Science.gov

Sample records for lung surfactant centrifugation

  1. Lung surfactant.

    PubMed Central

    Rooney, S A

    1984-01-01

    Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidylcholine and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids, thyroid hormone, estrogen, prolactin, cyclic AMP, beta-adrenergic and cholinergic agonists, prostaglandins and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered. Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed. PMID:6145585

  2. Surfactant for Pediatric Acute Lung Injury

    PubMed Central

    Willson, Douglas F.; Chess, Patricia R.; Notter, Robert H.

    2008-01-01

    Synopsis This article reviews exogenous surfactant therapy and its use in mitigating acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) in infants, children, and adults. Biophysical and animal research documenting surfactant dysfunction in ALI/ARDS is described, and the scientific rationale for treatment with exogenous surfactant is discussed. Major emphasis is on reviewing clinical studies of surfactant therapy in pediatric and adult patients with ALI/ARDS. Particular advantages from surfactant therapy in direct pulmonary forms of these syndromes are described. Also discussed are additional factors affecting the efficacy of exogenous surfactants in ALI/ARDS, including the multifaceted pathology of inflammatory lung injury, the effectiveness of surfactant delivery in injured lungs, and composition-based activity differences among clinical exogenous surfactant preparations. PMID:18501754

  3. Surfactant treatments alter endogenous surfactant metabolism in rabbit lungs

    SciTech Connect

    Oetomo, S.B.; Lewis, J.; Ikegami, M.; Jobe, A.H. )

    1990-04-01

    The effect of exogenous surfactant on endogenous surfactant metabolism was evaluated using a single-lobe treatment strategy to compare effects of treated with untreated lung within the same rabbit. Natural rabbit surfactant, Survanta, or 0.45% NaCl was injected into the left main stem bronchus by use of a Swan-Ganz catheter. Radiolabeled palmitic acid was then given by intravascular injection at two times after surfactant treatment, and the ratios of label incorporation and secretion in the left lower lobe to label incorporation and secretion in the right lung were compared. The treatment procedure resulted in a reasonably uniform surfactant distribution and did not disrupt lobar pulmonary blood flow. Natural rabbit surfactant increased incorporation of palmitate into saturated phosphatidylcholine (Sat PC) approximately 2-fold (P less than 0.01), and secretion of labeled Sat PC increased approximately 2.5-fold in the surfactant-treated left lower lobe relative to the right lung (P less than 0.01). Although Survanta did not alter incorporation, it did increase secretion but not to the same extent as rabbit surfactant (P less than 0.01). Alteration of endogenous surfactant Sat PC metabolism in vivo by surfactant treatments was different from that which would have been predicted by previous in vitro studies.

  4. Inactivation of surfactant in rat lungs.

    PubMed

    Bruni, R; Fan, B R; David-Cu, R; Taeusch, H W; Walther, F J

    1996-02-01

    Although surfactant replacement therapy has dramatically improved the outcome of premature infants with respiratory distress syndrome, approximately 30% of treated infants show a transient or no response. Nonresponse to surfactant replacement therapy may be due to extreme lung immaturity and possibly surfactant inactivation. Surfactant inactivation involves aspecific biophysical events, such as interference with the formation or activity of an alveolar monolayer, and specific interactions with serum proteins, including antibodies, leaking into the alveolar space. As formulations containing surfactant proteins appear to better tolerate serum inactivation, we used an excised rat lung model to compare the susceptibility to serum inactivation of a mixture of synthetic phospholipids selected from surfactant lipid constituents, Exosurf (a protein-free synthetic surfactant), Survanta [containing surfactant proteins B and C (SP-B and -C)], and a porcine surfactant (containing SP-A, -B, and -C). For each of these preparations, we used pressure/volume determinations as an in situ measure of surfactant activity and retested the same preparations after mixing with human serum, a nonspecific surfactant inactivator. Human serum inactivated porcine surfactant to a lesser extent than Survanta, Exosurf, or synthetic phospholipids. Temperature exerted a significant effect on deflation stability, as shown by a greater lung compliance in untreated, normal lungs and a larger improvement in compliance after treating lavaged lungs with synthetic phospholipids at 37 degrees C than at 22 degrees C. We conclude that surfactant containing SP-A, -B, and -C is only moderately susceptible to inactivation with whole serum and may therefore exert a greater clinical response than protein-free surfactants or those containing only SP-B and -C.

  5. Surfactant Delivery into the Lung

    NASA Astrophysics Data System (ADS)

    Grotberg, James; Filoche, Marcel

    2014-11-01

    We have developed a multiscale, compartmentalized model of surfactant and liquid delivery into the lung. Assuming liquid plug propagation, the airway compartment accounts for the plug's volume deposition (coating) on the airway wall, while the bifurcation compartment accounts for plug splitting from the parent airway to the two daughter airways. Generally the split is unequal due to gravity and geometry effects. Both the deposition ratio RD (deposition volume/airway volume), and the splitting ratio, RS, of the daughters volumes are solved independently from one another. Then they are used in a 3D airway network geometry to achieve the distribution of delivery into the lung. The airway geometry is selected for neonatal as well as adult applications, and can be advanced from symmetric, to stochastically asymmetric, to personalized. RD depends primarily on the capillary number, Ca, while RS depends on Ca, the Reynolds number, Re, the Bond number, Bo, the dose volume, VD, and the branch angles. The model predicts the distribution of coating on the airway walls and the remaining plug volume delivered to the alveolar region at the end of the tree. Using this model, we are able to simulate and test various delivery protocols, in order to optimize delivery and improve the respiratory function.

  6. Changes in Sedimentation of Surfactant in Ventilated Excised Rat Lungs

    PubMed Central

    Thet, Lyn Aung; Clerch, Linda; Massaro, Gloria D.; Massaro, Donald

    1979-01-01

    We ventilated excised rat lungs at a constant tidal volume (CTV); they developed areas of atelectasis which could be reversed by a large inflation (CTV + I) or prevented by the addition of positive end-expiratory pressure to the CTV. To explore the possibility that these modes of ventilation led to changes in surfactant, we lavaged the lungs and centrifuged the returns at 500 g; we measured the amount of disaturated phosphatidylcholine (DSPC) in the resultant pellet and supernatant fluid as a marker for surfactant. We found 16.9±1.5 (mean±SE), 38.0±2.4, 18.3±1.6, and 21.7±2.3% of the total lavage DSPC, in the pellet from freshly excised, CTV, CTV + I, and positive end-expiratory pressure to the CTV lungs, respectively. The total amount of lavage DSPC was the same in all groups. The ultrastructure of acellular material pelleted by sequential centrifugation of lavage returns at 500, 1,000, and 60,000 g was examined. We found mostly tubular myelin in the 500-g and 1,000-g pellets, but no tubular myelin in the 60,000-g pellet. Air inflation pressure-volume measurements from the degassed state revealed that the opening pressure and recoil pressures up to 75% of total lung capacity were significantly higher in the CTV than in the CTV + I lungs. There were no differences between these groups in air deflation or in saline inflation and deflation pressure-volume measurements. Our findings suggest that CTV leads to increases in the tubular myelin form of surfactant and that this leads to increased surface tension in alveoli which results in alveolar collapse. Images PMID:379047

  7. Rheology of Natural Lung Surfactant Films

    NASA Astrophysics Data System (ADS)

    Alonso, Coralie; Waring, Alan; Zsadzinski, Joseph

    2004-03-01

    The lung surfactant (LS) is a lipoprotein mixture lining the inside of the pulmonary alveoli which has the ability to lower the surface tension of the air-liquid hypophase interface to value near zero thus reducing the work of breathing and which also prevents the alveolar collapse. A lack or malfunction of lung surfactant, as it is often the case for premature infants, leads to respiratory distress syndrome. RDS can be treated by supplying replacement LS to the infants and several medications derived from natural sources, are now widely used. The lung surfactant is adsorbed at the air-liquid interface and is subjected to incessant compression expansion cycles therefore Langmuir monolayers provide a suitable model to investigate the physical properties of lung surfactant films. Using a magnetic needle rheometer, we measured the shear viscosity of natural lung surfactant spread at the air-liquid interface upon compression and expansion cycles for three different formulations. The shear viscosity of Survanta changes by orders of magnitude along one cycle while for Curosurf samples it changes only slightly and for Infasurf films it remains constant. These different behaviors can be explained by differences in composition between the three formulations leading to different organizations on the molecular scale.

  8. Biophysical alteration of lung surfactant by extracts of cotton dust.

    PubMed Central

    DeLucca, A J; Brogden, K A; Catalano, E A; Morris, N M

    1991-01-01

    Byssinosis, a lung disease that can affect cotton mill workers, may be caused in part by lipopolysaccharides (LPS) from Gram negative bacteria. In vitro, LPS complexes with sheep lung surfactant (SLS). To determine whether LPS in extracts of cotton dust alters the biophysical characteristics of lung surfactant, aqueous extracts (1.0% w:v) of sterile surgical cotton (SSC) and a bulk raw cotton dust (1182DB) were prepared. Aliquots of the soluble extracts were incubated with SLS and studied by sucrose gradient centrifugation, surface tension analysis, and high pressure liquid chromatography (HPLC). The chromatography was employed to analyse for 3-hydroxymyristate (3-HM), a fatty acid indicating LPS. Also, purified Enterobacter agglomerans LPS and 3-HM as controls and as mixtures with SLS, were studied by HPLC. Sucrose gradient centrifugation showed that SLS-SSC, SLS-1182DB, and the SLS control had similar densities that differed from the remaining controls. The SLS-1182DB exhibited a floccule absent in the other samples. Surface tension values of SLS-SSC and SLS-1182DB differed significantly from all controls but only slightly from one another. 3-Hydroxymyristate was detected by HPLC in the 3-HM control, EA-LPS, SLS-EA-LPS, and SLS-1182DB, but not in SLS-SSC or the remaining controls. Apparently, 3-HM was below the HPLC detection range in SSC. The data indicate that LPS in the 1182DB, SSC and EA-LPS samples complexed with SLS. Floccule development in SLS-1182DB but not in SLS-EA-LPS suggests a further component(s) present in the bulk raw cotton dust, as well as LPS, which complexes with SLS. The data suggest that biophysical alterations to lung surfactant may play a part in the pathogenesis of byssinosis. Images PMID:1993159

  9. The use of surfactant in lung transplantation.

    PubMed

    Amital, Anat; Shitrit, David; Raviv, Yael; Saute, Milton; Medalion, Benjamin; Bakal, Llana; Kramer, Mordechai R

    2008-12-15

    Lung transplantation impairs surfactant activity, which may contribute to primary graft dysfunction (PGD). Prompted by studies in animals and a few reports in humans, this study sought to determine if the administration of surfactant during transplantation serves as an effective preventive measure. An open, randomized, controlled prospective design was used. Forty-two patients scheduled for single (n=38) or double (n=4) lung transplantation at a major tertiary medical center were randomly assigned to receive, or not, intraoperative surfactant treatment. In the treated group, bovine surfactant was administered at a dose of 20 mg phospholipids/kg through bronchoscope after the establishment of bronchial anastomosis. The groups were compared for oxygenation (PaO2/FiO2), chest X-ray findings, PGD grade, and outcome. Compared with the untreated group, the patients who received surfactant were characterized by better postoperative oxygenation mean PaO2/FiO2 (418.8+/-123.8 vs. 277.9+/-165 mm Hg, P=0.004), better chest radiograph score, a lower PGD grade (0.66 vs. 1.86, P=0.005), fewer cases of severe PGD (1 patient vs. 12, P<0.05), earlier extubation (by 2.2 hr; 95% CI 1.1-4.3 hr, P=0.027), shorter intensive care unit stay (by 2.3 days; 95% CI 1.47-3.74 days, P=0.001), and better vital capacity at 1 month (61% vs. 50%, P=0.022). One treated and 2 untreated patients died during the first postoperative month. Surfactant instillation during lung transplantation improves oxygenation, prevents PGD, shortens intubation time, and enhances early posttransplantation recovery. Further, larger studies are needed to assess whether surfactant should be used routinely in lung transplantation.

  10. Lung surfactant as a drug delivery system.

    PubMed

    Vermehren, C; Frokjaer, S; Aurstad, T; Hansen, J

    2006-01-03

    Lung surfactant is a complex mixture of mainly phospholipids and proteins. The composition leads to a unique spreading effect of the surfactant as well as spontaneous vesicle formation, which may be favourable characteristics of a drug delivery system for pulmonary delivery. The aim of study was to investigate the potential use of the surfactant extract, HL10 (LeoPharma, DK) as a drug delivery system. Studies involved incorporation of hydrophilic- and amphipathic model drugs (sucrose and acylated peptides) into HL10 and elucidation of the influence of surfactant proteins on the HL10 behaviour. Results showed that HL10 vesicles did not retain sucrose indicating formation of leaky vesicles. Studying the influence of surfactant proteins on release from DPPC-liposomes showed tendencies toward a protein-induced release. Hence, the surfactant proteins may influence the membrane lipid packing and characteristics resulting in leakiness of the membranes. Incorporation of acylated peptides into HL10 depended on the chain length rendering a successful incorporation of the peptide acylated with C14-acyl chains. This study suggests that HL10 may be a promising drug delivery system for the pulmonary delivery of amphipathic drug substances, e.g. therapeutically active acylated peptides (e.g. acylated insulin).

  11. Nanoparticle interaction with model lung surfactant monolayers

    PubMed Central

    Harishchandra, Rakesh Kumar; Saleem, Mohammed; Galla, Hans-Joachim

    2010-01-01

    One of the most important functions of the lung surfactant monolayer is to form the first line of defence against inhaled aerosols such as nanoparticles (NPs), which remains largely unexplored. We report here, for the first time, the interaction of polyorganosiloxane NPs (AmorSil20: 22 nm in diameter) with lipid monolayers characteristic of alveolar surfactant. To enable a better understanding, the current knowledge about an established model surface film that mimics the surface properties of the lung is reviewed and major results originating from our group are summarized. The pure lipid components dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol have been used to study the biophysical behaviour of their monolayer films spread at the air–water interface in the presence of NPs. Film balance measurements combined with video-enhanced fluorescence microscopy have been used to investigate the formation of domain structures and the changes in the surface pattern induced by NPs. We are able to show that NPs are incorporated into lipid monolayers with a clear preference for defect structures at the fluid–crystalline interface leading to a considerable monolayer expansion and fluidization. NPs remain at the air–water interface probably by coating themselves with lipids in a self-assembly process, thereby exhibiting hydrophobic surface properties. We also show that the domain structure in lipid layers containing surfactant protein C, which is potentially responsible for the proper functioning of surfactant material, is considerably affected by NPs. PMID:19846443

  12. Pulmonary surfactants and their role in pathophysiology of lung disorders.

    PubMed

    Akella, Aparna; Deshpande, Shripad B

    2013-01-01

    Surfactant is an agent that decreases the surface tension between two media. The surface tension between gaseous-aqueous interphase in the lungs is decreased by the presence of a thin layer of fluid known as pulmonary surfactant. The pulmonary surfactant is produced by the alveolar type-II (AT-II) cells of the lungs. It is essential for efficient exchange of gases and for maintaining the structural integrity of alveoli. Surfactant is a secretory product, composed of lipids and proteins. Phosphatidylcholine and phosphatidylglycerol are the major lipid constituents and SP-A, SP-B, SP-C, SP-D are four types of surfactant associated proteins. The lipid and protein components are synthesized separately and are packaged into the lamellar bodies in the AT-II cells. Lamellar bodies are the main organelle for the synthesis and metabolism of surfactants. The synthesis, secretion and recycling of the surfactant lipids and proteins is regulated by complex genetic and metabolic mechanisms. The lipid-protein interaction is very important for the structural organization of surfactant monolayer and its functioning. Alterations in surfactant homeostasis or biophysical properties can result in surfactant insufficiency which may be responsible for diseases like respiratory distress syndrome, lung proteinosis, interstitial lung diseases and chronic lung diseases. The biochemical, physiological, developmental and clinical aspects of pulmonary surfactant are presented in this article to understand the pathophysiological mechanisms of these diseases.

  13. Lung surfactants and different contributions to thin film stability.

    PubMed

    Hermans, Eline; Bhamla, M Saad; Kao, Peter; Fuller, Gerald G; Vermant, Jan

    2015-11-07

    The surfactant lining the walls of the alveoli in the lungs increases pulmonary compliance and prevents collapse of the lung at the end of expiration. In premature born infants, surfactant deficiency causes problems, and lung surfactant replacements are instilled to facilitate breathing. These pulmonary surfactants, which form complex structured fluid-fluid interfaces, need to spread with great efficiency and once in the alveolus they have to form a thin stable film. In the present work, we investigate the mechanisms affecting the stability of surfactant-laden thin films during spreading, using drainage flows from a hemispherical dome. Three commercial lung surfactant replacements Survanta, Curosurf and Infasurf, along with the phospholipid dipalmitoylphosphatidylcholine (DPPC), are used. The surface of the dome can be covered with human alveolar epithelial cells and experiments are conducted at the physiological temperature. Drainage is slowed down due to the presence of all the different lung surfactant replacements and therefore the thin films show enhanced stability. However, a scaling analysis combined with visualization experiments demonstrates that different mechanisms are involved. For Curosurf and Infasurf, Marangoni stresses are essential to impart stability and interfacial shear rheology does not play a role, in agreement with what is observed for simple surfactants. Survanta, which was historically the first natural surfactant used, is rheologically active. For DPPC the dilatational properties play a role. Understanding these different modes of stabilization for natural surfactants can benefit the design of effective synthetic surfactant replacements for treating infant and adult respiratory disorders.

  14. Effect of exogenous surfactant on the development of surfactant synthesis in premature rabbit lung.

    PubMed

    Amato, Maurizio; Petit, Kevin; Fiore, Humberto H; Doyle, Cynthia A; Frantz, Ivan D; Nielsen, Heber C

    2003-04-01

    Surfactant replacement is an effective therapy for neonatal respiratory distress syndrome. Full recovery from respiratory distress syndrome requires development of endogenous surfactant synthesis and metabolism. The influence of exogenous surfactant on the development of surfactant synthesis in premature lungs is not known. We hypothesized that different exogenous surfactants have different effects on the development of endogenous surfactant production in the premature lung. We treated organ cultures of d 25 fetal rabbit lung for 3 d with 100 mg/kg body weight of natural rabbit surfactant, Survanta, and Exosurf and measured their effects on the development of surfactant synthesis. Additional experiments tested how these surfactants and Curosurf affected surfactant protein (SP) SP-A, SP-B, and SP-C mRNA expression. Surfactant synthesis was measured as the incorporation of 3H-choline and 14C-glycerol into disaturated phosphatidylcholine recovered from lamellar bodies. Randomized-block ANOVA showed significant differences among treatments for incorporation of both labels (p < 0.01), with natural rabbit surfactant less than control, Survanta greater than control, and Exosurf unchanged. Additional experiments with natural rabbit surfactant alone showed no significant effects in doses up to 1000 mg/kg. Survanta stimulated disaturated phosphatidylcholine synthesis (173 +/- 41% of control; p = 0.01), increased total lamellar body disaturated phosphatidylcholine by 22% (p < 0.05), and increased 14C-disat-PC specific activity by 35% (p < 0.05). The response to Survanta was dose-dependent up to 1000 mg/kg. Survanta did not affect surfactant release. No surfactant altered the expression of mRNA for SP-A, SP-B, or SP-C. We conclude that surfactant replacement therapy can enhance the maturation of surfactant synthesis, but this potential benefit differs with different surfactant preparations.

  15. Neonatal oxygen adversely affects lung function in adult mice without altering surfactant composition or activity

    PubMed Central

    Yee, Min; Chess, Patricia R.; McGrath-Morrow, Sharon A.; Wang, Zhengdong; Gelein, Robert; Zhou, Rui; Dean, David A.; Notter, Robert H.

    2009-01-01

    Despite its potentially adverse effects on lung development and function, supplemental oxygen is often used to treat premature infants in respiratory distress. To understand how neonatal hyperoxia can permanently disrupt lung development, we previously reported increased lung compliance, greater alveolar simplification, and disrupted epithelial development in adult mice exposed to 100% inspired oxygen fraction between postnatal days 1 and 4. Here, we investigate whether oxygen-induced changes in lung function are attributable to defects in surfactant composition and activity, structural changes in alveolar development, or both. Newborn mice were exposed to room air or 40%, 60%, 80%, or 100% oxygen between postnatal days 1 and 4 and allowed to recover in room air until 8 wk of age. Lung compliance and alveolar size increased, and airway resistance, airway elastance, tissue elastance, and tissue damping decreased, in mice exposed to 60–80% oxygen; changes were even greater in mice exposed to 100% oxygen. These alterations in lung function were not associated with changes in total protein content or surfactant phospholipid composition in bronchoalveolar lavage. Moreover, surface activity and total and hydrophobic protein content were unchanged in large surfactant aggregates centrifuged from bronchoalveolar lavage compared with control. Instead, the number of type II cells progressively declined in 60–100% oxygen, whereas levels of T1α, a protein expressed by type I cells, were comparably increased in mice exposed to 40–100% oxygen. Thickened bundles of elastin fibers were also detected in alveolar walls of mice exposed to ≥60% oxygen. These findings support the hypothesis that changes in lung development, rather than surfactant activity, are the primary causes of oxygen-altered lung function in children who were exposed to oxygen as neonates. Furthermore, the disruptive effects of oxygen on epithelial development and lung mechanics are not equivalently dose

  16. Exogenous surfactant restores lung function but not peripheral immunosuppression in ventilated surfactant-deficient rats.

    PubMed

    Vreugdenhil, Harriet A; Lachmann, Burkhard; Haitsma, Jack J; Zijlstra, Jitske; Heijnen, Cobi J; Jansen, Nicolaas J; van Vught, Adrianus J

    2006-01-01

    The authors have previously shown that mechanical ventilation can result in increased pulmonary inflammation and suppressed peripheral leukocyte function. In the present study the effect of surfactant therapy on pulmonary inflammation and peripheral immune function in ventilated surfactant-deficient rats was assessed. Surfactant deficiency was induced by repeated lung lavage, treated rats with surfactant or left them untreated, and ventilated the rats during 2 hours. Nonventilated rats served as healthy control group. Expression of macrophage inflammatory protein (MIP)-2 was measured in bronchoalveolar lavage (BAL), interleukin (IL)-1beta, and heat shock protein 70 (HSP70) were measured in total lung homogenates. Outside the lung phytohemagglutinin (PHA)-induced lymphocyte proliferation, interferon (IFN)-gamma and IL-10 production, and natural killer activity were measured in splenocytes. After 2 hours of mechanical ventilation, expression of MIP-2, IL-1beta, and HSP70 increased significantly in the lungs of surfactant-deficient rats. Outside the lung, mitogen-induced proliferation and production of IFN-gamma and IL-10 reduced significantly. Only natural killer cell activity remained unaffected. Surfactant treatment significantly improved lung function, but could not prevent increased pulmonary expression of MIP-2, IL-1beta, and HSP70 and decreased peripheral mitogen-induced lymphocyte proliferation and IFN-gamma and IL-10 production in vitro. In conclusion, 2 hours of mechanical ventilation resulted in increased lung inflammation and partial peripheral leukocyte suppression in surfactant-deficient rats. Surfactant therapy ameliorated lung function but could not prevent or restore peripheral immunosuppression. The authors postulate that peripheral immunosuppression may occur in ventilated surfactant deficient patients, which may enhance susceptibility for infections.

  17. Beneficial effects of synthetic KL₄ surfactant in experimental lung transplantation.

    PubMed

    Sáenz, A; Alvarez, L; Santos, M; López-Sánchez, A; Castillo-Olivares, J L; Varela, A; Segal, R; Casals, C

    2011-04-01

    The aim of this study was to investigate whether intratracheal administration of a new synthetic surfactant that includes the cationic, hydrophobic 21-residue peptide KLLLLKLLLLKLLLLKLLLLK (KL₄), might be effective in reducing ischaemia-reperfusion injury after lung transplantation. Single left lung transplantation was performed in Landrace pigs 22 h post-harvest. KL₄ surfactant at a dose of 25 mg total phospholipid·kg body weight⁻¹ (2.5 mL·kg body weight⁻¹) was instilled at 37°C to the donor left lung (n = 8) prior to explantation. Saline (2.5 mL·kg body weight⁻¹; 37°C) was instilled into the donor left lung of the untreated group (n = 6). Lung function in recipients was measured during 2 h of reperfusion. Recipient left lung bronchoalveolar lavage (BAL) provided native cytometric, inflammatory marker and surfactant data. KL(4) surfactant treatment recovered oxygen levels in the recipient blood (mean ± sd arterial oxygen tension/inspiratory oxygen fraction 424 ± 60 versus 263 ± 101 mmHg in untreated group; p=0.01) and normalised alveolar-arterial oxygen tension difference. Surfactant biophysical function was also recovered in KL₄ surfactant-treated lungs. This was associated with decreased C-reactive protein levels in BAL, and recovery of surfactant protein A content, normalised protein/phospholipid ratios, and lower levels of both lipid peroxides and protein carbonyls in large surfactant aggregates. These findings suggest an important protective role for KL₄ surfactant treatment in lung transplantation.

  18. [Pulmonary surfactant homeostasis associated genetic abnormalities and lung diseases].

    PubMed

    Jiang, Xiaojing; Sun, Xiuzhu; Du, Weihua; Hao, Haisheng; Zhao, Xueming; Wang, Dong; Zhu, Huabin; Liu, Yan

    2016-08-01

    Pulmonary surfactant (PS) is synthesized and secreted by alveolar epithelial type II (AEII) cells, which is a complex compound formed by proteins and lipids. Surfactant participates in a range of physiological processes such as reducing the surface tension, keeping the balance of alveolar fluid, maintaining normal alveolar morphology and conducting host defense. Genetic disorders of the surfactant homeostasis genes may result in lack of surfactant or cytotoxicity, and lead to multiple lung diseases in neonates, children and adults, including neonatal respiratory distress syndrome, interstitial pneumonia, pulmonary alveolar proteinosis, and pulmonary fibrosis. This paper has provided a review for the functions and processes of pulmonary surfactant metabolism, as well as the connection between disorders of surfactant homeostasis genes and lung diseases.

  19. Bilateral lavage with diluted surfactant improves lung function after unilateral lung contusion in pigs.

    PubMed

    Strohmaier, Wolfgang; Trupka, Arnold; Pfeiler, Claudia; Thurnher, Martin; Khakpour, Zafar; Gippner-Steppert, Cornelia; Jochum, Marianne; Redl, Heinz

    2005-10-01

    This study evaluates the effects of bronchoalveolar lavage with diluted surfactant on unilateral lung contusion-induced lung dysfunction. Randomized prospective animal study. An animal laboratory. Twenty adult pigs, weighing 25-35 kg. Animals were randomly assigned to controls and surfactant treatment. Bilateral lavage with surfactant treatment began 30 mins after unilateral lung contusion. Then 25 mg/kg of body weight diluted Curosurf (5 mg/mL) was applied in a volume of 5 mL/kg of body weight. Observation time was 8 hrs postinjury. The Pao2/Fio2 ratio fell from 500 to 250 and then recovered gradually in controls and surfactant-treated pigs. After another 4 hrs, the Pao2/Fio2 ratio deteriorated again in controls, but not in surfactant-treated animals. Total compliance fell by 50% after injury but was completely restored by surfactant treatment. Lung contusion increased the median number of neutrophils in bronchoalveolar lavage fluid from 2% to 30% of total cells and peaked >60% at 480 mins in the contused lungs of control pigs. Surfactant-treated pigs had 40% neutrophils at 480 mins without reaching significant difference to controls. The leukocyte neutral proteinase inhibitor increased to 500 ng/mL at 30 mins postinjury in the contused lungs and increased to 2000 ng/mL after surfactant treatment. Bilateral bronchoalveolar lavage with diluted surfactant can effectively improve lung function after experimental unilateral lung contusion in pigs.

  20. The Lung Surfactant System in Adult Respiratory Distress Syndrome.

    DTIC Science & Technology

    1980-08-01

    STANDAROS- 193 A AD_ THE LUNG SURFACTANT SYSTEM IN ADULT RESPIRATORY DISTRESS SYNDROME FINAL PROGRESS REPORT John U. Balls August 1980 Sponsored by: US...D-A12l 434 THE LUNG SURFACTANT SYvTKl-OJL E~~rP DISTRESS SYNDROME (U) UNIVERSITY OF SOUTH FLORIDA TAMPA COLL OF MEDICINE J U BALIS RUG 8S DRNDi7-78-C...SURFACTANT SYSTEM IN ADULT Final 1 November 1978 - RESPIRATORY DISTU~SS SYNDROME - 30 April 1980 6. PERFORMING ORG. REPORT NUMBER * 7. AUTHOR(e) G. CONTRACT

  1. Competitive Adsorption: A Physical Model for Lung Surfactant Inactivation

    PubMed Central

    Fernsler, Jonathan G.; Zasadzinski, Joseph A.

    2009-01-01

    Charged, surface-active serum proteins can severely reduce or eliminate the adsorption of lung surfactant from the subphase to the alveolar air-liquid interface via a kinetically controlled competitive adsorption process. The decreased surfactant concentration at the interface leads to higher surface tensions during the compression of the interface during breathing. The correspondence between the factors governing colloid stability and competitive adsorption is validated via a new method of measuring surfactant and serum protein adsorption rates to the air-water interface using quantitative Brewster Angle Microscopy (BAM). Competitive adsorption from a 10 mg/mL albumin subphase prevents the adsorption of lung surfactant from even high subphase concentrations due to the fast diffusion of the water-soluble proteins to the interface. The formation of an albumin film causes an electrostatic and steric barrier to subsequent surfactant adsorption, which can destroy the necessary properties of functional lung surfactant: low surface tension during compression and rapid respreading after film collapse. Surfactant inactivation is at least partially due to decreased surfactant adsorption; such decreased adsorption due to the presence of serum proteins may play a role in the development and severity of Acute Respiratory Distress Syndrome. PMID:19534502

  2. Model Lung Surfactant Films: Why Composition Matters

    SciTech Connect

    Selladurai, Sahana L.; Miclette Lamarche, Renaud; Schmidt, Rolf; DeWolf, Christine E.

    2016-10-18

    Lung surfactant replacement therapies, Survanta and Infasurf, and two lipid-only systems both containing saturated and unsaturated phospholipids and one containing additional palmitic acid were used to study the impact of buffered saline on the surface activity, morphology, rheology, and structure of Langmuir monolayer model membranes. Isotherms and Brewster angle microscopy show that buffered saline subphases induce a film expansion, except when the cationic protein, SP-B, is present in sufficient quantities to already screen electrostatic repulsion, thus limiting the effect of changing pH and adding counterions. Grazing incidence X-ray diffraction results indicate an expansion not only of the liquid expanded phase but also an expansion of the lattice of the condensed phase. The film expansion corresponded in all cases with a significant reduction in the viscosity and elasticity of the films. The viscoelastic parameters are dominated by liquid expanded phase properties and do not appear to be dependent on the structure of the condensed phase domains in a phase separated film. The results highlight that the choice of subphase and film composition is important for meaningful interpretations of measurements using model systems.

  3. Endotoxin suppresses surfactant synthesis in cultured rat lung cells

    SciTech Connect

    Li, J.J.; Sanders, R.L.; McAdam, K.P.; Gelfand, J.A.; Burke, J.F.

    1989-02-01

    Pulmonary complications secondary to postburn sepsis are a major cause of death in burned patients. Using an in vitro organotypic culture system, we examined the effect of E. coli endotoxin (LPS) on lung cell surfactant synthesis. Our results showed that E. coli endotoxin (1.0, 2.5, 10 micrograms LPS/ml) was capable of suppressing the incorporation of /sup 3/H-choline into de novo synthesized surfactant, lamellar bodies (LB), and common myelin figures (CMF) at 50%, 68%, and 64%, respectively. In a similar study, we were able to show that LPS also inhibited /sup 3/H-palmitate incorporation by cultured lung cells. LPS-induced suppression of surfactant synthesis was reversed by hydrocortisone. Our results suggest that LPS may play a significant role in reducing surfactant synthesis by rat lung cells, and thus contribute to the pathogenesis of sepsis-related respiratory distress syndrome (RDS) in burn injury.

  4. [Study of novel artificial lung surfactants incorporating partially fluorinated amphiphiles].

    PubMed

    Nakahara, Hiromichi

    2012-01-01

    Lung surfactants (LS), a complex of ∼90 wt% lipids (mainly dipalmitoylphosphatidylcholine or DPPC) and ∼10 wt% surfactant proteins (SP-A, -B, -C, and -D), adsorb to an air-alveolar fluid interface and then lower its surface tension down to near zero during expiration. Intratracheal instillation of exogenous LS preparations can effectively compensate for surfactant deficiency in premature infants with respiratory distress syndrome (RDS). Surfacten® (Mitsubishi Tanabe Pharma Corporation, Osaka, Japan), a modified bovine lung extract and an effective surfactant replacement in treatment for RDS patients, is supplemented with DPPC, palmitic acid, and tripalmitin. For the premature infants suffering from RDS, instillation of Surfacten® leads to a dramatic improvement in lung function and compliance. Herein, the author reviews potential use of newly designed preparations containing a mimicking peptide of SP-B and also introduces the current research on the preparations incorporated with partially fluorinated amphiphiles to improve their efficacy.

  5. A Function of Lung Surfactant Protein SP-B

    NASA Astrophysics Data System (ADS)

    Longo, M. L.; Bisagno, A. M.; Zasadzinski, J. A. N.; Bruni, R.; Waring, A. J.

    1993-07-01

    The primary function of lung surfactant is to form monolayers at the alveolar interface capable of lowering the normal surface tension to near zero. To accomplish this process, the surfactant must be capable of maintaining a coherent, tightly packed monolayer that avoids collapse during expiration. The positively charged amino-terminal peptide SP-B1-25 of lung surfactant-specific protein SP-B increases the collapse pressure of an important component of lung surfactant, palmitic acid (PA), to nearly 70 millinewtons per meter. This alteration of the PA isotherms removes the driving force for "squeeze-out" of the fatty acids from the primarily dipalmitoylphosphatidylcholine monolayers of lung surfactant. An uncharged mutant of SP-B1-25 induced little change in the isotherms, suggesting that a specific charge interaction between the cationic peptide and the anionic lipid is responsible for the stabilization. The effect of SP-B1-25 on fatty acid isotherms is remarkably similar to that of simple poly-cations, suggesting that such polymers might be useful as components of replacement surfactants for the treatment of respiratory distress syndrome.

  6. Lung Surfactant Levels are Regulated by Ig-Hepta/GPR116 by Monitoring Surfactant Protein D

    PubMed Central

    Fukuzawa, Taku; Ishida, Junji; Kato, Akira; Ichinose, Taro; Ariestanti, Donna Maretta; Takahashi, Tomoya; Ito, Kunitoshi; Abe, Jumpei; Suzuki, Tomohiro; Wakana, Shigeharu; Fukamizu, Akiyoshi; Nakamura, Nobuhiro; Hirose, Shigehisa

    2013-01-01

    Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta+/+ and Ig-Hepta−/− mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i) balanced synthesis of surfactant lipids and proteins and (ii) surfactant secretion, and (iii) a stimulating effect on recycling (uptake) in response to elevated levels of Sp-D in alveolar space. PMID:23922714

  7. Evolution of pulmonary surfactants for the treatment of neonatal respiratory distress syndrome and paediatric lung diseases.

    PubMed

    Mazela, Jan; Merritt, T Allen; Gadzinowski, Janusz; Sinha, Sunil

    2006-09-01

    This review documents the evolution of surfactant therapy, beginning with observations of surfactant deficiency in respiratory distress syndrome, the basis of exogenous surfactant treatment and the development of surfactant-containing novel peptides patterned after SP-B. We critically analyse the molecular interactions of surfactant proteins and phospholipids contributing to surfactant function. Peptide-containing surfactant provides clinical efficacy in the treatment of respiratory distress syndrome and offers promise for treating other lung diseases in infancy.

  8. The Pulmonary Surfactant: Impact of Tobacco Smoke and Related Compounds on Surfactant and Lung Development

    PubMed Central

    Scott, J Elliott

    2004-01-01

    Cigarette smoking, one of the most pervasive habits in society, presents many well established health risks. While lung cancer is probably the most common and well documented disease associated with tobacco exposure, it is becoming clear from recent research that many other diseases are causally related to smoking. Whether from direct smoking or inhaling environmental tobacco smoke (ETS), termed secondhand smoke, the cells of the respiratory tissues and the lining pulmonary surfactant are the first body tissues to be directly exposed to the many thousands of toxic chemicals in tobacco. Considering the vast surface area of the lung and the extreme attenuation of the blood-air barrier, it is not surprising that this organ is the primary route for exposure, not just to smoke but to most environmental contaminants. Recent research has shown that the pulmonary surfactant, a complex mixture of phospholipids and proteins, is the first site of defense against particulates or gas components of smoke. However, it is not clear what effect smoke has on the surfactant. Most studies have demonstrated that smoking reduces bronchoalveolar lavage phospholipid levels. Some components of smoke also appear to have a direct detergent-like effect on the surfactant while others appear to alter cycling or secretion. Ultimately these effects are reflected in changes in the dynamics of the surfactant system and, clinically in changes in lung mechanics. Similarly, exposure of the developing fetal lung through maternal smoking results in postnatal alterations in lung mechanics and higher incidents of wheezing and coughing. Direct exposure of developing lung to nicotine induces changes suggestive of fetal stress. Furthermore, identification of nicotinic receptors in fetal lung airways and corresponding increases in airway connective tissue support a possible involvement of nicotine in postnatal asthma development. Finally, at the level of the alveoli of the lung, colocalization of nicotinic

  9. The Pulmonary Surfactant: Impact of Tobacco Smoke and Related Compounds on Surfactant and Lung Development

    PubMed Central

    Scott, J Elliott

    2004-01-01

    Cigarette smoking, one of the most pervasive habits in society, presents many well established health risks. While lung cancer is probably the most common and well documented disease associated with tobacco exposure, it is becoming clear from recent research that many other diseases are causally related to smoking. Whether from direct smoking or inhaling environmental tobacco smoke (ETS), termed secondhand smoke, the cells of the respiratory tissues and the lining pulmonary surfactant are the first body tissues to be directly exposed to the many thousands of toxic chemicals in tobacco. Considering the vast surface area of the lung and the extreme attenuation of the blood-air barrier, it is not surprising that this organ is the primary route for exposure, not just to smoke but to most environmental contaminants. Recent research has shown that the pulmonary surfactant, a complex mixture of phospholipids and proteins, is the first site of defense against particulates or gas components of smoke. However, it is not clear what effect smoke has on the surfactant. Most studies have demonstrated that smoking reduces bronchoalveolar lavage phospholipid levels. Some components of smoke also appear to have a direct detergent-like effect on the surfactant while others appear to alter cycling or secretion. Ultimately these effects are reflected in changes in the dynamics of the surfactant system and, clinically in changes in lung mechanics. Similarly, exposure of the developing fetal lung through maternal smoking results in postnatal alterations in lung mechanics and higher incidents of wheezing and coughing. Direct exposure of developing lung to nicotine induces changes suggestive of fetal stress. Furthermore, identification of nicotinic receptors in fetal lung airways and corresponding increases in airway connective tissue support a possible involvement of nicotine in postnatal asthma development. Finally, at the level of the alveoli of the lung, colocalization of nicotinic

  10. Centrifugal Shape Sorting of Faceted Gold Nanoparticles Using an Atomic Plane-Selective Surfactant.

    PubMed

    Tyler, Timothy P; Lin, Pin Ann; Tian, Yuan; Gao, Hong-Jun; Gao, Xuan P A; Sankaran, R Mohan; Hersam, Mark C

    2012-06-07

    Highly refined shape populations of gold nanoparticles (AuNPs) are important for emerging applications in catalysis, plasmonics, and nanomaterials growth. To date, research efforts have focused on achieving monodisperse shape by synthetic control or postsynthetic processing that relies on centrifugal sedimentation-based sorting schemes where differences in the particle mass and aspect ratios (e.g., rods and spheres) provide a driving force for separation. Here, we present a technique to reversibly modify the sedimentation coefficients of AuNPs possessing different shapes that would otherwise be virtually indistinguishable during centrifugal sedimentation due to their similar densities, masses, and aspect ratios by exploiting the preferential affinity of the surfactant cetyltrimethylammonium bromide (CTAB) for the Au(100) facet. The resulting tailored sedimentation coefficients enable AuNP shape sorting via density gradient centrifugation (DGC). DGC-refined populations of faceted AuNPs are shown to significantly enhance the growth rate of InAs nanowires when used as seed particles, emphasizing the importance of shape control for nanomaterials growth applications.

  11. Lung Surfactant Protein A (SP-A) Interactions with Model Lung Surfactant Lipids and an SP-B Fragment

    PubMed Central

    2011-01-01

    Surfactant protein A (SP-A) is the most abundant protein component of lung surfactant, a complex mixture of proteins and lipids. SP-A performs host defense activities and modulates the biophysical properties of surfactant in concerted action with surfactant protein B (SP-B). Current models of lung surfactant mechanism generally assume SP-A functions in its octadecameric form. However, one of the findings of this study is that when SP-A is bound to detergent and lipid micelles that mimic lung surfactant phospholipids, it exists predominantly as smaller oligomers, in sharp contrast to the much larger forms observed when alone in water. These investigations were carried out in sodium dodecyl sulfate (SDS), dodecylphosphocholine (DPC), lysomyristoylphosphatidylcholine (LMPC), lysomyristoylphosphatidylglycerol (LMPG), and mixed LMPC + LMPG micelles, using solution and diffusion nuclear magnetic resonance (NMR) spectroscopy. We have also probed SP-A’s interaction with Mini-B, a biologically active synthetic fragment of SP-B, in the presence of micelles. Despite variations in Mini-B’s own interactions with micelles of different compositions, SP-A is found to interact with Mini-B in all micelle systems and perhaps to undergo a further structural rearrangement upon interacting with Mini-B. The degree of SP-A–Mini-B interaction appears to be dependent on the type of lipid headgroup and is likely mediated through the micelles, rather than direct binding. PMID:21553841

  12. Lung surfactant protein A (SP-A) interactions with model lung surfactant lipids and an SP-B fragment.

    PubMed

    Sarker, Muzaddid; Jackman, Donna; Booth, Valerie

    2011-06-07

    Surfactant protein A (SP-A) is the most abundant protein component of lung surfactant, a complex mixture of proteins and lipids. SP-A performs host defense activities and modulates the biophysical properties of surfactant in concerted action with surfactant protein B (SP-B). Current models of lung surfactant mechanism generally assume SP-A functions in its octadecameric form. However, one of the findings of this study is that when SP-A is bound to detergent and lipid micelles that mimic lung surfactant phospholipids, it exists predominantly as smaller oligomers, in sharp contrast to the much larger forms observed when alone in water. These investigations were carried out in sodium dodecyl sulfate (SDS), dodecylphosphocholine (DPC), lysomyristoylphosphatidylcholine (LMPC), lysomyristoylphosphatidylglycerol (LMPG), and mixed LMPC + LMPG micelles, using solution and diffusion nuclear magnetic resonance (NMR) spectroscopy. We have also probed SP-A's interaction with Mini-B, a biologically active synthetic fragment of SP-B, in the presence of micelles. Despite variations in Mini-B's own interactions with micelles of different compositions, SP-A is found to interact with Mini-B in all micelle systems and perhaps to undergo a further structural rearrangement upon interacting with Mini-B. The degree of SP-A-Mini-B interaction appears to be dependent on the type of lipid headgroup and is likely mediated through the micelles, rather than direct binding.

  13. The Lung Surfactant System in Adult Respiratory Distress Syndrome.

    DTIC Science & Technology

    1979-12-01

    composition of surfactant from tracheal aspirates is similar to that obtained from human minced lung tissue. 4. MECHANISMS OF CONGESTIVE ATELECTASIS IN...pulmonary leukocytosis with sus- tained phagocytosis of endotoxin by the marginating leukocytes, endothelial cell damage, edema and congestive atelectasis ...congestive atelectasis , margination of leukocytes and prominent endothelial damage in association with edema which was primarily interstitial. Moreover

  14. Interfacial reactions of ozone with surfactant protein B in a model lung surfactant system.

    PubMed

    Kim, Hugh I; Kim, Hyungjun; Shin, Young Shik; Beegle, Luther W; Jang, Seung Soon; Neidholdt, Evan L; Goddard, William A; Heath, James R; Kanik, Isik; Beauchamp, J L

    2010-02-24

    Oxidative stresses from irritants such as hydrogen peroxide and ozone (O(3)) can cause dysfunction of the pulmonary surfactant (PS) layer in the human lung, resulting in chronic diseases of the respiratory tract. For identification of structural changes of pulmonary surfactant protein B (SP-B) due to the heterogeneous reaction with O(3), field-induced droplet ionization (FIDI) mass spectrometry has been utilized. FIDI is a soft ionization method in which ions are extracted from the surface of microliter-volume droplets. We report structurally specific oxidative changes of SP-B(1-25) (a shortened version of human SP-B) at the air-liquid interface. We also present studies of the interfacial oxidation of SP-B(1-25) in a nonionizable 1-palmitoyl-2-oleoyl-sn-glycerol (POG) surfactant layer as a model PS system, where competitive oxidation of the two components is observed. Our results indicate that the heterogeneous reaction of SP-B(1-25) at the interface is quite different from that in the solution phase. In comparison with the nearly complete homogeneous oxidation of SP-B(1-25), only a subset of the amino acids known to react with ozone are oxidized by direct ozonolysis in the hydrophobic interfacial environment, both with and without the lipid surfactant layer. Combining these experimental observations with the results of molecular dynamics simulations provides an improved understanding of the interfacial structure and chemistry of a model lung surfactant system subjected to oxidative stress.

  15. Interfacial Reactions of Ozone with Surfactant Protein B in a Model Lung Surfactant System

    PubMed Central

    Kim, Hugh I.; Kim, Hyungjun; Shin, Young Shik; Beegle, Luther W.; Jang, Seung Soon; Neidholdt, Evan L.; Goddard, William A.; Heath, James R.; Kanik, Isik; Beauchamp, J. L.

    2010-01-01

    Oxidative stresses from irritants such as hydrogen peroxide and ozone (O3) can cause dysfunction of the pulmonary surfactant (PS) layer in the human lung, resulting in chronic diseases of the respiratory tract. For identification of structural changes of pulmonary surfactant protein B due to the heterogeneous reaction with O3, field induced droplet ionization (FIDI) mass spectrometry is utilized. FIDI is a soft ionization method in which ions are extracted from the surface of microliter-volume droplets. We report the structurally specific oxidative changes of SP-B1-25 (a shortened version of human surfactant protein B) at the air-liquid interface. We also present studies of the interfacial oxidation of SP-B1-25 in a non-ionizable 1-palmitoyl-2-oleoyl-sn-glycerol (POG) surfactant layer as a model PS system, where the competitive oxidation of the two components is observed. Our results indicate that the heterogeneous reaction of SP-B1-25 at the interface is quite different from that in the solution phase. Compared to the nearly complete homogeneous oxidation of SP-B1-25, only a subset of the amino acids known to react with ozone is oxidized by direct ozonolysis in the hydrophobic interfacial environment, both with and without the lipid monolayer. Combining these experimental observations with the results of molecular dynamics simulations provides an improved understanding of the interfacial structure and chemistry of a model lung surfactant system when subject to oxidative stress. PMID:20121208

  16. Mechanisms and Treatment of Lung Lesions and Associated Surfactant Damage in Shock.

    DTIC Science & Technology

    1978-03-17

    the role of proteins associated with the surfactant system...Isolation and characterization of proteins associated with the lung surfactant system. F— Rabbit lung washings and purified lung surf actan t were...the unfractionated lung washings confirming our previous study which indicated that there is no specific protein associated with sur— factant

  17. Near-Field Microscopy Studies of Lung Surfactant Collapse

    NASA Astrophysics Data System (ADS)

    Aga, Rachel; Dunn, Robert

    2003-03-01

    Respiratory distress syndrome (RDS), the fourth leading cause of infant mortality in the United States, arises from an insufficiently developed lung surfactant (LS). Healthy LS, a mixture of lipids and proteins that coats the inner surface of the lungs, reduces the alveolar surface tension to a few millinewtons per meter and, thus, facilitates breathing by stabilizing the large surface area changes associated with respiration. In the absence of an effective LS, surfactant collapse pressure (i.e., monolayer compressibility) and the ability of the monolayer to re-spread during the breathing cycle are reduced, resulting in labored breathing, reduced oxygen transport, and often death in those afflicted. In this study, we investigate the mechanism of collapse and re-spreading of a monolayer formed by a replacement surfactant commonly used in treatment of RDS. Through confocal microscopy fluorescence images obtained at a series of pressures near collapse, we find evidence for multilayer formation in the films. A further understanding of the collapse mechanism is obtained by comparing high resolution fluorescence and topography information measured with near-field scanning optical microscopy. The combined data from both confocal and near-field measurements are used to develop a model of lung surfactant collapse and re-spreading.

  18. Effects of less-invasive surfactant administration on oxygenation, pulmonary surfactant distribution, and lung compliance in spontaneously breathing preterm lambs.

    PubMed

    Niemarkt, Hendrik J; Kuypers, Elke; Jellema, Reint; Ophelders, Daan; Hütten, Matthias; Nikiforou, Maria; Kribs, Angela; Kramer, Boris W

    2014-08-01

    A new technique was proposed to administer surfactant to spontaneous breathing preterm infants by placing a thin catheter through the vocal cords. This technique was not studied with respect to oxygenation, gas exchange, surfactant distribution, and lung mechanics. We tested the technique of less-invasive surfactant administration (LISA) in a spontaneous breathing preterm lamb model. Preterm lambs (n = 12) of 133-134 d gestational age were randomized to the following three groups: (i) continuous positive airway pressure (CPAP) only, (ii) CPAP + LISA, and (iii) intubation and mechanical ventilation with surfactant administration. Surfactant was labeled with samarium oxide. During the next 180 min, blood gas analyses were performed. Postmortem, lungs were removed and surfactant distribution was assessed, and pressure-volume curves were performed. Pao2 in the LISA-treated lambs was significantly higher than in the lambs that exclusively received CPAP. Moreover, Pao2 values were similar between the LISA-treated and the intubated lambs. Overall, surfactant deposition was less in the LISA lambs, with significantly less surfactant distributed to the right upper lobe. Lung compliance was better in the intubated lambs compared with the LISA-treated lambs, although this did not reach significance. LISA improved oxygenation, similar to conventional surfactant application techniques, despite lower surfactant deposition and lung compliance.

  19. Effect of isoxsuprine on fetal lung surfactant in rabbits.

    PubMed

    Kanjanapone, V; Hartig-Beecken, I; Epstein, M F

    1980-04-01

    To examine the effect of beta adrenergic drugs on fetal lung development, we administered isoxsuprine to pregnant rabbits for 24 hr and measured indices of pulmonary surfactant synthesis, storage, and release in rabbit fetuses at 26 days gestation. Incorporation of radiolabeled choline into total and disaturated phosphatidylcholine was measured in vitro in fetal lung slices. There was a significant increase in the rate of choline incorporation into disaturated phosphatidylcholine in the isoxsuprine-treated group and a tendency toward an increased incorporation into total phosphatidylcholine as well. We also observed an increase in the pulmonary phospholipid reservoir as evidenced by a significant increase in total lung disaturated phosphatidylcholine and a trend toward higher total lung phosphatidylcholine in the isoxsuprine group. In addition, there was a significant increase in lung lavage L/S ratio in the treated fetuses and in lung deflation stability determined by pressure volume curve. We conclude that isoxsuprine increases synthesis, storage, and release of surfactant in rabbit fetuses at 26 days gestation.

  20. [Lung surfactant changes in acute destructive pancreatitis].

    PubMed

    Uchikov, A; Khristov, Zh; Murdzhev, K; Tar'lov, Z

    2000-01-01

    Severe acute pancreatitis (SAP), with mortality rate ranging from 15 to 40 per cent, continues to be a serious challenge to emergency surgeons. Not infrequently, in such cases lesions to the respiratory system develop, with the changes in pulmonary surfactant (PS) occurring during SAP considered as one of the major factors implicated. Alterations in structural phospholipids of PS (lecithin and sphyngomyelin) are assessed under experimental conditions in 26 dogs with modulated SAP at 1, 3, 6, 12 and 24 hours, and the obtained results compared to the ones prior to pancreatitis triggering. The animals are divided up into two groups--untreated and given Sandostatin treatment. In either group a reduction of PS fractions is documented, with a statistically significant lesser reduction of the indicators under study being established in the Sandostatin-treated group by comparison with the untreated one. Modulated SAP in dogs accounts for a significant reduction of the surfactant phospholipid values--lecithin and sphyngomyelin--in bronchoalveolar lavage (BAL).

  1. Lung remodeling in aging surfactant protein D deficient mice.

    PubMed

    Schneider, Jan Philipp; Arkenau, Martina; Knudsen, Lars; Wedekind, Dirk; Ochs, Matthias

    2017-02-07

    Pulmonary surfactant, a mixture of lipids and proteins at the air-liquid interface of alveoli, prevents the lungs from collapsing due to surface tension. One constituent is surfactant-associated protein-D (SP-D), a protein involved in surfactant homeostasis and innate immunity. Mice deficient in SP-D (SP-D (-/-)) has been described as developing a characteristic phenotype which affects the surfactant system (including changes in the intra-cellular and intra-alveolar surfactant pool, alveolar epithelial type II cells and alveolar macrophages), lung architecture and its inflammatory state (development of an emphysema-like pathology, inflammatory cell infiltration). Furthermore, it has been described that these mice develop sub-pleural fibrosis and a thickening of alveolar septal walls. The aim of the present study was to systematically investigate the long term progression of this phenotype with special focus on parenchymal remodeling, whether there are progressive emphysematous changes and whether there is progressive septal wall thickening which might indicate the development of pulmonary fibrosis. By means of design-based stereology and light microscopy, lungs of wild type (wt) and SP-D (-/-) mice of four age groups (3, 6, 12 and ∼18 months) were investigated. The data do not suggest a relevant spontaneous pro-fibrotic remodeling or a destructive process in the aging SP-D (-/-) mice. We demonstrated neither a significant destructive emphysema nor significant thickening of alveolar septal walls, but the data suggest an increase in the number weighted mean alveolar volume in aging SP-D (-/-) mice without loss of alveoli or alveolar epithelial surface area per lung. This increase may reflect over-distension due to altered mechanical properties of alveoli. In the light of our findings and data from the literature, the question arises as to whether a lack of SP-D promotes structural changes in the lung which have been described as being associated with aging lungs

  2. Dynamics of Surfactant Liquid Plugs at Bifurcating Lung Airway Models

    NASA Astrophysics Data System (ADS)

    Tavana, Hossein

    2013-11-01

    A surfactant liquid plug forms in the trachea during surfactant replacement therapy (SRT) of premature babies. Under air pressure, the plug propagates downstream and continuously divides into smaller daughter plugs at continuously branching lung airways. Propagating plugs deposit a thin film on airway walls to reduce surface tension and facilitate breathing. The effectiveness of SRT greatly depends on the final distribution of instilled surfactant within airways. To understand this process, we investigate dynamics of splitting of surfactant plugs in engineered bifurcating airway models. A liquid plug is instilled in the parent tube to propagate and split at the bifurcation. A split ratio, R, is defined as the ratio of daughter plug lengths in the top and bottom daughter airway tubes and studied as a function of the 3D orientation of airways and different flow conditions. For a given Capillary number (Ca), orienting airways farther away from a horizontal position reduced R due to the flow of a larger volume into the gravitationally favored daughter airway. At each orientation, R increased with 0.0005 < Ca < 0.05. This effect diminished by decrease in airways diameter. This approach will help elucidate surfactant distribution in airways and develop effective SRT strategies.

  3. CENTRIFUGE

    DOEpatents

    Rushing, F.C.

    1960-09-01

    A vibration damping mechanism for damping vibration forces occurring during the operation of a centrifuge is described. The vibration damping mechanism comprises a plurality of nested spaced cylindrical elements surrounding the rotating shaft of the centrifuge. Some of the elements are held substantially stationary while the others are held with respect to a pair of hearings spaced along the rotating shaft. A fluid is retained about the cylindrical elements.

  4. Lung volume assessments in normal and surfactant depleted lungs: agreement between bedside techniques and CT imaging.

    PubMed

    Albu, Gergely; Petak, Ferenc; Zand, Tristan; Hallbäck, Magnus; Wallin, Mats; Habre, Walid

    2014-01-01

    Bedside assessment of lung volume in clinical practice is crucial to adapt ventilation strategy. We compared bedside measures of lung volume by helium multiple-breath washout technique (EELVMBW,He) and effective lung volume based on capnodynamics (ELV) to those assessed from spiral chest CT scans (EELVCT) under different PEEP levels in control and surfactant-depleted lungs. Lung volume was assessed in anaesthetized mechanically ventilated rabbits successively by measuring i) ELV by analyzing CO2 elimination traces during the application of periods of 5 consecutive alterations in inspiratory/expiratory ratio (1:2 to 1.5:1), ii) measuring EELVMBW,He by using helium as a tracer gas, and iii) EELVCT from CT scan images by computing the normalized lung density. All measurements were performed at PEEP of 0, 3 and 9 cmH2O in random order under control condition and following surfactant depletion by whole lung lavage. Variables obtained with all techniques followed sensitively the lung volume changes with PEEP. Excellent correlation and close agreement was observed between EELVMBW,He and EELVCT (r = 0.93, p < 0.0001). ELV overestimated EELVMBW,He and EELVCT in normal lungs, whereas this difference was not evidenced following surfactant depletion. These findings resulted in somewhat diminished but still significant correlations between ELV and EELVCT (r = 0.58, p < 0.001) or EELVMBW,He (0.76, p < 0.001) and moderate agreements. Lung volume assessed with bedside techniques allow the monitoring of the changes in the lung aeration with PEEP both in normal lungs and in a model of acute lung injury. Under stable pulmonary haemodynamic condition, ELV allows continuous lung volume monitoring, whereas EELVMBW,He offers a more accurate estimation, but intermittently.

  5. Effects of early surfactant treatment persisting for one week after lung transplantation in rats.

    PubMed

    Erasmus, M E; Hofstede, G J; Petersen, A H; Haagsman, H P; Oetomo, S B; Prop, J

    1997-08-01

    We investigated whether pulmonary surfactant in rat lung transplants recovered during the first week post-transplantation, along with symptoms of the reimplantation response, and whether this recovery was affected by early surfactant treatment. The severity of pulmonary injury was varied by transplanting left lungs with 6-h and 20-h ischemia (n = 12 and 19, respectively). Half of the transplants were treated by instillation of surfactant before reperfusion. Lungs from sham operated, and normal rats (n = 4 and 5, respectively) served as controls. The pulmonary injury severely impaired lung transplant function; 10 of the worst affected animals died. After 1 wk, symptoms of reimplantation response and properties of pulmonary surfactant were assessed. If untreated, the reimplantation response had almost resolved in the 6-h but not in the 20-h ischemia group; pulmonary surfactant, however, continued to be deficient in both ischemia groups (low amounts of surfactant phospholipids and surfactant protein A [SP-A]). Surfactant treatment improved the recovery from injury in the 20-h ischemia group resulting in normal lung function and amounts of surfactant phospholipids. Amounts of SP-A were not improved by surfactant treatment. In conclusion, early surfactant treatment enhances recovery from transplantation injury and is persistently beneficial for pulmonary surfactant in lung transplants.

  6. Mature Surfactant Protein-B Expression by Immunohistochemistry as a Marker for Surfactant System Development in the Fetal Sheep Lung.

    PubMed

    Lock, Mitchell C; McGillick, Erin V; Orgeig, Sandra; Zhang, Song; McMillen, I Caroline; Morrison, Janna L

    2015-11-01

    Evaluation of the number of type II alveolar epithelial cells (AECs) is an important measure of the lung's ability to produce surfactant. Immunohistochemical staining of these cells in lung tissue commonly uses antibodies directed against mature surfactant protein (SP)-C, which is regarded as a reliable SP marker of type II AECs in rodents. There has been no study demonstrating reliable markers for surfactant system maturation by immunohistochemistry in the fetal sheep lung despite being widely used as a model to study lung development. Here we examine staining of a panel of surfactant pro-proteins (pro-SP-B and pro-SP-C) and mature proteins (SP-B and SP-C) in the fetal sheep lung during late gestation in the saccular/alveolar phase of development (120, 130, and 140 days), with term being 150 ± 3 days, to identify the most reliable marker of surfactant producing cells in this species. Results from this study indicate that during late gestation, use of anti-SP-B antibodies in the sheep lung yields significantly higher cell counts in the alveolar epithelium than SP-C antibodies. Furthermore, this study highlights that mature SP-B antibodies are more reliable markers than SP-C antibodies to evaluate surfactant maturation in the fetal sheep lung by immunohistochemistry.

  7. Newtonian to non-Newtonian flow transition in lung surfactants

    NASA Astrophysics Data System (ADS)

    Sadoughi, Amir; Hirsa, Amir; Lopez, Juan

    2010-11-01

    The lining of normal lungs is covered by surfactants, because otherwise the surface tension of the aqueous layer would be too large to allow breathing. A lack of functioning surfactants can lead to respiratory distress syndrome, a potentially fatal condition in both premature infants and adults, and a major cause of death in the US and world-wide. We use a home-built Brewster angle microscope on an optically accessible deep channel viscometer to simultaneously observe the mesoscale structures of DPPC, the primary constituent of lung surfactant, on water surface and measure the interfacial velocity field. The measured interfacial velocity is compared to Navier-Stokes computations with the Boussinesq-Scriven surface model. Results show that DPPC monolayer behaves i) purely elastically at low surface pressures on water, ii) viscoelastically at modest surface pressures, exhibiting non-zero surface shear viscosity that is independent of the shear rate and flow inertia, and iii) at surface pressures approaching film collapse, DPPC loses its fluid characteristics, and a Newtonian surface model no longer captures its hydrodynamics.

  8. Surfactant treatment effects on lung structure and type II cells of preterm ventilated lambs.

    PubMed

    Pinkerton, K E; Ikegami, M; Dillard, L M; Jobe, A H

    2000-05-01

    We evaluated surfactant treatment effects on lung morphology and alveolar type II cells of preterm ventilated lambs. Lambs were ventilated for 10 h following treatment of the right lung with natural surfactant. Lung parenchyma from the surfactant-treated right and the untreated left lung was compared morphometrically. Mechanical ventilation without surfactant resulted in distention of alveolar ducts accompanied by shallowing and loss of well-defined alveoli without disruption of collagen or elastin fibers. Surfactant treatment almost completely prevented these changes. The percent of normal parenchyma was 82 +/- 7% in surfactant-treated lobes and 26 +/- 5% in the nontreated lobes (p < 0.05). Type II cells became flatter in lungs ventilated without surfactant, and cell shape was preserved by surfactant treatment. The volume densities of lamellar bodies and multivesicular bodies in alveolar type II cells were not changed by surfactant treatment. With or without surfactant treatment, mechanical ventilation was associated with a shift in lamellar body distribution to a smaller size and a decrease in glycogen content of type II cells. Surfactant treatment of the preterm lung prevents alveolar distortion and atelectasis, but does not result in changes in subcellular organelles in immature type II cells.

  9. Mature Surfactant Protein-B Expression by Immunohistochemistry as a Marker for Surfactant System Development in the Fetal Sheep Lung

    PubMed Central

    Lock, Mitchell C.; McGillick, Erin V.; Orgeig, Sandra; Zhang, Song; McMillen, I. Caroline; Morrison, Janna L.

    2015-01-01

    Evaluation of the number of type II alveolar epithelial cells (AECs) is an important measure of the lung’s ability to produce surfactant. Immunohistochemical staining of these cells in lung tissue commonly uses antibodies directed against mature surfactant protein (SP)-C, which is regarded as a reliable SP marker of type II AECs in rodents. There has been no study demonstrating reliable markers for surfactant system maturation by immunohistochemistry in the fetal sheep lung despite being widely used as a model to study lung development. Here we examine staining of a panel of surfactant pro-proteins (pro–SP-B and pro–SP-C) and mature proteins (SP-B and SP-C) in the fetal sheep lung during late gestation in the saccular/alveolar phase of development (120, 130, and 140 days), with term being 150 ± 3 days, to identify the most reliable marker of surfactant producing cells in this species. Results from this study indicate that during late gestation, use of anti-SP-B antibodies in the sheep lung yields significantly higher cell counts in the alveolar epithelium than SP-C antibodies. Furthermore, this study highlights that mature SP-B antibodies are more reliable markers than SP-C antibodies to evaluate surfactant maturation in the fetal sheep lung by immunohistochemistry. PMID:26297137

  10. Essential Regulation of Lung Surfactant Homeostasis by the Orphan G-protein Coupled Receptor GPR116

    PubMed Central

    Yang, Mi Young; Hilton, Mary Beth; Seaman, Steven; Haines, Diana C.; Nagashima, Kunio; Burks, Christina M.; Tessarollo, Lino; Ivanova, Pavlina T.; Brown, H. Alex; Umstead, Todd M.; Floros, Joanna; Chroneos, Zissis C.; St. Croix, Brad

    2013-01-01

    SUMMARY GPR116 is an orphan seven-pass transmembrane receptor of previously unknown function. Global disruption of the Gpr116 gene in mice revealed an unexpected, critical role for this receptor in lung surfactant homeostasis, resulting in progressive accumulation of surfactant lipids and proteins in the alveolar space, labored breathing, and a reduced lifespan. GPR116 expression analysis, bone marrow transplantation studies and characterization of conditional knockout mice revealed that GPR116 expression in ATII cells is required for maintaining normal surfactant levels. Aberrant packaging of surfactant proteins with lipids in the Gpr116 mutant mice resulted in compromised surfactant structure, function, uptake, and processing. Thus, GPR116 plays an indispensable role in lung surfactant homeostasis with important ramifications for the understanding and treatment of lung surfactant disorders. PMID:23684610

  11. Lung surfactant metabolism: early in life, early in disease and target in cell therapy.

    PubMed

    Lopez-Rodriguez, Elena; Gay-Jordi, Gemma; Mucci, Adele; Lachmann, Nico; Serrano-Mollar, Anna

    2017-03-01

    Lung surfactant is a complex mixture of lipids and proteins lining the alveolar epithelium. At the air-liquid interface, surfactant lowers surface tension, avoiding alveolar collapse and reducing the work of breathing. The essential role of lung surfactant in breathing and therefore in life, is highlighted by surfactant deficiency in premature neonates, which causes neonatal respiratory distress syndrome and results in early death after birth. In addition, defects in surfactant metabolism alter lung homeostasis and lead to disease. Special attention should be paid to two important key cells responsible for surfactant metabolism: alveolar epithelial type II cells (AE2C) and alveolar macrophages (AM). On the one hand, surfactant deficiency coming from abnormal AE2C function results in high surface tension, promoting alveolar collapse and mechanical stress in the epithelium. This epithelial injury contributes to tissue remodeling and lung fibrosis. On the other hand, impaired surfactant catabolism by AM leads to accumulation of surfactant in air spaces and the associated altered lung function in pulmonary alveolar proteinosis (PAP). We review here two recent cell therapies that aim to recover the activity of AE2C or AM, respectively, therefore targeting the restoring of surfactant metabolism and lung homeostasis. Applied therapies successfully show either transplantation of healthy AE2C in fibrotic lungs, to replace injured AE2C cells and surfactant, or transplantation of bone marrow-derived macrophages to counteract accumulation of surfactant lipid and proteinaceous material in the alveolar spaces leading to PAP. These therapies introduce an alternative treatment with great potential for patients suffering from lung diseases.

  12. Functional significance and control of release of pulmonary surfactant in the lizard lung.

    PubMed

    Wood, P G; Daniels, C B; Orgeig, S

    1995-10-01

    The amount of pulmonary surfactant in the lungs of the bearded dragon (Pogona vitticeps) increases with increasing body temperature. This increase coincides with a decrease in lung compliance. The relationship between surfactant and lung compliance and the principal stimuli for surfactant release and composition (temperature, ventilatory pattern, and autonomic neurotransmitters) were investigated. We chose to investigate ventilatory pattern (which causes mechanical deformation of the type II cells) and adrenergic agents, because they are the major stimuli for surfactant release in mammals. To examine the effects of body temperature and ventilatory pattern, isolated lungs were ventilated at either 18 or 37 degrees C at different ventilatory regimens. An isolated perfused lung preparation at 27 degrees C was used to analyze the effects of autonomic neurotransmitters. Ventilatory pattern did not affect surfactant release, composition, or lung compliance at either 18 or 37 degrees C. An increase in temperature increased phospholipid reuptake and disproportionately increased cholesterol degradation/uptake. Epinephrine and acetylcholine stimulated phospholipid but not cholesterol release. Removal of surfactant caused a decrease in compliance, regardless of the experimental temperature. Temperature appears to be the principal determinant of lung compliance in the bearded dragon, acting directly to increase the tone of the smooth muscle. Increasing the ambient temperature may result in greater surfactant turnover by increasing cholesterol reuptake/degradation directly and by increasing circulating epinephrine, thereby indirectly increasing phospholipid secretion. We suggest that changing ventilatory pattern may be inadequate as a mechanism for maintaining surfactant homeostasis, given the discontinuous, highly variable reptilian breathing pattern.

  13. Combined exogenous surfactant and inhaled nitric oxide therapy for lung ischemia-reperfusion injury in minipigs.

    PubMed

    Warnecke, G; Strüber, M; Fraud, S; Hohlfeld, J M; Haverich, A

    2001-05-15

    The combined application of exogenous surfactant and inhaled nitric oxide was evaluated for prevention of ischemia-reperfusion injury of the lung. Left lungs were selectively perfused in 18 minipigs in situ with cold preservation solution. After 90 min of warm ischemia, the lungs were reperfused and the right pulmonary artery and bronchus were ligated (control group, n=6). Exogenous surfactant was instilled via bronchoscopy during ischemia (surfactant group, n=6). In a third group, surfactant was applied, followed by administration of inhaled nitric oxide (surfactant+NO group, n=6). Hemodynamic and respiratory parameters were recorded for 7 hr, and bronchoalveolar lavage fluid (BALF) was obtained before and after reperfusion for measurement of surface tension, small aggregate/large aggregate ratio, protein and phospholipid contents, and a differential cell count. Control group animals survived for 3.7+/-1.4 hr. In both surfactant-treated groups, five out of six animals survived the observation period (P<0.001). Dynamic compliance of the lung was decreased in control animals (P<0.001). In the surfactant+NO group, arterial PO2 was higher than in both other groups (P<0.001). BALF cell count and histology showed reduced neutrophil infiltration in surfactant+NO-treated lungs. Surface tension assessed in BALF with a pulsating bubble surfactometer was severely impaired in control animals (gammamin, 14.82+/-9.95 mN/m), but maintained in surfactant-treated (gammamin, 1.11+/-0.56 mN/m) and surfactant+NO-treated animals (gammamin, 3.90+/-2.35 mN/m, P=0.02). Administration of exogenous surfactant in lung reperfusion injury results in improved lung compliance. The addition of inhaled NO improves arterial oxygenation and reduces neutrophil extravasation compared with surfactant treatment alone.

