated endophytic fungi on the growth of A549 and NCI-H460 lung cancer cells. The effect of the endophytic fungi on lung cancer angiogenesis in vitro induced by the HPV-16 E7 oncoprotein was observed. Our results showed that 28 strains of endophytic fungi were isolated, purified and identified from the three types of mangrove plants. Ten strains of endophytic fungi significantly suppressed the growth of A549 and NCI-H460 cells. The average inhibitory rates in the A549 cells were 64.4, 59.5, 81.9, 43.9, 58.3, 56.2, 48.3, 42.4, 93.0 and 49.7%, respectively. The average inhibitory rates in the NCI-H460 cells were 41.2, 49.3, 82.7, 40.7, 53.9, 52.6, 56.8, 64.3, 91.0 and 45.6%, respectively. Particularly, three strains of endophytic fungi markedly inhibited HPV-16 E7 oncoprotein‑induced lung cancer angiogenesis in vitro. These findings contribute to the further screening of potential chemotherapeutic agents from mangrove-derived endophytic fungi.
Viral infections in transplant recipients.
Razonable, R R; Eid, A J
2009-12-01
Solid organ and hematopoietic stem cell transplant recipients are uniquely predisposed to develop clinical illness, often with increased severity, due to a variety of common and opportunistic viruses. Patients may acquire viral infections from the donor (donor-derived infections), from reactivation of endogenous latent virus, or from the community. Herpes viruses, most notably cytomegalovirus and Epstein Barr virus, are the most common among opportunistic viral pathogens that cause infection after solid organ and hematopoietic stem cell transplantation. The polyoma BK virus causes opportunistic clinical syndromes predominantly in kidney and allogeneic hematopoietic stem cell transplant recipients. The agents of viral hepatitis B and C present unique challenges particularly among liver transplant recipients. Respiratory viral illnesses due to influenza, respiratory syncytial virus, and parainfluenza virus may affect all types of transplant recipients, although severe clinical disease is observed more commonly among lung and allogeneic hematopoietic stem cell transplant recipients. Less common viral infections affecting transplant recipients include those caused by adenoviruses, parvovirus B19, and West Nile virus. Treatment for viruses with proven effective antiviral drug therapies should be complemented by reduction in the degree of immunosuppression. For others with no proven antiviral drugs for therapy, reduction in the degree of immunosuppression remains as the sole effective strategy for management. Prevention of viral infections is therefore of utmost importance, and this may be accomplished through vaccination, antiviral strategies, and aggressive infection control measures.
Persistent injury-associated anemia: the role of the bone marrow microenvironment.
Millar, Jessica K; Kannan, Kolenkode B; Loftus, Tyler J; Alamo, Ines G; Plazas, Jessica; Efron, Philip A; Mohr, Alicia M
2017-06-15
The regulation of erythropoiesis involves hematopoietic progenitor cells, bone marrow stroma, and the microenvironment. Following severe injury, a hypercatecholamine state develops that is associated with increased mobilization of hematopoietic progenitor cells to peripheral blood and decreased growth of bone marrow erythroid progenitor cells that manifests clinically as a persistent injury-associated anemia. Changes within the bone marrow microenvironment influence the development of erythroid progenitor cells. Therefore, we sought to determine the effects of lung contusion, hemorrhagic shock, and chronic stress on the hematopoietic cytokine response. Bone marrow was obtained from male Sprague-Dawley rats (n = 6/group) killed 7 d after lung contusion followed by hemorrhagic shock (LCHS) or LCHS followed by daily chronic restraint stress (LCHS/CS). End point polymerase chain reaction was performed for interleukin-1β, interleukin-10, stem cell factor, transforming growth factor-β, high-mobility group box-1 (HMGB-1), and B-cell lymphoma-extra large. Seven days following LCHS and LCHS/CS, bone marrow expression of prohematopoietic cytokines (interleukin-1β, interleukin-10, stem cell factor, and transforming growth factor-β) was significantly decreased, and bone marrow expression of HMGB-1 was significantly increased. B-cell lymphoma-extra large bone marrow expression was not affected by LCHS or LCHS/CS (naïve: 44 ± 12, LCHS: 44 ± 12, LCHS/CS: 37 ± 1, all P > 0.05). The bone marrow microenvironment was significantly altered following severe trauma in a rodent model. Prohematopoietic cytokines were downregulated, and the proinflammatory cytokine HMGB-1 had increased bone marrow expression. Modulation of the bone marrow microenvironment may represent a therapeutic strategy following severe trauma to alleviate persistent injury-associated anemia. Copyright © 2017 Elsevier Inc. All rights reserved.
Kropski, Jonathan A.; Richmond, Bradley W.; Gaskill, Christa F.; Foronjy, Robert F.
2017-01-01
Chronic lung disease (CLD), including pulmonary fibrosis (PF) and chronic obstructive pulmonary disease (COPD), is the fourth leading cause of mortality worldwide. Both are debilitating pathologies that impede overall tissue function. A common co-morbidity in CLD is vasculopathy, characterized by deregulated angiogenesis, remodeling, and loss of microvessels. This substantially worsens prognosis and limits survival, with most current therapeutic strategies being largely palliative. The relevance of angiogenesis, both capillary and lymph, to the pathophysiology of CLD has not been resolved as conflicting evidence depicts angiogenesis as both reparative or pathologic. Therefore, we must begin to understand and model the underlying pathobiology of pulmonary vascular deregulation, alone and in response to injury induced disease, to define cell interactions necessary to maintain normal function and promote repair. Capillary and lymphangiogenesis are deregulated in both PF and COPD, although the mechanisms by which they co-regulate and underlie early pathogenesis of disease are unknown. The cell-specific mechanisms that regulate lung vascular homeostasis, repair, and remodeling represent a significant gap in knowledge, which presents an opportunity to develop targeted therapies. We have shown that that ABCG2pos multipotent adult mesenchymal stem or progenitor cells (MPC) influence the function of the capillary microvasculature as well as lymphangiogenesis. A balance of both is required for normal tissue homeostasis and repair. Our current models suggest that when lymph and capillary angiogenesis are out of balance, the non-equivalence appears to support the progression of disease and tissue remodeling. The angiogenic regulatory mechanisms underlying CLD likely impact other interstitial lung diseases, tuberous sclerosis, and lymphangioleiomyomatosis. PMID:29040010
Long noncoding RNA linc00617 exhibits oncogenic activity in breast cancer.
Li, Hengyu; Zhu, Li; Xu, Lu; Qin, Keyu; Liu, Chaoqian; Yu, Yue; Su, Dongwei; Wu, Kainan; Sheng, Yuan
2017-01-01
Protein-coding genes account for only 2% of the human genome, whereas the vast majority of transcripts are noncoding RNAs including long noncoding RNAs. LncRNAs are involved in the regulation of a diverse array of biological processes, including cancer progression. An evolutionarily conserved lncRNA TUNA, was found to be required for pluripotency of mouse embryonic stem cells. In this study, we found the human ortholog of TUNA, linc00617, was upregulated in breast cancer samples. Linc00617 promoted motility and invasion of breast cancer cells and induced epithelial-mesenchymal-transition (EMT), which was accompanied by generation of stem cell properties. Moreover, knockdown of linc00617 repressed lung metastasis in vivo. We demonstrated that linc00617 upregulated the expression of stemness factor Sox2 in breast cancer cells, which was shown to promote the oncogenic activity of breast cancer cells by stimulating epithelial-to-mesenchymal transition and enhancing the tumor-initiating capacity. Thus, our data indicate that linc00617 functions as an important regulator of EMT and promotes breast cancer progression and metastasis via activating the transcription of Sox2. Together, it suggests that linc00617 may be a potential therapeutic target for aggressive breast cancer. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Tam, Kevin J; Hui, Daniel H F; Lee, Wilson W; Dong, Mingshu; Tombe, Tabitha; Jiao, Ivy Z F; Khosravi, Shahram; Takeuchi, Ario; Peacock, James W; Ivanova, Larissa; Moskalev, Igor; Gleave, Martin E; Buttyan, Ralph; Cox, Michael E; Ong, Christopher J
2017-09-13
Prostate cancer (PCa) is among the most commonly-occurring cancers worldwide and a leader in cancer-related deaths. Local non-invasive PCa is highly treatable but limited treatment options exist for those with locally-advanced and metastatic forms of the disease underscoring the need to identify mechanisms mediating PCa progression. The semaphorins are a large grouping of membrane-associated or secreted signalling proteins whose normal roles reside in embryogenesis and neuronal development. In this context, semaphorins help establish chemotactic gradients and direct cell movement. Various semaphorin family members have been found to be up- and down-regulated in a number of cancers. One family member, Semaphorin 3 C (SEMA3C), has been implicated in prostate, breast, ovarian, gastric, lung, and pancreatic cancer as well as glioblastoma. Given SEMA3C's roles in development and its augmented expression in PCa, we hypothesized that SEMA3C promotes epithelial-to-mesenchymal transition (EMT) and stem-like phenotypes in prostate cells. In the present study we show that ectopic expression of SEMA3C in RWPE-1 promotes the upregulation of EMT and stem markers, heightened sphere-formation, and cell plasticity. In addition, we show that SEMA3C promotes migration and invasion in vitro and cell dissemination in vivo.
Wu, Kaijie; Ning, Zhongyun; Zeng, Jin; Fan, Jinhai; Zhou, Jiancheng; Zhang, Tingting; Zhang, Linlin; Chen, Yule; Gao, Yang; Wang, Bin; Guo, Peng; Li, Lei; Wang, Xinyang; He, Dalin
2013-12-01
Muscle-invasive bladder cancer is associated with a high frequency of metastasis, and fewer therapies substantially prolong survival. Silibinin, a nontoxic natural flavonoid, has been shown to exhibit pleiotropic anticancer effects in many cancer types, including bladder cancer. Our and other previous studies have demonstrated that silibinin induced apoptosis and inhibited proliferation of bladder cancer cells, whether silibinin could suppress bladder cancer metastasis has not been elucidated. In the present study, we utilized a novel highly metastatic T24-L cell model, and found that silibinin treatment not only resulted in the suppression of cell migration and invasion in vitro, but also decreased bladder cancer lung metastasis and prolonged animal survival in vivo. Mechanistically, silibinin could inhibit glycogen synthase kinase-3β (GSK3β) phosphorylation, β-catenin nuclear translocation and transactivation, and ZEB1 gene transcription that subsequently regulated the expression of cytokeratins, vimentin and matrix metalloproteinase-2 (MMP2) to reverse epithelial-mesenchymal transition (EMT). On the other hand, silibinin inhibited ZEB1 expression and then suppressed the properties of cancer stem cells (CSCs), which were evidenced as decreased spheroid colony formation, side population, and the expression of stem cell factor CD44. Overall, this study reveals a novel mechanism for silibinin targeting bladder cancer metastasis, in which inactivation of β-catenin/ZEB1 signaling by silibinin leads to dual-block of EMT and stemness. © 2013.
Nikolić, Marko Z; Caritg, Oriol; Jeng, Quitz; Johnson, Jo-Anne; Sun, Dawei; Howell, Kate J; Brady, Jane L; Laresgoiti, Usua; Allen, George; Butler, Richard; Zilbauer, Matthias; Giangreco, Adam; Rawlins, Emma L
2017-01-01
The embryonic mouse lung is a widely used substitute for human lung development. For example, attempts to differentiate human pluripotent stem cells to lung epithelium rely on passing through progenitor states that have only been described in mouse. The tip epithelium of the branching mouse lung is a multipotent progenitor pool that self-renews and produces differentiating descendants. We hypothesized that the human distal tip epithelium is an analogous progenitor population and tested this by examining morphology, gene expression and in vitro self-renewal and differentiation capacity of human tips. These experiments confirm that human and mouse tips are analogous and identify signalling pathways that are sufficient for long-term self-renewal of human tips as differentiation-competent organoids. Moreover, we identify mouse-human differences, including markers that define progenitor states and signalling requirements for long-term self-renewal. Our organoid system provides a genetically-tractable tool that will allow these human-specific features of lung development to be investigated. DOI: http://dx.doi.org/10.7554/eLife.26575.001 PMID:28665271
Chen, Xiao; Liang, Huan; Lian, Jie; Lu, Yang; Li, Xiaolin; Zhi, Shaoce; Zhao, Guangju; Hong, Guangliang; Qiu, Qiaomeng; Lu, Zhongqiu
2014-11-01
To discuss the protective effect of bone marrow mesenchymal stem cell (BMSC) on lung injury induced by vibrio vulnificus sepsis and its mechanism. BMSCs were isolated by whole bone marrow adherent culture from mouse. Male ICR mice were randomly divided into normal saline control group (NS group), normal saline + BMSC control group (NSB group), vibrio vulnificus sepsis group (VV group), vibrio vulnificus sepsis + BMSC group (VVB group) according to random number table, with 40 mice in each group. Sepsis mouse model was reproduced by injecting vibrio vulnificus (1 × 10⁷ cfu/mL) 5 mL/kg through the left side peritoneal cavity, and caudal intravenous injection of BMSC (4 × 10⁵ cfu/mL) 5 mL/kg for intervention after model reproduction. Ten mice in each group were sacrificed at 6, 12, 24 or 48 hours after injecting vibiro vulnificus, and their lung tissues were harvested. The lung wet/dry (W/D) ratio was calculated. The expression of nuclear factor-ΚBp65 (NF-ΚBp65) in nucleus was measured by Western Blot. The levels of tumor necrosis factor-α (TNF-α) and interleukins (IL-1β, IL-6) in lung tissue were detected by enzyme-linked immunosorbent assay (ELISA). The pathological changes in lung tissue were observed after hematoxylin-eosin (HE) staining and uranyl acetate-lead citrate staining. After vibrio vulnificus injection, lung W/D ratio, the expression of NF-ΚBp65 in nucleus, and the levels of TNF-α, IL-1β, IL-6 in the lung tissues were significantly increased in VV group compared with those in NS group at all the time points, and peaked at 12 hours. Compared with the VV group, the VVB group had significantly decreased levels of lung W/D ratio, NF-ΚBp65 expression, and the levels of TNF-α, IL-1β, IL-6, with significant differences at all the time points [VV group vs. NS group at 12 hours: lung W/D ratio 7.22 ± 0.03 vs. 5.21 ± 0.02, NF-ΚBp65 expression (glay scale) 1.86 ± 0.74 vs. 0.75 ± 0.07, TNF-α (ng/L) 433.24 ± 3.23 vs. 106.57 ± 1.21, IL-1β (ng/L) 35.64 ± 0.15 vs. 10.64 ± 0.48, IL-6 (ng/L) 58.84 ± 0.55 vs. 17.69 ± 1.35, all P<0.05; VVB group vs. VV group at 12 hours: lung W/D ratio 6.49 ± 0.06 vs. 7.22 ± 0.03, NF-ΚBp65 expression (A value) 1.16 ± 0.08 vs. 1.86 ± 0.74, TNF-α (ng/L) 357.22 ± 3.25 vs. 433.24 ± 3.23, IL-1β (ng/L) 27.77 ± 0.59 vs. 35.64 ± 0.15, IL-6 (ng/L) 38.6 8 ± 1.29 vs. 58.84 ± 0.55, all P<0.05]. There were no significant differences in above indexes between NS group and NSB group. In the NS and NSB groups pathological changes were not obvious under light microscopy, in the VV group lung tissue hyperemia and edema was significant, the edema fluid, red blood cells and inflammatory cells also could be seen, and in the VVB group lung damage that mentioned above could be alleviated. In the NS and NSB groups epithelial cell structure of type I and type II was completed, and the changes were not obvious under the transmission electron microscopy. In the VV group the alveolar walls were damaged significantly, with type I epithelial cell cytoplasm swelling, bubbling and rupture, with type II epithelial cells visible cytoplasm decrease, cavitation, addiction to osmium lamellar corpuscle emptying, lysosome hyperplasia, microvilli reduction, and in the VVB group the above damage was alleviated. Vibrio vulnificus sepsis can cause acute lung damage and edema, and BMSC can down regulate inflammatory cytokines, reduce lung injury caused by vibrio vulnificus sepsis.
Liu, Chia-Lin; Chen, Su-Feng; Wu, Min-Zu; Jao, Shu-Wen; Lin, Yaoh-Shiang; Yang, Chin-Yuh; Lee, Tsai-Yu; Wen, Lian-Wu; Lan, Guo-Lun; Nieh, Shin
2016-03-22
Treatment failure followed by relapse and metastasis in patients with non-small cell lung cancer is often the result of acquired resistance to cisplatin-based chemotherapy. A cancer stem cell (CSC)-mediated anti-apoptotic phenomenon is responsible for the development of drug resistance. The underlying molecular mechanism related to cisplatin resistance is still controversial, and a new strategy is needed to counteract cisplatin resistance. We used a nonadhesive culture system to generate drug-resistant spheres (DRSPs) derived from cisplatin-resistant H23 lung cancer cells. The expressions of drug-resistance genes, properties of CSCs, and markers of anti-apoptotic proteins were compared between control cells and DRSPs. DRSPs exhibited upregulation of cisplatin resistance-related genes. Gradual morphological alterations showing epithelial-to-mesenchymal transition phenomenon and increased invasion and migration abilities were seen during induction of DRSPs. Compared with control cells, DRSPs displayed increased CSC and anti-apoptotic properties, greater resistance to cisplatin, and overexpression of p-Hsp27 via activation of p38 MAPK signaling. Knockdown of Hsp27 or p38 decreased cisplatin resistance and increased apoptosis in DRSPs. Clinical studies confirmed that the expression of p-Hsp27 was closely associated with prognosis. Overexpression of p-Hsp27 was usually detected in advanced-stage patients with lung cancer and indicated short survival. DRSPs were useful for investigating drug resistance and may provide a practical model for studying the crucial role of p-Hsp27 in the p38 MAPK-Hsp27 axis in CSC-mediated cisplatin resistance. Targeting this axis using siRNA Hsp27 may provide a treatment strategy to improve prognosis and prolong survival in lung cancer patients.
Le Coz, Vincent; Zhu, Chaobin; Devocelle, Aurore; Vazquez, Aimé; Boucheix, Claude; Azzi, Sandy; Gallerne, Cindy; Eid, Pierre; Lecourt, Séverine; Giron-Michel, Julien
2016-12-13
Melanoma is a particularly virulent human cancer, due to its resistance to conventional treatments and high frequency of metastasis. Melanomas contain a fraction of cells, the melanoma-initiating cells (MICs), responsible for tumor propagation and relapse. Identification of the molecular pathways supporting MICs is, therefore, vital for the development of targeted treatments. One factor produced by melanoma cells and their microenvironment, insulin-like growth factor-1 (IGF- 1), is linked to epithelial-mesenchymal transition (EMT) and stemness features in several cancers.We evaluated the effect of IGF-1 on the phenotype and chemoresistance of B16-F10 cells. IGF-1 inhibition in these cells prevented malignant cell proliferation, migration and invasion, and lung colony formation in immunodeficient mice. IGF-1 downregulation also markedly inhibited EMT, with low levels of ZEB1 and mesenchymal markers (N-cadherin, CD44, CD29, CD105) associated with high levels of E-cadherin and MITF, the major regulator of melanocyte differentiation. IGF-1 inhibition greatly reduced stemness features, including the expression of key stem markers (SOX2, Oct-3/4, CD24 and CD133), and the functional characteristics of MICs (melanosphere formation, aldehyde dehydrogenase activity, side population). These features were associated with a high degree of sensitivity to mitoxantrone treatment.In this study, we deciphered new connections between IGF-1 and stemness features and identified IGF-1 as instrumental for maintaining the MIC phenotype. The IGF1/IGF1-R nexus could be targeted for the development of more efficient anti-melanoma treatments. Blocking the IGF-1 pathway would improve the immune response, decrease the metastatic potential of tumor cells and sensitize melanoma cells to conventional treatments.
Chu, Jenny E.; Allan, Alison L.
2012-01-01
Breast cancer is a prevalent disease worldwide, and the majority of deaths occur due to metastatic disease. Clinical studies have identified a specific pattern for the metastatic spread of breast cancer, termed organ tropism; where preferential secondary sites include lymph node, bone, brain, lung, and liver. A rare subpopulation of tumor cells, the cancer stem cells (CSCs), has been hypothesized to be responsible for metastatic disease and therapy resistance. Current treatments are highly ineffective against metastatic breast cancer, likely due to the innate therapy resistance of CSCs and the complex interactions that occur between cancer cells and their metastatic microenvironments. A better understanding of these interactions is essential for the development of novel therapeutic targets for metastatic disease. This paper summarizes the characteristics of breast CSCs and their potential metastatic microenvironments. Furthermore, it raises the question of the existence of a CSC niche and highlights areas for future investigation. PMID:22295241
CBX7 gene expression plays a negative role in adipocyte cell growth and differentiation
Forzati, Floriana; Federico, Antonella; Pallante, Pierlorenzo; Colamaio, Marianna; Esposito, Francesco; Sepe, Romina; Gargiulo, Sara; Luciano, Antonio; Arra, Claudio; Palma, Giuseppe; Bon, Giulia; Bucher, Stefania; Falcioni, Rita; Brunetti, Arturo; Battista, Sabrina; Fedele, Monica; Fusco, Alfredo
2014-01-01
ABSTRACT We have recently generated knockout mice for the Cbx7 gene, coding for a polycomb group protein that is downregulated in human malignant neoplasias. These mice develop liver and lung adenomas and carcinomas, which confirms a tumour suppressor role for CBX7. The CBX7 ability to downregulate CCNE1 expression likely accounts for the phenotype of the Cbx7-null mice. Unexpectedly, Cbx7-knockout mice had a higher fat tissue mass than wild-type, suggesting a role of CBX7 in adipogenesis. Consistently, we demonstrate that Cbx7-null mouse embryonic fibroblasts go towards adipocyte differentiation more efficiently than their wild-type counterparts, and this effect is Cbx7 dose-dependent. Similar results were obtained when Cbx7-null embryonic stem cells were induced to differentiate into adipocytes. Conversely, mouse embryonic fibroblasts and human adipose-derived stem cells overexpressing CBX7 show an opposite behaviour. These findings support a negative role of CBX7 in the control of adipocyte cell growth and differentiation. PMID:25190058
Peripheral-blood stem cells versus bone marrow from unrelated donors.