  14. Molecular mobility in the monolayers of foam films stabilized by porcine lung surfactant.

    PubMed Central

    Lalchev, Z I; Todorov, R K; Christova, Y T; Wilde, P J; Mackie, A R; Clark, D C

    1996-01-01

    Certain physical properties of a range of foam film types that are believed to exist in vivo in the lung have been investigated. The contribution of different lung surfactant components found in porcine lung surfactant to molecular surface diffusion in the plane of foam films has been investigated for the first time. The influence of the type and thickness of black foam films, temperature, electrolyte concentration, and extract composition on surface diffusion has been studied using the fluorescence recovery after photobleaching technique. Fluorescent phospholipid probe molecules in foam films stabilized by porcine lung surfactant samples or their hydrophobic extracts consisting of surfactant lipids and hydrophobic lung surfactant proteins, SP-B and SP-C, exhibited more rapid diffusion than observed in films of its principal lipid component alone, L-alpha-phosphatidylcholine dipalmitoyl. This effect appears to be due to contributions from minor lipid components present in the total surfactant lipid extracts. The minor lipid components influence the surface diffusion in foam films both by their negative charge and by lowering the phase transition temperature of lung surfactant samples. In contrast, the presence of high concentrations of the hydrophillic surfactant protein A (SP-A) and non-lung-surfactant proteins in the sample reduced the diffusion coefficient (D) of the lipid analog in the adsorbed layer of the films. Hysteresis behavior of D was observed during temperature cycling, with the cooling curve lying above the heating curve. However, in cases where some surface molecular aggregation and surface heterogeneity were observed during cooling, the films became more rigid and molecules at the interfaces became immobilized. The thickness, size, capillary pressure, configuration, and composition of foam films of lung surfactant prepared in vitro support their investigation as realistic structural analogs of the surface films that exist in vivo in the lung

  15. Fetal corticosteroid and T4 treatment effects on lung function of surfactant-treated preterm lambs.

    PubMed

    Chen, C M; Ikegami, M; Ueda, T; Polk, D H; Jobe, A H

    1995-01-01

    Three groups of sheep fetuses at 125 or 126 d gestational age randomly received a single ultrasound-guided intramuscular injection of saline, 0.5 mg/kg betamethasone, or 0.5 mg/kg betamethasone plus 50 micrograms/kg thyroxine (T4). Forty-eight hours later the fetuses were delivered, treated with a pulmonary surfactant preparation, and ventilated for 3 h. Corticosteroids alone and in combination with T4 increased FRC, compliance, and lung volumes, and decreased the protein leak into the airspace. Saturated phosphatidylcholine pool sizes recovered by alveolar washing were not changed after hormone treatment. To evaluate the function of surfactant recovered from the lambs in vivo, we treated preterm rabbits at 27 d gestational age with the large-aggregate surfactant from alveolar washes. Large-aggregate surfactants and the pulmonary surfactant preparation increased compliances and maximal lung volumes relative to those in untreated preterm rabbits. Large-aggregate surfactants improved compliance more than did the pulmonary surfactant preparation. We conclude that ultrasound-guided single fetal corticosteroid treatment followed by postnatal surfactant improved postnatal lung function in preterm lambs. Addition of T4 did not augment corticosteroid effects. The function of the exogenous surfactant was improved in premature lamb lungs independently of the fetal treatment modality.

  16. Calf Lung Surfactant Recovers Surface Functionality After Exposure to Aerosols Containing Polymeric Particles

    PubMed Central

    Farnoud, Amir M.

    2016-01-01

    Abstract Background: Recent studies have shown that colloidal particles can disrupt the interfacial properties of lung surfactant and thus key functional abilities of lung surfactant. However, the mechanisms underlying the interactions between aerosols and surfactant films remain poorly understood, as our ability to expose films to particles via the aerosol route has been limited. The aim of this study was to develop a method to reproducibly apply aerosols with a quantifiable particle dose on lung surfactant films and investigate particle-induced changes to the interfacial properties of the surfactant under conditions that more closely mimic those in vivo. Methods: Films of DPPC and Infasurf® were exposed to aerosols containing polystyrene particles generated using a Dry Powder Insufflator™. The dose of particles deposited on surfactant films was determined via light absorbance. The interfacial properties of the surfactant were studied using a Langmuir-Wilhelmy balance during surfactant compression to film collapse and cycles of surface compression and expansion at a fast cycling rate within a small surface area range. Results: Exposure of surfactant films to aerosols led to reproducible dosing of particles on the films. In film collapse experiments, particle deposition led to slight changes in collapse surface pressure and surface area of both surfactants. However, longer interaction times between particles and Infasurf® films resulted in time-dependent inhibition of surfactant function. When limited to lung relevant surface pressures, particles reduced the maximum surface pressure that could be achieved. This inhibitory effect persisted for all compression-expansion cycles in DPPC, but normal surfactant behavior was restored in Infasurf® films after five cycles. Conclusions: The observation that Infasurf® was able to quickly restore its function after exposure to aerosols under conditions that better mimicked those in vivo suggests that particle

  17. Untapped therapeutic potential of surfactant proteins: is there a case for recombinant SP-D supplementation in neonatal lung disease?

    PubMed

    Clark, Howard W

    2010-06-01

    Whilst pulmonary surfactant therapy has been highly successful in reducing mortality from respiratory distress syndrome of the newborn, a significant proportion of infants born at less than 28 weeks' gestation develop neonatal chronic lung disease. This has a complex pathogenesis but infection, inflammation, oxygen toxicity and ventilator-induced lung injury in the premature infant are all recognised risk factors for its development. Current surfactant therapies in clinical use do not contain all surfactant components and lack the hydrophilic surfactant proteins A and D. These proteins are known to have important roles in surfactant homeostasis and in protecting the lung against inflammation. This review examines the evidence from animal models supporting a role for surfactant protein-D in particular in reducing inflammation in the lung and speculates that supplementation of current surfactant therapies with recombinant forms of surfactant protein-D may help offset the risk of development of chronic lung disease. Copyright 2010 S. Karger AG, Basel.

  18. Lung preservation in experimental ischemia/reperfusion injury and lung transplantation: a comparison of natural and synthetic surfactants.

    PubMed

    Knudsen, Lars; Boxler, Laura; Mühlfeld, Christian; Schaefer, Inga-Marie; Becker, Laura; Bussinger, Christine; von Stietencron, Immanuel; Madershahian, Navid; Richter, Joachim; Wahlers, Thorsten; Wittwer, Thorsten; Ochs, Matthias

    2012-01-01

    Surfactant inactivation results from ischemia/reperfusion injury and plays a major role in the pathogenesis of primary graft dysfunction after clinical lung transplantation. Thus, prophylactic administration of exogenous surfactant preparations before the onset of ischemia/reperfusion has proven to be effective in preserving pulmonary structure and function. Various natural and synthetic surfactant preparations exhibit differences regarding the biochemical composition and biophysical properties. In this study we compared the efficacy of preservation of pulmonary structure and function of the natural surfactant preparations Curosurf and Survanta to that of a synthetic surfactant containing an analog of surfactant protein C (SPC-33) in a rat model of ischemia/reperfusion injury. The oxygenation capacity and peak inspiratory pressure during the reperfusion period were recorded. By applying design-based stereology at the light- and electron-microscopic level, pathologic alterations, including alveolar edema, injury of the blood-air barrier and the intra-alveolar as well as intracellular surfactant pools, were quantified. The best oxygenation and preservation of lung structure was achieved with Curosurf. Survanta treatment was associated with the most severe injury of the blood-air barrier, and SPC-33 demonstrated signs of microatelectasis. The intra-alveolar surfactant pool after Curosurf and SPC-33 was dominated by active surfactant subtypes, whereas Survanta was associated with the highest fraction of inactive surfactant. The intracellular surfactant pool did not show any differences between the treatment groups. Taken together, Curosurf achieved the best structural and functional lung preservation, whereas Survanta was inferior to both Curosurf and SPC-33. Copyright © 2012 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  19. A concentration-dependent mechanism by which serum albumin inactivates replacement lung surfactants.

    PubMed Central

    Warriner, H E; Ding, J; Waring, A J; Zasadzinski, J A

    2002-01-01

    Endogenous lung surfactant, and lung surfactant replacements used to treat respiratory distress syndrome, can be inactivated during lung edema, most likely by serum proteins. Serum albumin shows a concentration-dependent surface pressure that can exceed the respreading pressure of collapsed monolayers in vitro. Under these conditions, the collapsed surfactant monolayer can not respread to cover the interface, leading to higher minimum surface tensions and alterations in isotherms and morphology. This is an unusual example of a blocked phase transition (collapsed to monolayer form) inhibiting bioactivity. The concentration-dependent surface activity of other common surfactant inhibitors including fibrinogen and lysolipids correlates well with their effectiveness as inhibitors. These results show that respreading pressure may be as important as the minimum surface tension in the design of replacement surfactants for respiratory distress syndrome. PMID:11806925

  20. Interaction of levofloxacin with lung surfactant at the air-water interface.

    PubMed

    Ortiz-Collazos, Stephanie; Estrada-López, Evelina D; Pedreira, Alline A; Picciani, Paulo H S; Oliveira, Osvaldo N; Pimentel, Andre S

    2017-07-27

    The molecular-level interaction of levofloxacin with lung surfactant was investigated using Langmuir monolayers and atomistic molecular dynamics (MD) simulations. In the simulation, the DPPC/POPC mixed monolayer was used as a lung surfactant model and the molecules of levofloxacin were placed at the air-lipid interface to mimic the adsorption process on the lung surfactant model. The simulation results indicate that amphoteric levofloxacin expands the lung surfactant, also stabilizing the film for levofloxacin fractions until 10% w/w at least. The Langmuir monolayers made with the lung surfactant Curosurf had expanded isotherms upon incorporation of levofloxacin, without changes in monolayer elasticity. In fact, levofloxacin induced film stability with increased collapse pressures in the Curosurf isotherms and delayed the phase transition, according to Brewster angle microscopy (BAM) imaging. Using polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), we found that levofloxacin is preferentially located in the head group region, inducing an increased organization of the Curosurf film. This location of levofloxacin was confirmed with MD simulations. The stability inferred demonstrates that the lung surfactant can be used as a drug delivery system for the administration via inhalation or intratracheal instillation of levofloxacin to treat lung diseases such as pneumonia and respiratory distress syndrome. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The role of surfactant in the static lung mechanics of the lizard Ctenophorus nuchalis.

    PubMed

    Daniels, C B; Eskandari-Marandi, B D; Nicholas, T E

    1993-10-01

    We previously showed that the lung of the central Australian lizard, Ctenophorus nuchalis, contains a large amount of surfactant, the composition of which varies with body temperature. We now show that the specific compliance of the lungs of these lizards remains constant regardless of whether they were maintained at 10, 18, 27, 37 or 43 degrees C for 4 hours. In contrast, the opening pressure was constant up to 27 degrees C, but decreased at 37 and 43 degrees C. When we lavaged the lungs in situ to remove the majority of surfactant, specific compliance decreased while opening pressure increased. The lungs of C. nuchalis are essentially two bubbles, with the left one larger at low and intermediate volumes. After collapsing both lungs, the larger left lung always inflated first. However, following lavage the smaller right lung inflated first. As the larger lung, when collapsed, would have a much greater area of epithelial contact, this result is consistent with surfactant acting as an 'antiglue'. During deflation the smaller lung collapsed first, consistent with the law of Laplace. Compliance did not change in the saline-filled lung suggesting that the gas-liquid interface does not play a major role. We conclude that in the lungs of these lizards, surfactant is acting as an antiglue. This might be important during periods of apnea at low body temperatures, when residual volume is small and epithelial surfaces may come into contact.

  2. Leptin does not influence surfactant synthesis in fetal sheep and mice lungs

    PubMed Central

    Sato, Atsuyasu; Schehr, Angelica

    2011-01-01

    In the fetus, leptin in the circulation increases at late gestation and likely influences fetal organ development. Increased surfactant by leptin was previously demonstrated in vitro using fetal lung explant. We hypothesized that leptin treatment given to fetal sheep and pregnant mice might increase surfactant synthesis in the fetal lung in vivo. At 122–124 days gestational age (term: 150 days), fetal sheep were injected with 5 mg of leptin or vehicle using ultrasound guidance. Three and a half days after injection, preterm lambs were delivered, and lung function was studied during 30-min ventilation, followed by pulmonary surfactant components analyses. Pregnant A/J mice were given 30 or 300 mg of leptin or vehicle by intraperitoneal injection according to five study protocols with different doses, number of treatments, and gestational ages to treat. Surfactant components were analyzed in fetal lung 24 h after the last maternal treatment. Leptin injection given to fetal sheep increased fetal body weight. Control and leptin-treated groups were similar in lung function (preterm newborn lamb), surfactant components pool sizes (lamb and fetal mice), and expression of genes related to surfactant synthesis in the lung (fetal mice). Likewise, saturated phosphatidylcholine and phospholipid were normal in mice lungs with absence of circulating leptin (ob/ob mice) at all ages. These studies coincided in findings that neither exogenously given leptin nor deficiency of leptin influenced fetal lung maturation or surfactant pool sizes in vivo. Furthermore, the key genes critically required for surfactant synthesis were not affected by leptin treatment. PMID:21216976

  3. Synthesis and surface activity of diether-linked phosphoglycerols: potential applications for exogenous lung surfactants.

    PubMed

    Notter, Robert H; Wang, Zhongyi; Wang, Zhengdong; Davy, Jason A; Schwan, Adrian L

    2007-01-01

    The synthesis of three phosphoglycerols is described, one of which contains the previously unknown phosphonoglycerol headgroup. The surface tension-lowering capabilities of synthetic lung surfactant mixtures containing the PG analogs were measured on the pulsating bubble surfactometer and compared to known controls. The PG-containing mixtures exhibited superior surface tension-lowering properties indicating the significant potential of these analogs as components in synthetic exogenous lung surfactants.

  4. Effects of exogenous surfactant on the non-heart-beating donor lung graft in experimental lung transplantation - a stereological study.

    PubMed

    Herrmann, Gudrun; Knudsen, Lars; Madershahian, Navid; Mühlfeld, Christian; Frank, Konrad; Rahmanian, Parwis; Wahlers, Thorsten; Wittwer, Thorsten; Ochs, Matthias

    2014-05-01

    The use of non-heart-beating donor (NHBD) lungs may help to overcome the shortage of lung grafts in clinical lung transplantation, but warm ischaemia and ischaemia/reperfusion injury (I/R injury) resulting in primary graft dysfunction represent a considerable threat. Thus, better strategies for optimized preservation of lung grafts are urgently needed. Surfactant dysfunction has been shown to contribute to I/R injury, and surfactant replacement therapy is effective in enhancing lung function and structural integrity in related rat models. In the present study we hypothesize that surfactant replacement therapy reduces oedema formation in a pig model of NHBD lung transplantation. Oedema formation was quantified with (SF) and without (non-SF) surfactant replacement therapy in interstitial and alveolar compartments by means of design-based stereology in NHBD lungs 7 h after cardiac arrest, reperfusion and transplantation. A sham-operated group served as control. In both NHBD groups, nearly all animals died within the first hours after transplantation due to right heart failure. Both SF and non-SF developed an interstitial oedema of similar degree, as shown by an increase in septal wall volume and arithmetic mean thickness as well as an increase in the volume of peribron-chovascular connective tissue. Regarding intra-alveolar oedema, no statistically significant difference could be found between SF and non-SF. In conclusion, surfactant replacement therapy cannot prevent poor outcome after prolonged warm ischaemia of 7 h in this model. While the beneficial effects of surfactant replacement therapy have been observed in several experimental and clinical studies related to heart-beating donor lungs and cold ischaemia, it is unlikely that surfactant replacement therapy will overcome the shortage of organs in the context of prolonged warm ischaemia, for example, 7 h. Moreover, our data demonstrate that right heart function and dysfunctions of the pulmonary vascular bed are

  5. Lung hypoplasia and surfactant system immaturity induced in the fetal rat by prenatal exposure to nitrofen.

    PubMed

    Alfanso, L F; Arnaiz, A; Alvarez, F J; Qi, B; Diez-Pardo, J A; Vallis-i-Soler, A; Tovar, J A

    1996-01-01

    We studied the biochemical maturity of the lungs of fetuses born to rats exposed to nitrofen on day 9.5 of gestation. In comparison with controls, nitrofen-treated fetuses had pulmonary hypoplasia (decreased lung/body weight), lung hypocellularity (low DNA content) and cellular atrophy (low protein/DNA and phospholipid/DNA) on gestational days 19 and 21. Treated animals with congenital diaphragmatic hernia (CDH) also had cell atrophy and surfactant immaturity (decreased disaturated phosphatidylcholine/DNA) near term. Our data demonstrate that nitrofen causes lung hypoplasia and some degree of surfactant system immaturity that is particularly prominent in fetuses with CDH.

  6. Polymer-surfactant treatment of meconium-induced acute lung injury.

    PubMed

    Lu, K W; William Taeusch, H; Robertson, B; Goerke, J; Clements, J A

    2000-08-01

    Substances (for example, serum proteins or meconium) that interfere with the activity of pulmonary surfactant in vitro may also be important in the pathogenesis or progression of acute lung injury. Addition of polymers such as dextran or polyethylene glycol (PEG) to surfactants prevents and reverses surfactant inactivation. The purpose of this study was to find out whether surfactant/polymer mixtures are more effective for treating one form of acute lung injury than is surfactant alone. Acute lung injury in adult rats was created by tracheal instillation of human meconium. Injured animals, which were anesthetized, paralyzed, and ventilated with 100% oxygen and not treated with surfactant mixtures, remained hypoxic and required high ventilator pressures to maintain Pa(CO(2)) in the normal range over the 3 h of the experiment. Uninjured animals maintained normal values for oxygen and compliance of the respiratory system. The greatest improvement in both oxygenation (178%) and compliance (42%) occurred in animals with lung injury that were treated with Survanta and PEG (versus untreated control animals; p < 0.01), whereas little improvement was found after treatment with Survanta alone. Similar results were found when postmortem pulmonary pressure-volume curves and histology were examined. We conclude that adding PEG to Survanta improves gas exchange, pulmonary mechanics, and histologic appearance of the lungs in a rat model of acute lung injury caused by meconium.

  7. A double injection ADSA-CSD methodology for lung surfactant inhibition and reversal studies.

    PubMed

    Saad, Sameh M I; Policova, Zdenka; Dang, Andrew; Acosta, Edgar J; Hair, Michael L; Neumann, A Wilhelm

    2009-10-15

    This paper presents a continuation of the development of a drop shape method for film studies, ADSA-CSD (Axisymmetric Drop Shape Analysis-Constrained Sessile Drop). ADSA-CSD has certain advantages over conventional methods. The development presented here allows complete exchange of the subphase of a spread or adsorbed film. This feature allows certain studies relevant to lung surfactant research that cannot be readily performed by other means. The key feature of the design is a second capillary into the bulk of the drop to facilitate addition or removal of a secondary liquid. The development will be illustrated through studies concerning lung surfactant inhibition. After forming a sessile drop of a basic lung surfactant preparation, the bulk phase can be removed and exchanged for one containing different inhibitors. Such studies mimic the leakage of plasma and blood proteins into the alveolar spaces altering the surface activity of lung surfactant in a phenomenon called surfactant inhibition. The resistance of the lung surfactant to specific inhibitors can be readily evaluated using the method. The new method is also useful for surfactant reversal studies, i.e. the ability to restore the normal surface activity of an inhibited lung surfactant film by using special additives. Results show a distinctive difference between the inhibition when an inhibitor is mixed with and when it is injected under a preformed surfactant film. None of the inhibitors studied (serum, albumin, fibrinogen, and cholesterol) were able to penetrate a preexisting film formed by the basic preparation (BLES and protasan), while all of them can alter the surface activity of such preparation when mixed with the preparation. Preliminary results show that reversal of serum inhibition can be easily achieved and evaluated using the modified methodology.

  8. The effect of a peptide-containing synthetic lung surfactant on gas exchange and lung mechanics in a rabbit model of surfactant depletion.

    PubMed

    van Zyl, Johann M; Smith, Johan; Hawtrey, Arthur

    2013-01-01

    Currently, a new generation of synthetic pulmonary surfactants is being developed that may eventually replace animal-derived surfactants used in the treatment of respiratory distress syndrome. Enlightened by this, we prepared a synthetic peptide-containing surfactant (Synsurf) consisting of phospholipids and poly-l-lysine electrostatically bonded to poly-l-glutamic acid. Our objective in this study was to investigate if bronchoalveolar lavage (BAL)-induced acute lung injury and surfactant deficiency with accompanying hypoxemia and increased alveolar and physiological dead space is restored to its prelavage condition by surfactant replacement with Synsurf, a generic prepared Exosurf, and a generic Exosurf containing Ca(2+). Twelve adult New Zealand white rabbits receiving conventional mechanical ventilation underwent repeated BAL to create acute lung injury and surfactant-deficient lung disease. Synthetic surfactants were then administered and their effects assessed at specified time points over 5 hours. The variables assessed before and after lavage and surfactant treatment included alveolar and physiological dead space, dead space/tidal volume ratio, arterial end-tidal carbon dioxide tension (PCO2) difference (mainstream capnography), arterial blood gas analysis, calculated shunt, and oxygen ratios. BAL led to acute lung injury characterized by an increasing arterial PCO2 and a simultaneous increase of alveolar and physiological dead space/tidal volume ratio with no intergroup differences. Arterial end-tidal PCO2 and dead space/tidal volume ratio correlated in the Synsurf, generic Exosurf and generic Exosurf containing Ca(2+) groups. A significant and sustained improvement in systemic oxygenation occurred from time point 180 minutes onward in animals treated with Synsurf compared to the other two groups (P < 0.001). A statistically significant decrease in pulmonary shunt (P < 0.001) was found for the Synsurf-treated group of animals, as well as radiographic

  9. The effect of a peptide-containing synthetic lung surfactant on gas exchange and lung mechanics in a rabbit model of surfactant depletion

    PubMed Central

    van Zyl, Johann M; Smith, Johan; Hawtrey, Arthur

    2013-01-01

    Background Currently, a new generation of synthetic pulmonary surfactants is being developed that may eventually replace animal-derived surfactants used in the treatment of respiratory distress syndrome. Enlightened by this, we prepared a synthetic peptide-containing surfactant (Synsurf) consisting of phospholipids and poly-l-lysine electrostatically bonded to poly-l-glutamic acid. Our objective in this study was to investigate if bronchoalveolar lavage (BAL)-induced acute lung injury and surfactant deficiency with accompanying hypoxemia and increased alveolar and physiological dead space is restored to its prelavage condition by surfactant replacement with Synsurf, a generic prepared Exosurf, and a generic Exosurf containing Ca2+. Methods Twelve adult New Zealand white rabbits receiving conventional mechanical ventilation underwent repeated BAL to create acute lung injury and surfactant-deficient lung disease. Synthetic surfactants were then administered and their effects assessed at specified time points over 5 hours. The variables assessed before and after lavage and surfactant treatment included alveolar and physiological dead space, dead space/tidal volume ratio, arterial end-tidal carbon dioxide tension (PCO2) difference (mainstream capnography), arterial blood gas analysis, calculated shunt, and oxygen ratios. Results BAL led to acute lung injury characterized by an increasing arterial PCO2 and a simultaneous increase of alveolar and physiological dead space/tidal volume ratio with no intergroup differences. Arterial end-tidal PCO2 and dead space/tidal volume ratio correlated in the Synsurf, generic Exosurf and generic Exosurf containing Ca2+ groups. A significant and sustained improvement in systemic oxygenation occurred from time point 180 minutes onward in animals treated with Synsurf compared to the other two groups (P < 0.001). A statistically significant decrease in pulmonary shunt (P < 0.001) was found for the Synsurf-treated group of animals, as well

  10. Exogenous surfactant suppresses inflammation in experimental endotoxin-induced lung injury.

    PubMed

    Mittal, Neha; Sanyal, Sankar Nath

    2009-01-01

    Our objective was to evaluate the anti-inflammatory effects of exogenous surfactant and surfactant phospholipids on the lipopolysaccharide (LPS)-induced lung injury. Exogenous surfactant (porcine surfactant) and surfactant phospholipid (dipalmitoyl phospholipid DPPC, hexadecanol, tylaxopol) were instilled intratracheally with LPS in rats. Expression of surfactant apoproteins (SP-A) and the cyclooxygenase enzymes (COX-1 and -2) was studied by immunohistochemistry, and apoptosis was analyzed by in situ terminal dUTP nick end labeling TUNEL assay. The intracellular reactive oxygen species (ROS) was measured in the isolated macrophages by fluorescence measurement with dichlorofluorescein diacetate (DCFH-DA). LPS-induced oxidative burst and apoptosis at 72 hours were reduced by both porcine and synthetic surfactant. SP-A as well as COX-1 and -2 expressions were suppressed with synthetic surfactant treatment, whereas with porcine surfactant (P-SF) the SP-A expression was enhanced in response to LPS administration. These results indicate that exogenous surfactant inhibits LPS-induced inflammation. This anti-inflammatory activity may be an important outcome of surfactant therapy in endotoxin-induced respiratory distress.

  11. Altered lipid synthesis in type II pneumonocytes exposed to lung surfactant.

    PubMed Central

    Thakur, N R; Tesan, M; Tyler, N E; Bleasdale, J E

    1986-01-01

    When type II pneumonocytes were exposed to purified lung surfactant that contained 1-palmitoyl-2-[3H]palmitoyl-glycero-3-phosphocholine, radiolabelled surfactant was apparently taken up by the cells since it could not be removed by either repeated washing or exchange with non-radiolabelled surfactant, but was released when the cells were lysed. After 4 h of exposure to [3H]surfactant, more than half of the 3H within cells remained in disaturated phosphatidylcholine. Incorporation of [3H]choline, [14C]palmitate and [14C]acetate into glycerophospholipids was decreased in type II cells exposed to surfactant and this inhibition, like surfactant uptake, was half-maximal when the extracellular concentration of surfactant was approx. 0.1 mumol of lipid P/ml. Inhibition of incorporation of radiolabelled precursors by surfactant occurred rapidly and reversibly and was not due solely to dilution of the specific radioactivity of intracellular precursors. Activity of dihydroxyacetone-phosphate acyltransferase, but not glycerol-3-phosphate acyltransferase, was decreased in type II cells exposed to surfactant and this was reflected by a decrease in the 14C/3H ratio of total lipids synthesized when cells incubated with [U-14C]glycerol and [2-3H]glycerol were exposed to surfactant. Phosphatidylcholine, phosphatidylglycerol and cholesterol, either individually or mixed in the molar ratio found in surfactant, did not mimic purified surfactant in the inhibition of glycerophospholipid synthesis. In contrast, an apoprotein fraction isolated from surfactant inhibited greatly the incorporation of [3H]choline into lipids and this inhibitory activity was labile to heat and to trypsin. It is concluded that the apparent uptake of surfactant by type II cells in vitro is accompanied by an inhibition of glycerophospholipid synthesis via a mechanism that involves a surfactant apoprotein. Images Fig. 4. PMID:3827860

  12. The Role of Surfactant in Lung Disease and Host Defense against Pulmonary Infections

    PubMed Central

    Han, SeungHye

    2015-01-01

    Pulmonary surfactant is essential for life as it lines the alveoli to lower surface tension, thereby preventing atelectasis during breathing. Surfactant is enriched with a relatively unique phospholipid, termed dipalmitoylphosphatidylcholine, and four surfactant-associated proteins, SP-A, SP-B, SP-C, and SP-D. The hydrophobic proteins, SP-B and SP-C, together with dipalmitoylphosphatidylcholine, confer surface tension–lowering properties to the material. The more hydrophilic surfactant components, SP-A and SP-D, participate in pulmonary host defense and modify immune responses. Specifically, SP-A and SP-D bind and partake in the clearance of a variety of bacterial, fungal, and viral pathogens and can dampen antigen-induced immune function of effector cells. Emerging data also show immunosuppressive actions of some surfactant-associated lipids, such as phosphatidylglycerol. Conversely, microbial pathogens in preclinical models impair surfactant synthesis and secretion, and microbial proteinases degrade surfactant-associated proteins. Deficiencies of surfactant components are classically observed in the neonatal respiratory distress syndrome, where surfactant replacement therapies have been the mainstay of treatment. However, functional or compositional deficiencies of surfactant are also observed in a variety of acute and chronic lung disorders. Increased surfactant is seen in pulmonary alveolar proteinosis, a disorder characterized by a functional deficiency of the granulocyte-macrophage colony-stimulating factor receptor or development of granulocyte-macrophage colony-stimulating factor antibodies. Genetic polymorphisms of some surfactant proteins such as SP-C are linked to interstitial pulmonary fibrosis. Here, we briefly review the composition, antimicrobial properties, and relevance of pulmonary surfactant to lung disorders and present its therapeutic implications. PMID:25742123

  13. The Role of Surfactant in Lung Disease and Host Defense against Pulmonary Infections.

    PubMed

    Han, SeungHye; Mallampalli, Rama K

    2015-05-01

    Pulmonary surfactant is essential for life as it lines the alveoli to lower surface tension, thereby preventing atelectasis during breathing. Surfactant is enriched with a relatively unique phospholipid, termed dipalmitoylphosphatidylcholine, and four surfactant-associated proteins, SP-A, SP-B, SP-C, and SP-D. The hydrophobic proteins, SP-B and SP-C, together with dipalmitoylphosphatidylcholine, confer surface tension-lowering properties to the material. The more hydrophilic surfactant components, SP-A and SP-D, participate in pulmonary host defense and modify immune responses. Specifically, SP-A and SP-D bind and partake in the clearance of a variety of bacterial, fungal, and viral pathogens and can dampen antigen-induced immune function of effector cells. Emerging data also show immunosuppressive actions of some surfactant-associated lipids, such as phosphatidylglycerol. Conversely, microbial pathogens in preclinical models impair surfactant synthesis and secretion, and microbial proteinases degrade surfactant-associated proteins. Deficiencies of surfactant components are classically observed in the neonatal respiratory distress syndrome, where surfactant replacement therapies have been the mainstay of treatment. However, functional or compositional deficiencies of surfactant are also observed in a variety of acute and chronic lung disorders. Increased surfactant is seen in pulmonary alveolar proteinosis, a disorder characterized by a functional deficiency of the granulocyte-macrophage colony-stimulating factor receptor or development of granulocyte-macrophage colony-stimulating factor antibodies. Genetic polymorphisms of some surfactant proteins such as SP-C are linked to interstitial pulmonary fibrosis. Here, we briefly review the composition, antimicrobial properties, and relevance of pulmonary surfactant to lung disorders and present its therapeutic implications.

  14. Inhibition of pulmonary surfactants synthesis during N-methyl-D-aspartate-induced lung injury.

    PubMed

    Shen, Li; Li, Lian; She, Hua; Yue, Shaojie; Li, Chen; Luo, Ziqiang

    2010-09-01

    N-methyl-D-aspartate (NMDA) receptors are ionotropic glutamate receptors widely distributed in the central nervous system, and have been extensively investigated for their roles in embryonic development, synaptic plasticity and neuroexcitoxicity. Their functions in the peripheral nervous system and non-neural tissues have caught much attention recently. Over-activation of NMDA receptors induces excitotoxic lung injury. But the endogenous cell types in the lungs that express NMDA receptors remains elusive and the molecular mechanism underlies NMDA-induced lung injury has not been fully characterized. In this work, we reported that functional NMDA receptors were expressed in alveolar type II cells in the lungs. Over-activation of these receptors led to down-regulation of pulmonary surfactants synthesis. We further demonstrated that decreased cellular choline-phosphate cytidylyltransferase alpha expression induced by NMDA treatment accounted for the decreased pulmonary surfactants synthesis. Our results provided important clues for treatment of glutamate lung injury by modulating pulmonary surfactants system.

  15. Effects of surfactant/budesonide therapy on oxidative modifications in the lung in experimental meconium-induced lung injury.

    PubMed

    Mikolka, P; Kopincova, J; Tomcikova Mikusiakova, L; Kosutova, P; Antosova, M; Calkovska, A; Mokra, D

    2016-02-01

    Meconium aspiration syndrome (MAS) is a serious condition, which can be treated with exogenous surfactant and mechanical ventilation. However, meconium-induced inflammation, lung edema and oxidative damage may inactivate delivered surfactant and thereby reduce effectiveness of the therapy. As we presumed that addition of anti-inflammatory agent into the surfactant may alleviate inflammation and enhance efficiency of the therapy, this study was performed to evaluate effects of surfactant therapy enriched with budesonide versus surfactant-only therapy on markers of oxidative stress in experimental model of MAS. Meconium suspension (25 mg/ml, 4 ml/kg) was instilled into the trachea of young rabbits, whereas one group of animals received saline instead of meconium (C group, n = 6). In meconium-instilled animals, respiratory failure developed within 30 min. Then, meconium-instilled animals were divided into 3 groups according to therapy (n = 6 each): with surfactant therapy (M + S group), with surfactant + budesonide therapy (M + S + B), and without therapy (M group). Surfactant therapy consisted of two bronchoalveolar lavages (BAL) with diluted surfactant (Curosurf, 5 mg phospholipids/ml, 10 ml/kg) followed by undiluted surfactant (100 mg phospholipids/kg), which was in M + S + B group enriched with budesonide (Pulmicort, 0.5 mg/ml). Animals were oxygen-ventilated for additional 5 hours. At the end of experiment, blood sample was taken for differential white blood cell (WBC) count. After euthanizing animals, left lung was saline-lavaged and cell differential in BAL was determined. Oxidative damage, i.e. oxidation of lipids (thiobarbituric acid reactive substance (TBARS) and conjugated dienes) and proteins (dityrosine and lysine-lipoperoxidation products) was estimated in lung homogenate and isolated mitochondria. Total antioxidant capacity was evaluated in lung homogenate and plasma. Meconium instillation increased transmigration of neutrophils and production of free

  16. Keeping Lung Surfactant Where It Belongs: Protein Regulation of Two-Dimensional Viscosity

    PubMed Central

    Alonso, Coralie; Waring, Alan; Zasadzinski, Joseph A.

    2005-01-01

    Lung surfactant causes the surface tension, γ, in the alveoli to drop to nearly zero on exhalation; in the upper airways γ is ∼30 mN/m and constant. Hence, a surface tension gradient exists between alveoli and airways that should lead to surfactant flow out of the alveoli and elimination of the surface tension gradient. However, the lung surfactant specific protein SP-C enhances the resistance to surfactant flow by regulating the ratio of solid to fluid phase in the monolayer, leading to a jamming transition at which the monolayer transforms from fluidlike to solidlike. The accompanying three orders of magnitude increase in surface viscosity helps minimize surfactant flow to the airways and likely stabilizes the alveoli against collapse. PMID:15833995

  17. SURFACTANT DYSFUNCTION IN LUNG CONTUSION WITH AND WITHOUT SUPERIMPOSED GASTRIC ASPIRATION IN A RAT MODEL

    PubMed Central

    Raghavendran, Krishnan; Davidson, Bruce A.; Knight, Paul R.; Wang, Zhengdong; Helinski, Jadwiga; Chess, Patricia R.; Notter, Robert H.

    2009-01-01

    This study investigates surfactant dysfunction in rats with lung contusion (LC) induced by blunt chest trauma. Rats at 24 h postcontusion had a decreased percent content of large surfactant aggregates in cell-free bronchoalveolar lavage (BAL) and altered large-aggregate composition with decreased phosphatidylcholine (PC), increased lyso-PC, and increased protein compared with uninjured controls. The surface activity of large aggregates on a pulsating bubble surfactometer was also severely impaired at 24 h postcontusion. Decreases in large surfactant aggregate content and surface activity were improved, but still apparent, at 48 and 72 h postcontusion compared with uninjured control rats and returned to normal by 96 h postcontusion. The functional importance of surfactant abnormalities in LC injury was documented in pilot studies showing that exogenous surfactant replacement at 24 h postcontusion improved inflation/deflation lung volumes. Additional experiments investigated a clinically relevant combination of LC plus gastric aspiration (combined acid and small gastric food particles) and found reductions in large surfactant aggregates in BAL similar to those for LC. However, rats given LC + combined acid and small gastric food particles versus LC had more severe surfactant dysfunction based on decreases in surface activity and alterations in large aggregate composition. Combined data for all animal groups had strong statistical correlations between surfactant dysfunction (increased minimum surface tension, decreased large aggregates in BAL, decreased aggregate PC, and increased aggregate lyso-PC) and the severity of inflammatory lung injury (increased total protein, albumin, protein/phospholipid ratio, neutrophils, and erythrocytes in BAL plus increased whole lung myeloperoxidase activity). These results show that surfactant dysfunction is important in the pathophysiology of LC with or without concurrent gastric aspiration and provides a rationale for surfactant

  18. In vivo effect of surfactant on inflammatory cytokines during endotoxin-induced lung injury in rodents.

    PubMed

    Mittal, Neha; Sanyal, Sankar Nath

    2011-01-01

    Lipopolysaccharide (LPS) is a known inducer of acute respiratory distress syndrome (ARDS) in humans and animals. In this study, ARDS was developed in rats by intratracheal instillation of LPS and the effect of two types of surfactant (natural vs. synthetic) was examined to determine their potential corrective roles in general, as well as to compare the two surfactants against one another in particular, in endotoxin-induced lung injury. Sprague-Dawley male rats were divided into four groups, i.e., rats given: buffer controls; 055:B5 E. coli LPS only; LPS and then porcine surfactant (P-SF); or, LPS and then synthetic surfactant (S-SF). In vivo administration of LPS led to an increase in expression of the cytokines tumor necrosis factor-α, interleukin (IL)-1β, IL-2, IL-4, interferon-γ, monocyte chemotactic protein-1, and macrophage inflammatory protein-1β in the lungs of rats. These effects were confirmed by immunofluorescence in lung tissue sections and/or by protein (Western immunoblot) and mRNA expression (reverse transcription polymerase chain reaction) analyses of tissue samples. Apart from IL-4, concentrations of each of these cytokines in bronchoalveolar lavage fluid recovered from the animals were significantly increased in the LPS-treated hosts. Instillation of either surfactant (70 h after the LPS) into the airways diminished the expression of each of the inducible-cytokines, with the porcine (natural) form seeming having the greater inhibitory effect. These data suggest that surfactant can play an important role in the treatment of endotoxin-induced lung injury and might possess robust anti-inflammatory effects. Further, it seems that both the natural and synthetic surfactants prevent inflammatory outcomes in the lungs by controlling cytokine(s) production by various inflammatory cells. Last, the studies here clearly indicated that in this aspect, natural surfactant appears to be more beneficial compared to synthetic surfactant.

  19. Comparative characterization of pulmonary surfactant aggregates and alkaline phosphatase isozymes in human lung carcinoma tissue.

    PubMed

    Iino, Nozomi; Matsunaga, Toshiyuki; Harada, Tsuyoshi; Igarashi, Seiji; Koyama, Iwao; Komoda, Tsugikazu

    2007-05-01

    Alkaline phosphatase (AP) isozymes are surfactant-associated proteins (SPs). Since several different AP isozymes have been detected in the pneumocytes of lung cancer patients, we attempted to identify the relationship between pulmonary surfactant aggregate subtypes and AP isozymes. Pulmonary surfactant aggregates were isolated from carcinoma and non-carcinoma tissues of patients with non-small cell carcinoma of the lung. Upon analysis, ultraheavy, heavy, and light surfactant aggregates were detected in the non-carcinoma tissues, but no ultraheavy surfactant aggregates were found in the carcinoma tissues. Surfactant-associated protein A (SP-A) was detected as two bands (a 27-kDa band and a 54-kDa band) in the ultraheavy, heavy, and light surfactant aggregates found in the non-carcinoma tissues. Although both SP-A bands were detected in the heavy and light surfactant aggregates from adenocarcinoma tissues, the 54-kDa band was not detected in squamous cell carcinoma tissues. Liver AP (LAP) was detected in the heavy and light surfactant aggregates from both non-carcinoma and squamous carcinoma tissues, but not in heavy surfactant aggregates from adenocarcinoma tissues. A larger amount of bone type AP (BAP) was found in light surfactant aggregate fractions from squamous cell carcinomas than those from adenocarcinoma tissues or non-carcinoma tissues from patients with either type of cancer. LAP, BAP, and SP-A were identified immunohistochemically in type II pneumocytes from non-carcinoma tissues and adenocarcinoma cells, but no distinct SP-A staining was observed in squamous cell carcinoma tissues. The present study has thus revealed several differences in pulmonary surfactant aggregates and AP isozymes between adenocarcinoma tissue and squamous cell carcinoma tissue.

  20. Surfactant treatment before first breath for respiratory distress syndrome in preterm lambs: comparison of a peptide-containing synthetic lung surfactant with porcine-derived surfactant

    PubMed Central

    van Zyl, Johann M; Smith, Johan

    2013-01-01

    Background In a recent study utilizing a saline-lavaged adult rabbit model, we described a significant improvement in systemic oxygenation and pulmonary shunt after the instillation of a novel synthetic peptide-containing surfactant, Synsurf. Respiratory distress syndrome in the preterm lamb more closely resembles that of the human infant, as their blood gas, pH values, and lung mechanics deteriorate dramatically from birth despite ventilator support. Moreover, premature lambs have lungs which are mechanically unstable, with the advantage of being able to measure multiple variables over extended periods. Our objective in this study was to investigate if Synsurf leads to improved systemic oxygenation, lung mechanics, and histology in comparison to the commercially available porcine-derived lung surfactant Curosurf® when administered before first breath in a preterm lamb model. Materials and methods A Cesarean section was performed under general anesthesia on 18 time-dated pregnant Dohne Merino ewes at 129–130 days gestation. The premature lambs were delivered and ventilated with an expiratory tidal volume of 6–8 mL/kg for the first 30 minutes and thereafter at 8–10 mL/kg. In a randomized controlled trial, the two surfactants tested were Synsurf and Curosurf®, both at a dose of 100 mg/kg phospholipids (1,2-dipalmitoyl-L-α-phosphatidylcholine; 90% in Synsurf, 40% in Curosurf®). A control group of animals was treated with normal saline. Measurements of physiological variables, blood gases, and lung mechanics were made before and after surfactant and saline replacement and at 15, 30, 45, 60, 90, 120, 180, 240 and 300 minutes after treatment. The study continued for 5 hours. Results Surfactant treatment led to a significant improvement in oxygenation within 30 minutes, with the Synsurf group and the Curosurf® group having significantly higher ratios between arterial partial pressure of oxygen/fraction of inspired oxygen (PaO2/FiO2; P = 0.021) compared to that

  1. Dipeptidyl peptidase I controls survival from Klebsiella pneumoniae lung infection by processing surfactant protein D.

    PubMed

    Sutherland, Rachel E; Barry, Sophia S; Olsen, Joanna S; Salantes, D Brenda; Caughey, George H; Wolters, Paul J

    2014-07-18

    Prior work established that a deficiency in the cysteine protease dipeptidyl peptidase I (DPPI) improves survival following polymicrobial septic peritonitis. To test whether DPPI regulates survival from severe lung infections, DPPI(-/-) mice were studied in a Klebsiella pneumoniae lung infection model, finding that survival in DPPI(-/-) mice is significantly better than in DPPI(+/+) mice 8d after infection. DPPI(-/-) mice have significantly fewer bacteria in the lung than infected DPPI(+/+) mice, but no difference in lung histopathology, lung injury, or cytokine levels. To explore mechanisms of enhanced bacterial clearance in DPPI(-/-) mice, we examined the status of pulmonary collectins, finding that levels of surfactant protein D, but not of surfactant protein A, are higher in DPPI(-/-) than in DPPI(+/+) BAL fluid, and that DPPI(-/-) BAL fluid aggregate bacteria more effectively than control BAL fluid. Sequencing of the amino terminus of surfactant protein D revealed two or eight additional amino acids in surfactant protein D isolated from DPPI(-/-) mice, suggesting processing by DPPI. These results establish that DPPI is a major determinant of survival following Klebsiella pneumoniae lung infection and suggest that the survival disadvantage in DPPI(+/+) mice is in part due to processing of surfactant protein D by DPPI. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Dipeptidyl Peptidase I Controls Survival from Klebsiella pneumoniae Lung Infection by Processing Surfactant Protein D 1

    PubMed Central

    Olsen, Joanna S.; Salantes, D. Brenda; Caughey, George H.; Wolters, Paul J.

    2014-01-01

    Prior work established that a deficiency in the cysteine protease dipeptidyl peptidase I (DPPI) improves survival following polymicrobial septic peritonitis. To test whether DPPI regulates survival from severe lung infections, DPPI −/− mice were studied in a Klebsiella pneumonia lung infection model, finding that survival in DPPI −/− mice is significantly better than in DPPI +/+ mice 8 d after infection. DPPI −/− mice have significantly fewer bacteria in the lung than infected DPPI +/+ mice, but no difference in lung histopathology, lung injury, or cytokine levels. To explore mechanisms of enhanced bacterial clearance in DPPI −/− mice, we examined the status of pulmonary collectins, finding that levels of surfactant protein D, but not of surfactant protein A, are higher in DPPI −/− than in DPPI +/+ BAL fluid, and that DPPI −/− BAL fluid aggregate bacteria more effectively than control BAL fluid. Sequencing of the amino terminus of surfactant protein D revealed two or eight additional amino acids in surfactant protein D isolated from DPPI −/− mice, suggesting processing by DPPI. These results establish that DPPI is a major determinant of survival following Klebsiella pneumoniae lung infection and suggest that the survival disadvantage in DPPI +/+ mice is in part due to processing of surfactant protein D by DPPI. PMID:24955853

  3. Characterization of Particulate Matter Transport across the Lung-Surfactant Barrier using Langmuir Monolayers

    NASA Astrophysics Data System (ADS)

    Eaton, Jeremy; Dennin, Michael; Levine, Alex; George, Steven

    2014-03-01

    We investigate the transport of particulate matter acros the lung using a monolayer of bovine lung surfactant tagged with NBD in conjunction with alveolar lung cells below the air-water interface. The monolaye dynamically compressed and expanded to induce phase transitions as well as buckling and folding. Polystyrene spheres ranging from 20 to 500 nm in diameter were tagged with fluorescent molecules and deposited on the monolayer. We will present results of preliminary studies of the transport of beads from the air-water surface to the lung cells through the monolayer. Characterization of the transfer will focus on differential fluorescence microscopy to distinguish uncoated beads from beads from beads coated with surfactant monolayers. The presence or absence of surfactant associated with the beads provides insight into potential transfer mechanisms and will serve as an input into models of the bead transfer. We gladly acknowledge the support of NSF grant DMR-1309402.

  4. Lung clearance of intratracheally instilled 99mTc-tobramycin using pulmonary surfactant as vehicle

    PubMed Central

    Van 't Veen, Annemarie; Gommers, Diederik; Verbrugge, Serge J C; Wollmer, Per; Mouton, Johan W; Kooij, Peter P M; Lachmann, Burkhard

    1999-01-01

    The use of pulmonary exogenous surfactant as a vehicle for intratracheally administered antibiotics to improve local antimicrobial therapy has been proposed. The present study investigated lung clearance rates in the rat of intratracheally instilled technetium labelled tobramycin with and without the addition of surfactant to the antibiotic solution. The influence of surfactant on 99mTc-tobramycin lung clearance rates was studied dynamically with a gamma-camera in anaesthetized spontaneously breathing animals and in mechanically ventilated animals. The results show that instillation of 99mTc-tobramycin with use of surfactant as vehicle significantly increases 99mTc-tobramycin lung clearance compared to instillation of 99mTc-tobramycin solution alone (P=0.006 between the two spontaneously breathing groups of animals and P=0.02 between the two ventilated groups of animals, ANOVA for repeated time measurements). The half life (t½) of composite clearance curves in spontaneous breathing animals was 147 min for animals receiving 99mTc-tobramycin versus 61 min for animals receiving 99mTc-tobramycin with surfactant. In mechanically ventilated animals this was 163 min versus 51 min, respectively. It is concluded that exogenous surfactant, used as vehicle for intratracheally instilled 99mTc-tobramycin, increases lung clearance rate of 99mTc-tobramycin in rats. PMID:10204995

  5. Surfactant as salvage therapy in life threatening primary graft dysfunction in lung transplantation.

    PubMed

    Amital, Anat; Shitrit, David; Raviv, Yael; Saute, Milton; Bakal, Ilana; Medalion, Benjamin; Kramer, Mordechai R

    2009-02-01

    Impaired surfactant activity may contribute to primary graft dysfunction after lung transplantation. We assessed the role of surfactant treatment in lung transplant recipients with severe life threatening primary lung graft dysfunction. Five patients after lung transplantation: 4 after single-lung transplantation, for emphysema (n=3) or idiopathic pulmonary fibrosis (n=1), and 1 patient after double-lung transplantation for cystic fibrosis. All had severe life threatening primary graft dysfunction that failed to respond to conventional measures. Treatment consisted of bronchoscopic instillation of mammalian surfactant, 20-90cc, at 3 (n=1) or 7 days (n=4) after transplantation. There was a significant improvement in the ratio of partial arterial oxygen tension (PaO(2)) to fractional concentration of oxygen in inspired gas (FIO(2)), from a mean of 98.8+/-21.7 to 236.8+/-52.3 mmHg (p=0.0006), within hours of treatment. All were eventually discharged home and showed a satisfactory FEV(1) (44-67% predicted) at the 6-month follow-up. All patients were still alive 6 months or more after transplantation. Surfactant treatment improves oxygenation and may be life saving in patients with primary lung graft dysfunction.

  6. Aerosolised surfactant generated by a novel noninvasive apparatus reduced acute lung injury in rats

    PubMed Central

    Sun, Yu; Yang, Rui; Zhong, Ji-gen; Fang, Feng; Jiang, Jin-jin; Liu, Ming-yao; Lu, Jian

    2009-01-01

    Introduction Exogenous surfactant has been explored as a potential therapy for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In the present study, a nebuliser driven by oxygen lines found in the hospital was developed to deliver aerosolised porcine pulmonary surfactant (PPS). We hypothesised that aerosolised surfactant inhaled through spontaneous breathing may effectively reduce severe lung injury. Methods Rats were intravenously injected with oleic acid (OA) to induce ALI and 30 minutes later they were divided into five groups: model (injury only), PPS aerosol (PPS-aer), saline aerosol (saline-aer), PPS instillation (PPS-inst), and saline instillation (Saline-Inst). Blood gases, lung histology, and protein and TNF-α concentrations in the bronchoalveolar lavage fluid (BALF) were examined. Results The PPS aerosol particles were less than 2.0 μm in size as determined by a laser aerosol particle counter. Treatment of animals with a PPS aerosol significantly increased the phospholipid content in the BALF, improved lung function, reduced pulmonary oedema, decreased total protein and TNF-α concentrations in BALF, ameliorated lung injury and improved animal survival. These therapeutic effects are similar to those seen in the PPS-inst group. Conclusions This new method of PPS aerosolisation combines the therapeutic effects of a surfactant with partial oxygen inhalation under spontaneous breathing. It is an effective, simple and safe method of administering an exogenous surfactant. PMID:19257907

  7. Properties of mixed monolayers of clinical lung surfactant, serum albumin and hydrophilic polymers.

    PubMed

    Minkov, I; Mircheva, K; Grozev, N; Tz, Ivanova; Panaiotov, I

    2013-01-01

    It is now established that the surface activity of the clinically used lung surfactant is reduced by serum proteins and can be restored by adding the hydrophilic polymers. The mechanisms of lung surfactant inactivation by serum proteins and restoring effect by the hydrophilic polymers remain not completely understood. In this paper the state and rheological dilatational properties of surface films formed from clinical lung surfactant Exosurf, Survanta, Curosurf and Alveofact in the presence of serum albumin (BSA) and hydrophilic polymers polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) and Dextran were studied. The obtained results suggest that the lung surfactant and BSA mixtures spread at air-water interface form a DPPC/BSA mixed monolayers with lower content of DPPC. The presence of hydrophilic polymers PVP, PEG and Dextran restore the DPPC content in the surface film. The effectiveness of the DPPC spreading and formation of better compacted film increases in order Exosurf, Survanta, Curosurf, Alveofact. The obtained results are in accordance with the generally admitted ideas about the mechanisms of serum protein inactivation and restoring effect of hydrophilic polymers based on the previously studies of the lung surfactant adsorption rate. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Autonomic control of the pulmonary surfactant system and lung compliance in the lizard.

    PubMed

    Wood, P G; Andrew, L K; Daniels, C B; Orgeig, S; Roberts, C T

    1997-01-01

    An increase in body temperature in the bearded dragon, Pogona vitticeps, is accompanied by an increase in the amount of pulmonary surfactant, a mixture of proteins and lipids, with the latter consisting predominantly of phospholipid and cholesterol. This increase may result from a temperature-induced change in autonomic input to the lungs, as perfusing the isolated lungs of P. vitticeps with either acetylcholine or adrenaline increases surfactant phospholipid release. However, whether acetylcholine acts via intrapulmonary sympathetic ganglia or directly on alveolar Type II cells is unknown. Moreover, the relative importance of circulating catecholamines and pulmonary sympathetic nerves on the control of the surfactant system is also obscure. Here, we describe the mechanism of the modulation of the surfactant system and the effect of this modulation on lung compliance. The role of acetylcholine was determined by perfusing isolated lungs with acetylcholine, acetylcholine and the ganglionic antagonist hexamethonium, or acetylcholine, hexamethonium, and the muscarinic antagonist atropine. Perfusing with acetylcholine significantly increased phospholipid release but did not affect cholesterol release. While histological examination of the lung revealed the presence of a large autonomic ganglion at the apex, blocking sympathetic ganglia with hexamethonium did not prevent the acetylcholine-mediated increase in phospholipid. However, the increase was inhibited by blocking muscarinic receptors with atropine, which indicates that acetylcholine acts on muscarinic receptors to stimulate phospholipid release. By increasing pulmonary smooth muscle tone, acetylcholine decreased opening pressure and increased static inflation pressures. Plasma levels of noradrenaline and adrenaline increased with increasing temperature and were accompanied by a greater surfactant content in the lungs. While surfactant content was also higher in animals that exercised, plasma levels of adrenaline

  9. Comparison of static end-expiratory and effective lung volumes for gas exchange in healthy and surfactant-depleted lungs.

    PubMed

    Albu, Gergely; Wallin, Mats; Hallbäck, Magnus; Emtell, Per; Wolf, Andrew; Lönnqvist, Per-Arne; Göthberg, Sylvia; Peták, Ferenc; Habre, Walid

    2013-07-01

    Effective lung volume (ELV) for gas exchange is a new measure that could be used as a real-time guide during controlled mechanical ventilation. The authors established the relationships of ELV to static end-expiratory lung volume (EELV) with varying levels of positive end-expiratory pressure (PEEP) in healthy and surfactant-depleted rabbit lungs. Nine rabbits were anesthetized and ventilated with a modified volume-controlled mode where periods of five consecutive alterations in inspiratory/expiratory ratio (1:2-1.5:1) were imposed to measure ELV from the corresponding carbon dioxide elimination traces. EELV and the lung clearance index were concomitantly determined by helium wash-out technique. Airway and tissue mechanics were assessed by using low-frequency forced oscillations. Measurements were collected at PEEP 0, 3, 6, and 9 cm H2O levels under control condition and after surfactant depletion by whole-lung lavage. ELV was greater than EELV at all PEEP levels before lavage, whereas there was no evidence for a difference in the lung volume indices after surfactant depletion at PEEP 6 or 9 cm H2O. Increasing PEEP level caused significant parallel increases in both ELV and EELV levels, decreases in ventilation heterogeneity, and improvement in airway and tissue mechanics under control condition and after surfactant depletion. ELV and EELV exhibited strong and statistically significant correlations before (r=0.84) and after lavage (r=0.87). The parallel changes in ELV and EELV with PEEP in healthy and surfactant-depleted lungs support the clinical value of ELV measurement as a bedside tool to estimate dynamic changes in EELV in children and infants.

  10. Protective effect of pre-recovery surfactant inhalation on lungs donated after cardiac death in a canine lung transplantation model.

    PubMed

    Ohsumi, Akihiro; Chen, Fengshi; Sakamoto, Jin; Nakajima, Daisuke; Hijiya, Kyoko; Motoyama, Hideki; Okita, Kenji; Horita, Kenta; Kikuchi, Ryutaro; Yamada, Tetsu; Bando, Toru; Date, Hiroshi

    2012-10-01

    Warm ischemia-reperfusion injury related to donation after cardiac death is a crucial issue in transplantation. Because surfactant function deteriorates in lungs during warm ischemia, we hypothesized pre-recovery surfactant inhalation would mitigate warm ischemia-reperfusion injury. We rendered donor dogs cardiac dead and left them at room temperature. All animals received ventilation for 60 minutes starting at 240 minutes after cardiac arrest. The animals were divided into 2 groups: NS (normal saline, n = 7) group, which received aerosolized normal saline, and SF (surfactant; n = 5), which received aerosolized surfactant. The lungs were flushed and procured, and the left lung was transplanted into recipient dogs. At 45 minutes of reperfusion, the right pulmonary artery was ligated, and the left transplanted lung function was evaluated. In the NS group, 2 of 7 dogs died at 75 minutes after reperfusion, whereas all 5 animals in the SF group survived for 240 minutes after reperfusion. The SF group showed significantly better dynamic compliance, oxygenation, and wet-to-dry weight ratio. Furthermore, the SF group had higher levels of high-energy phosphates in the lung tissues and lower levels of interleukin-8, tumor necrosis factor-α, and protein in the bronchoalveolar lavage fluid. Histologically, the lungs in the SF group showed fewer signs of interstitial edema and hemorrhage and significantly less neutrophilic sequestration than those of the NS group. Our results indicated pre-recovery surfactant inhalation improved graft function, maintained adenine nucleotide levels, and prevented alveolar-capillary barrier leakage, resulting in the attenuation of warm ischemia-reperfusion injury. Copyright © 2012 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  11. Effects of smoke inhalation on surfactant phospholipids and phospholipase A2 activity in the mouse lung.

    PubMed Central

    Oulton, M.; Moores, H. K.; Scott, J. E.; Janigan, D. T.; Hajela, R.

    1991-01-01

    The effects of smoke inhalation on the pulmonary surfactant system were examined in mice exposed for 30 minutes to smoke generated from the burning of polyurethane foam. At 8 or 12 hours after exposure, surfactants were isolated separately from lung lavage (extracellular surfactant) and residual lung tissue (intracellular surfactant) for phospholipid analysis. Calcium-dependent phospholipase A2 (PLA2) was measured on a microsomal fraction prepared from the tissue homogenate. Smoke inhalation produced a twofold increase in extracellular surfactant total phospholipid. While there was no change in the total phospholipid or phosphatidylcholine (PC) content of the intracellular surfactant, smoke inhalation significantly decreased the disaturated species of PC (DSPC). The specific activity of PLA2 was reduced by more than 50% in both groups of exposed mice. Smoke inhalation appears to result in selective depletion of the DSPC of intracellular surfactant and PLA2 involved in its synthesis. This depletion may be compensated for by increased secretion or slower breakdown of the material present in the extracellular compartment. Images Figure 1 PMID:1987765

  12. [Relationship between recovery levels of pulmonary surfactants and lung compliance after whole-lung lavage].

    PubMed

    Duan, Jianyong

    2014-03-01

    To investigate the relationship between the recovery levels of pulmonary surfactants (PS) and lung compliance after whole-lung lavage. Patients with pneumoconiosis in different stages (healthy subjects, stage I, and stage II, n = 10 for each group) were selected. The recovery levels of PS and lung compliance at different time points after whole-lung lavage were determined, and their relationship was analyzed. Before whole-lung lavage and at 0, 10, 30, 60, 90, and 120 min after the operation, the lung compliance levels were 39.5±6.7, 28.3±5.6, 31.5±5.2, 37.6±4.4, 38.0±5.3, 38.7±5.5, and 39.2±5.3 ml/cm H2O for healthy subjects, 38.8±5.1, 25.1±6.1, 28.4±6.8, 30.5±5.9, 36.3±5.5, 37.3±5.4, 38.2±4.5, and 38.8±5.1 ml/cm H2O for patients with stage I pneumoconiosis, and 32.9±6.1, 20.3±6.0, 24.3±5.4, 25.1±5.4, 26.8±5.8, 27.8±4.8, and 32.8±4.5 ml/cm H2O were for patients with stage II pneumoconiosis. It was observed that in patients with pneumoconiosis, the lung compliance levels showed a declining trend along with the increasing stage, reaching the lowest level in stage II patients; comparison between groups indicated a significant difference (P < 0.05). For healthy subjects, 30 min was needed for restoring lung compliance to its preoperative level, while 60 and 120 min were needed for stage I and stage II patients, respectively. Compared with that at 0 min after operation, PS levels were elevated significantly at 10 min after operation in all patients (P < 0.05), whereas for stage I and stage II patients, the PS levels at 30 min after operation were significantly higher than that at 10 min (F = 4.27, P < 0.05; F = 20.40, P < 0.05). For all patients, the PS levels at 60 min after operation were significantly higher than those at 10 and 30 min (P < 0.05). After whole-lung lavage, the PS levels in all patients were restored to a large extent within 10∼30 min, but the recovery of lung compliance needed 30∼ 90 min. After whole-lung lavage, the lung

  13. Increased surface tension of the lung and surfactant in bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Horiuchi, T; Ikegami, M; Cherniack, R M; Mason, R J

    1996-10-01

    The increased elastic recoil of the lung in bleomycin-induced pulmonary fibrosis in the rat is due in part to increased surface forces. This study was designed to determine the role of surface tension in situ and in vitro 21 d after instillation of bleomycin. Using sequentially measured pressure-volume curves generated with air, saline, air after lavage with Tween 20, and saline, surface tension was significantly higher in bleomycin-treated lungs than in untreated lungs (4.7 +/- 1.1 versus 1.8 +/- 0.2 dyne/cm, p < 0.01). Surface tension was determined in vitro with a Wilhelmy balance using bronchoalveolar lavage fluid, surfactant, and organic solvent lipid extracts of surfactant. Bleomycin treatment resulted in elevated minimal surface tensions: BALF (20.7 +/- 0.6 versus 13.6 +/- 3.8 dyne/cm, p < 0.02), isolated surfactant (12.0 +/- 1.3 versus 3.0 +/- 0.5 dyne/cm, p < 0.02), and the organic solvent lipid extracted surfactant (11.0 versus 3.2 dyne/cm). These results indicate that the physical properties of surfactant in lungs of rats treated with bleomycin are abnormal and contribute to the increased elastic recoil in this model of pulmonary fibrosis.

  14. Compatible solutes: ectoine and hydroxyectoine improve functional nanostructures in artificial lung surfactants.

    PubMed

    Harishchandra, Rakesh Kumar; Sachan, Amit Kumar; Kerth, Andreas; Lentzen, Georg; Neuhaus, Thorsten; Galla, Hans-Joachim

    2011-12-01

    Ectoine and hydroxyectoine belong to the family of compatible solutes and are among the most abundant osmolytes in nature. These compatible solutes protect biomolecules from extreme conditions and maintain their native function. In the present study, we have investigated the effect of ectoine and hydroxyectoine on the domain structures of artificial lung surfactant films consisting of dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG) and the lung surfactant specific surfactant protein C (SP-C) in a molar ratio of 80:20:0.4. The pressure-area isotherms are found to be almost unchanged by both compatible solutes. The topology of the fluid domains shown by scanning force microscopy, which is thought to be responsible for the biophysical behavior under compression, however, is modified giving rise to the assumption that ectoine and hydroxyectoine are favorable for a proper lung surfactant function. This is further evidenced by the analysis of the insertion kinetics of lipid vesicles into the lipid-peptide monolayer, which is clearly enhanced in the presence of both compatible solutes. Thus, we could show that ectoine and hydroxyectoine enhance the function of lung surfactant in a simple model system, which might provide an additional rationale to inhalative therapy.

  15. Imaging the Interaction of Atelectasis and Overdistention in Surfactant Depleted Lungs

    PubMed Central

    Cereda, Maurizio; Emami, Kiarash; Xin, Yi; Kadlecek, Stephen; Kuzma, Nicholas N.; Mongkolwisetwara, Puttisarn; Profka, Harrilla; Pickup, Stephen; Ishii, Masaru; Kavanagh, Brian P.; Deutschman, Clifford S.; Rizi, Rahim R.

    2012-01-01

    Objective Atelectasis and surfactant depletion may contribute to greater distension – and thereby injury – of aerated lung regions; recruitment of atelectatic lung may protect these regions by attenuating such overdistension. However, the effects of atelectasis (and recruitment) on aerated airspaces remain elusive. We tested the hypothesis that during mechanical ventilation, surfactant depletion increases the dimensions of aerated airspaces and that lung recruitment reverses these changes. Design Prospective imaging study in an animal model. Setting Research imaging facility Subjects 27 healthy Sprague Dawley rats Interventions Surfactant depletion was obtained by saline lavage in anesthetized, ventilated rats. Alveolar recruitment was accomplished using positive end-expiratory pressure (PEEP) and exogenous surfactant administration. Measurements and Main Results Airspace dimensions were estimated by measuring the apparent diffusion coefficient (ADC) of 3He, using diffusion-weighted hyperpolarized gas magnetic resonance imaging (MRI). Atelectasis was demonstrated using computerized tomography (CT) and by measuring oxygenation. Saline lavage increased atelectasis (increase in non-aerated tissue from 1.2 to 13.8% of imaged area, P<0.001), and produced a concomitant increase in mean ADC (~33%, P<0.001) vs. baseline; the heterogeneity of the CT signal and the variance of ADC were also increased. Application of PEEP and surfactant reduced the mean ADC (~23%, P<0.001), and its variance, in parallel to alveolar recruitment (i.e. less CT densities and heterogeneity, increased oxygenation). Conclusions Overdistension of aerated lung occurs during atelectasis, is detectable using clinically relevant MRI technology, and could be a key factor in the generation of lung injury during mechanical ventilation. Lung recruitment by higher PEEP and surfactant administration reduces airspace distension. PMID:23263577

  16. Imaging the interaction of atelectasis and overdistension in surfactant-depleted lungs.

    PubMed

    Cereda, Maurizio; Emami, Kiarash; Xin, Yi; Kadlecek, Stephen; Kuzma, Nicholas N; Mongkolwisetwara, Puttisarn; Profka, Harrilla; Pickup, Stephen; Ishii, Masaru; Kavanagh, Brian P; Deutschman, Clifford S; Rizi, Rahim R

    2013-02-01

    Atelectasis and surfactant depletion may contribute to greater distension-and thereby injury-of aerated lung regions; recruitment of atelectatic lung may protect these regions by attenuating such overdistension. However, the effects of atelectasis (and recruitment) on aerated airspaces remain elusive. We tested the hypothesis that during mechanical ventilation, surfactant depletion increases the dimensions of aerated airspaces and that lung recruitment reverses these changes. Prospective imaging study in an animal model. Research imaging facility. Twenty-seven healthy Sprague Dawley rats. Surfactant depletion was obtained by saline lavage in anesthetized, ventilated rats. Alveolar recruitment was accomplished using positive end-expiratory pressure and exogenous surfactant administration. Airspace dimensions were estimated by measuring the apparent diffusion coefficient of He, using diffusion-weighted hyperpolarized gas magnetic resonance imaging. Atelectasis was demonstrated using computerized tomography and by measuring oxygenation. Saline lavage increased atelectasis (increase in nonaerated tissue from 1.2% to 13.8% of imaged area, p < 0.001), and produced a concomitant increase in mean apparent diffusion coefficient (~33%, p < 0.001) vs. baseline; the heterogeneity of the computerized tomography signal and the variance of apparent diffusion coefficient were also increased. Application of positive end-expiratory pressure and surfactant reduced the mean apparent diffusion coefficient (~23%, p < 0.001), and its variance, in parallel to alveolar recruitment (i.e., less computerized tomography densities and heterogeneity, increased oxygenation). Overdistension of aerated lung occurs during atelectasis is detectable using clinically relevant magnetic resonance imaging technology, and could be a key factor in the generation of lung injury during mechanical ventilation. Lung recruitment by higher positive end-expiratory pressure and surfactant administration reduces

  17. Effect of long-term simulated weightlessness on surfactant and water balance in mouse lungs.

    PubMed

    Bryndina, I G; Vasilieva, N N; Krivonogova, Yu A; Baranov, V M

    2013-07-01

    Weightlessness produces adaptive and maladaptive changes in the respiratory system. We assessed the effects of 30-day antiorthostatic hanging as a model of microgravity on the water balance in the lungs and surface activity and phospholipid composition of pulmonary surfactant in C57Bl/6 mice. Long-term antiorthostatic hanging increased water content in the lungs and reduced surface-active properties of the surfactant. This was accompanied by an increase in the content of alveolar phospholipids and changes in their fractional composition (increase in the relative content of lysophosphatidylcholine and phosphatidylethanolamine).

  18. Lung surfactant: Function and composition in the context of development and respiratory physiology.

    PubMed

    Bernhard, Wolfgang

    2016-11-01

    Lung surfactant is a complex with a unique phospholipid and protein composition. Its specific function is to reduce surface tension at the pulmonary air-liquid interface. The underlying Young-Laplace equation, applying to the surface of any geometrical structure, is the more important the smaller its radii are. It therefore applies to the alveoli and bronchioli of mature lungs, as well as to the tubules and saccules of immature lungs. Surfactant comprises 80% phosphatidylcholine (PC), of which dipalmitoyl-PC, palmitoyl-myristoyl-PC and palmitoyl-palmitoleoyl-PC together are 75%. Anionic phosphatidylglycerol and cholesterol are about 10% each, whereas surfactant proteins SP-A to -D comprise 2-5%. Maturation of the surfactant system is not essentially due to increased synthesis but to decreased turnover of specific components. Molecular differences correlate with resting respiratory rate (RR), where PC16:0/16:0 is the lower the higher RR is. PC16:0/14:0 is increased during alveolar formation, and decreases immune reactions that might impair alveolar development. In rigid bird lungs, with air-capillaries rather than alveoli, and no surface area changes during the respiratory cycle, PC16:0/16:0 is highest and PC16:0/14:0 absent. As there is no need for a surface-associated surfactant reservoir, SP-C is absent in birds as well. Airflow is lowest and particle sedimentation highest in the extrapulmonary air-sacs, rather than in the gas-exchange area. Consequently, SP-A and -D for particle opsonization are absent in bird surfactant. In essence, comparative analysis is consistent with the concept that surfactant is adapted to the physiologic needs of a given vertebrate species at a given developmental stage.

  19. Anti-inflammatory treatment in dysfunction of pulmonary surfactant in meconium-induced acute lung injury.

    PubMed

    Mokra, D; Drgova, A; Kopincova, J; Pullmann, R; Calkovska, A

    2013-01-01

    Inflammation, oxidation, lung edema, and other factors participate in surfactant dysfunction in meconium aspiration syndrome (MAS). Therefore, we hypothesized that anti-inflammatory treatment may reverse surfactant dysfunction in the MAS model. Oxygen-ventilated rabbits were given meconium intratracheally (25 mg/ml, 4 ml/kg; Mec) or saline (Sal). Thirty minutes later, meconium-instilled animals were treated by glucocorticoids budesonide (0.25 mg/kg, i.t.) and dexamethasone (0.5 mg/kg, i.v.), or phosphodiesterase inhibitors aminophylline (2 mg/kg, i.v.) and olprinone (0.2 mg/kg, i.v.), or the antioxidant N-acetylcysteine (10 mg/kg, i.v.). Healthy, non-ventilated animals served as controls (Con). At the end of experiments, left lung was lavaged and a differential leukocyte count in sediment was estimated. The supernatant of lavage fluid was adjusted to a concentration of 0.5 mg phospholipids/ml. Surfactant quality was evaluated by capillary surfactometer and expressed by initial pressure and the time of capillary patency. The right lung was used to determine lung edema by wet/dry (W/D) weight ratio. Total antioxidant status (TAS) in blood plasma was evaluated. W/D ratio increased and capillary patency time shortened significantly, whereas the initial pressure increased and TAS decreased insignificantly in Sal vs. Con groups. Meconium instillation potentiated edema formation and neutrophil influx into the lungs, reduced capillary patency and TAS, and decreased the surfactant quality compared with both Sal and Con groups (p > 0.05). Each of the anti-inflammatory agents reduced lung edema and neutrophil influx into the lung and partly reversed surfactant dysfunction in the MAS model, with a superior effect observed after glucocorticoids and the antioxidant N-acetylcysteine.

  20. Negative allometry of docosahexaenoic acid in the fowl lung and pulmonary surfactant phospholipids.

    PubMed

    Szabó, A; Mézes, M; Balogh, K; Romvári, R; Horn, P; Fébel, Hedvig

    2012-06-01

    In a recent study (Comp. Biochem. Physiol. B. (2010)155: 301-308) we reported that the fatty acids (FA) of the avian (7 species) total lung phospholipids (PL) (i.e. lung parenchyma and surfactant together) provide allometric properties. To test whether this allometric scaling also occurs in either of the above components, in six gallinaceous species, in a body weight range from 150 g (Japanese quail, Coturnix coturnix japonica) to 19 kg (turkey, Meleagris gallopavo) the PL FA composition (mol%) was determined in the pulmonary surfactant, in native and in thoroughly lavaged lungs (referred to as lung parenchyma). In all three components docosahexaenoic acid (DHA) showed significant and negative allometric scaling (B = -0.056, -0.17 and -0.1, respectively). Surfactant PLs provided further negative allometry for palmitic acid and the opposite was found for palmitoleate and arachidonate. In the lung parenchymal PLs increasing body weight was matched with shorter chain FAs (average FA chain length) and competing n6 and n3 end-product fatty acids (positive allometry for arachidonic acid and negative for DHA). Negative allometric scaling was found for the tissue malondialdehyde concentration in the native and lavaged lungs (B = -0.1582 and -0.1594, respectively). In these tissues strong correlation was found between the MDA concentration and DHA proportion (r = 0.439 and 0.679, respectively), denoting the role of DHA in shaping the allometric properties and influencing the extent of in vivo lipid peroxidation of membrane lipids in fowl lungs.

  1. Budesonide added to modified porcine surfactant Curosurf may additionally improve the lung functions in meconium aspiration syndrome.

    PubMed

    Mikolka, P; Mokrá, D; Kopincová, J; Tomčíková-Mikušiaková, L; Calkovská, A

    2013-01-01

    Severe meconium aspiration syndrome (MAS) in newborns is often treated by exogenous surfactant. Because its efficacy is reduced by meconium-induced inflammation, glucocorticoid budesonide was added into surfactant preparation Curosurf to enhance efficacy of the surfactant therapy in experimental model of MAS. Oxygen-ventilated rabbits were intratracheally given meconium (25 mg/ml, 4 ml/kg) to induce respiratory failure. Thirty minutes later, animals were treated by intratracheal budesonide (0.25 mg/kg) or surfactant lung lavage (10 ml/kg, 5 mg phospholipids/ml) repeated twice, followed by undiluted Curosurf (100 mg phospholipids/kg) or by the above mentioned surfactant treatment with the last surfactant dose fortified with budesonide (0.25 mg/kg) or were untreated. Animals were ventilated for additional 5 hours and respiratory parameters were measured regularly. After sacrificing animals, wet-dry lung weight ratio was evaluated and plasma levels of interleukins (IL)-1beta, -6, -8, and TNF-alpha were measured by ELISA method. Efficacy of the given therapies to enhance lung functions and to diminish lung edema formation and inflammation increased from budesonide-only and surfactant-only therapy to surfactant+budesonide therapy. Combined therapy improved gas exchange from 30 min of administration, and showed a longer-lasting effect than surfactant-only therapy. In conclusions, budesonide additionally improved the effects of exogenous surfactant in experimental MAS.

  2. Effects of lung surfactant proteins, SP-B and SP-C, and palmitic acid on monolayer stability.

    PubMed Central

    Ding, J; Takamoto, D Y; von Nahmen, A; Lipp, M M; Lee, K Y; Waring, A J; Zasadzinski, J A

    2001-01-01

    Langmuir isotherms and fluorescence and atomic force microscopy images of synthetic model lung surfactants were used to determine the influence of palmitic acid and synthetic peptides based on the surfactant-specific proteins SP-B and SP-C on the morphology and function of surfactant monolayers. Lung surfactant-specific protein SP-C and peptides based on SP-C eliminate the loss to the subphase of unsaturated lipids necessary for good adsorption and respreading by inducing a transition between monolayers and multilayers within the fluid phase domains of the monolayer. The morphology and thickness of the multilayer phase depends on the lipid composition of the monolayer and the concentration of SP-C or SP-C peptide. Lung surfactant protein SP-B and peptides based on SP-B induce a reversible folding transition at monolayer collapse that allows all components of surfactant to be retained at the interface during respreading. Supplementing Survanta, a clinically used replacement lung surfactant, with a peptide based on the first 25 amino acids of SP-B also induces a similar folding transition at monolayer collapse. Palmitic acid makes the monolayer rigid at low surface tension and fluid at high surface tension and modifies SP-C function. Identifying the function of lung surfactant proteins and lipids is essential to the rational design of replacement surfactants for treatment of respiratory distress syndrome. PMID:11325728

  3. Lung surfactant protein D (SP-D) response and regulation during acute and chronic lung injury.

    PubMed

    Gaunsbaek, Maria Quisgaard; Rasmussen, Karina Juhl; Beers, Michael F; Atochina-Vasserman, Elena N; Hansen, Soren

    2013-06-01

    Surfactant protein D (SP-D) is a collection that plays important roles in modulating host defense functions and maintaining phospholipid homeostasis in the lung. The aim of current study was to characterize comparatively the SP-D response in bronchoalveolar lavage (BAL) and serum in three murine models of lung injury, using a validated ELISA technology for estimation of SP-D levels. Mice were exposed to lipopolysaccharide, bleomycin, or Pneumocystis carinii (Pc) and sacrificed at different time points. In lipopolysaccharide-challenged mice, the level of SP-D in BAL increased within 6 h, peaked at 51 h (4,518 ng/ml), and returned to base level at 99 h (612 ng/ml). Serum levels of SP-D increased immediately (8.6 ng/ml), peaked at 51 h (16 ng/ml), and returned to base levels at 99 h (3.8 ng/ml). In a subacute bleomycin inflammation model, SP-D levels were 4,625 and 367 ng/ml in BAL and serum, respectively, 8 days after exposure. In a chronic Pc inflammation model, the highest level of SP-D was observed 6 weeks after inoculation, with BAL and serum levels of 1,868 and 335 ng/ml, respectively. We conclude that serum levels of SP-D increase during lung injury, with a sustained increment during chronic inflammation compared with acute inflammation. A quick upregulation of SP-D in serum in response to acute airway inflammation supports the notion that SP-D translocates from the airways into the vascular system, in favor of being synthesized systemically. The study also confirms the concept of using increased SP-D serum levels as a biomarker of especially chronic airway inflammation.

  4. Multilayers at the surface of solutions of exogenous lung surfactant: direct observation by neutron reflection.

    PubMed

    Follows, D; Tiberg, F; Thomas, R K; Larsson, M

    2007-02-01

    Pharmacy-grade exogenous lung surfactant preparations of bovine and porcine origin, dispersed in physiological electrolyte solution have been studied. The organization and dynamics at the air/water interface at physiological temperature was analysed by neutron reflection. The results show that a well-defined surface phase is formed, consisting of a multilayer structure of lipid/protein bilayers alternating with aqueous layers, with a repetition period of about 70 A and correlation depths of 3 to >25 bilayers, depending on electrolyte composition and time. The experimental surfactant concentration of 0.15% (w/w) is far below that used in therapeutic application of exogenous surfactants and it is therefore likely that similar multilayer structures are also formed at the alveolar surface in the clinical situation during surfactant substitution therapy. Lung surfactant preparations in dry form swell in aqueous solution towards a limit of about 60% (w/w) of water, forming a lamellar liquid-crystalline phase above about 34 degrees C, which disperses into lamellar bodies at higher water concentrations. The lamellar spacings in the surface multilayers at the air/water interface are smaller than those in the saturated limit even though they are in contact with much greater water concentrations. The surface multilayers are laterally disordered in a way that is consistent with fragments of Lalpha-phase lamellae. The near surface layers of the multilayer structure have a significant protein content (only SP-B and SP-C are present in the preparations). The results demonstrate that a multilayer structure can be formed in exogenous surfactant even at very low concentrations and indicate that multilayers need to be incorporated into present interpretations of in vitro studies of similar lung surfactant preparations, which are largely based on monolayer models.

  5. A novel nanobody specific for respiratory surfactant protein A has potential for lung targeting

    PubMed Central

    Wang, Shan-Mei; He, Xian; Li, Nan; Yu, Feng; Hu, Yang; Wang, Liu-Sheng; Zhang, Peng; Du, Yu-Kui; Du, Shan-Shan; Yin, Zhao-Fang; Wei, Ya-Ru; Mulet, Xavier; Coia, Greg; Weng, Dong; He, Jian-Hua; Wu, Min; Li, Hui-Ping

    2015-01-01

    Lung-targeting drugs are thought to be potential therapies of refractory lung diseases by maximizing local drug concentrations in the lung to avoid systemic circulation. However, a major limitation in developing lung-targeted drugs is the acquirement of lung-specific ligands. Pulmonary surfactant protein A (SPA) is predominantly synthesized by type II alveolar epithelial cells, and may serve as a potential lung-targeting ligand. Here, we generated recombinant rat pulmonary SPA (rSPA) as an antigen and immunized an alpaca to produce two nanobodies (the smallest naturally occurring antibodies) specific for rSPA, designated Nb6 and Nb17. To assess these nanobodies’ potential for lung targeting, we evaluated their specificity to lung tissue and toxicity in mice. Using immunohistochemistry, we demonstrated that these anti-rSPA nanobodies selectively bound to rat lungs with high affinity. Furthermore, we intravenously injected fluorescein isothiocyanate-Nb17 in nude mice and observed its preferential accumulation in the lung to other tissues, suggesting high affinity of the nanobody for the lung. Studying acute and chronic toxicity of Nb17 revealed its safety in rats without causing apparent histological alterations. Collectively, we have generated and characterized lung-specific nanobodies, which may be applicable for lung drug delivery. PMID:25926731

  6. A Proposed In Vitro Method to Assess Effects of Inhaled Particles on Lung Surfactant Function.

    PubMed

    Sørli, Jorid B; Da Silva, Emilie; Bäckman, Per; Levin, Marcus; Thomsen, Birthe L; Koponen, Ismo K; Larsen, Søren T

    2016-03-01

    The lung surfactant (LS) lining is a thin liquid film covering the air-liquid interface of the respiratory tract. LS reduces surface tension, enabling lung surface expansion and contraction with minimal work during respiration. Disruption of surface tension is believed to play a key role in severe lung conditions. Inhalation of aerosols that interfere with the LS may induce a toxic response and, as a part of the safety assessment of chemicals and inhaled medicines, it may be relevant to study their impact on LS function. Here, we present a novel in vitro method, based on the constrained drop surfactometer, to study LS functionality after aerosol exposure. The applicability of the method was investigated using three inhaled asthma medicines, micronized lactose, a pharmaceutical excipient used in inhaled medication, and micronized albumin, a known inhibitor of surfactant function. The surfactometer was modified to allow particles mixed in air to flow through the chamber holding the surfactant drop. The deposited dose was measured with a custom-built quartz crystal microbalance. The alterations allowed the study of continuously increasing quantified doses of particles, allowing determination of the dose of particles that affects the LS function. The tested pharmaceuticals did not inhibit the function of a model LS even at extreme doses--neither did lactose. Micronized albumin, however, impaired surfactant function. The method can discriminate between safe inhaled aerosols--as exemplified by the approved inhaled medicines and the pharmaceutical excipient lactose--and albumin known to impair lung functionality by inhibiting LS function.

  7. Clinical and ultrastructural spectrum of diffuse lung disease associated with surfactant protein C mutations.

    PubMed

    Peca, Donatella; Boldrini, Renata; Johannson, Jan; Shieh, Joseph T; Citti, Arianna; Petrini, Stefania; Salerno, Teresa; Cazzato, Salvatore; Testa, Raffaele; Messina, Francesco; Onofri, Alfredo; Cenacchi, Giovanna; Westermark, Per; Ullmann, Nicola; Ullman, Nicola; Cogo, Paola; Cutrera, Renato; Danhaive, Olivier

    2015-08-01

    Genetic defects of surfactant metabolism are associated with a broad range of clinical manifestations, from neonatal respiratory distress syndrome to adult interstitial lung disease. Early therapies may improve symptoms but diagnosis is often delayed owing to phenotype and genotype variability. Our objective was to characterize the cellular/ultrastructural correlates of surfactant protein C (SP-C) mutations in children with idiopathic diffuse lung diseases. We sequenced SFTPC - the gene encoding SP-C - SFTPB and ABCA3, and analyzed morphology, ultrastructure and SP expression in lung tissue when available. We identified eight subjects who were heterozygous for SP-C mutations. Median age at onset and clinical course were variable. None of the mutations were located in the mature peptide-encoding region, but were either in the pro-protein BRICHOS or linker C-terminal domains. Although lung morphology was similar to other genetic surfactant metabolism disorders, electron microscopy studies showed specific anomalies, suggesting surfactant homeostasis disruption, plus trafficking defects in the four subjects with linker domain mutation and protein misfolding in the single BRICHOS mutation carrier in whom material was available. Immunolabeling studies showed increased proSP-C staining in all cases. In two cases, amyloid deposits could be identified. Immunochemistry and ultrastructural studies may be useful for diagnostic purposes and for genotype interpretation.

  8. Effect of lung water content, manipulated by intratracheal furosemide, surfactant, or a mixture of both, on compliance and viscoelastic tissue forces in lung-lavaged newborn piglets.

    PubMed

    Flemmer, A; Simbruner, G; Muenzer, S; Proquitté, H; Haberl, C; Nicolai, T; Leiderer, R

    2000-06-01

    To study the impact of lung water content and its reduction by a topically applied diuretic on respiratory and lung tissue mechanics in comparison with surfactant administration in surfactant-deficient newborn piglets with lavage-induced lung injury. Controlled, randomized study. Animal research facility. Newborn piglets. TREATMENT Piglets were surfactant depleted by lung lavage and, after a pretreatment period, randomly treated with intratracheal furosemide, furosemide and surfactant, or with surfactant alone. Dynamic compliance (C(DYN)), static compliance (C(ST)), stress-adaptation pressures (P(DIFF)) and post mortem lung water content were determined. Static compliance in the furosemide-surfactant group was not significantly higher than in the surfactant group. At the end of the study, C(ST) did not differ between the three groups because C(ST) in the furosemide group had increased to values similar to those of the surfactant-containing treatment groups: C(ST) F+S: 0.73 +/- 0.2 mL/cm H2O/kg body weight (BW); C(ST) S: 0.61 +/- 0.11 mL/cm H2O/kg BW; and C(ST) F: 0.60 +/- 0.19 mL/cm H2O/kg BW). Compliance was inversely and P(DIFF) was directly correlated to lung water (LW) content (C(ST) vs. LW: r2 = .59, p = .001; C(DYN) vs. LW: r2 = .49, p = .006; P(DIFF) vs. LW: r2 = .37, p = .059), independent of the type of treatment. Changes in C(ST) and C(DYN) were inversely related to changes in P(DIFF). Intrapulmonary furosemide was more rapidly absorbed when administered to the surfactant-depleted lung alone compared with the mixture with surfactant, and intrapulmonary furosemide had a rapid systemic effect. Although the combination of surfactant with a diuretic failed to increase respiratory compliance to a significantly larger extent than surfactant alone, furosemide at the end of the study increased respiratory compliance to a level similar to surfactant-containing treatments. Lung water content and, to a lesser extent, the absence or presence of surfactant appeared to

  9. Lung Surfactant Microbubbles Increase Lipophilic Drug Payload for Ultrasound-Targeted Delivery

    PubMed Central

    Sirsi, Shashank R.; Fung, Chinpong; Garg, Sumit; Tianning, Mary Y.; Mountford, Paul A.; Borden, Mark A.

    2013-01-01

    The cavitation response of circulating microbubbles to targeted ultrasound can be used for noninvasive, site-specific delivery of shell-loaded materials. One challenge for microbubble-mediated delivery of lipophilic compounds is the limitation of drug loading into the microbubble shell, which is commonly a single phospholipid monolayer. In this study, we investigated the use of natural lung surfactant extract (Survanta®, Abbott Nutrition) as a microbubble shell material in order to improve drug payload and delivery. Pulmonary surfactant extracts such as Survanta contain hydrophobic surfactant proteins (SP-B and SP-C) that facilitate lipid folding and retention on lipid monolayers. Here, we show that Survanta-based microbubbles exhibit wrinkles in bright-field microscopy and increased lipid retention on the microbubble surface in the form of surface-associated aggregates observed with fluorescence microscopy. The payload of a model lipophilic drug (DiO), measured by flow cytometry, increased by over 2-fold compared to lipid-coated microbubbles lacking SP-B and SP-C. Lung surfactant microbubbles were highly echogenic to contrast enhanced ultrasound imaging at low acoustic intensities. At higher ultrasound intensity, excess lipid was observed to be acoustically cleaved for localized release. To demonstrate targeting, a biotinylated lipopolymer was incorporated into the shell, and the microbubbles were subjected to a sequence of radiation force and fragmentation pulses as they passed through an avidinated hollow fiber. Lung surfactant microbubbles showed a 3-fold increase in targeted deposition of the model fluorescent drug compared to lipid-only microbubbles. Our results demonstrate that lung surfactant microbubbles maintain the acoustic responsiveness of lipid-coated microbubbles with the added benefit of increased lipophilic drug payload. PMID:23781287

  10. Exogenous surfactant preserves lung function and reduces alveolar Evans blue dye influx in a rat model of ventilation-induced lung injury.

    PubMed

    Verbrugge, S J; Vazquez de Anda, G; Gommers, D; Neggers, S J; Sorm, V; Böhm, S H; Lachmann, B

    1998-08-01

    Changes in pulmonary edema infiltration and surfactant after intermittent positive pressure ventilation with high peak inspiratory lung volumes have been well described. To further elucidate the role of surfactant changes, the authors tested the effect of different doses of exogenous surfactant preceding high peak inspiratory lung volumes on lung function and lung permeability. Five groups of Sprague-Dawley rats (n = 6 per group) were subjected to 20 min of high peak inspiratory lung volumes. Before high peak inspiratory lung volumes, four of these groups received intratracheal administration of saline or 50, 100, or 200 mg/kg body weight surfactant; one group received no intratracheal administration. Gas exchange was measured during mechanical ventilation. A sixth group served as nontreated, nonventilated controls. After death, all lungs were excised, and static pressure-volume curves and total lung volume at a transpulmonary pressure of 5 cm H2O were recorded. The Gruenwald index and the steepest part of the compliance curve (Cmax) were calculated. A bronchoalveolar lavage was performed; surfactant small and large aggregate total phosphorus and minimal surface tension were measured. In a second experiment in five groups of rats (n = 6 per group), lung permeability for Evans blue dye was measured. Before 20 min of high peak inspiratory lung volumes, three groups received intratracheal administration of 100, 200, or 400 mg/ kg body weight surfactant; one group received no intratracheal administration. A fifth group served as nontreated, nonventilated controls. Exogenous surfactant at a dose of 200 mg/kg preserved total lung volume at a pressure of 5 cm H2O, maximum compliance, the Gruenwald Index, and oxygenation after 20 min of mechanical ventilation. The most active surfactant was recovered in the group that received 200 mg/kg surfactant, and this dose reduced minimal surface tension of bronchoalveolar lavage to control values. Alveolar influx of Evans blue dye

  11. The effects of exogenous surfactant administration on ventilation-induced inflammation in mouse models of lung injury

    PubMed Central

    2013-01-01

    Background Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation. Methods Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control. MV was then performed using the isolated and perfused mouse lung (IPML) set up. This model allowed for lung perfusion during MV. In experiment 1, mice were exposed to mechanical ventilation only (tidal volume =20 mL/kg, 2 hours). In experiment 2, hydrochloric acid or air was instilled intra-tracheally four hours before applying exogenous surfactant and ventilation (tidal volume =5 mL/kg, 2 hours). Results For both experiments, exogenous surfactant administration led to increased total and functional surfactant in the treated groups compared to the controls. Exogenous surfactant administration in mice exposed to MV only did not affect peak inspiratory pressure (PIP), lung IL-6 levels and the development of perfusate inflammation compared to non-treated controls. Acid injured mice exposed to conventional MV showed elevated PIP, lung IL-6 and protein levels and greater perfusate inflammation compared to air instilled controls. Instillation of exogenous surfactant did not influence the development of lung injury. Moreover, exogenous surfactant was not effective in reducing the concentration of inflammatory cytokines in the perfusate. Conclusions The data indicates that exogenous surfactant did not mitigate ventilation-induced systemic inflammation in our models. Future studies will focus on altering surfactant composition to improve its immuno-modulating activity. PMID:24256698

  12. Speckle patterns during the spreading of lung surfactant

    NASA Astrophysics Data System (ADS)

    Llovera-González, Juan J.; Moreno-Yeras, Alfredo B.; Martínez-Muñoz, Diana M.; Ferreira, Marcia Zotti Justo; Shin Nishitani, Wagner; Almeida, Alexandre Barros; Alencar, Adriano M.; Muramatsu, Mikiya; Serra-Toledo, Rolando L.

    2013-11-01

    Pulmonary surfactant is a very important product in the medical treatment of the syndrome of insufficiency respiratory in neonates. The synthesis of this surfactant in labs need to optimize the rate of spreading in the alveolar interstitial liquid obtaining a monolayer of the phospholipids membrane base capable to maintains several of the dynamical properties of the respiratory system during breathing. The recover of theses mechanical properties has to be archived using the minimal quantities of product and with the optimal proteins composition (SP-B in special). In this paper we show our results of obtaining and process speckle pattern images of the spreading of phospholipids membrane composed the matrix of this product (DPPC) when physiologic interstitial liquid are presented.

  13. The Interplay of Lung Surfactant Proteins and Lipids Assimilates the Macrophage Clearance of Nanoparticles

    PubMed Central

    Ruge, Christian A.; Schaefer, Ulrich F.; Herrmann, Jennifer; Kirch, Julian; Cañadas, Olga; Echaide, Mercedes; Pérez-Gil, Jesús; Casals, Cristina; Müller, Rolf; Lehr, Claus-Michael

    2012-01-01

    The peripheral lungs are a potential entrance portal for nanoparticles into the human body due to their large surface area. The fact that nanoparticles can be deposited in the alveolar region of the lungs is of interest for pulmonary drug delivery strategies and is of equal importance for toxicological considerations. Therefore, a detailed understanding of nanoparticle interaction with the structures of this largest and most sensitive part of the lungs is important for both nanomedicine and nanotoxicology. Astonishingly, there is still little known about the bio-nano interactions that occur after nanoparticle deposition in the alveoli. In this study, we compared the effects of surfactant-associated protein A (SP-A) and D (SP-D) on the clearance of magnetite nanoparticles (mNP) with either more hydrophilic (starch) or hydrophobic (phosphatidylcholine) surface modification by an alveolar macrophage (AM) cell line (MH-S) using flow cytometry and confocal microscopy. Both proteins enhanced the AM uptake of mNP compared with pristine nanoparticles; for the hydrophilic ST-mNP, this effect was strongest with SP-D, whereas for the hydrophobic PL-mNP it was most pronounced with SP-A. Using gel electrophoretic and dynamic light scattering methods, we were able to demonstrate that the observed cellular effects were related to protein adsorption and to protein-mediated interference with the colloidal stability. Next, we investigated the influence of various surfactant lipids on nanoparticle uptake by AM because lipids are the major surfactant component. Synthetic surfactant lipid and isolated native surfactant preparations significantly modulated the effects exerted by SP-A and SP-D, respectively, resulting in comparable levels of macrophage interaction for both hydrophilic and hydrophobic nanoparticles. Our findings suggest that because of the interplay of both surfactant lipids and proteins, the AM clearance of nanoparticles is essentially the same, regardless of different

  14. The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles.

    PubMed

    Ruge, Christian A; Schaefer, Ulrich F; Herrmann, Jennifer; Kirch, Julian; Cañadas, Olga; Echaide, Mercedes; Pérez-Gil, Jesús; Casals, Cristina; Müller, Rolf; Lehr, Claus-Michael

    2012-01-01

    The peripheral lungs are a potential entrance portal for nanoparticles into the human body due to their large surface area. The fact that nanoparticles can be deposited in the alveolar region of the lungs is of interest for pulmonary drug delivery strategies and is of equal importance for toxicological considerations. Therefore, a detailed understanding of nanoparticle interaction with the structures of this largest and most sensitive part of the lungs is important for both nanomedicine and nanotoxicology. Astonishingly, there is still little known about the bio-nano interactions that occur after nanoparticle deposition in the alveoli. In this study, we compared the effects of surfactant-associated protein A (SP-A) and D (SP-D) on the clearance of magnetite nanoparticles (mNP) with either more hydrophilic (starch) or hydrophobic (phosphatidylcholine) surface modification by an alveolar macrophage (AM) cell line (MH-S) using flow cytometry and confocal microscopy. Both proteins enhanced the AM uptake of mNP compared with pristine nanoparticles; for the hydrophilic ST-mNP, this effect was strongest with SP-D, whereas for the hydrophobic PL-mNP it was most pronounced with SP-A. Using gel electrophoretic and dynamic light scattering methods, we were able to demonstrate that the observed cellular effects were related to protein adsorption and to protein-mediated interference with the colloidal stability. Next, we investigated the influence of various surfactant lipids on nanoparticle uptake by AM because lipids are the major surfactant component. Synthetic surfactant lipid and isolated native surfactant preparations significantly modulated the effects exerted by SP-A and SP-D, respectively, resulting in comparable levels of macrophage interaction for both hydrophilic and hydrophobic nanoparticles. Our findings suggest that because of the interplay of both surfactant lipids and proteins, the AM clearance of nanoparticles is essentially the same, regardless of different

  15. Pulmonary haptoglobin (pHp) is part of the surfactant system in the human lung.

    PubMed

    Abdullah, Mahdi; Goldmann, Torsten

    2012-11-20

    Since the existence of pHp was demonstrated, it has been shown that this molecule and its receptor CD163 are regulated by different stimuli. Furthermore, a comparably fast secretion of pHp was described as well as the immuno-stimulatory effects. The intention of this study was to elucidate the role of pHp in the human lungs further. Here we show, by means of confocal microscopy and immune-electron-microscopy, a clear co-localization of pHp with surfactant protein-B in lamellar bodies of alveolar epithelial cells type II. These results are underlined by immunohistochemical stainings in differently fixed human lung tissues, which show pHp in vesicular and released form. The images of the released form resemble the intended position of surfactant in the human alveolus. pHp is secreted by Alveolar epithelial cells type II as previously shown. Moreover, pHp is co-localized with Surfactant protein-B. We conclude that the presented data shows that pHp is a native part of the surfactant system in the human lung. http://www.diagnosticpathology.diagnomx.eu/vs/2563584738239912.

  16. Pulmonary haptoglobin (pHp) is part of the surfactant system in the human lung

    PubMed Central

    2012-01-01

    Abstract Since the existence of pHp was demonstrated, it has been shown that this molecule and its receptor CD163 are regulated by different stimuli. Furthermore, a comparably fast secretion of pHp was described as well as the immuno-stimulatory effects. The intention of this study was to elucidate the role of pHp in the human lungs further. Here we show, by means of confocal microscopy and immune-electron-microscopy, a clear co-localization of pHp with Surfactant protein-B in lamellar bodies of Alveolar Epithelial Cells Type II. These results are underlined by immunohistochemical stainings in differently fixed human lung tissues, which show pHp in vesicular and released form. The images of the released form resemble the intended position of surfactant in the human alveolus. pHp is secreted by Alveolar epithelial cells type II as previously shown. Moreover, pHp is co-localized with Surfactant protein-B. We conclude that the presented data shows that pHp is a native part of the surfactant system in the human lung. Virtual slides http://www.diagnosticpathology.diagnomx.eu/vs/2563584738239912. PMID:23164167

  17. A comparison of conventional surfactant treatment and partial liquid ventilation on the lung volume of injured ventilated small lungs.

    PubMed

    Proquitté, Hans; Hartenstein, Sebastian; Koelsch, Uwe; Wauer, Roland R; Rüdiger, Mario; Schmalisch, Gerd

    2013-08-01

    As an alternative to surfactant therapy (ST), partial liquid ventilation (PLV) with perfluorocarbons (PFC) has been considered as a treatment for acute lung injury (ALI) in newborns. The instilled PFC is much heavier than the instilled surfactant and the aim of this study was to investigate whether PLV, compared to ST, increases the end-expiratory volume of the lung (VL). Fifteen newborn piglets (age <12 h, mean weight 678 g) underwent saline lung lavage to achieve a surfactant depletion. Thereafter animals were randomized to PLV (n = 8), receiving PFC PF5080 (3M, Germany) at 30 mL kg(-1), and ST (n = 7) receiving 120 mg Curosurf®. Blood gases, hemodynamics and static compliance were measured initially (baseline), immediately after ALI, and after 240 min mechanical ventilation with either technique. Subsequently all piglets were killed; the lungs were removed in toto and frozen in liquid N2. After freeze-drying the lungs were cut into lung cubes (LCs) with edge lengths of 0.7 cm, to calculate VL. All LCs were weighed and the density of the dried lung tissue was calculated. No statistically significant differences between treatment groups PLV and ST (means ± SD) were noted in body weight (676 ± 16 g versus 679 ± 17 g; P = 0.974) or lung dry weight (1.64 ± 0.29 g versus 1.79 ± 0.48 g; P = 0.48). Oxygenation index and ventilatory efficacy index did not differ significantly between both groups at any time. VL (34.28 ± 6.13 mL versus 26.22 ± 8.1 mL; P < 0.05) and the density of the dried lung tissue (48.07 ± 5.02 mg mL(-1) versus 69.07 ± 5.30 mg mL(-1); P < 0.001), however, differed significantly between the PLV and ST groups. A 4 h PLV treatment of injured ventilated small lungs increased VL by 30% and decreased lung density by 31% compared to ST treatment, indicating greater lung distension after PLV compared to ST.

  18. Surfactant and continuous positive airway pressure for the prevention of chronic lung disease: History, reality, and new challenges.

    PubMed

    Aly, Hany; Mohamed, Mohamed A; Wung, Jen-Tien

    2017-10-01

    The discovery of surfactant was one of the most significant research events to occur in the history of neonatology. Certainly, surfactant saved lives for premature infants who were otherwise considered non-viable. However, the prevention of chronic lung disease did not progress and it became clear that a significant portion of the help surfactant provides to the premature lung is counteracted by mechanical ventilation. A dilemma exists over the priorities in premature management to intubate and administer surfactant or not to intubate and support these infants non-invasively with the use of continuous positive airway pressure. A new hydrophilic surfactant preparation has been developed with the hope to enable the introduction of surfactant therapy without the need for tracheal intubation. Clinical trials on this product are currently in progress. This article provides the history and prospect of respiratory distress management in premature infants and evaluates the current evidence for non-invasive practices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Surfactant dysfunction during overexpression of TGF-β1 precedes profibrotic lung remodeling in vivo.

    PubMed

    Lopez-Rodriguez, Elena; Boden, Caroline; Echaide, Mercedes; Perez-Gil, Jesus; Kolb, Martin; Gauldie, Jack; Maus, Ulrich A; Ochs, Matthias; Knudsen, Lars

    2016-06-01

    Transforming growth factor-β1 (TGF-β1) is involved in regulation of cellular proliferation, differentiation, and fibrogenesis, inducing myofibroblast migration and increasing extracellular matrix synthesis. Here, TGF-β1 effects on pulmonary structure and function were analyzed. Adenovirus-mediated gene transfer of TGF-β1 in mice lungs was performed and evaluated by design-based stereology, invasive pulmonary function testing, and detailed analyses of the surfactant system 1 and 2 wk after gene transfer. After 1 wk decreased static compliance was linked with a dramatic alveolar derecruitment without edema formation or increase in the volume of septal wall tissue or collagen fibrils. Abnormally high surface tension correlated with downregulation of surfactant proteins B and C. TTF-1 expression was reduced, and, using PLA (proximity ligand assay) technology, we found Smad3 and TTF-1 forming complexes in vivo, which are normally translocated into the nucleus of the alveolar epithelial type II cells (AE2C) but in the presence of TGF-β1 remain in the cytoplasm. AE2C show altered morphology, resulting in loss of total apical surface area per lung and polarity. These changes of AE2C were progressive 2 wk after gene transfer and correlated with lung compliance. Although static lung compliance remained low, the volume of septal wall tissue and collagen fibrils increased 2 wk after gene transfer. In this animal model, the primary effect of TGF-β1 signaling in the lung is downregulation of surfactant proteins, high surface tension, alveolar derecruitment, and mechanical stress, which precede fibrotic tissue remodeling and progressive loss of AE2C polarity. Initial TTF-1 dysfunction is potentially linked to downregulation of surfactant proteins.

  20. Altered surfactant homeostasis and alveolar epithelial cell stress in amiodarone-induced lung fibrosis.

    PubMed

    Mahavadi, Poornima; Henneke, Ingrid; Ruppert, Clemens; Knudsen, Lars; Venkatesan, Shalini; Liebisch, Gerhard; Chambers, Rachel C; Ochs, Matthias; Schmitz, Gerd; Vancheri, Carlo; Seeger, Werner; Korfei, Martina; Guenther, Andreas

    2014-11-01

    Amiodarone (AD) is a highly efficient antiarrhythmic drug with potentially serious side effects. Severe pulmonary toxicity is reported in patients receiving AD even at low doses and may cause interstitial pneumonia as well as lung fibrosis. Apoptosis of alveolar epithelial type II cells (AECII) has been suggested to play an important role in this disease. In the current study, we aimed to establish a murine model of AD-induced lung fibrosis and analyze surfactant homeostasis, lysosomal, and endoplasmic reticulum (ER) stress in this model. AD/vehicle was instilled intratracheally into C57BL/6 mice, which were sacrificed on days 7, 14, 21, and 28. Extent of lung fibrosis development was assessed by trichrome staining and hydroxyproline measurement. Cytotoxicity was assessed by lactate dehydrogenase assay. Phospholipids (PLs) were analyzed by mass spectrometry. Surfactant proteins (SP) and markers for apoptosis, lysosomal, and ER stress were studied by Western blotting and immunohistochemistry. AECII morphology was evaluated by electron microscopy. Extensive lung fibrosis and AECII hyperplasia were observed in AD-treated mice already at day 7. Surfactant PL and SP accumulated in AECII over time. In parallel, induction of apoptosis, lysosomal, and ER stress was encountered in AECII of mice lungs and in MLE12 cells treated with AD. In vitro, siRNA-mediated knockdown of cathepsin D did not alter the AD-induced apoptotic response. Our data suggest that mice exposed to intratracheal AD develop severe pulmonary fibrosis, exhibit extensive surfactant alterations and cellular stress, but AD-induced AECII apoptosis is not mediated primarily via cathepsin D.

  1. The effect of synthetic surfactant Exosurf on gene transfer in mouse lung in vivo.

    PubMed

    Raczka, E; Kukowska-Latallo, J F; Rymaszewski, M; Chen, C; Baker, J R

    1998-10-01

    Gene transfer in the lung holds promise for the treatment of diseases such as pulmonary fibrosis, cystic fibrosis and asthma. Pulmonary surfactant has been reported to enhance expression from endobronchial, adenovirus-mediated gene transfer in experimental animals. This study examines the effect of exogenous synthetic surfactant (Exosurf) on gene expression from naked plasmid DNA administered endobronchially to adult mice. Transfection efficiency was evaluated by quantifying the expression of chloramphenicol acetyltransferase (CAT) and luciferase (Luc) genes in the lung. Endobronchial administration of either CAT or Luc expression plasmid DNA resulted in detectable concentrations of each reporter protein. CAT expression from plasmid DNA was monitored after endobronchial administration with the maximal expression observed at 3-5 days after administration and decreasing for 5 days thereafter. When DNA was delivered in a 50% suspension of Exosurf, the expression of either CAT or Luc was significantly reduced by 89.6 +/- 1.4% and 82.7 +/- 10.5%, respectively. The decrease in Luc expression was closely correlated (r = 0.99, P < 0.001) to log concentration of surfactant in the plasmid buffer solution (IC50 = 8.6%). CAT expression was not altered when surfactant was administered either 2 h before or after plasmid DNA instillation. Examination of the components of Exosurf revealed that two compounds, DPPC and tyloxapol, showed inhibitory effects on CAT expression. However, the inhibition caused by Exosurf appeared greater than that of either component. Our results suggest that the lung surfactant is a barrier to transfection of the endobronchial airway and may be partly responsible for the low expression of exogenous DNA in vivo in the bronchial tree.

  2. L-triiodothyronine (T/sub 3/) enhances lung surfactant phospholipid flux in rabbit fetus

    SciTech Connect

    Ghosh, B.; Datta, S.; Bandyopadhyay, S.; Steinberg, H.; Das, D.K.

    1986-05-01

    The effect of thyroid hormone on surfactant phospholipid production in fetal lung was studied by simultaneously measuring the surfactant phosphatidylcholine (PC) content and its turnover in lamellar body and alveolar lavage fractions. Pregnant New Zealand white rabbits of 27 days' gestation were properly anesthetized and the uterus opened by a midline incision. Each fetus in each litter was injected with T/sub 3/ along with (/sup 14/C)-palmitate and (/sup 3/H)-choline. Control fetuses were injected with saline instead of T/sub 3/. PC was isolated from lamellar body and lung lavage from each fetus. Zilversmit equations for a two-compartment precursor-product model was used to analyze specific activity versus time curves and the turnover times for surfactant PC. Fluxes of surfactant PC were then calculated from its turnover times and pool sizes. The biological half-life for (/sup 14/C)-palmitate and (/sup 3/H)-choline labeled PC did not change by T/sub 3/ treatment. Turnover times for labeled palmitate and choline were 9.2 hr and 10.0 hr, respectively, for normal fetus and 6.0 hr and 5.8 hr, respectively, for T/sub 3/-treated fetus. While the pool size of PC recovered by the alveolar wash did not change significantly, T/sub 3/ enhanced the flux of this phospholipid from the lamellar bodies into alveolar space by 1.7 times within 4 hr. These results suggest that thyroid hormone may promote fetal lung development by enhancing the release of surfactant into the alveolar space.

  3. More than a monolayer: relating lung surfactant structure and mechanics to composition.

    PubMed

    Alonso, Coralie; Alig, Tim; Yoon, Joonsung; Bringezu, Frank; Warriner, Heidi; Zasadzinski, Joseph A

    2004-12-01

    Survanta, a clinically used bovine lung surfactant extract, in contact with surfactant in the subphase, shows a coexistence of discrete monolayer islands of solid phase coexisting with continuous multilayer "reservoirs" of fluid phase adjacent to the air-water interface. Exchange between the monolayer, the multilayer reservoir, and the subphase determines surfactant mechanical properties such as the monolayer collapse pressure and surface viscosity by regulating solid-fluid coexistence. Grazing incidence x-ray diffraction shows that the solid phase domains consist of two-dimensional crystals similar to those formed by mixtures of dipalmitoylphosphatidylcholine and palmitic acid. The condensed domains grow as the surface pressure is increased until they coalesce, trapping protrusions of liquid matrix. At approximately 40 mN/m, a plateau exists in the isotherm at which the solid phase fraction increases from approximately 60 to 90%, at which the surface viscosity diverges. The viscosity is driven by the percolation of the solid phase domains, which depends on the solid phase area fraction of the monolayer. The high viscosity may lead to high monolayer collapse pressures, help prevent atelectasis, and minimize the flow of lung surfactant out of the alveoli due to surface tension gradients.

  4. SP-B and SP-C Containing New Synthetic Surfactant for Treatment of Extremely Immature Lamb Lung

    PubMed Central

    Sato, Atsuyasu; Ikegami, Machiko

    2012-01-01

    Although superiority of synthetic surfactant over animal-driven surfactant has been known, there is no synthetic surfactant commercially available at present. Many trials have been made to develop synthetic surfactant comparable in function to animal-driven surfactant. The efficacy of treatment with a new synthetic surfactant (CHF5633) containing dipalmitoylphosphatidylcholine, phosphatidylglycerol, SP-B analog, and SP-C analog was evaluated using immature newborn lamb model and compared with animal lung tissue-based surfactant Survanta. Lambs were treated with a clinical dose of 200 mg/kg CHF5633, 100 mg/kg Survanta, or air after 15 min initial ventilation. All the lambs treated with air died of respiratory distress within 90 min of age. During a 5 h study period, Pco2 was maintained at 55 mmHg with 24 cmH2O peak inspiratory pressure for both groups. The preterm newborn lamb lung functions were dramatically improved by CHF5633 treatment. Slight, but significant superiority of CHF5633 over Survanta was demonstrated in tidal volume at 20 min and dynamic lung compliance at 20 and 300 min. The ultrastructure of CHF5633 was large with uniquely aggregated lipid particles. Increased uptake of CHF5633 by alveolar monocytes for catabolism was demonstrated by microphotograph, which might be associated with the higher treatment dose of CHF5633. The higher catabolism of CHF5633 was also suggested by the similar amount of surfactant lipid in bronchoalveolar lavage fluid (BALF) between CHF5633 and Survanta groups, despite the 2-fold higher treatment dose of CHF5633. Under the present ventilation protocol, lung inflammation was minimal for both groups, evaluated by inflammatory cell numbers in BALF and expression of IL-1β, IL-6, IL-8, and TNFα mRNA in the lung tissue. In conclusion, the new synthetic surfactant CHF5633 was effective in treating extremely immature newborn lambs with surfactant deficiency during the 5 h study period. PMID:22808033

  5. Lung inflammatory and oxidative alterations after exogenous surfactant therapy fortified with budesonide in rabbit model of meconium aspiration syndrome.

    PubMed

    Mikolka, P; Kopincová, J; Košútová, P; Čierny, D; Čalkovská, A; Mokrá, D

    2016-12-22

    Meconium aspiration syndrome (MAS) triggers inflammatory and oxidative pathways which can inactivate both pulmonary surfactant and therapeutically given exogenous surfactant. Glucocorticoid budesonide added to exogenous surfactant can inhibit inflammation and thereby enhance treatment efficacy. Neonatal meconium (25 mg/ml, 4 ml/kg) was administered intratracheally (i.t.) to rabbits. When the MAS model was prepared, animals were treated with budesonide i.t. (Pulmicort, 0.25 mg/kg, M+B); with surfactant lung lavage (Curosurf®, 10 ml/kg, 5 mg phospholipids/ml, M+S) followed by undiluted Curosurf® i.t. (100 mg phospholipids/kg); with combination of budesonide and surfactant (M+S+B); or were untreated (M); or served as controls with saline i.t. instead of meconium (C). Animals were oxygen-ventilated for additional 5 h. Cell counts in the blood and bronchoalveolar lavage fluid (BAL), lung edema formation (wet/dry weight ratio), oxidative damage of lipids/ proteins and inflammatory expression profiles (IL-2, IL-6, IL-13, TNF-alpha) in the lung homogenate and plasma were determined. Combined surfactant+budesonide therapy was the most effective in reduction of neutrophil counts in BAL, oxidative damage, levels and mRNA expression of cytokines in the lung, and lung edema formation compared to untreated animals. Curosurf fortified with budesonide mitigated lung inflammation and oxidative modifications what indicate the perspectives of this treatment combination for MAS therapy.

  6. The Effects of Lung Protective Ventilation or Hypercapnic Acidosis on Gas Exchange and Lung Injury in Surfactant Deficient Rabbits

    PubMed Central

    Hummler, Helmut D.; Banke, Katharina; Wolfson, Marla R.; Buonocore, Giuseppe; Ebsen, Michael; Bernhard, Wolfgang; Tsikas, Dimitrios; Fuchs, Hans

    2016-01-01

    Background Permissive hypercapnia has been shown to reduce lung injury in subjects with surfactant deficiency. Experimental studies suggest that hypercapnic acidosis by itself rather than decreased tidal volume may be a key protective factor. Objectives To study the differential effects of a lung protective ventilatory strategy or hypercapnic acidosis on gas exchange, hemodynamics and lung injury in an animal model of surfactant deficiency. Methods 30 anesthetized, surfactant-depleted rabbits were mechanically ventilated (FiO2 = 0.8, PEEP = 7cmH2O) and randomized into three groups: Normoventilation-Normocapnia (NN)-group: tidal volume (Vt) = 7.5 ml/kg, target PaCO2 = 40 mmHg; Normoventilation-Hypercapnia (NH)-group: Vt = 7.5 ml/kg, target PaCO2 = 80 mmHg by increasing FiCO2; and a Hypoventilation-Hypercapnia (HH)-group: Vt = 4.5 ml/kg, target PaCO2 = 80 mmHg. Plasma lactate and interleukin (IL)-8 were measured every 2 h. Animals were sacrificed after 6 h to perform bronchoalveolar lavage (BAL), to measure lung wet-to-dry weight, lung tissue IL-8, and to obtain lung histology. Results PaO2 was significantly higher in the HH-group compared to the NN-group (p<0.05), with values of the NH-group between the HH- and NN-groups. Other markers of lung injury (wet-dry-weight, BAL-Protein, histology-score, plasma-IL-8 and lung tissue IL-8) resulted in significantly lower values for the HH-group compared to the NN-group and trends for the NH-group towards lower values compared to the NN-group. Lactate was significantly lower in both hypercapnia groups compared to the NN-group. Conclusion Whereas hypercapnic acidosis may have some beneficial effects, a significant effect on lung injury and systemic inflammatory response is dependent upon a lower tidal volume rather than resultant arterial CO2 tensions and pH alone. PMID:26840779

  7. Selective medicated (saline + natural surfactant) bronchoalveolar lavage in unilateral lung contusion. A clinical randomized controlled trial.

    PubMed

    Marraro, Giuseppe A; Denaro, Carmelo; Spada, Claudio; Luchetti, Marco; Giansiracusa, Carla

    2010-02-01

    Open lung and low tidal volume ventilation appear to be a promising ventilation for chest trauma as it can reduce ARDS and improve outcome. Local therapy (e.g. BAL) can be synergic to remove from the lung the debris, mitigate inflammatory cascade and avoid damage spreading to not compromised lung areas. 44 pulmonary contused patients were randomized to receive broncho-suction and volume controlled low tidal volume ventilation-VCLTVV (Control Group) or the same ventilation plus medicated (saline + surfactant) BAL (Treatment Group). Tidal volume <10 ml/kg, PEEP of 10-12 cm H(2)O and PaO(2) 60-100 mm Hg and PaCO(2) 35-45 mm Hg were used in both groups. BAL was performed using a fiberscope. 4 boluses of 25 ml saline with 2.4 mg/ml of surfactant were introduced into each contused lobe in which, subsequently, 240 mg of surfactant was instilled. All patients survived. In the Control Group 18 patients developed pneumonia, 5 ARDS and days of intubation were 11.50 (3.83) compared to 5.05 (1.21) of Treatment Group in which OI and PaO(2)/FiO(2) significantly improved from 36 h. VCLTVV alone was not able to prevent ARDS and infection in the Control Group as the reduction of intubation. In the Treatment Group, VCLTVV and medicated BAL facilitated the removal of degradated lung material and recruited the contused lung regions, enabling the healing of the lung pathology.

  8. Effects of ozone and acid aerosol exposures on surfactant-associated protein A in the lung

    SciTech Connect

    Su, W.Y.

    1993-01-01

    This study examined the effect of ozone and/or acid aerosol exposure on the level of surfactant associated protein A (SP-A), its gene expression and functionality in the lung. Guinea pigs were exposed to (1) a single exposure to 0.2 to 0.8 ppm ozone for 6 hr and sacrificed at 0 to 120 hr postexposure, (2) 0.8 ppm ozone, 6 hr/day for 3 to 5 days and sacrificed immediately postexposure, or (3) 0.8 ppm ozone, 600 [mu]g/m[sup 3] sulfuric acid, or ozone plus acid for 6 hr and sacrificed at 72 hr postexposure. The concentration of SP-A was determined by ELISA in lavage fluid, lavage cell pellets, and lung tissue compartments. SP-A gene expression was examined in lung tissue by Northern and slot blot analysis. Effect of ozone exposure on functionality of surfactant was tested by its ability to modulate phagocytic cell respiratory burst in a luminol-amplified chemiluminescence (CL) assay of phagocytic cells simulated by PMA or opsonized-zymosan. There were isolated, but significant, changes in SP-A concentrations in the lavage cell and the lavage fluid compartments at 24 and 48 hr after single exposure to 0.8 ppm ozone, respectively. Exposure to ozone and ozone plus acid also slightly increased total SP-A level in the lung. No change in SP-A gene expression was detected under the exposure conditions examined. However, surfactant from ozone exposed animals significantly enhanced CL response of phagocytic cells stimulated by either PMA or opsonized-zymosan. Blocking of the enhancement of CL by a rabbit anti-human SP-A antibody strongly suggested that SP-A may contribute in the altered respiratory burst of phagocytic cells induced by surfactant from ozone exposed animals.

  9. Activity and biophysical inhibition resistance of a novel synthetic lung surfactant containing Super-Mini-B DATK peptide

    PubMed Central

    Notter, Robert H.; Wang, Zhengdong

    2016-01-01

    Background/objectives. This study examines the surface activity, resistance to biophysical inhibition, and pulmonary efficacy of a synthetic lung surfactant containing glycerophospholipids combined with Super Mini-B (S-MB) DATK, a novel and stable molecular mimic of lung surfactant protein (SP)-B. The objective of the work is to test whether S-MB DATK synthetic surfactant has favorable biophysical and physiological activity for future use in treating surfactant deficiency or dysfunction in lung disease or injury. Methods. The structure of S-MB DATK peptide was analyzed by homology modeling and by FTIR spectroscopy. The in vitro surface activity and inhibition resistance of synthetic S-MB DATK surfactant was assessed in the presence and absence of albumin, lysophosphatidylcholine (lyso-PC), and free fatty acids (palmitoleic and oleic acid). Adsorption and dynamic surface tension lowering were measured with a stirred subphase dish apparatus and a pulsating bubble surfactometer (20 cycles/min, 50% area compression, 37 °C). In vivo pulmonary activity of S-MB DATK surfactant was measured in ventilated rabbits with surfactant deficiency/dysfunction induced by repeated lung lavages that resulted in arterial PO2 values <100 mmHg. Results. S-MB DATK surfactant had very high surface activity in all assessments. The preparation adsorbed rapidly to surface pressures of 46–48 mN/m at 37 °C (low equilibrium surface tensions of 22–24 mN/m), and reduced surface tension to <1 mN/m under dynamic compression on the pulsating bubble surfactometer. S-MB DATK surfactant showed a significant ability to resist inhibition by serum albumin, C16:0 lyso-PC, and free fatty acids, but surfactant inhibition was mitigated by increasing surfactant concentration. S-MB DATK synthetic surfactant quickly improved arterial oxygenation and lung compliance after intratracheal instillation to ventilated rabbits with severe surfactant deficiency. Conclusions. S-MB DATK is an active mimic of native SP

  10. Analysis of pulmonary surfactant in rat lungs after inhalation of nanomaterials: Fullerenes, nickel oxide and multi-walled carbon nanotubes.

    PubMed

    Kadoya, Chikara; Lee, Byeong-Woo; Ogami, Akira; Oyabu, Takako; Nishi, Ken-ichiro; Yamamoto, Makoto; Todoroki, Motoi; Morimoto, Yasuo; Tanaka, Isamu; Myojo, Toshihiko

    2016-01-01

    The health risks of inhalation exposure to engineered nanomaterials in the workplace are a major concern in recent years, and hazard assessments of these materials are being conducted. The pulmonary surfactant of lung alveoli is the first biological entity to have contact with airborne nanomaterials in inhaled air. In this study, we retrospectively evaluated the pulmonary surfactant components of rat lungs after a 4-week inhalation exposure to three different nanomaterials: fullerenes, nickel oxide (NiO) nanoparticles and multi-walled carbon nanotubes (MWCNT), with similar levels of average aerosol concentration (0.13-0.37 mg/m(3)). Bronchoalveolar lavage fluid (BALF) of the rat lungs stored after previous inhalation studies was analyzed, focusing on total protein and the surfactant components, such as phospholipids and surfactant-specific SP-D (surfactant protein D) and the BALF surface tension, which is affected by SP-B and SP-C. Compared with a control group, significant changes in the BALF surface tension and the concentrations of phospholipids, total protein and SP-D were observed in rats exposed to NiO nanoparticles, but not in those exposed to fullerenes. Surface tension and the levels of surfactant phospholipids and proteins were also significantly different in rats exposed to MWCNTs. The concentrations of phospholipids, total protein and SP-D and BALF surface tension were correlated significantly with the polymorphonuclear neutrophil counts in the BALF. These results suggest that pulmonary surfactant components can be used as measures of lung inflammation.

  11. Effects of exogenous surfactant on the non-heart-beating donor lung graft in experimental lung transplantation – a stereological study

    PubMed Central

    Herrmann, Gudrun; Knudsen, Lars; Madershahian, Navid; Mühlfeld, Christian; Frank, Konrad; Rahmanian, Parwis; Wahlers, Thorsten; Wittwer, Thorsten; Ochs, Matthias

    2014-01-01

    The use of non-heart-beating donor (NHBD) lungs may help to overcome the shortage of lung grafts in clinical lung transplantation, but warm ischaemia and ischaemia/reperfusion injury (I/R injury) resulting in primary graft dysfunction represent a considerable threat. Thus, better strategies for optimized preservation of lung grafts are urgently needed. Surfactant dysfunction has been shown to contribute to I/R injury, and surfactant replacement therapy is effective in enhancing lung function and structural integrity in related rat models. In the present study we hypothesize that surfactant replacement therapy reduces oedema formation in a pig model of NHBD lung transplantation. Oedema formation was quantified with (SF) and without (non-SF) surfactant replacement therapy in interstitial and alveolar compartments by means of design-based stereology in NHBD lungs 7 h after cardiac arrest, reperfusion and transplantation. A sham-operated group served as control. In both NHBD groups, nearly all animals died within the first hours after transplantation due to right heart failure. Both SF and non-SF developed an interstitial oedema of similar degree, as shown by an increase in septal wall volume and arithmetic mean thickness as well as an increase in the volume of peribron-chovascular connective tissue. Regarding intra-alveolar oedema, no statistically significant difference could be found between SF and non-SF. In conclusion, surfactant replacement therapy cannot prevent poor outcome after prolonged warm ischaemia of 7 h in this model. While the beneficial effects of surfactant replacement therapy have been observed in several experimental and clinical studies related to heart-beating donor lungs and cold ischaemia, it is unlikely that surfactant replacement therapy will overcome the shortage of organs in the context of prolonged warm ischaemia, for example, 7 h. Moreover, our data demonstrate that right heart function and dysfunctions of the pulmonary vascular bed

  12. Biophysical mimicry of lung surfactant protein B by random nylon-3 copolymers

    PubMed Central

    Dohm, Michelle T.; Mowery, Brendan P.; Czyzewski, Ann M.; Stahl, Shannon S.; Gellman, Samuel H.; Barron, Annelise E.

    2010-01-01

    Non-natural oligomers have recently shown promise as functional analogues of lung surfactant proteins B and C (SP-B and SP-C), two helical and amphiphilic proteins that are critical for normal respiration. The generation of non-natural mimics of SP-B and SP-C has previously been restricted to step-by-step, sequence-specific synthesis, which results in discrete oligomers that are intended to manifest specific structural attributes. Here we present an alternative approach to SP-B mimicry that is based on sequence-random copolymers containing cationic and lipophilic subunits. These materials, members of the nylon-3 family, are prepared by ring-opening polymerization of β-lactams. The best of the nylon-3 polymers display promising in vitro surfactant activities in a mixed lipid film. Pulsating bubble surfactometry data indicate that films containing the most surface-active polymers attain adsorptive and dynamic-cycling properties that surpass those of discrete peptides intended to mimic SP-B. Attachment of an N-terminal octadecanoyl unit to the nylon-3 copolymers – inspired by the post-translational modifications found in SP-C – affords further improvements by reducing the percent surface area compression to reach low minimum surface tension. Cytotoxic effects of the copolymers are diminished relative to that of an SP-B-derived peptide and a peptoid-based mimic. The current study provides evidence that sequence-random copolymers can mimic the in vitro surface-active behavior of lung surfactant proteins in a mixed lipid film. These findings raise the possibility that random copolymers might be useful for developing a lung surfactant replacement, which is an attractive prospect given that such polymers are easier to prepare than are sequence-specific oligomers. PMID:20481635

  13. Biophysical mimicry of lung surfactant protein B by random nylon-3 copolymers.

    PubMed

    Dohm, Michelle T; Mowery, Brendan P; Czyzewski, Ann M; Stahl, Shannon S; Gellman, Samuel H; Barron, Annelise E

    2010-06-16

    Non-natural oligomers have recently shown promise as functional analogues of lung surfactant proteins B and C (SP-B and SP-C), two helical and amphiphilic proteins that are critical for normal respiration. The generation of non-natural mimics of SP-B and SP-C has previously been restricted to step-by-step, sequence-specific synthesis, which results in discrete oligomers that are intended to manifest specific structural attributes. Here we present an alternative approach to SP-B mimicry that is based on sequence-random copolymers containing cationic and lipophilic subunits. These materials, members of the nylon-3 family, are prepared by ring-opening polymerization of beta-lactams. The best of the nylon-3 polymers display promising in vitro surfactant activities in a mixed lipid film. Pulsating bubble surfactometry data indicate that films containing the most surface-active polymers attain adsorptive and dynamic-cycling properties that surpass those of discrete peptides intended to mimic SP-B. Attachment of an N-terminal octadecanoyl unit to the nylon-3 copolymers, inspired by the post-translational modifications found in SP-C, affords further improvements by reducing the percent surface area compression to reach low minimum surface tension. Cytotoxic effects of the copolymers are diminished relative to that of an SP-B-derived peptide and a peptoid-based mimic. The current study provides evidence that sequence-random copolymers can mimic the in vitro surface-active behavior of lung surfactant proteins in a mixed lipid film. These findings raise the possibility that random copolymers might be useful for developing a lung surfactant replacement, which is an attractive prospect given that such polymers are easier to prepare than are sequence-specific oligomers.

  14. Constrained sessile drop as a new configuration to measure low surface tension in lung surfactant systems.

    PubMed

    Yu, Laura M Y; Lu, James J; Chan, Yawen W; Ng, Amy; Zhang, Ling; Hoorfar, Mina; Policova, Zdenka; Grundke, Karina; Neumann, A Wilhelm

    2004-08-01

    Existing methodology for surface tension measurements based on drop shapes suffers from the shortcoming that it is not capable to function at very low surface tension if the liquid dispersion is opaque, such as therapeutic lung surfactants at clinically relevant concentrations. The novel configuration proposed here removes the two big restrictions, i.e., the film leakage problem that is encountered with such methods as the pulsating bubble surfactometer as well as the pendant drop arrangement, and the problem of the opaqueness of the liquid, as in the original captive bubble arrangement. A sharp knife edge is the key design feature in the constrained sessile drop that avoids film leakage at low surface tension. The use of the constrained sessile drop configuration in conjunction with axisymmetric drop shape analysis to measure surface tension allows complete automation of the setup. Dynamic studies with lung surfactant can be performed readily by changing the volume of a sessile drop, and thus the surface area, by means of a motor-driven syringe. To illustrate the validity of using this configuration, experiments were performed using an exogenous lung surfactant preparation, bovine lipid extract surfactant (BLES) at 5.0 mg/ml. A comparison of results obtained for BLES at low concentration between the constrained sessile drop and captive bubble arrangement shows excellent agreement between the two approaches. When the surface area of the BLES film (0.5 mg/ml) was compressed by about the same amount in both systems, the minimum surface tensions attained were identical within the 95% confidence limits.

  15. Effects of Stachybotrys chartarum (atra) conidia and isolated toxin on lung surfactant production and homeostasis.

    PubMed

    Mason, C D; Rand, T G; Oulton, M; MacDonald, J M; Scott, J E

    1998-01-01

    This study evaluated the effects of Stachybotrys chartarum conidia and a trichothecene, isosatratoxin-F, on choline incorporation into DSPC by fetal rabbit alveolar type II cells and on alveolar surfactant subtypes in mice. Exposure of fetal rabbit type II cells to S. chartarum conidia at concentrations of 10(3) to 10(6) conidia ml(-1) significantly depressed [3H] choline incorporation after 24 h of exposure. Exposure of the rabbit cells to 10(5) to 10(6) conidia ml(-1) also resulted in significantly depressed [3H] choline uptake after 48 h. Additionally, fetal rabbit alveolar type II cells exposed to isosatratoxin-F in concentrations ranging from 10(-9) to 10(-4) M showed a significant reduction in [3H] choline incorporation into DSPC. Alveolar surfactant phospholipid concentrations in the different metabolic subfractions of lung lavage fluid of mice intratracheally exposed to either 50 microl of 10(7) ml(-1) S. chartarum conidia or 50 microl 10(-7) M isosatratoxin-F showed some significant changes at 12, 24, 48, and 72 h post-exposure, compared to the surfactant subfractions of control mice which were either untreated, exposed to saline or to 50 microl of 10(-7) ml(-1) Cladosporium cladosporioides conidia. In both the S. chartarum- and the isosatratoxin-F-treated mice, exposure significantly increased P10, P100, and S100 phospholipid concentrations, while the P60 phospholipid concentrations were depressed. In contrast, C. cladosporioides-treated mice showed only one significant change in subfraction phospholipid concentration: P60 was depressed at 48 h post-exposure. These results reveal that alveolar type II cells are sensitive to exposure to S. chartarum conidia and to isosatratoxin F. Sensitivity is manifest by alterations in the normal metabolic processing of alveolar surfactant. In exposed mice, this effect appears to involve a significant increase in newly secreted surfactant and an accumulation of the used surfactant forms.

  16. Pivotal role of anionic phospholipids in determining dynamic behavior of lung surfactant.

    PubMed

    Ingenito, E P; Mora, R; Mark, L

    2000-03-01

    Phosphatidylglycerol (PG) and phosphatidylinositol (PI) are anionic phospholipids (APLs) present in lung surfactant of virtually all species studied, although their specific contribution to function is unknown. This study examines how APLs influence surfactant monolayer stability and adsorption under static and dynamic conditions. Interfacial properties of surfactants reconstituted with native phospholipids (PL), and phospholipids devoid of anionic species (DAPL), were characterized by pulsating bubble surfactometry. Measurements were made for PL and DAPL alone; with 3% surfactant proteins B and C (SP-B/C); with SP-B/C and 5% surfactant protein A (SP-A); and with SP-B/C, SP-A, and 8% neutral lipids (NL). Equilibrium and dynamic properties of PL and DAPL were similar. However, whereas (DAPL + SP-B/C) and (DAPL + SP-B/C + SP-A) mixtures were similar to corresponding PL mixtures with respect to gamma(equil), they displayed markedly different dynamic behavior. In particular, the degree of film compression required to reach gamma(min) was significantly increased in DAPL mixtures (80 to 90% area reduction) compared with PL, although both samples reached gamma(min) < 3.0 dynes/cm. The addition of NL to (DAPL + SP-B/C + SP-A) produced an increase in gamma(min) to 15 to 20 dynes/cm during dynamic compression, whereas NL had no significant impact on the behavior of (PL + SP-B/C + SP-A). Purified PG (5% wt/wt) restored nearly normal dynamic properties to (DAPL + SP-B/C + SP-A + NL), whereas phosphatidylcholine (PC) (5% wt/wt) had no beneficial effect. These results suggest that APLs play a critical role in promoting surface film stability during dynamic compression through interactions with nonlipid surfactant components, and prevent destabilization of the surface film by cholesterol and other NL.

  17. Fractionation of protein, RNA, and plasmid DNA in centrifugal precipitation chromatography using cationic surfactant CTAB containing inorganic salts NaCl and NH(4)Cl.

    PubMed

    Tomanee, Panarat; Hsu, James T; Ito, Yoichiro

    2004-10-05

    Centrifugal precipitation chromatography (CPC) is a separation system that mainly employs a moving concentration gradient of precipitating agent along a channel and solutes of interest undergo repetitive precipitation-dissolution, fractionate at different locations, and elute out from the channel according to their solubility in the precipitating agent solution. We report here for the first time the use of a CPC system for fractionation of protein, RNA, and plasmid DNA in clarified lysate produced from bacterial culture. The cationic surfactant cetyltrimethylammonium bromide (CTAB) was initially used as a precipitating agent; however, all biomolecules showed no differential solubility in the moving concentration gradient of this surfactant and, as a result, no separation of protein, RNA, and plasmid DNA occurred. To overcome this problem, inorganic salts such as NaCl and NH(4)Cl were introduced into solution of CTAB. The protein and RNA were found to have higher solubility with the addition of these salts and separated from the plasmid DNA. Decreasing surface charge density of CTAB upon addition of NaCl and NH(4)Cl was believed to lead to lower surfactant complexation, and therefore caused differential solubility and fractionation of these biomolecules. Addition of CaCl(2) did not improve solubility and separation of RNA from plasmid DNA.

  18. Isolation of a caveolae-enriched fraction from rat lung by affinity partitioning and sucrose gradient centrifugation.

    PubMed

    Abedinpour, Parisa; Jergil, Bengt

    2003-02-01

    Caveolae were isolated from rat lungs by a combination of affinity partitioning and sucrose gradient centrifugation. After homogenization of the lungs directly in a polyethylene glycol-dextran two-phase system and conventional phase partitioning, the polyethylene glycol-rich top phase was affinity partitioned with fresh bottom phase containing dextran-linked wheat-germ agglutinin. The lectin selectively attracted plasma membranes to the bottom phase. The isolated plasma membrane fraction was treated with Triton X-100 or, alternatively, sonicated before centrifugation in a stepwise sucrose gradient. Caveolin-enriched material collected at the 5/24% sucrose boundary. This material also contained 5'-nucleotidase activity and actin. Electron microscopy showed the material to consist of a homogeneous population of 50- to 100-nm vesicles. This purification protocol should allow the facile purification of caveolae also from other tissues, facilitating structural and functional studies. Copyright 2003 Elsevier Science (USA)

  19. Purinergic P2X7 receptor regulates lung surfactant secretion in a paracrine manner

    PubMed Central

    Mishra, Amarjit; Chintagari, Narendranath Reddy; Guo, Yujie; Weng, Tingting; Su, Lijing; Liu, Lin

    2011-01-01

    Alveolar epithelium is composed of alveolar epithelial cells of type I (AEC I) and type II (AEC II). AEC II secrete lung surfactant by means of exocytosis. P2X7 receptor (P2X7R), a P2 purinergic receptor, has been implicated in the regulation of synaptic transmission and inflammation. Here, we report that P2X7R, which is expressed in AEC I but not AEC II, is a novel mediator for the paracrine regulation of surfactant secretion in AEC II. In primary co-cultures of AEC I and AEC II benzoyl ATP (BzATP; an agonist of P2X7R) increased surfactant secretion, which was blocked by the P2X7R antagonist Brilliant Blue G. This effect was observed in AEC II co-cultured with human embryonic kidney HEK-293 cells stably expressing rat P2X7R, but not when co-cultured with AEC I in which P2X7R was knocked down or in co-cultures of AEC I and AEC II isolated from P2X7R−/− mice. BzATP-mediated secretion involved P2Y2 receptor signaling because it was reduced by the addition of the ATP scavengers apyrase and adenosine deaminase and the P2Y2 receptor antagonist suramin. However, the stimulation with BzATP might also release other substances that potentially increase surfactant secretion as a greater stimulation of secretion was observed in AEC II incubated with BzATP when co-cultured with E10 or HEK-293-P2X7R cells than with ATP alone. P2X7R−/− mice failed to increase surfactant secretion in response to hyperventilation, pointing to the physiological relevance of P2X7R in maintaining surfactant homeostasis in the lung. These results suggest that the activation of P2X7R increases surfactant secretion by releasing ATP from AEC I and subsequently stimulating P2Y2 receptors in AEC II. PMID:21266468

  20. Low Concentration Ozone Reacts with Plasmalogen Glycerophosphoethanolamine Lipids in Lung Surfactant

    PubMed Central

    Wynalda, Kelly M.; Murphy, Robert C.

    2009-01-01

    Ozone is a common environmental toxicant to which individuals are exposed to on a daily basis. While biochemical endpoints such as increased mortality, decrements in pulmonary function and initiation of inflammatory processes are known, little is actually understood regarding the chemical mechanisms underlying changes in pulmonary health, especially for low concentrations of ozone. This study was undertaken to investigate ozone induced oxidation of endogenous lipids that are potentially exposed to environmental ozone within lung, specifically focusing on plasmalogen glycerophospholipids present in pulmonary surfactant. Sensitive liquid chromatography-mass spectrometry methods were developed to follow oxidation of diacyl and plasmalogen phosphatidylethanolamine (PE) phospholipids, and to identify and quantitate products generated by ozonolysis. Using a unilamellar vesicle system containing a 1:1 molar mixture of 1-O-octadec-1’-enyl-2-octadecenoyl-PE and 1,2-dihexadecanoyl-PC, these studies revealed the vinyl ether bond of plasmalogens was oxidized preferentially at low concentrations of ozone (100 ppb), when compared to olefinic bond oxidation on ω-9 of the fatty acyl chain in the same phospholipids. Major phospholipid products generated were identified as 1-formyl-2-octadecenoyl-PE and 1-hydroxy-2-octadecenoyl-PE. Heptadecanal and heptadecanoic acid production was also quantitated using gas chromatography-mass spectrometry and production was consistent with oxidation of the vinyl ether, at low concentrations of ozone. Analysis of murine lung surfactant from C57Bl/6 mice revealed several plasmalogen PE lipid species, encompassing ~38% of total PE species. Upon exposure of ozone (0 ppb, 100 ppb) to murine surfactant, plasmalogen PE molecular species preferentially reacted, as compared to diacyl PE molecular species. Lysophospholipids, pentadecanal, and nonanal were found to be the primary products of surfactant ozone oxidation. PMID:19916514

  1. Concentration-dependent, temperature-dependent non-Newtonian viscosity of lung surfactant dispersions.

    PubMed

    King, D M; Wang, Z; Kendig, J W; Palmer, H J; Holm, B A; Notter, R H

    2001-07-01

    The bulk shear viscosities of aqueous dispersions of lavaged calf lung surfactant (LS) and its chloroform:methanol extract (CLSE) were measured as a function of concentration, shear rate and temperature. At 10-mg phospholipid per milliliter, dispersions of LS and vortexed CLSE in 0.15 M NaCl (saline) had low viscosities near 1 cp over a range of shear rates from 225 to 1125 s(-1). Lung surfactant viscosity increased with phospholipid concentration and became strongly non-Newtonian with higher values at low shear rates. At 37 degrees C and 40 mg/ml, LS and vortexed CLSE in saline had viscosities of 38 and 34 cp (77 s(-1)) and 12 and 7 cp (770 s(-1)), respectively. Viscosity values for LS and CLSE were dependent on temperature and, at fixed shear, were lower at 23 degrees C than at 37 or 10 degrees C. Hysteresis was also present in viscosity measurements depending on whether shear rate was successively increased or decreased during study. Addition of 5 mM Ca(2+) at 37 degrees C markedly reduced CLSE viscosity at all shear rates and decreased LS viscosity at low shear rates. Dispersion by sonication rather than vortexing increased the viscosity of CLSE at fixed shear, while synthetic phospholipids dispersed by either method had low, relatively Newtonian viscosities. The complex viscous behavior of dispersions of LS and CLSE in saline results from their heterogeneous aggregated microstructure of phospholipids and apoproteins. Viscosity is influenced not only by the aggregate surface area under shear, but also by phospholipid-apoprotein interactions and aggregate structure/deformability. Similar complexities likely affect the viscosities of biologically-derived exogenous surfactant preparations administered to patients in clinical surfactant therapy.

  2. Fluidization of a dipalmitoyl phosphatidylcholine monolayer by fluorocarbon gases: potential use in lung surfactant therapy.

    PubMed

    Gerber, Frédéric; Krafft, Marie Pierre; Vandamme, Thierry F; Goldmann, Michel; Fontaine, Philippe

    2006-05-01

    Fluorocarbon gases (gFCs) were found to inhibit the liquid-expanded (LE)/liquid-condensed (LC) phase transition of dipalmitoyl phosphatidylcholine (DPPC) Langmuir monolayers. The formation of domains of an LC phase, which typically occurs in the LE/LC coexistence region upon compression of DPPC, is prevented when the atmosphere above the DPPC monolayer is saturated with a gFC. When contacted with gFC, the DPPC monolayer remains in the LE phase for surface pressures lower than 38 mN m(-1), as assessed by compression isotherms and fluorescence microscopy (FM). Moreover, gFCs can induce the dissolution of preexisting LC phase domains and facilitate the respreading of the DPPC molecules on the water surface, as shown by FM and grazing incidence x-ray diffraction. gFCs have thus a highly effective fluidizing effect on the DPPC monolayer. This gFC-induced fluidizing effect was compared with the fluidizing effect brought about by a mixture of unsaturated lipids and proteins, namely the two commercially available lung surfactant substitutes, Curosurf and Survanta, which are derived from porcine and bovine lung extracts, respectively. The candidate FCs were chosen among those already investigated for biomedical applications, and in particular for intravascular oxygen transport, i.e., perfluorooctyl bromide, perfluorooctylethane, bis(perfluorobutyl)ethene, perfluorodecalin, and perfluorooctane. The fluidizing effect is most effective with the linear FCs. This study suggests that FCs, whose biocompatibility is well documented, may be useful in lung surfactant substitute compositions.