Anasetti, Claudio; Logan, Brent R; Lee, Stephanie J; Waller, Edmund K; Weisdorf, Daniel J; Wingard, John R; Cutler, Corey S; Westervelt, Peter; Woolfrey, Ann; Couban, Stephen; Ehninger, Gerhard; Johnston, Laura; Maziarz, Richard T; Pulsipher, Michael A; Porter, David L; Mineishi, Shin; McCarty, John M; Khan, Shakila P; Anderlini, Paolo; Bensinger, William I; Leitman, Susan F; Rowley, Scott D; Bredeson, Christopher; Carter, Shelly L; Horowitz, Mary M; Confer, Dennis L
2012-10-18
Randomized trials have shown that the transplantation of filgrastim-mobilized peripheral-blood stem cells from HLA-identical siblings accelerates engraftment but increases the risks of acute and chronic graft-versus-host disease (GVHD), as compared with the transplantation of bone marrow. Some studies have also shown that peripheral-blood stem cells are associated with a decreased rate of relapse and improved survival among recipients with high-risk leukemia. We conducted a phase 3, multicenter, randomized trial of transplantation of peripheral-blood stem cells versus bone marrow from unrelated donors to compare 2-year survival probabilities with the use of an intention-to-treat analysis. Between March 2004 and September 2009, we enrolled 551 patients at 48 centers. Patients were randomly assigned in a 1:1 ratio to peripheral-blood stem-cell or bone marrow transplantation, stratified according to transplantation center and disease risk. The median follow-up of surviving patients was 36 months (interquartile range, 30 to 37). The overall survival rate at 2 years in the peripheral-blood group was 51% (95% confidence interval [CI], 45 to 57), as compared with 46% (95% CI, 40 to 52) in the bone marrow group (P=0.29), with an absolute difference of 5 percentage points (95% CI, -3 to 14). The overall incidence of graft failure in the peripheral-blood group was 3% (95% CI, 1 to 5), versus 9% (95% CI, 6 to 13) in the bone marrow group (P=0.002). The incidence of chronic GVHD at 2 years in the peripheral-blood group was 53% (95% CI, 45 to 61), as compared with 41% (95% CI, 34 to 48) in the bone marrow group (P=0.01). There were no significant between-group differences in the incidence of acute GVHD or relapse. We did not detect significant survival differences between peripheral-blood stem-cell and bone marrow transplantation from unrelated donors. Exploratory analyses of secondary end points indicated that peripheral-blood stem cells may reduce the risk of graft failure, whereas bone marrow may reduce the risk of chronic GVHD. (Funded by the National Heart, Lung, and Blood Institute-National Cancer Institute and others; ClinicalTrials.gov number, NCT00075816.).
Liu, Hong-Mei; Liu, Yi-Tong; Zhang, Jing; Ma, Li-Jun
2017-08-01
The anti-inflammatory and antibacterial mechanisms of bone marrow mesenchymal stem cells (MSCs) ameliorating lung injury in chronic obstructive pulmonary disease (COPD) mice induced by cigarette smoke and Haemophilus Parainfluenza (HPi) were studied. The experiment was divided into four groups in vivo: control group, COPD group, COPD+HPi group, and COPD+HPi+MSCs group. The indexes of emphysematous changes, inflammatory reaction and lung injury score, and antibacterial effects were evaluated in all groups. As compared with control group, emphysematous changes were significantly aggravated in COPD group, COPD+HPi group and COPD+HPi+MSCs group (P<0.01), the expression of necrosis factor-kappaB (NF-κB) signal pathway and proinflammatory cytokines in bronchoalveolar lavage fluid (BALF) were increased (P<0.01), and the phagocytic activity of alveolar macrophages was downregulated (P<0.01). As compared with COPD group, lung injury score, inflammatory cells and proinflammatory cytokines were significantly increased in the BALF of COPD+HPi group and COPD+HPi+MSCs group (P<0.01). As compared with COPD+HPi group, the expression of tumor necrosis factor-α stimulated protein/gene 6 (TSG-6) was increased, the NF-κB signal pathway was depressed, proinflammatory cytokine was significantly reduced, the anti-inflammatory cytokine IL-10 was increased, and lung injury score was significantly reduced in COPD+HPi+MSCs group. Meanwhile, the phagocytic activity of alveolar macrophages was significantly enhanced and bacterial counts in the lung were decreased. The results indicated cigarette smoke caused emphysematous changes in mice and the phagocytic activity of alveolar macrophages was decreased. The lung injury of acute exacerbation of COPD mice induced by cigarette smoke and HPi was alleviated through MSCs transplantation, which may be attributed to the fact that MSCs could promote macrophages into anti-inflammatory phenotype through secreting TSG-6, inhibit NF-кB signaling pathway, and reduce inflammatory response through reducing proinflammatory cytokines and promoting the expression of the anti-inflammatory cytokine. Simultaneously, MSCs could enhance phagocytic activity of macrophages and bacterial clearance. Meanwhile, we detected anti-inflammatory and antibacterial activity of macrophages regulated by MSCs in vitro. As compared with RAW264.7+HPi+CSE group, the expression of NF-кB p65, IL-1β, IL-6 and TNF-α was significantly reduced, and the phagocytic activity of macrophages was significantly increased in RAW264.7+HPi+CSE+MSCs group (P<0.01). The result indicated the macrophages co-cultured with MSCs may inhibit NF-кB signaling pathway and promote phagocytosis by paracrine mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yi; Luo, Fei; Xu, Yuan
The incidence of lung diseases, including cancer, caused by cigarette smoke is increasing, but the molecular mechanisms of gene regulation induced by cigarette smoke remain unclear. This report describes a long noncoding RNA (lncRNA) that is induced by cigarette smoke extract (CSE) and experiments utilizing lncRNAs to integrate inflammation with the epithelial-mesenchymal transition (EMT) in human bronchial epithelial (HBE) cells. The present study shows that, induced by CSE, IL-6, a pro-inflammatory cytokine, leads to activation of STAT3, a transcription activator. A ChIP assay determined that the interaction of STAT3 with the promoter regions of HOX transcript antisense RNA (HOTAIR) increasedmore » levels of HOTAIR. Blocking of IL-6 with anti-IL-6 antibody, decreasing STAT3, and inhibiting STAT3 activation reduced HOTAIR expression. Moreover, for HBE cells cultured in the presence of HOTAIR siRNA for 24 h, the CSE-induced EMT, formation of cancer stem cells (CSCs), and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates HOTAIR in an autocrine manner, contributes to the EMT and to CSCs induced by CSE. These data define a link between inflammation and EMT, processes involved in the malignant transformation of cells caused by CSE. This link, mediated through lncRNAs, establishes a mechanism for CSE-induced lung carcinogenesis. - Highlights: • STAT3 directly regulates the levels of LncRNA HOTAIR. • LncRNA HOTAIR mediates the link between inflammation and EMT. • LncRNA HOTAIR is involved in the malignant transformation of cells caused by CSE.« less
Wolfs, Esther; Struys, Tom; Notelaers, Tineke; Roberts, Scott J; Sohni, Abhishek; Bormans, Guy; Van Laere, Koen; Luyten, Frank P; Gheysens, Olivier; Lambrichts, Ivo; Verfaillie, Catherine M; Deroose, Christophe M
2013-03-01
Because of their extended differentiation capacity, stem cells have gained great interest in the field of regenerative medicine. For the development of therapeutic strategies, more knowledge on the in vivo fate of these cells has to be acquired. Therefore, stem cells can be labeled with radioactive tracer molecules such as (18)F-FDG, a positron-emitting glucose analog that is taken up and metabolically trapped by the cells. The aim of this study was to optimize the radioactive labeling of mesenchymal stem cells (MSCs) and multipotent adult progenitor cells (MAPCs) in vitro with (18)F-FDG and to investigate the potential radiotoxic effects of this labeling procedure with a range of techniques, including transmission electron microscopy (TEM). Mouse MSCs and rat MAPCs were used for (18)F-FDG uptake kinetics and tracer retention studies. Cell metabolic activity, proliferation, differentiation and ultrastructural changes after labeling were evaluated using an Alamar Blue reagent, doubling time calculations and quantitative TEM, respectively. Additionally, mice were injected with MSCs and MAPCs prelabeled with (18)F-FDG, and stem cell biodistribution was investigated using small-animal PET. The optimal incubation period for (18)F-FDG uptake was 60 min. Significant early tracer washout was observed, with approximately 30%-40% of the tracer being retained inside the cells 3 h after labeling. Cell viability, proliferation, and differentiation capacity were not severely affected by (18)F-FDG labeling. No major changes at the ultrastructural level, considering mitochondrial length, lysosome size, the number of lysosomes, the number of vacuoles, and the average rough endoplasmic reticulum width, were observed with TEM. Small-animal PET experiments with radiolabeled MAPCs and MSCs injected intravenously in mice showed a predominant accumulation in the lungs and a substantial elution of (18)F-FDG from the cells. MSCs and MAPCs can be successfully labeled with (18)F-FDG for molecular imaging purposes. The main cellular properties are not rigorously affected. TEM confirmed that the cells' ultrastructural properties are not influenced by (18)F-FDG labeling. Small-animal PET studies confirmed the intracellular location of the tracer and the possibility of imaging injected prelabeled stem cell types in vivo. Therefore, direct labeling of MSCs and MAPCs with (18)F-FDG is a suitable technique to noninvasively assess cell delivery and early retention with PET.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jing; Chen, Jun; Li, Xiuyu
Stem cell vaccination can induce consistent and strong anti-tumor immunity against cancer in mice model. The antigenic similarity between tumors and embryos has been appreciated for many years and reflects the expression of embryonic gene products by cancer cells and/or cancer-initiating stem cells. Taking advantage of this similarity, we have tested a prophylactic lung cancer vaccine composed of allogeneic murine MSCs. Based on this conception, we first compared their tumor vaccines intervention effects of adult MSCs and MSCs under simulated microgravity (MSC/SMG). In this study, BALB/c mice were vaccinated with MSCs or MSC/SMG, compared with mice vaccinated with phosphate bufferedmore » saline (PBS) as negative controls. We then subcutaneously implanted the A549 human lung cancer cell line into vaccinated mice and monitored tumor growth potential in vivo. The smaller tumor size and less tumor weight were observed in mice vaccinated with MSCs or MSC/SMG, compared with that of the Control group. Particularly, it was much more significant in the group of MSC/SMG than that group of the MSCs. Vaccination with SMG treated MSCs inhibited proliferation and promoted apoptosis of tumor tissue. SMG/MSC vaccination induced bothTh1-mediated cytokine response; CD8-dependent cytotoxic response which reduced the proportion of Treg cells. Furthermore, SMG/MSC vaccination significantly increased MHC1 and HSPs proteins expression. In conclusion, we demonstrated the SMG could improve tumor-suppressive activity of MSC. The enhanced anti-tumor immune response of MSCs/SMG was strongly associated with the higher expression of MHC class I molecule on DCs, and the abundance of HSPs in the SMG treated MSCs may make antigens in the MSC more cross-presentable to the host DCs for generating protective antitumor activity. This study gains an insight into the mechanism of MSCs anti-tumor efficacy and gives a new strategy for cancer therapies in the future. - Highlights: • Vaccination with SMG treated MSCs inhibited tumor growth. • SMG/MSC vaccination induced Th1-mediated cytokine response, elicited CD8-dependent cytotoxic response and reduced the proportion of Treg cells. • SMG/MSC vaccination increased MHC1 and HSPs proteins expression.« less
Tang, Ying Ying; Sheng, Si Yuan; Lu, Chuan Gang; Zhang, Yu Qing; Zou, Jian Yong; Lei, Yi Yan; Gu, Yong; Hong, Hai
2018-06-05
The canonical Wnt-β-catenin signaling pathway arrests the differentiation of T cells and plays an important role in phenotypic maintenance of naive T cells and stem cell-like memory T cells in human peripheral blood, but its effect on tumor-infiltrating lymphocytes (TILs) from non-small cell lung cancer is little known. In this study, we showed that glycogen synthase kinase-3β inhibitor TWS119 has different effects on CD4 and CD8 T cells in TILs. TWS119 preserved the expansion of naive T cell and CD8 stem cell-like memory T cells, and induced CD8 effector T-cell proliferation in TILs. To further determine whether TWS119 impaired the effector function of TILs, TILs were stimulated with polyclonal stimulation, IL-2 and IFN-γ production were detected. Our data showed that TWS119 does not affect the production of IFN-γ in TILs compared with the control group; whereas TWS119 inhibited IFN-γ secretion of T cells from healthy donor. IL-2 production in CD4 central memory T cells and CD4 effector memory T cells from TILs was significantly increased with the TWS119 treatment; TWS119 also promoted the secretion of IL-2 in all cell subsets of CD8 TILs. These findings reveal that TWS119 has a distinct effect on the proliferation and cytokine production of TILs, and provide new insights into the clinical application of TILs with TWS119 treatment for the adoptive immunotherapy.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/.
Yu, Jiangyong; Wang, Shuhang; Zhao, Wei; Duan, Jianchun; Wang, Zhijie; Chen, Hanxiao; Tian, Yanhua; Wang, Di; Zhao, Jun; An, Tongtong; Bai, Hua; Wu, Meina; Wang, Jie
2018-05-01
Purpose: Chemoresistance in small-cell lung cancer (SCLC) is reportedly attributed to the existence of resistant cancer stem cells (CSC). Studies involving CSC-specific markers and related mechanisms in SCLC remain limited. This study explored the role of the voltage-dependent calcium channel α2δ1 subunit as a CSC marker in chemoresistance of SCLC, and explored the potential mechanisms of α2δ1-mediated chemoresistance and strategies of overcoming the resistance. Experimental Design: α2δ1-positive cells were identified and isolated from SCLC cell lines and patient-derived xenograft (PDX) models, and CSC-like properties were subsequently verified. Transcriptome sequencing and Western blotting were carried out to identify pathways involved in α2δ1-mediated chemoresistance in SCLC. In addition, possible interventions to overcome α2δ1-mediated chemoresistance were examined. Results: Different proportions of α2δ1 + cells were identified in SCLC cell lines and PDX models. α2δ1 + cells exhibited CSC-like properties (self-renewal, tumorigenic, differentiation potential, and high expression of genes related to CSCs and drug resistance). Chemotherapy induced the enrichment of α2δ1 + cells instead of CD133 + cells in PDXs, and an increased proportion of α2δ1 + cells corresponded to increased chemoresistance. Activation and overexpression of ERK in the α2δ1-positive H1048 cell line was identified at the protein level. mAb 1B50-1 was observed to improve the efficacy of chemotherapy and delay relapse as maintenance therapy in PDX models. Conclusions: SCLC cells expressing α2δ1 demonstrated CSC-like properties, and may contribute to chemoresistance. ERK may play a key role in α2δ1-mediated chemoresistance. mAb 1B50-1 may serve as a potential anti-SCLC drug. Clin Cancer Res; 24(9); 2148-58. ©2018 AACR . ©2018 American Association for Cancer Research.
Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art.
Malgieri, Arianna; Kantzari, Eugenia; Patrizi, Maria Patrizia; Gambardella, Stefano
2010-09-07
Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in all tissues, as part of the perivascular population. As multipotent cells, MSCs can differentiate into different tissues originating from mesoderm ranging from bone and cartilage, to cardiac muscle. MSCs are an excellent candidate for cell therapy because they are easily accessible, their isolation is straightforward, they can be bio-preserved with minimal loss of potency, and they have shown no adverse reactions to allogeneic versus autologous MSCs transplants. Therefore, MSCs are being explored to regenerate damaged tissue and treat inflammation, resulting from cardiovascular disease and myo-cardial infarction (MI), brain and spinal cord injury, stroke, diabetes, cartilage and bone injury, Crohn's disease and graft versus host disease (GvHD). Most of the application and clinical trials involve MSCs from bone marrow (BMMSCs). Transplantation of MSCs from bone marrow is considered safe and has been widely tested in clinical trials of cardiovascular, neurological, and immunological disease with encouraging results. There are examples of MSCs utilization in the repair of kidney, muscle and lung. The cells were also found to promote angiogenesis, and were used in chronic skin wound treatment. Recent studies involve also mesenchymal stem cell transplant from umbilical cord (UCMSCt). One of these demonstrate that UCMSCt may improve symptoms and biochemical values in patients with severe refractory systemic lupus erythematosus (SLE), and therefore this source of MSCs need deeper studies and require more attention. However, also if there are 79 registered clinical trial sites for evaluating MSC therapy throughout the world, it is still a long way to go before using these cells as a routinely applied therapy in clinics.
Do, Eun Kyoung; Kim, Young Mi; Heo, Soon Chul; Kwon, Yang Woo; Shin, Sang Hun; Suh, Dong-Soo; Kim, Ki-Hyung; Yoon, Man-Soo; Kim, Jae Ho
2012-11-01
Lysophosphatidic acid (LPA) is involved in mesenchymal stem cell-stimulated tumor growth in vivo. However, the molecular mechanism by which mesenchymal stem cells promote tumorigenesis remains elusive. In the present study, we demonstrate that conditioned medium from A549 human lung adenocarcinoma cells (A549 CM) induced the expression of ADAM12, a disintegrin and metalloproteases family member, in human adipose tissue-derived mesenchymal stem cells (hASCs). A549 CM-stimulated ADAM12 expression was abrogated by pretreatment of hASCs with the LPA receptor 1 inhibitor Ki16425 or by small interfering RNA-mediated silencing of LPA receptor 1, suggesting a key role for the LPA-LPA receptor 1 signaling axis in A549 CM-stimulated ADAM12 expression. Silencing of ADAM12 expression using small interfering RNA or short hairpin RNA abrogated LPA-induced expression of both α-smooth muscle actin, a marker of carcinoma-associated fibroblasts, and ADAM12 in hASCs. Using a xenograft transplantation model of A549 cells, we demonstrated that silencing of ADAM12 inhibited the hASC-stimulated in vivo growth of A549 xenograft tumors and the differentiation of transplanted hASCs to α-smooth muscle actin-positive carcinoma-associated fibroblasts. LPA-conditioned medium from hASCs induced the adhesion of A549 cells and silencing of ADAM12 inhibited LPA-induced expression of extracellular matrix proteins, periostin and βig-h3, in hASCs and LPA-conditioned medium-stimulated adhesion of A549 cells. These results suggest a pivotal role for LPA-stimulated ADAM12 expression in tumor growth and the differentiation of hASCs to carcinoma-associated fibroblasts expressing α-smooth muscle actin, periostin, and βig-h3. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shay, Jerry W; Cucinotta, Francis A; Sulzman, Frank M; Coleman, C Norman; Minna, John D
2011-11-15
On June 27-28, 2011, scientists from the National Cancer Institute (NCI), NASA, and academia met in Bethesda to discuss major lung cancer issues confronting each organization. For NASA, available data suggest that lung cancer is the largest potential cancer risk from space travel for both men and women and quantitative risk assessment information for mission planning is needed. In space, the radiation risk is from high energy and charge (HZE) nuclei (such as Fe) and high-energy protons from solar flares and not from gamma radiation. In contrast, the NCI is endeavoring to estimate the increased lung cancer risk from the potential widespread implementation of computed tomographic (CT) screening in individuals at high risk for developing lung cancer based on the National Lung Cancer Screening Trial (NLST). For the latter, exposure will be X-rays from CT scans from the screening (which uses "low-dose" CT scans) and also from follow-up scans used to evaluate abnormalities found during initial screening. Topics discussed included the risk of lung cancer arising after HZE particle, proton, and low-dose exposure to Earth's radiation. The workshop examined preclinical models, epidemiology, molecular markers, "omics" technology, radiobiology issues, and lung stem cells that relate to the development of lung cancer. ©2011 AACR
Epithelial-to-Mesenchymal Transition and MicroRNAs in Lung Cancer
Pécuchet, Nicolas; Imbeaud, Sandrine; Pallier, Karine; Didelot, Audrey; Roussel, Hélène; Gibault, Laure; Fabre, Elizabeth; Le Pimpec-Barthes, Françoise; Laurent-Puig, Pierre; Blons, Hélène
2017-01-01
Despite major advances, non-small cell lung cancer (NSCLC) remains the major cause of cancer-related death in developed countries. Metastasis and drug resistance are the main factors contributing to relapse and death. Epithelial-to-mesenchymal transition (EMT) is a complex molecular and cellular process involved in tissue remodelling that was extensively studied as an actor of tumour progression, metastasis and drug resistance in many cancer types and in lung cancers. Here we described with an emphasis on NSCLC how the changes in signalling pathways, transcription factors expression or microRNAs that occur in cancer promote EMT. Understanding the biology of EMT will help to define reversing process and treatment strategies. We will see that this complex mechanism is related to inflammation, cell mobility and stem cell features and that it is a dynamic process. The existence of intermediate phenotypes and tumour heterogeneity may be debated in the literature concerning EMT markers, EMT signatures and clinical consequences in NSCLC. However, given the role of EMT in metastasis and in drug resistance the development of EMT inhibitors is an interesting approach to counteract tumour progression and drug resistance. This review describes EMT involvement in cancer with an emphasis on NSCLC and microRNA regulation. PMID:28771186
Zheng, Hongming; Zheng, Liang; Liu, Wenqin; Wu, Jinjun; Ou, Rilan; Zhang, Guiyu; Li, Fangyuan; Hu, Ming; Liu, Zhongqiu; Lu, Linlin
2016-01-01
Non-small-cell lung cancer (NSCLC) is the most prevalent malignancy worldwide given its high incidence, considerable mortality, and poor prognosis. The anti-malaria compounds artemisinin (ART), dihydroartemisinin (DHA), and artesunate (ARTS) reportedly have anti-cancer potential, although the underlying mechanisms remain unclear. In this work, we used flow cytometry to show that ART, DHA, and ARTS could inhibit the proliferation of A549 and H1299 cells by arresting cell cycle in G1 phase. Meanwhile, tumor malignancy including migration, invasion, cancer stem cells, and epithelial–mesenchymal transition were also significantly suppressed by these compounds. Furthermore, ART, DHA, and ARTS remarkably decreased tumor growth in vivo. By using IWP-2, the inhibitor of Wnt/β-catenin pathway, and Wnt5a siRNA, we found that ART, DHA, and ARTS could render tumor inhibition partially dependent on Wnt/β-catenin inactivation. These compounds could strikingly decrease the protein level of Wnt5-a/b and simultaneously increase those of NKD2 and Axin2, ultimately resulting in β-catenin downregulation. In summary, our findings revealed that ART, DHA, and ARTS could suppress lung-tumor progression by inhibiting Wnt/β-catenin pathway, thereby suggesting a novel target for ART, DHA, and ARTS in cancer treatment. PMID:27119499
Izzotti, Alberto; Balansky, Roumen; D'Agostini, Francesco; Longobardi, Mariagrazia; Cartiglia, Cristina; Micale, Rosanna T; La Maestra, Sebastiano; Camoirano, Anna; Ganchev, Gancho; Iltcheva, Marietta; Steele, Vernon E; De Flora, Silvio
2014-01-01
The anti-diabetic drug metformin is endowed with anti-cancer properties. Epidemiological and experimental studies, however, did not provide univocal results regarding its role in pulmonary carcinogenesis. We used Swiss H mice of both genders in order to detect early molecular alterations and tumors induced by mainstream cigarette smoke. Based on a subchronic toxicity study, oral metformin was used at a dose of 800 mg/kg diet, which is 3.2 times higher than the therapeutic dose in humans. Exposure of mice to smoke for 4 months, starting at birth, induced a systemic clastogenic damage, formation of DNA adducts, oxidative DNA damage, and extensive downregulation of microRNAs in lung after 10 weeks. Preneoplastic lesions were detectable after 7.5 months in both lung and urinary tract along with lung tumors, both benign and malignant. Modulation by metformin of 42 of 1281 pulmonary microRNAs in smoke-free mice highlighted a variety of mechanisms, including modulation of AMPK, stress response, inflammation, NFκB, Tlr9, Tgf, p53, cell cycle, apoptosis, antioxidant pathways, Ras, Myc, Dicer, angiogenesis, stem cell recruitment, and angiogenesis. In smoke-exposed mice, metformin considerably decreased DNA adduct levels and oxidative DNA damage, and normalized the expression of several microRNAs. It did not prevent smoke-induced lung tumors but inhibited preneoplastic lesions in both lung and kidney. In conclusion, metformin was able to protect the mouse lung from smoke-induced DNA and microRNA alterations and to inhibit preneoplastic lesions in lung and kidney but failed to prevent lung adenomas and malignant tumors induced by this complex mixture. PMID:24683044
Reka, Ajaya Kumar; Chen, Guoan; Keshamouni, Venkateshwar G.