  3. Dynamic Surface Activity of a Fully Synthetic Phospholipase-Resistant Lipid/Peptide Lung Surfactant

    PubMed Central

    Walther, Frans J.; Waring, Alan J.; Hernandez-Juviel, Jose M.; Gordon, Larry M.; Schwan, Adrian L.; Jung, Chun-Ling; Chang, Yusuo; Wang, Zhengdong; Notter, Robert H.

    2007-01-01

    Background This study examines the surface activity and resistance to phospholipase degradation of a fully-synthetic lung surfactant containing a novel diether phosphonolipid (DEPN-8) plus a 34 amino acid peptide (Mini-B) related to native surfactant protein (SP)-B. Activity studies used adsorption, pulsating bubble, and captive bubble methods to assess a range of surface behaviors, supplemented by molecular studies using Fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD), and plasmon resonance. Calf lung surfactant extract (CLSE) was used as a positive control. Results DEPN-8+1.5% (by wt.) Mini-B was fully resistant to degradation by phospholipase A2 (PLA2) in vitro, while CLSE was severely degraded by this enzyme. Mini-B interacted with DEPN-8 at the molecular level based on FTIR spectroscopy, and had significant plasmon resonance binding affinity for DEPN-8. DEPN-8+1.5% Mini-B had greatly increased adsorption compared to DEPN-8 alone, but did not fully equal the very high adsorption of CLSE. In pulsating bubble studies at a low phospholipid concentration of 0.5 mg/ml, DEPN-8+1.5% Mini-B and CLSE both reached minimum surface tensions <1 mN/m after 10 min of cycling. DEPN-8 (2.5 mg/ml)+1.5% Mini-B and CLSE (2.5 mg/ml) also reached minimum surface tensions <1 mN/m at 10 min of pulsation in the presence of serum albumin (3 mg/ml) on the pulsating bubble. In captive bubble studies, DEPN-8+1.5% Mini-B and CLSE both generated minimum surface tensions <1 mN/m on 10 successive cycles of compression/expansion at quasi-static and dynamic rates. Conclusions These results show that DEPN-8 and 1.5% Mini-B form an interactive binary molecular mixture with very high surface activity and the ability to resist degradation by phospholipases in inflammatory lung injury. These characteristics are promising for the development of related fully-synthetic lipid/peptide exogenous surfactants for treating diseases of surfactant deficiency or dysfunction. PMID

  4. Pulmonary toxicity of trichloroethylene: induction of changes in surfactant phospholipids and phospholipase A2 activity in the mouse lung.

    PubMed

    Scott, J E; Forkert, P G; Oulton, M; Rasmusson, M G; Temple, S; Fraser, M O; Whitefield, S

    1988-08-01

    Trichloroethylene (TCE) is a common organic solvent in use as a dry cleaning agent as well as an inhalant anesthetic. Nevertheless the effects of this material on the pulmonary surfactant which prevents alveolar collapse at maximal expiration is not known. Therefore, we have examined the effect of TCE on the intra- and extracellular surfactant pools and the activity of phospholipase A2, an enzyme which controls the remodeling of phosphatidylcholine to dipalmitoylphosphatidylcholine, the primary constituent of the pulmonary surfactant. Male CD-1 mice were treated ip with 2500 or 3000 mg/kg TCE. Twenty-four hours later mice were anesthetized and the lungs lavaged. Mice were then killed, the lungs perfused and excised, and subcellular fractions including lamellar bodies prepared. Some lungs were prepared for ultrastructural examination. Phospholipase A2 was assayed in all subcellular fractions. Phospholipid was assayed in the lavage (extracellular surfactant) and the lamellar bodies (intracellular surfactant). TCE (2500 mg/kg) caused selective exfoliation of Clara cells. However, only the dose of 3000 mg/kg TCE produced a significant decrease in the intracellular surfactant phospholipid. Minimal changes occurred in the phospholipid profiles. Phospholipase A2 specific activity was significantly decreased at both dosages within the lung microsomal fraction. In addition after treatment with 3000 mg/kg TCE the enzyme activity in the lamellar body fraction was significantly increased. These data suggest that inhalation of TCE may damage the enzymes which are responsible for synthesizing the pulmonary surfactant resulting in lower amounts of surfactant being stored and available for secretion into the alveolus.

  5. A conformation transition of lung surfactant lipids probably involved in respiration.

    PubMed Central

    Gulik, A; Tchoreloff, P; Proust, J

    1994-01-01

    X-ray scattering and freeze-fracture electron microscopy of a lung surfactant extract show the existence of a complex lamellar phase, L gamma, over a wide range of concentrations and temperatures. This lamellar phase, which consists of two bilayer motifs comprised of monolayers with stiff chains alternating with monolayers with disordered chains, allows us to propose a structural model of a collapse phase at the alveolar pulmonary interface. This model accounts for the increase in surface pressure during the compression as well as the easy respreading upon expansion of the interface during the respiratory cycle. Images FIGURE 3 FIGURE 4 PMID:7811921

  6. Surfactant Protein C-associated interstitial lung disease; three different phenotypes of the same SFTPC mutation.

    PubMed

    Salerno, Teresa; Peca, Donatella; Menchini, Laura; Schiavino, Alessandra; Boldrini, Renata; Esposito, Fulvio; Danhaive, Olivier; Cutrera, Renato

    2016-02-29

    Monoallelic mutations of the Surfactant Protein C gene (SFTPC) are associated with Interstitial Lung Disease in children. I73T is the most common mutation, accounting for 30 % of all cases reported. We describe three patients carrying the same I73T SPC mutation with very different phenotypes, clinical course (ranging from mild respiratory symptoms to death for respiratory failure) and outcome. The disease mechanisms associated with SP-C mutations suggest that the combination of individual genetic background and environmental factors contribute largely to the wide variability of clinical expression. Infants, children and adults with ILD of unknown etiology should be investigated for SP-C genetic abnormalities.

  7. Increased phospholipase A2 and lyso-phosphatidylcholine levels are associated with surfactant dysfunction in lung contusion injury in mice.

    PubMed

    Machado-Aranda, David; Wang, Zhengdong; Yu, Bi; Suresh, M V; Notter, Robert H; Raghavendran, Krishnan

    2013-01-01

    Surfactant dysfunction is an important pathologic disturbance in various forms of acute inflammatory lung injury. Previously we reported the presence of marked alterations in the composition and activity of pulmonary surfactant in bilateral lung contusions (LC) injury induced by blunt trauma in rats. This is extended here to a mouse model of unilateral LC with a focus on compositional and functional changes in surfactant associated with permeability injury and increases in activity of secretory phospholipase A2. Surfactant-associated gene expression was not altered in mice with unilateral LC injury on the basis of Affymetrix analysis. LC mice had significant permeability injury with increased albumin and total protein in bronchoalveolar lavage at 5, 24, 48, and 72 hours after insult compared with uninjured controls. The percent content of large surfactant aggregates was depleted at all postinjury times, and pulmonary pressure-volume (P-V) mechanics and compliance were abnormal during this period. Surfactant dysfunction was evaluated in 24 hours, when permeability injury and P-V changes were most prominent. At this time, activity levels of secretory phospholipase A2 were increased in bronchoalveolar lavage, and chromatographic analysis showed that large surfactant aggregates had decreased levels of phosphatidylcholine and increased levels of lyso-phosphatidylcholine. These changes were accompanied by severe detriments in large aggregate surface activity by pulsating bubble surfactometry. Large aggregates from LC mice at 24 hours had minimum surface tensions of only 12.6 ± 1.1 mN/m after prolonged bubble pulsation (20 min) compared with 0.7 ± 0.03 mN/m for uninjured controls. These results document important detriments in the composition and activity of pulmonary surfactant in LC injury in mice and suggest that active synthetic phospholipase-resistant exogenous surfactants may have utility in treating surfactant dysfunction in this clinically important condition

  8. Increased phospholipase A2 and lyso-phosphatidylcholine levels are associated with surfactant dysfunction in lung contusion injury in mice

    PubMed Central

    Machado-Aranda, David; Wang, Zhengdong; Yu, Bi; Suresh, M V; Notter, Robert H.; Raghavendran, Krishnan

    2012-01-01

    Objective Surfactant dysfunction is an important pathological disturbance in various forms of acute inflammatory lung injury. Previously we reported the presence of significant alterations in the composition and activity of pulmonary surfactant in blunt trauma-induced bilateral lung contusion (LC) injury in rats. This is extended here to a mouse model of unilateral LC, with a focus on compositional and functional surfactant changes associated with permeability injury and increases in activity of secretory phospholipase A2. Results Surfactant-associated gene expression was not significantly altered in mice with unilateral LC injury based on Affymetrix analysis. LC mice had significant permeability injury with increased albumin and total protein in bronchoalveolar lavage (BAL) at 5, 24, 48 and 72 h post-insult compared to uninjured controls. The percent content of large surfactant aggregates was significantly depleted at all post-injury times, and pulmonary pressure-volume (P-V) mechanics and compliance were abnormal over this period. Surfactant dysfunction was evaluated in mechanistic detail at 24 h, when permeability injury and P-V changes were most prominent. At this time, activity levels of secretory phospholipase A2 (PLA2) were increased in BAL, and chromatographic analysis showed that large surfactant aggregates had decreased levels of phosphatidylcholine (PC) and increased levels of lyso-PC. These changes were accompanied by severe detriments in large aggregate surface activity by pulsating bubble surfactometry. Large aggregates from LC mice at 24 h had minimum surface tensions of only 12.6±1.1 mN/m after prolonged bubble pulsation (20 min) compared to 0.7±0.03 mN/m for uninjured controls. Conclusion These results document significant detriments in the composition and activity of pulmonary surfactant in LC injury in mice, and suggest that active synthetic phospholipase-resistant exogenous surfactants may have future utility in treating surfactant dysfunction

  9. Analysis of lung surfactant model systems with time-of-flight secondary ion mass spectrometry.

    PubMed Central

    Bourdos, N; Kollmer, F; Benninghoven, A; Ross, M; Sieber, M; Galla, H J

    2000-01-01

    An often-used model lung surfactant containing dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), and the surfactant protein C (SP-C) was analyzed as Langmuir-Blodgett film by spatially resolved time-of-flight secondary ion mass spectrometry (TOF-SIMS) to directly visualize the formation and composition of domains. Binary lipid and lipid/SP-C systems were probed for comparison. TOF-SIMS spectra revealed positive secondary ions (SI) characteristic for DPPC and SP-C, but not for DPPG. SI mapping results in images with domain structures in DPPC/DPPG and DPPG/SP-C, but not in DPPC/SP-C films. We are able to distinguish between the fluid and condensed areas probably due to a matrix effect. These findings correspond with other imaging techniques, fluorescence light microscopy (FLM), scanning force microscopy (SFM), and silver decoration. The ternary mixture DPPC/DPPG/SP-C transferred from the collapse region exhibited SP-C-rich domains surrounding pure lipid areas. The results obtained are in full accordance with our earlier SFM picture of layered protrusions that serve as a compressed reservoir for surfactant material during expansion. Our study demonstrates once more that SP-C plays a unique role in the respiration process. PMID:10866961

  10. The Interactions between SP-B Protein and Anionic Lipids Found in Human Lung Surfactant

    NASA Astrophysics Data System (ADS)

    Lee, Ka Yee C.; Lipp, Michael M.; Zasadzinski, Joseph A.; Waring, Alan J.

    1997-03-01

    Several lung pathologies, including neonatal respiratory distress syndrome, are characterized by a failure of the lung surfactant (LS) system to function properly. Utilizing fluorescence and Brewster angle microscopy, we have investigated the phase behavior of monolayers of binary mixtures of anionic lipids found in LS (palmitic acid, and both saturated and unsaturated phosphatidylglycerol) with both the full length SP-B protein and a shorter, 25-amino acid sequence based on its amino terminus. We found that both protein candidates interact specifically yet differently with each of the lipid components, altering their phase behavior to resemble more closely to that of an ideal LS monolayer. The SP-B protein incorporates itself in the lipid monolayer in all cases, and partitions preferentially into the fluid-type phases during phase transitions; its presence drastically changes the collapse mechanism of the monolayer.

  11. Mechanisms to explain surfactant responses.

    PubMed

    Jobe, Alan H

    2006-01-01

    Surfactant is now standard of care for infants with respiratory distress syndrome. Surfactant treatments are effective because of complex metabolic interactions between surfactant and the preterm lung. The large treatment dose functions as substrate; it is taken up by the preterm lung and is reprocessed and secreted with improved function. The components of the treatment surfactant remain in the preterm lung for days. If lung injury is avoided, then surfactant inhibition is minimized. Prenatal corticosteroids complement surfactant to further enhance lung function. The magic of surfactant therapy results from the multiple interactions between surfactant and the preterm lung. Copyright (c) 2006 S. Karger AG, Basel.

  12. Pro-surfactant protein B as a biomarker for lung cancer prediction.

    PubMed

    Sin, Don D; Tammemagi, C Martin; Lam, Stephen; Barnett, Matt J; Duan, Xiaobo; Tam, Anthony; Auman, Heidi; Feng, Ziding; Goodman, Gary E; Hanash, Samir; Taguchi, Ayumu

    2013-12-20

    Preliminary studies have identified pro-surfactant protein B (pro-SFTPB) to be a promising blood biomarker for non-small-cell lung cancer. We conducted a study to determine the independent predictive potential of pro-SFTPB in identifying individuals who are subsequently diagnosed with lung cancer. Pro-SFTPB levels were measured in 2,485 individuals, who enrolled onto the Pan-Canadian Early Detection of Lung Cancer Study by using plasma sample collected at the baseline visit. Multivariable logistic regression models were used to evaluate the predictive ability of pro-SFTPB in addition to known lung cancer risk factors. Calibration and discrimination were evaluated, the latter by an area under the receiver operating characteristic curve (AUC). External validation was performed with samples collected in the Carotene and Retinol Efficacy Trial (CARET) participants using a case-control study design. Adjusted for age, sex, body mass index, personal history of cancer, family history of lung cancer, forced expiratory volume in one second percent predicted, average number of cigarettes smoked per day, and smoking duration, pro-SFTPB (log transformed) had an odds ratio of 2.220 (95% CI, 1.727 to 2.853; P < .001). The AUCs of the full model with and without pro-SFTPB were 0.741 (95% CI, 0.696 to 0.783) and 0.669 (95% CI, 0.620 to 0.717; difference in AUC P < .001). In the CARET Study, the use of pro-SFPTB yielded an AUC of 0.683 (95% CI, 0.604 to 0.761). Pro-SFTPB in plasma is an independent predictor of lung cancer and may be a valuable addition to existing lung cancer risk prediction models.

  13. Pro–Surfactant Protein B As a Biomarker for Lung Cancer Prediction

    PubMed Central

    Sin, Don D.; Tammemagi, C. Martin; Lam, Stephen; Barnett, Matt J.; Duan, Xiaobo; Tam, Anthony; Auman, Heidi; Feng, Ziding; Goodman, Gary E.; Hanash, Samir; Taguchi, Ayumu

    2013-01-01

    Purpose Preliminary studies have identified pro–surfactant protein B (pro-SFTPB) to be a promising blood biomarker for non–small-cell lung cancer. We conducted a study to determine the independent predictive potential of pro-SFTPB in identifying individuals who are subsequently diagnosed with lung cancer. Patients and Methods Pro-SFTPB levels were measured in 2,485 individuals, who enrolled onto the Pan-Canadian Early Detection of Lung Cancer Study by using plasma sample collected at the baseline visit. Multivariable logistic regression models were used to evaluate the predictive ability of pro-SFTPB in addition to known lung cancer risk factors. Calibration and discrimination were evaluated, the latter by an area under the receiver operating characteristic curve (AUC). External validation was performed with samples collected in the Carotene and Retinol Efficacy Trial (CARET) participants using a case-control study design. Results Adjusted for age, sex, body mass index, personal history of cancer, family history of lung cancer, forced expiratory volume in one second percent predicted, average number of cigarettes smoked per day, and smoking duration, pro-SFTPB (log transformed) had an odds ratio of 2.220 (95% CI, 1.727 to 2.853; P < .001). The AUCs of the full model with and without pro-SFTPB were 0.741 (95% CI, 0.696 to 0.783) and 0.669 (95% CI, 0.620 to 0.717; difference in AUC P < .001). In the CARET Study, the use of pro-SFPTB yielded an AUC of 0.683 (95% CI, 0.604 to 0.761). Conclusion Pro-SFTPB in plasma is an independent predictor of lung cancer and may be a valuable addition to existing lung cancer risk prediction models. PMID:24248694

  14. Molecular dynamics simulation of phase and structural transitions in model lung surfactant mixtures

    NASA Astrophysics Data System (ADS)

    Duncan, Susan L.

    Lung surfactant (LS) is a complex mixture of lipids and proteins that reduces and regulates the surface tension in the lungs, thereby decreasing the work of breathing. A thorough understanding of LS function is critical to the development and optimization of synthetic surfactants for the treatment of neonatal and adult respiratory distress syndrome. We have utilized coarse-grained (CG) molecular dynamics simulation to study the dynamic, hysteretic changes occurring in the structure and phase of model surfactant mixtures with varying temperature, pressure and composition. In particular, we have studied the effects of the LS components palmitoyloleoylphosphatidylglycerol (POPG), palmitoyloleoylphosphatidylcholine (POPC), palmitic acid (PA), cholesterol, and two surface-active proteins SP-B 1--25 (the 25-residue N-terminal fragment of SP-B), and SP-C on model surfactant monolayers containing the primary lipid component dipalmitoylphosphatidylcholine (DPPC). The results indicate that POPG, POPC, SP-B1--25 and SP-C act as fluidizers and PA and cholesterol act as condensing agents, which change the phase-transition temperature, LC-LE phase distribution, and the extent of hysteresis. To explore the role of LS proteins SP-B and SP-C in storing and redelivering lipid from lipid monolayers during the compression and re-expansion occurring in lungs during breathing, we have simulated 2D-to-3D transitions at the interface. These simulations show that at near-zero surface tension the presence of a fluidizing agent, such as POPG, SP-C, or SP-B 1--25 decreases the monolayers resistance to bending allowing the monolayers to form large undulations and ultimately folds. Another folding mechanism is also observed in monolayers containing peptides, involving the lipid-mediated aggregation of the peptides into a defect, from which the fold can nucleate. The occurrence of folding depends on the hydrophobic character of the peptides; if the number of hydrophobic residues is decreased

  15. Probing Perturbation of Bovine Lung Surfactant Extracts by Albumin using DSC and 2H-NMR

    PubMed Central

    Nag, Kaushik; Keough, Kevin M. W.; Morrow, Michael R.

    2006-01-01

    Lung surfactant (LS), a lipid-protein mixture, forms films at the lung air-water interface and prevents alveolar collapse at end expiration. In lung disease and injury, the surface activity of LS is inhibited by leakage of serum proteins such as albumin into the alveolar hypophase. Multilamellar vesicular dispersions of a clinically used replacement, bovine lipid extract surfactant (BLES), to which (2% by weight) chain-perdeuterated dipalmitoylphosphatidycholine (DPPG mixtures-d62) had been added, were studied using deuterium-NMR spectroscopy (2H-NMR) and differential scanning calorimetry (DSC). DSC scans of BLES showed a broad gel to liquid-crystalline phase transition between 10–35°C, with a temperature of maximum heat flow (Tmax) around 27°C. Incorporation of the DPPC-d62 into BLES-reconstituted vesicles did not alter the Tmax or the transition range as observed by DSC or the hydrocarbon stretching modes of the lipids observed using infrared spectroscopy. Transition enthalpy change and 2H-NMR order parameter profiles were not significantly altered by addition of calcium and cholesterol to BLES. 2H-NMR spectra of the DPPC-d62 probes in these samples were characteristic of a single average lipid environment at all temperatures. This suggested either continuous ordering of the bilayer through the transition during cooling or averaging of the DPPC-d62 environment by rapid diffusion between small domains on a short timescale relative to that characteristic of the 2H-NMR experiment. Addition of 10% by weight of soluble bovine serum albumin (1:0.1, BLES/albumin, dry wt/wt) broadened the transition slightly and resulted in the superposition of 2H-NMR spectral features characteristic of coexisting fluid and ordered phases. This suggests the persistence of phase-separated domains throughout the transition regime (5–35°C) of BLES with albumin. The study suggests albumin can cause segregation of protein bound-lipid domains in surfactant at NMR timescales (10−5 s

  16. Low Levels of Exhaled Surfactant Protein A Associated With BOS After Lung Transplantation

    PubMed Central

    Ericson, Petrea A.; Mirgorodskaya, Ekaterina; Hammar, Oscar S.; Viklund, Emilia A.; Almstrand, Ann-Charlotte R.; Larsson, Per J-W.; Riise, Gerdt C.; Olin, Anna-Carin

    2016-01-01

    Background There is no clinically available marker for early detection or monitoring of chronic rejection in the form of bronchiolitis obliterans syndrome (BOS), the main long-term complication after lung transplantation. Sampling and analysis of particles in exhaled air is a valid, noninvasive method for monitoring surfactant protein A (SP-A) and albumin in the distal airways. Methods We asked whether differences in composition of exhaled particles can be detected when comparing stable lung transplant recipients (LTRs) (n = 26) with LTRs who develop BOS (n = 7). A comparison between LTRs and a matching group of healthy controls (n = 33) was also conducted. Using a system developed in-house, particles were collected from exhaled air by the principal of inertial impaction before chemical analysis by immunoassays. Results Surfactant protein A in exhaled particles and the SP-A/albumin ratio were lower (P = 0.002 and P = 0.0001 respectively) in the BOS group compared to the BOS-free group. LTRs exhaled higher amount of particles (P < 0.0001) and had lower albumin content (P < 0.0001) than healthy controls. Conclusions We conclude that low levels of SP-A in exhaled particles are associated with increased risk of BOS in LTRs. The possibility that this noninvasive method can be used to predict BOS onset deserves further study with prospective and longitudinal approaches. PMID:27795995

  17. Exogenous gene transfer of Rab(3)8 small GTPase ameliorates aberrant lung surfactant homeostasis in Ruby rats.

    PubMed

    Osanai, Kazuhiro; Nakase, Keisuke; Sakuma, Takashi; Nishiki, Kazuaki; Nojiri, Masafumi; Kato, Ryo; Saito, Masatoshi; Fujimoto, Yuki; Mizuno, Shiro; Toga, Hirohisa

    2017-04-24

    Rab(3)8 small GTPase regulates intracellular transport in melanocytes and alveolar type II epithelial cells. Ruby rats carrying Rab(3)8 and other gene mutations exhibit oculocutaneous albinism, bleeding diathesis, and hence, are a rat model of human Hermansky-Pudlak syndrome (HPS). We previously showed that Long Evans Cinnamon (LEC) rats, one strain of the Ruby rats, developed aberrant lung surfactant homeostasis with remarkably enlarged lamellar bodies in alveolar type II cells. A replication-deficient recombinant adenovirus expressing rat Rab(3)8 (Ad-Rab(3)8) was constructed. Alveolar type II cells were isolated from the LEC rats and tested for lung surfactant phosphatidylcholine secretion. The rats were also examined whether exogenous expression of Ad- Rab(3)8 could rescue the altered lung surfactant homeostasis in the lungs. Isolated type II cells infected with Ad-Rab(3)8 exhibited improved secretion patterns of [(3)H]phosphatidylcholine, i.e. increased basal hyposecretion and decreased agonist-induced hypersecretion. Endobronchial administration of Ad-Rab(3)8 improved the morphology of type II cells and lamellar bodies, reducing their sizes close to those of wild-type rats. The increased amounts of phosphatidylcholine and surfactant protein B in the lamellar body fractions were decreased in the Ad-Rab(3)8 infected lungs. These results provide strong evidence that the aberrant lung surfactant homeostasis in the LEC rats is caused by Rab(3)8 deficit, and suggest that endobronchial delivery of the responsive transgene could be an effective method to ameliorate the abnormal lung phenotype in the animal model of HPS.

  18. Effect of surfactant on regional lung function in an experimental model of respiratory distress syndrome in rabbit.

    PubMed

    Bayat, Sam; Porra, Liisa; Broche, Ludovic; Albu, Gergely; Malaspinas, Iliona; Doras, Camille; Strengell, Satu; Peták, Ferenc; Habre, Walid

    2015-08-01

    We assessed the changes in regional lung function following instillation of surfactant in a model of respiratory distress syndrome (RDS) induced by whole lung lavage and mechanical ventilation in eight anaesthetized, paralyzed, and mechanically ventilated New Zealand White rabbits. Regional specific ventilation (sV̇) was measured by K-edge subtraction synchrotron computed tomography during xenon washin. Lung regions were classified as poorly aerated (PA), normally aerated (NA), or hyperinflated (HI) based on regional density. A functional category was defined within each class based on sV̇ distribution (High, Normal, and Low). Airway resistance (Raw), respiratory tissue damping (G), and elastance (H) were measured by forced oscillation technique at low frequencies before and after whole lung saline lavage-induced (100 ml/kg) RDS, and 5 and 45 min after intratracheal instillation of beractant (75 mg/kg). Surfactant instillation improved Raw, G, and H (P < 0.05 each), and gas exchange and decreased atelectasis (P < 0.001). It also significantly improved lung aeration and ventilation in atelectatic lung regions. However, in regions that had remained normally aerated after lavage, it decreased regional aeration and increased sV̇ (P < 0.001) and sV̇ heterogeneity. Although surfactant treatment improved both central airway and tissue mechanics and improved regional lung function of initially poorly aerated and atelectatic lung, it deteriorated regional lung function when local aeration was normal prior to administration. Local mechanical and functional heterogeneity can potentially contribute to the worsening of RDS and gas exchange. These data underscore the need for reassessing the benefits of routine prophylactic vs. continuous positive airway pressure and early "rescue" surfactant therapy in very immature infants.

  19. Synthetic surfactant containing SP-B and SP-C mimics is superior to single-peptide formulations in rabbits with chemical acute lung injury.

    PubMed

    Walther, Frans J; Hernández-Juviel, José M; Gordon, Larry M; Waring, Alan J

    2014-01-01

    Background. Chemical spills are on the rise and inhalation of toxic chemicals may induce chemical acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Although the pathophysiology of ALI/ARDS is well understood, the absence of specific antidotes has limited the effectiveness of therapeutic interventions. Objectives. Surfactant inactivation and formation of free radicals are important pathways in (chemical) ALI. We tested the potential of lipid mixtures with advanced surfactant protein B and C (SP-B and C) mimics to improve oxygenation and lung compliance in rabbits with lavage- and chemical-induced ALI/ARDS. Methods. Ventilated young adult rabbits underwent repeated saline lung lavages or underwent intratracheal instillation of hydrochloric acid to induce ALI/ARDS. After establishment of respiratory failure rabbits were treated with a single intratracheal dose of 100 mg/kg of synthetic surfactant composed of 3% Super Mini-B (S-MB), a SP-B mimic, and/or SP-C33 UCLA, a SP-C mimic, in a lipid mixture (DPPC:POPC:POPG 5:3:2 by weight), the clinical surfactant Infasurf(®), a bovine lung lavage extract with SP-B and C, or synthetic lipids alone. End-points consisted of arterial oxygenation, dynamic lung compliance, and protein and lipid content in bronchoalveolar lavage fluid. Potential mechanism of surfactant action for S-MB and SP-C33 UCLA were investigated with captive bubble surfactometry (CBS) assays. Results. All three surfactant peptide/lipid mixtures and Infasurf equally lowered the minimum surface tension on CBS, and also improved oxygenation and lung compliance. In both animal models, the two-peptide synthetic surfactant with S-MB and SP-C33 UCLA led to better arterial oxygenation and lung compliance than single peptide synthetic surfactants and Infasurf. Synthetic surfactants and Infasurf improved lung function further in lavage- than in chemical-induced respiratory failure, with the difference probably due to greater capillary-alveolar protein

  20. Synthetic surfactant containing SP-B and SP-C mimics is superior to single-peptide formulations in rabbits with chemical acute lung injury

    PubMed Central

    Hernández-Juviel, José M.; Gordon, Larry M.; Waring, Alan J.

    2014-01-01

    Background. Chemical spills are on the rise and inhalation of toxic chemicals may induce chemical acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Although the pathophysiology of ALI/ARDS is well understood, the absence of specific antidotes has limited the effectiveness of therapeutic interventions. Objectives. Surfactant inactivation and formation of free radicals are important pathways in (chemical) ALI. We tested the potential of lipid mixtures with advanced surfactant protein B and C (SP-B and C) mimics to improve oxygenation and lung compliance in rabbits with lavage- and chemical-induced ALI/ARDS. Methods. Ventilated young adult rabbits underwent repeated saline lung lavages or underwent intratracheal instillation of hydrochloric acid to induce ALI/ARDS. After establishment of respiratory failure rabbits were treated with a single intratracheal dose of 100 mg/kg of synthetic surfactant composed of 3% Super Mini-B (S-MB), a SP-B mimic, and/or SP-C33 UCLA, a SP-C mimic, in a lipid mixture (DPPC:POPC:POPG 5:3:2 by weight), the clinical surfactant Infasurf®, a bovine lung lavage extract with SP-B and C, or synthetic lipids alone. End-points consisted of arterial oxygenation, dynamic lung compliance, and protein and lipid content in bronchoalveolar lavage fluid. Potential mechanism of surfactant action for S-MB and SP-C33 UCLA were investigated with captive bubble surfactometry (CBS) assays. Results. All three surfactant peptide/lipid mixtures and Infasurf equally lowered the minimum surface tension on CBS, and also improved oxygenation and lung compliance. In both animal models, the two-peptide synthetic surfactant with S-MB and SP-C33 UCLA led to better arterial oxygenation and lung compliance than single peptide synthetic surfactants and Infasurf. Synthetic surfactants and Infasurf improved lung function further in lavage- than in chemical-induced respiratory failure, with the difference probably due to greater capillary-alveolar protein

  1. Synthetic lung surfactants containing SP-B and SP-C peptides plus novel phospholipase-resistant lipids or glycerophospholipids

    PubMed Central

    Notter, Robert H.; Gupta, Rohun; Schwan, Adrian L.; Wang, Zhengdong; Shkoor, Mohanad Gh

    2016-01-01

    Background This study examines the biophysical and preclinical pulmonary activity of synthetic lung surfactants containing novel phospholipase-resistant phosphonolipids or synthetic glycerophospholipids combined with Super Mini-B (S-MB) DATK and/or SP-Css ion-lock 1 peptides that replicate the functional biophysics of surfactant proteins (SP)-B and SP-C. Phospholipase-resistant phosphonolipids used in synthetic surfactants are DEPN-8 and PG-1, molecular analogs of dipalmitoyl phosphatidylcholine (DPPC) and palmitoyl-oleoyl phosphatidylglycerol (POPG), while glycerophospholipids used are active lipid components of native surfactant (DPPC:POPC:POPG 5:3:2 by weight). The objective of the work is to test whether these novel lipid/peptide synthetic surfactants have favorable preclinical activity (biophysical, pulmonary) for therapeutic use in reversing surfactant deficiency or dysfunction in lung disease or injury. Methods Surface activity of synthetic lipid/peptide surfactants was assessed in vitro at 37 °C by measuring adsorption in a stirred subphase apparatus and dynamic surface tension lowering in pulsating and captive bubble surfactometers. Shear viscosity was measured as a function of shear rate on a Wells-Brookfield micro-viscometer. In vivo pulmonary activity was determined by measuring lung function (arterial oxygenation, dynamic lung compliance) in ventilated rats and rabbits with surfactant deficiency/dysfunction induced by saline lavage to lower arterial PO2 to <100 mmHg, consistent with clinical acute respiratory distress syndrome (ARDS). Results Synthetic surfactants containing 5:3:2 DPPC:POPC:POPG or 9:1 DEPN-8:PG-1 combined with 3% (by wt) of S-MB DATK, 3% SP-Css ion-lock 1, or 1.5% each of both peptides all adsorbed rapidly to low equilibrium surface tensions and also reduced surface tension to ≤1 mN/m under dynamic compression at 37 °C. However, dual-peptide surfactants containing 1.5% S-MB DATK + 1.5% SP-Css ion-lock 1 combined with 9:1 DEPN-8

  2. The origin and evolution of the surfactant system in fish: insights into the evolution of lungs and swim bladders.

    PubMed

    Daniels, Christopher B; Orgeig, Sandra; Sullivan, Lucy C; Ling, Nicholas; Bennett, Michael B; Schürch, Samuel; Val, Adalberto Luis; Brauner, Colin J

    2004-01-01

    Several times throughout their radiation fish have evolved either lungs or swim bladders as gas-holding structures. Lungs and swim bladders have different ontogenetic origins and can be used either for buoyancy or as an accessory respiratory organ. Therefore, the presence of air-filled bladders or lungs in different groups of fishes is an example of convergent evolution. We propose that air breathing could not occur without the presence of a surfactant system and suggest that this system may have originated in epithelial cells lining the pharynx. Here we present new data on the surfactant system in swim bladders of three teleost fish (the air-breathing pirarucu Arapaima gigas and tarpon Megalops cyprinoides and the non-air-breathing New Zealand snapper Pagrus auratus). We determined the presence of surfactant using biochemical, biophysical, and morphological analyses and determined homology using immunohistochemical analysis of the surfactant proteins (SPs). We relate the presence and structure of the surfactant system to those previously described in the swim bladders of another teleost, the goldfish, and those of the air-breathing organs of the other members of the Osteichthyes, the more primitive air-breathing Actinopterygii and the Sarcopterygii. Snapper and tarpon swim bladders are lined with squamous and cuboidal epithelial cells, respectively, containing membrane-bound lamellar bodies. Phosphatidylcholine dominates the phospholipid (PL) profile of lavage material from all fish analyzed to date. The presence of the characteristic surfactant lipids in pirarucu and tarpon, lamellar bodies in tarpon and snapper, SP-B in tarpon and pirarucu lavage, and SPs (A, B, and D) in swim bladder tissue of the tarpon provide strong evidence that the surfactant system of teleosts is homologous with that of other fish and of tetrapods. This study is the first demonstration of the presence of SP-D in the air-breathing organs of nonmammalian species and SP-B in actinopterygian

  3. Oxidized phospholipids derived from ozone-treated lung surfactant extract reduce macrophage and epithelial cell viability.

    PubMed

    Uhlson, Charis; Harrison, Kathleen; Allen, Corrie B; Ahmad, Shama; White, Carl W; Murphy, Robert C

    2002-07-01

    Ozone is known to be a highly toxic gas present in the urban air which exerts its effect on pulmonary tissue through its facile chemical reactions with target molecules in the airway. One of the first barriers encountered by ozone is epithelial lining fluid which contains pulmonary surfactant rich in glycerophosphocholine lipids. The reaction of ozone with calf lung surfactant extract was found to result in the production of 1-palmitoyl-2-(9'-oxo-nonanoyl)-glycerophosphocholine (16:0a/9-al-GPCho) as an expected product of the ozonolysis of abundant unsaturated phospholipids containing unsaturated fatty acyl groups with a double bond at carbon-9. This oxidized phospholipid was identified as a biologically active product in that it reduced elicited macrophage viability by necrosis with an ED(50) of 6 microM. Further studies of the biological activity of 16:0a/9-al-GPCho revealed that concentrations from 100 to 200 nM initiated apoptosis in pulmonary epithelial-like A549 cells as assessed by TUNEL staining, nuclear size, and caspase-3 activation with loss of viability indicated by reduction of mitochondrial dehydrogenase activity. The release of IL-8, a neutrophil chemokine, from A549 cells was also stimulated by 50-100 nM 16:0a/9-al-GPCho. Exposure of calf lung surfactant to low levels of ozone (62.5, 125, and 250 ppb) for various time periods from 2 to 48 h in a feedback-regulated ozone exposure chamber resulted in a dose- and time-dependent increase in the formation of 16:0a/9-al-GPCho as measured by a specific and sensitive LC/MS/MS assay. The quantity of this biologically active chain-shortened glycerophosphocholine lipid generated even at 125 ppb ozone for 2-4 h (50-100 nM) was consistent with this product mediating the toxic effects of ozone on cells in contact with surfactant.

  4. Radiation Mitigating Properties of Intranasally Administered Kl4 Surfactant in a Murine Model of Radiation-Induced Lung Damage.

    PubMed

    Christofidou-Solomidou, Melpo; Pietrofesa, Ralph A; Arguiri, Evguenia; Koumenis, Constantinos; Segal, Robert

    2017-09-06

    The threat of exposure to ionizing radiation from a nuclear reactor accident or deliberate terrorist actions is a significant public health concern. The lung is particularly susceptible to radiation-induced injury from external sources or inhalation of radioactive particles from radioactive fallout. Radiation-induced lung disease can manifest with an acute radiation pneumonitis and/or delayed effects leading to pulmonary fibrosis. As prior warning of radiation exposure is unlikely, medical countermeasures (MCMs) to mitigate radiation-induced lung disease that can be given in mass-casualty situations many hours or days postirradiation are needed to prevent both early and late lung damage. In this study, KL4 surfactant (lucinactant) was evaluated as a radiation mitigator in a well-characterized mouse model of targeted thoracic radiation exposure, for its effect on both early (several weeks) and late (18 weeks) lung damage. Here, 120 mg/kg total phospholipid of KL4 surfactant was administered twice daily intranasally, (enabling intrapulmonary inhalation of drug) to C57BL/6 mice 24 h after a single 13.5 Gy dose of thoracic irradiation (LD50 dose). Both early and chronic phase (2 and 4 weeks and 18 weeks postirradiation, respectively) assessments were performed. Mice were evaluated for evidence of reduced arterial blood oxygenation and early and chronic lung and systemic inflammation, lung fibrosis and oxidative stress. Analysis was done by performing lung function/respiration dynamics and measuring cellular protein content of bronchoalveolar fluid (BALF), and levels of cytokines, 8-iso-prostaglandin F2α, hydroxyproline in lung and plasma, along with evaluating lung histology. The results of this study showed that intranasal delivery of KL4 surfactant was able to preserve lung function as evidenced by adequate arterial oxygen saturation and reduced lung inflammation and oxidative stress; total white count and absolute neutrophil count was decreased in BALF, as were

  5. Molecular dynamics of dibenz[a,h]anthracene and its metabolite interacting with lung surfactant phospholipid bilayers.

    PubMed

    Padilla-Chavarría, Helmut I; Guizado, Teobaldo R C; Pimentel, Andre S

    2015-08-28

    The interaction of dibenz[a,h]anthracene and its ultimate carcinogenic 3,4-diol-1,2-epoxide with lung surfactant phospholipid bilayers was successfully performed using molecular dynamics. The DPPC/DPPG/cholesterol bilayer (64 : 64 : 2) was used as the lung surfactant phospholipid bilayer model and compared with the DPPC bilayer as a reference. Dibenz[a,h]anthracene and its 3,4-diol-1,2-epoxide were inserted in water and lipid phases in order to investigate their interactions with the lung surfactant phospholipid bilayers. The radial distribution function between two P atoms in polar heads shows that the 3,4-diol-1,2-epoxide affects the order between the P atoms in the DPPC/DPPG/cholesterol model more than dibenz[a,h]anthracene, which is a consequence of its preference for the polar heads and dibenz[a,h]anthracene prefers to be located in the hydrocarbon chain of the phospholipid bilayers. Dibenz[a,h]anthracene and its 3,4-diol-1,2-epoxide may form aggregates in water and lipid phases, and in the water-lipid interface. The implications for the possible effect of dibenz[a,h]anthracene and its 3,4-diol-1,2-epoxide in the lung surfactant phospholipid bilayers are discussed.

  6. Endogenous lung surfactant inspired pH responsive nanovesicle aerosols: pulmonary compatible and site-specific drug delivery in lung metastases.

    PubMed

    Joshi, Nitin; Shirsath, Nitesh; Singh, Ankur; Joshi, Kalpana S; Banerjee, Rinti

    2014-11-18

    Concerns related to pulmonary toxicity and non-specificity of nanoparticles have limited their clinical applications for aerosol delivery of chemotherapeutics in lung cancer. We hypothesized that pulmonary surfactant mimetic nanoparticles that offer pH responsive release specifically in tumor may be a possible solution to overcome these issues. We therefore developed lung surfactant mimetic and pH responsive lipid nanovesicles for aerosol delivery of paclitaxel in metastatic lung cancer. 100-200 nm sized nanovesicles showed improved fusogenicity and cytosolic drug release, specifically with cancer cells, thereby resulting in improved cytotoxicity of paclitaxel in B16F10 murine melanoma cells and cytocompatibility with normal lung fibroblasts (MRC 5). The nanovesicles showed airway patency similar to that of endogenous pulmonary surfactant and did not elicit inflammatory response in alveolar macrophages. Their aerosol administration while significantly improving the biodistribution of paclitaxel in comparison to Taxol (i.v.), also showed significantly higher metastastes inhibition (~75%) in comparison to that of i.v. Taxol and i.v. Abraxane. No signs of interstitial pulmonary fiborisis, chronic inflammation and any other pulmonary toxicity were observed with nanovesicle formulation. Overall, these nanovesicles may be a potential platform to efficiently deliver hydrophobic drugs as aerosol in metastatic lung cancer and other lung diseases, without causing pulmonary toxicity.

  7. Endogenous lung surfactant inspired pH responsive nanovesicle aerosols: Pulmonary compatible and site-specific drug delivery in lung metastases

    NASA Astrophysics Data System (ADS)

    Joshi, Nitin; Shirsath, Nitesh; Singh, Ankur; Joshi, Kalpana S.; Banerjee, Rinti

    2014-11-01

    Concerns related to pulmonary toxicity and non-specificity of nanoparticles have limited their clinical applications for aerosol delivery of chemotherapeutics in lung cancer. We hypothesized that pulmonary surfactant mimetic nanoparticles that offer pH responsive release specifically in tumor may be a possible solution to overcome these issues. We therefore developed lung surfactant mimetic and pH responsive lipid nanovesicles for aerosol delivery of paclitaxel in metastatic lung cancer. 100-200 nm sized nanovesicles showed improved fusogenicity and cytosolic drug release, specifically with cancer cells, thereby resulting in improved cytotoxicity of paclitaxel in B16F10 murine melanoma cells and cytocompatibility with normal lung fibroblasts (MRC 5). The nanovesicles showed airway patency similar to that of endogenous pulmonary surfactant and did not elicit inflammatory response in alveolar macrophages. Their aerosol administration while significantly improving the biodistribution of paclitaxel in comparison to Taxol (i.v.), also showed significantly higher metastastes inhibition (~75%) in comparison to that of i.v. Taxol and i.v. Abraxane. No signs of interstitial pulmonary fiborisis, chronic inflammation and any other pulmonary toxicity were observed with nanovesicle formulation. Overall, these nanovesicles may be a potential platform to efficiently deliver hydrophobic drugs as aerosol in metastatic lung cancer and other lung diseases, without causing pulmonary toxicity.

  8. PEEP decreases atelectasis and extravascular lung water but not lung tissue volume in surfactant-washout lung injury.

    PubMed

    Luecke, Thomas; Roth, Harry; Herrmann, Peter; Joachim, Alf; Weisser, Gerald; Pelosi, Paolo; Quintel, Michael

    2003-11-01

    To examine the effects of positive end-expiratory pressure (PEEP) on extravascular lung water (EVLW), lung tissue, and lung volume. Experimental animal study at a university research facility. Fifteen adult sheep. All animals were studied before and after saline washout-induced lung injury while ventilated with sequentially increasing PEEP (0, 7, 14, or 21 cmH(2)O). Lung volume was determined by computed tomography and EVLW by the thermal dye dilution technique. Saline washout significantly increased lung tissue volume (21+/-3 to 37+/-5 ml/kg) and EVLW (9+/-2 to 36+/-9 ml/kg). While increasing levels of PEEP reduced EVLW (30+/-7, 24+/-8, and 18+/-4 ml/kg), lung tissue volume remained constant. Total lung volume significantly increased (50+/-8 ml/kg at PEEP 0 to 77+/-12 ml/kg at PEEP 21). Nonaerated lung volume significantly decreased and was closely correlated with the changes in EVLW ( r=0.67). In addition, a highly significant correlation was found between PEEP-induced decrease in nonaerated lung volume and decrease in transpulmonary shunt ( r=0.83). The main findings are as follows: (a) PEEP effectively decreases EVLW. (b) The decrease in EVLW is closely correlated with the PEEP-induced decrease in nonaerated lung volume, making EVLW a valuable bedside parameter indicating alveolar recruitment, similar to measurements of transpulmonary shunt. (c) As excess tissue volume remained constant, however, EVLW may not be suitable to reflect overall severity of lung disease

  9. Phase transitions in films of lung surfactant at the air-water interface.

    PubMed Central

    Nag, K; Perez-Gil, J; Ruano, M L; Worthman, L A; Stewart, J; Casals, C; Keough, K M

    1998-01-01

    Pulmonary surfactant maintains a putative surface-active film at the air-alveolar fluid interface and prevents lung collapse at low volumes. Porcine lung surfactant extracts (LSE) were studied in spread and adsorbed films at 23 +/- 1 degrees C using epifluorescence microscopy combined with surface balance techniques. By incorporating small amounts of fluorescent probe 1-palmitoyl-2-nitrobenzoxadiazole dodecanoyl phosphatidylcholine (NBD-PC) in LSE films the expanded (fluid) to condensed (gel-like) phase transition was studied under different compression rates and ionic conditions. Films spread from solvent and adsorbed from vesicles both showed condensed (probe-excluding) domains dispersed in a background of expanded (probe-including) phase, and the appearance of the films was similar at similar surface pressure. In quasistatically compressed LSE films the appearance of condensed domains occurred at a surface pressure (pi) of 13 mN/m. Such domains increased in size and amounts as pi was increased to 35 mN/m, and their amounts appeared to decrease to 4% upon further compression to 45 mN/m. Above pi of 45 mN/m the LSE films had the appearance of filamentous materials of finely divided dark and light regions, and such features persisted up to a pi near 68 mN/m. Some of the condensed domains had typical kidney bean shapes, and their distribution was similar to those seen previously in films of dipalmitoylphosphatidylcholine (DPPC), the major component of surfactant. Rapid cyclic compression and expansion of LSE films resulted in features that indicated a possible small (5%) loss of fluid components from such films or an increase in condensation efficiency over 10 cycles. Calcium (5 mM) in the subphase of LSE films altered the domain distribution, decreasing the size and increasing the number and total amount of condensed phase domains. Calcium also caused an increase in the value of pi at which the maximum amount of independent condensed phase domains were observed to

  10. Increased palmitoyl-myristoyl-phosphatidylcholine in neonatal rat surfactant is lung specific and correlates with oral myristic acid supply.

    PubMed

    Bernhard, Wolfgang; Raith, Marco; Pynn, Christopher J; Gille, Christian; Stichtenoth, Guido; Stoll, Dieter; Schleicher, Erwin; Poets, Christian F

    2011-08-01

    Surfactant predominantly comprises phosphatidylcholine (PC) species, together with phosphatidylglycerols, phosphatidylinositols, neutral lipids, and surfactant proteins-A to -D. Together, dipalmitoyl-PC (PC16:0/16:0), palmitoyl-myristoyl-PC (PC16:0/14:0), and palmitoyl-palmitoleoyl-PC (PC16:0/16:1) make up 75-80% of mammalian surfactant PC, the proportions of which vary during development and in chronic lung diseases. PC16:0/14:0, which exerts specific effects on macrophage differentiation in vitro, increases in surfactant during alveolarization (at the expense of PC16:0/16:0), a prenatal event in humans but postnatal in rats. The mechanisms responsible and the significance of this reversible increase are, however, not understood. We hypothesized that, in rats, myristic acid (C14:0) enriched milk is key to lung-specific PC16:0/14:0 increases in surfactant. We found that surfactant PC16:0/14:0 in suckling rats correlates with C14:0 concentration in plasma chylomicrons and lung tissue triglycerides, and that PC16:0/14:0 fractions reflect exogenous C14:0 supply. Significantly, C14:0 was increased neither in plasma PC, nor in liver triglycerides, free fatty acids, or PC. Lauric acid was also abundant in triglycerides, but was not incorporated into surfactant PC. Comparing a C14:0-rich milk diet with a C14:0-poor carbohydrate diet revealed increased C14:0 and decreased C16:0 in plasma and lung triglycerides, respectively. PC16:0/14:0 enrichment at the expense of PC16:0/16:0 did not impair surfactant surface tension function. However, the PC profile of the alveolar macrophages from the milk-fed animals changed from PC16:0/16:0 rich to PC16:0/14:0 rich. This was accompanied by reduced reactive oxygen species production. We propose that nutritional supply with C14:0 and its lung-specific enrichment may contribute to decreased reactive oxygen species production during alveolarization.

  11. Determination of Lipid-Protein Interactions in Lung Surfactants Using Computer Simulations and Structural Bioinformatics.

    NASA Astrophysics Data System (ADS)

    Kaznessis, Yiannis

    2001-06-01

    Proteins are the primary components of the networks that conduct the flows of mass, energy and information in living organisms. The discovery of the principles of protein structure and function allows the development of design rules for biological activities. The microscopic nature of the operating mechanisms of protein activity, and the vast complexity of the networks of interaction call for the employment of powerful computational methodologies that can decipher the physicochemical and evolutionary principles underlying protein structure and function. An example will be presented that reflects the strength of computational approaches. Atomistic molecular dynamics simulations and structural bioinformatics tools are employed to investigate the interactions between the first 25 N-terminal residues of surfactant protein B (SP-B 1-25) and the lipid components of the lung surfactant (LS). An understanding of the molecular level interactions between the LS components is essential for the establishment of design rules for the development of synthetic LS and the treatment of the neonatal respiratory distress syndrome, which results from deficiency or inactivation of LS.

  12. Eosinophil-Associated Lung Diseases. A Cry for Surfactant Proteins A and D Help?

    PubMed Central

    Ledford, Julie G.; Addison, Kenneth J.; Foster, Matthew W.

    2014-01-01

    Surfactant proteins (SP)-A and SP-D (SP-A/-D) play important roles in numerous eosinophil-dominated diseases, including asthma, allergic bronchopulmonary aspergillosis, and allergic rhinitis. In these settings, SP-A/-D have been shown to modulate eosinophil chemotaxis, inhibit eosinophil mediator release, and mediate macrophage clearance of apoptotic eosinophils. Dysregulation of SP-A/-D function in eosinophil-dominated diseases is also not uncommon. Alterations in serum SP-A/-D levels are associated with disease severity in allergic rhinitis and chronic obstructive pulmonary disease. Furthermore, oligimerization of SP-A/-D, necessary for their proper function, can be perturbed by reactive nitrogen species, which are increased in eosinophilic disease. In this review, we highlight the associations of eosinophilic lung diseases with SP-A and SP-D levels and functions. PMID:24960334

  13. Visualizing the Analogy between Competitive Adsorption and Colloid Stability to Restore Lung Surfactant Function

    PubMed Central

    Shieh, Ian C.; Waring, Alan J.; Zasadzinski, Joseph A.

    2012-01-01

    We investigated a model of acute respiratory distress syndrome in which the serum protein albumin adsorbs to an air-liquid interface and prevents the thermodynamically preferable adsorption of the clinical lung surfactant Survanta by inducing steric and electrostatic energy barriers analogous to those that prevent colloidal aggregation. Chitosan and polyethylene glycol (PEG), two polymers that traditionally have been used to aggregate colloids, both allow Survanta to quantitatively displace albumin from the interface, but through two distinct mechanisms. Direct visualization with confocal microscopy shows that the polycation chitosan coadsorbs to interfacial layers of both Survanta and albumin, and also colocalizes with the anionic domains of Survanta at the air-liquid interface, consistent with it eliminating the electrostatic repulsion by neutralizing the surface charges on albumin and Survanta. In contrast, the PEG distribution does not change during the displacement of albumin by Survanta, consistent with PEG inducing a depletion attraction sufficient to overcome the repulsive energy barrier toward adsorption. PMID:22385848

  14. Exogenous surfactant enhances the delivery of recombinant adenoviral vectors to the lung.

    PubMed

    Katkin, J P; Husser, R C; Langston, C; Welty, S E

    1997-01-20

    Somatic gene therapy for pulmonary diseases must be accomplished in vivo, requiring the spread of a gene transfer vector across a vast expanse of respiratory epithelium. Surfactant, a naturally occurring protein and lipid mixture used to treat the respiratory distress syndrome of prematurity, disperses rapidly and evenly throughout the lung. We employed exogenous bovine surfactant (Survanta beractant) as a carrier vehicle for pulmonary delivery of a recombinant adenovirus expressing beta-galactosidase (beta-Gal). Rats treated with an adenovirus-beractant mixture demonstrated more uniform lobar distribution of transgene expression than rats treated with the same amount of virus in saline. Tissue homogenates were examined for quantitative beta-Gal expression by reaction with o-nitrophenol beta-n-galactopyranoside (ONPG). The degree of beta-Gal activity was affected by both the volume and type of carrier used to deliver the virus. At low volumes (0.5 ml, 1.3 ml/kg), beractant-treated animals demonstrated significantly greater pulmonary beta-Gal activity than saline-treated animals (p < 0.002) and untreated controls. At high volume (1.2 ml, 4 ml/kg), average beta-Gal activity was similar between groups treated with beractant or saline, but was more variable within the saline treated group. Higher volumes of delivery medium were associated with increased levels of beta-Gal expression regardless of the carrier used. Survanta was well tolerated by the animals and did not affect the duration of transgene expression. Exogenous beractant provides a useful medium for delivering recombinant adenoviruses to the lung when diffuse distribution of transgene expression is desired.

  15. Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B)

    PubMed Central

    2015-01-01

    Lung surfactant protein B (SP-B) is an essential protein found in the surfactant fluid at the air–water interface of the lung. Exposure to the air pollutant ozone could potentially damage SP-B and lead to respiratory distress. We have studied two peptides, one consisting of the N-terminus of SP-B [SP-B(1–25)] and the other a construct of the N- and C-termini of SP-B [SP-B(1–25,63–78)], called SMB. Exposure to dilute levels of ozone (∼2 ppm) of monolayers of each peptide at the air–water interface leads to a rapid reaction, which is evident from an increase in the surface tension. Fluorescence experiments revealed that this increase in surface tension is accompanied by a loss of fluorescence from the tryptophan residue at the interface. Neutron and X-ray reflectivity experiments show that, in contrast to suggestions in the literature, the peptides are not solubilized upon oxidation but rather remain at the interface with little change in their hydration. Analysis of the product material reveals that no cleavage of the peptides occurs, but a more hydrophobic product is slowly formed together with an increased level of oligomerization. We attributed this to partial unfolding of the peptides. Experiments conducted in the presence of phospholipids reveal that the presence of the lipids does not prevent oxidation of the peptides. Our results strongly suggest that exposure to low levels of ozone gas will damage SP-B, leading to a change in its structure. The implication is that the oxidized protein will be impaired in its ability to interact at the air–water interface with negatively charged phosphoglycerol lipids, thus compromising what is thought to be its main biological function. PMID:26270023

  16. Alterations of alveolar type II cells and intraalveolar surfactant after bronchoalveolar lavage and perfluorocarbon ventilation. An electron microscopical and stereological study in the rat lung

    PubMed Central

    Rüdiger, Mario; Wendt, Sebastian; Köthe, Lars; Burkhardt, Wolfram; Wauer, Roland R; Ochs, Matthias

    2007-01-01

    Background Repeated bronchoalveolar lavage (BAL) has been used in animals to induce surfactant depletion and to study therapeutical interventions of subsequent respiratory insufficiency. Intratracheal administration of surface active agents such as perfluorocarbons (PFC) can prevent the alveolar collapse in surfactant depleted lungs. However, it is not known how BAL or subsequent PFC administration affect the intracellular and intraalveolar surfactant pool. Methods Male wistar rats were surfactant depleted by BAL and treated for 1 hour by conventional mechanical ventilation (Lavaged-Gas, n = 5) or partial liquid ventilation with PF 5080 (Lavaged-PF5080, n = 5). For control, 10 healthy animals with gas (Healthy-Gas, n = 5) or PF5080 filled lungs (Healthy-PF5080, n = 5) were studied. A design-based stereological approach was used for quantification of lung parenchyma and the intracellular and intraalveolar surfactant pool at the light and electron microscopic level. Results Compared to Healthy-lungs, Lavaged-animals had more type II cells with lamellar bodies in the process of secretion and freshly secreted lamellar body-like surfactant forms in the alveoli. The fraction of alveolar epithelial surface area covered with surfactant and total intraalveolar surfactant content were significantly smaller in Lavaged-animals. Compared with Gas-filled lungs, both PF5080-groups had a significantly higher total lung volume, but no other differences. Conclusion After BAL-induced alveolar surfactant depletion the amount of intracellularly stored surfactant is about half as high as in healthy animals. In lavaged animals short time liquid ventilation with PF5080 did not alter intra- or extracellular surfactant content or subtype composition. PMID:17550584

  17. Phosphatidylglycerol of rat lung. Intracellular sites of formation de novo and acyl species pattern in mitochondria, microsomes and surfactant.

    PubMed Central

    Schlame, M; Rüstow, B; Kunze, D; Rabe, H; Reichmann, G

    1986-01-01

    The subcellular site of phosphatidylglycerol (PG) formation for lung surfactant has not been convincingly clarified. To approach this problem we analysed the acyl species pattern of lung PG in mitochondria, microsomes and surfactant by h.p.l.c. separation of its 1,2-diacyl-3-naphthylurethane derivatives. Both mitochondrial and microsomal PG proved identical with surfactant PG, containing the major species 1-palmitoyl-2-oleoyl-PG and 1,2-dipalmitoyl-PG. The fatty acid composition of mitochondrial PG differs markedly from that of diphosphatidylglycerol. This may be taken as an indication that mitochondrial PG is synthesized on purpose to form surfactant, rather than being only the precursor of diphosphatidylglycerol. In vitro, sn-[U-14C]glycerol 3-phosphate incorporation into PG of mitochondria or microsomes occurs in the presence of CTP, ATP and CoA but independently of the supply of exogenous lipoidic precursors. Although the rate in vitro of autonomous PG synthesis, and the endogenous PG content, are higher in mitochondria than in microsomes, it is assumed that both subcellular fractions are involved in PG formation for surfactant. PMID:3827844

  18. Effect of Lung Surfactant Protein SP-C and SP-C-Promoted Membrane Fragmentation on Cholesterol Dynamics.

    PubMed

    Roldan, Nuria; Nyholm, Thomas K M; Slotte, J Peter; Pérez-Gil, Jesús; García-Álvarez, Begoña

    2016-10-18

    To allow breathing and prevent alveolar collapse, lung surfactant (LS) develops a complex membranous system at the respiratory surface. LS is defined by a specific protein and lipid composition, including saturated and unsaturated phospholipid species and cholesterol. Surfactant protein C (SP-C) has been suggested to be an essential element for sustaining the presence of cholesterol in surfactant without functional impairment. In this work, we used a fluorescent sterol-partitioning assay to assess the effect of the surfactant proteins SP-B and SP-C on cholesterol distribution in membranes. Our results suggest that in the LS context, the combined action of SP-B and SP-C appears to facilitate cholesterol dynamics, whereas SP-C does not seem to establish a direct interaction with cholesterol that could increase the partition of free cholesterol into membranes. Interestingly, SP-C exhibits a membrane-fragmentation behavior, leading to the conversion of large unilamellar vesicles into highly curved vesicles ∼25 nm in diameter. Sterol partition was observed to be sensitive to the bending of bilayers, indicating that the effect of SP-C to mobilize cholesterol could be indirectly associated with SP-C-mediated membrane remodeling. Our results suggest a potential role for SP-C in generating small surfactant structures that may participate in cholesterol mobilization and pulmonary surfactant homeostasis at the alveolar interfaces. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Interindividual Variability in the Expression of Surfactant Protein A and B in the Human Lung During Development

    PubMed Central

    Cau, F.; Pisu, E.; Gerosa, C.; Senes, G.; Ronchi, F.; Botta, C.; Di Felice, E.; Uda, F.; Marinelli, V.; Faa, G.; Fanos, V.; Moretti, C.; Fanni, D.

    2016-01-01

    The surfactant complex, thanks to its multiple actions including decrease of surface-tension and antimicrobial activity, plays a fundamental role in newborn survival, lowering the risk of respiratory distress syndrome. The aim of this work was to determine if the synthesis of two surfactant proteins (SP), SPA and pro-SPB, shows some inter-individual variability during lung development in the intrauterine life. Immunoreactivity for SPA and pro-SPB was investigated in the lungs of 40 subjects, including 15 fetuses, ranging from 14 to 22 weeks of gestation, and 25 neonates, from 24 to 41 weeks. Lung samples were formalin fixed, paraffin-embedded and routinely processed. SPA and pro-SPB were detected utilizing commercial antibodies. A semi-quantitative grading system (1 to 4) was applied, based on the number of reactive cells and the intensity of immunostaining. Surfactant protein immunostaining was found in three compartments: bronchi, bronchioles and alveoli, starting from 14 weeks of gestation in the bronchial epithelium and from the 21st week in the alveolar spaces. Differences were found regarding SPA and pro-SPB expression in the vast majority of subjects: in some lungs, SPA was more expressed whereas in others pro-SPB showed an higher degree of immunoreactivity. The expression of both surfactant proteins was not strictly correlated with gestational age. Whereas the highest levels of reactivity were detected in at term neonates, on the other hand one case with grade 3 was detected at 22 weeks and one negative case for both proteins was observed at 31 weeks. Our data clearly show a marked inter-individual variability regarding the production of SPA and pro-SPB and suggest the existence of other epigenetic factors, acting during gestation, that might influence surfactant production and, consequently, the survival potential of neonates at birth. PMID:27734990

  20. Regulation of lung surfactant secretion by the A sub 2 adenosine receptor

    SciTech Connect

    Gilfillan, A.M.; Gobran, L.I.; Rooney, S.A. )

    1987-05-01

    The authors previously reported that adenosine (A) stimulates secretion of phosphatidylcholine (PC), the major component of surfactant, in type II pneumocytes. To determine how this effect is mediated we examined the effect of P{sub 1} purinoceptor agonists -N{sup 6}-phenylisoprpyl-A (PIA), 5{prime}-N-ethylcarboxyamido-A (NECA), 2-chloro-A (CA) - and antagonists - theophylline (T) and 8-phenyltheophylline (8PT) - on PC secretion and cAMP levels in type II cells isolated from the adult rat. The cells were preincubated with {sup 3}H-choline for 20 h, transferred to fresh medium and incubated {plus minus} test agents for 1.5 h after which {sup 3}H-PC in the cells and medium was measured. A and its analogs stimulated PC secretion in a dose-dependent manner. At the optimal concentration (A, 1 mM; analogs, 0.01 mM) secretion was stimulated approx. 2-fold from a basal rate of 0.08-1.02% of total PC in the medium after 1.5 h. The potency order was NECA>CA=L-PIA>A>D-PIA. The EC{sub 50} for NECA was 8.9 {times} 10{sup {minus}8}M. The effect of NECA was significantly inhibited by 8PT (0.01 mM) and T (0.05 mM). NECA, A and L-PIA increased cellular cAMP levels 34, 12 and 8 fold, respectively, from a basal level of 0.23-0.28 pmol/10{sup 6} cells. These data suggest that the A{sub 2} subtype of the P{sub 1} receptor mediates the effect of A. In newborn rabbits, lung lavage PC increased form 24.1 {plus minus} 1.6 ug P/g lung dry wt at 0 h to 62.6 {plus minus} 7.7 after breathing for 3 h (n=13). 8PT (15 mg/kg, i.m.) at 0 h decreased the PC content at 3 h by 29% to 44.4 {plus minus} 5.1 ug/g. This suggests a functional role for the P{sub 1} receptor in lung surfactant secretion.

  1. [Combined inflating lung and insufflating calf pulmonary surfactant under general anesthesia in the treatment of postoperative intractable atelectasis].

    PubMed

    Lu, Ya-ping; Hu, Yi; Shi, Gu-ping; Yao, Ming; Huang, Bing; Zhou, Xu-yan; Sun, Jian-liang; DU, Jian-long; Xie, Guo-hao; Fang, Xiang-ming

    2013-06-18

    To explore the efficacy and safety of combined inflating lung and insufflating calf pulmonary surfactant under general anesthesia for treating postoperative intractable atelectasis. From August 2006 to January 2013, 15 patients with obstinate postoperative atelectasis receiving pressure control lung expansion were enrolled. The bronchial cannula was intubated into the affected side to assist the expanding of the lung, and the calf pulmonary surfactant was insufflated selectively. The chest auscultation and computed tomography (CT) scan was performed at 1 d and 5 d after the procedure respectively, to evaluation the effect. The airway pressure, mean arterial pressure (MAP), heart rate (HR), respiratory rate (RR) and oxygen saturation (SpO2) were recorded before the treatment, during the treatment and after the treatment.Monitoring arterial blood gas before and after treatment. After the expansion of the lung and insufflation of calf pulmonary surfactants, the iconographic scan showed that collapsed alveolar was reinflated in 12 (80.0%) patients at 1 d after the treatment and in 14 patients(93.3%) at 5 d after the procedure.There were not notable vital sign change and complications during the treatment.At after the treatment, 1, 3, 5 and 7 d after the treatment, PaO2 was higher (P < 0.05), and there were not significantly difference in the PaCO2 and pH (P > 0.05) . Combined pressure control lung expansion with selectively insufflating calf pulmonary surfactant under general anesthesia may be an effective therapy for postoperative intractable atelectasis.

  2. Secretagogues of lung surfactant increase annexin A7 localization with ABCA3 in alveolar type II cells.

    PubMed

    Gerelsaikhan, Tudevdagva; Chen, Xiao-Liang; Chander, Avinash

    2011-12-01

    Membrane fusion between the lamellar bodies and plasma membrane is an obligatory event in the secretion of lung surfactant. Previous studies have postulated a role for annexin A7 (A7) in membrane fusion during exocytosis in some cells including alveolar type II cells. However, the intracellular trafficking of A7 during such fusion is not described. In this study, we investigated association of endogenous A7 with lamellar bodies in alveolar type II cells following treatment with several secretagogues of lung surfactant. Biochemical studies with specific antibodies showed increased membrane-association of cell A7 in type II cells stimulated with agents that increase secretion through different signaling mechanisms. Immuno-fluorescence studies showed increased co-localization of A7 with ABCA3, the lamellar body marker protein. Because these agents increase surfactant secretion through activation of PKC and PKA, we also investigated the effects of PKC and PKA inhibitors, bisindolylmaleimideI (BisI) and H89, respectively, on A7 partitioning. Western blot analysis showed that these inhibitors prevented secretagogue-mediated A7 increase in the membrane fractions. These inhibitors also blocked increased co-localization of A7 with ABCA3 in secretagogue-treated cells, as revealed by immuno-fluorescence studies. In vitro studies with recombinant A7 showed phosphorylation with PKC and PKA. The cell A7 was also phosphorylated in cells treated with surfactant secretagogues. Thus, our studies demonstrate that annexin A7 relocates to lamellar bodies in a phosphorylation-dependent manner. We suggest that activation of protein kinase promotes phosphorylation and membrane-association of A7 presumably to facilitate membrane fusion during lung surfactant secretion. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Secretagogues of lung surfactant increase Annexin A7 localization with ABCA3 in alveolar type II cells

    PubMed Central

    Gerelsaikhan, Tudevdagva; Chen, Xiao-Liang; Chander, Avinash

    2011-01-01

    Membrane fusion between the lamellar bodies and plasma membrane is an obligatory event in the secretion of lung surfactant. Previous studies have postulated a role for annexin A7 (A7) in membrane fusion during exocytosis in some cells including alveolar type II cells. However, the intracellular trafficking of A7 during such fusion is not described. In this study, we investigated association of endogenous A7 with lamellar bodies in alveolar type II cells following treatment with several secretagogues of lung surfactant. Biochemical studies with specific antibodies showed increased membrane-association of cell A7 in type II cells stimulated with agents that increase secretion through different signaling mechanisms. Immuno-fluorescence studies showed increased co-localization of A7 with ABCA3, the lamellar body marker protein. Because these agents increase surfactant secretion through activation of PKC and PKA, we also investigated the effects of PKC and PKA inhibitors, bisindolylmaleimideI (BisI) and H89, respectively, on A7 partitioning. Western blot analysis showed that these inhibitors prevented secretagogue-mediated A7 increase in the membrane fractions. These inhibitors also blocked increased co-localization of A7 with ABCA3 in secretagogue-treated cells, as revealed by immuno-fluorescence studies. In vitro studies with recombinant A7 showed phosphorylation with PKC and PKA. The cell A7 was also phosphorylated in cells treated with surfactant secretagogues. Thus, our studies demonstrate that annexin A7 relocates to lamellar bodies in a phosphorylation-dependent manner. We suggest that activation of protein kinase promotes phosphorylation and membrane-association of A7 presumably to facilitate membrane fusion during lung surfactant secretion. PMID:21911013

  4. Overcoming Rapid Inactivation of Lung Surfactant: Analogies Between Competitive Adsorption and Colloid Stability

    PubMed Central

    Zasadzinski, Joseph A.; Stenger, Patrick C.; Shieh, Ian; Dhar, Prajnaparamita

    2009-01-01

    Lung surfactant (LS) is a mixture of lipids and proteins that line the alveolar air-liquid interface, lowering the interfacial tension to levels that make breathing possible. In acute respiratory distress syndrome (ARDS), inactivation of LS is believed to play an important role in the development and severity of the disease. This review examines the competitive adsorption of LS and surface-active contaminants, such as serum proteins, present in the alveolar fluids of ARDS patients, and how this competitive adsorption can cause normal amounts of otherwise normal LS to be ineffective in lowering the interfacial tension. LS and serum proteins compete for the air-water interface when both are present in solution either in the alveolar fluids or in a Langmuir trough. Equilibrium favors LS as it has the lower equilibrium surface pressure, but the smaller proteins are kinetically favored over multi-micron LS bilayer aggregates by faster diffusion. If albumin reaches the interface, it creates an energy barrier to subsequent LS adsorption that slows or prevents the adsorption of the necessary amounts of LS required to lower surface tension. This process can be understood in terms of classic colloid stability theory in which an energy barrier to diffusion stabilizes colloidal suspensions against aggregation. This analogy provides qualitative and quantitative predictions regarding the origin of surfactant inactivation. An important corollary is that any additive that promotes colloid coagulation, such as increased electrolyte concentration, multivalent ions, hydrophilic non-adsorbing polymers such as PEG, dextran, etc. or polyelectrolytes such as chitosan, added to LS, also promotes LS adsorption in the presence of serum proteins and helps reverse surfactant inactivation. The theory provides quantitative tools to determine the optimal concentration of these additives and suggests that multiple additives may have a synergistic effect. A variety of physical and chemical

  5. Semiautomatic segmentation of longitudinal computed tomography images in a rat model of lung injury by surfactant depletion

    PubMed Central

    Xin, Yi; Song, Gang; Kadlecek, Stephen; Hamedani, Hooman; Jiang, Yunqing; Rajaei, Jennia; Clapp, Justin; Profka, Harrilla; Meeder, Natalie; Wu, Jue; Tustison, Nicholas J.; Gee, James C.; Rizi, Rahim R.

    2014-01-01

    Quantitative analysis of computed tomography (CT) is essential to the study of acute lung injury. However, quantitative CT is made difficult by poor lung aeration, which complicates the critical step of image segmentation. To overcome this obstacle, this study sought to develop and validate a semiautomated, multilandmark, registration-based scheme for lung segmentation that is effective in conditions of poor aeration. Expiratory and inspiratory CT images were obtained in rats (n = 8) with surfactant depletion of incremental severity to mimic worsening aeration. Trained operators manually delineated the images to provide a comparative landmark. Semiautomatic segmentation originated from a single, previously segmented reference image obtained at healthy baseline. Deformable registration of the target images (after surfactant depletion) was performed using the symmetric diffeomorphic transformation model with B-spline regularization. Registration used multiple landmarks (i.e., rib cage, spine, and lung parenchyma) to minimize the effect of poor aeration. Then target images were automatically segmented by applying the calculated transformation function to the reference image contour. Semiautomatically and manually segmented contours proved to be highly similar in all aeration conditions, including those characterized by more severe surfactant depletion and expiration. The Dice similarity coefficient was over 0.9 in most conditions, confirming high agreement, irrespective of poor aeration. Furthermore, CT density-based measurements of gas volume, tissue mass, and lung aeration distribution were minimally affected by the method of segmentation. Moving forward, multilandmark registration has the potential to streamline quantitative CT analysis by enabling semiautomatic image segmentation of lungs with a broad range of injury severity. PMID:25640150

  6. Surfactant lipids regulate LPS-induced interleukin-8 production in A549 lung epithelial cells by inhibiting translocation of TLR4 into lipid raft domains

    PubMed Central

    Abate, Wondwossen; Alghaithy, Abdulaziz A.; Parton, Joan; Jones, Kenneth P.; Jackson, Simon K.

    2010-01-01

    In addition to providing mechanical stability, growing evidence suggests that surfactant lipid components can modulate inflammatory responses in the lung. However, little is known of the molecular mechanisms involved in the immunomodulatory action of surfactant lipids. This study investigates the effect of the lipid-rich surfactant preparations Survanta®, Curosurf®, and the major surfactant phospholipid dipalmitoylphosphatidylcholine (DPPC) on interleukin-8 (IL-8) gene and protein expression in human A549 lung epithelial cells using immunoassay and PCR techniques. To examine potential mechanisms of the surfactant lipid effects, Toll-like receptor 4 (TLR4) expression was analyzed by flow cytometry, and membrane lipid raft domains were separated by density gradient ultracentrifugation and analyzed by immunoblotting with anti-TLR4 antibody. The lipid-rich surfactant preparations Survanta®, Curosurf®, and DPPC, at physiological concentrations, significantly downregulated lipopolysaccharide (LPS)-induced IL-8 expression in A549 cells both at the mRNA and protein levels. The surfactant preparations did not affect the cell surface expression of TLR4 or the binding of LPS to the cells. However, LPS treatment induced translocation of TLR4 into membrane lipid raft microdomains, and this translocation was inhibited by incubation of the cells with the surfactant lipid. This study provides important mechanistic details of the immune-modulating action of pulmonary surfactant lipids. PMID:19648651

  7. Surfactant protein secreted by the maturing mouse fetal lung acts as a hormone that signals the initiation of parturition.

    PubMed

    Condon, Jennifer C; Jeyasuria, Pancharatnam; Faust, Julie M; Mendelson, Carole R

    2004-04-06

    Parturition is timed to begin only after the developing embryo is sufficiently mature to survive outside the womb. It has been postulated that the signal for the initiation of parturition arises from the fetus although the nature and source of this signal remain obscure. Herein, we provide evidence that this signal originates from the maturing fetal lung. In the mouse, secretion of the major lung surfactant protein, surfactant protein A (SP-A), was first detected in amniotic fluid (AF) at 17 days postcoitum, rising progressively to term (19 days postcoitum). Expression of IL-1beta in AF macrophages and activation of NF-kappaB in the maternal uterus increased with the gestational increase in SP-A. SP-A stimulated IL-1beta and NF-kappaB expression in cultured AF macrophages. Studies using Rosa 26 Lac-Z (B6;129S-Gt(rosa)26Sor) (Lac-Z) mice revealed that fetal AF macrophages migrate to the uterus with the gestational increase in AF SP-A. Intraamniotic (i.a.) injection of SP-A caused preterm delivery of fetuses within 6-24 h. By contrast, injection of an SP-A antibody or NF-kappaB inhibitor into AF delayed labor by >24 h. We propose that augmented production of SP-A by the fetal lung near term causes activation and migration of fetal AF macrophages to the maternal uterus, where increased production of IL-1beta activates NF-kappaB, leading to labor. We have revealed a response pathway that ties augmented surfactant production by the maturing fetal lung to the initiation of labor. We suggest that SP-A secreted by the fetal lung serves as a hormone of parturition.

  8. Immune reconstitution during Pneumocystis lung infection: disruption of surfactant component expression and function by S-nitrosylation.

    PubMed

    Atochina-Vasserman, Elena N; Gow, Andrew J; Abramova, Helen; Guo, Chang-Jiang; Tomer, Yaniv; Preston, Angela M; Beck, James M; Beers, Michael F

    2009-02-15

    Pneumocystis pneumonia (PCP), the most common opportunistic pulmonary infection associated with HIV infection, is marked by impaired gas exchange and significant hypoxemia. Immune reconstitution disease (IRD) represents a syndrome of paradoxical respiratory failure in patients with active or recently treated PCP subjected to immune reconstitution. To model IRD, C57BL/6 mice were selectively depleted of CD4(+) T cells using mAb GK1.5. Following inoculation with Pneumocystis murina cysts, infection was allowed to progress for 2 wk, GK1.5 was withdrawn, and mice were followed for another 2 or 4 wk. Flow cytometry of spleen cells demonstrated recovery of CD4(+) cells to >65% of nondepleted controls. Lung tissue and bronchoalveolar lavage fluid harvested from IRD mice were analyzed in tandem with samples from CD4-depleted mice that manifested progressive PCP for 6 wks. Despite significantly decreased pathogen burdens, IRD mice had persistent parenchymal lung inflammation, increased bronchoalveolar lavage fluid cellularity, markedly impaired surfactant biophysical function, and decreased amounts of surfactant phospholipid and surfactant protein (SP)-B. Paradoxically, IRD mice also had substantial increases in the lung collectin SP-D, including significant amounts of an S-nitrosylated form. By native PAGE, formation of S-nitrosylated SP-D in vivo resulted in disruption of SP-D multimers. Bronchoalveolar lavage fluid from IRD mice selectively enhanced macrophage chemotaxis in vitro, an effect that was blocked by ascorbate treatment. We conclude that while PCP impairs pulmonary function and produces abnormalities in surfactant components and biophysics, these responses are exacerbated by IRD. This worsening of pulmonary inflammation, in response to persistent Pneumocystis Ags, is mediated by recruitment of effector cells modulated by S-nitrosylated SP-D.

  9. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition.

    PubMed

    Raesch, Simon Sebastian; Tenzer, Stefan; Storck, Wiebke; Rurainski, Alexander; Selzer, Dominik; Ruge, Christian Arnold; Perez-Gil, Jesus; Schaefer, Ulrich Friedrich; Lehr, Claus-Michael

    2015-12-22

    Pulmonary surfactant (PS) constitutes the first line of host defense in the deep lung. Because of its high content of phospholipids and surfactant specific proteins, the interaction of inhaled nanoparticles (NPs) with the pulmonary surfactant layer is likely to form a corona that is different to the one formed in plasma. Here we present a detailed lipidomic and proteomic analysis of NP corona formation using native porcine surfactant as a model. We analyzed the adsorbed biomolecules in the corona of three NP with different surface properties (PEG-, PLGA-, and Lipid-NP) after incubation with native porcine surfactant. Using label-free shotgun analysis for protein and LC-MS for lipid analysis, we quantitatively determined the corona composition. Our results show a conserved lipid composition in the coronas of all investigated NPs regardless of their surface properties, with only hydrophilic PEG-NPs adsorbing fewer lipids in total. In contrast, the analyzed NP displayed a marked difference in the protein corona, consisting of up to 417 different proteins. Among the proteins showing significant differences between the NP coronas, there was a striking prevalence of molecules with a notoriously high lipid and surface binding, such as, e.g., SP-A, SP-D, DMBT1. Our data indicate that the selective adsorption of proteins mediates the relatively similar lipid pattern in the coronas of different NPs. On the basis of our lipidomic and proteomic analysis, we provide a detailed set of quantitative data on the composition of the surfactant corona formed upon NP inhalation, which is unique and markedly different to the plasma corona.

  10. Lung Ultrasonography Score to Evaluate Oxygenation and Surfactant Need in Neonates Treated With Continuous Positive Airway Pressure.

    PubMed

    Brat, Roselyne; Yousef, Nadya; Klifa, Roman; Reynaud, Stephanie; Shankar Aguilera, Shivani; De Luca, Daniele

    2015-08-01

    Lung ultrasonography (LUS) is a bedside technique useful to diagnose neonatal respiratory problems, but, to our knowledge, no data are available about its use for monitoring lung function or eventually guiding surfactant therapy. To determine the diagnostic accuracy of a neonatal-adapted LUS score to evaluate oxygenation and predict need for surfactant administration. Prospective diagnostic accuracy study following STARD (Standards for the Reporting of Diagnostic Accuracy Studies) guidelines at a tertiary level academic neonatal intensive care unit in 2014. All neonates admitted to the neonatal intensive care unit with signs of respiratory distress were eligible, and 130 neonates were enrolled. The LUS score was calculated in the first hours of life under continuous positive airway pressure. The transcutaneous partial pressure of oxygen (Ptco2) to fraction of inspired oxygen (Fio2) ratio, alveolar-arterial gradient, oxygenation index, and arterial to alveolar ratio were calculated within 30 minutes from LUS, using transcutaneous blood gas monitoring. Surfactant was administered according to 2013 European guidelines. Correlation between LUS score and indices of oxygenation and prediction of surfactant administration. Among the 130 neonates in this study, the LUS score was significantly correlated with all indices of oxygenation, independent from gestational age (GA) (Ptco2 to Fio2 ratio: GA ≥ 34 weeks: ρ = -0.57; GA <34 weeks: ρ = -0.62; P < .001; alveolar-arterial gradient: GA ≥ 34 weeks: ρ = 0.62; GA <34 weeks: ρ = 0.59; P < .001; oxygenation index: GA ≥ 34 weeks: ρ = 0.63; GA <34 weeks: ρ = 0.69; P < .001; and arterial to alveolar ratio: GA ≥ 34 weeks: ρ = -0.60; GA <34 weeks: ρ = -0.56; P < .001). The LUS score predicted the need for surfactant better in preterm babies with a GA less than 34 weeks (area under the curve = 0.93; 95% CI, 0.86-0.99; P < .001) than in term and late-preterm neonates with a GA of 34 weeks or greater

  11. Effects of simulated microgravity on surfactant and water balance of lung in animals with different resistance to stress

    NASA Astrophysics Data System (ADS)

    Bryndina, Irina; Vasilieva, Natalia

    Weightlessness is accompanied by redistribution of blood flow in lung, changes of lung volumes and gas exchange (Prisk et al., 2002; Grigoriev, Baranov, 2003). On the other hand, it is known that microgravity is considered as a kind of moderate stress (Grigoriev et al., 2004). Stress response may differ in animals resistant or vulnerable to stress (Sudakov, 2007). To study the effects of simulated microgravity upon lung, we used 20 male albino rats tested for behavior in the "open field" and than divided into active (stress resistant - SR ) and passive (stress vulnerable - CV) groups. Two mouse lines were used with similar goal - C57Bl/6 and BALB/c mice (n=16). According to data obtained earlier, BALB/c mice referred as more stress vulnerable, in contrast to C57BL/6 mice, which are considered to be relatively stress resistant (Flint et al., 2007). We have previously shown that changes in lung surfactant system after psychosocial stress or long-term immobilization are less pronounced in stress resistant rats (Vasilieva, Bryndina, 2012). The aim of this work is to study the properties and biochemical composition of pulmonary surfactant and lung water balance in rats and mice with different stress resistance in antiorthostatic suspension (AOS) of short and long duration. Simulated microgravity was reproduced according to procedure of Ilyin-Novikov in modification of Morey-Holton. The duration of exposure was 10 days for rats and 30 days for mice. The properties of pulmonary surfactant were assessed by the evaluation of surface activity (surface tension - ST), the content of total phospholipids (PL) and their fractions. Simultaneously we calculated the gravimetric water balance indices: lung coefficient, "dry residue" and wet-to-dry ratio. Total and extravascular lung fluid and pulmonary blood supply were estimated as well. The experiments demonstrated that there was a decrease of surface tension of surfactant films after 10-day AOS in both groups of rats (to a greater

  12. The effect of matrix metalloproteinase-3 deficiency on pulmonary surfactant in a mouse model of acute lung injury

    PubMed Central

    Yamashita, Cory M.; Cybulskie, Candice; Milos, Scott; Zuo, Yi Y.; McCaig, Lynda A.; Veldhuizen, Ruud A.W.

    2017-01-01

    The acute respiratory distress syndrome (ARDS) is characterized by arterial hypoxemia accompanied by severe inflammation and alterations to the pulmonary surfactant system. Published data has demonstrated a protective effect of matrix metalloproteinase-3 (Mmp3) deficiency against the inflammatory response associated with ARDS; however, the effect of Mmp3 on physiologic parameters and alterations to surfactant have not been previously studied. It was hypothesized that Mmp3 deficient (Mmp3−/−) mice would be protected against lung dysfunction associated with ARDS and maintain a functional pulmonary surfactant system. Wild type (WT) and Mmp3−/− mice were subjected to acid-aspiration followed by mechanical ventilation. Mmp3−/− mice maintained higher arterial oxygenation compared with WT mice at the completion of ventilation. Significant increase in functional large aggregate surfactant forms were observed in Mmp3−/− mice compared with WT mice. These findings further support a role of Mmp3 as an attractive therapeutic target for drug development in the setting of ARDS. PMID:27096327

  13. Effects of perfluorohexane vapor on relative blood flow distribution in an animal model of surfactant-depleted lung injury

    NASA Technical Reports Server (NTRS)

    Hubler, Matthias; Souders, Jennifer E.; Shade, Erin D.; Polissar, Nayak L.; Bleyl, Jorg U.; Hlastala, Michael P.

    2002-01-01

    OBJECTIVE: To test the hypothesis that treatment with vaporized perfluorocarbon affects the relative pulmonary blood flow distribution in an animal model of surfactant-depleted acute lung injury. DESIGN: Prospective, randomized, controlled trial. SETTING: A university research laboratory. SUBJECTS: Fourteen New Zealand White rabbits (weighing 3.0-4.5 kg). INTERVENTIONS: The animals were ventilated with an FIO(2) of 1.0 before induction of acute lung injury. Acute lung injury was induced by repeated saline lung lavages. Eight rabbits were randomized to 60 mins of treatment with an inspiratory perfluorohexane vapor concentration of 0.2 in oxygen. To compensate for the reduced FIO(2) during perfluorohexane treatment, FIO(2) was reduced to 0.8 in control animals. Change in relative pulmonary blood flow distribution was assessed by using fluorescent-labeled microspheres. MEASUREMENTS AND MAIN RESULTS: Microsphere data showed a redistribution of relative pulmonary blood flow attributable to depletion of surfactant. Relative pulmonary blood flow shifted from areas that were initially high-flow to areas that were initially low-flow. During the study period, relative pulmonary blood flow of high-flow areas decreased further in the control group, whereas it increased in the treatment group. This difference was statistically significant between the groups (p =.02) as well as in the treatment group compared with the initial injury (p =.03). Shunt increased in both groups over time (control group, 30% +/- 10% to 63% +/- 20%; treatment group, 37% +/- 20% to 49% +/- 23%), but the changes compared with injury were significantly less in the treatment group (p =.03). CONCLUSION: Short treatment with perfluorohexane vapor partially reversed the shift of relative pulmonary blood flow from high-flow to low-flow areas attributable to surfactant depletion.

  14. Effects of perfluorohexane vapor on relative blood flow distribution in an animal model of surfactant-depleted lung injury

    NASA Technical Reports Server (NTRS)

    Hubler, Matthias; Souders, Jennifer E.; Shade, Erin D.; Polissar, Nayak L.; Bleyl, Jorg U.; Hlastala, Michael P.

    2002-01-01

    OBJECTIVE: To test the hypothesis that treatment with vaporized perfluorocarbon affects the relative pulmonary blood flow distribution in an animal model of surfactant-depleted acute lung injury. DESIGN: Prospective, randomized, controlled trial. SETTING: A university research laboratory. SUBJECTS: Fourteen New Zealand White rabbits (weighing 3.0-4.5 kg). INTERVENTIONS: The animals were ventilated with an FIO(2) of 1.0 before induction of acute lung injury. Acute lung injury was induced by repeated saline lung lavages. Eight rabbits were randomized to 60 mins of treatment with an inspiratory perfluorohexane vapor concentration of 0.2 in oxygen. To compensate for the reduced FIO(2) during perfluorohexane treatment, FIO(2) was reduced to 0.8 in control animals. Change in relative pulmonary blood flow distribution was assessed by using fluorescent-labeled microspheres. MEASUREMENTS AND MAIN RESULTS: Microsphere data showed a redistribution of relative pulmonary blood flow attributable to depletion of surfactant. Relative pulmonary blood flow shifted from areas that were initially high-flow to areas that were initially low-flow. During the study period, relative pulmonary blood flow of high-flow areas decreased further in the control group, whereas it increased in the treatment group. This difference was statistically significant between the groups (p =.02) as well as in the treatment group compared with the initial injury (p =.03). Shunt increased in both groups over time (control group, 30% +/- 10% to 63% +/- 20%; treatment group, 37% +/- 20% to 49% +/- 23%), but the changes compared with injury were significantly less in the treatment group (p =.03). CONCLUSION: Short treatment with perfluorohexane vapor partially reversed the shift of relative pulmonary blood flow from high-flow to low-flow areas attributable to surfactant depletion.

  15. Species pattern of phosphatidylinositol from lung surfactant and a comparison of the species pattern of phosphatidylinositol and phosphatidylglycerol synthesized de novo in lung microsomal fractions.

    PubMed Central

    Rüstow, B; Nakagawa, Y; Rabe, H; Waku, K; Kunze, D

    1988-01-01

    1. Phosphatidylinositol (PI) is a minor component of lung surfactant which may be able to replace the functionally important phosphatidylglycerol (PG) [Beppu, Clements & Goerke (1983) J. Appl. Physiol. 55, 496-502] without disturbing lung function. The dipalmitoyl species is one of the main species for both PI (14.4%) and PG (16.9%). Besides the C16:0--C16:0 species, the C16:0--C18:0, C16:0--C18:1, C16:0--C18:2 and C18:0--C18:1 species showed comparable proportions in the PG and PI fractions. These similarities of the species patterns and the acidic character of both phospholipids could explain why surfactant PG may be replaced by PI. 2. PI and PG were radiolabelled by incubation of microsomal fractions with [14C]glycerol 3-phosphate (Gro3P). For 11 out of 14 molecular species of PI and PG we measured comparable proportions of radioactivity. The radioactivity of these 11 species accounted together for more than 80% of the total. The addition of inositol to the incubation system decreased the incorporation in vitro of Gro3P into PG and CDP-DG (diacylglycerol) of lung microsomes (microsomal fractions), but did not change the distribution of radioactivity among the molecular species of PG. These results supported the idea that both acidic surfactant phospholipids may be synthesized de novo from a common CDP-DG pool in lung microsomes. PMID:3178759

  16. Surfactant before the first inflation at birth improves spatial distribution of ventilation and reduces lung injury in preterm lambs.

    PubMed

    Tingay, David G; Wallace, Megan J; Bhatia, Risha; Schmölzer, Georg M; Zahra, Valerie A; Dolan, Melinda J; Hooper, Stuart B; Davis, Peter G

    2014-02-01

    The interrelationship between the role of surfactant and a sustained inflation (SI) to aid ex utero transition of the preterm lung is unknown. We compared the effect of surfactant administered before and after an initial SI on gas exchange, lung mechanics, spatial distribution of ventilation, and lung injury in preterm lambs. Gestational-age lambs (127 days; 9 per group) received 100 mg/kg of a surfactant (Curosurf) either prior (Surf+SI) or 10 min after birth (SI+Surf). At birth, a 20-s, 35 cmH2O SI was applied, followed by 70 min of positive pressure ventilation. Oxygenation, carbon dioxide removal, respiratory system compliance, end-expiratory thoracic volume (via respiratory inductive plethysmography), and distribution of end-expiratory volume and ventilation (via electrical impedance tomography) were measured throughout. Early markers of lung injury were analyzed using quantitative RT-PCR. During the first 15 min, oxygenation, carbon dioxide removal, and compliance were better in the Surf+SI group (all P < 0.05). End-expiratory volume on completion of the sustained inflation was higher in the Surf+SI group than the SI+Surf group; 11 ± 1 ml/kg vs. 7 ± 1 ml/kg (mean ± SE) (P = 0.043; t-test), but was not different at later time points. Although neither achieved homogenous aeration, spatial ventilation was more uniform in the Surf+SI group throughout; 50.1 ± 10.9% of total ventilation in the left hemithorax at 70 min vs. 42.6 ± 11.1% in the SI+Surf group. Surf+SI resulted in lower mRNA levels of CYR61 and EGR1 compared with SI+Surf (P < 0.001, one-way ANOVA). Surfactant status of the fetal preterm lung at birth influences the mechanical and injury response to a sustained inflation and ventilation by changing surface tension of the air/fluid interface.

  17. Data mining and multiparameter analysis of lung surfactant protein genes in bronchopulmonary dysplasia.

    PubMed

    Rova, Meri; Haataja, Ritva; Marttila, Riitta; Ollikainen, Vesa; Tammela, Outi; Hallman, Mikko

    2004-06-01

    Bronchopulmonary dysplasia (BPD), the most common chronic lung disease in infancy, is influenced by a number of antenatal and postnatal risk factors and is mostly preceded by respiratory distress syndrome (RDS) in the newborn. Surfactant protein (SP-A, -B, -C and -D) gene variations may play a role in both BPD and RDS. An association study between these candidate genes and BPD was performed. A total of 365 preterm Finnish infants in a high-risk population with gestational age

  18. Surfactant Protein–C Chromatin-Bound Green Fluorescence Protein Reporter Mice Reveal Heterogeneity of Surfactant Protein C–Expressing Lung Cells

    PubMed Central

    Lee, Joo-Hyeon; Kim, Jonghwan; Gludish, David; Roach, Rebecca R.; Saunders, Arven H.; Barrios, Juliana; Woo, Andrew Jonghan; Chen, Huaiyong; Conner, David A.; Fujiwara, Yuko; Stripp, Barry R.

    2013-01-01

    The regeneration of alveolar epithelial cells is a critical aspect of alveolar reorganization after lung injury. Although alveolar Type II (AT2) cells have been described as progenitor cells for alveolar epithelia, more remains to be understood about how their progenitor cell properties are regulated. A nuclear, chromatin-bound green fluorescence protein reporter (H2B-GFP) was driven from the murine surfactant protein–C (SPC) promoter to generate SPC H2B-GFP transgenic mice. The SPC H2B-GFP allele allowed the FACS-based enrichment and gene expression profiling of AT2 cells. Approximately 97% of AT2 cells were GFP-labeled on Postnatal Day 1, and the percentage of GFP-labeled AT2 cells decreased to approximately 63% at Postnatal Week 8. Isolated young adult SPC H2B-GFP+ cells displayed proliferation, differentiation, and self-renewal capacity in the presence of lung fibroblasts in a Matrigel-based three-dimensional culture system. Heterogeneity within the GFP+ population was revealed, because cells with distinct alveolar and bronchiolar gene expression arose in three-dimensional cultures. CD74, a surface marker highly enriched on GFP+ cells, was identified as a positive selection marker, providing 3-fold enrichment for AT2 cells. In vivo, GFP expression was induced within other epithelial cell types during maturation of the distal lung. The utility of the SPC H2B-GFP murine model for the identification of AT2 cells was greatest in early postnatal lungs and more limited with age, when some discordance between SPC and GFP expression was observed. In adult mice, this allele may allow for the enrichment and future characterization of other SPC-expressing alveolar and bronchiolar cells, including putative stem/progenitor cell populations. PMID:23204392

  19. Surfactant protein-C chromatin-bound green fluorescence protein reporter mice reveal heterogeneity of surfactant protein C-expressing lung cells.

    PubMed

    Lee, Joo-Hyeon; Kim, Jonghwan; Gludish, David; Roach, Rebecca R; Saunders, Arven H; Barrios, Juliana; Woo, Andrew Jonghan; Chen, Huaiyong; Conner, David A; Fujiwara, Yuko; Stripp, Barry R; Kim, Carla F

    2013-03-01

    The regeneration of alveolar epithelial cells is a critical aspect of alveolar reorganization after lung injury. Although alveolar Type II (AT2) cells have been described as progenitor cells for alveolar epithelia, more remains to be understood about how their progenitor cell properties are regulated. A nuclear, chromatin-bound green fluorescence protein reporter (H2B-GFP) was driven from the murine surfactant protein-C (SPC) promoter to generate SPC H2B-GFP transgenic mice. The SPC H2B-GFP allele allowed the FACS-based enrichment and gene expression profiling of AT2 cells. Approximately 97% of AT2 cells were GFP-labeled on Postnatal Day 1, and the percentage of GFP-labeled AT2 cells decreased to approximately 63% at Postnatal Week 8. Isolated young adult SPC H2B-GFP(+) cells displayed proliferation, differentiation, and self-renewal capacity in the presence of lung fibroblasts in a Matrigel-based three-dimensional culture system. Heterogeneity within the GFP(+) population was revealed, because cells with distinct alveolar and bronchiolar gene expression arose in three-dimensional cultures. CD74, a surface marker highly enriched on GFP(+) cells, was identified as a positive selection marker, providing 3-fold enrichment for AT2 cells. In vivo, GFP expression was induced within other epithelial cell types during maturation of the distal lung. The utility of the SPC H2B-GFP murine model for the identification of AT2 cells was greatest in early postnatal lungs and more limited with age, when some discordance between SPC and GFP expression was observed. In adult mice, this allele may allow for the enrichment and future characterization of other SPC-expressing alveolar and bronchiolar cells, including putative stem/progenitor cell populations.

  20. Maintenance of differentiated function of the surfactant system in human fetal lung type II epithelial cells cultured on plastic.

    PubMed

    Gonzales, L W; Angampalli, S; Guttentag, S H; Beers, M F; Feinstein, S I; Matlapudi, A; Ballard, P L

    2001-01-01

    We report a simplified culture system for human fetal lung type II cells that maintains surfactant expression. Type II cells isolated from explant cultures of hormone-treated lungs (18-22 wk gestation) by collagenase + trypsin digestion were cultured on plastic for 4 days in serum-free medium containing dexamethasone (Dex, 10 nM) + 8-bromo-cAMP (0.1 mM + isobutylmethylxanthine (0.1 mM) or were untreated (control). Surfactant protein (SP) mRNAs decreased markedly in control cells between days 1 and 4 of culture, but mRNA levels were high in treated cells on day) 4 (SP-A, SP-B, SP-C, SP-D; 600%, 100%, 85%, 130% of day 0 content, respectively). Dex or cAMP alone increased SP-B, SP-C, and SP-D mRNAs and together had additive effects. The greatest increase in SP-A mRNA occurred with cAMP alone. Treated cells processed pro-SP-B and pro-SP-C proteins to mature forms and had a higher rate of phosphatidylcholine (PC) synthesis (2-fold) and higher saturation of PC (approximately 34% versus 27%) than controls. Only treated cells maintained secretagogue-responsive phospholipid synthesis. By electron microscopy, the treated cells retained lamellar bodies and extensive microvilli. We conclude that Dex and cAMP additively stimulate expression of surfactant components in isolated fetal type II cells, providing a simplified culture system for investigation of surfactant-related, and perhaps other, type II cell functions.

  1. Palmitoylation as a key factor to modulate SP-C-lipid interactions in lung surfactant membrane multilayers.

    PubMed

    Roldan, Nuria; Goormaghtigh, Erik; Pérez-Gil, Jesús; Garcia-Alvarez, Begoña

    2015-01-01

    Surfactant protein C (SP-C) has been regarded as the most specific protein linked to development of mammalian lungs, and great efforts have been done to understand its structure-function relationships. Previous evidence has outlined the importance of SP-C palmitoylation to sustain the proper dynamics of lung surfactant, but the mechanism by which this posttranslational modification aids SP-C to stabilize the interfacial surfactant film along the compression-expansion breathing cycles, is still unrevealed. In this work we have compared the structure, orientation and lipid-protein interactions of a native palmitoylated SP-C with those of a non-palmitoylated recombinant SP-C (rSP-C) form in air-exposed multilayer membrane environments, by means of ATR-FTIR spectroscopy. Palmitoylation does not affect the secondary structure of the protein, which exhibits a full α-helical conformation in partly dehydrated phospholipid multilayer films. However, differences between the Amide I band of the IR spectrum of palmitoylated and non-palmitoylated proteins suggest subtle differences affecting the environment of their helical component. These differences are accompanied by differential effects on the IR bands from phospholipid phosphates, indicating that palmitoylation modulates lipid-protein interactions at the headgroup region of phospholipid layers. On the other hand, the relative dichroic absorption of polarized IR has allowed calculating that the palmitoylated protein adopts a more tilted transmembrane orientation than the non-palmitoylated SP-C, likely contributing to more compact, dehydrated and possibly stable multilayer lipid-protein films. As a whole, the behavior of multilayer films containing palmitoylated SP-C may reflect favorable structural properties for surfactant reservoirs at the air-liquid respiratory interface.

  2. Altered Lipid Composition of Surfactant and Lung Tissue in Murine Experimental Malaria-Associated Acute Respiratory Distress Syndrome

    PubMed Central

    Scaccabarozzi, Diletta; Deroost, Katrien; Lays, Natacha; Taramelli, Donatella

    2015-01-01

    Malaria-associated acute lung injury (MA-ALI) and its more severe form malaria-associated acute respiratory distress syndrome (MA-ARDS) are common, often fatal complications of severe malaria infections. However, little is known about their pathogenesis. In this study, biochemical alterations of the lipid composition of the lungs were investigated as possible contributing factors to the severity of murine MA-ALI/ARDS. C57BL/6J mice were infected with Plasmodium berghei NK65 to induce lethal MA-ARDS, or with Plasmodium chabaudi AS, a parasite strain that does not induce lung pathology. The lipid profile of the lung tissue from mice infected with Plasmodium berghei NK65 developing MA-ALI/ARDS, but not that from mice without lung pathology or controls, was characterized by high levels of phospholipids -mainly phosphatidylcholine- and esterified cholesterol. The high levels of polyunsaturated fatty acids and the linoleic/oleic fatty acid ratio of the latter reflect the fatty acid composition of plasma cholesterol esters. In spite of the increased total polyunsaturated fatty acid pool, which augments the relative oxidability of the lung membranes, and the presence of hemozoin, a known pro-oxidant, no excess oxidative stress was detected in the lungs of Plasmodium berghei NK65 infected mice. The bronchoalveolar lavage (BAL) fluid of Plasmodium berghei NK65 infected mice was characterized by high levels of plasma proteins. The phospholipid profile of BAL large and small aggregate fractions was also different from uninfected controls, with a significant increase in the amounts of sphingomyelin and lysophosphatidylcholine and the decrease in phosphatidylglycerol. Both the increase of proteins and lysophosphatidylcholine are known to decrease the intrinsic surface activity of surfactant. Together, these data indicate that an altered lipid composition of lung tissue and BAL fluid, partially ascribed to oedema and lipoprotein infiltration, is a characteristic feature of murine

  3. Studies on pulmonary surfactant. Effects of cortisol administration to fetal rabbits on lung phospholipid content, composition and biosynthesis.

    PubMed

    Rooney, S A; Gobran, L; Gross, I; Wai-lee, T S; Nardone, L L; Motoyama, E K

    1976-11-19

    Corticosteroids are known to accelerate maturation of the fetal lung and production of surfactant. We examined the effect of cortisol administration to fetal rabbits on the phospholipid content and composition of lung lavage and lung tissue, as well as on the activities of enzymes involved in the synthesis of phosphatidylcholine and phosphatidylglycerol, the major surface-active components of surfactant. Cortisol was administered by intrauterine injection at 25 days' gestation and the fetuses were delivered at 27 days (full term, 31 days). Saline-injected fetuses, littermates of the cortisol-treated as well as non-littermates, were used as controls. The amount of phospholipid in lung lavage from the hormone-treated fetuses was almost double that of the saline-injected controls and was similar to that of an untreated fetus of more than 30 days' gestation. Similarly, the phospholipid composition of lung lavage from the hormone-treated fetuses was similar to that of an untreated fetus at a greater gestational age. These data, therefore, suggest that cortisol acts by accelerating physiological development. Cortisol administratration stimulated the activity of cholinephosphate cytidylyltransferase and lysolecithin acyltransferase to a small, but statistically significant extent. This is also consistent with an acceleration of normal development. The stimulation of lysolecithin acyltransferase is of interest, since this enzyme is believed to be involved in the synthesis of dipalmitoylglycerophosphocholine, the major surface-active species of phosphatidylcholine. Cortisol administration had no effect on the activities of pulmonary choline kinase, cholinephosphotransferase, lysophosphatidic acid acyltransferase and glycerolphosphate phosphatidyltranferase, although we have previously shown the latter enzyme to be stimulated following a longer period of exposure to the hormone. Saline injection produced some maturational effects presumably as a result of stress, which may

  4. Mutant surfactant A2 proteins associated with familial pulmonary fibrosis and lung cancer induce TGF-β1 secretion

    PubMed Central

    Maitra, Meenakshi; Cano, Christopher A.; Garcia, Christine Kim

    2012-01-01

    Mutations in the genes encoding the lung surfactant proteins are found in patients with interstitial lung disease and lung cancer, but their pathologic mechanism is poorly understood. Here we show that bronchoalveolar lavage fluid from humans heterozygous for a missense mutation in the gene encoding surfactant protein (SP)-A2 (SFTPA2) contains more TGF-β1 than control samples. Expression of mutant SP-A2 in lung epithelial cells leads to secretion of latent TGF-β1, which is capable of autocrine and paracrine signaling. TGF-β1 secretion is not observed in lung epithelial cells expressing the common SP-A2 variants or other misfolded proteins capable of increasing cellular endoplasmic reticulum stress. Activation of the unfolded protein response is necessary for maximal TGF-β1 secretion because gene silencing of the unfolded protein response transducers leads to an ∼50% decrease in mutant SP-A2–mediated TGF-β1 secretion. Expression of the mutant SP-A2 proteins leads to the coordinated increase in gene expression of TGF-β1 and two TGF-β1–binding proteins, LTBP-1 and LTBP-4; expression of the latter is necessary for secretion of this cytokine. Inhibition of the TGF-β autocrine positive feedback loop by a pan–TGF-β–neutralizing antibody, a TGF-β receptor antagonist, or LTBP gene silencing results in the reversal of TGF-β–mediated epithelial-to-mesenchymal transition and cell death. Because secretion of latent TGF-β1 is induced specifically by mutant SP-A2 proteins, therapeutics targeted to block this pathway may be especially beneficial for this molecularly defined subgroup of patients. PMID:23223528

  5. Mutant surfactant A2 proteins associated with familial pulmonary fibrosis and lung cancer induce TGF-β1 secretion.

    PubMed

    Maitra, Meenakshi; Cano, Christopher A; Garcia, Christine Kim

    2012-12-18

    Mutations in the genes encoding the lung surfactant proteins are found in patients with interstitial lung disease and lung cancer, but their pathologic mechanism is poorly understood. Here we show that bronchoalveolar lavage fluid from humans heterozygous for a missense mutation in the gene encoding surfactant protein (SP)-A2 (SFTPA2) contains more TGF-β1 than control samples. Expression of mutant SP-A2 in lung epithelial cells leads to secretion of latent TGF-β1, which is capable of autocrine and paracrine signaling. TGF-β1 secretion is not observed in lung epithelial cells expressing the common SP-A2 variants or other misfolded proteins capable of increasing cellular endoplasmic reticulum stress. Activation of the unfolded protein response is necessary for maximal TGF-β1 secretion because gene silencing of the unfolded protein response transducers leads to an ∼50% decrease in mutant SP-A2-mediated TGF-β1 secretion. Expression of the mutant SP-A2 proteins leads to the coordinated increase in gene expression of TGF-β1 and two TGF-β1-binding proteins, LTBP-1 and LTBP-4; expression of the latter is necessary for secretion of this cytokine. Inhibition of the TGF-β autocrine positive feedback loop by a pan-TGF-β-neutralizing antibody, a TGF-β receptor antagonist, or LTBP gene silencing results in the reversal of TGF-β-mediated epithelial-to-mesenchymal transition and cell death. Because secretion of latent TGF-β1 is induced specifically by mutant SP-A2 proteins, therapeutics targeted to block this pathway may be especially beneficial for this molecularly defined subgroup of patients.

  6. Synchrotron X-ray study of lung surfactant-specific protein SP-B in lipid monolayers.

    PubMed Central

    Lee, K Y; Majewski, J; Kuhl, T L; Howes, P B; Kjaer, K; Lipp, M M; Waring, A J; Zasadzinski, J A; Smith, G S

    2001-01-01

    This work reports the first x-ray scattering measurements to determine the effects of SP-B(1-25), the N-terminus peptide of lung surfactant-specific protein SP-B, on the structure of palmitic acid (PA) monolayers. In-plane diffraction shows that the peptide fluidizes a portion of the monolayer but does not affect the packing of the residual ordered phase. This implies that the peptide resides in the disordered phase, and that the ordered phase is essentially pure lipid, in agreement with fluorescence microscopy studies. X-ray reflectivity shows that the peptide is oriented in the lipid monolayer at an angle of approximately 56 degrees relative to the interface normal, with one end protruding past the hydrophilic region into the fluid subphase and the other end embedded in the hydrophobic region of the monolayer. The quantitative insights afforded by this study lead to a better understanding of the lipid/protein interactions found in lung surfactant systems. PMID:11423439

  7. Lost after translation: insights from pulmonary surfactant for understanding the role of alveolar epithelial dysfunction and cellular quality control in fibrotic lung disease.

    PubMed

    Mulugeta, Surafel; Nureki, Shin-Ichi; Beers, Michael F

    2015-09-15

    Dating back nearly 35 years ago to the Witschi hypothesis, epithelial cell dysfunction and abnormal wound healing have reemerged as central concepts in the pathophysiology of idiopathic pulmonary fibrosis (IPF) in adults and in interstitial lung disease in children. Alveolar type 2 (AT2) cells represent a metabolically active compartment in the distal air spaces responsible for pulmonary surfactant biosynthesis and function as a progenitor population required for maintenance of alveolar integrity. Rare mutations in surfactant system components have provided new clues to understanding broader questions regarding the role of AT2 cell dysfunction in the pathophysiology of fibrotic lung diseases. Drawing on data generated from a variety of model systems expressing disease-related surfactant component mutations [surfactant proteins A and C (SP-A and SP-C); the lipid transporter ABCA3], this review will examine the concept of epithelial dysfunction in fibrotic lung disease, provide an update on AT2 cell and surfactant biology, summarize cellular responses to mutant surfactant components [including endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and intrinsic apoptosis], and examine quality control pathways (unfolded protein response, the ubiquitin-proteasome system, macroautophagy) that can be utilized to restore AT2 homeostasis. This integrated response and its derangement will be placed in the context of cell stress and quality control signatures found in patients with familial or sporadic IPF as well as non-surfactant-related AT2 cell dysfunction syndromes associated with a fibrotic lung phenotype. Finally, the need for targeted therapeutic strategies for pulmonary fibrosis that address epithelial ER stress, its downstream signaling, and cell quality control are discussed.

  8. Lost after translation: insights from pulmonary surfactant for understanding the role of alveolar epithelial dysfunction and cellular quality control in fibrotic lung disease

    PubMed Central

    Nureki, Shin-Ichi; Beers, Michael F.

    2015-01-01

    Dating back nearly 35 years ago to the Witschi hypothesis, epithelial cell dysfunction and abnormal wound healing have reemerged as central concepts in the pathophysiology of idiopathic pulmonary fibrosis (IPF) in adults and in interstitial lung disease in children. Alveolar type 2 (AT2) cells represent a metabolically active compartment in the distal air spaces responsible for pulmonary surfactant biosynthesis and function as a progenitor population required for maintenance of alveolar integrity. Rare mutations in surfactant system components have provided new clues to understanding broader questions regarding the role of AT2 cell dysfunction in the pathophysiology of fibrotic lung diseases. Drawing on data generated from a variety of model systems expressing disease-related surfactant component mutations [surfactant proteins A and C (SP-A and SP-C); the lipid transporter ABCA3], this review will examine the concept of epithelial dysfunction in fibrotic lung disease, provide an update on AT2 cell and surfactant biology, summarize cellular responses to mutant surfactant components [including endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and intrinsic apoptosis], and examine quality control pathways (unfolded protein response, the ubiquitin-proteasome system, macroautophagy) that can be utilized to restore AT2 homeostasis. This integrated response and its derangement will be placed in the context of cell stress and quality control signatures found in patients with familial or sporadic IPF as well as non-surfactant-related AT2 cell dysfunction syndromes associated with a fibrotic lung phenotype. Finally, the need for targeted therapeutic strategies for pulmonary fibrosis that address epithelial ER stress, its downstream signaling, and cell quality control are discussed. PMID:26186947

  9. NMR shielding and a thermodynamic study of the effect of environmental exposure to petrochemical solvent on DPPC, an important component of lung surfactant

    NASA Astrophysics Data System (ADS)

    Monajjemi, M.; Afsharnezhad, S.; Jaafari, M. R.; Abdolahi, T.; Nikosade, A.; Monajemi, H.

    2007-12-01

    The chemical and petrochemical industries are the major air polluters. Millions of workers are exposed to toxic chemicals on the job, and it is becoming more toxic, causing much damage to respiratory system, today. One of the main components of lung alveoli is a surfactant. DPPC (Dipalmitolphosphatidylcholine) is the predominant lipid component in the lung surfactant, which is responsible for lowering surface tension in alveoli. In this article, we used an approximate model and ab initio computations to describe interactions between DPPC and some chemical solvents, such as benzene, toluene, heptane, acetone, chloroform, ether, and ethanol, which cause lung injuries and lead to respiratory distress such as ARDS. The effect of these solvents on the conformation and disordering of the DPPC head group was investigated by calculations at the Hatree-Fock level using the 6-31G basis set with the Onsager continuum solvation, GAIO, and frequency models. The simulation model was confirmed by accurate NMR measurements as concerns conformational energy. Water can be the most suitable solvent for DPPC. Furthermore, this study shows that ethanol has the most destructive effect on the conformation and lipid disorder of the DPPC head group of the lung surfactant in our model. Our finding will be useful for detecting the dysfunction of DPPC in the lung surfactant caused by acute or chronic exposures to air toxics from petrochemical organic solvent emission source and chronic alcohol consumption, which may lead to ARDS.

  10. Internalization of SiO₂ nanoparticles by alveolar macrophages and lung epithelial cells and its modulation by the lung surfactant substitute Curosurf.

    PubMed

    Vranic, Sandra; Garcia-Verdugo, Ignacio; Darnis, Cécile; Sallenave, Jean-Michel; Boggetto, Nicole; Marano, Francelyne; Boland, Sonja; Baeza-Squiban, Armelle

    2013-05-01

    Because of an increasing exposure to environmental and occupational nanoparticles (NPs), the potential risk of these materials for human health should be better assessed. Since one of the main routes of entry of NPs is via the lungs, it is of paramount importance to further characterize their impact on the respiratory system. Here, we have studied the uptake of fluorescently labeled SiO₂ NPs (50 and 100 nm) by epithelial cells (NCI-H292) and alveolar macrophages (MHS) in the presence or absence of pulmonary surfactant. The quantification of NP uptake was performed by measuring cell-associated fluorescence using flow cytometry and spectrometric techniques in order to identify the most suitable methodology. Internalization was shown to be time and dose dependent, and differences in terms of uptake were noted between epithelial cells and macrophages. In the light of our observations, we conclude that flow cytometry is a more reliable technique for the study of NP internalization, and importantly, that the hydrophobic fraction of lung surfactant is critical for downregulating NP uptake in both cell types.

  11. Aberrant lung remodeling in a mouse model of surfactant dysregulation induced by modulation of the Abca3 gene✩

    PubMed Central

    Beers, Michael F.; Knudsen, Lars; Tomer, Yaniv; Maronn, Julian; Zhao, Ming; Ochs, Matthias; Mulugeta, Surafel

    2017-01-01

    The lipid transporter, ATP binding cassette class A3 (ABCA3), plays a critical role in the biogenesis of alveolar type 2 (AT2) cell lamellar bodies (LBs). A relatively large number of mutations in the ABCA3 gene have been identified in association with diffuse parenchymal lung disease (DPLD), the most common of which is a missense mutation (valine substitution for lysine at residue 292 (ABCA3E292V)) that leads to functional impairment of the transporter in vitro. The consequences of ABCA3E292V gene expression in vivo are unknown. To address this question, we developed mouse models expressing ABCA3E292V knocked-in to the endogenous mouse locus. The parental (F1) mouse line (mAbca3E292V) that retained an intronic pgk-Neo selection cassette (inserted in reverse orientation) (mAbca3E292V–rNeo) demonstrated an allele dependent extracellular surfactant phospholipid (PL) deficiency. We hypothesize that this PL deficiency leads to aberrant parenchymal remodeling contributing to the pathophysiology of the DPLD phenotype. Compared to wild type littermates, baseline studies of mice homozygous for the pgk-Neo insert (mAbca3E292V–rNeo+/+) revealed nearly 50% reduction in bronchoalveolar lavage (BAL) PL content that was accompanied by quantitative reduction in AT2 LB size with a compensatory increase in LB number. The phenotypic alteration in surfactant lipid homeostasis resulted in an early macrophage predominant alveolitis which peaked at 8 weeks of age. This was followed by age-dependent development of histological DPLD characterized initially by peribronchial inflammatory cell infiltration and culminating in both an emphysema-like phenotype (which included stereologically quantifiable reductions in both alveolar septal surface area and volume of septal wall tissue) plus foci of trichrome-positive collagen deposition together with substantial proliferation of hyperplastic AT2 cells. In addition to spontaneous lung remodeling, mABCA3E292V–rNeo mice were rendered more

  12. Aberrant lung remodeling in a mouse model of surfactant dysregulation induced by modulation of the Abca3 gene.

    PubMed

    Beers, Michael F; Knudsen, Lars; Tomer, Yaniv; Maronn, Julian; Zhao, Ming; Ochs, Matthias; Mulugeta, Surafel

    2017-03-01

    The lipid transporter, ATP binding cassette class A3 (ABCA3), plays a critical role in the biogenesis of alveolar type 2 (AT2) cell lamellar bodies (LBs). A relatively large number of mutations in the ABCA3 gene have been identified in association with diffuse parenchymal lung disease (DPLD), the most common of which is a missense mutation (valine substitution for lysine at residue 292 (ABCA3(E292V))) that leads to functional impairment of the transporter in vitro. The consequences of ABCA3(E292)(V) gene expression in vivo are unknown. To address this question, we developed mouse models expressing ABCA3(E292V) knocked-in to the endogenous mouse locus. The parental (F1) mouse line (mAbca3(E292)(V)) that retained an intronic pgk-Neo selection cassette (inserted in reverse orientation) (mAbca3(E292)(V)-rNeo) demonstrated an allele dependent extracellular surfactant phospholipid (PL) deficiency. We hypothesize that this PL deficiency leads to aberrant parenchymal remodeling contributing to the pathophysiology of the DPLD phenotype. Compared to wild type littermates, baseline studies of mice homozygous for the pgk-Neo insert (mAbca3(E292)(V)-rNeo(+/)(+)) revealed nearly 50% reduction in bronchoalveolar lavage (BAL) PL content that was accompanied by quantitative reduction in AT2 LB size with a compensatory increase in LB number. The phenotypic alteration in surfactant lipid homeostasis resulted in an early macrophage predominant alveolitis which peaked at 8 weeks of age. This was followed by age-dependent development of histological DPLD characterized initially by peribronchial inflammatory cell infiltration and culminating in both an emphysema-like phenotype (which included stereologically quantifiable reductions in both alveolar septal surface area and volume of septal wall tissue) plus foci of trichrome-positive collagen deposition together with substantial proliferation of hyperplastic AT2 cells. In addition to spontaneous lung remodeling, mABCA3(E292V)-rNeo mice

  13. CENTRIFUGE APPARATUS

    DOEpatents

    Skarstrom, C.; Urey, H.C.; Cohen, K.

    1960-08-01

    A high-speed centrifuge for the separation of gaseous isotopes is designed comprising a centrifugal pump mounted on the outlet of a centrifuge bowl and arranged to pump the heavy and light fractions out of the centrifuge bowl in two separate streams.

  14. Production of TNF-alpha by polymorphonuclear leukocytes during mechanical ventilation in the surfactant-depleted rabbit lung.

    PubMed

    Noda, Eri; Hoshina, Hiroaki; Watanabe, Hiroshi; Kawano, Toshio

    2003-12-01

    Previous studies showed that the production of tumor necrosis factor-alpha (TNF-alpha) and the number of recovered cells were much higher in the conventional mechanical ventilation (CMV) group than in the high-frequency oscillation (HFO) group at the end of mechanical ventilation in this model. But the type of cells that generated TNF-alpha in the lungs remained unclear. It was shown that the alveolar macrophage was the source of TNF-alpha in the early stage, but that in the later stage, the cells in the lung lavage fluid contained almost no macrophages. Thus we hypothesized that in the surfactant-depleted lung model, one of the sources of TNF-alpha after 4 hr of CMV is polymorphonuclear leukocyte (PMN), a type of cell which was numerous at that time. We performed the experiment in the same lung lavage model. The results were as follows. All PaO2 values for the HFO group were significantly greater than the corresponding values for the CMV group throughout the experiment (P < 0.05). More than 96% of the recovered cells of the lung lavage fluid at the end of ventilation were PMN. Cell counts after ventilation of HFO and CMV groups were 183.0 +/- 40.8 (mean +/- SD, n = 6)/microl and 1,106.0 +/- 310.0/microl, respectively (P < 0.05). Levels of rabbit TNF-alpha in the lavage fluid before and after 4 hr ventilation were 43.3 +/- 103.7 pg/ml and 2,406.0 +/- 1,525.1 pg/ml, respectively, in the CMV group. In the HFO group, these levels were 26.6 +/- 52.0 pg/ml and 613.3 +/- 362.2 pg/ml, respectively. The level of TNF-alpha was significantly greater in the CMV group after ventilation (P < 0.05). We performed RT-PCR analysis, in which we showed the presence of TNF-alpha mRNA in the intraalveolar cells (PMN) after 4 hr of CMV, and then demonstrated a positive immunofluorescence reaction to anti-TNF-alpha antibody in PMN separated from the lavage fluid. Our conclusion is that in this surfactant-depleted lung model, PMN is one of the sources of TNF-alpha in the lavage fluid

  15. [Pulmonary surfactant protein gene mutation associated with pediatric interstitial lung disease: a case study and the review of related literature].

    PubMed

    Zhu, Chun-mei; Cao, Ling; Huang, Rong-yan; Wang, Ya-jun; Zou, Ji-zhen; Yuan, Xin-yu; Song, Fang; Chen, Hui-zhong

    2013-02-01

    To report a case of pulmonary surfactant protein (SP) gene mutation associated with pediatric interstitial lung disease, and study the clinical diagnosis process and review of related literature, to understand the relationship between interstitial lung disease and SP gene mutation in infants and children. The clinical, radiological, histological, and genetic testing information of a case of SP gene mutation related pediatric interstitial lung disease were analyzed and related literature was reviewed. A 2-year-old girl without a history of serious illness was hospitalized because of the shortness of breath, cough, excessive sputum, and the progressive dyspnea. Physical examination on admission revealed tachypnea, slight cyanosis, and the retraction signs were positive, respiratory rate of 60 times/minute, fine crackles could be heard through the lower lobe of both lungs; heart rate was 132 beats/minute. No other abnormalities were noted, no clubbing was found. Laboratory test results: pathologic examination was negative, multiple blood gas analysis suggested hypoxemia. Chest CT showed ground-glass like opacity, diffused patchy infiltration. Bronchoalveolar lavage fluid had a large number of neutrophils, and a few tissue cells. Eosinophil staining: negative. Fluconazole and methylprednisolone were given after admission, pulmonary symptoms and signs did not improve, reexamination showed no change in chest CT. Then lung biopsy was carried out through thoracoscopy. Histopathology suggested chronic interstitial pneumonia with fibrosis. The heterozygous mutation of R219W in the SFPTA1 and the S186N in SFTPC were identified by SP-related gene sequencing. The review of related literature showed that polymorphisms at the 219th amino acid in SP-A1 allele were found in adults with idiopathic pulmonary fibrosis (IPF), but there is no related literature in pediatric cases. The patient in this report had a mutation at the SP-A1 allele consistent with related literature. Data of

  16. Molecular Dynamics Simulations of the Anchoring and Tilting of the Lung-Surfactant Peptide SP-B1-25 in Palmitic Acid Monolayers

    PubMed Central

    Lee, Hwankyu; Kandasamy, Senthil K.; Larson, Ronald G.

    2005-01-01

    We have performed molecular dynamics simulations of multiple copies of the lung-surfactant peptide SP-B1-25 in a palmitic acid (PA) monolayer. SP-B1-25 is a shorter version of lung-surfactant protein B, an important component of lung surfactant. Up to 30 ns simulations of 20 wt % SP-B1-25 in the PA monolayers were performed with different surface areas of PA, extents of PA ionization, and various initial configurations of the peptides. Starting with initial peptide orientation perpendicular to the monolayer, the predicted final tilt angles average 54°∼ 62° with respect to the monolayer normal, similar to those measured experimentally by Lee et al. (Biophysical Journal. 2001. Synchrotron x-ray study of lung surfactant-specific protein SP-B in lipid monolayers. 81:572–585). In their final conformations, hydrogen-bond analysis and amino acid mutation studies show that the peptides are anchored by hydrogen bond interactions between the cationic residues Arg-12 and Arg-17 and the hydrogen bond acceptors of the ionized PA headgroup, and the tilt angle is affected by the interactions of Tyr-7 and Gln-19 with the PA headgroup. Our work indicates that the factors controlling orientation of small peptides in lipid layers can now be uncovered through molecular dynamics simulations. PMID:16169980

  17. Development, optimization and evaluation of surfactant-based pulmonary nanolipid carrier system of paclitaxel for the management of drug resistance lung cancer using Box-Behnken design.

    PubMed

    Kaur, Prabhjot; Garg, Tarun; Rath, Goutam; Murthy, R S Rayasa; Goyal, Amit K

    2016-07-01

    In the present study, nanostructured lipid carriers (NLCs) along with various surfactants loaded with paclitaxel (PTX) were prepared by an emulsification technique using a Box-Behnken design. The Box-Behnken design indicated that the most effective factors on the size and PDI were at high surfactant concentration (1.5%), low lipids ratio (6:4) and medium homogenization speed (6000 rpm). Among all the formulations, Tween 20-loaded NLCs show least particle size compared to Tween 80 and Tween 60. Entrapment efficiency of Tween 20, Tween 80 and Tween 60-loaded formulations were 82.40, 85.60 and 79.78%, respectively. Drug release of Tween 80, Tween 20 and Tween 60-loaded NLCs is 64.9, 62.3 and 59.7%, respectively (within 72 h). Maximum cellular uptake was observed with Tween 20 formulation on Caco-2 cell lines. Furthermore, spray drying of resultant NLCs was showed good flow properties and was selected for drug delivery to deeper airways. In-vivo studies demonstrated the better localization of drug within the lungs using different surfactant-based pulmonary delivery systems. From this study, we have concluded that delivering drugs through pulmonary route is advantageous for local action in lungs as maximum amount of drug concentration was observed in lungs. The surfactants could prove to be beneficial in treating drug resistance lung cancer by inhibiting P-gp efflux in the form of nano lipidic carriers.

  18. Immunogenicity of surfactant. I. Human alveolar surfactant.

    PubMed Central

    Strayer, D S; Hallman, M; Merritt, T A

    1991-01-01

    The immunogenicity of lung surfactant derived from amniotic fluid has been well established. We have set out to examine the antigenic similarity of human surfactant to non-human alveolar surfactants currently being used therapeutically in clinical trials with neonatal respiratory distress syndrome. To this end, we raised a series of eight monoclonal antibodies in rats directed to human surfactant (H1 to H8). All antibodies bound human surfactant as measured by ELISA. Four of these monoclonal antibodies bound surfactant components by Western blot analysis: all bound a 9-10-kD species. In addition, one antibody (H2) bound a protein of 16 kD, one (H8) a 6-kD protein, and one (H6) a 30-kD protein. When mixed with surfactant, three antibodies, H4, H7 and H8, profoundly altered surfactant activity in vitro in the pulsating bubble surfactometer. Three other antibodies, H1, H2, and H5 moderately inhibited surfactant's surface activity. We also examined the cross-reactivity of these monoclonal antibodies with bovine (CLSE) and porcine (Curosurf) surfactants. By Western blot analysis, only H6 bound these heterologous surfactants. Other antibodies did so by ELISA. However, functional assays indicated that antibodies H7, H8 and H4 all greatly inhibited CLSE surface activity in vitro. Five antibodies (H1-H4 and H8) inhibited Curosurf function. Thus, human surfactant species, especially low molecular weight species, are highly antigenic. Antibodies to alveolar surfactants may inhibit surfactant function in vitro. As indicated by Western blot and cross-inhibition data, human lower molecular weight surfactants share epitopes with proteins from therapeutically important porcine and bovine surfactants. The potential importance of these findings to treatment of neonatal respiratory distress syndrome with heterologous surfactants is discussed. PMID:1988229

  19. Therapy of Adult Respiratory Distress Syndrome with Alpha-1- Antiproteinase or Lung Surfactant.

    DTIC Science & Technology

    1991-03-15

    Jacobs, H., A. Jobe, M. Ikegami, T. Glatz, S. J . Jones, and L. Barajas . 1982. Premature lambs rescued from respiratory failure with natural surfactant...D. B. Bigelow, T. L. Petty, and B. E. Levine. 1967. Acute respiratory distress in adults. Lancet 2:319-323. 3. Holter, J.F., J . E. Weiland, E. R...Pacht, J . E. Gadek, and W. B. Davis. 1986. Protein permeability in the adult respiratory distress syndrome Loss of size selectivity of the alveolar

  20. Serum Surfactant Protein D as a Biomarker for Measuring Lung Involvement in Obese Type 2 Diabetic Patients.

    PubMed

    López-Cano, Carolina; Lecube, Albert; García-Ramírez, Marta; Muñoz, Xavier; Sánchez, Enric; Seminario, Asunción; Hernández, Marta; Ciudin, Andreea; Gutiérrez, Liliana; Hernández, Cristina; Simó, Rafael

    2017-09-13

    Lung impairment is a new target for late diabetic complications. Biomarkers that could facilitate the identification of patients requiring functional respiratory tests have not been reported. The aim of this study is to examine whether serum surfactant protein D (SP-D) and A (SP-A) could be useful biomarkers of lung damage in obese patients with type 2 diabetes without known lung disease. A case-control study conducted in an ambulatory obesity unit. 49 obese patients with type 2 diabetes and 98 non-diabetic subjects, matched by age, gender, BMI, and waist circumference were included. Serum SP-D and SP-A were measured using enzyme-linked immunosorbent assay. Forced spirometry and static pulmonary volume were assessed. Patients with T2D exhibited higher serum SP-D concentrations than control subjects (p=0.006). No differences in serum SP-A concentrations were observed. There was an inverse association between forced expiratory volume in one second (FEV1) and serum SP-D (r=-0.265, p=0.029), as well as a significant positive relation between SP-D and residual volume (r=0.293, p=0.043). From Receiver Operating Characteristic analysis, the best SP-D cut-off to identify a FEV1<80% of predicted was 132.3 ng/mL (area under the curve 0.725, sensitivity 77.7%, specificity 69.4%). Stepwise multivariate regression analysis showed that serum SP-D≥132.3 ng/mL was independently associated with a FEV1<80% of predicted (R2=0.406). Only the existence of type 2 diabetes contributed independently to serum SD-P variance among all subjects (R2=0.138). Serum SP-D can be considered a useful biomarker for detecting lung impairment in obese type 2 diabetic patients.

  1. Aerosolized KL4 surfactant improves short-term survival and gas exchange in spontaneously breathing newborn pigs with hydrochloric acid-induced acute lung injury.

    PubMed

    Lampland, Andrea L; Wolfson, Marla R; Mazela, Jan; Henderson, Christopher; Gregory, Timothy J; Meyers, Patricia; Plumm, Brenda; Worwa, Cathy; Mammel, Mark C

    2014-05-01

    Surfactant therapy may be beneficial in acute lung injury (ALI). In spontaneously breathing newborn pigs with ALI supported with continuous positive airway pressure (CPAP), we evaluated the hypothesis that aerosolized KL4 surfactant (AERO KL4 S) would provide a similar therapeutic effect as intratracheal KL4 surfactant (ETT KL4 S) when compared to controls. We randomized pigs with HCl-induced ALI to: (1) 175 mg/kg KL4 surfactant via endotracheal tube (ETT); (2) AERO KL4 S (22.5 mg/min phospholipid) for 60 min via continuous positive airway pressure (CPAP); or (3) sham procedure on CPAP. We obtained physiologic data and arterial blood gases throughout the 3-hr study. At study end, lungs were excised for analysis of interleukin-8 (IL-8), myeloperoxidase (MPO) levels and histomorphometric data. Pigs treated with ETT KL4 S and AERO KL4 S had improved survival and sustained pO2 compared to controls. The AERO KL4 S group had higher pH compared to controls. Lung IL-8 levels were lower in the AERO KL4 S group compared to controls. Histomorphometric analysis showed less hemorrhage in the ETT and AERO KL4 S groups compared to controls. The AERO KL4 S group had more open lung units per fixed-field than the ETT KL4 S or controls. AERO KL4 S produced similar improvements in survival, physiology, inflammatory markers, and morphology as ETT KL4 S in an ALI model. © 2013 Wiley Periodicals, Inc.

  2. CENTRIFUGAL SEPARATORS

    DOEpatents

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  3. Effect of Surfactant and Partial Liquid Ventilation Treatment on Gas Exchange and Lung Mechanics in Immature Lambs: Influence of Gestational Age

    PubMed Central

    Rey-Santano, Carmen; Mielgo, Victoria; Gastiasoro, Elena; Valls-i-Soler, Adolfo; Murgia, Xabier

    2013-01-01

    Objectives Surfactant (SF) and partial liquid ventilation (PLV) improve gas exchange and lung mechanics in neonatal RDS. However, variations in the effects of SF and PLV with degree of lung immaturity have not been thoroughly explored. Setting Experimental Neonatal Respiratory Physiology Research Unit, Cruces University Hospital. Design Prospective, randomized study using sealed envelopes. Subjects 36 preterm lambs were exposed (at 125 or 133-days of gestational age) by laparotomy and intubated. Catheters were placed in the jugular vein and carotid artery. Interventions All the lambs were assigned to one of three subgroups given: 20 mL/Kg perfluorocarbon and managed with partial liquid ventilation (PLV), surfactant (Curosurf®, 200 mg/kg) or (3) no pulmonary treatment (Controls) for 3 h. Measurements and Main Results Cardiovascular parameters, blood gases and pulmonary mechanics were measured. In 125-day gestation lambs, SF treatment partially improved gas exchange and lung mechanics, while PLV produced significant rapid improvements in these parameters. In 133-day lambs, treatments with SF or PLV achieved similarly good responses. Neither surfactant nor PLV significantly affected the cardiovascular parameters. Conclusion SF therapy response was more effective in the older gestational age group whereas the effectiveness of PLV therapy was not gestational age dependent. PMID:23418521

  4. Variations in battery life of a heart-lung machine using different pump speeds, pressure loads, boot material, centrifugal pump head, multiple pump usage, and battery age.

    PubMed

    Marshall, Cornelius; Hargrove, Martin; O'Donnell, Aonghus; Aherne, Thomas

    2005-09-01

    Electrical failure during cardiopulmonary bypass (CPB) has previously been reported to occur in 1 of every 1500 cases. Most heart-lung machine pump consoles are equipped with built-in battery back-up units. Battery run times of these devices are variable and have not been reported. Different conditions of use can extend battery life in the event of electrical failure. This study was designed to examine the run time of a fully charged battery under various conditions of pump speed, pressure loads, pump boot material, multiple pump usage, and battery life. Battery life using a centrifugal pump also was examined. The results of this study show that battery life is affected by pump speed, circuit pressure, boot stiffness, and the number of pumps in service. Centrifugal pumps also show a reduced drain on battery when compared with roller pumps. These elements affect the longevity and performance of the battery. This information could be of value to the individual during power failure as these are variables that can affect the battery life during such a challenging scenario.

  5. Variations in Battery Life of a Heart—Lung Machine Using Different Pump Speeds, Pressure Loads, Boot Material, Centrifugal Pump Head, Multiple Pump Usage, and Battery Age

    PubMed Central

    Marshall, Cornelius; Hargrove, Martin; O’Donnell, Aonghus; Aherne, Thomas

    2005-01-01

    Abstract: Electrical failure during cardiopulmonary bypass (CPB) has previously been reported to occur in 1 of every 1500 cases. Most heart—lung machine pump consoles are equipped with built-in battery back-up units. Battery run times of these devices are variable and have not been reported. Different conditions of use can extend battery life in the event of electrical failure. This study was designed to examine the run time of a fully charged battery under various conditions of pump speed, pressure loads, pump boot material, multiple pump usage, and battery life. Battery life using a centrifugal pump also was examined. The results of this study show that battery life is affected by pump speed, circuit pressure, boot stiffness, and the number of pumps in service. Centrifugal pumps also show a reduced drain on battery when compared with roller pumps. These elements affect the longevity and performance of the battery. This information could be of value to the individual during power failure as these are variables that can affect the battery life during such a challenging scenario. PMID:16350380

  6. The lung innate immune gene surfactant protein-D is expressed in adipose tissue and linked to obesity status.

    PubMed

    Ortega, F J; Pueyo, N; Moreno-Navarrete, J M; Sabater, M; Rodriguez-Hermosa, J I; Ricart, W; Tinahones, F J; Fernández-Real, J M

    2013-12-01

    Surfactant protein-D (SFTPD) is a component of the lung innate immunity that enhances clearance of pathogens and modulates inflammatory responses. An inverse association of putative, lung-derived circulating SFTPD with obesity has been reported but no information is available concerning possible SFTPD gene expression in human adipose tissue. SFTPD gene expression was analyzed in human omental (OM; n=156) and subcutaneous (SC; n=106) adipose tissue, and in isolated fat cells (n=12) in association with measures of obesity and glucose tolerance. SFTPD gene was expressed in human adipose tissue and adipocytes. This expression was decreased in OM and SC adipose tissue from obese subjects with (-47%, P<0.0001; and -37%, P=0.048) and without (-34%, P=0.001; and -22%, P=0.08; respectively) type 2 diabetes when compared with the control group. Indeed, OM SFTPD was inversely associated with body mass index (r=-0.33, P<0.0001), percent fat mass (r=-0.36, P<0.0001), waist perimeter (r=-0.26, P=0.002), diastolic blood pressure (r=-0.21, P=0.018) and fasting glucose (r=-0.21, P=0.012); and positively linked to the expression of insulin receptor substrate 1 (IRS1; r=0.25, P=0.004), perilipin A (PLIN; r=0.38, P=0.007) and fatty acid synthase (FASN; r=0.36, P<0.0001). Accordingly, increased SFTPD (4.5-fold, P=0.02) was detected in isolated adipocytes when compared with the stromal-vascular cell fraction, in parallel to IRS1, FASN and PLIN. Both OM and SC adipose tissue (mainly mature adipocytes) express SFTPD. This expression decreases with obesity and impaired glucose tolerance.

  7. Immunogenicity of surfactant. II. Porcine and bovine surfactants.

    PubMed Central

    Strayer, D S; Hallman, M; Merritt, T A

    1991-01-01

    Protein-containing surfactants of human and animal origin are being used increasingly to treat neonatal and adult respiratory distress syndromes. This trend led us to examine the antigenicity of two important preparations of animal surfactant, cow lung surfactant extract (CLSE) and a porcine surfactant preparation, Curosurf. We describe here 15 monoclonal antibodies against Curosurf and four against CLSE. Antibodies were studied by Western blot analysis to determine their ability to recognize protein components of their respective surfactant preparations. They were also tested for their ability to inactivate surfactant in vitro, assayed using the pulsating bubble surfactometer. Several antibodies directed against CLSE or Curosurf functionally inactivate the surfactant to which they were raised. We determined the degree of immunologic cross-reactivity between antibodies directed to CLSE and Curosurf against the other surfactant and also against human surfactant, both by Western blot and by examining functional inactivation in vitro. Antibodies to these animal surfactants that are commonly used therapeutically may inactivate the specific animal surfactant to which they were raised, as well as human and other surfactants. Generally, when antibodies inactivate surfactant from more than one animal species, they inactivate heterologous surfactants comparably to the extent to which they inactivate the surfactant to which they are directed. Immune complexes between anti-surfactant antibodies and surfactant have been described in the course of neonatal respiratory distress syndrome. The potential pathophysiological importance of anti-surfactant antibodies may therefore lie in their ability to inactivate administered surfactant, other similar surfactants and endogenous surfactant. In so doing, these antibodies may potentiate surfactant deficiency or pulmonary injury initiated by other stimuli. Images Fig. 1 Fig. 2 PMID:1988231

  8. [Empirical study of the transportation of pulmonary surfactant-super oxide dismutase liposome to lung tissue in rats].

    PubMed

    Xing, Quan-sheng; Wu, Qin; Pan, Yu-zhu; Cao, Qian; Rong, You-bao

    2007-07-24

    To study the feasibility of the transportation of pulmonary surfactant-super oxide dismutase (PS-SOD) liposome to lung tissue in rats. 32 Wistar rats were randomly divided into 4 groups (8 rats in each group): normal saline group, PS group, SOD group, PS-SOD liposome group. Each group was further divided into two groups (4 rats in each group), and the rats were respectively killed 2 and 24 hours after the operation. While the biological activity of SOD in irrigating solution and tissue homogenate were detected, lung tissue were labeled with fluorescent and then observed under microscope and transmission electron microscope. PS-SOD liposome was corps rounds with monolayer lipid with stable surface tension and antioxidative activity. At the point of 2 hours after operation, while the SOD biological activity of irrigating solution in PS-SOD liposome group (32.87 +/- 5.47) and SOD group (33.14 +/- 5.61) were obviously higher than that in normal saline group (2.15 +/- 0.17, P < 0.01), there was no difference between them (P > 0.05). The mean fluorescence optical density in PS-SOD liposome group (0.109 +/- 0.018) was lower than that in normal saline group (0.144 +/- 0.052) and PS group (0.143 +/- 0.026, P < 0.01). 24 hours after operation, the SOD biological activity of irrigating solution in PS-SOD liposome group (11.54 +/- 1.42) was the highest (P < 0.01) and the mean fluorescence optical density in PS-SOD liposome group (0.112 +/- 0.018) was the lowest (P < 0.01). The SOD biological activity of tissue homogenate in PS-SOD liposome group (2 h: 16.83 +/- 2.69, 24 h: 15.70 +/- 2.75) was higher than that in normal saline group (2 h: 5.79 +/- 0.93, 24 h: 5.84 +/- 1.31) and in SOD group (2 h: 7.07 +/- 1.04, 24 h: 6.11 +/- 1.06, P < 0.01) both at the point of 2 and 24 hours after the operation. Lots of PS-SOD liposome was observed in type II alveolar epithelial cells under transmission electron microscope. Intrathecal administ ration of PS-SOD liposome enhanced the

  9. Surfactant phospholipid metabolism

    PubMed Central

    Agassandian, Marianna; Mallampalli, Rama K.

    2012-01-01

    Pulmonary surfactant is essential for life and is comprised of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. PMID:23026158

  10. New generation synthetic surfactants.

    PubMed

    Curstedt, Tore; Calkovska, Andrea; Johansson, Jan

    2013-01-01

    The treatment of preterm newborn rabbits with synthetic surfactants containing simple phospholipid mixtures and peptides gives similar tidal volumes to treatment with poractant alfa (Curosurf®). The addition of both surfactant protein B and C analogs to the phospholipid mixture will stabilize the alveoli, measured as lung gas volumes at end expiration, even if no positive end-expiratory pressure is applied. The effect on lung gas volumes seems to depend on the structure of the peptides as well as the phospholipid composition. It seems that synthetic surfactants containing two peptides and a more complex phospholipid composition will be able to replace natural surfactants within the near future, but more experiments need to be performed before any conclusion can be drawn about the ideal composition of this new generation of synthetic surfactants.