2014-01-01
In cancer cells, the process of epithelial–mesenchymal transition (EMT) confers migratory and invasive capacity, resistance to apoptosis, drug resistance, evasion of host immune surveillance and tumor stem cell traits. Cells undergoing EMT may represent tumor cells with metastatic potential. Characterizing the EMT secretome may identify biomarkers to monitor EMT in tumor progression and provide a prognostic signature to predict patient survival. Utilizing a transforming growth factor-β-induced cell culture model of EMT, we quantitatively profiled differentially secreted proteins, by GeLC-tandem mass spectrometry. Integrating with the corresponding transcriptome, we derived an EMT-associated secretory phenotype (EASP) comprising of proteins that were differentially upregulated both at protein and mRNA levels. Four independent primary tumor-derived gene expression data sets of lung cancers were used for survival analysis by the random survival forests (RSF) method. Analysis of 97-gene EASP expression in human lung adenocarcinoma tumors revealed strong positive correlations with lymph node metastasis, advanced tumor stage and histological grade. RSF analysis built on a training set (n = 442), including age, sex and stage as variables, stratified three independent lung cancer data sets into low-, medium- and high-risk groups with significant differences in overall survival. We further refined EASP to a 20 gene signature (rEASP) based on variable importance scores from RSF analysis. Similar to EASP, rEASP predicted survival of both adenocarcinoma and squamous carcinoma patients. More importantly, it predicted survival in the early-stage cancers. These results demonstrate that integrative analysis of the critical biological process of EMT provides mechanism-based and clinically relevant biomarkers with significant prognostic value. PMID:24510113
Alamgeer, Muhammad; Neil Watkins, D; Banakh, Ilia; Kumar, Beena; Gough, Daniel J; Markman, Ben; Ganju, Vinod
2018-04-01
Preclinical studies in small cell lung cancer (SCLC) have shown that hyaluronic acid (HA) can be effectively used to deliver chemotherapy and selectively decrease CD44 expressing (stem cell-like) tumour cells. The current study aimed to replicate these findings and obtain data on safety and activity of HA-irinotecan (HA-IR). Eligible patients with extensive stage SCLC were consented. A safety cohort (n = 5) was treated with HA-IR and Carboplatin (C). Subsequently, the patients were randomised 1:1 to receive experimental (HA-IR + C) or standard (IR + C) treatment, to a maximum of 6 cycles. The second line patients were added to the study and treated with open label HA-IR + C. Tumour response was measured after every 2 cycles. Baseline tumour specimens were stained for CD44s and CD44v6 expression. Circulating tumour cells (CTCs) were enumerated before each treatment cycle. Out of 39 patients screened, 34 were evaluable for the study. The median age was 66 (range 39-83). The overall response rates were 69% and 75% for experimental and standard arms respectively. Median progression free survival was 42 and 28 weeks, respectively (p = 0.892). The treatments were well tolerated. The incidence of grade III/IV diarrhea was more common in the standard arm, while anaemia was more common in the experimental arm. IHC analysis suggested that the patients with CD44s positive tumours may gain survival benefit from HA-IR. HA-IR is well tolerated and active in ES-SCLC. The effect of HA-IR on CD44s + cancer stem-like cells provide an early hint towards a potential novel target.
Eyre, Rachel; Alférez, Denis G; Spence, Kath; Kamal, Mohamed; Shaw, Frances L; Simões, Bruno M; Santiago-Gómez, Angélica; Sarmiento-Castro, Aida; Bramley, Maria; Absar, Mohammed; Saad, Zahida; Chatterjee, Sumohan; Kirwan, Cliona; Gandhi, Ashu; Armstrong, Anne C; Wardley, Andrew M; O'Brien, Ciara S; Farnie, Gillian; Howell, Sacha J; Clarke, Robert B
2016-12-01
Breast cancer specific mortality results from tumour cell dissemination and metastatic colonisation. Identification of the cells and processes responsible for metastasis will enable better prevention and control of metastatic disease, thus reducing relapse and mortality. To better understand these processes, we prospectively collected 307 patient-derived breast cancer samples (n = 195 early breast cancers (EBC) and n = 112 metastatic samples (MBC)). We assessed colony-forming activity in vitro by growing isolated cells in both primary (formation) and secondary (self-renewal) mammosphere culture, and tumour initiating activity in vivo through subcutaneous transplantation of fragments or cells into mice. Metastatic samples formed primary mammosphere colonies significantly more frequently than early breast cancers and had significantly higher primary mammosphere colony formation efficiency (0.9 % vs. 0.6 %; p < 0.0001). Tumour initiation in vivo was significantly higher in metastatic than early breast cancer samples (63 % vs. 38 %, p = 0.04). Of 144 breast cancer samples implanted in vivo, we established 20 stable patient-derived xenograft (PDX) models at passage 2 or greater. Lung metastases were detected in mice from 14 PDX models. Mammosphere colony formation in vitro significantly correlated with the ability of a tumour to metastasise to the lungs in vivo (p = 0.05), but not with subcutaneous tumour initiation. In summary, the breast cancer stem cell activities of colony formation and tumour initiation are increased in metastatic compared to early samples, and predict metastasis in vivo. These results suggest that breast stem cell activity will predict for poor outcome tumours, and therapy targeting this activity will improve outcomes for patients with metastatic disease.
Mouallif, Mustapha; Albert, Adelin; Zeddou, Mustapha; Ennaji, My Mustapha; Delvenne, Philippe; Guenin, Samuel
2014-08-01
Undifferentiated cell Transcription Factor 1 (UTF1) is a chromatin-bound protein involved in stem cell differentiation. It was initially reported to be restricted to stem cells or germinal tissues. However, recent work suggests that UTF1 is also expressed in somatic cells and that its expression may increase during carcinogenesis. To further clarify the expression profile of UTF1, we evaluated UTF1 expression levels immunohistochemically in eight normal human epithelia (from breast, prostate, endometrium, bladder, colon, oesophagus, lung and kidney) and their corresponding tumours as well as in several epithelial cell lines. We showed UTF1 staining in normal and tumour epithelial tissues, but with varying intensities according to the tissue location. In vitro analyses also revealed that UTF1 is expressed in somatic epithelial cell lines even in the absence of Oct4A and Sox2, its two main known regulators. The comparison of UTF1 levels in normal and tumoral tissues revealed significant overexpression in endometrial and prostatic adenocarcinomas, whereas lower intensity of the staining was observed in renal and colic tumours, suggesting a potential tissue-specific function of UTF1. Altogether, these results highlight a potential dual role for UTF1, acting either as an oncogene or as a tumour suppressor depending on the tissue. These findings also question its role as a specific marker for stem cells. © 2014 The Authors. International Journal of Experimental Pathology © 2014 International Journal of Experimental Pathology.
SPECT Imaging for in vivo tracking of NIS containing stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Zhenghong
2013-04-02
The proposed study contains two groups of imaging experiments: 1) human mesenchymal stem cells supporting in vivo survival of unrelated donor hematopoietic stem cells; 2) gene transduction and selection of mutant MGMT genes on human hematopoietic stem cells conferring resistance to BC+BCNU. There is increasing evidence that adult human tissues harbor stem and progenitor cells that can be used for therapeutic purposes. We had focused on the Mesenchymal Stem Cells (MSCs) found in human bone marrow and investigated these cells in the context of autologous and allogeneic hematopoietic stem cell transplantation to a) facilitate rapid hematopoietic engraftment in cancer patientsmore » receiving high dose chemotherapy and b) to modulate the graft-versus-host disease (GVHD). We have demonstrated that culture-expanded autologous and allogeneic MSCs can be safely infused into humans and the preliminary results showed that MSCs facilitate hematopoietic engraftment and reduce GVHD. On the other hand, studies of gene transfer with drug resistant selection suggest major perturbations to the process of hematopoietic reconstitution and the confounding issue of organ toxicity and recovery that takes place in the host. We have found that limiting numbers of hematopoietic stem cells transduced with MGMT repopulate the bone marrow of primary and secondary recipient mice. We are also particularly interested in the dynamics of engraftment and selection in regions of bones, liver, spleen and lung, where we have previously seen marked evidence of engraftment. All the measurements have required animal sacrifice and single point determinations of engraftment in individual and cohorts of mice. Heretofore it has not been possible to study the dynamics of engraftment and enrichment. In the upcoming application, we propose to develop an imaging method to track intravenously infused stem cells in vivo at preset time points to understand their homing and proliferation. Specifically, we propose to use Na+/I- symporter (NIS) gene as a reporter gene (imagene) for non-invasive imaging of infused stem cells distribution and persistence in vivo on small animal models. NIS is an intrinsic membrane glycoprotein that mediates active iodide (I-) uptake into normal thyroid follicular cells and other cells. The advantages of using NIS for non-invasive and repeated scintigraphic imaging in this application are: a) NIS is not a foreign gene and thus eliminate the immunoresponse problem; b) radiotracer or substrate for NIS is simply radioiodide (I-125, I- 123, I-124, and I-124) or [Tc-99m]-pertechnetate, no radiosynthesis is needed. It has been shown that NIS gene transfer can induce radioactive iodide uptake in a variety of cells and that xenografts expressing exogenous NIS could be imaged by non-invasive scintigraphic imaging. The specific aims are: 1.Determine the feasibility, stability and physiological effects of human NIS gene expression on human HSCs and MSCs in vitro. 2.Determine the engraftment of human HSC and MSC co-infused in NOD-SCID mice. 3.Transduce both a drug resistance gene and an imagene into bone marrow stem cells, and follow the dynamics of engraftment after selection in real time.« less
LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells.
Yue, Zhiying; Yuan, Zengjin; Zeng, Li; Wang, Ying; Lai, Li; Li, Jing; Sun, Peng; Xue, Xiwen; Qi, Junyi; Yang, Zhengfeng; Zheng, Yansen; Fang, Yuanzhang; Li, Dali; Siwko, Stefan; Li, Yi; Luo, Jian; Liu, Mingyao
2018-05-01
The fourth member of the leucine-rich repeat-containing GPCR family (LGR4, frequently referred to as GPR48) and its cognate ligands, R-spondins (RSPOs) play crucial roles in the development of multiple organs as well as the survival of adult stem cells by activation of canonical Wnt signaling. Wnt/β-catenin signaling acts to regulate breast cancer; however, the molecular mechanisms determining its spatiotemporal regulation are largely unknown. In this study, we identified LGR4 as a master controller of Wnt/β-catenin signaling-mediated breast cancer tumorigenesis, metastasis, and cancer stem cell (CSC) maintenance. LGR4 expression in breast tumors correlated with poor prognosis. Either Lgr4 haploinsufficiency or mammary-specific deletion inhibited mouse mammary tumor virus (MMTV)- PyMT- and MMTV- Wnt1-driven mammary tumorigenesis and metastasis. Moreover, LGR4 down-regulation decreased in vitro migration and in vivo xenograft tumor growth and lung metastasis. Furthermore, Lgr4 deletion in MMTV- Wnt1 tumor cells or knockdown in human breast cancer cells decreased the number of functional CSCs by ∼90%. Canonical Wnt signaling was impaired in LGR4-deficient breast cancer cells, and LGR4 knockdown resulted in increased E-cadherin and decreased expression of N-cadherin and snail transcription factor -2 ( SNAI2) (also called SLUG), implicating LGR4 in regulation of epithelial-mesenchymal transition. Our findings support a crucial role of the Wnt signaling component LGR4 in breast cancer initiation, metastasis, and breast CSCs.-Yue, Z., Yuan, Z., Zeng, L., Wang, Y., Lai, L., Li, J., Sun, P., Xue, X., Qi, J., Yang, Z., Zheng, Y., Fang, Y., Li, D., Siwko, S., Li, Y., Luo, J., Liu, M. LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells.
Elhami, Esmat; Goertzen, Andrew L; Xiang, Bo; Deng, Jixian; Stillwell, Chris; Mzengeza, Shadreck; Arora, Rakesh C; Freed, Darren; Tian, Ganghong
2011-07-01
Adipose-derived stem cells (ASCs) have promising potential in regenerative medicine and cell therapy. Our objective is to examine the biological function of the labeled stem cells following labeling with a readily available positron emission tomography (PET) tracer, (18)F-fluoro-2-deoxy-D: -glucose (FDG). In this work we characterize labeling efficiency through assessment of FDG uptake and retention by the ASCs and the effect of FDG on cell viability, proliferation, transdifferentiation, and cell function in vitro using rat ASCs. Samples of 10(5) ASCs (from visceral fat tissue) were labeled with concentrations of FDG (1-55 Bq/cell) in 0.75 ml culture medium. Label uptake and retention, as a function of labeling time, FDG concentration, and efflux period were measured to determine optimum cell labeling conditions. Cell viability, proliferation, DNA structure damage, cell differentiation, and other cell functions were examined. Non-labeled ASC samples were used as a control for all experimental groups. Labeled ASCs were injected via tail vein in several healthy rats and initial cell biodistribution was assessed. Our results showed that FDG uptake and retention by the stem cells did not depend on FDG concentration but on labeling and efflux periods and glucose content of the labeling and efflux media. Cell viability, transdifferentiation, and cell function were not greatly affected. DNA damage due to FDG radioactivity was acute, but reversible; cells managed to repair the damage and continue with cell cycles. Over all, FDG (up to 25 Bq/cell) did not impose severe cytotoxicity in rat ASCs. Initial biodistribution of the FDG-labeled ASCs was 80% + retention in the lungs. In the delayed whole-body images (2-3 h postinjection) there was some activity distribution resembling typical FDG uptake patterns. For in vivo cell tracking studies with PET tracers, the parameter of interest is the amount of radiotracer that is present in the cells being labeled and consequent biological effects. From our study we developed a labeling protocol for labeling ASCs with a readily available PET tracer, FDG. Our results indicate that ASCs can be safely labeled with FDG concentration up to 25 Bq/cell, without compromising their biological function. A labeling period of 90 min in glucose-free medium and efflux of 60 min in complete media resulted in optimum label retention, i.e., 60% + by the stem cells. The initial biodistribution of the implanted FDG-labeled stem cells can be monitored using microPET imaging.
Laminar shear stress modulates endothelial luminal surface stiffness in a tissue-specific manner.
Merna, Nick; Wong, Andrew K; Barahona, Victor; Llanos, Pierre; Kunar, Balvir; Palikuqi, Brisa; Ginsberg, Michael; Rafii, Shahin; Rabbany, Sina Y
2018-04-17
Endothelial cells form vascular beds in all organs and are exposed to a range of mechanical forces that regulate cellular phenotype. We sought to determine the role of endothelial luminal surface stiffness in tissue-specific mechanotransduction of laminar shear stress in microvascular mouse cells and the role of arachidonic acid in mediating this response. Microvascular mouse endothelial cells were subjected to laminar shear stress at 4 dynes/cm 2 for 12 hours in parallel plate flow chambers that enabled real-time optical microscopy and atomic force microscopy measurements of cell stiffness. Lung endothelial cells aligned parallel to flow, while cardiac endothelial cells did not. This rapid alignment was accompanied by increased cell stiffness. The addition of arachidonic acid to cardiac endothelial cells increased alignment and stiffness in response to shear stress. Inhibition of arachidonic acid in lung endothelial cells and embryonic stem cell-derived endothelial cells prevented cellular alignment and decreased cell stiffness. Our findings suggest that increased endothelial luminal surface stiffness in microvascular cells may facilitate mechanotransduction and alignment in response to laminar shear stress. Furthermore, the arachidonic acid pathway may mediate this tissue-specific process. An improved understanding of this response will aid in the treatment of organ-specific vascular disease. © 2018 John Wiley & Sons Ltd.
Su, Weijun; Wang, Lina; Zhou, Manqian; Liu, Ze; Hu, Shijun; Tong, Lingling; Liu, Yanhua; Fan, Yan; Kong, Deling; Zheng, Yizhou; Han, Zhongchao; Wu, Joseph C; Xiang, Rong; Li, Zongjin
2013-01-01
Endothelial progenitor cells (EPCs) have shown tropism towards primary tumors or metastases and are thus potential vehicles for targeting tumor therapy. However, the source of adult EPCs is limited, which highlights the need for a consistent and renewable source of endothelial cells for clinical applications. Here, we investigated the potential of human embryonic stem cell-derived endothelial cells (hESC-ECs) as cellular delivery vehicles for therapy of metastatic breast cancer. In order to provide an initial assessment of the therapeutic potency of hESC-ECs, we treated human breast cancer MDA-MB-231 cells with hESC-EC conditioned medium (EC-CM) in vitro. The results showed that hESC-ECs could suppress the Wnt/β-catenin signaling pathway and thereby inhibit the proliferation and migration of MDA-MB-231 cells. To track and evaluate the possibility of hESC-EC-employed therapy, we employed the bioluminescence imaging (BLI) technology. To study the therapeutic potential of hESC-ECs, we established lung metastasis models by intravenous injection of MDA-MB-231 cells labeled with firefly luciferase (Fluc) and green fluorescent protein (GFP) to NOD/SCID mice. In mice with lung metastases, we injected hESC-ECs armed with herpes simplex virus truncated thymidine kinase (HSV-ttk) intravenously on days 11, 16, 21, and 26 after MDA-MB-231 cell injection. The NOD/SCID mice were subsequently treated with ganciclovir (GCV), and the growth status of tumor was monitored by Fluc imaging. We found that MDA-MB-231 tumors were significantly inhibited by intravenously injected hESC-ECs. The tumor-suppressive effects of the hESC-ECs, by inhibiting Wnt/β-catenin signaling pathway and inducing tumor cell death through bystander effect in human metastatic breast cancer model, provide previously unexplored therapeutic modalities for cancer treatment.
The lung is a site of platelet biogenesis and a reservoir for hematopoietic progenitors
Lefrançais, Emma; Ortiz-Muñoz, Guadalupe; Caudrillier, Axelle; Mallavia, Beñat; Liu, Fengchun; Sayah, David M.; Thornton, Emily E.; Headley, Mark B.; David, Tovo; Coughlin, Shaun R.; Krummel, Matthew F.; Leavitt, Andrew D.; Passegué, Emmanuelle; Looney, Mark R.
2017-01-01
Platelets are critical for hemostasis, thrombosis, and inflammatory responses1,2, yet the events leading to mature platelet production remain incompletely understood3. The bone marrow (BM) is proposed to be a major site of platelet production although indirect evidence points towards a potential pulmonary contribution to platelet biogenesis4-7. By directly imaging the lung microcirculation in mice8, we discovered that a large number of megakaryocytes (MKs) circulate through the lungs where they dynamically release platelets. MKs releasing platelets in the lung are of extrapulmonary origin, such as the BM, where we observed large MKs migrating out of the BM space. The lung contribution to platelet biogenesis is substantial with approximately 50% of total platelet production or 10 million platelets per hour. Furthermore, we identified populations of mature and immature MKs along with hematopoietic progenitors that reside in the extravascular spaces of the lung. Under conditions of thrombocytopenia and relative stem cell deficiency in the BM9, these progenitors can migrate out of the lung, repopulate the BM, completely reconstitute blood platelet counts, and contribute to multiple hematopoietic lineages. These results position the lung as a primary site of terminal platelet production and an organ with considerable hematopoietic potential. PMID:28329764
Goldwasser, Deborah L; Kimmel, Marek
2013-01-01
The effectiveness of population-wide lung cancer screening strategies depends on the underlying natural course of lung cancer. We evaluate the expected stage distribution in the Mayo CT screening study under an existing simulation model of non-small cell lung cancer (NSCLC) progression calibrated to the Mayo lung project (MLP). Within a likelihood framework, we evaluate whether the probability of 5-year NSCLC survival conditional on tumor diameter at detection depends significantly on screening detection modality, namely chest X-ray and computed tomography. We describe a novel simulation framework in which tumor progression depends on cellular proliferation and mutation within a stem cell compartment of the tumor. We fit this model to randomized trial data from the MLP and produce estimates of the median radiologic size at the cure threshold. We examine the goodness of model fit with respect to radiologic tumor size and 5-year NSCLC survival among incident cancers in both the MLP and Mayo CT studies. An existing model of NSCLC progression under-predicts the number of advanced-stage incident NSCLCs among males in the Mayo CT study (p-value = 0.004). The probability of 5-year NSCLC survival conditional on tumor diameter depends significantly on detection modality (p-value = 0.0312). In our new model, selected solution sets having a median tumor diameter of 16.2-22.1 mm at cure threshold among aggressive NSCLCs predict both MLP and Mayo CT outcomes. We conclude that the median lung tumor diameter at cure threshold among aggressive NSCLCs in male smokers may be small (<20 mm). Copyright © 2012 UICC.
Suzuki, Takeo; Kawamura, Kiyoko; Li, Quanhai; Okamoto, Shinya; Tada, Yuji; Tatsumi, Koichiro; Shimada, Hideaki; Hiroshima, Kenzo; Yamaguchi, Naoto; Tagawa, Masatoshi
2014-09-25
Transduction of human mesenchymal stem cells (MSCs) with type 5 adenoviruses (Ad5) is limited in the efficacy because of the poor expression level of the coxsackie adenovirus receptor (CAR) molecules. We examined a possible improvement of Ad-mediated gene transfer in MSCs by substituting the fiber region of type 5 Ad with that of type 35 Ad. Expression levels of CAR and CD46 molecules, which are the major receptors for type 5 and type 35 Ad, respectively, were assayed with flow cytometry. We constructed vectors expressing the green fluorescent protein gene with Ad5 or modified Ad5 bearing the type 35 fiber region (AdF35), and examined the infectivity to MSCs with flow cytometry. We investigated anti-tumor effects of MSCs transduced with interleukin (IL)-28A gene on human lung carcinoma cells with a colorimetric assay. Expression of IL-28A receptors was tested with the polymerase chain reaction. A promoter activity of transcriptional regulatory regions in MSCs was determined with a luciferase assay and a tumor growth-promoting ability of MSCs was tested with co-injection of human tumor cells in nude mice. MSCs expressed CD46 but scarcely CAR molecules, and subsequently were transduced with AdF35 but not with Ad5. Growth of MSCs transduced with the IL-28A gene remained the same as that of untransduced cells since MSCs were negative for the IL-28A receptors. The IL-28A-transduced MSCs however suppressed growth of lung carcinoma cells co-cultured, whereas MSCs transduced with AdF35 expressing the β-galactosidase gene did not. A regulatory region of the cyclooygenase-2 gene possessed transcriptional activities greater than other tumor promoters but less than the cytomegalovirus promoter, and MSCs themselves did not support tumor growth in vivo. AdF35 is a suitable vector to transduce MSCs that are resistant to Ad5-mediated gene transfer. MSCs infected with AdF35 that activate an exogenous gene by the cytomegalovirus promoter can be a vehicle to deliver the gene product to targeted cells.
Kudinov, Alexander E; Deneka, Alexander; Nikonova, Anna S; Beck, Tim N; Ahn, Young-Ho; Liu, Xin; Martinez, Cathleen F; Schultz, Fred A; Reynolds, Samuel; Yang, Dong-Hua; Cai, Kathy Q; Yaghmour, Khaled M; Baker, Karmel A; Egleston, Brian L; Nicolas, Emmanuelle; Chikwem, Adaeze; Andrianov, Gregory; Singh, Shelly; Borghaei, Hossein; Serebriiskii, Ilya G; Gibbons, Don L; Kurie, Jonathan M; Golemis, Erica A; Boumber, Yanis
2016-06-21
Non-small cell lung cancer (NSCLC) has a 5-y survival rate of ∼16%, with most deaths associated with uncontrolled metastasis. We screened for stem cell identity-related genes preferentially expressed in a panel of cell lines with high versus low metastatic potential, derived from NSCLC tumors of Kras(LA1/+);P53(R172HΔG/+) (KP) mice. The Musashi-2 (MSI2) protein, a regulator of mRNA translation, was consistently elevated in metastasis-competent cell lines. MSI2 was overexpressed in 123 human NSCLC tumor specimens versus normal lung, whereas higher expression was associated with disease progression in an independent set of matched normal/primary tumor/lymph node specimens. Depletion of MSI2 in multiple independent metastatic murine and human NSCLC cell lines reduced invasion and metastatic potential, independent of an effect on proliferation. MSI2 depletion significantly induced expression of proteins associated with epithelial identity, including tight junction proteins [claudin 3 (CLDN3), claudin 5 (CLDN5), and claudin 7 (CLDN7)] and down-regulated direct translational targets associated with epithelial-mesenchymal transition, including the TGF-β receptor 1 (TGFβR1), the small mothers against decapentaplegic homolog 3 (SMAD3), and the zinc finger proteins SNAI1 (SNAIL) and SNAI2 (SLUG). Overexpression of TGFβRI reversed the loss of invasion associated with MSI2 depletion, whereas overexpression of CLDN7 inhibited MSI2-dependent invasion. Unexpectedly, MSI2 depletion reduced E-cadherin expression, reflecting a mixed epithelial-mesenchymal phenotype. Based on this work, we propose that MSI2 provides essential support for TGFβR1/SMAD3 signaling and contributes to invasive adenocarcinoma of the lung and may serve as a predictive biomarker of NSCLC aggressiveness.
A Comparative Study of Rat Lung Decellularization by Chemical Detergents for Lung Tissue Engineering
Tebyanian, Hamid; Karami, Ali; Motavallian, Ebrahim; Aslani, Jafar; Samadikuchaksaraei, Ali; Arjmand, Babak; Nourani, Mohammad Reza
2017-01-01
BACKGROUND: Lung disease is the most common cause of death in the world. The last stage of pulmonary diseases is lung transplantation. Limitation and shortage of donor organs cause to appear tissue engineering field. Decellularization is a hope for producing intact ECM in the development of engineered organs. AIM: The goal of the decellularization process is to remove cellular and nuclear material while retaining lung three-dimensional and molecular proteins. Different concentration of detergents was used for finding the best approach in lung decellularization. MATERIAL AND METHODS: In this study, three-time approaches (24, 48 and 96 h) with four detergents (CHAPS, SDS, SDC and Triton X-100) were used for decellularizing rat lungs for maintaining of three-dimensional lung architecture and ECM protein composition which have significant roles in differentiation and migration of stem cells. This comparative study determined that variable decellularization approaches can cause significantly different effects on decellularized lungs. RESULTS: Results showed that destruction was increased with increasing the detergent concentration. Single detergent showed a significant reduction in maintaining of three-dimensional of lung and ECM proteins (Collagen and Elastin). But, the best methods were mixed detergents of SDC and CHAPS in low concentration in 48 and 96 h decellularization. CONCLUSION: Decellularized lung tissue can be used in the laboratory to study various aspects of pulmonary biology and physiology and also, these results can be used in the continued improvement of engineered lung tissue. PMID:29362610
Tian, Zhao-fang; Ji, Ping; Li, Yu-hong; Zhao, Sai; Wang, Xiang
2012-05-01
To investigate the influence of high oxygen exposure on signaling pathway of the receptor for advanced glycation end products (RAGE)-NF-κB of lung in newborn rats and the mechanisms of protecting lung injury for human mesenchymal stem cells (hMSC). Twenty-four newborn Sprague-Dawley rats from three litters were randomly divided into three groups, as hyperoxia exposed + hMSC group (group A), hyperoxia exposed group (group B), and air-exposed group (group C). The rats from the group A and B were placed in a sealed Plexiglas chamber with a minimal in-and outflow, providing six to seven exchanges per hour of the chamber volume and maintaining O(2) levels above 95%, while rats in the group C only exposed to air simultaneously. Seven days later, rats in the group A were injected intravenously with hMSC (5×10(4)) after hyperoxia exposure, but rats in group B and C received subcutaneous injection with PBS alone at the same time point. Then all the rats were exposed to air, and were sacrificed three days later. Immunohistochemistry was used to evaluate the expression of RAGE in lung tissue. The levels of TNF-α and sRAGE in bronchoalveolar lavage fluid (BALF) and in serum were detected by ELASA, RAGE mRNA and NF-κB mRNA in tissue homogenates were detected by RT-PCR, RAGE and NF-κB by Western blotting; also the value of lung damage score were calculated with histology under light microscope. There were significant differences among three groups in the fields of lung damage score (F = 51.59, P = 0.000), mRNA and protein of RAGE (F = 37.21, P = 0.000; F = 15.88, P = 0.000) and NF-κB (F = 5.695, P = 0.011; F = 4.223, P = 0.0288) in lung tissue homogenates, and the level of TNF-α (F = 38.29, P = 0.000) in BALF, all these parameters in group A and group B were higher than that in group C. While sRAGE in BALF in group A and group B were less than that in group C (F = 4.804, P = 0.0191). There were also significant differences between group A and group B in these parameters (P < 0.05). There were also no significant differences neither in TNF-α nor in sRAGE in serum among three groups. hMSC protects hyperoxia-induced lung injury via downregulating the signaling pathway of RAGE-NF-κB.
Abnormal placental development and early embryonic lethality in EpCAM-null mice.
Nagao, Keisuke; Zhu, Jianjian; Heneghan, Mallorie B; Hanson, Jeffrey C; Morasso, Maria I; Tessarollo, Lino; Mackem, Susan; Udey, Mark C
2009-12-31
EpCAM (CD326) is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells. To gain insights into EpCAM function in vivo, we generated EpCAM -/- mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to betageo. EpCAM +/- mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/- embryos revealed that betageo was expressed in several epithelial structures including developing ears (otocysts), eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM -/- mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM -/- embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM -/- placentas. EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs.
Attractor Signaling Models for Discovery of Combinatorial Therapies
2013-09-01
year!survival!rate!for!this! disease ! less!than!15%.!Over!the!years,!many!specific!mechanisms!associated!with!drug!resistance!in!lung!cancer! have!been...reprogramming of pluripotent stem cells [4]. More- over, it has been suggested that a biological system in a chronic or therapy-resistant disease state can...designing new therapeutic methods for complex diseases such as can- cer. Even if our knowledge of biological networks is in- complete, fast progress
Toxicological studies of stem bark extract from Schefflera barteri Harms (Araliaceae).
Atsafack, Serge Secco; Kuiate, Jules-Roger; Mouokeu, Raymond Simplice; Koanga Mogtomo, Martin Luther; Tchinda, Alembert Tiabou; De Dieu, Tamokou Jean; Magnifouet Nana, Huguette; Ebelle Etame, Rébecca Madeleine; Biyiti, Lucie; Ngono Ngane, Rosalie Annie
2015-03-07
The use of herbal medicines as complements or alternatives to orthodox medicines has been on the increase. There has been the erroneous belief that these medicines are free from adverse effects. Schefflera barteri is popularly used in the West region of Cameroon for the treatment of various diseases such as diarrhea, spasm, pneumonia and animals bite. Considering the ethnopharmacological relevance of this plant, this study was designed to investigate the possible toxic effects of the stem bark extract of S. barteri. The extract was prepared by maceration of stem bark dry powder in methylene chloride/methanol mixture. Phytochemical analysis was performed by chemical reaction method. Oral acute toxicity study was carried out by administering single geometric increasing doses (2 to 16 g/kg body weight) of plant extract to Swiss albino mice. For sub-acute toxicity study, repeated doses (100, 200, 400 and 800 mg/kg bw) of plant extract were given to Wistar albino rats for 28 consecutive days by oral route. At the end of the treatment period, hematological and biochemical parameters were assessed, as well as histopathological studies. Phytochemical analysis of stem bark extract of S. barteri revealed the presence of anthocyanins, anthraquinons and saponins. Acute toxicity results showed that the LD50 was greater than 16000 mg/kg. Sub-acute treatment significantly (P < 0.05) increased the level of serum transaminase, proteins and HDL cholesterol. On the other hand, the extract significantly (P < 0.05) reduced the level of leucocytes as well as neutrophils, basophils and monocytes in female. No significant variation of serum creatinine, LDL cholesterol, serum triglycerides as well as liver, spleen, testicles and ovaries proteins was noted. Histopathological analysis of organs showed vascular congestion, inflammation of peri-portal and vacuolization of hepatocytes at the level of the liver. Leucocytes infiltration of peri-portal veins were noticed on lungs and liver cells as well as inflammatory peri-bronchial and basal membranes seminar tube merely joined on lungs and testis respectively. The results suggest that acute administration of the stem bark extract of S. barteri is associated with signs of toxicity, administration over a long duration provokes hepatotoxicity, testes and lungs toxicities.
Shay, Jerry W.; Cucinotta, Francis A.; Sulzman, Frank M.; Coleman, C. Norman; Minna, John D.
2011-01-01
On June 27–28, 2011 scientists from the National Cancer Institute (NCI), NASA, and academia met in Bethesda to discuss major lung cancer issues confronting each organization. For NASA – available data suggest lung cancer is the largest potential cancer risk from space travel for both men and women and quantitative risk assessment information for mission planning is needed. In space the radiation risk is from high energy and charge (HZE) nuclei (such as Fe) and high energy protons from solar flares and not from gamma radiation. By contrast the NCI is endeavoring to estimate the increased lung cancer risk from the potential wide-spread implementation of computed tomography (CT) screening in individuals at high risk for developing lung cancer based on the National Lung Cancer Screening Trial (NLST). For the latter, exposure will be x-rays from CT scans from the screening (which uses “low dose” CT scans) and also from follow-up scans used to evaluate abnormalities found during initial screening. Topics discussed included the risk of lung cancer arising after HZE particle, proton, and low dose Earth radiation exposure. The workshop examined preclinical models, epidemiology, molecular markers, “omics” technology, radiobiology issues, and lung stem cells (LSC) that relate to the development of lung cancer. PMID:21900398
Nakamichi, Shinji; Seike, Masahiro; Miyanaga, Akihiko; Chiba, Mika; Zou, Fenfei; Takahashi, Akiko; Ishikawa, Arimi; Kunugi, Shinobu; Noro, Rintaro; Kubota, Kaoru; Gemma, Akihiko
2018-01-01
Anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKIs) induce a dramatic response in non–small cell lung cancer (NSCLC) patients with the ALK fusion gene. However, acquired resistance to ALK-TKIs remains an inevitable problem. In this study, we aimed to discover novel therapeutic targets to conquer ALK-positive lung cancer. We established three types of ALK-TKI (crizotinib, alectinib and ceritinib)-resistant H2228 NSCLC cell lines by high exposure and stepwise methods. We found these cells showed a loss of ALK signaling, overexpressed AXL with epithelial-mesenchymal transition (EMT), and had cancer stem cell-like (CSC) properties, suggesting drug-tolerant cancer cell subpopulations. Similarly, we demonstrated that TGF-β1 treated H2228 cells also showed AXL overexpression with EMT features and ALK-TKI resistance. The AXL inhibitor, R428, or HSP90 inhibitor, ganetespib, were effective in reversing ALK-TKI resistance and EMT changes in both ALK-TKI-resistant and TGF-β1-exposed H2228 cells. Tumor volumes of xenograft mice implanted with established H2228-ceritinib-resistant (H2228-CER) cells were significantly reduced after treatment with ganetespib, or ganetespib in combination with ceritinib. Some ALK-positive NSCLC patients with AXL overexpression showed a poorer response to crizotinib therapy than patients with a low expression of AXL. ALK signaling-independent AXL overexpressed in drug-tolerant cancer cell subpopulations with EMT and CSC features may be commonly involved commonly involved in intrinsic and acquired resistance to ALK-TKIs. This suggests AXL and HSP90 inhibitors may be promising therapeutic drugs to overcome drug-tolerant cancer cell subpopulations in ALK-positive NSCLC patients for the reason that ALK-positive NSCLC cells do not live through ALK-TKI therapy. PMID:29930762
Daniel, Vincent C.; Marchionni, Luigi; Hierman, Jared S.; Rhodes, Jonathan T.; Devereux, Wendy L.; Rudin, Charles M.; Yung, Rex; Parmigani, Giovanni; Dorsch, Marion; Peacock, Craig D.; Watkins, D. Neil
2009-01-01
Traditional approaches to the preclinical investigation of cancer therapies rely on the use of established cell lines maintained in serum-based growth media. This is particularly true of small cell lung cancer (SCLC), where surgically resected tissue is rarely available. Recent attention has focused on the need for better models that preserve the integrity of cancer stem cell populations, as well as three-dimensional tumor-stromal interactions. Here we describe a primary xenograft model of SCLC in which endobronchial tumor specimens obtained from chemo-naive patients are serially propagated in vivo in immunodeficient mice. In parallel, cell lines grown in conventional tissue culture conditions were derived from each xenograft line, passaged for 6 months, and then re-implanted to generate secondary xenografts. Using the Affymetrix platform, we analyzed gene expression in primary xenograft, xenograft-derived cell line, and secondary xenograft, and compared these data to similar analyses of unrelated primary SCLC samples and laboratory models. When compared to normal lung, primary tumors, xenografts and cell lines displayed a gene expression signature specific for SCLC. Comparison of gene expression within the xenograft model identified a group of tumor-specific genes expressed in primary SCLC and xenografts that was lost during the transition to tissue culture, and that was not regained when the tumors were re-established as secondary xenografts. Such changes in gene expression may be a common feature of many cancer cell culture systems, with functional implications for the use of such models for preclinical drug development. PMID:19351829
Peripheral-Blood Stem Cells versus Bone Marrow from Unrelated Donors
Anasetti, Claudio; Logan, Brent R.; Lee, Stephanie J.; Waller, Edmund K.; Weisdorf, Daniel J.; Wingard, John R.; Cutler, Corey S.; Westervelt, Peter; Woolfrey, Ann; Couban, Stephen; Ehninger, Gerhard; Johnston, Laura; Maziarz, Richard T.; Pulsipher, Michael A.; Porter, David L.; Mineishi, Shin; McCarty, John M.; Khan, Shakila P.; Anderlini, Paolo; Bensinger, William I.; Leitman, Susan F.; Rowley, Scott D.; Bredeson, Christopher; Carter, Shelly L.; Horowitz, Mary M.; Confer, Dennis L.