  11. Centrifuge apparatus

    DOEpatents

    Sartory, Walter K.; Eveleigh, John W.

    1976-01-01

    A method and apparatus for operating a continuous flow blood separation centrifuge are provided. The hematocrit of the entrant whole blood is continuously maintained at an optimum constant value by the addition of plasma to the entrant blood. The hematocrit of the separated red cells is monitored to indicate the degree of separation taking place, thereby providing a basis for regulating the flow through the centrifuge.

  12. X-ray diffraction and reflectivity validation of the depletion attraction in the competitive adsorption of lung surfactant and albumin.

    PubMed

    Stenger, Patrick C; Wu, Guohui; Miller, Chad E; Chi, Eva Y; Frey, Shelli L; Lee, Ka Yee C; Majewski, Jaroslaw; Kjaer, Kristian; Zasadzinski, Joseph A

    2009-08-05

    Lung surfactant (LS) and albumin compete for the air-water interface when both are present in solution. Equilibrium favors LS because it has a lower equilibrium surface pressure, but the smaller albumin is kinetically favored by faster diffusion. Albumin at the interface creates an energy barrier to subsequent LS adsorption that can be overcome by the depletion attraction induced by polyethylene glycol (PEG) in solution. A combination of grazing incidence x-ray diffraction (GIXD), x-ray reflectivity (XR), and pressure-area isotherms provides molecular-resolution information on the location and configuration of LS, albumin, and polymer. XR shows an average electron density similar to that of albumin at low surface pressures, whereas GIXD shows a heterogeneous interface with coexisting LS and albumin domains at higher surface pressures. Albumin induces a slightly larger lattice spacing and greater molecular tilt, similar in effect to a small decrease in the surface pressure. XR shows that adding PEG to the LS-albumin subphase restores the characteristic LS electron density profile at the interface, and confirms that PEG is depleted near the interface. GIXD shows the same LS Bragg peaks and Bragg rods as on a pristine interface, but with a more compact lattice corresponding to a small increase in the surface pressure. These results confirm that albumin adsorption creates a physical barrier that inhibits LS adsorption, and that PEG in the subphase generates a depletion attraction between the LS aggregates and the interface that enhances LS adsorption without substantially altering the structure or properties of the LS monolayer.

  13. X-Ray Diffraction and Reflectivity Validation of the Depletion Attraction in the Competitive Adsorption of Lung Surfactant and Albumin

    PubMed Central

    Stenger, Patrick C.; Wu, Guohui; Miller, Chad E.; Chi, Eva Y.; Frey, Shelli L.; Lee, Ka Yee C.; Majewski, Jaroslaw; Kjaer, Kristian; Zasadzinski, Joseph A.

    2009-01-01

    Abstract Lung surfactant (LS) and albumin compete for the air-water interface when both are present in solution. Equilibrium favors LS because it has a lower equilibrium surface pressure, but the smaller albumin is kinetically favored by faster diffusion. Albumin at the interface creates an energy barrier to subsequent LS adsorption that can be overcome by the depletion attraction induced by polyethylene glycol (PEG) in solution. A combination of grazing incidence x-ray diffraction (GIXD), x-ray reflectivity (XR), and pressure-area isotherms provides molecular-resolution information on the location and configuration of LS, albumin, and polymer. XR shows an average electron density similar to that of albumin at low surface pressures, whereas GIXD shows a heterogeneous interface with coexisting LS and albumin domains at higher surface pressures. Albumin induces a slightly larger lattice spacing and greater molecular tilt, similar in effect to a small decrease in the surface pressure. XR shows that adding PEG to the LS-albumin subphase restores the characteristic LS electron density profile at the interface, and confirms that PEG is depleted near the interface. GIXD shows the same LS Bragg peaks and Bragg rods as on a pristine interface, but with a more compact lattice corresponding to a small increase in the surface pressure. These results confirm that albumin adsorption creates a physical barrier that inhibits LS adsorption, and that PEG in the subphase generates a depletion attraction between the LS aggregates and the interface that enhances LS adsorption without substantially altering the structure or properties of the LS monolayer. PMID:19651036

  14. Diseases of Pulmonary Surfactant Homeostasis

    PubMed Central

    Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

  15. Lipid-protein interactions of hydrophobic proteins SP-B and SP-C in lung surfactant assembly and dynamics.

    PubMed

    Pérez-Gil, J

    2001-01-01

    Phospholipids have the major role in pulmonary surfacant concerning its biophysical function of reducing surface tension at the alveolar air-liquid interface to facilitate respiratory mechanics. However, the presence of some specific, highly hydrophobic polypeptides is essential to modulate the physical behavior of phospholipids and to promote rapid formation of stable surface films that are able to produce surface tensions in the range of 0 dynes/cm during cyclic compression. The present review summarizes the available data on the parameters governing lipid-protein interactions of the hydrophobic surfactant proteins SP-B and SP-C with the main surfactant phospholipids. Lipid-protein interactions in surfactant have been studied in vitro using preparations reconstituted with very different methodological procedures. Conclusions concerning the role of hydrophobic surfactant proteins on the assembly of lipid-protein surfactant structures in vivo have been revised in this respect. This review presents the knowledge available on the disposition of SP-B and SP-C in surfactant structures, the mode, extent, selectivity, and stoichiometry of their lipid-protein interactions, and the effect of the proteins on structure and dynamics of surfactant bilayers and monolayers. Some considerations are given to possible concerted actions, under physiological conditions, of both proteins SP-B and SP-C.

  16. Aberrant processing forms of lung surfactant proteins SP-B and SP-C revealed by high-resolution mass spectrometry.

    PubMed

    Galetskiy, Dmitry; Woischnik, Markus; Ripper, Jan; Griese, Matthias; Przybylski, Michael

    2008-01-01

    The mutation (g.1286T>C) of the pulmonary surfactant-associated protein C gene (SFTPC) leads to the I73T substitution in the precursor protein (pro-SP-C) and results in interstitial lung disease with the histological pattern of non-specific interstitial pneumonia and pulmonary alveolar proteinosis. Central for the disease is the abnormal processing of the SP-C pro-protein to mature SP-C; however little is known about the nature of intermediates and processing products. We report here the application of high resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry to the characterization of processing intermediates of hydrophobic pulmonary surfactant proteins SP-B and SP-C in intra- alveolar surfactant material of a patient with I73T mutation. SP-C and SP-B processing forms were separated from broncho-alveolar lavage fluid using chloroform/methanol extraction and sodium dodecyl sulfate poly acrylamide gel electrophoreis, detected by Western blot and identified by electrospray- and matrix-assisted laser desorption/ionization-FT-ICR mass spectrometry. The mass spectrometric and immuno-analytical results show the intra-alveolar accumulation of an aberrant C-terminal SP-C processing products in which the mature SP-C protein part is missing and aberrant processing intermediates of SP-B.

  17. Blood flow/pump rotation ratio as an artificial lung performance monitoring tool during extracorporeal respiratory support using centrifugal pumps

    PubMed Central

    Park, Marcelo; Mendes, Pedro Vitale; Hirota, Adriana Sayuri; dos Santos, Edzangela Vasconcelos; Costa, Eduardo Leite Vieira; Azevedo, Luciano Cesar Pontes

    2015-01-01

    Objective To analyze the correlations of the blood flow/pump rotation ratio and the transmembrane pressure, CO2 and O2 transfer during the extracorporeal respiratory support. Methods Five animals were instrumented and submitted to extracorporeal membrane oxygenation in a five-step protocol, including abdominal sepsis and lung injury. Results This study showed that blood flow/pump rotations ratio variations are dependent on extracorporeal membrane oxygenation blood flow in a positive logarithmic fashion. Blood flow/pump rotation ratio variations are negatively associated with transmembrane pressure (R2 = 0.5 for blood flow = 1500mL/minute and R2 = 0.4 for blood flow = 3500mL/minute, both with p < 0.001) and positively associated with CO2 transfer variations (R2 = 0.2 for sweep gas flow ≤ 6L/minute, p < 0.001, and R2 = 0.1 for sweep gas flow > 6L/minute, p = 0.006), and the blood flow/pump rotation ratio is not associated with O2 transfer variations (R2 = 0.01 for blood flow = 1500mL/minute, p = 0.19, and R2 = - 0.01 for blood flow = 3500 mL/minute, p = 0.46). Conclusion Blood flow/pump rotation ratio variation is negatively associated with transmembrane pressure and positively associated with CO2 transfer in this animal model. According to the clinical situation, a decrease in the blood flow/pump rotation ratio can indicate artificial lung dysfunction without the occurrence of hypoxemia. PMID:26340159

  18. Blood flow/pump rotation ratio as an artificial lung performance monitoring tool during extracorporeal respiratory support using centrifugal pumps.

    PubMed

    Park, Marcelo; Mendes, Pedro Vitale; Hirota, Adriana Sayuri; dos Santos, Edzangela Vasconcelos; Costa, Eduardo Leite Vieira; Azevedo, Luciano Cesar Pontes

    2015-01-01

    To analyze the correlations of the blood flow/pump rotation ratio and the transmembrane pressure, CO2 and O2 transfer during the extracorporeal respiratory support. Five animals were instrumented and submitted to extracorporeal membrane oxygenation in a five-step protocol, including abdominal sepsis and lung injury. This study showed that blood flow/pump rotations ratio variations are dependent on extracorporeal membrane oxygenation blood flow in a positive logarithmic fashion. Blood flow/pump rotation ratio variations are negatively associated with transmembrane pressure (R2 = 0.5 for blood flow = 1500mL/minute and R2 = 0.4 for blood flow = 3500mL/minute, both with p < 0.001) and positively associated with CO2 transfer variations (R2 = 0.2 for sweep gas flow ≤ 6L/minute, p < 0.001, and R2 = 0.1 for sweep gas flow > 6L/minute, p = 0.006), and the blood flow/pump rotation ratio is not associated with O2 transfer variations (R2 = 0.01 for blood flow = 1500mL/minute, p = 0.19, and R2 = - 0.01 for blood flow = 3500 mL/minute, p = 0.46). Blood flow/pump rotation ratio variation is negatively associated with transmembrane pressure and positively associated with CO2 transfer in this animal model. According to the clinical situation, a decrease in the blood flow/pump rotation ratio can indicate artificial lung dysfunction without the occurrence of hypoxemia.

  19. [I73T mutation in the pulmonary surfactant protein C gene associated with pediatric interstitial lung disease: a case study and the review of related literature].

    PubMed

    Huang, Li; Wang, Meijuan; Chen, Zhengrong; Yan, Yongdong; Zhang, Xinxing; Zheng, Yuejie; Chen, Huizhong; Ji, Wei

    2014-11-01

    To report a case of I73T mutation in the pulmonary surfactant protein (SP)-C gene associated with pediatric interstitial lung disease, and study the clinical diagnosis and review related literature, to investigate the role of gene detection in the diagnosis of interstitial lung disease in infants and children. The clinical, radiological, and genetic testing information of the case was analyzed and related literature was reviewed. (1) An 8-month-old girl was hospitalized because of cough, tachypnea, continuous oxygen therapy and failure to thrive. Physical examination on admission revealed tachypnea, slight cyanosis and the three concave sign was positive, respiratory rate of 50 times/minute, scattered fine crackles could be heard over both lungs, clubbing fingers were found. No other abnormalities were noted. Laboratory test results: pathogenic examination was negative, multiple blood gas analysis suggested hypoxemia. Chest CT showed ground-glass like opacity, diffused tubercle infiltration. The I73T mutation in SP-C gene was identified by SP-related gene sequencing. (2) The review of related literature: Data of 3 infants with I73T mutation in SP-C gene showed that all the 3 cases had tachypnea and dyspnea, chest CT revealed diffuse infiltration or diffuse ground glass pattern in lungs, the major pathology of lungs was nonspecific interstitial pneumonia (NSIP). A case of interstitial lung disease with I73T mutation in SP-C gene was preliminarily diagnosed in an infant. Gene test provides an important tool in the diagnosis of such pediatric interstitial lung disease.

  20. Experimental Study on How Human Lung Surfactant Protein SP-B1-25 is Oxidized by Ozone in the Presence of Fe(II) and Ascorbic Acid

    NASA Astrophysics Data System (ADS)

    Colussi, A. J.; Enami, S.; Hoffmann, M. R.

    2014-12-01

    We will report the results of experiments on the chemical fate of the human lung surfactant protein SP-B1-25 upon exposure to gaseous ozone in realistic aqueous media simulating the conditions prevalent in epithelial lining fluids in polluted ambient air. Our experiments consist of exposing aqueous microjets containing SP-B1-25, the natural antioxidant ascorbic acid, and the Fe2+ carried by most atmospheric fine particulates, under mild acidic conditions, such as those created by the innate lung host defense response. Reactants and the products of such interactions are detected via online electrospray ionization mass spectrometry. We will show that ascorbic acid largely inhibits the ozonation of SP-B1-25 in the absence of Fe2+, leading to the formation of an ascorbic acid ozonide (Enami et al., PNAS 2008). In the presence of Fe2+, however, the ozonide decomposes into reactive intermediates that result in the partial oxidation of SP-B1-25, presumable affecting its function as surfactant. We infer that these experimental results establish a plausible causal link for the observed synergic adverse health effects of ambient ozone and fine particulates

  1. Dose-response comparisons of five lung surfactant factor (LSF) preparations in an animal model of adult respiratory distress syndrome (ARDS).

    PubMed

    Häfner, D; Beume, R; Kilian, U; Krasznai, G; Lachmann, B

    1995-06-01

    1. We have examined the effects of five different lung surfactant factor (LSF) preparations in the rat lung lavage model. In this model repetitive lung lavage leads to lung injury with some similarities to adult respiratory distress syndrome with poor gas exchange and protein leakage into the alveolar spaces. These pathological sequelae can be reversed by LSF instillation soon after lavage. 2. The tested LSF preparations were: two bovine: Survanta and Alveofact: two synthetic: Exosurf and a protein-free phospholipid based LSF (PL-LSF) and one Recombinant LSF at doses of 25, 50 and 100 mg kg-1 body weight and an untreated control group. 3. Tracheotomized rats (10-12 per dose) were pressure-controlled ventilated (Siemens Servo Ventilator 900C) with 100% oxygen at a respiratory rate of 30 breaths min-1, inspiration expiration ratio of 1:2, peak inspiratory pressure (PIP) of 28 cmH2O at positive end-expiratory pressure (PEEP) of 8 cmH2O. Two hours after LSF administration, PEEP and in parallel PIP was reduced from 8 to 6 (1st reduction), from 6 to 3 (2nd reduction) and from 3 to 0 cmH2O (3rd reduction). 4. Partial arterial oxygen pressure (PaO2, mmHg) at 5 min and 120 min after LSF administration and during the 2nd PEEP reduction (PaO2(PEEP23/3)) were used for statistical comparison. All LSF preparations caused a dose-dependent increase for the PaO2(120'), whereas during the 2nd PEEP reduction only bovine and recombinant LSF exhibited dose-dependency. Exosurf did not increase PaO2 after administration of the highest dose. At the highest dose Exosurf exerted no further improvement but rather a tendency to relapse. The bovine and the Recombinant LSF are superior to both synthetic LSFpreparations.5. In this animal model and under the described specific ventilatory settings, even between bovine LSFpreparations there are detectable differences that are pronounced when compared to synthetic LSFwithout any surfactant proteins. We conclude that the difference between bovine

  2. Genetics Home Reference: surfactant dysfunction

    MedlinePlus

    ... easy. Without normal surfactant, the tissue surrounding the air sacs in the lungs (the alveoli ) sticks together (because of a force called surface tension) after exhalation, causing the alveoli ...

  3. Pulmonary surfactant for neonatal respiratory disorders.

    PubMed

    Merrill, Jeffrey D; Ballard, Roberta A

    2003-04-01

    Surfactant therapy has revolutionized neonatal care and is used routinely for preterm infants with respiratory distress syndrome. Recent investigation has further elucidated the function of surfactant-associated proteins and their contribution toward surfactant and lung immune defense functions. As the field of neonatology moves away from intubation and mechanical ventilation of preterm infants at birth toward more aggressive use of nasal continuous positive airway pressure, the optimal timing of exogenous surfactant therapy remains unclear. Evidence suggests that preterm neonates with bronchopulmonary dysplasia and prolonged mechanical ventilation also experience surfactant dysfunction; however, exogenous surfactant therapy beyond the first week of life has not been well studied. Surfactant replacement therapy has been studied for use in other respiratory disorders, including meconium aspiration syndrome and pneumonia. Commercial surfactant preparations currently available are not optimal, given the variability of surfactant protein content and their susceptibility to inhibition. Further progress in the treatment of neonatal respiratory disorders may include the development of "designer" surfactant preparations.

  4. Surfactant protein A (SP-A) and angiotensin converting enzyme (ACE) as early biomarkers for pulmonary edema formation in ventilated human lung lobes.

    PubMed

    Gnadt, Mirjam; Kardziev, Boris; Schmidt, Michael; Högger, Petra

    2012-08-01

    Ex vivo perfused and ventilated lung lobes frequently develop pulmonary edema. We were looking for a suitable and early detectable biomarker in the perfusion fluid indicating lung cell damage and loss of tissue integrity in ventilated human lung lobes. Therefore, we elucidated whether surfactant protein A (SP-A) and angiotensin-converting enzyme (ACE) were measurable in the perfusion fluid and whether they were suitable indicators for edema formation occurring within the experimental time frame of 1-2 h. Patients (n = 39) undergoing a lobectomy, bilobectomy or pneumonectomy due to primary bronchial cell carcinoma were included in the studies. Lung lobes were extracorporally ventilated and perfused for up to 2 h. Two different perfusion fluids were used, plain perfusion buffer and perfusion buffer containing packed erythrocytes or buffy coats. Perfusion fluid samples were analyzed for SP-A and ACE using immunoassays served as perfusion fluids. SP-A and ACE concentrations were analyzed in fluid sample sets of 39 and 33 perfusion experiments, respectively. Degrees of edema formation were arbitrarily classified into three groups (≤ 29, 30-59, ≥ 60 % weight gain). The maximum increase of SP-A and ACE concentrations in the perfusate was significantly higher for more pronounced edemas in case of perfusions using a mixture of blood components and buffer. Interestingly, the time courses of ACE and SP-A were highly similar. We suggest that SP-A and ACE are promising early biochemical markers for the development for pulmonary edema formation in the ex vivo lung lobe perfusion.

  5. Surfactant protein D (SP-D) deficiency is attenuated in humanised mice expressing the Met(11)Thr short nucleotide polymorphism of SP-D: implications for surfactant metabolism in the lung

    PubMed Central

    Knudsen, Lars; Ochs, Katharina; Boxler, Laura; Tornoe, Ida; Lykke-Sorensen, Grith; Mackay, Rose-Marie; Clark, Howard W; Holmskov, Uffe; Ochs, Matthias; Madsen, Jens

    2013-01-01

    Surfactant protein D (SP-D) is part of the innate immune system involved in lung homeostasis. SP-D knockout mice show accumulations of foamy alveolar macrophages, alveolar lipoproteinosis and pulmonary emphysema. Three single nucleotide polymorphisms (SNPs) have been described in the coding sequence of the human SP-D gene SFTPD. Clinical studies showed that the SNP SFTPD with a nucleotide change from A to C resulting in a Met to Thr substitution at position 11 in the protein (Met(11)Thr), is relevant. This study set out to create a humanised mouse model of the Met(11)Thr SNP. Transgenic mice lines expressing either Met(11) or Thr(11) SP-D under the control of the ubiquitously expressed pROSA26 promoter in C57Bl/6 SP-D deficient mice (DKO) was created. Both Met(11) (142 ± 52 ng mL−1) and Thr(11) (228 ± 76 ng mL−1) mice lines expressed human SP-D at almost similar levels. According to the literature this was within the range of SP-D levels found in wildtype (WT) mice (253 ± 22 ng mL−1). Met(11) or Thr(11) SP-D in serum from transgenic mice bound maltose in a calcium-dependent manner, and binding was inhibited in the presence of EDTA or maltose. Bronchoalveolar lavage showed for both transgenic mice lines complementation of the DKO phenotype by restoring cell counts, phospholipid levels and protein content back to WT levels. Cytospins of BAL pellet cells showed a resemblance to WT but both mice lines showed some foamy alveolar macrophages. The stereological analysis showed for none of the mice lines a complete abrogation of emphysematous alterations. However, both Met(11) and Thr(11) mice lines were partially reverted back to a WT phenotype when compared with DKO mice, indicating important effects on surfactant metabolism in vivo. PMID:24111992

  6. Chest position and pulmonary deposition of surfactant in surfactant depleted rabbits.

    PubMed Central

    Broadbent, R.; Fok, T. F.; Dolovich, M.; Watts, J.; Coates, G.; Bowen, B.; Kirpalani, H.

    1995-01-01

    AIMS--To investigate the correlation between chest position and the distribution of surfactant in the lungs of surfactant depleted rabbits, to corroborate current guidelines on the intratracheal instillation of exogenous surfactant in newborns. METHODS--Twelve tracheotomised rabbits, depleted of pulmonary surfactant by saline bronchoalveolar lavage, were given intratracheal 99m Technetium labelled Exosurf in three positions (prone, right side down, and left side down) (n = 4 in each group). They were monitored for 10 minutes using dynamic gamma scintigraphy monitoring. Instillation completed, the lateral lying animals were turned to the opposite side to determine whether redistribution of the surfactant had taken place. The amount of radiolabelled surfactant deposited at the peripheral, central, dorsal and ventral parts of the lungs was then estimated by gamma counting of the lung sections at necropsy. RESULTS--Both gamma scintigraphy and gamma counting showed similar rates and total amount of surfactant accumulation in both lungs of the prone animals. In the lateral lying animals surfactant accumulated at a significantly faster rate in the dependent lungs: the amount of surfactant deposition was three to 14-fold that in the raised lungs (p = 0.017; nested ANOVA). Changing the chest position immediately after instillation did not redistribute the surfactant. In all three groups of animals there was no significant difference in deposition between the peripheral, central, ventral and dorsal parts of the lungs. CONCLUSIONS--Pulmonary distribution of intratracheally instilled surfactant is largely determined by gravity, and changing the chest position after instillation does not result in any redistribution of the surfactant. During the instillation of exogenous surfactant to newborn infants, keeping the chest in the horizontal position may therefore result in the most even distribution of the surfactant in the two lungs. Further deposition studies are required to

  7. Centrifugal pyrocontactor

    DOEpatents

    Chow, L.S.; Leonard, R.A.

    1993-10-19

    A method is described for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor. 6 figures.

  8. Centrifugal pyrocontactor

    DOEpatents

    Chow, Lorac S.; Leonard, Ralph A.

    1993-01-01

    A method for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor.

  9. Molecular Dynamics Study of the Lung Surfactant Peptide SP-B1–25 with DPPC Monolayers: Insights into Interactions and Peptide Position and Orientation

    PubMed Central

    Kandasamy, Senthil K.; Larson, Ronald G.

    2005-01-01

    We have performed molecular dynamics simulations of the interactions of the peptide SP-B1–25, which is a truncated version of the full pulmonary surfactant protein SP-B, with dipalmitoylphosphatidylcholine monolayers, which are the major lipid components of lung surfactant. Simulations of durations of 10–20 ns show that persistent hydrogen bonds form between the donor atoms of the protein and the acceptors of the lipid headgroup and that these bonds determine the position, orientation, and secondary structure of the peptide in the membrane environment. From an ensemble of initial conditions, the most probable equilibrium orientation of the α-helix of the peptide is predicted to be parallel to the interface, matching recent experimental results on model lipid mixtures. Simulations of a few mutated analogs of SP-B1–25 also suggest that the charged amino acids are important in determining the position of the peptide in the interface. The first eight amino acids of the peptide, also known as the insertion sequence, are found to be essential in reducing the fluctuations and anchoring the peptide in the lipid/water interface. PMID:15738465

  10. Degradation and rearrangement of a lung surfactant lipid at the air-water interface during exposure to the pollutant gas ozone.

    PubMed

    Thompson, Katherine C; Jones, Stephanie H; Rennie, Adrian R; King, Martin D; Ward, Andrew D; Hughes, Brian R; Lucas, Claire O M; Campbell, Richard A; Hughes, Arwel V

    2013-04-09

    The presence of unsaturated lipids in lung surfactant is important for proper respiratory function. In this work, we have used neutron reflection and surface pressure measurements to study the reaction of the ubiquitous pollutant gas-phase ozone, O3, with pure and mixed phospholipid monolayers at the air-water interface. The results reveal that the reaction of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, with ozone leads to the rapid loss of the terminal C9 portion of the oleoyl strand of POPC from the air-water interface. The loss of the C9 portion from the interface is accompanied by an increase in the surface pressure (decrease in surface tension) of the film at the air-water interface. The results suggest that the portion of the oxidized oleoyl strand that is still attached to the lipid headgroup rapidly reverses its orientation and penetrates the air-water interface alongside the original headgroup, thus increasing the surface pressure. The reaction of POPC with ozone also leads to a loss of material from the palmitoyl strand, but the loss of palmitoyl material occurs after the loss of the terminal C9 portion from the oleoyl strand of the molecule, suggesting that the palmitoyl material is lost in a secondary reaction step. Further experiments studying the reaction of mixed monolayers composed of unsaturated lipid POPC and saturated lipid dipalmitoyl-sn-glycero-3-phosphocholine, DPPC, revealed that no loss of DPPC from the air-water interface occurs, eliminating the possibility that a reactive species such as an OH radical is formed and is able to attack nearby lipid chains. The reaction of ozone with the mixed films does cause a significant change in the surface pressure of the air-water interface. Thus, the reaction of unsaturated lipids in lung surfactant changes and impairs the physical properties of the film at the air-water interface.

  11. Natural Anti-Infective Pulmonary Proteins: In Vivo Cooperative Action of Surfactant Protein SP-A and the Lung Antimicrobial Peptide SP-BN.

    PubMed

    Coya, Juan Manuel; Akinbi, Henry T; Sáenz, Alejandra; Yang, Li; Weaver, Timothy E; Casals, Cristina

    2015-08-15

    The anionic antimicrobial peptide SP-B(N), derived from the N-terminal saposin-like domain of the surfactant protein (SP)-B proprotein, and SP-A are lung anti-infective proteins. SP-A-deficient mice are more susceptible than wild-type mice to lung infections, and bacterial killing is enhanced in transgenic mice overexpressing SP-B(N). Despite their potential anti-infective action, in vitro studies indicate that several microorganisms are resistant to SP-A and SP-B(N). In this study, we test the hypothesis that these proteins act synergistically or cooperatively to strengthen each other's microbicidal activity. The results indicate that the proteins acted synergistically in vitro against SP-A- and SP-B(N)-resistant capsulated Klebsiella pneumoniae (serotype K2) at neutral pH. SP-A and SP-B(N) were able to interact in solution (Kd = 0.4 μM), which enabled their binding to bacteria with which SP-A or SP-B(N) alone could not interact. In vivo, we found that treatment of K. pneumoniae-infected mice with SP-A and SP-B(N) conferred more protection against K. pneumoniae infection than each protein individually. SP-A/SP-B(N)-treated infected mice showed significant reduction of bacterial burden, enhanced neutrophil recruitment, and ameliorated lung histopathology with respect to untreated infected mice. In addition, the concentrations of inflammatory mediators in lung homogenates increased early in infection in contrast with the weak inflammatory response of untreated K. pneumoniae-infected mice. Finally, we found that therapeutic treatment with SP-A and SP-B(N) 6 or 24 h after bacterial challenge conferred significant protection against K. pneumoniae infection. These studies show novel anti-infective pathways that could drive development of new strategies against pulmonary infections.

  12. Role of surfactant protein-A (SP-A) in lung injury in response to acute ozone exposure of SP-A deficient mice

    SciTech Connect

    Haque, Rizwanul; Umstead, Todd M.; Ponnuru, Padmavathi; Guo Xiaoxuan; Hawgood, Samuel; Phelps, David S.; Floros, Joanna . E-mail: jfloros@psu.edu

    2007-04-01

    Millions are exposed to ozone levels above recommended limits, impairing lung function, causing epithelial damage and inflammation, and predisposing some individuals to pneumonia, asthma, and other lung conditions. Surfactant protein-A (SP-A) plays a role in host defense, the regulation of inflammation, and repair of tissue damage. We tested the hypothesis that the lungs of SP-A(-/-) (KO) mice are more susceptible to ozone-induced damage. We compared the effects of ozone on KO and wild type (WT) mice on the C57BL/6 genetic background by exposing them to 2 parts/million of ozone for 3 or 6 h and sacrificing them 0, 4, and 24 h later. Lungs were subject to bronchoalveolar lavage (BAL) or used to measure endpoints of oxidative stress and inflammation. Despite more total protein in BAL of KO mice after a 3 h ozone exposure, WT mice had increased oxidation of protein and had oxidized SP-A dimers. In KO mice there was epithelial damage as assessed by increased LDH activity and there was increased phospholipid content. In WT mice there were more BAL PMNs and elevated macrophage inflammatory protein (MIP)-2 and monocyte chemoattractant protein (MCP)-1. Changes in MIP-2 and MCP-1 were observed in both KO and WT, however mRNA levels differed. In KO mice MIP-2 mRNA levels changed little with ozone, but in WT levels they were significantly increased. In summary, several aspects of the inflammatory response differ between WT and KO mice. These in vivo findings appear to implicate SP-A in regulating inflammation and limiting epithelial damage in response to ozone exposure.

  13. Expression of p63, keratin 5/6, keratin 7, and surfactant-A in non-small cell lung carcinomas.

    PubMed

    Camilo, Ricardo; Capelozzi, Vera Luíza; Siqueira, Sheila Aparecida Coelho; Del Carlo Bernardi, Fabíola

    2006-05-01

    In this study, we sought to validate the importance of p63, CK5/CK6, CK7, and surfactant-A (SP-A) to classify 42 non-small cell lung cancers in autopsy and surgical resection specimens and to study the usefulness of these markers in distinguishing between squamous cell carcinomas and adenocarcinomas because of their different implications regarding treatment and prognosis. All adenocarcinoma cases were negative for p63; 9 (56.2%) of 16 were CK5/CK6 positive, 16 (94.1%) of 17 were CK7 positive, and 4 (26.6%) of 15 were SP-A positive. In squamous cell carcinoma, 1 case was CK7 and SP-A positive and 14 (77.8%) of 18 were p63 positive. The latter appears to be useful in differentiating squamous cell carcinoma from adenocarcinoma of the lung in small biopsies without keratinization or glandular differentiation; thus, for advanced-stage cases, where there is no possibility of surgical resection and the treatment of choice is radiotherapy plus chemotherapy, we would be able to differentiate between the two histological types, establishing then a different therapy.

  14. Surfactant Therapy of ALI and ARDS

    PubMed Central

    Raghavendran, K; Willson, D; Notter, RH

    2011-01-01

    This article examines exogenous lung surfactant replacement therapy and its utility in mitigating clinical acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS). Biophysical research has documented that lung surfactant dysfunction can be reversed or mitigated by increasing surfactant concentration, and multiple studies in animals with ALI/ARDS have shown that respiratory function and pulmonary mechanics in vivo can be improved by exogenous surfactant administration. Exogenous surfactant therapy is a routine intervention in neonatal intensive care, and is life-saving in preventing or treating the neonatal respiratory distress syndrome (NRDS) in premature infants. In applications relevant for lung injury-related respiratory failure and ALI/ARDS, surfactant therapy has been shown to be beneficial in term infants with pneumonia and meconium aspiration lung injury, and in children up to age 21 with direct pulmonary forms of ALI/ARDS. However, extension of exogenous surfactant therapy to adults with respiratory failure and clinical ALI/ARDS remains a challenge. Coverage here reviews clinical studies of surfactant therapy in pediatric and adult patients with ALI/ARDS, particularly focusing on its potential advantages in patients with direct pulmonary forms of these syndromes. Also discussed is the rationale for mechanism-based therapies utilizing exogenous surfactant in combination with agents targeting other aspects of the multifaceted pathophysiology of inflammatory lung injury. Additional factors affecting the efficacy of exogenous surfactant therapy in ALI/ARDS are also described, including the difficulty of effectively delivering surfactants to injured lungs and the existence of activity differences between clinical surfactant drugs. PMID:21742216

  15. [Pulmonary surfactant protein adenosine triphosphate-binding-cassette-A3 gene composite mutations in infant congenital interstitial lung disease: report of a case and review of literature].

    PubMed

    Xie, N; Chen, D H; Lin, Y N; Wu, S Z; Gu, Y Y; Zeng, Q S; Zhai, Y Y; Yang, L Y; Xu, J X

    2016-10-02

    Objective: To report a case of the pulmonary surfactant protein(SP) adenosine triphosphate-binding-cassette-A3 (ABCA3) gene mutations in infant congenital interstitial lung disease(ILD), and review the related literature, to investigate the relationships of ABCA3 gene mutation associated with ILD in infants. Method: A 6-months-old boy was hospitalized in the department of Pediatrics of the First Affiliated Hospital of Guangzhou Medical University. The clinical, radiological, histological information from transbronchial lung biopsy (TBLB) and genetic testing in this case was analyzed; 12 reports retrieved on literature search at Pubmed, OVID databases from 2004 to 2015 by using the ABCA3 as keyword were reviewed and analyzed. Result: (1)The patient, a 6-months-old boy, had progressive tachypnea and dyspnea since 4 months old. Physical examination on admission revealed respiratory rate of 78 times/min , heart rate of 187 times/min, SpO2 0.93(mask oxygen-inspiration with 6 L/min), scattered fine moist crackles could be heard over the both lungs, clubbing fingers were found. High-resolution computed tomography(HRCT) revealed diffuse ground-glass opacity, interlobular and intralobular septal thickening. Lung biopsies showed evidences of the alveolar cavity atelectatic changes and interstitial fibrosis. SP-A and SP-B were negative in immunohistochemical stainting. SP-related gene sequence analysis found that there was compound heterozygous missense mutation of ABCA3 gene in c. 1942A>G, c.2701-33G>C and c. 991-105C>A. (2)The review of related literature found that totally 12 cases were reported. The main manifestations were progressive tachypnea and dyspnea, age of onset was between birth and 4 years of age. The imaging characteristics of chest HRCT revealed diffuse infiltration or diffuse ground-glass pattern in the lung. 6 cases died, and 6 cases survived, including 4 cases with pulmonary function disturbance to different degrees; 12 cases had ABCA3 gene mutations, 9

  16. Risk factors for chronic lung disease in the surfactant era: a North Carolina population-based study of very low birth weight infants. North Carolina Neonatologists Association.

    PubMed

    Marshall, D D; Kotelchuck, M; Young, T E; Bose, C L; Kruyer, L; O'Shea, T M

    1999-12-01

    To identify risk factors for chronic lung disease (CLD) in a population-based cohort of very low birth weight infants, born in an era of surfactant usage. We specifically investigated the effects of antenatal steroids, nosocomial infection, patent ductus arteriosus (PDA), fluid management, and ventilator support strategies. Data were prospectively collected on 1244 infants born in North Carolina in 1994 with birth weights 500 to 1500 g, and treated at 1 of the 13 intensive care nurseries across the state. The outcome of interest was CLD, defined as dependency on supplemental oxygen at 36 weeks' postmenstrual age. Multivariate odds ratios (OR) and 95% confidence intervals (CI) were estimated with logistic regression models. Among 865 survivors to 36 weeks' postmenstrual age, 224 (26%) had CLD. Nosocomial infection (OR: 2.0; 95% CI: 1.4-3.3), fluid intake on day 2 (OR: 1.06 per 10 mL increase; 95% CI: 1.01-1.11), and the need for ventilation at 48 hours of life (OR: 2.2; 95% CI: 1.3-3.7) were associated with an increased risk of CLD. Among infants ventilated at 48 hours, nosocomial infection (OR: 1.64; 95% CI: 1.02-2.62) and PDA (OR: 1.9; 95% CI: 1.2-3.1) were associated with an increased risk. No association was found with antenatal steroid receipt or increased levels of ventilator support. This analysis suggests that with widespread use of surfactant, nosocomial infection, PDA, and water balance persist as risk factors for CLD.

  17. Interdependent TTF1 - ErbB4 interactions are critical for surfactant protein-B homeostasis in primary mouse lung alveolar type II cells.

    PubMed

    Marten, Elger; Nielsen, Heber C; Dammann, Christiane E L

    2015-09-01

    ErbB4 receptor and thyroid transcription factor (TTF)-1 are important modulators of fetal alveolar type II (ATII) cell development and injury. ErbB4 is an upstream regulator of TTF-1, promoting its expression in MLE-12 cells, an ATII cell line. Both proteins are known to promote surfactant protein-B gene (SftpB) and protein (SP-B) expression, but their feedback interactions on each other are not known. We hypothesized that TTF-1 expression has a feedback effect on ErbB4 expression in an in-vitro model of isolated mouse ATII cells. We tested this hypothesis by analyzing the effects of overexpressing HER4 and Nkx2.1, the genes of ErbB4 and TTF-1 on TTF-1 and ErbB4 protein expression, respectively, as well as SP-B protein expression in primary fetal mouse lung ATII cells. Transient ErbB4 protein overexpression upregulated TTF-1 protein expression in primary fetal ATII cells, similarly to results previously shown in MLE-12 cells. Transient TTF-1 protein overexpression down regulated ErbB4 protein expression in both cell types. TTF-1 protein was upregulated in primary transgenic ErbB4-depleted adult ATII cells, however SP-B protein expression in these adult transgenic ATII cells was not affected by the absence of ErbB4. The observation that TTF-1 is upregulated in fetal ATII cells by ErbB4 overexpression and also in ErbB4-deleted adult ATII cells suggests additional factors interact with ErbB4 to regulate TTF-1 levels. We conclude that the interdependency of TTF-1 and ErbB4 is important for surfactant protein levels. The interactive regulation of ErbB4 and TTF-1 needs further elucidation.

  18. Micropipette Technique Study of Natural and Synthetic Lung Surfactants at the Air-Water Interface: Presence of a SP-B Analog Peptide Promotes Membrane Aggregation, Formation of Tightly Stacked Lamellae, and Growth of Myelin Figures.

    PubMed

    Parra, Elisa; Kinoshita, Koji; Needham, David

    2016-10-03

    The present study is a microscopic interfacial characterization of a series of lung surfactant materials performed with the micropipette technique. The advantages of this technique include the measurement of equilibrium and dynamic surface tensions while acquiring structural and dynamic information at microscopic air-water interfaces in real time and upon compression. Here, we characterized a series of animal-derived and synthetic lung surfactant formulations, including native surfactant obtained from porcine lungs (NS); the commercial Curosurf, Infasurf, and Survanta; and a synthetic Super Mini-B (SMB)-containing formulation. It was observed that the presence of the natural hydrophobic proteins and, more strikingly, the peptide SMB, promoted vesicle condensation as thick membrane stacks beneath the interface. Only in the presence of SMB, these stacks underwent spontaneous structural transformations, consisting of the nucleation and growth of microtubes and in some cases their subsequent coiling into helices. The dimensions of these tubes (2-15 μm diameter) and their linear (2-3 μm/s) and volumetric growth rates (20-30 μm(3)/s) were quantified, and no specific effects were found on them for increasing SMB concentrations from 0.1 to 4%. Nevertheless, a direct correlation between the number of tubes and SMB contents was found, suggesting that SMB molecules are the promoters of tube nucleation in these membranes. A detailed analysis of the tube formation process was performed following previous models for the growth of myelin figures, proposing a combined mechanism between dehydration-rehydration of the lipid bilayers and induction of mechanical defects by SMB that would act as nucleation sites for the tubes. The formation of tubes was also observed in Infasurf, and in NS only after subsequent expansion and compression but neither in the other clinical surfactants nor in protein-free preparations. Finally, the connection between this data and the observations from

  19. Serum KL-6 and surfactant protein-D as monitoring and predictive markers of interstitial lung disease in patients with systemic sclerosis and mixed connective tissue disease

    PubMed Central

    Hagiwara, Eri; Kitamura, Hideya; Yamanaka, Yumie; Ikeda, Satoshi; Sekine, Akimasa; Baba, Tomohisa; Okudela, Koji; Iwasawa, Tae; Takemura, Tamiko; Kuwano, Kazuyoshi; Ogura, Takashi

    2017-01-01

    Background Interstitial lung disease (ILD) is frequent complication of systemic sclerosis (SSc) and mixed connective tissue disease (MCTD). The disease is heterogeneous, and its outcome is unpredictable. Some patients have severe and progressive deterioration of ILD, which is the leading cause of mortality. We aimed to determine whether serum levels of Krebs von den Lungen-6 (KL-6) and surfactant protein-D (SP-D) correlate with SSc/MCTD-associated ILD activity. Methods We retrospectively analyzed the medical records of 40 patients with SSc/MCTD-associated ILD: 29 patients with SSc and 11 patients with MCTD. Measurement of serum KL-6 and SP-D levels, pulmonary function tests, and high-resolution computed tomography (HRCT) performed in parallel were reviewed. Results Serum KL-6 correlated positively with diffusing capacity of the lung for carbon monoxide (DLCO) (% predicted) and disease extent on HRCT, and the changes in serum levels of KL-6 were significantly related to the changes in forced vital capacity (FVC) in SSc/MCTD-associated ILD. On the other hand, multivariate logistic regression analyses with calculation of the area under the curve of the receiver-operating characteristic curve suggested that a higher serum level of SP-D was a significant predictor of FVC decline in SSc/MCTD-associated ILD. Conclusions Our study suggests that serum KL-6 can be a useful monitoring tool of SSc/MCTD-associated ILD activity. In contrast, serum SP-D may be a significant predictor of potential FVC decline in the short term. PMID:28275485

  20. The protective effect of different airway humidification liquids to lung after tracheotomy in traumatic brain injury: The role of pulmonary surfactant protein-A (SP-A).

    PubMed

    Su, Xinyang; Li, Zefu; Wang, Meilin; Li, Zhenzhu; Wang, Qingbo; Lu, Wenxian; Li, Xiaoli; Zhou, Youfei; Xu, Hongmei

    2016-02-10

    The purpose of this study was to establish a rat model of a brain injury with tracheotomy and compared the wetting effects of different airway humidification liquids, afterward, the best airway humidification liquid was selected for the clinical trial, thus providing a theoretical basis for selecting a proper airway humidification liquid in a clinical setting. Rats were divided into a sham group, group A (0.9% NaCl), group B (0.45% NaCl), group C (0.9% NaCl+ambroxol) and group D (0.9% NaCl+Pulmicort). An established rat model of traumatic brain injury with tracheotomy was used. Brain tissue samples were taken to determine water content, while lung tissue samples were taken to determine wet/dry weight ratio (W/D), histological changes and expression levels of SP-A mRNA and SP-A protein. 30 patients with brain injury and tracheotomy were selected and divided into two groups based on the airway humidification liquid instilled in the trachea tube, 0.45% NaCl and 0.9% NaCl+ambroxol. Blood was then extracted from the patients to measure the levels of SP-A, interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor-α (TNF-α). The difference between group C and other groups in lung W/D and expression levels of SP-A mRNA and SP-A protein was significant (P<0.05). In comparison, the histological changes showed that the lung tissue damage was smallest in group C compared to the three other groups. Aspect of patients, 0.45% NaCl group and 0.9% NaCl+ambroxol group were significantly different in the levels of SP-A, IL-6, IL-8 and TNF-α (P<0.01). In the present study, 0.9% NaCl+ambroxol promote the synthesis and secretion of pulmonary surfactant, and has anti-inflammatory and antioxidant effects, which inhibit the release of inflammatory factors and cytokines, making it an ideal airway humidification liquid.

  1. Centrifugal reciprocating compressor

    NASA Technical Reports Server (NTRS)

    High, W. H.

    1980-01-01

    Efficient compressor uses centrifugal force to compress gas. System incorporates two coupled dc motors, each driving separate centrifugal reciprocating-compressor assembly. Motors are synchronized to accelerate and decelerate alternately.

  2. CENTRIFUGE END CAP

    DOEpatents

    Beams, J.W.; Snoddy, L.B.

    1960-08-01

    An end cap for ultra-gas centrifuges is designed to impart or remove angular momentum to or from the gas and to bring the entering gas to the temperature of the gas inside the centrifuge. The end cap is provided with slots or fins for adjusting the temperature and the angular momentum of the entering gas to the temperature and momentum of the gas in the centrifuge and is constructed to introduce both the inner and the peripheral stream into the centrifuge.

  3. Metathesis depolymerization for removable surfactant templates.

    SciTech Connect

    Zifer, Thomas; Wheeler, David Roger; Rahimian, Kamayar; McElhanon, James Ross; Long, Timothy Michael; Jamison, Gregory Marks; Loy, Douglas Anson; Kline, Steven R.; Simmons, Blake Alexander

    2005-03-01

    Current methodologies for the production of meso- and nanoporous materials include the use of a surfactant to produce a self-assembled template around which the material is formed. However, post-production surfactant removal often requires centrifugation, calcination, and/or solvent washing which can damage the initially formed material architecture(s). Surfactants that can be disassembled into easily removable fragments following material preparation would minimize processing damage to the material structure, facilitating formation of templated hybrid architectures. Herein, we describe the design and synthesis of novel cationic and anionic surfactants with regularly spaced unsaturation in their hydrophobic hydrocarbon tails and the first application of ring closing metathesis depolymerization to surfactant degradation resulting in the mild, facile decomposition of these new compounds to produce relatively volatile nonsurface active remnants.

  4. Can Serum Surfactant Protein D or CC-Chemokine Ligand 18 Predict Outcome of Interstitial Lung Disease in Patients with Early Systemic Sclerosis?

    PubMed Central

    Elhaj, Mona; Charles, Julio; Pedroza, Claudia; Liu, Xiaochun; Zhou, Xiaodong; Estrada-Y-Martin, Rosa M.; Gonzalez, Emilio B.; Lewis, Dorothy E.; Draeger, Hilda T.; Kim, Sarah; Arnett, Frank C.; Mayes, Maureen D.; Assassi, Shervin

    2013-01-01

    Objective To examine the predictive significance of 2 pneumoproteins, surfactant protein D (SP-D) and CC-chemokine ligand 18 (CCL18), for the course of systemic sclerosis (SSc)-related interstitial lung disease. Methods The pneumoproteins were determined in the baseline plasma samples of 266 patients with early SSc enrolled in the GENISOS observational cohort. They also were measured in 83 followup patient samples. Pulmonary function tests were obtained annually. The primary outcome was decline in forced vital capacity (FVC percentage predicted) over time. The predictive significance for longterm change in FVC was investigated by a joint analysis of longitudinal measurements (sequentially obtained FVC percentage predicted) and survival data. Results SP-D and CCL18 levels were both higher in patients with SSc than in matched controls (p < 0.001 and p = 0.015, respectively). Baseline SP-D levels correlated with lower concomitantly obtained FVC (r = −0.27, p < 0.001), but did not predict the short-term decline in FVC at 1 year followup visit or its longterm decline rate. CCL18 showed a significant correlation with steeper short-term decline in FVC (p = 0.049), but was not a predictor of its longterm decline rate. Similarly, a composite score of SP-D and CCL18 was a significant predictor of short-term decline in FVC but did not predict its longterm decline rate. Further, the longitudinal change in these 2 pneumoproteins did not correlate with the concomitant percentage change in FVC. Conclusion SP-D correlated with concomitantly obtained FVC, while CCL18 was a predictor of short-term decline in FVC. However, neither SP-D nor CCL18 was a longterm predictor of FVC course in patients with early SSc. PMID:23588945

  5. Can serum surfactant protein D or CC-chemokine ligand 18 predict outcome of interstitial lung disease in patients with early systemic sclerosis?

    PubMed

    Elhaj, Mona; Charles, Julio; Pedroza, Claudia; Liu, Xiaochun; Zhou, Xiaodong; Estrada-Y-Martin, Rosa M; Gonzalez, Emilio B; Lewis, Dorothy E; Draeger, Hilda T; Kim, Sarah; Arnett, Frank C; Mayes, Maureen D; Assassi, Shervin

    2013-07-01

    To examine the predictive significance of 2 pneumoproteins, surfactant protein D (SP-D) and CC-chemokine ligand 18 (CCL18), for the course of systemic sclerosis (SSc)-related interstitial lung disease. The pneumoproteins were determined in the baseline plasma samples of 266 patients with early SSc enrolled in the GENISOS observational cohort. They also were measured in 83 followup patient samples. Pulmonary function tests were obtained annually. The primary outcome was decline in forced vital capacity (FVC percentage predicted) over time. The predictive significance for longterm change in FVC was investigated by a joint analysis of longitudinal measurements (sequentially obtained FVC percentage predicted) and survival data. SP-D and CCL18 levels were both higher in patients with SSc than in matched controls (p < 0.001 and p = 0.015, respectively). Baseline SP-D levels correlated with lower concomitantly obtained FVC (r = -0.27, p < 0.001), but did not predict the short-term decline in FVC at 1 year followup visit or its longterm decline rate. CCL18 showed a significant correlation with steeper short-term decline in FVC (p = 0.049), but was not a predictor of its longterm decline rate. Similarly, a composite score of SP-D and CCL18 was a significant predictor of short-term decline in FVC but did not predict its longterm decline rate. Further, the longitudinal change in these 2 pneumoproteins did not correlate with the concomitant percentage change in FVC. SP-D correlated with concomitantly obtained FVC, while CCL18 was a predictor of short-term decline in FVC. However, neither SP-D nor CCL18 was a longterm predictor of FVC course in patients with early SSc.

  6. Major house dust mite allergens Dermatophagoides pteronyssinus 1 and Dermatophagoides farinae 1 degrade and inactivate lung surfactant proteins A and D.

    PubMed

    Deb, Roona; Shakib, Farouk; Reid, Kenneth; Clark, Howard

    2007-12-21

    Lung surfactant proteins (SP) A and D are calcium-dependent carbohydrate-binding proteins. In addition to playing multiple roles in innate immune defense such as bacterial aggregation and modulation of leukocyte function, SP-A and SP-D have also been implicated in the allergic response. They interact with a wide range of inhaled allergens, competing with their binding to cell-sequestered IgE resulting in inhibition of mast cell degranulation, and exogenous administration of SP-A and SP-D diminishes allergic hypersensitivity in vivo. House dust mite allergens are a major cause of allergic asthma in the western world, and here we confirm the interaction of SP-A and SP-D with two major mite allergens, Dermatophagoides pteronyssinus 1 and Dermatophagoides farinae 1, and show that the cysteine protease activity of these allergens results in the degradation of SP-A and SP-D under physiological conditions, with multiple sites of cleavage. A recombinant fragment of SP-D that is effective in diminishing allergic hypersensitivity in mouse models of dust mite allergy was more susceptible to degradation than the native full-length protein. Degradation was enhanced in the absence of calcium, with different sites of cleavage, indicating that the calcium associated with SP-A and SP-D influences accessibility to the allergens. Degradation of SP-A and SP-D was associated with diminished binding to carbohydrates and to D. pteronyssinus 1 itself and diminished capacity to agglutinate bacteria. Thus, the degradation and consequent inactivation of SP-A and SP-D may be a novel mechanism to account for the potent allergenicity of these common dust mite allergens.

  7. How to overcome surfactant dysfunction in meconium aspiration syndrome?

    PubMed

    Mokra, Daniela; Calkovska, Andrea

    2013-06-01

    Surfactant dysfunction in meconium aspiration syndrome (MAS) is caused by meconium components, by plasma proteins leaking through the injured alveolocapillary membrane and by substances originated in meconium-induced inflammation. Surfactant inactivation in MAS may be diminished by several ways. Firstly, aspirated meconium should be removed from the lungs to decrease concentrations of meconium inhibitors coming into the contact with surfactant in the alveolar compartment. Once the endogenous surfactant becomes inactivated, components of surfactant should be substituted by exogenous surfactant at a sufficient dose, and surfactant administration should be repeated, if oxygenation remains compromised. To delay the inactivation by inhibitors, exogenous surfactants may be enriched with surfactant proteins, phospholipids, or other substances such as polymers. Finally, to diminish an adverse action of products of meconium-induced inflammation on both endogenous and exogenously delivered surfactant, anti-inflammatory drugs may be administered. A combined therapeutic approach may result in better outcome in patients with MAS and in lower costs of treatment.

  8. Nintedanib modulates surfactant protein-D expression in A549 human lung epithelial cells via the c-Jun N-terminal kinase-activator protein-1 pathway.

    PubMed

    Kamio, Koichiro; Usuki, Jiro; Azuma, Arata; Matsuda, Kuniko; Ishii, Takeo; Inomata, Minoru; Hayashi, Hiroki; Kokuho, Nariaki; Fujita, Kazue; Saito, Yoshinobu; Miya, Toshimichi; Gemma, Akihiko

    2015-06-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease with a high mortality rate. Signalling pathways activated by several tyrosine kinase receptors are known to be involved in lung fibrosis, and this knowledge has led to the development of the triple tyrosine kinase inhibitor nintedanib, an inhibitor of vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor (FGFR), for the treatment of IPF. Pulmonary surfactant protein D (SP-D), an important biomarker of IPF, reportedly attenuates bleomycin-induced pulmonary fibrosis in mice. In this study, we investigated whether nintedanib modulates SP-D expression in human lung epithelial (A549) cells using quantitative real-time reverse transcriptase polymerase chain reaction and western blotting. To investigate the mechanisms underlying the effects of nintedanib, we evaluated the phosphorylation of c-Jun N-terminal kinase (JNK) and its downstream target c-Jun. The effect of the JNK inhibitor SP600125 on c-Jun phosphorylation was also tested. Activation of activator protein-1 (AP-1) was examined using an enzyme-linked immunosorbent assay-based test, and cell proliferation assays were performed to estimate the effect of nintedanib on cell proliferation. Furthermore, we treated mice with nintedanib to examine its in vivo effect on SP-D levels in lungs. These experiments showed that nintedanib up-regulated SP-D messenger RNA expression in a dose-dependent manner at concentrations up to 5 μM, with significant SP-D induction observed at concentrations of 3 μM and 5 μM, in comparison with that observed in vehicle controls. Nintedanib stimulated a rapid increase in phosphorylated JNK in A549 cells within 30 min of treatment and stimulated c-Jun phosphorylation, which was inhibited by the JNK inhibitor SP600125. Additionally, nintedanib was found to activate AP-1. A549 cell proliferation was not affected by nintedanib at any of the tested

  9. Innovation in surfactant therapy I: surfactant lavage and surfactant administration by fluid bolus using minimally invasive techniques.

    PubMed

    Dargaville, Peter A

    2012-01-01

    Innovation in the field of exogenous surfactant therapy continues more than two decades after the drug became commercially available. One such innovation, lung lavage using dilute surfactant, has been investigated in both laboratory and clinical settings as a treatment for meconium aspiration syndrome (MAS). Studies in animal models of MAS have affirmed that dilute surfactant lavage can remove meconium from the lung, with resultant improvement in lung function. In human infants both non-randomised studies and two randomised controlled trials have demonstrated a potential benefit of dilute surfactant lavage over standard care. The largest clinical trial, performed by our research group in infants with severe MAS, found that lung lavage using two 15-ml/kg aliquots of dilute surfactant did not reduce the duration of respiratory support, but did appear to reduce the composite outcome of death or need for extracorporeal membrane oxygenation. A further trial of lavage therapy is planned to more precisely define the effect on survival. Innovative approaches to surfactant therapy have also extended to the preterm infant, for whom the more widespread use of continuous positive airway pressure (CPAP) has meant delaying or avoiding administration of surfactant. In an effort to circumvent this problem, less invasive techniques of bolus surfactant therapy have been trialled, including instillation directly into the pharynx, via laryngeal mask and via brief tracheal catheterisation. In a recent clinical trial, instillation of surfactant into the trachea using a flexible feeding tube was found to reduce the need for subsequent intubation. We have developed an alternative method of brief tracheal catheterisation in which surfactant is delivered via a semi-rigid vascular catheter inserted through the vocal cords under direct vision. In studies to date, this technique has been relatively easy to perform, and resulted in rapid improvement in lung function and reduced need for

  10. Exogenous surfactant in ischemia/reperfusion: effects on endogenous surfactant pools.

    PubMed

    Mühlfeld, Christian; Becker, Laura; Bussinger, Christine; Vollroth, Marcel; Nagib, Ragi; Schaefer, Inga-Marie; Knudsen, Lars; Richter, Joachim; Madershahian, Navid; Wahlers, Thorsten; Wittwer, Thorsten; Ochs, Matthias

    2010-03-01

    Pre-ischemic surfactant treatment attenuates ischemia/reperfusion (I/R) injury. In this study we investigate whether exogenous surfactant acts by influencing endogenous intra-alveolar and intracellular surfactant pools and subtype composition. Rat lungs from control with (C + S) or without (C - S) surfactant treatment and I/R with (I/R + S) or without (I/R - S) surfactant treatment were analyzed. In I/R groups, lungs underwent ischemic storage for 4 hours at 4 degrees C and reperfusion for 60 minutes. The ultrastructure of intra-alveolar and intracellular surfactant forms fixed in their natural localization and microorganization was investigated by light- and electron-microscopic stereology. Only slight differences in alveolar epithelial Type II cell number or volume and lamellar body parameters were observed. Intra-alveolar surfactant volume was significantly enhanced in C + S and I/R + S. I/R increased inactivated surfactant forms (unilamellar vesicles) in untreated [mean (SD): C - S: 26.0% (8.0%) vs I/R - S: 64.8% (5.5%); p < 0.01], but not in surfactant-treated rats [I/R + S: 23.5% (11.5%); p < 0.01 vs I/R - S]. The increase in unilamellar vesicles was closely correlated with intra-alveolar edema and decreased perfusate oxygenation. Attenuation of I/R injury by pre-ischemic exogenous surfactant treatment is mainly based on stabilizing and increasing the active endogenous intra-alveolar surfactant pool.

  11. Dynamics of Structural Parameters and Accumulation of Collagen Fibrils in Rat Lung after Inhalations of Surfactant-BL at Various Terms of Bleomycin-Induced Alveolitis.

    PubMed

    Volchkov, V A; Dubrovskaya, V F; Valkovich, A A; Klestova, O V; Serzhanina, V A; Zhuikov, A G; Seiliev, A A; Rosenberg, O A

    2016-08-01

    Rats were subjected to surfactant-BL inhalations at the early and late phases of bleomycininduced alveolitis. In both regimens, the drug reduced the severity of inflammation. In the acute phase of alveolitis, the therapeutic effect of inhalation was accompanied by activation of the synthesis of fine lose collagen fibrils. In the late phase of alveolitis, inhalation of surfactant-BL thickened the fibrils and diminished their population in alveolar walls.

  12. Biomimicry of surfactant protein C.

    PubMed

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E

    2008-10-01

    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  13. The future of exogenous surfactant therapy.

    PubMed

    Willson, Douglas F; Notter, Robert H

    2011-09-01

    Since the identification of surfactant deficiency as the putative cause of the infant respiratory distress syndrome (RDS) by Avery and Mead in 1959, our understanding of the role of pulmonary surfactant in respiratory physiology and the pathophysiology of acute lung injury (ALI) has advanced substantially. Surfactant replacement has become routine for the prevention and treatment of infant RDS and other causes of neonatal lung injury. The role of surfactant in lung injury beyond the neonatal period, however, has proven more complex. Relative surfactant deficiency, dysfunction, and inhibition all contribute to the disturbed physiology seen in ALI and acute respiratory distress syndrome (ARDS). Consequently, exogenous surfactant, while a plausible therapy, has proven to be less effective in ALI/ARDS than in RDS, where simple deficiency is causative. This failure may relate to a number of factors, among them inadequacy of pharmaceutical surfactants, insufficient dosing or drug delivery, poor drug distribution, or simply an inability of the drug to substantially impact the underlying pathophysiology of ALI/ARDS. Both animal and human studies suggest that direct types of ALI (eg, aspiration, pneumonia) may be more responsive to surfactant therapy than indirect lung injury (eg, sepsis, pancreatitis). Animal studies are needed, however, to further clarify aspects of drug composition, timing, delivery, and dosing before additional human trials are pursued, as the results of human trials to date have been inconsistent and largely disappointing. Further study and perhaps the development of more robust pharmaceutical surfactants offer promise that exogenous surfactant will find a place in our armamentarium of treatment of ALI/ARDS in the future.

  14. Different effects of surfactant proteins B and C - implications for development of synthetic surfactants.

    PubMed

    Curstedt, Tore; Johansson, Jan

    2010-06-01

    Treatment of premature newborn rabbits with synthetic surfactants containing a surfactant protein C analogue in a simple phospholipid mixture gives similar tidal volumes as treatment with poractant alfa (Curosurf(R)) but ventilation with a positive end-expiratory pressure (PEEP) is needed for this synthetic surfactant to stabilize the alveoli at end-expiration. The effect on lung gas volumes seems to depend on the structure of the peptide since treatment with a synthetic surfactant containing the 21-residue peptide (LysLeu(4))(4)Lys (KL(4)) gives low lung gas volumes in experiments also performed with PEEP. Surfactant preparations containing both surfactant proteins B and C or their analogues prevent alveolar collapse at end-expiration even if ventilated without PEEP. Treatment of premature newborn rabbits with different natural surfactants indicates that both the lipid composition and the proteins are important in order to stabilize the alveoli at end-expiration. Synthetic surfactants containing two peptides may be able to replace natural surfactants within the near future but more trials need to be performed before any conclusion can be drawn about the ideal composition of this new generation of synthetic surfactants. Copyright 2010 S. Karger AG, Basel.

  15. Valve for gas centrifuges

    DOEpatents

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  16. A biological safety centrifuge.

    PubMed

    Hall, C V

    1975-04-01

    The Washington State Public Health Laboratories has devised a metho to capture and remove aerosols produced during centrifugation. The method to adapt any centrifuge having an enclosed chamber with an air intake hole in the lid, and an exhaust hole in the bottom of the chamber, is discussed.

  17. METHOD OF CENTRIFUGE OPERATION

    DOEpatents

    Cohen, K.

    1960-05-10

    A method of isotope separation is described in which two streams are flowed axially of, and countercurrently through, a cylindrical centrifuge bowl. Under the influence of a centrifugal field, the light fraction is concentrated in a stream flowing through the central portion of the bowl, whereas the heavy fraction is concentrated in a stream at the periphery thereof.

  18. Review of the significance of fibre size in fibre-related lung disease: a centrifuge cell for preparing accurate microscope-evaluation specimens from slurries used in inoculation studies.

    PubMed

    Timbrell, V

    1989-01-01

    Intratracheal, intrapleural and intraperitoneal inoculation studies in animals are widely used for identifying important factors in the pathogenicity of fine fibrous particles and estimating the potential of new materials to produce human pulmonary disease. Evidence on the significance of fibre size is reviewed, with emphasis on direct data derived from airborne fibres in asbestos mines and fibres retained in the mineworkers' lungs. This evidence indicates a need in mesothelioma-related inoculation experiments for means of measuring fibres down to 0.01 microns in diameter. A test cell, developed for preparing microscope-evaluation specimens from injection slurries, has a sector-shaped sedimentation chamber and is used in a swing-rotor centrifuge. To minimize re-formation of aggregates that are dispersed by shearing forces during sedimentation, a sample of the slurry is diluted beforehand to a degree indicated by the length of the longest fibres seen in the light microscope. Fibres and other particles are collected as a uniform deposit on a collodion film enveloping a microscope cover-glass. Current techniques are used to prepare specimens from films for light microscopy, scanning electron microscopy and the transmission electron microscopy which is so necessary for measurement of very fine fibres. Applications of the cell to fibre samples from other sources are outlined.

  19. Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions.

    PubMed

    Malloy, Jaret L; Veldhuizen, Ruud A W; Thibodeaux, Brett A; O'Callaghan, Richard J; Wright, Jo Rae

    2005-02-01

    Pulmonary surfactant has two distinct functions within the lung: reduction of surface tension at the air-liquid interface and participation in innate host defense. Both functions are dependent on surfactant-associated proteins. Pseudomonas aeruginosa is primarily responsible for respiratory dysfunction and death in cystic fibrosis patients and is also a leading pathogen in nosocomial pneumonia. P. aeruginosa secretes a number of proteases that contribute to its virulence. We hypothesized that P. aeruginosa protease IV degrades surfactant proteins and results in a reduction in pulmonary surfactant host defense and biophysical functions. Protease IV was isolated from cultured supernatant of P. aeruginosa by gel chromatography. Incubation of cell-free bronchoalveolar lavage fluid with protease IV resulted in degradation of surfactant proteins (SP)-A, -D, and -B. SPs were degraded in a time- and dose-dependent fashion by protease IV, and degradation was inhibited by the trypsin-like serine protease inhibitor Nalpha-p-tosyl-L-lysine-chloromethyl ketone (TLCK). Degradation by protease IV inhibited SP-A- and SP-D-mediated bacterial aggregation and uptake by macrophages. Surfactant treated with protease IV was unable to reduce surface tension as effectively as untreated surfactant, and this effect was inhibited by TLCK. We speculate that protease IV may be an important contributing factor to the development and propagation of acute lung injury associated with P. aeruginosa via loss of surfactant function within the lung.

  20. Centrifuge for SLS-1

    NASA Image and Video Library

    1981-01-16

    S81-25565 (Feb 1981) --- Expected to be a busy item of flight hardware on the Spacelab Life Sciences (SLS-1) mission is this low-gravity centrifuge. To be flown onboard Columbia for STS-40, the centrifuge is able to simulate several gravity levels (0.5 g, 1.0 g, 1.5 g. and 2.0 g). Blood samples, taken during the flight, will be placed in the centrifuge, fixed for post flight analysis and transferred to a freezer.

  1. Surface film formation in vitro by infant and therapeutic surfactants: role of surfactant protein B.

    PubMed

    Danhaive, Olivier; Chapin, Cheryl; Horneman, Hart; Cogo, Paola E; Ballard, Philip L

    2015-02-01

    Pulmonary surfactant provides an alveolar surface-active film that is critical for normal lung function. Our objective was to determine in vitro film formation properties of therapeutic and infant surfactants and the influence of surfactant protein (SP)-B content. We used a multiwell fluorescent assay measuring maximum phospholipid surface accumulation (Max), phospholipid concentration required for half-maximal film formation (½Max), and time for maximal accumulation (tMax). Among five therapeutic surfactants, calfactant (highest SP-B content) had film formation values similar to natural surfactant, and addition of SP-B to beractant (lowest SP-B) normalized its Max value. Addition of budesonide to calfactant did not adversely affect film formation. In tracheal aspirates of preterm infants with evolving chronic lung disease, SP-B content correlated with ½Max and tMax values, and SP-B supplementation of SP-B-deficient infant surfactant restored normal film formation. Reconstitution of normal surfactant indicated a role for both SP-B and SP-C in film formation. Film formation in vitro differs among therapeutic surfactants and is highly dependent on SP-B content in infant surfactant. The results support a critical role of SP-B for promoting surface film formation.

  2. Surfactant compositions

    SciTech Connect

    Novakovic, M.; Abend, P.G.

    1987-09-29

    A surfactant composition is described for subsequent addition to a soap slurring comprising an acyloxy alkane sulfonate salt. The sulfonate salt is present in an amount by weight of about 44 percent of about 56 percent. The polyol is present in an amount by weight of about 2 percent to about 6 percent, and water is present in an amount by weight of 26 to 36 percent. The composition constituting a solid reversible solution at ambient temperature and having a solids content of about 58 to 72 percent, whereby subsequent addition of the surfactant composition to a soap slurry results in formation of a soap/detergent bar having a smooth texture, uniform wear properties and a lack of grittiness.

  3. Valve for gas centrifuges

    DOEpatents

    Hahs, Charles A.; Burbage, Charles H.

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  4. Delivery and performance of surfactant replacement therapies to treat pulmonary disorders

    PubMed Central

    El-Gendy, Nashwa; Kaviratna, Anubhav; Berkland, Cory; Dhar, Prajnaparamita

    2013-01-01

    Lung surfactant is crucial for optimal pulmonary function throughout life. An absence or deficiency of surfactant can affect the surfactant pool leading to respiratory distress. Even if the coupling between surfactant dysfunction and the underlying disease is not always well understood, using exogenous surfactants as replacement is usually a standard therapeutic option in respiratory distress. Exogenous surfactants have been extensively studied in animal models and clinical trials. The present article provides an update on the evolution of surfactant therapy, types of surfactant treatment, and development of newer-generation surfactants. The differences in the performance between various surfactants are highlighted and advanced research that has been conducted so far in developing the optimal delivery of surfactant is discussed. PMID:23919474

  5. Delivery and performance of surfactant replacement therapies to treat pulmonary disorders.

    PubMed

    El-Gendy, Nashwa; Kaviratna, Anubhav; Berkland, Cory; Dhar, Prajnaparamita

    2013-08-01

    Lung surfactant is crucial for optimal pulmonary function throughout life. An absence or deficiency of surfactant can affect the surfactant pool leading to respiratory distress. Even if the coupling between surfactant dysfunction and the underlying disease is not always well understood, using exogenous surfactants as replacement is usually a standard therapeutic option in respiratory distress. Exogenous surfactants have been extensively studied in animal models and clinical trials. The present article provides an update on the evolution of surfactant therapy, types of surfactant treatment, and development of newer-generation surfactants. The differences in the performance between various surfactants are highlighted and advanced research that has been conducted so far in developing the optimal delivery of surfactant is discussed.

  6. [Bronchoalveolar lavage with diluted porcine surfactant for alveolar debris removal in newborns treated with mechanical ventilation].

    PubMed

    Lista, G; Castoldi, F; Azzali, A; Compagnoni, G

    2000-01-01

    Lung debris in respiratory distress syndrome (RDS) and meconium aspiration syndrome (MAS) contribute to deteriorate pulmonary function. Surfactant lavage, also with minimal quantity of diluted surfactant, is an effective method for treatment of severe MAS and seems to be useful also in course of RDS evolving to chronic lung disease (CLD), by improving lung mechanics. Authors report a clinical study in which tracheobronchial lavage with surfactant (15 ml/Kg of diluted porcine surfactant) improved significantly lung function in 3 patients with RDS in prolonged mechanical ventilation and in 2 patients with MAS.

  7. Centrifugal main fuel pump

    SciTech Connect

    Cole, E.F.

    1986-08-26

    For a gas turbine power plant having a fuel supply and a fuel metering valve and variable geometry for the power plant including servo actuating mechanisms for the fuel metering valve and variable geometry, a fuel pumping system, is described to supply pressurized fuel for the servo actuating mechanisms and for the engine working fluid medium. The pumping system includes a centrifugal pump solely supplying the fuel to the fuel metering valve to be delivered to the power plant for its working fluid medium, a positive displacement pump in parallel with the centrifugal pump and solely to supply pressurized fuel to the servo actuating mechanisms for the fuel metering valve and for the variable geometry, and a boost pump means disposed in serial relationship with the positive displacement pump and the centrifugal pump for augmenting the pressure supplied by the positive displacement pump and the centrifugal pump during predetermined operating conditions of the power plant. The combined boost pump and centrifugal pump capability is sufficient to satisfy the vapor to liquid ratio requirements of the power during its entire operating envelope.

  8. Attack on centrifugal costs

    SciTech Connect

    Murray, P.F.

    1986-03-01

    The Monsanto Chocolate Bayou plant has had an aggressive and successful energy conservation program. The combined efforts have resulted in a 80% reduction in unit energy consumption compared to 1972. The approach of using system audits to optimize fluid systems was developed. Since most of the fluid movers are centrifugal, the name Centrifugal Savings Task Force was adopted. There are three tools that are particularly valuable in optimizing fluid systems. First, a working level understanding of the Affinity Laws seems a must. In addition, the performance curves for the fluid movers is needed. The last need is accurate system field data. Systems effectively managed at the Chocolate Bayou plant were process air improvement, feed-water pressure reduction, combustion air blower turbine speed control, and cooling tower pressure reduction. Optimization of centrifugal systems is an often-overlooked opportunity for energy savings. The basic guidelines are to move only the fluid needed, and move it at as low a pressure as possible.