2012-01-01
BACKGROUND Randomized trials have shown that the transplantation of filgrastim-mobilized peripheral-blood stem cells from HLA-identical siblings accelerates engraftment but increases the risks of acute and chronic graft-versus-host disease (GVHD), as compared with the transplantation of bone marrow. Some studies have also shown that peripheral-blood stem cells are associated with a decreased rate of relapse and improved survival among recipients with high-risk leukemia. METHODS We conducted a phase 3, multicenter, randomized trial of transplantation of peripheral-blood stem cells versus bone marrow from unrelated donors to compare 2-year survival probabilities with the use of an intention-to-treat analysis. Between March 2004 and September 2009, we enrolled 551 patients at 48 centers. Patients were randomly assigned in a 1:1 ratio to peripheral-blood stem-cell or bone marrow transplantation, stratified according to transplantation center and disease risk. The median follow-up of surviving patients was 36 months (interquartile range, 30 to 37). RESULTS The overall survival rate at 2 years in the peripheral-blood group was 51% (95% confidence interval [CI], 45 to 57), as compared with 46% (95% CI, 40 to 52) in the bone marrow group (P = 0.29), with an absolute difference of 5 percentage points (95% CI, −3 to 14). The overall incidence of graft failure in the peripheral-blood group was 3% (95% CI, 1 to 5), versus 9% (95% CI, 6 to 13) in the bone marrow group (P = 0.002). The incidence of chronic GVHD at 2 years in the peripheral-blood group was 53% (95% CI, 45 to 61), as compared with 41% (95% CI, 34 to 48) in the bone marrow group (P = 0.01). There were no significant between-group differences in the incidence of acute GVHD or relapse. CONCLUSIONS We did not detect significant survival differences between peripheral-blood stem-cell and bone marrow transplantation from unrelated donors. Exploratory analyses of secondary end points indicated that peripheral-blood stem cells may reduce the risk of graft failure, whereas bone marrow may reduce the risk of chronic GVHD. (Funded by the National Heart, Lung, and Blood Institute–National Cancer Institute and others; ClinicalTrials.gov number, NCT00075816.) PMID:23075175
Transducing Airway Basal Cells with a Helper-Dependent Adenoviral Vector for Lung Gene Therapy.
Cao, Huibi; Ouyang, Hong; Grasemann, Hartmut; Bartlett, Claire; Du, Kai; Duan, Rongqi; Shi, Fushan; Estrada, Marvin; Seigel, Kyle E; Coates, Allan L; Yeger, Herman; Bear, Christine E; Gonska, Tanja; Moraes, Theo J; Hu, Jim
2018-06-01
A major challenge in developing gene-based therapies for airway diseases such as cystic fibrosis (CF) is sustaining therapeutic levels of transgene expression over time. This is largely due to airway epithelial cell turnover and the host immunogenicity to gene delivery vectors. Modern gene editing tools and delivery vehicles hold great potential for overcoming this challenge. There is currently not much known about how to deliver genes into airway stem cells, of which basal cells are the major type in human airways. In this study, helper-dependent adenoviral (HD-Ad) vectors were delivered to mouse and pig airways via intranasal delivery, and direct bronchoscopic instillation, respectively. Vector transduction was assessed by immunostaining of lung tissue sections, which revealed that airway basal cells of mice and pigs can be targeted in vivo. In addition, efficient transduction of primary human airway basal cells was verified with an HD-Ad vector expressing green fluorescent protein. Furthermore, we successfully delivered the human CFTR gene to airway basal cells from CF patients, and demonstrated restoration of CFTR channel activity following cell differentiation in air-liquid interface culture. Our results provide a strong rationale for utilizing HD-Ad vectors to target airway basal cells for permanent gene correction of genetic airway diseases.
Yan, Qing; Quan, Yuan; Sun, Huanhuan; Peng, Xinmiao; Zou, Zhengyun; Alcorn, Joseph L; Wetsel, Rick A; Wang, Dachun
2014-02-01
Human induced pluripotent stem cells (hiPSCs) have great therapeutic potential in repairing defective lung alveoli. However, genetic abnormalities caused by vector integrations and low efficiency in generating hiPSCs, as well as difficulty in obtaining transplantable hiPSC-derived cell types are still major obstacles. Here we report a novel strategy using a single nonviral site-specific targeting vector with a combination of Tet-On inducible gene expression system, Cre/lox P switching gene expression system, and alveolar epithelial type II cell (ATIIC)-specific Neomycin(R) transgene expression system. With this strategy, a single copy of all of the required transgenes can be specifically knocked into a site immediately downstream of β-2-microglobulin (B2M) gene locus at a high frequency, without causing B2M dysfunction. Thus, the expression of reprogramming factors, Oct4, Sox2, cMyc, and Klf4, can be precisely regulated for efficient reprogramming of somatic cells into random integration-free or genetic mutation-free hiPSCs. The exogenous reprogramming factor transgenes can be subsequently removed after reprogramming by transient expression of Cre recombinase, and the resulting random integration-free and exogenous reprogramming factor-free hiPSCs can be selectively differentiated into a homogenous population of ATIICs. In addition, we show that these hiPSC-derived ATIICs exhibit ultrastructural characteristics and biological functions of normal ATIICs. When transplanted into bleomycin-challenged mice lungs, hiPSC-derived ATIICs efficiently remain and re-epithelialize injured alveoli to restore pulmonary function, preventing lung fibrosis and increasing survival without tumorigenic side effect. This strategy allows for the first time efficient generation of patient-specific ATIICs for possible future clinical applications. © 2013 AlphaMed Press.
Yan, Qing; Quan, Yuan; Sun, Huanhuan; Peng, Xinmiao; Zou, Zhengyun; Alcorn, Joseph L.; Wetsel, Rick A.; Wang, Dachun
2013-01-01
Human induced pluripotent stem cells (hiPSCs) have great therapeutic potential in repairing defective lung alveoli. However, genetic abnormalities caused by vector-integrations and low efficiency in generating hiPSCs, as well as difficulty in obtaining transplantable hiPSC-derived cell types, are still major obstacles. Here we report a novel strategy using a single non-viral site-specific-targeting vector with a combination of Tet-On inducible gene expression system, Cre/lox P switching gene expression system, and alveolar epithelial type II cell (ATIIC)-specific NeomycinR trangene expression system. With this strategy, a single copy of all of the required transgenes can be specifically knocked into a site immediately downstream of beta-2-microglobulin (B2M) gene locus at a high frequency, without causing B2M dysfunction. Thus, the expression of reprogramming factors, Oct4, Sox2, cMyc and Klf4, can be precisely regulated for efficient reprogramming of somatic cells into random-integration-free or genetic mutation-free hiPSCs. The exogenous reprogramming factor transgenes can be subsequently removed after reprogramming by transient expression of Cre recombinase, and the resulting random-integration-free and exogenous reprogramming-factor-free hiPSCs can be selectively differentiated into a homogenous population of ATIICs. In addition, we show that these hiPSC-derived ATIICs exhibit ultra-structural characteristics and biological functions of normal ATIICs. When transplanted into bleomycin-challenged mice lungs, hiPSC-derived ATIICs efficiently remain and re-epithelialize injured alveoli to restore pulmonary function, preventing lung fibrosis and increasing survival without tumorigenic side effect. This strategy allows for the first time efficient generation of patient-specific ATIICs for possible future clinical applications. PMID:24123810
Ruscetti, Marcus; Quach, Bill; Dadashian, Eman L.; Mulholland, David J.; Wu, Hong
2015-01-01
The epithelial-mesenchymal transition (EMT) has been postulated as a mechanism by which cancer cells acquire the invasive and stem-like traits necessary for distant metastasis. However, direct in vivo evidence for the role of EMT in the formation of cancer stem-like cells (CSC) and the metastatic cascade remains lacking. Here we report the first isolation and characterization of mesenchymal and EMT tumor cells, which harbor both epithelial and mesenchymal characteristics, in an autochthonous murine model of prostate cancer. By crossing the established Pb-Cre+/−;PtenL/L;KrasG12D/+ prostate cancer model with a vimentin-GFP reporter strain, generating CPKV mice, we were able to isolate epithelial, EMT and mesenchymal cancer cells based on expression of vimentin and EpCAM. CPKV mice (but not mice with Pten deletion alone) exhibited expansion of cells with EMT (EpCAM+/Vim-GFP+) and mesenchymal (EpCAM−/Vim-GFP+) characteristics at the primary tumor site and in circulation. These EMT and mesenchymal tumor cells displayed enhanced stemness and invasive character compared to epithelial tumor cells. Moreover, they displayed an enriched tumor-initiating capacity and could regenerate epithelial glandular structures in vivo, indicative of epithelia-mesenchyme plasticity. Interestingly, while mesenchymal tumor cells could persist in circulation and survive in the lung following intravenous injection, only epithelial and EMT tumor cells could form macrometastases. Our work extends the evidence that mesenchymal and epithelial states in cancer cells contribute differentially to their capacities for tumor initiation and metastatic seeding, respectively, and that EMT tumor cells exist with plasticity that can contribute to multiple stages of the metastatic cascade. PMID:25948589
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gameiro, Sofia R.; Malamas, Anthony S.; Bernstein, Michael B.
Purpose: To provide the foundation for combining immunotherapy to induce tumor antigen–specific T cells with proton radiation therapy to exploit the activity of those T cells. Methods and Materials: Using cell lines of tumors frequently treated with proton radiation, such as prostate, breast, lung, and chordoma, we examined the effect of proton radiation on the viability and induction of immunogenic modulation in tumor cells by flow cytometric and immunofluorescent analysis of surface phenotype and the functional immune consequences. Results: These studies show for the first time that (1) proton and photon radiation induced comparable up-regulation of surface molecules involved in immune recognition (histocompatibilitymore » leukocyte antigen, intercellular adhesion molecule 1, and the tumor-associated antigens carcinoembryonic antigen and mucin 1); (2) proton radiation mediated calreticulin cell-surface expression, increasing sensitivity to cytotoxic T-lymphocyte killing of tumor cells; and (3) cancer stem cells, which are resistant to the direct cytolytic activity of proton radiation, nonetheless up-regulated calreticulin after radiation in a manner similar to non-cancer stem cells. Conclusions: These findings offer a rationale for the use of proton radiation in combination with immunotherapy, including for patients who have failed radiation therapy alone or have limited treatment options.« less
BAHARUDDIN, PUTERI; SATAR, NAZILAH; FAKIRUDDIN, KAMAL SHAIK; ZAKARIA, NORASHIKIN; LIM, MOON NIAN; YUSOFF, NARAZAH MOHD; ZAKARIA, ZUBAIDAH; YAHAYA, BADRUL HISHAM
2016-01-01
Natural compounds such as curcumin have the ability to enhance the therapeutic effectiveness of common chemotherapy agents through cancer stem-like cell (CSC) sensitisation. In the present study, we showed that curcumin enhanced the sensitivity of the double-positive (CD166+/EpCAM+) CSC subpopulation in non-small cell lung cancer (NSCLC) cell lines (A549 and H2170) to cisplatin-induced apoptosis and inhibition of metastasis. Our results revealed that initial exposure of NSCLC cell lines to curcumin (10–40 µM) markedly reduced the percentage of viability to an average of ~51 and ~54% compared to treatment with low dose cisplatin (3 µM) with only 94 and 86% in both the A549 and H2170 cells. Moreover, sensitisation of NSCLC cell lines to curcumin through combined treatment enhanced the single effect induced by low dose cisplatin on the apoptosis of the double-positive CSC subpopulation by 18 and 20% in the A549 and H2170 cells, respectively. Furthermore, we found that curcumin enhanced the inhibitory effects of cisplatin on the highly migratory CD166+/EpCAM+ subpopulation, marked by a reduction in cell migration to 9 and 21% in the A549 and H2170 cells, respectively, indicating that curcumin may increase the sensitivity of CSCs to cisplatin-induced migratory inhibition. We also observed that the mRNA expression of cyclin D1 was downregulated, while a substantial increased in p21 expression was noted, followed by Apaf1 and caspase-9 activation in the double-positive (CD166+/EpCAM+) CSC subpopulation of A549 cells, suggested that the combined treatments induced cell cycle arrest, therefore triggering CSC growth inhibition via the intrinsic apoptotic pathway. In conclusion, we provided novel evidence of the previously unknown therapeutic effects of curcumin, either alone or in combination with cisplatin on the inhibition of the CD166+/EpCAM+ subpopulation of NSCLC cell lines. This finding demonstrated the potential therapeutic approach of using curcumin that may enhance the effects of cisplatin by targeting the CSC subpopulation in NSCLC. PMID:26531053
Too much TV causes lung blood clot deaths.
2016-08-10
Lung blood clots - also known as pulmonary embolisms - usually stem from clots in the leg or pelvis after inactivity has slowed blood flow. It is particularly dangerous if the clot travels to the lung and lodges in a small blood vessel.
Arango, Julián Camilo; Puerta-Arias, Juan David; Pino-Tamayo, Paula Andrea; Salazar-Peláez, Lina María; Rojas, Mauricio
2017-01-01
Bone marrow-derived mesenchymal stem cells (BMMSCs) have been consider as a promising therapy in fibrotic diseases. Experimental models suggest that BMMSCs may be used as an alternative therapy to treat chemical- or physical-induced pulmonary fibrosis. We investigated the anti-fibrotic potential of BMMSCs in an experimental model of lung fibrosis by infection with Paracoccidioides brasiliensis. BMMSCs were isolated and purified from BALB/c mice using standardized methods. BALB/c male mice were inoculated by intranasal infection of 1.5x106 P. brasiliensis yeasts. Then, 1x106 BMMSCs were administered intra venous at 8th week post-infection (p.i.). An additional group of mice was treated with itraconazole (ITC) two weeks before BMMSCs administration. Animals were sacrificed at 12th week p.i. Histopathological examination, fibrocytes counts, soluble collagen and fibrosis-related genes expression in lungs were evaluated. Additionally, human fibroblasts were treated with homogenized lung supernatants (HLS) to determine induction of collagen expression. Histological analysis showed an increase of granulomatous inflammatory areas in BMMSCs-treated mice. A significant increase of fibrocytes count, soluble collagen and collagen-3α1, TGF-β3, MMP-8 and MMP-15 genes expression were also observed in those mice. Interestingly, when combined therapy BMMSCs/ITC was used there is a decrease of TIMP-1 and MMP-13 gene expression in infected mice. Finally, human fibroblasts stimulated with HLS from infected and BMMSCs-transplanted mice showed a higher expression of collagen I. In conclusion, our findings indicate that late infusion of BMMSCs into mice infected with P. brasiliensis does not have any anti-fibrotic effect; possibly because their interaction with the fungus promotes collagen expression and tissue remodeling. PMID:29040281
Establishment of human induced pluripotent stem cell lines from normal fibroblast TIG-1.
Kumazaki, Tsutomu; Kurata, Sayaka; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko
2011-06-01
Normal human cells have a replicative life span and therefore senesce. Usually, normal human cell strains are differentiated cells and reach a terminally differentiated state after a number of cell divisions. At present, definitive differences are not known between replicative senescence and terminal differentiation. TIG-1 is a human fibroblast strain established from fetal lung and has been used extensively in studies of cellular senescence, and numerous data were accumulated at the molecular level. Recently, a method for generating induced pluripotent stem cells (iPSCs) was developed. Using the method, we introduced four reprogramming genes to TIG-1 fibroblasts and succeeded in isolating colonies that had embryonic stem cell (ESC)-like morphologies. They showed alkaline phosphatase activity and expressed ESC markers, as shown by immunostaining of OCT4, SOX2, SSEA4, and TRA-1-81 as well as reverse-transcription polymerase chain reaction (RT-PCR) for OCT4 and NANOG transcripts. Thus, we succeeded in establishing iPSC clones from TIG-1. The iPSC clones could differentiate to cells originated from all three germ-cell layers, as shown by RT-PCR, for messenger RNA (mRNA) expression of α-fetoprotein (endoderm), MSX1 (mesoderm) and microtubule-associated protein 2 (ectoderm), and by immunostaining for α-fetoprotein (endoderm), α-smooth muscle actin (mesoderm), and β-III-tubulin (ectoderm). The iPSCs formed teratoma containing the structures developed from all three germ-cell layers in severe combined immune-deficiency mice. Thus, by comparing the aging process of parental TIG-1 cells and the differentiation process of iPSC-derived fibrocytes to fibroblasts, we can reveal the exact differences in processes between senescence and terminal differentiation.
Human adipose mesenchymal stem cells as potent anti-fibrosis therapy for systemic sclerosis.
Maria, Alexandre T J; Toupet, Karine; Maumus, Marie; Fonteneau, Guillaume; Le Quellec, Alain; Jorgensen, Christian; Guilpain, Philippe; Noël, Danièle
2016-06-01
Displaying immunosuppressive and trophic properties, mesenchymal stem/stromal cells (MSC) are being evaluated as promising therapeutic options in a variety of autoimmune and degenerative diseases. Although benefits may be expected in systemic sclerosis (SSc), a rare autoimmune disease with fibrosis-related mortality, MSC have yet to be evaluated in this specific condition. While autologous approaches could be inappropriate because of functional alterations in MSC from patients, the objective of the present study was to evaluate allogeneic and xenogeneic MSC in the HOCl-induced model of diffuse SSc. We also questioned the source of human MSC and compared bone marrow- (hBM-MSC) and adipose-derived MSC (hASC). HOCl-challenged BALB/c mice received intravenous injection of BM-MSC from syngeneic BALB/c or allogeneic C57BL/6 mice, and xenogeneic hBM-MSC or hASC (3 donors each). Skin thickness was measured during the experiment. At euthanasia, histology, immunostaining, collagen determination and RT-qPCR were performed in skin and lungs. Xenogeneic hBM-MSC were as effective as allogeneic or syngeneic BM-MSC in decreasing skin thickness, expression of Col1, Col3, α-Sma transcripts, and collagen content in skin and lungs. This anti-fibrotic effect was not associated with MSC migration to injured skin or with long-term MSC survival. Interestingly, compared with hBM-MSC, hASC were significantly more efficient in reducing skin fibrosis, which was related to a stronger reduction of TNFα, IL1β, and enhanced ratio of Mmp1/Timp1 in skin and lung tissues. Using primary cells isolated from 3 murine and 6 human individuals, this preclinical study demonstrated similar therapeutic effects using allogeneic or xenogeneic BM-MSC while ASC exerted potent anti-inflammatory and remodeling properties. This sets the proof-of-concept prompting to evaluate the therapeutic efficacy of allogeneic ASC in SSc patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Visfatin concentrations in children with leukemia before and after stem cell transplantation.
Skoczen, Szymon; Tomasik, Przemyslaw J; Gozdzik, Jolanta; Fijorek, Kamil; Krasowska-Kwiecien, Aleksandra; Wiecha, Oktawiusz; Czogala, Wojciech; Dluzniewska, Agnieszka; Sztefko, Krystyna; Starzyk, Jerzy; Siedlar, Maciej
2014-04-01
Visfatin (VF) is an adipocytokine that performs many functions, including enhancing cell proliferation and biosynthesis of nicotinamide mononucleotides and dinucleotides. It also seems to be involved in the development of glucose metabolism disturbances. The goal of the study was the determination of VF concentrations in children with leukemia who are treated with stem cell transplantation. VF concentrations were measured in plasma before and after oral glucose tolerance test (OGTT; 60 and 120 minutes) in 22 children with leukemia treated with hematopoietic stem cell transplantation (HSCT) and healthy control subjects (n = 24). The HSCT group was studied twice: before HSCT (22 children) and approximately 6 months after HSCT (12 of 22 children). After fasting, concentrations of glucose, insulin, triglycerides, total cholesterol, high-density lipoprotein, and high-sensitivity C-reactive protein (hsCRP) were determined. Significantly lower (p < 0.05) median values of VF concentrations at all time points in the OGTT were found in pre- HSCT children compared with control subjects. The median VF concentration was significantly higher after HSCT compared with before HSCT. The decrease in VF in leukemic children in complete remission may be caused by myelosuppression and immunosuppression after prolong chemotherapy and is beneficial because of the decrease in its antiapoptotic activity. VF can serve as an additional biochemical marker for remission in patients with leukemia. Normalization of plasma VF concentration after HSCT might be caused by a process of immune reconstitution and prolonged inflammation (e.g., infections, graft-versus-host disease), injury to organs (e.g., lungs, gut, liver), and endocrinology deficiencies. Copyright © 2014 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
Lundholm, L; Hååg, P; Zong, D; Juntti, T; Mörk, B; Lewensohn, R; Viktorsson, K
2013-01-01
Increasing evidence suggests that tumor-initiating cells (TICs), also called cancer stem cells, are partly responsible for resistance to DNA-damaging treatment. Here we addressed if such a phenotype may contribute to radio- and cisplatin resistance in non-small cell lung cancer (NSCLC). We showed that four out of eight NSCLC cell lines (H125, A549, H1299 and H23) possess sphere-forming capacity when cultured in stem cell media and three of these display elevated levels of CD133. Indeed, sphere-forming NSCLC cells, hereafter called TICs, showed a reduced apoptotic response and increased survival after irradiation (IR), as compared with the corresponding bulk cell population. Decreased cytotoxicity and apoptotic signaling manifested by diminished poly (ADP-ribose) polymerase (PARP) cleavage and caspase 3 activity was also evident in TICs after cisplatin treatment. Neither radiation nor cisplatin resistance was due to quiescence as H125 TICs proliferated at a rate comparable to bulk cells. However, TICs displayed less pronounced G2 cell cycle arrest and S/G2-phase block after IR and cisplatin, respectively. Additionally, we confirmed a cisplatin-refractory phenotype of H125 TICs in vivo in a mouse xenograft model. We further examined TICs for altered expression or activation of DNA damage repair proteins as a way to explain their increased radio- and/or chemotherapy resistance. Indeed, we found that TICs exhibited increased basal γH2AX (H2A histone family, member X) expression and diminished DNA damage-induced phosphorylation of DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia-mutated (ATM), Krüppel-associated protein 1 (KAP1) and monoubiquitination of Fanconi anemia, complementation group D2 (FANCD2). As a proof of principle, ATM inhibition in bulk cells increased their cisplatin resistance, as demonstrated by reduced PARP cleavage. In conclusion, we show that reduced apoptotic response, altered DNA repair signaling and cell cycle perturbations in NSCLC TICs are possible factors contributing to their therapy resistance, which may be exploited for DNA damage-sensitizing purposes. PMID:23370278
[Late onset, non-infectious pulmonary complications after haematological stem cell transplantation].
Bergeron, A; Feuillet, S; Meignin, V; Socie, G; Tazi, A
2008-02-01
Non infectious pulmonary complications which frequently occur in the late follow-up of haemopoietic stem cell transplant (HSCT) recipients account for an increase in mortality and morbidity. Different histological entities have been described among which bronchiolitis obliterans is the most common. Because of the absence of prospective epidemiological studies and the difficulties in obtaining surgical lung biopsies from these frail patients little is known about these conditions. Although their pathogenesis is poorly understood they probably result from a chronic pulmonary graft versus host disease (GVHD). The introduction of or increase in systemic immunosuppressive treatment, usually indicated for controlling extra-thoracic manifestations of GVHD, may lead to the resolution of an organising pneumonia but is usually ineffective in the treatment of bronchiolitis obliterans. Current prospective cohort studies together with randomised prospective studies evaluating more targeted treatments should help determine the frequency, the risk factors and the precise characteristics of the different entities of late non-infectious pulmonary diseases following HSCT and should also improve their management. Furthermore, the recent demonstration of lung abnormalities in animal models of chronic GVHD, similar to those observed in humans, should allow a better understanding of the pathogenesis. The prevalence of these diseases is increasing throughout the world. More precise analysis, the identification of risk factors and study of the pathophysiological mechanisms involved should allow better understanding and management than at present.
La Maestra, Sebastiano; D’Agostini, Francesco; Izzotti, Alberto; Micale, Rosanna T.; Mastracci, Luca; Camoirano, Anna; Balansky, Roumen; Trosko, James E.; Steele, Vernon E.; De Flora, Silvio
2015-01-01
Chemoprevention provides an important strategy for cancer control in passive smokers. Due to the crucial role played by smoke-related chronic inflammation in lung carcinogenesis, of special interest are extensively used pharmacological agents, such as nonsteroidal anti-inflammatory drugs (NSAIDs). We evaluated the ability of aspirin and naproxen, inhibitors of both cyclooxygenase-1 and cyclooxygenase -2, to modulate environmental cigarette smoke (ECS)-induced lung carcinogenesis in A/J mice of both genders. Based on a subchronic toxicity study in 180 postweaning mice, we used 1600mg/kg diet aspirin and 320mg/kg diet naproxen. In the tumor chemoprevention study, using 320 mice, exposure to ECS started soon after birth and administration of NSAIDs started after weaning. At 10 weeks of life, the NSAIDs did not affect the presence of occult blood in feces. As assessed in a subset of 40 mice, bulky DNA adducts and 8-hydroxy-2′-deoxyguanosine levels were considerably increased in ECS-exposed mice and, irrespective of gender, both NSAIDs remarkably inhibited these nucleotide alterations. After exposure for 4 months followed by 5 months in filtered air, ECS induced a significant increase in the yield of surface lung tumors, the 43.7% of which were adenomas and the 56.3% were adenocarcinomas. Oct-4 (octamer-binding transcription factor 4), a marker of cell stemness, was detected in some adenocarcinoma cells. The NAIDs attenuated the yield of lung tumors, but prevention of ECS-induced lung adenomas was statistically significant only in female mice treated with aspirin, which supports a role for estrogens in ECS-related lung carcinogenesis and highlights the antiestrogenic properties of NSAIDs. PMID:26464196
Huang, Yen-Jang; Hsu, Shan-Hui
2014-12-01
Cancer drug development has to go through rigorous testing and evaluation processes during pre-clinical in vitro studies. However, the conventional two-dimensional (2D) in vitro culture is often discounted by the insufficiency to present a more typical tumor microenvironment. The multicellular tumor spheroids have been a valuable model to provide more comprehensive assessment of tumor in response to therapeutic strategies. Here, we applied chitosan-hyaluronan (HA) membranes as a platform to promote three-dimensional (3D) tumor spheroid formation. The biological features of tumor spheroids of human non-small cell lung cancer (NSCLC) cells on chitosan-HA membranes were compared to those of 2D cultured cells in vitro. The cells in tumor spheroids cultured on chitosan-HA membranes showed higher levels of stem-like properties and epithelial-mesenchymal transition (EMT) markers, such as NANOG, SOX2, CD44, CD133, N-cadherin, and vimentin, than 2D cultured cells. Moreover, they exhibited enhanced invasive activities and multidrug resistance by the upregulation of MMP2, MMP9, BCRC5, BCL2, MDR1, and ABCG2 as compared with 2D cultured cells. The grafting densities of HA affected the tumor sphere size and mRNA levels of genes on the substrates. These evidences suggest that chitosan-HA membranes may offer a simple and valuable biomaterial platform for rapid generation of tumor spheroids in vitro as well as for further applications in cancer stem cell research and cancer drug screening. Copyright © 2014 Elsevier Ltd. All rights reserved.
Epithelial-Mesenchymal Transition in Non Small-cell Lung Cancer.
Tsoukalas, Nikolaos; Aravantinou-Fatorou, Eleni; Tolia, Maria; Giaginis, Constantinos; Galanopoulos, Michail; Kiakou, Maria; Kostakis, Ioannis D; Dana, Eugene; Vamvakaris, Ioannis; Korogiannos, Athanasios; Tsiambas, Evangelos; Salemis, Nikolaos; Kyrgias, George; Karameris, Andreas; Theocharis, Stamatios
2017-04-01
Lung cancer is the first cause of cancer related deaths in both males and females. Epithelial-mesenchymal transition (EMT) is a reversible process by which epithelial cells transform to mesenchymal stem cells by losing their cell polarity and cell-to-cell adhesion, gaining migratory and invasive properties. High levels of E-cadherin are expressed in epithelial cells, whereas mesenchymal cells express high levels of N-cadherin, fibronectin and vimentin. The aim of this study was to evaluate the correlation between E-cadherin and vimentin expression and their clinical significance in non-small cell lung cancer (NSCLC). The immunohistochemical expression of E-cadherin, vimentin and Ki-67 was performed on tissue microarrays from NSCLC specimens obtained from 112 newly- diagnosed cases and were studied using classical pathological evaluation. Associations between E-cadherin, vimentin and Ki-67 expression, clinicopathological variables and survival were analyzed. In all cases, a value of p≤0.05 was considered significant. Low E-cadherin expression was significantly correlated with tumor necrosis (p=0.019). Moreover, there was a trend for correlation between high E-cadherin expression and better overall survival (hazard ratio=1.02, and 95% confidence interval=0.45-1.87, p=0.091). There was also a significant negative correlation between vimentin expression and overall survival (hazard ratio=1.13, and 95% confidence interval=0.78-1.65, p=0.026). Additionally, there was a significant negative correlation between vimentin expression and grade I tumors (p=0.031). Finally, a positive correlation trend between vimentin expression and Ki-67 was found (p=0.073). High E-cadherin and low vimentin expression correlate with better prognosis and overall survival. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Bone marrow-derived SP cells can contribute to the respiratory tract of mice in vivo.
Macpherson, Heather; Keir, Pamela; Webb, Sheila; Samuel, Kay; Boyle, Shelagh; Bickmore, Wendy; Forrester, Lesley; Dorin, Julia
2005-06-01
Recent work has indicated that adult bone marrow-derived cells have the ability to contribute to both the haematopoietic system and other organs. Haematopoietic reconstitution by whole bone marrow and selected but not fully characterised cell populations have resulted in reports indicating high-level repopulation of lung epithelia. The well-characterised cells from the side population have a robust ability for haematopoietic reconstitution. We have used freshly isolated side population cells derived from ROSA26 adult bone marrow and demonstrate that despite being unable to contribute to embryos following blastocyst injection, or air liquid interface cultures or denuded tracheal xenografts, they could contribute to the tracheal epithelium in vivo. Epithelial damage is reported to be important in encouraging the recruitment of marrow-derived stem cells into non-haematopoietic organs. Here we demonstrate that mice engrafted with side population cells have donor-derived cells present in the epithelial lining of the trachea following damage and repair. Donor-derived cells were found at a frequency of 0.83%. Widefield and confocal microscopy revealed donor cells that expressed cytokeratins, indicative of cells of an epithelial nature. These results imply that SP haematopoietic stem cells from the bone marrow do not have the ability to contribute to airway epithelia themselves but require factors present in vivo to allow them to acquire characteristics of this tissue.
Inoue, Hiroyuki; Kato, Taigo; Olugbile, Sope; Tamura, Kenji; Chung, Suyoun; Miyamoto, Takashi; Matsuo, Yo; Salgia, Ravi; Nakamura, Yusuke; Park, Jae-Hyun
2016-03-22
Maternal embryonic leucine zipper kinase (MELK), that plays a critical role in maintenance of cancer stem cells (CSCs), is predominantly expressed in various types of human cancer including small cell lung cancer (SCLC). SCLC usually acquires resistance to anti-cancer drugs and portends dismal prognosis. We have delineated roles of MELK in development/progression of SCLC and examined anti-tumor efficacy of OTS167, a highly potent MELK inhibitor, against SCLC. MELK expression was highly upregulated in both SCLC cell lines and primary tumors. siRNA-mediated MELK knockdown induced significant growth inhibition in SCLC cell lines. Concordantly, treatment with OTS167 exhibited strong cytotoxicity against eleven SCLC cell lines with IC50 of < 10 nM. As similar to siRNA knockdown, OTS167 treatment induced cytokinetic defects with intercellular bridges, and in some cell lines we observed formation of neuronal protrusions accompanied with increase of a neuronal differentiation marker (CD56), indicating that the compound induced differentiation of cancer cells to neuron-like cells. Furthermore, the MELK inhibition decreased its downstream FOXM1 activity and Akt expression in SCLC cells, and led to apoptotic cell death. OTS167 appeared to be more effective to CSCs as measured by the sphere formation assay, thus MELK inhibition might become a promising treatment modality for SCLC.
Inoue, Hiroyuki; Kato, Taigo; Olugbile, Sope; Tamura, Kenji; Chung, Suyoun; Miyamoto, Takashi; Matsuo, Yo; Salgia, Ravi; Nakamura, Yusuke; Park, Jae-Hyun
2016-01-01
Maternal embryonic leucine zipper kinase (MELK), that plays a critical role in maintenance of cancer stem cells (CSCs), is predominantly expressed in various types of human cancer including small cell lung cancer (SCLC). SCLC usually acquires resistance to anti-cancer drugs and portends dismal prognosis. We have delineated roles of MELK in development/progression of SCLC and examined anti-tumor efficacy of OTS167, a highly potent MELK inhibitor, against SCLC. MELK expression was highly upregulated in both SCLC cell lines and primary tumors. siRNA-mediated MELK knockdown induced significant growth inhibition in SCLC cell lines. Concordantly, treatment with OTS167 exhibited strong cytotoxicity against eleven SCLC cell lines with IC50 of < 10 nM. As similar to siRNA knockdown, OTS167 treatment induced cytokinetic defects with intercellular bridges, and in some cell lines we observed formation of neuronal protrusions accompanied with increase of a neuronal differentiation marker (CD56), indicating that the compound induced differentiation of cancer cells to neuron-like cells. Furthermore, the MELK inhibition decreased its downstream FOXM1 activity and Akt expression in SCLC cells, and led to apoptotic cell death. OTS167 appeared to be more effective to CSCs as measured by the sphere formation assay, thus MELK inhibition might become a promising treatment modality for SCLC. PMID:26871945
Wang, Po-Shun; Chou, Cheng-Han; Lin, Cheng-Han; Yao, Yun-Chin; Cheng, Hui-Chuan; Li, Hao-Yi; Chuang, Yu-Chung; Yang, Chia-Ning; Ger, Luo-Ping; Chen, Yu-Chia; Lin, Forn-Chia; Shen, Tang-Long; Hsiao, Michael; Lu, Pei-Jung
2018-05-14
Triple-negative breast cancer (TNBC) patients usually lead to poor prognosis and survival because of metastasis. The major sites for TNBC metastasis include the lungs, brain, liver, and bone. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts longer than 200 nucleotides and have been reported as important regulators in BC metastasis. However, the underlying mechanisms for lncRNAs regulating TNBC metastasis are not fully understood. Here we found that linc-ZNF469-3 was highly expressed in lung-metastatic LM2-4175 TNBC cells and overexpression of linc-ZNF469-3 enhanced invasion ability and stemness properties in vitro and lung metastasis in vivo. Furthermore, we found linc-ZNF469-3 physically interacted with miR-574-5p and overexpression of miR-574-5p attenuated ZEB1 expression. Importantly, endogenous high expressions of linc-ZNF469-3 and ZEB1 were correlated with tumor recurrence in TNBC patients with lung metastasis. Taken together, our findings suggested that linc-ZNF469-3 promotes lung metastasis of TNBC through miR-574-5p-ZEB1 signaling axis and may be used as potential prognostic marker for TNBC patients.
2015-01-01
Small interfering RNA (siRNA)-based therapies have great promise in the treatment of a number of prevalent pulmonary disorders including lung cancer, asthma and cystic fibrosis. However, progress in this area has been hindered due to the lack of carriers that can efficiently deliver siRNA to lung epithelial cells, and also due to challenges in developing oral inhalation (OI) formulations for the regional administration of siRNA and their carriers to the lungs. In this work we report the ability of generation four, amine-terminated poly(amidoamine) (PAMAM) dendrimer (G4NH2)–siRNA complexes (dendriplexes) to silence the enhanced green fluorescent protein (eGFP) gene on A549 lung alveolar epithelial cells stably expressing eGFP. We also report the formulation of the dendriplexes and their aerosol characteristics in propellant-based portable OI devices. The size and gene silencing ability of the dendriplexes was seen not to be a strong function of the N/P ratio. Silencing efficiencies of up to 40% are reported. Stable dispersions of the dendriplexes encapsulated in mannitol and also in a biodegradable and water-soluble co-oligomer were prepared in hydrofluoroalkane (HFA)-based pressurized metered-dose inhalers (pMDIs). Their aerosol characteristics were very favorable, and conducive to deep lung deposition, with respirable fractions of up to 77%. Importantly, siRNA formulated as dendriplexes in pMDIs was shown to keep its integrity after the particle preparation processes, and also after long-term exposures to HFA. The relevance of this study stems from the fact that this is the first work to report the formulation of inhalable siRNA with aerosol properties suitable to deep lung deposition using pMDIs devices that are the least expensive and most widely used portable inhalers. This study is relevant because, also for the first time, it shows that siRNA–G4NH2 dendriplexes can efficiently target lung alveolar epithelial A549 cells and silence genes even after siRNA has been exposed to the propellant environment. PMID:24811243
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayakumar, Sundarraj; Patwardhan, R.S.; Pal, Debojyoti
Dimethoxycurcumin (DIMC), a structural analogue of curcumin, has been shown to have more stability, bioavailability, and effectiveness than its parent molecule curcumin. In this paper the radiosensitizing effect of DIMC has been investigated in A549 lung cancer cells. As compared to its parent molecule curcumin, DIMC showed a very potent radiosensitizing effect as seen by clonogenic survival assay. DIMC in combination with radiation significantly increased the apoptosis and mitotic death in A549 cells. This combinatorial treatment also lead to effective elimination of cancer stem cells. Further, there was a significant increase in cellular ROS, decrease in GSH to GSSG ratiomore » and also significant slowdown in DNA repair when DIMC was combined with radiation. In silico docking studies and in vitro studies showed inhibition of thioredoxin reductase enzyme by DIMC. Overexpression of thioredoxin lead to the abrogation of radiosensitizing effect of DIMC underscoring the role of thioredoxin reductase in radiosensitization. Our results clearly demonstrate that DIMC can synergistically enhance the cancer cell killing when combined with radiation by targeting thioredoxin system. - Highlights: • DIMC enhances radiosensitivity of cancer cells by inducing cell death. • DIMC with radiation disrupted the cellular redox and targeted cancer stem cells. • DNA repair is hampered when cells are treated with DIMC. • DIMC inhibited thioredoxin reductase in cancer cells.« less
Laffey, John G; Matthay, Michael A
2017-08-01
On the basis of several preclinical studies, cell-based therapy has emerged as a potential new therapeutic for acute respiratory distress syndrome (ARDS). Of the various cell-based therapy options, mesenchymal stem/stromal cells (MSCs) from bone marrow, adipose tissue, and umbilical cord have the most experimental data to support their potential efficacy for lung injury from both infectious and noninfectious causes. Mechanistically, MSCs exert their beneficial effects by release of paracrine factors, microvesicles, and transfer of mitochondria, all of which have antiinflammatory and pro-resolving effects on injured lung endothelium and alveolar epithelium, including enhancing the resolution of pulmonary edema by up-regulating sodium-dependent alveolar fluid clearance. MSCs also have antimicrobial effects mediated by release of antimicrobial factors and by up-regulating monocyte/macrophage phagocytosis. Phase 2a clinical trials to establish safety in ARDS are in progress, and two phase 1 trials did not report any serious adverse events. Several issues need further study, including: determining the optimal methods for large-scale production, reconstitution of cryopreserved cells for clinical use, defining cell potency assays, and determining the therapeutic potential of conditioned media derived from MSCs. Because ARDS is a heterogeneous syndrome, targeting MSCs to patients with ARDS with a more hyperinflammatory endotype may further enhance their potential for efficacy.
2016-10-01
devastating injuries. Aeromedical evacuation of patients with Acute Respiratory Distress Syndrome (ARDS) is sometimes beyond the possibilities because of...sheep induces lung injury equivalent to a moderated ARDS. In a second group of studies sheep in which respiratory support was providing by a low flow...low pressure ECMO (ALung) partially rescued the animals returned the parameters of respiratory function to normal values. It is our goal to now use
Essel, Leslie B.; Duduyemi, Babatunde M.
2017-01-01
We investigated the antioxidant and anti-inflammatory effects of a 70% v/v ethanol extract of the stem bark of Antrocaryon micraster on murine models of carrageenan-induced pleurisy and paw oedema. Rat pleural fluid was analysed for volume, protein content, and leucocytes, while lung histology was assessed for damage. Lung tissue homogenates were assayed for glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and myeloperoxidase (MPO). Phytochemical analysis was carried out on the stem bark. Acute toxicity studies were conducted in rats. In the pleurisy model the extract (30–300 mg/kg) significantly reduced the volume and amount of proteins and leucocytes in the exudate and also protected against lung injury. Tissue level of GSH and SOD and CAT expression were increased while MDA level and MPO activity were reduced. The peak and total oedema responses were significantly suppressed when given both preemptively and curatively in the mice paw oedema test. Saponins, alkaloids, triterpenoids, and tannins were present in the stem bark. A. micraster extract exhibited no apparent acute toxicity. We conclude that the ethanolic stem-bark extract of A. micraster has antioxidant action and exhibits significant anti-inflammatory activity through suppression of pleurisy and paw oedema induced with carrageenan. PMID:28798953
Zhou, Wei; Jin, Zhi-Xiong; Wan, Yong-Ji
2010-12-01
An entomopathogenic bacterial strain SCQ1 was isolated from silkworm (Bombyx mori) and identified as Serratia marcescens via 16S rRNA gene analysis. This strain produces a red pigment that causes acute septicemia of silkworm. The red pigment of strain SCQ1 was identified as prodigiosin analogue (PGA) with various reported biological activities. In this study, we found that low concentration of PGA showed significant anticancer activity in human lung adenocarcinoma A549 cells, but has little effect in human bone marrow stem cells, in vitro. By exposure to different concentrations of PGA for 24 h, morphological changes and the MTT assay showed that A549 cell line was very sensitive to PGA, with IC(50) value about 2.2 mg/L. Early stage of apoptosis was detected by flow cytometry while A549 cells were treated with PGA for 4 and 12 h, respectively. The proportion of dead cells was increased with treatment time or the concentrations of PGA, but it was inversely proportional to that of apoptotic cells. These results indicate that PGA obtained from strain SCQ1 induces apoptosis in A549 cells, but the molecular mechanisms of cell death are complicated, and the S. marcescens strain SCQ1 may serve as a source of the anticancer compound, PGA.
Anichini, Andrea; Tassi, Elena; Grazia, Giulia; Mortarini, Roberta
2018-06-01
Immunotherapy of non-small cell lung cancer (NSCLC), by immune checkpoint inhibitors, has profoundly improved the clinical management of advanced disease. However, only a fraction of patients respond and no effective predictive factors have been defined. Here, we discuss the prospects for identification of such predictors of response to immunotherapy, by fostering an in-depth analysis of the immune landscape of NSCLC. The emerging picture, from several recent studies, is that the immune contexture of NSCLC lesions is a complex and heterogeneous feature, as documented by analysis for frequency, phenotype and spatial distribution of innate and adaptive immune cells, and by characterization of functional status of inhibitory receptor + T cells. The complexity of the immune landscape of NSCLC stems from the interaction of several factors, including tumor histology, molecular subtype, main oncogenic drivers, nonsynonymous mutational load, tumor aneuploidy, clonal heterogeneity and tumor evolution, as well as the process of epithelial-mesenchymal transition. All these factors contribute to shape NSCLC immune profiles that have clear prognostic significance. An integrated analysis of the immune and molecular profile of the neoplastic lesions may allow to define the potential predictive role of the immune landscape for response to immunotherapy.