  9. SEAL FOR HIGH SPEED CENTRIFUGE

    DOEpatents

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  10. Geotechnical centrifuge under construction

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Modifications are underway at the National Aeronautics and Space Administration (NASA) Ames Research Center in California to transform a centrifuge used in the Apollo space program to the largest geotechnical centrifuge in the free world. The centrifuge, to be finished in August and opened next January, following check out and tuning, will enable geoscientists to model stratigraphic features down to 275 m below the earth's surface. Scientists will be able to model processes that are coupled with body force loading, including earthquake response of earth structures and soil structure interaction; rubbled-bed behavior during in situ coal gasification or in oil shale in situ retorts; behavior of frozen soil; frost heave; behavior of offshore structures; wave-seabed interactions; explosive cratering; and blast-induced liquefaction.The centrifuge will have a load capacity of 900-g-tons (short); that is, it will be able to carry a net soil load of 3 short tons to a centripetal acceleration of 300 times the acceleration caused by gravity. Modified for a total cost of $2.4 million, the centrifuge will have an arm with a 7.6-m radius and a swinging platform or bucket at its end that will be able to carry a payload container measuring 2.1×2.1 m. An additional future input of $500,000 would enable the purchase of a larger bucket that could accommodate a load of up to 20 tons, according to Charles Babendreier, program director for geotechnical engineering at the National Science Foundation. Additional cooling for the motor would also be required. The centrifuge has the capability of accelerating the 20-ton load to 100 g.

  11. Centrifugal projectile launchers

    NASA Astrophysics Data System (ADS)

    Felber, F. S.

    1982-01-01

    The concept of a centrifugal projectile launcher as an alternative to both chemical and electromagnetic launchers for anti-tank and air defence systems is discussed. It is shown that centrifugal projectile launchers can provide reliable, efficient, compact systems that will accelerate projectiles to 2-3 km/s with energies up to one megajoule. State-of-the-art composite rotors can be modified to launch projectiles of tens of grams to the order of 1 km/s. A demonstration rotor with reasonable energy density can be designed to accelerate 60 gram projectiles to 3 km/s repetitively.

  12. Effects of lung surfactant factor (LSF) treatment on gas exchange and histopathological changes in an animal model of adult respiratory distress syndrome (ARDS): comparison of recombinant LSF with bovine LSF.

    PubMed

    Häfner, D; Germann, P G; Hauschke, D

    1994-10-01

    Repetitive lung lavage of adult rats leads to lung injury similar to ARDS resulting in poor gas exchange, protein leakage and infiltration of polymorphonuclear neutrophils (PMN) into the alveolar spaces (J Appl Physiol 1983; 55: 131-138). In a previous dose response comparison we have demonstrated that poor gas exchange could be improved by lung surfactant factor (LSF) instillation soon after lavage. Since Surfacten (Tokyo Tanabe Co. Ltd., Tokyo, Japan) was described in vitro to inhibit PMN activity, we compared this preparation with a Recombinant LSF preparation (Byk Gulden, Konstanz, Germany; phospholipids plus human identical surfactant protein C) at doses of 25, 50 and 100 mg/kg body weight. Their efficacy was compared with an untreated control group with respect to improving gas exchange, inhibition of hyaline membrane formation and inhibition of the inflammatory response after multiple lavage. Tracheotomized rats were pressure-controlled ventilated (Siemens Servo Ventilator 900C, Sweden) with 100% oxygen at a respiratory rate of 30 breaths/min, inspiration:expiration ratio of 1:2, peak inspiratory pressure (PIP) of 28 cmH2O at positive end-expiratory pressure (PEEP) of 8 cmH2O. Two hours after LSF administration PEEP was reduced from 8 to 6 cmH2O (first PEEP-reduction), from 6 to 3 (second reduction) and from 3 to 0 cmH2O (third reduction) and finally raised to 8 cmH2O. Results for the averaged partial arterial oxygen pressure [PaO2 (mmHg)] of the 2 h period [PaO2(5'-120')] and for the PaO2 during the second PEEP reduction [PaO2(PEEP23/3] were calculated. Both LSF preparations caused a dose-dependent increase of the PaO2 (5'-120') and the PaO2(PEEP23/3). Similarly, the formation of hyaline membranes was inhibited by both LSF preparations in a dose-dependent manner. Inhibition of the inflammatory response (infiltration of PMN) was not effected by either of the LSF preparations at any dose level. The described variations in ventilator settings are useful to

  13. Maintaining end-expiratory transpulmonary pressure prevents worsening of ventilator-induced lung injury caused by chest wall constriction in surfactant-depleted rats

    PubMed Central

    Loring, Stephen H.; Pecchiari, Matteo; Valle, Patrizia Della; Monaco, Ario; Gentile, Guendalina; D'Angelo, Edgardo

    2014-01-01

    Objective To see whether in acute lung injury (ALI) 1) compression of the lungs caused by thoracoabdominal constriction degrades lung function and worsens ventilator-induced lung injury (VILI), and 2) maintaining end-expiratory transpulmonary pressure (Pl) by increasing positive end-expiratory pressure (PEEP) reduces the deleterious effects of chest wall constriction. Design Experimental study in rats. Setting Physiology laboratory. Interventions ALI was induced in 3 groups of 9 rats by saline lavage. Nine animals immediately sacrificed served as control group. Group L had lavage only, group LC had the chest wall constricted with an elastic binder, and group LCP had the same chest constriction but with PEEP raised to maintain end-expiratory Pl. After lavage, all groups were ventilated with the same pattern for 1½ hr. Measurements and Main Results Pl, measured with an esophageal balloon-catheter, lung volume changes, arterial blood gasses and pH were assessed during mechanical ventilation (MV). Lung wet-to-dry ratio (W/D), albumin, TNF-α, IL-1β, IL-6, IL-10, and MIP-2 in serum and bronchoalveolar lavage fluid (BALF), and serum E-selectin and von Willebrand Factor (vWF) were measured at the end of MV. Lavage caused hypoxemia and acidemia, increased lung resistance and elastance, and decreased end-expiratory lung volume. With prolonged MV, lung mechanics, hypoxemia, and W/D were significantly worse in group LC. Pro-inflammatory cytokines except E-selectin were elevated in serum and BALF in all groups, with significantly greater levels of TNF-α, IL-1β, and IL-6 in group LC, which also exhibited significantly worse bronchiolar injury and greater heterogeneity of airspace expansion at a fixed Pl than other groups. Conclusions Chest wall constriction in ALI reduces lung volume, worsens hypoxemia, and increases pulmonary edema, mechanical abnormalities, pro-inflammatory mediator release, and histological signs of VILI. Maintaining end-expiratory Pl at preconstriction

  14. Natural vs synthetic surfactants in neonatal respiratory distress syndrome.

    PubMed

    Halliday, H L

    1996-02-01

    This review examines the 11 randomised clinical trials that have compared different surfactant preparations. Seven trials, enrolling 2488 infants with respiratory distress syndrome (RDS), compared the natural surfactant beractant (Survanta) with the synthetic surfactant colfosceril palmitate (Exosurf Neonatal). Infants treated with beractant had lower oxygen requirements for at least 3 days than those treated with colfosceril palmitate. The infants treated with beractant also had lower risks of neonatal mortality [odds ratio (OR) 0.81; 95% confidence interval (CI) 0.65 to 1.01], retinopathy of prematurity (OR 0.81; 95% CI 0.66 to 0.99), and the combined endpoint of death or bronchopulmonary dysplasia (OR 0.86; 95% CI 0.75 to 0.99), compared with those treated with colfosceril palmitate. Calf lung surfactant extract (CLSE; Infasurf), another natural surfactant, has been compared with colfosceril palmitate in 2 studies: in one as prophylaxis and in the other as rescue therapy. Similar, although nonsignificant, advantages were found for the natural surfactant compared with the synthetic surfactant. In 6 of these 9 trials there was a significant reduction in the odds of pulmonary air leaks (OR 0.53; 95% CI 0.41 to 0.64) for infants treated with natural compared with synthetic surfactants. In 7 trials (3554 infants) comparing natural and synthetic surfactants to treat RDS (6 comparing beractant and colfosceril palmitate, and one CLSE and colfosceril palmitate), there was a significantly reduced risk of neonatal mortality (OR 0.80; 95% CI 0.66 to 0.97) with natural compared with synthetic surfactant treatment. In 2 further trials, different natural surfactant preparations have been compared. Reduced oxygen needs for 24 hours after treatment were found for CLSE and Curosurf (porcine-derived lung surfactant, PLS) when each was compared with beractant. Apparent longer term benefits from these surfactants were not statistically proven. Further trials are needed to be certain

  15. Pulmonary surfactant adsorption is increased by hyaluronan or polyethylene glycol.

    PubMed

    Taeusch, H William; Dybbro, Eric; Lu, Karen W

    2008-04-01

    In acute lung injuries, inactivating agents may interfere with transfer (adsorption) of pulmonary surfactants to the interface between air and the aqueous layer that coats the interior of alveoli. Some ionic and nonionic polymers reduce surfactant inactivation in vitro and in vivo. In this study, we tested directly whether an ionic polymer, hyaluronan, or a nonionic polymer, polyethylene glycol, enhanced adsorption of a surfactant used clinically. We used three different methods of measuring adsorption in vitro: a modified pulsating bubble surfactometer; a King/Clements device; and a spreading trough. In addition we measured the effects of both polymers on surfactant turbidity, using this assay as a nonspecific index of aggregation. We found that both hyaluronan and polyethylene glycol significantly increased the rate and degree of surfactant material adsorbed to the surface in all three assays. Hyaluronan was effective in lower concentrations (20-fold) than polyethylene glycol and, unlike polyethylene glycol, hyaluronan did not increase apparent aggregation of surfactant. Surfactant adsorption in the presence of serum was also enhanced by both polymers regardless of whether hyaluronan or polyethylene glycol was included with serum in the subphase or added to the surfactant applied to the surface. Therefore, endogenous polymers in the alveolar subphase, or exogenous polymers added to surfactant used as therapy, may both be important for reducing inactivation of surfactant that occurs with various lung injuries.

  16. Lightweight Shield for Centrifuge

    NASA Technical Reports Server (NTRS)

    Luper, C.

    1982-01-01

    Centrifuge bowl composed of laminated aluminum offers required combination of high strength at reduced weight. Around outside wall of bowl core of 1/16 inch thick spun aluminum are wrapped two layers of aluminum, each also one-sixteenth inch thick. Layered structure prevents cracks from propagating through wall.

  17. Centrifuge pump selection

    SciTech Connect

    Buehler, M.W.

    1985-12-01

    Selection of a centrifuge pump is addressed. The problem of assessing pump needs based on system design is broken down into a step-by-step approach. Topics included are designing the pump system, calculating such pressure NPSH, and building in a safety factor.

  18. Human Powered Centrifuge

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M. (Inventor); Vernikos, Joan (Inventor)

    1997-01-01

    A human powered centrifuge has independently established turntable angular velocity and human power input. A control system allows excess input power to be stored as electric energy in a battery or dissipated as heat through a resistors. In a mechanical embodiment, the excess power is dissipated in a friction brake.

  19. Centrifugal Gas Compression Cycle

    NASA Astrophysics Data System (ADS)

    Fultun, Roy

    2002-11-01

    A centrifuged gas of kinetic, elastic hard spheres compresses isothermally and without flow of heat in a process that reverses free expansion. This theorem follows from stated assumptions via a collection of thought experiments, theorems and other supporting results, and it excludes application of the reversible mechanical adiabatic power law in this context. The existence of an isothermal adiabatic centrifugal compression process makes a three-process cycle possible using a fixed sample of the working gas. The three processes are: adiabatic mechanical expansion and cooling against a piston, isothermal adiabatic centrifugal compression back to the original volume, and isochoric temperature rise back to the original temperature due to an influx of heat. This cycle forms the basis for a Thomson perpetuum mobile that induces a loop of energy flow in an isolated system consisting of a heat bath connectable by a thermal path to the working gas, a mechanical extractor of the gas's internal energy, and a device that uses that mechanical energy and dissipates it as heat back into the heat bath. We present a simple experimental procedure to test the assertion that adiabatic centrifugal compression is isothermal. An energy budget for the cycle provides a criterion for breakeven in the conversion of heat to mechanical energy.

  20. Time and volume dependence of dead space in healthy and surfactant-depleted rat lungs during spontaneous breathing and mechanical ventilation.

    PubMed

    Dassow, Constanze; Schwenninger, David; Runck, Hanna; Guttmann, Josef

    2013-11-01

    Volumetric capnography is a standard method to determine pulmonary dead space. Hereby, measured carbon dioxide (CO2) in exhaled gas volume is analyzed using the single-breath diagram for CO2. Unfortunately, most existing CO2 sensors do not work with the low tidal volumes found in small animals. Therefore, in this study, we developed a new mainstream capnograph designed for the utilization in small animals like rats. The sensor was used for determination of dead space volume in healthy and surfactant-depleted rats (n = 62) during spontaneous breathing (SB) and mechanical ventilation (MV) at three different tidal volumes: 5, 8, and 11 ml/kg. Absolute dead space and wasted ventilation (dead space volume in relation to tidal volume) were determined over a period of 1 h. Dead space increase and reversibility of the increase was investigated during MV with different tidal volumes and during SB. During SB, the dead space volume was 0.21 ± 0.14 ml and increased significantly at MV to 0.39 ± 0.03 ml at a tidal volume of 5 ml/kg and to 0.6 ± 0.08 ml at a tidal volume of 8 and 11 ml/kg. Dead space and wasted ventilation during MV increased with tidal volume. This increase was mostly reversible by switching back to SB. Surfactant depletion had no further influence on the dead space increase during MV, but impaired the reversibility of the dead space increase.

  1. Enhancing Centrifugal Separation With Electrophoresis

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1986-01-01

    Separation of biological cells by coil-planet centrifuge enhanced by electrophoresis. By itself, coil-planet centrifuge offers relatively gentle method of separating cells under low centrifugal force in physiological medium that keeps cells alive. With addition of voltage gradient to separation column of centrifuge, separation still gentle but faster and more complete. Since separation apparatus contains no rotary seal, probability of leakage, contamination, corrosion, and short circuits reduced.

  2. Biomimicry of surfactant protein C

    PubMed Central

    Brown, Nathan J.; Johansson, Jan; Barron, Annelise E.

    2012-01-01

    CONSPECTUS Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned towards the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C’s seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C’s molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable poly-valine helix is replaced with a structurally stable, poly-leucine helix and includes a well placed positive charge to prevent aggregation. SP-C33 is both structurally stable and eliminates the association propensity of the native protein. The second approach

  3. The Human Centrifuge

    NASA Astrophysics Data System (ADS)

    van Loon, Jack J. W. A.

    2009-01-01

    Life on Earth has developed at unit gravity, 9.81 m/s2, which was a major factor especially when vertebrates emerged from water onto land in the late Devonian, some 375 million years ago. But how would nature have evolved on a larger planet? We are able to address this question simply in experiments using centrifuges. Based on these studies we have gained valuable insights in the physiological process in plants and animals. They adapt to a new steady state suitable for the high-g environments applied. Information on mammalian adaptations to hyper-g is interesting or may be even vital for human space exploration programs. It has been shown in long duration animal hypergravity studies, ranging from snails, rats to primates, that various structures like muscles, bones, neuro-vestibular, or the cardio-vascular system are affected. However, humans have never been exposed to a hyper-g environment for long durations. Centrifuge studies involving humans are mostly in the order of hours. The current work on human centrifuges are all focused on short arm systems to apply short periods of artificial gravity in support of long duration space missions in ISS or to Mars. In this paper we will address the possible usefulness of a large human centrifuge on Earth. In such a centrifuge a group of humans can be exposed to hypergravity for, in principle, an unlimited period of time like living on a larger planet. The input from a survey under scientists working in the field of gravitational physiology, but also other disciplines, will be discussed.

  4. Electrical surface potential of pulmonary surfactant.

    PubMed

    Leonenko, Zoya; Rodenstein, Mathias; Döhner, Jana; Eng, Lukas M; Amrein, Matthias

    2006-11-21

    Pulmonary surfactant is a mixed lipid protein substance of defined composition that self-assembles at the air-lung interface into a molecular film and thus reduces the interfacial tension to close to zero. A very low surface tension is required for maintaining the alveolar structure. The pulmonary surfactant film is also the first barrier for airborne particles entering the lung upon breathing. We explored by frequency modulation Kelvin probe force microscopy (FM-KPFM) the structure and local electrical surface potential of bovine lipid extract surfactant (BLES) films. BLES is a clinically used surfactant replacement and here served as a realistic model surfactant system. The films were distinguished by a pattern of molecular monolayer areas, separated by patches of lipid bilayer stacks. The stacks were at positive electrical potential with respect to the surrounding monolayer areas. We propose a particular molecular arrangement of the lipids and proteins in the film to explain the topographic and surface potential maps. We also discuss how this locally variable surface potential may influence the retention of charged or polar airborne particles in the lung.

  5. Surfactant apoprotein in nonmalignant pulmonary disorders.

    PubMed Central

    Singh, G.; Katyal, S. L.

    1980-01-01

    Formalin-fixed, paraffin-embedded lungs exhibiting a variety of nonmalignant disorders were studied by immunoperoxidase staining using antibodies specific for surfactant apoprotein, IgG, IgM, IgA, albumin, fibrinogen, and lysozyme. Normal Type II pneumocytes showed staining for surfactant apoprotein in the perinuclear region only. The extent and intensity of staining for apoprotein was markedly increased in reactive Type II pneumocytes. This increase appeared to be a nonspecific reaction to lung injury. The intra-alveolar material in pulmonary alveolar proteinosis stained intensely for surfactant apoprotein, indicating that the accumulated proteinaceous material contained pulmonary surfactant. Type II pneumocytes in pulmonary alveolar proteinosis exhibited hyperplasia as well as hypertrophy. The few macrophages in lung affected by pulmonary alveolar proteinosis stained intensely for lysozyme. The excessive intraalveolar accumulation of proteinaceous material in pulmonary alveolar proteinosis may be the result of both an over-production as well as a deficient removal of pulmonary surfactant. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 p[57]-a PMID:7004201

  6. Intratracheal atomized surfactant provides similar outcomes as bolus surfactant in preterm lambs with respiratory distress syndrome.

    PubMed

    Milesi, Ilaria; Tingay, David G; Zannin, Emanuela; Bianco, Federico; Tagliabue, Paolo; Mosca, Fabio; Lavizzari, Anna; Ventura, Maria Luisa; Zonneveld, C Elroy; Perkins, Elizabeth J; Black, Don; Sourial, Magdy; Dellacá, Raffaele L

    2016-07-01

    Aerosolization of exogenous surfactant remains a challenge. This study is aimed to evaluate the efficacy of atomized poractant alfa (Curosurf) administered with a novel atomizer in preterm lambs with respiratory distress syndrome. Twenty anaesthetized lambs, 127 ± 1 d gestational age, (mean ± SD) were instrumented before birth and randomized to receive either (i) positive pressure ventilation without surfactant (Control group), (ii) 200 mg/kg of bolus instilled surfactant (Bolus group) at 10 min of life or (iii) 200 mg/kg of atomized surfactant (Atomizer group) over 60 min from 10 min of life. All lambs were ventilated for 180 min with a standardized protocol. Lung mechanics, regional lung compliance (electrical impedance tomography), and carotid blood flow (CBF) were measured with arterial blood gas analysis. Dynamic compliance and oxygenation responses were similar in the Bolus and Atomizer groups, and both better than Control by 180 min (all P < 0.05; two-way ANOVA). Both surfactant groups demonstrated more homogeneous regional lung compliance throughout the study period. There were no differences in CBFConclusion:In a preterm lamb model, atomized surfactant resulted in similar gas exchange and mechanics as bolus administration. This study suggests evaluation of supraglottic atomization with this system when noninvasive support is warranted.

  7. Surfactant protein D, Club cell protein 16, Pulmonary and activation-regulated chemokine, C-reactive protein, and Fibrinogen biomarker variation in chronic obstructive lung disease.

    PubMed

    Lock-Johansson, Sofie; Vestbo, Jørgen; Sorensen, Grith Lykke

    2014-11-25

    Chronic obstructive pulmonary disease (COPD) is a multifaceted condition that cannot be fully described by the severity of airway obstruction. The limitations of spirometry and clinical history have prompted researchers to investigate a multitude of surrogate biomarkers of disease for the assessment of patients, prediction of risk, and guidance of treatment. The aim of this review is to provide a comprehensive summary of observations for a selection of recently investigated pulmonary inflammatory biomarkers (Surfactant protein D (SP-D), Club cell protein 16 (CC-16), and Pulmonary and activation-regulated chemokine (PARC/CCL-18)) and systemic inflammatory biomarkers (C-reactive protein (CRP) and fibrinogen) with COPD. The relevance of these biomarkers for COPD is discussed in terms of their biological plausibility, their independent association to disease and hard clinical outcomes, their modification by interventions, and whether changes in clinical outcomes are reflected by changes in the biomarker.

  8. Centrifugal unbalance detection system

    DOEpatents

    Cordaro, Joseph V.; Reeves, George; Mets, Michael

    2002-01-01

    A system consisting of an accelerometer sensor attached to a centrifuge enclosure for sensing vibrations and outputting a signal in the form of a sine wave with an amplitude and frequency that is passed through a pre-amp to convert it to a voltage signal, a low pass filter for removing extraneous noise, an A/D converter and a processor and algorithm for operating on the signal, whereby the algorithm interprets the amplitude and frequency associated with the signal and once an amplitude threshold has been exceeded the algorithm begins to count cycles during a predetermined time period and if a given number of complete cycles exceeds the frequency threshold during the predetermined time period, the system shuts down the centrifuge.

  9. Centrifugally decoupling touchdown bearings

    DOEpatents

    Post, Richard F

    2014-06-24

    Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.

  10. Centrifugal pump fuel system

    SciTech Connect

    McGlone, M.E.; Larkins, L.J.; Johnson, R.O.; Moeller, K.A.

    1993-06-22

    A centrifugal pump fuel system for an engine driven fuel pump for an aircraft gas turbine engine is described comprising: a centrifugal pump having at constant speed rising head/flow characteristic at low flows; a plumbing system receiving flow from the pump, and having at least one control valve located down stream of and defining a discrete volume of the plumbing system; a plumbing resonant frequency defined by the discrete volume, the geometry of the plumbing system, and the bulk modulus of the fuel; a pressure difference regulating valve located adjacent to the discharge of the pump, up stream of the vast majority of the discrete volume; and the frequency response of the regulating valve being significantly less than the frequency response of the plumbing system such that the response of the regulating valve is attenuated at the resonant frequency of the plumbing system.

  11. Centrifugal Contactor Efficiency Measurements

    SciTech Connect

    Mincher, Bruce Jay; Tillotson, Richard Dean; Grimes, Travis Shane

    2017-01-01

    The contactor efficiency of a 2-cm acrylic centrifugal contactor, fabricated by ANL using 3D printer technology was measured by comparing a contactor test run to 5-min batch contacts. The aqueous phase was ~ 3 ppm depleted uranium in 3 M HNO3, and the organic phase was 1 M DAAP/dodecane. Sampling during the contactor run showed that equilibrium was achieved within < 3 minutes. The contactor efficiency at equilibrium was 95% to 100 %, depending on flowrate.

  12. Pumps, Centrifugal and Reciprocating

    DTIC Science & Technology

    2011-04-27

    reciprocating pumps. 15. SUBJECT TERMS Centrifugal pump Total discharge head Reciprocating pump Total suction head Head 16. SECURITY ... CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 40 19a. NAME OF RESPONSIBLE PERSON a. REPORT B...Satisfy the needs of MIL-STD-4612. High-Altitude Electromagnetic Pulse ( HEMP ) Test Facility Satisfy the needs of MIL-STD-461. Rail Impact Test

  13. Centrifugal adsorption system

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R. (Inventor); Tsao, Yow-Min D. (Inventor); Lee, Wenshan (Inventor)

    2006-01-01

    A gas-liquid separator uses a helical passageway to impart a spiral motion to a fluid passing therethrough. The centrifugal force generated by the spiraling motion urges the liquid component of the fluid radially outward which forces the gas component radially inward. The gas component is then separated through a gas-permeable, liquid-impervious membrane and discharged through a central passageway. A filter material captures target substances contained in the fluid.

  14. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  15. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  16. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  17. Research progress of surfactant

    NASA Astrophysics Data System (ADS)

    Zheng, Minyi; Mo, Lingyun; Qin, Ruqiong; Liang, Liying; Zhang, Fan

    2017-01-01

    With the rapid development of surfactant and the large growing use of the materials, the safety of surfactant may be a problem that draw worldwide attention. The surfactant can be discharged into environment through various approach and may cause toxic effects in organism. This paper reviews the environmental effects of surfactant materials for plants and animals, and raises some questions by describing the results of environmental toxicology. We put it that it is a great significant of promote the sustainable development of surfactant industry through a comprehensive understanding of surfactant environmental safety.

  18. Natural anti-infective pulmonary proteins: In vivo cooperative action of surfactant protein SP-A and the lung antimicrobial peptide SP-BN (1)

    PubMed Central

    Coya, Juan Manuel; Akinbi, Henry T.; Sáenz, Alejandra; Yang, Li; Weaver, Timothy E.; Casals, Cristina

    2015-01-01

    The anionic antimicrobial peptide SP-BN, derived from the N-terminal saposin-like domain of the SP-B proprotein, and SP-A are lung anti-infective proteins. SP-A-deficient mice are more susceptible than WT mice to lung infections, and bacterial killing is enhanced in transgenic mice overexpressing SP-BN. Despite their potential anti-infective action, in vitro studies indicate that several microorganisms are resistant to SP-A and SP-BN. In this study we test the hypothesis that these proteins act synergistically or cooperatively to strengthen each other’s microbicidal activity. The results indicate that the proteins acted synergistically in vitro against SP-A- and SP-BN-resistant capsulated Klebsiella pneumoniae (serotype K2) at neutral pH. SP-A and SP-BN were able to interact in solution (Kd = 0.4 μM), which enabled their binding to bacteria with which SP-A or SP-BN alone could not interact. In vivo, we found that treatment of K. pneumoniae-infected mice with SP-A and SP-BN conferred more protection against K. pneumoniae infection than each protein individually. SP-A/SP-BN-treated infected mice showed significant reduction of bacterial burden, enhanced neutrophil recruitment, and ameliorated lung histopathology with respect to untreated infected mice. In addition, the concentrations of inflammatory mediators in lung homogenates increased early in infection in contrast with the weak inflammatory response of untreated K. pneumoniae-infected mice. Finally, we found that therapeutic treatment with SP-A and SP-BN 6h or 24h after bacterial challenge conferred significant protection against K. pneumoniae infection. These studies show novel anti-infective pathways that could drive development of new strategies against pulmonary infections. PMID:26163587

  19. Gas Centrifuges and Nuclear Proliferation

    SciTech Connect

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  20. Liquid and surfactant delivery into pulmonary airways

    PubMed Central

    Halpern, David; Fujioka, Hideki; Takayama, Shuichi; Grotberg, James B.

    2008-01-01

    We describe the mechanisms by which liquids and surfactants can be delivered into the pulmonary airways. These are instilled and transported throughout the lung in clinical therapies such as surfactant replacement therapy, partial liquid ventilation and drug delivery. The success of these treatments is contingent on the liquid distribution and the delivery to targeted regions of the lung. The targeting of a liquid plug can be influenced by a variety of factors such as the physical properties of the liquid, the interfacial activity, the gravitational orientation, instillation method and propagation speed. We provide a review of experimental and theoretical studies that examine these effects in single tubes or channels, in tubes with single bifurcations and in the whole lung. PMID:18585985

  1. [Different stimulant intensity of abdominal operation on the expression of tumor necrosis factor α and surfactant protein-A in lung of the rats].

    PubMed

    Chen, Yan; Cai, Hongwei

    2014-09-01

    To determine the influence of different stimulation of abdominal operation on lung. We randomly divided 100 SD male rats into 5 groups(n=20): An anesthesia control group (Group A), an abdominal skin 2 cm incision group (Group B), an abdominal skin+ muscle 2 cm incision group (Group C ), an abdominal skin+muscle+peritoneum 2 cm incision group (Group D), and an abdominal skin+muscle+peritoneum 2 cm incision+2 min laparoscopy in abdomen+pull exploration bowel group (Group E). Propofol was used for induction of anaesthesia by rat tail vein with 10 mg/kg, with 35-45 mg/(kg.h) during the operation. Anesthesia depth was maintained during moderate sedation without obvious analgesia action level. According to the postoperative specimens at different time, each group was divided into 4 sub groups, including 6-hour group, 1-day group, 3-day group, and 7-day group(n=5). Immunohistochemical method was used to examine tumor necrosis factor (TNF-α) and lung tissue lung surface active substances related proteins A (SP-A) of rats at different points after surgery. There was no significant differences in the expression of TNF-α at 6 hours, 3 days, and 7 days after surgery in the 5 groups (P>0.05). The expression of TNF-α in Group D, and E was significantly higher than that in Group A at 1 day after surgery (P<0.05). Although the expression of TNF-α was Group E > Group D > Group C > Group B at 1 day, 3 days after surgery, there was no significant difference among the 4 groups. There was no significant differences in the expression of SP-A at 6 hours, 3 days, and 7 days after surgery in the 5 groups (P>0.05). The expression of SP-A in Group D and E was significantly higher than that in Group A at 1 day after surgery (P<0.05). There was no significant difference between Group D and E (P>0.05). The greater the stimulant intensity of abdominal operation on rats, the more impact on postoperative lung. The postoperative pulmonary effect of intraperitoneal operation is greater than non

  2. CENTRIFUGAL MEMBRANE FILTRATION

    SciTech Connect

    Daniel J. Stepan; Bradley G. Stevens; Melanie D. Hetland

    1999-10-01

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc).

  3. Surfactants and the Mechanics of Respiration

    NASA Astrophysics Data System (ADS)

    Jbaily, Abdulrahman; Szeri, Andrew J.

    2016-11-01

    Alveoli are small sacs found at the end of terminal bronchioles in human lungs with a mean diameter of 200 μm. A thin layer of fluid (hypophase) coats the inner face of an alveolus and is in contact with the air in the lungs. The thickness of this layer varies among alveoli, but is in the range of 0.1 to 0.5 μm for many portions of the alveolar network. The interfacial tension σ at the air-hypophase interface tends to favor collapse of the alveolus, and resists its expansion during inhalation. Type II alveolar cells synthesize and secrete a mixture of phospholipids and proteins called pulmonary surfactant. These surfactant molecules adsorb to the interface causing σ of water at body temperature is 70 mN/m and falls to an equilibrium value of 25 mN/m when surfactants are present. Also, in a dynamic sense, it is known that σ is reduced to near 0 during exhalation when the surfactant film compresses. In this work, the authors develop a mechanical and transport model of the alveolus to study the effect of surfactants on various aspects of respiration. The model is composed of three principal parts: (i) air movement into and out of the alveolus; (ii) a balance of linear momentum across the two-layered membrane of the alveolus (hypophase and elastic wall); and (iii) a pulmonary surfactant transport problem in the hypophase. The goal is to evaluate the influence of pulmonary surfactant on respiratory mechanics.

  4. National geotechnical centrifuge

    NASA Technical Reports Server (NTRS)

    Hallam, J. A.; Kunz, N.; Vallotton, W. C.

    1982-01-01

    A high G-ton centrifuge, able to take a 2700 kg (6000 lb) payload up to 300 G, is described. The stability of dams and embankments, the bearing capacity of soil foundations, and the dynamic behavior of foundations due to vibration of machinery are examples of applications. A power rating of 6,000 kW (9,000 hp) was established for the motor. An acceptable maximum speed of 70 rpm was determined. A speed increase with a ratio of 1:3 is discussed. The isolated tension straps, the anti-spreader bar and the flexwall bucket, and safety precautions are also discussed.

  5. National geotechnical centrifuge

    NASA Astrophysics Data System (ADS)

    Hallam, J. A.; Kunz, N.; Vallotton, W. C.

    1982-05-01

    A high G-ton centrifuge, able to take a 2700 kg (6000 lb) payload up to 300 G, is described. The stability of dams and embankments, the bearing capacity of soil foundations, and the dynamic behavior of foundations due to vibration of machinery are examples of applications. A power rating of 6,000 kW (9,000 hp) was established for the motor. An acceptable maximum speed of 70 rpm was determined. A speed increase with a ratio of 1:3 is discussed. The isolated tension straps, the anti-spreader bar and the flexwall bucket, and safety precautions are also discussed.

  6. Pea Chaperones under Centrifugation

    NASA Astrophysics Data System (ADS)

    Talalaiev, Oleksandr

    2008-06-01

    Etiolated Pisum sativum seedlings were subjected to altered g-forces by centrifugation (3-14g). By using semiquantitative RT-PCR, we studied transcripts of pea genes coding for chaperones that are representatives of small heat shock proteins (sHsps) family. Four members from the different classes of sHsps: cytosolic Hsp17.7 and Hsp18.1 (class I and class II accordingly), chloroplast Hsp21 (class III) and endoplasmic reticulum Hsp22.7 (class IV) were investigated. We conclude that exposure to 3, 7, 10 and 14g for 1h did not affect the level of sHsp transcripts.

  7. Centrifugal Adsorption Cartridge System

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The centrifugal adsorption cartridge system (CACS) is an apparatus that recovers one or more bioproduct(s) from a dilute aqueous solution or suspension flowing from a bioreactor. The CACS can be used both on Earth in unit gravity and in space in low gravity. The CACS can be connected downstream from the bioreactor; alternatively, it can be connected into a flow loop that includes the bioreactor so that the liquid can be recycled. A centrifugal adsorption cartridge in the CACS (see figure) includes two concentric cylinders with a spiral ramp between them. The volume between the inner and outer cylinders, and between the turns of the spiral ramp is packed with an adsorbent material. The inner cylinder is a sieve tube covered with a gas-permeable, hydrophobic membrane. During operation, the liquid effluent from the bioreactor is introduced at one end of the spiral ramp, which then constrains the liquid to flow along the spiral path through the adsorbent material. The spiral ramp also makes the flow more nearly uniform than it would otherwise be, and it minimizes any channeling other than that of the spiral flow itself. The adsorbent material is formulated to selectively capture the bioproduct(s) of interest. The bioproduct(s) can then be stored in bound form in the cartridge or else eluted from the cartridge. The centrifugal effect of the spiral flow is utilized to remove gas bubbles from the liquid. The centrifugal effect forces the bubbles radially inward, toward and through the membrane of the inner cylinder. The gas-permeable, hydrophobic membrane allows the bubbles to enter the inner cylinder while keeping the liquid out. The bubbles that thus enter the cylinder are vented to the atmosphere. The spacing between the ramps determines rate of flow along the spiral, and thereby affects the air-bubble-removal efficiency. The spacing between the ramps also determines the length of the fluid path through the cartridge adsorbent, and thus affects the bioproduct

  8. Centrifugal-reciprocating compressor

    NASA Technical Reports Server (NTRS)

    Higa, W. H. (Inventor)

    1984-01-01

    A centrifugal compressor is described which includes at least one pair of cylinders arranged in coaxial alignment and supported for angular displacement about a common axis of rotation normally disecting a common longitudinal axis of symmetry for the cylinders. The cylinders are characterized by ported closures located at the mutually remote ends thereof through which the cylinders are charged and discharged, and a pair of piston heads seated within the cylinders and supported for floating displacement in compressive strokes in response to unidirectional angular displacement imparted to the cylinders.

  9. [Deficiency of surfactant protein: Case report].

    PubMed

    Milet, María Beatriz; Mena N, Patricia; Pérez, Héctor I; Espinoza, Tatiana

    Congenital surfactant deficiency is a condition infrequently diagnosed in newborns. A clinical case is presented of surfactant protein B deficiency. A review is performed on the study, treatment and differential diagnosis of surfactant protein deficiencies and infant chronic interstitial lung disease. The case is presented of a term newborn that developed respiratory distress, recurrent pulmonary opacification, and a transient response to the administration of surfactant. Immunohistochemical and genetic studies confirmed the diagnosis of surfactant protein B deficiency. Pulmonary congenital anomalies require a high index of suspicion. Surfactant protein B deficiency is clinically progressive and fatal in the majority of the cases, similar to that of ATP binding cassette subfamily A member 3 (ABCA3) deficiency. Protein C deficiency is insidious and may present with a radiological pulmonary interstitial pattern. Due to the similarity in the histological pattern, genetic studies help to achieve greater certainty in the prognosis and the possibility of providing adequate genetic counselling. Copyright © 2016 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Centrifuge impact cratering experiment 5

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Transient crates motions, cratering flow fields, crates dynamics, determining impact conditions from total crater welt, centrifuge quarter-space cratering, and impact cratering mechanics research is documented.

  11. Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy.

    PubMed

    Lopez-Rodriguez, Elena; Pérez-Gil, Jesús

    2014-06-01

    Pulmonary surfactant is an essential lipid-protein complex to maintain an operative respiratory surface at the mammalian lungs. It reduces surface tension at the alveolar air-liquid interface to stabilise the lungs against physical forces operating along the compression-expansion breathing cycles. At the same time, surfactant integrates elements establishing a primary barrier against the entry of pathogens. Lack or deficiencies of the surfactant system are associated with respiratory pathologies, which treatment often includes supplementation with exogenous materials. The present review summarises current models on the molecular mechanisms of surfactant function, with particular emphasis in its biophysical properties to stabilise the lungs and the molecular alterations connecting impaired surfactant with diseased organs. It also provides a perspective on the current surfactant-based strategies to treat respiratory pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.

  12. Evolution, Development, and Function of the Pulmonary Surfactant System in Normal and Perturbed Environments.

    PubMed

    Orgeig, Sandra; Morrison, Janna L; Daniels, Christopher B

    2015-12-15

    Surfactant lipids and proteins form a surface active film at the air-liquid interface of internal gas exchange organs, including swim bladders and lungs. The system is uniquely positioned to meet both the physical challenges associated with a dynamically changing internal air-liquid interface, and the environmental challenges associated with the foreign pathogens and particles to which the internal surface is exposed. Lungs range from simple, transparent, bag-like units to complex, multilobed, compartmentalized structures. Despite this anatomical variability, the surfactant system is remarkably conserved. Here, we discuss the evolutionary origin of the surfactant system, which likely predates lungs. We describe the evolution of surfactant structure and function in invertebrates and vertebrates. We focus on changes in lipid and protein composition and surfactant function from its antiadhesive and innate immune to its alveolar stability and structural integrity functions. We discuss the biochemical, hormonal, autonomic, and mechanical factors that regulate normal surfactant secretion in mature animals. We present an analysis of the ontogeny of surfactant development among the vertebrates and the contribution of different regulatory mechanisms that control this development. We also discuss environmental (oxygen), hormonal and biochemical (glucocorticoids and glucose) and pollutant (maternal smoking, alcohol, and common "recreational" drugs) effects that impact surfactant development. On the adult surfactant system, we focus on environmental variables including temperature, pressure, and hypoxia that have shaped its evolution and we discuss the resultant biochemical, biophysical, and cellular adaptations. Finally, we discuss the effect of major modern gaseous and particulate pollutants on the lung and surfactant system.

  13. Average molecular weight of surfactants in aerosols

    NASA Astrophysics Data System (ADS)

    Latif, M. T.; Brimblecombe, P.

    2007-09-01

    Surfactants in atmospheric aerosols determined as methylene blue active substances (MBAS) and ethyl violet active substances (EVAS). The MBAS and EVAS concentrations can be correlated with surface tension as determined by pendant drop analysis. The effect of surface tension was more clearly indicated in fine mode aerosol extracts. The concentration of MBAS and EVAS was determined before and after ultrafiltration analysis using AMICON centrifuge tubes that define a 5000 Da (5 K Da) nominal molecular weight fraction. Overall, MBAS and to a greater extent EVAS predominates in fraction with molecular weight below 5 K Da. In case of aerosols collected in Malaysia the higher molecular fractions tended to be a more predominant. The MBAS and EVAS are correlated with yellow to brown colours in aerosol extracts. Further experiments showed possible sources of surfactants (e.g. petrol soot, diesel soot) in atmospheric aerosols to yield material having molecular size below 5 K Da except for humic acid. The concentration of surfactants from these sources increased after ozone exposure and for humic acids it also general included smaller molecular weight surfactants.

  14. The Effects of Periodic Wall Stretch on Surfactant and Liquid Transport

    NASA Astrophysics Data System (ADS)

    Bull, Joseph; Halpern, David; Grotberg, James

    1999-11-01

    The cycle-mean transport of soluble surfactant and airway surface liquid is examined using a mathematical model of Marangoni flows which accounts for airway branching and for time-periodic radial and axial airway stretch. The transport of surfactant and liquid is fundamental to surfactant replacement therapy as well as liquid and surfactant clearance from healthy lungs. The majority of surfactant and liquid transport occurs in the cycle-mean spreading which follows the very brief initial transient spreading phase. We consider either delivery of surfactants into the lung, by setting the proximal boundary condition to a higher concentration compared to the distal boundary condition, or removal from the lung by switching these end conditions. Starting with a steady-state, non-cycled, non-uniform, surfactant distribution we find that transport of surfactant into the lung is enhanced for larger strain amplitudes and frequency, though frequency is less important. For surfactant clearance from the lung we find, as in the case of delivery, that larger strain amplitude enhances transport. But, cycling frequency has the opposite effect with larger frequencies leading to reduced transport. Liquid clearance is enhanced by larger strain amplitudes and slower frequencies. This work supported by NIH grant HL-41126 and NSF grant CTS-9412523.

  15. Centrifugal shot blast system

    SciTech Connect

    1998-02-01

    This report describes a demonstration of Concrete cleaning, Inc., modified centrifugal shot blast technology to remove the paint coating from concrete flooring. This demonstration is part of the Chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) CP-5 Research Reactor. The purpose of the LSDP is to demonstrate that using innovative and improved decontamination and decommissioning (D and D) technologies from various sources can result in significant benefits, such as decreased cost and increased health and safety, as compared with baseline D and D technologies. Potential markets exist for the innovative centrifugal shot blast system at the following sites: Fernald Environmental Management Project, Los Alamos, Nevada, Oak Ridge Y-12 and K-25, Paducah, Portsmouth Gaseous Diffusion site, and the Savannah River Site. This information is based on a revision to the OST Linkage Tables dated August 4, 1997.

  16. Centrifugal precipitation chromatography.

    PubMed

    Ito, Yoichiro; Qi, Lin

    2010-01-15

    Centrifugal precipitation chromatography separates analytes according their solubility in ammonium sulfate (AS) solution and other precipitants. The separation column is made from a pair of long spiral channels partitioned with a semipermeable membrane. In a typical separation, concentrated ammonium sulfate is eluted through one channel while water is eluted through the other channel in the opposite direction. This countercurrent process forms an exponential AS concentration gradient through the water channel. Consequently, protein samples injected into the water channel is subjected to a steadily increasing AS concentration and at the critical AS concentration they are precipitated and deposited in the channel bed by the centrifugal force. Then the chromatographic separation is started by gradually reducing the AS concentration in the AS channel which lowers the AS gradient concentration in the water channel. This results in dissolution of deposited proteins which are again precipitated at an advanced critical point as they move through the channel. Consequently, proteins repeat precipitation and dissolution through a long channel and finally eluted out from the column in the order of their solubility in the AS solution. The present method has been successfully applied to a number of analytes including human serum proteins, recombinant ketosteroid isomerase, carotenoid cleavage enzymes, plasmid DNA, polysaccharide, polymerized pigments, PEG-protein conjugates, etc. The method is capable to single out the target species of proteins by affinity ligand or immunoaffinity separation.

  17. Surfactant therapy for meconium aspiration syndrome: current status.

    PubMed

    Dargaville, Peter A; Mills, John F

    2005-01-01

    Meconium aspiration syndrome (MAS) is an important cause of respiratory distress in the term infant. Therapy for the disease remains problematic, and newer treatments such as high-frequency ventilation and inhaled nitric oxide are being applied with increasing frequency. There is a significant disturbance of the pulmonary surfactant system in MAS, with a wealth of experimental data indicating that inhibition of surfactant function in the alveolar space is an important element of the pathophysiology of the disease. This inhibition may be mediated by meconium, plasma proteins, haemoglobin and oedema fluid, and, at least in vitro, can be overcome by increasing surfactant phospholipid concentration. These observations have served as the rationale for administration of exogenous surfactant preparations in MAS, initially as standard bolus therapy and, more recently, in association with therapeutic lung lavage. Bolus surfactant therapy in ventilated infants with MAS has been found to improve oxygenation in most studies, although there are a significant proportion of nonresponders and in many cases the effect is transient. Pooled data from randomised controlled trials of surfactant therapy suggest a benefit in terms of a reduction in the requirement for extracorporeal membrane oxygenation (relative risk 0.48 in surfactant-treated infants) but no diminution of air leak or ventilator days. Current evidence would support the use of bolus surfactant therapy on a case by case basis in nurseries with a relatively high mortality associated with MAS, or the lack of availability of other forms of respiratory support such as high-frequency ventilation or nitric oxide. If used, bolus surfactant should be administered as early as practicable to infants who exhibit significant parenchymal disease, at a phospholipid dose of at least 100 mg/kg, rapidly instilled into the trachea. Natural surfactant or a third-generation synthetic surfactant should be used and the dosage repeated every 6

  18. Ultrastructure of exogenous surfactants using cryogenic scanning electron microscopy.

    PubMed

    Banerjee, R; Bellare, J R

    2001-01-01

    Therapy with specialised biomaterials, exogenous surfactants, is known to significantly decrease the mortality rates in Respiratory Distress Syndrome (RDS). Surfactants available commercially vary widely in composition and biophysical properties. The present paper studies the ultrastructure of three exogenous surfactants used for the treatment of Respiratory Distress Syndrome, namely, Survanta, ALEC and Exosurf Neonatal with respect to their ability to form liposomes using cryogenic scanning electron microscopy. Liposomal organisation is more obvious in Exosurf than in Survanta and is most pronounced in ALEC. ALEC forms closed regular liposomes with an onion-ring-like internal bilayer arrangement. Survanta forms open membranous structures with wavy ribbon-like membranes. The complex membrane-like structures seen with Survanta may be due to the interaction of lipids with surfactant-specific proteins present in this surfactant which is derived from natural lung extracts and might indicate superior spreading at the lipid-water interface. Artificial protein-free surfactants (ALEC and Exosurf) did not appear to form these open membranous structures. Further study of the ultrastructure of possible biomaterials as surfactants could help in the development of new, improved artificial protein-free surfactants with open membranous structures that might facilitate spreading at the air-liquid interface of lungs.

  19. Effects of smoke inhalation on alveolar surfactant subtypes in mice.

    PubMed Central

    Oulton, M. R.; Janigan, D. T.; MacDonald, J. M.; Faulkner, G. T.; Scott, J. E.

    1994-01-01

    The effects of smoke inhalation on alveolar surfactant subtypes were examined in mice exposed for 30 minutes to smoke generated from the burning of a flexible polyurethane foam. At 4 or 12 hours after the exposure, three surfactant pellets, P10, P60, and P100, and a supernatant, S100, were prepared by sequential centrifugation of lavage fluids at 10,000 g for 30 minutes (P10), 60,000 g for 60 minutes (P60), and 100,000 g for 15 hours (P100 and S100). Phospholipid analysis and electron microscopy were performed on each fraction. Smoke exposure dramatically altered the normal distributions of these fractions: it significantly increased the phospholipid content of the heavier subtype, P10, which is thought to represent newly secreted surfactant; had no effect on the intermediate form, P60; and dramatically increased the phospholipid content (approximately fivefold) of the lighter subtypes, P100 and S100, which are believed to represent catabolic end-products of alveolar surfactant. Only P100 was structurally altered by the smoke. These results represent alterations of the normal metabolic processing of alveolar surfactant. Whereas the mechanism is yet to be defined, it seems to involve a small but significant increase in the newly secreted surfactant, as well as an excessively high accumulation of the structurally altered catabolic forms of the secreted surfactant. Images Figure 3 PMID:7943183

  20. Treatment of the Thylakoid Membrane with Surfactants 1

    PubMed Central

    Markwell, John P.; Thornber, J. Philip

    1982-01-01

    Treatment of higher plant (Nicotiana tabacum L. var. Samsun) chloroplast thylakoid membranes with surfactants results in a shift of the chlorophyll a absorption maximum in the red spectral region from its in vivo value of 678.5 nanometers to shorter wavelengths. The magnitude of this shift is correlated with membrane disruption, and is not necessarily due to the release of pigment from pigment-protein complexes present in the membrane. Membrane disruption has been measured by the amount of pigment in the supernatant fraction after centrifugation of surfactant treated membranes. For an equivalent amount of disruption, the extent of the blue-shift is influenced by the ionic nature of the surfactant: anionic surfactants cause small shifts, cationic surfactants cause the largest (∼10 nanometers) shifts, and nonionic surfactants produce intermediate shifts. The wavelength of maximum absorbance of chlorophyll a in the red region is a convenient criterion for assessing the potential utility of different surfactants for studies on the structure, composition and function of higher plant thylakoid membranes. PMID:16662547

  1. Centrifuge treatment of coal tar

    SciTech Connect

    L.A. Kazak; V.Z. Kaidalov; L.F. Syrova; O.S. Miroshnichenko; A.S. Minakov

    2009-07-15

    New technology is required for the removal of water and heavy fractions from regular coal tar. Centrifuges offer the best option. Purification of coal tar by means of centrifuges at OAO NLMK permits the production of pitch coke or electrode pitch that complies with current standards.

  2. Unshrouded Centrifugal Turbopump Impeller

    NASA Technical Reports Server (NTRS)

    Prueger, George; Williams, Morgan; Chen, Wei; Paris, John; Stewart, Eric; Williams, Robert

    1999-01-01

    The ratio of rocket engine thrust to weight is a limiting constraint in placing more payload into orbit at a low cost. A key component of an engine's overall weight is the turbopump weight, Reducing the turbopump weight can result in significant engine weight reduction and hence, increased delivered payload. There are two main types of pumps: centrifugal and axial pumps. These types of pumps can be further sub-divided into those with shrouds and those without shrouds (unshrouded pumps). Centrifugal pumps can achieve the same pump discharge pressure as an axial pump and it requires fewer pump stages and lower pump weight than an axial pump. Also, with unshrouded centrifugal pumps (impeller), the number of stages and weight can be further reduced. However. there are several issues with regard to using an unshrouded impeller: 1) there is a pump performance penalty due to the front open face recirculation flow; 2) there is a potential pump axial thrust problem from the unbalanced front open face and the back shroud face; and, 3) since test data is very linu'ted for this configuration, there is uncertainty in the magnitude and phase of the rotordynamics forces due to the front impeller passage. The purpose of the paper is to discuss the design of an unshrouded impeller and to examine the design's hydrodynamic performance, axial thrust, and rotordynamics performance. The design methodology will also be discussed. This work will help provide some guidelines for unshrouded impeller design. In particular, the paper will discuss the design of three unshrouded impellers - one with 5 full and 5 partial blades (5+5). one with 6+6 blades and one with 8+8 blades. One of these designs will be selected for actual fabrication and flow test. Computational fluid dynamics (CFD) is used to help design and optimize the unshrouded impeller. The relative pump performance penalty is assessed by comparing the CFD results of the unshrouded impeller with the equivalent shrouded impeller for a

  3. Surfactant therapy of pulmonary conditions excluding those with primary surfactant deficiency and bronchoscopy as delivery method: an overview of Russian patents and publications.

    PubMed

    Jargin, Sergei V

    2013-08-01

    Preparations of pulmonary surfactant are used for the treatment of respiratory distress syndrome in a newborn. Their applicability as a method of routine for lung diseases beyond the neonatal period is questionable. Some publications from the former Soviet Union (SU) have reported on successful surfactant therapy of ARDS in children and adults as well as for inhalation injuries, pneumonia, and tuberculosis. Bronchoscopy was used and recommended as a method of surfactant delivery for ARDS, some types of pneumonia and tuberculosis. Manufacturing processes of surfactant preparations from bovine lung and amniotic fluid, described by Russian patents, and bronchoscopy as a delivery mode are discussed here. A concluding point is that some reports from the former SU about administration of exogenous surfactant in pulmonary conditions, excluding those with primary surfactant deficiency, are only partly confirmed by the international literature.

  4. Rat growth during chronic centrifugation

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Oyama, J.

    1978-01-01

    Female weanling rats were chronically centrifuged at 4.15 G with controls at terrestrial gravity. Samples were sacrificed for body composition studies at 0, 28, 63, 105 and 308 days of centrifugation. The centrifuged group approached a significantly lower mature body mass than the controls (251 and 318g) but the rate of approach was the same in both groups. Retirement to 1G on the 60th day resulted in complete recovery. Among individual components muscle, bone, skin, CNS, heart, kidneys, body water and body fat were changed in the centrifuged group. However, an analysis of the growth of individual components relative to growth of the total fat-free compartment revealed that only skin (which increased in mass) was responding to centrifugation per se.

  5. Rat growth during chronic centrifugation

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Oyama, J.

    1978-01-01

    Female weanling rats were chronically centrifuged at 4.15 G with controls at terrestrial gravity. Samples were sacrificed for body composition studies at 0, 28, 63, 105 and 308 days of centrifugation. The centrifuged group approached a significantly lower mature body mass than the controls (251 and 318g) but the rate of approach was the same in both groups. Retirement to 1G on the 60th day resulted in complete recovery. Among individual components muscle, bone, skin, CNS, heart, kidneys, body water and body fat were changed in the centrifuged group. However, an analysis of the growth of individual components relative to growth of the total fat-free compartment revealed that only skin (which increased in mass) was responding to centrifugation per se.

  6. Meconium-induced inflammation and surfactant inactivation: specifics of molecular mechanisms.

    PubMed

    Kopincova, Jana; Calkovska, Andrea

    2016-04-01

    This review summarizes neonatal meconium aspiration syndrome in light of meconium-induced inflammation and inflammatory surfactant inactivation, related to both endogenous and therapeutic exogenous surfactant. The wide effect of meconium on surfactant properties is divided into three points. Direct effect of meconium on surfactant properties refers mainly to fragmentation of dipalmitoylphosphatidylcholine and other surfactant phospholipids together with cleavage of surfactant proteins. Initiation of inflammatory response due to activation of receptors by yet unspecified compounds involves complement and Toll-like receptor activation. A possible role of lung collectins, surfactant proteins A and D, which can exert both pro- and anti-inflammatory reactions, is discussed. Initiation of inflammatory response by specified compounds in meconium reflects inflammatory functioning of cytokines, bile acids, and phospholipases contained in meconium. Unifying sketch of many interconnections in all these actions aims at providing integrated picture of inflammatory surfactant inactivation.

  7. [Galileo and centrifugal force].

    PubMed

    Vilain, Christiane

    This work intends to focus on Galileo's study of what is now called "centrifugal force," within the framework of the Second Day of his Dialogo written in 1632, rather than on the previously published commentaries on the topic. Galileo proposes three geometrical demonstrations in order to prove that gravity will always overcome centrifugalforce, and that the potential rotation of the Earth, whatever its speed, cannot in any case project objects beyond it. Each of these demonstrations must consequently contain an error and it has seemed to us that the first one had not been understood up until now. Our analysis offers an opportunity to return to Galileo's geometrical representation of dynamical questions; actually, we get an insight into the sophistication of Galileo's practices more than into his mistakes. Our second point, concerning the historiography of the problem, shows an evolution from anachronic critics to more contextual considerations, in the course of the second half of the twentieth century.

  8. Gas centrifuge purge method

    DOEpatents

    Theurich, Gordon R.

    1976-01-01

    1. In a method of separating isotopes in a high speed gas centrifuge wherein a vertically oriented cylindrical rotor bowl is adapted to rotate about its axis within an evacuated chamber, and wherein an annular molecular pump having an intake end and a discharge end encircles the uppermost portion of said rotor bowl, said molecular pump being attached along its periphery in a leak-tight manner to said evacuated chamber, and wherein end cap closure means are affixed to the upper end of said rotor bowl, and a process gas withdrawal and insertion system enters said bowl through said end cap closure means, said evacuated chamber, molecular pump and end cap defining an upper zone at the discharge end of said molecular pump, said evacuated chamber, molecular pump and rotor bowl defining a lower annular zone at the intake end of said molecular pump, a method for removing gases from said upper and lower zones during centrifuge operation with a minimum loss of process gas from said rotor bowl, comprising, in combination: continuously measuring the pressure in said upper zone, pumping gas from said lower zone from the time the pressure in said upper zone equals a first preselected value until the pressure in said upper zone is equal to a second preselected value, said first preselected value being greater than said second preselected value, and continuously pumping gas from said upper zone from the time the pressure in said upper zone equals a third preselected value until the pressure in said upper zone is equal to a fourth preselected value, said third preselected value being greater than said first, second and fourth preselected values.

  9. Immunoaffinity centrifugal precipitation chromatography.

    PubMed

    Qi, Lin; Ito, Yoichiro

    2007-06-01

    Purification of proteins based on immunoaffinity has been performed using a solid support coated with antibody against the target proteins. The method requires immobilizing the antibody onto the solid support using protein A or G, and has a risk of adsorptive loss of target proteins onto the solid support. Centrifugal precipitation chromatography has been successfully used to purify enzymes, such as ketosteroid isomerase and hyaluronidase without the use of solid support. The purpose of this study is to demonstrate that immunoaffinity centrifugal precipitation chromatography is capable of isolating an antigen by exploiting antigen-antibody binding. The separation was initiated by filling both channels with 40% saturated ammonium sulfate (AS) of pH 4-4.5 followed by loading 20 microl of human plasma (National Institutes of Health blood bank) mixed with 2 mg of rabbit anti-HSA (human serum protein) antibody (Sigma). Then, the sample channel was eluted with water at 0.03 ml/min and AS channel with 40% AS solution of pH 4-4.5 at 1 ml/min until all non-binding components were eluted. Then, the releasing reagent (50% AS solution containing 0.5 M glycine and 10% ammonium hydroxide at pH 10) was introduced through the AS channel to release the target protein (HSA). The retained antibody was recovered by eluting the sample channel with water at 1 ml/min. A hollow fiber membrane device at the outlet (MicroKros, Spectrum, New Brunswick, NJ, USA) was provided on-line dialysis of the eluent before fractions were collected, so that the fractions could be analyzed by SDS-PAGE (sodium dodecyl sulfate - polyacrylamide gel electrophoresis) without further dialysis. The current method does not require immobilizing the antibody onto a matrix, which is used by the conventional immunoaffinity chromatography. This method ensures full recovery of the antigen and antibody, and it may be applied to purification of other proteins.

  10. Effect of budesonide and salbutamol on surfactant properties.

    PubMed

    Palmer, D; Schürch, S; Belik, J

    2000-09-01

    The objective of this study was to evaluate the in vitro effect of budesonide and salbutamol on the surfactant biophysical properties. The surface-tension properties of two bovine lipid extracts [bovine lipid extract surfactant (BLES) and Survanta] and a rat lung lavage natural surfactant were evaluated in vitro by the captive bubble surfactometer. Measurements were obtained before and after the addition of a low and high concentration of budesonide and salbutamol. Whereas salbutamol had no significant effect, budesonide markedly reduced the surface-tension-lowering properties of all surfactant preparations. Surfactant adsorption (decrease in surface tension vs. time) was significantly reduced (P < 0.01) at a high budesonide concentration with BLES, both concentrations with Survanta, and a low concentration with natural surfactant. At both concentrations, budesonide reduced (P < 0.01) Survanta film stability (minimal surface vs. time at minimum bubble volume), whereas no changes were seen with BLES. The minimal surface tension obtained for all surfactant preparations was significantly higher (P < 0.01), and the percentage of film area compression required to reach minimum surface tension was significantly lower after the addition of budesonide. In conclusion, budesonide, at concentrations used therapeutically, adversely affects the surface-tension-lowering properties of surfactant. We speculate that it may have the same adverse effect on the human surfactant.

  11. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films.

    PubMed

    Parra, Elisa; Pérez-Gil, Jesús

    2015-01-01

    The respiratory surface in the mammalian lung is stabilized by pulmonary surfactant, a membrane-based system composed of multiple lipids and specific proteins, the primary function of which is to minimize the surface tension at the alveolar air-liquid interface, optimizing the mechanics of breathing and avoiding alveolar collapse, especially at the end of expiration. The goal of the present review is to summarize current knowledge regarding the structure, lipid-protein interactions and mechanical features of surfactant membranes and films and how these properties correlate with surfactant biological function inside the lungs. Surfactant mechanical properties can be severely compromised by different agents, which lead to surfactant inhibition and ultimately contributes to the development of pulmonary disorders and pathologies in newborns, children and adults. A detailed comprehension of the unique mechanical and rheological properties of surfactant layers is crucial for the diagnostics and treatment of lung diseases, either by analyzing the contribution of surfactant impairment to the pathophysiology or by improving the formulations in surfactant replacement therapies. Finally, a short review is also included on the most relevant experimental techniques currently employed to evaluate lung surfactant mechanics, rheology, and inhibition and reactivation processes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Surfactant proteins A and D in the genital tract of mares.

    PubMed

    Kankavi, Orhan; Ata, Ayhan; Gungor, Orsan

    2007-04-01

    The presence of surface-active material in the lung alveolus has been known for several decades as being essential for normal lung function. Surfactant is essential for reducing the surface tension at the alveolar air-liquid interface. Pulmonary surfactant is composed of 90% lipids and 10% proteins. There are four non-serum proteins surfactant protein-A (SP-A), surfactant protein-B (SP-B), surfactant protein-C (SP-C) and surfactant protein-D (SP-D) named in chronologic order of discovery. Lung SP-A and SP-D belong to a family of collagen-containing C-type lectin family called collectins. The host defence and controlling inflammatory processes of the lung are the major functions of SP-A and SP-D. SP-A and SP-D were originally demonstrated in alveolar type II cells, but recent studies have shown extrapulmonary expression of SP-A and SP-D indicating systemic roles of these proteins. Present study describes the presence of SP-A and SP-D in the mare genital tract, vulva, vagina, ovarium, uterus and tuba uterina using immunohistochemistry and Western blotting. The aim of this study was to characterize surfactant proteins in terms of: (i) whether surfactant proteins were present in the various structures of the mare genital system, (ii) if so, identifying and locating the surfactant proteins and finally (iii) determining the differences from those previously characterized for the lung. Although beyond the scope of this report, it is recognized that there are also some potential implications for better defining the reproductive defence mechanisms in mare. Therefore, genital system organs and tissues from mares were examined. We were able to show that proteins reactive with surfactant-specific antibodies were present in the mare genital tract. Thus, surfactant proteins are present not in just lamellar bodies associated with lung, but also genital system of mare.

  13. Surfactant uptake dynamics in mammalian cells elucidated with quantitative coherent anti-stokes Raman scattering microspectroscopy.

    PubMed

    Okuno, Masanari; Kano, Hideaki; Fujii, Kenkichi; Bito, Kotatsu; Naito, Satoru; Leproux, Philippe; Couderc, Vincent; Hamaguchi, Hiro-o

    2014-01-01

    The mechanism of surfactant-induced cell lysis has been studied with quantitative coherent anti-Stokes Raman scattering (CARS) microspectroscopy. The dynamics of surfactant molecules as well as intracellular biomolecules in living Chinese Hamster Lung (CHL) cells has been examined for a low surfactant concentration (0.01 w%). By using an isotope labeled surfactant having CD bonds, surfactant uptake dynamics in living cells has been traced in detail. The simultaneous CARS imaging of the cell itself and the internalized surfactant has shown that the surfactant molecules is first accumulated inside a CHL cell followed by a sudden leak of cytosolic components such as proteins to the outside of the cell. This finding indicates that surfactant uptake occurs prior to the cell lysis, contrary to what has been believed: surface adsorption of surfactant molecules has been thought to occur first with subsequent disruption of cell membranes. Quantitative CARS microspectroscopy enables us to determine the molecular concentration of the surfactant molecules accumulated in a cell. We have also investigated the effect of a drug, nocodazole, on the surfactant uptake dynamics. As a result of the inhibition of tubulin polymerization by nocodazole, the surfactant uptake rate is significantly lowered. This fact suggests that intracellular membrane trafficking contributes to the surfactant uptake mechanism.

  14. Surfactant Enhanced DNAPL Removal

    DTIC Science & Technology

    2001-08-01

    or the permeability contrast (i.e., degree of heterogeneity) that is present in the DNAPL zone. To solubilize DNAPL with surfactants, a sufficient...with respect to the effects of permeability and heterogeneity upon the costs of SEAR: as permeability decreases and/or the degree of heterogeneity...not be an issue for surfactant recovery at all sites. The degree to which MEUF will concentrate the calcium is a function of the surfactant itself

  15. Waves in Strong Centrifugal Field

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarization and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modeling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  16. Surfactants, skin cleansing protagonists.

    PubMed

    Corazza, M; Lauriola, M M; Zappaterra, M; Bianchi, A; Virgili, A

    2010-01-01

    The correct choice of cosmetic products and cleansers is very important to improve skin hydration, to provide moisturizing benefits and to minimize cutaneous damage caused by surfactants. In fact, surfactants may damage protein structures and solubilize lipids. Soaps, defined as the alkali salts of fatty acids, are the oldest surfactants and are quite aggressive. Syndets (synthetic detergents) vary in composition and surfactant types (anionic, cationic, amphotheric, non-ionic). These new skin cleansing products also contain preservatives, fragrances, and sometimes emollients, humectants and skin nutrients. We present a revision of the literature and discuss recent findings regarding skin cleansers.

  17. Towards unravelling surfactant transport

    NASA Astrophysics Data System (ADS)

    Sellier, Mathieu; Panda, Satyananda

    2015-11-01

    Surfactant transport arises in many natural or industrial settings. Examples include lipid tear layers in the eye, pulmonary surfactant replacement therapy, or industrial coating flows. Flows driven by the surface tension gradient which arises as a consequence of surfactant concentration inhomogeneity, also known as Marangoni-driven flows, have attracted the attention of fluid dynamists for several decades and has led to the development of sophisticated models and the undeniable advancement of the understanding of such flows. Yet, experimental confirmation of these models has been hampered by the difficulty in reliably and accurately measuring the surfactant concentration and its temporal evolution. In this contribution, we propose a methodology which may help shed some light on surfactant transport at the surface of thin liquid films. The surface stress induced by surfactant concentration induces a flow at the free surface which is visible and measurable. In the context of thin film flows for which the lubrication approximation hold, we demonstrate how the knowledge of this free surface flow field provides sufficient information to reconstruct the surfactant tension field. From the surface tension and an assumed equation of state, the local surfactant concentration can also be calculated and other transport parameters such as the surfactant surface diffusivity indirectly inferred. In this contribution, the proposed methodology is tested with synthetic data generated by the forward solution of the governing partial differential equations in order to illustrate the feasibility of the algorithm and highlight numerical challenges.

  18. Fate and transport of polycyclic aromatic hydrocarbons in soil under the influence of surfactants

    SciTech Connect

    Sun, X.Y.; Goc, B.; Rueppel, M.L.; Puri, R.

    1995-12-31

    This paper presents a study to evaluate the mobility and sorption of polycyclic aromatic hydrocarbons (PAHs) in soils under the influence of surfactants at different concentrations. Three surfactants were examined: anionic, nonionic, and cationic. The experiment was designed to correlate the aqueous PAH concentrations with surfactant concentrations. Measurements were made of apparent critical micelle concentrations (CMCs) from the water-soil/aqueous-surfactant system by using the surface tension method. Solutions were made from each of the three surfactants with concentrations lower and higher than their apparent CMC. After centrifugation, the supernatants were treated, subjected to solvent extraction, and analyzed. For surfactant concentrations above the CMC value, the concentrations of the PAHs were also increased. However, concentrations below CMC values showed no effect except for the nonionic surfactant. All PAHs tested, including those with high molecular weight, showed significant mobility in the aqueous phase under the influence of surfactants. The sigmoid curves showed a plateau at higher concentrations of surfactants, beyond which further increase in surfactants did not affect the PAH mobility.

  19. Extraction and Quantification of Carbon Nanotubes in Biological Matrices with Application to Rat Lung Tissue

    PubMed Central

    Doudrick, Kyle; Corson, Nancy; Oberdörster, Günter; Elder, Alison; Herckes, Pierre; Halden, Rolf U.; Westerhoff, Paul

    2013-01-01

    Extraction of carbon nanotubes (CNTs) from biological matrices such as rat lung tissue is integral to developing a quantification method for evaluating the environmental and human health exposure and toxicity of CNTs. The ability of various chemical treatment methods, including Solvable (2.5% sodium hydroxide/surfactant mixture), ammonium hydroxide, nitric acid, sulfuric acid, hydrochloric acid, hydrofluoric acid, hydrogen peroxide, and proteinase K, to extract CNTs from rat lung tissue was evaluated. CNTs were quantified using programmed thermal analysis (PTA). Two CNTs were used to represent the lower (500°C) and upper (800°C) PTA limit of CNT thermal stability. The recovery efficiency of each of the eight chemical reagents evaluated was found to depend on the ability to (1) minimize oxidation of CNTs, (2) remove interfering background carbon from the rat lung tissue, and (3) separate the solid-phase CNTs from the liquid-phase dissolved tissue via centrifugation. A two-step extraction method using Solvable and proteinase K emerged as the optimal approach, enabling a recovery of 98 ± 15% of a 2.9 ± 0.19 µg CNT loading that was spiked into whole rat lungs. Due to its high yield and applicability to low organ burdens of nanomaterials, this extraction method is particularly well suited for in vivo studies to quantify clearance rates and retained CNTs in lungs and other organs. PMID:23992048

  20. Barrier or carrier? Pulmonary surfactant and drug delivery.

    PubMed

    Hidalgo, Alberto; Cruz, Antonio; Pérez-Gil, Jesús

    2015-09-01

    To consider the lung as a target for drug delivery and to optimise strategies directed at the pulmonary route, it is essential to consider the role of pulmonary surfactant, a thin lipid-protein film lining the respiratory surface of mammalian lungs. Membrane-based surfactant multilayers are essential for reducing the surface tension at the respiratory air-liquid interface to minimise the work of breathing. Different components of surfactant are also responsible for facilitating the removal of potentially pathological entities such as microorganisms, allergens or environmental pollutants and particles. Upon inhalation, drugs or nanoparticles first contact the surfactant layer, and these interactions critically affect their lifetime and fate in the airways. This review summarises the current knowledge on the possible role and effects of the pulmonary surfactant system in drug delivery strategies. It also summarises the evidence that suggests that pulmonary surfactant is far from being an insuperable barrier and could be used as an efficient shuttle for delivering hydrophobic and hydrophilic compounds deep into the lung and the organism. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The closer we look the more we see? Quantitative microscopic analysis of the pulmonary surfactant system.

    PubMed

    Ochs, Matthias

    2010-01-01

    The surfactant system of the lung has essential biophysical and immunomodulatory functions. Only at the electron microscopic level does surfactant reveal its morphological complexity--and beauty. Therefore, morphological tools are indispensible to characterize the surfactant system in health and disease. Stereology provides the gold standard for obtaining quantitative (morphometric) data in microscopy. The combination of microscopy and stereology allows for qualitative and quantitative analysis of the intraalveolar as well as the intracellular surfactant pool, both in its preserved microorganization and localization within the lung. Surfactant-producing alveolar epithelial type II cells can be counted and sampled for size estimation with physical disectors at a high magnification light microscopic level. The number of their surfactant storing lamellar bodies can be estimated using physical disectors at the electron microscopic level. Electron tomography allows for high resolution 3D visualization of lamellar body fusion pores. Intraalveolar surfactant subtypes can be quantitated in situ, thus reflecting the functional state of the intraalveolar surfactant pool. By immunoelectron microscopy, surfactant protein distribution can be analyzed. These methods allow for a comprehensive quantitative analysis of surfactant (ultra-)structure. Here, we give an overview on the analysis of the normal and disordered surfactant system by electron microscopy and stereology.

  2. A Noninvasive Surfactant Adsorption Test Predicting the Need for Surfactant Therapy in Preterm Infants Treated with Continuous Positive Airway Pressure.