Non-coding RNAs in lung cancer
Ricciuti, Biagio; Mecca, Carmen; Crinò, Lucio; Baglivo, Sara; Cenci, Matteo; Metro, Giulio
2014-01-01
The discovery that protein-coding genes represent less than 2% of all human genome, and the evidence that more than 90% of it is actively transcribed, changed the classical point of view of the central dogma of molecular biology, which was always based on the assumption that RNA functions mainly as an intermediate bridge between DNA sequences and protein synthesis machinery. Accumulating data indicates that non-coding RNAs are involved in different physiological processes, providing for the maintenance of cellular homeostasis. They are important regulators of gene expression, cellular differentiation, proliferation, migration, apoptosis, and stem cell maintenance. Alterations and disruptions of their expression or activity have increasingly been associated with pathological changes of cancer cells, this evidence and the prospect of using these molecules as diagnostic markers and therapeutic targets, make currently non-coding RNAs among the most relevant molecules in cancer research. In this paper we will provide an overview of non-coding RNA function and disruption in lung cancer biology, also focusing on their potential as diagnostic, prognostic and predictive biomarkers. PMID:25593996
NASA Astrophysics Data System (ADS)
Khlusov, I. A.; Khlusova, M. Yu.; Pichugin, V. F.; Sharkeev, Yu. P.; Legostaeva, E. V.
2014-02-01
A relationship between the topography of rough calcium phosphate surfaces having osteogenic niche-reliefs and the electrostatic potential of these surfaces as a possible instrument to control stromal stem cells has been investigated. The in vitro culture of human lung prenatal stromal cells on nanostructured/ultrafine-grained VT1.0 titanium alloy plates with bilateral rough calcium phosphate (CaP) microarc coating was used. It was established that the amplitude of the electret CaP surface potential linearly increased with increasing area of valleys (sockets), and the negative charge is formed on the socket surface. The area of alkaline phosphatase staining (the marker of osteoblast maturation and differentiation) of adherent CD34- CD44+ cells increases linearly with increasing area of artificial microterritory (socket) of the CaP surface occupied with each cell. The negative electret potential in valleys (sockets) of microarc CaP coatings can be the physical mechanism mediating the influence of the surface topography on osteogenic maturation and differentiation of cells in vitro. This mechanism can be called "niche-potential" and can be used as an instrument for biomimetic modification of smooth CaP surfaces to strengthen their integration with the bone tissue.
Aberrant RSPO3-LGR4 signaling in Keap1-deficient lung adenocarcinomas promotes tumor aggressiveness.
Gong, X; Yi, J; Carmon, K S; Crumbley, C A; Xiong, W; Thomas, A; Fan, X; Guo, S; An, Z; Chang, J T; Liu, Q J
2015-09-03
The four R-spondins (RSPO1-4) and their three related receptors LGR4, 5 and 6 (LGR4-6) have emerged as a major ligand-receptor system with critical roles in development and stem cell survival through modulation of Wnt signaling. Recurrent, gain-of-expression gene fusions of RSPO2 (to EIF3E) and RSPO3 (to PTPRK) occur in a subset of human colorectal cancer. However, the exact roles and mechanisms of the RSPO-LGR system in oncogenesis remain largely unknown. We found that RSPO3 is aberrantly expressed at high levels in approximately half of Keap1-mutated lung adenocarcinomas (ADs). This high RSPO3 expression is driven by a combination of demethylation of its own promoter region and deficiency in Keap1 instead of gene fusion as in colon cancer. Patients with RSPO3-high tumors (~9%, 36/412) displayed much poorer survival than the rest of the cohort (median survival of 28 vs 163 months, log-rank test P<0.0001). Knockdown (KD) of RSPO3, LGR4 or their signaling mediator IQGAP1 in lung cancer cell lines with Keap1 deficiency and high RSPO3-LGR4 expression led to reduction in cell proliferation and migration in vitro, and KD of LGR4 or IQGAP1 resulted in decrease in tumor growth and metastasis in vivo. These findings suggest that aberrant RSPO3-LGR4 signaling potentially acts as a driving mechanism in the aggressiveness of Keap1-deficient lung ADs.
Aberrant RSPO3-LGR4 signaling in Keap1-deficient lung adenocarcinomas promotes tumor aggressiveness
Gong, Xing; Yi, Jing; Carmon, Kendra S.; Crumbley, Christine A.; Xiong, Wei; Thomas, Anthony; Fan, Xuejun; Guo, Shan; An, Zhiqiang; Chang, Jeffrey T.; Liu, Qingyun J.
2015-01-01
The four R-spondins (RSPO1-4) and their three related receptors LGR4, 5 and 6 (LGR4-6) have emerged as a major ligand-receptor system with critical roles in development and stem cell survival through modulation of Wnt signaling. Recurrent, gain-of-expression gene fusions of RSPO2 (to EIF3E) and RSPO3 (to PTPRK) occur in a subset of human colorectal cancer. However, the exact roles and mechanisms of the RSPO-LGR system in oncogenesis remain largely unknown. We found that RSPO3 is aberrantly expressed at high levels in approximately half of the Keap1-mutated lung adenocarcinomas. This high RSPO3 expression is driven by a combination of demethylation of its own promoter region and deficiency in Keap1 instead of gene fusion as in colon cancer. Patients with RSPO3-high tumors (~9%, 36/412) displayed much poorer survival than the rest of the cohorts (median survival of 28 vs. 163 months, logrank test p < 0.0001). Knockdown of RSPO3, LGR4, or their signaling mediator IQGAP1 in lung cancer cell lines with Keap1 deficiency and high RSPO3-LGR4 expression led to reduction in cell proliferation and migration in vitro, and knockdown of LGR4 or IQGAP1 resulted in decrease in tumor growth and metastasis in vivo. These findings suggest that aberrant RSPO3-LGR4 signaling potentially acts as a driving mechanism in the aggressiveness of Keap1-deficient lung adenocarcinomas. PMID:25531322
Usefulness of predictive tests for cancer treatment.
Rosell, R; Cuello, M; Cecere, F; Santarpia, M; Reguart, N; Felip, E; Taron, M
2006-08-01
This review highlights the numerous molecular biology findings in the field of lung cancer with potential therapeutic impact in both the near and distant future. At least six lines of research have recently emerged as potential contributors to changes in clinical practice. Abundant pre-clinical and clinical data indicate that BRCA1 mRNA expression is a differential modulator of chemotherapy sensitivity. Low levels predict cisplatin sensitivity and antimicrotubule drug resistance, and the opposite occurs with high levels. Secondly, single nucleotide polymorphisms in the ERCC1 gene influence survival and toxicity with cisplatin-based chemotherapy. The main core of recent research has centered on EGFR mutations and gene copy numbers. For the first time, EGFR mutations have been shown to predict dramatic responses in metastatic lung adenocarcinomas, with a threefold increase in time to progression and survival in patients receiving EGFR tyrosine kinase inhibitors. In contrast, K-ras mutations confer a negative effect in these patients. Evidence has also been accumulated on the crosstalk between estrogen and EGFR receptor pathways, paving the way for clinical trials of EGFR tyrosine kinase inhibitors plus aromatase inhibitors. microRNAs control the expression of cognate target genes, and downregulation of Dicer has been shown to be a strong predictor of relapse in surgically resected non-small-cell lung cancer patients. Finally, overexpression of the Wingless-type (Wnt) genes and methylation of Wnt antagonists like WIF and secreted frizzled related proteins have been documented in non-small-cell lung cancer and are believed to be an important mechanism of cancer stem cell maintenance.
Zhou, Tianlin; Li, Meng; Wen, Yanjun; Lin, Xiaojuan; Xiang, Rong; Chen, Xiancheng
2015-01-01
CSCs are able to survive routine anticancer procedures and peripheral-immune attack. Here we develop and detail a framework of CSC elimination governed by 3D-biologics. Pluripotent cells-engineered 3D-biologics (PMSB) and control non-3D-biologics were prepared from placenta-based somatic stem cells (PSCs) and inoculated respectively into senile hosts bearing progressive mammary, lung, colon carcinomas and melanoma. We demonstrate that PMSB evokes in vivo central-immune microenvironment with subsequent re-expression of thymosin-α1 ~ β4 in thymic cortex-medulla borderline for rapid MHC-unrestricted renewal of γδT-dominated immunocompetence. The post-renewal γδT-subsets could accurately bind and drive CSCs into apoptosis. Finally, with central/peripheral integral microenvironment renewal and TERT/Wnt/β-catenin pathway blockade, the CSC-subsets are fully depleted, leading to substantial cure of diverse tumors by PMSB inoculation (P < 0.01), yet not by non-3D-biologics. Thus, our study may contribute to open up a new avenue for tumor remission via pluripotent cells-engineered 3D-biologics addressing quick renewal of central-thymus and peripheral immune-microenvironment. PMID:26512920
Lee, In Hong; Kim, Hyun Soo; Seo, Sang Heui
2017-04-01
Mast cells reside in many tissues, including the lungs, and might play a role in enhancing influenza virus infections in animals. In this study, we cultured porcine mast cells from porcine bone marrow cells with IL-3 and stem cell factor to study the infectivity and activation of the 2009 pandemic H1N1 influenza virus of swine origin. Porcine mast cells were infected with H1N1 influenza virus, without the subsequent production of infectious viruses but were activated, as indicated by the release of histamines. Inflammatory cytokine- and chemokine-encoding genes, including IL-1α, IL-6, CXCL9, CXCL10, and CXCL11, were upregulated in the infected porcine mast cells. Our results suggest that mast cells could be involved in enhancing influenza-virus-mediated disease in infected animals.
Invasive pulmonary Aspergillosis in organ transplants--Focus on lung transplants.
Geltner, Christian; Lass-Flörl, Cornelia
2016-03-01
Infections with filamentous fungi are common in transplant recipients. The risk for aspergillosis and other invasive pulmonary mycosis (IPM) is high in patients undergoing stem cell and lung transplantations. The mortality rates range from 20% to 60% and depend on a number of risk factors. The typical manifestations of IPM are lung infiltrates, consolidations, and fungal tracheobronchitis. The most common infectious agent is Aspergillus fumigatus. Infections caused by non-Aspergillus molds are more frequent for various reasons. The species distribution of non-Aspergillus molds varies in different locations. Furthermore, infections caused by Mucor and Penicillium are increasing, as are infections caused by species resistant to azoles and amphotericin B. Most centers use antifungal prophylaxis with inhaled amphotericin B or oral azoles. Early diagnosis and therapy is crucial. Reliable information on the local microbiological spectrum is a prerequisite for the effective treatment of molds with primary or secondary resistance to antimycotic drugs. Copyright © 2015 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammel, Markus; Michel, Geert; Hoefer, Christina
2007-08-10
Mutations in the human ABCA3 gene, encoding an ABC-transporter, are associated with respiratory failure in newborns and pediatric interstitial lung disease. In order to study disease mechanisms, a transgenic mouse model with a disrupted Abca3 gene was generated by targeting embryonic stem cells. While heterozygous animals developed normally and were fertile, individuals homozygous for the altered allele (Abca3-/-) died within one hour after birth from respiratory failure, ABCA3 protein being undetectable. Abca3-/- newborns showed atelectasis of the lung in comparison to a normal gas content in unaffected or heterozygous littermates. Electron microscopy demonstrated the absence of normal lamellar bodies inmore » type II pneumocytes. Instead, condensed structures with apparent absence of lipid content were found. We conclude that ABCA3 is required for the formation of lamellar bodies and lung surfactant function. The phenotype of respiratory failure immediately after birth corresponds to the clinical course of severe ABCA3 mutations in human newborns.« less
hPSC-derived lung and intestinal organoids as models of human fetal tissue
Aurora, Megan; Spence, Jason R.
2016-01-01
In vitro human pluripotent stem cell (hPSC) derived tissues are excellent models to study certain aspects of normal human development. Current research in the field of hPSC derived tissues reveals these models to be inherently fetal-like on both a morphological and gene expression level. In this review we briefly discuss current methods for differentiating lung and intestinal tissue from hPSCs into individual 3-dimensional units called organoids. We discuss how these methods mirror what is known about in vivo signaling pathways of the developing embryo. Additionally, we will review how the inherent immaturity of these models lends them to be particularly valuable in the study of immature human tissues in the clinical setting of premature birth. Human lung organoids (HLOs) and human intestinal organoids (HIOs) not only model normal development, but can also be utilized to study several important diseases of prematurity such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), and necrotizing enterocolitis (NEC). PMID:27287882
21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high cervical spinal cord injury, or chronic lung disease. The stimulator consists of an implanted receiver with...
21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high cervical spinal cord injury, or chronic lung disease. The stimulator consists of an implanted receiver with...
21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high cervical spinal cord injury, or chronic lung disease. The stimulator consists of an implanted receiver with...
Inhibition of the CXCL12/CXCR4-Axis as Preventive Therapy for Radiation-Induced Pulmonary Fibrosis
Shu, Hui-Kuo G.; Yoon, Younghyoun; Hong, Samuel; Xu, Kaiming; Gao, Huiying; Hao, Chunhai; Torres-Gonzalez, Edilson; Nayra, Cardenes; Rojas, Mauricio; Shim, Hyunsuk
2013-01-01
Background A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process. Methodology/Principal Findings The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process. Conclusions/Significance CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung injury, presenting future therapeutic opportunities for patients requiring chest irradiation. PMID:24244561
Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis.
Shu, Hui-Kuo G; Yoon, Younghyoun; Hong, Samuel; Xu, Kaiming; Gao, Huiying; Hao, Chunhai; Torres-Gonzalez, Edilson; Nayra, Cardenes; Rojas, Mauricio; Shim, Hyunsuk
2013-01-01
A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process. The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process. CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung injury, presenting future therapeutic opportunities for patients requiring chest irradiation.
Xie, Jie; Broxmeyer, Hal E.; Feng, Dongni; Schweitzer, Kelly S.; Yi, Ru; Cook, Todd G.; Chitteti, Brahmananda R.; Barwinska, Daria; Traktuev, Dmitry O.; Van Demark, Mary J.; Justice, Matthew J.; Ou, Xuan; Srour, Edward F.; Prockop, Darwin J.; Petrache, Irina; March, Keith L.
2015-01-01
Objective Bone marrow-derived hematopoietic stem and progenitor cells (HSC/HPC) are critical to homeostasis and tissue repair. The aims of this study were to delineate the myelotoxicity of cigarette smoking (CS) in a murine model, to explore human adipose-derived stem cells (hASC) as a novel approach to mitigate this toxicity, and to identify key mediating factors for ASC activities. Methods C57BL/6 mice were exposed to CS with or without i.v. injection of regular or siRNA-transfected hASC. For in vitro experiments, cigarette smoke extract (CSE) was used to mimic the toxicity of CS exposure. Analysis of bone marrow hematopoietic progenitor cells (HPC) were performed both by flow cytometry and colony forming unit assays. Results In this study, we demonstrate that as few as three days of CS exposure result in marked cycling arrest and diminished clonogenic capacity of HPC, followed by depletion of phenotypically-defined HSC/HPC. Intravenous injection of hASC substantially ameliorated both acute and chronic CS-induced myelosuppression. This effect was specifically dependent on the anti-inflammatory factor TSG-6, which is induced from xenografted hASC, primarily located in the lung and capable of responding to host inflammatory signals. Gene expression analysis within bone marrow HSC/HPC revealed several specific signaling molecules altered by CS and normalized by hASC. Conclusion Our results suggest that systemic administration of hASC or TSG-6 may be novel approaches to reverse cigarette smoking-induced myelosuppression. PMID:25329668
Mazzoleni, Stefania; Jachetti, Elena; Morosini, Sara; Grioni, Matteo; Piras, Ignazio Stefano; Pala, Mauro; Bulfone, Alessandro; Freschi, Massimo; Bellone, Matteo; Galli, Rossella
2013-09-01
The relevant social and economic impact of prostate adenocarcinoma, one of the leading causes of death in men, urges critical improvements in knowledge of the pathogenesis and cure of this disease. These can also be achieved by implementing in vitro and in vivo preclinical models by taking advantage of prostate cancer stem cells (PCSCs). The best-characterized mouse model of prostate cancer is the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. TRAMP mice develop a progressive lesion called prostatic intraepithelial neoplasia that evolves into adenocarcinoma (AD) between 24 and 30 weeks of age. ADs often metastasize to lymph nodes, lung, bones, and kidneys. Eventually, approximately 5% of the mice develop an androgen-independent neuroendocrine adenocarcinoma. Here we report the establishment of long-term self-renewing PCSC lines from the different stages of TRAMP progression by application of the neurosphere assay. Stage-specific prostate cell lines were endowed with the critical features expected from malignant bona fide cancer stem cells, namely, self-renewal, multipotency, and tumorigenicity. Notably, transcriptome analysis of stage-specific PCSCs resulted in the generation of well-defined, meaningful gene signatures, which identify distinct stages of human tumor progression. As such, TRAMP-derived PCSCs represent a novel and valuable preclinical model for elucidating the pathogenetic mechanisms leading to prostate adenocarcinoma and for the identification of molecular mediators to be pursued as therapeutic targets.
ILC2 memory: Recollection of previous activation.
Martinez-Gonzalez, Itziar; Ghaedi, Maryam; Steer, Catherine A; Mathä, Laura; Vivier, Eric; Takei, Fumio
2018-05-01
Immunological memory, traditionally thought to belong to T and B cells, has now been extended to innate lymphocytes, including NK cells and ILC2s, myeloid cells such as macrophages, also termed "trained immunity" and more recently to epithelial stem cells. In this review, we discuss the mechanisms underlying memory generation on ILC2s and speculate about their potential role in human allergic diseases, such as asthma. Moreover, we examine the relevance of the spontaneous ILC2 activation in the lung during the neonatal period in order to efficiently respond to stimuli later in life. These "training" of neonatal ILC2s may have an impact on the generation of memory ILC2s in the adulthood. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The intracoelomic route: a new approach for in utero human cord blood stem cell transplantation.