    PubMed

    Autilio, Chiara; Echaide, Mercedes; Benachi, Alexandra; Marfaing-Koka, Anne; Capoluongo, Ettore D; Pérez-Gil, Jesús; De Luca, Daniele

    2017-03-01

    To determine the diagnostic accuracy of the surfactant adsorption test (SAT) as a predictor for the need for surfactant replacement therapy in neonates with respiratory distress syndrome (RDS). Amniotic fluid samples were collected from 41 preterm neonates with RDS treated with continuous positive airway pressure (CPAP) and 15 healthy control term neonates. Purified porcine surfactant served as a further control. Lamellar bodies and lung ultrasound score were also measured in a subset of the neonates treated with CPAP. Surfactant was administered according to the European guidelines, and clinical data were collected prospectively. Surfactant activity was measured as adsorption at the air/liquid interface and given in relative fluorescent units (RFU). Surfactant activity differed among native porcine surfactant (median, 4863 RFU; IQR, 4405-5081 RFU), healthy term neonates (median, 2680 RFU; IQR, 2069-3050 RFU), and preterm neonates with RDS (median, 442 RFU; IQR, 92-920 RFU; P <.0001). The neonates who failed CPAP had lower surfactant activity compared with those who did not fail CPAP (median, 92 RFU; IQR, 0-315 RFU vs 749 RFU; IQR, 360-974 RFU; P = .0002). Differences between groups were more evident beyond 20-30 minutes of fluorescence; the 30-minute time point showed the highest area under the curve (0.84; P <.001) and the best cutoff level (170 RFU; specificity, 72%; sensitivity, 96%) for the prediction of CPAP failure. Surfactant activity at 30 minutes was significantly correlated with lamellar bodies (r = 0.51, P = .006) and lung ultrasound score (r = -0.39, P = .013). This technique has the potential to be developed into a fast, simple-to-interpret clinical test. The SAT can reliably identify preterm infants with subsequent CPAP failure and shows promise as a screening test for surfactant replacement in preterm neonates. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Centrifugal pump impeller

    SciTech Connect

    Lovisetto, P.

    1988-01-19

    An impeller for a centrifugal pump is described comprising: a rotatable impeller shaft; circumferentially spaced vanes mounted for rotation with the impeller shaft, the vanes extending outwardly relative to the impeller shaft and each including first and second axially-spaced edges; first and second axially-spaced cover members for vanes, the cover members being mounted for rotation with the impeller shaft and extending outwardly relative to the axial direction of the impeller shaft, the first cover member being disposed adjacent to the first edges of the vanes and the second cover member being disposed adjacent to the second edges of the vanes so as to provide an impeller chamber between the first and second cover members which is divided into subchambers by the vanes. One of the first and second cover members has a centrally disposed inlet opening therethrough for admitting fluid into the impeller chamber to then be conducted outwardly upon rotation of the impeller shaft; and the fist cover member being so constructed and mounted relative to the vanes that a portion thereof is free to flex axially away from respective portions of the first edges of the vanes in response to fluid pressure pulsations within the impeller chamber to temporarily increase the distance between the portion of the first cover and the respective portions of the first edges of the vanes.

  4. Lavage administration of dilute surfactant in a piglet model of meconium aspiration.

    PubMed

    Meister, Joan; Balaraman, Venkataraman; Ramirez, Malia; Uyehara, Catherine F T; Killeen, Jeffrey; Ku, Tercia; Person, Donald; Easa, David

    2004-01-01

    Maldistribution of exogenous surfactant may preclude any clinical response in acute lung injury associated with surfactant dysfunction. Our previous studies have shown the effectiveness of surfactant lavage after homogenous lung injury. The present study utilizes a histologically confirmed non-homogeneous lung injury model induced by saline lung-lavage followed by meconium injected into a mainstem bronchus. Piglets were then treated with Infasurf or Exosurf by lavage (I-LAVAGE, n = 7; E-LAVAGE, n = 5) or bolus (I-BOLUS, n = 8; E-BOLUS, n = 5), or went untreated (CONTROL, n = 4). Lavage administration utilized a dilute surfactant (35 ml/kg; 4 mg phospholipid/ml) instilled into the lung, followed by gravity drainage. The retained doses of the respective surfactant in the lavage and bolus groups were similar. Results showed that the surfactant distribution was more uniform in the lavage groups compared to the bolus groups. Significant and consistent increases in PaO2 were observed in the lavage groups compared to the bolus groups and the controls. PaO2 (mmHg) at 240 min posttreatment: I-LAVAGE = 297 +/- 54, E-LAVAGE = 280 +/- 57; I-BOLUS = 139 +/- 31; E-BOLUS = 152 +/- 29; C = 119 +/- 73 (mean +/- SEM). Other improved pulmonary function parameters favored lavage administration. We conclude that better surfactant distribution achieved by lavage administration can be more effective than bolus administration in this type of non-homogeneous lung injury.

  5. HOUSINGS AND MOUNTINGS FOR CENTRIFUGES

    DOEpatents

    Rushing, F.C.

    1960-08-16

    A protective housing for a gas centrifuge comprises a slidable connection between flanges and framework portions for absorbing rotational energy in case of bursting of the rotor and a sealing means for sealing the rotor chamber.

  6. Centrifugal dryers keep pace with the market

    SciTech Connect

    Fiscor, S.

    2008-03-15

    New plant design and upgrades create a shift in dewatering strategies. The article describes recent developments. Three major manufacturers supply centrifugal dryers - TEMA, Centrifugal & Mechanical Industries (CMI) and Ludowici. CMI introduced a line of vertical centrifugal dryers. TEMA improved the techniques by developing a horizontal vibratory centrifuge (HVC) which simplified maintenance. 3 figs., 1 photo.

  7. Microwave assisted centrifuge and related methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  8. Variable-Speed Instrumented Centrifuges

    NASA Technical Reports Server (NTRS)

    Chapman, David K.; Brown, Allan H.

    1991-01-01

    Report describes conceptual pair of centrifuges, speed of which varied to produce range of artificial gravities in zero-gravity environment. Image and data recording and controlled temperature and gravity provided for 12 experiments. Microprocessor-controlled centrifuges include video cameras to record stop-motion images of experiments. Potential applications include studies of effect of gravity on growth and on production of hormones in corn seedlings, experiments with magnetic flotation to separate cells, and electrophoresis to separate large fragments of deoxyribonucleic acid.

  9. Variable-Speed Instrumented Centrifuges

    NASA Technical Reports Server (NTRS)

    Chapman, David K.; Brown, Allan H.

    1991-01-01

    Report describes conceptual pair of centrifuges, speed of which varied to produce range of artificial gravities in zero-gravity environment. Image and data recording and controlled temperature and gravity provided for 12 experiments. Microprocessor-controlled centrifuges include video cameras to record stop-motion images of experiments. Potential applications include studies of effect of gravity on growth and on production of hormones in corn seedlings, experiments with magnetic flotation to separate cells, and electrophoresis to separate large fragments of deoxyribonucleic acid.

  10. Centrifugal Compressor Aeroelastic Analysis Code

    NASA Astrophysics Data System (ADS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  11. Atelectasis--an unusual and late complication of lung transplant.

    PubMed

    Zhao, Y; Al-Kaade, S; Keller, C A; deMello, D E

    2002-06-01

    We report a previously unrecognized late complication of allograft lung transplantation - persistent recurrent atelectasis of the transplanted lung. The patient developed sudden, severe respiratory distress about 2 yr after a right lung transplant, because of acute atelectasis of her transplanted lung. Multiple transbronchial biopsies at the time revealed minimal inflammation and no evidence of rejection. She was treated with surfactant replacement therapy, and her collapsed lung fully expanded following surfactant installation. To eliminate the possibility of acquired deficiency of surfactant lipids or proteins, ultrastructural examination and immunostains for surfactant proteins were performed in a transbronchial lung biopsy. No deficiency of surfactant lipids or proteins was found. On ultrastructural examination of the lung biopsy, the number of Type II cells per alveolus and the number of lamellar bodies per square micron of Type II cell cross-sectional area was increased compared with an age-matched control. We conclude that synthesis of surfactant lipids and proteins was unimpaired and because of the patient's response to surfactant replacement therapy, that the increase in number of lamellar bodies could reflect a compensatory mechanism for a surfactant functional defect. The patient later developed breast carcinoma to which she succumbed. We raise the possibility that the functional surfactant defect is a hitherto unrecognized non-metastatic manifestation of malignancy.

  12. SURFACTANTS AND SUBSURFACE REMEDIATION

    EPA Science Inventory

    Because of the limitations of pump-and-trat technology, attention is now focused on the feasibility of surfactant use to increase its efficiency. Surfactants have been studied for use in soil washing and enhanced oil recovery. Although similarities exist between the application...

  13. SURFACTANTS AND SUBSURFACE REMEDIATION

    EPA Science Inventory

    Because of the limitations of pump-and-trat technology, attention is now focused on the feasibility of surfactant use to increase its efficiency. Surfactants have been studied for use in soil washing and enhanced oil recovery. Although similarities exist between the application...

  14. SURFACTANTS IN LUBRICATION

    USDA-ARS?s Scientific Manuscript database

    Surfactants are one of the most widely applied materials by consumers and industry. The application areas for surfactants span from everyday mundane tasks such as cleaning, to highly complex processes involving the formulation of pharmaceuticals, foods, pesticides, lubricants, etc. Even though sur...

  15. Centrifugation-based Purification of Emerging Low-dimensional Materials and Their Thin-film Applications

    NASA Astrophysics Data System (ADS)

    Seo, Jung Woo

    Polydispersity in low-dimensional materials offers many interesting challenges and properties. In particular, the one- and two-dimensional carbon allotropes such as carbon nanotubes and graphene have demonstrated exquisite optoelectronic properties that are highly sensitive to their physical structures, where subtle variations in diameter and thickness render them with significantly different electronic band structures. Thus, the carbon nanomaterials have been the subject of extensive studies that address their polydispersity issues. Among these, solution-phase, buoyant density-based methods such as density gradient ultracentrifugation have been widely utilized to enrich subpopulations of carbon nanotubes and graphene with narrow distribution in diameter and thickness, enabling their applications in various next-generation thin-film devices. In this thesis, I present further advancement of centrifugation-based processing methods for emerging low-dimensional materials through systematic utilization of previously explored surfactant systems, development of novel surfactant types, and study of correlation between the chemical structure of surfactants and the dispersion and optoelectronic properties of the nanomaterials. First, I employ an iterative density gradient ultracentrifugation with a combination of anionic surfactants and addition of excess counter-ions to achieve isolation of novel diameter species of semiconducting single-walled carbon nanotubes. The purification of carbon nanotubes with simultaneous, ultrahigh-purity refinement in electronic type and diameter distribution leads to collaborative studies on heat distribution characteristics and diameter-dependent direct current and radio frequency performances in monodisperse carbon nanotube thin-film transistors. Next, I develop the use of non-ionic polymeric surfactants for centrifugation-based processes. Specifically, I utilize polypropylene and polyethylene oxide-based block copolymers with density

  16. Reduction of the surface-tension-lowering ability of surfactant after exposure to hypochlorous acid.

    PubMed Central

    Merritt, T A; Amirkhanian, J D; Helbock, H; Halliwell, B; Cross, C E

    1993-01-01

    The reactive species hypochlorous acid (HOCl/OCl-) is a major product of the respiratory burst in activated neutrophils. We studied the effects of HOCl/OCl- on human surfactant and upon surfactants Survanta, KL4 and Exosurf, utilizing a pulsating surfactometer for measuring surface tension. HOCl/OCl- induced a marked dose-dependent decrease in the surface-tension-lowering activity of human surfactant. The surfactant containing surfactant proteins B and C (Survanta) was less sensitive; however, synthetic surfactants with or without peptides were not affected by HOCl/OCl- (KL4, Exosurf). Ascorbic acid and GSH protected human surfactant against inactivation by HOCl/OC1-. We suggest that HOCl/OCl- produced by activated phagocytes in the alveolar compartment of the lung could damage endogenous surfactant and affect the function of exogenously administered natural or other surfactants, especially if ascorbic acid and GSH levels in the lung lining fluids are subnormal, as is known to be the case in some inflammatory lung diseases. PMID:8216215

  17. Effect of surfactant and budesonide on the pulmonary distribution of fluorescent dye in mice.

    PubMed

    Huang, Liang-Ti; Yeh, Tsu-Fu; Kuo, Yu-Lin; Chen, Pin-Chuan; Chen, Chung-Ming

    2015-02-01

    Surfactant is a useful vehicle for the intratracheal delivery of medicine to the distal lung. The aim of this study was to analyze the effect of intratracheal surfactant and budesonide instillation on the pulmonary distribution of fluorescent dye in mice. Male athymic nude mice were assigned randomly as controls, fluorescent dye, fluorescent dye + surfactant (50 mg/kg), fluorescent dye + budesonide (0.25 mg/kg), and fluorescent dye + surfactant + budesonide groups. A total volume of 60 μL fluorescent solutions was intratracheally injected and followed by 60 μL of air. We photographed and measured fluorescence in the lungs, from the back, 15 minutes after intratracheal administration using an IVIS Xenogen imaging instrument. The fluorescent dye (1,1'-dioctadecyltetramethyl indotricarbocyanine iodide) was most strongly detected near the trachea and weakly detected in the lungs in mice administered with fluorescent solutions. Almost no fluorescence was seen in the lung region of control mice. Intratracheal administration of surfactant or budesonide increased fluorescent intensity compared with control mice. Combined administration of surfactant and budesonide further increased fluorescent intensity compared with mice given surfactant or budesonide alone. Surfactant and budesonide enhance the pulmonary distribution of fluorescent dye in mice. Copyright © 2014. Published by Elsevier B.V.

  18. CENTRIFUGAL MEMBRANE FILTRATION

    SciTech Connect

    William A. Greene; Patricia A. Kirk; Richard Hayes; Joshua Riley

    2005-10-28

    SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, has engineered and developed a system for use within the U.S. Department of Energy (DOE) Environmental Management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. SpinTek II High Shear Rotary Membrane Filtration System is a unique compact crossflow membrane system that has large, demonstrable advantages in performance and cost compared to currently available systems: (1) High fluid shear prevents membrane fouling even with very high solids content; hazardous and radioactive components can be concentrated to the consistency of a pasty slurry without fouling. (2) Induced turbulence and shear across the membrane increases membrane flux by a factor of ten over existing systems and allows operation on fluids not otherwise treatable. (3) Innovative ceramic membrane and mechanical sealing technology eliminates compatibility problems with aggressive DOE waste streams. (4) System design allows rapid, simple disassembly for inspection or complete decontamination. (5) Produces colloidal- and suspended-solids-free filtrate without the addition of chemicals. The first phase of this project (PRDA maturity stage 5) completed the physical scale-up of the SpinTek unit and verified successful scale-up with surrogate materials. Given successful scale-up and DOE concurrence, the second phase of this project (PRDA maturity stage 6) will provide for the installation and

  19. Exogenous surfactant therapy and mucus rheology in chronic obstructive airway diseases.

    PubMed

    Banerjee, R; Puniyani, R R

    2000-01-01

    Exogenous surfactant is a specialized biomaterial used for substitution of the lipoprotein mixture normally present in the lungs-pulmonary surfactant. Respiratory Distress Syndrome is a disease of preterm infants mainly caused by pulmonary immaturity as evidenced by a deficiency of mature lung surfactant. Pulmonary surfactant is known to stabilize small alveoli and prevent them from collapsing during expiration. However, apart from alveoli, surfactant also lines the narrow conducting airways of the tracheobronchial tree. This paper reviews the role of this surfactant in the airways and its effect on mucus rheology and mucociliary clearance. Its potential role as a therapeutic biomaterial in chronic obstructive airway diseases, namely asthma, chronic bronchitis, and respiratory manifestations of cystic fibrosis, are discussed. This paper also attempts to elucidate the exact steps in the pathogenic pathway of these diseases which could be reversed by supplementation of exogenous surfactant formulations. It is shown that there is great potential for the use of present day surfactants (which are actually formulated for use in Respiratory Disease Syndrome) as therapy in the aforementioned diseases of altered mucus viscoelasticity and mucociliary clearance. However, for improved effectiveness, specific surfactant formulations satisfying certain specific criteria should be tailor-made for the clinical condition for which they are intended. The properties required to be fulfilled by the optimal exogenous surfactant in each of the above clinical conditions are enumerated in this paper.

  20. Surfactants in the environment.

    PubMed

    Ivanković, Tomislav; Hrenović, Jasna

    2010-03-01

    Surfactants are a diverse group of chemicals that are best known for their wide use in detergents and other cleaning products. After use, residual surfactants are discharged into sewage systems or directly into surface waters, and most of them end up dispersed in different environmental compartments such as soil, water or sediment. The toxic effects of surfactants on various aquatic organisms are well known. In general, surfactants are present in the environment at levels below toxicity and in Croatia below the national limit. Most surfactants are readily biodegradable and their amount is greatly reduced with secondary treatment in wastewater treatment plants. The highest concern is the release of untreated wastewater or wastewater that has undergone primary treatment alone. The discharge of wastewater polluted with massive quantities of surfactants could have serious effects on the ecosystem. Future studies of surfactant toxicities and biodegradation are necessary to withdraw highly toxic and non-biodegradable compounds from commercial use and replace them with more environmentally friendly ones.

  1. Perceived radial translation during centrifugation.

    PubMed

    Bos, Jelte E; Correia Grácio, Bruno J

    2015-01-01

    Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. To study whether centrifugation can induce a radial translation perception in the absence of visual cues. To that end, we exposed 12 subjects to a centripetal acceleration with eyes closed. To avoid confounding with angular motion perception, subjects were fist rotated on-axis, and were shifted out fast and slow only after rotation sensation had vanished. They were asked for translation direction and velocity right after the shift-out, as well as after about 60 seconds of constant centrifugation. Independent of fast or slow shift-out, the vast statistically significant majority of trials yielded an inward radial translation perception, which velocity was constant after 60 seconds of constant centrifugation. We therefore conclude that during centrifugation, an inward radial translation perception does exist in humans, which perception reaches a constant, non-zero value during constant rotation, lasting for at least one minute. These results can be understood by high-pass filtering of otolith afferents to make a distinction between inertial and gravitational acceleration, followed by a mere integration over time to reach a constant velocity perception.

  2. Hydrodynamic drive of tubular centrifuges

    SciTech Connect

    Tsybul'nik, A.P.

    1986-07-01

    A drive has been developed for a tubular centrifuge having a 10 kW ASTs-10-504 high-frequency electric motor with a synchronous rotation speed of 15,000 rpm. Despite a few demerits, the drive met the basic production requirements; simplicity and reliability of design, admissable rotation speed, and explosion resistance. However, this drive for tubular centrifuges had to be abandoned because experimental prototypes of high-frequency motors were used for the industrial tests and lot production of such motors is not probable in the near future. Industrial tests of a new hydrodynamic drive were performed, and the schematic diagram is shown. The hydrodrive was tested during centrifuge operation with polyester lac. It was found that the hydodynamic drive is distinguished by operational reliability and easy serviceability, holds promise for increased centrifuge speed, ensures smooth start of the centrifuge and satisfactory stability of the rotor rotation speed in the steady regime, reliably protects the motor from overloading and is fully explosion-proof.

  3. Centrifuge-Based Fluidic Platforms

    NASA Astrophysics Data System (ADS)

    Zoval, Jim; Jia, Guangyao; Kido, Horacio; Kim, Jitae; Kim, Nahui; Madou, Marc

    In this chapter centrifuge-based microfluidic platforms are reviewed and compared with other popular microfluidic propulsion methods. The underlying physical principles of centrifugal pumping in microfluidic systems are presented and the various centrifuge fluidic functions such as valving, decanting, calibration, mixing, metering, heating, sample splitting, and separation are introduced. Those fluidic functions have been combined with analytical measurements techniques such as optical imaging, absorbance and fluorescence spectroscopy and mass spectrometry to make the centrifugal platform a powerful solution for medical and clinical diagnostics and high-throughput screening (HTS) in drug discovery. Applications of a compact disc (CD)-based centrifuge platform analyzed in this review include: two-point calibration of an optode-based ion sensor, an automated immunoassay platform, multiple parallel screening assays and cellular-based assays. The use of modified commercial CD drives for high-resolution optical imaging is discussed as well. From a broader perspective, we compare the technical barriers involved in applying microfluidics for sensing and diagnostic as opposed to applying such techniques to HTS. The latter poses less challenges and explains why HTS products based on a CD fluidic platform are already commercially available, while we might have to wait longer to see commercial CD-based diagnostics.

  4. Hemolysis in different centrifugal pumps.

    PubMed

    Kawahito, K; Nosé, Y

    1997-04-01

    Different types of centrifugal pumps cause different amounts of hemolysis based on shear stress and blood exposure time. However, the hemolytic characteristics of centrifugal pumps in each clinical condition are not always clear. We compared the hemolytic characteristics of one cone-type centrifugal pump (Medtronic BioMedicus BP-80) and 2 impeller-type centrifugal pumps (Nikkiso HMS-12 and Terumo Capiox) under experimental conditions simulating their use in cardiopulmonary bypass (CPB), extracorporeal membrane oxygenation (ECMO), and percutaneous cardiopulmonary support (PCPS) as well as their use as left ventricular assist devices (LVADs). The normalized indexes of hemolysis (NIHs; grams free plasma hemoglobin per 100 L blood pumped) during use as LVADs were not significantly different among the 3 pumps. The BP-80 pump produced almost 3-fold more hemolysis than the HMS-12 and Capiox pumps during CPB, 3- to 4-fold more hemolysis during ECMO, and 5.5-fold more hemolysis during PCPS. The 2 impeller-type centrifugal pumps will therefore cause less hemolysis under high flow, high pressure difference (as in CPB) and low flow, high pressure difference (as in ECMO and PCPS) conditions than the cone-type pump.

  5. Metathesis depolymerizable surfactants

    DOEpatents

    Jamison, Gregory M.; Wheeler, David R.; Loy, Douglas A.; Simmons, Blake A.; Long, Timothy M.; McElhanon, James R.; Rahimian, Kamyar; Staiger, Chad L.

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  6. Centrifugal slip casting of components

    SciTech Connect

    Steinlage, G.A.; Roeder, R.K.; Trumble, K.P.; Bowman, K.J.

    1996-05-01

    Research in layered and functionally gradient materials has emerged because of the increasing demand for high-performance engineering materials. Many techniques have been used to produce layered and functionally gradient components. Common examples include thermal spray processing, powder processing, chemical and physical vapor deposition, high-temperature or combustion synthesis, diffusion treatments, microwave processing and infiltration. Of these techniques, powder processing routes offer excellent microstructural control and product quality, and they are capable of producing large components. Centrifugal slip casting is a powder-processing technique combining the effects of slip casting and centrifugation. In slip casting, consolidation takes place as fluid is removed by the porous mold. Particles within the slip move with the suspending fluid until reaching the mold wall, at which point they are consolidated. In centrifugation, particles within the slip move through the fluid at a rate dependent upon the gravitational force and particle drag.

  7. Centrifugation and the Manhattan Project

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2009-05-01

    A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.

  8. Centrifugation and the Manhattan Project

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2009-04-01

    A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.

  9. MEANS FOR DETERMINING CENTRIFUGE ALIGNMENT

    DOEpatents

    Smith, W.Q.

    1958-08-26

    An apparatus is presented for remotely determining the alignment of a centrifuge. The centrifage shaft is provided with a shoulder, upon which two followers ride, one for detecting radial movements, and one upon the shoulder face for determining the axial motion. The followers are attached to separate liquid filled bellows, and a tube connects each bellows to its respective indicating gage at a remote location. Vibrations produced by misalignment of the centrifuge shaft are transmitted to the bellows, and tbence through the tubing to the indicator gage. This apparatus is particularly useful for operation in a hot cell where the materials handled are dangerous to the operating personnel.

  10. Recent advances in gemini surfactants: oleic Acid-based gemini surfactants and polymerizable gemini surfactants.

    PubMed

    Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2011-01-01

    Gemini surfactants recently developed by our research group are introduced from the standpoints of their syntheses, aqueous solution properties, and potential applications. Two series of gemini surfactants are introduced in this short review, the first of which is the oleic acid-based gemini surfactants, and the second is the polymerizable gemini surfactants. These gemini surfactants have been developed not only as environmentally friendly materials (the use of gemini surfactants enables the reduction of the total consumption of surfactants in chemical products owing to their excellent adsorption and micellization capabilities at low concentrations) but also as functional organic materials.

  11. Phosphine oxide surfactants revisited.

    PubMed

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G

    2016-04-01

    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties.

  12. Extensive intraalveolar pulmonary hemorrhage in infants dying after surfactant therapy.

    PubMed

    Pappin, A; Shenker, N; Hack, M; Redline, R W

    1994-04-01

    To assess the possible relationship between exogenous surfactant therapy and pulmonary hemorrhage in premature infants, we compared autopsy findings in 15 infants treated with exogenous surfactant and in 29 who died before the introduction of surfactant therapy. Infants who met the following criteria were included: birth weight 501 to 1500 gm, survival 4 hours to 7 days, and no congenital anomalies. Average birth weight, gestational age, and age at death were equivalent for the two groups. High rates of pulmonary hemorrhage were present in both groups (treated 80% vs untreated 83%). The untreated group had higher incidences of interstitial hemorrhage and lung hematomas and significantly more large interstitial hemorrhages: 31% untreated versus 0% treated (p < 0.05). The overall rate of intraalveolar hemorrhage was similar in the two groups, but surfactant-treated infants were more likely to have extensive intraalveolar hemorrhage: 53% versus 14% (p < 0.05). Most surfactant-treated infants who survived more than 24 hours had extensive intraalveolar hemorrhage (8/9). Patients who had extensive intraalveolar hemorrhage, with or without prior surfactant therapy, frequently had clinically significant pulmonary hemorrhage (7/12). These findings indicate that infants who die after surfactant therapy have higher rates of a specific type of pulmonary hemorrhage--extensive intraalveolar hemorrhage.

  13. Cell-specific modulation of surfactant proteins by ambroxol treatment

    SciTech Connect

    Seifart, Carola . E-mail: zwiebel@mailer.uni-marburg.de; Clostermann, Ursula; Seifart, Ulf

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression.

  14. Cell-specific modulation of surfactant proteins by ambroxol treatment.

    PubMed

    Seifart, Carola; Clostermann, Ursula; Seifart, Ulf; Müller, Bernd; Vogelmeier, Claus; von Wichert, Peter; Fehrenbach, Heinz

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression.

  15. Surfactant and varespladib co-administration in stimulated rat alveolar macrophages culture.

    PubMed

    De Luca, Daniele; Vendittelli, Francesca; Trias, Joaquim; Fraser, Heather; Minucci, Angelo; Gentile, Leonarda; Perez-Gil, Jesus; Conti, Giorgio; Antonelli, Massimo; Capoluongo, Ettore D

    2013-01-01

    Acute lung injury is a life-threatening condition characterized by surfactant dysfunction and raised secretory phospholipase A2 (sPLA2) activity. Varespladib is a sPLA2 inhibitor shown to be effective in animal models of acute lung injury. We aimed at investigating the effect of co-administration of surfactant and varespladib on sPLA2 activity. Alveolar macrophages were cultured and stimulated with lipopolysaccharide and then treated with either varespladib, surfactant, varespladib followed by surfactant or nothing. sPLA2 activity, free fatty acids, tumour necrosis factor-α (TNF-α) and protein concentrations were measured in culture supernatants. Treatment with varespladib (p=0.019) and varespladib + surfactant (p=0.013), reduced the enzyme activity by approximately 15% from the basal level measured in the untreated cultures. Surfactant, varespladib and varespladib + surfactant, respectively decreased free fatty acids by -45% (p=0.045), - 62% (p=0.009) and -48% (p=0.015), from the baseline concentration of the untreated cultures. Varespladib and poractant- α co-administration reduces sPLA2 activity and free fatty acids release in cultured rat alveolar macrophages, although a clear drug synergy was not evident. Since co-administration may be useful to reduce inflammation and surfactant inactivation in acute lung injury, further in vivo studies are warranted to verify its clinical usefulness.

  16. Centrifugal pumps for rocket engines

    NASA Technical Reports Server (NTRS)

    Campbell, W. E.; Farquhar, J.

    1974-01-01

    The use of centrifugal pumps for rocket engines is described in terms of general requirements of operational and planned systems. Hydrodynamic and mechanical design considerations and techniques and test procedures are summarized. Some of the pump development experiences, in terms of both problems and solutions, are highlighted.

  17. Life Sciences Centrifuge Facility assessment

    NASA Technical Reports Server (NTRS)

    Benson, Robert H.

    1994-01-01

    This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.

  18. Laser and gas centrifuge enrichment

    SciTech Connect

    Heinonen, Olli

    2014-05-09

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  19. Life Sciences Centrifuge Facility review

    NASA Technical Reports Server (NTRS)

    Young, Laurence R.

    1994-01-01

    The Centrifuge Facility Project at ARC was reviewed by a code U team to determine appropriateness adequacy for the ISSA. This report represents the findings of one consultant to this team and concentrates on scientific and technical risks. This report supports continuation of the project to the next phase of development.

  20. Laser and gas centrifuge enrichment

    NASA Astrophysics Data System (ADS)

    Heinonen, Olli

    2014-05-01

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  1. Pulmonary surfactant metabolism in the alveolar airspace: Biogenesis, extracellular conversions, recycling.

    PubMed

    Olmeda, Bárbara; Martínez-Calle, Marta; Pérez-Gil, Jesus

    2017-01-01

    Pulmonary surfactant is a lipid-protein complex that lines and stabilizes the respiratory interface in the alveoli, allowing for gas exchange during the breathing cycle. At the same time, surfactant constitutes the first line of lung defense against pathogens. This review presents an updated view on the processes involved in biogenesis and intracellular processing of newly synthesized and recycled surfactant components, as well as on the extracellular surfactant transformations before and after the formation of the surface active film at the air-water interface. Special attention is paid to the crucial regulation of surfactant homeostasis, because its disruption is associated with several lung pathologies. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Aerosol characterization with centrifugal aerosol spectrometers: Theory and experiment

    SciTech Connect

    Johnson, D.L.; Martonen, T.B.

    1989-01-01

    A general mathematical model describing the motion of particles in aerosol centrifuges has been developed. It has been validated by comparisons of theoretically predicted calibration sites with experimental data from tests sizing aerosols in instruments of three different spiral duct configurations. By accurately simulating factors which influence centrifuge performance, the model enhances the versatility of existing instruments and promotes CAD (computer aided design) and CAM (computer aided manufacture) of new units. The model will permit more accurate aerodynamic classifications of airborne particles. Therefore, more precise determinations of deposition sites of inhaled aerosols within the lung will be possible, since such locations are primarily functions on the dynamic characteristics of motion. U.S. EPA risk assessment protocols of pollutant aerosols will thereby be improved.

  3. 77 FR 9273 - USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Direct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... COMMISSION USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Direct Transfer of Licenses In the Matter of USEC INC. (American Centrifuge Lead Cascade Facility and American... holder of materials licenses SNM-7003 and SNM-2011 for the American Centrifuge Lead Cascade Facility...

  4. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 864.5350 Microsedimentation centrifuge. (a) Identification. A microsedimentation centrifuge is a...

  5. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 864.5350 Microsedimentation centrifuge. (a) Identification. A microsedimentation centrifuge is a...

  6. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 864.5350 Microsedimentation centrifuge. (a) Identification. A microsedimentation centrifuge is a...

  7. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 864.5350 Microsedimentation centrifuge. (a) Identification. A microsedimentation centrifuge is a...

  8. High Oxygen Concentrations Adversely Affect the Performance of Pulmonary Surfactant.

    PubMed

    Smallwood, Craig D; Boloori-Zadeh, Parnian; Silva, Maricris R; Gouldstone, Andrew

    2017-08-01

    Although effective in the neonatal population, exogenous pulmonary surfactant has not demonstrated a benefit in pediatric and adult subjects with hypoxic lung injury despite a sound physiologic rationale. Importantly, neonatal surfactant replacement therapy is administered in conjunction with low fractional FIO2 while pediatric/adult therapy is administered with high FIO2 . We suspected a connection between FIO2 and surfactant performance. Therefore, we sought to assess a possible mechanism by which the activity of pulmonary surfactant is adversely affected by direct oxygen exposure in in vitro experiments. The mechanical performance of pulmonary surfactant was evaluated using 2 methods. First, Langmuir-Wilhelmy balance was utilized to study the reduction in surface area (δA) of surfactant to achieve a low bound value of surface tension after repeated compression and expansion cycles. Second, dynamic light scattering was utilized to measure the size of pulmonary surfactant particles in aqueous suspension. For both experiments, comparisons were made between surfactant exposed to 21% and 100% oxygen. The δA of surfactant was 21.1 ± 2.0% and 35.8 ± 2.0% during exposure to 21% and 100% oxygen, respectively (P = .02). Furthermore, dynamic light-scattering experiments revealed a micelle diameter of 336.0 ± 12.5 μm and 280.2 ± 11.0 μm in 21% and 100% oxygen, respectively (P < .001), corresponding to a ∼16% decrease in micelle diameter following exposure to 100% oxygen. The characteristics of pulmonary surfactant were adversely affected by short-term exposure to oxygen. Specifically, surface tension studies revealed that short-term exposure of surfactant film to high concentrations of oxygen expedited the frangibility of pulmonary surfactant, as shown with the δA. This suggests that reductions in pulmonary compliance and associated adverse effects could begin to take effect in a very short period of time. If these findings can be demonstrated in vivo, a role for

  9. Surfactant protein B inhibits secretory phospholipase A2 hydrolysis of surfactant phospholipids

    PubMed Central

    Grier, Bonnie L.; Waite, B. Moseley; Veldhuizen, Ruud A.; Possmayer, Fred; Yao, Li-Juan; Seeds, Michael C.

    2012-01-01

    Hydrolysis of surfactant phospholipids (PL) by secretory phospholipases A2 (sPLA2) contributes to surfactant damage in inflammatory airway diseases such as acute lung injury/acute respiratory distress syndrome. We and others have reported that each sPLA2 exhibits specificity in hydrolyzing different PLs in pulmonary surfactant and that the presence of hydrophilic surfactant protein A (SP-A) alters sPLA2-mediated hydrolysis. This report tests the hypothesis that hydrophobic SP-B also inhibits sPLA2-mediated surfactant hydrolysis. Three surfactant preparations were used containing varied amounts of SP-B and radiolabeled tracers of phosphatidylcholine (PC) or phosphatidylglycerol (PG): 1) washed ovine surfactant (OS) (pre- and postorganic extraction) compared with Survanta (protein poor), 2) Survanta supplemented with purified bovine SP-B (1–5%, wt/wt), and 3) a mixture of dipalmitoylphosphatidylcholine (DPPC), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) (DPPC:POPC:POPG, 40:40:20) prepared as vesicles and monomolecular films in the presence or absence of SP-B. Hydrolysis of PG and PC by Group IB sPLA2 (PLA2G1A) was significantly lower in the extracted OS, which contains SP-B, compared with Survanta (P = 0.005), which is SP-B poor. Hydrolysis of PG and PC in nonextracted OS, which contains all SPs, was lower than both Survanta and extracted OS. When Survanta was supplemented with 1% SP-B, PG and PC hydrolysis by PLA2G1B was significantly lower (P < 0.001) than in Survanta alone. When supplemented into pure lipid vesicles and monomolecular films composed of PG and PC mixtures, SP-B also inhibited hydrolysis by both PLA2G1B and Group IIA sPLA2 (PLA2G2A). In films, PLA2G1B hydrolyzed surfactant PL monolayers at surface pressures ≤30 mN/m (P < 0.01), and SP-B lowered the surface pressure range at which hydrolysis can occur. These results suggest the hydrophobic SP, SP-B, protects alveolar surfactant PL from

  10. Design of a centrifugal blood pump: Heart Turcica Centrifugal.

    PubMed

    Demir, Onur; Biyikli, Emre; Lazoglu, Ismail; Kucukaksu, Suha

    2011-07-01

    A prototype of a new implantable centrifugal blood pump system named Heart Turcica Centrifugal (HTC) was developed as a left ventricular assist device (LVAD) for the treatment of end-stage cardiac failure. In the development of HTC, effects of blade height and volute tongue profiles on the hydraulic and hemolytic performances of the pump were investigated. As a result, the prototype was manufactured using the best blade height and volute tongue profiles. Performance of the prototype model was experimentally evaluated in a closed-loop flow system using water as the medium. The hydraulic performance requirement of an LVAD (5 L/min flow rate against a pressure difference of 100 mm Hg) was attained at 2800 rpm rotational speed.

  11. Transient Exposure of Pulmonary Surfactant to Hyaluronan Promotes Structural and Compositional Transformations into a Highly Active State*

    PubMed Central

    Lopez-Rodriguez, Elena; Cruz, Antonio; Richter, Ralf P.; Taeusch, H. William; Pérez-Gil, Jesús

    2013-01-01

    Pulmonary surfactant is a lipid-protein complex that lowers surface tension at the respiratory air-liquid interface, stabilizing the lungs against physical forces tending to collapse alveoli. Dysfunction of surfactant is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome where naturally occurring surfactant-inhibitory agents such as serum, meconium, or cholesterol reach the lung. We analyzed the effect of hyaluronan (HA) on the structure and surface behavior of pulmonary surfactant to understand the mechanism for HA-promoted surfactant protection in the presence of inhibitory agents. In particular, we found that HA affects structural properties such as the aggregation state of surfactant membranes and the size, distribution, and order/packing of phase-segregated lipid domains. These effects do not require a direct interaction between surfactant complexes and HA and are accompanied by a compositional reorganization of large surfactant complexes that become enriched with saturated phospholipid species. HA-exposed surfactant reaches very high efficiency in terms of rapid and spontaneous adsorption of surfactant phospholipids at the air-liquid interface and shows significantly improved resistance to inactivation by serum or cholesterol. We propose that physical effects pertaining to the formation of a meshwork of interpenetrating HA polymer chains are responsible for the changes in surfactant structure and composition that enhance surfactant function and, thus, resistance to inactivation. The higher resistance of HA-exposed surfactant to inactivation persists even after removal of the polymer, suggesting that transient exposure of surfactant to polymers like HA could be a promising strategy for the production of more efficient therapeutic surfactant preparations. PMID:23983120

  12. Transient exposure of pulmonary surfactant to hyaluronan promotes structural and compositional transformations into a highly active state.

    PubMed

    Lopez-Rodriguez, Elena; Cruz, Antonio; Richter, Ralf P; Taeusch, H William; Pérez-Gil, Jesús

    2013-10-11

    Pulmonary surfactant is a lipid-protein complex that lowers surface tension at the respiratory air-liquid interface, stabilizing the lungs against physical forces tending to collapse alveoli. Dysfunction of surfactant is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome where naturally occurring surfactant-inhibitory agents such as serum, meconium, or cholesterol reach the lung. We analyzed the effect of hyaluronan (HA) on the structure and surface behavior of pulmonary surfactant to understand the mechanism for HA-promoted surfactant protection in the presence of inhibitory agents. In particular, we found that HA affects structural properties such as the aggregation state of surfactant membranes and the size, distribution, and order/packing of phase-segregated lipid domains. These effects do not require a direct interaction between surfactant complexes and HA and are accompanied by a compositional reorganization of large surfactant complexes that become enriched with saturated phospholipid species. HA-exposed surfactant reaches very high efficiency in terms of rapid and spontaneous adsorption of surfactant phospholipids at the air-liquid interface and shows significantly improved resistance to inactivation by serum or cholesterol. We propose that physical effects pertaining to the formation of a meshwork of interpenetrating HA polymer chains are responsible for the changes in surfactant structure and composition that enhance surfactant function and, thus, resistance to inactivation. The higher resistance of HA-exposed surfactant to inactivation persists even after removal of the polymer, suggesting that transient exposure of surfactant to polymers like HA could be a promising strategy for the production of more efficient therapeutic surfactant preparations.

  13. Centrifugal separator devices, systems and related methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID; Law, Jack D [Pocatello, ID; Garn, Troy G [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Macaluso, Lawrence L [Carson City, NV

    2012-03-20

    Centrifugal separator devices, systems and related methods are described. More particularly, fluid transfer connections for a centrifugal separator system having support assemblies with a movable member coupled to a connection tube and coupled to a fixed member, such that the movable member is constrained to movement along a fixed path relative to the fixed member are described. Also, centrifugal separator systems including such fluid transfer connections are described. Additionally, methods of installing, removing and/or replacing centrifugal separators from centrifugal separator systems are described.

  14. Vacuolar ATPase Regulates Surfactant Secretion in Rat Alveolar Type II Cells by Modulating Lamellar Body Calcium

    PubMed Central

    Chintagari, Narendranath Reddy; Mishra, Amarjit; Su, Lijing; Wang, Yang; Ayalew, Sahlu; Hartson, Steven D.; Liu, Lin

    2010-01-01

    Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase) dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1), an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca2+ chelator, BAPTA-AM, the protein kinase C (PKC) inhibitor, staurosporine, and the Ca2+/calmodulin-dependent protein kinase II (CaMKII), KN-62. Baf A1 induced Ca2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion. PMID:20169059

  15. Biophysicochemical Interaction of a Clinical Pulmonary Surfactant with Nanoalumina.

    PubMed

    Mousseau, F; Le Borgne, R; Seyrek, E; Berret, J-F

    2015-07-07

    We report on the interaction of pulmonary surfactant composed of phospholipids and proteins with nanometric alumina (Al2O3) in the context of lung exposure and nanotoxicity. We study the bulk properties of phospholipid/nanoparticle dispersions and determine the nature of their interactions. The clinical surfactant Curosurf, both native and extruded, and a protein-free surfactant are investigated. The phase behavior of mixed surfactant/particle dispersions was determined by optical and electron microscopy, light scattering, and zeta potential measurements. It exhibits broad similarities with that of strongly interacting nanosystems such as polymers, proteins or particles, and supports the hypothesis of electrostatic complexation. At a critical stoichiometry, micron-sized aggregates arising from the association between oppositely charged vesicles and nanoparticles are formed. Contrary to the models of lipoprotein corona or of particle wrapping, our work shows that vesicles maintain their structural integrity and trap the particles at their surfaces. The agglomeration of particles in surfactant phase is a phenomenon of importance that could change the interactions of the particles with lung cells.

  16. Ionic liquids as surfactants

    NASA Astrophysics Data System (ADS)

    Smirnova, N. A.; Safonova, E. A.

    2010-10-01

    Problems of self-assembling in systems containing ionic liquids (ILs) are discussed. Main attention is paid to micellization in aqueous solutions of dialkylimidazolium ILs and their mixtures with classical surfactants. Literature data are reviewed, the results obtained by the authors and co-workers are presented. Thermodynamic aspects of the studies and problems of molecular-thermodynamic modeling receive special emphasis. It is shown that the aggregation behavior of dialkylimidazolium ILs is close to that of alkyltrimethylammonium salts (cationic surfactants) though ILs have a higher ability to self-organize, especially as it concerns long-range ordering. Some aspects of ILs applications are outlined where their common features with classical surfactants and definite specificity are of value.

  17. Meconium impairs pulmonary surfactant by a combined action of cholesterol and bile acids.

    PubMed

    Lopez-Rodriguez, Elena; Echaide, Mercedes; Cruz, Antonio; Taeusch, H William; Perez-Gil, Jesus

    2011-02-02

    Mechanisms for meconium-induced inactivation of pulmonary surfactant as part of the meconium aspiration syndrome in newborn infants, to our knowledge, are not clearly understood. Here we have studied the biophysical mechanisms of how meconium affects surface activity of pulmonary surfactant and whether the membrane-perturbing effects of meconium can be mimicked by exposure of surfactant to a mixture of bile acids and cholesterol. Surface activity of pulmonary surfactant complexes purified from animal lungs was analyzed in the absence and in the presence of meconium in standard surface balances and in a captive bubble surfactometer. We have also evaluated accumulation of surfactant at the air-liquid interface by what we believe to be a novel microtiter plate fluorescent assay, and the effect of meconium components on surfactant membrane fluidity using Laurdan fluorescence thermotropic profiles and differential scanning calorimetry thermograms. Rapid interfacial adsorption, low surface tension upon film compression, efficient film replenishment upon expansion, and thermotropic properties of surfactant complexes are all adversely affected by meconium, and, in a similar manner, they are affected by cholesterol/taurocholate mixtures but not by taurocholate alone. We conclude that inhibition of surfactant by meconium can be mimicked by a bile salt-promoted incorporation of excess cholesterol into surfactant complexes. These results highlight the potential pathogenic role of cholesterol-mobilizing agents as a crucial factor resulting in cholesterol induced alterations of structure and dynamics of surfactant membranes and films.

  18. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells.

    PubMed

    Majumdar, Arnab; Arold, Stephen P; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Suki, Béla

    2012-03-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes.

  19. Impact testing with a centrifuge

    NASA Astrophysics Data System (ADS)

    Foglietta, Jim; Olin, Malcolm; Venturi, Richard

    A test program intended to verify an aircraft wing armor protection system is described, focusing on testing methodologies, the centrifuge release system design, and aiming and system controls. Two armor impact tests were conducted which used a centrifuge to propel a large irregular projectile into a target surface. The first test was performed on the armor protected side of the simulated fuel tank. The impactor was deflected off the armored surface, damaging the armor slightly and causing a small leak in the tank. The impactor broke into three pieces. The second test was performed on the reverse side of the simulated fuel tank. The impactor penetrated the tank and remained lodged inside, causing a massive leak.

  20. Performance of a centrifugal phytotron

    NASA Astrophysics Data System (ADS)

    Tani, A.; Nishiura, Y.; Kiyota, M.; Murase, H.; Honami, N.; Aiga, I.

    1996-01-01

    It is possible to cultivate plants under an artificial gravity field generated by a centrifugal device in space. In order to determine an optimal magnitude of gravity, there is a need to investigate the relationship between plant growth and gravity, including not only reduced gravity but also gravity greater than 1G. A prototype centrifugal phytotron was designed and fabricated in order to investigate the relationship between plant growth and increased gravity. This device enables us to cultivate plants over the long term by controlling environmental conditions in the phytotron such as temperature, relative humidity, CO_2 concentration and light intensity. The results of our experiment indicate that plant seeds can germinate and grow even under an artificial gravity which changes sinusoidally from 2G to 4G.

  1. Waves in a gas centrifuge

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2016-09-01

    Impact of the pulsed braking force on the axial gas circulation and gas content in centrifuges for uranium isotope separation was investigated by the method of numerical simulation. Pulsed brake of the rotating gas by the momentum source results into generation of the waves which propagate along the rotor of the centrifuge. The waves almost doubles the axial circulation flux in the working camera in compare with the case of the steady state breaking force with the same average power in the model under the consideration. Flux through the hole in the bottom baffle on 15% exceeds the flux in the stationary case for the same pressure and temperature in the model. We argue that the waves reduce the pressure in the GC on the same 15%.

  2. When to maintain centrifugal pumps

    SciTech Connect

    Karassik, I.J.

    1993-04-01

    Centrifugal pumps comprise critical maintenance equipment. The rationale of when to maintain them relates to a spreading tendency to contain costs in the face of tight money. Plant managers are thus entitled to a thorough analysis of whether reduced expenditures truly lower costs or actually hinder maintenance and increase costs. Absence of such an analysis hides the fact that proper and timely maintenance has a double effect: it not only reduces power consumption but also extends equipment life, and thus reduces the frequency of labor and material expenditures for scheduled or crisis maintenance. Centrifugal pump maintenance can demonstrate well the validity of this observation. The paper discusses: restoring internal clearances; real cost of renewing clearances; and monitoring clearances and pump performance.

  3. Adaptation to low body temperature influences pulmonary surfactant composition thereby increasing fluidity while maintaining appropriately ordered membrane structure and surface activity.

    PubMed

    Suri, Lakshmi N M; McCaig, Lynda; Picardi, Maria V; Ospina, Olga L; Veldhuizen, Ruud A W; Staples, James F; Possmayer, Fred; Yao, Li-Juan; Perez-Gil, Jesus; Orgeig, Sandra

    2012-07-01

    The interfacial surface tension of the lung is regulated by phospholipid-rich pulmonary surfactant films. Small changes in temperature affect surfactant structure and function in vitro. We compared the compositional, thermodynamic and functional properties of surfactant from hibernating and summer-active 13-lined ground squirrels (Ictidomys tridecemlineatus) with porcine surfactant to understand structure-function relationships in surfactant membranes and films. Hibernating squirrels had more surfactant large aggregates with more fluid monounsaturated molecular species than summer-active animals. The latter had more unsaturated species than porcine surfactant. Cold-adapted surfactant membranes displayed gel-to-fluid transitions at lower phase transition temperatures with reduced enthalpy. Both hibernating and summer-active squirrel surfactants exhibited lower enthalpy than porcine surfactant. LAURDAN fluorescence and DPH anisotropy revealed that surfactant bilayers from both groups of squirrels possessed similar ordered phase characteristics at low temperatures. While ground squirrel surfactants functioned well during dynamic cycling at 3, 25, and 37 degrees C, porcine surfactant demonstrated poorer activity at 3 degrees C but was superior at 37 degrees C. Consequently the surfactant composition of ground squirrels confers a greater thermal flexibility relative to homeothermic mammals, while retaining tight lipid packing at low body temperatures. This may represent the most critical feature contributing to sustained stability of the respiratory interface at low lung volumes. Thus, while less effective than porcine surfactant at 37 degrees C, summer-active surfactant functions adequately at both 37 degrees C and 3 degrees C allowing these animals to enter hibernation. Here further compositional alterations occur which improve function at low temperatures by maintaining adequate stability at low lung volumes and when temperature increases during arousal from

  4. Development of Advanced Centrifugal Pumps

    SciTech Connect

    Rohatgi, U.

    2009-09-30

    A CRADA project was performed between BNL and Flowserve, California, under the auspices of Initiative for Proliferation Prevention (IPP) with the DOE support. The purpose was to jointly support a team of Russian institutes led by Kurchatov Institute to develop technology to increase operating life of centrifugal pumps. The work was performed from March 1, 2002 to September 30, 2009. The project resulted in development and validation the total cost of the sub-contract with Kurchatov Institute was $700,000, with matching fund from the industrial partner, Flowserve. The technical objective of this project is to develop advanced centrifugal pumps for the power, petroleum, chemical and water services industries by increasing the reliability of pumping equipment without a corresponding increase in life cycle cost. This major market need can be served by developing centrifugal pumps that generate only modest forces on the mechanical system even when operating under significant off-design conditions. This project is focused towards understanding the origin of hydraulic forces (both radial and axial, steady and time-dependent) and to develop design options, which reduce these forces over a broad flow range. This focus will include the force generation due to cavitation inside the pump as the operating conditions extend to low suction pressures. The results of research will reduce the inception of cavitation that leads to surface erosion and to find passive method of reducing peaks in axial thrust during whole range of flow rates.

  5. Surfactant mixing rules applied to surfactant enhanced alkaline flooding

    SciTech Connect

    Taylor, K.C. )

    1992-01-01

    This paper discusses surfactant mixing rules which have been used to describe crude oil/alkali/surfactant phase behavior, using David Lloydminster crude oil and the surfactant Neodol 25-3S. It was found that at a fixed salinity and alkali concentration, a specific mole fraction of synthetic surfactant to petroleum soap was required to produce optimal phase behavior as the water-to-oil ratio varied. This methodology is useful in understanding the relationship between the variables of water-to-oil ratio and synthetic surfactant concentration in phase behavior systems that produce a petroleum soap.

  6. Interfacial mechanisms for stability of surfactant-laden films

    PubMed Central

    Chai, Chew; Àlvarez-Valenzuela, Marco A.; Tajuelo, Javier; Fuller, Gerald G.

    2017-01-01

    Thin liquid films are central to everyday life. They are ubiquitous in modern technology (pharmaceuticals, coatings), consumer products (foams, emulsions) and also serve vital biological functions (tear film of the eye, pulmonary surfactants in the lung). A common feature in all these examples is the presence of surface-active molecules at the air-liquid interface. Though they form only molecular-thin layers, these surfactants produce complex surface stresses on the free surface, which have important consequences for the dynamics and stability of the underlying thin liquid film. Here we conduct simple thinning experiments to explore the fundamental mechanisms that allow the surfactant molecules to slow the gravity-driven drainage of the underlying film. We present a simple model that works for both soluble and insoluble surfactant systems in the limit of negligible adsorption-desorption dynamics. We show that surfactants with finite surface rheology influence bulk flow through viscoelastic interfacial stresses, while surfactants with inviscid surfaces achieve stability through opposing surface-tension induced Marangoni flows. PMID:28520734

  7. Interfacial mechanisms for stability of surfactant-laden films.

    PubMed

    Bhamla, M Saad; Chai, Chew; Àlvarez-Valenzuela, Marco A; Tajuelo, Javier; Fuller, Gerald G

    2017-01-01

    Thin liquid films are central to everyday life. They are ubiquitous in modern technology (pharmaceuticals, coatings), consumer products (foams, emulsions) and also serve vital biological functions (tear film of the eye, pulmonary surfactants in the lung). A common feature in all these examples is the presence of surface-active molecules at the air-liquid interface. Though they form only molecular-thin layers, these surfactants produce complex surface stresses on the free surface, which have important consequences for the dynamics and stability of the underlying thin liquid film. Here we conduct simple thinning experiments to explore the fundamental mechanisms that allow the surfactant molecules to slow the gravity-driven drainage of the underlying film. We present a simple model that works for both soluble and insoluble surfactant systems in the limit of negligible adsorption-desorption dynamics. We show that surfactants with finite surface rheology influence bulk flow through viscoelastic interfacial stresses, while surfactants with inviscid surfaces achieve stability through opposing surface-tension induced Marangoni flows.

  8. Polyethylene glycol addition does not improve exogenous surfactant function in an experimental model of meconium aspiration syndrome.

    PubMed

    Lyra, Joao Cesar; Mascaretti, Renata Suman; Precioso, Alexander Roberto; Haddad, Luciana Branco; Mauad, Thais; Vaz, Flavio A Costa; Rebello, Celso Moura

    2009-02-01

    Meconium (MEC) is a potent inactivator of pulmonary surfactant. The authors studied the effects of polyethylene glycol addition to the exogenous surfactant over the lung mechanics and volumes. Human meconium was administrated to newborn rabbits. Animals were ventilated for 20 minutes and dynamic compliance, ventilatory pressure, and tidal volume were recorded. Animals were randomized into 3 study groups: MEC group (without surfactant therapy); S100 group (100 mg/kg surfactant); and PEG group (100 mg/kg porcine surfactant plus 5% PEG). After ventilation, a pulmonary pressure-volume curve was built. Histological analysis was carried out to calculate the mean alveolar size (Lm) and the distortion index (DI). Both groups treated with surfactant showed higher values of dynamic pulmonary compliance and lower ventilatory pressure, compared with the MEC group (P < .05). S100 group had a larger maximum lung volume, V(30), compared with the MEC group (P < .05). Lm and DI values were smaller in the groups treated with surfactant than in the MEC group (P < .05). No differences were observed between the S100 and PEG groups. Animals treated with surfactant showed significant improvement in pulmonary function as compared to nontreated animals. PEG added to exogenous surfactant did not improve lung mechanics or volumes.

  9. Twinning of amphibian embryos by centrifugation

    NASA Technical Reports Server (NTRS)

    Black, S. D.

    1984-01-01

    In the frog Xenopus laevis, the dorsal structures of the embryonic body axis normally derive from the side of the egg opposite the side of sperm entry. However, if the uncleaved egg is inclined at lg or centrifuged in an inclined position, this topographic relationship is overridden: the egg makes its dorsal axial structures according to its orientation in the gravitational/centrifugal field, irrespective of the position of sperm entry. Certain conditions of centrifugation cause eggs to develop into conjoined twins with two sets of axial structures. A detailed analysis of twinning provided some insight into experimental axis orientation. First, as with single-axis embryos, both axes in twins are oriented according to the direction of centrifugation. One axis forms at the centripetal side of the egg and the other forms at the centrifugal side, even when the side of sperm entry is normal to the centrifugal force vector. Second, if eggs are centrifuged to give twins, but are inclined at lg to prevent post-centrifugation endoplasmic redistributions, only single-axis embryos develop. Thus, a second redistribution is required for high-frequency secondary axis formation. This can be accomplished by lg (as in the single centrifugations) or by a second centrifugation directed along the egg's animal-vegetal axis.

  10. Twinning of amphibian embryos by centrifugation

    NASA Technical Reports Server (NTRS)

    Black, S. D.

    1984-01-01

    In the frog Xenopus laevis, the dorsal structures of the embryonic body axis normally derive from the side of the egg opposite the side of sperm entry. However, if the uncleaved egg is inclined at lg or centrifuged in an inclined position, this topographic relationship is overridden: the egg makes its dorsal axial structures according to its orientation in the gravitational/centrifugal field, irrespective of the position of sperm entry. Certain conditions of centrifugation cause eggs to develop into conjoined twins with two sets of axial structures. A detailed analysis of twinning provided some insight into experimental axis orientation. First, as with single-axis embryos, both axes in twins are oriented according to the direction of centrifugation. One axis forms at the centripetal side of the egg and the other forms at the centrifugal side, even when the side of sperm entry is normal to the centrifugal force vector. Second, if eggs are centrifuged to give twins, but are inclined at lg to prevent post-centrifugation endoplasmic redistributions, only single-axis embryos develop. Thus, a second redistribution is required for high-frequency secondary axis formation. This can be accomplished by lg (as in the single centrifugations) or by a second centrifugation directed along the egg's animal-vegetal axis.

  11. Effects of centrifugal force and centrifugation time on the sedimentation of plant organelles.

    PubMed

    Nagahashi, J; Hiraike, K

    1982-02-01

    The effect of centrifugal force and length of centrifugation time on the sedimentation of plant organelles was determined for corn (Zea mays L.) root homogenates. A centrifugal force of 6000g for at least 20 minutes was necessary to pellet 90% of the mitochondrial marker (cytochrome c oxidase). This initial centrifugation step is optimal for separating mitochondria from microsomes, since cross-contamination of endoplasmic reticulum and plasma membrane vesicles with mitochondria is minimized. Centrifugal forces of 8000g or 10,000g for 20 minutes and 13,000g for 15 minutes pellet 90% of the mitochondrial marker; however, these centrifugation conditions also sediment more plasma membrane and endoplasmic reticulum.

  12. Water repellency induced by pulmonary surfactants.

    PubMed

    Hills, B A

    1982-04-01

    1. Pure cotton fabric was partially carboxylated to produce a tough, porous, hydrophilic sub-phase to stimulate the epithelial membrane of the alveolar wall from a permeability standpoint. 2. Two of the predominant pulmonary surfactants, dipalmitoyl lecithin (DPL) and dipalmitoyl phosphatidylethanolamine (DPPE), were found to inhibit wetting of this synthetic membrane and of human cutaneous epithelium as manifest by a large contact angle. 3. When treated with DPL at physiological concentrations, the porous synthetic membrane was found to support a head of saline well in excess of systolic pulmonary artery pressure with no penetration and could do so for periods well in excess of 1 hr; untreated control samples allowed almost immediate fluid filtration. 4. Filtration could be initiated in the DPL-treated membranes by wetting the reverse side, confirming that the threshold pressure for fluid penetration was afforded by capillarity and, hence, by water repellency induced by the surfactant. 5. Water repellency induced by the amphoteric surfactants occurring naturally in the lung is discussed as a possible factor contributing to the pressure threshold to be exceeded for alveolar oedema to form. 6. Evidence is reviewed and several advantages discussed for the implied concept of an essentially dry lining to the alveolus with a discontinuous liquid layer largely confined to convex corners which could slowly resolve any oedema by surface forces.

  13. Water repellency induced by pulmonary surfactants.

    PubMed Central

    Hills, B A

    1982-01-01

    1. Pure cotton fabric was partially carboxylated to produce a tough, porous, hydrophilic sub-phase to stimulate the epithelial membrane of the alveolar wall from a permeability standpoint. 2. Two of the predominant pulmonary surfactants, dipalmitoyl lecithin (DPL) and dipalmitoyl phosphatidylethanolamine (DPPE), were found to inhibit wetting of this synthetic membrane and of human cutaneous epithelium as manifest by a large contact angle. 3. When treated with DPL at physiological concentrations, the porous synthetic membrane was found to support a head of saline well in excess of systolic pulmonary artery pressure with no penetration and could do so for periods well in excess of 1 hr; untreated control samples allowed almost immediate fluid filtration. 4. Filtration could be initiated in the DPL-treated membranes by wetting the reverse side, confirming that the threshold pressure for fluid penetration was afforded by capillarity and, hence, by water repellency induced by the surfactant. 5. Water repellency induced by the amphoteric surfactants occurring naturally in the lung is discussed as a possible factor contributing to the pressure threshold to be exceeded for alveolar oedema to form. 6. Evidence is reviewed and several advantages discussed for the implied concept of an essentially dry lining to the alveolus with a discontinuous liquid layer largely confined to convex corners which could slowly resolve any oedema by surface forces. Images Fig. 2 Fig. 3 PMID:6896727

  14. Surfactant-enhanced bioremediation

    SciTech Connect

    Churchill, P.F.; Dudley, R.J.; Churchill, S.A.

    1995-12-31

    This study was undertaken to examine the effect of three structurally related, non-ionic surfactants, Triton X-45, Triton X-100 and Triton X-165, as well as the oleophilic fertilizer, Inipol EAP 22, on the rate of biodegradation of phenanthrene by pure bacterial cultures. Each surfactant dramatically increased the apparent aqueous solubility of phenanthrene. Model studies were conducted to investigate the ability of these surfactants to enhance the rate of transport and uptake of polycyclic aromatic hydrocarbons into bacterial cells, and to assess the impact that increasing the aqueous solubility of hydrocarbons has on their rate of biodegradation. The results indicate that increasing the apparent aqueous solubility of hydrocarbons can lead to enhanced biodegradation rates by two Pseudomonas saccharophila strains. However, the experiments also suggest that some surfactants can inhibit aromatic hydrocarbon biodegradation by certain bacteria. The data also support the hypothesis that surface-active components present in the oleophilic fertilizer formulation, Inipol EAP 22, may have significantly contributed to the positive results reported in tests of remedial agent impact on bioremediation, which was used as a supplemental clean-up technology on Exxon Valdez crude oil-contaminated Alaskan beaches.

  15. Exposure to polymers reverses inhibition of pulmonary surfactant by serum, meconium, or cholesterol in the captive bubble surfactometer.

    PubMed

    López-Rodríguez, Elena; Ospina, Olga Lucía; Echaide, Mercedes; Taeusch, H William; Pérez-Gil, Jesús

    2012-10-03

    Dysfunction of pulmonary surfactant in the lungs is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome. Serum, cholesterol, and meconium have been described as inhibitory agents of surfactant's interfacial activity once these substances appear in alveolar spaces during lung injury and inflammation. The deleterious action of these agents has been only partly evaluated under physiologically relevant conditions. We have optimized a protocol to assess surfactant inhibition by serum, cholesterol, or meconium in the captive bubble surfactometer. Specific measures of surface activity before and after native surfactant was exposed to inhibitors included i), film formation, ii), readsorption of material from surface-associated reservoirs, and iii), interfacial film dynamics during compression-expansion cycling. Results show that serum creates a steric barrier that impedes surfactant reaching the interface. A mechanical perturbation of this barrier allows native surfactant to compete efficiently with serum to form a highly surface-active film. Exposure of native surfactant to cholesterol or meconium, on the other hand, modifies the compressibility of surfactant films though optimal compressibility properties recover on repetitive compression-expansion cycling. Addition of polymers like dextran or hyaluronic acid to surfactant fully reverses inhibition by serum. These polymers also prevent surfactant inhibition by cholesterol or meconium, suggesting that the protective action of polymers goes beyond the mere enhancement of interfacial adsorption as described by depletion force theories. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Effective Surfactants Blend Concentration Determination for O/W Emulsion Stabilization by Two Nonionic Surfactants by Simple Linear Regression

    PubMed Central

    Hassan, A. K.

    2015-01-01

    In this work, O/W emulsion sets were prepared by using different concentrations of two nonionic surfactants. The two surfactants, tween 80(HLB=15.0) and span 80(HLB=4.3) were used in a fixed proportions equal to 0.55:0.45 respectively. HLB value of the surfactants blends were fixed at 10.185. The surfactants blend concentration is starting from 3% up to 19%. For each O/W emulsion set the conductivity was measured at room temperature (25±2°), 40, 50, 60, 70 and 80°. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective surfactants blend concentration required for preparing the most stable O/W emulsion. These results were confirmed by applying the physical stability centrifugation testing and the phase inversion temperature range measurements. The results indicated that, the relation which represents the most stable O/W emulsion has the strongest direct linear relationship between temperature and conductivity. This relationship is linear up to 80°. This work proves that, the most stable O/W emulsion is determined via the determination of the maximum R² value by applying of the simple linear regression least squares method to the temperature–conductivity obtained data up to 80°, in addition to, the true maximum slope is represented by the equation which has the maximum R² value. Because the conditions would be changed in a more complex formulation, the method of the determination of the effective surfactants blend concentration was verified by applying it for more complex formulations of 2% O/W miconazole nitrate cream and the results indicate its reproducibility. PMID:26664063

  17. Effective Surfactants Blend Concentration Determination for O/W Emulsion Stabilization by Two Nonionic Surfactants by Simple Linear Regression.

    PubMed

    Hassan, A K

    2015-01-01

    In this work, O/W emulsion sets were prepared by using different concentrations of two nonionic surfactants. The two surfactants, tween 80(HLB=15.0) and span 80(HLB=4.3) were used in a fixed proportions equal to 0.55:0.45 respectively. HLB value of the surfactants blends were fixed at 10.185. The surfactants blend concentration is starting from 3% up to 19%. For each O/W emulsion set the conductivity was measured at room temperature (25±2°), 40, 50, 60, 70 and 80°. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective surfactants blend concentration required for preparing the most stable O/W emulsion. These results were confirmed by applying the physical stability centrifugation testing and the phase inversion temperature range measurements. The results indicated that, the relation which represents the most stable O/W emulsion has the strongest direct linear relationship between temperature and conductivity. This relationship is linear up to 80°. This work proves that, the most stable O/W emulsion is determined via the determination of the maximum R² value by applying of the simple linear regression least squares method to the temperature-conductivity obtained data up to 80°, in addition to, the true maximum slope is represented by the equation which has the maximum R² value. Because the conditions would be changed in a more complex formulation, the method of the determination of the effective surfactants blend concentration was verified by applying it for more complex formulations of 2% O/W miconazole nitrate cream and the results indicate its reproducibility.

  18. The detection of surfactant proteins A, B, C and D in the human brain and their regulation in cerebral infarction, autoimmune conditions and infections of the CNS.

    PubMed

    Schob, Stefan; Schicht, Martin; Sel, Saadettin; Stiller, Dankwart; Kekulé, Alexander S; Kekulé, Alexander; Paulsen, Friedrich; Maronde, Erik; Bräuer, Lars

    2013-01-01

    Surfactant proteins (SP) have been studied intensively in the respiratory system. Surfactant protein A and surfactant protein D are proteins belonging to the family of collectins each playing a major role in the innate immune system. The ability of surfactant protein A and surfactant protein D to bind various pathogens and facilitate their elimination has been described in a vast number of studies. Surfactant proteins are very important in modulating the host's inflammatory response and participate in the clearance of apoptotic cells. Surfactant protein B and surfactant protein C are proteins responsible for lowering the surface tension in the lungs. The aim of this study was an investigation of expression of surfactant proteins in the central nervous system to assess their specific distribution patterns. The second aim was to quantify surfactant proteins in cerebrospinal fluid of healthy subjects compared to patients suffering from different neuropathologies. The expression of mRNA for the surfactant proteins was analyzed with RT-PCR done with samples from different parts of the human brain. The production of the surfactant proteins in the brain was verified using immunohistochemistry and Western blot. The concentrations of the surfactant proteins in cerebrospinal fluid from healthy subjects and patients suffering from neuropathologic conditions were quantified using ELISA. Our results revealed that surfactant proteins are present in the central nervous system and that the concentrations of one or more surfactant proteins in healthy subjects differed significantly from those of patients affected by central autoimmune processes, CNS infections or cerebral infarction. Based on the localization of the surfactant proteins in the brain, their different levels in normal versus pathologic samples of cerebrospinal fluid and their well-known functions in the lungs, it appears that the surfactant proteins may play roles in host defense of the brain, facilitation of

  19. Synthetic surfactant based on analogues of SP-B and SP-C is superior to single-peptide surfactants in ventilated premature rabbits.

    PubMed

    Almlén, Andreas; Walther, Frans J; Waring, Alan J; Robertson, Bengt; Johansson, Jan; Curstedt, Tore

    2010-06-01

    Respiratory distress syndrome (RDS) is currently treated with surfactant preparations obtained from natural sources and attempts to develop equally active synthetic surfactants have been unsuccessful. One difference in composition is that naturally derived surfactants contain the two hydrophobic proteins SP-B and SP-C while synthetic preparations contain analogues of either SP-B or SP-C. It was recently shown that both SP-B and SP-C (or SP-C33, an SP-C analogue) are necessary to establish alveolar stability at end-expiration in a rabbit RDS model, as reflected by high lung gas volumes without application of positive end-expiratory pressure. To study the efficacy of fully synthetic surfactants containing analogues of both SP-B and SP-C compared to surfactants with only one protein analogue. Premature newborn rabbits, treated with synthetic surfactants, were ventilated for 30 min without positive end-expiratory pressure. Tidal volumes as well as lung gas volumes at end-expiration were determined. Treatment with 2% Mini-B (a short-cut version of SP-B) and 2% SP-C33, or its C-terminally truncated form SP-C30, in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol, 68:31 (w/w) resulted in median lung gas volumes of 8-9 ml/kg body weight, while animals treated with 2% Mini-B surfactant or 2% SP-C33/SP-C30 surfactant had lung gas volumes of 3-4 ml/kg, and those treated with Curosurf, a porcine surfactant, 15-17 ml/kg. In contrast, mixing SP-C33 with peptides with different distributions of positively charged and hydrophobic residues did not improve lung gas volumes. The data indicate that synthetic surfactants containing analogues of both SP-B and SP-C might be superior to single-peptide surfactants in the treatment of RDS.

  20. Synthetic Surfactant Based on Analogues of SP-B and SP-C Is Superior to Single-Peptide Surfactants in Ventilated Premature Rabbits

    PubMed Central

    Almlén, Andreas; Walther, Frans J.; Waring, Alan J.; Robertson, Bengt; Johansson, Jan; Curstedt, Tore

    2010-01-01

    Background Respiratory distress syndrome (RDS) is currently treated with surfactant preparations obtained from natural sources and attempts to develop equally active synthetic surfactants have been unsuccessful. One difference in composition is that naturally derived surfactants contain the two hydrophobic proteins SP-B and SP-C while synthetic preparations contain analogues of either SP-B or SP-C. It was recently shown that both SP-B and SP-C (or SP-C33, an SP-C analogue) are necessary to establish alveolar stability at end-expiration in a rabbit RDS model, as reflected by high lung gas volumes without application of positive end-expiratory pressure. Objectives: To study the efficacy of fully synthetic surfactants containing analogues of both SP-B and SP-C compared to surfactants with only one protein analogue. Methods Premature newborn rabbits, treated with synthetic surfactants, were ventilated for 30 min without positive end-expiratory pressure. Tidal volumes as well as lung gas volumes at end-expiration were determined. Results Treatment with 2% Mini-B (a short-cut version of SP-B) and 2% SP-C33, or its C-terminally truncated form SP-C30, in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol, 68:31 (w/w) resulted in median lung gas volumes of 8–9 ml/kg body weight, while animals treated with 2% Mini-B surfactant or 2% SP-C33/SP-C30 surfactant had lung gas volumes of 3–4 ml/kg, and those treated with Curosurf, a porcine surfactant, 15–17 ml/kg. In contrast, mixing SP-C33 with peptides with different distributions of positively charged and hydrophobic residues did not improve lung gas volumes. Conclusions The data indicate that synthetic surfactants containing analogues of both SP-B and SP-C might be superior to single-peptide surfactants in the treatment of RDS. PMID:20110733