Noia, Giuseppe; Pierelli, Luca; Bonanno, Giuseppina; Monego, Giovanni; Perillo, Alessandro; Rutella, Sergio; Cavaliere, Anna Franca; Straface, Gianluca; Fortunato, Giuseppe; Cesari, Elena; Scambia, Giovanni; Terzano, Marinella; Iannace, Enrico; Zelano, Giovanni; Michetti, Fabrizio; Leone, Giuseppe; Mancuso, Salvatore
2004-01-01
The intracoelomic route for in utero hematopoietic stem cell transplantation has been evaluated in pre-immune fetal sheep and the engraftment characteristics defined. Twelve ovine fetuses (gestational ages: 40-45 days) received intracoelomic transplants of human CD3-depleted (50 x 10(6) per lamb) or CD34-selected (1-2 x 10(5) per lamb) cord blood hematopoietic stem cells. Engraftment was evaluated from cell suspension of the liver, spleen, bone marrow and thymus by flow cytometry, cloning assays and polymerase chain reaction (PCR) analysis for human beta(2)-microglobulin gene. The engraftment of liver samples was also evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR), fluorescent in situ hybridization (FISH) and immunohistochemistry. Four fetuses (33%) aborted shortly after intracoelomic transplantation and were not evaluable for engraftment. Engraftment was detected in 4 fetuses obtained from cesarean delivery on day 70 after transplantation of CD3-depleted cord blood cells. The degree of engraftment in these 4 fetuses ranged from 6 to 22% in the different organs (as revealed by antigenic analysis of human CD45 with flow cytometry). Three fetuses obtained after cesarean section at 102 (No. 435184) and 105 (Nos 915293, 037568) days and 1 fetus delivered at term, which received CD34-selected cord blood cells, had human engraftment with 10, 32, 20 and 10% CD45+ cells in bone marrow, respectively. A further check of human chimerism was done at 1 year after birth of the fetus delivered at term and 7.6% of bone marrow chimerism was detected. In 6 out of 8 fetuses evaluable for human engraftment, chimerism was confirmed by PCR analysis for human beta(2)-microglobulin which also identified human cells in brain, spinal cord, heart, lung and skeletal muscle. On liver samples, FISH and RT-PCR confirmed the xenograft of human cells and the immunohistochemical analysis detected human markers of hematopoietic and hepatic lineage of differentiation. This preliminary study indicates that intracoelomic transplantation of human hematopoietic stem cells in fetal lambs is feasible and effective in terms of hematopoietic engraftment. Copyright 2004 S. Karger AG, Basel
Kunimasa, Kei; Nagano, Tatsuya; Shimono, Yohei; Dokuni, Ryota; Kiriu, Tatsunori; Tokunaga, Shuntaro; Tamura, Daisuke; Yamamoto, Masatsugu; Tachihara, Motoko; Kobayashi, Kazuyuki; Satouchi, Miyako; Nishimura, Yoshihiro
2017-07-01
In pathway-targeted cancer drug therapies, the relatively rapid emergence of drug-tolerant persisters (DTPs) substantially limits the overall therapeutic benefit. However, little is known about the roles of DTPs in drug resistance. In this study, we investigated the features of epidermal growth factor receptor-tyrosine kinase inhibitor-induced DTPs and explored a new treatment strategy to overcome the emergence of these DTPs. We used two EGFR-mutated lung adenocarcinoma cell lines, PC9 and II-18. They were treated with 2 μM gefitinib for 6, 12, or 24 days or 6 months. We analyzed the mRNA expression of the stem cell-related markers by quantitative RT-PCR and the expression of the cellular senescence-associated proteins. Then we sorted DTPs according to the expression pattern of CD133 and analyzed the features of sorted cells. Finally, we tried to ablate DTPs by glucose metabolism targeting therapies and a stem-like cell targeting drug, withaferin A. Drug-tolerant persisters were composed of at least two types of cells, one with the properties of cancer stem-like cells (CSCs) and the other with the properties of therapy-induced senescent (TIS) cells. The CD133 high cell population had CSC properties and the CD133 low cell population had TIS properties. The CD133 low cell population containing TIS cells showed a senescence-associated secretory phenotype that supported the emergence of the CD133 high cell population containing CSCs. Glucose metabolism inhibitors effectively eliminated the CD133 low cell population. Withaferin A effectively eliminated the CD133 high cell population. The combination of phloretin and withaferin A effectively suppressed gefitinib-resistant tumor growth. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Xian, Lingling; Li, Changjun; Xu, Ting; Plunkett, Beverly; Huang, Shau-Ku; Wan, Mei; Cao, Xu
2014-01-01
Mesenchymal stem cells (MSCs) have been suggested to participate in immune regulation and airway repair/remodeling. Transforming growth factor β1 (TGFβ1) is critical in the recruitment of stem/progenitor cells for tissue repair, remodeling and cell differentiation. In this study, we sought to investigate the role of TGFβ1 in MSC migration in allergic asthma. We examined nestin expression (a marker for MSCs) and TGFβ1 signaling activation in airways in cockroach allergen (CRE) induced mouse models. Compared with control mice, there were increased nestin+ cells in airways, and higher levels of active TGFβ1 in serum and p-Smad2/3 expression in lungs of CRE-treated mice. Increased activation of TGFβ1 signaling was also found in CRE-treated MSCs. We then assessed MSC migration induced by conditioned medium (ECM) from CRE-challenged human epithelium in air/liquid interface (ALI) culture in Transwell assays. MSC migration was stimulated by ECM, but was significantly inhibited by either TGFβ1 neutralizing antibody or TβR1 inhibitor. Intriguingly, increased migration of MSCs from blood and bone marrow to the airway was also observed after systemic injection of GFP+-MSCs, and from bone marrow of Nes-GFP mice following CRE challenge. Furthermore, TGFβ1 neutralizing antibody inhibited the CRE-induced MSC recruitment, but promoted airway inflammation. Finally, we investigated the role of MSCs in modulating CRE induced T cell response, and found that MSCs significantly inhibited CRE-induced inflammatory cytokine secretion (IL-4, IL13, IL17 and IFN-γ) by CD4+ T cells. These results suggest that TGFβ1 may be a key pro-migratory factor in recruiting MSCs to the airways in mouse models of asthma. PMID:24711618
Wu, Chuan Xing; Xu, Aimin; Zhang, Cathy C; Olson, Peter; Chen, Lin; Lee, Terence K; Cheung, Tan To; Lo, Chung Mau; Wang, Xiao Qi
2017-08-01
Aberrant activation of the Notch signaling pathway is implicated in many solid tumors, including hepatocellular carcinoma, indicating a potential use of Notch inhibitors for treatment. In this study, we investigated the antitumor and antimetastasis efficacy of the novel Notch inhibitor (γ-secretase inhibitor) PF-03084014 in hepatocellular carcinoma. Hepatocellular carcinoma spherical cells (stem-like cancer cells), a sphere-derived orthotopic tumor model and one patient-derived xenograft (PDX) model were used in our experiment. We demonstrated that PF-03084014 inhibited the self-renewal and proliferation of cancer stem cells. PF-03084014 reduced the hepatocellular carcinoma sphere-derived orthotopic tumor and blocked the hepatocellular carcinoma tumor liver to lung metastasis. We further tested the PF-03084014 in PDX models and confirmed the inhibition tumor growth effect. In addition, a low dose of PF-03084014 induced hepatocellular carcinoma sphere differentiation, resulting in chemosensitization. Antitumor activity was associated with PF-03084014-induced suppression of Notch1 activity, decreased Stat3 activation and phosphorylation of the Akt signaling pathway, and reduced epithelial-mesenchymal transition. These are the key contributors to the maintenance of cancer stemness and the promotion of cancer metastasis. Moreover, the Notch-Stat3 association was implicated in the clinical hepatocellular carcinoma prognosis. Collectively, PF-03084014 revealed antitumor and antimetastatic effects in hepatocellular carcinoma, providing evidence for the potential use of gamma-secretase inhibitors as a therapeutic option for the treatment of hepatocellular carcinoma. Mol Cancer Ther; 16(8); 1531-43. ©2017 AACR . ©2017 American Association for Cancer Research.
[High-dose chemotherapy as a strategy to overcome drug resistance in solid tumors].
Selle, Frédéric; Gligorov, Joseph; Soares, Daniele G; Lotz, Jean-Pierre
2016-10-01
The concept of high-doses chemotherapy was developed in the 1980s based on in vitro scientific observations. Exposure of tumor cells to increasing concentrations of alkylating agents resulted in increased cell death in a strong dose-response manner. Moreover, the acquired resistance of tumor cells could be overcome by dose intensification. In clinic, dose intensification of alkylating agents resulted in increased therapeutic responses, however associated with significant hematological toxicity. Following the development of autologous stem cells transplantation harvesting from peripheral blood, the high-doses of chemotherapy, initially associated with marked toxic effects, could be more easily tolerated. As a result, the approach was evaluated in different types of solid tumors, including breast, ovarian and germ cell tumors, small cell lung carcinoma, soft tissue sarcomas and Ewing sarcoma. To date, high-doses chemotherapy with hematopoietic stem cells support is only used as a salvage therapy to treat poor prognosis germ cell tumors patients with chemo-sensitive disease. Regarding breast and ovarian cancer, high-doses chemotherapy should be considered only in the context of clinical trials. However, intensive therapy as an approach to overcome resistance to standard treatments is still relevant. Numerous efforts are still ongoing to identify novel therapeutic combinations and active treatments to improve patients' responses. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
Iguchi, Akihiro; Kobayashi, Ryoji; Sato, Tomonobu Z; Nakajima, Masahide; Kaneda, Makoto; Ariga, Tadashi
2006-04-01
We describe an 8-year-old girl with chronic active Epstein-Barr virus (EBV) infection (CAEBV) who was treated successfully by reduced-intensity stem cell transplantation (RIST) from unrelated cord blood (CB). She had been suffering from fever, abdominal pain, and interstitial lymphadenopathy, and CAEBV was diagnosed. After chemotherapy that included etoposide, the amount of EBV decreased transiently below the detection level. However, the disease due to CAEBV worsened despite the chemotherapy, and she finally needed chemotherapy every week. Therefore, instead of conventional myeloablative transplantation, we performed CB transplantation with reduced-intensity conditioning regimens consisting of low-dose total body irradiation, fludarabine, and etoposide. CB, for which human leukocyte antigen (HLA) was 2-loci mismatched on the DR loci from an unrelated donor, was infused after conditioning. Although grade III acute graft-versus-host disease (GVHD) in the gut and chronic GVHD in the lung developed, the symptoms of GVHD disappeared with immunosuppressive therapy. After 15 months, the patient remained a complete chimera, with undetectable levels of EBV in peripheral blood and bone marrow. We conclude that RIST from unrelated CB can be indicated for some cases of CAEBV who are refractory to chemotherapy and have no HLA-matched related and unrelated donors as the source of bone marrow or peripheral blood stem cells.
Chen, Chung-Ming; Chou, Hsiu-Chu; Lin, Willie; Tseng, Chris
2017-08-03
Surfactant therapy has become the standard of care for preterm infants with respiratory distress syndrome. Preclinical studies have reported the therapeutic benefits of mesenchymal stem cells (MSCs) in experimental bronchopulmonary dysplasia. This study investigated the effects of a surfactant on the in vitro viability and in vivo function of human MSCs. The viability, phenotype, and mitochondrial membrane potential (MMP) of MSCs were assessed through flow cytometry. The in vivo function was assessed after intratracheal injection of human MSCs (1 × 10 5 cells) diluted in 30 μl of normal saline (NS), 10 μl of a surfactant diluted in 20 μl of NS, and 10 μl of a surfactant and MSCs (1 × 10 5 cells) diluted in 20 μl of NS in newborn rats on postnatal day 5. The pups were reared in room air (RA) or an oxygen-enriched atmosphere (85% O 2 ) from postnatal days 1 to 14; eight study groups were examined: RA + NS, RA + MSCs, RA + surfactant, RA + surfactant + MSCs, O 2 + NS, O 2 + MSCs, O 2 + surfactant, and O 2 + surfactant + MSCs. The lungs were excised for histological and cytokine analysis on postnatal day 14. Compared with the controls, surfactant-treated MSCs showed significantly reduced viability and MMP after exposure to 1:1 and 1:2 of surfactant:MSCs for 15 and 60 minutes. All human MSC samples exhibited similar percentages of CD markers, regardless of surfactant exposure. The rats reared in hyperoxia and treated with NS exhibited a significantly higher mean linear intercept (MLI) than did those reared in RA and treated with NS, MSCs, surfactant, or surfactant + MSCs. Treatment with MSCs, surfactant, or surfactant + MSCs significantly reduced the hyperoxia-induced increase in MLI. The O 2 + surfactant + MSCs group exhibited a significantly higher MLI than did the O 2 + MSCs group. Furthermore, treatment with MSCs and MSCs + surfactant significantly reduced the hyperoxia-induced increase in apoptotic cells. Combination therapy involving a surfactant and MSCs does not exert additive effects on lung development in hyperoxia-induced lung injury.
Impacts of Exercise on Prognostic Biomarkers in Lung Cancer Patients
2016-02-18
Extensive Stage Small Cell Lung Cancer; Healthy, no Evidence of Disease; Limited Stage Small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer
Effector mechanism of magnolol-induced apoptosis in human lung squamous carcinoma CH27 cells
Yang, Shu-Er; Hsieh, Ming-Tsuen; Tsai, Tung-Hu; Hsu, Shih-Lan
2003-01-01
Magnolol, an active component isolated from the root and stem bark of Magnolia officinalis, has been reported to exhibit antitumour effects, but little is known about its molecular mechanisms of action. Magnolol inhibited proliferation of human lung squamous carcinoma CH27 cells at low concentrations (10–40 μM), and induced apoptosis at high concentrations (80–100 μM). Treatment with 80 μM magnolol significantly increased the expression of Bad and Bcl-XS proteins, whereas it decreased the expression of Bcl-XL. Overexpression of Bcl-2 protected CH27 cells against magnolol-triggered apoptosis. Magnolol treatment resulted in accumulation of cytosolic cytochrome c and activation of caspase-9 and downstream caspases (caspase-3 and -6). Pretreatment with z-VAD-fmk markedly inhibited magnolol-induced cell death, but did not prevent cytosolic cytochrome c accumulation. Magnolol induced a modest and persistent JNK activation and ERK inactivation in CH27 cells without evident changes in the protein levels. The responsiveness of JNK and ERK to magnolol suggests the involvement of these kinases in the initiation of the apoptosis process. These results indicate that regulation of the Bcl-2 family, accumulation of cytosolic cytochrome c, and activation of caspase-9 and caspase-3 may be the effector mechanisms of magnolol-induced apoptosis. PMID:12522090
Shao, Yi; Zhong, Dian-Sheng
2018-04-01
Non-small-cell lung cancer patients with sensitive epidermal growth factor receptor mutations generally respond well to tyrosine kinase inhibitors (TKIs). However, acquired resistance will eventually develop place after 8-16 months. Several mechanisms contribute to the resistance including T790M mutation, c-Met amplification, epithelial mesenchymal transformation and PIK3CA mutation; however, histological transformation is a rare mechanism. The patterns and mechanisms underlying histological transformation need to be explored. We searched PubMed, EMBASE and search engines Google Scholar, Medical Matrix for literature related to histological transformation. Case reports, cases series, and clinical and basic medical research articles were reviewed. Sixty-one articles were included in this review. Cases of transformation to small-cell lung cancer, squamous cell carcinoma, large-cell neuroendocrine carcinoma and sarcoma after TKI resistance have all been reported. As the clinical course differed dramatically between cases, a new treatment scheme needs to be recruited. The mechanisms underlying histological transformation have not been fully elucidated and probably relate to cancer stem cells, driver genetic alterations under selective pressure or the heterogeneity of the tumor. When TKI resistance develops, we recommend that patients undergo a second biopsy to determine the reason, guide the next treatment and predict the prognosis.
Hoballa, Mohamad Hussein; Soltani, Bahram M; Mowla, Seyed Javad; Sheikhpour, Mojgan; Kay, Maryam
2018-07-01
Frequent abnormalities in 7p12 locus in different tumors like lung cancer candidate this region for novel regulatory elements. MiRNAs as novel regulatory elements encoded within the human genome are potentially oncomiRs or miR suppressors. Here, we have used bioinformatics tools to search for the novel miRNAs embedded within human chromosome 7p12. A bona fide stem loop (named mirZa precursor) had the features of producing a real miRNA (named miRZa) which was detected through RT-qPCR following the overexpression of its precursor. Then, endogenous miRZa was detected in human cell lines and tissues and sequenced. Consistent to the bioinformatics prediction, RT-qPCR as well as dual luciferase assay indicated that SMAD3 and IGF1R genes were targeted by miRZa. MiRZa-3p and miRZa-5p were downregulated in lung tumor tissue samples detected by RT-qPCR, and mirZa precursor overexpression in SW480 cells resulted in increased sub-G1 cell population. Overall, here we introduced a novel miRNA which is capable of targeting SMAD3 and IGF1R regulatory genes and increases the cell population in sub-G1 stage.
2018-02-01
Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Non-small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer
2017-08-28
Extensive Stage Small Cell Lung Carcinoma; Lung Adenocarcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer
Strassner, James P.
2013-01-01
T cell trafficking into the lung is critical for lung immunity, but the mechanisms that mediate T cell lung homing are not well understood. Here, we show that lung dendritic cells (DCs) imprint T cell lung homing, as lung DC–activated T cells traffic more efficiently into the lung in response to inhaled antigen and at homeostasis compared with T cells activated by DCs from other tissues. Consequently, lung DC–imprinted T cells protect against influenza more effectively than do gut and skin DC–imprinted T cells. Lung DCs imprint the expression of CCR4 on T cells, and CCR4 contributes to T cell lung imprinting. Lung DC–activated, CCR4-deficient T cells fail to traffic into the lung as efficiently and to protect against influenza as effectively as lung DC–activated, CCR4-sufficient T cells. Thus, lung DCs imprint T cell lung homing and promote lung immunity in part through CCR4. PMID:23960189
Zucca, Enrica; Corsini, Emanuela; Galbiati, Valentina; Lange-Consiglio, Anna; Ferrucci, Francesco
2016-09-20
Data obtained in both animal models and clinical trials suggest that cell-based therapies represent a potential therapeutic strategy for lung repair and remodeling. Recently, new therapeutic approaches based on the use of stem cell derivatives (e.g., conditioned medium (CM) and microvesicles (MVs)) to regenerate tissues and improve their functions were proposed. The aim of this study was to investigate the immunomodulatory effects of equine amniotic mesenchymal cell derivatives on lipopolysaccharide (LPS)-induced cytokine production in equine alveolar macrophages, which may be beneficial in lung inflammatory disorders such as recurrent airway obstruction (RAO) in horses. RAO shares many features with human asthma, including an increased number of cells expressing mRNA for interleukin (IL)-4 and IL-5 and a decreased expression of IFN-γ in bronchoalveolar lavage fluid (BALF) of affected horses. The release of TNF-α, IL-6, and TGF-β1 at different time points (1, 24, 48, and 72 h) was measured in equine alveolar macrophages stimulated or not with LPS (10 and 100 ng/mL) in the presence or absence of 10 % CM or 50 × 10(6) MVs/mL. Cytokines were measured using commercially available ELISA kits. For multiple comparisons, analysis of variance was used with Tukey post-hoc test. Differences were considered significant at p ≤ 0.05. Significant modulatory effects of CM on LPS-induced TNF-α release at 24 h, and of both CM and MVs on TNF-α release at 48 h were observed. A trend toward a modulatory effect of both CM and MVs on the release of TGF-β and possibly IL-6 was visible over time. Results support the potential use of CM and MVs in lung regenerative medicine, especially in situations in which TGF-β may be detrimental, such as respiratory allergy. Further studies should evaluate the potential clinical applications of CM and MVs in equine lung diseases, such as RAO and other inflammatory disorders.
2014-12-19
Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer
In vivo antitumoral activity of stem pineapple (Ananas comosus) bromelain.
Báez, Roxana; Lopes, Miriam T; Salas, Carlos E; Hernández, Martha
2007-10-01
Stem bromelain (EC 3.4.22.32) is a major cysteine proteinase, isolated from pineapple ( Ananas comosus) stem. Its main medicinal use is recognized as digestive, in vaccine formulation, antitumoral and skin debrider for the treatment of burns. To verify the identity of the principle in stem fractions responsible for the antitumoral effect, we isolated bromelain to probe its pharmacological effects. The isolated bromelain was obtained from stems of adult pineapple plants by buffered aqueous extraction and cationic chromatography. The homogeneity of bromelain was confirmed by reverse phase HPLC, SDS-PAGE and N-terminal sequencing. The in vivo antitumoral/antileukemic activity was evaluated using the following panel of tumor lines: P-388 leukemia, sarcoma (S-37), Ehrlich ascitic tumor (EAT), Lewis lung carcinoma (LLC), MB-F10 melanoma and ADC-755 mammary adenocarcinoma. Intraperitoneal administration of bromelain (1, 12.5, 25 mg/kg), began 24 h after tumor cell inoculation in experiments in which 5-fluorouracil (5-FU, 20 mg/kg) was used as positive control. The antitumoral activity was assessed by the survival increase (% survival index) following various treatments. With the exception of MB-F10 melanoma, all other tumor-bearing animals had a significantly increased survival index after bromelain treatment. The largest increase ( approximately 318 %) was attained in mice bearing EAT ascites and receiving 12.5 mg/kg of bromelain. This antitumoral effect was superior to that of 5-FU, whose survival index was approximately 263 %, relative to the untreated control. Bromelain significantly reduced the number of lung metastasis induced by LLC transplantation, as observed with 5-FU. The antitumoral activity of bromelain against S-37 and EAT, which are tumor models sensitive to immune system mediators, and the unchanged tumor progression in the metastatic model suggests that the antimetastatic action results from a mechanism independent of the primary antitumoral effect.
2015-08-11
Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer
2017-05-23
Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer
Varshney, Rohan; Ali, Quaisar; Wu, Chengxiang; Sun, Zhongjie
2016-11-01
The objective of this study is to investigate whether stem cell delivery of secreted Klotho (SKL), an aging-suppressor protein, attenuates monocrotaline-induced pulmonary vascular dysfunction and remodeling. Overexpression of SKL in mesenchymal stem cells (MSCs) was achieved by transfecting MSCs with lentiviral vectors expressing SKL-green fluorescent protein (GFP). Four groups of rats were treated with monocrotaline, whereas an additional group was given saline (control). Three days later, 4 monocrotaline-treated groups received intravenous delivery of nontransfected MSCs, MSC-GFP, MSC-SKL-GFP, and PBS, respectively. Ex vivo vascular relaxing responses to acetylcholine were diminished in small pulmonary arteries (PAs) in monocrotaline-treated rats, indicating pulmonary vascular endothelial dysfunction. Interestingly, delivery of MSCs overexpressing SKL (MSC-SKL-GFP) abolished monocrotaline-induced pulmonary vascular endothelial dysfunction and PA remodeling. Monocrotaline significantly increased right ventricular systolic blood pressure, which was attenuated significantly by MSC-SKL-GFP, indicating improved PA hypertension. MSC-SKL-GFP also attenuated right ventricular hypertrophy. Nontransfected MSCs slightly, but not significantly, improved PA hypertension and pulmonary vascular endothelial dysfunction. MSC-SKL-GFP attenuated monocrotaline-induced inflammation, as evidenced by decreased macrophage infiltration around PAs. MSC-SKL-GFP increased SKL levels, which rescued the downregulation of SIRT1 (Sirtuin 1) expression and endothelial NO synthase (eNOS) phosphorylation in the lungs of monocrotaline-treated rats. In cultured endothelial cells, SKL abolished monocrotaline-induced downregulation of eNOS activity and NO levels and enhanced cell viability. Therefore, stem cell delivery of SKL is an effective therapeutic strategy for pulmonary vascular endothelial dysfunction and PA remodeling. SKL attenuates monocrotaline-induced PA remodeling and PA smooth muscle cell proliferation, likely by reducing inflammation and restoring SIRT1 levels and eNOS activity. © 2016 American Heart Association, Inc.
2013-06-04
Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer
2017-06-12
Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer
Waldron, P R; Martin, B A; Ho, D Y
2015-02-01
Legionella micdadei is a potential cause of invasive lung infections in immunocompromised hosts. On biopsy specimens, it can appear as an acid-fast bacillus (AFB) and can be mistaken for a member of genus Mycobacterium. As Legionella requires selective media to grow in culture, and the commonly used, commercially available urine antigen test for Legionella only detects Legionella pneumophila serogroup-1, but not L. micdadei, it is important to consider this organism in the differential diagnosis for AFB in immunocompromised hosts. We report a case of L. micdadei infection, which was initially treated empirically for non-tuberculous mycobacteria based on AFB staining of biopsy tissue before the final diagnosis was made. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
2018-04-30
Adenosquamous Lung Carcinoma; Bronchioloalveolar Carcinoma; Large Cell Lung Carcinoma; Lung Adenocarcinoma; Non-Small Cell Lung Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer