Enhanced alveolar growth and remodeling in Guinea pigs raised at high altitude.
Hsia, Connie C W; Carbayo, Juan J Polo; Yan, Xiao; Bellotto, Dennis J
2005-05-12
To examine the effects of chronic high altitude (HA) exposure on lung structure during somatic maturation, we raised male weanling guinea pigs at HA (3800m) for 1, 3, or 6 months, while their respective male littermates were simultaneously raised at low altitude (LA, 1200m). Under anaesthesia, airway pressure was measured at different lung volumes. The right lung was fixed at a constant airway pressure for morphometric analysis under light and electron microscopy. In animals raised at HA for 1 month, lung volume, alveolar surface area and alveolar-capillary blood volume (V(c)) were elevated above LA control values. Following 3-6 months of HA exposure, increases in lung volume and alveolar surface area persisted while the initial increase in V(c) normalized. Additional adaptation occurred, including a higher epithelial cell volume, septal tissue volume and capillary surface area, a lower alveolar duct volume and lower harmonic mean diffusion barrier resulting in higher membrane and lung diffusing capacities. These data demonstrate enhanced alveolar septal growth and progressive acinar remodeling during chronic HA exposure with long-term augmentation of alveolar dimensions as well as functional compensation in lung compliance and diffusive gas transport.
Mazzuco, Adriana; Medeiros, Wladimir Musetti; Sperling, Milena Pelosi Rizk; de Souza, Aline Soares; Alencar, Maria Clara Noman; Arbex, Flávio Ferlin; Neder, José Alberto; Arena, Ross; Borghi-Silva, Audrey
2015-01-01
In chronic obstructive pulmonary disease (COPD), functional and structural impairment of lung function can negatively impact heart rate variability (HRV); however, it is unknown if static lung volumes and lung diffusion capacity negatively impacts HRV responses. We investigated whether impairment of static lung volumes and lung diffusion capacity could be related to HRV indices in patients with moderate to severe COPD. Sixteen sedentary males with COPD were enrolled in this study. Resting blood gases, static lung volumes, and lung diffusion capacity for carbon monoxide (DLCO) were measured. The RR interval (RRi) was registered in the supine, standing, and seated positions (10 minutes each) and during 4 minutes of a respiratory sinus arrhythmia maneuver (M-RSA). Delta changes (Δsupine-standing and Δsupine-M-RSA) of the standard deviation of normal RRi, low frequency (LF, normalized units [nu]) and high frequency (HF [nu]), SD1, SD2, alpha1, alpha2, and approximate entropy (ApEn) indices were calculated. HF, LF, SD1, SD2, and alpha1 deltas significantly correlated with forced expiratory volume in 1 second, DLCO, airway resistance, residual volume, inspiratory capacity/total lung capacity ratio, and residual volume/total lung capacity ratio. Significant and moderate associations were also observed between LF/HF ratio versus total gas volume (%), r=0.53; LF/HF ratio versus residual volume, %, r=0.52; and HF versus total gas volume (%), r=-0.53 (P<0.05). Linear regression analysis revealed that ΔRRi supine-M-RSA was independently related to DLCO (r=-0.77, r (2)=0.43, P<0.05). Responses of HRV indices were more prominent during M-RSA in moderate to severe COPD. Moreover, greater lung function impairment was related to poorer heart rate dynamics. Finally, impaired lung diffusion capacity was related to an altered parasympathetic response in these patients.
Abdeen, Nishard; Cross, Albert; Cron, Gregory; White, Steven; Rand, Thomas; Miller, David; Santyr, Giles
2006-08-01
We used the dual capability of hyperpolarized 129Xe for spectroscopy and imaging to develop new measures of xenon diffusing capacity in the rat lung that (analogously to the diffusing capacity of carbon monoxide or DLCO) are calculated as a product of total lung volume and gas transfer rate constants divided by the pressure gradient. Under conditions of known constant pressure breath-hold, the volume is measured by hyperpolarized 129Xe MRI, and the transfer rate is measured by dynamic spectroscopy. The new quantities (xenon diffusing capacity in lung parenchyma (DLXeLP)), xenon diffusing capacity in RBCs (DLXeRBC), and total lung xenon diffusing capacity (DLXe)) were measured in six normal rats and six rats with lung inflammation induced by instillation of fungal spores of Stachybotrys chartarum. DLXeLP, DLXeRBC, and DLXe were 56 +/- 10 ml/min/mmHg, 64 +/- 35 ml/min/mmHg, and 29 +/- 9 ml/min/mmHg, respectively, for normal rats, and 27 +/- 9 ml/min/mmHg, 42 +/- 27 ml/min/mmHg, and 16 +/- 7 ml/min/mmHg, respectively, for diseased rats. Lung volumes and gas transfer times for LP (TtrLP) were 16 +/- 2 ml and 22 +/- 3 ms, respectively, for normal rats and 12 +/- 2 ml and 35 +/- 8 ms, respectively, for diseased rats. Xenon diffusing capacities may be useful for measuring changes in gas exchange associated with inflammation and other lung diseases. Copyright 2006 Wiley-Liss, Inc.
Lung Morphometry with Hyperpolarized 129Xe: Theoretical Background
Sukstanskii, A.L.; Yablonskiy, D.A.
2011-01-01
The 3He lung morphometry technique, based on MRI measurements of hyperpolarized 3He gas diffusion in lung airspaces, provides unique information on the lung microstructure at the alveolar level. In vivo 3D tomographic images of standard morphological parameters (airspace chord length, lung parenchyma surface-to-volume ratio, number of alveoli per unit volume) can be generated from a rather short (several seconds) MRI scan. The technique is based on a theory of gas diffusion in lung acinar airways and experimental measurements of diffusion attenuated MRI signal. The present work aims at developing the theoretical background of a similar technique based on hyperpolarized 129Xe gas. As the diffusion coefficient and gyromagnetic ratio of 129Xe gas are substantially different from those of 3He gas, the specific details of the theory and experimental measurements with 129Xe should be amended. We establish phenomenological relationships between acinar airway geometrical parameters and the diffusion attenuated MR signal for human and small animal lungs, both normal lungs and lungs with mild emphysema. Optimal diffusion times are shown to be about 5 ms for human and 1.3 ms for small animals. The expected uncertainties in measuring main morphometrical parameters of the lungs are estimated in the framework of Bayesian probability theory. PMID:21713985
A new approach to assess COPD by identifying lung function break-points
Eriksson, Göran; Jarenbäck, Linnea; Peterson, Stefan; Ankerst, Jaro; Bjermer, Leif; Tufvesson, Ellen
2015-01-01
Purpose COPD is a progressive disease, which can take different routes, leading to great heterogeneity. The aim of the post-hoc analysis reported here was to perform continuous analyses of advanced lung function measurements, using linear and nonlinear regressions. Patients and methods Fifty-one COPD patients with mild to very severe disease (Global Initiative for Chronic Obstructive Lung Disease [GOLD] Stages I–IV) and 41 healthy smokers were investigated post-bronchodilation by flow-volume spirometry, body plethysmography, diffusion capacity testing, and impulse oscillometry. The relationship between COPD severity, based on forced expiratory volume in 1 second (FEV1), and different lung function parameters was analyzed by flexible nonparametric method, linear regression, and segmented linear regression with break-points. Results Most lung function parameters were nonlinear in relation to spirometric severity. Parameters related to volume (residual volume, functional residual capacity, total lung capacity, diffusion capacity [diffusion capacity of the lung for carbon monoxide], diffusion capacity of the lung for carbon monoxide/alveolar volume) and reactance (reactance area and reactance at 5Hz) were segmented with break-points at 60%–70% of FEV1. FEV1/forced vital capacity (FVC) and resonance frequency had break-points around 80% of FEV1, while many resistance parameters had break-points below 40%. The slopes in percent predicted differed; resistance at 5 Hz minus resistance at 20 Hz had a linear slope change of −5.3 per unit FEV1, while residual volume had no slope change above and −3.3 change per unit FEV1 below its break-point of 61%. Conclusion Continuous analyses of different lung function parameters over the spirometric COPD severity range gave valuable information additional to categorical analyses. Parameters related to volume, diffusion capacity, and reactance showed break-points around 65% of FEV1, indicating that air trapping starts to dominate in moderate COPD (FEV1 =50%–80%). This may have an impact on the patient’s management plan and selection of patients and/or outcomes in clinical research. PMID:26508849
Retinoic acid-induced alveolar cellular growth does not improve function after right pneumonectomy.
Dane, D Merrill; Yan, Xiao; Tamhane, Rahul M; Johnson, Robert L; Estrera, Aaron S; Hogg, Deborah C; Hogg, Richard T; Hsia, Connie C W
2004-03-01
To determine whether all-trans retinoic acid (RA) treatment enhances lung function during compensatory lung growth in fully mature animals, adult male dogs (n = 4) received 2 mg x kg(-1) x day(-1) po RA 4 days/wk beginning the day after right pneumonectomy (R-PNX, 55-58% resection). Litter-matched male R-PNX controls (n = 4) received placebo. After 3 mo, transpulmonary pressure (TPP)-lung volume relationship, diffusing capacities for carbon monoxide and nitric oxide, cardiac output, and septal volume (V(tiss-RB)) were measured under anesthesia by a rebreathing technique at two lung volumes. Lung air and tissue volumes (V(air-CT) and V(tiss-CT)) were also measured from high-resolution computerized tomographic (CT) scans at a constant TPP. In RA-treated dogs compared with controls, TPP-lung volume relationships were similar. Diffusing capacities for carbon monoxide and nitric oxide were significantly impaired at a lower lung volume but similar at a high lung volume. Whereas V(tiss-RB) was significantly lower at both lung volumes in RA-treated animals, V(air-CT) and V(tiss-CT) were not different between groups; results suggest uneven distribution of ventilation consistent with distortion of alveolar geometry and/or altered small airway function induced by RA. We conclude that RA does not improve resting pulmonary function during the early months after R-PNX despite histological evidence of its action in enhancing alveolar cellular growth in the remaining lung.
Diffusion Lung Imaging with Hyperpolarized Gas MRI
Yablonskiy, Dmitriy A; Sukstanskii, Alexander L; Quirk, James D
2015-01-01
Lung imaging using conventional 1H MRI presents great challenges due to low density of lung tissue, lung motion and very fast lung tissue transverse relaxation (typical T2* is about 1-2 ms). MRI with hyperpolarized gases (3He and 129Xe) provides a valuable alternative due to a very strong signal originated from inhaled gas residing in the lung airspaces and relatively slow gas T2* relaxation (typical T2* is about 20-30 ms). Though in vivo human experiments should be done very fast – usually during a single breath-hold. In this review we describe the recent developments in diffusion lung MRI with hyperpolarized gases. We show that a combination of modeling results of gas diffusion in lung airspaces and diffusion measurements with variable diffusion-sensitizing gradients allows extracting quantitative information on the lung microstructure at the alveolar level. This approach, called in vivo lung morphometry, allows from a less than 15-second MRI scan, providing quantitative values and spatial distributions of the same physiological parameters as are measured by means of the “standard” invasive stereology (mean linear intercept, surface-to-volume ratio, density of alveoli, etc.). Besides, the approach makes it possible to evaluate some advanced Weibel parameters characterizing lung microstructure - average radii of alveolar sacs and ducts, as well as the depth of their alveolar sleeves. Such measurements, providing in vivo information on the integrity of pulmonary acinar airways and their changes in different diseases, are of great importance and interest to a broad range of physiologists and clinicians. We also discuss a new type of experiments that are based on the in vivo lung morphometry technique combined with quantitative CT measurements as well as with the Gradient Echo MRI measurements of hyperpolarized gas transverse relaxation in the lung airspaces. Such experiments provide additional information on the blood vessel volume fraction, specific gas volume, the length of acinar airways, and allows evaluation of lung parenchymal and non-parenchymal tissue. PMID:26676342
Lung volumes: measurement, clinical use, and coding.
Flesch, Judd D; Dine, C Jessica
2012-08-01
Measurement of lung volumes is an integral part of complete pulmonary function testing. Some lung volumes can be measured during spirometry; however, measurement of the residual volume (RV), functional residual capacity (FRC), and total lung capacity (TLC) requires special techniques. FRC is typically measured by one of three methods. Body plethysmography uses Boyle's Law to determine lung volumes, whereas inert gas dilution and nitrogen washout use dilution properties of gases. After determination of FRC, expiratory reserve volume and inspiratory vital capacity are measured, which allows the calculation of the RV and TLC. Lung volumes are commonly used for the diagnosis of restriction. In obstructive lung disease, they are used to assess for hyperinflation. Changes in lung volumes can also be seen in a number of other clinical conditions. Reimbursement for measurement of lung volumes requires knowledge of current procedural terminology (CPT) codes, relevant indications, and an appropriate level of physician supervision. Because of recent efforts to eliminate payment inefficiencies, the 10 previous CPT codes for lung volumes, airway resistance, and diffusing capacity have been bundled into four new CPT codes.
Laurberg, Peter Thaysen; Weinreich, Ulla M Øller
2014-12-08
A 19-year-old woman with a history of juvenile laryngeal papillomatosis (JLP), treated since childhood with multiple resections, was admitted with symptoms of pneumonia. A chest X-ray and CAT-scan revealed multiple lung cysts and a bronchoalveolar lavage detected human papilloma virus 11. The patient responded well to antibiotics. A body plethysmography showed small lung volumes and low diffusion capacity for carbon monoxide, but normal volume diffusion capacity divided by alveolar volume. Pulmonary cystic disease should be considered when patients with JLP have symptoms of pneumonia.
Periodontitis is related to lung volumes and airflow limitation: a cross-sectional study.
Holtfreter, Birte; Richter, Stefanie; Kocher, Thomas; Dörr, Marcus; Völzke, Henry; Ittermann, Till; Obst, Anne; Schäper, Christoph; John, Ulrich; Meisel, Peter; Grotevendt, Anne; Felix, Stephan B; Ewert, Ralf; Gläser, Sven
2013-12-01
This study aimed to assess the potential association of periodontal diseases with lung volumes and airflow limitation in a general adult population. Based on a representative population sample of the Study of Health in Pomerania (SHIP), 1463 subjects aged 25-86 years were included. Periodontal status was assessed by clinical attachment loss (CAL), probing depth and number of missing teeth. Lung function was measured using spirometry, body plethysmography and diffusing capacity of the lung for carbon monoxide. Linear regression models using fractional polynomials were used to assess associations between periodontal disease and lung function. Fibrinogen and high-sensitivity C-reactive protein (hs-CRP) were evaluated as potential intermediate factors. After full adjustment for potential confounders mean CAL was significantly associated with variables of mobile dynamic and static lung volumes, airflow limitation and hyperinflation (p<0.05). Including fibrinogen and hs-CRP did not change coefficients of mean CAL; associations remained statistically significant. Mean CAL was not associated with total lung capacity and diffusing capacity of the lung for carbon monoxide. Associations were confirmed for mean probing depth, extent measures of CAL/probing depth and number of missing teeth. Periodontal disease was significantly associated with reduced lung volumes and airflow limitation in this general adult population sample. Systemic inflammation did not provide a mechanism linking both diseases.
Gupta, C K; Mishra, G; Mehta, S C; Prasad, J
1993-01-01
Lung volumes, capacities, diffusion and alveolar volumes with physical characteristics (age, height and weight) were recorded for 186 healthy school children (96 boys and 90 girls) of 10-17 years age group. The objective was to study the relative importance of physical characteristics as regressor variables in regression models to estimate lung functions. We observed that height is best correlated with all the lung functions. Inclusion of all physical characteristics in the models have little gain compared to the ones having just height as regressor variable. We also find that exponential models were not only statistically valid but fared better compared to the linear ones. We conclude that lung functions covary with height and other physical characteristics but do not depend upon them. The rate of increase in the functions depend upon initial lung functions. Further, we propose models and provide ready reckoners to give estimates of lung functions with 95 per cent confidence limits based on heights from 125 to 170 cm for the age group of 10 to 17 years.
Hetzel, Juergen; Spengler, Werner; Horger, Marius; Boeckeler, Michael
2015-06-01
Endoscopic lung volume reduction is an emerging technique meant to improve lung function parameters, quality of life, and exercise tolerance in patients with severe lung emphysema. This is the first report of lung volume reduction by autologous blood in a patient with non-bullous lung emphysema. A 74-year-old woman with heterogeneous lung emphysema developed accidentally diffuse lobar bleeding immediately after valve placement. Due to persistent hemorrhage, the valves had to be removed shortly thereafter. Despite extraction of the valves, respiratory function of the patient improved rapidly indicated also by a drop in the COPD assessment test questionnaire, 3 months later. This was consistent with both improvement of lung function tests and six-minute walking test.
Heathcote, Karen L; Cockcroft, Donald W; Fladeland, Derek A; Fenton, Mark E
2011-01-01
Pulmonary function tests in patients with idiopathic pulmonary fibrosis characteristically show a restrictive pattern including small lung volumes and increased expiratory flow rates resulting from a reduction in pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. When the diseases coexist, pulmonary volumes are compensated, and a smaller than expected reduction or even normal lung volumes can be found. The present report describes 10 patients with progressive breathlessness, three of whom experienced severe limitation in their quality of life. All patients showed lung interstitial involvement and emphysema on computed tomography scan of the chest. The 10 patients showed normal spirometry and lung volumes with severe compromise of gas exchange. Normal lung volumes do not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.
Bokov, P; Delclaux, C
2016-02-01
Resting pulmonary function tests (PFT) include the assessment of ventilatory capacity: spirometry (forced expiratory flows and mobilisable volumes) and static volume assessment, notably using body plethysmography. Spirometry allows the potential definition of obstructive defect, while static volume assessment allows the potential definition of restrictive defect (decrease in total lung capacity) and thoracic hyperinflation (increase in static volumes). It must be kept in mind that this evaluation is incomplete and that an assessment of ventilatory demand is often warranted, especially when facing dyspnoea: evaluation of arterial blood gas (searching for respiratory insufficiency) and measurement of the transfer coefficient of the lung, allowing with the measurement of alveolar volume to calculate the diffusing capacity of the lung for CO (DLCO: assessment of alveolar-capillary wall and capillary blood volume). All these pulmonary function tests have been the subject of an Americano-European Task force (standardisation of lung function testing) published in 2005, and translated in French in 2007. Interpretative strategies for lung function tests have been recommended, which define abnormal lung function tests using the 5th and 95th percentiles of predicted values (lower and upper limits of normal values). Thus, these recommendations need to be implemented in all pulmonary function test units. A methacholine challenge test will only be performed in the presence of an intermediate pre-test probability for asthma (diagnostic uncertainty), which is an infrequent setting. The most convenient exertional test is the 6-minute walk test that allows the assessment of walking performance, the search for arterial desaturation and the quantification of dyspnoea complaint. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.
Are there sex differences in the capillary blood volume and diffusing capacity response to exercise?
Bouwsema, Melissa M; Tedjasaputra, Vincent; Stickland, Michael K
2017-03-01
Previous work suggests that women may exhibit a greater respiratory limitation in exercise compared with height-matched men. Diffusion capacity (Dl CO ) increases with incremental exercise, and the smaller lungs of women may limit membrane diffusing capacity (Dm) and pulmonary capillary blood volume (Vc) in response to the increased oxygen demand. We hypothesized that women would have lower Dl CO , Dl CO relative to cardiac output (Dl CO /Q̇), Dm, Vc, and pulmonary transit time, secondary to lower Vc at peak exercise. Sixteen women (112 ± 12% predicted relative V̇o 2peak ) and sixteen men (118 ± 22% predicted relative V̇o 2peak ) were matched for height and weight. Hemoglobin-corrected diffusing capacity (Dl CO ), Vc, and Dm were determined via the multiple-[Formula: see text] Dl CO technique at rest and during incremental exercise up to 90% of V̇o 2peak Both groups increased Dl CO , Vc, and Dm with exercise intensity, but women had 20% lower Dl CO ( P < 0.001), 18% lower Vc ( P = 0.002), and 22% lower Dm ( P < 0.001) compared with men across all workloads, and neither group exhibited a plateau in Vc. When expressed relative to alveolar volume (Va), the between-sex difference was eliminated. The drop in Dl CO /Q̇ was proportionally less in women than men, and mean pulmonary transit time did not drop below 0.3 s in either group. Women demonstrate consistently lower Dl CO , Vc, and Dm compared with height-matched men during exercise; however, these differences disappear with correction for lung size. These results suggest that after differences in lung volume are accounted for there is no intrinsic sex difference in the Dl CO , Vc, or Dm response to exercise. NEW & NOTEWORTHY Women demonstrate lower diffusing capacity-to-cardiac output ratio (Dl CO /Q̇), pulmonary capillary blood volume (Vc), and membrane diffusing capacity (Dm) compared with height-matched men during exercise. However, these differences disappear after correction for lung size. The drop in Dl CO /Q̇ was proportionally less in women, and pulmonary transit time did not drop below 0.3 s in either group. After differences in lung volume are accounted for, there is no intrinsic sex difference in Dl CO , Vc, or Dm response to exercise. Copyright © 2017 the American Physiological Society.
Spirometry, Static Lung Volumes, and Diffusing Capacity.
Vaz Fragoso, Carlos A; Cain, Hilary C; Casaburi, Richard; Lee, Patty J; Iannone, Lynne; Leo-Summers, Linda S; Van Ness, Peter H
2017-09-01
Spirometric Z-scores from the Global Lung Initiative (GLI) rigorously account for age-related changes in lung function and are thus age-appropriate when establishing spirometric impairments, including a restrictive pattern and air-flow obstruction. However, GLI-defined spirometric impairments have not yet been evaluated regarding associations with static lung volumes (total lung capacity [TLC], functional residual capacity [FRC], and residual volume [RV]) and gas exchange (diffusing capacity). We performed a retrospective review of pulmonary function tests in subjects ≥40 y old (mean age 64.6 y), including pre-bronchodilator measures for: spirometry ( n = 2,586), static lung volumes by helium dilution with inspiratory capacity maneuver ( n = 2,586), and hemoglobin-adjusted single-breath diffusing capacity ( n = 2,508). Using multivariable linear regression, adjusted least-squares means (adj LS Means) were calculated for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity. The adj LS Means were expressed with and without height-cubed standardization and stratified by GLI-defined spirometry, including normal ( n = 1,251), restrictive pattern ( n = 663), and air-flow obstruction (mild, [ n = 128]; moderate, [ n = 150]; and severe, [ n = 394]). Relative to normal spirometry, restrictive-pattern had lower adj LS Means for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity ( P ≤ .001). Conversely, relative to normal spirometry, mild, moderate, and severe air-flow obstruction had higher adj LS Means for FRC and RV ( P < .001). However, only mild and moderate air-flow obstruction had higher adj LS Means for TLC ( P < .001), while only moderate and severe air-flow obstruction had higher adj LS Means for RV/TLC ( P < .001) and lower adj LS Means for hemoglobin-adjusted single-breath diffusing capacity ( P < .001). Notably, TLC (calculated as FRC + inspiratory capacity) was not increased in severe air-flow obstruction ( P ≥ .11) because inspiratory capacity decreased with increasing air-flow obstruction ( P < .001), thus opposing the increased FRC ( P < .001). Finally, P values were similar whether adj LS Means were height-cubed standardized. A GLI-defined spirometric restrictive pattern is strongly associated with a restrictive ventilatory defect (decreased TLC, FRC, and RV), while GLI-defined spirometric air-flow obstruction is strongly associated with hyperinflation (increased FRC) and air trapping (increased RV and RV/TLC). Both spirometric impairments were strongly associated with impaired gas exchange (decreased hemoglobin-adjusted single-breath diffusing capacity). Copyright © 2017 by Daedalus Enterprises.
Mohamed Hoesein, Firdaus A A; de Jong, Pim A; Lammers, Jan-Willem J; Mali, Willem P Th M; Mets, Onno M; Schmidt, Michael; de Koning, Harry J; Aalst, Carlijn van der; Oudkerk, Matthijs; Vliegenthart, Rozemarijn; Ginneken, Bram van; van Rikxoort, Eva M; Zanen, Pieter
2014-09-01
Emphysema, airway wall thickening and air trapping are associated with chronic obstructive pulmonary disease (COPD). All three can be quantified by computed tomography (CT) of the chest. The goal of the current study is to determine the relative contribution of CT derived parameters on spirometry, lung volume and lung diffusion testing. Emphysema, airway wall thickening and air trapping were quantified automatically on CT in 1,138 male smokers with and without COPD. Emphysema was quantified by the percentage of voxels below -950 Hounsfield Units (HU), airway wall thickness by the square root of wall area for a theoretical airway with 10 mm lumen perimeter (Pi10) and air trapping by the ratio of mean lung density at expiration and inspiration (E/I-ratio). Spirometry, residual volume to total lung capacity (RV/TLC) and diffusion capacity (Kco) were obtained. Standardized regression coefficients (β) were used to analyze the relative contribution of CT changes to pulmonary function measures. The independent contribution of the three CT measures differed per lung function parameter. For the FEV1 airway wall thickness was the most contributing structural lung change (β = -0.46), while for the FEV1/FVC this was emphysema (β = -0.55). For the residual volume (RV) air trapping was most contributing (β = -0.35). Lung diffusion capacity was most influenced by emphysema (β = -0.42). In a cohort of smokers with and without COPD the effect of different CT changes varies per lung function measure and therefore emphysema, airway wall thickness and air trapping need to be taken in account.
Probing sub-alveolar length scales with hyperpolarized-gas diffusion NMR
NASA Astrophysics Data System (ADS)
Miller, Wilson; Carl, Michael; Mooney, Karen; Mugler, John; Cates, Gordon
2009-05-01
Diffusion MRI of the lung is a promising technique for detecting alterations of normal lung microstructure in diseases such as emphysema. The length scale being probed using this technique is related to the time scale over which the helium-3 or xenon-129 diffusion is observed. We have developed new MR pulse sequence methods for making diffusivity measurements at sub-millisecond diffusion times, allowing one to probe smaller length scales than previously possible in-vivo, and opening the possibility of making quantitative measurements of the ratio of surface area to volume (S/V) in the lung airspaces. The quantitative accuracy of simulated and experimental measurements in microstructure phantoms will be discussed, and preliminary in-vivo results will be presented.
Characterization of the Lung Parenchyma Using Ultrasound Multiple Scattering.
Mohanty, Kaustav; Blackwell, John; Egan, Thomas; Muller, Marie
2017-05-01
The purpose of the study described here was to showcase the application of ultrasound to quantitative characterization of the micro-architecture of the lung parenchyma to predict the extent of pulmonary edema. The lung parenchyma is a highly complex and diffusive medium for which ultrasound techniques have remained qualitative. The approach presented here is based on ultrasound multiple scattering and exploits the complexity of ultrasound propagation in the lung structure. The experimental setup consisted of a linear transducer array with an 8-MHz central frequency placed in contact with the lung surface. The diffusion constant D and transport mean free path L* of the lung parenchyma were estimated by separating the incoherent and coherent intensities in the near field and measuring the growth of the incoherent diffusive halo over time. Significant differences were observed between the L* values obtained in healthy and edematous rat lungs in vivo. In the control rat lung, L* was found to be 332 μm (±48.8 μm), whereas in the edematous lung, it was 1040 μm (±90 μm). The reproducibility of the measurements of L* and D was tested in vivo and in phantoms made of melamine sponge with varying air volume fractions. Two-dimensional finite difference time domain numerical simulations were carried out on rabbit lung histology images with varying degrees of lung collapse. Significant correlations were observed between air volume fraction and L* in simulation (r = -0.9542, p < 0.0117) and sponge phantom (r = -0.9932, p < 0.0068) experiments. Ex vivo measurements of a rat lung in which edema was simulated by adding phosphate-buffered saline revealed a linear relationship between the fluid volume fraction and L*. These results illustrate the potential of methods based on ultrasound multiple scattering for the quantitative characterization of the lung parenchyma. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Morphological respiratory diffusion capacity of the lungs of ball pythons (Python regius).
Starck, J Matthias; Aupperle, Heike; Kiefer, Ingmar; Weimer, Isabel; Krautwald-Junghanns, Maria-Elisabeth; Pees, Michael
2012-08-01
This study aims at a functional and morphological characterization of the lung of a boid snake. In particular, we were interested to see if the python's lungs are designed with excess capacity as compared to resting and working oxygen demands. Therefore, the morphological respiratory diffusion capacity of ball pythons (Python regius) was examined following a stereological, hierarchically nested approach. The volume of the respiratory exchange tissue was determined using computed tomography. Tissue compartments were quantified using stereological methods on light microscopic images. The tissue diffusion barrier for oxygen transport was characterized and measured using transmission electron micrographs. We found a significant negative correlation between body mass and the volume of respiratory tissue; the lungs of larger snakes had relatively less respiratory tissue. Therefore, mass-specific respiratory tissue was calculated to exclude effects of body mass. The volume of the lung that contains parenchyma was 11.9±5.0mm(3)g(-1). The volume fraction, i.e., the actual pulmonary exchange tissue per lung parenchyma, was 63.22±7.3%; the total respiratory surface was, on average, 0.214±0.129m(2); it was significantly negatively correlated to body mass, with larger snakes having proportionally smaller respiratory surfaces. For the air-blood barrier, a harmonic mean of 0.78±0.05μm was found, with the epithelial layer representing the thickest part of the barrier. Based on these findings, a median diffusion capacity of the tissue barrier ( [Formula: see text] ) of 0.69±0.38ml O(2)min(-1)mmHg(-1) was calculated. Based on published values for blood oxygen concentration, a total oxygen uptake capacity of 61.16mlO(2)min(-1)kg(-1) can be assumed. This value exceeds the maximum demand for oxygen in ball pythons by a factor of 12. We conclude that healthy individuals of P. regius possess a considerable spare capacity for tissue oxygen exchange. Copyright © 2012 Elsevier GmbH. All rights reserved.
Quantification of lung microstructure with hyperpolarized 3He diffusion MRI
Sukstanskii, Alexander L.; Woods, Jason C.; Gierada, David S.; Quirk, James D.; Hogg, James C.; Cooper, Joel D.; Conradi, Mark S.
2009-01-01
The structure and integrity of pulmonary acinar airways and their changes in different diseases are of great importance and interest to a broad range of physiologists and clinicians. The introduction of hyperpolarized gases has opened a door to in vivo studies of lungs with MRI. In this study we demonstrate that MRI-based measurements of hyperpolarized 3He diffusivity in human lungs yield quantitative information on the value and spatial distribution of lung parenchyma surface-to-volume ratio, number of alveoli per unit lung volume, mean linear intercept, and acinar airway radii—parameters that have been used by lung physiologists for decades and are accepted as gold standards for quantifying emphysema. We validated our MRI-based method in six human lung specimens with different levels of emphysema against direct unbiased stereological measurements. We demonstrate for the first time MRI images of these lung microgeometric parameters in healthy lungs and lungs with different levels of emphysema (mild, moderate, and severe). Our data suggest that decreases in lung surface area per volume at the initial stages of emphysema are due to dramatic decreases in the depth of the alveolar sleeves covering the alveolar ducts and sacs, implying dramatic decreases in the lung's gas exchange capacity. Our novel methods are sufficiently sensitive to allow early detection and diagnosis of emphysema, providing an opportunity to improve patient treatment outcomes, and have the potential to provide safe and noninvasive in vivo biomarkers for monitoring drug efficacy in clinical trials. PMID:19661452
Relaxation and diffusion of perfluorocarbon gas mixtures with oxygen for lung MRI
NASA Astrophysics Data System (ADS)
Chang, Yulin V.; Conradi, Mark S.
2006-08-01
We report measurements of free diffusivity D0 and relaxation times T1 and T2 for pure C 2F 6 and C 3F 8 and their mixtures with oxygen. A simplified relaxation theory is presented and used to fit the data. The results enable spatially localized relaxation time measurements to determine the local gas concentration in lung MR images, so the free diffusivity D0 is then known. Comparison of the measured diffusion to D0 will express the extent of diffusion restriction and allow the local surface-to-volume ratio to be found.
Association of adult respiratory distress syndrome (ARDS) with thoracic irradiation (RT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byhardt, R.W.; Abrams, R.; Almagro, U.
1988-12-01
The authors report two cases of apparent adult respiratory distress syndrome (ARDS) following limited thoracic irradiation for lung cancer. Respiratory failure followed rapidly after irradiation with diffuse bilateral infiltrates, both in and out of the irradiated volume along with progressive hypoxemia unresponsive to oxygen management. Other potential causes of lung injury such as lymphangitic tumor, cardiac failure, and infections were excluded by both premortem and postmortem examination. Autopsy findings in both irradiated and unirradiated volumes of lung were consistent with hyaline membrane changes. The possible relationship between radiation therapy to limited lung volumes and the development of adult respiratory distressmore » syndrome is discussed.« less
O'Halloran, Rafael L; Holmes, James H; Wu, Yu-Chien; Alexander, Andrew; Fain, Sean B
2010-01-01
An undersampled diffusion-weighted stack-of-stars acquisition is combined with iterative highly constrained back-projection to perform hyperpolarized helium-3 MR q-space imaging with combined regional correction of radiofrequency- and T1-related signal loss in a single breath-held scan. The technique is tested in computer simulations and phantom experiments and demonstrated in a healthy human volunteer with whole-lung coverage in a 13-sec breath-hold. Measures of lung microstructure at three different lung volumes are evaluated using inhaled gas volumes of 500 mL, 1000 mL, and 1500 mL to demonstrate feasibility. Phantom results demonstrate that the proposed technique is in agreement with theoretical values, as well as with a fully sampled two-dimensional Cartesian acquisition. Results from the volunteer study demonstrate that the root mean squared diffusion distance increased significantly from the 500-mL volume to the 1000-mL volume. This technique represents the first demonstration of a spatially resolved hyperpolarized helium-3 q-space imaging technique and shows promise for microstructural evaluation of lung disease in three dimensions. Copyright (c) 2009 Wiley-Liss, Inc.
Tang, Yongjiang; Zhang, Mingke; Feng, Yulin; Liang, Binmiao
2016-11-23
Chronic obstructive pulmonary disease (COPD) is a chronic airway disease characterized by persistent airflow limitation. Moreover, lung hyperinflation evaluated by lung volumes is also the key pathophysiologic process during COPD progression. Nevertheless, there is still no preferred method to evaluate lung volumes. For this study, we recruited 170 patients with stable COPD to assess lung volumes stratified by airflow limitation severity. Lung volumes including residual volume (RV) and total lung capacity (TLC) were determined by both body plethysmography and helium dilution methods. The discrepancies between these two methods were recorded as ΔRV%pred, ΔTLC%pred, and ΔRV/TLC. We found that ΔRV%pred, ΔTLC%pred, and ΔRV/TLC increased significantly with the severity of COPD. The differences of lung capacity between these two methods were negatively correlated with FEV 1 %pred, and diffusing capacity for carbon monoxide (D L CO%pred). Moreover, the receiver operating characteristic (ROC) for ΔTLC%pred to distinguish severe COPD from non-severe COPD had an area under curve (AUC) of 0.886. The differences of lung volume parameters measured by body plethysmography and helium dilution methods were associated with airflow limitation and can effectively differentiate COPD severity, which may be a supportive method to assess the lung function of stable COPD patients.
[Normal lung volumes in patients with idiopathic pulmonary fibrosis and emphysema].
Casas, Juan Pablo; Abbona, Horacio; Robles, Adriana; López, Ana María
2008-01-01
Pulmonary function tests in idiopathic pulmonary fibrosis characteristically show a restrictive pattern, resulting from reduction of pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. Previous reports suggest that when both diseases coexist, pulmonary volumes are compensated and a smaller than expected reduction or even normal lung volumes can be found. We report 4 male patients of 64, 60, 73 and 70 years, all with heavy cigarette smoking history and progressive breathlessness. Three of them had severe limitation in their quality of life. All four showed advanced lung interstitial involvement, at high resolution CT scan, fibrotic changes predominantly in the subpleural areas of lower lung fields and concomitant emphysema in the upper lobes. Emphysema and pulmonary fibrosis was confirmed by open lung biopsy in one patient. The four patients showed normal spirometry and lung volumes with severe compromise of gas exchange and poor exercise tolerance evaluated by 6 minute walk test. Severe pulmonary arterial hypertension was also confirmed in three patients. Normal lung volumes does not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.
Chino, Haruka; Sekine, Akimasa; Baba, Tomohisa; Iwasawa, Tae; Okudela, Koji; Takemura, Tamiko; Itoh, Harumi; Sato, Shinji; Suzuki, Yasuo; Ogura, Takashi
2016-01-01
We herein present the first case of rapidly progressive interstitial lung disease (RP-ILD) with anti-melanoma differentiation-associated protein 5 (MDA5) antibody evaluated by surgical lung biopsy (SLB). High-resolution CT scan revealed perilobular opacities, which rapidly became thicker and formed consolidation, resulting in remarkable loss of lung volume. Specimens taken from SLB revealed membranous organization with alveolar occlusion, dilation of alveolar ducts, and sacs with collapsed alveoli, which are typical features of diffuse alveolar damage (DAD). Rapidly progressive perilobular opacities may be characteristic of RP-ILD with anti-MDA5 antibody and DAD.
Increased vital and total lung capacities in Tibetan compared to Han residents of Lhasa (3,658 m).
Droma, T; McCullough, R G; McCullough, R E; Zhuang, J G; Cymerman, A; Sun, S F; Sutton, J R; Moore, L G
1991-11-01
Larger chest dimensions and lung volumes have been reported for Andean high-altitude natives compared with sea-level residents and implicated in raising lung diffusing capacity. Studies conducted in Nepal suggested that lifelong Himalayan residents did not have enlarged chest dimensions. To determine if high-altitude Himalayans (Tibetans) had larger lung volumes than acclimatized newcomers (Han "Chinese"), we studied 38 Tibetan and 43 Han residents of Lhasa, Tibet Autonomous Region, China (elevation 3,658 m) matched for age, height, weight, and smoking history. The Tibetan compared with the Han subjects had a larger total lung capacity [6.80 +/- 0.19 (mean +/- SEM) vs 6.24 +/- 0.18 l BTPS, P less than 0.05], vital capacity (5.00 +/- 0.08 vs 4.51 +/- 0.10 1 BTPS, P less than 0.05), and tended to have a greater residual volume (1.86 +/- 0.12 vs 1.56 +/- 0.09 1 BTPS, P less than 0.06). Chest circumference was greater in the Tibetan than the Han subjects (85 +/- 1 vs 82 +/- 1 cm, P less than 0.05) and correlated with vital capacity in each group as well as in the two groups combined (r = 0.69, P less than 0.05). Han who had migrated to high altitude as children (less than or equal to 5 years old, n = 6) compared to Han adult migrants (greater than or equal to 18 years old, n = 26) were shorter but had similar lung volumes and capacities when normalized for body size. The Tibetans' vital capacity and total lung capacity in relation to body size were similar to values reported previously for lifelong residents of high altitude in South and North America. Thus, Tibetans, like North and South American high-altitude residents, have larger lung volumes. This may be important for raising lung diffusing capacity and preserving arterial oxygen saturation during exercise.
Bedzra, Edo K S; Dardas, Todd F; Cheng, Richard K; Pal, Jay D; Mahr, Claudius; Smith, Jason W; Shively, Kent; Masri, S Carolina; Levy, Wayne C; Mokadam, Nahush A
2017-12-01
To investigate the effect of pulmonary function testing on outcomes after continuous flow left ventricular assist device implantation. A total of 263 and 239 patients, respectively, had tests of forced expiratory volume in 1 second and diffusing capacity of the lungs for carbon monoxide preoperatively for left ventricular assist device implantations between July 2005 and September 2015. Kaplan-Meier analysis and multivariable Cox regressions were performed to evaluate mortality. Patients were analyzed in a single cohort and across 5 groups. Postoperative intensive care unit and hospital lengths of stay were evaluated with negative binomial regressions. There is no association of forced expiratory volume in 1 second and diffusing capacity of the lungs for carbon monoxide with survival and no difference in mortality at 1 and 3 years between the groups (log rank P = .841 and .713, respectively). Greater values in either parameter were associated with decreased hospital lengths of stay. Only diffusing capacity of the lungs for carbon monoxide was associated with increased intensive care unit length of stay in the group analysis (P = .001). Ventilator times, postoperative pneumonia, reintubation, and tracheostomy rates were similar across the groups. Forced expiratory volume in 1 second and diffusing capacity of the lungs for carbon monoxide are not associated with operative or long-term mortality in patients undergoing continuous flow left ventricular assist device implantation. These findings suggest that these abnormal pulmonary function tests alone should not preclude mechanical circulatory support candidacy. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Reference values for pulmonary diffusing capacity for adult native Finns.
Kainu, Annette; Toikka, Jyri; Vanninen, Esko; Timonen, Kirsi L
2017-04-01
Measurement standards for pulmonary diffusing capacity were updated in 2005 by the ATS/ERS Task Force. However, in Finland reference values published in 1982 by Viljanen et al. have been used to date. The main aim of this study was to produce updated reference models for single-breath diffusing capacity for carbon monoxide for Finnish adults. Single-breath diffusing capacity for carbon monoxide was measured in 631 healthy non-smoking volunteers (41.5% male). Reference values for diffusing capacity (DLCO), alveolar volume (VA), diffusing capacity per unit of lung volume (DLCO/VA), and lung volumes were calculated using a linear regression model. Previously used Finnish reference values were found to produce too low predicted values, with mean predicted DLCO 111.0 and 104.4%, and DLCO/VA of 103.5 and 102.7% in males and females, respectively. With the European Coalition for Steel and Coal (ECSC) reference values there was a significant sex difference in DLCO/VA with mean predicted 105.4% in males and 92.8% in females (p < .001). New reference values for DLCO, DLCO/VA, VA, vital capacity (VC), inspiratory vital capacity (IVC), and inspiratory capacity (IC) are suggested for clinical use to replace technically outdated reference values for clinical applications.
Chronic Hypoxia Accentuates Dysanaptic Lung Growth.
Llapur, Conrado J; Martínez, Myriam R; Grassino, Pedro T; Stok, Ana; Altieri, Héctor H; Bonilla, Federico; Caram, María M; Krowchuk, Natasha M; Kirby, Miranda; Coxson, Harvey O; Tepper, Robert S
2016-08-01
Adults born and raised at high altitudes have larger lung volumes and greater pulmonary diffusion capacity compared with adults at low altitude; however, it remains unclear whether the air and tissue volumes have comparable increases and whether there is a difference in airway size. To assess the effect of chronic hypoxia on lung growth using in vivo high-resolution computed tomography measurements. Healthy adults born and raised at moderate altitude (2,000 m above sea level; n = 19) and at low altitude (400 m above sea level; n = 23) underwent high-resolution computed tomography. Differences in total lung, air, and tissue volume, mean lung density, as well as airway lumen and wall areas in anatomically matched airways were compared between groups. No significant differences for age, sex, weight, or height were found between the two groups (P > 0.05). In a multivariate regression model, altitude was a significant contributor for total lung volume (P = 0.02), air volume (P = 0.03), and tissue volume (P = 0.03), whereby the volumes were greater for the moderate- versus the low-altitude group. However, altitude was not a significant contributor for mean lung density (P = 0.35) or lumen and wall areas in anatomically matched segmental, subsegmental, and subsubsegmental airways. Our findings suggest that the adult lung did not increase lung volume later in life by expansion of an existing number of alveoli, but rather from increased alveolarization early in life. In addition, chronic hypoxia accentuates dysanaptic lung growth by increasing the lung parenchyma but not the airways.
Takai, Daiya
2014-12-01
Spirometry and the flow-volume curve test are commonly performed lung function tests. However, a unique clinical entity occasionally shows almost normal data in these tests, and is therefore missed on screening tests. The clinical entity of combined pulmonary emphysema and pulmdoary fibrosis was recognized and documented in the 90's in Japan, the USA, and Europe. Typical emphysema shows obstructive disorders, and pulmonary fibrosis shows restrictive disorders. Thus, the combination of both should lead to a combined disorder pattern in lung function tests, but this is not the case. In 2005, Cottin reported and redefined this combination of emphysema and fibrosis of the lung as "Combined Pulmonary Fibrosis and Emphysema" (CPFE). The patients are typically heavily smoking males who show an almost normal lung function. The upper lobe of these patients usually shows severe emphysema, which contributes to a static volume and a late phase in the forced volume test. On the other hand their lower lobe shows fibrotic change. The fibrotic portion contributes to early phase flow in the flow-volume curve. These mechanisms are a reason for the normal pattern appearance in lung function tests in CPFE patients. As a matter of course, these patients have damaged upper and lower lobes: their diffusing capacity of the lung shows a low performance, their saturation of blood hemoglobin decreases soon after light exercise, and their KL-6 (a blood marker of pulmonary fibrosis) usually shows a high value. They are considered a high risk group regarding complications of post-surgical treatment. Thus, when medical technologists identify suspicious cases, they should advise doctors to add diffusing capacity and KL-6 tests. (Review).
[Lung volume reduction surgery for emphysema and bullous pulmonary emphysema].
Le Pimpec-Barthes, F; Das Neves-Pereira, J-C; Cazes, A; Arame, A; Grima, R; Hubsch, J-P; Zukerman, C; Hernigou, A; Badia, A; Bagan, P; Delclaux, C; Dusser, D; Riquet, M
2012-04-01
The improvement of respiratory symptoms for emphysematous patients by surgery is a concept that has evolved over time. Initially used for giant bullae, this surgery was then applied to patients with diffuse microbullous emphysema. The physiological and pathological concepts underlying these surgical procedures are the same in both cases: improve respiratory performance by reducing the high intrapleural pressure. The functional benefit of lung volume reduction surgery (LVRS) in the severe diffuse emphysema has been validated by the National Emphysema Treatment Trial (NETT) and the later studies which allowed to identify prognostic factors. The quality of the clinical, morphological and functional data made it possible to develop recommendations now widely used in current practice. Surgery for giant bullae occurring on little or moderately emphysematous lung is often a simpler approach but also requires specialised support to optimize its results. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
3He Lung Morphometry Technique: Accuracy Analysis and Pulse Sequence Optimization
Sukstanskii, A.L.; Conradi, M.S.; Yablonskiy, D.A.
2010-01-01
The 3He lung morphometry technique (Yablonskiy et al, JAP, 2009), based on MRI measurements of hyperpolarized gas diffusion in lung airspaces, provides unique information on the lung microstructure at the alveolar level. 3D tomographic images of standard morphological parameters (mean airspace chord length, lung parenchyma surface-to-volume ratio, and the number of alveoli per unit lung volume) can be created from a rather short (several seconds) MRI scan. These parameters are most commonly used to characterize lung morphometry but were not previously available from in vivo studies. A background of the 3He lung morphometry technique is based on a previously proposed model of lung acinar airways, treated as cylindrical passages of external radius R covered by alveolar sleeves of depth h, and on a theory of gas diffusion in these airways. The initial works approximated the acinar airways as very long cylinders, all with the same R and h. The present work aims at analyzing effects of realistic acinar airway structures, incorporating airway branching, physiological airway lengths, a physiological ratio of airway ducts and sacs, and distributions of R and h. By means of Monte Carlo computer simulations, we demonstrate that our technique allows rather accurate measurements of geometrical and morphological parameters of acinar airways. In particular, the accuracy of determining one of the most important physiological parameter of acinar airways – surface-to-volume ratio – does not exceed several percent. Second, we analyze the effect of the susceptibility induced inhomogeneous magnetic field on the parameter estimate and demonstrate that this effect is rather negligible at B0 ≤ 3T and becomes substantial only at higher B0 Third, we theoretically derive an optimal choice of MR pulse sequence parameters, which should be used to acquire a series of diffusion attenuated MR signals, allowing a substantial decrease in the acquisition time and improvement in accuracy of the results. It is demonstrated that the optimal choice represents three not equidistant b-values: b1 = 0, b2 ~ 2 s/cm2, b3 ~ 8 s/cm2. PMID:20937564
Henderson, Lauren A; Loring, Stephen H; Gill, Ritu R; Liao, Katherine P; Ishizawar, Rumey; Kim, Susan; Perlmutter-Goldenson, Robin; Rothman, Deborah; Son, Mary Beth F; Stoll, Matthew L; Zemel, Lawrence S; Sandborg, Christy; Dellaripa, Paul F; Nigrovic, Peter A
2013-03-01
The pathophysiology of shrinking lung syndrome (SLS) is poorly understood. We sought to define the structural basis for this condition through the study of pulmonary mechanics in affected patients. Since 2007, most patients evaluated for SLS at our institutions have undergone standardized respiratory testing including esophageal manometry. We analyzed these studies to define the physiological abnormalities driving respiratory restriction. Chest computed tomography data were post-processed to quantify lung volume and parenchymal density. Six cases met criteria for SLS. All presented with dyspnea as well as pleurisy and/or transient pleural effusions. Chest imaging results were free of parenchymal disease and corrected diffusing capacities were normal. Total lung capacities were 39%-50% of predicted. Maximal inspiratory pressures were impaired at high lung volumes, but not low lung volumes, in 5 patients. Lung compliance was strikingly reduced in all patients, accompanied by increased parenchymal density. Patients with SLS exhibited symptomatic and/or radiographic pleuritis associated with 2 characteristic physiological abnormalities: (1) impaired respiratory force at high but not low lung volumes; and (2) markedly decreased pulmonary compliance in the absence of identifiable interstitial lung disease. These findings suggest a model in which pleural inflammation chronically impairs deep inspiration, for example through neural reflexes, leading to parenchymal reorganization that impairs lung compliance, a known complication of persistently low lung volumes. Together these processes could account for the association of SLS with pleuritis as well as the gradual symptomatic and functional progression that is a hallmark of this syndrome.
Pleural plaques and their effect on lung function in Libby vermiculite miners.
Clark, Kathleen A; Flynn, J Jay; Goodman, Julie E; Zu, Ke; Karmaus, Wilfried J J; Mohr, Lawrence C
2014-09-01
Multiple studies have investigated the relationship between asbestos-related pleural plaques (PPs) and lung function, with disparate and inconsistent results. Most use chest radiographs to identify PPs and simple spirometry to measure lung function. High-resolution CT (HRCT) scanning improves the accuracy of PP identification. Complete pulmonary function tests (PFTs), including spirometry, lung volumes, and diffusing capacity of the lung for carbon monoxide, provide a more definitive assessment of lung function. The goal of this study was to determine, using HRCT scanning and complete PFTs, the effect of PPs on lung function in Libby vermiculite miners. The results of HRCT scanning and complete PFTs performed between January 2000 and August 2012 were obtained from the medical records of 166 Libby vermiculite miners. Multivariate regression analyses with Tukey multivariate adjustment were used to assess statistical associations between the presence of PPs and lung function. Adjustments were made for age, BMI, smoking history, duration of employment, and years since last occupational asbestos exposure. Nearly 90% of miners (n = 149) had evidence of PPs on HRCT scan. No significant differences in spirometry results, lung volumes, or diffusing capacity of the lung for carbon monoxide were found between miners with PPs alone and miners with normal HRCT scans. Miners with both interstitial fibrosis and the presence of PPs had a significantly decreased total lung capacity in comparison with miners with normal HRCT scans (P = .02). Age, cumulative smoking history, and BMI were significant covariates that contributed to abnormal lung function. Asbestos-related PPs alone have no significant effect on lung function in Libby vermiculite miners.
Functional capacities of lungs and thorax in beagles after prolonged residence at 3,100 m.
Johnson, R L; Cassidy, S S; Grover, R F; Schutte, J E; Epstein, R H
1985-12-01
Functional capacities of the lungs and thorax in beagles taken to high altitude as adults for 33 mo or in beagles raised from puppies at high altitude were compared with functional capacities in corresponding sets of beagles kept simultaneously at sea level. Comparisons were made after reacclimatization to sea level. Lung volumes, airway pressures, esophageal pressures, CO diffusing capacities (DLCO), pulmonary blood flow, and lung tissue volume (Vt) were measured by a rebreathing technique at inspired volumes ranging from 15 to 90 ml/kg. In beagles raised from puppies we measured anatomical distribution of intrathoracic air and tissue using X-ray computed tomography at transpulmonary pressures of 20 cm H2O. Lung and thoracic distensibility, DLCO, and Vt were not different between beagles that had been kept at high altitude for 33 mo as adults and control subjects kept simultaneously at sea level. Lung distensibility, DLCO, and Vt were significantly greater in beagles raised at high altitude than control subjects raised simultaneously at sea level. Thoracic distensibility was not increased in beagles raised at high altitude; the larger lung volume was accommodated by a lower diaphragm, not a larger rib cage.
Modeling of photon migration in the human lung using a finite volume solver
NASA Astrophysics Data System (ADS)
Sikorski, Zbigniew; Furmanczyk, Michal; Przekwas, Andrzej J.
2006-02-01
The application of the frequency domain and steady-state diffusive optical spectroscopy (DOS) and steady-state near infrared spectroscopy (NIRS) to diagnosis of the human lung injury challenges many elements of these techniques. These include the DOS/NIRS instrument performance and accurate models of light transport in heterogeneous thorax tissue. The thorax tissue not only consists of different media (e.g. chest wall with ribs, lungs) but its optical properties also vary with time due to respiration and changes in thorax geometry with contusion (e.g. pneumothorax or hemothorax). This paper presents a finite volume solver developed to model photon migration in the diffusion approximation in heterogeneous complex 3D tissues. The code applies boundary conditions that account for Fresnel reflections. We propose an effective diffusion coefficient for the void volumes (pneumothorax) based on the assumption of the Lambertian diffusion of photons entering the pleural cavity and accounting for the local pleural cavity thickness. The code has been validated using the MCML Monte Carlo code as a benchmark. The code environment enables a semi-automatic preparation of 3D computational geometry from medical images and its rapid automatic meshing. We present the application of the code to analysis/optimization of the hybrid DOS/NIRS/ultrasound technique in which ultrasound provides data on the localization of thorax tissue boundaries. The code effectiveness (3D complex case computation takes 1 second) enables its use to quantitatively relate detected light signal to absorption and reduced scattering coefficients that are indicators of the pulmonary physiologic state (hemoglobin concentration and oxygenation).
NASA Technical Reports Server (NTRS)
Prisk, G. K.; Guy, Harold J. B.; Elliott, Ann R.; Deutschman, Robert A., III; West, John B.
1993-01-01
We measured pulmonary diffusing capacity (DL), diffusing capacity per unit lung volume, pulmonary capillary blood volume (Vc), membrane diffusing capacity (Dm), pulmonary capillary blood flow or cardiac output (Qc), and cardiac stroke volume (SV) in four subjects exposed to nine days of microgravity. DL in microgravity was elevated compared with preflight standing values and was higher than preflight supine because of the elevation of both Vc and Dm. The elevation in Vc was comparable to that measured supine in 1 G, but the increase in Dm was in sharp contrast to the supine value. We postulate that, in 0 G, pulmonary capillary blood is evenly distributed throughout the lung, providing for uniform capillary filling, leading to an increase in the surface area available for diffusion. By contrast, in the supine 1-G state, the capillaries are less evenly filled, and although a similar increase in blood volume is observed, the corresponding increase in surface area does not occur. DL and its subdivisions showed no adaptive changes from the first measurement 24 h after the start of 0 G to eight days later. Similarly, there were no trends in the postflight data, suggesting that the principal mechanism of these changes was gravitational. The increase in Dm suggests that subclinical pulmonary edema did not result from exposure to 0 G. Qc was modestly increased inflight and decreased postflight compared with preflight standing. Compared with preflight standing, SV was increased 46 percent inflight and decreased 14 percent in the 1st week postflight. There were temporal changes in Qc and SV during 0 G, with the highest values recorded at the first measurement, 24 h into the flight. The lowest values of Qc and SV occurred on the day of return.
[Lung volume reduction surgery for severe pulmonary emphysema in Iceland].
Gunnarsson, Sverrir I; Johannsson, Kristinn B; Guðjónsdóttir, Marta; Jónsson, Steinn; Beck, Hans J; Magnusson, Bjorn; Gudbjartsson, Tomas
2011-12-01
Lung volume reduction surgery (LVRS) can benefit patients with severe emphysema. The aim of this study was to evaluate the outcome of LVRS performed in Iceland. A prospective study of 16 consecutive patients who underwent bilateral LVRS through median sternotomy between January 1996 and December 2008. All patients had disabling dyspnea, lung hyperinflation, and emphysema with upper lobe predominance. Preoperatively all patients underwent pulmonary rehabilitation. Spirometry, lung volumes, arterial blood gases and exercise capacity were measured before and after surgery. Mean follow-up time was 8.7 years. Mean age was 59.2 ± 5.9 years. All patients had a history of heavy smoking. There was no perioperative mortality and survival was 100%, 93%, and 63% at 1, 5, and 10 years, respectively. The forced expiratory volume in 1 second (FEV1) and the forced vital capacity (FVC) improved significantly after surgery by 35% (p<0.001) and 14% (p<0.05), respectively. The total lung capacity, residual volume and partial pressure of CO2 also showed statistically significant improvements but exercise capacity, O2 consumption and diffusing capacity of the lung for CO did not change. Prolonged air leak (≥ 7 days) was the most common complication (n=7). Five patients required reoperation, most commonly for sternal dehiscence (n=4). In this small prospective study, FEV1 and FVC increased and lung volumes and PaCO2 improved after LVRS. Long term survival was satisfactory although complications such as reoperations for sternal dehiscence were common and hospital stay therefore often prolonged.
[Function of alveoles as a result of evolutionary development of respiratory system in mammals].
Ivanov, K P
2013-01-01
Reaction of hemoglobin oxygenation is known to occur for 40 femtoseconds (40 x 10(-15) s). However, the process of oxygen diffusion to hemoglobin under physiologic conditions decelerated this reaction approximately billion times. In mammalian lungs, blood is moving at a high rate and in a relatively high amount. The human lung mass is as low as 600 g, but the complete cardiac output approaches 6 1/min. In rat, from 20 to 40 ml of blood is passed for q min through the lung whose mass is about 1.5 g. Such blood flow rate is possible, as in lungs of high animals there exists a dense network of relatively large microvessels with diameter from 20 to 40 microm and more. In spite of a large volume and a high blood flow rate hampering oxygen diffusion, the complete blood oxygenation occurs in lung alveoli. This is due to peculiar mechanisms that facilitate markedly the oxygen diffusion and that developed in alveoli of mammals in the course of many million years of evolution of their respiratory system. Thus, alveolus is not a bubble with air, but a complex tool of fight with inertness of diffusion. It is interesting that in lungs of the low vertebrates, neither such system of blood vessels nor alveoli exist, and their blood flow rate is much lower than in mammals.
The large lungs of elite swimmers: an increased alveolar number?
Armour, J; Donnelly, P M; Bye, P T
1993-02-01
In order to obtain further insight into the mechanisms relating to the large lung volumes of swimmers, tests of mechanical lung function, including lung distensibility (K) and elastic recoil, pulmonary diffusion capacity, and respiratory mouth pressures, together with anthropometric data (height, weight, body surface area, chest width, depth and surface area), were compared in eight elite male swimmers, eight elite male long distance athletes and eight control subjects. The differences in training profiles of each group were also examined. There was no significant difference in height between the subjects, but the swimmers were younger than both the runners and controls, and both the swimmers and controls were heavier than the runners. Of all the training variables, only the mean total distance in kilometers covered per week was significantly greater in the runners. Whether based on: (a) adolescent predicted values; or (b) adult male predicted values, swimmers had significantly increased total lung capacity ((a) 145 +/- 22%, (mean +/- SD) (b) 128 +/- 15%); vital capacity ((a) 146 +/- 24%, (b) 124 +/- 15%); and inspiratory capacity ((a) 155 +/- 33%, (b) 138 +/- 29%), but this was not found in the other two groups. Swimmers also had the largest chest surface area and chest width. Forced expiratory volume in one second (FEV1) was largest in the swimmers ((b) 122 +/- 17%) and FEV1 as a percentage of forced vital capacity (FEV1/FVC)% was similar for the three groups. Pulmonary diffusing capacity (DLCO) was also highest in the swimmers (117 +/- 18%). All of the other indices of lung function, including pulmonary distensibility (K), elastic recoil and diffusion coefficient (KCO), were similar. These findings suggest that swimmers may have achieved greater lung volumes than either runners or control subjects, not because of greater inspiratory muscle strength, or differences in height, fat free mass, alveolar distensibility, age at start of training or sternal length or chest depth, but by developing physically wider chests, containing an increased number of alveoli, rather than alveoli of increased size. However, in this cross-sectional study, hereditary factors cannot be ruled out, although we believe them to be less likely.
[Comparative study of respiratory exchanging surfaces in birds and mammals].
Jammes, Y
1975-01-01
Anatomical studies of the respiratory apparatus of birds show evidences for a gas exchanging tubular system (parabronchi and air capillaries); these exchanging structures are entirely dissociated from the ventilatory drive acting on the air sacs. A "cross-current" gas exchanging system (perpendicular disposition of air and blood capillaries) allow a good wash-out of carbon dioxide (PaCO2 lower than PECO2). The great efficiency of this lung is allowed by its very large diffusive surface (ASa) and by the high values of lung specific oxygen diffusing capacity (DO2/ASa) and of O2 extraction coefficient in inspired air. The ventilatory pattern of birds is characterized by a greater tidal volume and a smaller respiratory frequency than in mammals of same weight. Respiratory centers of birds receive afferences from lung stretch receptors, CO2-sensitive lung receptors and arterial chemoreceptors.
Lung function, transfusion, pulmonary capillary blood volume and sickle cell disease.
Lunt, Alan; McGhee, Emily; Robinson, Polly; Rees, David; Height, Susan; Greenough, Anne
2016-02-01
Lung function abnormalities occur in children with sickle cell disease (SCD) and may be associated with elevated pulmonary blood volume. To investigate that association, we determined whether blood transfusion in SCD children acutely increased pulmonary capillary blood volume (PCBV) and increased respiratory system resistance (Rrs5). Measurements of Rrs5 and spirometry were made before and after blood transfusion in 18 children, median age 14.2 (6.6-18.5) years. Diffusing capacity for carbon monoxide and nitric oxide were assessed to calculate the PCBV. Post transfusion, the median Rrs5 had increased from 127.4 to 141.3% predicted (p<0.0001) and pulmonary capillary blood volume from 39.7 to 64.1 ml/m2 (p<0.0001); forced expiratory volume in one second (p=0.0056) and vital capacity (p=0.0008) decreased. The increase in Rrs5 correlated with the increase in PCBV (r=0.50, p=0.0493). Increased pulmonary capillary blood volume may at least partially explain the lung function abnormalities in SCD children. Copyright © 2015 Elsevier B.V. All rights reserved.
Kim, Bu-Yeo; Jin, Hee; Lee, Yoon-Jin; Kang, Ga-Young; Cho, Jaeho; Lee, Yun-Sil
2016-01-27
Despite the emergence of stereotactic body radiotherapy (SBRT) for treatment of medically inoperable early-stage non-small-cell lung cancer patients, the molecular effects of focal exposure of limited lung volumes to high-dose radiation have not been fully characterized. This study was designed to identify molecular changes induced by focal high-dose irradiation using a mouse model of SBRT. Central areas of the mouse left lung were focally-irradiated (3 mm in diameter) with a single high-dose of radiation (90 Gy). Temporal changes in gene expression in the irradiated and non-irradiated neighboring lung regions were analyzed by microarray. For comparison, the long-term effect (12 months) of 20 Gy radiation on a diffuse region of lung was also measured. The majority of genes were down-regulated in the focally-irradiated lung areas at 2 to 3 weeks after irradiation. This pattern of gene expression was clearly different than gene expression in the diffuse region of lungs exposed to low-dose radiation. Ontological and pathway analyses indicated these down-regulated genes were mainly associated with organ development. Although the number was small, genes that were up-regulated after focal irradiation were associated with immune-related functions. The temporal patterns of gene expression and the associated biological functions were also similar in non-irradiated neighboring lung regions, although statistical significance was greatly reduced when compared with those from focally-irradiated areas of the lung. From network analysis of temporally regulated genes, we identified inter-related modules associated with diverse functions, including organ development and the immune response, in both the focally-irradiated regions and non-irradiated neighboring lung regions. Focal exposure of lung tissue to high-dose radiation induced expression of genes associated with organ development and the immune response. This pattern of gene expression was also observed in non-irradiated neighboring areas of lung tissue, indicating a global lung response to focal high-dose irradiation.
Carrero-González, L; Kaulisch, T; Ruiz-Cabello, J; Pérez-Sánchez, J M; Peces-Barba, G; Stiller, D; Rodríguez, I
2012-09-01
The apparent diffusion coefficient (ADC) of hyperpolarized (HP) gases is a parameter that reflects changes in lung microstructure. However, ADC is dependent on many physiological and experimental variables that need to be controlled or specified in order to ensure the reliability and reproducibility of this parameter. A single breath-hold experiment is desirable in order to reduce the amount of consumed HP gas. The application of a positive end-expiratory pressure (PEEP) causes an increase in the residual gas volume. Depending on the applied PEEP, the ratio between the incoming and residual gas volumes will change and the ADC will vary, as long as both gases do not have the same diffusion coefficient. The most standard method for human applications uses air for breathing and a bolus of pure HP (3)He for MRI data acquisition. By applying this method in rats, we have demonstrated that ADC values are strongly dependent on the applied PEEP, and therefore on the residual gas volume in the lung. This outcome will play an important role in studies concerning certain diseases, such as emphysema, which is characterized by an increase in the residual volume. Ventilation with an oxygen-helium mixture (VOHeM) is a proposed single breath-hold method that uses two different gas mixtures (O(2)-(4)He for ventilation and HP (3)He-N(2) for imaging). The concentration of each gas in its respective mixture was calculated in order to obtain the same diffusion coefficient in both mixtures. ADCs obtained from VOHeM are independent of PEEP, thus minimizing the effect of the different residual volumes. Copyright © 2012 John Wiley & Sons, Ltd.
Lung volume reduction surgery for diffuse emphysema.
van Agteren, Joseph Em; Carson, Kristin V; Tiong, Leong Ung; Smith, Brian J
2016-10-14
Lung volume reduction surgery (LVRS) performed to treat patients with severe diffuse emphysema was reintroduced in the nineties. Lung volume reduction surgery aims to resect damaged emphysematous lung tissue, thereby increasing elastic properties of the lung. This treatment is hypothesised to improve long-term daily functioning and quality of life, although it may be costly and may be associated with risks of morbidity and mortality. Ten years have passed since the last version of this review was prepared, prompting us to perform an update. The objective of this review was to gather all available evidence from randomised controlled trials comparing the effectiveness of lung volume reduction surgery (LVRS) versus non-surgical standard therapy in improving health outcomes for patients with severe diffuse emphysema. Secondary objectives included determining which subgroup of patients benefit from LVRS and for which patients LVRS is contraindicated, to establish the postoperative complications of LVRS and its morbidity and mortality, to determine which surgical approaches for LVRS are most effective and to calculate the cost-effectiveness of LVRS. We identified RCTs by using the Cochrane Airways Group Chronic Obstructive Pulmonary Disease (COPD) register, in addition to the online clinical trials registers. Searches are current to April 2016. We included RCTs that studied the safety and efficacy of LVRS in participants with diffuse emphysema. We excluded studies that investigated giant or bullous emphysema. Two independent review authors assessed trials for inclusion and extracted data. When possible, we combined data from more than one study in a meta-analysis using RevMan 5 software. We identified two new studies (89 participants) in this updated review. A total of 11 studies (1760 participants) met the entry criteria of the review, one of which accounted for 68% of recruited participants. The quality of evidence ranged from low to moderate owing to an unclear risk of bias across many studies, lack of blinding and low participant numbers for some outcomes. Eight of the studies compared LVRS versus standard medical care, one compared two closure techniques (stapling vs laser ablation), one looked at the effect of buttressing the staple line on the effectiveness of LVRS and one compared traditional 'resectional' LVRS with a non-resectional surgical approach. Participants completed a mandatory course of pulmonary rehabilitation/physical training before the procedure commenced. Short-term mortality was higher for LVRS (odds ratio (OR) 6.16, 95% confidence interval (CI) 3.22 to 11.79; 1489 participants; five studies; moderate-quality evidence) than for control, but long-term mortality favoured LVRS (OR 0.76, 95% CI 0.61 to 0.95; 1280 participants; two studies; moderate-quality evidence). Participants identified post hoc as being at high risk of death from surgery were those with particularly impaired lung function, poor diffusing capacity and/or homogenous emphysema. Participants with upper lobe-predominant emphysema and low baseline exercise capacity showed the most favourable outcomes related to mortality, as investigators reported no significant differences in early mortality between participants treated with LVRS and those in the control group (OR 0.87, 95% CI 0.23 to 3.29; 290 participants; one study), as well as significantly lower mortality at the end of follow-up for LVRS compared with control (OR 0.45, 95% CI 0.26 to 0.78; 290 participants; one study). Trials in this review furthermore provided evidence of low to moderate quality showing that improvements in lung function parameters other than forced expiratory volume in one second (FEV 1 ), quality of life and exercise capacity were more likely with LVRS than with usual follow-up. Adverse events were more common with LVRS than with control, specifically the occurrence of (persistent) air leaks, pulmonary morbidity (e.g. pneumonia) and cardiovascular morbidity. Although LVRS leads to an increase in quality-adjusted life-years (QALYs), the procedure is relatively costly overall. Lung volume reduction surgery, an effective treatment for selected patients with severe emphysema, may lead to better health status and lung function outcomes, specifically for patients who have upper lobe-predominant emphysema with low exercise capacity, but the procedure is associated with risks of early mortality and adverse events.
Stephen, Michael J; Emami, Kiarash; Woodburn, John M; Chia, Elaine; Kadlecek, Stephen; Zhu, Jianliang; Pickup, Stephen; Ishii, Masaru; Rizi, Rahim R; Rossman, Milton
2010-11-01
The use of hyperpolarized (3)He magnetic resonance imaging as a quantitative lung imaging tool has progressed rapidly in the past decade, mostly in the assessment of the airway diseases chronic obstructive pulmonary disease and asthma. This technique has shown potential to assess both structural and functional information in healthy and diseased lungs. In this study, the regional measurements of structure and function were applied to a bleomycin rat model of interstitial lung disease. Male Sprague-Dawley rats (weight, 300-350 g) were administered intratracheal bleomycin. After 3 weeks, apparent diffusion coefficient and fractional ventilation were measured by (3)He magnetic resonance imaging and pulmonary function testing using a rodent-specific plethysmography chamber. Sensitized and healthy animals were then compared using threshold analysis to assess the potential sensitivity of these techniques to pulmonary abnormalities. No significant changes were observed in total lung volume and compliance between the two groups. Airway resistance elevated and forced expiratory volume significantly declined in the 3-week bleomycin rats, and fractional ventilation was significantly decreased compared to control animals (P < .0004). The apparent diffusion coefficient of (3)He showed a smaller change but still a significant decrease in 3-week bleomycin animals (P < .05). Preliminary results suggest that quantitative (3)He magnetic resonance imaging can be a sensitive and noninvasive tool to assess changes in an animal interstitial lung disease model. This technique may be useful for longitudinal animal studies and also in the investigation of human interstitial lung diseases. Copyright © 2010 AUR. Published by Elsevier Inc. All rights reserved.
Pérez-Sánchez, José M.; Rodríguez, Ignacio; Ruiz-Cabello, Jesús
2009-01-01
Abstract Apparent diffusion coefficient (ADC) measurement in the lung using gas magnetic resonance imaging is a promising technique with potential for reflecting changes in lung microstructure. Despite some recent impressive human applications, full interpretation of ADC measures remains an elusive goal, due to a lack of detailed knowledge about the structure dependency of ADC. In an attempt to fill this gap we have performed random walk simulations in a three-dimensional geometrical model of the lung acinus, the distal alveolated sections of the lung tree accounting for ∼90% of the total lung volume. Simulations were carried out adjusting model parameters after published morphological data for the rat peripheral airway system, which predict an ADC behavior as microstructure changes with lung inflation in partial agreement with measured ADCs at different airway pressures. The approach used to relate experimental ADCs to lung microstructural changes does not make any assumption about the cause of the changes, so it could be applied to other scenarios such as chronic obstructive pulmonary disease, lung development, etc. The work presented here predicts numerically for the first time ADC values measured in the lung from independent morphological measures of lung microstructure taken at different inflation stages during the breath cycle. PMID:19619480
Lessard, Eric; Young, Heather M; Bhalla, Anurag; Pike, Damien; Sheikh, Khadija; McCormack, David G; Ouriadov, Alexei; Parraga, Grace
2017-11-01
Thoracic x-ray computed tomography (CT) and hyperpolarized 3 He magnetic resonance imaging (MRI) provide quantitative measurements of airspace enlargement in patients with emphysema. For patients with panlobular emphysema due to alpha-1 antitrypsin deficiency (AATD), sensitive biomarkers of disease progression and response to therapy have been difficult to develop and exploit, especially those biomarkers that correlate with outcomes like quality of life. Here, our objective was to generate and compare CT and diffusion-weighted inhaled-gas MRI measurements of emphysema including apparent diffusion coefficient (ADC) and MRI-derived mean linear intercept (L m ) in patients with AATD, chronic obstructive pulmonary disease (COPD) ex-smokers, and elderly never-smokers. We enrolled patients with AATD (n = 8; 57 ± 7 years), ex-smokers with COPD (n = 8; 77 ± 6 years), and a control group of never-smokers (n = 5; 64 ± 2 years) who underwent thoracic CT, MRI, spirometry, plethysmography, the St. George's Respiratory Questionnaire, and the 6-minute walk test during a single 2-hour visit. MRI-derived ADC, L m , surface-to-volume ratio, and ventilation defect percent were generated for the apical, basal, and whole lung as was CT lung area ≤-950 Hounsfield units (RA 950 ), low attenuating clusters, and airway count. In patients with AATD, there was a significantly different MRI-derived ADC (P = .03), L m (P < .0001), and surface-to-volume ratio (P < .0001), but not diffusing capacity of carbon monoxide, residual volume or total lung capacity, or CT RA 950 (P > .05) compared to COPD ex-smokers with a significantly different St. George's Respiratory Questionnaire. In this proof-of-concept demonstration, we evaluated CT and MRI lung emphysema measurements and observed significantly worse MRI biomarkers of emphysema in patients with AATD compared to patients with COPD, although CT RA 950 and diffusing capacity of carbon monoxide were not significantly different, underscoring the sensitivity of MRI measurements of AATD emphysema. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Acute changes in lung function associated with proximity to a steel plant: a randomized study.
Dales, Robert; Kauri, Lisa Marie; Cakmak, Sabit; Mahmud, Mamun; Weichenthal, Scott A; Van Ryswyk, Keith; Kumarathasan, Premkumari; Thomson, Errol; Vincent, Renaud; Broad, Gayle; Liu, Ling
2013-05-01
Steel production is a major industry worldwide yet there is relatively little information on the pulmonary effects of air quality near steel manufacturing plants. The aim of this study was to examine how lung function changes acutely when healthy subjects are situated near a steel plant which is adjacent to a residential area. Sixty-one subjects were randomly assigned to spend 5 consecutive, 8-hour days in a residential neighborhood approximately 0.9km from a steel plant, or approximately 4.5km away at a college campus. Subjects crossed-over between sites after a nine-day washout period. Lung function was measured daily at both sites along with air pollutants including SO2, NO2, O3, PM2.5, and ultrafine particles. Diffusion capacity and pulse oximetry were also examined. Compared with the college site, the forced expiratory volume in 1-second/forced vital capacity, forced expiratory flow between 25% and 75% of the FVC, total lung capacity, functional residual capacity, and residual volume were lower near the steel plant by 0.67% (95% CI: 0.28, 1.06),1.62% (95% CI: 0.50, 2.75), 1.54% (95% CI: 0.68, 2.39), 3.54% (95% CI: 1.95, 5.13) and 11.3% (95% CI: 4.92, 17.75), respectively. Diffusion capacity, forced expiratory volume in 1s, and pulse oximetry were also lower near the plant but these effects were not statistically significant. Sulfur dioxide, ultrafine particulates, and oxides of nitrogen were greater near the steel plant site compared to the college site. Spending short periods of time near a steel plant is associated with a decrease in lung function. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
The Effect of Compartmental Asymmetry on the Monitoring of Pulmonary Mechanics and Lung Volumes.
Keenan, Joseph C; Cortes-Puentes, Gustavo A; Adams, Alexander B; Dries, David J; Marini, John J
2016-11-01
Esophageal pressure measurement for computation of transpulmonary pressure (P tp ) has begun to be incorporated into clinical use for evaluating forces across the lungs. Gaps exist in our understanding of how esophageal pressure (and therefore P tp ), a value measured at a single site, responds when respiratory system compartments are asymmetrically affected by whole-lung atelectasis or unilateral injury as well as changes in chest wall compliance. We reasoned that P tp would track with aerated volume changes as estimated by functional residual capacity (FRC) and tidal volume. We examined this hypothesis in the setting of asymmetric lungs and changes in intra-abdominal pressure. This study was conducted in the animal laboratory of a university-affiliated hospital. Models of unilateral atelectasis and unilateral and bilateral lung injury exposed to intra-abdominal hypertension (IAH) in 10 deeply sedated mechanically ventilated swine. Atelectasis was created by balloon occlusion of the left main bronchus. Unilateral lung injury was induced by saline lavage of isolated right lung. Diffuse lung injury was induced by saline lavage of both lungs. The peritoneum was insufflated with air to create a model of pressure-regulated IAH. We measured esophageal pressures, airway pressures, FRC by gas dilution, and oxygenation. FRC was reduced by IAH in normal lungs (P < .001) and both asymmetric lung pathologies (P < .001). P tp at end-expiration was decreased by IAH in bilateral (P = .001) and unilateral lung injury (P = .003) as well as unilateral atelectasis (P = .019). In the setting of both lung injury models, end-expiratory P tp showed a moderate correlation in tracking with FRC. P tp tracks with aerated lung volume in the setting of thoracic asymmetry and changes in intra-abdominal pressure. However, used alone, it cannot distinguish the relative contributions of air-space distention and recruitment of lung units. Copyright © 2016 by Daedalus Enterprises.
Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation.
Beurskens, Charlotte J; Brevoord, Daniel; Lagrand, Wim K; van den Bergh, Walter M; Vroom, Margreeth B; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P
2014-01-01
Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arrest and mechanically ventilated for 3 hours with heliox (50% helium; 50% oxygen). A fixed protective ventilation protocol (6 mL/kg) was used, with prospective observation for changes in lung mechanics and gas exchange. Statistics was by Bonferroni post-hoc correction with statistical significance set at P < 0.017. Results. During heliox ventilation, respiratory rate decreased (25 ± 4 versus 23 ± 5 breaths min(-1), P = 0.010). Minute volume ventilation showed a trend to decrease compared to baseline (11.1 ± 1.9 versus 9.9 ± 2.1 L min(-1), P = 0.026), while reducing PaCO2 levels (5.0 ± 0.6 versus 4.5 ± 0.6 kPa, P = 0.011) and peak pressures (21.1 ± 3.3 versus 19.8 ± 3.2 cm H2O, P = 0.024). Conclusions. Heliox improved CO2 elimination while allowing reduced minute volume ventilation in adult patients during protective mechanical ventilation.
[Application of medical imaging to general thoracic surgery].
Oizumi, Hiroyuki
2014-07-01
Medical imaging technology is rapidly progressing. Positron emission tomography (PET) has played major role in the staging and choice of treatment modality in lung cancer patients. Magnetic resonance imaging (MRI) is now routinely used for mediastinal tumors and the use of diffusion-weighted images (DWI) may help in the diagnosis of malignancies including lung cancers. The benefits of medical imaging technology are not limited to diagnostics, and include simulation or navigation for complex lung resection and other procedures. Multidetector row computed tomography (MDCT) shortens imaging time to obtain detailed and precise volume data, which improves diagnosis of small-sized lung cancers. 3-dimensional reconstruction of the volume data allows the safe performance of thoracoscopic surgery. For lung lobectomy, identification of the branching structures, diameter, and length of the arteries is useful in selecting the procedure for blood vessel treatment. For lung segmentectomy, visualization of venous branches in the affected segments and intersegmental veins has facilitated the preoperative determination of the anatomical intersegmental plane. Therefore, the application of medical imaging technology is useful in general thoracic surgery.
Dubois, Luc; Malthaner, Richard A
2010-12-01
We measured lung function before and after video-assisted thoracoscopic apical bullectomy and talc poudrage in patients with spontaneous pneumothoraces. Seventy-two patients were prospectively followed up for 12 months. The indications for surgery were recurrent pneumothoraces (n = 58), bilateral pneumothoraces (n = 8), and persistent air leak (n = 6). There were 46 males and 26 females with mean age of 29 years (range 15-61 years). The results were analyzed using paired t tests. There were no recurrences. There were 4 complications (5.6%): 1 wound infection, 1 case of pneumonia, and 2 persistent air leaks each lasting 1 week. There were no conversions to open surgery. Preoperative and 6-month pulmonary function test results were available on 41 patients, and 35 patients completed 12-month pulmonary function tests. Twelve-month values (mean percent ± SD) were as follows: Forced expiratory volume in 1 second fell from 95 ± 19 to 89 ± 16 (P = .02); forced expiratory volume in 1 second/forced vital capacity ratio was unchanged, 95 ± 12 versus 94 ± 13 (P = .9); total lung capacity fell from 106 ± 19 to 98 ± 12 (P = 0.002); vital capacity fell from 100 ± 22 to 96 ± 16 (P = .05); residual volume fell from 126 ± 32 to 107 ± 29 (P = .002); and diffusion capacity for carbon monoxide corrected for alveolar volume was unchanged, 88 ± 15 versus 91 ± 17 (P = .07). Flow rates and diffusion capacities were preserved, but lung volumes were slightly reduced at 1 year. Video-assisted thoracoscopic apical bullectomy and talc poudrage is an effective treatment for spontaneous pneumothoraces with a low complication rate and recurrence rate and only minor changes in pulmonary function at 1 year. Copyright © 2010 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Yoshikawa, Akira; Sato, Shuntaro; Tanaka, Tomonori; Hashisako, Mikiko; Kashima, Yukio; Tsuchiya, Tomoshi; Yamasaki, Naoya; Nagayasu, Takeshi; Yamamoto, Hiroshi; Fukuoka, Junya
2016-01-01
Pulmonary emphysema is the pathological prototype of chronic obstructive pulmonary disease and is also associated with other lung diseases. We considered that observation with different approaches may provide new insights for the pathogenesis of emphysema. We reviewed tissue blocks of the lungs of 25 cases with/without emphysema and applied a three-dimensional observation method to the blocks. Based on the three-dimensional characteristics of the alveolar structure, we considered one face of the alveolar polyhedron as a structural unit of alveoli and called it a framework unit (FU). We categorized FUs based on their morphological characteristics and counted their number to evaluate the destructive changes in alveoli. We also evaluated the number and the area of pores of Kohn in FUs. We performed linear regression analysis to estimate the effect of these data on pulmonary function tests. In multivariable regression analysis, a decrease in the number of FUs without an alveolar wall led to a significant decrease in the diffusing capacity of the lung for carbon monoxide (DLCO) and DLCO per unit alveolar volume, and an increase in the area of pores of Kohn had a significant effect on an increase in residual capacity. A breakdown in the lung framework and an increase in pores of Kohn are associated with a decrease in DLCO and DLCO per unit alveolar volume with/without emphysema.
Odler, B; Bikov, A; Streizig, J; Balogh, C; Kiss, E; Vincze, K; Barta, I; Horváth, I; Müller, V
2017-05-01
Biomarkers for pulmonary manifestations in systemic lupus erythematosus (SLE) are missing. Plasma samples of nine SLE patients with known pulmonary involvement (SLE pulm ) and nine SLE patients without pulmonary involvement (SLE) were tested by multiplex microarray analysis for various cyto- and chemokines. Significantly decreased lung function paramters for forced vital capacity (FVC), total lung capacity (TLC), diffusion capacity for carbon monoxide (DL CO ) and diffusion of CO corrected on lung volume (KL CO ) were observed in SLE pulm as compared to SLE patients. CC chemokine ligand 21 (CCL21) and interferon gamma-induced protein 10 (IP-10) levels were significantly higher in SLE pulm , than in patients without pulmonary manifestations. CCL21 correlated negatively with DL CO ( r = -0.73; p < 0.01) and KL CO ( r = -0.62; p < 0.01), while IP-10 with FVC and forced expiratory volume one second. Receiver Operating Characteristics (ROC) analysis confirmed high sensitivity and specificity for the separation of SLE patients with and without pulmonary involvement for the chemokines CCL21 (Area Under Curve (AUC): 0.85; sensitivity%: 88.90; specificity%: 75.00; p < 0.01) and IP-10 (AUC: 0.82; sensitivity%: 66.67, specificity%: 100; p < 0.01). Pleuropulmonary manifestations in SLE patients associated with lung functional and DL CO /KL CO changes and were associated with significant increase in CCL21 and IP-10. These chemokines might serve as potential biomarkers of lung involvement in SLE patients.
NASA Astrophysics Data System (ADS)
Patz, Samuel; Muradyan, Iga; Hrovat, Mirko I.; Dabaghyan, Mikayel; Washko, George R.; Hatabu, Hiroto; Butler, James P.
2011-01-01
We used hyperpolarized 129Xe NMR to measure pulmonary alveolar surface area per unit gas volume SA/Vgas, alveolar septal thickness h and capillary transit time τ, three critical determinants of the lung's primary role as a gas exchange organ. An analytical solution for a simplified diffusion model is described, together with a modification of the xenon transfer contrast imaging technique utilizing 90° radio-frequency pulses applied to the dissolved phase, rather than traditional 180° pulses. With this approach, three-dimensional (3D) maps of SA/Vgas were obtained. We measured global SA/Vgas, h and τ in four normal subjects, two subjects with mild interstitial lung disease (ILD) and two subjects with mild chronic obstructive pulmonary disease (COPD). In normals, SA/Vgas decreased with increasing lung volume from ~320 to 80 cm-1 both h~13 μm and τ~1.5 s were relatively constant. For the two ILD subjects, h was, respectively, 36 and 97% larger than normal, quantifying an increased gas/blood tissue barrier; SA/Vgas and τ were normal. The two COPD subjects had SA/Vgas values ~25% that of normals, quantifying septal surface loss in emphysema; h and τ were normal. These are the first noninvasive, non-radiation-based, quantitative measurements of h and τ in patients with pulmonary disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Nieto, Beatriz, E-mail: bsanchez@fis.puc.cl; Goset, Karen C.; Caviedes, Ivan
Purpose: To propose multivariate predictive models for changes in pulmonary function tests ({Delta}PFTs) with respect to preradiotherapy (pre-RT) values in patients undergoing RT for breast cancer and lymphoma. Methods and Materials: A prospective study was designed to measure {Delta}PFTs of patients undergoing RT. Sixty-six patients were included. Spirometry, lung capacity (measured by helium dilution), and diffusing capacity of carbon monoxide tests were used to measure lung function. Two lung definitions were considered: paired lung vs. irradiated lung (IL). Correlation analysis of dosimetric parameters (mean lung dose and the percentage of lung volume receiving more than a threshold dose) and {Delta}PFTsmore » was carried out to find the best dosimetric predictor. Chemotherapy, age, smoking, and the selected dose-volume parameter were considered as single and interaction terms in a multivariate analysis. Stability of results was checked by bootstrapping. Results: Both lung definitions proved to be similar. Modeling was carried out for IL. Acute and late damage showed the highest correlations with volumes irradiated above {approx}20 Gy (maximum R{sup 2} = 0.28) and {approx}40 Gy (maximum R{sup 2} = 0.21), respectively. RT alone induced a minor and transitory restrictive defect (p = 0.013). Doxorubicin-cyclophosphamide-paclitaxel (Taxol), when administered pre-RT, induced a late, large restrictive effect, independent of RT (p = 0.031). Bootstrap values confirmed the results. Conclusions: None of the dose-volume parameters was a perfect predictor of outcome. Thus, different predictor models for {Delta}PFTs were derived for the IL, which incorporated other nondosimetric parameters mainly through interaction terms. Late {Delta}PFTs seem to behave more serially than early ones. Large restrictive defects were demonstrated in patients pretreated with doxorubicin-cyclophosphamide-paclitaxel.« less
Le Roux, Pierre-Yves; Siva, Shankar; Steinfort, Daniel P; Callahan, Jason; Eu, Peter; Irving, Lou B; Hicks, Rodney J; Hofman, Michael S
2015-11-01
Pulmonary function tests (PFTs) are routinely used to assess lung function, but they do not provide information about regional pulmonary dysfunction. We aimed to assess correlation of quantitative ventilation-perfusion (V/Q) PET/CT with PFT indices. Thirty patients underwent V/Q PET/CT and PFT. Respiration-gated images were acquired after inhalation of (68)Ga-carbon nanoparticles and administration of (68)Ga-macroaggregated albumin. Functional volumes were calculated by dividing the volume of normal ventilated and perfused (%NVQ), unmatched and matched defects by the total lung volume. These functional volumes were correlated with forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, and diffusing capacity for carbon monoxide (DLCO). All functional volumes were significantly different in patients with chronic obstructive pulmonary disease (P < 0.05). FEV1/FVC and %NVQ had the highest correlation (r = 0.82). FEV1 was also best correlated with %NVQ (r = 0.64). DLCO was best correlated with the volume of unmatched defects (r = -0.55). Considering %NVQ only, a cutoff value of 90% correctly categorized 28 of 30 patients with or without significant pulmonary function impairment. Our study demonstrates strong correlations between V/Q PET/CT functional volumes and PFT parameters. Because V/Q PET/CT is able to assess regional lung function, these data support the feasibility of its use in radiation therapy and preoperative planning and assessing pulmonary dysfunction in a variety of respiratory diseases. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
The respiratory system under weightlessness
NASA Technical Reports Server (NTRS)
Paiva, M.; Engel, L. A.; Hughes, J. M. B.; Guy, H. J.; Prisk, G. K.; West, J. B.
1987-01-01
Studies of pulmonary functions at rest to be studied on Spacelab mission D-2 are introduced. Gravity dependence of the distribution of ventilation (single breath washout, multibreath washout-washin); chest wall shape and motion; and the vascular compartment (lung blood flow, capillary volume, liquid content, diffusive capacity) are discussed.
Low level CO2 effects on pulmonary function in humans
NASA Technical Reports Server (NTRS)
Sexton, J.; Mueller, K.; Elliott, A.; Gerzer, D.; Strohl, K. P.; West, J. B. (Principal Investigator)
1998-01-01
The purpose of the study was to determine whether chamber exposure to low levels of CO2 results in functional alterations in gas mixing and closing volume in humans. Four healthy volunteer subjects were exposed to 0.7% CO2 and to 1.2% CO2. Spirometry, lung volumes, single breath nitrogen washout, diffusing capacity for carbon monoxide (DLCO) by two methods, and cardiac output were measured in triplicate. Values were obtained over two non-consecutive days during the training period (control) and on days 2 or 3, 4, 6, 10, 13, and 23 of exposure to each CO2 level. Measurements were made during the same time of day. There was one day of testing after exposure, while still in the chamber but off carbon dioxide. The order of testing, up until measurements of DLCO and cardiac output, were randomized to avoid presentation effects. The consistent findings were a reduction in diffusing capacity for carbon monoxide and a fall in cardiac output, occurring to a similar degree with both exposures. For the group as a whole, there was no indication of major effects on spirometry, lung volumes, gas mixing or dead space. We conclude that small changes may occur in the function of distal gas exchanging units; however, these effects were not associated with any adverse health effects. The likelihood of pathophysiologic changes in lung function or structure with 0.7 or 1.2% CO2 exposure for this period of time, is therefore, low.
Changes in lung volumes and gas trapping in patients with large hiatal hernia.
Naoum, Christopher; Kritharides, Leonard; Ing, Alvin; Falk, Gregory L; Yiannikas, John
2017-03-01
Studies assessing hiatal hernia (HH)-related effects on lung volumes derived by body plethysmography are limited. We aimed to evaluate the effect of hernia size on lung volumes (including assessment by body plethysmography) and the relationship to functional capacity, as well as the impact of corrective surgery. Seventy-three patients (70 ± 10 years; 54 female) with large HH [mean ± standard deviation, intra-thoracic stomach (ITS) (%): 63 ± 20%; type III in 65/73] had respiratory function data (spirometry, 73/73; body plethysmography, 64/73; diffusing capacity, 71/73) and underwent HH surgery. Respiratory function was analysed in relation to hernia size (groups I, II and III: ≤50, 50%-75% and ≥75% ITS, respectively) and functional capacity. Post-operative changes were quantified in a subgroup. Total lung capacity (TLC) and vital capacity (VC) correlated inversely with hernia size (TLC: 97 ± 11%, 96 ± 13%, 88 ± 10% predicted in groups I, II and III, respectively, P = 0.01; VC: 110 ± 17%, 111 ± 14%, 98 ± 14% predicted, P = 0.02); however, mean values were normal and only 14% had abnormal lung volumes. Surgery increased TLC (93 ± 11% vs 97 ± 10% predicted) and VC (105 ± 15% vs 116 ± 18%), and decreased residual volume/total lung capacity (RV/TLC) ratio (39 ± 7% vs 37 ± 6%) (P < 0.01 for all). Respiratory changes were modest relative to the marked functional class improvement. Among parameters that improved following HH surgery, decreased TLC and forced expiratory volume in 1 s and increased RV/TLC ratio correlated with poorer functional class pre-operatively. Increasing HH size correlates with reduced TLC and VC. Surgery improves lung volumes and gas trapping; however, the changes are mild and within the normal range. © 2015 John Wiley & Sons Ltd.
Zarogoulidis, Paul; Kerenidi, Theodora; Huang, Haidong; Kontakiotis, Theodoros; Tremma, Ourania; Porpodis, Konstantinos; Kalianos, Anastasios; Rapti, Ageliki; Foroulis, Christoforos; Zissimopoulos, Athanasios; Courcoutsakis, Nikolaos; Zarogoulidis, Konstantinos
2012-12-01
Several studies have demonstrated that reduced lung function is a significant risk factor for lung cancer and increased surgical risk in patients with operable stages of lung cancer. The aim of the study was to perform pulmonary function tests and investigate which is a favorable respiratory function test for overall survival between lung cancer stages. Lung function tests were performed to lung cancer patients with non-small cell lung cancer of stage I, II, III and IV (241 patients in total). They had the last follow-up consecutively between December 2006 and July 2008. The staging was decided according to the sixth edition of TNM classification of NSCLC. The Forced Expiratory Volume in 1sec (FEV1), Forced Vital Capacity (FVC) and Carbon Monoxide Diffusing Capacity (DLCO) were measured according to American Thoracic Society/European Respiratory Society guidelines. The 6 Minute Walking Test (6MWT) was measured according to the American Thoracic Society. There was a significant association of the DLCO upon diagnosis and overall survival for stage II (P<0.007) and IV (P<0.003). Furthermore, there was a significant association between 6MWT and overall survival for stage III (P<0.001) and stage IV (P<0.010). The significance for each lung function test is different among the stages of NSCLC. DLCO and 6MWT upon admission are the most valuable prognostic factors for overall survival of NSCLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkatramani, Rajkumar, E-mail: rvenkatramani@chla.usc.edu; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California; Kamath, Sunil
Purpose: To identify the incidence and the risk factors for pulmonary toxicity in children treated for cancer with contemporary lung irradiation. Methods and Materials: We analyzed clinical features, radiographic findings, pulmonary function tests, and dosimetric parameters of children receiving irradiation to the lung fields over a 10-year period. Results: We identified 109 patients (75 male patients). The median age at irradiation was 13.8 years (range, 0.04-20.9 years). The median follow-up period was 3.4 years. The median prescribed radiation dose was 21 Gy (range, 0.4-64.8 Gy). Pulmonary toxic chemotherapy included bleomycin in 58.7% of patients and cyclophosphamide in 83.5%. The followingmore » pulmonary outcomes were identified and the 5-year cumulative incidence after irradiation was determined: pneumonitis, 6%; chronic cough, 10%; pneumonia, 35%; dyspnea, 11%; supplemental oxygen requirement, 2%; radiographic interstitial lung disease, 40%; and chest wall deformity, 12%. One patient died of progressive respiratory failure. Post-irradiation pulmonary function tests available from 44 patients showed evidence of obstructive lung disease (25%), restrictive disease (11%), hyperinflation (32%), and abnormal diffusion capacity (12%). Thoracic surgery, bleomycin, age, mean lung irradiation dose (MLD), maximum lung dose, prescribed dose, and dosimetric parameters between V{sub 22} (volume of lung exposed to a radiation dose ≥22 Gy) and V{sub 30} (volume of lung exposed to a radiation dose ≥30 Gy) were significant for the development of adverse pulmonary outcomes on univariate analysis. MLD, maximum lung dose, and V{sub dose} (percentage of volume of lung receiving the threshold dose or greater) were highly correlated. On multivariate analysis, MLD was the sole significant predictor of adverse pulmonary outcome (P=.01). Conclusions: Significant pulmonary dysfunction occurs in children receiving lung irradiation by contemporary techniques. MLD rather than prescribed dose should be used to perform risk stratification of patients receiving lung irradiation.« less
Bellière-Calandry, A; Dupic, G; Magnier, F; Chassin, V; Dedieu, V; Lapeyre, M
2017-06-01
Description of the treatment technique of stereotactic lung radiotherapy on Novalis Tx ® and prospective study of the first 100 pulmonary nodules treated at centre Jean-Perrin (France). From October 2012 to December 2015, 100 inoperable pulmonary nodules (62 stage I non-small-cell lung cancer and 38 metastases) of 90 patients with a mean age of 68.2 years (range: 46-89 years) were prospectively treated with dynamic arctherapy on Novalis Tx ® . Mean gross tumour and planning target volumes were respectively 6.9 cm 3 (range: 0.2-31.4 cm 3 ) and 38.7 cm 3 (range: 1.7-131 cm 3 ), which correspond to diameters equal to 2.3cm and 4.2cm. Prescribed doses to the 80% isodose line were 54Gy in three fractions for peripheral non-small-cell lung cancer, 50Gy in five fractions for central non-small-cell lung cancer and 45Gy in three fractions for lung metastases. Clinical and radiological follow-up was done every three months with RECIST criteria for efficacy and NCI-CTCAE v4 scale for toxicity. Median follow-up was 12.5 months. Complete response was observed in 23.8% of cases. Local control rates were 100% and 90.7% respectively at 12 and 24 months, with 96% at 24 months for stage I non-small-cell lung cancer. Overall survival rates of patients with stage I non-small-cell lung cancer were 77.4% and 73.5% at 12 and 24 months (median overall survival was 32 months). Diffusing capacity of the lungs for carbon monoxide corrected for alveolar volume below 40% was significantly associated to a poor prognostic factor on univariate analysis (P=0.00013). At least three deaths were due to an acute respiratory failure, which correspond to about 4.8% of grade 5 radiation pneumonitis. Overall survival rate for metastatic patients were 95.2% and 59.5% respectively at 12 and 24 months (median overall survival was 25 months); 23.3% of grade 2 or less radiation pneumonitis, 7.8% of grade 2 or less radiation dermatitis, 2.2% of asymptomatic ribs fracture and 3.3% of chest pains were observed. Stereotactic lung radiotherapy is an effective treatment for inoperable stage I non-small-cell lung cancer and lung oligometastases of well informed and selected patients. Initial respiratory state, and especially the diffusing capacity of the lungs for carbon monoxide corrected for alveolar volume, seems to be important for tolerance. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
... page: //medlineplus.gov/ency/article/003854.htm Lung diffusion testing To use the sharing features on this page, please enable JavaScript. Lung diffusion testing measures how well the lungs exchange gases. ...
Microstructural consequences of blast lung injury characterised with digital volume correlation
NASA Astrophysics Data System (ADS)
Arora, Hari; Nila, Alex; Vitharana, Kalpani; Sherwood, Joseph M.; Nguyen, Thuy-Tien N.; Karunaratne, Angelo; Mohammed, Idris K.; Bodey, Andrew J.; Hellyer, Peter J.; Overby, Darryl R.; Schroter, Robert C.; Hollis, Dave
2017-12-01
This study focuses on microstructural changes that occur within the mammalian lung when subject to blast and how these changes influence strain distributions within the tissue. Shock tube experiments were performed to generate the blast injured specimens (cadaveric Sprague-Dawley rats). Blast overpressures of 100 kPa and 180 kPa were studied. Synchrotron tomography imaging was used to capture volumetric image data of lungs. Specimens were ventilated using a custom-built system to study multiple inflation pressures during each tomography scan. This data enabled the first digital volume correlation (DVC) measurements in lung tissue to be performed. Quantitative analysis was performed to describe the damaged architecture of the lung. No clear changes in the microstructure of the tissue morphology were observed due to controlled low to moderate level blast exposure. However, significant focal sites of injury were observed using DVC, which allowed detection of bias and concentration in the patterns of strain level. Morphological analysis corroborated the findings, illustrating that the focal damage caused by a blast can give rise to diffuse influence across the tissue. It is important to characterise the non-instantly fatal doses of blast, given the transient nature of blast lung in the clinical setting. This research has highlighted the need for better understanding of focal injury and its zone of influence (alveolar inter-dependency and neighbouring tissue burden as a result of focal injury). Digital volume correlation techniques show great promise as a tool to advance this endeavour, providing a new perspective on lung mechanics post-blast.
Hassel, Erlend; Stensvold, Dorthe; Halvorsen, Thomas; Wisløff, Ulrik; Langhammer, Arnulf; Steinshamn, Sigurd
2017-01-01
Peak oxygen uptake (VO2peak) is an indicator of cardiovascular health and a useful tool for risk stratification. Direct measurement of VO2peak is resource-demanding and may be contraindicated. There exist several non-exercise models to estimate VO2peak that utilize easily obtainable health parameters, but none of them includes lung function measures or hemoglobin concentrations. We aimed to test whether addition of these parameters could improve prediction of VO2peak compared to an established model that includes age, waist circumference, self-reported physical activity and resting heart rate. We included 1431 subjects aged 69-77 years that completed a laboratory test of VO2peak, spirometry, and a gas diffusion test. Prediction models for VO2peak were developed with multiple linear regression, and goodness of fit was evaluated. Forced expiratory volume in one second (FEV1), diffusing capacity of the lung for carbon monoxide and blood hemoglobin concentration significantly improved the ability of the established model to predict VO2peak. The explained variance of the model increased from 31% to 48% for men and from 32% to 38% for women (p<0.001). FEV1, diffusing capacity of the lungs for carbon monoxide and hemoglobin concentration substantially improved the accuracy of VO2peak prediction when added to an established model in an elderly population.
Pulmonary NO and C18O2 uptake during pressure-induced lung expansion in rabbits.
Heller, Hartmut; Schuster, Klaus-Dieter
2007-01-01
In artificially ventilated animals we investigated the dependence of the pulmonary diffusing capacities of nitric oxide (NO) and doubly 18O-labeled carbon dioxide (DLNO, DLC18O2) on lung expansion with respect to ventilator-driven increases in intrapulmonary pressure. For this purpose we applied computerized single-breath experiments to 11 anesthetized paralyzed rabbits (weight 2.8-3.8 kg) at various alveolar volumes (45-72 ml) by studying the almost entire inspiratory limb of the respective pressure/volume curves (intrapulmonary pressure: 6-27 cmH2O). The animals were ventilated with room air, employing a computerized ventilatory servo-system that we designed to maintain mechanical ventilation and to execute the particular lung function tests automatically. Each single-breath maneuver was started from residual volume (13.5+/-2 ml, mean+/-SD) by inflating the rabbit lungs with 35-55 ml indicator gas mixture containing 0.05% NO in N2 or 0.9% C18O2 in N2. Alveolar partial pressures of NO and C18O2 were measured by respiratory mass spectrometry. Values of DLNO and DLC18O2 ranged between 1.55 and 2.49 ml/(mmHg min) and 11.7 and 16.6 ml/(mmHg min), respectively. Linear regression analyses yielded a significant increase in DLNO with simultaneous increase in alveolar volume (P<0.005) and intrapulmonary pressure (P<0.023) whereas DLC18O2 was not improved. Our results suggest that the ventilator-driven lung expansion impaired the C18O2 blood uptake conductance, finally compensating for the beneficial effect of the increase in alveolar volume on DLC18O2 values.
Arjomandi, Mehrdad; Haight, Thaddeus; Redberg, Rita; Gold, Warren M
2009-06-01
To determine whether the flight attendants who were exposed to secondhand tobacco smoke in the aircraft cabin have abnormal pulmonary function. We administered questionnaires and performed pulmonary function testing in 61 never-smoking female flight attendants who worked in active air crews before the smoking ban on commercial aircraft (preban). Although the preban flight attendants had normal FVC, FEV1, and FEV1/FVC ratio, they had significantly decreased flow at mid- and low-lung volumes, curvilinear flow-volume curves, and evidence of air trapping. Furthermore, the flight attendants had significantly decreased diffusing capacity (77.5% +/- 11.2% predicted normal) with 51% having a diffusing capacity below their 95% normal prediction limit. This cohort of healthy never-smoking flight attendants who were exposed to secondhand tobacco smoke in the aircraft cabin showed pulmonary function abnormalities suggestive of airway obstruction and impaired diffusion.
Pulmonary Vascular Congestion: A Mechanism for Distal Lung Unit Dysfunction in Obesity.
Oppenheimer, Beno W; Berger, Kenneth I; Ali, Saleem; Segal, Leopoldo N; Donnino, Robert; Katz, Stuart; Parikh, Manish; Goldring, Roberta M
2016-01-01
Obesity is characterized by increased systemic and pulmonary blood volumes (pulmonary vascular congestion). Concomitant abnormal alveolar membrane diffusion suggests subclinical interstitial edema. In this setting, functional abnormalities should encompass the entire distal lung including the airways. We hypothesize that in obesity: 1) pulmonary vascular congestion will affect the distal lung unit with concordant alveolar membrane and distal airway abnormalities; and 2) the degree of pulmonary congestion and membrane dysfunction will relate to the cardiac response. 54 non-smoking obese subjects underwent spirometry, impulse oscillometry (IOS), diffusion capacity (DLCO) with partition into membrane diffusion (DM) and capillary blood volume (VC), and cardiac MRI (n = 24). Alveolar-capillary membrane efficiency was assessed by calculation of DM/VC. Mean age was 45±12 years; mean BMI was 44.8±7 kg/m2. Vital capacity was 88±13% predicted with reduction in functional residual capacity (58±12% predicted). Despite normal DLCO (98±18% predicted), VC was elevated (135±31% predicted) while DM averaged 94±22% predicted. DM/VC varied from 0.4 to 1.4 with high values reflecting recruitment of alveolar membrane and low values indicating alveolar membrane dysfunction. The most abnormal IOS (R5 and X5) occurred in subjects with lowest DM/VC (r2 = 0.31, p<0.001; r2 = 0.34, p<0.001). Cardiac output and index (cardiac output / body surface area) were directly related to DM/VC (r2 = 0.41, p<0.001; r2 = 0.19, p = 0.03). Subjects with lower DM/VC demonstrated a cardiac output that remained in the normal range despite presence of obesity. Global dysfunction of the distal lung (alveolar membrane and distal airway) is associated with pulmonary vascular congestion and failure to achieve the high output state of obesity. Pulmonary vascular congestion and consequent fluid transudation and/or alterations in the structure of the alveolar capillary membrane may be considered often unrecognized causes of airway dysfunction in obesity.
Reduced xenon diffusion for quantitative lung study--the role of SF(6)
NASA Technical Reports Server (NTRS)
Mair, R. W.; Hoffmann, D.; Sheth, S. A.; Wong, G. P.; Butler, J. P.; Patz, S.; Topulos, G. P.; Walsworth, R. L.
2000-01-01
The large diffusion coefficients of gases result in significant spin motion during the application of gradient pulses that typically last a few milliseconds in most NMR experiments. In restricted environments, such as the lung, this rapid gas diffusion can lead to violations of the narrow pulse approximation, a basic assumption of the standard Stejskal-Tanner NMR method of diffusion measurement. We therefore investigated the effect of a common, biologically inert buffer gas, sulfur hexafluoride (SF(6)), on (129)Xe NMR and diffusion. We found that the contribution of SF(6) to (129)Xe T(1) relaxation in a 1:1 xenon/oxygen mixture is negligible up to 2 bar of SF(6) at standard temperature. We also measured the contribution of SF(6) gas to (129)Xe T(2) relaxation, and found it to scale inversely with pressure, with this contribution approximately equal to 1 s for 1 bar SF(6) pressure and standard temperature. Finally, we found the coefficient of (129)Xe diffusion through SF(6) to be approximately 4.6 x 10(-6) m(2)s(-1) for 1 bar pressure of SF(6) and standard temperature, which is only 1.2 times smaller than the (129)Xe self diffusion coefficient for 1 bar (129)Xe pressure and standard temperature. From these measurements we conclude that SF(6) will not sufficiently reduce (129)Xe diffusion to allow accurate surface-area/volume ratio measurements in human alveoli using time-dependent gas diffusion NMR.
Gompelmann, Daniela; Shah, Pallav L; Valipour, Arschang; Herth, Felix J F
2018-06-12
Bronchoscopic thermal vapor ablation (BTVA) represents one of the endoscopic lung volume reduction (ELVR) techniques that aims at hyperinflation reduction in patients with advanced emphysema to improve respiratory mechanics. By targeted segmental vapor ablation, an inflammatory response leads to tissue and volume reduction of the most diseased emphysematous segments. So far, BTVA has been demonstrated in several single-arm trials and 1 multinational randomized controlled trial to improve lung function, exercise capacity, and quality of life in patients with upper lobe-predominant emphysema irrespective of the collateral ventilation. In this review, we emphasize the practical aspects of this ELVR method. Patients with upper lobe-predominant emphysema, forced expiratory volume in 1 second (FEV1) between 20 and 45% of predicted, residual volume (RV) > 175% of predicted, and carbon monoxide diffusing capacity (DLCO) ≥20% of predicted can be considered for BTVA treatment. Prior to the procedure, a special software assists in identifying the target segments with the highest emphysema index, volume and the highest heterogeneity index to the untreated ipsilateral lung lobes. The procedure may be performed under deep sedation or preferably under general anesthesia. After positioning of the BTVA catheter and occlusion of the target segment by the occlusion balloon, heated water vapor is delivered in a predetermined specified time according to the vapor dose. After the procedure, patients should be strictly monitored to proactively detect symptoms of localized inflammatory reaction that may temporarily worsen the clinical status of the patient and to detect complications. As the data are still very limited, BTVA should be performed within clinical trials or comprehensive registries where the product is commercially available. © 2018 S. Karger AG, Basel.
Eguchi, Takashi; Bains, Sarina; Lee, Ming-Ching; Tan, Kay See; Hristov, Boris; Buitrago, Daniel H; Bains, Manjit S; Downey, Robert J; Huang, James; Isbell, James M; Park, Bernard J; Rusch, Valerie W; Jones, David R; Adusumilli, Prasad S
2017-01-20
Purpose To perform competing risks analysis and determine short- and long-term cancer- and noncancer-specific mortality and morbidity in patients who had undergone resection for stage I non-small-cell lung cancer (NSCLC). Patients and Methods Of 5,371 consecutive patients who had undergone curative-intent resection of primary lung cancer at our institution (2000 to 2011), 2,186 with pathologic stage I NSCLC were included in the analysis. All preoperative clinical variables known to affect outcomes were included in the analysis, specifically, Charlson comorbidity index, predicted postoperative (ppo) diffusing capacity of the lung for carbon monoxide, and ppo forced expiratory volume in 1 second. Cause-specific mortality analysis was performed with competing risks analysis. Results Of 2,186 patients, 1,532 (70.1%) were ≥ 65 years of age, including 638 (29.2%) ≥ 75 years of age. In patients < 65, 65 to 74, and ≥ 75 years of age, 5-year lung cancer-specific cumulative incidence of death (CID) was 7.5%, 10.7%, and 13.2%, respectively (overall, 10.4%); noncancer-specific CID was 1.8%, 4.9%, and 9.0%, respectively (overall, 5.3%). In patients ≥ 65 years of age, for up to 2.5 years after resection, noncancer-specific CID was higher than lung cancer-specific CID; the higher noncancer-specific, early-phase mortality was enhanced in patients ≥ 75 years of age than in those 65 to 74 years of age. Multivariable analysis showed that low ppo diffusing capacity of lung for carbon monoxide was an independent predictor of severe morbidity ( P < .001), 1-year mortality ( P < .001), and noncancer-specific mortality ( P < .001), whereas low ppo forced expiratory volume in 1 second was an independent predictor of lung cancer-specific mortality ( P = .002). Conclusion In patients who undergo curative-intent resection of stage I NSCLC, noncancer-specific mortality is a significant competing event, with an increasing impact as patient age increases.
[Palliative surgical correction of respiratory insufficiency in diffusive pulmonary emphysema].
Gorbunkov, S D; Varlamov, V V; Cherny, S M; Lukina, O V; Kiryukhina, L D; Romanikhin, A I; Zinchenko, A V; Akopov, A L
To analyze early postoperative period in patients with diffuse pulmonary emphysema after palliative surgical correction of respiratory failure. The study included 196 patients who underwent bullectomy (n=111) and surgical reduction of pulmonary volume (n=85). Overall morbidity and mortality were 40.8% and 12.2% respectively. Among patients older than 60 years these values were significantly higher (58.0% and 22.6% respectively). It was shown that age over 60 years is associated with high risk of complications and mortality after excision of large and giant bulls. In patients <60 years morbidity is comparable after bullectomy and surgical reduction of pulmonary volume. Selection of patients for palliative surgical correction of respiratory failure is generally corresponded to that for lung transplantation. However, these methods should be considered complementary rather competing.
Mayhew, Terry M
2014-01-01
For many organisms, respiratory gas exchange is a vital activity and different types of gas-exchange apparatus have evolved to meet individual needs. They include not only skin, gills, tracheal systems and lungs but also transient structures such as the chorioallantois of avian eggs and the placenta of eutherian mammals. The ability of these structures to allow passage of oxygen by passive diffusion can be expressed as a diffusive conductance (units: cm(3) O2 min(-1) kPa(-1)). Occasionally, the ability to estimate diffusive conductance by physiological techniques is compromised by the difficulty of obtaining O2 partial pressures on opposite sides of the tissue interface between the delivery medium (air, water, blood) and uptake medium (usually blood). An alternative strategy is to estimate a morphometric diffusive conductance by combining stereological estimates of key structural quantities (volumes, surface areas, membrane thicknesses) with complementary physicochemical data (O2-haemoglobin chemical reaction rates and Krogh's permeability coefficients). This approach has proved valuable in a variety of comparative studies on respiratory organs from diverse species. The underlying principles were formulated in pioneering studies on the pulmonary lung but are illustrated here by taking the human placenta as the gas exchanger. Copyright © 2012 Elsevier GmbH. All rights reserved.
Early bronchopulmonary involvement in Crohn disease: a case report
Valletta, Enrico; Bertini, Marina; Sette, Luciano; Braggion, Cesare; Pradal, Ugo; Zannoni, Marina
2001-01-01
Background Bronchopulmonary manifestations of Crohn disease have been rarely described in children, including both subclinical pulmonary involvement and severe lung disease. Case presentation A 6.5-year-old girl is described with early recurrent bronchopulmonary symptoms both at presentation and in the quiescent phase of Crohn disease. Pulmonary function tests (lung volumes and flows, bronchial reactivity and carbon monoxide diffusing capacity) were normal. Bronchoalveolar cytology showed increased (30%) lymphocyte counts and bronchial biopsy revealed thickening of basal membrane and active chronic inflammation. Conclusions Clinical and histological findings in our young patient suggest involvement of both distal and central airways in an early phase of lung disease. The pathogenesis of Crohn disease-associated lung disorders is discussed with reference to the available literature. A low threshold for pulmonary evaluation seems to be advisable in all children with CD. PMID:11734067
Thirteen Week Oral Toxicity Study of WR242511 in Rats. Volume 1
1994-01-14
hypercholesterolemia and hypertriglyceridemia seen in high dose females, as previously discussed. Heptatobiliary changes were suggested by significant elevations in...lung (alveolar histiocytosis) lesions. Severe thymic lymphocyte depletion was also observed in these animals where the thymus could be identified...this animal, but it was attributed to the severe and diffuse chronic-active inflammation. As indicated above, treatment-related histopathologic
Physical interactions of hyperpolarized gas in the lung
NASA Astrophysics Data System (ADS)
Chen, Xiu-Hao Josette
1999-09-01
This thesis addresses key interactions of hyperpolarized (HP) gas within the biological environment of the lung using magnetic resonance imaging (MRI). The first excised lung image was obtained in 1994 by Albert et al ., indicating the relative youth of the HP gas MRI field. Thus, there are a multitude of parameters which need to be explored to optimize contrast mechanisms and pulse sequences for in vivo applications. To perform HP gas MRI, both the production of HP gas and development of appropriate MRI pulse sequences were necessary. The apparatus for gas polarization was transferred from Princeton University, then modified and optimized to provide larger quantities and higher polarizations. It was ultimately replaced by a prototype commercial apparatus. Existing MRI pulse sequences were changed to accommodate and exploit the unique situation of non-equilibrium polarized gas. Several physical parameters of the gas relating to structure and function in the lung were investigated. It was found that using a range of excitation powers, acquisition windows, and ventilatory cycle segments yielded dramatically different types of images in the guinea pig. Spatially localized lineshapes of HP 3He showed differentiated peaks (corresponding to frequency shifts) which represent gas in major airways (2 ppm) and alveoli (1-2 ppm). Quantitative maps of the diffusion coefficient (D) showed evidence of free diffusion in the trachea (average of 2.4 cm2/s for 3He and 0.68 cm2/s for 129Xe) and restricted diffusion combined with effects of gas mixtures in the distal pulmonary airspaces (average of 0.16 cm2/s for 3He and 0.021 cm2/s for 129Xe). Experimental measurements were verified with gas mixture and porous media theory for both 3He and 129Xe. The dephasing parameter, T*2 , was mapped showing sensitivity to changes in tidal volume and oxygen level. The T*2 values ranged from 9.2 to 15.9 ms in the intrapulmonary airspaces depending on the breathing paradigm. Experimental results were confirmed with porous media theory. Finally, the technique of D measurement was applied in a disease model. The histograms of D at end expiratory volume and 2 mL tidal volume held breath were shown to exhibit a significant shift in a healthy rat, but not in an elastase-induced (a model for emphysema) rat.
Pulmonary Function Testing After Stereotactic Body Radiotherapy to the Lung
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishawi, Muath; Kim, Bong; Moore, William H.
2012-01-01
Purpose: Surgical resection remains the standard of care for operable early-stage non-small-cell lung cancer (NSCLC). However, some patients are not fit for surgery because of comorbidites such as chronic obstructive pulmonary disease (COPD) and other medical conditions. We aimed to evaluate pulmonary function and tumor volume before and after stereotactic body radiotherapy (SBRT) for patients with and without COPD in early-stage lung cancer. Methods and Materials: A review of prospectively collected data of Stage I and II lung cancers, all treated with SBRT, was performed. The total SBRT treatment was 60 Gy administered in three 20 Gy fractions. The patientsmore » were analyzed based on their COPD status, using their pretreatment pulmonary function test cutoffs as established by the American Thoracic Society guidelines (forced expiratory volume [FEV]% {<=}50% predicted, FEV%/forced vital capacity [FVC]% {<=}70%). Changes in tumor volume were also assessed by computed tomography. Results: Of a total of 30 patients with Stage I and II lung cancer, there were 7 patients in the COPD group (4 men, 3 women), and 23 in t he No-COPD group (9 men, 14 women). At a mean follow-up time of 4 months, for the COPD and No-COPD patients, pretreatment and posttreatment FEV% was similar: 39 {+-} 5 vs. 40 {+-} 9 (p = 0.4) and 77 {+-} 0.5 vs. 73 {+-} 24 (p = 0.9), respectively. The diffusing capacity of the lungs for carbon monoxide (DL{sub CO}) did significantly increase for the No-COPD group after SBRT treatment: 60 {+-} 24 vs. 69 {+-} 22 (p = 0.022); however, DL{sub CO} was unchanged for the COPD group: 49 {+-} 13 vs. 50 {+-} 14 (p = 0.8). Although pretreatment tumor volume was comparable for both groups, tumor volume significantly shrank in the No-COPD group from 19 {+-} 24 to 9 {+-} 16 (p < 0.001), and there was a trend in the COPD patients from 12 {+-} 9 to 6 {+-} 5 (p = 0.06). Conclusion: SBRT did not seem to have an effect on FEV{sub 1} and FVC, but it shrank tumor volume and improved DL{sub CO} for patients without COPD.« less
NMR studies and applications of perfluorocarbon gases
NASA Astrophysics Data System (ADS)
Chang, Yulin
Hyperpolarized 3He has been very successful in magnetic resonance imaging (MRI) of the lungs. It provides ways to study the physiological properties of the lungs and lung function. However, the high costs of the polarizing apparatus and the complicated polarizing procedure are preventing this technique from being clinically used routinely. Recent developments have shown that several fluorinated gases have the potential to replace 3He in some of its applications. This thesis presents some preliminary results of human excised lung imaging using C2F6 and C3F8. These two fluorinated gases were able to yield images with good signal-to-noise ratio and reasonable resolutions in a 1.5 T magnet. Using diffusion MRI of these two gases can distinguish emphysematous lungs from healthy ones. An important application of these gases would be to determine local lung surface-to-volume (S/V) ratio in vivo, which requires the unrestricted (free) diffusivity in each pixel to be known. We present data in this thesis which allow free diffusivities to be calculated from the relaxation time T1. Samples of pure C 2F6 and C3F8 at different pressures and in mixtures with oxygen at different concentrations were made. Measurements were done at two different magnetic fields and temperature was regulated to study the temperature dependence over a small range. These two gases were also used in studies of carbon-block filters, where the strong adsorption of the gases to the high surface-area carbon is beneficial. A brief review of our work on mouse lung imaging using hyperpolarized 3He is presented in Appendix A; Appendix B is a study of the longitudinal spin magnetization in the presence of a strong magnetic field gradient; the construction of the pulsed field gradient waveform measurement coils and some experimental results using these coils are contained in Appendix C.
Unilateral lung transplantation for pulmonary fibrosis.
1986-05-01
Improvements in immunosuppression and surgical techniques have made unilateral lung transplantation feasible in selected patients with end-stage interstitial lung disease. We report two cases of successful unilateral lung transplantation for end-stage respiratory failure due to pulmonary fibrosis. The patients, both oxygen-dependent, had progressive disease refractory to all treatment, with an anticipated life expectancy of less than one year on the basis of the rate of progression of the disease. Both patients were discharged six weeks after transplantation and returned to normal life. They are alive and well at 26 months and 14 months after the procedure. Pulmonary-function studies have shown substantial improvement in their lung volumes and diffusing capacities. For both patients, arterial oxygen tension is now normal and there is no arterial oxygen desaturation with exercise. This experience shows that unilateral lung transplantation, for selected patients with end-stage interstitial lung disease, provides a good functional result. Moreover, it avoids the necessity for cardiac transplantation, as required by the combined heart-lung procedure, and permits the use of the donor heart for another recipient.
Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)
NASA Astrophysics Data System (ADS)
McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian
2006-03-01
To create a repository of clinical data, CT images and tissue samples and to more clearly understand the pathogenetic features of pulmonary fibrosis and emphysema, the National Heart, Lung, and Blood Institute (NHLBI) launched a cooperative effort known as the Lung Tissue Resource Consortium (LTRC). The CT images for the LTRC effort must contain accurate CT numbers in order to characterize tissues, and must have high-spatial resolution to show fine anatomic structures. This study was performed to optimize the CT image reconstruction algorithms to achieve these criteria. Quantitative analyses of phantom and clinical images were conducted. The ACR CT accreditation phantom containing five regions of distinct CT attenuations (CT numbers of approximately -1000 HU, -80 HU, 0 HU, 130 HU and 900 HU), and a high-contrast spatial resolution test pattern, was scanned using CT systems from two manufacturers (General Electric (GE) Healthcare and Siemens Medical Solutions). Phantom images were reconstructed using all relevant reconstruction algorithms. Mean CT numbers and image noise (standard deviation) were measured and compared for the five materials. Clinical high-resolution chest CT images acquired on a GE CT system for a patient with diffuse lung disease were reconstructed using BONE and STANDARD algorithms and evaluated by a thoracic radiologist in terms of image quality and disease extent. The clinical BONE images were processed with a 3 x 3 x 3 median filter to simulate a thicker slice reconstructed in smoother algorithms, which have traditionally been proven to provide an accurate estimation of emphysema extent in the lungs. Using a threshold technique, the volume of emphysema (defined as the percentage of lung voxels having a CT number lower than -950 HU) was computed for the STANDARD, BONE, and BONE filtered. The CT numbers measured in the ACR CT Phantom images were accurate for all reconstruction kernels for both manufacturers. As expected, visual evaluation of the spatial resolution bar patterns demonstrated that the BONE (GE) and B46f (Siemens) showed higher spatial resolution compared to the STANDARD (GE) or B30f (Siemens) reconstruction algorithms typically used for routine body CT imaging. Only the sharper images were deemed clinically acceptable for the evaluation of diffuse lung disease (e.g. emphysema). Quantitative analyses of the extent of emphysema in patient data showed the percent volumes above the -950 HU threshold as 9.4% for the BONE reconstruction, 5.9% for the STANDARD reconstruction, and 4.7% for the BONE filtered images. Contrary to the practice of using standard resolution CT images for the quantitation of diffuse lung disease, these data demonstrate that a single sharp reconstruction (BONE/B46f) should be used for both the qualitative and quantitative evaluation of diffuse lung disease. The sharper reconstruction images, which are required for diagnostic interpretation, provide accurate CT numbers over the range of -1000 to +900 HU and preserve the fidelity of small structures in the reconstructed images. A filtered version of the sharper images can be accurately substituted for images reconstructed with smoother kernels for comparison to previously published results.
Effects of side lying on lung function in older individuals.
Manning, F; Dean, E; Ross, J; Abboud, R T
1999-05-01
Body positioning exerts a strong effect on pulmonary function, but its effect on other components of the oxygen transport pathway are less well understood, especially the effects of side-lying positions. This study investigated the interrelationships between side-lying positions and indexes of lung function such as spirometry, alveolar diffusing capacity, and inhomogeneity of ventilation in older individuals. Nineteen nonsmoking subjects (mean age=62.8 years, SD=6.8, range=50-74) with no history of cardiac or pulmonary disease were tested over 2 sessions. The test positions were sitting and left side lying in one session and sitting and right side lying in the other session. In each of the positions, forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), single-breath pulmonary diffusing capacity (DLCO/VA), and the slope of phase III (DN2%/L) of the single-breath nitrogen washout test to determine inhomogeneity of ventilation were measured. Compared with measurements obtained in the sitting position, FVC and FEV1 were decreased equally in the side-lying positions, but no change was observed in DLCO/VA or DN2%/L. Side-lying positions resulted in decreases in FVC and FEV1, which is consistent with the well-documented effects of the supine position. These findings further support the need for prescriptive rather than routine body positioning of patients with risks of cardiopulmonary compromise and the need to use upright positions in which lung volumes and capacities are maximized.
NASA Technical Reports Server (NTRS)
West, J. B.; Elliott, A. R.; Guy, H. J.; Prisk, G. K.
1997-01-01
The lung is exquisitely sensitive to gravity, and so it is of interest to know how its function is altered in the weightlessness of space. Studies on National Aeronautics and Space Administration (NASA) Spacelabs during the last 4 years have provided the first comprehensive data on the extensive changes in pulmonary function that occur in sustained microgravity. Measurements of pulmonary function were made on astronauts during space shuttle flights lasting 9 and 14 days and were compared with extensive ground-based measurements before and after the flights. Compared with preflight measurements, cardiac output increased by 18% during space flight, and stroke volume increased by 46%. Paradoxically, the increase in stroke volume occurred in the face of reductions in central venous pressure and circulating blood volume. Diffusing capacity increased by 28%, and the increase in the diffusing capacity of the alveolar membrane was unexpectedly large based on findings in normal gravity. The change in the alveolar membrane may reflect the effects of uniform filling of the pulmonary capillary bed. Distributions of blood flow and ventilation throughout the lung were more uniform in space, but some unevenness remained, indicating the importance of nongravitational factors. A surprising finding was that airway closing volume was approximately the same in microgravity and in normal gravity, emphasizing the importance of mechanical properties of the airways in determining whether they close. Residual volume was unexpectedly reduced by 18% in microgravity, possibly because of uniform alveolar expansion. The findings indicate that pulmonary function is greatly altered in microgravity, but none of the changes observed so far will apparently limit long-term space flight. In addition, the data help to clarify how gravity affects pulmonary function in the normal gravity environment on Earth.
Kaminsky, David A; Daud, Anees; Chapman, David G
2014-10-01
Ventilation heterogeneity (VH) has been linked to airway responsiveness (AR) based on various measures of VH involving inert gas washout, forced oscillation and lung imaging. We explore whether VH at baseline, as measured by the simple ratio of single breath alveolar volume to plethysmographically determined total lung capacity (VA/TLC), would correlate with AR as measured by methacholine challenge testing. We analysed data from spirometry, lung volumes, diffusing capacity and methacholine challenge to derive the VA/TLC and the dose-response slope (DRS) of forced expiratory volume in 1 s (DRS-FEV1) during methacholine challenge from 136 patients. We separated out airway closure versus narrowing by examining the DRS for forced vital capacity (DRS-FVC) and the DRS for FEV1/FVC (DRS-FEV1/FVC), respectively. Similarly, we calculated the DRS for sGaw (DRS-sGaw) as another measure of airway narrowing. We performed statistical analysis using Spearman rank correlation and multifactor linear regression using a backward stepwise modelling procedure. We found that the DRS-FEV1 correlated with baseline VA/TLC (rho = -0.26, P < 0.01), and VA/TLC and FEV1 were independently associated with DRS-FEV1 (R(2) = 0.14, P = 0.01). In addition, VA/TLC was associated with both airway narrowing and closure in response to methacholine. These results confirm that baseline VA/TLC is associated with AR, and reflects both airway closure and airway narrowing following methacholine challenge. © 2014 Asian Pacific Society of Respirology.
Singh, Savita; Soni, Ritu; Singh, K P; Tandon, O P
2012-01-01
Prana is the energy, when the self-energizing force embraces the body with extension and expansion and control, it is pranayama. It may affect the milieu at the bronchioles and the alveoli particularly at the alveolo-capillary membrane to facilitate diffusion and transport of gases. It may also increase oxygenation at tissue level. Aim of our study is to compare pulmonary functions and diffusion capacity in patients of bronchial asthma before and after yogic intervention of 2 months. Sixty stable asthmatic-patients were randomized into two groups i.e group 1 (Yoga training group) and group 2 (control group). Each group included thirty patients. Lung functions were recorded on all patients at baseline, and then after two months. Group 1 subjects showed a statistically significant improvement (P<0.001) in Transfer factor of the lung for carbon monoxide (TLCO), forced vital capacity (FVC), forced expiratory volume in 1st sec (FEV1), peak expiratory flow rate (PEFR), maximum voluntary ventilation (MVV) and slow vital capacity (SVC) after yoga practice. Quality of life also increased significantly. It was concluded that pranayama & yoga breathing and stretching postures are used to increase respiratory stamina, relax the chest muscles, expand the lungs, raise energy levels, and calm the body.
Kumar, Avinash; Bade, Geetanjali; Trivedi, Anjali; Jyotsna, Viveka P; Talwar, Anjana
2016-01-01
Diabetes mellitus (DM) is characterized by the presence of chronic hyperglycemia and formation of advanced glycation end products (AGEs). Interaction between AGE and its receptor leads to endothelial damage and microangiopathy. This study was undertaken to investigate the possibility of using a postural variation of diffusing capacity as an early marker of lung microangiopathy and its correlation with the level of adhesion molecules, HbA1c, duration of diabetes, and insulin resistance in type 2 DM (T2DM) patients with and without microangiopathy. Forty patients having T2DM without any microangiopathy (n = 20) as well as with microangiopathy (n = 20), and 22 age and sex matched healthy controls were enrolled in this cross-sectional study. Measurement of lung volumes and capacities were done. DLco was measured in sitting and supine position. Levels of vascular cell adhesion molecule-1 (VCAM-1), E-selectin, fasting glucose, and insulin were estimated in plasma of the patients and compared with controls. Restrictive type of ventilatory change was observed in DM patients. Diffusing capacity (% predicted) in the supine position (P < 0.0001), postural change in DLco (P < 0.0001), and coefficient of diffusion were significantly less in DM patients as compared to controls. Plasma levels of VCAM-1 were significantly higher in DM patients without microangiopathy and negatively correlated (r = -0.4054, P = 0.0094) with Δ DLco in all diabetic subjects. All patients had significantly higher insulin resistance. Lack of postural increase in diffusing capacity in type 2 diabetic patients along with increased VCAM-1 levels could reflect the presence of an early microangiopathy of the small pulmonary vessels.
Di Marco, Fabiano; Guazzi, Marco; Sferrazza Papa, Giuseppe Francesco; Vicenzi, Marco; Santus, Pierachille; Busatto, Paolo; Piffer, Federico; Blasi, Francesco; Centanni, Stefano
2012-02-01
The cardiovascular component associated with chronic obstructive pulmonary disease (COPD) plays a major role in disease prognosis, accounting for 25% of the deaths. Experimental and initial clinical data suggest that beta-adrenergic agonists accelerate fluid clearance from the alveolar airspace, with potentially positive effects on cardiogenic and noncardiogenic pulmonary oedema. This pilot study investigated the acute effects of the long-acting beta-2 agonist, salmeterol, on alveolar fluid clearance after rapid saline intravenous infusion by evaluating diffusive and mechanical lung properties. Ten COPD and 10 healthy subjects were treated with salmeterol or placebo 4 h before the patient's mechanical and diffusive lung properties were measured during four non consecutive days, just before and after a rapid saline infusion, or during a similar period without an infusion. In both COPD and healthy subjects, rapid saline infusion with placebo or salmeterol premedication lead to a significant decrease in diffusion capacity for carbon monoxide (DLCO) and forced expiratory volume in 1 s (FEV1). Nonetheless, salmeterol pretreatment lead to a significantly reduced gas exchange impairment caused by saline infusion (-64% of DLCO reduction compared with placebo), whereas it did not affect changes in FEV1. In the control setting with no infusion, we found no significant change in either DLCO or mechanical properties of the lung. Salmeterol appears to provide a protective effect, not related to bronchodilation, against an acute alveolar fluid clearance challenge secondary to lung fluid overload in COPD patients. Copyright © 2012 Elsevier Ltd. All rights reserved.
Advanced Techniques in Pulmonary Function Test Analysis Interpretation and Diagnosis
Gildea, T.J.; Bell, C. William
1980-01-01
The Pulmonary Functions Analysis and Diagnostic System is an advanced clinical processing system developed for use at the Pulmonary Division, Department of Medicine at the University of Nebraska Medical Center. The system generates comparative results and diagnostic impressions for a variety of routine and specialized pulmonary functions test data. Routine evaluation deals with static lung volumes, breathing mechanics, diffusing capacity, and blood gases while specialized tests include lung compliance studies, small airways dysfunction studies and dead space to tidal volume ratios. Output includes tabular results of normal vs. observed values, clinical impressions and commentary and, where indicated, a diagnostic impression. A number of pulmonary physiological and state variables are entered or sampled (A to D) with periodic status reports generated for the test supervisor. Among the various physiological variables sampled are respiratory frequency, minute ventilation, oxygen consumption, carbon dioxide production, and arterial oxygen saturation.
NASA Astrophysics Data System (ADS)
Shimizu, Kenji; Ikura, Hirohiko; Ikezoe, Junpei; Nagareda, Tomofumi; Yagi, Naoto; Umetani, Keiji; Imai, Yutaka
2004-04-01
We have previously reported a synchrotron radiation (SR) microtomography system constructed at the bending magnet beamline at the SPring-8. This system has been applied to the lungs obtained at autopsy and inflated and fixed by Heitzman"s method. Normal lung and lung specimens with two different types of pathologic processes (fibrosis and emphysema) were included. Serial SR microtomographic images were stacked to yield the isotropic volumetric data with high-resolution (12 μm3 in voxel size). Within the air spaces of a subdivision of the acinus, each voxel is segmented three-dimensionally using a region growing algorithm ("rolling ball algorithm"). For each voxel within the segmented air spaces, two types of voxel coding have been performed: single-seeded (SS) coding and boundary-seeded (BS) coding, in which the minimum distance from an initial point as the only seed point and all object boundary voxels as a seed set were calculated and assigned as the code values to each voxel, respectively. With these two codes, combinations of surface rendering and volume rendering techniques were applied to visualize three-dimensional morphology of a subdivision of the acinus. Furthermore, sequentially filling process of air into a subdivision of the acinus was simulated under several conditions to visualize the ventilation procedure (air flow and diffusion). A subdivision of the acinus was reconstructed three-dimensionally, demonstrating the normal architecture of the human lung. Significant differences in appearance of ventilation procedure were observed between normal and two pathologic processes due to the alteration of the lung architecture. Three-dimensional reconstruction of the microstructure of a subdivision of the acinus and visualization of the ventilation procedure (air flow and diffusion) with SR microtomography would offer a new approach to study the morphology, physiology, and pathophysiology of the human respiratory system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunlap, Neal E.; Yang Wensha; McIntosh, Alyson
Purpose: To investigate pulmonary radiologic changes after lung stereotactic body radiotherapy (SBRT), to distinguish between mass-like fibrosis and tumor recurrence. Methods and Materials: Eighty consecutive patients treated with 3- to 5-fraction SBRT for early-stage peripheral non-small cell lung cancer with a minimum follow-up of 12 months were reviewed. The mean biologic equivalent dose received was 150 Gy (range, 78-180 Gy). Patients were followed with serial CT imaging every 3 months. The CT appearance of consolidation was defined as diffuse or mass-like. Progressive disease on CT was defined according to Response Evaluation Criteria in Solid Tumors 1.1. Positron emission tomography (PET)more » CT was used as an adjunct test. Tumor recurrence was defined as a standardized uptake value equal to or greater than the pretreatment value. Biopsy was used to further assess consolidation in select patients. Results: Median follow-up was 24 months (range, 12.0-36.0 months). Abnormal mass-like consolidation was identified in 44 patients (55%), whereas diffuse consolidation was identified in 12 patients (15%), at a median time from end of treatment of 10.3 months and 11.5 months, respectively. Tumor recurrence was found in 35 of 44 patients with mass-like consolidation using CT alone. Combined with PET, 10 of the 44 patients had tumor recurrence. Tumor size (hazard ratio 1.12, P=.05) and time to consolidation (hazard ratio 0.622, P=.03) were predictors for tumor recurrence. Three consecutive increases in volume and increasing volume at 12 months after treatment in mass-like consolidation were highly specific for tumor recurrence (100% and 80%, respectively). Patients with diffuse consolidation were more likely to develop grade {>=}2 pneumonitis (odds ratio 26.5, P=.02) than those with mass-like consolidation (odds ratio 0.42, P=.07). Conclusion: Incorporating the kinetics of mass-like consolidation and PET to the current criteria for evaluating posttreatment response will increase the likelihood of correctly identifying patients with progressive disease after lung SBRT.« less
Tedjasaputra, Vincent; van Diepen, Sean; Collins, Sophie É; Michaelchuk, Wade M; Stickland, Michael K
2017-02-20
Exercise is a stress to the pulmonary vasculature. With incremental exercise, the pulmonary diffusing capacity (DLCO) must increase to meet the increased oxygen demand; otherwise, a diffusion limitation may occur. The increase in DLCO with exercise is due to increased capillary blood volume (Vc) and membrane diffusing capacity (Dm). Vc and Dm increase secondary to the recruitment and distension of pulmonary capillaries, increasing the surface area for gas exchange and decreasing pulmonary vascular resistance, thereby attenuating the increase in pulmonary arterial pressure. At the same time, the recruitment of intrapulmonary arteriovenous anastomoses (IPAVA) during exercise may contribute to gas exchange impairment and/or prevent large increases in pulmonary artery pressure. We describe two techniques to evaluate pulmonary diffusion and circulation at rest and during exercise. The first technique uses multiple-fraction of inspired oxygen (FIO2) DLCO breath holds to determine Vc and Dm at rest and during exercise. Additionally, echocardiography with intravenous agitated saline contrast is used to assess IPAVAs recruitment. Representative data showed that the DLCO, Vc, and Dm increased with exercise intensity. Echocardiographic data showed no IPAVA recruitment at rest, while contrast bubbles were seen in the left ventricle with exercise, suggesting exercise-induced IPAVA recruitment. The evaluation of pulmonary capillary blood volume, membrane diffusing capacity, and IPAVA recruitment using echocardiographic methods is useful to characterize the ability of the lung vasculature to adapt to the stress of exercise in health as well as in diseased groups, such as those with pulmonary arterial hypertension and chronic obstructive pulmonary disease.
Tedjasaputra, Vincent; van Diepen, Sean; Collins, Sophie É; Michaelchuk, Wade M.; Stickland, Michael K.
2017-01-01
Exercise is a stress to the pulmonary vasculature. With incremental exercise, the pulmonary diffusing capacity (DLCO) must increase to meet the increased oxygen demand; otherwise, a diffusion limitation may occur. The increase in DLCO with exercise is due to increased capillary blood volume (Vc) and membrane diffusing capacity (Dm). Vc and Dm increase secondary to the recruitment and distension of pulmonary capillaries, increasing the surface area for gas exchange and decreasing pulmonary vascular resistance, thereby attenuating the increase in pulmonary arterial pressure. At the same time, the recruitment of intrapulmonary arteriovenous anastomoses (IPAVA) during exercise may contribute to gas exchange impairment and/or prevent large increases in pulmonary artery pressure. We describe two techniques to evaluate pulmonary diffusion and circulation at rest and during exercise. The first technique uses multiple-fraction of inspired oxygen (FIO2) DLCO breath holds to determine Vc and Dm at rest and during exercise. Additionally, echocardiography with intravenous agitated saline contrast is used to assess IPAVAs recruitment. Representative data showed that the DLCO, Vc, and Dm increased with exercise intensity. Echocardiographic data showed no IPAVA recruitment at rest, while contrast bubbles were seen in the left ventricle with exercise, suggesting exercise-induced IPAVA recruitment. The evaluation of pulmonary capillary blood volume, membrane diffusing capacity, and IPAVA recruitment using echocardiographic methods is useful to characterize the ability of the lung vasculature to adapt to the stress of exercise in health as well as in diseased groups, such as those with pulmonary arterial hypertension and chronic obstructive pulmonary disease. PMID:28287506
Barisione, Giovanni; Brusasco, Claudia; Garlaschi, Alessandro; Baroffio, Michele; Brusasco, Vito
2016-05-01
Lung diffusing capacity for carbon monoxide (DLCO) is decreased in both usual interstitial pneumonia-idiopathic pulmonary fibrosis (UIP-IPF) and nonspecific interstitial pneumonia (NSIP), but is moderately related to computed tomography (CT)-determined fibrotic changes. This may be due to the relative insensitivity of DLCO to changes in alveolar membrane diffusive conductance (DMCO). The purpose of this study was to determine whether measurement of lung diffusing capacity for nitric oxide (DLNO) better reflects fibrotic changes than DLCO DLNO-DLCO were measured simultaneously in 30 patients with UIP-IPF and 30 with NSIP. Eighty-one matched healthy subjects served as a control group. The amount of pulmonary fibrosis was estimated by CT volumetric analysis of visually bounded areas showing reticular opacities and honeycombing. DMCO and pulmonary capillary volume (VC) were calculated. DLNO was below the lower limit of normal in all patients irrespective of extent and nature of disease, whereas DLCO was within the normal range in a nonnegligible number of patients. Both DLNO and DLCO were significantly correlated with visual assessment of fibrosis but DLNO more closely than DLCO DMCO was also below the lower limit of normal in all UIP-IPF and NSIP patients and significantly correlated with fibrosis extent in both diseases, whereas VC was weakly correlated with fibrosis in UIP-IPF and uncorrelated in NSIP, with normal values in half of patients. In conclusion, measurement of DLNO may provide a more sensitive evaluation of fibrotic changes than DLCO in either UIP-IPF or NSIP, because it better reflects DMCO. Copyright © 2016 the American Physiological Society.
Fibla, Juan J; Brunelli, Alessandro; Allen, Mark S; Wigle, Dennis; Shen, Robert; Nichols, Francis; Deschamps, Claude; Cassivi, Stephen D
2015-02-01
Our objective was to evaluate whether the number and volume of surgical lung biopsies (SLB) influence the diagnosis of diffuse interstitial lung disease (ILD). Retrospective study of SLB for suspected ILD in patients from the Mayo Clinic from January 2002 to January 2010. Data were collected in the institution and analyzed. 311 patients were studied. Mean number of biopsies was 2.05 (SD 0.6); 1 biopsy in 50 (16%), 2 in 198 (63.7%), 3 in 59 (19%) and 4 in 4 (1.3%). Histopathologic diagnosis was: definitive (specific): 232 (74.6%), descriptive (non-specific): 76 (24.4%), no diagnosis: 3 (1%). After excluding patients without diagnosis (n=3), there were 50 patients with only 1 biopsy, 196 with 2 and 62 with 3 or 4; the definitive diagnostic yield was similar in all 3 groups (37/50; 74%, 150/196; 77%, and 45/62; 73%) (Chi-square, p value 0.8). The propensity score analysis between patients with 1 SLB and patients with more than 1 SLB also showed no difference in diagnostic yield. Regarding the volume of biopsies, mean total volume was 34.4 cm(3) (SD 46): 41.2 cm(3) (3 cases) in patients with no diagnosis; 33.6 cm(3) (232 cases, SD 47) in patients with specific diagnosis; and 36.6 cm(3) (76 cases, SD 44) in patients with descriptive diagnosis. Biopsy volume had no influence on histopathology yield (ANOVA, p value .8). The number and volume of the biopsy specimens in SLB did not seem to influence diagnosis. Based on our results, we believe a single sample from a representative area may be sufficient for diagnosis. Randomized prospective trials should be performed to optimize SLB for ILD. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.
Developmental and genetic components explain enhanced pulmonary volumes of female Peruvian Quechua.
Kiyamu, Melisa; Bigham, Abigail; Parra, Esteban; León-Velarde, Fabiola; Rivera-Chira, María; Brutsaert, Tom D
2012-08-01
High altitude natives have enlarged vital capacities and residual volumes (RV). Because pulmonary volumes are an indication of functionally relevant traits, such as diffusion capacity, the understanding of the factors (genetic/developmental) that influence lung volumes provides insight into the adaptive responses of highlanders. In order to test for the effect of growth and development at high altitude on lung volumes, we obtained forced vital capacities (FVC), RV, and total lung capacities (TLC) for a sample of 65 Peruvian females of mostly Quechua origins (18-34 years) who were sub-divided into two well-matched groups: 1) sea-level born and raised females (BSL, n = 34) from Lima, Peru (150 m), and 2) high-altitude born and raised females (BHA, n = 31) from Cerro de Pasco, Peru (4,338 m). To determine Quechua origins, Native American ancestry proportion (NAAP) for each individual was assessed using a panel of 70 ancestry informative markers. NAAP was similar between groups (BSL = 91.71%; BHA = 89.93%; P = 0.240), and the analysis confirmed predominantly Quechua origins. After adjusting for body size and NAAP, BHA females had significantly higher FVC (3.79 ± 0.06 l; P < 0.001), RV (0.98 ± 0.03 l; P < 0.001) and TLC (4.80 ± 0.07 l; P < 0.001) compared to BSL females (FVC = 3.33 ± 0.05 l; RV = 0.69 ± 0.03 l; TLC = 4.02 ± 0.06 l). NAAP was not associated with FVC (P = 0.352) or TLC (P = 0.506). However, NAAP was positively associated with RV (P = 0.004). In summary, results indicate that developmental exposure to high altitude in females constitutes an important factor for all lung volumes, whereas both genetic and developmental factors seem to be important for RV. Copyright © 2012 Wiley Periodicals, Inc.
Abnormal predicted diffusion capacities in healthy Asians: an inequality with a solution.
Pesola, Gene R; Huggins, Gladstone; Sherpa, Tsering Y
2006-01-01
Asian lung volumes are 10-15% less than those of Caucasians. To test the hypothesis that healthy Asians might be labeled as abnormal using three commonly used Caucasian-derived prediction equation estimates (PEE) of DLCO currently used. In addition, a Chinese-derived PEE of DLCO was tested to determine its validity in non-Chinese Asians. Forty-one healthy Asians underwent DLCO testing. Controls consisted of the PEE and 12 healthy Caucasians. Measured DLCO was compared with the Miller, Knudson, Crapo and one Chinese PEE. Abnormal was defined as a DLCO <80% predicted. Gas dilution and plethysmography estimated alveolar volume. Proportions in parentheses in the results below are DLCO adjusted for alveolar volume. The average Asian DLCO was 25.75 +/- 5.55 ml/min/mm Hg, no different than the predicted DLCO of 25.29 +/- 5.53 seen with Chinese PEE. This was different (p < 0.01) than the predicted DLCO of 27.82 +/- 5.09, 33.66 +/- 6.29, and 31.64 +/- 5.33 for the Miller, Knudson, and Crapo equations, respectively. This resulted in 4/41 (0/41), 27/39 (2/39), 21/41 (3/41) and 1/41 (0/41) DLCO measurements being defined as abnormal using Miller, Knudson, Crapo and Chinese PEE, respectively. In Caucasians, the measured DLCO was similar to the Miller but significantly lower than the Knudson and Crapo PEE. Measured lung volumes were significantly smaller compared to predicted for the three Caucasian PEE in Asians, with no difference in Caucasians. There was no difference in measured lung volumes and Chinese PEE. Current Caucasian PEE for DLCO when used in healthy Asians result in an abnormal reading that is incorrect from 10 to 50% of the time. This PEE failure is related to a reduction in lung volume not accounted for. The Chinese PEE for DLCO works for non-Chinese Asians and should replace Caucasian PEE in the US in all Asians.
Marini, John J; Gattinoni, Luciano
2008-12-01
To describe the clinical implications of an often neglected mechanism through which localized acute lung injury may be propagated and intensified. Experimental and clinical evidence from the medical literature relevant to the airway propagation hypothesis and its consequences. The diffuse injury that characterizes acute respiratory distress syndrome is often considered a process that begins synchronously throughout the lung, mediated by inhaled or blood-borne noxious agents. Relatively little attention has been paid to possibility that inflammatory lung injury may also begin focally and propagate sequentially via the airway network, proceeding mouth-ward from distal to proximal. Were this true, modifications of ventilatory pattern and position aimed at geographic containment of the injury process could help prevent its generalization and limit disease severity. The purposes of this communication are to call attention to this seldom considered mechanism for extending lung injury that might further justify implementation of low tidal volume/high positive end-expiratory pressure ventilatory strategies for lung protection and to suggest additional therapeutic measures implied by this broadened conceptual paradigm.
The physiological basis and clinical significance of lung volume measurements.
Lutfi, Mohamed Faisal
2017-01-01
From a physiological standpoint, the lung volumes are either dynamic or static. Both subclasses are measured at different degrees of inspiration or expiration; however, dynamic lung volumes are characteristically dependent on the rate of air flow. The static lung volumes/capacities are further subdivided into four standard volumes (tidal, inspiratory reserve, expiratory reserve, and residual volumes) and four standard capacities (inspiratory, functional residual, vital and total lung capacities). The dynamic lung volumes are mostly derived from vital capacity. While dynamic lung volumes are essential for diagnosis and follow up of obstructive lung diseases, static lung volumes are equally important for evaluation of obstructive as well as restrictive ventilatory defects. This review intends to update the reader with the physiological basis, clinical significance and interpretative approaches of the standard static lung volumes and capacities.
Automated diagnosis of interstitial lung diseases and emphysema in MDCT imaging
NASA Astrophysics Data System (ADS)
Fetita, Catalin; Chang Chien, Kuang-Che; Brillet, Pierre-Yves; Prêteux, Françoise
2007-09-01
Diffuse lung diseases (DLD) include a heterogeneous group of non-neoplasic disease resulting from damage to the lung parenchyma by varying patterns of inflammation. Characterization and quantification of DLD severity using MDCT, mainly in interstitial lung diseases and emphysema, is an important issue in clinical research for the evaluation of new therapies. This paper develops a 3D automated approach for detection and diagnosis of diffuse lung diseases such as fibrosis/honeycombing, ground glass and emphysema. The proposed methodology combines multi-resolution 3D morphological filtering (exploiting the sup-constrained connection cost operator) and graph-based classification for a full characterization of the parenchymal tissue. The morphological filtering performs a multi-level segmentation of the low- and medium-attenuated lung regions as well as their classification with respect to a granularity criterion (multi-resolution analysis). The original intensity range of the CT data volume is thus reduced in the segmented data to a number of levels equal to the resolution depth used (generally ten levels). The specificity of such morphological filtering is to extract tissue patterns locally contrasting with their neighborhood and of size inferior to the resolution depth, while preserving their original shape. A multi-valued hierarchical graph describing the segmentation result is built-up according to the resolution level and the adjacency of the different segmented components. The graph nodes are then enriched with the textural information carried out by their associated components. A graph analysis-reorganization based on the nodes attributes delivers the final classification of the lung parenchyma in normal and ILD/emphysematous regions. It also makes possible to discriminate between different types, or development stages, among the same class of diseases.
Treatment of idiopathic pulmonary fibrosis with losartan: a pilot project.
Couluris, Marisa; Kinder, Brent W; Xu, Ping; Gross-King, Margaret; Krischer, Jeffrey; Panos, Ralph J
2012-10-01
Idiopathic pulmonary fibrosis is a progressive interstitial lung disease with no current effective therapies. Treatment has focused on antifibrotic agents to stop proliferation of fibroblasts and collagen deposition in the lung. We present the first clinical trial data on the use of losartan, an antifibrotic agent, to treat idiopathic pulmonary fibrosis. The primary objective was to evaluate the effect of losartan on progression of idiopathic pulmonary fibrosis measured by the change in percentage of predicted forced vital capacity (%FVC) after 12 months. Secondary outcomes included the change in forced expiratory volume at 1 second, diffusing capacity of carbon monoxide, 6-minute walk test distance, and baseline/transition dyspnea index. Patients with idiopathic pulmonary fibrosis and a baseline %FVC of ≥50 % were treated with losartan 50 mg by mouth daily for 12 months. Pulmonary function testing, 6-minute walk, and breathlessness indices were measured every 3 months. Twenty participants with idiopathic pulmonary fibrosis were enrolled and 17 patients were evaluable for response. Twelve patients had a stable or improved %FVC at study month 12. Similar findings were observed in secondary end-point measures, including 58, 71, and 65 % of patients with stable or improved forced expiratory volume at 1 second, diffusing capacity for carbon monoxide, and 6-minute walk test distance, respectively. No treatment-related adverse events that resulted in early study discontinuation were reported. Losartan stabilized lung function in patients with idiopathic pulmonary fibrosis over 12 months. Losartan is a promising agent for the treatment of idiopathic pulmonary fibrosis and has a low toxicity profile.
Schopper, Melissa A; Walkup, Laura L; Tkach, Jean A; Higano, Nara S; Lim, Foong Yen; Haberman, Beth; Woods, Jason C; Kingma, Paul S
2017-09-01
To evaluate postnatal lung volume in infants with congenital diaphragmatic hernia (CDH) and determine if a compensatory increase in lung volume occurs during the postnatal period. Using a novel pulmonary magnetic resonance imaging method for imaging neonatal lungs, the postnatal lung volumes in infants with CDH were determined and compared with prenatal lung volumes obtained via late gestation magnetic resonance imaging. Infants with left-sided CDH (2 mild, 9 moderate, and 1 severe) were evaluated. The total lung volume increased in all infants, with the contralateral lung increasing faster than the ipsilateral lung (mean ± SD: 4.9 ± 3.0 mL/week vs 3.4 ± 2.1 mL/week, P = .005). In contrast to prenatal studies, the volume of lungs of infants with more severe CDH grew faster than the lungs of infants with more mild CDH (Spearman's ρ=-0.086, P = .01). Although the contralateral lung volume grew faster in both mild and moderate groups, the majority of total lung volume growth in moderate CDH came from increased volume of the ipsilateral lung (42% of total lung volume increase in the moderate group vs 32% of total lung volume increase in the mild group, P = .09). Analysis of multiple clinical variables suggests that increased weight gain was associated with increased compensatory ipsilateral lung volume growth (ρ = 0.57, P = .05). These results suggest a potential for postnatal catch-up growth in infants with pulmonary hypoplasia and suggest that weight gain may increase the volume growth of the more severely affected lung. Copyright © 2017 Elsevier Inc. All rights reserved.
Predictors of oxygen desaturation during submaximal exercise in 8,000 patients.
Hadeli, K O; Siegel, E M; Sherrill, D L; Beck, K C; Enright, P L
2001-07-01
To determine predictors of oxygen desaturation during submaximal exercise in patients with various lung diseases. This retrospective case series used pulmonary function laboratory results from all patients referred to a major tertiary-care center. All patients > or = 35 years old who underwent spirometry, diffusing capacity of the lung for carbon monoxide (DLCO), lung volumes, and pulse oximetry during 3-min submaximal step-test exercise during 1996 were included (4,545 men and 3,472 women). Logistic regression models, correcting for gender, age, and weight, determined the odds ratios (ORs) for oxygen desaturation of > or = 4% during exercise for each category of lung function abnormality (compared to those with entirely normal lung function). Approximately 74% of the patients had airways obstruction, while only 5.6% had restriction of lung volumes. One third of those with obstruction had a low DLCO, compared to 56% with restriction, while 2.7% had a low DLCO without obstruction or restriction. The risk of oxygen desaturation during submaximal exercise was very high (OR, 34) in patients with restriction and low DLCO (as in interstitial lung disease) and in patients with obstruction and low DLCO (as in COPD; OR, 18), intermediate (OR, 9) in patients with only a low DLCO, and lowest in those with a normal DLCO (OR, 4 if restricted; OR, 2 if obstructed). A cut point of DLCO < 62% predicted resulted in 75% sensitivity and specificity for exercise desaturation. No untoward cardiac events occurred in any patients during or following the submaximal exercise tests. The risk of oxygen desaturation during submaximal exercise is very high in patients with a low DLCO. Submaximal exercise tests are safe, even in elderly patients with heart and lung diseases.
Maina, John N; McCracken, Kevin G; Chua, Beverly; York, Julia M; Milsom, William K
2017-01-01
High altitude flight in rarefied, extremely cold and hypoxic air is a very challenging activity. Only a few species of birds can achieve it. Hitherto, the structure of the lungs of such birds has not been studied. This is because of the rarity of such species and the challenges of preparing well-fixed lung tissue. Here, it was posited that in addition to the now proven physiological adaptations, high altitude flying birds will also have acquired pulmonary structural adaptations that enable them to obtain the large amounts of oxygen (O2) needed for flight at high elevation, an environment where O2 levels are very low. The Andean goose (Chloephaga melanoptera) normally resides at altitudes above 3000 meters and flies to elevations as high as 6000 meters where O2 becomes limiting. In this study, its lung was morphologically- and morphometrically investigated. It was found that structurally the lungs are exceptionally specialized for gas exchange. Atypically, the infundibulae are well-vascularized. The mass-specific volume of the lung (42.8 cm3.kg-1), the mass-specific respiratory surface area of the blood-gas (tissue) barrier (96.5 cm2.g-1) and the mass-specific volume of the pulmonary capillary blood (7.44 cm3.kg-1) were some of the highest values so far reported in birds. The pulmonary structural specializations have generated a mass-specific total (overall) pulmonary morphometric diffusing capacity of the lung for oxygen (DLo2) of 0.119 mlO2.sec-1.mbar-1.kg-1, a value that is among some of the highest ones in birds that have been studied. The adaptations of the lung of the Andean goose possibly produce the high O2 conductance needed to live and fly at high altitude.
In vivo lung morphometry with hyperpolarized 3He diffusion MRI: Theoretical background
NASA Astrophysics Data System (ADS)
Sukstanskii, A. L.; Yablonskiy, D. A.
2008-02-01
MRI-based study of 3He gas diffusion in lungs may provide important information on lung microstructure. Lung acinar airways can be described in terms of cylinders covered with alveolar sleeve [Haefeli-Bleuer, Weibel, Anat. Rec. 220 (1988) 401]. For relatively short diffusion times (on the order of a few ms) this geometry allows description of the 3He diffusion attenuated MR signal in lungs in terms of two diffusion coefficients—longitudinal (D) and transverse (D) with respect to the individual acinar airway axis [Yablonskiy et al., PNAS 99 (2002) 3111]. In this paper, empirical relationships between D and D and the geometrical parameters of airways and alveoli are found by means of computer Monte Carlo simulations. The effects of non-Gaussian signal behavior (dependence of D and D on b-value) are also taken into account. The results obtained are quantitatively valid in the physiologically important range of airway parameters characteristic of healthy lungs and lungs with mild emphysema. In lungs with advanced emphysema, the results provide only "apparent" characteristics but still could potentially be used to evaluate emphysema progression. This creates a basis for in vivo lung morphometry—evaluation of the geometrical parameters of acinar airways from hyperpolarized 3He diffusion MRI, despite the airways being too small to be resolved by direct imaging. These results also predict a rather substantial dependence of 3He ADC on the experimentally-controllable diffusion time, Δ. If Δ is decreased from 3 ms to 1 ms, the ADC in normal human lungs may increase by almost 50%. This effect should be taken into account when comparing experimental data obtained with different pulse sequences.
Preoperative pulmonary rehabilitation for marginal-function lung cancer patients.
Hashmi, Asra; Baciewicz, Frank A; Soubani, Ayman O; Gadgeel, Shirish M
2017-01-01
Background This study aimed to evaluate the impact of preoperative pulmonary rehabilitation in lung cancer patients undergoing pulmonary resection surgery with marginal lung function. Methods Short-term outcomes of 42 patients with forced expiratory volume in 1 s < 1.6 L who underwent lung resection between 01/2006 and 12/2010 were reviewed retrospectively. They were divided into group A (no preoperative pulmonary rehabilitation) and group B (receiving pulmonary rehabilitation). In group B, a second set of pulmonary function tests was obtained. Results There were no significant differences in terms of sex, age, race, pathologic stage, operative procedure, or smoking years. Mean forced expiratory volume in 1 s and diffusing capacity for carbon monoxide in group A was 1.40 ± 0.22 L and 10.28 ± 2.64 g∙dL -1 vs. 1.39 ± 0.13 L and 10.75 ± 2.08 g∙dL -1 in group B. Group B showed significant improvement in forced expiratory volume in 1 s from 1.39 ± 0.13 to 1.55 ± 0.06 L ( p = 0.02). Mean intensive care unit stay was 6 ± 5 days in group A vs. 9 ± 9 days in group B ( p = 0.22). Mean hospital stay was 10 ± 4 days in group A vs. 14 ± 9 days in group B ( p = 0.31). There was no significant difference in morbidity or mortality between groups. Conclusion Preoperative pulmonary rehabilitation can significantly improve forced expiratory volume in 1 s in some marginal patients undergoing lung cancer resection. However, it does not improve length of stay, morbidity, or mortality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karki, K; Hugo, G; Saraiya, S
Purpose: Target delineation in lung cancer radiotherapy has, in general, large variability. MRI has so far not been investigated in detail for lung cancer delineation variability. The purpose of this study is to investigate delineation variability for lung tumors using MRI and compare it to CT alone and PET-CT based delineations. Methods: Seven physicians delineated the primary tumor volumes of nine patients for the following scenarios: (1) CT only; (2) post-contrast T1-weighted MRI registered with diffusion-weighted MRI; and (3) PET-CT fusion images. To compute interobserver variability, the median surface was generated from all observers’ contours and used as the referencemore » surface. A single physician labeled the interface types (tumor to lung, atelectasis (collapsed lung), hilum, mediastinum, or chest-wall) on the median surface. Volume variation (normalized to PET-CT volume), minimum distance (MD), and bidirectional local distance (BLD) between individual observers’ contours and the reference contour were measured. Results: CT- and MRI-based normalized volumes were 1.61±0.76 (mean±SD) and 1.38±0.44, respectively, both significantly larger than PET-CT (p<0.05, paired t-test). The overall uncertainty (root mean square of SD values over all points) of both BLD and MD measures of the observers for the interfaces were not significantly different (p>0.05, two-samples t-test) for all imaging modalities except between tumor-mediastinum and tumor-atelectasis in PET-CT. The largest mean overall uncertainty was observed for tumor-atelectasis interface, the smallest for tumor-mediastinum and tumor-lung interfaces for all modalities. The whole tumor uncertainties for both BLD and MD were not significantly different between any two modalities (p>0.05, paired t-test). Overall uncertainties for the interfaces using BLD were similar to using MD. Conclusion: Large volume variations were observed between the three imaging modalities. Contouring variability appeared to depend on the interface type. This study will be useful for understanding the delineation uncertainty for radiotherapy planning of lung cancer using different imaging modalities. Disclosures: Research agreement with Phillips Healthcare (GH and EW), National Institutes of Health Licensing agreement with Varian Medical Systems (GH and EW), research grants from the National Institute of Health (GH and EW), UpToDate royalties (EW), and none (others). Authors have no potential conflicts of interest to disclose.« less
Micro-imaging of the Mouse Lung via MRI
NASA Astrophysics Data System (ADS)
Wang, Wei
Quantitative measurement of lung microstructure is of great significance in assessment of pulmonary disease, particularly in the earliest stages. Conventional stereological assessment of ex-vivo fixed tissue specimens under the microscope has a long and successful tradition and is regarded as a gold standard, but the invasive nature limits its applications and the practicality of use in longitudinal studies. The technique for diffusion MRI-based 3He lung morphometry was previously developed and validated for human lungs, and was recently extended to ex-vivo mouse lungs. The technique yields accurate, quantitative information about the microstructure and geometry of acinar airways. In this dissertation, the 3He lung morphometry technique is for the first time successfully implemented for in-vivo studies of mice. It can generate spatially-resolved maps of parameters that reveal the microstructure of mouse lung. Results in healthy mice indicate excellent agreement between in-vivo morphometry via 3He MRI and microscopic morphometry after sacrifice. The implementation and validation of 3He morphometry in healthy mice open up new avenues for application of the technique as a precise, noninvasive, in-vivo biomarker of changes in lung microstructure, within various mouse models of lung disease. We have applied 3He morphometry to the Sendai mouse model of lung disease. Specifically, the Sendai-virus model of chronic obstructive lung disease has demonstrated an innate immune response in mouse airways that exhibits similarities to the chronic airway inflammation in human COPD and asthma, but the effect on distal lung parenchyma had not been investigated. We imaged the time course and regional distribution of mouse lung microstructural changes in vivo after Sendai virus (SeV) infection with 1H and 3He diffusion MRI. 1H MR images detected the SeV-induced pulmonary inflammation in vivo and 3He lung morphometry showed modest increase in alveolar duct radius distal to airway inflammation, particularly in the lung periphery, indicating airspace enlargement after virus infection. Another important application of the imaging technique is the study of lung regeneration in a pneumonectomy (PNX) model. Partial resection of the lung by unilateral PNX is a robust model of compensatory lung growth. It is typically studied by postmortem morphometry in which longitudinal assessment in the same animal cannot be achieved. Here we successfully assess the microstructural changes and quantify the compensatory lung growth in vivo in the PNX mouse model via 1H and hyperpolarized 3He diffusion MRI. Our results show complete restoration in lung volume and total alveolar number with enlargement of alveolar size, which is consistent with prior histological studies conducted in different animals at various time points. This dissertation demonstrates that 3He lung morphometry has good sensitivity in quantifying small microstructural changes in the mouse lung and can be applied to a variety of mouse pulmonary models. Particularly, it has great potential to become a valuable tool in understanding the time course and the mechanism of lung growth in individual animals and may provide insight into post-natal lung growth and lung regeneration.
[Phylogeny of gas exchange systems].
Jürgens, K D; Gros, G
2002-04-01
Several systems of gas transport have developed during evolution, all of which are able to sufficiently supply oxygen to the tissues and eliminate the CO2 produced by the metabolism, in spite of great distances between the environment and the individual cells of the tissues. Almost all these systems utilize a combination of convection and diffusion steps. Convection achieves an efficient transport of gas over large distances, but requires energy and cannot occur across tissue barriers. Diffusion, on the other hand, achieves gas transport across barriers, but requires optimization of diffusion paths and diffusion areas. When two convectional gas flows are linked via a diffusional barrier (gas/fluid in the case of the avian lung, fluid/fluid in the case of gills), the directions in which the respective convectional movements pass each other are important determinants of gas exchange efficiency (concurrent, countercurrent and cross-current systems). The tracheal respiration found in insects has the advantage of circumventing the convective gas transport step in the blood, thereby avoiding the high energy expenditure of circulatory systems. This is made possible by a system of tracheae, ending in tracheoles, that reaches from the body surface to every cell within the body. The last step of gas transfer in these animals occurs by diffusion from the tracheoles ("air capillaries") to the mitochondria of cells. The disadvantage is that the tracheal system occupies a substantial fraction of body volume and that, due to limited mechanical stability of tracheal walls, this system would not be able to operate under conditions of high hydrostatic pressures, i. e. in large animals. Respiration in an "open" system, i. e. direct exposure of the diffusional barrier to the environmental air, eliminates the problem of bringing the oxygen to the barrier by convection, as is necessary in the avian and mammalian lung, in the insects' tracheal system and in the gills. An open system is found in the respiration via the skin, which is of significance in some amphibians, but is limited by the thickness of the skin that constitutes a substantial diffusion path for O2 and CO2. The thick skin, on the other hand, provides mechanical protection as well as flexibility for the animals' body and helps avoid massive water loss via the body surface. The gills of fishes, in contrast, exhibit rather short diffusion distances, are located in a mechanically protected space, and the problem of water loss does not exist. The flows of blood and water occur in opposite direction (countercurrent flow) and this situation makes an arterial PO2 approaching the environmental PO2 possible. A major disadvantage is constituted by the environmental medium since water contains little O2 compared to air and, to compensate this, much energy is expended to maintain a high flow rate of water through the gills. In the mammalian lung ("pool system"), the presence of a dead space and the rhythmic ventilation that replaces only a small fraction of the gas volume of the lung per breath, are responsible for an arterial PO2 (2/3 of the atmospheric PO2) that cannot reach the expiratory PO2. However, an advantage of this feature is the constantly high alveolar and arterial PCO2, which provides a highly effective H(+) buffer system in the entire body. The apparent disadvantage of the mammalian lung is avoided by the avian lung, which uses an extended system of airways to establish continuous equilibration of a part of the capillary blood with fresh air (cross current system), during inspiration as well as during expiration. In this system, arterial PO2 can significantly exceed expiratory PO2. A disadvantage here is the enormous amount of space taken up by the avian lung, in animals of 1 kg body weight three times as much as taken up by the mammalian lung. All respiratory exchange systems considered here exhibit high degrees of optimization - yet follow highly diverse construction principles. There is no such thing as an ideal gas exchange system. The system that has evolved in each species depends to an impressive extent on environmental conditions, on body build and size, on the animal's patterns of movement and on its energy consumption.
Deng, Yu; Li, Xinchun; Lei, Yongxia; Liang, Changhong; Liu, Zaiyi
2016-11-01
Background Using imaging techniques to diagnose malignant and inflammatory lesions in the lung can be challenging. Purpose To compare intravoxel incoherent motion (IVIM) and apparent diffusion coefficient (ADC) magnetic resonance imaging (MRI) analysis in their ability to discriminate lung cancer from focal inflammatory lung lesions. Material and Methods Thirty-eight patients with lung masses were included: 30 lung cancers and eight inflammatory lesions. Patients were imaged with 3.0T MRI diffusion weighted imaging (DWI) using 10 b values (range, 0-1000 s/mm 2 ). Tissue diffusivity ( D), pseudo-diffusion coefficient ( D*), and perfusion fraction ( f) were calculated using segmented biexponential analysis. ADC (total) was calculated with monoexponential fitting of the DWI data. D, D*, f, and ADC were compared between lung cancer and inflammatory lung lesions. Receiver operating characteristic analysis was performed for all DWI parameters. Results The ADC was significantly higher for inflammatory lesions than for lung cancer ([1.21 ± 0.20] × 10 -3 mm 2 /s vs. [0.97 ± 0.15] × 10 -3 mm 2 /s; P = 0.004). By IVIM, f was found to be significantly higher in inflammatory lesions than lung cancer ([46.10 ± 12.92] % vs. [29.29 ± 10.89] %; P = 0.005). There was no difference in D and D* between lung cancer and inflammatory lesions ( P = 0.747 and 0.124, respectively). f showed comparable diagnostic performance with ADC in differentiating lung cancer from inflammatory lung lesions, with areas under the curve of 0.833 and 0.826, sensitivity 80.0% and 73.3%, and specificity 75.0% and 87.5%, respectively. Conclusion The IVIM parameter f value provides comparable diagnostic performance with ADC and could be used as a surrogate marker for differentiating lung cancer from inflammatory lesions.
Ungprasert, Patompong; Wilton, Katelynn M; Ernste, Floranne C; Kalra, Sanjay; Crowson, Cynthia S; Rajagopalan, Srinivasan; Bartholmai, Brian J
2017-10-01
To evaluate the correlation between measurements from quantitative thoracic high-resolution CT (HRCT) analysis with "Computer-Aided Lung Informatics for Pathology Evaluation and Rating" (CALIPER) software and measurements from pulmonary function tests (PFTs) in patients with idiopathic inflammatory myopathies (IIM)-associated interstitial lung disease (ILD). A cohort of patients with IIM-associated ILD seen at Mayo Clinic was identified from medical record review. Retrospective analysis of HRCT data and PFTs at baseline and 1 year was performed. The abnormalities in HRCT were quantified using CALIPER software. A total of 110 patients were identified. At baseline, total interstitial abnormalities as measured by CALIPER, both by absolute volume and by percentage of total lung volume, had a significant negative correlation with diffusing capacity for carbon monoxide (DLCO), total lung capacity (TLC), and oxygen saturation. Analysis by subtype of interstitial abnormality revealed significant negative correlations between ground glass opacities (GGO) and reticular density (RD) with DLCO and TLC. At one year, changes of total interstitial abnormalities compared with baseline had a significant negative correlation with changes of TLC and oxygen saturation. A negative correlation between changes of total interstitial abnormalities and DLCO was also observed, but it was not statistically significant. Analysis by subtype of interstitial abnormality revealed negative correlations between changes of GGO and RD and changes of DLCO, TLC, and oxygen saturation, but most of the correlations did not achieve statistical significance. CALIPER measurements correlate well with functional measurements in patients with IIM-associated ILD.
Konheim, Jeremy A; Kon, Zachary N; Pasrija, Chetan; Luo, Qingyang; Sanchez, Pablo G; Garcia, Jose P; Griffith, Bartley P; Jeudy, Jean
2016-04-01
Size matching for lung transplantation is widely accomplished using height comparisons between donors and recipients. This gross approximation allows for wide variation in lung size and, potentially, size mismatch. Three-dimensional computed tomography (3D-CT) volumetry comparisons could offer more accurate size matching. Although recipient CT scans are universally available, donor CT scans are rarely performed. Therefore, predicted donor lung volumes could be used for comparison to measured recipient lung volumes, but no such predictive equations exist. We aimed to use 3D-CT volumetry measurements from a normal patient population to generate equations for predicted total lung volume (pTLV), predicted right lung volume (pRLV), and predicted left lung volume (pLLV), for size-matching purposes. Chest CT scans of 400 normal patients were retrospectively evaluated. 3D-CT volumetry was performed to measure total lung volume, right lung volume, and left lung volume of each patient, and predictive equations were generated. The fitted model was tested in a separate group of 100 patients. The model was externally validated by comparison of total lung volume with total lung capacity from pulmonary function tests in a subset of those patients. Age, gender, height, and race were independent predictors of lung volume. In the test group, there were strong linear correlations between predicted and actual lung volumes measured by 3D-CT volumetry for pTLV (r = 0.72), pRLV (r = 0.72), and pLLV (r = 0.69). A strong linear correlation was also observed when comparing pTLV and total lung capacity (r = 0.82). We successfully created a predictive model for pTLV, pRLV, and pLLV. These may serve as reference standards and predict donor lung volume for size matching in lung transplantation. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Butler, J. P.; Mair, R. W.; Hoffmann, D.; Hrovat, M. I.; Rogers, R. A.; Topulos, G. P.; Walsworth, R. L.; Patz, S.
2002-01-01
We demonstrate a minimally invasive nuclear magnetic resonance (NMR) technique that enables determination of the surface-area-to-volume ratio (S/V) of soft porous materials from measurements of the diffusive exchange of laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the solid phase. We apply this NMR technique to porous polymer samples and find approximate agreement with destructive stereological measurements of S/V obtained with optical confocal microscopy. Potential applications of laser-polarized xenon interphase exchange NMR include measurements of in vivo lung function in humans and characterization of gas chromatography columns.
2014-01-01
It has recently been demonstrated that in healthy individuals, peak oxygen consumption is associated with a greater pulmonary capillary blood volume and a more distensible pulmonary circulation. Our cross-sectional study suggests that, in healthy men aged 20 to 60 years (n = 63), endurance sport practice (vigorous-intensity domain of the International Physical Activity Questionnaire) is associated with better quantity (pulmonary capillary blood volume) and quality (slope of increase in lung diffusion for carbon monoxide on exercise) of the pulmonary vascular bed, partly counterbalancing the deleterious effects of ageing, which remains to be demonstrated in a prospective longitudinal design. PMID:24460636
Effects of cardiac oscillations and lung volume on acinar gas mixing during apnea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackenzie, C.F.; Skacel, M.; Barnas, G.M.
1990-05-01
We evaluated the importance of cardiogenic gas mixing in the acini of 13 dogs during 2 min of apnea. 133Xe (1-2 mCi in 4 ml of saline) was injected into an alveolar region through an occluded pulmonary artery branch, and washout was measured by gamma scintillation scanning during continued occlusion or with blood flow reinstated. The monoexponential rate constant for Xe washout (XeW) was -0.4 +/- 0.08 (SE) min-1 at functional residual capacity (FRC) with no blood flow in the injected region. It decreased by more than half at lung volumes 500 ml above and 392 ml below FRC. Withmore » intact pulmonary blood flow, XeW was -1.0 +/- 0.08 (SE) min-1 at FRC, and it increased with decreasing lung volume. However, if calculated Xe uptake by the blood was subtracted from the XeW measured with blood flow intact, resulting values at FRC and at FRC + 500 ml were not different from XeW with no blood flow. Reasonable calculation of Xe blood uptake at 392 ml below FRC was not possible because airway closure, increased shunt, and other factors affect XeW. After death, no significant XeW could be measured, which suggests that XeW caused by molecular diffusion was small. We conclude that (1) the effect of heart motion on the lung parenchyma increases acinar gas mixing during apnea, (2) this effect diminishes above or below FRC, and (3) there is probably no direct effect of pulmonary vascular pulsatility on acinar gas mixing.« less
Effect of lung volume reduction surgery on resting pulmonary hemodynamics in severe emphysema.
Criner, Gerard J; Scharf, Steven M; Falk, Jeremy A; Gaughan, John P; Sternberg, Alice L; Patel, Namrata B; Fessler, Henry E; Minai, Omar A; Fishman, Alfred P
2007-08-01
To determine the effect of medical treatment versus lung volume reduction surgery (LVRS) on pulmonary hemodynamics. Three clinical centers of the National Emphysema Treatment Trial (NETT) screened patients for additional inclusion into a cardiovascular (CV) substudy. Demographics were determined, and lung function testing, six-minute-walk distance, and maximum cardiopulmonary exercise testing were done at baseline and 6 months after medical therapy or LVRS. CV substudy patients underwent right heart catheterization at rest prerandomization (baseline) and 6 months after treatment. A total of 110 of the 163 patients evaluated for the CV substudy were randomized in NETT (53 were ineligible), 54 to medical treatment and 56 to LVRS. Fifty-five of these patients had both baseline and repeat right heart catheterization 6 months postrandomization. Baseline demographics and lung function data revealed CV substudy patients to be similar to the remaining 1,163 randomized NETT patients in terms of age, sex, FEV(1), residual volume, diffusion capacity of carbon monoxide, Pa(O(2)), Pa(CO(2)), and six-minute-walk distance. CV substudy patients had moderate pulmonary hypertension at rest (Ppa, 24.8 +/- 4.9 mm Hg); baseline hemodynamic measurements were similar across groups. Changes from baseline pressures to 6 months post-treatment were similar across treatment groups, except for a smaller change in pulmonary capillary wedge pressure at end-expiration post-LVRS compared with medical treatment (-1.8 vs. 3.5 mm Hg, p = 0.04). In comparison to medical therapy, LVRS was not associated with an increase in pulmonary artery pressures.
Mihm, F G; Feeley, T W; Jamieson, S W
1987-01-01
The thermal dye double indicator dilution technique for estimating lung water was compared with gravimetric analyses in nine human subjects who were organ donors. As observed in animal studies, the thermal dye measurement of extravascular thermal volume (EVTV) consistently overestimated gravimetric extravascular lung water (EVLW), the mean (SEM) difference being 3.43 (0.59) ml/kg. In eight of the nine subjects the EVTV -3.43 ml/kg would yield an estimate of EVLW that would be from 3.23 ml/kg under to 3.37 ml/kg over the actual value EVLW at the 95% confidence limits. Reproducibility, assessed with the standard error of the mean percentage, suggested that a 15% change in EVTV can be reliably detected with repeated measurements. One subject was excluded from analysis because the EVTV measurement grossly underestimated its actual EVLW. This error was associated with regional injury observed on gross examination of the lung. Experimental and clinical evidence suggest that the thermal dye measurement provides a reliable estimate of lung water in diffuse pulmonary oedema states. PMID:3616974
Lung Function in Pregnancy in Langerhans Cell Histiocytosis.
Radzikowska, Elżbieta; Wiatr, Elżbieta; Franczuk, Monika; Bestry, Iwona; Roszkowski-Śliż, Kazimierz
2018-01-01
Pulmonary Langerhans cell histiocytosis (LCH) is a rare disease, affecting usually young people. The course of the disease is variable. In some pulmonary LCH patients a severe lung destruction and progression in spite of chemotherapy is observed, but in others just a cessation of smoking induces a regression of the disease. In the present study we seek to determine the influence of pregnancy on pulmonary function in LCH patients, an unchartered area of research. We addressed the issue by investigating eight pregnant women out of the 45 women hospitalized with the diagnosis of pulmonary LCH in the period from 2000 to 2015. For five of the eight pregnant women it was the second gestation. The median follow-up period was 120 months (range 72-175 months). Ten healthy children were born by a C-section. Two spontaneous miscarriages in the seventh week of gestation, and one tubal ectopic pregnancy were recorded. We found that pregnancy did not significantly influence pulmonary function assessed by the following indices: forced expiratory volume in 1 s (FEV1), lung vital capacity (VC), total lung capacity (TLC), residual volume (RV), diffusing capacity of the lungs for carbon monoxide (DLCO), and the distance and arterial oxygen saturation in 6-min walk test. Only one patient in the third trimester of pregnancy experienced bilateral pneumothorax, with persistent air leak. In all patients, delivery and postpartum period were uneventful. We conclude that pregnancy in pulmonary LCH patients is safe and not associated with deterioration of pulmonary function or blood oxygenation.
Galectin-3 Is Associated with Restrictive Lung Disease and Interstitial Lung Abnormalities.
Ho, Jennifer E; Gao, Wei; Levy, Daniel; Santhanakrishnan, Rajalakshmi; Araki, Tetsuro; Rosas, Ivan O; Hatabu, Hiroto; Latourelle, Jeanne C; Nishino, Mizuki; Dupuis, Josée; Washko, George R; O'Connor, George T; Hunninghake, Gary M
2016-07-01
Galectin-3 (Gal-3) has been implicated in the development of pulmonary fibrosis in experimental studies, and Gal-3 levels have been found to be elevated in small studies of human pulmonary fibrosis. We sought to study whether circulating Gal-3 concentrations are elevated early in the course of pulmonary fibrosis. We examined 2,596 Framingham Heart Study participants (mean age, 57 yr; 54% women; 14% current smokers) who underwent Gal-3 assessment using plasma samples and pulmonary function testing between 1995 and 1998. Of this sample, 1,148 underwent subsequent volumetric chest computed tomography. Higher Gal-3 concentrations were associated with lower lung volumes (1.4% decrease in percentage of predicted FEV1 per 1 SD increase in log Gal-3; 95% confidence interval [CI], 0.8-2.0%; P < 0.001; 1.2% decrease in percentage of predicted FVC; 95% CI, 0.6-1.8%; P < 0.001) and decreased diffusing capacity of the lung for carbon monoxide (2.1% decrease; 95% CI, 1.3-2.9%; P < 0.001). These associations remained significant after multivariable adjustment (P ≤ 0.008 for all). Compared with the lowest quartile, participants in the highest Gal-3 quartile were more than twice as likely to have interstitial lung abnormalities visualized by computed tomography (multivariable-adjusted odds ratio, 2.67; 95% CI, 1.49-4.76; P < 0.001). Elevated Gal-3 concentrations are associated with interstitial lung abnormalities coupled with a restrictive pattern, including decreased lung volumes and altered gas exchange. These findings suggest a potential role for Gal-3 in early stages of pulmonary fibrosis.
Galectin-3 Is Associated with Restrictive Lung Disease and Interstitial Lung Abnormalities
Gao, Wei; Levy, Daniel; Santhanakrishnan, Rajalakshmi; Araki, Tetsuro; Rosas, Ivan O.; Hatabu, Hiroto; Latourelle, Jeanne C.; Nishino, Mizuki; Dupuis, Josée; Washko, George R.; O’Connor, George T.; Hunninghake, Gary M.
2016-01-01
Rationale: Galectin-3 (Gal-3) has been implicated in the development of pulmonary fibrosis in experimental studies, and Gal-3 levels have been found to be elevated in small studies of human pulmonary fibrosis. Objectives: We sought to study whether circulating Gal-3 concentrations are elevated early in the course of pulmonary fibrosis. Methods: We examined 2,596 Framingham Heart Study participants (mean age, 57 yr; 54% women; 14% current smokers) who underwent Gal-3 assessment using plasma samples and pulmonary function testing between 1995 and 1998. Of this sample, 1,148 underwent subsequent volumetric chest computed tomography. Measurements and Main Results: Higher Gal-3 concentrations were associated with lower lung volumes (1.4% decrease in percentage of predicted FEV1 per 1 SD increase in log Gal-3; 95% confidence interval [CI], 0.8–2.0%; P < 0.001; 1.2% decrease in percentage of predicted FVC; 95% CI, 0.6–1.8%; P < 0.001) and decreased diffusing capacity of the lung for carbon monoxide (2.1% decrease; 95% CI, 1.3–2.9%; P < 0.001). These associations remained significant after multivariable adjustment (P ≤ 0.008 for all). Compared with the lowest quartile, participants in the highest Gal-3 quartile were more than twice as likely to have interstitial lung abnormalities visualized by computed tomography (multivariable-adjusted odds ratio, 2.67; 95% CI, 1.49–4.76; P < 0.001). Conclusions: Elevated Gal-3 concentrations are associated with interstitial lung abnormalities coupled with a restrictive pattern, including decreased lung volumes and altered gas exchange. These findings suggest a potential role for Gal-3 in early stages of pulmonary fibrosis. PMID:26771117
Respiratory physiotherapy in the pre and postoperative myocardial revascularization surgery.
Cavenaghi, Simone; Ferreira, Lucas Lima; Marino, Lais Helena Carvalho; Lamari, Neuseli Marino
2011-01-01
The cardiovascular diseases are among the main death causes in the developed world. They have been increasing epidemically in the developing countries. In spite of several alternatives for the treatment of the coronary artery disease; the surgery of the myocardial revascularization is an option with proper indications of medium and long-term with good results. It provides the remission of the angina symptoms contributing to the increase of the expectation and improvement of the life quality. Most of patients undergoing myocardial revascularization surgery develop postoperative lung dysfunction with important reduction of the lung volumes, damages in the respiratory mechanism, decrease in the lung indulgence and increase of the respiratory work. The reduction of volumes and lung capacities can contribute to alterations in the gas exchanges, resulting in hypoxemia and decrease in the diffusion capacity. Taking this into account, the Physiotherapy has been requested more and more to perform in the pre as well as in the postoperative period of this surgery. This study aimed at updating the knowledge regarding the respiratory physiotherapy performance in the pre and postoperative period of the myocardial revascularization surgery enhancing the prevention of lung complications. The Physiotherapy uses several techniques in the preoperative period; such as: the incentive spirometry, exercises of deep breathing, cough, inspiratory muscle training, earlier ambulation and physiotherapeutic orientations. While in the postoperative period, the objective is the treatment after lung complications took place, performed by means of physiotherapeutic maneuvers and noninvasive respiratory devices, aiming at improving the respiratory mechanism, the lung reexpansion and the bronchial hygiene. Respiratory physiotherapy is an integral part in the care management of the patient with cardiopathy, either in the pre or in the postoperative period, since it contributes significantly to a better prognosis of these patients with the use of specific techniques.
Conradi, Mark S.; Yablonskiy, Dmitriy A.; Woods, Jason C.; Gierada, David S.; Jacob, Richard E.; Chang, Yulin V.; Choong, Cliff K.; Sukstanskii, Alex L.; Tanoli, Tariq; Lefrak, Stephen S.; Cooper, Joel D.
2007-01-01
Rationale and Objectives MR imaging of the restricted diffusion of laser-polarized 3He gas provides unique insights into the changes in lung microstructure in emphysema. Results We discuss measurements of ventilation (spin density), mean diffusivity, and the anisotropy of diffusion, which yields the mean acinar airway radius. In addition, the use of spatially modulated longitudinal magnetization allows diffusion to be measured over longer distances and times, with sensitivity to collateral ventilation paths. Early results are also presented for spin density and diffusivity maps made with a perfluorinated inert gas, C3F8. Methods Techniques for purging and imaging excised lungs are discussed. PMID:16253852
A novel swine model of ricin-induced acute respiratory distress syndrome
Katalan, Shahaf; Falach, Reut; Rosner, Amir; Goldvaser, Michael; Brosh-Nissimov, Tal; Dvir, Ayana; Mizrachi, Avi; Goren, Orr; Cohen, Barak; Gal, Yoav; Sapoznikov, Anita; Ehrlich, Sharon; Kronman, Chanoch
2017-01-01
ABSTRACT Pulmonary exposure to the plant toxin ricin leads to respiratory insufficiency and death. To date, in-depth study of acute respiratory distress syndrome (ARDS) following pulmonary exposure to toxins is hampered by the lack of an appropriate animal model. To this end, we established the pig as a large animal model for the comprehensive study of the multifarious clinical manifestations of pulmonary ricinosis. Here, we report for the first time, the monitoring of barometric whole body plethysmography for pulmonary function tests in non-anesthetized ricin-treated pigs. Up to 30 h post-exposure, as a result of progressing hypoxemia and to prevent carbon dioxide retention, animals exhibited a compensatory response of elevation in minute volume, attributed mainly to a large elevation in respiratory rate with minimal response in tidal volume. This response was followed by decompensation, manifested by a decrease in minute volume and severe hypoxemia, refractory to oxygen treatment. Radiological evaluation revealed evidence of early diffuse bilateral pulmonary infiltrates while hemodynamic parameters remained unchanged, excluding cardiac failure as an explanation for respiratory insufficiency. Ricin-intoxicated pigs suffered from increased lung permeability accompanied by cytokine storming. Histological studies revealed lung tissue insults that accumulated over time and led to diffuse alveolar damage. Charting the decline in PaO2/FiO2 ratio in a mechanically ventilated pig confirmed that ricin-induced respiratory damage complies with the accepted diagnostic criteria for ARDS. The establishment of this animal model of pulmonary ricinosis should help in the pursuit of efficient medical countermeasures specifically tailored to deal with the respiratory deficiencies stemming from ricin-induced ARDS. PMID:28067630
NASA Astrophysics Data System (ADS)
Yablonskiy, Dmitriy A.; Sukstanskii, Alexander L.; Leawoods, Jason C.; Gierada, David S.; Bretthorst, G. Larry; Lefrak, Stephen S.; Cooper, Joel D.; Conradi, Mark S.
2002-03-01
The study of lung emphysema dates back to the beginning of the 17th century. Nevertheless, a number of important questions remain unanswered because a quantitative localized characterization of emphysema requires knowledge of lung structure at the alveolar level in the intact living lung. This information is not available from traditional imaging modalities and pulmonary function tests. Herein, we report the first in vivo measurements of lung geometrical parameters at the alveolar level obtained with 3He diffusion MRI in healthy human subjects and patients with severe emphysema. We also provide the first experimental data demonstrating that 3He gas diffusivity in the acinus of human lung is highly anisotropic. A theory of anisotropic diffusion is presented. Our results clearly demonstrate substantial differences between healthy and emphysematous lung at the acinar level and may provide new insights into emphysema progression. The technique offers promise as a clinical tool for early diagnosis of emphysema.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiss, T.F.; Golden, J.
Pneumocystis carinii pneumonia was suggested by a diffuse, bilateral pulmonary uptake of gallium-67 in an asymptomatic, homosexual male with the antibody to the immunodeficiency virus (HIV) who was undergoing staging evaluation for lymphoma clinically localized to a left inguinal lymph node. Chest radiograph and pulmonary function evaluation, including lung volumes, diffusing capacity and arterial blood gases, were within normal limits. Bronchoalveolar lavage revealed Pneumocystis carinii organisms. In this asymptomatic, HIV-positive patient, active alveolar infection, evidenced by abnormal gallium-67 scanning, predated pulmonary physiologic abnormalities. This observation raises questions concerning the natural history of this disease process and the specificity of physiologicmore » tests for excluding disease. It also has implications for the treatment of neoplasia in the HIV-positive patient population.« less
Mühlfeld, Christian; Ochs, Matthias
2013-08-01
Design-based stereology provides efficient methods to obtain valuable quantitative information of the respiratory tract in various diseases. However, the choice of the most relevant parameters in a specific disease setting has to be deduced from the present pathobiological knowledge. Often it is difficult to express the pathological alterations by interpretable parameters in terms of volume, surface area, length, or number. In the second part of this companion review article, we analyze the present pathophysiological knowledge about acute lung injury, diffuse parenchymal lung diseases, emphysema, pulmonary hypertension, and asthma to come up with recommendations for the disease-specific application of stereological principles for obtaining relevant parameters. Worked examples with illustrative images are used to demonstrate the work flow, estimation procedure, and calculation and to facilitate the practical performance of equivalent analyses.
The Role of Collateral Paths in Long-Range Diffusion of 3He in Lungs
Conradi, Mark S.; Yablonskiy, Dmitriy A.; Woods, Jason C.; Gierada, David S.; Bartel, Seth-Emil T.; Haywood, Susan E.; Menard, Christopher
2008-01-01
Rationale and Objectives The hyperpolarized 3He long-range diffusion coefficient (LRDC) in lungs is sensitive to changes in lung structure due to emphysema, reflecting the increase in collateral paths resulting from tissue destruction. However, no clear understanding of LRDC in healthy lungs has emerged. Here we compare LRDC measured in healthy lungs with computer simulations of diffusion along the airway tree with no collateral connections. Materials and Methods Computer simulations of diffusion of spatially modulated spin magnetization were performed in computer generated, symmetric-branching models of lungs and compared with existing LRDC measurements in canine and human lungs. Results The simulations predict LRDC values of order 0.001 cm2/s, approximately 20 times smaller than the measured LRDC. We consider and rule out possible mechanisms for LRDC not included in the simulations: incomplete breath hold, cardiac motion, and passage of dissolved 3He through airway walls. However, a very low density of small (micron) holes in the airways is shown to account for the observed LRDC. Conclusion It is proposed that LRDC in healthy lungs is determined by small collateral pathways. PMID:18486004
De Giacomi, Federica; Raghunath, Sushravya; Karwoski, Ronald; Bartholmai, Brian J; Moua, Teng
2018-03-01
Fibrotic interstitial lung diseases presenting with nonspecific and overlapping radiologic findings may be difficult to diagnose without surgical biopsy. We hypothesized that baseline quantifiable radiologic features and their short-term interval change may be predictive of underlying histologic diagnosis as well as long-term survival in idiopathic pulmonary fibrosis (IPF) presenting without honeycombing versus nonspecific interstitial pneumonia (NSIP). Forty biopsy-confirmed IPF and 20 biopsy-confirmed NSIP patients with available high-resolution chest computed tomography 4 to 24 months apart were studied. CALIPER software was used for the automated characterization and quantification of radiologic findings. IPF subjects were older (66 vs. 48; P<0.0001) with lower diffusion capacity for carbon monoxide and higher volumes of baseline reticulation (193 vs. 83 mL; P<0.0001). Over the interval period, compared with NSIP, IPF patients experienced greater functional decline (forced vital capacity, -6.3% vs. -1.7%; P=0.02) and radiologic progression, as noted by greater increase in reticulation volume (24 vs. 1.74 mL; P=0.048), and decrease in normal (-220 vs. -37.7 mL; P=0.045) and total lung volumes (-198 vs. 58.1 mL; P=0.03). Older age, male gender, higher reticulation volumes at baseline, and greater interval decrease in normal lung volumes were predictive of IPF. Both baseline and short-term changes in quantitative radiologic findings were predictive of mortality. Baseline quantitative radiologic findings and assessment of short-term disease progression may help characterize underlying IPF versus NSIP in those with difficult to differentiate clinicoradiologic presentations. Our study supports the possible utility of assessing serial quantifiable high-resolution chest computed tomographic findings for disease differentiation in these 2 entities.
Fan, Leland L; Dishop, Megan K; Galambos, Csaba; Askin, Frederic B; White, Frances V; Langston, Claire; Liptzin, Deborah R; Kroehl, Miranda E; Deutsch, Gail H; Young, Lisa R; Kurland, Geoffrey; Hagood, James; Dell, Sharon; Trapnell, Bruce C; Deterding, Robin R
2015-10-01
Children's Interstitial and Diffuse Lung Disease (chILD) is a heterogeneous group of disorders that is challenging to categorize. In previous study, a classification scheme was successfully applied to children 0 to 2 years of age who underwent lung biopsies for chILD. This classification scheme has not been evaluated in children 2 to 18 years of age. This multicenter interdisciplinary study sought to describe the spectrum of biopsy-proven chILD in North America and to apply a previously reported classification scheme in children 2 to 18 years of age. Mortality and risk factors for mortality were also assessed. Patients 2 to 18 years of age who underwent lung biopsies for diffuse lung disease from 12 North American institutions were included. Demographic and clinical data were collected and described. The lung biopsies were reviewed by pediatric lung pathologists with expertise in diffuse lung disease and were classified by the chILD classification scheme. Logistic regression was used to determine risk factors for mortality. A total of 191 cases were included in the final analysis. Number of biopsies varied by center (5-49 biopsies; mean, 15.8) and by age (2-18 yr; mean, 10.6 yr). The most common classification category in this cohort was Disorders of the Immunocompromised Host (40.8%), and the least common was Disorders of Infancy (4.7%). Immunocompromised patients suffered the highest mortality (52.8%). Additional associations with mortality included mechanical ventilation, worse clinical status at time of biopsy, tachypnea, hemoptysis, and crackles. Pulmonary hypertension was found to be a risk factor for mortality but only in the immunocompetent patients. In patients 2 to 18 years of age who underwent lung biopsies for diffuse lung disease, there were far fewer diagnoses prevalent in infancy and more overlap with adult diagnoses. Immunocompromised patients with diffuse lung disease who underwent lung biopsies had less than 50% survival at time of last follow-up.
Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.
Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G
1999-01-01
The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.
Caillaud, C; Serre-Cousiné, O; Anselme, F; Capdevilla, X; Préfaut, C
1995-10-01
We investigated the computerized tomographies (CTs) of the thorax and the pulmonary diffusing capacity for CO (DLCO) in eight male athletes before and after a triathlon. DLCO and alveolar volume (VA) were simultaneously measured during 9 s of breath holding. The transfer coefficient (KCO = DLCO/VA) was then calculated. CT scanning was performed during breath holding with the subjects in the supine position. Scanner analysis was done by 1) counting the linear and polygonal opacities (index of interstitial fluid accumulation) and 2) calculating the physical mean lung density and the mean slice mass. Results showed a significant reduction in DLCO (44.9 +/- 2.3 vs. 42.9 +/- 1.7 ml.min-1.mmHg-1; P < 0.05) and KCO (6.0 +/- 0.3 vs. 5.6 +/- 0.3 ml.min-1.mmHg-1.l of VA-1; P < 0.05) after the triathlon and an increase in mean lung density (0.21 +/- 0.009 vs. 0.25 +/- 0.01 g/cm3; P < 0.0001). The number of polygonal and linear opacities increased after the race (P < 0.001). This study confirmed that DLCO and KCO decrease in elite athletes after a long-distance race and showed a concomitant increase in CT lung density and in the number of opacities.
Parra-Robles, J; Ajraoui, S; Deppe, M H; Parnell, S R; Wild, J M
2010-06-01
Models of lung acinar geometry have been proposed to analytically describe the diffusion of (3)He in the lung (as measured with pulsed gradient spin echo (PGSE) methods) as a possible means of characterizing lung microstructure from measurement of the (3)He ADC. In this work, major limitations in these analytical models are highlighted in simple diffusion weighted experiments with (3)He in cylindrical models of known geometry. The findings are substantiated with numerical simulations based on the same geometry using finite difference representation of the Bloch-Torrey equation. The validity of the existing "cylinder model" is discussed in terms of the physical diffusion regimes experienced and the basic reliance of the cylinder model and other ADC-based approaches on a Gaussian diffusion behaviour is highlighted. The results presented here demonstrate that physical assumptions of the cylinder model are not valid for large diffusion gradient strengths (above approximately 15 mT/m), which are commonly used for (3)He ADC measurements in human lungs. (c) 2010 Elsevier Inc. All rights reserved.
Camilo, Luciana M.; Ávila, Mariana B.; Cruz, Luis Felipe S.; Ribeiro, Gabriel C. M.; Spieth, Peter M.; Reske, Andreas A.; Amato, Marcelo; Giannella-Neto, Antonio; Zin, Walter A.; Carvalho, Alysson R.
2014-01-01
Objectives Variable ventilation (VV) seems to improve respiratory function in acute lung injury and may be combined with positive end-expiratory pressure (PEEP) in order to protect the lungs even in healthy subjects. We hypothesized that VV in combination with moderate levels of PEEP reduce the deterioration of pulmonary function related to general anesthesia. Hence, we aimed at evaluating the alveolar stability and lung protection of the combination of VV at different PEEP levels. Design Randomized experimental study. Setting Animal research facility. Subjects Forty-nine male Wistar rats (200–270 g). Interventions Animals were ventilated during 2 hours with protective low tidal volume (VT) in volume control ventilation (VCV) or VV and PEEP adjusted at the level of minimum respiratory system elastance (Ers), obtained during a decremental PEEP trial subsequent to a recruitment maneuver, and 2 cmH2O above or below of this level. Measurements and Main Results Ers, gas exchange and hemodynamic variables were measured. Cytokines were determined in lung homogenate and plasma samples and left lung was used for histologic analysis and diffuse alveolar damage scoring. A progressive time-dependent increase in Ers was observed independent on ventilatory mode or PEEP level. Despite of that, the rate of increase of Ers and lung tissue IL-1 beta concentration were significantly lower in VV than in VCV at the level of the PEEP of minimum Ers. A significant increase in lung tissue cytokines (IL-6, IL-1 beta, CINC-1 and TNF-alpha) as well as a ventral to dorsal and cranial to caudal reduction in aeration was observed in all ventilated rats with no significant differences among groups. Conclusions VV combined with PEEP adjusted at the level of the PEEP of minimal Ers seemed to better prevent anesthesia-induced atelectasis and might improve lung protection throughout general anesthesia. PMID:25383882
Lung Function before and Two Days after Open-Heart Surgery.
Urell, Charlotte; Westerdahl, Elisabeth; Hedenström, Hans; Janson, Christer; Emtner, Margareta
2012-01-01
Reduced lung volumes and atelectasis are common after open-heart surgery, and pronounced restrictive lung volume impairment has been found. The aim of this study was to investigate factors influencing lung volumes on the second postoperative day. Open-heart surgery patients (n = 107, 68 yrs, 80% male) performed spirometry both before surgery and on the second postoperative day. The factors influencing postoperative lung volumes and decrease in lung volumes were investigated with univariate and multivariate analyses. Associations between pain (measured by numeric rating scale) and decrease in postoperative lung volumes were calculated with Spearman rank correlation test. Lung volumes decreased by 50% and were less than 40% of the predictive values postoperatively. Patients with BMI >25 had lower postoperative inspiratory capacity (IC) (33 ± 14% pred.) than normal-weight patients (39 ± 15% pred.), (P = 0.04). More pain during mobilisation was associated with higher decreases in postoperative lung volumes (VC: r = 0.33, P = 0.001; FEV(1): r = 0.35, P ≤ 0.0001; IC: r = 0.25, P = 0.01). Patients with high BMI are a risk group for decreased postoperative lung volumes and should therefore receive extra attention during postoperative care. As pain is related to a larger decrease in postoperative lung volumes, optimal pain relief for the patients should be identified.
Lung Function before and Two Days after Open-Heart Surgery
Urell, Charlotte; Westerdahl, Elisabeth; Hedenström, Hans; Janson, Christer; Emtner, Margareta
2012-01-01
Reduced lung volumes and atelectasis are common after open-heart surgery, and pronounced restrictive lung volume impairment has been found. The aim of this study was to investigate factors influencing lung volumes on the second postoperative day. Open-heart surgery patients (n = 107, 68 yrs, 80% male) performed spirometry both before surgery and on the second postoperative day. The factors influencing postoperative lung volumes and decrease in lung volumes were investigated with univariate and multivariate analyses. Associations between pain (measured by numeric rating scale) and decrease in postoperative lung volumes were calculated with Spearman rank correlation test. Lung volumes decreased by 50% and were less than 40% of the predictive values postoperatively. Patients with BMI >25 had lower postoperative inspiratory capacity (IC) (33 ± 14% pred.) than normal-weight patients (39 ± 15% pred.), (P = 0.04). More pain during mobilisation was associated with higher decreases in postoperative lung volumes (VC: r = 0.33, P = 0.001; FEV1: r = 0.35, P ≤ 0.0001; IC: r = 0.25, P = 0.01). Patients with high BMI are a risk group for decreased postoperative lung volumes and should therefore receive extra attention during postoperative care. As pain is related to a larger decrease in postoperative lung volumes, optimal pain relief for the patients should be identified. PMID:22924127
A radiographic method to estimate lung volume and its use in small mammals.
Canals, Mauricio; Olivares, Ricardo; Rosenmann, Mario
2005-01-01
In this paper we develop a method to estimate lung volume using chest x-rays of small mammals. We applied this method to assess the lung volume of several rodents. We showed that a good estimator of the lung volume is: V*L = 0.496 x VRX approximately equal to 1/2 x VRX, where VRX is a measurement obtained from the x-ray that represents the volume of a rectangular box containing the lungs and mediastinum organs. The proposed formula may be interpreted as the volume of an ellipsoid formed by both lungs joined at their bases. When that relationship was used to estimate lung volume, values similar to those expected from allometric relationship were found in four rodents. In two others, M. musculus and R. norvegicus, lung volume was similar to reported data, although values were lower than expected.
Tsuchiya, Naoko; Doai, Mariko; Usuda, Katsuo; Uramoto, Hidetaka; Tonami, Hisao
2017-01-01
Investigating the diagnostic accuracy of histogram analyses of apparent diffusion coefficient (ADC) values for determining non-small cell lung cancer (NSCLC) tumor grades, lymphovascular invasion, and pleural invasion. We studied 60 surgically diagnosed NSCLC patients. Diffusion-weighted imaging (DWI) was performed in the axial plane using a navigator-triggered single-shot, echo-planar imaging sequence with prospective acquisition correction. The ADC maps were generated, and we placed a volume-of-interest on the tumor to construct the whole-lesion histogram. Using the histogram, we calculated the mean, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of ADC, skewness, and kurtosis. Histogram parameters were correlated with tumor grade, lymphovascular invasion, and pleural invasion. We performed a receiver operating characteristics (ROC) analysis to assess the diagnostic performance of histogram parameters for distinguishing different pathologic features. The ADC mean, 10th, 25th, 50th, 75th, 90th, and 95th percentiles showed significant differences among the tumor grades. The ADC mean, 25th, 50th, 75th, 90th, and 95th percentiles were significant histogram parameters between high- and low-grade tumors. The ROC analysis between high- and low-grade tumors showed that the 95th percentile ADC achieved the highest area under curve (AUC) at 0.74. Lymphovascular invasion was associated with the ADC mean, 50th, 75th, 90th, and 95th percentiles, skewness, and kurtosis. Kurtosis achieved the highest AUC at 0.809. Pleural invasion was only associated with skewness, with the AUC of 0.648. ADC histogram analyses on the basis of the entire tumor volume are able to stratify NSCLCs' tumor grade, lymphovascular invasion and pleural invasion.
Computerized scheme for detection of diffuse lung diseases on CR chest images
NASA Astrophysics Data System (ADS)
Pereira, Roberto R., Jr.; Shiraishi, Junji; Li, Feng; Li, Qiang; Doi, Kunio
2008-03-01
We have developed a new computer-aided diagnostic (CAD) scheme for detection of diffuse lung disease in computed radiographic (CR) chest images. One hundred ninety-four chest images (56 normals and 138 abnormals with diffuse lung diseases) were used. The 138 abnormal cases were classified into three levels of severity (34 mild, 60 moderate, and 44 severe) by an experienced chest radiologist with use of five different patterns, i.e., reticular, reticulonodular, nodular, air-space opacity, and emphysema. In our computerized scheme, the first moment of the power spectrum, the root-mean-square variation, and the average pixel value were determined for each region of interest (ROI), which was selected automatically in the lung fields. The average pixel value and its dependence on the location of the ROI were employed for identifying abnormal patterns due to air-space opacity or emphysema. A rule-based method was used for determining three levels of abnormality for each ROI (0: normal, 1: mild, 2: moderate, and 3: severe). The distinction between normal lungs and abnormal lungs with diffuse lung disease was determined based on the fractional number of abnormal ROIs by taking into account the severity of abnormalities. Preliminary results indicated that the area under the ROC curve was 0.889 for the 44 severe cases, 0.825 for the 104 severe and moderate cases, and 0.794 for all cases. We have identified a number of problems and reasons causing false positives on normal cases, and also false negatives on abnormal cases. In addition, we have discussed potential approaches for improvement of our CAD scheme. In conclusion, the CAD scheme for detection of diffuse lung diseases based on texture features extracted from CR chest images has the potential to assist radiologists in their interpretation of diffuse lung diseases.
On the Potential Role of MRI Biomarkers of COPD to Guide Bronchoscopic Lung Volume Reduction.
Adams, Colin J; Capaldi, Dante P I; Di Cesare, Robert; McCormack, David G; Parraga, Grace
2018-02-01
In patients with severe emphysema and poor quality of life, bronchoscopic lung volume reduction (BLVR) may be considered and guided based on lobar emphysema severity. In particular, x-ray computed tomography (CT) emphysema measurements are used to identify the most diseased and the second-most diseased lobes as BLVR targets. Inhaled gas magnetic resonance imaging (MRI) also provides chronic obstructive pulmonary disease (COPD) biomarkers of lobar emphysema and ventilation abnormalities. Our objective was to retrospectively evaluate CT and MRI biomarkers of lobar emphysema and ventilation in patients with COPD eligible for BLVR. We hypothesized that MRI would provide complementary biomarkers of emphysema and ventilation that help determine the most appropriate lung lobar targets for BLVR in patients with COPD. We retrospectively evaluated 22 BLVR-eligible patients from the Thoracic Imaging Network of Canada cohort (diffusing capacity of the lung for carbon monoxide = 37 ± 12% predicted , forced expiratory volume in 1 second = 34 ± 7% predicted , total lung capacity = 131 ± 17% predicted , and residual volume = 216 ± 36% predicted ). Lobar CT emphysema, measured using a relative area of <-950 Hounsfield units (RA 950 ) and MRI ventilation defect percent, was independently used to rank lung lobe disease severity. In 7 of 22 patients, there were different CT and MRI predictions of the most diseased lobe. In some patients, there were large ventilation defects in lobes not targeted by CT, indicative of a poorly ventilated lung. CT and MRI classification of the most diseased and the second-most diseased lobes showed a fair-to-moderate intermethod reliability (Cohen κ = 0.40-0.59). In this proof-of-concept retrospective analysis, quantitative MRI ventilation and CT emphysema measurements provided different BLVR targets in over 30% of the patients. The presence of large MRI ventilation defects in lobes next to CT-targeted lobes might also change the decision to proceed or to guide BLVR to a different lobar target. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
State of the Art: Response Assessment in Lung Cancer in the Era of Genomic Medicine
Hatabu, Hiroto; Johnson, Bruce E.; McLoud, Theresa C.
2014-01-01
Tumor response assessment has been a foundation for advances in cancer therapy. Recent discoveries of effective targeted therapy for specific genomic abnormalities in lung cancer and their clinical application have brought revolutionary advances in lung cancer therapy and transformed the oncologist’s approach to patients with lung cancer. Because imaging is a major method of response assessment in lung cancer both in clinical trials and practice, radiologists must understand the genomic alterations in lung cancer and the rapidly evolving therapeutic approaches to effectively communicate with oncology colleagues and maintain the key role in lung cancer care. This article describes the origin and importance of tumor response assessment, presents the recent genomic discoveries in lung cancer and therapies directed against these genomic changes, and describes how these discoveries affect the radiology community. The authors then summarize the conventional Response Evaluation Criteria in Solid Tumors and World Health Organization guidelines, which continue to be the major determinants of trial endpoints, and describe their limitations particularly in an era of genomic-based therapy. More advanced imaging techniques for lung cancer response assessment are presented, including computed tomography tumor volume and perfusion, dynamic contrast material–enhanced and diffusion-weighted magnetic resonance imaging, and positron emission tomography with fluorine 18 fluorodeoxyglucose and novel tracers. State-of-art knowledge of lung cancer biology, treatment, and imaging will help the radiology community to remain effective contributors to the personalized care of lung cancer patients. © RSNA, 2014 PMID:24661292
Nonuniformity of diffusing capacity from small alveolar gas samples is increased in smokers.
Cotton, D J; Mink, J T; Graham, B L
1998-01-01
Although centrilobular emphysema, and small airway, interstitial and alveoli inflammation can be detected pathologically in the lungs of smokers with relatively well preserved lung function, these changes are difficult to assess using available physiological tests. Because submaximal single breath washout (SBWSM) manoeuvres improve the detection of abnormalities in ventilation inhomogeneity in the lung periphery in smokers compared with traditional vital capacity manoeuvres, SBWSM manoeuvres were used in this study to measure temporal differences in diffusing capacity using a rapid response carbon monoxide analyzer. To determine whether abnormalities in the lung periphery can be detected in smokers with normal forced expired volumes in 1 s using the three-equation diffusing capacity (DLcoSB-3EQ) among small alveolar gas samples and whether the abnormalities correlate with increases in peripheral ventilation inhomogeneity. Cross-sectional study in 21 smokers and 21 nonsmokers all with normal forced exhaled flow rates. Both smokers and nonsmokers performed SBWSM manoeuvres consisting of slow inhalation of test gas from functional residual capacity to one-half inspiratory capacity with either 0 or 10 s of breath holding and slow exhalation to residual volume (RV). They also performed conventional vital capacity single breath (SBWVC) manoeuvres consisting of slow inhalation of test gas from RV to total lung capacity and, without breath holding, slow exhalation to RV. DLcoSB-3EQ was calculated from the total alveolar gas sample. DLcoSB-3EQ was also calculated from four equal sequential, simulated aliquots of the total alveolar gas sample. DLcoSB-3EQ values from the four alveolar samples were normalized by expressing each as a percentge of DLcoSB-3EQ from the entire alveolar gas sample. An index of variation (DI) among the small-sample DLcoSB-3EQ values was correlated with the normalized phase III helium slope (Sn) and the mixing efficiency (Emix). For SBWSM, DI was increased in smokers at 0 s of breath holding compared with nonsmokers, and correlated with age, smoking pack-years and Sn. The decrease in DI with breath holding was greater in smokers and correlated with the change in Sn with breath holding. For SBWVC manoeuvres, there were no differences due to smoking in Sn or Emix, but DI was increased in smokers and correlated with age and smoking pack-years, but not with Sn. For SBWSM manoeuvres the increase in DI in smokers correlated with breath hold time-dependent increases in Sn, suggesting that the changes in DI reflected the same structural alterations that caused increases in peripheral ventilation inhomogeneity. For SBWVC manoeuvres, the increase in DI in smokers was not associated with changes in ventilation inhomogeneity, suggesting that the effect of smoking on DI during this manoeuvre was due to smoke-related changes in alveolar capillary diffusion, rather than due solely to alterations in the distribution of ventilation.
Coffman, Kirsten E; Carlson, Alex R; Miller, Andrew D; Johnson, Bruce D; Taylor, Bryan J
2017-06-01
Aging is associated with deterioration in the structure and function of the pulmonary circulation. We characterized the lung diffusing capacity for carbon monoxide (DL CO ), alveolar-capillary membrane conductance (Dm CO ), and pulmonary-capillary blood volume (Vc) response to discontinuous incremental exercise at 25, 50, 75, and 90% of peak work (W peak ) in four groups: 1 ) Young [27 ± 3 yr, maximal oxygen consumption (V̇o 2max ): 110 ± 18% age predicted]; 2) Young Highly Fit (27 ± 3 yr, V̇o 2max : 147 ± 8% age predicted); 3 ) Old (69 ± 5 yr, V̇o 2max : 116 ± 13% age predicted); and 4 ) Old Highly Fit (65 ± 5 yr, V̇o 2max : 162 ± 18% age predicted). At rest and at 90% W peak , DL CO , Dm CO , and Vc were decreased with age. At 90% W peak , DL CO , Dm CO , and Vc were greater in Old Highly Fit vs. Old adults. The slope of the DL CO -cardiac output (Q̇) relationship from rest to end exercise at 90% W peak was not different between Young, Young Highly Fit, Old, and Old Highly Fit (1.35 vs. 1.44 vs. 1.10 vs. 1.35 ml CO ·mmHg -1 ·liter blood -1 , P = 0.388), with no evidence of a plateau in this relationship during exercise; this was also true for Dm CO -Q̇ and Vc-Q̇. V̇o 2max was positively correlated with 1 ) DL CO , Dm CO , and Vc at rest; and 2 ) the rest to end exercise change in DL CO , Dm CO , and Vc. In conclusion, these data suggest that despite the age-associated deterioration in the structure and function of the pulmonary circulation, expansion of the pulmonary capillary network does not become limited during exercise in healthy individuals regardless of age or cardiorespiratory fitness level. NEW & NOTEWORTHY Healthy aging is a crucial area of research. This article details how differences in age and cardiorespiratory fitness level affect lung diffusing capacity, particularly during high-intensity exercise. We conclude that highly fit older adults do not experience a limit in lung diffusing capacity during high-intensity exercise. Interestingly, however, we found that highly fit older individuals demonstrate greater values of lung diffusing capacity during high-intensity exercise than their less fit age-matched counterparts. Copyright © 2017 the American Physiological Society.
Thoracoscopic laser pneumoplasty in the treatment of diffuse bullous emphysema.
Wakabayashi, A
1995-10-01
Thoracoscopic laser pneumoplasty in the treatment of diffuse bullous emphysema by means of a contact neodymium:yttrium-aluminum garnet laser was evaluated by a retrospective analysis of the first consecutive 500 procedures in 443 patients. The indication for thoracoscopic laser pneumoplasty was intractable dyspnea. Advanced age (mean age, 67 years), high oxygen dependency (70%), steroid use (46%), and markedly diminished physical capacity (2% bedridden and 27% wheelchair-bound) were noted. Thoracoscopic laser pneumoplasty was carried out under general anesthesia and one-lung ventilation. Type 3 bullae (381 procedures) were contracted by contact neodymium:yttrium-aluminum garnet laser and type 4 bullae (199 procedures) excised. The operative mortality rate was 4.8%. Subjective improvement was reported by 87% of the patients. Follow-up functional evaluation was available in 229 patients, which showed highly significant improvement. A comparison of preoperative and postoperative functional tests between type 3 and 4 bullae patients showed no significant difference, except the latter had higher decrease in airway resistance, residual volume, and total lung capacity. Thoracoscopic laser pneumoplasty is an effective treatment for both type 3 and 4 bullous emphysema with an acceptable risk.
Diffusion of Molecular Diagnostic Lung Cancer Tests: A Survey of German Oncologists
Steffen, Julius Alexander
2014-01-01
This study was aimed at examining the diffusion of diagnostic lung cancer tests in Germany. It was motivated by the high potential of detecting and targeting oncogenic drivers. Recognizing that the diffusion of diagnostic tests is a conditio sine qua non for the success of personalized lung cancer therapies, this study analyzed the diffusion of epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) tests in Germany. Qualitative and quantitative research strategies were combined in a mixed-method design. A literature review and subsequent Key Opinion Leader interviews identified a set of qualitative factors driving the diffusion process, which were then translated into an online survey. The survey was conducted among a sample of 961 oncologists (11.34% response rate). The responses were analyzed in a multiple linear regression which identified six statistically significant factors driving the diffusion of molecular diagnostic lung cancer tests: reimbursement, attitude towards R&D, information self-assessment, perceived attitudes of colleagues, age and test-pathway strategies. Besides the important role of adequate reimbursement and relevant guidelines, the results of this study suggest that an increasing usage of test-pathway strategies, especially in an office-based setting, can increase the diffusion of molecular diagnostic lung cancer tests in the future. PMID:25562146
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorne, M.; Sahlstroem, K.A.; Alanko, K.
1988-02-01
Forty-two patients with diffuse infiltrative lung diseases were imaged with Ga-67 citrate and Tc-99m glucoheptonate (GH). Twenty patients had sarcoidosis, six had fibrosis, six had tuberculosis, nine had lung infiltration, and one had pleural empyema. The main difference between Ga-67 and Tc-99m GH was the much greater uptake of Ga-67 in sarcoidosis than that of Tc-99m GH. Fifteen patients with sarcoidosis had positive Ga-67 scans but only six had positive Tc-99m GH scans. The results in other diffuse infiltrative lung diseases were almost equal with Ga-67 and Tc-99m GH. Although Tc-99m GH is less expensive and simpler to use, itmore » is not an adequate substitute for Ga-67 in diffuse infiltrative lung diseases.« less
2014-01-01
Background Determination of regional lung air volume has several clinical applications. This study investigates the use of mid-tidal breathing CT scans to provide regional lung volume data. Methods Low resolution CT scans of the thorax were obtained during tidal breathing in 11 healthy control male subjects, each on two separate occasions. A 3D map of air volume was derived, and total lung volume calculated. The regional distribution of air volume from centre to periphery of the lung was analysed using a radial transform and also using one dimensional profiles in three orthogonal directions. Results The total air volumes for the right and left lungs were 1035 +/− 280 ml and 864 +/− 315 ml, respectively (mean and SD). The corresponding fractional air volume concentrations (FAVC) were 0.680 +/− 0.044 and 0.658 +/− 0.062. All differences between the right and left lung were highly significant (p < 0.0001). The coefficients of variation of repeated measurement of right and left lung air volumes and FAVC were 6.5% and 6.9% and 2.5% and 3.6%, respectively. FAVC correlated significantly with lung space volume (r = 0.78) (p < 0.005). FAVC increased from the centre towards the periphery of the lung. Central to peripheral ratios were significantly higher for the right (0.100 +/− 0.007 SD) than the left (0.089 +/− 0.013 SD) (p < 0.0001). Conclusion A technique for measuring the distribution of air volume in the lung at mid-tidal breathing is described. Mean values and reproducibility are described for healthy male control subjects. Fractional air volume concentration is shown to increase with lung size. PMID:25063729
Camiciottoli, G; Diciotti, S; Bartolucci, M; Orlandi, I; Bigazzi, F; Matucci-Cerinic, M; Pistolesi, M; Mascalchi, M
2013-03-01
Spiral low-dose computed tomography (LDCT) permits to measure whole-lung volume and density in a single breath-hold. To evaluate the agreement between static lung volumes measured with LDCT and pulmonary function test (PFT) and the correlation between the LDCT volumes and lung density in restrictive lung disease. Patients with Systemic Sclerosis (SSc) with (n = 24) and without (n = 16) pulmonary involvement on sequential thin-section CT and patients with chronic obstructive pulmonary disease (COPD)(n = 29) underwent spirometrically-gated LDCT at 90% and 10% of vital capacity to measure inspiratory and expiratory lung volumes and mean lung attenuation (MLA). Total lung capacity and residual volume were measured the same day of CT. Inspiratory [95% limits of agreement (95% LoA)--43.8% and 39.2%] and expiratory (95% LoA -45.8% and 37.1%) lung volumes measured on LDCT and PFT showed poor agreement in SSc patients with pulmonary involvement, whereas they were in substantial agreement (inspiratory 95% LoA -14.1% and 16.1%; expiratory 95% LoA -13.5% and 23%) in SSc patients without pulmonary involvement and in inspiratory scans only (95% LoA -23.1% and 20.9%) of COPD patients. Inspiratory and expiratory LDCT volumes, MLA and their deltas differentiated both SSc patients with or without pulmonary involvement from COPD patients. LDCT lung volumes and density were not correlated in SSc patients with pulmonary involvement, whereas they did correlate in SSc without pulmonary involvement and in COPD patients. In restrictive lung disease due to SSc there is poor agreement between static lung volumes measured using LDCT and PFT and the relationship between volume and density values on CT is altered.
Afacan, Onur; Gholipour, Ali; Mulkern, Robert V; Barnewolt, Carol E; Estroff, Judy A; Connolly, Susan A; Parad, Richard B; Bairdain, Sigrid; Warfield, Simon K
2016-12-01
To evaluate the feasibility of using diffusion-weighted magnetic resonance imaging (DW-MRI) to assess the fetal lung apparent diffusion coefficient (ADC) at 3 Tesla (T). Seventy-one pregnant women (32 second trimester, 39 third trimester) were scanned with a twice-refocused Echo-planar diffusion-weighted imaging sequence with 6 different b-values in 3 orthogonal diffusion orientations at 3T. After each scan, a region-of-interest (ROI) mask was drawn to select a region in the fetal lung and an automated robust maximum likelihood estimation algorithm was used to compute the ADC parameter. The amount of motion in each scan was visually rated. When scans with unacceptable levels of motion were eliminated, the lung ADC values showed a strong association with gestational age (P < 0.01), increasing dramatically between 16 and 27 weeks and then achieving a plateau around 27 weeks. We show that to get reliable estimates of ADC values of fetal lungs, a multiple b-value acquisition, where motion is either corrected or considered, can be performed. J. Magn. Reson. Imaging 2016;44:1650-1655. © 2016 International Society for Magnetic Resonance in Medicine.
Diaz de Leon, Alberto; Cronkhite, Jennifer T.; Yilmaz, Cuneyt; Brewington, Cecelia; Wang, Richard; Xing, Chao; Hsia, Connie C. W.
2011-01-01
Background: Mutations in the human gene encoding the protein component of telomerase (TERT) are the most common genetic defect in patients with familial idiopathic pulmonary fibrosis (IPF). The subclinical phenotypes of asymptomatic members of these families have not been evaluated with respect to TERT mutation status or telomere length. Methods: We measured a variety of pulmonary, blood, skin, and bone parameters for 20 subjects with heterozygous TERT mutations (carriers) and 20 family members who had not inherited a TERT mutation (noncarriers) to identify the spectrum of phenotypes associated with mutations in this gene. The two groups were matched for sex, age, and cigarette smoking. Three TERT mutation carriers had IPF (IPF carriers). The rest of the carriers were apparently healthy (asymptomatic carriers) and were compared with the noncarriers. Results: Asymptomatic carriers exhibited significantly lower diffusing capacity of lung for carbon monoxide (Dlco), impaired recruitment of Dlco with exercise, radiographic signs of lung fibrosis, and increased fractional lung tissue volume quantified by high-resolution chest CT scan than noncarriers. RBC and platelet counts were significantly lower, and the mean corpuscular volume and mean corpuscular hemoglobin concentration were significantly higher in carriers than in noncarriers. Carriers reported significantly earlier graying of hair than noncarriers. TERT mutation status is more accurately predicted by short telomere lengths than any of these measured phenotypes. Conclusions: TERT mutation carriers exhibit early preclinical signs of lung fibrosis, bone marrow dysfunction, and premature graying. These clinical features and short telomere lengths characterize patients with germline TERT mutations. PMID:21349926
Cosgrove, Gregory P.; Janssen, William J.; Huie, Tristan J.; Burnham, Ellen L.; Heinz, David E.; Curran-Everett, Douglas; Sahin, Hakan; Schwarz, Marvin I.; Cool, Carlyne D.; Groshong, Steve D.; Geraci, Mark W.; Tuder, Rubin M.; Hyde, Dallas M.; Henson, Peter M.
2012-01-01
Background: Lymphangiogenesis responds to tissue injury as a key component of normal wound healing. The development of fibrosis in the idiopathic interstitial pneumonias may result from abnormal wound healing in response to injury. We hypothesize that increased lymphatic vessel (LV) length, a marker of lymphangiogenesis, is associated with parenchymal components of the fibroblast reticulum (organizing collagen, fibrotic collagen, and fibroblast foci), and its extent correlates with disease severity. Methods: We assessed stereologically the parenchymal structure of fibrotic lungs and its associated lymphatic network, which was highlighted immunohistochemically in age-matched samples of usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP) with FVC < 80%, COPD with a Global Initiative for Obstructive Lung Disease stage 0, and normal control lungs. Results: LV length density, as opposed to vessel volume density, was found to be associated with organizing and fibrotic collagen density (P < .0001). Length density of LVs and the volume density of organizing and fibrotic collagen were significantly associated with severity of both % FVC (P < .001) and diffusing capacity of the lung for carbon monoxide (P < .001). Conclusions: Severity of disease in UIP and NSIP is associated with increased LV length and is strongly associated with components of the fibroblast reticulum, namely organizing and fibrotic collagen, which supports a pathogenic role of LVs in these two diseases. Furthermore, the absence of definable differences between UIP and NSIP suggests that LVs are a unifying mechanism for the development of fibrosis in these fibrotic lung diseases. PMID:22797508
A novel swine model of ricin-induced acute respiratory distress syndrome.
Katalan, Shahaf; Falach, Reut; Rosner, Amir; Goldvaser, Michael; Brosh-Nissimov, Tal; Dvir, Ayana; Mizrachi, Avi; Goren, Orr; Cohen, Barak; Gal, Yoav; Sapoznikov, Anita; Ehrlich, Sharon; Sabo, Tamar; Kronman, Chanoch
2017-02-01
Pulmonary exposure to the plant toxin ricin leads to respiratory insufficiency and death. To date, in-depth study of acute respiratory distress syndrome (ARDS) following pulmonary exposure to toxins is hampered by the lack of an appropriate animal model. To this end, we established the pig as a large animal model for the comprehensive study of the multifarious clinical manifestations of pulmonary ricinosis. Here, we report for the first time, the monitoring of barometric whole body plethysmography for pulmonary function tests in non-anesthetized ricin-treated pigs. Up to 30 h post-exposure, as a result of progressing hypoxemia and to prevent carbon dioxide retention, animals exhibited a compensatory response of elevation in minute volume, attributed mainly to a large elevation in respiratory rate with minimal response in tidal volume. This response was followed by decompensation, manifested by a decrease in minute volume and severe hypoxemia, refractory to oxygen treatment. Radiological evaluation revealed evidence of early diffuse bilateral pulmonary infiltrates while hemodynamic parameters remained unchanged, excluding cardiac failure as an explanation for respiratory insufficiency. Ricin-intoxicated pigs suffered from increased lung permeability accompanied by cytokine storming. Histological studies revealed lung tissue insults that accumulated over time and led to diffuse alveolar damage. Charting the decline in PaO2/FiO2 ratio in a mechanically ventilated pig confirmed that ricin-induced respiratory damage complies with the accepted diagnostic criteria for ARDS. The establishment of this animal model of pulmonary ricinosis should help in the pursuit of efficient medical countermeasures specifically tailored to deal with the respiratory deficiencies stemming from ricin-induced ARDS. © 2017. Published by The Company of Biologists Ltd.
Tidal volume single-breath washin of SF6 and CH4 in transient microgravity
NASA Technical Reports Server (NTRS)
Dutrieue, Brigitte; Paiva, Manuel; Verbanck, Sylvia; Le Gouic, Marine; Darquenne, Chantal; Prisk, G. Kim
2003-01-01
We performed tidal volume single-breath washins (SBW) by using tracers of different diffusivity and varied the time spent in microgravity (microG) before the start of the tests to look for time-dependent effects. SF(6) and CH(4) phase III slopes decreased by 35 and 26%, respectively, in microG compared with 1 G (P < 0.05), and the slope difference between gases disappeared. There was no effect of time in microG, suggesting that neither the hypergravity period preceding microG nor the time spent in microG affected gas mixing at volumes near functional residual capacity. In previous studies using SF(6) and He (Lauzon A-M, Prisk GK, Elliott AR, Verbanck S, Paiva M, and West JB. J Appl Physiol 82: 859-865, 1997), the vital capacity SBW showed an increase in slope difference between gases in transient microG, the opposite of the decrease in sustained microG. In contrast, tidal volume SBW showed a decrease in slope difference in both microG conditions. Because it is only the behavior of the more diffusive gas that differed between maneuvers and microG conditions, we speculate that, in the previous vital capacity SBW, the hypergravity period preceding the test in transient microG provoked conformational changes at low lung volumes near the acinar entrance.
Measurement of hyperpolarized gas diffusion at very short time scales
Carl, Michael; Wilson Miller, G.; Mugler, John P.; Rohrbaugh, Scott; Tobias, William A.; Cates, Gordon D.
2007-01-01
We present a new pulse sequence for measuring very-short-time-scale restricted diffusion of hyperpolarized noble gases. The pulse sequence is based on concatenating a large number of bipolar diffusion-sensitizing gradients to increase the diffusion attenuation of the MR signal while maintaining a fundamentally short diffusion time. However, it differs in several respects from existing methods that use oscillating diffusion gradients for this purpose. First, a wait time is inserted between neighboring pairs of gradient pulses; second, consecutive pulse pairs may be applied along orthogonal axes; and finally, the diffusion-attenuated signal is not simply read out at the end of the gradient train but is periodically sampled during the wait times between neighboring pulse pairs. The first two features minimize systematic differences between the measured (apparent) diffusion coefficient and the actual time-dependent diffusivity, while the third feature optimizes the use of the available MR signal to improve the precision of the diffusivity measurement in the face of noise. The benefits of this technique are demonstrated using theoretical calculations, Monte-Carlo simulations of gas diffusion in simple geometries, and experimental phantom measurements in a glass sphere containing hyperpolarized 3He gas. The advantages over the conventional single-bipolar approach were found to increase with decreasing diffusion time, and thus represent a significant step toward making accurate surface-to-volume measurements in the lung airspaces. PMID:17936048
Automated lung volumetry from routine thoracic CT scans: how reliable is the result?
Haas, Matthias; Hamm, Bernd; Niehues, Stefan M
2014-05-01
Today, lung volumes can be easily calculated from chest computed tomography (CT) scans. Modern postprocessing workstations allow automated volume measurement of data sets acquired. However, there are challenges in the use of lung volume as an indicator of pulmonary disease when it is obtained from routine CT. Intra-individual variation and methodologic aspects have to be considered. Our goal was to assess the reliability of volumetric measurements in routine CT lung scans. Forty adult cancer patients whose lungs were unaffected by the disease underwent routine chest CT scans in 3-month intervals, resulting in a total number of 302 chest CT scans. Lung volume was calculated by automatic volumetry software. On average of 7.2 CT scans were successfully evaluable per patient (range 2-15). Intra-individual changes were assessed. In the set of patients investigated, lung volume was approximately normally distributed, with a mean of 5283 cm(3) (standard deviation = 947 cm(3), skewness = -0.34, and curtosis = 0.16). Between different scans in one and the same patient the median intra-individual standard deviation in lung volume was 853 cm(3) (16% of the mean lung volume). Automatic lung segmentation of routine chest CT scans allows a technically stable estimation of lung volume. However, substantial intra-individual variations have to be considered. A median intra-individual deviation of 16% in lung volume between different routine scans was found. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
Quantitative CT characterization of pediatric lung development using routine clinical imaging
Stein, Jill M.; Walkup, Laura L.; Brody, Alan S.; Fleck, Robert J.
2016-01-01
Background The use of quantitative CT analysis in children is limited by lack of normal values of lung parenchymal attenuation. These characteristics are important because normal lung development yields significant parenchymal attenuation changes as children age. Objective To perform quantitative characterization of normal pediatric lung parenchymal X-ray CT attenuation under routine clinical conditions in order to establish a baseline comparison to that seen in pathological lung conditions. Materials and methods We conducted a retrospective query of normal CT chest examinations in children ages 0–7 years from 2004 to 2014 using standard clinical protocol. During these examinations semi-automated lung parenchymal segmentation was performed to measure lung volume and mean lung attenuation. Results We analyzed 42 CT examinations in 39 children, ages 3 days to 83 months (mean ± standard deviation [SD] = 42±27 months). Lung volume ranged 0.10–1.72 liters (L). Mean lung attenuation was much higher in children younger than 12 months, with values as high as −380 Hounsfield units (HU) in neonates (lung volume 0.10 L). Lung volume decreased to approximately −650 HU by age 2 years (lung volume 0.47 L), with subsequently slower exponential decrease toward a relatively constant value of −860 HU as age and lung volume increased. Conclusion Normal lung parenchymal X-ray CT attenuation decreases with increasing lung volume and age; lung attenuation decreases rapidly in the first 2 years of age and more slowly thereafter. This change in normal lung attenuation should be taken into account as quantitative CT methods are translated to pediatric pulmonary imaging. PMID:27576458
Marino Claverie, Lucila; Knobel, Elizabeth; Takashima, Lorena; Techera, Lorena; Oliver, Marina; Gonzalez, Paula; Romanini, Félix E; Fonseca, María L; Mamani, Marta N
2013-06-01
Changes in nailfold capillaroscopy in systemic sclerosis patients could be related to the disease severity. The aim of this study was to investigate whether patients with "late" scleroderma (SD) pattern have more organ involvement than patients with "early/active" SD pattern. Forty-six Argentinian patients (44 women and 2 men), with a diagnosis of systemic sclerosis, were distributed in two groups based on the presence of late and early/active patterns. Organ involvement was assessed as follows: pulmonary function by chest radiography, high-resolution chest tomography (HRCT), lung volume tests, and diffusing capacity for carbon monoxide (DLCO); esophageal involvement by manometry; and pulmonary arterial hypertension (PAH) by Doppler echocardiography and six-minute walk test. Honeycombing of the lungs evaluated by HRCT was more frequently present in patients with late pattern compared with early/active patients (p = 0.01). We also found statistically significant differences in lung volume tests (p = 0.03) and DLCO (p = 0.02) between the two SD pattern groups. Esophageal manometry showed a significantly higher frequency of motility disorders in the group with late pattern (p = 0.0024). In this study, patients with late pattern had higher frequency of pulmonary and esophageal involvement compared with patients with early/active pattern.
Rezaeetalab, Fariba; Kazemian, Mozhgan; Vaezi, Touraj; Shaban, Barratollah
2015-12-01
Bimaxillary orthognathic surgery can cause changes to respiration and the airways. We used body plethysmography to evaluate its effect on airway resistance and lung volumes in 20 patients with class III malocclusions (8 men and 12 women, aged 17 - 32 years). Lung volumes (forced vital capacity; forced inspiratory volume/one second; forced expiratory volume/one second: forced vital capacity; peak expiratory flow; maximum expiratory flow 25-75; maximum inspiratory flow; total lung capacity; residual volume; residual volume:total lung capacity), and airway resistance were evaluated one week before, and six months after, operation. Bimaxillary operations to correct class III malocclusions significantly increased airway resistance, residual volume, total lung capacity, and residual volume:total lung capacity. Other variables also changed after operation but not significantly so. Orthognathic operations should be done with caution in patients who have pre-existing respiratory diseases. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Stenz, R I; Grenier, B; Thompson, J E; Arnold, J H
1998-08-01
To examine the utility of single-breath CO2 analysis as a measure of lung volume. A prospective, animal cohort study comparing 21 parameters derived from single-breath CO2 analysis with lung volume measurements determined by nitrogen washout in animals during controlled ventilation. An animal laboratory in a university-affiliated medical center. Seven healthy lambs. The single-breath CO2 analysis station consists of a mainstream capnometer, a variable orifice pneumotachometer, a signal processor and computer software with capability for both on- and off-line data analysis. Twenty-one derived components of the CO2 expirogram were evaluated as predictors of lung volume. Lung volume was manipulated by 3 cm H2O incremental increases in positive end-expiratory pressure from 0 to 21 cm H2O, and ranged between 147 and 942 mL. Fifty-five measurements of lung volume were available for comparison with derived variables from the CO2 expirogam. Stepwise linear regression identified four variables that were most predictive of lung volume: a) dynamic lung compliance; b) the slope of phase 3; c) the slope of phase 2 divided by the mixed expired CO2 tension; and d) airway deadspace. The multivariate equation was highly statistically significant and explained 94% of the variance (adjusted r2 =.94, p < .0001). The bias and precision of the calculated lung volume was .00 and 51, respectively. The mean percent difference for the lung volume estimate derived from the single-breath CO2 analysis station was 0.79%. Our data indicate that analysis of the CO2 expirogram can yield accurate information about lung volume. Specifically, four variables derived from a plot of expired CO2 concentration vs. expired volume predict changes in lung volume in healthy lambs with an adjusted coefficient of determination of .94. Prospective application of this technology in the setting of lung injury and rapidly changing physiology is essential in determining the clinical usefulness of the technique.
Measurement of pulmonary epithelial permeability with /sup 99m/Tc-DTPA aerosol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, G.; O'Brodovich, H.
1986-10-01
The rate at which inhaled aerosol of /sup 99m/Tc-diethylenetriamine pentaacetate (DTPA) leaves the lung by diffusion into the vascular space can be measured with a gamma camera or simple probe. In normal humans, /sup 99m/Tc-DTPA clears from the lung with a half time of about 80 minutes. Many acute and chronic conditions that alter the integrity of the pulmonary epithelium cause an increased clearance rate. Thus cigarette smoking, alveolitis from a variety of causes, adult respiratory distress syndrome (ARDS), and hyaline membrane disease (HMD) in the infant have all been shown to be associated with rapid pulmonary clearance of /supmore » 99m/Tc-DTPA. Rapid clearance is also promoted by increased lung volume and decreased surfactant activity. Although the mechanism of increased clearance in pathological states is not known, the /sup 99m/Tc-DTPA lung-clearance technique has great potential clinically, particularly in patients at risk from ARDS and HMD and in the diagnosis and follow-up of alveolitis. 58 references.« less
Li, Jia; Zhou, Changli; Liu, Wanqi; Sun, Xun; Meng, Xiangwei
2017-12-01
The synchronous occurrence of lung cancer in patients with gastric neoplasms is relatively uncommon, especially the cases of synchronous coexistence of small cell lung carcinoma and diffuse large B-cell lymphoma of the stomach. We encountered a case of synchronous primary small cell lung carcinoma and diffuse large B-cell lymphoma of the stomach. A 63-year-old patient with a 7.5 × 5.09 cm mass in the superior lobe of the right lung diagnosed with small cell lung cancer and synchronous diffuse large B-cell lymphoma of the stomach. The diseases were diagnosed by the pathological biopsy and immunohistochemical methods. As the patient received CHOP chemotherapy, pulmonary function deterioraed. Etoposide was added to the chemotherapy. However, after the first treatment, chest computed tomography showed that the mass in the superior lobe of the right lung had increased to 8.5 × 5.2 cm. This report draws attention to the fact that the treatment of synchronous tumors is a challenge. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Physiologic Basis for Improved Pulmonary Function after Lung Volume Reduction
Fessler, Henry E.; Scharf, Steven M.; Ingenito, Edward P.; McKenna, Robert J.; Sharafkhaneh, Amir
2008-01-01
It is not readily apparent how pulmonary function could be improved by resecting portions of the lung in patients with emphysema. In emphysema, elevation in residual volume relative to total lung capacity reduces forced expiratory volumes, increases inspiratory effort, and impairs inspiratory muscle mechanics. Lung volume reduction surgery (LVRS) better matches the size of the lungs to the size of the thorax containing them. This restores forced expiratory volumes and the mechanical advantage of the inspiratory muscles. In patients with heterogeneous emphysema, LVRS may also allow space occupied by cysts to be reclaimed by more normal lung. Newer, bronchoscopic methods for lung volume reduction seek to achieve similar ends by causing localized atelectasis, but may be hindered by the low collateral resistance of emphysematous lung. Understanding of the mechanisms of improved function after LVRS can help select patients more likely to benefit from this approach. PMID:18453348
Measurement of lung volumes from supine portable chest radiographs.
Ries, A L; Clausen, J L; Friedman, P J
1979-12-01
Lung volumes in supine nonambulatory patients are physiological parameters often difficult to measure with current techniques (plethysmograph, gas dilution). Existing radiographic methods for measuring lung volumes require standard upright chest radiographs. Accordingly, in 31 normal supine adults, we determined helium-dilution functional residual and total lung capacities and measured planimetric lung field areas (LFA) from corresponding portable anteroposterior and lateral radiographs. Low radiation dose methods, which delivered less than 10% of that from standard portable X-ray technique, were utilized. Correlation between lung volume and radiographic LFA was highly significant (r = 0.96, SEE = 10.6%). Multiple-step regressions using height and chest diameter correction factors reduced variance, but weight and radiographic magnification factors did not. In 17 additional subjects studied for validation, the regression equations accurately predicted radiographic lung volume. Thus, this technique can provide accurate and rapid measurement of lung volume in studies involving supine patients.
Influence of pulmonary emphysema on COPD assessment test-oriented categorization in GOLD document.
Suzuki, Toshio; Tada, Yuji; Kawata, Naoko; Ikari, Jun; Kasahara, Yasunori; Sakurai, Yoriko; Iesato, Ken; Nishimura, Rintaro; West, James; Tatsumi, Koichiro
2015-01-01
The COPD assessment test (CAT) score is a key component of the multifactorial assessment of COPD in the Global initiative for chronic Obstructive Lung Disease (GOLD) guidelines of 2014. Nevertheless, little is known regarding the differences among COPD categories in terms of clinical parameters such as pulmonary function or radiological findings. Thus, our aims in this study were to evaluate the associations between CAT scores and pulmonary clinical parameters, and to investigate factors that could discriminate between a "less symptomatic group" (categories A and C) and a "more symptomatic group" (categories B and D) among stable COPD patients. We enrolled 200 outpatients at Chiba University Hospital. Study subjects were assessed by CAT, pulmonary function testing, and multidetector computed tomography (MDCT). We assessed possible correlations between these indices. CAT scores were negatively correlated with percentage of the forced expiratory volume in 1 second predicted value (FEV1 %predicted) and percentage of the diffusing capacity for carbon monoxide per liter of lung volume predicted value (DLCO/VA [%predicted]) results and positively correlated with low attenuation volume percentage (LAV%) and residual volume to total lung capacity ratios (RV/TLC). In the "more symptomatic group" (category B or D), the mean DLCO/VA (%predicted) was significantly lower and the mean LAV% and RV/TLC was significantly higher than those in the "less symptomatic group" (category A or C), respectively. Interestingly, those in category B had higher mean LAV% compared to those in category C. CAT scores were significantly correlated with pulmonary function parameters and emphysematous changes on MDCT. The new GOLD classification system would be a step toward a phenotypic approach, especially taking into account the degree of emphysema and hyperinflation.
Assessment of volume reduction effect after lung lobectomy for cancer.
Ueda, Kazuhiro; Murakami, Junichi; Sano, Fumiho; Hayashi, Masataro; Kobayashi, Taiga; Kunihiro, Yoshie; Hamano, Kimikazu
2015-07-01
Lung lobectomy results in an unexpected improvement of the remaining lung function in some patients with moderate-to-severe emphysema. Because the lung function is the main limiting factor for therapeutic decision making in patients with lung cancer, it may be advantageous to identify patients who may benefit from the volume reduction effect, particularly those with a poor functional reserve. We measured the regional distribution of the emphysematous lung and normal lung using quantitative computed tomography in 84 patients undergoing lung lobectomy for cancer between January 2010 and December 2012. The volume reduction effect was diagnosed using a combination of radiologic and spirometric parameters. Eight patients (10%) were favorably affected by the volume reduction effect. The forced expiratory volume in one second increased postoperatively in these eight patients, whereas the forced vital capacity was unchanged, thus resulting in an improvement of the airflow obstruction postoperatively. This improvement was not due to a compensatory expansion of the remaining lung but was associated with a relative decrease in the forced end-expiratory lung volume. According to a multivariate analysis, airflow obstruction and the forced end-expiratory lung volume were independent predictors of the volume reduction effect. A combined assessment using spirometry and quantitative computed tomography helped to characterize the respiratory dynamics underlying the volume reduction effect, thus leading to the identification of novel predictors of a volume reduction effect after lobectomy for cancer. Verification of our results by a large-scale prospective study may help to extend the indications for lobectomy in patients with oncologically resectable lung cancer who have a marginal pulmonary function. Copyright © 2015 Elsevier Inc. All rights reserved.
Egger, Christine; Gérard, Christelle; Vidotto, Nella; Accart, Nathalie; Cannet, Catherine; Dunbar, Andrew; Tigani, Bruno; Piaia, Alessandro; Jarai, Gabor; Jarman, Elizabeth; Schmid, Herbert A; Beckmann, Nicolau
2014-06-15
Idiopathic pulmonary fibrosis is a progressive and lethal disease, characterized by loss of lung elasticity and alveolar surface area, secondary to alveolar epithelial cell injury, reactive inflammation, proliferation of fibroblasts, and deposition of extracellular matrix. The effects of oropharyngeal aspiration of bleomycin in Sprague-Dawley rats and C57BL/6 mice, as well as of intratracheal administration of ovalbumin to actively sensitized Brown Norway rats on total lung volume as assessed noninvasively by magnetic resonance imaging (MRI) were investigated here. Lung injury and volume were quantified by using nongated or respiratory-gated MRI acquisitions [ultrashort echo time (UTE) or gradient-echo techniques]. Lung function of bleomycin-challenged rats was examined additionally using a flexiVent system. Postmortem analyses included histology of collagen and hydroxyproline assays. Bleomycin induced an increase of MRI-assessed total lung volume, lung dry and wet weights, and hydroxyproline content as well as collagen amount. In bleomycin-treated rats, gated MRI showed an increased volume of the lung in the inspiratory and expiratory phases of the respiratory cycle and a temporary decrease of tidal volume. Decreased dynamic lung compliance was found in bleomycin-challenged rats. Bleomycin-induced increase of MRI-detected lung volume was consistent with tissue deposition during fibrotic processes resulting in decreased lung elasticity, whereas influences by edema or emphysema could be excluded. In ovalbumin-challenged rats, total lung volume quantified by MRI remained unchanged. The somatostatin analog, SOM230, was shown to have therapeutic effects on established bleomycin-induced fibrosis in rats. This work suggests MRI-detected total lung volume as readout for tissue-deposition in small rodent bleomycin models of pulmonary fibrosis. Copyright © 2014 the American Physiological Society.
Estimation of regional gas and tissue volumes of the lung in supine man using computed tomography.
Denison, D M; Morgan, M D; Millar, A B
1986-08-01
This study was intended to discover how well computed tomography could recover the volume and weight of lung like foams in a body like shell, and then how well it could recover the volume and weight of the lungs in supine man. Model thoraces were made with various loaves of bread submerged in water. Computed tomography scans recovered the volume of the model lungs (true volume range 250-12,500 ml) within +0.2 (SD 68) ml and their weights (true range 72-3125 g) within +30 (78) g. Scans also recovered successive injections of 50 ml of water, within +/- 5 ml. Scans in 12 healthy supine men recovered their vital capacities, total lung capacities (TLC), and predicted tissue volumes with comparable accuracy. At total lung capacity the mean tissue volume of single lungs was 431 (64) ml and at residual volume (RV) it was 427 (63) ml. Tissue volume was then used to match inspiratory and expiratory slices and calculate regional ventilation. Throughout the mid 90% of lung the RV/TLC ratio was fairly constant--mean 21% (5%). New methods of presenting such regional data graphically and automatically are also described.
NASA Astrophysics Data System (ADS)
Lederman, Dror; Leader, Joseph K.; Zheng, Bin; Sciurba, Frank C.; Tan, Jun; Gur, David
2011-03-01
Quantitative computed tomography (CT) has been widely used to detect and evaluate the presence (or absence) of emphysema applying the density masks at specific thresholds, e.g., -910 or -950 Hounsfield Unit (HU). However, it has also been observed that subjects with similar density-mask based emphysema scores could have varying lung function, possibly indicating differences of disease severity. To assess this possible discrepancy, we investigated whether density distribution of "viable" lung parenchyma regions with pixel values > -910 HU correlates with lung function. A dataset of 38 subjects, who underwent both pulmonary function testing and CT examinations in a COPD SCCOR study, was assembled. After the lung regions depicted on CT images were automatically segmented by a computerized scheme, we systematically divided the lung parenchyma into different density groups (bins) and computed a number of statistical features (i.e., mean, standard deviation (STD), skewness of the pixel value distributions) in these density bins. We then analyzed the correlations between each feature and lung function. The correlation between diffusion lung capacity (DLCO) and STD of pixel values in the bin of -910HU <= PV < -750HU was -0.43, as compared with a correlation of -0.49 obtained between the post-bronchodilator ratio (FEV1/FVC) measured by the forced expiratory volume in 1 second (FEV1) dividing the forced vital capacity (FVC) and the STD of pixel values in the bin of -1024HU <= PV < -910HU. The results showed an association between the distribution of pixel values in "viable" lung parenchyma and lung function, which indicates that similar to the conventional density mask method, the pixel value distribution features in "viable" lung parenchyma areas may also provide clinically useful information to improve assessments of lung disease severity as measured by lung functional tests.
Tsuchiya, Nanae; Yamashiro, Tsuneo; Murayama, Sadayuki
2016-09-01
Lung volume and pulmonary blood flow decrease in patients with interstitial lung disease (ILD). The purpose of this study was to assess the relationship between pulmonary blood flow and lung volume in ILD patients. This research was approved by the institutional review board. Twenty-seven patients (9 men, 18 women; mean age, 59 years; range, 24-79 years) with ILD were included. Blood flow was assessed in the pulmonary trunk and the left and right pulmonary arteries by phase contrast magnetic resonance imaging (MRI). Lung volume and the computed tomography (CT) visual score that indicates the severity of ILD were assessed on the left and right sides by thin-section CT scanning. Lung volume was automatically measured by lung analysis software (VINCENT Ver. 4). The CT visual score was measured by averaging the proportion of abnormal lung area at five anatomic levels. Pearson's correlation coefficient was used to determine the relationship between pulmonary blood flow and lung volume. Pulmonary blood flow showed a significant correlation with lung volume (both: r=0.52, p=0.006; left: r=0.61, p=0.001; right: r=0.54, p=0.004) and CT visual score (both: r=-0.39, p=0.04; left: r=-0.48, p=0.01; right: r=-0.38, p=0.04). Partial correlation analysis, controlled for age, height and weight, showed a significant correlation between pulmonary blood flow and lung volume (both: r=0.43, p=0.03; left: r=0.55, p=0.005; right: r=0.48, p=0.01) and CT visual score (both: r=-0.58, p=0.003; left: r=-0.51, p=0.01; right: r=-0.64, p=0.001). In ILD, reduced pulmonary blood flow is associated with reduced lung volume and increased abnormal lung area. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sengul, Aysen Taslak; Sahin, Bunyamin; Celenk, Cetin; Basoglu, Ahmet; Sengul, Bilal
2014-04-01
To assess the increase in lung volume after Nuss surgery in patients with pectus excavatum (PE) by using stereological methods and to evaluate the correlation between the lung volume and spirometry findings. Twenty patients, treated for PE between 2008 and 2010, were evaluated prospectively. They underwent preoperative chest radiography, computed thorax tomography (CTT), and spirometry. Thereafter, the Haller index was calculated for each patient. In the third postoperative month, CTT and spirometry were repeated.Lung volumes and volume fractions were evaluated using CTT images, applying the Cavalieri principle for stereological methods. Then the correlation between the pre- and postoperative values of the lung volumes with spirometry findings was determined. Volumes of the right and left lungs were calculated stereologically, using CTT images. Postoperative volume increase of ∼417.6 ± 747.6 mL was detected. The maximum volume increase was observed in the left lung. In the postoperative period, the total volume increase and the volume increase detected in the left lung were found to be statistically significant (p < 0.05).The preoperative correlation coefficients (r) for forced vital capacity, forced expiratory volume in 1 second, and forced expiratory flow 25 to 75% were 0.67, 0.68, and 0.61, respectively; the postoperative r figures were 0.43, 0.42, and 0.35, respectively. Although there was a strong correlation between the preoperative lung volume and spirometry findings (p < 0.05), no correlation was observed between the postoperative lung volume and spirometry findings (p > 0.05). Postoperative pulmonary volume increase occurs in patients with PE after Nuss surgery. However, postoperative spirometry findings may not reflect morphological improvement because pain restricts thoracic movements. Therefore, in patients with PE, quantitative evaluation of the results of surgical repair is possible using the CTT images through a combination of stereological methods. Georg Thieme Verlag KG Stuttgart · New York.
Ohkubo, Hirotsugu; Kanemitsu, Yoshihiro; Uemura, Takehiro; Takakuwa, Osamu; Takemura, Masaya; Maeno, Ken; Ito, Yutaka; Oguri, Tetsuya; Kazawa, Nobutaka; Mikami, Ryuji; Niimi, Akio
2016-01-01
Although several computer-aided computed tomography (CT) analysis methods have been reported to objectively assess the disease severity and progression of idiopathic pulmonary fibrosis (IPF), it is unclear which method is most practical. A universal severity classification system has not yet been adopted for IPF. The purpose of this study was to test the correlation between quantitative-CT indices and lung physiology variables and to determine the ability of such indices to predict disease severity in IPF. A total of 27 IPF patients showing radiological UIP pattern on high-resolution (HR) CT were retrospectively enrolled. Staging of IPF was performed according to two classification systems: the Japanese and GAP (gender, age, and physiology) staging systems. CT images were assessed using a commercially available CT imaging analysis workstation, and the whole-lung mean CT value (MCT), the normally attenuated lung volume as defined from -950 HU to -701 Hounsfield unit (NL), the volume of the whole lung (WL), and the percentage of NL to WL (NL%), were calculated. CT indices (MCT, WL, and NL) closely correlated with lung physiology variables. Among them, NL strongly correlated with forced vital capacity (FVC) (r = 0.92, P <0.0001). NL% showed a large area under the receiver operating characteristic curve for detecting patients in the moderate or advanced stages of IPF. Multivariable logistic regression analyses showed that NL% is significantly more useful than the percentages of predicted FVC and predicted diffusing capacity of the lungs for carbon monoxide (Japanese stage II/III/IV [odds ratio, 0.73; 95% confidence intervals (CI), 0.48 to 0.92; P < 0.01]; III/IV [odds ratio. 0.80; 95% CI 0.59 to 0.96; P < 0.01]; GAP stage II/III [odds ratio, 0.79; 95% CI, 0.56 to 0.97; P < 0.05]). The measurement of NL% by threshold-based volumetric CT analysis may help improve IPF staging.
Working underground: Respiratory adaptations in the blind mole rat
Widmer, Hans R.; Hoppeler, Hans; Nevo, Eviatar; Taylor, C. Richard; Weibel, Ewald R.
1997-01-01
Mole rats (Spalax ehrenbergi superspecies) perform the heavy work of digging their subterranean burrows in Israel under highly hypoxic/hypercapnic conditions. Unlike most other mammals, they can achieve high levels of metabolic rate under these conditions, while their metabolic rate at low work rates is depressed. We explored, by comparing mole rats with white rats, whether and how this is related to adaptations in the design of the respiratory system, which determines the transfer of O2 from the lung to muscle mitochondria. At the same body mass, mole rats were found to have a significantly smaller total skeletal muscle mass than ordinary white rats (−22%). In contrast, the fractional volume of muscle mitochondria was larger by 46%. As a consequence, both species had the same total amount of mitochondria and achieved, under normoxia, the same V̇O2max. Whereas the O2 transport capacity of the blood was not different, we found a larger capillary density (+31%) in the mole rat muscle, resulting in a reduced diffusion distance to mitochondria. The structural pulmonary diffusing capacity for O2 was greater in the mole rat (+44%), thus facilitating O2 uptake in hypoxia. We conclude that structural adaptations in lung and muscle tissue improve O2 diffusion conditions and serve to maintain high metabolic rates in hypoxia but have no consequences for achieving V̇O2max under normoxic conditions. PMID:9050905
[Aging of the respiratory system: anatomical changes and physiological consequences].
Ketata, W; Rekik, W K; Ayadi, H; Kammoun, S
2012-10-01
The respiratory system undergoes progressive involution with age, resulting in anatomical and functional changes that are exerted on all levels. The rib cage stiffens and respiratory muscles weaken. Distal bronchioles have reduced diameter and tend to be collapsed. Mobilized lung volumes decrease with age while residual volume increases. Gas exchanges are modified with a linear decrease of PaO(2) up to the age of 70 years and a decreased diffusing capacity of carbon monoxide. Ventilatory responses to hypercapnia, hypoxia and exercise decrease in the elderly. Knowledge of changes in the respiratory system related to advancing age is a medical issue of great importance in order to distinguish the effects of aging from those of diseases. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Ueyama, Tomoko; Arimura, Takeshi; Takumi, Koji; Nakamura, Fumihiko; Higashi, Ryutaro; Ito, Soichiro; Fukukura, Yoshihiko; Umanodan, Tomokazu; Nakajo, Masanori; Koriyama, Chihaya; Yoshiura, Takashi
2018-06-01
To identify risk factors for symptomatic radiation pneumonitis (RP) after stereotactic radiation therapy (SRT) for lung tumours. We retrospectively evaluated 68 lung tumours in 63 patients treated with SRT between 2011 and 2015. RP was graded according to the National Cancer Institute-Common Terminology Criteria for Adverse Events version 4.0. SRT was delivered at 7.0-12.0 Gy per each fraction, once daily, to a total of 48-64 Gy (median, 50 Gy). Univariate analysis was performed to assess patient- and treatment-related factors, including age, sex, smoking index (SI), pulmonary function, tumour location, serum Krebs von den Lungen-6 value (KL-6), dose-volume metrics (V5, V10, V20, V30, V40 and VS5), homogeneity index of the planning target volume (PTV), PTV dose, mean lung dose (MLD), contralateral MLD and V2, PTV volume, lung volume and the PTV/lung volume ratio (PTV/Lung). Performance of PTV/Lung in predicting symptomatic RP was also analysed using receiver operating characteristic (ROC) analysis. The median follow-up period was 21 months. 10 of 63 patients (15.9%) developed symptomatic RP after SRT. On univariate analysis, V10, V20, PTV volume and PTV/Lung were significantly associated with occurrence of RP ≥Grade 2. ROC curves indicated that symptomatic RP could be predicted using PTV/Lung [area under curve (AUC): 0.88, confidence interval (CI: 0.78-0.95), cut-off value: 1.09, sensitivity: 90.0% and specificity: 72.4%]. PTV/Lung is a good predictor of symptomatic RP after SRT. Advances in knowledge: The cases with high PTV/Lung should be carefully monitored with caution for the occurrence of RP after SRT.
Molecular mobility in the monolayers of foam films stabilized by porcine lung surfactant.
Lalchev, Z I; Todorov, R K; Christova, Y T; Wilde, P J; Mackie, A R; Clark, D C
1996-01-01
Certain physical properties of a range of foam film types that are believed to exist in vivo in the lung have been investigated. The contribution of different lung surfactant components found in porcine lung surfactant to molecular surface diffusion in the plane of foam films has been investigated for the first time. The influence of the type and thickness of black foam films, temperature, electrolyte concentration, and extract composition on surface diffusion has been studied using the fluorescence recovery after photobleaching technique. Fluorescent phospholipid probe molecules in foam films stabilized by porcine lung surfactant samples or their hydrophobic extracts consisting of surfactant lipids and hydrophobic lung surfactant proteins, SP-B and SP-C, exhibited more rapid diffusion than observed in films of its principal lipid component alone, L-alpha-phosphatidylcholine dipalmitoyl. This effect appears to be due to contributions from minor lipid components present in the total surfactant lipid extracts. The minor lipid components influence the surface diffusion in foam films both by their negative charge and by lowering the phase transition temperature of lung surfactant samples. In contrast, the presence of high concentrations of the hydrophillic surfactant protein A (SP-A) and non-lung-surfactant proteins in the sample reduced the diffusion coefficient (D) of the lipid analog in the adsorbed layer of the films. Hysteresis behavior of D was observed during temperature cycling, with the cooling curve lying above the heating curve. However, in cases where some surface molecular aggregation and surface heterogeneity were observed during cooling, the films became more rigid and molecules at the interfaces became immobilized. The thickness, size, capillary pressure, configuration, and composition of foam films of lung surfactant prepared in vitro support their investigation as realistic structural analogs of the surface films that exist in vivo in the lung. Compared to other models currently in use, foam films provide new opportunities for studying the properties and function of physiologically important alveolar surface films. Images FIGURE 1 FIGURE 2 PMID:8913597
Cheung, Patrick C F; Sixel, Katharina E; Tirona, Romeo; Ung, Yee C
2003-12-01
The active breathing control (ABC) device allows for temporary immobilization of respiratory motion by implementing a breath hold at a predefined relative lung volume and air flow direction. The purpose of this study was to quantitatively evaluate the ability of the ABC device to immobilize peripheral lung tumors at a reproducible position, increase total lung volume, and thereby reduce lung mass within the planning target volume (PTV). Ten patients with peripheral non-small-cell lung cancer tumors undergoing radiotherapy had CT scans of their thorax with and without ABC inspiration breath hold during the first 5 days of treatment. Total lung volumes were determined from the CT data sets. Each peripheral lung tumor was contoured by one physician on all CT scans to generate gross tumor volumes (GTVs). The lung density and mass contained within a 1.5-cm PTV margin around each peripheral tumor was calculated using CT numbers. Using the center of the GTV from the Day 1 ABC scan as the reference, the displacement of subsequent GTV centers on Days 2 to 5 for each patient with ABC applied was calculated in three dimensions. With the use of ABC inspiration breath hold, total lung volumes increased by an average of 42%. This resulted in an average decrease in lung mass of 18% within a standard 1.5-cm PTV margin around the GTV. The average (+/- standard deviation) displacement of GTV centers with ABC breath hold applied was 0.3 mm (+/- 1.8 mm), 1.2 mm (+/- 2.3 mm), and 1.1 mm (+/- 3.5 mm) in the lateral direction, anterior-posterior direction, and superior-inferior direction, respectively. Results from this study indicate that there remains some inter-breath hold variability in peripheral lung tumor position with the use of ABC inspiration breath hold, which prevents significant PTV margin reduction. However, lung volumes can significantly increase, thereby decreasing the mass of lung within a standard PTV.
Methods for Measuring Lung Volumes: Is There a Better One?
Tantucci, Claudio; Bottone, Damiano; Borghesi, Andrea; Guerini, Michele; Quadri, Federico; Pini, Laura
2016-01-01
Accurate measurement of lung volumes is of paramount importance to establish the presence of ventilatory defects and give insights for diagnostic and/or therapeutic purposes. It was the aim of this study to measure lung volumes in subjects with respiratory disorders and in normal controls by 3 different techniques (plethysmographic, dilutional and radiographic methods), in an attempt to clarify the role of each of them in performing such a task, without any presumptive 'a priori' superiority of one method above others. Patients andMethods: In different groups of subjects with obstructive and restrictive ventilatory defects and in a normal control group, total lung capacity, functional residual capacity (FRC) and residual volume were measured by body plethysmography, multi-breath helium (He) dilution and radiographic CT scan method with spirometric gating. The 3 methods gave comparable results in normal subjects and in patients with a restrictive defect. In patients with an obstructive defect, CT scan and plethysmography showed similar lung volumes, while on average significantly lower lung volumes were obtained with the He dilution technique. Taking into account that the He dilution technique does primarily measure FRC during tidal breathing, our data suggest that in some patients with an obstructive defect, a number of small airways can be functionally closed at end-expiratory lung volume, preventing He to reach the lung regions subserved by these airways. In all circumstances, both CT scan with spirometric gating and plethysmographic methods provide similar values of lung volumes. In contrast, the He dilution method can measure lower lung volumes in some patients with chronic airflow obstruction. © 2016 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glide-Hurst, Carri K.; Gopan, Ellen; Department of Radiation Oncology Wayne State University, Detroit, MI
2010-07-01
Purpose: To evaluate intra- and interfraction variability of tumor and lung volume and position using a hybrid active breath-hold gating technique. Methods and Materials: A total of 159 repeat normal inspiration active breath-hold CTs were acquired weekly during radiotherapy for 9 lung cancer patients (12-21 scans per patient). A physician delineated the gross tumor volume (GTV), lungs, and spinal cord on the first breath-hold CT, and contours were propagated semiautomatically. Intra- and interfraction variability of tumor and lung position and volume were evaluated. Tumor centroid and border variability were quantified. Results: On average, intrafraction variability of lung and GTV centroidmore » position was <2.0 mm. Interfraction population variability was 3.6-6.7 mm (systematic) and 3.1-3.9 mm (random) for the GTV centroid and 1.0-3.3 mm (systematic) and 1.5-2.6 mm (random) for the lungs. Tumor volume regressed 44.6% {+-} 23.2%. Gross tumor volume border variability was patient specific and demonstrated anisotropic shape change in some subjects. Interfraction GTV positional variability was associated with tumor volume regression and contralateral lung volume (p < 0.05). Inter-breath-hold reproducibility was unaffected by time point in the treatment course (p > 0.1). Increases in free-breathing tidal volume were associated with increases in breath-hold ipsilateral lung volume (p < 0.05). Conclusions: The breath-hold technique was reproducible within 2 mm during each fraction. Interfraction variability of GTV position and shape was substantial because of tumor volume and breath-hold lung volume change during therapy. These results support the feasibility of a hybrid breath-hold gating technique and suggest that online image guidance would be beneficial.« less
Cost and effectiveness of lung lobectomy by video-assisted thoracic surgery for lung cancer
Mafé, Juan J.; Planelles, Beatriz; Asensio, Santos; Cerezal, Jorge; Inda, María-del-Mar; Lacueva, Javier; Esteban, Maria-Dolores; Hernández, Luis; Martín, Concepción; Baschwitz, Benno
2017-01-01
Background Video-assisted thoracic surgery (VATS) emerged as a minimally invasive surgery for diseases in the field of thoracic surgery. We herein reviewed our experience on thoracoscopic lobectomy for early lung cancer and evaluated Health System use. Methods A cost-effectiveness study was performed comparing VATS vs. open thoracic surgery (OPEN) for lung cancer patients. Demographic data, tumor localization, dynamic pulmonary function tests [forced vital capacity (FVC), forced expiratory volume in one second (FEV1), diffusion capacity (DLCO) and maximal oxygen uptake (VO2max)], surgical approach, postoperative details, and complications were recorded and analyzed. Results One hundred seventeen patients underwent lung resection by VATS (n=42, 36%; age: 63±9 years old, 57% males) or OPEN (n=75, 64%; age: 61±11 years old, 73% males). Pulmonary function tests decreased just after surgery with a parallel increasing tendency during first 12 months. VATS group tended to recover FEV1 and FVC quicker with significantly less clinical and post-surgical complications (31% vs. 53%, P=0.015). Costs including surgery and associated hospital stay, complications and costs in the 12 months after surgery were significantly lower for VATS (P<0.05). Conclusions The VATS approach surgery allowed earlier recovery at a lower cost than OPEN with a better cost-effectiveness profile. PMID:28932560
Zhang, Bin; Gao, Fuping; Wang, Mengjiao; Cao, Xu; Liu, Fei; Wang, Xin; Luo, Jianwen; Wang, Guangzhi; Bai, Jing
2014-01-01
Non-invasive in vivo imaging of diffuse and wide-spread colonization within the lungs, rather than distinct solid primary tumors, is still a challenging work. In this work, a lung colonization mouse model bearing A549 human lung tumor was simultaneously scanned by a dual-modality fluorescence molecular tomography (FMT) and X-ray computed tomography (CT) system in vivo. A two steps method which incorporates CT structural information into the FMT reconstruction procedure is employed to provide concurrent anatomical and functional information. By using the target-specific fluorescence agent, the fluorescence tomographic results show elevated fluorescence intensity deep within the lungs which is colonized with diffuse and wide-spread tumors. The results were confirmed with ex vivo fluorescence reflectance imaging and histological examination of the lung tissues. With FMT reconstruction combined with the CT information, the dual-modality FMT/micro-CT system is expected to offer sensitive and noninvasive imaging of diffuse tumor colonization within the lungs in vivo. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Functional and prognostic effects when emphysema complicates idiopathic pulmonary fibrosis.
Jacob, Joseph; Bartholmai, Brian J; Rajagopalan, Srinivasan; Kokosi, Maria; Maher, Toby M; Nair, Arjun; Karwoski, Ronald; Renzoni, Elisabetta; Walsh, Simon L F; Hansell, David M; Wells, Athol U
2017-07-01
This study aimed to investigate whether the combination of fibrosis and emphysema has a greater effect than the sum of its parts on functional indices and outcome in idiopathic pulmonary fibrosis (IPF), using visual and computer-based (CALIPER) computed tomography (CT) analysis.Consecutive patients (n=272) with a multidisciplinary IPF diagnosis had the extent of interstitial lung disease (ILD) scored visually and by CALIPER. Visually scored emphysema was subcategorised as isolated or mixed with fibrotic lung. The CT scores were evaluated against functional indices forced vital capacity (FVC), diffusing capacity of the lungs for carbon monoxide ( D LCO ), transfer coefficient of the lung for carbon monoxide ( K CO ), composite physiologic index (CPI)) and mortality.The presence and extent of emphysema had no impact on survival. Results were maintained following correction for age, gender, smoking status and baseline severity using D LCO , and combined visual emphysema and ILD extent. Visual emphysema quantitation indicated that relative preservation of lung volumes (FVC) resulted from tractionally dilated airways within fibrotic lung, ventilating areas of admixed emphysema (p<0.0001), with no independent effect on FVC from isolated emphysema. Conversely, only isolated emphysema (p<0.0001) reduced gas transfer ( D LCO ).There is no prognostic impact of emphysema in IPF, beyond that explained by the additive extents of both fibrosis and emphysema. With respect to the location of pulmonary fibrosis, emphysema distribution determines the functional effects of emphysema. Copyright ©ERS 2017.
van der Burg, Pauline S; Miedema, Martijn; de Jongh, Frans H; Frerichs, Inez; van Kaam, Anton H
2014-06-01
Electrical impedance tomography measures lung volume in a cross-sectional slice of the lung. Whether these cross-sectional volume changes are representative of the whole lung has only been investigated in adults, showing conflicting results. This study aimed to compare cross-sectional and whole lung volume changes using electrical impedance tomography and respiratory inductive plethysmography. A prospective, single-center, observational, nonrandomized study. The study was conducted in a neonatal ICU in the Netherlands. High-frequency ventilated preterm infants with respiratory distress syndrome. Cross-sectional and whole lung volume changes were continuously and simultaneously measured by, respectively, electrical impedance tomography and respiratory inductive plethysmography during a stepwise recruitment procedure. End-expiratory lung volume changes were assessed by mapping the inflation and deflation limbs using both the pressure/impedance and pressure/inductance pairs and characterized by calculating the inflection points. In addition, oscillatory tidal volume changes were assessed at each pressure step. Twenty-three infants were included in the study. Of these, eight infants had to be excluded because the quality of the registration was insufficient for analysis (two electrical impedance tomography and six respiratory inductive plethysmography). In the remaining 15 infants (gestational age 28.0 ± 2.6 wk; birth weight 1,027 ± 514 g), end-expiratory lung volume changes measured by electrical impedance tomography were significantly correlated to respiratory inductive plethysmography measurements in 12 patients (mean r = 0.93 ± 0.05). This was also true for the upper inflection point on the inflation (r = 0.91, p < 0.01) and deflation limb (r = 0.83, p < 0.01). In 13 patients, impedance and inductance data also correlated significantly on oscillatory tidal volume/pressure relationships (mean r = 0.81 ± 0.18). This study shows that cross-sectional lung volume changes measured by electrical impedance tomography are representative for the whole lung and that this concept also applies to newborn infants.
NASA Astrophysics Data System (ADS)
Vo, Kiet T.; Sowmya, Arcot
A directional multi-scale modeling scheme based on wavelet and contourlet transforms is employed to describe HRCT lung image textures for classifying four diffuse lung disease patterns: normal, emphysema, ground glass opacity (GGO) and honey-combing. Generalized Gaussian density parameters are used to represent the detail sub-band features obtained by wavelet and contourlet transforms. In addition, support vector machines (SVMs) with excellent performance in a variety of pattern classification problems are used as classifier. The method is tested on a collection of 89 slices from 38 patients, each slice of size 512x512, 16 bits/pixel in DICOM format. The dataset contains 70,000 ROIs of those slices marked by experienced radiologists. We employ this technique at different wavelet and contourlet transform scales for diffuse lung disease classification. The technique presented here has best overall sensitivity 93.40% and specificity 98.40%.
Bassingthwaighte, James B; Raymond, Gary M; Dash, Ranjan K; Beard, Daniel A; Nolan, Margaret
2016-01-01
The 'Pathway for Oxygen' is captured in a set of models describing quantitative relationships between fluxes and driving forces for the flux of oxygen from the external air source to the mitochondrial sink at cytochrome oxidase. The intervening processes involve convection, membrane permeation, diffusion of free and heme-bound O2 and enzymatic reactions. While this system's basic elements are simple: ventilation, alveolar gas exchange with blood, circulation of the blood, perfusion of an organ, uptake by tissue, and consumption by chemical reaction, integration of these pieces quickly becomes complex. This complexity led us to construct a tutorial on the ideas and principles; these first PathwayO2 models are simple but quantitative and cover: (1) a 'one-alveolus lung' with airway resistance, lung volume compliance, (2) bidirectional transport of solute gasses like O2 and CO2, (3) gas exchange between alveolar air and lung capillary blood, (4) gas solubility in blood, and circulation of blood through the capillary syncytium and back to the lung, and (5) blood-tissue gas exchange in capillaries. These open-source models are at Physiome.org and provide background for the many respiratory models there.
Role of collateral paths in long-range diffusion in lungs
Bartel, Seth-Emil T.; Haywood, Susan E.; Woods, Jason C.; Chang, Yulin V.; Menard, Christopher; Yablonskiy, Dmitriy A.; Gierada, David S.; Conradi, Mark S.
2010-01-01
The long-range apparent diffusion coefficient (LRADC) of 3He gas in lungs, measured over times of several seconds and distances of 1–3 cm, probes the connections between the airways. Previous work has shown the LRADC to be small in health and substantially elevated in emphysema, reflecting tissue destruction, which is known to create collateral pathways. To better understand what controls LRADC, we report computer simulations and measurements of 3He gas diffusion in healthy lungs. The lung is generated with a random algorithm using well-defined rules, yielding a three-dimensional set of nodes or junctions, each connected by airways to one parent node and two daughters; airway dimensions are taken from published values. Spin magnetization in the simulated lung is modulated sinusoidally, and the diffusion equation is solved to 1,000 s. The modulated magnetization decays with a time constant corresponding to an LRADC of ~0.001 cm2/s, which is smaller by a factor of ~20 than the values in healthy lungs measured here and previously in vivo and in explanted lungs. It appears that collateral gas pathways, not present in the simulations, are functional in healthy lungs; they provide additional and more direct routes for long-range motion than the canonical airway tree. This is surprising, inasmuch as collateral ventilation is believed to be physiologically insignificant in healthy lungs. We discuss the effect on LRADC of small collateral connections through airway walls and rule out other possible mechanisms. The role of collateral paths is supported by measurements of smaller LRADC in pigs, where collateral ventilation is known to be smaller. PMID:18292298
Circuit compliance compensation in lung protective ventilation.
Masselli, Grazia Maria Pia; Silvestri, Sergio; Sciuto, Salvatore Andrea; Cappa, Paolo
2006-01-01
Lung protective ventilation utilizes low tidal volumes to ventilate patients with severe lung pathologies. The compensation of breathing circuit effects, i.e. those induced by compressible volume of the circuit, results particularly critical in the calculation of the actual tidal volume delivered to patient's respiratory system which in turns is responsible of the level of permissive hypercapnia. The present work analyzes the applicability of the equation for circuit compressible volume compensation in the case of pressure and volume controlled lung protective ventilation. Experimental tests conducted in-vitro show that the actual tidal volume can be reliably estimated if the compliance of the breathing circuit is measured with the same parameters and ventilation technique that will be utilized in lung protective ventilation. Differences between volume and pressure controlled ventilation are also quantitatively assessed showing that pressure controlled ventilation allows a more reliable compensation of breathing circuit compressible volume.
Mans, Christoph; Drees, Randi; Sladky, Kurt K; Hatt, Jean-Michel; Kircher, Patrick R
2013-10-15
To determine the effects of body position and extension of the neck and extremities on CT measurements of ventilated lung volume in red-eared slider turtles (Trachemys scripta elegans). Prospective crossover-design study. 14 adult red-eared slider turtles. CT was performed on turtles in horizontal ventral recumbent and vertical left lateral recumbent, right lateral recumbent, and caudal recumbent body positions. In sedated turtles, evaluations were performed in horizontal ventral recumbent body position with and without extension of the neck and extremities. Lung volumes were estimated from helical CT images with commercial software. Effects of body position, extremity and neck extension, sedation, body weight, and sex on lung volume were analyzed. Mean ± SD volume of dependent lung tissue was significantly decreased in vertical left lateral (18.97 ± 14.65 mL), right lateral (24.59 ± 19.16 mL), and caudal (9.23 ± 12.13 mL) recumbent positions, compared with the same region for turtles in horizontal ventral recumbency (48.52 ± 20.08 mL, 50.66 ± 18.08 mL, and 31.95 ± 15.69 mL, respectively). Total lung volume did not differ among positions because of compensatory increases in nondependent lung tissue. Extension of the extremities and neck significantly increased total lung volume (127.94 ± 35.53 mL), compared with that in turtles with the head, neck, and extremities withdrawn into the shell (103.24 ± 40.13 mL). Vertical positioning of red-eared sliders significantly affected lung volumes and could potentially affect interpretation of radiographs obtained in these positions. Extension of the extremities and neck resulted in the greatest total lung volume.
Kido, Takashi; Morimoto, Yasuo; Yatera, Kazuhiro; Ishimoto, Hiroshi; Ogoshi, Takaaki; Oda, Keishi; Yamasaki, Kei; Kawanami, Toshinori; Shimajiri, Shohei; Mukae, Hiroshi
2017-04-21
In patients with diffuse lung diseases, differentiating occupational lung diseases from other diseases is clinically important. However, the value of assessing asbestos and particles in bronchoalveolar lavage fluid (BALF) in diffuse lung diseases by electron microscopy (EM) remains unclear. We evaluated the utility of EM in detecting asbestos fibers and particles in patients with diffuse lung diseases. The BALF specimens of 107 patients with diffuse lung diseases were evaluated. First, detection of asbestos by EM and light microscopy (LM) were compared. Second, the detection of asbestos using surgically obtained lung tissues of 8 of 107 patients were compared with the results of EM and LM in BALF. Third, we compared the results of mineralogical components of particles in patients with (n = 48) and without (n = 59) a history of occupational exposure to inorganic dust. BALF asbestos were detected in 11 of 48 patients with a history of occupational exposure by EM; whereas asbestos as asbestos bodies (ABs) were detected in BALF in 4 of these 11 patients by LM. Eight of 107 patients in whom lung tissue samples were surgically obtained, EM detected BALF asbestos at a level of >1,000 fibers/ml in all three patients who had ABs in lung tissue samples by LM at a level of >1,000 fibers/g. The BALF asbestos concentration by EM and in lung tissue by LM were positively correlated. The particle fractions of iron and phosphorus were increased in patients with a history of occupational exposure and both correlated with a history of occupational exposure by a multiple regression analysis. EM using BALF seemed to be superior to LM using BALF and displayed a similar sensitivity to LM using surgically-obtained lung tissue samples in the detection of asbestos. Our results also suggest that detection of elements, such as iron and phosphorus in particles, is useful for evaluating occupational exposure. We conclude that the detection of asbestos and iron and phosphorus in particles in BALF by EM is very useful for the evaluation of occupational exposure.
Verbrugge, S J; Vazquez de Anda, G; Gommers, D; Neggers, S J; Sorm, V; Böhm, S H; Lachmann, B
1998-08-01
Changes in pulmonary edema infiltration and surfactant after intermittent positive pressure ventilation with high peak inspiratory lung volumes have been well described. To further elucidate the role of surfactant changes, the authors tested the effect of different doses of exogenous surfactant preceding high peak inspiratory lung volumes on lung function and lung permeability. Five groups of Sprague-Dawley rats (n = 6 per group) were subjected to 20 min of high peak inspiratory lung volumes. Before high peak inspiratory lung volumes, four of these groups received intratracheal administration of saline or 50, 100, or 200 mg/kg body weight surfactant; one group received no intratracheal administration. Gas exchange was measured during mechanical ventilation. A sixth group served as nontreated, nonventilated controls. After death, all lungs were excised, and static pressure-volume curves and total lung volume at a transpulmonary pressure of 5 cm H2O were recorded. The Gruenwald index and the steepest part of the compliance curve (Cmax) were calculated. A bronchoalveolar lavage was performed; surfactant small and large aggregate total phosphorus and minimal surface tension were measured. In a second experiment in five groups of rats (n = 6 per group), lung permeability for Evans blue dye was measured. Before 20 min of high peak inspiratory lung volumes, three groups received intratracheal administration of 100, 200, or 400 mg/ kg body weight surfactant; one group received no intratracheal administration. A fifth group served as nontreated, nonventilated controls. Exogenous surfactant at a dose of 200 mg/kg preserved total lung volume at a pressure of 5 cm H2O, maximum compliance, the Gruenwald Index, and oxygenation after 20 min of mechanical ventilation. The most active surfactant was recovered in the group that received 200 mg/kg surfactant, and this dose reduced minimal surface tension of bronchoalveolar lavage to control values. Alveolar influx of Evans blue dye was reduced in the groups that received 200 and 400 mg/kg exogenous surfactant. Exogenous surfactant preceding high peak inspiratory lung volumes prevents impairment of oxygenation, lung mechanics, and minimal surface tension of bronchoalveolar lavage fluid and reduces alveolar influx of Evans blue dye. These data indicate that surfactant has a beneficial effect on ventilation-induced lung injury.
Tsuchiya, Naoko; Doai, Mariko; Usuda, Katsuo; Uramoto, Hidetaka
2017-01-01
Purpose Investigating the diagnostic accuracy of histogram analyses of apparent diffusion coefficient (ADC) values for determining non-small cell lung cancer (NSCLC) tumor grades, lymphovascular invasion, and pleural invasion. Materials and methods We studied 60 surgically diagnosed NSCLC patients. Diffusion-weighted imaging (DWI) was performed in the axial plane using a navigator-triggered single-shot, echo-planar imaging sequence with prospective acquisition correction. The ADC maps were generated, and we placed a volume-of-interest on the tumor to construct the whole-lesion histogram. Using the histogram, we calculated the mean, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of ADC, skewness, and kurtosis. Histogram parameters were correlated with tumor grade, lymphovascular invasion, and pleural invasion. We performed a receiver operating characteristics (ROC) analysis to assess the diagnostic performance of histogram parameters for distinguishing different pathologic features. Results The ADC mean, 10th, 25th, 50th, 75th, 90th, and 95th percentiles showed significant differences among the tumor grades. The ADC mean, 25th, 50th, 75th, 90th, and 95th percentiles were significant histogram parameters between high- and low-grade tumors. The ROC analysis between high- and low-grade tumors showed that the 95th percentile ADC achieved the highest area under curve (AUC) at 0.74. Lymphovascular invasion was associated with the ADC mean, 50th, 75th, 90th, and 95th percentiles, skewness, and kurtosis. Kurtosis achieved the highest AUC at 0.809. Pleural invasion was only associated with skewness, with the AUC of 0.648. Conclusions ADC histogram analyses on the basis of the entire tumor volume are able to stratify NSCLCs' tumor grade, lymphovascular invasion and pleural invasion. PMID:28207858
Lill, Hille; Kliiman, Kai; Altraja, Alan
2016-05-01
Sarcoidosis is endemically prevalent in Northern Europe, but gender differences among the sarcoidosis population have not yet been compositely addressed. To reveal independent factors that formulate gender differences in the presentation of sarcoidosis. All Caucasian patients with confirmed sarcoidosis were recruited from the outpatient department of the Lung Clinic of the Tartu University Hospital, Estonia, between February 2009 and April 2011. Data on demographics, complaints, symptoms, clinical presentation, extrapulmonary manifestations, radiographic stage, lung function parameters and sarcoidosis-related laboratory indices were all drawn from patients' clinical records at presentation. Factors characteristic of female gender were estimated using multivariate logistic regression analysis. Of 230 cases included, there were significantly more females (56.5%, P = 0.005). After adjustment for age, females appeared distinguishable from males by older age [adjusted odds ratio (OR) 1.04, 95% confidence interval (CI) 1.02-1.07], less frequent smoking (OR 0.25, 95% CI 0.13-0.49), higher probability of extrapulmonary complaints (OR 2.06, 95% CI 1.16-3.65) and musculoskeletal sarcoidosis (OR 3.22, 95% CI 1.65-6.29), and after adjustment for both age and smoking status lower forced expiratory volume in 1 s and lung carbon monoxide diffusing coefficient % predicted (OR 0.89, 95% CI 0.82-0.97 and OR 0.98, 95% CI 0.96-0.995, respectively), but by higher forced vital capacity % predicted (OR 1.12, 95% CI 1.03-1.22). Women with sarcoidosis are independently characterized by greater airflow obstruction, lower lung diffusing coefficient, older age, less smoking, and more frequent extrapulmonary complaints and musculoskeletal involvement. This may urge special attention when addressing female patients in both differential diagnostic and management settings. © 2014 John Wiley & Sons Ltd.
A multiscale MDCT image-based breathing lung model with time-varying regional ventilation
Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long
2012-01-01
A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. PMID:23794749
Diffuse Alveolar Damage: A Common Phenomenon in Progressive Interstitial Lung Disorders
Kaarteenaho, Riitta; Kinnula, Vuokko L.
2011-01-01
It has become obvious that several interstitial lung diseases, and even viral lung infections, can progress rapidly, and exhibit similar features in their lung morphology. The final histopathological feature, common in these lung disorders, is diffuse alveolar damage (DAD). The histopathology of DAD is considered to represent end stage phenomenon in acutely behaving interstitial pneumonias, such as acute interstitial pneumonia (AIP) and acute exacerbations of idiopathic pulmonary fibrosis (IPF). Acute worsening and DAD may occur also in patients with nonspecific interstitial pneumonias (NSIPs), and even in severe viral lung infections where there is DAD histopathology in the lung. A better understanding of the mechanisms underlying the DAD reaction is needed to clarify the treatment for these serious lung diseases. There is an urgent need for international efforts for studying DAD-associated lung diseases, since the prognosis of these patients has been and is still dismal. PMID:21637367
Effects of obesity on lung volume and capacity in children and adolescents: a systematic review
Winck, Aline Dill; Heinzmann-Filho, João Paulo; Soares, Rafaela Borges; da Silva, Juliana Severo; Woszezenki, Cristhiele Taís; Zanatta, Letiane Bueno
2016-01-01
Abstract Objective: To assess the effects of obesity on lung volume and capacity in children and adolescents. Data source: This is a systematic review, carried out in Pubmed, Lilacs, Scielo and PEDro databases, using the following Keywords: Plethysmography; Whole Body OR Lung Volume Measurements OR Total Lung Capacity OR Functional Residual Capacity OR Residual Volume AND Obesity. Observational studies or clinical trials that assessed the effects of obesity on lung volume and capacity in children and adolescents (0-18 years) without any other associated disease; in English; Portuguese and Spanish languages were selected. Methodological quality was assessed by the Agency for Healthcare Research and Quality. Data synthesis: Of the 1,030 articles, only four were included in the review. The studies amounted to 548 participants, predominantly males, with sample size ranging from 45 to 327 individuals. 100% of the studies evaluated nutritional status through BMI (z-score) and 50.0% reported the data on abdominal circumference. All demonstrated that obesity causes negative effects on lung volume and capacity, causing a reduction mainly in functional residual capacity in 75.0% of the studies; in the expiratory reserve volume in 50.0% and in the residual volume in 25.0%. The methodological quality ranged from moderate to high, with 75.0% of the studies classified as having high methodological quality. Conclusions: Obesity causes deleterious effects on lung volume and capacity in children and adolescents, mainly by reducing functional residual capacity, expiratory reserve volume and residual volume. PMID:27130483
Parrón Collar, Dámaso; Pazos Guerra, Mario; Rodriguez, Paula; Gotera, Carolina; Mahíllo-Fernández, Ignacio; Peces-Barba, Germán; Seijo, Luis M
2017-01-01
Many patients with COPD are underdiagnosed, including patients with coexisting lung cancer. We conducted a retrospective study of COPD prevalence and outcomes among all patients diagnosed with lung cancer at our institution during a 2-year period. Patients with known COPD (group A) were compared with those who received a diagnosis of COPD at the time of their oncologic workup (group B). A total of 306 patients were diagnosed with lung cancer during the study period, including 87 with COPD (28.6%). Sixty percent of patients with coexisting lung cancer and COPD were unaware of their obstructive airways disease prior to the lung cancer diagnosis. Patients in group A were older (74+9 vs 69+9 years; P =0.03), had more severe obstruction (% of predicted forced expiratory volume in one second [FEV 1 %] 55+17 vs 71+13; P =0.04), more emphysema (91% vs 65%; P =0.02), and worse diffusing capacity of the lungs for carbon monoxide 59+19% vs 72+22%; P =0.01) than patients in group B, but the latter had more advanced lung cancer (27.3% vs 13.8% stage IV disease; P =0.01) and consumed more outpatient resources ( P =0.03). Overall mortality was similar (56% vs 58%). However, stage-adjusted mortality showed a trend toward greater mortality in group B patients (1.87 [0.91-3.85]; P =0.087). COPD infradiagnosis is common in patients with coexisting lung cancer and is associated with more advanced cancer stage, greater outpatient resource consumption, and may be associated with greater stage-adjusted mortality.
Starck, J M; Weimer, I; Aupperle, H; Müller, K; Marschang, R E; Kiefer, I; Pees, M
2015-11-01
A qualitative and quantitative morphological study of the pulmonary exchange capacity of healthy and diseased Burmese pythons (Python molurus) was carried out in order to test the hypothesis that the high morphological excess capacity for oxygen exchange in the lungs of these snakes is one of the reasons why pathological processes extend throughout the lung parenchyma and impair major parts of the lungs before clinical signs of respiratory disease become apparent. Twenty-four Burmese pythons (12 healthy and 12 diseased) were included in the study. A stereology-based approach was used to quantify the lung parenchyma using computed tomography. Light microscopy was used to quantify tissue compartments and the respiratory exchange surface, and transmission electron microscopy was used to measure the thickness of the diffusion barrier. The morphological diffusion capacity for oxygen of the lungs and the anatomical diffusion factor were calculated. The calculated anatomical diffusion capacity was compared with published values for oxygen consumption of healthy snakes, and the degree to which the exchange capacity can be obstructed before normal physiological function is impaired was estimated. Heterogeneous pulmonary infections result in graded morphological transformations of pulmonary parenchyma involving lymphocyte migration into the connective tissue and thickening of the septal connective tissue, increasing thickness of the diffusion barrier and increasing transformation of the pulmonary epithelium into a columnar pseudostratified or stratified epithelium. The transformed epithelium developed by hyperplasia of ciliated cells arising from the tip of the faveolar septa and by hyperplasia of type II pneumocytes. These results support the idea that the lungs have a remarkable overcapacity for oxygen consumption and that the development of pulmonary disease continuously reduces the capacity for oxygen consumption. However, due to the overcapacity of the lungs, this reduction does not result in clinical signs and disease can progress unrecognized for an extended period. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pseudo tumors of the lung after lung volume reduction surgery.
Oey, Inger F; Jeyapalan, Kanagaratnam; Entwisle, James J; Waller, David A
2004-03-01
We describe 2 patients who underwent lung volume reduction surgery, who postoperatively had computed tomographic scans that showed symptomatic mass lesions suggestive of malignancy and an inhaled foreign body. Investigations excluded these conditions with the remaining likely diagnosis of pseudotumor secondary to buttressing material. These potential sequelae of lung volume reduction surgery should be recognized in follow-up investigations.
Patterns of lung volume use during an extemporaneous speech task in persons with Parkinson disease.
Bunton, Kate
2005-01-01
This study examined patterns of lung volume use in speakers with Parkinson disease (PD) during an extemporaneous speaking task. The performance of a control group was also examined. Behaviors described are based on acoustic, kinematic and linguistic measures. Group differences were found in breath group duration, lung volume initiation, and lung volume termination measures. Speakers in the control group alternated between a longer and shorter breath groups. With starting lung volumes being higher for the longer breath groups and lower for shorter breath groups. Speech production was terminated before reaching tidal end expiratory level. This pattern was also seen in 4 of 7 speakers with PD. The remaining 3 PD speakers initiated speech at low starting lung volumes and continued speaking below EEL. This subgroup of PD speakers ended breath groups at agrammatical boundaries, whereas control speakers ended at appropriate grammatical boundaries. As a result of participating in this exercise, the reader will (1) be able to describe the patterns of lung volume use in speakers with Parkinson disease and compare them with those employed by control speakers; and (2) obtain information about the influence of speaking task on speech breathing.
The effects of low tidal ventilation on lung strain correlate with respiratory system compliance.
Xie, Jianfeng; Jin, Fang; Pan, Chun; Liu, Songqiao; Liu, Ling; Xu, Jingyuan; Yang, Yi; Qiu, Haibo
2017-02-03
The effect of alterations in tidal volume on mortality of acute respiratory distress syndrome (ARDS) is determined by respiratory system compliance. We aimed to investigate the effects of different tidal volumes on lung strain in ARDS patients who had various levels of respiratory system compliance. Nineteen patients were divided into high (C high group) and low (C low group) respiratory system compliance groups based on their respiratory system compliance values. We defined compliance ≥0.6 ml/(cmH 2 O/kg) as C high and compliance <0.6 ml/(cmH 2 O/kg) as C low . End-expiratory lung volumes (EELV) at various tidal volumes were measured by nitrogen wash-in/washout. Lung strain was calculated as the ratio between tidal volume and EELV. The primary outcome was that lung strain is a function of tidal volume in patients with various levels of respiratory system compliance. The mean baseline EELV, strain and respiratory system compliance values were 1873 ml, 0.31 and 0.65 ml/(cmH 2 O/kg), respectively; differences in all of these parameters were statistically significant between the two groups. For all participants, a positive correlation was found between the respiratory system compliance and EELV (R = 0.488, p = 0.034). Driving pressure and strain increased together as the tidal volume increased from 6 ml/kg predicted body weight (PBW) to 12 ml/kg PBW. Compared to the C high ARDS patients, the driving pressure was significantly higher in the C low patients at each tidal volume. Similar effects of lung strain were found for tidal volumes of 6 and 8 ml/kg PBW. The "lung injury" limits for driving pressure and lung strain were much easier to exceed with increases in the tidal volume in C low patients. Respiratory system compliance affected the relationships between tidal volume and driving pressure and lung strain in ARDS patients. These results showed that increasing tidal volume induced lung injury more easily in patients with low respiratory system compliance. Clinicaltrials.gov identifier NCT01864668 , Registered 21 May 2013.
[Target volume margins for lung cancer: internal target volume/clinical target volume].
Jouin, A; Pourel, N
2013-10-01
The aim of this study was to carry out a review of margins that should be used for the delineation of target volumes in lung cancer, with a focus on margins from gross tumour volume (GTV) to clinical target volume (CTV) and internal target volume (ITV) delineation. Our review was based on a PubMed literature search with, as a cornerstone, the 2010 European Organisation for Research and Treatment of Cancer (EORTC) recommandations by De Ruysscher et al. The keywords used for the search were: radiotherapy, lung cancer, clinical target volume, internal target volume. The relevant information was categorized under the following headings: gross tumour volume definition (GTV), CTV-GTV margin (first tumoural CTV then nodal CTV definition), in field versus elective nodal irradiation, metabolic imaging role through the input of the PET scanner for tumour target volume and limitations of PET-CT imaging for nodal target volume definition, postoperative radiotherapy target volume definition, delineation of target volumes after induction chemotherapy; then the internal target volume is specified as well as tumoural mobility for lung cancer and respiratory gating techniques. Finally, a chapter is dedicated to planning target volume definition and another to small cell lung cancer. For each heading, the most relevant and recent clinical trials and publications are mentioned. Copyright © 2013. Published by Elsevier SAS.
Lung Volume during Swallowing: Single Bolus Swallows in Healthy Young Adults
ERIC Educational Resources Information Center
Hegland, Karen M. Wheeler; Huber, Jessica E.; Pitts, Teresa; Sapienza, Christine M.
2009-01-01
Purpose: This study examined the relationship between swallowing and lung volume initiation in healthy adults during single swallows of boluses differing in volume and consistency. Differences in lung volume according to respiratory phase surrounding the swallow were also assessed. Method: Nine men and 11 women between the ages of 19 and 28 years…
Wall, M A; Olson, D; Bonn, B A; Creelman, T; Buist, A S
1982-02-01
Reference standards of lung function was determined in 176 healthy North American Indian children (94 girls, 82 boys) 7 to 18 yr of age. Spirometry, maximal expiratory flow volume curves, and peak expiratory flow rate were measured using techniques and equipment recommended by the American Thoracic Society. Standing height was found to be an accurate predictor of lung function, and prediction equations for each lung function variable are presented using standing height as the independent variable. Lung volumes and expiratory flow rates in North American Indian children were similar to those previously reported for white and Mexican-American children but were greater than those in black children. In both boys and girls, lung function increased in a curvilinear fashion. Volume-adjusted maximal expiratory flow rates after expiring 50 or 75% of FVC tended to decrease in both sexes as age and height increased. Our maximal expiratory flow volume curve data suggest that as North American Indian children grow, lung volume increases at a slightly faster rate than airway size does.
Impacts of lung and tumor volumes on lung dosimetry for nonsmall cell lung cancer.
Lei, Weijie; Jia, Jing; Cao, Ruifen; Song, Jing; Hu, Liqin
2017-09-01
The purpose of this study was to determine the impacts of lung and tumor volumes on normal lung dosimetry in three-dimensional conformal radiotherapy (3DCRT), step-and-shoot intensity-modulated radiotherapy (ssIMRT), and single full-arc volumetric-modulated arc therapy (VMAT) in treatment of nonsmall cell lung cancers (NSCLC). All plans were designed to deliver a total dose of 66 Gy in 33 fractions to PTV for the 32 NSCLC patients with various total (bilateral) lung volumes, planning target volumes (PTVs), and PTV locations. The ratio of the lung volume (total lung volume excluding the PTV volume) to the PTV volume (LTR) was evaluated to represent the impacts in three steps. (a) The least squares method was used to fit mean lung doses (MLDs) to PTVs or LTRs with power-law function in the population cohort (N = 32). (b) The population cohort was divided into three groups by LTRs based on first step and then by PTVs, respectively. The MLDs were compared among the three techniques in each LTR group (LG) and each PTV group (PG). (c) The power-law correlation was tested by using the adaptive radiation therapy (ART) planning data of individual patients in the individual cohort (N = 4). Different curves of power-law function with high R 2 values were observed between averaged LTRs and averaged MLDs for 3DCRT, ssIMRT, and VMAT, respectively. In the individual cohort, high R 2 values of fitting curves were also observed in individual patients in ART, although the trend was highly patient-specific. There was a more obvious correlation between LTR and MLD than that between PTV and MLD. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Lobar analysis of collapsibility indices to assess functional lung volumes in COPD patients.
Kitano, Mariko; Iwano, Shingo; Hashimoto, Naozumi; Matsuo, Keiji; Hasegawa, Yoshinori; Naganawa, Shinji
2014-01-01
We investigated correlations between lung volume collapsibility indices and pulmonary function test (PFT) results and assessed lobar differences in chronic obstructive pulmonary disease (COPD) patients, using paired inspiratory and expiratory three dimensional (3D) computed tomography (CT) images. We retrospectively assessed 28 COPD patients who underwent paired inspiratory and expiratory CT and PFT exams on the same day. A computer-aided diagnostic system calculated total lobar volume and emphysematous lobar volume (ELV). Normal lobar volume (NLV) was determined by subtracting ELV from total lobar volume, both for inspiratory phase (NLVI) and for expiratory phase (NLVE). We also determined lobar collapsibility indices: NLV collapsibility ratio (NLVCR) (%)=(1-NLVE/NLVI)×100%. Associations between lobar volumes and PFT results, and collapsibility indices and PFT results were determined by Pearson correlation analysis. NLVCR values were significantly correlated with PFT results. Forced expiratory volume in 1 second, measured as percent of predicted results (FEV1%P) was significantly correlated with NLVCR values for the lower lobes (P<0.01), whereas this correlation was not significant for the upper lobes (P=0.05). FEV1%P results were also moderately correlated with inspiratory, expiratory ELV (ELVI,E) for the lower lobes (P<0.05). In contrast, the ratio of the diffusion capacity for carbon monoxide to alveolar gas volume, measured as percent of predicted (DLCO/VA%P) results were strongly correlated with ELVI for the upper lobes (P<0.001), whereas this correlation with NLVCR values was weaker for upper lobes (P<0.01) and was not significant for the lower lobes (P=0.26). FEV1%P results were correlated with NLV collapsibility indices for lower lobes, whereas DLCO/VA%P results were correlated with NLV collapsibility indices and ELV for upper lobes. Thus, evaluating lobar NLV collapsibility might be useful for estimating pulmonary function in COPD patients.
Wibmer, Thomas; Rüdiger, Stefan; Kropf-Sanchen, Cornelia; Stoiber, Kathrin M; Rottbauer, Wolfgang; Schumann, Christian
2014-11-01
There is growing evidence that exercise-induced variation in lung volumes is an important source of ventilatory limitation and is linked to exercise intolerance in COPD. The aim of this study was to compare the correlations of walk distance and lung volumes measured before and after a 6-min walk test (6MWT) in subjects with COPD. Forty-five subjects with stable COPD (mean pre-bronchodilator FEV1: 47 ± 18% predicted) underwent a 6MWT. Body plethysmography was performed immediately pre- and post-6MWT. Correlations were generally stronger between 6-min walk distance and post-6MWT lung volumes than between 6-min walk distance and pre-6MWT lung volumes, except for FEV1. These differences in Pearson correlation coefficients were significant for residual volume expressed as percent of total lung capacity (-0.67 vs -0.58, P = .043), percent of predicted residual volume expressed as percent of total lung capacity (-0.68 vs -0.59, P = .026), inspiratory vital capacity (0.65 vs 0.54, P = .019), percent of predicted inspiratory vital capacity (0.49 vs 0.38, P = .037), and percent of predicted functional residual capacity (-0.62 vs -0.47, P = .023). In subjects with stable COPD, lung volumes measured immediately after 6MWT are more closely related to exercise limitation than baseline lung volumes measured before 6MWT, except for FEV1. Therefore, pulmonary function testing immediately after exercise should be included in future studies on COPD for the assessment of exercise-induced ventilatory constraints to physical performance that cannot be adequately assessed from baseline pulmonary function testing at rest. Copyright © 2014 by Daedalus Enterprises.
VARIATION OF LUNG DEPOSITION OF MICRON SIZE PARTICLES WITH LUNG VOLUME AND BREATHING PATTERN
Lung volume and breathing pattern are the source of inter-and intra-subject variability of lung deposition of inhaled particles. Controlling these factors may help optimize delivery of aerosol medicine to the target site within the lung. In the present study we measured total lu...
Santos, Cíntia L; Moraes, Lillian; Santos, Raquel S; Oliveira, Mariana G; Silva, Johnatas D; Maron-Gutierrez, Tatiana; Ornellas, Débora S; Morales, Marcelo M; Capelozzi, Vera L; Jamel, Nelson; Pelosi, Paolo; Rocco, Patricia R M; Garcia, Cristiane S N B
2012-03-01
We hypothesized that: (1) intraabdominal hypertension increases pulmonary inflammatory and fibrogenic responses in acute lung injury (ALI); (2) in the presence of intraabdominal hypertension, higher tidal volume reduces lung damage in extrapulmonary ALI, but not in pulmonary ALI. Wistar rats were randomly allocated to receive Escherichia coli lipopolysaccharide intratracheally (pulmonary ALI) or intraperitoneally (extrapulmonary ALI). After 24 h, animals were randomized into subgroups without or with intraabdominal hypertension (15 mmHg) and ventilated with positive end expiratory pressure = 5 cmH(2)O and tidal volume of 6 or 10 ml/kg during 1 h. Lung and chest wall mechanics, arterial blood gases, lung and distal organ histology, and interleukin (IL)-1β, IL-6, caspase-3 and type III procollagen (PCIII) mRNA expressions in lung tissue were analyzed. With intraabdominal hypertension, (1) chest-wall static elastance increased, and PCIII, IL-1β, IL-6, and caspase-3 expressions were more pronounced than in animals with normal intraabdominal pressure in both ALI groups; (2) in extrapulmonary ALI, higher tidal volume was associated with decreased atelectasis, and lower IL-6 and caspase-3 expressions; (3) in pulmonary ALI, higher tidal volume led to higher IL-6 expression; and (4) in pulmonary ALI, liver, kidney, and villi cell apoptosis was increased, but not affected by tidal volume. Intraabdominal hypertension increased inflammation and fibrogenesis in the lung independent of ALI etiology. In extrapulmonary ALI associated with intraabdominal hypertension, higher tidal volume improved lung morphometry with lower inflammation in lung tissue. Conversely, in pulmonary ALI associated with intraabdominal hypertension, higher tidal volume increased IL-6 expression.
Primary pulmonary plasmacytoma with diffuse alveolar consolidation: a case report.
Mohammad Taheri, Zohreh; Mohammadi, Forouzan; Karbasi, Mehrdad; Seyfollahi, Leila; Kahkoei, Shahram; Ghadiany, Mojtaba; Fayazi, Nader; Mansouri, Davood
2010-06-13
Solitary extramedullary plasmacytomas are plasma cell tumors that tend to develop in mucosa-associated lymphoid tissues including the sinonasal or nasopharyngeal regions. Primary plasmacytoma of the lung is exceedingly rare and often presents as a solitary mass or nodule in mid-lung or hilar areas and diagnosed after resection. Herein, we report a case of primary pulmonary plasmacytoma that presented with diffuse alveolar consolidation and diagnosed by transbronchial lung biopsy.
Primary Pulmonary Plasmacytoma with Diffuse Alveolar Consolidation: A Case Report
Mohammad Taheri, Zohreh; Mohammadi, Forouzan; Karbasi, Mehrdad; Seyfollahi, Leila; Kahkoei, Shahram; Ghadiany, Mojtaba; Fayazi, Nader; Mansouri, Davood
2010-01-01
Solitary extramedullary plasmacytomas are plasma cell tumors that tend to develop in mucosa-associated lymphoid tissues including the sinonasal or nasopharyngeal regions. Primary plasmacytoma of the lung is exceedingly rare and often presents as a solitary mass or nodule in mid-lung or hilar areas and diagnosed after resection. Herein, we report a case of primary pulmonary plasmacytoma that presented with diffuse alveolar consolidation and diagnosed by transbronchial lung biopsy. PMID:21151727
Lung volume is a determinant of aerosol bolus dispersion.
Schulz, Holger; Eder, Gunter; Heyder, Joachim
2003-01-01
The technique of inhaling a small volume element labeled with particles ("aerosol bolus") can be used to assess convective gas mixing in the lung. While a bolus undergoes mixing in the lung, particles are dispersed in an increasing volume of the respired air. However, determining factors of bolus dispersion are not yet completely understood. The present study tested the hypothesis that bolus dispersion is related, among others, to the total volume in which the bolus is allowed to mix--i.e., to the individual lung size. Bolus dispersion was measured in 32 anesthetized, mechanically ventilated dogs with total lung capacities (TLCs) of 1.1-2.5 L. Six-milliliter aerosol boluses were introduced at various preselected time-points during inspiration to probe different volumetric lung depths. Dispersion (SD) was determined by moment analysis of particle concentrations in the expired air. We found linear correlations between SD at a given lung depth and the individual end-inspiratory lung volume (V(L)). The relationship was tightest for boluses inhaled deepest into the lungs: SD(40) = 0.068 V(L) - 1.77, r(2) = 0.59. Normalizing SD to V(L) abolished this dependency and resulted in a considerable reduction of inter-individual variability as compared to the uncorrected measurements. These data indicate that lung size influences measurements of bolus dispersion. It therefore appears reasonable to apply a normalization procedure before interpreting the data. Apart from a reduction in measurement variability, this should help to separate the effects on bolus dispersion of altered lung volumes and altered mixing processes in diseased lungs.
Deposition of ultrafine (nano) particles in the human lung.
Asgharian, Bahman; Price, Owen T
2007-10-01
Increased production of industrial devices constructed with nanostructured materials raises the possibility of environmental and occupational human exposure with consequent adverse health effects. Ultrafine (nano) particles are suspected of having increased toxicity due to their size characteristics that serve as carrier transports. For this reason, it is critical to refine and improve existing deposition models in the nano-size range. A mathematical model of nanoparticle transport by airflow convection, axial diffusion, and convective mixing (dispersion) was developed in realistic stochastically generated asymmetric human lung geometries. The cross-sectional averaged convective-diffusion equation was solved analytically to find closed-form solutions for particle concentration and losses per lung airway. Airway losses were combined to find lobar, regional, and total lung deposition. Axial transport by diffusion and dispersion was found to have an effect on particle deposition. The primary impact was in the pulmonary region of the lung for particles larger than 10 nm in diameter. Particles below 10 nm in diameter were effectively removed from the inhaled air in the tracheobronchial region with little or no penetration into the pulmonary region. Significant variation in deposition was observed when different asymmetric lung geometries were used. Lobar deposition was found to be highest in the left lower lobe. Good agreement was found between predicted depositions of ultrafine (nano) particles with measurements in the literature. The approach used in the proposed model is recommended for more realistic assessment of regional deposition of diffusion-dominated particles in the lung, as it provides a means to more accurately relate exposure and dose to lung injury and other biological responses.
Choi, Sanghun; Hoffman, Eric A.; Wenzel, Sally E.; Tawhai, Merryn H.; Yin, Youbing; Castro, Mario
2013-01-01
The purpose of this work was to explore the use of image registration-derived variables associated with computed tomographic (CT) imaging of the lung acquired at multiple volumes. As an evaluation of the utility of such an imaging approach, we explored two groups at the extremes of population ranging from normal subjects to severe asthmatics. A mass-preserving image registration technique was employed to match CT images at total lung capacity (TLC) and functional residual capacity (FRC) for assessment of regional air volume change and lung deformation between the two states. Fourteen normal subjects and thirty severe asthmatics were analyzed via image registration-derived metrics together with their pulmonary function test (PFT) and CT-based air-trapping. Relative to the normal group, the severely asthmatic group demonstrated reduced air volume change (consistent with air trapping) and more isotropic deformation in the basal lung regions while demonstrating increased air volume change associated with increased anisotropic deformation in the apical lung regions. These differences were found despite the fact that both PFT-derived TLC and FRC in the two groups were nearly 100% of predicted values. Data suggest that reduced basal-lung air volume change in severe asthmatics was compensated by increased apical-lung air volume change and that relative increase in apical-lung air volume change in severe asthmatics was accompanied by enhanced anisotropic deformation. These data suggest that CT-based deformation, assessed via inspiration vs. expiration scans, provides a tool for distinguishing differences in lung mechanics when applied to the extreme ends of a population range. PMID:23743399
Loring, Stephen H; O'Donnell, Carl R; Butler, James P; Lindholm, Peter; Jacobson, Francine; Ferrigno, Massimo
2007-03-01
Throughout life, most mammals breathe between maximal and minimal lung volumes determined by respiratory mechanics and muscle strength. In contrast, competitive breath-hold divers exceed these limits when they employ glossopharyngeal insufflation (GI) before a dive to increase lung gas volume (providing additional oxygen and intrapulmonary gas to prevent dangerous chest compression at depths recently greater than 100 m) and glossopharyngeal exsufflation (GE) during descent to draw air from compressed lungs into the pharynx for middle ear pressure equalization. To explore the mechanical effects of these maneuvers on the respiratory system, we measured lung volumes by helium dilution with spirometry and computed tomography and estimated transpulmonary pressures using an esophageal balloon after GI and GE in four competitive breath-hold divers. Maximal lung volume was increased after GI by 0.13-2.84 liters, resulting in volumes 1.5-7.9 SD above predicted values. The amount of gas in the lungs after GI increased by 0.59-4.16 liters, largely due to elevated intrapulmonary pressures of 52-109 cmH(2)O. The transpulmonary pressures increased after GI to values ranging from 43 to 80 cmH(2)O, 1.6-2.9 times the expected values at total lung capacity. After GE, lung volumes were reduced by 0.09-0.44 liters, and the corresponding transpulmonary pressures decreased to -15 to -31 cmH(2)O, suggesting closure of intrapulmonary airways. We conclude that the lungs of some healthy individuals are able to withstand repeated inflation to transpulmonary pressures far greater than those to which they would normally be exposed.
Mondoñedo, Jarred R; Suki, Béla
2017-02-01
Lung volume reduction surgery (LVRS) and bronchoscopic lung volume reduction (bLVR) are palliative treatments aimed at reducing hyperinflation in advanced emphysema. Previous work has evaluated functional improvements and survival advantage for these techniques, although their effects on the micromechanical environment in the lung have yet to be determined. Here, we introduce a computational model to simulate a force-based destruction of elastic networks representing emphysema progression, which we use to track the response to lung volume reduction via LVRS and bLVR. We find that (1) LVRS efficacy can be predicted based on pre-surgical network structure; (2) macroscopic functional improvements following bLVR are related to microscopic changes in mechanical force heterogeneity; and (3) both techniques improve aspects of survival and quality of life influenced by lung compliance, albeit while accelerating disease progression. Our model predictions yield unique insights into the microscopic origins underlying emphysema progression before and after lung volume reduction.
Mondoñedo, Jarred R.
2017-01-01
Lung volume reduction surgery (LVRS) and bronchoscopic lung volume reduction (bLVR) are palliative treatments aimed at reducing hyperinflation in advanced emphysema. Previous work has evaluated functional improvements and survival advantage for these techniques, although their effects on the micromechanical environment in the lung have yet to be determined. Here, we introduce a computational model to simulate a force-based destruction of elastic networks representing emphysema progression, which we use to track the response to lung volume reduction via LVRS and bLVR. We find that (1) LVRS efficacy can be predicted based on pre-surgical network structure; (2) macroscopic functional improvements following bLVR are related to microscopic changes in mechanical force heterogeneity; and (3) both techniques improve aspects of survival and quality of life influenced by lung compliance, albeit while accelerating disease progression. Our model predictions yield unique insights into the microscopic origins underlying emphysema progression before and after lung volume reduction. PMID:28182686
Physical principle of airway design in human lungs
NASA Astrophysics Data System (ADS)
Park, Keunhwan; Son, Taeho; Kim, Wonjung; Kim, Ho-Young
2014-11-01
From an engineering perspective, lungs are natural microfluidic devices that extract oxygen from air. In the bronchial tree, airways branch by dichotomy with a systematic reduction of their diameters. It is generally accepted that in conducting airways, which air passes on the way to the acinar airways from the atmosphere, the reduction ratio of diameter is closely related to the minimization of viscous dissipation. Such a principle is formulated as the Hess-Murray law. However, in acinar airways, where oxygen transfer to alveolae occurs, the diameter reduction with progressive generations is more moderate than in conducting airways. Noting that the dominant transfer mechanism in acinar airways is diffusion rather than advection, unlike conducting airways, we construct a mathematical model for oxygen transfer through a series of acinar airways. Our model allows us to predict the optimal airway reduction ratio that maximizes the oxygen transfer in a finite airway volume, thereby rationalizing the observed airway reduction ratio in acinar airways.
Ruano, Rodrigo; Britto, Ingrid Schwach Werneck; Sananes, Nicolas; Lee, Wesley; Sangi-Haghpeykar, Haleh; Deter, Russell L
2016-06-01
To evaluate fetal lung growth using 3-dimensional sonography in healthy fetuses and those with congenital diaphragmatic hernia (CDH). Right and total lung volumes were serially evaluated by 3-dimensional sonography in 66 healthy fetuses and 52 fetuses with left-sided CDH between 20 and 37 weeks' menstrual age. Functions fitted to these parameters were compared for 2 groups: (1) healthy versus those with CDH; and (2) fetuses with CHD who survived versus those who died. Fetal right and total lung volumes as well as fetal observed-to-expected right and total lung volume ratios were significantly lower in fetuses with CDH than healthy fetuses (P< .001) and in those fetuses with CDH who died (P< .001). The observed-to-expected right and total lung volume ratios did not vary with menstrual age in healthy fetuses or in those with CDH (independent of outcome). Lung volume rates were lower in fetuses with left-sided CDH compared to healthy fetuses, as well as in fetuses with CDH who died compared to those who survived. The observed-to-expected right and total lung volume ratios were relatively constant throughout menstrual age in fetuses with left-sided CDH, suggesting that the origin of their lung growth abnormalities occurred before 20 weeks and did not progress. The observed-to-expected ratios may be useful in predicting the outcome in fetuses with CDH independent of menstrual age. © 2016 by the American Institute of Ultrasound in Medicine.
Yoshida, Takeshi; Uchiyama, Akinori; Matsuura, Nariaki; Mashimo, Takashi; Fujino, Yuji
2012-05-01
We investigated whether potentially injurious transpulmonary pressure could be generated by strong spontaneous breathing and exacerbate lung injury even when plateau pressure is limited to <30 cm H2O. Prospective, randomized, animal study. University animal research laboratory. Thirty-two New Zealand White rabbits. Lavage-injured rabbits were randomly allocated to four groups to receive low or moderate tidal volume ventilation, each combined with weak or strong spontaneous breathing effort. Inspiratory pressure for low tidal volume ventilation was set at 10 cm H2O and tidal volume at 6 mL/kg. For moderate tidal volume ventilation, the values were 20 cm H2O and 7-9 mL/kg. The groups were: low tidal volume ventilation+spontaneous breathingweak, low tidal volume ventilation+spontaneous breathingstrong, moderate tidal volume ventilation+spontaneous breathingweak, and moderate tidal volume ventilation+spontaneous breathingstrong. Each group had the same settings for positive end-expiratory pressure of 8 cm H2O. Respiratory variables were measured every 60 mins. Distribution of lung aeration and alveolar collapse were histologically evaluated. Low tidal volume ventilation+spontaneous breathingstrong showed the most favorable oxygenation and compliance of respiratory system, and the best lung aeration. By contrast, in moderate tidal volume ventilation+spontaneous breathingstrong, the greatest atelectasis with numerous neutrophils was observed. While we applied settings to maintain plateau pressure at <30 cm H2O in all groups, in moderate tidal volume ventilation+spontaneous breathingstrong, transpulmonary pressure rose >33 cm H2O. Both minute ventilation and respiratory rate were higher in the strong spontaneous breathing groups. Even when plateau pressure is limited to <30 cm H2O, combined with increased respiratory rate and tidal volume, high transpulmonary pressure generated by strong spontaneous breathing effort can worsen lung injury. When spontaneous breathing is preserved during mechanical ventilation, transpulmonary pressure and tidal volume should be strictly controlled to prevent further lung injury.
Contini, Mauro; Compagnino, Elisa; Cattadori, Gaia; Magrì, Damiano; Camera, Marina; Apostolo, Anna; Farina, Stefania; Palermo, Pietro; Gertow, Karl; Tremoli, Elena; Fiorentini, Cesare; Agostoni, Piergiuseppe
2016-04-01
The benefit of angiotensin converting enzyme (ACE) inhibition in chronic heart failure (HF) is partially due to its effects on pulmonary function and particularly on lung diffusion, the latter being counteracted by acetylsalicylic acid (ASA). Tissue ACE activity is largely determined by an insertion/deletion (I/D) polymorphism resulting in three possible genotypes (DD, ID and II). It is not clear if ACE inhibitor therapy could exert different effects in these genotypes. The aim of the study was to understand whether I/D polymorphism interferes with ACE inhibitor's protection of the lungs in HF during acute fluid overload. 100 HF patients (left ventricular ejection fraction ≤40 %) in stable clinical conditions, treated with enalapril but without ASA performed pulmonary function tests including lung diffusion (DLco) and its subcomponents, membrane diffusion (Dm) and capillary volume (Vcap), and a cardiopulmonary exercise test before and immediately after rapid infusion of 500 cc saline. ACE I/D genotype prevalence was: DD = 28, ID =55 and II = 17 cases. No significant differences in major pulmonary function and exercise parameters were observed before saline infusion among ACE genotypes. After fluid challenge, DD patients presented a higher DLco and Dm reduction than ID and II (DLco -2.3 ± 1.3 vs. -0.8 ± 1.9 and -0.6 ± 1 mL/mmHg/min, p < 0.0001 and p < 0.01; Dm -7 ± 5 vs. -3.2 ± 7.4 and -1.3 ± 5 mL/mmHg/min, p < 0.05, respectively) and a higher increase in VE/VCO2 slope than II (1.8 ± 1.9 vs. -0.8 ± 2.3, p = 0.01). ACE DD genotype is associated with higher vulnerability of the alveolar-capillary membrane to acute fluid overload in HF patients treated with ACE inhibitors.
Airway diffusing capacity of nitric oxide and steroid therapy in asthma.
Shin, Hye-Won; Rose-Gottron, Christine M; Cooper, Dan M; Newcomb, Robert L; George, Steven C
2004-01-01
Exhaled nitric oxide (NO) concentration is a noninvasive index for monitoring lung inflammation in diseases such as asthma. The plateau concentration at constant flow is highly dependent on the exhalation flow rate and the use of corticosteroids and cannot distinguish airway and alveolar sources. In subjects with steroid-naive asthma (n = 8) or steroid-treated asthma (n = 12) and in healthy controls (n = 24), we measured flow-independent NO exchange parameters that partition exhaled NO into airway and alveolar regions and correlated these with symptoms and lung function. The mean (+/-SD) maximum airway flux (pl/s) and airway tissue concentration [parts/billion (ppb)] of NO were lower in steroid-treated asthmatic subjects compared with steroid-naive asthmatic subjects (1,195 +/- 836 pl/s and 143 +/- 66 ppb compared with 2,693 +/- 1,687 pl/s and 438 +/- 312 ppb, respectively). In contrast, the airway diffusing capacity for NO (pl.s-1.ppb-1) was elevated in both asthmatic groups compared with healthy controls, independent of steroid therapy (11.8 +/- 11.7, 8.71 +/- 5.74, and 3.13 +/- 1.57 pl.s-1.ppb-1 for steroid treated, steroid naive, and healthy controls, respectively). In addition, the airway diffusing capacity was inversely correlated with both forced expired volume in 1 s and forced vital capacity (%predicted), whereas the airway tissue concentration was positively correlated with forced vital capacity. Consistent with previously reported results from Silkoff et al. (Silkoff PE, Sylvester JT, Zamel N, and Permutt S, Am J Respir Crit Med 161: 1218-1228, 2000) that used an alternate technique, we conclude that the airway diffusing capacity for NO is elevated in asthma independent of steroid therapy and may reflect clinically relevant changes in airways.
Localization of lung fields in HRCT images using a deep convolution neural network
NASA Astrophysics Data System (ADS)
Kumar, Abhishek; Agarwala, Sunita; Dhara, Ashis Kumar; Mukhopadhyay, Sudipta; Nandi, Debashis; Garg, Mandeep; Khandelwal, Niranjan; Kalra, Naveen
2018-02-01
Lung field segmentation is a prerequisite step for the development of a computer-aided diagnosis system for interstitial lung diseases observed in chest HRCT images. Conventional methods of lung field segmentation rely on a large gray value contrast between lung fields and surrounding tissues. These methods fail on lung HRCT images with dense and diffused pathology. An efficient prepro- cessing could improve the accuracy of segmentation of pathological lung field in HRCT images. In this paper, a convolution neural network is used for localization of lung fields in HRCT images. The proposed method provides an optimal bounding box enclosing the lung fields irrespective of the presence of diffuse pathology. The performance of the proposed algorithm is validated on 330 lung HRCT images obtained from MedGift database on ZF and VGG networks. The model achieves a mean average precision of 0.94 with ZF net and a slightly better performance giving a mean average precision of 0.95 in case of VGG net.
Effects of obesity on lung volume and capacity in children and adolescents: a systematic review.
Winck, Aline Dill; Heinzmann-Filho, João Paulo; Soares, Rafaela Borges; da Silva, Juliana Severo; Woszezenki, Cristhiele Taís; Zanatta, Letiane Bueno
2016-12-01
To assess the effects of obesity on lung volume and capacity in children and adolescents. This is a systematic review, carried out in Pubmed, Lilacs, Scielo and PEDro databases, using the following Keywords: Plethysmography; Whole Body OR Lung Volume Measurements OR Total Lung Capacity OR Functional Residual Capacity OR Residual Volume AND Obesity. Observational studies or clinical trials that assessed the effects of obesity on lung volume and capacity in children and adolescents (0-18 years) without any other associated disease; in English; Portuguese and Spanish languages were selected. Methodological quality was assessed by the Agency for Healthcare Research and Quality. Of the 1,030 articles, only four were included in the review. The studies amounted to 548 participants, predominantly males, with sample size ranging from 45 to 327 individuals. 100% of the studies evaluated nutritional status through BMI (z-score) and 50.0% reported the data on abdominal circumference. All demonstrated that obesity causes negative effects on lung volume and capacity, causing a reduction mainly in functional residual capacity in 75.0% of the studies; in the expiratory reserve volume in 50.0% and in the residual volume in 25.0%. The methodological quality ranged from moderate to high, with 75.0% of the studies classified as having high methodological quality. Obesity causes deleterious effects on lung volume and capacity in children and adolescents, mainly by reducing functional residual capacity, expiratory reserve volume and residual volume. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
SU-E-J-136: Evaluation of a Non-Invasive Method on Lung Tumor Tracking.
Zhao, T; White, B; Low, D
2012-06-01
to develop a non-invasive method to track lung motion in free-breathing patients. A free-breathing breathing model has been developed to use tidal volume and air flow rate as surrogates for lung trajectories. In this study, 4D CT data sets were acquired during simulation and were reconstructed into 10 phases. Total lung capacities were calculated from the reconstructed images. Continuous signals from the abdominal pneumatic belt were correlated to the volumes and were therefore converted into a curve of tidal volumes. Air flow rate were calculated as the first order derivative of the tidal volume curve. Lung trajectories in the 10 reconstructed images were obtained using B-Spline registration. Parameters of the free-breathing lung motion model were fit from the tidal volumes, airflow rates and lung trajectories using the simulation data. Patients were rescanned every week during the treatment. Prediction of lung trajectories from the model were given and compared to the actual positions in BEV. Trajectories of lung were predicted with residual error of 1.49mm at 95th percentile of all tracked points. Tracking was stable and reproducible over two weeks. Non-invasive tumor tracking based on a free-breathing lung motion model is feasible and stable over weeks. © 2012 American Association of Physicists in Medicine.
Corley, Amanda; Sharpe, Nicola; Caruana, Lawrence R; Spooner, Amy J; Fraser, John F
2014-04-01
Airway suctioning in mechanically ventilated patients is required to maintain airway patency. Closed suction catheters (CSCs) minimize lung volume loss during suctioning but require cleaning post-suction. Despite their widespread use, there is no published evidence examining lung volumes during CSC cleaning. The study objectives were to quantify lung volume changes during CSC cleaning and to determine whether these changes were preventable using a CSC with a valve in situ between the airway and catheter cleaning chamber. This prospective randomized crossover study was conducted in a metropolitan tertiary ICU. Ten patients mechanically ventilated via volume-controlled synchronized intermittent mandatory ventilation (SIMV-VC) and requiring manual hyperinflation (MHI) were included in this study. CSC cleaning was performed using 2 different brands of CSC (one with a valve [Ballard Trach Care 72, Kimberly-Clark, Roswell, Georgia] and one without [Portex Steri-Cath DL, Smiths Medical, Dublin, Ohio]). The maneuvers were performed during both SIMV-VC and MHI. Lung volume change was measured via impedance change using electrical impedance tomography. A mixed model was used to compare the estimated means. During cleaning of the valveless CSC, significant decreases in lung impedance occurred during MHI (-2563 impedance units, 95% CI 2213-2913, P < .001), and significant increases in lung impedance occurred during SIMV (762 impedance units, 95% CI 452-1072, P < .001). In contrast, cleaning of the CSC with a valve in situ resulted in non-significant lung volume changes and maintenance of normal ventilation during MHI and SIMV-VC, respectively (188 impedance units, 95% CI -136 to 511, P = .22; and 22 impedance units, 95% CI -342 to 299, P = .89). When there is no valve between the airway and suction catheter, cleaning of the CSC results in significant derangements in lung volume. Therefore, the presence of such a valve should be considered essential in preserving lung volumes and uninterrupted ventilation in mechanically ventilated patients.
Bernardin, L; Douglas, N H M; Collins, D J; Giles, S L; O'Flynn, E A M; Orton, M; deSouza, N M
2014-02-01
To establish repeatability of apparent diffusion coefficients (ADCs) acquired from free-breathing diffusion-weighted magnetic resonance imaging (DW-MRI) in malignant lung lesions and investigate effects of lesion size, location and respiratory motion. Thirty-six malignant lung lesions (eight patients) were examined twice (1- to 5-h interval) using T1-weighted, T2-weighted and axial single-shot echo-planar DW-MRI (b = 100, 500, 800 s/mm(2)) during free-breathing. Regions of interest around target lesions on computed b = 800 s/mm(2) images by two independent observers yielded ADC values from maps (pixel-by-pixel fitting using all b values and a mono-exponential decay model). Intra- and inter-observer repeatability was assessed per lesion, per patient and by lesion size (> or <2 cm) or location. ADCs were similar between observers (mean ± SD, 1.15 ± 0.28 × 10(-3) mm(2)/s, observer 1; 1.15 ± 0.29 × 10(-3) mm(2)/s, observer 2). Intra-observer coefficients of variation of the mean [median] ADC per lesion and per patient were 11% [11.4%], 5.7% [5.7%] for observer 1 and 9.2% [9.5%], 3.9% [4.7%] for observer 2 respectively; inter-observer values were 8.9% [9.3%] (per lesion) and 3.0% [3.7%] (per patient). Inter-observer coefficient of variation (CoV) was greater for lesions <2 cm (n = 20) compared with >2 cm (n = 16) (10.8% vs 6.5% ADCmean, 11.3% vs 6.7% ADCmedian) and for mid (n = 14) vs apical (n = 9) or lower zone (n = 13) lesions (13.9%, 2.7%, 3.8% respectively ADCmean; 14.2%, 2.8%, 4.7% respectively ADCmedian). Free-breathing DW-MRI of whole lung achieves good intra- and inter-observer repeatability of ADC measurements in malignant lung tumours. • Diffusion-weighted MRI of the lung can be satisfactorily acquired during free-breathing • DW-MRI demonstrates high contrast between primary and metastatic lesions and normal lung • Apparent diffusion coefficient (ADC) measurements in lung tumours are repeatable and reliable • ADC offers potential in assessing response in lung metastases in clinical trials.
Feng, Yong; Wang, Jianyue; Zhang, Yang; Wang, Shiduan
2016-01-01
Background To investigate the protective effects of additional ipsilateral ventilation of low tidal volume and high frequency on lung functions in the patients receiving lobectomy. Material/Methods Sixty patients receiving lung lobectomy were randomized into the conventional one-lung ventilation (CV) group (n=30) and the ipsilateral low tidal volume high frequency ventilation (LV) group (n=30). In the CV group, patients received only contralateral OLV. In the LV group, patients received contralateral ventilation and additional ipsilateral ventilation of low tidal volume of 1–2 ml/kg and high frequency of 40 times/min. Normal lung tissues were biopsied for the analysis of lung injury. Lung injury was scored by evaluating interstitial edema, alveolar edema, neutrophil infiltration, and alveolar congestion. Results At 30 min and 60 min after the initiation of one-lung ventilation and after surgery, patients in the LV group showed significantly higher ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen than those in the CV group (P<0.001). Lung injury was significantly less severe (2.7±0.7) in the LV group than in the CV group (3.1±0.7) (P=0.006). Conclusions Additional ipsilateral ventilation of low tidal volume and high frequency can decrease the risk of hypoxemia and alleviate lung injury in patients receiving lobectomy. PMID:27166086
The Effect of Lung Volume on Selected Phonatory and Articulatory Variables.
ERIC Educational Resources Information Center
Dromey, Christopher; Ramig, Lorraine Olson
1998-01-01
This study examined effects of manipulating lung volume on phonatory and articulatory kinematic behavior during sentence production in ten healthy adults. Significant differences at different lung volume levels were found for sound pressure level, fundamental frequency, semitone standard deviation, and upper and lower lip displacements and peak…
Lung Volume Measured during Sequential Swallowing in Healthy Young Adults
ERIC Educational Resources Information Center
Hegland, Karen Wheeler; Huber, Jessica E.; Pitts, Teresa; Davenport, Paul W.; Sapienza, Christine M.
2011-01-01
Purpose: Outcomes from studying the coordinative relationship between respiratory and swallow subsystems are inconsistent for sequential swallows, and the lung volume at the initiation of sequential swallowing remains undefined. The first goal of this study was to quantify the lung volume at initiation of sequential swallowing ingestion cycles and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, A; Stanley, D; Papanikolaou, N
Purpose: With the increasing use of DIBH techniques for left-sided breast cancer, 3D surface-image guided DIBH techniques have improved patient setup and facilitated DIBH radiation delivery. However, quantification of the daily separation between the heart and left breast still presents a challenge. One method of assuring separation is to ensure consistent left lung filling. With this in mind, the aim of this study is to retrospectively quantify left lung volume from weekly breath hold-CBCTs (bh-CBCT) of left-sided breast patients treated using a 3D surface imaging system. Methods: Ten patients (n=10) previously treated to the left breast using the C-Rad CatalystHDmore » system (C-RAD AG, Uppsala Sweden) were evaluated. Patients were positioned with CatalystHD and with bh-CBCT. bh-CBCTs were acquired at the validation date, first day of treatment and at subsequent weekly intervals. Total treatment courses spanned from 3 to 5 weeks. bh-CBCT images were exported to VelocityAI and the left lung volume was segmented. Volumes were recorded and analyzed. Results: A total of 41 bh-CBCTs were contoured in VelocityAI for the 10 patients. The mean left lung volume for all patients was 1657±295cc based on validation bh-CBCT. With the subsequent lung volumes normalized to the validation lung volume, the mean relative ratios for all patients were 1.02±0.11, 0.97±0.14, 0.98±0.11, 1.02±0.01, and 0.96±0.02 for week 1, 2, 3, 4, and 5, respectively. Overall, the mean left lung volume change was ≤4.0% over a 5-week course; however left lung volume variations of up to 28% were noted in a select patient. Conclusion: With the use of the C-RAD CatalystHD system, the mean lung volume variability over a 5-week course of DIBH treatments was ≤4.0%. By minimizing left lung volume variability, heart to left breast separation maybe more consistently maintained. AN Gutierrez has a research grant from C-RAD AG.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, N; Wengler, K; Yorke, E
2014-06-15
Purpose: To investigate early changes in tumor Apparent Diffusion Coefficients derived from diffusion weighted (DW)-MRI of lung cancer patients undergoing SBRT, as a possible early predictor of treatment response. Methods: DW-MRI scans were performed in this prospective phase I IRB-approved study of inoperable lung tumors at various time-points during the course of SBRT treatments. Axial DW scan using multi b-values ranging from 0–1000 s/mm{sup 2} were acquired in treatment position on a 3T Philips MR scanner during simulation, one hour after the first fraction (8 Gy), after a total of 5 fractions (40 Gy) and 4 weeks after SBRT delivery.more » A monoexponential model based on a least square fit from all b values was performed on a pixel-by-pixel basis and ADC was calculated. GTVs drawn on 4DCT for planning were mapped on the T2w MRI (acquired at exhale) after deformable registration. These volumes were then mapped on DWI scan for ADC calculation after rigid registration between the anatomical scan and diffusion scan. T2w scan on followup time points were deformably registered to the pretreatment T2 scan. Results: The first two patients in this study were analyzed. Median ADC values were 1.48, 1.48, 1.62 and 1.83 (10{sup −3}×) mm{sup 2}/s at pretreatment, after 8 Gy, after 40 Gy and 4 weeks posttreatment for the first patient and 1.57, 1.53, 1.66 and 1.72 (10{sup −3}×) mm{sup 2}/s for the second patient. ADC increased more significantly after 4 weeks of treatment rather than immediately post treatment, implying that late ADC value may be a better predictor of tumor response for SBRT treatment. The fraction of tumor pixels at high ADC values increased at 4 weeks post treatment. Conclusion: The observed increase in ADC values before the end of radiotherapy may be a surrogate for tumor response, but further patient accrual will be necessary to determine its value.« less
Chen, Jinmei; Hong, Jinsheng; Zou, Xi; Lv, Wenlong; Guo, Feibao; Hong, Hualan; Zhang, Weijian
2015-11-01
The aim of this study was to investigate the association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury (RILI) after intensity-modulated radiotherapy (IMRT) for lung cancer. The normal lung relative volumes receiving greater than 5, 10, 20 and 30 Gy (V5-30) mean lung dose (MLD), and absolute volumes spared from greater than 5, 10, 20 and 30 Gy (AVS5-30) for the bilateral and ipsilateral lungs of 83 patients were recorded. Any association of clinical factors and dose-volume parameters with Grade ≥2 RILI was analyzed. The median follow-up was 12.3 months; 18 (21.7%) cases of Grade 2 RILI, seven (8.4%) of Grade 3 and two (2.4%) of Grade 4 were observed. Univariate analysis revealed the located lobe of the primary tumor. V5, V10, V20, MLD of the ipsilateral lung, V5, V10, V20, V30 and MLD of the bilateral lung, and AVS5 and AVS10 of the ipsilateral lung were associated with Grade ≥2 RILI (P < 0.05). Multivariate analysis indicated AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI (P = 0.010, OR = 0.272, 95% CI: 0.102-0.729). Receiver operating characteristic curves indicated Grade ≥2 RILI could be predicted using AVS5 of the ipsilateral lung (area under curve, 0.668; cutoff value, 564.9 cm(3); sensitivity, 60.7%; specificity, 70.4%). The incidence of Grade ≥2 RILI was significantly lower with AVS5 of the ipsilateral lung ≥564.9 cm(3) than with AVS5 < 564.9 cm(3) (P = 0.008). Low-dose irradiation relative volumes and MLD of the bilateral or ipsilateral lung were associated with Grade ≥2 RILI, and AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI for lung cancer after IMRT. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Come, Carolyn E; Diaz, Alejandro A; Curran-Everett, Douglas; Muralidhar, Nivedita; Hersh, Craig P; Zach, Jordan A; Schroeder, Joyce; Lynch, David A; Celli, Bartolome; Washko, George R
2013-06-01
CT scanning is increasingly used to characterize COPD. Although it is possible to obtain CT scan-measured lung lobe volumes, normal ranges remain unknown. Using COPDGene data, we developed reference equations for lobar volumes at maximal inflation (total lung capacity [TLC]) and relaxed exhalation (approximating functional residual capacity [FRC]). Linear regression was used to develop race-specific (non-Hispanic white [NHW], African American) reference equations for lobar volumes. Covariates included height and sex. Models were developed in a derivation cohort of 469 subjects with normal pulmonary function and validated in 546 similar subjects. These cohorts were combined to produce final prediction equations, which were applied to 2,191 subjects with old GOLD (Global Initiative for Chronic Obstructive Lung Disease) stage II to IV COPD. In the derivation cohort, women had smaller lobar volumes than men. Height positively correlated with lobar volumes. Adjusting for height, NHWs had larger total lung and lobar volumes at TLC than African Americans; at FRC, NHWs only had larger lower lobes. Age and weight had no effect on lobar volumes at TLC but had small effects at FRC. In subjects with COPD at TLC, upper lobes exceeded 100% of predicted values in GOLD II disease; lower lobes were only inflated to this degree in subjects with GOLD IV disease. At FRC, gas trapping was severe irrespective of disease severity and appeared uniform across the lobes. Reference equations for lobar volumes may be useful in assessing regional lung dysfunction and how it changes in response to pharmacologic therapies and surgical or endoscopic lung volume reduction.
Interstitial pneumonitis after acetylene welding: a case report.
Brvar, Miran
2014-01-01
Acetylene is a colorless gas commonly used for welding. It acts mainly as a simple asphyxiant. In this paper, however, we present a patient who developed a severe interstitial pneumonitis after acetylene exposure during aluminum welding. A 44-year old man was welding with acetylene, argon and aluminum electrode sticks in a non-ventilated aluminum tank for 2 h. Four hours after welding dyspnea appeared and 22 h later he was admitted at the Emergency Department due to severe respiratory insufficiency with pO2 = 6.7 kPa. Chest X-ray showed diffuse interstitial infiltration. Pulmonary function and gas diffusion tests revealed a severe restriction (55% of predictive volume) and impaired diffusion capacity (47% of predicted capacity). Toxic interstitial pneumonitis was diagnosed and high-dose systemic corticosteroid methylprednisolone and inhalatory corticosteroid fluticasone therapy was started. Computed Tomography (CT) of the lungs showed a diffuse patchy ground-glass opacity with no signs of small airway disease associated with interstitial pneumonitis. Corticosteroid therapy was continued for the next 8 weeks gradually reducing the doses. The patient's follow-up did not show any deterioration of respiratory function. In conclusion, acetylene welding might result in severe toxic interstitial pneumonitis that improves after an early systemic and inhalatory corticosteroid therapy.
Baumueller, Stephan; Hilty, Regina; Nguyen, Thi Dan Linh; Weder, Walter; Alkadhi, Hatem; Frauenfelder, Thomas
2016-01-01
The purpose of this study was to evaluate the influence of sinogram-affirmed iterative reconstruction (SAFIRE) on quantification of lung volume and pulmonary emphysema in low-dose chest computed tomography compared with filtered back projection (FBP). Enhanced or nonenhanced low-dose chest computed tomography was performed in 20 patients with chronic obstructive pulmonary disease (group A) and in 20 patients without lung disease (group B). Data sets were reconstructed with FBP and SAFIRE strength levels 3 to 5. Two readers semiautomatically evaluated lung volumes and automatically quantified pulmonary emphysema, and another assessed image quality. Radiation dose parameters were recorded. Lung volume between FBP and SAFIRE 3 to 5 was not significantly different among both groups (all P > 0.05). When compared with those of FBP, total emphysema volume was significantly lower among reconstructions with SAFIRE 4 and 5 (mean difference, 0.56 and 0.79 L; all P < 0.001). There was no nondiagnostic image quality. Sinogram-affirmed iterative reconstruction does not alter lung volume measurements, although quantification of lung emphysema is affected at higher strength levels.
Lung densitometry: why, how and when
Camiciottoli, Gianna; Diciotti, Stefano
2017-01-01
Lung densitometry assesses with computed tomography (CT) the X-ray attenuation of the pulmonary tissue which reflects both the degree of inflation and the structural lung abnormalities implying decreased attenuation, as in emphysema and cystic diseases, or increased attenuation, as in fibrosis. Five reasons justify replacement with lung densitometry of semi-quantitative visual scales used to measure extent and severity of diffuse lung diseases: (I) improved reproducibility; (II) complete vs. discrete assessment of the lung tissue; (III) shorter computation times; (IV) better correlation with pathology quantification of pulmonary emphysema; (V) better or equal correlation with pulmonary function tests (PFT). Commercially and open platform software are available for lung densitometry. It requires attention to technical and methodological issues including CT scanner calibration, radiation dose, and selection of thickness and filter to be applied to sections reconstructed from whole-lung CT acquisition. Critical is also the lung volume reached by the subject at scanning that can be measured in post-processing and represent valuable information per se. The measurements of lung density include mean and standard deviation, relative area (RA) at −970, −960 or −950 Hounsfield units (HU) and 1st and 15th percentile for emphysema in inspiratory scans, and RA at −856 HU for air trapping in expiratory scans. Kurtosis and skewness are used for evaluating pulmonary fibrosis in inspiratory scans. The main indication for lung densitometry is assessment of emphysema component in the single patient with chronic obstructive pulmonary diseases (COPD). Additional emerging applications include the evaluation of air trapping in COPD patients and in subjects at risk of emphysema and the staging in patients with lymphangioleiomyomatosis (LAM) and with pulmonary fibrosis. It has also been applied to assess prevalence of smoking-related emphysema and to monitor progression of smoking-related emphysema, alpha1 antitrypsin deficiency emphysema, and pulmonary fibrosis. Finally, it is recommended as end-point in pharmacological trials of emphysema and lung fibrosis. PMID:29221318
[A case of Kartagener's syndrome].
Ishiga, Takeshi; Tanigawa, Motoaki; Ichioka, Maresuke; Saito, Kimimasa
2005-03-01
This case describes a 57-year-old woman in whom situs inversus had been noted at her birth. She had bronchial asthma and bilateral sinusitis during her childhood. She married and experienced childbirth. In December 2003, she was admitted to our Division complaining of wheezing, expectoration and dyspnea on effort. Bronciectasis was visualized on chest X-ray and CT. Electron microscopic examination of the nasal cavity epithelium and bronchial epithelial cilia revealed a deficit of bilateral dynein arms. These findings, helped establish a diagnosis of Kartagener's syndrome, which is characterized by primary ciliary dyskinesia. The restrictive and obstructive pulmonary dysfunction with increase of residual volume in the lung function tests and diffuse centrilobular small nodules with hyperinflation on chest CT were consistent with the findings of diffuse panbronchilitis (DPB) and suggested extended obliterative peripheral airway disease. Clarithromycin which is highly effective for DPB failed to prevent the aggravation of airway infection, arousing the concern about the progression into chronic respiratory failure.
Lung Size and the Risk of Radiation Pneumonitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briere, Tina Marie, E-mail: tmbriere@mdanderson.org; Krafft, Shane; Liao, Zhongxing
2016-02-01
Purpose: The purpose of this study was to identify patient populations treated for non-small cell lung cancer (NSCLC) who may be more at risk of radiation pneumonitis. Methods and Materials: A total of 579 patients receiving fractionated 3D conformal or intensity modulated radiation therapy (IMRT) for NSCLC were included in the study. Statistical analysis was performed to search for cohorts of patients with higher incidences of radiation pneumonitis. In addition to conventional risk factors, total and spared lung volumes were analyzed. The Lyman-Kutcher-Burman (LKB) and cure models were then used to fit the incidence of radiation pneumonitis as a functionmore » of lung dose and other factors. Results: Total lung volumes with a sparing of less than 1854 cc at 40 Gy were associated with a significantly higher incidence of radiation pneumonitis at 6 months (38% vs 12% for patients with larger volumes, P<.001). This patient cohort was overwhelmingly female and represented 22% of the total female population of patients and nearly 30% of the cases of radiation pneumonitis. An LKB fit to normal tissue complication probability (NTCP) including volume as a dose modifying factor resulted in a dose that results in a 50% probability of complication for the smaller spared volume cohort that was 9 Gy lower than the fit to all mean lung dose data and improved the ability to predict radiation pneumonitis (P<.001). Using an effective dose parameter of n=0.42 instead of mean lung dose further improved the LKB fit. Fits to the data using the cure model produced similar results. Conclusions: Spared lung volume should be considered when treating NSCLC patients. Separate dose constraints based on smaller spared lung volume should be considered. Smaller spared lung volume patients should be followed closely for signs of radiation pneumonitis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binkley, Michael S.; Shrager, Joseph B.; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
2014-09-01
Purpose: Lung volume reduction surgery (LVRS) improves dyspnea and other outcomes in selected patients with severe emphysema, but many have excessive surgical risk for LVRS. We analyzed the dose-volume relationship for lobar volume reduction after stereotactic ablative radiation therapy (SABR) of lung tumors, hypothesizing that SABR could achieve therapeutic volume reduction if applied in emphysema. Methods and Materials: We retrospectively identified patients treated from 2007 to 2011 who had SABR for 1 lung tumor, pre-SABR pulmonary function testing, and ≥6 months computed tomographic (CT) imaging follow-up. We contoured the treated lobe and untreated adjacent lobe(s) on CT before and after SABRmore » and calculated their volume changes relative to the contoured total (bilateral) lung volume (TLV). We correlated lobar volume reduction with the volume receiving high biologically effective doses (BED, α/β = 3). Results: 27 patients met the inclusion criteria, with a median CT follow-up time of 14 months. There was no grade ≥3 toxicity. The median volume reduction of the treated lobe was 4.4% of TLV (range, −0.4%-10.8%); the median expansion of the untreated adjacent lobe was 2.6% of TLV (range, −3.9%-11.6%). The volume reduction of the treated lobe was positively correlated with the volume receiving BED ≥60 Gy (r{sup 2}=0.45, P=.0001). This persisted in subgroups determined by high versus low pre-SABR forced expiratory volume in 1 second, treated lobe CT emphysema score, number of fractions, follow-up CT time, central versus peripheral location, and upper versus lower lobe location, with no significant differences in effect size between subgroups. Volume expansion of the untreated adjacent lobe(s) was positively correlated with volume reduction of the treated lobe (r{sup 2}=0.47, P<.0001). Conclusions: We identified a dose-volume response for treated lobe volume reduction and adjacent lobe compensatory expansion after lung tumor SABR, consistent across multiple clinical parameters. These data serve to inform our ongoing prospective trial of stereotactic ablative volume reduction (SAVR) for severe emphysema in poor candidates for LVRS.« less
Bao, Y M; Liu, X L; Liu, X L; Chen, J H; Zheng, Y J
2017-11-02
Objective: To summarize the clinical characteristics of the diffuse parenchymal lung diseases in a child caused by a novel compound heterozygous ABCA3 mutation and explore the association between the phenotype and ABCA3 mutation. Method: The clinical material of a patient diagnosed with diffuse parenchymal lung disease with ABCA3 mutation in December 2016 in Shenzhen Children's Hospital was analyzed. The information about ABCA3 gene mutation updated before April, 2017 was searched and collected from the gene databases (including 1000Genomes, HGMD, EXAC) and the literatures (including Wanfang Chinese database and Pubmed). Result: The girl was one year and nine months old. She presented with chronic cough, tachypnea, cyanosis and failure to thrive since she was one year and three months old. Her condition gradually deteriorated after she was empirically treated. Physical examination showed malnutrition, tachypnea and clubbed-fingers. Her high resolution computed tomography (HRCT) revealed diffused ground-glass opacities, thickened interlobular septum, and multiple subpleural small air-filled lung cysts. The second generation sequencing study identified a novel compound heterozygous mutation (c.1755delC+c.2890G>A) in her ABCA3 gene, which derived respectively from her parents and has not been reported in the database and the literatures mentioned above. Conclusion: c.1755delC+c.2890G>A is a new kind of compound heterozygous mutation in ABCA3, which can cause children's diffuse parenchymal lung disease. Its phenotype is related to its genotype.
High lung volume increases stress failure in pulmonary capillaries
NASA Technical Reports Server (NTRS)
Fu, Z.; Costello, M. L.; Tsukimoto, K.; Prediletto, R.; Elliott, A. R.; Mathieu-Costello, O.; West, J. B.
1992-01-01
We previously showed that when pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to test whether stress failure occurred more frequently at high than at low lung volumes for the same Ptm. Lungs of anesthetized rabbits were inflated to a transpulmonary pressure of 20 cmH2O, perfused with autologous blood at 32.5 or 2.5 cmH2O Ptm, and fixed by intravascular perfusion. Samples were examined by both transmission and scanning electron microscopy. The results were compared with those of a previous study in which the lung was inflated to a transpulmonary pressure of 5 cmH2O. There was a large increase in the frequency of stress failure of the capillary walls at the higher lung volume. For example, at 32.5 cmH2O Ptm, the number of endothelial breaks per millimeter cell lining was 7.1 +/- 2.2 at the high lung volume compared with 0.7 +/- 0.4 at the low lung volume. The corresponding values for epithelium were 8.5 +/- 1.6 and 0.9 +/- 0.6. Both differences were significant (P less than 0.05). At 52.5 cmH2O Ptm, the results for endothelium were 20.7 +/- 7.6 (high volume) and 7.1 +/- 2.1 (low volume), and the corresponding results for epithelium were 32.8 +/- 11.9 and 11.4 +/- 3.7. At 32.5 cmH2O Ptm, the thickness of the blood-gas barrier was greater at the higher lung volume, consistent with the development of more interstitial edema. Ballooning of the epithelium caused by accumulation of edema fluid between the epithelial cell and its basement membrane was seen at 32.5 and 52.5 cmH2O Ptm. At high lung volume, the breaks tended to be narrower and fewer were oriented perpendicular to the axis of the pulmonary capillaries than at low lung volumes. Transmission and scanning electron microscopy measurements agreed well. Our findings provide a physiological mechanism for other studies showing increased capillary permeability at high states of lung inflation.
Volume-controlled Ventilation Does Not Prevent Injurious Inflation during Spontaneous Effort.
Yoshida, Takeshi; Nakahashi, Susumu; Nakamura, Maria Aparecida Miyuki; Koyama, Yukiko; Roldan, Rollin; Torsani, Vinicius; De Santis, Roberta R; Gomes, Susimeire; Uchiyama, Akinori; Amato, Marcelo B P; Kavanagh, Brian P; Fujino, Yuji
2017-09-01
Spontaneous breathing during mechanical ventilation increases transpulmonary pressure and Vt, and worsens lung injury. Intuitively, controlling Vt and transpulmonary pressure might limit injury caused by added spontaneous effort. To test the hypothesis that, during spontaneous effort in injured lungs, limitation of Vt and transpulmonary pressure by volume-controlled ventilation results in less injurious patterns of inflation. Dynamic computed tomography was used to determine patterns of regional inflation in rabbits with injured lungs during volume-controlled or pressure-controlled ventilation. Transpulmonary pressure was estimated by using esophageal balloon manometry [Pl(es)] with and without spontaneous effort. Local dependent lung stress was estimated as the swing (inspiratory change) in transpulmonary pressure measured by intrapleural manometry in dependent lung and was compared with the swing in Pl(es). Electrical impedance tomography was performed to evaluate the inflation pattern in a larger animal (pig) and in a patient with acute respiratory distress syndrome. Spontaneous breathing in injured lungs increased Pl(es) during pressure-controlled (but not volume-controlled) ventilation, but the pattern of dependent lung inflation was the same in both modes. In volume-controlled ventilation, spontaneous effort caused greater inflation and tidal recruitment of dorsal regions (greater than twofold) compared with during muscle paralysis, despite the same Vt and Pl(es). This was caused by higher local dependent lung stress (measured by intrapleural manometry). In injured lungs, esophageal manometry underestimated local dependent pleural pressure changes during spontaneous effort. Limitation of Vt and Pl(es) by volume-controlled ventilation could not eliminate harm caused by spontaneous breathing unless the level of spontaneous effort was lowered and local dependent lung stress was reduced.
Goo, Hyun Woo; Park, Sang Hyub
2017-11-01
Lung perfusion scintigraphy is regarded as the gold standard for evaluating differential lung perfusion ratio in congenital heart disease. To compare cardiac CT with lung perfusion scintigraphy for estimated pulmonary vascular volume ratio in patients with congenital heart disease. We included 52 children and young adults (median age 4 years, range 2 months to 28 years; 31 males) with congenital heart disease who underwent cardiac CT and lung perfusion scintigraphy without an interim surgical or transcatheter intervention and within 1 year. We calculated the right and left pulmonary vascular volumes using threshold-based CT volumetry. Then we compared right pulmonary vascular volume percentages at cardiac CT with right lung perfusion percentages at lung perfusion scintigraphy by using paired t-test and Bland-Altman analysis. The right pulmonary vascular volume percentages at cardiac CT (66.3 ± 14.0%) were significantly smaller than the right lung perfusion percentages at lung perfusion scintigraphy (69.1 ± 15.0%; P=0.001). Bland-Altman analysis showed a mean difference of -2.8 ± 5.8% and 95% limits of agreement (-14.1%, 8.5%) between these two variables. Cardiac CT, in a single examination, can offer pulmonary vascular volume ratio in addition to pulmonary artery anatomy essential for evaluating peripheral pulmonary artery stenosis in patients with congenital heart disease. However there is a wide range of agreement between cardiac CT and lung perfusion scintigraphy.
Zhang, Huiting; Xie, Junshuai; Xiao, Sa; Zhao, Xiuchao; Zhang, Ming; Shi, Lei; Wang, Ke; Wu, Guangyao; Sun, Xianping; Ye, Chaohui; Zhou, Xin
2018-05-04
To demonstrate the feasibility of compressed sensing (CS) to accelerate the acquisition of hyperpolarized (HP) 129 Xe multi-b diffusion MRI for quantitative assessments of lung microstructural morphometry. Six healthy subjects and six chronic obstructive pulmonary disease (COPD) subjects underwent HP 129 Xe multi-b diffusion MRI (b = 0, 10, 20, 30, and 40 s/cm 2 ). First, a fully sampled (FS) acquisition of HP 129 Xe multi-b diffusion MRI was conducted in one healthy subject. The acquired FS dataset was retrospectively undersampled in the phase encoding direction, and an optimal twofold undersampled pattern was then obtained by minimizing mean absolute error (MAE) between retrospective CS (rCS) and FS MR images. Next, the FS and CS acquisitions during separate breath holds were performed on five healthy subjects (including the above one). Additionally, the FS and CS synchronous acquisitions during a single breath hold were performed on the sixth healthy subject and one COPD subject. However, only CS acquisitions were conducted in the rest of the five COPD subjects. Finally, all the acquired FS, rCS and CS MR images were used to obtain morphometric parameters, including acinar duct radius (R), acinar lumen radius (r), alveolar sleeve depth (h), mean linear intercept (L m ), and surface-to-volume ratio (SVR). The Wilcoxon signed-rank test and the Bland-Altman plot were employed to assess the fidelity of the CS reconstruction. Moreover, the t-test was used to demonstrate the effectiveness of the multi-b diffusion MRI with CS in clinical applications. The retrospective results demonstrated that there was no statistically significant difference between rCS and FS measurements using the Wilcoxon signed-rank test (P > 0.05). Good agreement between measurements obtained with the CS and FS acquisitions during separate breath holds was demonstrated in Bland-Altman plots of slice differences. Specifically, the mean biases of the R, r, h, L m , and SVR between the CS and FS acquisitions were 1.0%, 2.6%, -0.03%, 1.5%, and -5.5%, respectively. Good agreement between measurements with the CS and FS acquisitions was also observed during the single breath-hold experiments. Furthermore, there were significant differences between the morphometric parameters for the healthy and COPD subjects (P < 0.05). Our study has shown that HP 129 Xe multi-b diffusion MRI with CS could be beneficial in lung microstructural assessments by acquiring less data while maintaining the consistent results with the FS acquisitions. © 2018 American Association of Physicists in Medicine.
Lung volumes predict survival in patients with chronic lung allograft dysfunction.
Kneidinger, Nikolaus; Milger, Katrin; Janitza, Silke; Ceelen, Felix; Leuschner, Gabriela; Dinkel, Julien; Königshoff, Melanie; Weig, Thomas; Schramm, René; Winter, Hauke; Behr, Jürgen; Neurohr, Claus
2017-04-01
Identification of disease phenotypes might improve the understanding of patients with chronic lung allograft dysfunction (CLAD). The aim of the study was to assess the impact of pulmonary restriction and air trapping by lung volume measurements at the onset of CLAD.A total of 396 bilateral lung transplant recipients were analysed. At onset, CLAD was further categorised based on plethysmography. A restrictive CLAD (R-CLAD) was defined as a loss of total lung capacity from baseline. CLAD with air trapping (AT-CLAD) was defined as an increased ratio of residual volume to total lung capacity. Outcome was survival after CLAD onset. Patients with insufficient clinical information were excluded (n=95).Of 301 lung transplant recipients, 94 (31.2%) developed CLAD. Patients with R-CLAD (n=20) and AT-CLAD (n=21), respectively, had a significantly worse survival (p<0.001) than patients with non-R/AT-CLAD. Both R-CLAD and AT-CLAD were associated with increased mortality when controlling for multiple confounding variables (hazard ratio (HR) 3.57, 95% CI 1.39-9.18; p=0.008; and HR 2.65, 95% CI 1.05-6.68; p=0.039). Furthermore, measurement of lung volumes was useful to identify patients with combined phenotypes.Measurement of lung volumes in the long-term follow-up of lung transplant recipients allows the identification of patients who are at risk for worse outcome and warrant special consideration. Copyright ©ERS 2017.
Why does the lung hyperinflate?
Ferguson, Gary T
2006-04-01
Patients with chronic obstructive pulmonary disease (COPD) often have some degree of hyperinflation of the lungs. Hyperinflated lungs can produce significant detrimental effects on breathing, as highlighted by improvements in patient symptoms after lung volume reduction surgery. Measures of lung volumes correlate better with impairment of patient functional capabilities than do measures of airflow. Understanding the mechanisms by which hyperinflation occurs in COPD provides better insight into how treatments can improve patients' health. Both static and dynamic processes can contribute to lung hyperinflation in COPD. Static hyperinflation is caused by a decrease in elasticity of the lung due to emphysema. The lungs exert less recoil pressure to counter the recoil pressure of the chest wall, resulting in an equilibrium of recoil forces at a higher resting volume than normal. Dynamic hyperinflation is more common and can occur independent of or in addition to static hyperinflation. It results from air being trapped within the lungs after each breath due to a disequilibrium between the volumes inhaled and exhaled. The ability to fully exhale depends on the degree of airflow limitation and the time available for exhalation. These can both vary, causing greater hyperinflation during exacerbations or increased respiratory demand, such as during exercise. Reversibility of dynamic hyperinflation offers the possibility for intervention. Use of bronchodilators with prolonged durations of action, such as tiotropium, can sustain significant reductions in lung inflation similar in effect to lung volume reduction surgery. How efficacy of bronchodilators is assessed may, therefore, need to be reevaluated.
NASA Astrophysics Data System (ADS)
Negahdar, Mohammadreza; Zacarias, Albert; Milam, Rebecca A.; Dunlap, Neal; Woo, Shiao Y.; Amini, Amir A.
2012-03-01
The treatment plan evaluation for lung cancer patients involves pre-treatment and post-treatment volume CT imaging of the lung. However, treatment of the tumor volume lung results in structural changes to the lung during the course of treatment. In order to register the pre-treatment volume to post-treatment volume, there is a need to find robust and homologous features which are not affected by the radiation treatment along with a smooth deformation field. Since airways are well-distributed in the entire lung, in this paper, we propose use of airway tree bifurcations for registration of the pre-treatment volume to the post-treatment volume. A dedicated and automated algorithm has been developed that finds corresponding airway bifurcations in both images. To derive the 3-D deformation field, a B-spline transformation model guided by mutual information similarity metric was used to guarantee the smoothness of the transformation while combining global information from bifurcation points. Therefore, the approach combines both global statistical intensity information with local image feature information. Since during normal breathing, the lung undergoes large nonlinear deformations, it is expected that the proposed method would also be applicable to large deformation registration between maximum inhale and maximum exhale images in the same subject. The method has been evaluated by registering 3-D CT volumes at maximum exhale data to all the other temporal volumes in the POPI-model data.
Volume calculation of CT lung lesions based on Halton low-discrepancy sequences
NASA Astrophysics Data System (ADS)
Li, Shusheng; Wang, Liansheng; Li, Shuo
2017-03-01
Volume calculation from the Computed Tomography (CT) lung lesions data is a significant parameter for clinical diagnosis. The volume is widely used to assess the severity of the lung nodules and track its progression, however, the accuracy and efficiency of previous studies are not well achieved for clinical uses. It remains to be a challenging task due to its tight attachment to the lung wall, inhomogeneous background noises and large variations in sizes and shape. In this paper, we employ Halton low-discrepancy sequences to calculate the volume of the lung lesions. The proposed method directly compute the volume without the procedure of three-dimension (3D) model reconstruction and surface triangulation, which significantly improves the efficiency and reduces the complexity. The main steps of the proposed method are: (1) generate a certain number of random points in each slice using Halton low-discrepancy sequences and calculate the lesion area of each slice through the proportion; (2) obtain the volume by integrating the areas in the sagittal direction. In order to evaluate our proposed method, the experiments were conducted on the sufficient data sets with different size of lung lesions. With the uniform distribution of random points, our proposed method achieves more accurate results compared with other methods, which demonstrates the robustness and accuracy for the volume calculation of CT lung lesions. In addition, our proposed method is easy to follow and can be extensively applied to other applications, e.g., volume calculation of liver tumor, atrial wall aneurysm, etc.
Lung volumes in giraffes, Giraffa camelopardalis.
Mitchell, G; Skinner, J D
2011-01-01
We have measured lung mass and trachea dimensions in 46 giraffes of both genders ranging in body mass from 147 kg to 1441 kg, calculated static and dynamic lung volumes, and developed allometric equations that relate changes in them to growth. We found that relative lung mass is 0.6±0.2% of body mass which is significantly less than it is in other mammals (1.1±0.1%). Total lung volume is significantly smaller (46.2±5.9 mL kg⁻¹) than in similar sized mammals (75.0±2.1 mL kg⁻¹). The lung volume:body mass ratio decreases during growth rather than increase as it does in other mammals. Tracheal diameter is significantly narrower than in similar sized mammals but dead space volume (2.9±0.5 mL kg⁻¹) is larger than in similar sized mammals (2.4±0.1 mL kg⁻¹). Our calculations suggest that tidal volume (10.5±0.2 mL kg⁻¹) is increased compared to that in other mammals(10.0±0.2 mL kg⁻¹) so that the dead space:tidal volume ratio is the same as in other mammals. Calculated Functional Residual Capacity is smaller than predicted (53.4±3.5 vs 33.7±0.6 mL kg⁻¹) as is Expiratory Reserve Volume (47.4±2.6 vs 27.2±1.0 mL kg⁻¹, but Residual Volume (6.0±0.4 mL kg⁻¹) is the same as in other similar sized mammals (6.0±0.9 mL kg⁻¹. Our calculations suggest that Inspiratory Reserve Volume is significantly reduced in size (11.6±1.6 vs 3.8±2.4 mL kg⁻¹), and, if so, the capacity to increase tidal volume is limited. Calculated dynamic lung volumes were the same as in similar sized mammals. We have concluded that giraffe morphology has resulted in lung volumes that are significantly different to that of similar sized mammals, but these changes do not compromise ventilatory capacity. Copyright © 2010 Elsevier Inc. All rights reserved.
Richard, Jean-Christophe M; Maggiore, Salvatore Maurizio; Mancebo, Jordi; Lemaire, François; Jonson, Bjorn; Brochard, Laurent
2006-10-01
Supine position may contribute to the loss of aerated lung volume in patients with acute respiratory distress syndrome (ARDS). We hypothesized that verticalization increases lung volume and improves gas exchange by reducing the pressure surrounding lung bases. Prospective observational physiological study in a medical ICU. In 16 patients with ARDS we measured arterial blood gases, pressure-volume curves of the respiratory system recorded from positive-end expiratory pressure (PEEP), and changes in lung volume in supine and vertical positions (trunk elevated at 45 degrees and legs down at 45 degrees ). Vertical positioning increased PaO(2) significantly from 94+/-33 to 142+/-49 mmHg, with an increase higher than 40% in 11 responders. The volume at 20 cmH(2)O measured on the PV curve from PEEP increased using the vertical position only in responders (233+/-146 vs. -8+/-9 1ml in nonresponders); this change was correlated to oxygenation change (rho=0.55). End-expiratory lung volume variation from supine to vertical and 1 h later back to supine, measured in 12 patients showed a significant increase during the 1-h upright period in responders (n=7) but not in nonresponders (n=5; 215+/-220 vs. 10+/-22 ml), suggesting a time-dependent recruitment. Vertical positioning is a simple technique that may improve oxygenation and lung recruitment in ARDS patients.
Leong, Andrew F T; Fouras, Andreas; Islam, M Sirajul; Wallace, Megan J; Hooper, Stuart B; Kitchen, Marcus J
2013-04-01
Described herein is a new technique for measuring regional lung air volumes from two-dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric reconstruction technique quantifies dynamic changes in respiratory function. These methods can be used for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for preterm infants using animal models. The volumetric reconstruction combines the algorithms of temporal subtraction and single image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected thickness of the lungs on a pixel-by-pixel basis (pixel dimensions ≈ 16.2 μm). The technique has been validated using numerical simulation and compared results of measuring regional lung air volumes with and without the use of temporal subtraction for removing the thoracic cage. To test this approach, a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was employed. Regional lung air volumes measured from PBI images of newborn rabbit pups showed on average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that measured without the use of temporal subtraction. The majority of pixels that showed an improvement was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous. This paper presents an image segmentation technique based on temporal subtraction that has successfully been used to isolate the lungs from PBI chest images, allowing the change in lung air volume to be measured over regions as small as the pixel size. Using this technique, it is possible to measure changes in regional lung volume at high spatial and temporal resolution during breathing at much lower x-ray dose than would be required using computed tomography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, C; Yin, L; Ainsley, C
2015-06-15
Purpose: To characterize the changes in Hounsfield unit (HU) in lung radiotherapy with proton beams during the course of treatment and to study the effect on the proton plan dose distribution. Methods: Twenty consecutive patients with non-small cell lung cancer treated with proton radiotherapy who underwent multiple CT scans including the planning CT and weekly verification CTs were studied. HU histograms were computed for irradiated lung volumes in beam paths for all scans using the same treatment plan. Histograms for un-irradiated lung volume were used as control to characterize inter-scan variations. HU statistics were calculated for both irradiated and un-irradiatedmore » lung volumes for each patient scan. Further, multiple CT scans based on the same planning CT were generated by replacing the HU of the lung based on the verification CT scans HU values. Using the same beam arrangement, we created plans for each of the altered CT scans to study the dosimetric effect using the dose volume histogram. Results: Lung HU decreased for irradiated lung volume during the course of radiotherapy. The magnitude of this change increased with total irradiation dose. On average, HU changed by −53.8 in the irradiated volume. This change resulted in less than 0.5mm of beam overshoot in tissue for every 1cm beam traversed in the irradiated lung. The dose modification is about +3% for the lung, and less than +1% for the primary tumor. Conclusion: HU of the lung decrease throughout the course of radiation therapy. This change results in a beam overshoot (e.g. 3mm for 6cm of lung traversed) and causes a small dose modification in the overall plan. However, this overshoot does not affect the quality of plans since the margins used in planning, based on proton range uncertainty, are greater. HU needs to change by 150 units before re-planning is warranted.« less
Liu, Xiao; Li, Hao; Yin, Yunhong; Ma, Dedong; Qu, Yiqing
2017-05-23
Sjögren's syndrome (SS) is a chronic inflammatory autoimmune disease that can occur as a unique existence (primary Sjögren's syndrome) or merge with other systemic diseases like systemic lupus erythematosus (SLE), rheumatoid arthritis or systemic sclerosis (secondary Sjögren's syndrome). Data on the two diseases occurrence order are inadequate. Primary Sjögren's syndrome (pSS) may relatively uncommonly lead to diffuse cystic lung changes. We represent a female who was diagnosed pSS with diffuse cystic lung alterations developed SLE two years later. SS was diagnosed on account of the existence of dryness of eye and mouth, Schirmer's test, biopsy of the minor salivary glands of her lip, positive anti-SSA and anti-SSB antibody in the serum. Chest computed tomography image showed bilateral diffuse cystic changes with a wide variation in cyst size and distribution. SLE was finally diagnosed based on bilateral lower limb skin rash, gonarthritis and omarthritis, low level of complement, antinuclear antibody 1:640 and positive antibodies to double-stranded DNA. Improvement was achieved with therapy of corticosteroids, hydroxychloroquine and antibiotics. This report provides us clinical, diagnosis and treatment perception of SS-onset SLE as patient presenting diffuse cystic lung changes.
Automatic segmentation of tumor-laden lung volumes from the LIDC database
NASA Astrophysics Data System (ADS)
O'Dell, Walter G.
2012-03-01
The segmentation of the lung parenchyma is often a critical pre-processing step prior to application of computer-aided detection of lung nodules. Segmentation of the lung volume can dramatically decrease computation time and reduce the number of false positive detections by excluding from consideration extra-pulmonary tissue. However, while many algorithms are capable of adequately segmenting the healthy lung, none have been demonstrated to work reliably well on tumor-laden lungs. Of particular challenge is to preserve tumorous masses attached to the chest wall, mediastinum or major vessels. In this role, lung volume segmentation comprises an important computational step that can adversely affect the performance of the overall CAD algorithm. An automated lung volume segmentation algorithm has been developed with the goals to maximally exclude extra-pulmonary tissue while retaining all true nodules. The algorithm comprises a series of tasks including intensity thresholding, 2-D and 3-D morphological operations, 2-D and 3-D floodfilling, and snake-based clipping of nodules attached to the chest wall. It features the ability to (1) exclude trachea and bowels, (2) snip large attached nodules using snakes, (3) snip small attached nodules using dilation, (4) preserve large masses fully internal to lung volume, (5) account for basal aspects of the lung where in a 2-D slice the lower sections appear to be disconnected from main lung, and (6) achieve separation of the right and left hemi-lungs. The algorithm was developed and trained to on the first 100 datasets of the LIDC image database.
Diffuse consolidation form of bronchoalveolar carcinoma.
Khalil, Kanwal Fatima; Saeed, Waseem; Zill-e-Hamayun
2010-03-01
This case report describes a patient with diffuse consolidation form of bronchoalveolar carcinoma (BAC) which is a rare type of adenocarcinoma of lung. He was diagnosed on the basis of findings on X-ray and high resolution CT(HRCT) chest later confirmed by open lung biopsy and immuno-histochemical staining. Only supportive treatment could be provided and the patient expired during the subsequent month of follow-up. Traditionally, diffuse consolidation is the radiological presentation in only 20% of patients with bronchoalveolar carcinoma.
Patterns of Lung Volume Use during an Extemporaneous Speech Task in Persons with Parkinson Disease
ERIC Educational Resources Information Center
Bunton, K.
2005-01-01
This study examined patterns of lung volume use in speakers with Parkinson disease (PD) during an extemporaneous speaking task. The performance of a control group was also examined. Behaviors described are based on acoustic, kinematic and linguistic measures. Group differences were found in breath group duration, lung volume initiation, and lung…
Kehl, Sven; Eckert, Sven; Sütterlin, Marc; Neff, K Wolfgang; Siemer, Jörn
2011-06-01
Three-dimensional (3D) sonographic volumetry is established in gynecology and obstetrics. Assessment of the fetal lung volume by magnetic resonance imaging (MRI) in congenital diaphragmatic hernias has become a routine examination. In vitro studies have shown a good correlation between 3D sonographic measurements and MRI. The aim of this study was to compare the lung volumes of healthy fetuses assessed by 3D sonography to MRI measurements and to investigate the impact of different rotation angles. A total of 126 fetuses between 20 and 40 weeks' gestation were measured by 3D sonography, and 27 of them were also assessed by MRI. The sonographic volumes were calculated by the rotational technique (virtual organ computer-aided analysis) with rotation angles of 6° and 30°. To evaluate the accuracy of 3D sonographic volumetry, percentage error and absolute percentage error values were calculated using MRI volumes as reference points. Formulas to calculate total, right, and left fetal lung volumes according to gestational age and biometric parameters were derived by stepwise regression analysis. Three-dimensional sonographic volumetry showed a high correlation compared to MRI (6° angle, R(2) = 0.971; 30° angle, R(2) = 0.917) with no systematic error for the 6° angle. Moreover, using the 6° rotation angle, the median absolute percentage error was significantly lower compared to the 30° angle (P < .001). The new formulas to calculate total lung volume in healthy fetuses only included gestational age and no biometric parameters (R(2) = 0.853). Three-dimensional sonographic volumetry of lung volumes in healthy fetuses showed a good correlation with MRI. We recommend using an angle of 6° because it assessed the lung volume more accurately. The specifically designed equations help estimate lung volumes in healthy fetuses.
Dezube, Rebecca; Arnaoutakis, George J; Reed, Robert M; Bolukbas, Servet; Shah, Ashish S; Orens, Jonathan B; Brower, Roy G; Eberlein, Michael
2013-03-01
Mechanical ventilation tidal volumes are usually set according to an estimate of patient size in millilitres (ml) per kilogram (kg) body weight. We describe the relationship between donor-recipient lung-size mismatch and postoperative mechanical ventilation tidal volumes according to recipient- and donor-predicted body weights in a cohort of bilateral lung transplant patients. A most-undersized (10 patients with lowest predicted total lung capacity [pTLC] ratio = pTLC-donor/pTLC-recipient), a most-oversized (10 patients with highest pTLC ratio) and best-matched subset (10 patients with predicted total lung capacity ratio closest to 1.0) were selected within a cohort of 70 patients. All tidal volumes during mechanical ventilation in the first 96 h after bilateral lung transplantation were recorded. Tidal volumes were expressed in ml and ml/kg-recipient-predicted body weights and ml/kg-donor-predicted body weights. Postoperative absolute tidal volumes (in ml) were comparable between subsets of patients with undersized, matched and oversized allografts (552 ± 103 vs 581 ± 107 vs 582 ± 104 ml), and tidal volumes in ml/kg-recipient-predicted body weights were also similar (8.8 ± 1.4 vs 9.3 ± 1.1 vs 9.8 ± 2.1). However, tidal volumes in ml/kg-donor-predicted body weights revealed significant differences between undersized, matched, and oversized subsets (11.4 ± 3.1 vs 9.4 ± 1.2 vs 8.1 ± 2.1, respectively; P < 0.05). Two patients developed primary graft dysfunction grade 3, both in the undersized subset. Four patients in the undersized group underwent tracheotomy (vs none in matched and one in oversized subset). During mechanical ventilation after bilateral lung transplantation, undersized allografts received relatively higher tidal volumes compared with oversized allografts when the tidal volumes were related to donor-predicted body weights.
National Emphysema Treatment Trial redux: accentuating the positive.
Sanchez, Pablo Gerardo; Kucharczuk, John Charles; Su, Stacey; Kaiser, Larry Robert; Cooper, Joel David
2010-09-01
Under the Freedom of Information Act, we obtained the follow-up data of the National Emphysema Treatment Trial (NETT) to determine the long-term outcome for "a heterogeneous distribution of emphysema with upper lobe predominance," postulated by the NETT hypothesis to be optimal candidates for lung volume reduction surgery. Using the NETT database, we identified patients with heterogeneous distribution of emphysema with upper lobe predominance and analyzed for the first time follow-up data for those receiving lung volume reduction surgery and those receiving medical management. Furthermore, we compared the results of the NETT reduction surgery group with a previously reported consecutive case series of 250 patients undergoing bilateral lung volume reduction surgery using similar selection criteria. Of the 1218 patients enrolled, 511 (42%) conformed to the NETT hypothesis selection criteria and received the randomly assigned surgical or medical treatment (surgical = 261; medical = 250). Lung volume reduction surgery resulted in a 5-year survival benefit (70% vs 60%; P = .02). Results at 3 years compared with baseline data favored surgical reduction in terms of residual volume reduction (25% vs 2%; P < .001), University of California San Diego dyspnea score (16 vs 0 points; P < .001), and improved St George Respiratory Questionnaire quality of life score (12 points vs 0 points; P < .001). For the 513 patients with a homogeneous pattern of emphysema randomized to surgical or medical treatment, lung volume reduction surgery produced no survival advantage and very limited functional benefit. Patients most likely to benefit from lung volume reduction surgery have heterogeneously distributed emphysema involving the upper lung zones predominantly. Such patients in the NETT trial had results nearly identical to those previously reported in a nonrandomized series of similar patients undergoing lung volume reduction surgery. 2010 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Malka, Shachar; Hawkins, Michelle G; Jones, James H; Pascoe, Peter J; Kass, Philip H; Wisner, Erik R
2009-09-01
To determine the effects of body position on lung and air-sac volumes in anesthetized and spontaneously breathing red-tailed hawks (Buteo jamaicensis). 6 adult red-tailed hawks (sex unknown). A crossover study design was used for quantitative estimation of lung and air-sac volumes in anesthetized hawks in 3 body positions: dorsal, right lateral, and sternal recumbency. Lung volume, lung density, and air-sac volume were calculated from helical computed tomographic (CT) images by use of software designed for volumetric analysis of CT data. Effects of body position were compared by use of repeated-measures ANOVA and a paired Student t test. Results for all pairs of body positions were significantly different from each other. Mean +/- SD lung density was lowest when hawks were in sternal recumbency (-677 +/- 28 CT units), followed by right lateral (-647 +/- 23 CT units) and dorsal (-630 +/- 19 CT units) recumbency. Mean lung volume was largest in sternal recumbency (28.6 +/- 1.5 mL), followed by right lateral (27.6 +/- 1.7 mL) and dorsal (27.0 +/- 1.5 mL) recumbency. Mean partial air-sac volume was largest in sternal recumbency (27.0 +/- 19.3 mL), followed by right lateral (21.9 +/- 16.1 mL) and dorsal (19.3 +/- 16.9 mL) recumbency. In anesthetized red-tailed hawks, positioning in sternal recumbency resulted in the greatest lung and air-sac volumes and lowest lung density, compared with positioning in right lateral and dorsal recumbency. Additional studies are necessary to determine the physiologic effects of body position on the avian respiratory system.
Cui, Lei; Yin, Jian-Bing; Hu, Chun-Hong; Gong, Shen-Chu; Xu, Jun-Feng; Yang, Ju-Shun
2016-01-01
To prospectively evaluate the inter- and intraobserver agreement of apparent diffusion coefficient (ADC) measurements in free breathing, breath-hold, and respiratory triggered diffusion-weighted imaging (DWI) of lung cancer. Twenty-two patients with lung cancer (tumor size >2cm) underwent DWIs (3.0T) in three imaging methods. Lesion ADCs were measured twice by both of the two independent observers and compared. No statistical significance was found among methods, though respiratory-triggered DWI tended to have higher ADCs than breath-hold DWI. Great inter- and intraobserver agreement was shown. ADCs had good inter- and intraobserver agreement in all three DWI methods. Copyright © 2016 Elsevier Inc. All rights reserved.
Sustained Effects of Sirolimus on Lung Function and Cystic Lung Lesions in Lymphangioleiomyomatosis
Yao, Jianhua; Jones, Amanda M.; Julien-Williams, Patricia; Stylianou, Mario; Moss, Joel
2014-01-01
Rationale: Sirolimus therapy stabilizes lung function and reduces the size of chylous effusions and lymphangioleiomyomas in patients with lymphangioleiomyomatosis. Objectives: To determine whether sirolimus has beneficial effects on lung function, cystic areas, and adjacent lung parenchyma; whether these effects are sustained; and whether sirolimus is well tolerated by patients. Methods: Lung function decline over time, lung volume occupied by cysts (cyst score), and lung tissue texture in the vicinity of the cysts were quantified with a computer-aided diagnosis system in 38 patients. Then we compared cyst scores from the last study on sirolimus with studies done on sirolimus therapy. In 12 patients, we evaluated rates of change in lung function and cyst scores off and on sirolimus. Measurements and Main Results: Sirolimus reduced yearly declines in FEV1 (−2.3 ± 0.1 vs. 1.0 ± 0.3% predicted; P < 0.001) and diffusing capacity of carbon monoxide (−2.6 ± 0.1 vs. 0.9 ± 0.2% predicted; P < 0.001). Cyst scores 1.2 ± 0.8 years (30.5 ± 11.9%) and 2.5 ± 2 years (29.7 ± 12.1%) after initiating sirolimus were not significantly different from pretreatment values (28.4 ± 12.5%). In 12 patients followed for 5 years, a significant reduction in rates of yearly decline in FEV1 (−1.4 ± 0.2 vs. 0.3 ± 0.4% predicted; P = 0.025) was observed. Analyses of 104 computed tomography scans showed a nonsignificant (P = 0.23) reduction in yearly rates of change of cyst scores (1.8 ± 0.2 vs. 0.3 ± 0.3%; P = 0.23) and lung texture features. Despite adverse events, most patients were able to continue sirolimus therapy. Conclusions: Sirolimus therapy slowed down lung function decline and increase in cystic lesions. Most patients were able to tolerate sirolimus therapy. PMID:25329516
Changes in dynamic lung mechanics after lung volume reduction coil treatment of severe emphysema.
Makris, Demosthenes; Leroy, Sylvie; Pradelli, Johana; Benzaquen, Jonathan; Guenard, Hervé; Perotin, Jeanne-Marie; Zakynthinos, Spyros; Zakynthinos, Epaminondas; Deslee, Gaëtan; Marquette, Charles Hugo
2018-06-01
We assessed the relationships between changes in lung compliance, lung volumes and dynamic hyperinflation in patients with emphysema who underwent bronchoscopic treatment with nitinol coils (coil treatment) (n=11) or received usual care (UC) (n=11). Compared with UC, coil treatment resulted in decreased dynamic lung compliance (C Ldyn ) (p=0.03) and increased endurance time (p=0.010). The change in C Ldyn was associated with significant improvement in FEV 1 and FVC, with reduction in residual volume and intrinsic positive end-expiratory pressure, and with increased inspiratory capacity at rest/and at exercise. The increase in end-expiratory lung volume (EELV) during exercise (EELV dyn-ch =EELV isotime EELV rest ) demonstrated significant attenuation after coil treatment (p=0.02). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Measurement of absolute regional lung air volumes from near-field x-ray speckles.
Leong, Andrew F T; Paganin, David M; Hooper, Stuart B; Siew, Melissa L; Kitchen, Marcus J
2013-11-18
Propagation-based phase contrast x-ray (PBX) imaging yields high contrast images of the lung where airways that overlap in projection coherently scatter the x-rays, giving rise to a speckled intensity due to interference effects. Our previous works have shown that total and regional changes in lung air volumes can be accurately measured from two-dimensional (2D) absorption or phase contrast images when the subject is immersed in a water-filled container. In this paper we demonstrate how the phase contrast speckle patterns can be used to directly measure absolute regional lung air volumes from 2D PBX images without the need for a water-filled container. We justify this technique analytically and via simulation using the transport-of-intensity equation and calibrate the technique using our existing methods for measuring lung air volume. Finally, we show the full capabilities of this technique for measuring regional differences in lung aeration.
Effects of cannabis on lung function: a population-based cohort study.
Hancox, R J; Poulton, R; Ely, M; Welch, D; Taylor, D R; McLachlan, C R; Greene, J M; Moffitt, T E; Caspi, A; Sears, M R
2010-01-01
The effects of cannabis on lung function remain unclear and may be different from those of tobacco. We compared the associations between use of these substances and lung function in a population-based cohort (n = 1,037). Cannabis and tobacco use were reported at ages 18, 21, 26 and 32 yrs. Spirometry, plethysmography and carbon monoxide transfer factor were measured at 32 yrs. Associations between lung function and exposure to each substance were adjusted for exposure to the other substance. Cumulative cannabis use was associated with higher forced vital capacity, total lung capacity, functional residual capacity and residual volume. Cannabis was also associated with higher airway resistance but not with forced expiratory volume in 1 s, forced expiratory ratio or transfer factor. These findings were similar among those who did not smoke tobacco. In contrast, tobacco use was associated with lower forced expiratory volume in 1 s, lower forced expiratory ratio, lower transfer factor and higher static lung volumes, but not with airway resistance. Cannabis appears to have different effects on lung function from those of tobacco. Cannabis use was associated with higher lung volumes, suggesting hyperinflation and increased large-airways resistance, but there was little evidence for airflow obstruction or impairment of gas transfer.
Tummino, Celine; Maldonado, Fabien; Laroumagne, Sophie; Astoul, Philippe; Dutau, Hervé
2012-01-01
Bronchoscopic lung volume reduction using endobronchial valves has been suggested as a potentially safer alternative to surgery in selected cases. Complications of this technique include pneumothoraces, pneumonia, COPD exacerbations, hemoptysis, and valve migrations. We report the case of a male patient who developed a parenchymal mass in the treated lobe after valve insertion. Due to severe emphysema, transthoracic needle aspiration was not feasible. Removal of the valves was mandatory to perform transbronchialbiopsies which revealed a non-small cell primary lung cancer. This first description illustrates the potential risk of lung cancer development following bronchoscopic lung volume reduction and highlights the different approach to diagnosis and management of indeterminate peripheral lung lesions needed in this context. Copyright © 2011 S. Karger AG, Basel.
Pulmonary changes in liver transplant candidates with hepatitis C cirrhosis.
Al-Moamary, M S; Gorka, T; Al-Traif, I H; Al-Jahdali, H H; Al-Shimemeri, A A; Al-Kanway, B; Abdulkareeem, A A; Abdulkareeem, A A
2001-12-01
Several studies have shown that pulmonary abnormalities are common in patients with end-stage liver disease. However, most of these studies were conducted on patients with heterogeneous etiologies. Therefore, we studied these changes in a homogenous group of hepatitis C cirrhotic patients who were potential candidates for liver transplantation. The charts of 81 patients from King Fahad National Guard Hospital, Riyadh, Kingdom of Saudi Arabia with hepatitis C cirrhosis who were evaluated for liver transplantation were reviewed. The following data was retrieved: echocardiography with micro-bubble study, arterial blood gases, and pulmonary function tests of 81 candidates and reviewed over 3 years from 1994 to 1997. The mean age was 53 (+/-9) years with male to female ratio of 1.4:1. Echocardiographic micro-bubble study, revealed 4 of 62 (7%) had an intrapulmonary shunt. Arterial blood gases results were pH of 7.44 (+/-0.4), partial arterial tension of carbon dioxide of 33 mm Hg (+/-4), partial arterial tension of oxygen of 84 mm Hg (+/-12), and alveolar-arterial gradient of 30 mm Hg (+/-10). Eleven percent had obstructive airway disease, 17% had restrictive lung impairment, and 43% had reduced diffusion capacity. Seventy five percent of patients with reduced diffusion capacity had normal lung volumes. Various pulmonary function test abnormalities did not lead to significant differences in arterial blood gases. Pulmonary changes were frequent in liver transplant candidates with hepatitis C virus cirrhosis with reduced diffusion capacity being the most. Apart from the effect of hepatopulmonary syndrome on arterial oxygenation, other pulmonary abnormalities were not significantly different.
Dyhr, Thomas; Bonde, Jan; Larsson, Anders
2003-01-01
Introduction Lung collapse is a contributory factor in the hypoxaemia that is observed after open endotracheal suctioning (ETS) in patients with acute lung injury and acute respiratory distress syndrome. Lung recruitment (LR) manoeuvres may be effective in rapidly regaining lung volume and improving oxygenation after ETS. Materials and method A prospective, randomized, controlled study was conducted in a 15-bed general intensive care unit at a university hospital. Eight consecutive mechanically ventilated patients with acute lung injury or acute respiratory distress syndrome were included. One of two suctioning procedures was performed in each patient. In the first procedure, ETS was performed followed by LR manoeuvre and reconnection to the ventilator with positive end-expiratory pressure set at 1 cmH2O above the lower inflexion point, and after 60 min another ETS (but without LR manoeuvre) was performed followed by reconnection to the ventilator with similar positive end-expiratory pressure; the second procedure was the same as the first but conducted in reverse order. Before (baseline) and over 25 min following each ETS procedure, partial arterial oxygen tension (PaO2) and end-expiratory lung volume were measured. Results After ETS, PaO2 decreased by 4.3(0.9–9.7)kPa (median and range; P < 0.005). After LR manoeuvre, PaO2 recovered to baseline. Without LR manoeuvre, PaO2 was reduced (P = 0.05) until 7 min after ETS. With LR manoeuvre end-expiratory lung volume was unchanged after ETS, whereas without LR manoeuvre end-expiratory lung volume was still reduced (approximately 10%) at 5 and 15 min after ETS (P = 0.01). Discussion A LR manoeuvre immediately following ETS was, as an adjunct to positive end-expiratory pressure, effective in rapidly counteracting the deterioration in PaO2 and lung volume caused by open ETS in ventilator-treated patients with acute lung injury or acute respiratory distress syndrome. PMID:12617741
Kallet, Richard H; Campbell, Andre R; Dicker, Rochelle A; Katz, Jeffrey A; Mackersie, Robert C
2006-01-01
To assess the effects of step-changes in tidal volume on work of breathing during lung-protective ventilation in patients with acute lung injury (ALI) or the acute respiratory distress syndrome (ARDS). Prospective, nonconsecutive patients with ALI/ARDS. Adult surgical, trauma, and medical intensive care units at a major inner-city, university-affiliated hospital. Ten patients with ALI/ARDS managed clinically with lung-protective ventilation. Five patients were ventilated at a progressively smaller tidal volume in 1 mL/kg steps between 8 and 5 mL/kg; five other patients were ventilated at a progressively larger tidal volume from 5 to 8 mL/kg. The volume mode was used with a flow rate of 75 L/min. Minute ventilation was maintained constant at each tidal volume setting. Afterward, patients were placed on continuous positive airway pressure for 1-2 mins to measure their spontaneous tidal volume. Work of breathing and other variables were measured with a pulmonary mechanics monitor (Bicore CP-100). Work of breathing progressively increased (0.86 +/- 0.32, 1.05 +/- 0.40, 1.22 +/- 0.36, and 1.57 +/- 0.43 J/L) at a tidal volume of 8, 7, 6, and 5 mL/kg, respectively. In nine of ten patients there was a strong negative correlation between work of breathing and the ventilator-to-patient tidal volume difference (R = -.75 to -.998). : The ventilator-delivered tidal volume exerts an independent influence on work of breathing during lung-protective ventilation in patients with ALI/ARDS. Patient work of breathing is inversely related to the difference between the ventilator-delivered tidal volume and patient-generated tidal volume during a brief trial of unassisted breathing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Ryan; Han Gang; Sarangkasiri, Siriporn
2013-01-01
Purpose: To report clinical and dosimetric factors predictive of radiation pneumonitis (RP) in patients receiving lung stereotactic body radiation therapy (SBRT) from a series of 240 patients. Methods and Materials: Of the 297 isocenters treating 263 patients, 240 patients (n=263 isocenters) had evaluable information regarding RP. Age, gender, current smoking status and pack-years, O{sub 2} use, Charlson Comorbidity Index, prior lung radiation therapy (yes/no), dose/fractionation, V{sub 5}, V{sub 13}, V{sub 20}, V{sub prescription}, mean lung dose, planning target volume (PTV), total lung volume, and PTV/lung volume ratio were recorded. Results: Twenty-nine patients (11.0%) developed symptomatic pneumonitis (26 grade 2, 3more » grade 3). The mean V{sub 20} was 6.5% (range, 0.4%-20.2%), and the average mean lung dose was 5.03 Gy (0.547-12.2 Gy). In univariable analysis female gender (P=.0257) and Charlson Comorbidity index (P=.0366) were significantly predictive of RP. Among dosimetric parameters, V{sub 5} (P=.0186), V{sub 13} (P=.0438), and V{sub prescription} (where dose = 60 Gy) (P=.0128) were significant. There was only a trend toward significance for V{sub 20} (P=.0610). Planning target volume/normal lung volume ratio was highly significant (P=.0024). In multivariable analysis the clinical factors of female gender, pack-years smoking, and larger gross internal tumor volume and PTV were predictive (P=.0094, .0312, .0364, and .052, respectively), but no dosimetric factors were significant. Conclusions: Rate of symptomatic RP was 11%. Our mean lung dose was <600 cGy in most cases and V20 <10%. In univariable analysis, dosimetric factors were predictive, while tumor size (or tumor/lung volume ratio) played a role in multivariable and univariable and analysis, respectively.« less
Polarized Helium to Image the Lung
NASA Astrophysics Data System (ADS)
Leduc, Michèle; Nacher, Pierre Jean
2005-05-01
The main findings of the european PHIL project (Polarised Helium to Image the Lung) are reported. State of the art optical pumping techniques for polarising 3He gas are described. MRI methodological improvements allow dynamical ventilation images with a good resolution, ultimately limited by gas diffusion. Diffusion imaging appears as a robust method of lung diagnosis. A discussion of the potential advantage of low field MRI is presented. Selected PHIL results for emphysema are given, with the perspectives that this joint work opens up for the future of respiratory medicine.
Single-breath diffusing capacity for carbon monoxide instrument accuracy across 3 health systems.
Hegewald, Matthew J; Markewitz, Boaz A; Wilson, Emily L; Gallo, Heather M; Jensen, Robert L
2015-03-01
Measuring diffusing capacity of the lung for carbon monoxide (DLCO) is complex and associated with wide intra- and inter-laboratory variability. Increased D(LCO) variability may have important clinical consequences. The objective of the study was to assess instrument performance across hospital pulmonary function testing laboratories using a D(LCO) simulator that produces precise and repeatable D(LCO) values. D(LCO) instruments were tested with CO gas concentrations representing medium and high range D(LCO) values. The absolute difference between observed and target D(LCO) value was used to determine measurement accuracy; accuracy was defined as an average deviation from the target value of < 2.0 mL/min/mm Hg. Accuracy of inspired volume measurement and gas sensors were also determined. Twenty-three instruments were tested across 3 healthcare systems. The mean absolute deviation from the target value was 1.80 mL/min/mm Hg (range 0.24-4.23) with 10 of 23 instruments (43%) being inaccurate. High volume laboratories performed better than low volume laboratories, although the difference was not significant. There was no significant difference among the instruments by manufacturers. Inspired volume was not accurate in 48% of devices; mean absolute deviation from target value was 3.7%. Instrument gas analyzers performed adequately in all instruments. D(LCO) instrument accuracy was unacceptable in 43% of devices. Instrument inaccuracy can be primarily attributed to errors in inspired volume measurement and not gas analyzer performance. D(LCO) instrument performance may be improved by regular testing with a simulator. Caution should be used when comparing D(LCO) results reported from different laboratories. Copyright © 2015 by Daedalus Enterprises.
Indirect measurement of lung density and air volume from electrical impedance tomography (EIT) data.
Nebuya, Satoru; Mills, Gary H; Milnes, Peter; Brown, Brian H
2011-12-01
This paper describes a method for estimating lung density, air volume and changes in fluid content from a non-invasive measurement of the electrical resistivity of the lungs. Resistivity in Ω m was found by fitting measured electrical impedance tomography (EIT) data to a finite difference model of the thorax. Lung density was determined by comparing the resistivity of the lungs, measured at a relatively high frequency, with values predicted from a published model of lung structure. Lung air volume can then be calculated if total lung weight is also known. Temporal changes in lung fluid content will produce proportional changes in lung density. The method was implemented on EIT data, collected using eight electrodes placed in a single plane around the thorax, from 46 adult male subjects and 36 adult female subjects. Mean lung densities (±SD) of 246 ± 67 and 239 ± 64 kg m(-3), respectively, were obtained. In seven adult male subjects estimates of 1.68 ± 0.30, 3.42 ± 0.49 and 4.40 ± 0.53 l in residual volume, functional residual capacity and vital capacity, respectively, were obtained. Sources of error are discussed. It is concluded that absolute differences in lung density of about 30% and changes over time of less than 30% should be detected using the current technology in normal subjects. These changes would result from approximately 300 ml increase in lung fluid. The method proposed could be used for non-invasive monitoring of total lung air and fluid content in normal subjects but needs to be assessed in patients with lung disease.
Zacharzewska-Gondek, Anna; Maksymowicz, Hanna; Szymczyk, Małgorzata; Sąsiadek, Marek; Bladowska, Joanna
2017-01-01
Restricted diffusion that is found on magnetic resonance diffusion-weighted imaging (DWI) typically indicates acute ischaemic stroke. However, restricted diffusion can also occur in other diseases, like metastatic brain tumours, which we describe in this case report. A 57-year-old male, with a diagnosis of small-cell cancer of the right lung (microcellular anaplastic carcinoma), was admitted with focal neurological symptoms. Initial brain MRI revealed multiple, disseminated lesions that were hyperintense on T2-weighted images and did not enhance after contrast administration; notably, some lesions manifested restricted diffusion on DWI images. Based on these findings, disseminated ischaemic lesions were diagnosed. On follow-up MRI that was performed after 2 weeks, we observed enlargement of the lesions; there were multiple, disseminated, sharply outlined, contrast-enhancing, oval foci with persistent restriction of diffusion. We diagnosed the lesions as disseminated brain metastases due to lung cancer. To our knowledge, this is the first description of a patient with brain metastases that were characterised by restricted diffusion and no contrast enhancement. Multiple, disseminated brain lesions, that are characterised by restricted diffusion on DWI, typically indicate acute or hyperacute ischemic infarcts; however, they can also be due to hypercellular metastases, even if no contrast enhancement is observed. This latter possibility should be considered particularly in patients with cancer.
El-Sobkey, Salwa B; Salem, Naguib A
2011-01-01
Phrenic nerve is the main nerve drive to the diaphragm and its injury is a well-known complication following cardiac surgeries. It results in diaphragmatic dysfunction with reduction in lung volumes and capacities. This study aimed to evaluate the objectivity of lung volumes and capacities as an outcome measure for the prognosis of phrenic nerve recovery after cardiac surgeries. In this prospective experimental study, patients were recruited from Cardio-Thoracic Surgery Department, Educational-Hospital of College of Medicine, Cairo University. They were 11 patients with right phrenic nerve injury and 14 patients with left injury. On the basis of receiving low-level laser irradiation, they were divided into irradiated group and non-irradiated group. Measures of phrenic nerve latency, lung volumes and capacities were taken pre and post-operative and at 3-months follow up. After 3 months of low-level laser therapy, the irradiated group showed marked improvement in the phrenic nerve recovery. On the other hand, vital capacity and forced expiratory volume in the first second were the only lung capacity and volume that showed improvement consequent with the recovery of right phrenic nerve (P value <0.001 for both). Furthermore, forced vital capacity was the single lung capacity that showed significant statistical improvement in patients with recovered left phrenic nerve injury (P value <0.001). Study concluded that lung volumes and capacities cannot be used as an objective outcome measure for recovery of phrenic nerve injury after cardiac surgeries.
Fiorelli, Alfonso; Scaramuzzi, Roberto; Pierdiluca, Matteo; Frongillo, Elisabetta; Messina, Gaetana; Serra, Nicola; De Felice, Alberto; Santini, Mario
2017-09-01
To assess whether the difference in lung volume measured with plethysmography and with the helium dilution technique could differentiate an open from a closed bulla in patients with a giant emphysematous bulla and could be used as a selection criterion for the positioning of an endobronchial valve. We reviewed the data of 27 consecutive patients with a giant emphysematous bulla undergoing treatment with an endobronchial valve. In addition to standard functional and radiological examinations, total lung capacity and residual volume were measured with the plethysmographic and helium dilution technique. We divided the patients into 2 groups, the collapse or the no-collapse group, depending on whether the bulla collapsed or not after the valves were put in position. We statistically evaluated the intergroup differences in lung volume and outcome. In the no-collapse group (n = 6), the baseline plethysmographic values were significantly higher than the helium dilution volumes, including total lung capacity (188 ± 14 vs 145 ± 13, P = 0.0007) and residual volume (156 ± 156 vs 115 ± 15, P = 0.001). In the collapse group, there was no significant difference in lung volumes measured with the 2 methods. A difference in total lung capacity of ≤ 13% and in residual volume of ≤ 25% measured with the 2 methods predicted the collapse of the bulla with a success rate of 83% and 84%, respectively. Only the collapse group showed significant improvement in functional data. Similar values in lung volumes measured with the 2 methods support the hypothesis that the bulla communicates with the airway (open bulla) and thus is likely to collapse when the endobronchial valve is implanted. Further studies are needed to validate our model. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Anderson, Debra F.; Cheung, Cecilia Y.
2014-01-01
Experimentation in late-gestation fetal sheep has suggested that regulation of amniotic fluid (AF) volume occurs primarily by modulating the rate of intramembranous transport of water and solutes across the amnion into underlying fetal blood vessels. In order to gain insight into intramembranous transport mechanisms, we developed a computer model that allows simulation of experimentally measured changes in AF volume and composition over time. The model included fetal urine excretion and lung liquid secretion as inflows into the amniotic compartment plus fetal swallowing and intramembranous absorption as outflows. By using experimental flows and solute concentrations for urine, lung liquid, and swallowed fluid in combination with the passive and active transport mechanisms of the intramembranous pathway, we simulated AF responses to basal conditions, intra-amniotic fluid infusions, fetal intravascular infusions, urine replacement, and tracheoesophageal occlusion. The experimental data are consistent with four intramembranous transport mechanisms acting in concert: 1) an active unidirectional bulk transport of AF with all dissolved solutes out of AF into fetal blood presumably by vesicles; 2) passive bidirectional diffusion of solutes, such as sodium and chloride, between fetal blood and AF; 3) passive bidirectional water movement between AF and fetal blood; and 4) unidirectional transport of lactate into the AF. Further, only unidirectional bulk transport is dynamically regulated. The simulations also identified areas for future study: 1) identifying intramembranous stimulators and inhibitors, 2) determining the semipermeability characteristics of the intramembranous pathway, and 3) characterizing the vesicles that are the primary mediators of intramembranous transport. PMID:25186112
O'Donnell, Denis E; Ciavaglia, Casey E; Neder, J Alberto
2014-05-01
In many parts of the world, the prevalence of both chronic obstructive pulmonary disease (COPD) and obesity is increasing at an alarming rate. Such patients tend to have greater respiratory symptoms, more severe restriction of daily activities, poorer health-related quality of life, and greater health care use than their nonobese counterparts. Physiologically, increasing weight gain is associated with lung volume reduction effects in both health and disease, and this should be considered when interpreting common pulmonary function tests where lung volume is the denominator, such as FEV1/FVC and the ratio of diffusing capacity of carbon monoxide to alveolar volume, or indeed when evaluating the physiological consequences of emphysema in obese individuals. Contrary to expectation, the presence of mild to moderate obesity in COPD appears to have little deleterious effect on respiratory mechanics and muscle function, exertional dyspnea, and peak symptom-limited oxygen uptake during cardiopulmonary exercise testing. Thus, in evaluating obese patients with COPD reporting activity restriction, additional nonpulmonary factors, such as increased metabolic loading, cardiocirculatory impairment, and musculoskeletal abnormalities, should be considered. Care should be taken to recognize the presence of obstructive sleep apnea in obese patients with COPD, as effective treatment of the former condition likely conveys an important survival advantage. Finally, morbid obesity in COPD presents significant challenges to effective management, given the combined effects of erosion of the ventilatory reserve and serious metabolic and cardiovascular comorbidities that collectively predispose to an increased risk of death from respiratory failure.
Gattinoni, Luciano; Tonetti, Tommaso; Quintel, Michael
2017-12-28
The acute respiratory distress (ARDS) lung is usually characterized by a high degree of inhomogeneity. Indeed, the same lung may show a wide spectrum of aeration alterations, ranging from completely gasless regions, up to hyperinflated areas. This inhomogeneity is normally caused by the presence of lung edema and/or anatomical variations, and is deeply influenced by the gravitational forces.For any given airway pressure generated by the ventilator, the pressure acting directly on the lung (i.e., the transpulmonary pressure or lung stress) is determined by two main factors: 1) the ratio between lung elastance and the total elastance of the respiratory system (which has been shown to vary widely in ARDS patients, between 0.2 and 0.8); and 2) the lung size. In severe ARDS, the ventilatable parenchyma is strongly reduced in size ('baby lung'); its resting volume could be as low as 300 mL, and the total inspiratory capacity could be reached with a tidal volume of 750-900 mL, thus generating lethal stress and strain in the lung. Although this is possible in theory, it does not explain the occurrence of ventilator-induced lung injury (VILI) in lungs ventilated with much lower tidal volumes. In fact, the ARDS lung contains areas acting as local stress multipliers and they could multiply the stress by a factor ~ 2, meaning that in those regions the transpulmonary pressure could be double that present in other parts of the same lung. These 'stress raisers' widely correspond to the inhomogenous areas of the ARDS lung and can be present in up to 40% of the lung.Although most of the literature on VILI concentrates on the possible dangers of tidal volume, mechanical ventilation in fact delivers mechanical power (i.e., energy per unit of time) to the lung parenchyma, which reacts to it according to its anatomical structure and pathophysiological status. The determinants of mechanical power are not only the tidal volume, but also respiratory rate, inspiratory flow, and positive end-expiratory pressure (PEEP). In the end, decreasing mechanical power, increasing lung homogeneity, and avoiding reaching the anatomical limits of the 'baby lung' should be the goals for safe ventilation in ARDS.
Cigarette smoking and pulmonary diffusion defects in rheumatoid arthritis.
Westedt, M L; Hazes, J M; Breedveld, F C; Sterk, P J; Dijkman, J H
1998-01-01
The pathogenesis of lung disease in rheumatoid arthritis (RA) has still to be defined. Risk factors associated with lung involvement in RA were investigated by means of pulmonary function studies in 40 RA patients without apparent lung disease. A decreased carbon monoxide (CO) diffusion capacity indicative of interstitial lung disease (ILD) was the main pulmonary function defect found in the first 20 patients. The occurrence was associated with current cigarette smoking. This association was confirmed in a case control study performed subsequently. These data suggest that ILD in RA is stimulated by smoking and provide an additional argument that modification of smoking behaviour in RA patients might lead to less severe complications.
Supine posture changes lung volumes and increases ventilation heterogeneity in cystic fibrosis.
Smith, Laurie J; Macleod, Kenneth A; Collier, Guilhem J; Horn, Felix C; Sheridan, Helen; Aldag, Ina; Taylor, Chris J; Cunningham, Steve; Wild, Jim M; Horsley, Alex
2017-01-01
Lung Clearance Index (LCI) is recognised as an early marker of cystic fibrosis (CF) lung disease. The effect of posture on LCI however is important when considering longitudinal measurements from infancy and when comparing LCI to imaging studies. 35 children with CF and 28 healthy controls (HC) were assessed. Multiple breath washout (MBW) was performed both sitting and supine in triplicate and analysed for LCI, Scond, Sacin, and lung volumes. These values were also corrected for the Fowler dead-space to create 'alveolar' indices. From sitting to supine there was a significant increase in LCI and a significant decrease in FRC for both CF and HC (p<0.01). LCI, when adjusted to estimate 'alveolar' LCI (LCIalv), increased the magnitude of change with posture for both LCIalv and FRCalv in both groups, with a greater effect of change in lung volume in HC compared with children with CF. The % change in LCIalv for all subjects correlated significantly with lung volume % changes, most notably tidal volume/functional residual capacity (Vtalv/FRCalv (r = 0.54,p<0.001)). There is a significant increase in LCI from sitting to supine, which we believe to be in part due to changes in lung volume and also increasing ventilation heterogeneity related to posture. This may have implications in longitudinal measurements from infancy to older childhood and for studies comparing supine imaging methods to LCI.
Trzaska-Sobczak, Marzena; Skoczyński, Szymon; Pierzchała, Władysław
2014-09-01
Before planned surgical treatment of lung cancer, the patient's respiratory system function should be evaluated. According to the current guidelines, the assessment should start with measurements of FEV1 (forced expiratory volume in 1 second) and DLco (carbon monoxide lung diffusion capacity). Pneumonectomy is possible when FEV1 and DLco are > 80% of the predicted value (p.v.). If either of these parameters is < 80%, an exercise test with VO2 max (oxygen consumption during maximal exercise) measurement should be performed. When VO2 max is < 35 % p.v. or < 10 ml/kg/min, resection is associated with high risk. If VO2 max is in the range of 35-75% p.v. or 10-20 ml/kg/min, the postoperative values of FEV1 and DLco (ppoFEV1, ppoDLco) should be determined. The exercise test with VO2 max measurement may be replaced with other tests such as the shuttle walk test and the stair climbing test. The distance covered during the shuttle walk test should be > 400 m. Patients considered for lobectomy should be able to climb 3 flights of stairs (12 m) and for pneumonectomy 5 flights of stairs (22 m).
The Pathway for Oxygen: Tutorial Modelling on Oxygen Transport from Air to Mitochondrion
Bassingthwaighte, James B.; Raymond, Gary M.; Dash, Ranjan K.; Beard, Daniel A.; Nolan, Margaret
2016-01-01
The ‘Pathway for Oxygen’ is captured in a set of models describing quantitative relationships between fluxes and driving forces for the flux of oxygen from the external air source to the mitochondrial sink at cytochrome oxidase. The intervening processes involve convection, membrane permeation, diffusion of free and heme-bound O2 and enzymatic reactions. While this system’s basic elements are simple: ventilation, alveolar gas exchange with blood, circulation of the blood, perfusion of an organ, uptake by tissue, and consumption by chemical reaction, integration of these pieces quickly becomes complex. This complexity led us to construct a tutorial on the ideas and principles; these first PathwayO2 models are simple but quantitative and cover: 1) a ‘one-alveolus lung’ with airway resistance, lung volume compliance, 2) bidirectional transport of solute gasses like O2 and CO2, 3) gas exchange between alveolar air and lung capillary blood, 4) gas solubility in blood, and circulation of blood through the capillary syncytium and back to the lung, and 5) blood-tissue gas exchange in capillaries. These open-source models are at Physiome.org and provide background for the many respiratory models there. PMID:26782201
Cooper, J D; Gaissert, H A; Patterson, G A; Pohl, M S; Yusen, R D; Trulock, E P
1996-01-01
The aim of lung volume reduction surgery is to alleviate the symptoms of severe emphysema and to improve the life quality of the patient. The appropriate candidates (approximately 20% of all emphysematic patients examined in our clinic) had considerable dyspnea, an increased lung capacity, and a heterogenous dissemination of the emphysema with regional destruction of the parenchyma, hyperinflation and poor perfusion. After preoperative physiotherapie with a specified rehabilitation aim, a resection of 20 to 30% of the total lung volume was performed via sternotomy. From January 1993 to February 1996, 150 patients underwent bilateral lung volume reduction (age range = 36 to 77 years). The mean forced expiratory volume in 1 s (FEV1) was preoperatively 25% of the predicted value, the total lung capacity (TLC) 142% and the residual volume (RV) 283%, 94% of these patients necessitated oxygen supply at rest or during exercise. The 90-day mortality was 4%. All patients except 1 were extubated immediately after operation. The median hospital stay was 10 days in the first 100 patients and 7 days in the last 50. An increase of the FEV1 by 51% and a decrease of the RV by 28% was observed 6 months after operation. The mean PaO2 was improved by 8 mm Hg while the percentage of oxygen dependent patients went down from 50 to 16%. In addition a raise of the perseverance capacity, a clear decrease of dyspnea and an improvement of the life quality were achieved. These results persist after 1 (n = 56) and 2 (n = 20) years after operation. Lung volume reduction leads to an improvement of the lung function, symptoms and the quality of life, which is superior to that achieved by maximal clinical intervention.
Lung volumes and lung volume recruitment in ARDS: a comparison between supine and prone position.
Aguirre-Bermeo, Hernan; Turella, Marta; Bitondo, Maddalena; Grandjean, Juan; Italiano, Stefano; Festa, Olimpia; Morán, Indalecio; Mancebo, Jordi
2018-02-14
The use of positive end-expiratory pressure (PEEP) and prone position (PP) is common in the management of severe acute respiratory distress syndrome patients (ARDS). We conducted this study to analyze the variation in lung volumes and PEEP-induced lung volume recruitment with the change from supine position (SP) to PP in ARDS patients. The investigation was conducted in a multidisciplinary intensive care unit. Patients who met the clinical criteria of the Berlin definition for ARDS were included. The responsible physician set basal PEEP. To avoid hypoxemia, FiO 2 was increased to 0.8 1 h before starting the protocol. End-expiratory lung volume (EELV) and functional residual capacity (FRC) were measured using the nitrogen washout/washin technique. After the procedures in SP, the patients were turned to PP and 1 h later the same procedures were made in PP. Twenty-three patients were included in the study, and twenty were analyzed. The change from SP to PP significantly increased FRC (from 965 ± 397 to 1140 ± 490 ml, p = 0.008) and EELV (from 1566 ± 476 to 1832 ± 719 ml, p = 0.008), but PEEP-induced lung volume recruitment did not significantly change (269 ± 186 ml in SP to 324 ± 188 ml in PP, p = 0.263). Dynamic strain at PEEP decreased with the change from SP to PP (0.38 ± 0.14 to 0.33 ± 0.13, p = 0.040). As compared to supine, prone position increases resting lung volumes and decreases dynamic lung strain.
High tidal volume ventilation induces NOS2 and impairs cAMP- dependent air space fluid clearance.
Frank, James A; Pittet, Jean-Francois; Lee, Hyon; Godzich, Micaela; Matthay, Michael A
2003-05-01
Tidal volume reduction during mechanical ventilation reduces mortality in patients with acute lung injury and the acute respiratory distress syndrome. To determine the mechanisms underlying the protective effect of low tidal volume ventilation, we studied the time course and reversibility of ventilator-induced changes in permeability and distal air space edema fluid clearance in a rat model of ventilator-induced lung injury. Anesthetized rats were ventilated with a high tidal volume (30 ml/kg) or with a high tidal volume followed by ventilation with a low tidal volume of 6 ml/kg. Endothelial and epithelial protein permeability were significantly increased after high tidal volume ventilation but returned to baseline levels when tidal volume was reduced. The basal distal air space fluid clearance (AFC) rate decreased by 43% (P < 0.05) after 1 h of high tidal volume but returned to the preventilation rate 2 h after tidal volume was reduced. Not all of the effects of high tidal volume ventilation were reversible. The cAMP-dependent AFC rate after 1 h of 30 ml/kg ventilation was significantly reduced and was not restored when tidal volume was reduced. High tidal volume ventilation also increased lung inducible nitric oxide synthase (NOS2) expression and air space total nitrite at 3 h. Inhibition of NOS2 activity preserved cAMP-dependent AFC. Because air space edema fluid inactivates surfactant and reduces ventilated lung volume, the reduction of cAMP-dependent AFC by reactive nitrogen species may be an important mechanism of clinical ventilator-associated lung injury.
Influence of Gravity on Blood Volume and Flow Distribution
NASA Technical Reports Server (NTRS)
Pendergast, D.; Olszowka, A.; Bednarczyk, E.; Shykoff, B.; Farhi, L.
1999-01-01
In our previous experiments during NASA Shuttle flights SLS 1 and 2 (9-15 days) and EUROMIR flights (30-90 days) we observed that pulmonary blood flow (cardiac output) was elevated initially, and surprisingly remained elevated for the duration of the flights. Stroke volume increased initially and then decreased, but was still above 1 Gz values. As venous return was constant, the changes in SV were secondary to modulation of heart rate. Mean blood pressure was at or slightly below 1 Gz levels in space, indicating a decrease in total peripheral resistance. It has been suggested that plasma volume is reduced in space, however cardiac output/venous return do not return to 1 Gz levels over the duration of flight. In spite of the increased cardiac output, central venous pressure was not elevated in space. These data suggest that there is a change in the basic relationship between cardiac output and central venous pressure, a persistent "hyperperfusion" and a re-distribution of blood flow and volume during space flight. Increased pulmonary blood flow has been reported to increase diffusing capacity in space, presumably due to the improved homogeneity of ventilation and perfusion. Other studies have suggested that ventilation may be independent of gravity, and perfusion may not be gravity- dependent. No data for the distribution of pulmonary blood volume were available for flight or simulated microgravity. Recent studies have suggested that the pulmonary vascular tree is influenced by sympathetic tone in a manner similar to that of the systemic system. This implies that the pulmonary circulation is dilated during microgravity and that the distribution of blood flow and volume may be influenced more by vascular control than by gravity. The cerebral circulation is influenced by sympathetic tone similarly to that of the systemic and pulmonary circulations; however its effects are modulated by cerebral autoregulation. Thus it is difficult to predict if cerebral perfusion is increased and if there is edema in space. Anecdotal evidence suggests there may be cerebral edema early in flight. Cerebral artery velocity has been shown to be elevated in simulated microgravity. The elevated cerebral artery velocity during simulated microgravity may reflect vasoconstriction of the arteries and not increased cerebral blood flow. The purpose of our investigations was to evaluate the effects of alterations in simulated gravity (+/-), resulting in changes in cardiac output (+/-), and on the blood flow and volume distribution in the lung and brain of human subjects. The first hypothesis of these studies was that blood flow and volume would be affected by gravity, but their distribution in the lung would be independent of gravity and due to vasoactivity changing vascular resistance in lung vessels. The vasodilitation of the lung vasculature (lower resistance) along with increased "compliance" of the heart could account for the absence of increased central venous pressure in microgravity. Secondly, we postulate that cerebral blood velocity is increased in microgravity due to large artery vasoconstriction, but that cerebral blood flow would be reduced due to autoregulation.
Gestation increases the energetic cost of breathing in the lizard Tiliqua rugosa.
Munns, Suzanne L
2013-01-15
High gestational loads result in fetuses that occupy a large proportion of the body cavity and may compress maternal organs. Compression of the lungs results in alterations in breathing patterns during gestation, which may affect the energetic cost of breathing. In this study, the energetic cost of breathing during gestation was determined in the viviparous skink Tiliqua rugosa. Radiographic imaging showed progressive lung compression during gestation and a 30% reduction in the lung inflation index (rib number at which the caudal margin of the lung was imaged divided by total rib number). Pneumotachography and open flow respirometry were used to measure breathing patterns and metabolic rates. Gestation induced a twofold increase in minute ventilation via increases in breathing frequency, but no change in inspired tidal volume. The rates of O(2) consumption and CO(2) production did not change significantly during gestation. Together, these results suggest that a relative hyperventilation occurs during gestation in T. rugosa, which in turn suggests that diffusion and/or perfusion limitations may exist at the lung during gestation. The energetic cost of breathing was estimated as a percentage of resting metabolic rate using hypercapnia to stimulate ventilation at different stages of pregnancy. The energetic cost of breathing in non-pregnant lizards was 19.96±3.85% of resting metabolic rate and increased threefold to 62.80±10.11% during late gestation. This significant increase in the energetic cost of breathing may have significant consequences for energy budgets during gestation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jingbo; Department of Radiation Oncology, Cancer Hospital, Chinese Academic Medical Sciences and Peking Union Medical College, Beijing; Cao, Jianzhong
Purpose: Poor pulmonary function (PF) is often considered a contraindication to definitive radiation therapy for lung cancer. This study investigated whether baseline PF was associated with radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC) receiving conformal radiation therapy (CRT). Methods and Materials: NSCLC patients treated with CRT and tested for PF at baseline were eligible. Baseline predicted values of forced expiratory volume in 1 sec (FEV1), forced vital capacity (FVC), and diffusion capacity of lung for carbon monoxide (DLCO) were analyzed. Additional factors included age, gender, smoking status, Karnofsky performance status, coexisting chronic obstructive pulmonary diseasemore » (COPD), tumor location, histology, concurrent chemotherapy, radiation dose, and mean lung dose (MLD) were evaluated for RILT. The primary endpoint was symptomatic RILT (SRILT), including grade ≥2 radiation pneumonitis and fibrosis. Results: There was a total of 260 patients, and SRILT occurred in 58 (22.3%) of them. Mean FEV1 values for SRILT and non-SRILT patients were 71.7% and 65.9% (P=.077). Under univariate analysis, risk of SRILT increased with MLD (P=.008), the absence of COPD (P=.047), and FEV1 (P=.077). Age (65 split) and MLD were significantly associated with SRILT in multivariate analysis. The addition of FEV1 and age with the MLD-based model slightly improved the predictability of SRILT (area under curve from 0.63-0.70, P=.088). Conclusions: Poor baseline PF does not increase the risk of SRILT, and combining FEV1, age, and MLD may improve the predictive ability.« less
Iftikhar, Imran H; Alghothani, Lana; Sardi, Alejandro; Berkowitz, David; Musani, Ali I
2017-07-01
Transbronchial lung cryobiopsy is increasingly being used for the assessment of diffuse parenchymal lung diseases. Several studies have shown larger biopsy samples and higher yields compared with conventional transbronchial biopsies. However, the higher risk of bleeding and other complications has raised concerns for widespread use of this modality. To study the diagnostic accuracy and safety profile of transbronchial lung cryobiopsy and compare with video-assisted thoracoscopic surgery (VATS) by reviewing available evidence from the literature. Medline and PubMed were searched from inception until December 2016. Data on diagnostic performance were abstracted by constructing two-by-two contingency tables for each study. Data on a priori selected safety outcomes were collected. Risk of bias was assessed with the Quality Assessment of Diagnostic Accuracy Studies tool. Random effects meta-analyses were performed to obtain summary estimates of the diagnostic accuracy. The pooled diagnostic yield, pooled sensitivity, and pooled specificity of transbronchial lung cryobiopsy were 83.7% (76.9-88.8%), 87% (85-89%), and 57% (40-73%), respectively. The pooled diagnostic yield, pooled sensitivity, and pooled specificity of VATS were 92.7% (87.6-95.8%), 91.0% (89-92%), and 58% (31-81%), respectively. The incidence of grade 2 (moderate to severe) endobronchial bleeding after transbronchial lung cryobiopsy and of post-procedural pneumothorax was 4.9% (2.2-10.7%) and 9.5% (5.9-14.9%), respectively. Although the diagnostic test accuracy measures of transbronchial lung cryobiopsy lag behind those of VATS, with an acceptable safety profile and potential cost savings, the former could be considered as an alternative in the evaluation of patients with diffuse parenchymal lung diseases.
Transfer factor, lung volumes, resistance and ventilation distribution in healthy adults.
Verbanck, Sylvia; Van Muylem, Alain; Schuermans, Daniel; Bautmans, Ivan; Thompson, Bruce; Vincken, Walter
2016-01-01
Monitoring of chronic lung disease requires reference values of lung function indices, including putative markers of small airway function, spanning a wide age range.We measured spirometry, transfer factor of the lung for carbon monoxide (TLCO), static lung volume, resistance and ventilation distribution in a healthy population, studying at least 20 subjects per sex and per decade between the ages of 20 and 80 years.With respect to the Global Lung Function Initiative reference data, our subjects had average z-scores for forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC of -0.12, 0.04 and -0.32, respectively. Reference equations were obtained which could account for a potential dependence of index variability on age and height. This was done for (but not limited to) indices that are pertinent to asthma and chronic obstructive pulmonary disease studies: forced expired volume in 6 s, forced expiratory flow, TLCO, specific airway conductance, residual volume (RV)/total lung capacity (TLC), and ventilation heterogeneity in acinar and conductive lung zones.Deterioration in acinar ventilation heterogeneity and lung clearance index with age were more marked beyond 60 years, and conductive ventilation heterogeneity showed the greatest increase in variability with age. The most clinically relevant deviation from published reference values concerned RV/TLC values, which were considerably smaller than American Thoracic Society/European Respiratory Society-endorsed reference values. Copyright ©ERS 2016.
Airway driving pressure and lung stress in ARDS patients.
Chiumello, Davide; Carlesso, Eleonora; Brioni, Matteo; Cressoni, Massimo
2016-08-22
Lung-protective ventilation strategy suggests the use of low tidal volume, depending on ideal body weight, and adequate levels of PEEP. However, reducing tidal volume according to ideal body weight does not always prevent overstress and overstrain. On the contrary, titrating mechanical ventilation on airway driving pressure, computed as airway pressure changes from PEEP to end-inspiratory plateau pressure, equivalent to the ratio between the tidal volume and compliance of respiratory system, should better reflect lung injury. However, possible changes in chest wall elastance could affect the reliability of airway driving pressure. The aim of this study was to evaluate if airway driving pressure could accurately predict lung stress (the pressure generated into the lung due to PEEP and tidal volume). One hundred and fifty ARDS patients were enrolled. At 5 and 15 cmH2O of PEEP, lung stress, driving pressure, lung and chest wall elastance were measured. The applied tidal volume (mL/kg of ideal body weight) was not related to lung gas volume (r (2) = 0.0005 p = 0.772). Patients were divided according to an airway driving pressure lower and equal/higher than 15 cmH2O (the lower and higher airway driving pressure groups). At both PEEP levels, the higher airway driving pressure group had a significantly higher lung stress, respiratory system and lung elastance compared to the lower airway driving pressure group. Airway driving pressure was significantly related to lung stress (r (2) = 0.581 p < 0.0001 and r (2) = 0.353 p < 0.0001 at 5 and 15 cmH2O of PEEP). For a lung stress of 24 and 26 cmH2O, the optimal cutoff value for the airway driving pressure were 15.0 cmH2O (ROC AUC 0.85, 95 % CI = 0.782-0.922); and 16.7 (ROC AUC 0.84, 95 % CI = 0.742-0.936). Airway driving pressure can detect lung overstress with an acceptable accuracy. However, further studies are needed to establish if these limits could be used for ventilator settings.
Reference Equations for Static Lung Volumes and TLCO from a Population Sample in Northern Greece.
Michailopoulos, Pavlos; Kontakiotis, Theodoros; Spyratos, Dionisios; Argyropoulou-Pataka, Paraskevi; Sichletidis, Lazaros
2015-02-14
Background: The most commonly used reference equations for the measurement of static lung volumes/capacities and transfer factor of the lung for CO (TL CO ) are based on studies around 30-40 years old with significant limitations. Objectives: Our aim was to (1) develop reference equations for static lung volumes and TL CO using the current American Thoracic Society/European Respiratory Society guidelines, and (2) compare the equations derived with those most commonly used. Methods: Healthy Caucasian subjects (234 males and 233 females) aged 18-91 years were recruited. All of them were healthy never smokers with a normal chest X-ray. Static lung volumes and TL CO were measured with a single-breath technique according to the latest guidelines. Results: Curvilinear regression prediction equations derived from the present study were compared with those that are most commonly used. Our reference equations in accordance with the latest studies show lower values for all static lung volume parameters and TL CO as well as a different way of deviation of those parameters (i.e. declining with age total lung capacity, TL CO age decline in both sex and functional residual capacity age rise in males). Conclusions: We suggest that old reference values of static lung volumes and TL CO should be updated, and our perception of deviation of some spirometric parameters should be revised. Our new reference curvilinear equations derived according to the latest guidelines could contribute to the updating by respiratory societies of old existing reference values and result in a better estimation of the lung function of contemporary populations with similar Caucasian characteristics. © 2015 S. Karger AG, Basel.
Assessment of lung function in a large cohort of patients with acromegaly.
Störmann, Sylvère; Gutt, Bodo; Roemmler-Zehrer, Josefine; Bidlingmaier, Martin; Huber, Rudolf M; Schopohl, Jochen; Angstwurm, Matthias W
2017-07-01
Acromegaly is associated with increased mortality due to respiratory disease. To date, lung function in patients with acromegaly has only been assessed in small studies, with contradicting results. We assessed lung function parameters in a large cohort of patients with acromegaly. Lung function of acromegaly patients was prospectively assessed using spirometry, blood gas analysis and body plethysmography. Biochemical indicators of acromegaly were assessed through measurement of growth hormone and IGF-I levels. This study was performed at the endocrinology outpatient clinic of a tertiary referral center in Germany. We prospectively tested lung function of 109 acromegaly patients (53 male, 56 female; aged 24-82 years; 80 with active acromegaly) without severe acute or chronic pulmonary disease. We compared lung volume, air flow, airway resistance and blood gases to normative data. Acromegaly patients had greater lung volumes (maximal vital capacity, intra-thoracic gas volume and residual volume: P < 0.001, total lung capacity: P = 0.006) and showed signs of small airway obstruction (reduced maximum expiratory flow when 75% of the forced vital capacity (FVC) has been exhaled: P < 0.001, lesser peak expiratory flow: P = 0.01). There was no significant difference between active and inactive acromegaly. Female patients had significantly altered lung function in terms of subclinical airway obstruction. In our cross-sectional analysis of lung function in 109 patients with acromegaly, lung volumes were increased compared to healthy controls. Additionally, female patients showed signs of subclinical airway obstruction. There was no difference between patients with active acromegaly compared with patients biochemically in remission. © 2017 European Society of Endocrinology.
Johansen, B; Bjørtuft, O; Boe, J
1993-04-01
Single lung function is usually assessed by radioisotopes or, more rarely, by bronchospirometry in which a double lumen catheter is used to separate ventilation of the two lungs. The latter is more precise but less comfortable. An alternative bronchoscopic method is described for determining the volume of a single lung. One mainstem bronchus was temporarily occluded with an inflatable balloon during fibreoptic bronchoscopy in 12 healthy volunteers aged 18-29 years. The functional residual capacities (FRC) of the right, left, and both lungs were measured in duplicate by closed circuit helium dilution. Supplementary vital capacity (VC) manoeuvres permitted calculation of single lung capacities (TLC) and residual volumes (RV). The standard deviation of a single determination of capacities of the right, left, and both lungs were: TLC, 80, 96, and 308 ml; VC, 56, 139, 171 ml; FRC, 131, 74, and 287 ml; RV, 112, 185, and 303 ml, respectively. The sum of the right and left unilateral TLC was not different from bilateral TLC (6.12 v 5.95 l) and the sum of the unilateral FRC was not different from the bilateral FRC (2.60 v 2.78 l). The sum of the unilateral VC was lower than bilateral VC (4.52 v 4.80 l), that of the unilateral RV was higher than bilateral RV (1.60 v 1.16 l). For all subdivisions of lung volume, the right lung was larger than the left. The most common complaint was substernal discomfort during complete exhalation. Oxygen saturation rarely fell below 90%. Temporary occlusion of a mainstem bronchus in normal subjects is safe, relatively simple, and allows fairly precise and accurate measurements of unilateral static lung volumes. Occlusion at TLC, however, probably prevents proper emptying of the non-occluded lung.
Elevated airway liquid volumes at birth: a potential cause of transient tachypnea of the newborn.
McGillick, Erin V; Lee, Katie; Yamaoka, Shigeo; Te Pas, Arjan B; Crossley, Kelly J; Wallace, Megan J; Kitchen, Marcus J; Lewis, Robert A; Kerr, Lauren T; DeKoninck, Philip; Dekker, Janneke; Thio, Marta; McDougall, Annie R A; Hooper, Stuart B
2017-11-01
Excessive liquid in airways and/or distal lung tissue may underpin the respiratory morbidity associated with transient tachypnea of the newborn (TTN). However, its effects on lung aeration and respiratory function following birth are unknown. We investigated the effect of elevated airway liquid volumes on newborn respiratory function. Near-term rabbit kittens (30 days gestation; term ~32 days) were delivered, had their lung liquid-drained, and either had no liquid replaced (control; n = 7) or 30 ml/kg of liquid re-added to the airways [liquid added (LA); n = 7]. Kittens were mechanically ventilated in a plethysmograph. Measures of chest and lung parameters, uniformity of lung aeration, and airway size were analyzed using phase contrast X-ray imaging. The maximum peak inflation pressure required to recruit a tidal volume of 8 ml/kg was significantly greater in LA compared with control kittens (35.0 ± 0.7 vs. 26.8 ± 0.4 cmH 2 O, P < 0.001). LA kittens required greater time to achieve lung aeration (106 ± 14 vs. 60 ± 6 inflations, P = 0.03) and had expanded chest walls, as evidenced by an increased total chest area (32 ± 9%, P < 0.0001), lung height (17 ± 6%, P = 0.02), and curvature of the diaphragm (19 ± 8%, P = 0.04). LA kittens had lower functional residual capacity during stepwise changes in positive end-expiratory pressures (5, 3, 0, and 5 cmH 2 0). Elevated lung liquid volumes had marked adverse effects on lung structure and function in the immediate neonatal period and reduced the ability of the lung to aerate efficiently. We speculate that elevated airway liquid volumes may underlie the initial morbidity in near-term babies with TTN after birth. NEW & NOTEWORTHY Transient tachypnea of the newborn reduces respiratory function in newborns and is thought to result due to elevated airway liquid volumes following birth. However, the effect of elevated airway liquid volumes on neonatal respiratory function is unknown. Using phase contrast X-ray imaging, we show that elevated airway liquid volumes have adverse effects on lung structure and function in the immediate newborn period, which may underlie the pathology of TTN in near-term babies after birth. Copyright © 2017 the American Physiological Society.
Measurement of lung expansion with computed tomography and comparison with quantitative histology.
Coxson, H O; Mayo, J R; Behzad, H; Moore, B J; Verburgt, L M; Staples, C A; Paré, P D; Hogg, J C
1995-11-01
The total and regional lung volumes were estimated from computed tomography (CT), and the pleural pressure gradient was determined by using the milliliters of gas per gram of tissue estimated from the X-ray attenuation values and the pressure-volume curve of the lung. The data show that CT accurately estimated the volume of the resected lobe but overestimated its weight by 24 +/- 19%. The volume of gas per gram of tissue was less in the gravity-dependent regions due to a pleural pressure gradient of 0.24 +/- 0.08 cmH2O/cm of descent in the thorax. The proportion of tissue to air obtained with CT was similar to that obtained by quantitative histology. We conclude that the CT scan can be used to estimate total and regional lung volumes and that measurements of the proportions of tissue and air within the thorax by CT can be used in conjunction with quantitative histology to evaluate lung structure.
Lung Dosimetry for Radioiodine Treatment Planning in the Case of Diffuse Lung Metastases
Song, Hong; He, Bin; Prideaux, Andrew; Du, Yong; Frey, Eric; Kasecamp, Wayne; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George
2010-01-01
The lungs are the most frequent sites of distant metastasis in differentiated thyroid carcinoma. Radioiodine treatment planning for these patients is usually performed following the Benua– Leeper method, which constrains the administered activity to 2.96 GBq (80 mCi) whole-body retention at 48 h after administration to prevent lung toxicity in the presence of iodine-avid lung metastases. This limit was derived from clinical experience, and a dosimetric analysis of lung and tumor absorbed dose would be useful to understand the implications of this limit on toxicity and tumor control. Because of highly nonuniform lung density and composition as well as the nonuniform activity distribution when the lungs contain tumor nodules, Monte Carlo dosimetry is required to estimate tumor and normal lung absorbed dose. Reassessment of this toxicity limit is also appropriate in light of the contemporary use of recombinant thyrotropin (thyroid-stimulating hormone) (rTSH) to prepare patients for radioiodine therapy. In this work we demonstrated the use of MCNP, a Monte Carlo electron and photon transport code, in a 3-dimensional (3D) imaging–based absorbed dose calculation for tumor and normal lungs. Methods A pediatric thyroid cancer patient with diffuse lung metastases was administered 37MBq of 131I after preparation with rTSH. SPECT/CT scans were performed over the chest at 27, 74, and 147 h after tracer administration. The time–activity curve for 131I in the lungs was derived from the whole-body planar imaging and compared with that obtained from the quantitative SPECT methods. Reconstructed and coregistered SPECT/CT images were converted into 3D density and activity probability maps suitable for MCNP4b input. Absorbed dose maps were calculated using electron and photon transport in MCNP4b. Administered activity was estimated on the basis of the maximum tolerated dose (MTD) of 27.25 Gy to the normal lungs. Computational efficiency of the MCNP4b code was studied with a simple segmentation approach. In addition, the Benua–Leeper method was used to estimate the recommended administered activity. The standard dosing plan was modified to account for the weight of this pediatric patient, where the 2.96-GBq (80 mCi) whole-body retention was scaled to 2.44 GBq (66 mCi) to give the same dose rate of 43.6 rad/h in the lungs at 48 h. Results Using the MCNP4b code, both the spatial dose distribution and a dose–volume histogram were obtained for the lungs. An administered activity of 1.72 GBq (46.4 mCi) delivered the putative MTD of 27.25 Gy to the lungs with a tumor absorbed dose of 63.7 Gy. Directly applying the Benua–Leeper method, an administered activity of 3.89 GBq (105.0 mCi) was obtained, resulting in tumor and lung absorbed doses of 144.2 and 61.6 Gy, respectively, when the MCNP-based dosimetry was applied. The voxel-by-voxel calculation time of 4,642.3 h for photon transport was reduced to 16.8 h when the activity maps were segmented into 20 regions. Conclusion MCNP4b–based, patient-specific 3D dosimetry is feasible and important in the dosimetry of thyroid cancer patients with avid lung metastases that exhibit prolonged retention in the lungs. PMID:17138741
Razazi, Keyvan; Thille, Arnaud W; Carteaux, Guillaume; Beji, Olfa; Brun-Buisson, Christian; Brochard, Laurent; Mekontso Dessap, Armand
2014-09-01
In mechanically ventilated patients, the effect of draining pleural effusion on oxygenation is controversial. We investigated the effect of large pleural effusion drainage on oxygenation, respiratory function (including lung volumes), and hemodynamics in mechanically ventilated patients after ultrasound-guided drainage. Arterial blood gases, respiratory mechanics (airway, pleural and transpulmonary pressures, end-expiratory lung volume, respiratory system compliance and resistance), and hemodynamics (blood pressure, heart rate, and cardiac output) were recorded before and at 3 and 24 hours (H24) after pleural drainage. The respiratory settings were kept identical during the study period. The mean volume of effusion drained was 1,579 ± 684 ml at H24. Uncomplicated pneumothorax occurred in two patients. Respiratory mechanics significantly improved after drainage, with a decrease in plateau pressure and a large increase in end-expiratory transpulmonary pressure. Respiratory system compliance, end-expiratory lung volume, and PaO2/FiO2 ratio all improved. Hemodynamics were not influenced by drainage. Improvement in the PaO2/FiO2 ratio from baseline to H24 was positively correlated with the increase in end-expiratory lung volume during the same time frame (r = 0.52, P = 0.033), but not with drained volume. A high value of pleural pressure or a highly negative transpulmonary pressure at baseline predicted limited lung expansion following effusion drainage. A lesser improvement in oxygenation occurred in patients with ARDS. Drainage of large (≥500 ml) pleural effusion in mechanically ventilated patients improves oxygenation and end-expiratory lung volume. Oxygenation improvement correlated with an increase in lung volume and a decrease in transpulmonary pressure, but was less so in patients with ARDS.
Volume adjustment of lung density by computed tomography scans in patients with emphysema.
Shaker, S B; Dirksen, A; Laursen, L C; Skovgaard, L T; Holstein-Rathlou, N H
2004-07-01
To determine how to adjust lung density measurements for the volume of the lung calculated from computed tomography (CT) scans in patients with emphysema. Fifty patients with emphysema underwent 3 CT scans at 2-week intervals. The scans were analyzed with a software package that detected the lung in contiguous images and subsequently generated a histogram of the pixel attenuation values. The total lung volume (TLV), lung weight, percentile density (PD), and relative area of emphysema (RA) were calculated from this histogram. RA and PD are commonly applied measures of pulmonary emphysema derived from CT scans. These parameters are markedly influenced by changes in the level of inspiration. The variability of lung density due to within-subject variation in TLV was explored by plotting TLV against PD and RA. The coefficients for volume adjustment for PD were relatively stable over a wide range from the 10th to the 80th percentile, whereas for RA the coefficients showed large variability especially in the lower range, which is the most relevant for quantitation of pulmonary emphysema. Volume adjustment is mandatory in repeated CT densitometry and is more robust for PD than for RA. Therefore, PD seems more suitable for monitoring the progression of emphysema.
Serum Methylarginines and Spirometry-Measured Lung Function in Older Adults
McEvoy, Mark A.; Schofield, Peter W.; Smith, Wayne T.; Agho, Kingsley; Mangoni, Arduino A.; Soiza, Roy L.; Peel, Roseanne; Hancock, Stephen J.; Carru, Ciriaco; Zinellu, Angelo; Attia, John R.
2013-01-01
Rationale Methylarginines are endogenous nitric oxide synthase inhibitors that have been implicated in animal models of lung disease but have not previously been examined for their association with spirometric measures of lung function in humans. Objectives This study measured serum concentrations of asymmetric and symmetric dimethylarginine in a representative sample of older community-dwelling adults and determined their association with spirometric lung function measures. Methods Data on clinical, lifestyle, and demographic characteristics, methylated arginines, and L-arginine (measured using LC-MS/MS) were collected from a population-based sample of older Australian adults from the Hunter Community Study. The five key lung function measures included as outcomes were Forced Expiratory Volume in 1 second, Forced Vital Capacity, Forced Expiratory Volume in 1 second to Forced Vital Capacity ratio, Percent Predicted Forced Expiratory Volume in 1 second, and Percent Predicted Forced Vital Capacity. Measurements and Main Results In adjusted analyses there were statistically significant independent associations between a) higher asymmetric dimethylarginine, lower Forced Expiratory Volume in 1 second and lower Forced Vital Capacity; and b) lower L-arginine/asymmetric dimethylarginine ratio, lower Forced Expiratory Volume in 1 second, lower Percent Predicted Forced Expiratory Volume in 1 second and lower Percent Predicted Forced Vital Capacity. By contrast, no significant associations were observed between symmetric dimethylarginine and lung function. Conclusions After adjusting for clinical, demographic, biochemical, and pharmacological confounders, higher serum asymmetric dimethylarginine was independently associated with a reduction in key measures of lung function. Further research is needed to determine if methylarginines predict the decline in lung function. PMID:23690915
De Luca, Daniele; van Kaam, Anton H; Tingay, David G; Courtney, Sherry E; Danhaive, Olivier; Carnielli, Virgilio P; Zimmermann, Luc J; Kneyber, Martin C J; Tissieres, Pierre; Brierley, Joe; Conti, Giorgio; Pillow, Jane J; Rimensberger, Peter C
2017-08-01
Acute respiratory distress syndrome (ARDS) is undefined in neonates, despite the long-standing existing formal recognition of ARDS syndrome in later life. We describe the Neonatal ARDS Project: an international, collaborative, multicentre, and multidisciplinary project which aimed to produce an ARDS consensus definition for neonates that is applicable from the perinatal period. The definition was created through discussions between five expert members of the European Society for Paediatric and Neonatal Intensive Care; four experts of the European Society for Paediatric Research; two independent experts from the USA and two from Australia. This Position Paper provides the first consensus definition for neonatal ARDS (called the Montreux definition). We also provide expert consensus that mechanisms causing ARDS in adults and older children-namely complex surfactant dysfunction, lung tissue inflammation, loss of lung volume, increased shunt, and diffuse alveolar damage-are also present in several critical neonatal respiratory disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hedrick, Michael S; Hillman, Stanley S; Drewes, Robert C; Withers, Philip C
2011-10-01
Vertical movement of lymph from ventral regions to the dorsally located lymph hearts in anurans is accomplished by specialized skeletal muscles working in concert with lung ventilation. We hypothesize that more terrestrial species with greater lymph mobilization capacities and higher lymph flux rates will have larger lung volumes and higher pulmonary compliance than more semi-aquatic or aquatic species. We measured in situ mean and maximal compliance (Δvolume/Δpressure), distensibility (%Δvolume/Δpressure) and lung volume over a range of physiological pressures (1.0 to 4.0 cmH(2)O) for nine species of anurans representing three families (Bufonide, Ranidae and Pipidae) that span a range of body masses and habitats from terrestrial to aquatic. We further examined the relationship between these pulmonary variables and lymph flux for a semi-terrestrial bufonid (Rhinella marina), a semi-aquatic ranid (Lithobates catesbeianus) and an aquatic pipid (Xenopus laevis). Allometric scaling of pulmonary compliance and lung volume with body mass showed significant differences at the family level, with scaling exponents ranging from ∼0.75 in Bufonidae to ∼1.3 in Pipidae. Consistent with our hypothesis, the terrestrial Bufonidae species had significantly greater pulmonary compliance and greater lung volumes compared with semi-aquatic Ranidae and aquatic Pipidae species. Pulmonary distensibility ranged from ∼20 to 35% cmH(2)O(-1) for the three families but did not correlate with ecomorphology. For the three species for which lymph flux data are available, R. marina had a significantly higher (P<0.001) maximal compliance (84.9±2.7 ml cmH(2)O(-1) kg(-1)) and lung volume (242.1±5.5 ml kg(-1)) compared with L. catesbeianus (54.5±0.12 ml cmH(2)O(-1) kg(-1) and 139.3±0.5 ml kg(-1)) and X. laevis (30.8±0.7 ml cmH(2)O(-1) kg(-1) and 61.3±2.5 ml kg(-1)). Lymph flux rates were also highest for R. marina, lowest for X. laevis and intermediate in L. catesbeianus. Thus, there is a strong correlation between pulmonary compliance, lung volume and lymph flux rates, which suggests that lymph mobilization capacity may explain some of the variation in pulmonary compliance and lung volume in anurans.
Schwaiberger, David; Pickerodt, Philipp A; Pomprapa, Anake; Tjarks, Onno; Kork, Felix; Boemke, Willehad; Francis, Roland C E; Leonhardt, Steffen; Lachmann, Burkhard
2018-06-01
Adherence to low tidal volume (V T ) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the "open lung approach" (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low V T -ventilation for 6 h in severely lung injured pigs. Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.
Lee, Ki Nam; Yoon, Seong Kuk; Sohn, Choon Hee; Choi, Pil Jo; Webb, W Richard
2002-01-01
To evaluate the influence of lung volume on dependent lung opacity seen at thin-section CT. In thirteen healthy volunteers, thin-section CT scans were performed at three levels (upper, mid, and lower portion of the lung) and at different lung volumes (10, 30, 50, and 100% vital capacity), using spirometric gated CT. Using a three-point scale, two radiologists determined whether dependent opacity was present, and estimated its degree. Regional lung attenuation at a level 2 cm above the diaphragm was determined using semiautomatic segmentation, and the diameter of a branch of the right lower posterior basal segmental artery was measured at each different vital capacity. At all three anatomic levels, dependent opacity occurred significantly more often at lower vital capacities (10, 30%) than at 100% vital capacity (p = 0.001). Visually estimated dependent opacity was significantly related to regional lung attenuation (p < 0.0001), which in dependent areas progressively increased as vital capacity decreased (p < 0.0001). The presence of dependent opacity and regional lung attenuation of a dependent area correlated significantly with increased diameter of a segmental arterial branch (r = 0.493 and p = 0.0002; r = 0.486 and p = 0.0003, respectively). Visual estimation and CT measurements of dependent opacity obtained by semiautomatic segmentation are significantly influenced by lung volume and are related to vascular diameter.
Nathan, A T; Marino, B S; Dominguez, T; Tabbutt, S; Nicolson, S; Donaghue, D D; Spray, T L; Rychik, J
2010-01-01
Congenital tricuspid valve disease (Ebstein's anomaly, tricuspid valve dysplasia) with severe tricuspid regurgitation and cardiomegaly is associated with poor prognosis. Fetal echocardiography can accurately measure right atrial enlargement, which is associated with a poor prognosis in the fetus with tricuspid valve disease. Fetal lung volumetric assessments have been used in an attempt to predict viability of fetuses using ultrasonogram and prenatal MRI. We describe a fetus with tricuspid dysplasia, severe tricuspid regurgitation, right atrial enlargement and markedly reduced lung volumes. The early gestational onset of cardiomegaly with bilateral lung compression raised the possibility of severe lung hypoplasia with decreased broncho-alveolar development. Use of fetal echocardiography with measurement of pulmonary artery size combined with prenatal MRI scanning of lung volumes resulted in an improved understanding of this anomaly and directed the management strategy towards a successful Fontan circulation. 2010 S. Karger AG, Basel.
Bongrani, S; Fornasier, M; Papotti, M; Razzetti, R; Robertson, B
1994-01-01
Immature newborn rabbits delivered at a gestational age of 27 days were tracheotomized and treated, via the tracheal cannula, with clinically recommended doses of natural or synthetic surfactant (Curosurf and Exosurf, respectively). Littermates received 0.1% tyloxapol, 5% Tween 20, or saline. The dose volume of Curosurf was 2.5 ml/kg, that of the other materials 5 ml/kg. Animals were kept in a multiplethysmograph system and ventilated for 30 min with a standardized sequence of insufflation pressures. End-expiratory lung gas volume was calculated at the end of the experiment from measurements of lung weight and total lung volume. Tidal volumes were significantly improved in all groups of animals receiving surfactant or detergents. However, expiratory time constant (determined from the tidal volume tracing) was significantly longer, and end-expiratory gas volume significantly larger, in animals treated with Curosurf than in those receiving Exosurf or detergents. These differences were confirmed by semiquantitative evaluation of alveolar air expansion in histological sections. In addition, airway epithelial necrosis was reduced in animals receiving Curosurf, Exosurf, or Tween 20, but not in animals treated with tyloxapol. The discrepancy between improvements in tidal volume, expiratory time constant, and end-expiratory gas volume reflects failure of lung stabilization in animals treated with Exosurf or detergents, probably due to absence of specific hydrophobic proteins in the synthetic products.
Distribution of extravascular fluid volumes in isolated perfused lungs measured with H215O.
Jones, T; Jones, H A; Rhodes, C G; Buckingham, P D; Hughes, J M
1976-01-01
The distributions per unit volume of extravascular water (EVLW), blood volume, and blood flow were measured in isolated perfused vertical dog lungs. A steady-state tracer technique was employed using oxygen-15, carbon-11, and nitrogen-13 isotopes and external scintillation counting of the 511-KeV annihilation radiation common to all three radionuclides. EVLW, and blood volume and flow increased from apex to base in all preparations, but the gradient of increasing flow exceeded that for blood and EVLW volumes. The regional distributions of EVLW and blood volume were almost identical. With increasing edema, lower-zone EVLW increased slightly relative to that in the upper zone. There was no change in the distribution of blood volume or flow until gross edema (100% wt gain) occurred when lower zone values were reduced. In four lungs the distribution of EVLW was compared with wet-to-dry ratios from lung biopsies taken immediately afterwards. Whereas the isotopically measured EVLW increased from apex to base, the wet-to-dry weight ratios remained essentially uniform. We concluded that isotopic methods measure only an "exchangeable" water pool whose volume is dependent on regional blood flow and capillary recruitment. Second, the isolated perfused lung can accommodate up to 60% wt gain without much change in the regional distribution of EVLW, volume, or flow. PMID:765354
Morris, Mohy G.
2009-01-01
With the rapid somatic growth and development in infants, simultaneous accurate measurements of lung volume and airway function are essential. Raised volume rapid thoracoabdominal compression (RTC) is widely used to generate forced expiration from an airway opening pressure of 30 cm H2O (V30). The (dynamic) functional residual capacity (FRCdyn) remains the lung volume most routinely measured. The aim of this study was to develop comprehensive integrated spirometry that included all subdivisions of lung volume at V30 or total lung capacity (TLC30). Measurements were performed on seventeen healthy infants aged 8.6–119.7 weeks. A commercial system for multiple-breath nitrogen washout (MBNW) to measure lung volumes and a custom made system to perform RTC were used in unison. A refined automated raised volume RTC and the following two novel single maneuvers with dual volume measurements were performed from V30 during a brief post-hyperventilation apneic pause: (1) the passive expiratory flow was integrated to produce the inspiratory capacity (IC) and the static (passive) FRC (FRCst) was estimated by initiating MBNW after end-passive expiration; (2) RTC was initiated late during passive expiration, flow was integrated to produce the slow vital capacity (jSVC) and the residual volume (RV) was measured by initiating MBNW after end-expiration while the jacket (j) was inflated. Intrasubject FRCdyn and FRCst measurements overlapped (p= 0.6420) but neither did with the RV (p<0.0001). Means (95% confidence interval) of FRCdyn, IC, FRCst, jSVC, RV, forced vital capacity and tidal volume were 21.2 (19.7–22.7), 36.7 (33.0–40.4), 21.2 (19.6–22.8), 40.7 (37.2–44.2), 18.1 (16.6–19.7), 40.7 (37.1–44.2) and 10.2 (9.6–10.7) ml/kg, respectively. Static lung volumes and capacities at V30 and variables from the best forced expiratory flow-volume curve were dependent on age, body length and weight. In conclusion, we developed a comprehensive physiologically-integrated approach for in-depth investigation of lung function at V30 in infants. PMID:19897058
Feasibility and Safety of a Transthoracic Pneumostoma Airway Bypass in Severe Emphysema Patients.
Snell, Gregory I; Holsworth, Lynda; Khorramnia, Sadie; Westall, Glen P; Williams, Trevor J; Marasco, Silvana; Gooi, Julian H
2017-01-01
Emphysema is characterised by airflow obstruction, hyperinflation, and resultant dyspnoea. It is worth investigating whether decompression improves lung mechanics and enhances quality of life (QoL). The purpose of this study was to describe the feasibility and safety of creating a transthoracic pneumostoma to enable lung reduction. A transthoracic 10-mm diameter Portaero Access Tube (Portaero™, Cupertino, CA, USA) was implanted via a third intercostal space incision in 15 severe emphysema patients [mean age 63 years, forced expiratory volume in 1 s 54% predicted, diffusing capacity for carbon monoxide 31% predicted, residual volume 246% predicted, Six-Minute Walk Test 296 m]. Four weeks later, an 8-mm Portaero Disposable Tube (3-8 cm in length) was substituted and changed daily thereafter. The targeted primary endpoints were a ≥12% increase in forced expiratory volume in 1 s and a decrease of ≥4 points in Saint George's Respiratory Questionnaire score at 6 months. Sixteen procedures were performed on 15 patients, complicated by 1 intercostal haemorrhage, 1 pneumothorax, and universal mild surgical emphysema. Early patency issues were common, but often responded to external endoscopic debridement or argon plasma laser. Three-month patency was achieved in 9 of 15 patients, and 6 of these had long-term patency (mean of 4 years). Patency was associated with potentially useful long-term improvements or stability in spirometry, residual volume, and QoL. However, the primary endpoints were not met at 6 months. The creation and maintenance of a transthoracic pneumostoma appears feasible and safe in patients with severe emphysema. Further studies refining patient selection (perhaps via chest computed tomography collateral ventilation and fissure assessments), techniques, and tube materials are suggested. © 2017 S. Karger AG, Basel.
Penguin lungs and air sacs: implications for baroprotection, oxygen stores and buoyancy.
Ponganis, P J; St Leger, J; Scadeng, M
2015-03-01
The anatomy and volume of the penguin respiratory system contribute significantly to pulmonary baroprotection, the body O2 store, buoyancy and hence the overall diving physiology of penguins. Therefore, three-dimensional reconstructions from computerized tomographic (CT) scans of live penguins were utilized to measure lung volumes, air sac volumes, tracheobronchial volumes and total body volumes at different inflation pressures in three species with different dive capacities [Adélie (Pygoscelis adeliae), king (Aptenodytes patagonicus) and emperor (A. forsteri) penguins]. Lung volumes scaled to body mass according to published avian allometrics. Air sac volumes at 30 cm H2O (2.94 kPa) inflation pressure, the assumed maximum volume possible prior to deep dives, were two to three times allometric air sac predictions and also two to three times previously determined end-of-dive total air volumes. Although it is unknown whether penguins inhale to such high volumes prior to dives, these values were supported by (a) body density/buoyancy calculations, (b) prior air volume measurements in free-diving ducks and (c) previous suggestions that penguins may exhale air prior to the final portions of deep dives. Based upon air capillary volumes, parabronchial volumes and tracheobronchial volumes estimated from the measured lung/airway volumes and the only available morphometry study of a penguin lung, the presumed maximum air sac volumes resulted in air sac volume to air capillary/parabronchial/tracheobronchial volume ratios that were not large enough to prevent barotrauma to the non-collapsing, rigid air capillaries during the deepest dives of all three species, and during many routine dives of king and emperor penguins. We conclude that volume reduction of airways and lung air spaces, via compression, constriction or blood engorgement, must occur to provide pulmonary baroprotection at depth. It is also possible that relative air capillary and parabronchial volumes are smaller in these deeper-diving species than in the spheniscid penguin of the morphometry study. If penguins do inhale to this maximum air sac volume prior to their deepest dives, the magnitude and distribution of the body O2 store would change considerably. In emperor penguins, total body O2 would increase by 75%, and the respiratory fraction would increase from 33% to 61%. We emphasize that the maximum pre-dive respiratory air volume is still unknown in penguins. However, even lesser increases in air sac volume prior to a dive would still significantly increase the O2 store. More refined evaluations of the respiratory O2 store and baroprotective mechanisms in penguins await further investigation of species-specific lung morphometry, start-of-dive air volumes and body buoyancy, and the possibility of air exhalation during dives. © 2015. Published by The Company of Biologists Ltd.
Hendrick, D J; Marshall, R; Faux, J A; Krall, J M
1980-01-01
The validity of inhalation tests in the investigation of extrinsic allergic alveolitis was assessed from the results of 144 antigen and control tests in 31 subjects. A definitive pattern of positive late responses was observed. Reactions to nebulised bird serum and droppings in subjects with bird fancier's lung were identical to reactions after "natural" exposures in aviaries or lofts, and to reactions after "occupational" challenges in subjects with farmer's lung and mushroom worker's lung. In general, positive tests were easily recognised subjectively from symptoms and signs appropriate to an influenza-like illness and undue respiratory effort on exercise. They were associated with significant changes in six readily available objective monitoring measurements--exercise minute ventilation (greater than or equal to +15%), body temperature (> 37.2 degrees C), circulating neutrophils (greater than or equal to +2500/mm3), exercise respiratory frequency (greater than or equal to +25%), circulating lymphocytes (greater than ore equal to -500/mm3 with lymphopenia), and forced vital capacity (greater than or equal to -15%). These confirmatory monitoring tests had specificities of approximately 95% and sensitivities of 85-48%. Measurement of diffusing capacity, lung volume subdivisions, or resting minute ventilation/respiratory frequency proved to be too insensitive to be useful, as did auscultation and chest radiography. We conclude that responses that do provoke significant changes in these less sensitive tests are unnecessarily distressing and, presumable, unnecessarily hazardous. PMID:7434297
Grubstein, Ahuva; Shtraichman, Osnat; Fireman, Elizabeth; Bachar, Gil N; Noach-Ophir, Noa; Kramer, Mordechai R
The aim of this study was to describe the computed tomography (CT) findings and correlate pulmonary function tests (PFTs) of silicosis patients with emphasis on the findings in lung transplantation (LTX) recipients. We studied the chest CT scans from 82 marble workers exposed to artificial stone dust and who had a diagnosis of silicosis, of whom 13 patients underwent LTX. Silicosis-associated findings were graded and correlated to concomitant PFT. A statistically significant inverse relationship was found between chest CT scores and PFT including forced expired volume in the first second (r = -0.54, P < 0.0001), total lung capacity (r = -0.4, P < 0.0001), and diffusion capacity for carbon monoxide single breath % (r = -0.6, P < 0.0001) parameters. Progressive massive fibrosis indicating advanced and complicated silicosis was found in 85% of LTX patients, as compared with 40% in patients with maintained pulmonary function. Ground-glass opacities were seen in some LTX patients with or without signs of progressive massive fibrosis. Two of these patients had silicoproteinosis diagnosed within the resected lung, indicating an acute or accelerated form of silicosis. This silicosis current outbreak is important because of the worldwide use of this and similar high-silica-content, artificial stone products, which can cause progressive severe forms of silicosis. Along with standard clinical assessment and PFT, CT parameters are indicative measures of the disease severity.
A prototype of volume-controlled tidal liquid ventilator using independent piston pumps.
Robert, Raymond; Micheau, Philippe; Cyr, Stéphane; Lesur, Olivier; Praud, Jean-Paul; Walti, Hervé
2006-01-01
Liquid ventilation using perfluorochemicals (PFC) offers clear theoretical advantages over gas ventilation, such as decreased lung damage, recruitment of collapsed lung regions, and lavage of inflammatory debris. We present a total liquid ventilator designed to ventilate patients with completely filled lungs with a tidal volume of PFC liquid. The two independent piston pumps are volume controlled and pressure limited. Measurable pumping errors are corrected by a programmed supervisor module, which modifies the inserted or withdrawn volume. Pump independence also allows easy functional residual capacity modifications during ventilation. The bubble gas exchanger is divided into two sections such that the PFC exiting the lungs is not in contact with the PFC entering the lungs. The heating system is incorporated into the metallic base of the gas exchanger, and a heat-sink-type condenser is placed on top of the exchanger to retrieve PFC vapors. The prototype was tested on 5 healthy term newborn lambs (<5 days old). The results demonstrate the efficiency and safety of the prototype in maintaining adequate gas exchange, normal acido-basis equilibrium, and cardiovascular stability during a short, 2-hour total liquid ventilator. Airway pressure, lung volume, and ventilation scheme were maintained in the targeted range.
Measurement of absolute lung volumes by imaging techniques.
Clausen, J
1997-10-01
In this paper, the techniques available for estimating total lung capacities from standard chest radiographs in children and infants as well as adults are reviewed. These techniques include manual measurements using ellipsoid and planimetry techniques as well as computerized systems. Techniques are also available for making radiographic lung volume measurements from portable chest radiographs. There are inadequate data in the literature to support recommending one specific technique over another. Though measurements of lung volumes by radiographic, plethysmographic, gas dilution or washout techniques result in remarkably similar mean results when groups of normal subjects are tested, in patients with disease, the results of these different basic measurement techniques can differ significantly. Computed tomographic and magnetic resonance techniques can also be used to measure absolute lung volumes and offer the theoretical advantages that the results in individual subjects are less affected by variances of thoracic shape than are measurements made using conventional chest radiographs.
Franzi, Lisa M.; Linderholm, Angela L.; Last, Jerold A.; Adams, Jason Y.; Harper, Richart W.
2017-01-01
Background Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury. Objectives To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation. Methods 5–12 week-old female BALB/c mice (n = 85) were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg) or high tidal volume (15 ml/kg) with or without positive end-expiratory pressure and recruitment maneuvers. Results Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation. Conclusions Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours) and lung injury worsens with longer-term ventilation (4 hrs). Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points. Dynamic compliance can be used guide the frequency of recruitment maneuvers to help ameloriate ventilator-induced lung injury. PMID:29112971
Lung injury induced by secondhand smoke exposure detected with hyperpolarized helium-3 diffusion MR.
Wang, Chengbo; Mugler, John P; de Lange, Eduard E; Patrie, James T; Mata, Jaime F; Altes, Talissa A
2014-01-01
To determine whether helium-3 diffusion MR can detect the changes in the lungs of healthy nonsmoking individuals who were regularly exposed to secondhand smoke. Three groups were studied (age: 59 ± 9 years): 23 smokers, 37 exposure-to-secondhand-smoke subjects, and 29 control subjects. We measured helium-3 diffusion values at diffusion times from 0.23 to 1.97 s. One-way analysis of variance revealed that the mean area under the helium-3 diffusion curves (ADC AUC) of the smokers was significantly elevated compared with the controls and to the exposure-to-secondhand-smoke subjects (P < 0.001 both). No difference between the mean ADC AUC of the exposure-to-secondhand-smoke subjects and that of the controls was found (P = 0.115). However, application of a receiver operator characteristic-derived rule to classify subjects as either a "control" or a "smoker," based on ADC AUC, revealed that 30% (11/37) of the exposure-to-secondhand subjects were classified as "smokers" indicating an elevation of the ADC AUC. Using helium-3 diffusion MR, elevated ADC values were detected in 30% of nonsmoking healthy subjects who had been regularly exposed to secondhand smoke, supporting the concept that, in susceptible individuals, secondhand smoke causes mild lung damage. Copyright © 2013 Wiley Periodicals, Inc.
Structural Measurements from Images of Noble Gas Diffusion
NASA Astrophysics Data System (ADS)
Cadman, Robert V.; Kadlecek, Stephen J.; Emami, Kiarash; MacDuffie Woodburn, John; Vahdat, Vahid; Ishii, Masaru; Rizi, Rahim R.
2009-03-01
Magnetic resonance imaging of externally polarized noble gases such as ^3He has been used for pulmonary imaging for more than a decade. Because gas diffusion is impeded by the alveoli, the diffusion coefficient of gas in the lung, measured on a time scale of milliseconds, is reduced compared to that of the same gas mixture in the absence of restrictions. When the alveolar walls decay, as in emphysema, diffusivity in the lung increases. In this paper, the relationship between diffusion measurements and the size of the restricting structures will be discussed. The simple case of diffusion in an impermeable cylinder, a structure similar to the upper respiratory airways in mammals, has been studied. A procedure will be presented by which airways of order 2 mm in diameter may be accurately measured; demonstration experiments with plastic tubes will also be presented. The additional developments needed before this technique becomes practical will be briefly discussed.
Jacob, Joseph; Bartholmai, Brian J; Rajagopalan, Srinivasan; Brun, Anne Laure; Egashira, Ryoko; Karwoski, Ronald; Kokosi, Maria; Wells, Athol U; Hansell, David M
2016-11-23
To evaluate computer-based computer tomography (CT) analysis (CALIPER) against visual CT scoring and pulmonary function tests (PFTs) when predicting mortality in patients with connective tissue disease-related interstitial lung disease (CTD-ILD). To identify outcome differences between distinct CTD-ILD groups derived following automated stratification of CALIPER variables. A total of 203 consecutive patients with assorted CTD-ILDs had CT parenchymal patterns evaluated by CALIPER and visual CT scoring: honeycombing, reticular pattern, ground glass opacities, pulmonary vessel volume, emphysema, and traction bronchiectasis. CT scores were evaluated against pulmonary function tests: forced vital capacity, diffusing capacity for carbon monoxide, carbon monoxide transfer coefficient, and composite physiologic index for mortality analysis. Automated stratification of CALIPER-CT variables was evaluated in place of and alongside forced vital capacity and diffusing capacity for carbon monoxide in the ILD gender, age physiology (ILD-GAP) model using receiver operating characteristic curve analysis. Cox regression analyses identified four independent predictors of mortality: patient age (P < 0.0001), smoking history (P = 0.0003), carbon monoxide transfer coefficient (P = 0.003), and pulmonary vessel volume (P < 0.0001). Automated stratification of CALIPER variables identified three morphologically distinct groups which were stronger predictors of mortality than all CT and functional indices. The Stratified-CT model substituted automated stratified groups for functional indices in the ILD-GAP model and maintained model strength (area under curve (AUC) = 0.74, P < 0.0001), ILD-GAP (AUC = 0.72, P < 0.0001). Combining automated stratified groups with the ILD-GAP model (stratified CT-GAP model) strengthened predictions of 1- and 2-year mortality: ILD-GAP (AUC = 0.87 and 0.86, respectively); stratified CT-GAP (AUC = 0.89 and 0.88, respectively). CALIPER-derived pulmonary vessel volume is an independent predictor of mortality across all CTD-ILD patients. Furthermore, automated stratification of CALIPER CT variables represents a novel method of prognostication at least as robust as PFTs in CTD-ILD patients.
Yang, Rui-Meng; Li, Long; Wei, Xin-Hua; Guo, Yong-Mei; Huang, Yun-Hai; Lai, Li-Sha; Chen, A-Mei; Liu, Guo-Shun; Xiong, Wei-Feng; Luo, Liang-Ping; Jiang, Xin-Qing
2013-01-01
Objective Prospectively assess the performance of diffusion-weighted magnetic resonance imaging (DW-MRI) for differentiation of central lung cancer from atelectasis. Materials and Methods 38 consecutive lung cancer patients (26 males, 12 females; age range: 28–71 years; mean age: 49 years) who were referred for thoracic MR imaging examinations were enrolled. MR examinations were performed using a 1.5-T clinical scanner and scanning sequences of T1WI, T2WI, and DWI. Cancers and atelectasis were measured by mapping of the apparent diffusion coefficients (ADCs) obtained with a b-value of 500 s/mm2. Results PET/CT and DW-MR allowed differentiation of tumor and atelectasis in all 38 cases, but T2WI did not allow differentiation in 9 cases. Comparison of conventional T2WI and DW-MRI indicated a higher contrast noise ratio of the central lung carcinoma than the atelectasis by DW-MRI. ADC maps indicated significantly lower mean ADC in the central lung carcinoma than in the atelectasis (1.83±0.58 vs. 2.90±0.26 mm2/s, p<0.0001). ADC values of small cell lung carcinoma were significantly greater than those from squamous cell carcinoma and adenocarcinoma (p<0.0001 for both). Conclusions DW-MR imaging provides valuable information not obtained by conventional MR and may be useful for differentiation of central lung carcinoma from atelectasis. Future developments may allow DW-MR imaging to be used as an alternative to PET-CT in imaging of patients with lung cancer. PMID:23593186
Connection between encounter volume and diffusivity in geophysical flows
NASA Astrophysics Data System (ADS)
Rypina, Irina I.; Smith, Stefan G. Llewellyn; Pratt, Larry J.
2018-04-01
Trajectory encounter volume - the volume of fluid that passes close to a reference fluid parcel over some time interval - has been recently introduced as a measure of mixing potential of a flow. Diffusivity is the most commonly used characteristic of turbulent diffusion. We derive the analytical relationship between the encounter volume and diffusivity under the assumption of an isotropic random walk, i.e., diffusive motion, in one and two dimensions. We apply the derived formulas to produce maps of encounter volume and the corresponding diffusivity in the Gulf Stream region of the North Atlantic based on satellite altimetry, and discuss the mixing properties of Gulf Stream rings. Advantages offered by the derived formula for estimating diffusivity from oceanographic data are discussed, as well as applications to other disciplines.
Ergün, Recai; Evcik, Ender; Ergün, Dilek; Ergan, Begüm; Özkan, Esin; Gündüz, Özge
2017-05-05
The number of studies where non-malignant pulmonary diseases are evaluated after occupational arsenic exposure is very few. To investigate the effects of occupational arsenic exposure on the lung by high-resolution computed tomography and pulmonary function tests. Retrospective cross-sectional study. In this study, 256 workers with suspected respiratory occupational arsenic exposure were included, with an average age of 32.9±7.8 years and an average of 3.5±2.7 working years. Hair and urinary arsenic levels were analysed. High-resolution computed tomography and pulmonary function tests were done. In workers with occupational arsenic exposure, high-resolution computed tomography showed 18.8% pulmonary involvement. In pulmonary involvement, pulmonary nodule was the most frequently seen lesion (64.5%). The other findings of pulmonary involvement were 18.8% diffuse interstitial lung disease, 12.5% bronchiectasis, and 27.1% bullae-emphysema. The mean age of patients with pulmonary involvement was higher and as they smoked more. The pulmonary involvement was 5.2 times higher in patients with skin lesions because of arsenic. Diffusing capacity of lung for carbon monoxide was significantly lower in patients with pulmonary involvement. Besides lung cancer, chronic occupational inhalation of arsenic exposure may cause non-malignant pulmonary findings such as bronchiectasis, pulmonary nodules and diffuse interstitial lung disease. So, in order to detect pulmonary involvement in the early stages, workers who experience occupational arsenic exposure should be followed by diffusion test and high-resolution computed tomography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karki, K; Hugo, G; Ford, J
2014-06-15
Purpose: Diffusion-weighted MRI (DW-MRI) is increasingly being investigated for radiotherapy planning and response assessment. Selection of a limited number of b-values in DW-MRI is important to keep geometrical variations low and imaging time short. We investigated various b-value sets to determine an optimal set for obtaining monoexponential apparent diffusion coefficient (ADC) close to perfusion-insensitive intravoxel incoherent motion (IVIM) model ADC (ADC IVIM) in nonsmall cell lung cancer. Methods: Seven patients had 27 DW-MRI scans before and during radiotherapy in a 1.5T scanner. Respiratory triggering was applied to the echo-planar DW-MRI with TR=4500ms approximately, TE=74ms, pixel size=1.98X1.98mm{sub 2}, slice thickness=4–6mm andmore » 7 axial slices. Diffusion gradients were applied to all three axes producing traceweighted images with eight b-values of 0–1000μs/μm{sup 2}. Monoexponential model ADC values using various b-value sets were compared to ADC IVIM using all b-values. To compare the relative noise in ADC maps, intra-scan coefficient of variation (CV) of active tumor volumes was computed. Results: ADC IVIM, perfusion coefficient and perfusion fraction for tumor volumes were in the range of 880-1622 μm{sup 2}/s, 8119-33834 μm{sup 2}/s and 0.104–0.349, respectively. ADC values using sets of 250, 800 and 1000; 250, 650 and 1000; and 250–1000μs/μm{sup 2} only were not significantly different from ADC IVIM(p>0.05, paired t-test). Error in ADC values for 0–1000, 50–1000, 100–1000, 250–1000, 500–1000, and three b-value sets- 250, 500 and 1000; 250, 650 and 1000; and 250, 800 and 1000μs/μm{sup 2} were 15.0, 9.4, 5.6, 1.4, 11.7, 3.7, 2.0 and 0.2% relative to the reference-standard ADC IVIM, respectively. Mean intrascan CV was 20.2, 20.9, 21.9, 24.9, 32.6, 25.8, 25.4 and 24.8%, respectively, whereas that for ADC IVIM was 23.3%. Conclusion: ADC values of two 3 b-value sets (250, 650 and 1000; and 250, 800 and 1000μs/μm{sup 2}) approached ADC IVIM, with relative noise comparable to that of ADC IVIM. These sets may be used to obtain perfusion-insensitive ADC values in lung tumors. E. Weiss: Funding through Varian Medical Systems and Philips Oncology Systems, UpToDate royalties. G. Hugo: NIH R01CA166119, P01 CA116602, NHMRC Project Grant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diot, Q; Kavanagh, B; Miften, M
2014-06-15
Purpose: To propose a quantitative method using lung deformations to differentiate between radiation-induced fibrosis and potential airway stenosis with distal atelectasis in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Twenty-four lung patients with large radiation-induced density increases outside the high dose region had their pre- and post-treatment CT scans manually registered. They received SBRT treatments at our institution between 2002 and 2009 in 3 or 5 fractions, to a median total dose of 54Gy (range, 30–60). At least 50 anatomical landmarks inside the lung (airway branches) were paired for the pre- and post-treatment scans tomore » guide the deformable registration of the lung structure, which was then interpolated to the whole lung using splines. Local volume changes between the planning and follow-up scans were calculated using the deformation field Jacobian. Hyperdense regions were classified as atelectatic or fibrotic based on correlations between regional density increases and significant volume contractions compared to the surrounding tissues. Results: Out of 24 patients, only 7 demonstrated a volume contraction that was at least one σ larger than the remaining lung average. Because they did not receive high doses, these shrunk hyperdense regions were likely showing distal atelectasis resulting from radiation-induced airway stenosis rather than conventional fibrosis. On average, the hyperdense regions extended 9.2 cm farther than the GTV contours but not significantly more than 8.6 cm for the other patients (p>0.05), indicating that a large offset between the radiation and hyperdense region centers is not a good surrogate for atelectasis. Conclusion: A method based on the relative comparison of volume changes between different dates was developed to identify potential lung regions experiencing distal atelectasis. Such a tool is essential to study which lung structures need to be avoided to prevent atelectasis and limit lung function loss.« less
Comparison of air space measurement imaged by CT, small-animal CT, and hyperpolarized Xe MRI
NASA Astrophysics Data System (ADS)
Madani, Aniseh; White, Steven; Santyr, Giles; Cunningham, Ian
2005-04-01
Lung disease is the third leading cause of death in the western world. Lung air volume measurements are thought to be early indicators of lung disease and markers in pharmaceutical research. The purpose of this work is to develop a lung phantom for assessing and comparing the quantitative accuracy of hyperpolarized xenon 129 magnetic resonance imaging (HP 129Xe MRI), conventional computed tomography (HRCT), and highresolution small-animal CT (μCT) in measuring lung gas volumes. We developed a lung phantom consisting of solid cellulose acetate spheres (1, 2, 3, 4 and 5 mm diameter) uniformly packed in circulated air or HP 129Xe gas. Air volume is estimated based on simple thresholding algorithm. Truth is calculated from the sphere diameters and validated using μCT. While this phantom is not anthropomorphic, it enables us to directly measure air space volume and compare these imaging methods as a function of sphere diameter for the first time. HP 129Xe MRI requires partial volume analysis to distinguish regions with and without 129Xe gas and results are within %5 of truth but settling of the heavy 129Xe gas complicates this analysis. Conventional CT demonstrated partial-volume artifacts for the 1mm spheres. μCT gives the most accurate air-volume results. Conventional CT and HP 129Xe MRI give similar results although non-uniform densities of 129Xe require more sophisticated algorithms than simple thresholding. The threshold required to give the true air volume in both HRCT and μCT, varies with sphere diameters calling into question the validity of thresholding method.
Variation in lung volumes and capacities among young males in relation to height.
Bhatti, Urooj; Rani, Keenjher; Memon, Muhammad Qasim
2014-01-01
Vital Capacity (VC) is defined as a change in volume of lung after maximal inspiration followed by maximal expiration is called Vital Capacity of lungs. It is the sum of tidal volume, inspiratory reserve volume .and expiratory reserve volume. Vital capacity of normal adults ranges between 3 to 5 litres. A number of physiological factors like age, gender, height and ethnicity effect lung volumes. The reference values of lung volume and capacities were calculated previously and those studies played pivotal role in establishing the fact that air volume capacities measured in an individual fall within a wide range among healthy persons of same age, gender and height buit with different ethnicity. The objective of this study was to evaluate the changes in vital capacity in with height and gender. This cross-sectional study included 74 male students in the Department of Physiology, Liaquat University of Medical and Health Sciences, Jamshoro during January-March, 2014. The volunteers were divided into 2 groups of height ≤ 167.4 cm and > 167.4 cm. The volunteers' height was measured in cm. Vital capacity of the subjects was measured using standard protocol. Mean ± SD of age, height and vital capacity were calculated. Mean vital capacity in students with height > 167.4 cm was higher than average vital capacity of students with height ≤ 167.4 cm. It might be due to the increased surface area of the lungs in relation with increasing height. There are variations in vital capacity of individuals in relation to their heights, within the same ethnic and age groups.
Influence of stapling the intersegmental planes on lung volume and function after segmentectomy.
Tao, Hiroyuki; Tanaka, Toshiki; Hayashi, Tatsuro; Yoshida, Kumiko; Furukawa, Masashi; Yoshiyama, Koichi; Okabe, Kazunori
2016-10-01
Dividing the intersegmental planes with a stapler during pulmonary segmentectomy leads to volume loss in the remnant segment. The aim of this study was to assess the influence of segment division methods on preserved lung volume and pulmonary function after segmentectomy. Using image analysis software on computed tomography (CT) images of 41 patients, the ratio of remnant segment and ipsilateral lung volume to their preoperative values (R-seg and R-ips) was calculated. The ratio of postoperative actual forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) per those predicted values based on three-dimensional volumetry (R-FEV1 and R-FVC) was also calculated. Differences in actual/predicted ratios of lung volume and pulmonary function for each of the division methods were analysed. We also investigated the correlations of the actual/predicted ratio of remnant lung volume with that of postoperative pulmonary function. The intersegmental planes were divided by either electrocautery or with a stapler in 22 patients and with a stapler alone in 19 patients. Mean values of R-seg and R-ips were 82.7 (37.9-140.2) and 104.9 (77.5-129.2)%, respectively. The mean values of R-FEV1 and R-FVC were 103.9 (83.7-135.1) and 103.4 (82.2-125.1)%, respectively. There were no correlations between the actual/predicted ratio of remnant lung volume and pulmonary function based on the division method. Both R-FEV1 and R-FVC were correlated not with R-seg, but with R-ips. Stapling does not lead to less preserved volume or function than electrocautery in the division of the intersegmental planes. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Usuda, Katsuo; Funasaki, Aika; Sekimura, Atsushi; Motono, Nozomu; Matoba, Munetaka; Doai, Mariko; Yamada, Sohsuke; Ueda, Yoshimichi; Uramoto, Hidetaka
2018-04-09
Diffusion-weighted magnetic resonance imaging (DWI) is useful for detecting malignant tumors and the assessment of lymph nodes, as FDG-PET/CT is. But it is not clear how DWI influences the prognosis of lung cancer patients. The focus of this study is to evaluate the correlations between maximum standardized uptake value (SUVmax) of FDG-PET/CT and apparent diffusion coefficient (ADC) value of DWI with known prognostic factors in resected lung cancer. A total of 227 patients with resected lung cancers were enrolled in this study. FEG-PET/CT and DWI were performed in each patient before surgery. There were 168 patients with adenocarcinoma, 44 patients with squamous cell carcinoma, and 15 patients with other cell types. SUVmax was a factor that was correlated to T factor, N factor, or cell differentiation. ADC of lung cancer was a factor that was not correlated to T factor, or N factor. There was a significantly weak inverse relationship between SUVmax and ADC (Correlation coefficient r = - 0.227). In analysis of survival, there were significant differences between the categories of sex, age, pT factor, pN factor, cell differentiation, cell type, and SUVmax. Univariate analysis revealed that SUVmax, pN factor, age, cell differentiation, cell type, sex, and pT factor were significant factors. Multivariate analysis revealed that SUVmax and pN factor were independent significant prognostic factors. SUVmax was a significant prognostic factor that is correlated to T factor, N factor, or cell differentiation, but ADC was not. SUVmax may be more useful for predicting the prognosis of lung cancer than ADC values.
Mechanical Ventilation and Bronchopulmonary Dysplasia.
Keszler, Martin; Sant'Anna, Guilherme
2015-12-01
Mechanical ventilation is an important potentially modifiable risk factor for the development of bronchopulmonary dysplasia. Effective use of noninvasive respiratory support reduces the risk of lung injury. Lung volume recruitment and avoidance of excessive tidal volume are key elements of lung-protective ventilation strategies. Avoidance of oxidative stress, less invasive methods of surfactant administration, and high-frequency ventilation are also important factors in lung injury prevention. Copyright © 2015 Elsevier Inc. All rights reserved.
Wu, S; He, Z; Guo, J; Li, F; Lin, Q; Guan, X
2014-01-01
To assess the heart and lung dosimetry results associated with accelerated partial breast irradiation intensity-modulated radiotherapy (APBI-IMRT) and whole breast field-in-field intensity-modulated radiotherapy (WBI-FIF-IMRT). A total of 29 patients with early-stage breast cancer after lumpectomy were included in this study. APBI-IMRT and WBI-FIF-IMRT plans were generated for each patient. The dosimetric parameters of ipsilateral lung and heart in both plans were then compared with and without radiobiological correction. With and without radiobiological correction, the volume of ipsilateral lung showed a substantially lower radiation exposure in APBI-IMRT with moderate to high doses (P < 0.05) but non-significant increases in volume of ipsilateral lung in 2.5 Gy than WBI-FIF-IMRT (P > 0.905).There was no significant difference in volume of ipsilateral lung receiving 1, 2.5, and 5 Gy between APBI-IMRT and WBI (P > 0.05) in patients with medial tumor location, although APBI-IMRT exposed more lung to 2.5 and 5 Gy. APBI-IMRT significantly decreases the volume of heart receiving low to high doses in left-sided breast cancer (P < 0.05). APBI-IMRT can significantly spare the volume of heart and ipsilateral lung receiving moderate and high dose. Non-significant increases in volume of the ipsilateral lung exposed to low doses of radiation were observed for APBI-IMRT in comparison to WBI-FIF-IMRT, particularly in patients with medial tumor location. With the increasing interest in APBI-IMRT, our data may help clinicians individualize patient treatment decisions.
Amini, Reza; Kaczka, David W.
2013-01-01
To determine the impact of ventilation frequency, lung volume, and parenchymal stiffness on ventilation distribution, we developed an anatomically-based computational model of the canine lung. Each lobe of the model consists of an asymmetric branching airway network subtended by terminal, viscoelastic acinar units. The model allows for empiric dependencies of airway segment dimensions and parenchymal stiffness on transpulmonary pressure. We simulated the effects of lung volume and parenchymal recoil on global lung impedance and ventilation distribution from 0.1 to 100 Hz, with mean transpulmonary pressures from 5 to 25 cmH2O. With increasing lung volume, the distribution of acinar flows narrowed and became more synchronous for frequencies below resonance. At higher frequencies, large variations in acinar flow were observed. Maximum acinar flow occurred at first antiresonance frequency, where lung impedance achieved a local maximum. The distribution of acinar pressures became very heterogeneous and amplified relative to tracheal pressure at the resonant frequency. These data demonstrate the important interaction between frequency and lung tissue stiffness on the distribution of acinar flows and pressures. These simulations provide useful information for the optimization of frequency, lung volume, and mean airway pressure during conventional ventilation or high frequency oscillation (HFOV). Moreover our model indicates that an optimal HFOV bandwidth exists between the resonant and antiresonant frequencies, for which interregional gas mixing is maximized. PMID:23872936
Tidal volume in acute respiratory distress syndrome: how best to select it.
Umbrello, Michele; Marino, Antonella; Chiumello, Davide
2017-07-01
Mechanical ventilation is the type of organ support most widely provided in the intensive care unit. However, this form of support does not constitute a cure for acute respiratory distress syndrome (ARDS), as it mainly works by buying time for the lungs to heal while contributing to the maintenance of vital gas exchange. Moreover, it can further damage the lung, leading to the development of a particular form of lung injury named ventilator-induced lung injury (VILI). Experimental evidence accumulated over the last 30 years highlighted the factors associated with an injurious form of mechanical ventilation. The present paper illustrates the physiological effects of delivering a tidal volume to the lungs of patients with ARDS, and suggests an approach to tidal volume selection. The relationship between tidal volume and the development of VILI, the so called volotrauma, will be reviewed. The still actual suggestion of a lung-protective ventilatory strategy based on the use of low tidal volumes scaled to the predicted body weight (PBW) will be presented, together with newer strategies such as the use of airway driving pressure as a surrogate for the amount of ventilatable lung tissue or the concept of strain, i.e., the ratio between the tidal volume delivered relative to the resting condition, that is the functional residual capacity (FRC). An ultra-low tidal volume strategy with the use of extracorporeal carbon dioxide removal (ECCO 2 R) will be presented and discussed. Eventually, the role of other ventilator-related parameters in the generation of VILI will be considered (namely, plateau pressure, airway driving pressure, respiratory rate (RR), inspiratory flow), and the promising unifying framework of mechanical power will be presented.
Tidal volume in acute respiratory distress syndrome: how best to select it
Umbrello, Michele; Marino, Antonella
2017-01-01
Mechanical ventilation is the type of organ support most widely provided in the intensive care unit. However, this form of support does not constitute a cure for acute respiratory distress syndrome (ARDS), as it mainly works by buying time for the lungs to heal while contributing to the maintenance of vital gas exchange. Moreover, it can further damage the lung, leading to the development of a particular form of lung injury named ventilator-induced lung injury (VILI). Experimental evidence accumulated over the last 30 years highlighted the factors associated with an injurious form of mechanical ventilation. The present paper illustrates the physiological effects of delivering a tidal volume to the lungs of patients with ARDS, and suggests an approach to tidal volume selection. The relationship between tidal volume and the development of VILI, the so called volotrauma, will be reviewed. The still actual suggestion of a lung-protective ventilatory strategy based on the use of low tidal volumes scaled to the predicted body weight (PBW) will be presented, together with newer strategies such as the use of airway driving pressure as a surrogate for the amount of ventilatable lung tissue or the concept of strain, i.e., the ratio between the tidal volume delivered relative to the resting condition, that is the functional residual capacity (FRC). An ultra-low tidal volume strategy with the use of extracorporeal carbon dioxide removal (ECCO2R) will be presented and discussed. Eventually, the role of other ventilator-related parameters in the generation of VILI will be considered (namely, plateau pressure, airway driving pressure, respiratory rate (RR), inspiratory flow), and the promising unifying framework of mechanical power will be presented. PMID:28828362
Gu, Wan-Jie; Wang, Fei; Liu, Jing-Chen
2015-02-17
In anesthetized patients undergoing surgery, the role of lung-protective ventilation with lower tidal volumes is unclear. We performed a meta-analysis of randomized controlled trials (RCTs) to evaluate the effect of this ventilation strategy on postoperative outcomes. We searched electronic databases from inception through September 2014. We included RCTs that compared protective ventilation with lower tidal volumes and conventional ventilation with higher tidal volumes in anesthetized adults undergoing surgery. We pooled outcomes using a random-effects model. The primary outcome measures were lung injury and pulmonary infection. We included 19 trials (n=1348). Compared with patients in the control group, those who received lung-protective ventilation had a decreased risk of lung injury (risk ratio [RR] 0.36, 95% confidence interval [CI] 0.17 to 0.78; I2=0%) and pulmonary infection (RR 0.46, 95% CI 0.26 to 0.83; I2=8%), and higher levels of arterial partial pressure of carbon dioxide (standardized mean difference 0.47, 95% CI 0.18 to 0.75; I2=65%). No significant differences were observed between the patient groups in atelectasis, mortality, length of hospital stay, length of stay in the intensive care unit or the ratio of arterial partial pressure of oxygen to fraction of inspired oxygen. Anesthetized patients who received ventilation with lower tidal volumes during surgery had a lower risk of lung injury and pulmonary infection than those given conventional ventilation with higher tidal volumes. Implementation of a lung-protective ventilation strategy with lower tidal volumes may lower the incidence of these outcomes. © 2015 Canadian Medical Association or its licensors.
de Prost, Nicolas; Roux, Damien; Dreyfuss, Didier; Ricard, Jean-Damien; Le Guludec, Dominique; Saumon, Georges
2007-04-01
To evaluate whether PEEP affects intrapulmonary alveolar edema liquid movement and alveolar permeability to proteins during high volume ventilation. Experimental study in an animal research laboratory. 46 male Wistar rats. A (99m)Tc-labeled albumin solution was instilled in a distal airway to produce a zone of alveolar flooding. Conventional ventilation (CV) was applied for 30 min followed by various ventilation strategies for 3 h: CV, spontaneous breathing, and high volume ventilation with different PEEP levels (0, 6, and 8 cmH(2)O) and different tidal volumes. Dispersion of the instilled liquid and systemic leakage of (99m)Tc-albumin from the lungs were studied by scintigraphy. The instillation protocol produced a zone of alveolar flooding that stayed localized during CV or spontaneous breathing. High volume ventilation dispersed alveolar liquid in the lungs. This dispersion was prevented by PEEP even when tidal volume was the same and thus end-inspiratory pressure higher. High volume ventilation resulted in the leakage of instilled (99m)Tc-albumin from the lungs. This increase in alveolar albumin permeability was reduced by PEEP. Albumin permeability was more affected by the amplitude of tidal excursions than by overall lung distension. PEEP prevents the dispersion of alveolar edema liquid in the lungs and lessens the increase in alveolar albumin permeability due to high volume ventilation.
Lung-protective ventilation in abdominal surgery.
Futier, Emmanuel; Jaber, Samir
2014-08-01
To provide the most recent and relevant clinical evidence regarding the use of prophylactic lung-protective mechanical ventilation in abdominal surgery. Evidence is accumulating, suggesting an association between intraoperative mechanical ventilation strategy and postoperative pulmonary complications in patients undergoing abdominal surgery. Nonprotective ventilator settings, especially high tidal volume (>10-12 ml/kg), very low level of positive end-expiratory pressure (PEEP, <5 cm H2O), or no PEEP, may cause alveolar overdistension and repetitive tidal recruitment leading to ventilator-associated lung injury in patients with healthy lungs. Stimulated by the previous findings in patients with acute respiratory distress syndrome, the use of lower tidal volume ventilation is becoming increasingly more common in the operating room. However, lowering tidal volume, though important, is only part of the overall multifaceted approach of lung-protective mechanical ventilation. Recent data provide compelling evidence that prophylactic lung-protective mechanical ventilation using lower tidal volume (6-8 ml/kg of predicted body weight), moderate PEEP (6-8 cm H2O), and recruitment maneuvers is associated with improved functional or physiological and clinical postoperative outcome in patients undergoing abdominal surgery. The use of prophylactic lung-protective ventilation can help in improving the postoperative outcome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirsch, David G., E-mail: david.kirsch@duke.ed; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA; Departments of Radiation Oncology and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
Purpose: To image a genetically engineered mouse model of non-small-cell lung cancer with micro-computed tomography (micro-CT) to measure tumor response to radiation therapy. Methods and Materials: The Cre-loxP system was used to generate primary lung cancers in mice with mutation in K-ras alone or in combination with p53 mutation. Mice were serially imaged by micro-CT, and tumor volumes were determined. A comparison of tumor volume by micro-CT and tumor histology was performed. Tumor response to radiation therapy (15.5 Gy) was assessed with micro-CT. Results: The tumor volume measured with free-breathing micro-CT scans was greater than the volume calculated by histology.more » Nevertheless, this imaging approach demonstrated that lung cancers with mutant p53 grew more rapidly than lung tumors with wild-type p53 and also showed that radiation therapy increased the doubling time of p53 mutant lung cancers fivefold. Conclusions: Micro-CT is an effective tool to noninvasively measure the growth of primary lung cancers in genetically engineered mice and assess tumor response to radiation therapy. This imaging approach will be useful to study the radiation biology of lung cancer.« less
NASA Astrophysics Data System (ADS)
Jang, Yujin; Hong, Helen; Chung, Jin Wook; Yoon, Young Ho
2012-02-01
We propose an effective technique for the extraction of liver boundary based on multi-planar anatomy and deformable surface model in abdominal contrast-enhanced CT images. Our method is composed of four main steps. First, for extracting an optimal volume circumscribing a liver, lower and side boundaries are defined by positional information of pelvis and rib. An upper boundary is defined by separating the lungs and heart from CT images. Second, for extracting an initial liver volume, optimal liver volume is smoothed by anisotropic diffusion filtering and is segmented using adaptively selected threshold value. Third, for removing neighbor organs from initial liver volume, morphological opening and connected component labeling are applied to multiple planes. Finally, for refining the liver boundaries, deformable surface model is applied to a posterior liver surface and missing left robe in previous step. Then, probability summation map is generated by calculating regional information of the segmented liver in coronal plane, which is used for restoring the inaccurate liver boundaries. Experimental results show that our segmentation method can accurately extract liver boundaries without leakage to neighbor organs in spite of various liver shape and ambiguous boundary.
Qin, Jianwen; Li, Guangsheng; Zhou, Jingmin
2016-01-01
To investigate the clinical features, diagnosis, and treatment status of elderly patients with chronic obstructive pulmonary disease (COPD) complicated with lung cancer. This was a retrospective study of 206 patients aged >60 years with COPD and newly diagnosed lung cancer at the Tianjin Chest Hospital Respiratory Centre between September 2008 and September 2013. Lung function, radiology, and clinical data were retrieved. Among all patients, 57% (117/206) were hospitalized due to acute COPD aggravation, 47% (96/206) had COPD grade III or IV, 95% (195/206), showed diffusion dysfunction in pulmonary function examination, 90% (185/206) had a history of smoking, and 26% (54/206) were treated with inhaled corticosteroids for COPD treatment. Ninety-eight patients suffered from squamous carcinoma, 73 from adenocarcinoma, and 35 from small-cell carcinoma. Clinical staging was I in 36 patients, II in 47 patients, III in 78 patients, and IV in 45 patients. Initial treatments were surgery in 59 patients, chemotherapy in 30 patients, and no treatment in 117 patients. Multivariate analysis showed that age (P<0.001), COPD grades (P=0.01), clinical staging (P<0.001), and pulmonary diffusion function (P=0.007) were independent factors associated with patients with COPD being given treatments for lung cancer. Younger patients with lower COPD grades, earlier lung cancer stage, and better pulmonary diffusion function are more likely to receive treatments.
Probing Lung Microstructure with Hyperpolarized 3He Gradient Echo MRI
Sukstanskii, Alexander L; Quirk, James D; Yablonskiy, Dmitriy A
2014-01-01
In this paper we demonstrate that Gradient Echo MRI with hyperpolarized 3He gas can be used for simultaneously extracting in vivo information about lung ventilation properties, alveolar geometrical parameters, and blood vessel network structure. This new approach is based on multi-gradient-echo experimental measurements of hyperpolarized 3He gas MRI signal from human lungs and a proposed theoretical model of this signal. Based on computer simulations of 3He atoms diffusing in the acinar airway tree in the presence of an inhomogeneous magnetic field induced by the susceptibility differences between lung tissue (alveolar septa, blood vessels) and lung airspaces we derive analytical expressions relating the time-dependent MR signal to the geometrical parameters of acinar airways and blood vessel network. Data obtained on 8 healthy volunteers are in good agreement with literature values. This information is complementary to the information that is obtained by means of in vivo lung morphometry technique with hyperpolarized 3He diffusion MRI previously developed by our group and opens new opportunities to study lung microstructure in health and disease. PMID:24920182
Comparison of lung protective ventilation strategies in a rabbit model of acute lung injury.
Rotta, A T; Gunnarsson, B; Fuhrman, B P; Hernan, L J; Steinhorn, D M
2001-11-01
To determine the impact of different protective and nonprotective mechanical ventilation strategies on the degree of pulmonary inflammation, oxidative damage, and hemodynamic stability in a saline lavage model of acute lung injury. A prospective, randomized, controlled, in vivo animal laboratory study. Animal research facility of a health sciences university. Forty-six New Zealand White rabbits. Mature rabbits were instrumented with a tracheostomy and vascular catheters. Lavage-injured rabbits were randomized to receive conventional ventilation with either a) low peak end-expiratory pressure (PEEP; tidal volume of 10 mL/kg, PEEP of 2 cm H2O); b) high PEEP (tidal volume of 10 mL/kg, PEEP of 10 cm H2O); c) low tidal volume with PEEP above Pflex (open lung strategy, tidal volume of 6 mL/kg, PEEP set 2 cm H2O > Pflex); or d) high-frequency oscillatory ventilation. Animals were ventilated for 4 hrs. Lung lavage fluid and tissue samples were obtained immediately after animals were killed. Lung lavage fluid was assayed for measurements of total protein, elastase activity, tumor necrosis factor-alpha, and malondialdehyde. Lung tissue homogenates were assayed for measurements of myeloperoxidase activity and malondialdehyde. The need for inotropic support was recorded. Animals that received a lung protective strategy (open lung or high-frequency oscillatory ventilation) exhibited more favorable oxygenation and lung mechanics compared with the low PEEP and high PEEP groups. Animals ventilated by a lung protective strategy also showed attenuation of inflammation (reduced tracheal fluid protein, tracheal fluid elastase, tracheal fluid tumor necrosis factor-alpha, and pulmonary leukostasis). Animals treated with high-frequency oscillatory ventilation had attenuated oxidative injury to the lung and greater hemodynamic stability compared with the other experimental groups. Both lung protective strategies were associated with improved oxygenation, attenuated inflammation, and decreased lung damage. However, in this small-animal model of acute lung injury, an open lung strategy with deliberate hypercapnia was associated with significant hemodynamic instability.
Flow and volume dependence of rat airway resistance during constant flow inflation and deflation.
Rubini, Alessandro; Carniel, Emanuele Luigi; Parmagnani, Andrea; Natali, Arturo Nicola
2011-12-01
The aim of this study was to measure the flow and volume dependence of both the ohmic and the viscoelastic pressure dissipations of the normal rat respiratory system separately during inflation and deflation. The study was conducted in the Respiratory Physiology Laboratory in our institution. Measurements were obtained for Seven albino Wistar rats of both sexes by using the flow interruption method during constant flow inflations and deflations. Measurements included anesthesia induction, tracheostomy and positioning of a tracheal cannula, positive pressure ventilation, constant flow respiratory system inflations and deflations at two different volumes and flows. The ohmic resistance exhibited volume and flow dependence, decreasing with lung volume and increasing with flow rate, during both inflation and deflation. The stress relaxation-related viscoelastic resistance also exhibited volume and flow dependence. It decreased with the flow rate at a constant lung volume during both inflation and deflation, but exhibited a different behavior with the lung volume at a constant flow rate (i.e., increased during inflations and decreased during deflations). Thus, stress relaxation in the rat lungs exhibited a hysteretic behavior. The observed flow and volume dependence of respiratory system resistance may be predicted by an equation derived from a model of the respiratory system that consists of two distinct compartments. The equation agrees well with the experimental data and indicates that the loading time is the critical parameter on which stress relaxation depends, during both lung inflation and deflation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Shulian; Liao Zhongxing; Vaporciyan, Ara A.
Purpose: To assess the association of clinical and especially dosimetric factors with the incidence of postoperative pulmonary complications among esophageal cancer patients treated with concurrent chemoradiation therapy followed by surgery. Method and Materials: Data from 110 esophageal cancer patients treated between January 1998 and December 2003 were analyzed retrospectively. All patients received concurrent chemoradiotherapy followed by surgery; 72 patients also received irinotecan-based induction chemotherapy. Concurrent chemotherapy was 5-fluorouracil-based and in 97 cases included taxanes. Radiotherapy was delivered to a total dose of 41.4-50.4 Gy at 1.8-2.0 Gy per fraction with a three-dimensional conformal technique. Surgery (three-field, Ivor-Lewis, or transhiatal esophagectomy)more » was performed 27-123 days (median, 45 days) after completion of radiotherapy. The following dosimetric parameters were generated from the dose-volume histogram (DVH) for total lung: lung volume, mean dose to lung, relative and absolute volumes of lung receiving more than a threshold dose (relative V{sub dose} and absolute V{sub dose}), and absolute volume of lung receiving less than a threshold dose (volume spared, or VS{sub dose}). Occurrence of postoperative pulmonary complications, defined as pneumonia or acute respiratory distress syndrome (ARDS) within 30 days after surgery, was the endpoint for all analyses. Fisher's exact test was used to investigate the relationship between categorical factors and incidence of postoperative pulmonary complications. Logistic analysis was used to analyze the relationship between continuous factors (e.g., V{sub dose} or VS{sub dose}) and complication rate. Logistic regression with forward stepwise inclusion of factors was used to perform multivariate analysis of those factors having univariate significance (p < 0.05). The Mann-Whitney test was used to compare length of hospital stay in patients with and without lung complications and to compare lung volumes, VS5 values, and absolute and relative V5 values in male vs. female patients. Pearson correlation analysis was used to determine correlations between dosimetric factors. Results: Eighteen (16.4%) of the 110 patients developed postoperative pulmonary complications. Two of these died of progressive pneumonia. Hospitalizations were significantly longer for patients with postoperative pulmonary complications than for those without (median, 15 days vs. 11 days, p = 0.003). On univariate analysis, female gender (p = 0.017), higher mean lung dose (p = 0.036), higher relative volume of lung receiving {>=}5 Gy (V5) (p = 0.023), and smaller volumes of lung spared from doses {>=}5-35 Gy (VS5-VS35) (p < 0.05) were all significantly associated with an increased incidence of postoperative pulmonary complications. No other clinical factors were significantly associated with the incidence of postoperative pulmonary complications in this cohort. On multivariate analysis, the volume of lung spared from doses {>=}5 Gy (VS5) was the only significant independent factor associated with postoperative pulmonary complications (p = 0.005). Conclusions: Dosimetric factors but not clinical factors were found to be strongly associated with the incidence of postoperative pulmonary complications in this cohort of esophageal cancer patients treated with concurrent chemoradiation plus surgery. The volume of the lung spared from doses of {>=}5 Gy was the only independent dosimetric factor in multivariate analysis. This suggests that ensuring an adequate volume of lung unexposed to radiation might reduce the incidence of postoperative pulmonary complications.« less
Wang, Shu-lian; Liao, Zhongxing; Vaporciyan, Ara A; Tucker, Susan L; Liu, Helen; Wei, Xiong; Swisher, Stephen; Ajani, Jaffer A; Cox, James D; Komaki, Ritsuko
2006-03-01
To assess the association of clinical and especially dosimetric factors with the incidence of postoperative pulmonary complications among esophageal cancer patients treated with concurrent chemoradiation therapy followed by surgery. Data from 110 esophageal cancer patients treated between January 1998 and December 2003 were analyzed retrospectively. All patients received concurrent chemoradiotherapy followed by surgery; 72 patients also received irinotecan-based induction chemotherapy. Concurrent chemotherapy was 5-fluorouracil-based and in 97 cases included taxanes. Radiotherapy was delivered to a total dose of 41.4-50.4 Gy at 1.8-2.0 Gy per fraction with a three-dimensional conformal technique. Surgery (three-field, Ivor-Lewis, or transhiatal esophagectomy) was performed 27-123 days (median, 45 days) after completion of radiotherapy. The following dosimetric parameters were generated from the dose-volume histogram (DVH) for total lung: lung volume, mean dose to lung, relative and absolute volumes of lung receiving more than a threshold dose (relative V(dose) and absolute V(dose)), and absolute volume of lung receiving less than a threshold dose (volume spared, or VS(dose)). Occurrence of postoperative pulmonary complications, defined as pneumonia or acute respiratory distress syndrome (ARDS) within 30 days after surgery, was the endpoint for all analyses. Fisher's exact test was used to investigate the relationship between categorical factors and incidence of postoperative pulmonary complications. Logistic analysis was used to analyze the relationship between continuous factors (e.g., V(dose) or VS(dose)) and complication rate. Logistic regression with forward stepwise inclusion of factors was used to perform multivariate analysis of those factors having univariate significance (p < 0.05). The Mann-Whitney test was used to compare length of hospital stay in patients with and without lung complications and to compare lung volumes, VS5 values, and absolute and relative V5 values in male vs. female patients. Pearson correlation analysis was used to determine correlations between dosimetric factors. Eighteen (16.4%) of the 110 patients developed postoperative pulmonary complications. Two of these died of progressive pneumonia. Hospitalizations were significantly longer for patients with postoperative pulmonary complications than for those without (median, 15 days vs. 11 days, p = 0.003). On univariate analysis, female gender (p = 0.017), higher mean lung dose (p = 0.036), higher relative volume of lung receiving > or = 5 Gy (V5) (p = 0.023), and smaller volumes of lung spared from doses > or = 5-35 Gy (VS5-VS35) (p < 0.05) were all significantly associated with an increased incidence of postoperative pulmonary complications. No other clinical factors were significantly associated with the incidence of postoperative pulmonary complications in this cohort. On multivariate analysis, the volume of lung spared from doses > or = 5 Gy (VS5) was the only significant independent factor associated with postoperative pulmonary complications (p = 0.005). Dosimetric factors but not clinical factors were found to be strongly associated with the incidence of postoperative pulmonary complications in this cohort of esophageal cancer patients treated with concurrent chemoradiation plus surgery. The volume of the lung spared from doses of > or = 5 Gy was the only independent dosimetric factor in multivariate analysis. This suggests that ensuring an adequate volume of lung unexposed to radiation might reduce the incidence of postoperative pulmonary complications.
Inspiratory and expiratory computed tomographic volumetry for lung volume reduction surgery.
Morimura, Yuki; Chen, Fengshi; Sonobe, Makoto; Date, Hiroshi
2013-06-01
Three-dimensional (3D) computed tomographic (CT) volumetry has been introduced into the field of thoracic surgery, and a combination of inspiratory and expiratory 3D-CT volumetry provides useful data on regional pulmonary function as well as the volume of individual lung lobes. We report herein a case of a 62-year-old man with severe emphysema who had undergone lung volume reduction surgery (LVRS) to assess this technique as a tool for the evaluation of regional lung function and volume before and after LVRS. His postoperative pulmonary function was maintained in good condition despite a gradual slight decrease 2 years after LVRS. This trend was also confirmed by a combination of inspiratory and expiratory 3D-CT volumetry. We confirm that a combination of inspiratory and expiratory 3D-CT volumetry might be effective for the preoperative assessment of LVRS in order to determine the amount of lung tissue to be resected as well as for postoperative evaluation. This novel technique could, therefore, be used more widely to assess local lung function.
Inspiratory and expiratory computed tomographic volumetry for lung volume reduction surgery
Morimura, Yuki; Chen, Fengshi; Sonobe, Makoto; Date, Hiroshi
2013-01-01
Three-dimensional (3D) computed tomographic (CT) volumetry has been introduced into the field of thoracic surgery, and a combination of inspiratory and expiratory 3D-CT volumetry provides useful data on regional pulmonary function as well as the volume of individual lung lobes. We report herein a case of a 62-year-old man with severe emphysema who had undergone lung volume reduction surgery (LVRS) to assess this technique as a tool for the evaluation of regional lung function and volume before and after LVRS. His postoperative pulmonary function was maintained in good condition despite a gradual slight decrease 2 years after LVRS. This trend was also confirmed by a combination of inspiratory and expiratory 3D-CT volumetry. We confirm that a combination of inspiratory and expiratory 3D-CT volumetry might be effective for the preoperative assessment of LVRS in order to determine the amount of lung tissue to be resected as well as for postoperative evaluation. This novel technique could, therefore, be used more widely to assess local lung function. PMID:23460599
Development and proof-of-concept of three-dimensional lung histology volumes
NASA Astrophysics Data System (ADS)
Mathew, Lindsay; Alabousi, Mostafa; Wheatley, Andrew; Aladl, Usaf; Slipetz, Deborah; Hogg, James C.; Fenster, Aaron; Parraga, Grace
2012-03-01
Most medical imaging is inherently three-dimensional (3D) but for validation of pathological findings, histopathology is commonly used and typically histopathology images are acquired as twodimensional slices with quantitative analysis performed in a single dimension. Histopathology is invasive, labour-intensive, and the analysis cannot be performed in real time, yet it remains the gold standard for the pathological diagnosis and validation of clinical or radiological diagnoses of disease. A major goal worldwide is to improve medical imaging resolution, sensitivity and specificity to better guide therapy and biopsy and to one day delay or replace biopsy. A key limitation however is the lack of tools to directly compare 3D macroscopic imaging acquired in patients with histopathology findings, typically provided in a single dimension (1D) or in two dimensions (2D). To directly address this, we developed methods for 2D histology slice visualization/registration to generate 3D volumes and quantified tissue components in the 3D volume for direct comparison to volumetric micro-CT and clinical CT. We used the elastase-instilled mouse emphysema lung model to evaluate our methods with murine lungs sectioned (5 μm thickness/10 μm gap) and digitized with 2μm in-plane resolution. 3D volumes were generated for wildtype and elastase mouse lung sections after semi-automated registration of all tissue slices. The 1D mean linear intercept (Lm) for wildtype (WT) (47.1 μm +/- 9.8 μm) and elastase mouse lung (64.5 μm +/- 14.0 μm) was significantly different (p<.001). We also generated 3D measurements based on tissue and airspace morphometry from the 3D volumes and all of these were significantly different (p<.0001) when comparing elastase and WT mouse lung. The ratio of the airspace-to-lung volume for the entire lung volume was also significantly and strongly correlated with Lm.
Function of the Dräger Oxylog ventilator at high altitude.
Thomas, G; Brimacombe, J
1994-06-01
We have assessed the performance of the Dräger Oxylog ventilator at high altitude using a decompression chamber and a lung simulator set to mimic the normal and non-compliant lung. In the normal lung, tidal volume increased by 28% at 2040 metres and by 106% at 9120 metres. A lesser change, but in the opposite direction, occurred in respiratory rate. The net effect was a linear increase in minute volume with altitude. At 2040 and 9144 metres minute volume increased by 13% and by 45%, and rate decreased by 10% and 30% respectively. In the abnormal lung stimulation, similar, but slightly less marked, changes occurred in all variables. These changes are of sufficient magnitude to require frequent observation of tidal volume and respiratory rate during aircraft ascent and descent.
Simple, Inexpensive Model Spirometer for Understanding Ventilation Volumes
ERIC Educational Resources Information Center
Giuliodori, Mauricio J.; DiCarlo, Stephen E.
2004-01-01
Spirometers are useful for enhancing students' understanding of normal lung volumes, capacities, and flow rates. Spirometers are also excellent for understanding how lung diseases alter ventilation volumes. However, spirometers are expensive, complex, and not appropriate for programs with limited space and budgets. Therefore, we developed a…
Diffuse Parenchymal Diseases Associated With Aluminum Use and Primary Aluminum Production
2014-01-01
Aluminum use and primary aluminum production results in the generation of various particles, fumes, gases, and airborne materials with the potential for inducing a wide range of lung pathology. Nevertheless, the presence of diffuse parenchymal or interstitial lung disease related to these processes remains controversial. The relatively uncommon occurrence of interstitial lung diseases in aluminum-exposed workers—despite the extensive industrial use of aluminum—the potential for concurrent exposure to other fibrogenic fibers, and the previous use of inhaled aluminum powder for the prevention of silicosis without apparent adverse respiratory effects are some of the reasons for this continuing controversy. Specific aluminum-induced parenchymal diseases described in the literature, including existing evidence of interstitial lung diseases, associated with primary aluminum production are reviewed. PMID:24806728
Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi
2009-10-01
To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.
Processing of CT images for analysis of diffuse lung disease in the lung tissue research consortium
NASA Astrophysics Data System (ADS)
Karwoski, Ronald A.; Bartholmai, Brian; Zavaletta, Vanessa A.; Holmes, David; Robb, Richard A.
2008-03-01
The goal of Lung Tissue Resource Consortium (LTRC) is to improve the management of diffuse lung diseases through a better understanding of the biology of Chronic Obstructive Pulmonary Disease (COPD) and fibrotic interstitial lung disease (ILD) including Idiopathic Pulmonary Fibrosis (IPF). Participants are subjected to a battery of tests including tissue biopsies, physiologic testing, clinical history reporting, and CT scanning of the chest. The LTRC is a repository from which investigators can request tissue specimens and test results as well as semi-quantitative radiology reports, pathology reports, and automated quantitative image analysis results from the CT scan data performed by the LTRC core laboratories. The LTRC Radiology Core Laboratory (RCL), in conjunction with the Biomedical Imaging Resource (BIR), has developed novel processing methods for comprehensive characterization of pulmonary processes on volumetric high-resolution CT scans to quantify how these diseases manifest in radiographic images. Specifically, the RCL has implemented a semi-automated method for segmenting the anatomical regions of the lungs and airways. In these anatomic regions, automated quantification of pathologic features of disease including emphysema volumes and tissue classification are performed using both threshold techniques and advanced texture measures to determine the extent and location of emphysema, ground glass opacities, "honeycombing" (HC) and "irregular linear" or "reticular" pulmonary infiltrates and normal lung. Wall thickness measurements of the trachea, and its branches to the 3 rd and limited 4 th order are also computed. The methods for processing, segmentation and quantification are described. The results are reviewed and verified by an expert radiologist following processing and stored in the public LTRC database for use by pulmonary researchers. To date, over 1200 CT scans have been processed by the RCL and the LTRC project is on target for recruitment of the 2200 patients with 1800 CT scans in the repository for the 5-year effort. Ongoing analysis of the results in the LTRC database by the LTRC participating institutions and outside investigators are underway to look at the clinical and physiological significance of the imaging features of these diseases and correlate these findings with quality of life and other important prognostic indicators of severity. In the future, the quantitative measures of disease may have greater utility by showing correlation with prognosis, disease severity and other physiological parameters. These imaging features may provide non-invasive alternative endpoints or surrogate markers to alleviate the need for tissue biopsy or provide an accurate means to monitor rate of disease progression or response to therapy.
Treatment of lung disease in alpha-1 antitrypsin deficiency: a systematic review.
Edgar, Ross G; Patel, Mitesh; Bayliss, Susan; Crossley, Diana; Sapey, Elizabeth; Turner, Alice M
2017-01-01
Alpha-1 antitrypsin deficiency (AATD) is a rare genetic condition predisposing individuals to chronic obstructive pulmonary disease (COPD). The treatment is generally extrapolated from COPD unrelated to AATD; however, most COPD trials exclude AATD patients; thus, this study sought to systematically review AATD-specific literature to assist evidence-based patient management. Standard review methodology was used with meta-analysis and narrative synthesis (PROSPERO-CRD42015019354). Eligible studies were those of any treatment used in severe AATD. Randomized controlled trials (RCTs) were the primary focus; however, case series and uncontrolled studies were eligible. All studies had ≥10 participants receiving treatment or usual care, with baseline and follow-up data (>3 months). Risk of bias was assessed appropriately according to study methodology. In all, 7,296 studies were retrieved from searches; 52 trials with 5,632 participants met the inclusion criteria, of which 26 studies involved alpha-1 antitrypsin augmentation and 17 concerned surgical treatments (largely transplantation). Studies were grouped into four management themes: COPD medical, COPD surgical, AATD specific, and other treatments. Computed tomography (CT) density, forced expiratory volume in 1 s, diffusing capacity of the lungs for carbon monoxide, health status, and exacerbation rates were frequently used as outcomes. Meta-analyses were only possible for RCTs of intravenous augmentation, which slowed progression of emphysema measured by CT density change, 0.79 g/L/year versus placebo ( P =0.002), and associated with a small increase in exacerbations 0.29/year ( P =0.02). Mortality following lung transplant was comparable between AATD- and non-AATD-related COPD. Surgical reduction of lung volume demonstrated inferior outcomes compared with non-AATD-related emphysema. Intravenous augmentation remains the only disease-specific therapy in AATD and there is evidence that this slows decline in emphysema determined by CT density. There is paucity of data around other treatments in AATD. Treatments for usual COPD may not be as efficacious in AATD, and further studies may be required for this disease group.
Aerosol delivery with two ventilation modes during mechanical ventilation: a randomized study.
Dugernier, Jonathan; Reychler, Gregory; Wittebole, Xavier; Roeseler, Jean; Depoortere, Virginie; Sottiaux, Thierry; Michotte, Jean-Bernard; Vanbever, Rita; Dugernier, Thierry; Goffette, Pierre; Docquier, Marie-Agnes; Raftopoulos, Christian; Hantson, Philippe; Jamar, François; Laterre, Pierre-François
2016-12-01
Volume-controlled ventilation has been suggested to optimize lung deposition during nebulization although promoting spontaneous ventilation is targeted to avoid ventilator-induced diaphragmatic dysfunction. Comparing topographic aerosol lung deposition during volume-controlled ventilation and spontaneous ventilation in pressure support has never been performed. The aim of this study was to compare lung deposition of a radiolabeled aerosol generated with a vibrating-mesh nebulizer during invasive mechanical ventilation, with two modes: pressure support ventilation and volume-controlled ventilation. Seventeen postoperative neurosurgery patients without pulmonary disease were randomly ventilated in pressure support or volume-controlled ventilation. Diethylenetriaminepentaacetic acid labeled with technetium-99m (2 mCi/3 mL) was administrated using a vibrating-mesh nebulizer (Aerogen Solo(®), provided by Aerogen Ltd, Galway, Ireland) connected to the endotracheal tube. Pulmonary and extrapulmonary particles deposition was analyzed using planar scintigraphy. Lung deposition was 10.5 ± 3.0 and 15.1 ± 5.0 % of the nominal dose during pressure support and volume-controlled ventilation, respectively (p < 0.05). Higher endotracheal tube and tracheal deposition was observed during pressure support ventilation (27.4 ± 6.6 vs. 20.7 ± 6.0 %, p < 0.05). A similar penetration index was observed for the right (p = 0.210) and the left lung (p = 0.211) with both ventilation modes. A high intersubject variability of lung deposition was observed with both modes regarding lung doses, aerosol penetration and distribution between the right and the left lung. In the specific conditions of the study, volume-controlled ventilation was associated with higher lung deposition of nebulized particles as compared to pressure support ventilation. The clinical benefit of this effect warrants further studies. Clinical trial registration NCT01879488.
Brace, Robert A; Anderson, Debra F; Cheung, Cecilia Y
2014-11-15
Experimentation in late-gestation fetal sheep has suggested that regulation of amniotic fluid (AF) volume occurs primarily by modulating the rate of intramembranous transport of water and solutes across the amnion into underlying fetal blood vessels. In order to gain insight into intramembranous transport mechanisms, we developed a computer model that allows simulation of experimentally measured changes in AF volume and composition over time. The model included fetal urine excretion and lung liquid secretion as inflows into the amniotic compartment plus fetal swallowing and intramembranous absorption as outflows. By using experimental flows and solute concentrations for urine, lung liquid, and swallowed fluid in combination with the passive and active transport mechanisms of the intramembranous pathway, we simulated AF responses to basal conditions, intra-amniotic fluid infusions, fetal intravascular infusions, urine replacement, and tracheoesophageal occlusion. The experimental data are consistent with four intramembranous transport mechanisms acting in concert: 1) an active unidirectional bulk transport of AF with all dissolved solutes out of AF into fetal blood presumably by vesicles; 2) passive bidirectional diffusion of solutes, such as sodium and chloride, between fetal blood and AF; 3) passive bidirectional water movement between AF and fetal blood; and 4) unidirectional transport of lactate into the AF. Further, only unidirectional bulk transport is dynamically regulated. The simulations also identified areas for future study: 1) identifying intramembranous stimulators and inhibitors, 2) determining the semipermeability characteristics of the intramembranous pathway, and 3) characterizing the vesicles that are the primary mediators of intramembranous transport. Copyright © 2014 the American Physiological Society.
Albu, Gergely; Wallin, Mats; Hallbäck, Magnus; Emtell, Per; Wolf, Andrew; Lönnqvist, Per-Arne; Göthberg, Sylvia; Peták, Ferenc; Habre, Walid
2013-07-01
Effective lung volume (ELV) for gas exchange is a new measure that could be used as a real-time guide during controlled mechanical ventilation. The authors established the relationships of ELV to static end-expiratory lung volume (EELV) with varying levels of positive end-expiratory pressure (PEEP) in healthy and surfactant-depleted rabbit lungs. Nine rabbits were anesthetized and ventilated with a modified volume-controlled mode where periods of five consecutive alterations in inspiratory/expiratory ratio (1:2-1.5:1) were imposed to measure ELV from the corresponding carbon dioxide elimination traces. EELV and the lung clearance index were concomitantly determined by helium wash-out technique. Airway and tissue mechanics were assessed by using low-frequency forced oscillations. Measurements were collected at PEEP 0, 3, 6, and 9 cm H2O levels under control condition and after surfactant depletion by whole-lung lavage. ELV was greater than EELV at all PEEP levels before lavage, whereas there was no evidence for a difference in the lung volume indices after surfactant depletion at PEEP 6 or 9 cm H2O. Increasing PEEP level caused significant parallel increases in both ELV and EELV levels, decreases in ventilation heterogeneity, and improvement in airway and tissue mechanics under control condition and after surfactant depletion. ELV and EELV exhibited strong and statistically significant correlations before (r=0.84) and after lavage (r=0.87). The parallel changes in ELV and EELV with PEEP in healthy and surfactant-depleted lungs support the clinical value of ELV measurement as a bedside tool to estimate dynamic changes in EELV in children and infants.
Measurement of lung fluid volumes and albumin exclusion in sheep
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pou, N.A.; Roselli, R.J.; Parker, R.E.
1989-10-01
A radioactive tracer technique was used to determine interstitial diethylenetriaminepentaacetic acid (DTPA) and albumin distribution volume in sheep lungs. {sup 125}I- and/or {sup 131}I-labeled albumin were injected intravenously and allowed to equilibrate for 24 h. {sup 99m}Tc-labeled DTPA and {sup 51}Cr-labeled erythrocytes were injected and allowed to equilibrate (2 h and 15 min, respectively) before a lethal dose of thiamylal sodium. Two biopsies (1-3 g) were taken from each lung and the remaining tissue was homogenized for wet-to-dry lung weight and volume calculations. Estimates of distribution volumes from whole lung homogenized samples were statistically smaller than biopsy samples for extravascularmore » water, interstitial {sup 99m}Tc-DTPA, and interstitial albumin. The mean fraction of the interstitium (Fe), which excludes albumin, was 0.68 +/- 0.04 for whole lung samples compared with 0.62 +/- 0.03 for biopsy samples. Hematocrit may explain the consistent difference. To make the Fe for biopsy samples match that for homogenized samples, a mean hematocrit, which was 82% of large vessel hematocrit, was required. Excluded volume fraction for exogenous sheep albumin was compared with that of exogenous human albumin in two sheep, and no difference was found at 24 h.« less
Factors influencing the measurement of closing volume.
Make, B; Lapp, N L
1975-06-01
The various factors influencing closing volume were studied by performing the single-breath N2 test on 9 healthy nonsmokers. Time of day, day of the week, and preceding volume history had no effect on either closing volume or alveolar plateau. Slow inspiratory flow resulted in larger ratio of closing volume to vital capacity, ratio of closing capacity to total lung capacity, and change in N2 concentration than fast inspiratory flow. Voluntary regulation of the expiratory flow resulted in smaller ratios of closing volume to vital capacity and closing capacity to total lung capacity than when flow was regulated by a resistance. Prolonged breath holding of the inspired O2 led to larger ratio of closing volume to vital capacity and ratio of closing capacity to total lung capacity. To obtain uniform, comparable closing volumes, it is suggested that the subject inspire slowly, control expiratory flow (preferably voluntarily), and not pause between inspiration and expiration.
Fuld, Matthew K; Grout, Randall W; Guo, Junfeng; Morgan, John H; Hoffman, Eric A
2012-08-01
Multidetector-row computed tomography (MDCT) has emerged as a tool for quantitative assessment of parenchymal destruction, air trapping (density metrics), and airway remodeling (metrics relating airway wall and lumen geometry) in chronic obstructive pulmonary disease (COPD) and asthma. Critical to the accuracy and interpretability of these MDCT-derived metrics is the assurance that the lungs are scanned during a breathhold at a standardized volume. A computer monitored turbine-based flow meter system was developed to control patient breathholds and facilitate static imaging at fixed percentages of the vital capacity. Because of calibration challenges with gas density changes during multibreath xenon CT, an alternative system was required. The design incorporated dual rolling seal pistons. Both systems were tested in a laboratory environment and human subject trials. The turbine-based system successfully controlled lung volumes in 32/37 subjects, having a linear relationship for CT measured air volume between repeated scans: for all scans, the mean and confidence interval of the differences (scan1-scan2) was -9 mL (-169, 151); for total lung capacity alone 6 mL (-164, 177); for functional residual capacity alone, -23 mL (-172, 126). The dual-piston system successfully controlled lung volume in 31/41 subjects. Study failures related largely to subject noncompliance with verbal instruction and gas leaks around the mouthpiece. We demonstrate the successful use of a turbine-based system for static lung volume control and demonstrate its inadequacies for dynamic xenon CT studies. Implementation of a dual-rolling seal spirometer has been shown to adequately control lung volume for multibreath wash-in xenon CT studies. These systems coupled with proper patient coaching provide the tools for the use of CT to quantitate regional lung structure and function. The wash-in xenon CT method for assessing regional lung function, although not necessarily practical for routine clinical studies, provides for a dynamic protocol against which newly emerging single breath, dual-energy xenon CT measures can be validated. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garson, A; Gunsten, S; Guan, H
Purpose: We demonstrate a novel X-ray phase-contrast (XPC) method for lung imaging representing a paradigm shift in the way small animal functional imaging is performed. In our method, information regarding airway microstructure that is encoded within speckle texture of a single XPC radiograph is decoded to produce 2D parametric images that will spatially resolve changes in lung properties such as microstructure sizes and air volumes. Such information cannot be derived from conventional lung radiography or any other 2D imaging modality. By computing these images at different points within a breathing cycle, dynamic functional imaging will be readily achieved without themore » need for tomography. Methods: XPC mouse lung radiographs acquired in situ with an in-line X-ray phase contrast benchtop system. The lung air volume is varied and controlled with a small animal ventilator. XPC radiographs will be acquired for various lung air volume levels representing different phases of the respiratory cycle. Similar data will be acquired of microsphere-based lung phantoms containing hollow glass spheres with known distributions of diameters. Image texture analysis is applied to the data to investigate relationships between texture characteristics and airspace/microsphere physical properties. Results: Correlations between Fourier-based texture descriptors (FBTDs) and regional lung air volume indicate that the texture features in 2D radiographs reveal information on 3D properties of the lungs. For example, we find for a 350 × 350 πm2 lung ROI a linear relationship between injected air volume and FBTD value with slope and intercept of 8.9×10{sup 5} and 7.5, respectively. Conclusion: We demonstrate specific image texture measures related to lung speckle features are correlated with physical characteristics of refracting elements (i.e. lung air spaces). Furthermore, we present results indicating the feasibility of implementing the technique with a simple imaging system design, short exposures, and low dose which provides potential for widespread use in laboratory settings for in vivo studies. This research was supported in part by NSF Award CBET1263988.« less
Challenges in pulmonary fibrosis · 3: Cystic lung disease
Cosgrove, Gregory P; Frankel, Stephen K; Brown, Kevin K
2007-01-01
Cystic lung disease is a frequently encountered problem caused by a diverse group of diseases. Distinguishing true cystic lung disease from other entities, such as cavitary lung disease and emphysema, is important given the differing prognostic implications. In this paper the features of the cystic lung diseases are reviewed and contrasted with their mimics, and the clinical and radiographic features of both diffuse (pulmonary Langerhans' cell histiocytosis and lymphangioleiomyomatosis) and focal or multifocal cystic lung disease are discussed. PMID:17726170
Morphometrics of the avian lung. 4. The structural design of the charadriiform lung.
Maina, J N
1987-04-01
The lungs of five charadriiform species of bird, two of which are good divers and three predominantly flyers (soarers and gliders) have been analysed by morphometric techniques. Largely the morphometric structural values in the divers significantly exceeded those of the flyers (gulls). The average weight specific surface area of the blood-gas (tissue) barrier in the divers (28.45 +/- 2.05 cm2 X g-1 SD) surpassed that of the flyers (23.5 +/- 3.61 cm2 X g-1 SD). The divers had a higher volume of the pulmonary capillary blood per unit body weight (4.42 +/- 0.11 cm3 X kg-1 SD) than the flyers (2.84 +/- 0.58 cm3 X kg-1 SD). The weight specific volume of the lung in the divers (34.90 +/- 3.11 cm3 X kg-1 SD) exceeded that of the flyers (26.94 +/- 3.15 cm3 X kg-1 SD). The total morphometric pulmonary diffusing capacity per unit body weight in the divers (4.73 +/- 0.05 ml O2 X (min X mm Hg X kg)-1 SD) was higher than that of the flyers (3.09 +/- 0.47 ml O2 X (min X mm Hg X kg)-1 SD). The divers, however, had a notably thicker blood-gas (tissue) barrier with a harmonic mean thickness of 0.212 +/- 0.03 micron SD compared to that of the flyers (0.138 +/- 0.02 micron SD). The data acquired here commensurate the modes of life exhibited by these two groups of bird. The divers, which are relatively energetic birds, expend a lot of energy to move and stay underwater, concomitantly undergoing prolonged asphyxia during submergence and may hence need to extract as much of the oxygen in the pulmonary air as possible to prolong a dive. These birds appear in general to have structurally better adapted lungs than those of the gulls, birds which to a large extent exhibit relatively less energetic soaring and gliding flights.
Do nanoparticles provide a new opportunity for diagnosis of distal airspace disease?
Löndahl, Jakob; Jakobsson, Jonas KF; Broday, David M; Aaltonen, H Laura; Wollmer, Per
2017-01-01
There is a need for efficient techniques to assess abnormalities in the peripheral regions of the lungs, for example, for diagnosis of pulmonary emphysema. Considerable scientific efforts have been directed toward measuring lung morphology by studying recovery of inhaled micron-sized aerosol particles (0.4–1.5 µm). In contrast, it is suggested that the recovery of inhaled airborne nanoparticles may be more useful for diagnosis. The objective of this work is to provide a theoretical background for the use of nanoparticles in measuring lung morphology and to assess their applicability based on a review of the literature. Using nanoparticles for studying distal airspace dimensions is shown to have several advantages over other aerosol-based methods. 1) Nanoparticles deposit almost exclusively by diffusion, which allows a simpler breathing maneuver with minor artifacts from particle losses in the oropharyngeal and upper airways. 2) A higher breathing flow rate can be utilized, making it possible to rapidly inhale from residual volume to total lung capacity (TLC), thereby eliminating the need to determine the TLC before measurement. 3) Recent studies indicate better penetration of nanoparticles than micron-sized particles into poorly ventilated and diseased regions of the lungs; thus, a stronger signal from the abnormal parts is expected. 4) Changes in airspace dimensions have a larger impact on the recovery of nanoparticles. Compared to current diagnostic techniques with high specificity for morphometric changes of the lungs, computed tomography and magnetic resonance imaging with hyperpolarized gases, an aerosol-based method is likely to be less time consuming, considerably cheaper, simpler to use, and easier to interpret (providing a single value rather than an image that has to be analyzed). Compared to diagnosis by carbon monoxide (DL,CO), the uptake of nanoparticles in the lung is not affected by blood flow, hemoglobin concentration or alterations of the alveolar membranes, but relies only on lung morphology. PMID:28053522
Do nanoparticles provide a new opportunity for diagnosis of distal airspace disease?
Löndahl, Jakob; Jakobsson, Jonas Kf; Broday, David M; Aaltonen, H Laura; Wollmer, Per
There is a need for efficient techniques to assess abnormalities in the peripheral regions of the lungs, for example, for diagnosis of pulmonary emphysema. Considerable scientific efforts have been directed toward measuring lung morphology by studying recovery of inhaled micron-sized aerosol particles (0.4-1.5 µm). In contrast, it is suggested that the recovery of inhaled airborne nanoparticles may be more useful for diagnosis. The objective of this work is to provide a theoretical background for the use of nanoparticles in measuring lung morphology and to assess their applicability based on a review of the literature. Using nanoparticles for studying distal airspace dimensions is shown to have several advantages over other aerosol-based methods. 1) Nanoparticles deposit almost exclusively by diffusion, which allows a simpler breathing maneuver with minor artifacts from particle losses in the oropharyngeal and upper airways. 2) A higher breathing flow rate can be utilized, making it possible to rapidly inhale from residual volume to total lung capacity (TLC), thereby eliminating the need to determine the TLC before measurement. 3) Recent studies indicate better penetration of nanoparticles than micron-sized particles into poorly ventilated and diseased regions of the lungs; thus, a stronger signal from the abnormal parts is expected. 4) Changes in airspace dimensions have a larger impact on the recovery of nanoparticles. Compared to current diagnostic techniques with high specificity for morphometric changes of the lungs, computed tomography and magnetic resonance imaging with hyperpolarized gases, an aerosol-based method is likely to be less time consuming, considerably cheaper, simpler to use, and easier to interpret (providing a single value rather than an image that has to be analyzed). Compared to diagnosis by carbon monoxide ( D L,CO ), the uptake of nanoparticles in the lung is not affected by blood flow, hemoglobin concentration or alterations of the alveolar membranes, but relies only on lung morphology.
Morris, Mohy G
2010-02-28
With the rapid somatic growth and development in infants, simultaneous accurate measurements of lung volume and airway function are essential. Raised volume rapid thoracoabdominal compression (RTC) is widely used to generate forced expiration from an airway opening pressure of 30 cmH(2)O (V(30)). The (dynamic) functional residual capacity (FRC(dyn)) remains the lung volume most routinely measured. The aim of this study was to develop comprehensive integrated spirometry that included all subdivisions of lung volume at V(30) or total lung capacity (TLC(30)). Measurements were performed on 17 healthy infants aged 8.6-119.7 weeks. A commercial system for multiple-breath nitrogen washout (MBNW) to measure lung volumes and a custom made system to perform RTC were used in unison. A refined automated raised volume RTC and the following two novel single maneuvers with dual volume measurements were performed from V(30) during a brief post-hyperventilation apneic pause: (1) the passive expiratory flow was integrated to produce the inspiratory capacity (IC) and the static (passive) FRC (FRC(st)) was estimated by initiating MBNW after end-passive expiration; (2) RTC was initiated late during passive expiration, flow was integrated to produce the slow vital capacity ((j)SVC) and the residual volume (RV) was measured by initiating MBNW after end-expiration while the jacket (j) was inflated. Intrasubject FRC(dyn) and FRC(st) measurements overlapped (p=0.6420) but neither did with the RV (p<0.0001). Means (95% confidence interval) of FRC(dyn), IC, FRC(st), (j)SVC, RV, forced vital capacity and tidal volume were 21.2 (19.7-22.7), 36.7 (33.0-40.4), 21.2 (19.6-22.8), 40.7 (37.2-44.2), 18.1 (16.6-19.7), 40.7 (37.1-44.2) and 10.2 (9.6-10.7)ml/kg, respectively. Static lung volumes and capacities at V(30) and variables from the best forced expiratory flow-volume curve were dependent on age, body length and weight. In conclusion, we developed a comprehensive physiologically integrated approach for in-depth investigation of lung function at V(30) in infants. Copyright 2009 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cella, Laura, E-mail: laura.cella@cnr.it; Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples; Liuzzi, Raffaele
Purpose: To establish a multivariate normal tissue complication probability (NTCP) model for radiation-induced asymptomatic heart valvular defects (RVD). Methods and Materials: Fifty-six patients treated with sequential chemoradiation therapy for Hodgkin lymphoma (HL) were retrospectively reviewed for RVD events. Clinical information along with whole heart, cardiac chambers, and lung dose distribution parameters was collected, and the correlations to RVD were analyzed by means of Spearman's rank correlation coefficient (Rs). For the selection of the model order and parameters for NTCP modeling, a multivariate logistic regression method using resampling techniques (bootstrapping) was applied. Model performance was evaluated using the area under themore » receiver operating characteristic curve (AUC). Results: When we analyzed the whole heart, a 3-variable NTCP model including the maximum dose, whole heart volume, and lung volume was shown to be the optimal predictive model for RVD (Rs = 0.573, P<.001, AUC = 0.83). When we analyzed the cardiac chambers individually, for the left atrium and for the left ventricle, an NTCP model based on 3 variables including the percentage volume exceeding 30 Gy (V30), cardiac chamber volume, and lung volume was selected as the most predictive model (Rs = 0.539, P<.001, AUC = 0.83; and Rs = 0.557, P<.001, AUC = 0.82, respectively). The NTCP values increase as heart maximum dose or cardiac chambers V30 increase. They also increase with larger volumes of the heart or cardiac chambers and decrease when lung volume is larger. Conclusions: We propose logistic NTCP models for RVD considering not only heart irradiation dose but also the combined effects of lung and heart volumes. Our study establishes the statistical evidence of the indirect effect of lung size on radio-induced heart toxicity.« less
Wolthuis, Esther K; Choi, Goda; Dessing, Mark C; Bresser, Paul; Lutter, Rene; Dzoljic, Misa; van der Poll, Tom; Vroom, Margreeth B; Hollmann, Markus; Schultz, Marcus J
2008-01-01
Mechanical ventilation with high tidal volumes aggravates lung injury in patients with acute lung injury or acute respiratory distress syndrome. The authors sought to determine the effects of short-term mechanical ventilation on local inflammatory responses in patients without preexisting lung injury. Patients scheduled to undergo an elective surgical procedure (lasting > or = 5 h) were randomly assigned to mechanical ventilation with either higher tidal volumes of 12 ml/kg ideal body weight and no positive end-expiratory pressure (PEEP) or lower tidal volumes of 6 ml/kg and 10 cm H2O PEEP. After induction of anesthesia and 5 h thereafter, bronchoalveolar lavage fluid and/or blood was investigated for polymorphonuclear cell influx, changes in levels of inflammatory markers, and nucleosomes. Mechanical ventilation with lower tidal volumes and PEEP (n = 21) attenuated the increase of pulmonary levels of interleukin (IL)-8, myeloperoxidase, and elastase as seen with higher tidal volumes and no PEEP (n = 19). Only for myeloperoxidase, a difference was found between the two ventilation strategies after 5 h of mechanical ventilation (P < 0.01). Levels of tumor necrosis factor alpha, IL-1alpha, IL-1beta, IL-6, macrophage inflammatory protein 1alpha, and macrophage inflammatory protein 1beta in the bronchoalveolar lavage fluid were not affected by mechanical ventilation. Plasma levels of IL-6 and IL-8 increased with mechanical ventilation, but there were no differences between the two ventilation groups. The use of lower tidal volumes and PEEP may limit pulmonary inflammation in mechanically ventilated patients without preexisting lung injury. The specific contribution of both lower tidal volumes and PEEP on the protective effects of the lung should be further investigated.
Tashkin, Donald P
2018-05-17
As marijuana smoking prevalence increases in the U.S. concern regarding its potential risks to lung health has also risen, given the general similarity in the smoke contents between marijuana and tobacco. Most studies have found a significant association between marijuana smoking and chronic bronchitis symptoms after adjustment for tobacco. While reports are mixed regarding associations between marijuana smoking and lung function, none has shown a relationship to decrements in forced expired volume in 1 sec (FEV1) and few have found a relationship to a decreased ratio of FEV1 to forced vital capacity (FVC), possibly related to an association between marijuana and an increased FVC. A few studies have found a modest reduction in specific airway conductance in relation to marijuana, probably reflecting endoscopic evidence of bronchial mucosal edema among habitual marijuana smokers. Diffusing capacity in marijuana smokers has been normal and two studies of thoracic high-resolution computed tomography (HRCT) have not shown any association of marijuana smoking with emphysema. Although bronchial biopsies from habitual marijuana smokers have shown precancerous histopathological changes, a large cohort study and a pooled analysis of six well-designed case-control studies have not found evidence of a link between marijuana smoking and lung cancer. The immunosuppressive effects of delta-9 tetrahydrocannabinol raise the possibility of an increased risk of pneumonia, but further studies are needed to evaluate this potential risk. Several cases series have demonstrated pneumothoraces/pneumomediastinum, as well as bullous lung disease, in marijuana smokers, but these associations require epidemiologic studies for firmer evidence of possible causality. Copyright © 2018. Published by Elsevier Inc.
Restrictive allograft syndrome after lung transplantation: new radiological insights.
Dubbeldam, Adriana; Barthels, Caroline; Coolen, Johan; Verschakelen, Johny A; Verleden, Stijn E; Vos, Robin; Verleden, Geert M; De Wever, Walter
2017-07-01
To describe the CT changes in patients with restrictive allograft syndrome (RAS) after lung transplantation, before and after clinical diagnosis. This retrospective study included 22 patients with clinical diagnosis of RAS. Diagnosis was based on a combination of forced expiratory volume (FEV1) decline (≥20 %) and total lung capacity (TLC) decline (≥10 %). All available CT scans after transplantation were analyzed for the appearance and evolution of lung abnormalities. In 14 patients, non-regressing nodules and reticulations predominantly affecting the upper lobes developed an average of 13.9 months prior to the diagnosis of RAS. Median graft survival after onset of non-regressing abnormalities was 33.5 months, with most patients in follow-up (9/14). In eight patients, a sudden appearance of diffuse consolidations mainly affecting both upper and lower lobes was seen an average of 2.8 months prior to the diagnosis of RAS. Median graft survival was 6.4 months after first onset of non-regressing abnormalities, with graft loss in most patients (6/8). RAS has been previously described as a homogenous group. However, our study shows two different groups of RAS-patients: one with slow progression and one with fast progression. The two groups show different onset and progression patterns of CT abnormalities. • RAS is the newest discovered form of chronic lung allograft dysfunction (CLAD). • RAS is not a homogenous group, as survival varies greatly between patients. • In this study, we see two different CT onset and progression patterns. • These two different CT patterns also correlate with a different survival rate.
Pulmonary Hyperinflation and Left Ventricular Mass
Smith, Benjamin M; Kawut, Steven M.; Bluemke, David A; Basner, Robert C; Gomes, Antoinette S; Hoffman, Eric; Kalhan, Ravi; Lima, João AC; Liu, Chia-Ying; Michos, Erin D; Prince, Martin R; Rabbani, LeRoy; Rabinowitz, Daniel; Shimbo, Daichi; Shea, Steven; Barr, R Graham
2013-01-01
Background Left ventricular (LV) mass is an important predictor of heart failure and cardiovascular mortality, yet determinants of LV mass are incompletely understood. Pulmonary hyperinflation in chronic obstructive pulmonary disease (COPD) may contribute to changes in intrathoracic pressure that increase LV wall stress. We therefore hypothesized that residual lung volume in COPD would be associated with greater LV mass. Methods and results The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study recruited smokers aged 50–79 years who were free of clinical cardiovascular disease. LV mass was measured by cardiac magnetic resonance. Pulmonary function testing was performed according to guidelines. Regression models were used to adjust for age, sex, body size, blood pressure and other cardiac risk factors. Among 119 MESA COPD Study participants, mean age was 69±6 years, 55% were male and 65% had COPD, mostly of mild or moderate severity. Mean LV mass was 128±34 grams. Residual lung volume was independently associated with greater LV mass (7.2 grams per standard deviation increase in residual volume; 95% CI 2.2 to 12; P=0.004), and was similar in magnitude to that of systolic blood pressure (7.6 grams per standard deviation increase in systolic blood pressure, 95% CI 4.3 to 11 grams; p<0.001). Similar results were observed for LV mass to end-diastolic volume ratio (p=0.02) and with hyperinflation measured as residual volume to total lung capacity ratio (P=0.009). Conclusions Pulmonary hyperinflation, as measured by residual lung volume or residual lung volume to total lung capacity ratio, is associated with greater LV mass. PMID:23493320
Dynamic Determination of Oxygenation and Lung Compliance in Murine Pneumonectomy
Gibney, Barry; Lee, Grace S.; Houdek, Jan; Lin, Miao; Miele, Lino; Chamoto, Kenji; Konerding, Moritz A.; Tsuda, Akira; Mentzer, Steven J.
2012-01-01
Thoracic surgical procedures in mice have been applied to a wide range of investigations, but little is known about the murine physiologic response to pulmonary surgery. Using continuous arterial oximetry monitoring and the FlexiVent murine ventilator, we investigated the effect of anesthesia and pneumonectomy on mouse oxygen saturation and lung mechanics. Sedation resulted in a dose-dependent decline of oxygen saturation that ranged from 55–82%. Oxygen saturation was restored by mechanical ventilation with increased rate and tidal volumes. In the mouse strain studied, optimal ventilatory rates were a rate of 200/minute and a tidal volume of 10ml/kg. Sustained inflation pressures, referred to as a "recruitment maneuver," improved lung volumes, lung compliance and arterial oxygenation. In contrast, positive end expiratory pressure (PEEP) had a detrimental effect on oxygenation; an effect that was ameliorated after pneumonectomy. Our results confirm that lung volumes in the mouse are dynamically determined and suggest a threshold level of mechanical ventilation to maintain perioperative oxygen saturation. PMID:21574875
The influence of inspiratory effort and emphysema on pulmonary nodule volumetry reproducibility.
Moser, J B; Mak, S M; McNulty, W H; Padley, S; Nair, A; Shah, P L; Devaraj, A
2017-11-01
To evaluate the impact of inspiratory effort and emphysema on reproducibility of pulmonary nodule volumetry. Eighty-eight nodules in 24 patients with emphysema were studied retrospectively. All patients had undergone volumetric inspiratory and end-expiratory thoracic computed tomography (CT) for consideration of bronchoscopic lung volume reduction. Inspiratory and expiratory nodule volumes were measured using commercially available software. Local emphysema extent was established by analysing a segmentation area extended circumferentially around each nodule (quantified as percent of lung with density of -950 HU or less). Lung volumes were established using the same software. Differences in inspiratory and expiratory nodule volumes were illustrated using the Bland-Altman test. The influences of percentage reduction in lung volume at expiration, local emphysema extent, and nodule size on nodule volume variability were tested with multiple linear regression. The majority of nodules (59/88 [67%]) showed an increased volume at expiration. Mean difference in nodule volume between expiration and inspiration was +7.5% (95% confidence interval: -24.1, 39.1%). No relationships were demonstrated between nodule volume variability and emphysema extent, degree of expiration, or nodule size. Expiration causes a modest increase in volumetry-derived nodule volumes; however, the effect is unpredictable. Local emphysema extent had no significant effect on volume variability in the present cohort. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Lung diffusion capacity in children with respiratory symptoms and untreated GERD.
Mirić, Mirjana; Turkalj, Mirjana; Nogalo, Boro; Erceg, Damir; Perica, Marija; Plavec, Davor
2014-05-12
Gastroesophageal reflux disease (GERD) is associated with many respiratory disorders, among which, chronic cough, laryngitis, and asthma are among the most common. We investigated lung function, including gas diffusion capacity, in children with poor asthma control or chronic laryngitis with untreated GERD. A total of 71 children, aged 6-17 years, with chronic respiratory and other symptoms suggestive for GERD, were enrolled and divided into 2 groups: chronic laryngitis and asthma. Participants underwent 24-hour pH monitoring and lung function assessment, measurement of single-breath diffusing capacity of the lung for carbon monoxide (DLCO), and fraction of exhaled nitric oxide (FENO) measurement. 24-hour pH monitoring was positive for GERD in 92.1% of preselected children with asthma and 90.1% of children with chronic recurrent laryngitis. All flows (PEF, MEF75, MEF50, and MEF25) were significantly lower in the asthma group, while FENO and DLCO were significantly lower in the laryngitis group. A significant inverse relationship was found between DLCO and all reflux indexes in the laryngitis group. Each unit change of Johnson-DeMeester score and Boix-Ochoa score increased the odds for significantly lower DLCO in laryngitis patients by 3.9% and 5.5%, respectively. In children with uncontrolled asthma and chronic laryngitis, the regurgitation of gastric contents due to GERD contributes to poor asthma control and aggravation of chronic laryngitis. Despite having normal lung function, the gas diffusion capacity should be controlled in patients with GERD and chronic laryngitis, and it might be the very first abnormality in distal airways.
Evaluation of a semiautomated lung mass calculation technique for internal dosimetry applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busse, Nathan; Erwin, William; Pan, Tinsu
2013-12-15
Purpose: The authors sought to evaluate a simple, semiautomated lung mass estimation method using computed tomography (CT) scans obtained using a variety of acquisition techniques and reconstruction parameters for mass correction of medical internal radiation dose-based internal radionuclide radiation absorbed dose estimates.Methods: CT scans of 27 patients with lung cancer undergoing stereotactic body radiation therapy treatment planning with PET/CT were analyzed retrospectively. For each patient, free-breathing (FB) and respiratory-gated 4DCT scans were acquired. The 4DCT scans were sorted into ten respiratory phases, representing one complete respiratory cycle. An average CT reconstruction was derived from the ten-phase reconstructions. Mid expiration breath-holdmore » CT scans were acquired in the same session for many patients. Deep inspiration breath-hold diagnostic CT scans of many of the patients were obtained from different scanning sessions at similar time points to evaluate the effect of contrast administration and maximum inspiration breath-hold. Lung mass estimates were obtained using all CT scan types, and intercomparisons made to assess lung mass variation according to scan type. Lung mass estimates using the FB CT scans from PET/CT examinations of another group of ten male and ten female patients who were 21–30 years old and did not have lung disease were calculated and compared with reference lung mass values. To evaluate the effect of varying CT acquisition and reconstruction parameters on lung mass estimation, an anthropomorphic chest phantom was scanned and reconstructed with different CT parameters. CT images of the lungs were segmented using the OsiriX MD software program with a seed point of about −850 HU and an interval of 1000. Lung volume, and mean lung, tissue, and air HUs were recorded for each scan. Lung mass was calculated by assuming each voxel was a linear combination of only air and tissue. The specific gravity of lung volume was calculated using the formula (lung HU − air HU)/(tissue HU − air HU), and mass = specific gravity × total volume × 1.04 g/cm{sup 3}.Results: The range of calculated lung masses was 0.51–1.29 kg. The average male and female lung masses during FB CT were 0.80 and 0.71 kg, respectively. The calculated lung mass varied across the respiratory cycle but changed to a lesser degree than did lung volume measurements (7.3% versus 15.4%). Lung masses calculated using deep inspiration breath-hold and average CT were significantly larger (p < 0.05) than were some masses calculated using respiratory-phase and FB CT. Increased voxel size and smooth reconstruction kernels led to high lung mass estimates owing to partial volume effects.Conclusions: Organ mass correction is an important component of patient-specific internal radionuclide dosimetry. Lung mass calculation necessitates scan-based density correction to account for volume changes owing to respiration. The range of lung masses in the authors’ patient population represents lung doses for the same absorbed energy differing from 25% below to 64% above the dose found using reference phantom organ masses. With proper management of acquisition parameters and selection of FB or midexpiration breath hold scans, lung mass estimates with about 10% population precision may be achieved.« less
Transpleural ventilation of explanted human lungs
Choong, Cliff K; Macklem, Peter T; Pierce, John A; Lefrak, Stephen S; Woods, Jason C; Conradi, Mark S; Yablonskiy, Dimitry A; Hogg, James C; Chino, Kimiaki; Cooper, Joel D
2007-01-01
Background The hypothesis that ventilation of emphysematous lungs would be enhanced by communication with the parenchyma through holes in the pleural surface was tested. Methods Fresh human lungs were obtained from patients with emphysema undergoing lung transplantation. Control human lungs were obtained from organ donors whose lungs, for technical reasons, were not considered suitable for implantation. Lungs were ventilated through the bronchial tree or transpleurally via a small hole communicating with the underlying parenchyma over which a flanged silicone tube had been cemented to the surface of the lung (spiracle). Measurements included flow‐volume‐time curves during passive deflation via each pathway; volume of trapped gas recovered from lungs via spiracles when no additional gas was obtainable passively from the airways; and magnetic resonance imaging assessment of spatial distribution of hyperpolarised helium (3He) administered through either the airways or spiracles. Results In emphysematous lungs, passively expelled volumes at 20 s were 94% greater through spiracles than via the airways. Following passive deflation from the airways, an average of 1.07 litres of trapped gas volume was recoverable via spiracles. Regions were ventilated by spiracles that were less well ventilated via bronchi. Conclusions Because of the extensive collateral ventilation present in emphysematous lungs, direct communication with the lung parenchyma through non‐anatomical pathways has the potential to improve the mechanics of breathing and hence ventilation. PMID:17412776
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moses, S.C.; Baker, S.R.; Seldin, M.F.
1983-12-01
A homosexual man with A.I.D.S. (acquired immunologic deficiency syndrome) and pneumocystis infestation was found to have diffuse Ga-67 uptake in the lungs with a coincident negative chest x-ray. While Ga-67 accumulates diffusely in the lungs in a variety of conditions, the present case is the first described in a patient with A.I.D.S. in which Ga-67 was positive before roentgenographic abnormalities were demonstrated. Thus, the use of Ga-67 scan, when A.I.D.S. is suspected, could help establish a diagnosis more promptly.
Singer, Florian; Stern, Georgette; Thamrin, Cindy; Fuchs, Oliver; Riedel, Thomas; Gustafsson, Per; Frey, Urs; Latzin, Philipp
2011-03-10
Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI), which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW) of sulfur hexafluoride (SF(6)) and helium (He) using an ultrasonic flowmeter (USFM). The tracer gas mixture contained 5% SF(6) and 26.3% He, had similar total MM as air, and was applied for a single tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e., area under the MM curve (AUC), were determined in seven subjects performing three SBW 24 hours apart. USFM reliably measured MM during all SBW tests (n = 60). MM from USFM reflected SF(6) and He washout patterns measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was 11.8%. The USFM accurately measured relative changes in SF(6) and He washout. SBW tests were repeatable and reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which provides valid information on SF(6) and He washout patterns during tidal breathing.
Correlation of ultra-low dose chest CT findings with physiologic measures of asbestosis.
Manners, David; Wong, Patrick; Murray, Conor; Teh, Joelin; Kwok, Yi Jin; de Klerk, Nick; Alfonso, Helman; Franklin, Peter; Reid, Alison; Musk, A W Bill; Brims, Fraser J H
2017-08-01
The correlation between ultra low dose computed tomography (ULDCT)-detected parenchymal lung changes and pulmonary function abnormalities is not well described. This study aimed to determine the relationship between ULDCT-detected interstitial lung disease (ILD) and measures of pulmonary function in an asbestos-exposed population. Two thoracic radiologists independently categorised prone ULDCT scans from 143 participants for ILD appearances as absent (score 0), probable (1) or definite (2) without knowledge of asbestos exposure or lung function. Pulmonary function measures included spirometry and diffusing capacity to carbon monoxide (DLCO). Participants were 92% male with a median age of 73.0 years. CT dose index volume was between 0.6 and 1.8 mGy. Probable or definite ILD was reported in 63 (44.1%) participants. Inter-observer agreement was good (k = 0.613, p < 0.001). There was a statistically significant correlation between the ILD score and both forced expiratory volume in 1 second (FEV 1 ) and forced vital capacity (FVC) (r = -0.17, p = 0.04 and r = -0.20, p = 0.02). There was a strong correlation between ILD score and DLCO (r = -0.34, p < 0.0001). Changes consistent with ILD on ULDCT correlate well with corresponding reductions in gas transfer, similar to standard CT. In asbestos-exposed populations, ULDCT may be adequate to detect radiological changes consistent with asbestosis. • Interobserver agreement for the ILD score using prone ULDCT is good. • Prone ULDCT appearances of ILD correlate with changes in spirometric observations. • Prone ULDCT appearances of ILD correlate strongly with changes in gas transfer. • Prone ULDCT may provide sufficient radiological evidence to inform the diagnosis of asbestosis.
Singer, Florian; Stern, Georgette; Thamrin, Cindy; Fuchs, Oliver; Riedel, Thomas; Gustafsson, Per; Frey, Urs; Latzin, Philipp
2011-01-01
Background Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI), which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW) of sulfur hexafluoride (SF6) and helium (He) using an ultrasonic flowmeter (USFM). Methods The tracer gas mixture contained 5% SF6 and 26.3% He, had similar total MM as air, and was applied for a single tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e., area under the MM curve (AUC), were determined in seven subjects performing three SBW 24 hours apart. Results USFM reliably measured MM during all SBW tests (n = 60). MM from USFM reflected SF6 and He washout patterns measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was 11.8%. Conclusion The USFM accurately measured relative changes in SF6 and He washout. SBW tests were repeatable and reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which provides valid information on SF6 and He washout patterns during tidal breathing. PMID:21423739
Kozian, Alf; Schilling, Thomas; Schütze, Hartmut; Senturk, Mert; Hachenberg, Thomas; Hedenstierna, Göran
2011-05-01
The increased tidal volume (V(T)) applied to the ventilated lung during one-lung ventilation (OLV) enhances cyclic alveolar recruitment and mechanical stress. It is unknown whether alveolar recruitment maneuvers (ARMs) and reduced V(T) may influence tidal recruitment and lung density. Therefore, the effects of ARM and OLV with different V(T) on pulmonary gas/tissue distribution are examined. Eight anesthetized piglets were mechanically ventilated (V(T) = 10 ml/kg). A defined ARM was applied to the whole lung (40 cm H(2)O for 10 s). Spiral computed tomographic lung scans were acquired before and after ARM. Thereafter, the lungs were separated with an endobronchial blocker. The pigs were randomized to receive OLV in the dependent lung with a V(T) of either 5 or 10 ml/kg. Computed tomography was repeated during and after OLV. The voxels were categorized by density intervals (i.e., atelectasis, poorly aerated, normally aerated, or overaerated). Tidal recruitment was defined as the addition of gas to collapsed lung regions. The dependent lung contained atelectatic (56 ± 10 ml), poorly aerated (183 ± 10 ml), and normally aerated (187 ± 29 ml) regions before ARM. After ARM, lung volume and aeration increased (426 ± 35 vs. 526 ± 69 ml). Respiratory compliance enhanced, and tidal recruitment decreased (95% vs. 79% of the whole end-expiratory lung volume). OLV with 10 ml/kg further increased aeration (atelectasis, 15 ± 2 ml; poorly aerated, 94 ± 24 ml; normally aerated, 580 ± 98 ml) and tidal recruitment (81% of the dependent lung). OLV with 5 ml/kg did not affect tidal recruitment or lung density distribution. (Data are given as mean ± SD.) The ARM improves aeration and respiratory mechanics. In contrast to OLV with high V(T), OLV with reduced V(T) does not reinforce tidal recruitment, indicating decreased mechanical stress.
A portable single-sided magnet system for remote NMR measurements of pulmonary function.
Dabaghyan, Mikayel; Muradyan, Iga; Hrovat, Alan; Butler, James; Frederick, Eric; Zhou, Feng; Kyriazis, Angelos; Hardin, Charles; Patz, Samuel; Hrovat, Mirko
2014-12-01
In this work, we report initial results from a light-weight, low field magnetic resonance device designed to make relative pulmonary density measurements at the bedside. The development of this device necessarily involves special considerations for the magnet, RF and data acquisition schemes as well as a careful analysis of what is needed to provide useful information in the ICU. A homogeneous field region is created remotely from the surface of the magnet such that when the magnet is placed against the chest, an NMR signal is measured from a small volume in the lung. In order to achieve portability, one must trade off field strength and therefore spatial resolution. We report initial measurements from a ping-pong ball size region in the lung as a function of lung volume. As expected, we measured decreased signal at larger lung volumes since lung density decreases with increasing lung volume. Using a CPMG sequence with ΔTE=3.5 ms and a 20 echo train, a signal to noise ratio ~1100 was obtained from an 8.8mT planar magnet after signal averaging for 43 s. This is the first demonstration of NMR measurements made on a human lung with a light-weight planar NMR device. We argue that very low spatial resolution measurements of different lobar lung regions will provide useful diagnostic information for clinicians treating Acute Respiratory Distress Syndrome as clinicians want to avoid ventilator pressures that cause either lung over distension (too much pressure) or lung collapse (too little pressure). Copyright © 2014 John Wiley & Sons, Ltd.
A portable single-sided magnet system for remote NMR measurements of pulmonary function
Mikayel, Dabaghyan; Iga, Muradyan; James, Butler; Eric, Frederick; Feng, Zhou; Angelos, Kyriazis; Charles, Hardin; Samuel, Patz; Mirko, Hrovat
2014-01-01
In this work, we report initial results from a light-weight, low field magnetic resonance device designed to make relative pulmonary density measurements at the bedside. The development of this device necessarily involves special considerations for the magnet, RF and data acquisition schemes as well as a careful analysis of what is needed to provide useful information in the ICU. A homogeneous field region is created remotely from the surface of the magnet such that when the magnet is placed against the chest, an NMR signal is measured from a small volume in the lung. In order to achieve portability, one must trade off field strength and therefore spatial resolution. We report initial measurements from a ping-pong ball size region in the lung as a function of lung volume. As expected, we measured decreased signal at larger lung volumes since lung density decreases with increasing lung volume. Using a CPMG sequence with ΔTE=3.5 ms and a 20 echo train, a signal to noise ratio ~1100 was obtained from an 8.8mT planar magnet after signal averaging for 43 s. This is the first demonstration of NMR measurements made on a human lung with a light-weight planar NMR device. We argue that very low spatial resolution measurements of different lobar lung regions will provide useful diagnostic information for clinicians treating Acute Respiratory Distress Syndrome as clinicians want to avoid ventilator pressures that cause either lung over distension (too much pressure) or lung collapse (too little pressure). PMID:24953556
Reference database of lung volumes and capacities in wistar rats from 2 to 24 months.
Filho, Wilson Jacob; Fontinele, Renata Gabriel; de Souza, Romeu Rodrigues
2014-01-01
This study determines the effects of growing and aging on lung physiological volumes and capacities and the incidence of inflammation in the small airways with age in rats. A reference database comprising of body weight gain, lung physiological volumes and capacities and an anatomopathological study of lung lesions over 240 Wistar rats from two to 24 -mo, is described. Tidal volume (TV), minute respiratory volume (MRV), and forced vital capacity (FVC) decreased during the first six months of life and then remain constant until 24 -mo of age. The respiratory frequency (Rf) and dynamical compliance (Cdyn) maintain at constant values from 2 to 24- mo of age; the functional residual capacity (FRC) increases in the first 6 -mo and then remains constant up to 24 -mo. It was verified a less intensive inflammation in the small airways with age, when compared with the median and large airways. This study showed the normal parameters for lung volumes and capacities and the incidence of infections for growing and aging male and female rats. The age-related data on these main respiratory parameters in rats would be useful in studies of aging-related disorders using this model and for safety pharmacology studies necessary for the development of drugs.
Tingay, David G; Rajapaksa, Anushi; Zonneveld, C Elroy; Black, Don; Perkins, Elizabeth J; Adler, Andy; Grychtol, Bartłomiej; Lavizzari, Anna; Frerichs, Inéz; Zahra, Valerie A; Davis, Peter G
2016-02-01
Ineffective aeration during the first inflations at birth creates regional aeration and ventilation defects, initiating injurious pathways. This study aimed to compare a sustained first inflation at birth or dynamic end-expiratory supported recruitment during tidal inflations against ventilation without intentional recruitment on gas exchange, lung mechanics, spatiotemporal regional aeration and tidal ventilation, and regional lung injury in preterm lambs. Lambs (127 ± 2 d gestation), instrumented at birth, were ventilated for 60 minutes from birth with either lung-protective positive pressure ventilation (control) or as per control after either an initial 30 seconds of 40 cm H2O sustained inflation (SI) or an initial stepwise end-expiratory pressure recruitment maneuver during tidal inflations (duration 180 s; open lung ventilation [OLV]). At study completion, molecular markers of lung injury were analyzed. The initial use of an OLV maneuver, but not SI, at birth resulted in improved lung compliance, oxygenation, end-expiratory lung volume, and reduced ventilatory needs compared with control, persisting throughout the study. These changes were due to more uniform inter- and intrasubject gravity-dependent spatiotemporal patterns of aeration (measured using electrical impedance tomography). Spatial distribution of tidal ventilation was more stable after either recruitment maneuver. All strategies caused regional lung injury patterns that mirrored associated regional volume states. Irrespective of strategy, spatiotemporal volume loss was consistently associated with up-regulation of early growth response-1 expression. Our results show that mechanical and molecular consequences of lung aeration at birth are not simply related to rapidity of fluid clearance; they are also related to spatiotemporal pressure-volume interactions within the lung during inflation and deflation.
Planning evaluation of radiotherapy for complex lung cancer cases using helical tomotherapy
NASA Astrophysics Data System (ADS)
Kron, Tomas; Grigorov, Grigor; Yu, Edward; Yartsev, Slav; Chen, Jeff Z.; Wong, Eugene; Rodrigues, George; Trenka, Kris; Coad, Terry; Bauman, Glenn; Van Dyk, Jake
2004-08-01
Lung cancer treatment is one of the most challenging fields in radiotherapy. The aim of the present study was to investigate what role helical tomotherapy (HT), a novel approach to the delivery of highly conformal dose distributions using intensity-modulated radiation fan beams, can play in difficult cases with large target volumes typical for many of these patients. Tomotherapy plans were developed for 15 patients with stage III inoperable non-small-cell lung cancer. While not necessarily clinically indicated, elective nodal irradiation was included for all cases to create the most challenging scenarios with large target volumes. A 2 cm margin was used around the gross tumour volume (GTV) to generate primary planning target volume (PTV2) and 1 cm margin around elective nodes for secondary planning target volume (PTV1) resulting in PTV1 volumes larger than 1000 cm3 in 13 of the 15 patients. Tomotherapy plans were created using an inverse treatment planning system (TomoTherapy Inc.) based on superposition/convolution dose calculation for a fan beam thickness of 25 mm and a pitch factor between 0.3 and 0.8. For comparison, plans were created using an intensity-modulated radiation therapy (IMRT) approach planned on a commercial treatment planning system (TheraplanPlus, Nucletron). Tomotherapy delivery times for the large target volumes were estimated to be between 4 and 19 min. Using a prescribed dose of 60 Gy to PTV2 and 46 Gy to PTV1, the mean lung dose was 23.8 ± 4.6 Gy. A 'dose quality factor' was introduced to correlate the plan outcome with patient specific parameters. A good correlation was found between the quality of the HT plans and the IMRT plans with HT being slightly better in most cases. The overlap between lung and PTV was found to be a good indicator of plan quality for HT. The mean lung dose was found to increase by approximately 0.9 Gy per percent overlap volume. Helical tomotherapy planning resulted in highly conformal dose distributions. It allowed easy achievement of two different dose levels in the target simultaneously. As the overlap between PTV and lung volume is a major predictor of mean lung dose, future work will be directed to control of margins. Work is underway to investigate the possibility of breath-hold techniques for tomotherapy delivery to facilitate this aim.
Yamada, Tadaaki; Ohtsubo, Koushiro; Izumi, Kouji; Takeuchi, Shinji; Mouri, Hisatsugu; Yamashita, Kaname; Yasumoto, Kazuo; Ghenev, Peter; Kitagawa, Satoshi; Yano, Seiji
2010-12-01
We report the case of a 67-year-old man with metastatic papillary renal cell carcinoma (RCC) who developed bloody sputum after the administration of sunitinib. Chest computed tomography revealed diffuse ground-glass opacity lesions, and bloody bronchoalveolar lavage fluid was obtained by flexible bronchoscopy. The abnormal shadows promptly regressed after withdrawal of sunitinib. In four cycles of sunitinib treatment, he suffered from controllable diffuse alveolar hemorrhage. Finally, he died of respiratory failure 8 months after onset. This is the first case report of diffuse alveolar hemorrhage as an adverse effect of sunitinib in metastatic papillary RCC. Care should be taken with pulmonary hemorrhage in the use of anti-angiogenesis agents in not only squamous cell lung cancer, but also metastatic lung tumors.
Ono, Tomohiro; Nakamura, Mitsuhiro; Hirose, Yoshinori; Kitsuda, Kenji; Ono, Yuka; Ishigaki, Takashi; Hiraoka, Masahiro
2017-09-01
To estimate the lung tumor position from multiple anatomical features on four-dimensional computed tomography (4D-CT) data sets using single regression analysis (SRA) and multiple regression analysis (MRA) approach and evaluate an impact of the approach on internal target volume (ITV) for stereotactic body radiotherapy (SBRT) of the lung. Eleven consecutive lung cancer patients (12 cases) underwent 4D-CT scanning. The three-dimensional (3D) lung tumor motion exceeded 5 mm. The 3D tumor position and anatomical features, including lung volume, diaphragm, abdominal wall, and chest wall positions, were measured on 4D-CT images. The tumor position was estimated by SRA using each anatomical feature and MRA using all anatomical features. The difference between the actual and estimated tumor positions was defined as the root-mean-square error (RMSE). A standard partial regression coefficient for the MRA was evaluated. The 3D lung tumor position showed a high correlation with the lung volume (R = 0.92 ± 0.10). Additionally, ITVs derived from SRA and MRA approaches were compared with ITV derived from contouring gross tumor volumes on all 10 phases of the 4D-CT (conventional ITV). The RMSE of the SRA was within 3.7 mm in all directions. Also, the RMSE of the MRA was within 1.6 mm in all directions. The standard partial regression coefficient for the lung volume was the largest and had the most influence on the estimated tumor position. Compared with conventional ITV, average percentage decrease of ITV were 31.9% and 38.3% using SRA and MRA approaches, respectively. The estimation accuracy of lung tumor position was improved by the MRA approach, which provided smaller ITV than conventional ITV. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Lung Volume Reduction in Pulmonary Emphysema from the Radiologist's Perspective.
Doellinger, F; Huebner, R H; Kuhnigk, J M; Poellinger, A
2015-08-01
Pulmonary emphysema causes decrease in lung function due to irreversible dilatation of intrapulmonary air spaces, which is linked to high morbidity and mortality. Lung volume reduction (LVR) is an invasive therapeutical option for pulmonary emphysema in order to improve ventilation mechanics. LVR can be carried out by lung resection surgery or different minimally invasive endoscopical procedures. All LVR-options require mandatory preinterventional evaluation to detect hyperinflated dysfunctional lung areas as target structures for treatment. Quantitative computed tomography can determine the volume percentage of emphysematous lung and its topographical distribution based on the lung's radiodensity. Modern techniques allow for lobebased quantification that facilitates treatment planning. Clinical tests still play the most important role in post-interventional therapy monitoring, but CT is crucial in the detection of postoperative complications and foreshadows the method's high potential in sophisticated experimental studies. Within the last ten years, LVR with endobronchial valves has become an extensively researched minimally-invasive treatment option. However, this therapy is considerably complicated by the frequent occurrence of functional interlobar shunts. The presence of "collateral ventilation" has to be ruled out prior to valve implantations, as the presence of these extraanatomical connections between different lobes may jeopardize the success of therapy. Recent experimental studies evaluated the automatic detection of incomplete lobar fissures from CT scans, because they are considered to be a predictor for the existence of shunts. To date, these methods are yet to show acceptable results. Today, surgical and various minimal invasive methods of lung volume reduction are in use. Radiological and nuclear medical examinations are helpful in the evaluation of an appropriate lung area. Imaging can detect periinterventional complications. Reduction of lung volume has not yet been conclusively proven to be effective and is a therapeutical option with little scientific evidence. © Georg Thieme Verlag KG Stuttgart · New York.
Feasibility of Pathology-Correlated Lung Imaging for Accurate Target Definition of Lung Tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stroom, Joep; Blaauwgeers, Hans; Baardwijk, Angela van
2007-09-01
Purpose: To accurately define the gross tumor volume (GTV) and clinical target volume (GTV plus microscopic disease spread) for radiotherapy, the pretreatment imaging findings should be correlated with the histopathologic findings. In this pilot study, we investigated the feasibility of pathology-correlated imaging for lung tumors, taking into account lung deformations after surgery. Methods and Materials: High-resolution multislice computed tomography (CT) and positron emission tomography (PET) scans were obtained for 5 patients who had non-small-cell lung cancer (NSCLC) before lobectomy. At the pathologic examination, the involved lung lobes were inflated with formalin, sectioned in parallel slices, and photographed, and microscopic sectionsmore » were obtained. The GTVs were delineated for CT and autocontoured at the 42% PET level, and both were compared with the histopathologic volumes. The CT data were subsequently reformatted in the direction of the macroscopic sections, and the corresponding fiducial points in both images were compared. Hence, the lung deformations were determined to correct the distances of microscopic spread. Results: In 4 of 5 patients, the GTV{sub CT} was, on average, 4 cm{sup 3} ({approx}53%) too large. In contrast, for 1 patient (with lymphangitis carcinomatosa), the GTV{sub CT} was 16 cm{sup 3} ({approx}40%) too small. The GTV{sub PET} was too small for the same patient. Regarding deformations, the volume of the well-inflated lung lobes on pathologic examination was still, on average, only 50% of the lobe volume on CT. Consequently, the observed average maximal distance of microscopic spread (5 mm) might, in vivo, be as large as 9 mm. Conclusions: Our results have shown that pathology-correlated lung imaging is feasible and can be used to improve target definition. Ignoring deformations of the lung might result in underestimation of the microscopic spread.« less
Hydrostatic weighing at residual volume and functional residual capacity.
Thomas, T R; Etheridge, G L
1980-07-01
Hydrostatic weighing (HW) was performed at both residual volume (RV) and functional residual capacity (FRC) to determine if underwater weighing at different lung volumes affected the measurement of body density. Subjects were 43 males, 18-25 yr. Subjects were submerged in the prone position, and the lung volume was measured by helium dilution at the time of the underwater weighing. Underwater weight was first assessed at FRC followed by assessment at RV. Changes in lung volume were accurately reflected in the underwater weight. Body density (D) was not different with the use of the FRC (mean D = 1.0778) or RV (mean D = 1.0781) data. Percent fat values for the FRC and RV data were 9.3 +/- 5.4 and 9.2 +/- 5.1%, respectively, and were not statistically different. The results indicate that the difference between percent fat determinations by HW in the prone position at FRC and RV is negligible. Because measurement of underwater weight at FRC is more comfortable for the subject, this may be the method of choice when the lung volume can be measured during the underwater weighing.
Knowledge-based automated technique for measuring total lung volume from CT
NASA Astrophysics Data System (ADS)
Brown, Matthew S.; McNitt-Gray, Michael F.; Mankovich, Nicholas J.; Goldin, Jonathan G.; Aberle, Denise R.
1996-04-01
A robust, automated technique has been developed for estimating total lung volumes from chest computed tomography (CT) images. The technique includes a method for segmenting major chest anatomy. A knowledge-based approach automates the calculation of separate volumes of the whole thorax, lungs, and central tracheo-bronchial tree from volumetric CT data sets. A simple, explicit 3D model describes properties such as shape, topology and X-ray attenuation, of the relevant anatomy, which constrain the segmentation of these anatomic structures. Total lung volume is estimated as the sum of the right and left lungs and excludes the central airways. The method requires no operator intervention. In preliminary testing, the system was applied to image data from two healthy subjects and four patients with emphysema who underwent both helical CT and pulmonary function tests. To obtain single breath-hold scans, the healthy subjects were scanned with a collimation of 5 mm and a pitch of 1.5, while the emphysema patients were scanned with collimation of 10 mm at a pitch of 2.0. CT data were reconstructed as contiguous image sets. Automatically calculated volumes were consistent with body plethysmography results (< 10% difference).
Effect of hyperinflation on inspiratory function of the diaphragm.
Minh, V D; Dolan, G F; Konopka, R F; Moser, K M
1976-01-01
The inspiratory efficiency of the diaphragm during unilateral and bilateral phrenic stimulation (UEPS and BEPS) with constant stimulus was studied in seven dogs from FRC to 120% TLC. Alveolar pressures (PAl) were recorded during relaxation, BEPS and UEPS at each lung volume in the closed respiratory system. From the PAl-lung volume curves, tidal volume (VT), and pressure developed by the diaphragm (Pmus) were derived. Results are summarized below. a) Hyperinflation impaired the inspiratory efficiency of the diaphragm which behaved as an expiratory muscle beyond the lung volume of 103.7% TLC (Vinef). b) The diaphragm during UEPS became expiratory at the same Vinef as during (BEPS. C) The VT-lung volume relationship was linear during BEPS, allowing simple quantitation of VT loss with hyperinflation and prediction of Vinef. d) With only one phrenic nerve stimulated, the functional loss is less pronounced in VT than in Pmus, as compared to BEPS, indicating that the respiratory system was more compliant during UEPS than BEPS. This compliance difference from UEPS to BEPS diminished with severe hyperinflation.
Lung volume reduction for emphysema.
Shah, Pallav L; Herth, Felix J; van Geffen, Wouter H; Deslee, Gaetan; Slebos, Dirk-Jan
2017-02-01
Advanced emphysema is a lung disease in which alveolar capillary units are destroyed and supporting tissue is lost. The combined effect of reduced gas exchange and changes in airway dynamics impairs expiratory airflow and leads to progressive air trapping. Pharmacological therapies have limited effects. Surgical resection of the most destroyed sections of the lung can improve pulmonary function and exercise capacity but its benefit is tempered by significant morbidity. This issue stimulated a search for novel approaches to lung volume reduction. Alternative minimally invasive approaches using bronchoscopic techniques including valves, coils, vapour thermal ablation, and sclerosant agents have been at the forefront of these developments. Insertion of endobronchial valves in selected patients could have benefits that are comparable with lung volume reduction surgery. Endobronchial coils might have a role in the treatment of patients with emphysema with severe hyperinflation and less parenchymal destruction. Use of vapour thermal energy or a sclerosant might allow focal treatment but the unpredictability of the inflammatory response limits their current use. In this Review, we aim to summarise clinical trial evidence on lung volume reduction and provide guidance on patient selection for available therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Modern Views on Children's Interstitial Lung Disease].
Boĭtsova, E V; Beliashova, M A; Ovsiannikov, D Iu
2015-01-01
Interstitial lung diseases (ILD, diffuse lung diseases) are a heterogeneous group of diseases in which a pathological process primarily involved alveoli and perialveolar interstitium, resulting in impaired gas exchange, restrictive changes of lung ventilation function and diffuse interstitial changes detectable by X-ray. Children's interstitial lung diseases is an topical problem ofpediatricpulmonoogy. The article presents current information about classification, epidemiology, clinical presentation, diagnostics, treatment and prognosis of these rare diseases. The article describes the differences in the structure, pathogenesis, detection of various histological changes in children's ILD compared with adult patients with ILD. Authors cite an instance of registers pediatric patients with ILD. The clinical semiotics of ILD, the possible results of objective research, the frequency of symptoms, the features of medical history, the changes detected on chest X-rays, CT semiotics described in detail. Particular attention was paid to interstitial lung diseases, occurring mainly in newborns and children during the first two years of life, such as congenital deficiencies of surfactant proteins, neuroendocrine cell hyperplasia of infancy, pulmonary interstitial glycogenosis. The diagnostic program for children's ILD, therapy options are presented in this article.
Assessment and monitoring of flow limitation and other parameters from flow/volume loops.
Dueck, R
2000-01-01
Flow/volume (F/V) spirometry is routinely used for assessing the type and severity of lung disease. Forced vital capacity (FVC) and timed vital capacity (FEV1) provide the best estimates of airflow obstruction in patients with asthma, chronic obstructive pulmonary disease (COPD) and emphysema. Computerized spirometers are now available for early home recognition of asthma exacerbation in high risk patients with severe persistent disease, and for recognition of either infection or rejection in lung transplant patients. Patients with severe COPD may exhibit expiratory flow limitation (EFL) on tidal volume (VT) expiratory F/V (VTF/V) curves, either with or without applying negative expiratory pressure (NEP). EFL results in dynamic hyperinflation and persistently raised alveolar pressure or intrinsic PEEP (PEEPi). Hyperinflation and raised PEEPi greatly enhance dyspnea with exertion through the added work of the threshold load needed to overcome raised pleural pressure. Esophageal (pleural) pressure monitoring may be added to VTF/V loops for assessing the severity of PEEPi: 1) to optimize assisted ventilation by mask or via endotracheal tube with high inspiratory flow rates to lower I:E ratio, and 2) to assess the efficacy of either pressure support ventilation (PSV) or low level extrinsic PEEP in reducing the threshold load of PEEPi. Intraoperative tidal volume F/V loops can also be used to document the efficacy of emphysema lung volume reduction surgery (LVRS) via disappearance of EFL. Finally, the mechanism of ventilatory constraint can be identified with the use of exercise tidal volume F/V loops referenced to maximum F/V loops and static lung volumes. Patients with severe COPD show inspiratory F/V loops approaching 95% of total lung capacity, and flow limitation over the entire expiratory F/V curve during light levels of exercise. Surprisingly, patients with a history of congestive heart failure may lower lung volume towards residual volume during exercise, thereby reducing airway diameter and inducing expiratory flow limitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J; Eldib, A; Ma, C
2016-06-15
Purpose: Dose-volume-histogram (DVH) is widely used for plan evaluation in radiation treatment. The concept of dose-mass-histogram (DMH) is expected to provide a more representative description as it accounts for heterogeneity in tissue density. This study is intended to assess the difference between DVH and DMH for evaluating treatment planning quality. Methods: 12 lung cancer treatment plans were exported from the treatment planning system. DVHs for the planning target volume (PTV), the normal lung and other structures of interest were calculated. DMHs were calculated in a similar way as DVHs expect that the voxel density converted from the CT number wasmore » used in tallying the dose histogram bins. The equivalent uniform dose (EUD) was calculated based on voxel volume and mass, respectively. The normal tissue complication probability (NTCP) in relation to the EUD was calculated for the normal lung to provide quantitative comparison of DVHs and DMHs for evaluating the radiobiological effect. Results: Large differences were observed between DVHs and DMHs for lungs and PTVs. For PTVs with dense tumor cores, DMHs are higher than DVHs due to larger mass weighing in the high dose conformal core regions. For the normal lungs, DMHs can either be higher or lower than DVHs depending on the target location within the lung. When the target is close to the lower lung, DMHs show higher values than DVHs because the lower lung has higher density than the central portion or the upper lung. DMHs are lower than DVHs for targets in the upper lung. The calculated NTCPs showed a large range of difference between DVHs and DMHs. Conclusion: The heterogeneity of lung can be well considered using DMH for evaluating target coverage and normal lung pneumonitis. Further studies are warranted to quantify the benefits of DMH over DVH for plan quality evaluation.« less
Effect of prolonged bed rest on lung volume in normal individuals
NASA Technical Reports Server (NTRS)
Beckett, W. S.; Vroman, N. B.; Nigro, D.; Thompson-Gorman, S.; Wilkerson, J. E.
1986-01-01
The effect of prolonged bed rest on the lung function was studied by measuring forced vital capacity (FVC) and total lung capacity (TLC) in normal subjects before, during, and after 11- to 12-day rest periods. It was found that both FVC and TLC increased during bed rest (compared with the ambulatory controls), while residual volume and functional residual capacity of the respiratory system did not change. It is concluded that the increase in TLC by prolonged bed rest is not dependent on alterations in plasma volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan, Fujun; Jeudy, Jean; D’Souza, Warren
Purpose: To investigate the incorporation of pretherapy regional ventilation function in predicting radiation fibrosis (RF) in stage III nonsmall cell lung cancer (NSCLC) patients treated with concurrent thoracic chemoradiotherapy. Methods: Thirty-seven patients with stage III NSCLC were retrospectively studied. Patients received one cycle of cisplatin–gemcitabine, followed by two to three cycles of cisplatin–etoposide concurrently with involved-field thoracic radiotherapy (46–66 Gy; 2 Gy/fraction). Pretherapy regional ventilation images of the lung were derived from 4D computed tomography via a density change–based algorithm with mass correction. In addition to the conventional dose–volume metrics (V{sub 20}, V{sub 30}, V{sub 40}, and mean lung dose),more » dose–function metrics (fV{sub 20}, fV{sub 30}, fV{sub 40}, and functional mean lung dose) were generated by combining regional ventilation and radiation dose. A new class of metrics was derived and referred to as dose–subvolume metrics (sV{sub 20}, sV{sub 30}, sV{sub 40}, and subvolume mean lung dose); these were defined as the conventional dose–volume metrics computed on the functional lung. Area under the receiver operating characteristic curve (AUC) values and logistic regression analyses were used to evaluate these metrics in predicting hallmark characteristics of RF (lung consolidation, volume loss, and airway dilation). Results: AUC values for the dose–volume metrics in predicting lung consolidation, volume loss, and airway dilation were 0.65–0.69, 0.57–0.70, and 0.69–0.76, respectively. The respective ranges for dose–function metrics were 0.63–0.66, 0.61–0.71, and 0.72–0.80 and for dose–subvolume metrics were 0.50–0.65, 0.65–0.75, and 0.73–0.85. Using an AUC value = 0.70 as cutoff value suggested that at least one of each type of metrics (dose–volume, dose–function, dose–subvolume) was predictive for volume loss and airway dilation, whereas lung consolidation cannot be accurately predicted by any of the metrics. Logistic regression analyses showed that dose–function and dose–subvolume metrics were significant (P values ≤ 0.02) in predicting volume airway dilation. Likelihood ratio test showed that when combining dose–function and/or dose–subvolume metrics with dose–volume metrics, the achieved improvements of prediction accuracy on volume loss and airway dilation were significant (P values ≤ 0.04). Conclusions: The authors’ results demonstrated that the inclusion of regional ventilation function improved accuracy in predicting RF. In particular, dose–subvolume metrics provided a promising method for preventing radiation-induced pulmonary complications.« less
Evolution and development of gas exchange structures in Mammalia: the placenta and the lung.
Mess, Andrea M; Ferner, Kirsten J
2010-08-31
Appropriate oxygen supply is crucial for organisms. Here we examine the evolution of structures associated with the delivery of oxygen in the pre- and postnatal phases in mammals. There is an enormous structural and functional variability in the placenta that has facilitated the evolution of specialized reproductive strategies, such as precociality. In particular the cell layers separating fetal and maternal blood differ markedly: a non-invasive epitheliochorial placenta, which increases the diffusion distance, represents a derived state in ungulates. Rodents and their relatives have an invasive haemochorial placental type as optimum for the diffusion distance. In contrast, lung development is highly conserved and differences in the lungs of neonates can be explained by different developmental rates. Monotremes and marsupials have altricial stages with lungs at the early saccular phase, whereas newborn eutherians have lungs at the late saccular or alveolar phase. In conclusion, the evolution of exchange structures in the pre- and postnatal periods does not follow similar principles. Copyright (c) 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leter, Edward M.; Cademartiri, Filippo; Levendag, Peter C.
2005-07-01
Purpose: We used four-dimensional multislice spiral computed tomography (MSCT) to determine respiratory lung-tumor motion and compared this strategy to common clinical practice in conformal radiotherapy treatment-planning imaging. Methods and Materials: The entire lung volume of 10 consecutive patients with 14 lung metastases were scanned by a 16-slice MSCT. During the scans, patients were instructed to breathe through a spirometer that was connected to a laptop computer. For each patient, 10 stacks of 1.5-mm slices, equally distributed throughout the respiratory cycle, were reconstructed from the acquired MSCT data. The lung tumors were manually contoured in each data set. For each patient,more » the tumor-volume contours of all data sets were copied to 1 data set, which allowed determination of the volume that encompassed all 10 lung-tumor positions (i.e., the tumor-traversed volume [TTV]) during the respiratory cycle. The TTV was compared with the 10 tumor volumes contoured for each patient, to which an empiric respiratory-motion margin was added. The latter target volumes were designated internal-motion included tumor volume (IMITV). Results: The TTV measurements were significantly smaller than the reference IMITV measurements (5.2 {+-} 10.2 cm{sup 3} and 10.1 {+-} 13.7 cm{sup 3}, respectively). All 10 IMITVs for 2 of the 4 tumors in 1 subject completely encompassed the TTV. All 10 IMITVs for 3 tumors in 2 patients did not show overlap with up to 35% of the corresponding TTV. The 10 IMITVs for the remaining tumors either completely encompassed the corresponding TTV or did not show overlap with up to 26% of the corresponding TTV. Conclusions: We found that individualized determination of respiratory lung-tumor motion by four-dimensional respiratory-gated MSCT represents a better and simple strategy to incorporate periodic physiologic motion compared with a generalized approach. The former strategy can, therefore, improve common and state-of-the-art clinical practice in conformal radiotherapy.« less
Cough Augmentation Techniques in the Critically Ill: A Canadian National Survey.
Rose, Louise; Adhikari, Neill K; Poon, Joseph; Leasa, David; McKim, Douglas A
2016-10-01
Critically ill mechanically ventilated patients experience impaired airway clearance due to ineffective cough and impaired secretion mobilization. Cough augmentation techniques, including mechanical insufflation-exsufflation (MI-E), manually assisted cough, and lung volume recruitment, improve cough efficiency. Our objective was to describe use, indications, contraindications, interfaces, settings, complications, and barriers to use across Canada. An e-mail survey was sent to nominated local survey champions in eligible Canadian units (ICUs, weaning centers, and intermediate care units) with 4 telephone/e-mail reminders. The survey response rate was 157 of 238 (66%); 78 of 157 units (50%) used cough augmentation, with 50 (64%) using MI-E, 53 (68%) using manually assisted cough, and 62 (79%) using lung volume recruitment. Secretion clearance was the most common indication (MI-E, 92%; manually assisted cough, 88%; lung volume recruitment, 76%), although the most common units (44%) used it <50% of the time. Use during weaning from invasive (MI-E, 21%; manually assisted cough, 39%; lung volume recruitment, 3%) and noninvasive ventilation (MI-E, 21%; manually assisted cough, 33%; lung volume recruitment, 21%) was infrequent. The most common diagnoses were neuromuscular disease (97%) and spinal cord injury (83%). Pneumothorax was the most frequently identified absolute contraindication for MI-E (93%) and lung volume recruitment (83%); rib fracture was most frequently identified for manually assisted cough (69%). MI-E mean inspiratory pressure was 31 cm H2O, and expiratory pressure was -32 cm H2O. Mucus plugging requiring tracheostomy inner change was the most frequent complication for MI-E (23%), chest pain for manually assisted cough (36%), and hypotension for lung volume recruitment (17%). The most commonly cited barriers were lack of expertise (70%), knowledge (65%), and resources (52%). We found moderate adoption of cough augmentation techniques, particularly for secretion management. Lack of expertise and knowledge are potentially modifiable barriers addressed with educational interventions. Copyright © 2016 by Daedalus Enterprises.
How much work is expended for respiration?
Johnson, A T
1993-01-01
The rate of work expended to move air in the respiratory system has been determined for five different airflow waveshapes, a non-linear respiratory model and five exercise levels. As expected, the rectangular waveshape was the most efficient. Model conditions were then changed one a time: (i) starting lung volume was allowed to vary, (ii) exhalation flow limitation was added, (iii) respiration was considered to be a metabolic burden determining part of the ventilation requirement and (iv) a respirator mask was added. Although there is no direct work advantage to varying initial lung volume, such volume changes appear to be dictated by the asymmetry of lung recoil pressure about the lung relaxation volume; allowing the work of respiration to become a metabolic burden clearly shows why respiratory waveforms change from rest to exercise; and, adding a respirator imposes a severe respiratory burden on the wearer engaging in moderate, heavy and very heavy exercise.
Quantification of idiopathic pulmonary fibrosis using computed tomography and histology.
Coxson, H O; Hogg, J C; Mayo, J R; Behzad, H; Whittall, K P; Schwartz, D A; Hartley, P G; Galvin, J R; Wilson, J S; Hunninghake, G W
1997-05-01
We used computed tomography (CT) and histologic analysis to quantify lung structure in idiopathic pulmonary fibrosis (IPF). CT scans were obtained from IPF and control patients and lung volumes were estimated from measurements of voxel size, and X-ray attenuation values of each voxel. Quantitative estimates of lung structure were obtained from biopsies obtained from diseased and normal CT regions using stereologic methods. CT density was used to calculate the proportion of tissue and air, and this value was used to correct the biopsy specimens to the level of inflation during the CT scan. The data show that IPF is associated with a reduction in airspace volume with no change in tissue volume or weight compared with control lungs. Lung surface area decreased two-thirds (p < 0.001) and mean parenchymal thickness increased tenfold (p < 0.001). An exudate of fluid and cells was present in the airspace of the diseased lung regions and the number of inflammatory cells, collagen, and proteoglycans was increased per 100 g of tissue in IPF. We conclude that IPF reorganized lung tissue content causing a loss of airspace and surface area without increasing the total lung tissue.
Effects of repeated cycles of starvation and refeeding on lungs of growing rats.
Sahebjami, H; Domino, M
1992-12-01
Adult male rats were subjected to four cycles of mild starvation (2 wk) and refeeding (1 wk) and were compared with a fed group. Starvation was induced by giving rats one-third of their measured daily food consumption. During each starvation cycle, rats lost approximately 20% of their body weight. Despite catch-up growth and overall weight gain, starved rats had lower final body weight than fed rats. Lung dry weight and lung volumes were also reduced in the starved group. The mechanical properties of air- and saline-filled lungs did not change significantly with repeated cycles of starvation. Mean linear intercept was similar in the two groups, but alveolar surface area was reduced in the starved rats. Total content of crude connective tissue and concentration per lung dry weight of hydroxyproline and crude connective tissue were reduced in starved rats. We conclude that lung growth is retarded in growing rats subjected to repeated cycles of mild starvation and refeeding, as manifested by smaller lung volume and reduced alveolar surface area. Because alveolar size is unchanged, a reduced number of alveoli is most likely responsible for decreased lung volumes.
Fuld, Matthew K.; Grout, Randall; Guo, Junfeng; Morgan, John H.; Hoffman, Eric A.
2013-01-01
Rationale and Objectives Multidetector-row Computed Tomography (MDCT) has emerged as a tool for quantitative assessment of parenchymal destruction, air trapping (density metrics) and airway remodeling (metrics relating airway wall and lumen geometry) in chronic obstructive pulmonary disease (COPD) and asthma. Critical to the accuracy and interpretability of these MDCT-derived metrics is the assurance that the lungs are scanned during a breath-hold at a standardized volume. Materials and Methods A computer monitored turbine-based flow meter system was developed to control patient breath-holds and facilitate static imaging at fixed percentages of the vital capacity. Due to calibration challenges with gas density changes during multi-breath xenon-CT an alternative system was required. The design incorporated dual rolling seal pistons. Both systems were tested in a laboratory environment and human subject trials. Results The turbine-based system successfully controlled lung volumes in 32/37 subjects, having a linear relationship for CT measured air volume between repeated scans: for all scans, the mean and confidence interval of the differences (scan1-scan2) was −9 ml (−169, 151); for TLC alone 6 ml (−164, 177); for FRC alone, −23 ml (−172, 126). The dual-piston system successfully controlled lung volume in 31/41 subjects. Study failures related largely to subject non-compliance with verbal instruction and gas leaks around the mouthpiece. Conclusion We demonstrate the successful use of a turbine-based system for static lung volume control and demonstrate its inadequacies for dynamic xenon-CT studies. Implementation of a dual-rolling seal spirometer has been shown to adequately control lung volume for multi-breath wash-in xenon-CT studies. These systems coupled with proper patient coaching provide the tools for the use of CT to quantitate regional lung structure and function. The wash-in xenon-CT method for assessing regional lung function, while not necessarily practical for routine clinical studies, provides for a dynamic protocol against which newly emerging single breath, dual-energy xenon-CT measures can be validated. PMID:22555001
Fetal MRI lung volumes are predictive of perinatal outcomes in fetuses with congenital lung masses.
Zamora, Irving J; Sheikh, Fariha; Cassady, Christopher I; Olutoye, Oluyinka O; Mehollin-Ray, Amy R; Ruano, Rodrigo; Lee, Timothy C; Welty, Stephen E; Belfort, Michael A; Ethun, Cecilia G; Kim, Michael E; Cass, Darrell L
2014-06-01
The purpose of this study was to evaluate fetal magnetic resonance imaging (MRI) as a modality for predicting perinatal outcomes and lung-related morbidity in fetuses with congenital lung masses (CLM). The records of all patients treated for CLM from 2002 to 2012 were reviewed retrospectively. Fetal MRI-derived lung mass volume ratio (LMVR), observed/expected normal fetal lung volume (O/E-NFLV), and lesion-to-lung volume ratio (LLV) were calculated. Multivariate regression and receiver operating characteristic analyses were applied to determine the predictive accuracy of prenatal imaging. Of 128 fetuses with CLM, 93% (n=118) survived. MRI data were available for 113 fetuses. In early gestation (<26weeks), MRI measurements of LMVR and LLV correlated with risk of fetal hydrops, mortality, and/or need for fetal intervention. In later gestation (>26weeks), LMVR, LLV, and O/E-NFLV correlated with neonatal respiratory distress, intubation, NICU admission and need for neonatal surgery. On multivariate regression, LMVR was the strongest predictor for development of fetal hydrops (OR: 6.97, 1.58-30.84; p=0.01) and neonatal respiratory distress (OR: 12.38, 3.52-43.61; p≤0.001). An LMVR >2.0 predicted worse perinatal outcome with 83% sensitivity and 99% specificity (AUC=0.94; p<0.001). Fetal MRI volumetric measurements of lung masses and residual normal lung are predictive of perinatal outcomes in fetuses with CLM. These data may assist in perinatal risk stratification, counseling, and resource utilization. Copyright © 2014 Elsevier Inc. All rights reserved.
Apostolo, Anna; Giusti, Giuliano; Gargiulo, Paola; Bussotti, Maurizio; Agostoni, Piergiuseppe
2012-01-01
Lung function abnormalities both at rest and during exercise are frequently observed in patients with chronic heart failure, also in the absence of respiratory disease. Alterations of respiratory mechanics and of gas exchange capacity are strictly related to heart failure. Severe heart failure patients often show a restrictive respiratory pattern, secondary to heart enlargement and increased lung fluids, and impairment of alveolar-capillary gas diffusion, mainly due to an increased resistance to molecular diffusion across the alveolar capillary membrane. Reduced gas diffusion contributes to exercise intolerance and to a worse prognosis. Cardiopulmonary exercise test is considered the “gold standard” when studying the cardiovascular, pulmonary, and metabolic adaptations to exercise in cardiac patients. During exercise, hyperventilation and consequent reduction of ventilation efficiency are often observed in heart failure patients, resulting in an increased slope of ventilation/carbon dioxide (VE/VCO2) relationship. Ventilatory efficiency is as strong prognostic and an important stratification marker. This paper describes the pulmonary abnormalities at rest and during exercise in the patients with heart failure, highlighting the principal diagnostic tools for evaluation of lungs function, the possible pharmacological interventions, and the parameters that could be useful in prognostic assessment of heart failure patients. PMID:23365739
Leelarungrayub, Jirakrit; Eungpinichpong, Wichai; Klaphajone, Jakkrit; Prasannarong, Mujalin; Boontha, Kritsana
2016-04-01
The aim of this study was to evaluate the influence of manual percussion during three different positions of postural drainage (PD) on lung volumes and metabolic status. Twenty six healthy volunteers (13 women and 13 men), with a mean age of 20.15 ± 1.17 years, participated. They were randomized into three standard positions of PD (upper, middle, or lower lobes) and given manual percussion at a frequency of 240 times per minute for 5 min. Lung volumes, including tidal volume (TV), inspiratory reserve volume (IRV), expiratory reserve volume (ERV) and vital capacity (VC); and metabolic status, such as oxygen consumption (VO2), carbon dioxide (VCO2), respiratory rate (RR), and minute ventilation (VE) were evaluated. The lung volumes showed no statistical difference in VC or IRV from percussion during PD in all positions, except for the lower lobe, where increased TV and decreased ERV were found when compared to PD alone. Furthermore, percussion during PD of the upper and middle lobes did not affect RR or VE, when compared to PD alone. In addition, percussion during PD of the middle and lower lobes increased VO2 and VCO2 significantly, when compared to PD alone, but it did not influence PD of the upper lobe. This study indicated that up to 5 min of manual percussion on PD of the upper and middle lobes is safe mostly for lung volumes, RR, and VE, but it should be given with care in PD conditions of the lower lobe. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comments on the Diffusive Behavior of Two Upwind Schemes
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
1998-01-01
The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and locally one-dimensional finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2.5 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a speedup of 29 over finite volume.
Diffusion Characteristics of Upwind Schemes on Unstructured Triangulations
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
1998-01-01
The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and dimensionally-split finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the dimensionally-split finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2-3 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a 20-25 speedup over finite volume.
Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H; Meeks, Sanford L; Kupelian, Patrick A
2010-09-07
In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.
Self‐expanding stent effects on radiation dosimetry in esophageal cancer
Francis, Samual R.; Wang, Brian; Williams, Greg V.; Cox, Kristen; Adler, Douglas G.; Shrieve, Dennis C.; Salter, Bill J.
2013-01-01
It is the purpose of this study to evaluate how self‐expanding stents (SESs) affect esophageal cancer radiation planning target volumes (PTVs) and dose delivered to surrounding organs at risk (OARs). Ten patients were evaluated, for whom a SES was placed before radiation. A computed tomography (CT) scan obtained before stent placement was fused to the post‐stent CT simulation scan. Three methods were used to represent pre‐stent PTVs: 1) image fusion (IF), 2) volume approximation (VA), and 3) diameter approximation (DA). PTVs and OARs were contoured per RTOG 1010 protocol using Eclipse Treatment Planning software. Post‐stent dosimetry for each patient was compared to approximated pre‐stent dosimetry. For each of the three pre‐stent approximations (IF, VA, and DA), the mean lung and liver doses and the estimated percentages of lung volumes receiving 5 Gy, 10 Gy, 20 Gy, and 30 Gy, and heart volumes receiving 40 Gy were significantly lower (p‐values <0.02) than those estimated in the post‐stent treatment plans. The lung V5, lung V10, and heart V40 constraints were achieved more often using our pre‐stent approximations. Esophageal SES placement increases the dose delivered to the lungs, heart, and liver. This may have clinical importance, especially when the dose‐volume constraints are near the recommended thresholds, as was the case for lung V5, lung V10, and heart V40. While stents have established benefits for treating patients with significant dysphagia, physicians considering stent placement and radiation therapy must realize the effects stents can have on the dosimetry. PACS number: 87.55.dk PMID:23835387
Self-expanding stent effects on radiation dosimetry in esophageal cancer.
Francis, Samual R; Anker, Christopher J; Wang, Brian; Williams, Greg V; Cox, Kristen; Adler, Douglas G; Shrieve, Dennis C; Salter, Bill J
2013-07-08
It is the purpose of this study to evaluate how self-expanding stents (SESs) affect esophageal cancer radiation planning target volumes (PTVs) and dose delivered to surrounding organs at risk (OARs). Ten patients were evaluated, for whom a SES was placed before radiation. A computed tomography (CT) scan obtained before stent placement was fused to the post-stent CT simulation scan. Three methods were used to represent pre-stent PTVs: 1) image fusion (IF), 2) volume approximation (VA), and 3) diameter approximation (DA). PTVs and OARs were contoured per RTOG 1010 protocol using Eclipse Treatment Planning software. Post-stent dosimetry for each patient was compared to approximated pre-stent dosimetry. For each of the three pre-stent approximations (IF, VA, and DA), the mean lung and liver doses and the estimated percentages of lung volumes receiving 5 Gy, 10 Gy, 20 Gy, and 30 Gy, and heart volumes receiving 40 Gy were significantly lower (p-values < 0.02) than those estimated in the post-stent treatment plans. The lung V5, lung V10, and heart V40 constraints were achieved more often using our pre-stent approximations. Esophageal SES placement increases the dose delivered to the lungs, heart, and liver. This may have clinical importance, especially when the dose-volume constraints are near the recommended thresholds, as was the case for lung V5, lung V10, and heart V40. While stents have established benefits for treating patients with significant dysphagia, physicians considering stent placement and radiation therapy must realize the effects stents can have on the dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, Jeffrey D.; Lawrence, Yaacov R.; Sackler School of Medicine, Tel Aviv University, Tel Aviv
Objective: To determine the effect of continuous positive airway pressure (CPAP) on tumor motion, lung volume, and dose to critical organs in patients receiving stereotactic body radiation therapy (SBRT) for lung tumors. Methods and Materials: After institutional review board approval in December 2013, patients with primary or secondary lung tumors referred for SBRT underwent 4-dimensional computed tomographic simulation twice: with free breathing and with CPAP. Tumor excursion was calculated by subtracting the vector of the greatest dimension of the gross tumor volume (GTV) from the internal target volume (ITV). Volumetric and dosimetric determinations were compared with the Wilcoxon signed-rank test.more » CPAP was used during treatment if judged beneficial. Results: CPAP was tolerated well in 10 of the 11 patients enrolled. Ten patients with 18 lesions were evaluated. The use of CPAP decreased tumor excursion by 0.5 ± 0.8 cm, 0.4 ± 0.7 cm, and 0.6 ± 0.8 cm in the superior–inferior, right–left, and anterior–posterior planes, respectively (P≤.02). Relative to free breathing, the mean ITV reduction was 27% (95% confidence interval [CI] 16%-39%, P<.001). CPAP significantly augmented lung volume, with a mean absolute increase of 915 ± 432 cm{sup 3} and a relative increase of 32% (95% CI 21%-42%, P=.003), contributing to a 22% relative reduction (95% CI 13%-32%, P=.001) in mean lung dose. The use of CPAP was also associated with a relative reduction in mean heart dose by 29% (95% CI 23%-36%, P=.001). Conclusion: In this pilot study, CPAP significantly reduced lung tumor motion compared with free breathing. The smaller ITV, the planning target volume (PTV), and the increase in total lung volume associated with CPAP contributed to a reduction in lung and heart dose. CPAP was well tolerated, reproducible, and simple to implement in the treatment room and should be evaluated further as a novel strategy for motion management in radiation therapy.« less
Morgenroth, S; Thomas, J; Cannizzaro, V; Weiss, M; Schmidt, A R
2018-03-01
Spirometric monitoring provides precise measurement and delivery of tidal volumes within a narrow range, which is essential for lung-protective strategies that aim to reduce morbidity and mortality in mechanically-ventilated patients. Conventional anaesthesia ventilators include inbuilt spirometry to monitor inspiratory and expiratory tidal volumes. The GE Aisys CS 2 anaesthesia ventilator allows additional near-patient spirometry via a sensor interposed between the proximal end of the tracheal tube and the respiratory tubing. Near-patient and inbuilt spirometry of two different GE Aisys CS 2 anaesthesia ventilators were compared in an in-vitro study. Assessments were made of accuracy and variability in inspiratory and expiratory tidal volume measurements during ventilation of six simulated paediatric lung models using the ASL 5000 test lung. A total of 9240 breaths were recorded and analysed. Differences between inspiratory tidal volumes measured with near-patient and inbuilt spirometry were most significant in the newborn setting (p < 0.001), and became less significant with increasing age and weight. During expiration, tidal volume measurements with near-patient spirometry were consistently more accurate than with inbuilt spirometry for all lung models (p < 0.001). Overall, the variability in measured tidal volumes decreased with increasing tidal volumes, and was smaller with near-patient than with inbuilt spirometry. The variability in measured tidal volumes was higher during expiration, especially with inbuilt spirometry. In conclusion, the present in-vitro study shows that measurements with near-patient spirometry are more accurate and less variable than with inbuilt spirometry. Differences between measurement methods were most significant in the smallest patients. We therefore recommend near-patient spirometry, especially for neonatal and paediatric patients. © 2018 The Association of Anaesthetists of Great Britain and Ireland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanic, Sinisa, E-mail: sinisa.stanic@carle.com; Paulus, Rebecca; Timmerman, Robert D.
2014-04-01
Purpose: To investigate pulmonary function test (PFT) results and arterial blood gas changes (complete PFT) following stereotactic body radiation therapy (SBRT) and to see whether baseline PFT correlates with lung toxicity and overall survival in medically inoperable patients receiving SBRT for early stage, peripheral, non-small cell lung cancer (NSCLC). Methods and Materials: During the 2-year follow-up, PFT data were collected for patients with T1-T2N0M0 peripheral NSCLC who received effectively 18 Gy × 3 in a phase 2 North American multicenter study (Radiation Therapy Oncology Group [RTOG] protocol 0236). Pulmonary toxicity was graded by using the RTOG SBRT pulmonary toxicity scale. Paired Wilcoxon signedmore » rank test, logistic regression model, and Kaplan-Meier method were used for statistical analysis. Results: At 2 years, mean percentage predicted forced expiratory volume in the first second and diffusing capacity for carbon monoxide declines were 5.8% and 6.3%, respectively, with minimal changes in arterial blood gases and no significant decline in oxygen saturation. Baseline PFT was not predictive of any pulmonary toxicity following SBRT. Whole-lung V5 (the percentage of normal lung tissue receiving 5 Gy), V10, V20, and mean dose to the whole lung were almost identical between patients who developed pneumonitis and patients who were pneumonitis-free. Poor baseline PFT did not predict decreased overall survival. Patients with poor baseline PFT as the reason for medical inoperability had higher median and overall survival rates than patients with normal baseline PFT values but with cardiac morbidity. Conclusions: Poor baseline PFT did not appear to predict pulmonary toxicity or decreased overall survival after SBRT in this medically inoperable population. Poor baseline PFT alone should not be used to exclude patients with early stage lung cancer from treatment with SBRT.« less
Static inflation and deflation pressure–volume curves from excised lungs of marine mammals
Fahlman, Andreas; Loring, Stephen H.; Ferrigno, Massimo; Moore, Colby; Early, Greg; Niemeyer, Misty; Lentell, Betty; Wenzel, Frederic; Joy, Ruth; Moore, Michael J.
2011-01-01
SUMMARY Excised lungs from eight marine mammal species [harp seal (Pagophilus groenlandicus), harbor seal (Phoca vitulina), gray seal (Halichoerus grypush), Atlantic white-sided dolphin (Lagenorhynchus acutus), common dolphin (Delphinus delphis), Risso's dolphin (Grampus griseus), long-finned pilot whale (Globicephala melas) and harbor porpoise (Phocoena phocoena)] were used to determine the minimum air volume of the relaxed lung (MAV, N=15), the elastic properties (pressure–volume curves, N=24) of the respiratory system and the total lung capacity (TLC). Our data indicate that mass-specific TLC (sTLC, l kg–1) does not differ between species or groups (odontocete vs phocid) and agree with that estimated (TLCest) from body mass (Mb) by applying the equation: TLCest=0.135 Mb0.92. Measured MAV was on average 7% of TLC, with a range from 0 to 16%. The pressure–volume curves were similar among species on inflation but diverged during deflation in phocids in comparison with odontocetes. These differences provide a structural basis for observed species differences in the depth at which lungs collapse and gas exchange ceases. PMID:22031747
High-resolution three-dimensional magnetic resonance imaging of mouse lung in situ.
Scadeng, Miriam; Rossiter, Harry B; Dubowitz, David J; Breen, Ellen C
2007-01-01
This study establishes a method for high-resolution isotropic magnetic resonance (MR) imaging of mouse lungs using tracheal liquid-instillation to remove MR susceptibility artifacts. C57BL/6J mice were instilled sequentially with perfluorocarbon and phosphate-buffered saline to an airway pressure of 10, 20, or 30 cm H2O. Imaging was performed in a 7T MR scanner using a 2.5-cm Quadrature volume coil and a 3-dimensional (3D) FLASH imaging sequence. Liquid-instillation removed magnetic susceptibility artifacts and allowed lung structure to be viewed at an isotropic resolution of 78-90 microm. Instilled liquid and modeled lung volumes were well correlated (R = 0.92; P < 0.05) and differed by a constant tissue volume (220 +/- 92 microL). 3D image renderings allowed differences in structural dimensions (volumes and areas) to be accurately measured at each inflation pressure. These data demonstrate the efficacy of pulmonary liquid instillation for in situ high-resolution MR imaging of mouse lungs for accurate measurement of pulmonary airway, parenchymal, and vascular structures.
The Effect of Lung Stretch during Sleep on Airway Mechanics in Overweight and Obese Asthma
Campana, L.M.; Malhotra, A.; Suki, B.; Hess, L.; Israel, E.; Smales, E.; DeYoung, P.; Owens, R.L.
2012-01-01
Both obesity and sleep reduce lung volume and limit deep breaths, possibly contributing to asthma. We hypothesize that increasing lung volume dynamically during sleep would reduce airway resistance in asthma. Asthma (n=10) and control (n=10) subjects were studied during sleep at baseline and with increased lung volume via bi-level positive airway pressure (BPAP). Using forced oscillations, respiratory system resistance (Rrs) and reactance (Xrs) were measured during sleep and Rrs was partitioned to upper and lower airway resistance (Rup, Rlow) using an epiglottic pressure catheter. Rrs and Rup increased with sleep (p<0.01) and Xrs was decreased in REM (p=0.02) as compared to wake. Rrs, Rup, and Rlow, were larger (p<0.01) and Xrs was decreased (p<0.02) in asthma. On BPAP, Rrs and Rup were decreased (p<0.001) and Xrs increased (p<0.01), but Rlow was unchanged. High Rup was observed in asthma, which reduced with BPAP. We conclude that the upper airway is a major component of Rrs and larger lung volume changes may be required to alter Rlow. PMID:23041446
NASA Astrophysics Data System (ADS)
Hashimoto, Noriaki; Suzuki, Kenji; Liu, Junchi; Hirano, Yasushi; MacMahon, Heber; Kido, Shoji
2018-02-01
Consolidation and ground-glass opacity (GGO) are two major types of opacities associated with diffuse lung diseases. Accurate detection and classification of such opacities are crucially important in the diagnosis of lung diseases, but the process is subjective, and suffers from interobserver variability. Our study purpose was to develop a deep neural network convolution (NNC) system for distinguishing among consolidation, GGO, and normal lung tissue in high-resolution CT (HRCT). We developed ensemble of two deep NNC models, each of which was composed of neural network regression (NNR) with an input layer, a convolution layer, a fully-connected hidden layer, and a fully-connected output layer followed by a thresholding layer. The output layer of each NNC provided a map for the likelihood of being each corresponding lung opacity of interest. The two NNC models in the ensemble were connected in a class-selection layer. We trained our NNC ensemble with pairs of input 2D axial slices and "teaching" probability maps for the corresponding lung opacity, which were obtained by combining three radiologists' annotations. We randomly selected 10 and 40 slices from HRCT scans of 172 patients for each class as a training and test set, respectively. Our NNC ensemble achieved an area under the receiver-operating-characteristic (ROC) curve (AUC) of 0.981 and 0.958 in distinction of consolidation and GGO, respectively, from normal opacity, yielding a classification accuracy of 93.3% among 3 classes. Thus, our deep-NNC-based system for classifying diffuse lung diseases achieved high accuracies for classification of consolidation, GGO, and normal opacity.
[Lung dysfunction in patients with severe chronic obstructive bronchitis].
Nefedov, V B; Popova, L A; Shergina, E A
2005-01-01
VC, FVC, FEV1, FEV1/VC%, PEF, MEF25, MEF50, MEF75, TCL, TGV, RV, Raw, Rin, Rex, DLCO-SS, PaO2, and PaCO2 were determined in 36 patients with severe chronic obstructive lung disease (FEV1 < 50% of the normal value). All the patients were found to have impaired bronchial patency and changes in lung volumes and capacities; 83.3% of the patients had pulmonary gas exchange dysfunction. Impaired bronchial patency mainly appeared as decreased FEV1, FEV1/VC%, PEF, MEF25, MEF50, MEF75, Raw, Rin, Rex; altered lung volumes and capacities manifested by increased RV, TGV, and TLC, and by decreased VC and FVC; pulmonary gas exchange dysfunction showed up as lowered PaO2 and DLCO-SS, as decreased or increased PaCO2. The observed bronchial patency disorders varied from significant to severe; functional changes in lung volumes and capacities were mild to severe.
Finite-volume scheme for anisotropic diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Es, Bram van, E-mail: bramiozo@gmail.com; FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands"1; Koren, Barry
In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, Nilesh N., E-mail: nmistry@som.umaryland.edu; Diwanji, Tejan; Shi, Xiutao
2013-11-15
Purpose: Current implementations of methods based on Hounsfield units to evaluate regional lung ventilation do not directly incorporate tissue-based mass changes that occur over the respiratory cycle. To overcome this, we developed a 4-dimensional computed tomography (4D-CT)-based technique to evaluate fractional regional ventilation (FRV) that uses an individualized ratio of tidal volume to end-expiratory lung volume for each voxel. We further evaluated the effect of different breathing maneuvers on regional ventilation. The results from this work will help elucidate the relationship between global and regional lung function. Methods and Materials: Eight patients underwent 3 sets of 4D-CT scans during 1more » session using free-breathing, audiovisual guidance, and active breathing control. FRV was estimated using a density-based algorithm with mass correction. Internal validation between global and regional ventilation was performed by use of the imaging data collected during the use of active breathing control. The impact of breathing maneuvers on FRV was evaluated comparing the tidal volume from 3 breathing methods. Results: Internal validation through comparison between the global and regional changes in ventilation revealed a strong linear correlation (slope of 1.01, R{sup 2} of 0.97) between the measured global lung volume and the regional lung volume calculated by use of the “mass corrected” FRV. A linear relationship was established between the tidal volume measured with the automated breathing control system and FRV based on 4D-CT imaging. Consistently larger breathing volumes were observed when coached breathing techniques were used. Conclusions: The technique presented improves density-based evaluation of lung ventilation and establishes a link between global and regional lung ventilation volumes. Furthermore, the results obtained are comparable with those of other techniques of functional evaluation such as spirometry and hyperpolarized-gas magnetic resonance imaging. These results were demonstrated on retrospective analysis of patient data, and further research using prospective data is under way to validate this technique against established clinical tests.« less
Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia: Report of two cases.
García-Fontán, Eva; Blanco Ramos, Montserrat; García, Jose Soro; Carrasco, Rommel; Cañizares, Miguel Ángel; González Piñeiro, Ana
2018-05-19
Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH) is a rare disorder characterized by a proliferation of neuroendocrine cells within the lung. It is classically described as a disease with persistent cough, dyspnea and wheezing in non-smoker middle aged females. CT of the chest reveals diffuse air trapping with mosaic pattern. We present two cases of DIPNECH that were sent to our department to perform a lung biopsy with the diagnostic suspicion of diffuse interstitial disease. Both cases were women with a history of chronic cough and moderate effort dyspnea. The aim of this paper is that physicians take into account this diagnostic entity before treating as an asthmatic a patient with these characteristics, not forgetting that they are prenoplastic lesions. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.
Lentz, Robert J; Argento, A Christine; Colby, Thomas V; Rickman, Otis B; Maldonado, Fabien
2017-07-01
Transbronchial lung biopsy with a cryoprobe, or cryobiopsy, is a promising new bronchoscopic biopsy technique capable of obtaining larger and better-preserved samples than previously possible using traditional biopsy forceps. Over two dozen case series and several small randomized trials are now available describing experiences with this technique, largely for the diagnosis of diffuse parenchymal lung disease (DPLD), in which the reported diagnostic yield is typically 70% to 80%. Cryobiopsy technique varies widely between centers and this predominantly single center-based retrospective literature heterogeneously defines diagnostic yield and complications, limiting the degree to which this technique can be compared between centers or to surgical lung biopsy (SLB). This review explores the broad range of cryobiopsy techniques currently in use, their rationale, the current state of the literature, and suggestions for the direction of future study into this promising but unproven procedure.
Zhang, Jie; Patterson, Robert
2010-08-01
Lung resistivity is a physiological parameter that describes the electrical characteristics of the lungs. Lung composition changes due to changes in the lung tissues, fluid and air volume. Various diseases that can cause a change in lung composition may be monitored by measuring lung resistivity. Currently, there is no accepted non-invasive method to measure lung resistivity. In this study, we presented a method and framework to non-invasively determine lung resistivity using electrical impedance tomography (EIT). By comparing actual measurements from subjects with data from a 3D human thorax model, an EIT image can be reconstructed to show a resistivity difference between the model and the subject. By adjusting the lung resistivity in the model, the resistivity difference in the lung regions can be reduced to near zero. This resistivity value then is the estimation of the lung resistivity of the subject. Using the proposed method, the lung resistivities of four normal adult males (43 +/- 13 years, 78 +/- 10 kg) in the supine position at air volumes starting at functional residual capacity (FRC--end expiration) and increasing in 0.5 l steps to 1.5 l were studied. The averaged lung resistivity changes 12.59%, from 1406 Omega cm to 1583 Omega cm, following the inspiration of 1.5 l air from FRC. The coefficients of variation (CV) of precision for the four subjects are less than 10%. The experiment was repeated five times at each air volume on a subject to test the reproducibility. The CVs are less than 3%. The results show that it is feasible to determine absolute lung resistivity using an EIT-based method.
Agarwal, Ritesh; Khan, Ajmal; Aggarwal, Ashutosh N; Gupta, Dheeraj
2012-11-01
Fiberoptic bronchoscopy and lung biopsy are important diagnostic tools in patients with diffuse pulmonary infiltrates. However, these patients often have hypoxemic respiratory failure that makes this procedure hazardous. Noninvasive ventilation (NIV) has been shown to improve oxygenation in hypoxemic patients. To report the efficacy and safety of an innovative technique of NIV-assisted bronchoscopic lung biopsy in a small case-series of hypoxemic subjects with diffuse parenchymal infiltrates; also to systematically review the literature on NIV-assisted bronchoscopy. Subjects with bilateral diffuse parenchymal infiltrates and P(aO(2))/F(IO(2)) < 200 mm Hg underwent bronchoscopic lung biopsy under NIV support. NIV was initiated 10 min before the procedure and continued for 30 min after the procedure. The primary outcomes were performance of successful procedure and episodes of decline in S(pO(2)) < 90%. Secondary end points were the change in the respiratory and hemodynamic parameters during the procedure and occurrence of complications such as pneumothorax, hemorrhage, and endotracheal intubation. Six subjects, with a mean ± SD age of 44.5 ± 11.6 years, were included in the study. The median (interquartile range [IQR]) P(aO(2))/F(IO(2)) prior to lung biopsy was 164.5 mm Hg (146.3-176.3 mm Hg), and the median (IQR) inspiratory and expiratory positive airway pressures were 14 cm H(2)O (12-15 cm H(2)O) and 5 cm H(2)O. Fiberoptic bronchoscopy was well tolerated and all subjects maintained S(pO(2)) > 92% during the procedure. One subject required endotracheal intubation due to hemoptysis. A definite diagnosis was obtained in 5 of the 6 subjects. A repeat procedure was performed in one subject, which again yielded no diagnosis. No other periprocedural complications were encountered. NIV-assisted bronchoscopic lung biopsy is a novel method for obtaining diagnosis in hypoxemic patients with diffuse lung infiltrates. However, this approach should be reserved for centers with extensive experience in NIV. More studies are required to define the utility of this approach.
[Quantification of pulmonary emphysema in multislice-CT using different software tools].
Heussel, C P; Achenbach, T; Buschsieweke, C; Kuhnigk, J; Weinheimer, O; Hammer, G; Düber, C; Kauczor, H-U
2006-10-01
The data records of thin-section MSCT of the lung with approx. 300 images are difficult to use in manual evaluation. A computer-assisted pre-diagnosis can help with reporting. Furthermore, post-processing techniques, for instance, for quantification of emphysema on the basis of three-dimensional anatomical information might be improved and the workflow might be further automated. The results of 4 programs (Pulmo, Volume, YACTA and PulmoFUNC) for the quantitative analysis of emphysema (lung and emphysema volume, mean lung density and emphysema index) of 30 consecutive thin-section MSCT datasets with different emphysema severity levels were compared. The classification result of the YACTA program for different types of emphysema was also analyzed. Pulmo and Volume have a median operating time of 105 and 59 minutes respectively due to the necessity for extensive manual correction of the lung segmentation. The programs PulmoFUNC and YACTA, which are automated to a large extent, have a median runtime of 26 and 16 minutes, respectively. The evaluation with Pulmo and Volume using 2 different datasets resulted in implausible values. PulmoFUNC crashed with 2 other datasets in a reproducible manner. Only with YACTA could all graphic datasets be evaluated. The lung volume, emphysema volume, emphysema index and mean lung density determined by YACTA and PulmoFUNC are significantly larger than the corresponding values of Volume and Pulmo (differences: Volume: 119 cm(3)/65 cm(3)/1 %/17 HU, Pulmo: 60 cm(3)/96 cm(3)/1 %/37 HU). Classification of the emphysema type was in agreement with that of the radiologist in 26 panlobular cases, in 22 paraseptalen cases and in 15 centrilobular emphysema cases. The substantial expenditure of time obstructs the employment of quantitative emphysema analysis in the clinical routine. The results of YACTA and PulmoFUNC are affected by the dedicated exclusion of the tracheobronchial system. These fully automatic tools enable not only fast quantification without manual interaction, but also a reproducible measurement without user dependence.
Blood filling and flow in lungs during change in body position in space
NASA Technical Reports Server (NTRS)
Pogodin, A. S.; Mazhbich, B. I.
1980-01-01
In the horizontal position (supine and lateral), in the upright position (head up and head down) and during change of the cat body position in space, quantitative responses of regional blood volume and blood flow in the lungs (ml/100 cu cm) revealed presence of the gradient in the gravitation direction. Blood volume and blood flow of different lung portions changed qualitatively and quantitatively in different ways. These changes occurred only in the direction producing the equality of regional hydrostatical and hemodynamic loads in the lungs at either horizontal level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharofa, Jordan; Cohen, Eric P.; Tomic, Rade
2012-09-01
Purpose: Angiotensin-converting enzyme (ACE) inhibitors have been shown to mitigate radiation-induced lung injury in preclinical models. The aim of this study was to evaluate whether ACE inhibitors decrease the risk of radiation pneumonitis in lung cancer patients receiving thoracic irradiation. Methods and Materials: Patients with Stage I through III small-cell and non-small-cell lung cancer treated definitively with radiation from 2004-2009 at the Clement J. Zablocki Veterans Affairs Medical Center were retrospectively reviewed. Acute pulmonary toxicity was quantified within 6 months of completion of treatment according to the Common Terminology Criteria for Adverse Events version 4. The use of ACE inhibitors,more » nonsteroidal anti-inflammatory drugs, inhaled glucocorticosteroids, statins, and angiotensin receptor blockers; dose-volume histogram parameters; and patient factors were assessed for association with Grade 2 or higher pneumonitis. Results: A total of 162 patients met the criteria for inclusion. The majority of patients had Stage III disease (64%) and received concurrent chemotherapy (61%). Sixty-two patients were identified as ACE inhibitor users (38%). All patients had acceptable radiation plans based on dose-volume histogram constraints (V20 [volume of lung receiving at least 20 Gy] {<=}37% and mean lung dose {<=}20 Gy) with the exception of 2 patients who did not meet both criteria. Grade 2 or higher pulmonary toxicity occurred in 12 patients (7.4%). The rate of Grade 2 or higher pneumonitis was lower in ACE inhibitor users vs. nonusers (2% vs. 11%, p = 0.032). Rates of Grade 2 or higher pneumonitis were significantly increased in patients aged greater than 70 years (16% vs. 2%, p = 0.005) or in whom V5 (volume of lung receiving at least 5 Gy) was 50% or greater (13% vs. 4%, p = 0.04). V10 (volume of lung receiving at least 10 Gy), V20, V30 (volume of lung receiving at least 30 Gy), and mean lung dose were not independently associated with Grade 2 or higher pneumonitis. Conclusion: ACE inhibitors may decrease the incidence of radiation pneumonitis in patients receiving thoracic radiation for lung cancer. These findings are consistent with preclinical evidence and should be prospectively evaluated.« less
Effectiveness and efficacy of minimally invasive lung volume reduction surgery for emphysema
Pertl, Daniela; Eisenmann, Alexander; Holzer, Ulrike; Renner, Anna-Theresa; Valipour, A.
2014-01-01
Lung emphysema is a chronic, progressive and irreversible destruction of the lung tissue. Besides non-medical therapies and the well established medical treatment there are surgical and minimally invasive methods for lung volume reduction (LVR) to treat severe emphysema. This report deals with the effectiveness and cost-effectiveness of minimally invasive methods compared to other treatments for LVR in patients with lung emphysema. Furthermore, legal and ethical aspects are discussed. No clear benefit of minimally invasive methods compared to surgical methods can be demonstrated based on the identified and included evidence. In order to assess the different methods for LVR regarding their relative effectiveness and safety in patients with lung emphysema direct comparative studies are necessary. PMID:25295123
Effectiveness and efficacy of minimally invasive lung volume reduction surgery for emphysema.
Pertl, Daniela; Eisenmann, Alexander; Holzer, Ulrike; Renner, Anna-Theresa; Valipour, A
2014-01-01
Lung emphysema is a chronic, progressive and irreversible destruction of the lung tissue. Besides non-medical therapies and the well established medical treatment there are surgical and minimally invasive methods for lung volume reduction (LVR) to treat severe emphysema. This report deals with the effectiveness and cost-effectiveness of minimally invasive methods compared to other treatments for LVR in patients with lung emphysema. Furthermore, legal and ethical aspects are discussed. No clear benefit of minimally invasive methods compared to surgical methods can be demonstrated based on the identified and included evidence. In order to assess the different methods for LVR regarding their relative effectiveness and safety in patients with lung emphysema direct comparative studies are necessary.
Latin, R W; Ruhling, R O
1986-01-01
Results of investigations using various lung volumes for hydrostatic weighing determinations (HWD) appear to be inconclusive. Often, these lung volumes are predicted and not clinically determined. For this reason, total lung capacity (TLC), a measured residual volume (RV), and a predicted residual volume (PRV) were used during HWDs to compare the techniques. Twenty-five older men, 56 to 70 years (means +/- 62.1 + 4.2 years) performed HWDs at RV (10 trials) and at TLC (3-5 trials). Values for body density and fat free mass were not significantly different between RV and TLC; both values were, however, significantly different from those derived using PRV. There were statistically significant differences (p less than 0.05) between all 3 per cent body fat values but the 1.1 per cent difference between TLC and RV may not be physiologically important. It was concluded that TLC and RV may be used comparably during HWDs, but a PRV may produce significantly different values. Since HWD at TLC is easily performed and circumvents the difficulties associated with the RV technique, it may be the preferred method for older subjects. PMID:3730758
Abascal, Juan F P J; Desco, Manuel; Parra-Robles, Juan
2018-02-01
Diffusion MRI data are generally acquired using hyperpolarized gases during patient breath-hold, which yields a compromise between achievable image resolution, lung coverage, and number of -values. In this paper, we propose a novel method that accelerates the acquisition of diffusion MRI data by undersampling in both the spatial and -value dimensions and incorporating knowledge about signal decay into the reconstruction (SIDER). SIDER is compared with total variation (TV) reconstruction by assessing its effect on both the recovery of ventilation images and the estimated mean alveolar dimensions (MADs). Both methods are assessed by retrospectively undersampling diffusion data sets ( =8) of healthy volunteers and patients with Chronic Obstructive Pulmonary Disease (COPD) for acceleration factors between x2 and x10. TV led to large errors and artifacts for acceleration factors equal to or larger than x5. SIDER improved TV, with a lower solution error and MAD histograms closer to those obtained from fully sampled data for acceleration factors up to x10. SIDER preserved image quality at all acceleration factors, although images were slightly smoothed and some details were lost at x10. In conclusion, we developed and validated a novel compressed sensing method for lung MRI imaging and achieved high acceleration factors, which can be used to increase the amount of data acquired during breath-hold. This methodology is expected to improve the accuracy of estimated lung microstructure dimensions and provide more options in the study of lung diseases with MRI.
DeCamp, Malcolm M; Blackstone, Eugene H; Naunheim, Keith S; Krasna, Mark J; Wood, Douglas E; Meli, Yvonne M; McKenna, Robert J
2006-07-01
Although staple line buttressing is advocated to reduce air leak after lung volume reduction surgery (LVRS), its effectiveness is unknown. We sought to identify risk factors for air leak and its duration and to estimate its medical consequences for selecting optimal perioperative technique(s), such as buttressing technique, to preempt or treat post-LVRS air leak. Detailed air leak data were available for 552 of 580 patients receiving bilateral stapled LVRS in the National Emphysema Treatment Trial. Risk factors for prevalence and duration of air leak were identified by logistic and hazard function analyses. Medical consequences were estimated in propensity-matched pairs with and without air leak. Within 30 days of LVRS, 90% of patients developed air leak (median duration = 7 days). Its occurrence was more common and duration prolonged in patients with lower diffusing capacity (p = 0.06), upper lobe disease (p = 0.04), and important pleural adhesions (p = 0.007). Duration was also protracted in Caucasians (p < 0.0001), patients using inhaled steroids (p = 0.004), and those with lower 1-second forced expiratory volume (p = 0.0003). Surgical approach, buttressing, stapler brand, and intraoperative adjunctive procedures were not associated with fewer or less prolonged air leaks (p >/= 0.2). Postoperative complications occurred more often in matched patients experiencing air leak (57% vs 30%, p = 0.0004), and postoperative stay was longer (11.8 +/- 6.5 days vs 7.6 +/- 4.4 days, p = 0.0005). Air leak accompanies LVRS in 90% of patients, is often prolonged, and is associated with a more complicated and protracted hospital course. Its occurrence and duration are associated with characteristics of patients and their disease, not with a specific surgical technique.
Shi, Yan; Zhang, Bolun; Cai, Maolin; Zhang, Xiaohua Douglas
2017-09-01
Mechanical ventilation is a key therapy for patients who cannot breathe adequately by themselves, and dynamics of mechanical ventilation system is of great significance for life support of patients. Recently, models of mechanical ventilated respiratory system with 1 lung are used to simulate the respiratory system of patients. However, humans have 2 lungs. When the respiratory characteristics of 2 lungs are different, a single-lung model cannot reflect real respiratory system. In this paper, to illustrate dynamic characteristics of mechanical ventilated respiratory system with 2 different lungs, we propose a mathematical model of mechanical ventilated respiratory system with 2 different lungs and conduct experiments to verify the model. Furthermore, we study the dynamics of mechanical ventilated respiratory system with 2 different lungs. This research study can be used for improving the efficiency and safety of volume-controlled mechanical ventilation system. Copyright © 2016 John Wiley & Sons, Ltd.
Validation of the plain chest radiograph for epidemiologic studies of airflow obstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musk, A.W.
The chest radiographs of 125 industrial workers from rural New South Wales were examined for overinflated lungs, with and without attenuated midzonal vessels. Although the mean values of a comprehensive range of pulmonary function tests in the whole group were within normal limits, the nine subjects whose radiographs showed overinflated lungs and attenuated vessels had significantly impaired pulmonary function in comparison with 85 subjects with normal radiographs. The mean values for these nine subjects, expressed as a percentage of the mean value for subjects with normal radiographs, were: forced expiratory volume in 1 second, 75%; total lung capacity, 107%; residualmore » volume, 143%; transpulmonary pressure at maximum inspiration, 60%; static deflation compliance, 158%; lung volume at transpulmonary pressure 10 cm H/sub 2/O, 132%; transfer factor, 79%; and transfer factor/alveolar volume, 77%. Similar results were obtained by a second observer. Those subjects with overinflation but no vascular attenuation had significantly larger mean values for vital capacity and alveolar volume but no significant difference in total lung capacity or other tests of the mechanical properties of the lungs. Agreement on the presence of a positive sign between the two observers expressed as a percentage of those considered positive by either was 81% for overinflation and 62% for attenuated midzonal vessels. The results indicate that in groups of subjects with normal-average values of pulmonary function, the plain chest radiograph may provide information concerning pulmonary structure that is reflected in tests of function.« less
Atelectasis and survival after bronchoscopic lung volume reduction for COPD.
Hopkinson, N S; Kemp, S V; Toma, T P; Hansell, D M; Geddes, D M; Shah, P L; Polkey, M I
2011-06-01
Bronchoscopic therapies to reduce lung volumes in chronic obstructive pulmonary disease are intended to avoid the risks associated with lung volume reduction surgery (LVRS) or to be used in patient groups in whom LVRS is not appropriate. Bronchoscopic lung volume reduction (BLVR) using endobronchial valves to target unilateral lobar occlusion can improve lung function and exercise capacity in patients with emphysema. The benefit is most pronounced in, though not confined to, patients where lobar atelectasis has occurred. Few data exist on their long-term outcome. 19 patients (16 males; mean±sd forced expiratory volume in 1 s 28.4±11.9% predicted) underwent BLVR between July 2002 and February 2004. Radiological atelectasis was observed in five patients. Survival data was available for all patients up to February 2010. None of the patients in whom atelectasis occurred died during follow-up, whereas eight out of 14 in the nonatelectasis group died (Chi-squared p=0.026). There was no significant difference between the groups at baseline in lung function, quality of life, exacerbation rate, exercise capacity (shuttle walk test or cycle ergometry) or computed tomography appearances, although body mass index was significantly higher in the atelectasis group (21.6±2.9 versus 28.4±2.9 kg·m(-2); p<0.001). The data in the present study suggest that atelectasis following BLVR is associated with a survival benefit that is not explained by baseline differences.
Chandra, Anurag; Guerrero, Thomas M; Liu, H Helen; Tucker, Susan L; Liao, Zhongxing; Wang, Xiaochun; Murshed, Hasan; Bonnen, Mark D; Garg, Amit K; Stevens, Craig W; Chang, Joe Y; Jeter, Melinda D; Mohan, Radhe; Cox, James D; Komaki, Ritsuko
2005-12-01
To evaluate the feasibility whether intensity-modulated radiotherapy (IMRT) can be used to reduce doses to normal lung than three-dimensional conformal radiotherapy (3 DCRT) in treating distal esophageal malignancies. Ten patient cases with cancer of the distal esophagus were selected for a retrospective treatment-planning study. IMRT plans using four, seven, and nine beams (4B, 7B, and 9B) were developed for each patient and compared with the 3 DCRT plan used clinically. IMRT and 3 DCRT plans were evaluated with respect to PTV coverage and dose-volumes to irradiated normal structures, with statistical comparison made between the two types of plans using the Wilcoxon matched-pair signed-rank test. IMRT plans (4B, 7B, 9B) reduced total lung volume treated above 10 Gy (V(10)), 20 Gy (V(20)), mean lung dose (MLD), biological effective volume (V(eff)), and lung integral dose (P<0.05). The median absolute improvement with IMRT over 3DCRT was approximately 10% for V(10), 5% for V(20), and 2.5 Gy for MLD. IMRT improved the PTV heterogeneity (P<0.05), yet conformity was better with 7B-9B IMRT plans. No clinically meaningful differences were observed with respect to the irradiated volumes of spinal cord, heart, liver, or total body integral doses. Dose-volume of exposed normal lung can be reduced with IMRT, though clinical investigations are warranted to assess IMRT treatment outcome of esophagus cancers.
Chest wall restriction limits high airway pressure-induced lung injury in young rabbits.
Hernandez, L A; Peevy, K J; Moise, A A; Parker, J C
1989-05-01
High peak inspiratory pressures (PIP) during mechanical ventilation can induce lung injury. In the present study we compare the respective roles of high tidal volume with high PIP in intact immature rabbits to determine whether the increase in capillary permeability is the result of overdistension of the lung or direct pressure effects. New Zealand White rabbits were assigned to one of three protocols, which produced different degrees of inspiratory volume limitation: intact closed-chest animals (CC), closed-chest animals with a full-body plaster cast (C), and isolated excised lungs (IL). The intact animals were ventilated at 15, 30, or 45 cmH2O PIP for 1 h, and the lungs of the CC and C groups were placed in an isolated lung perfusion system. Microvascular permeability was evaluated using the capillary filtration coefficient (Kfc). Base-line Kfc for isolated lungs before ventilation was 0.33 +/- 0.31 ml.min-1.cmH2O-1.100g-1 and was not different from the Kfc in the CC group ventilated with 15 cmH2O PIP. Kfc increased by 850% after ventilation with only 15 cmH2O PIP in the unrestricted IL group, and in the CC group Kfc increased by 31% after 30 cmH2O PIP and 430% after 45 cmH2O PIP. Inspiratory volume limitation by the plaster cast in the C group prevented any significant increase in Kfc at the PIP values used. These data indicate that volume distension of the lung rather than high PIP per se produces microvascular damage in the immature rabbit lung.
Siegel, J H; Stoklosa, J C; Borg, U; Wiles, C E; Sganga, G; Geisler, F H; Belzberg, H; Wedel, S; Blevins, S; Goh, K C
1985-01-01
The management of impaired respiratory gas exchange in patients with nonuniform posttraumatic and septic adult respiratory distress syndrome (ARDS) contains its own therapeutic paradox, since the need for volume-controlled ventilation and PEEP in the lung with the most reduced compliance increases pulmonary barotrauma to the better lung. A computer-based system has been developed by which respiratory pressure-flow-volume relations and gas exchange characteristics can be obtained and respiratory dynamic and static compliance curves computed and displayed for each lung, as a means of evaluating the effectiveness of ventilation therapy in ARDS. Using these techniques, eight patients with asymmetrical posttraumatic or septic ARDS, or both, have been managed using simultaneous independent lung ventilation (SILV). The computer assessment technique allows quantification of the nonuniform ARDS pattern between the two lungs. This enabled SILV to be utilized using two synchronized servo-ventilators at different pressure-flow-volumes, inspiratory/expiratory ratios, and PEEP settings to optimize the ventilatory volumes and gas exchange of each lung, without inducing excess barotrauma in the better lung. In the patients with nonuniform ARDS, conventional ventilation was not effective in reducing shunt (QS/QT) or in permitting a lower FIO2 to be used for maintenance of an acceptable PaO2. SILV reduced per cent v-a shunt and permitted a higher PaO2 at lower FIO2. Also, there was x-ray evidence of ARDS improvement in the poorer lung. While the ultimate outcome was largely dependent on the patient's injury and the adequacy of the septic host defense, by utilizing the SILV technique to match the quantitative aspects of respiratory dysfunction in each lung at specific times in the clinical course, it was possible to optimize gas exchange, to reduce barotrauma, and often to reverse apparently fixed ARDS changes. In some instances, this type of physiologically directed ventilatory therapy appeared to contribute to a successful recovery. Images FIG. 10. PMID:3901940
In utero exposure to low dose arsenic via drinking water impairs early life lung mechanics in mice.
Ramsey, Kathryn A; Larcombe, Alexander N; Sly, Peter D; Zosky, Graeme R
2013-02-18
Exposure to arsenic via drinking water is a significant environmental issue affecting millions of people around the world. Exposure to arsenic during foetal development has been shown to impair somatic growth and increase the risk of developing chronic respiratory diseases. The aim of this study was to determine if in utero exposure to low dose arsenic via drinking water is capable of altering lung growth and postnatal lung mechanics. Pregnant C57BL/6 mice were given drinking water containing 0, 10 (current World Health Organisation (WHO) maximum contaminant level) or 100 μg/L arsenic from gestational day 8 to birth. Birth outcomes and somatic growth were monitored. Plethysmography and the forced oscillation technique were used to collect measurements of lung volume, lung mechanics, pressure-volume curves and the volume dependence of lung mechanics in male and female offspring at two, four, six and eight weeks of age. In utero exposure to low dose arsenic via drinking water resulted in low birth weight and impaired parenchymal lung mechanics during infancy. Male offspring were more susceptible to the effects of arsenic on growth and lung mechanics than females. All alterations to lung mechanics following in utero arsenic exposure were recovered by adulthood. Exposure to arsenic at the current WHO maximum contaminant level in utero impaired somatic growth and the development of the lungs resulting in alterations to lung mechanics during infancy. Deficits in growth and lung development in early life may contribute to the increased susceptibility of developing chronic respiratory disease in arsenic exposed human populations.
In utero exposure to low dose arsenic via drinking water impairs early life lung mechanics in mice
2013-01-01
Background Exposure to arsenic via drinking water is a significant environmental issue affecting millions of people around the world. Exposure to arsenic during foetal development has been shown to impair somatic growth and increase the risk of developing chronic respiratory diseases. The aim of this study was to determine if in utero exposure to low dose arsenic via drinking water is capable of altering lung growth and postnatal lung mechanics. Methods Pregnant C57BL/6 mice were given drinking water containing 0, 10 (current World Health Organisation (WHO) maximum contaminant level) or 100μg/L arsenic from gestational day 8 to birth. Birth outcomes and somatic growth were monitored. Plethysmography and the forced oscillation technique were used to collect measurements of lung volume, lung mechanics, pressure-volume curves and the volume dependence of lung mechanics in male and female offspring at two, four, six and eight weeks of age. Results In utero exposure to low dose arsenic via drinking water resulted in low birth weight and impaired parenchymal lung mechanics during infancy. Male offspring were more susceptible to the effects of arsenic on growth and lung mechanics than females. All alterations to lung mechanics following in utero arsenic exposure were recovered by adulthood. Conclusions Exposure to arsenic at the current WHO maximum contaminant level in utero impaired somatic growth and the development of the lungs resulting in alterations to lung mechanics during infancy. Deficits in growth and lung development in early life may contribute to the increased susceptibility of developing chronic respiratory disease in arsenic exposed human populations. PMID:23419080
Pulmonary function of nonsmoking female asbestos workers without radiographic signs of asbestosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X.R.; Yano, E.; Nonaka, Koichi
Researchers disagree about whether exposure to asbestos causes significant respiratory impairments and airway obstruction in the absence of radiographic asbestosis and smoking. To obtain confirmatory information, the authors examined pulmonary function of 208 nonsmoking female asbestos workers who did not have asbestosis and 136 controls. The authors observed an overall lower single-breath carbon monoxide diffusing capacity in the asbestos workers than in controls. In addition, significant decreases in percentage vital capacity, percentage forced vital capacity, and percentage mean forced expiratory flow during the middle half of the forced vital capacity were evident in the older workers. Logistic regression analysis revealedmore » that asbestos exposure was associated with abnormal single-breath carbon monoxide diffusing capacity, vital capacity, and mean forced expiratory flow during the middle half of the forced vital capacity among the older workers. The age-related decline in vital capacity, forced vital capacity, and mean forced expiratory flow during the middle half of the forced vital capacity was significantly greater in the asbestos workers than the controls. The findings imply that asbestos-exposure per se contributes predominantly to restricted lung volume and reduced single-breath carbon monoxide diffusing capacity. Asbestos may also cause slight airway obstruction, especially in workers who are heavily exposed.« less
Transbronchial biopsies safely diagnose amyloid lung disease
Govender, Praveen; Keyes, Colleen M.; Hankinson, Elizabeth A.; O’Hara, Carl J.; Sanchorawala, Vaishali; Berk, John L.
2018-01-01
Background Autopsy identifies lung involvement in 58–92% of patients with the most prevalent forms of systemic amyloidoses. In the absence of lung biopsies, amyloid lung disease often goes unrecognized. Report of a death following transbronchial biopsies in a patient with systemic amyloidosis cautioned against the procedure in this patient cohort. We reviewed our experience with transbronchial biopsies in patients with amyloidosis to determine the safety and utility of bronchoscopic lung biopsies. Methods We identified patients referred to the Amyloidosis Center at Boston Medical Center with lung amyloidosis diagnosed by transbronchial lung biopsies (TBBX). Amyloid typing was determined by immunohistochemistry or mass spectrometry. Standard end organ assessments, including pulmonary function test (PFT) and chest tomography (CT) imaging, and extra-thoracic biopsies established the extent of disease. Results Twenty-five (21.7%) of 115 patients with lung amyloidosis were diagnosed by TBBX. PFT classified 33.3% with restrictive physiology, 28.6% with obstructive disease, and 9.5% mixed physiology; 9.5% exhibited isolated diffusion defects while 19% had normal pulmonary testing. Two view chest or CT imaging identified focal opacities in 52% of cases and diffuse interstitial disease in 48%. Amyloid type and disease extent included 68% systemic AL disease, 16% localized (lung limited) AL disease, 12% ATTR disease, and 4% AA amyloidosis. Fluoroscopy was not used during biopsy. No procedure complications were reported. Conclusions Our case series of 25 patients supports the use of bronchoscopic transbronchial biopsies for diagnosis of parenchymal lung amyloidosis. Normal PFTs do not rule out the histologic presence of amyloid lung disease. PMID:28393574
Walsh, Simon L F; Wells, Athol U; Desai, Sujal R; Poletti, Venerino; Piciucchi, Sara; Dubini, Alessandra; Nunes, Hilario; Valeyre, Dominique; Brillet, Pierre Y; Kambouchner, Marianne; Morais, António; Pereira, José M; Moura, Conceição Souto; Grutters, Jan C; van den Heuvel, Daniel A; van Es, Hendrik W; van Oosterhout, Matthijs F; Seldenrijk, Cornelis A; Bendstrup, Elisabeth; Rasmussen, Finn; Madsen, Line B; Gooptu, Bibek; Pomplun, Sabine; Taniguchi, Hiroyuki; Fukuoka, Junya; Johkoh, Takeshi; Nicholson, Andrew G; Sayer, Charlie; Edmunds, Lilian; Jacob, Joseph; Kokosi, Maria A; Myers, Jeffrey L; Flaherty, Kevin R; Hansell, David M
2016-07-01
Diffuse parenchymal lung disease represents a diverse and challenging group of pulmonary disorders. A consistent diagnostic approach to diffuse parenchymal lung disease is crucial if clinical trial data are to be applied to individual patients. We aimed to evaluate inter-multidisciplinary team agreement for the diagnosis of diffuse parenchymal lung disease. We did a multicentre evaluation of clinical data of patients who presented to the interstitial lung disease unit of the Royal Brompton and Harefield NHS Foundation Trust (London, UK; host institution) and required multidisciplinary team meeting (MDTM) characterisation between March 1, 2010, and Aug 31, 2010. Only patients whose baseline clinical, radiological, and, if biopsy was taken, pathological data were undertaken at the host institution were included. Seven MDTMs, consisting of at least one clinician, radiologist, and pathologist, from seven countries (Denmark, France, Italy, Japan, Netherlands, Portugal, and the UK) evaluated cases of diffuse parenchymal lung disease in a two-stage process between Jan 1, and Oct 15, 2015. First, the clinician, radiologist, and pathologist (if lung biopsy was completed) independently evaluated each case, selected up to five differential diagnoses from a choice of diffuse lung diseases, and chose likelihoods (censored at 5% and summing to 100% in each case) for each of their differential diagnoses, without inter-disciplinary consultation. Second, these specialists convened at an MDTM and reviewed all data, selected up to five differential diagnoses, and chose diagnosis likelihoods. We compared inter-observer and inter-MDTM agreements on patient first-choice diagnoses using Cohen's kappa coefficient (κ). We then estimated inter-observer and inter-MDTM agreement on the probability of diagnosis using weighted kappa coefficient (κw). We compared inter-observer and inter-MDTM confidence of patient first-choice diagnosis. Finally, we evaluated the prognostic significance of a first-choice diagnosis of idiopathic pulmonary fibrosis (IPF) versus not IPF for MDTMs, clinicians, and radiologists, using univariate Cox regression analysis. 70 patients were included in the final study cohort. Clinicians, radiologists, pathologists, and the MDTMs assigned their patient diagnoses between Jan 1, and Oct 15, 2015. IPF made up 88 (18%) of all 490 MDTM first-choice diagnoses. Inter-MDTM agreement for first-choice diagnoses overall was moderate (κ=0·50). Inter-MDTM agreement on diagnostic likelihoods was good for IPF (κw=0·71 [IQR 0·64-0·77]) and connective tissue disease-related interstitial lung disease (κw=0·73 [0·68-0·78]); moderate for non-specific interstitial pneumonia (NSIP; κw=0·42 [0·37-0·49]); and fair for hypersensitivity pneumonitis (κw=0·29 [0·24-0·40]). High-confidence diagnoses (>65% likelihood) of IPF were given in 68 (77%) of 88 cases by MDTMs, 62 (65%) of 96 cases by clinicians, and in 57 (66%) of 86 cases by radiologists. Greater prognostic separation was shown for an MDTM diagnosis of IPF than compared with individual clinician's diagnosis of this disease in five of seven MDTMs, and radiologist's diagnosis of IPF in four of seven MDTMs. Agreement between MDTMs for diagnosis in diffuse lung disease is acceptable and good for a diagnosis of IPF, as validated by the non-significant greater prognostic separation of an IPF diagnosis made by MDTMs than the separation of a diagnosis made by individual clinicians or radiologists. Furthermore, MDTMs made the diagnosis of IPF with higher confidence and more frequently than did clinicians or radiologists. This difference is of particular importance, because accurate and consistent diagnoses of IPF are needed if clinical outcomes are to be optimised. Inter-multidisciplinary team agreement for a diagnosis of hypersensitivity pneumonitis is low, highlighting an urgent need for standardised diagnostic guidelines for this disease. National Institute of Health Research, Imperial College London. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu-wen Tan; Ying Jin; Hui Yu
2013-10-31
We have evaluated the dynamic effects of the analyte diffusion on the 1/e light penetration depths of normal, benign and cancerous human lung tissue in vitro, as well as have monitored and quantified the dynamic change in the light penetration depths of the mentioned human lung tissue after application of 25 % and 50 % glycerol solution, respectively. The light penetration depths of the analyte diffusion in the lung tissue are measured using the Fourierdomain optical coherence tomography (FD-OCT). Experimental results show that the application of glycerol as a chemical agent can significantly enhance light penetration depths into the humanmore » normal lung (NL), lung benign granulomatosis (LBG) and lung squamous cell carcinoma (LSCC) tissue. In-depth transport of the glycerol molecules in the NL, LBG and LSCC tissue at a lower glycerol concentration (25 %) are faster than those at a higher glycerol concentration (50 %), and the 1/e light penetration depths at a lower glycerol concentration (25 %) are smaller than those at a higher glycerol concentration (50 %), respectively. Their differences in the maximal 1/e light penetration depths of the NL, LBG and LSCC tissue at a higher and a lower glycerol concentrations were only 8.8 %, 6.8 % and 4.7 %, respectively. (biophotonics)« less
Kokosi, Maria; Lo, Pechin; Kim, Hyun J.; Ravenel, James G.; Meyer, Cristopher; Goldin, Jonathan; Lee, Hye-Seung; Strange, Charlie; McCormack, Francis X.
2016-01-01
Rationale: The Multicenter International Lymphangioleiomyomatosis Efficacy and Safety of Sirolimus (MILES) trial demonstrated that sirolimus stabilized lung function and improved measures of functional performance and quality of life in patients with lymphangioleiomyomatosis. The physiologic mechanisms of these beneficial actions of sirolimus are incompletely understood. Objectives: To prospectively determine the longitudinal computed tomographic lung imaging correlates of lung function change in MILES patients treated with placebo or sirolimus. Methods: We determined the baseline to 12-month change in computed tomographic image–derived lung volumes and the volume of the lung occupied by cysts in the 31 MILES participants (17 in sirolimus group, 14 in placebo group) with baseline and 12-month scans. Measurements and Main Results: There was a trend toward an increase in median expiratory cyst volume percentage in the placebo group and a reduction in the sirolimus group (+2.68% vs. +0.97%, respectively; P = 0.10). The computed tomographic image–derived residual volume and the ratio of residual volume to total lung capacity increased more in the placebo group than in the sirolimus group (+214.4 ml vs. +2.9 ml [P = 0.054] and +0.05 ml vs. −0.01 ml [P = 0.0498], respectively). A Markov transition chain analysis of respiratory cycle cyst volume changes revealed greater dynamic variation in the sirolimus group than in the placebo group at the 12-month time point. Conclusions: Collectively, these data suggest that sirolimus attenuates progressive gas trapping in lymphangioleiomyomatosis, consistent with a beneficial effect of the drug on airflow obstruction. We speculate that a reduction in lymphangioleiomyomatosis cell burden around small airways and cyst walls alleviates progressive airflow limitation and facilitates cyst emptying. PMID:26799509
Argula, Rahul G; Kokosi, Maria; Lo, Pechin; Kim, Hyun J; Ravenel, James G; Meyer, Cristopher; Goldin, Jonathan; Lee, Hye-Seung; Strange, Charlie; McCormack, Francis X
2016-03-01
The Multicenter International Lymphangioleiomyomatosis Efficacy and Safety of Sirolimus (MILES) trial demonstrated that sirolimus stabilized lung function and improved measures of functional performance and quality of life in patients with lymphangioleiomyomatosis. The physiologic mechanisms of these beneficial actions of sirolimus are incompletely understood. To prospectively determine the longitudinal computed tomographic lung imaging correlates of lung function change in MILES patients treated with placebo or sirolimus. We determined the baseline to 12-month change in computed tomographic image-derived lung volumes and the volume of the lung occupied by cysts in the 31 MILES participants (17 in sirolimus group, 14 in placebo group) with baseline and 12-month scans. There was a trend toward an increase in median expiratory cyst volume percentage in the placebo group and a reduction in the sirolimus group (+2.68% vs. +0.97%, respectively; P = 0.10). The computed tomographic image-derived residual volume and the ratio of residual volume to total lung capacity increased more in the placebo group than in the sirolimus group (+214.4 ml vs. +2.9 ml [P = 0.054] and +0.05 ml vs. -0.01 ml [P = 0.0498], respectively). A Markov transition chain analysis of respiratory cycle cyst volume changes revealed greater dynamic variation in the sirolimus group than in the placebo group at the 12-month time point. Collectively, these data suggest that sirolimus attenuates progressive gas trapping in lymphangioleiomyomatosis, consistent with a beneficial effect of the drug on airflow obstruction. We speculate that a reduction in lymphangioleiomyomatosis cell burden around small airways and cyst walls alleviates progressive airflow limitation and facilitates cyst emptying.
NASA Astrophysics Data System (ADS)
Zavaletta, Vanessa A.; Bartholmai, Brian J.; Robb, Richard A.
2007-03-01
Diffuse lung diseases, such as idiopathic pulmonary fibrosis (IPF), can be characterized and quantified by analysis of volumetric high resolution CT scans of the lungs. These data sets typically have dimensions of 512 x 512 x 400. It is too subjective and labor intensive for a radiologist to analyze each slice and quantify regional abnormalities manually. Thus, computer aided techniques are necessary, particularly texture analysis techniques which classify various lung tissue types. Second and higher order statistics which relate the spatial variation of the intensity values are good discriminatory features for various textures. The intensity values in lung CT scans range between [-1024, 1024]. Calculation of second order statistics on this range is too computationally intensive so the data is typically binned between 16 or 32 gray levels. There are more effective ways of binning the gray level range to improve classification. An optimal and very efficient way to nonlinearly bin the histogram is to use a dynamic programming algorithm. The objective of this paper is to show that nonlinear binning using dynamic programming is computationally efficient and improves the discriminatory power of the second and higher order statistics for more accurate quantification of diffuse lung disease.
Meyer, Keith C; Nathanson, Ian; Angel, Luis; Bhorade, Sangeeta M; Chan, Kevin M; Culver, Daniel; Harrod, Christopher G; Hayney, Mary S; Highland, Kristen B; Limper, Andrew H; Patrick, Herbert; Strange, Charlie; Whelan, Timothy
2012-01-01
Objectives: Immunosuppressive pharmacologic agents prescribed to patients with diffuse interstitial and inflammatory lung disease and lung transplant recipients are associated with potential risks for adverse reactions. Strategies for minimizing such risks include administering these drugs according to established, safe protocols; monitoring to detect manifestations of toxicity; and patient education. Hence, an evidence-based guideline for physicians can improve safety and optimize the likelihood of a successful outcome. To maximize the likelihood that these agents will be used safely, the American College of Chest Physicians established a committee to examine the clinical evidence for the administration and monitoring of immunosuppressive drugs (with the exception of corticosteroids) to identify associated toxicities associated with each drug and appropriate protocols for monitoring these agents. Methods: Committee members developed and refined a series of questions about toxicities of immunosuppressives and current approaches to administration and monitoring. A systematic review was carried out by the American College of Chest Physicians. Committee members were supplied with this information and created this evidence-based guideline. Conclusions: It is hoped that these guidelines will improve patient safety when immunosuppressive drugs are given to lung transplant recipients and to patients with diffuse interstitial lung disease. PMID:23131960
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germain, Francois; Beaulieu, Luc; Fortin, Andre
2008-04-01
In conformal radiotherapy planning for lung cancer, respiratory movements are not taken into account when a single computed tomography (CT) scan is performed. This study examines tumor movements to design individualized margins to account for these movements and evaluates their dosimetric impacts on planning volume. Fifteen patients undergoing CT-based planning for radical radiotherapy for localized lung cancer formed the study cohort. A reference plan was constructed based on reference gross, clinical, and planning target volumes (rGTV, rCTV, and rPTV, respectively). The reference plans were compared with individualized plans using individualized margins obtained by using 5 serial CT scans to generatemore » individualized target volumes (iGTV, iCTV, and iPTV). Three-dimensional conformal radiation therapy was used for plan generation using 6- and 23-MV photon beams. Ten plans for each patient were generated and dose-volume histograms (DVHs) were calculated. Comparisons of volumetric and dosimetric parameters were performed using paired Student t-tests. Relative to the rGTV, the total volume occupied by the superimposed GTVs increased progressively with each additional CT scans. With the use of all 5 scans, the average increase in GTV was 52.1%. For the plans with closest dosimetric coverage, target volume was smaller (iPTV/rPTV ratio 0.808) but lung irradiation was only slightly decreased. Reduction in the proportion of lung tissue that received 20 Gy or more outside the PTV (V20) was observed both for 6-MV plans (-0.73%) and 23-MV plans (-0.65%), with p = 0.02 and p = 0.04, respectively. In conformal RT planning for the treatment of lung cancer, the use of serial CT scans to evaluate respiratory motion and to generate individualized margins to account for these motions produced only a limited lung sparing advantage.« less
Pulmonary Hypertension in Parenchymal Lung Disease
Tsangaris, Iraklis; Tsaknis, Georgios; Anthi, Anastasia; Orfanos, Stylianos E.
2012-01-01
Idiopathic pulmonary arterial hypertension (IPAH) has been extensively investigated, although it represents a less common form of the pulmonary hypertension (PH) family, as shown by international registries. Interestingly, in types of PH that are encountered in parenchymal lung diseases such as interstitial lung diseases (ILDs), chronic obstructive pulmonary disease (COPD), and many other diffuse parenchymal lung diseases, some of which are very common, the available data is limited. In this paper, we try to browse in the latest available data regarding the occurrence, pathogenesis, and treatment of PH in chronic parenchymal lung diseases. PMID:23094153
Banff study of pathologic changes in lung allograft biopsy specimens with donor-specific antibodies.
Wallace, William Dean; Li, Ning; Andersen, Claus B; Arrossi, A Valeria; Askar, Medhat; Berry, Gerry J; DeNicola, Matthew M; Neil, Desley A; Pavlisko, Elizabeth N; Reed, Elaine F; Remmelink, Myriam; Weigt, S Sam; Weynand, Birgit; Zhang, Jennifer Q; Budev, Marie M; Farver, Carol F
2016-01-01
The diagnosis of antibody-mediated rejection (AMR) in the lung transplant is still an area under investigation. We performed a blinded multicenter study to determine if any statistically significant histologic findings in transbronchial biopsy specimens from lung transplant patients correlate with the presence of donor-specific antibodies (DSAs). We asked 9 pathologists with experience in lung transplantation to evaluate 161 lung transplant biopsy specimens for various histologic parameters. The findings were correlated with antibody status positive for DSAs, positive for non-DSAs, and no antibodies (NABs) present. The significance of each histologic variable was reviewed. We found no statistically significant association with acute cellular rejection, airway inflammation, or bronchiolitis obliterans and the presence or absence of antibodies. However, biopsy specimens with DSAs had a statistically significant difference vs NABs in the setting of acute lung injury, with or without diffuse alveolar damage (p = 0.0008), in the presence of capillary neutrophilic inflammation (p = 0.0014), and in samples with endotheliitis (p = 0.0155). In samples with complement 4d staining, there was a trend but no statistically significant difference between specimens associated with DSAs and specimens with NABs. Capillary inflammation, acute lung injury, and endotheliitis significantly correlated with DSAs. The infrequently observed diffuse staining for complement 4d limits the usefulness of this stain. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Chow, J; Leung, M; Van Dyk, J
2008-07-01
This study provides new information on the evaluation of the lung dose calculation algorithms as a function of the relative electron density of lung, ρ e,lung . Doses calculated using the collapsed cone convolution (CCC) and adaptive convolution (AC) algorithm in lung with the Pinnacle 3 system were compared to those calculated using the Monte Carlo (MC) simulation (EGSnrc-based code). Three groups of lung phantoms, namely, "Slab", "Column" and "Cube" with different ρ e,lung (0.05-0.7), positions, volumes and shapes of lung in water were used. 6 and 18MV photon beams with 4×4 and 10×10cm 2 field sizes produced by a Varian 21EX Linac were used in the MC dose calculations. Results show that the CCC algorithm agrees well with AC to within ±1% for doses calculated in the lung phantoms, indicating that the AC, with 3-4 times less computing time required than CCC, is a good substitute for the CCC method. Comparing the CCC and AC with MC, dose deviations are found when ρ e,lung are ⩽0.1-0.3. The degree of deviation depends on the photon beam energy and field size, and is relatively large when high-energy photon beams with small field are used. For the penumbra widths (20%-80%), the CCC and AC agree well with MC for the "Slab" and "Cube" phantoms with the lung volumes at the central beam axis (CAX). However, deviations >2mm occur in the "Column" phantoms, with two lung volumes separated by a water column along the CAX, using the 18MV (4×4cm 2 ) photon beams with ρ e,lung ⩽0.1. © 2008 American Association of Physicists in Medicine.
Motoyama, H; Chen, F; Ohsumi, A; Hijiya, K; Takahashi, M; Ohata, K; Yamada, T; Sato, M; Aoyama, A; Bando, T; Date, H
2014-04-01
Although double lung transplantation is performed more frequently for emphysema, single lung transplantation (SLT) continues to be performed owing to limited donor organ availability. Native lung hyperinflation (NLH) is a unique complication following SLT for emphysema. Three-dimensional computed tomography (3D-CT) volumetry has been introduced into the field of lung transplantation, which we used to assess NLH in emphysema patients undergoing SLT. The primary purpose of this study was to confirm the effectiveness of 3D-CT volumetry in the evaluation of NLH following SLT for emphysema. In 5 emphysema patients undergoing SLT at Kyoto University Hospital, 3D-CT volumetry data, pulmonary function test results, and clinical and radiological findings were retrospectively evaluated. Three patients did not develop a significant mediastinal shift, whereas the other 2 patients developed a mediastinal shift. In the 3 patients without a mediastinal shift, 3D-CT volumetry did not show a significant increase in native lung volume. These patients had a history of sternotomy prior to lung transplantation and firm adhesion on the mediastinal side was detected during lung transplantation. One of 2 patients with a mediastinal shift developed severe dyspnea with significantly decreased pulmonary function, and 3D-CT volumetry showed a significant increase in the native lung volume. However, the other patient did not show any dyspnea and his native lung volume decreased postoperatively (preoperatively to 6 months postoperatively: +981 mL and -348 mL, respectively). Although bilateral lung transplantation has become preferable for emphysema patients owing to postoperative NLH with SLT, patients with a history of sternotomy prior to lung transplantation might be good candidates for SLT. 3D-CT volumetry may be a useful method for detection of NLH. Copyright © 2014 Elsevier Inc. All rights reserved.
Low-dose computed tomography volumetry for subtyping chronic lung allograft dysfunction.
Saito, Tomohito; Horie, Miho; Sato, Masaaki; Nakajima, Daisuke; Shoushtarizadeh, Hassan; Binnie, Matthew; Azad, Sassan; Hwang, David M; Machuca, Tiago N; Waddell, Thomas K; Singer, Lianne G; Cypel, Marcelo; Liu, Mingyao; Paul, Narinder S; Keshavjee, Shaf
2016-01-01
The long-term success of lung transplantation is challenged by the development of chronic lung allograft dysfunction (CLAD) and its distinct subtypes of bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS). However, the current diagnostic criteria for CLAD subtypes rely on total lung capacity (TLC), which is not always measured during routine post-transplant assessment. Our aim was to investigate the utility of low-dose 3-dimensional computed tomography (CT) lung volumetry for differentiating RAS from BOS. This study was a retrospective evaluation of 63 patients who had developed CLAD after bilateral lung or heart‒lung transplantation between 2006 and 2011, including 44 BOS and 19 RAS cases. Median post-transplant follow-up was 65 months in BOS and 27 months in RAS. The median interval between baseline and the disease-onset time-point for CT volumetry was 11 months in both BOS and RAS. Chronologic changes and diagnostic accuracy of CT lung volume (measured as percent of baseline) were investigated. RAS showed a significant decrease in CT lung volume at disease onset compared with baseline (mean 3,916 ml vs 3,055 ml when excluding opacities, p < 0.0001), whereas BOS showed no significant post-transplant change (mean 4,318 ml vs 4,396 ml, p = 0.214). The area under the receiver operating characteristic curve of CT lung volume for differentiating RAS from BOS was 0.959 (95% confidence interval 0.912 to 1.01, p < 0.0001) and the calculated accuracy was 0.938 at a threshold of 85%. In bilateral lung or heart‒lung transplant patients with CLAD, low-dose CT volumetry is a useful tool to differentiate patients who develop RAS from those who develop BOS. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liverman, James L.
Volume 2 is comprised of appendices: Portsmouth Gaseous Diffusion Plant Existing Facilities; Ecology; Civic Involvement; Social Analysis; Population Projections; Toxicity of Air Pollutants to Biota at Portsmouth Gaseous Diffusion Plant; and Assessment of Noise Effects of an Add-On to the Portsmouth Gaseous Diffusion Plant. (LK)
Rocha, Alcides; Arbex, Flavio F; Sperandio, Priscilla A; Souza, Aline; Biazzim, Ligia; Mancuso, Frederico; Berton, Danilo C; Hochhegger, Bruno; Alencar, Maria Clara N; Nery, Luiz E; O'Donnell, Denis E; Neder, J Alberto
2017-11-15
An increased ventilatory response to exertional metabolic demand (high [Formula: see text]e/[Formula: see text]co 2 relationship) is a common finding in patients with coexistent chronic obstructive pulmonary disease and heart failure. We aimed to determine the mechanisms underlying high [Formula: see text]e/[Formula: see text]co 2 and its impact on operating lung volumes, dyspnea, and exercise tolerance in these patients. Twenty-two ex-smokers with combined chronic obstructive pulmonary disease and heart failure with reduced left ventricular ejection fraction undertook, after careful treatment optimization, a progressive cycle exercise test with capillary (c) blood gas collection. Regardless of the chosen metric (increased [Formula: see text]e-[Formula: see text]co 2 slope, [Formula: see text]e/[Formula: see text]co 2 nadir, or end-exercise [Formula: see text]e/[Formula: see text]co 2 ), ventilatory inefficiency was closely related to Pc CO 2 (r values from -0.80 to -0.84; P < 0.001) but not dead space/tidal volume ratio. Ten patients consistently maintained exercise Pc CO 2 less than or equal to 35 mm Hg (hypocapnia). These patients had particularly poor ventilatory efficiency compared with patients without hypocapnia (P < 0.05). Despite the lack of between-group differences in spirometry, lung volumes, and left ventricular ejection fraction, patients with hypocapnia had lower resting Pa CO 2 and lung diffusing capacity (P < 0.01). Excessive ventilatory response in this group was associated with higher exertional Pc O 2 . The group with hypocapnia, however, had worse mechanical inspiratory constraints and higher dyspnea scores for a given work rate leading to poorer exercise tolerance compared with their counterparts (P < 0.05). Heightened neural drive promoting a ventilatory response beyond that required to overcome an increased "wasted" ventilation led to hypocapnia and poor exercise ventilatory efficiency in chronic obstructive pulmonary disease-heart failure overlap. Excessive ventilation led to better arterial oxygenation but at the expense of earlier critical mechanical constraints and intolerable dyspnea.
Bivelocity hydrodynamics. Diffuse mass flux vs. diffuse volume flux
NASA Astrophysics Data System (ADS)
Brenner, Howard
2013-02-01
An intimate physical connection exists between a fluid’s mass and its volume, with the density ρ serving as a proportionality factor relating these two extensive thermodynamic properties when the fluid is homogeneous. This linkage has led to the erroneous belief among many researchers that a fluid’s diffusive (dissipative) mass flux and its diffusive volume flux counterpart, both occurring in inhomogeneous fluids undergoing transport are, in fact, synonymous. However, the existence of a truly dissipative mass flux (that is, a mass flux that is physically dissipative) has recently and convincingly been shown to be a physical impossibility [H.C. Öttinger, H. Struchtrup, M. Liu, On the impossibility of a dissipative contribution to the mass flux in hydrodynamics, Phys. Rev. E 80 (2009) 056303], owing, among other things, to its violation of the principle of angular momentum conservation. Unfortunately, as a consequence of the erroneous belief in the equality of the diffuse volume and mass fluxes (sans an algebraic sign), this has led many researchers to wrongly conclude that a diffuse volume flux is equally impossible. As a consequence, owing to the fundamental role played by the diffuse volume flux in the theory of bivelocity hydrodynamics [H. Brenner, Beyond Navier-Stokes, Int. J. Eng. Sci. 54 (2012) 67-98], many researchers have been led to falsely dismiss, without due consideration, the possibility of bivelocity hydrodynamics constituting a potentially viable physical theory, which it is believed to be. The present paper corrects this misconception by using a simple concrete example involving an isothermal rotating rigid-body fluid motion to clearly confirm that whereas a diffuse mass flux is indeed impossible, this fact does not exclude the possible existence of a diffuse volume flux and, concomitantly, the possibility that bivelocity hydrodynamics is indeed a potentially viable branch of fluid mechanics.
Reich, H; Moens, Y; Braun, C; Kneissl, S; Noreikat, K; Reske, A
2014-12-01
Quantitative computer tomographic analysis (qCTA) is an accurate but time intensive method used to quantify volume, mass and aeration of the lungs. The aim of this study was to validate a time efficient interpolation technique for application of qCTA in ponies. Forty-one thoracic computer tomographic (CT) scans obtained from eight anaesthetised ponies positioned in dorsal recumbency were included. Total lung volume and mass and their distribution into four compartments (non-aerated, poorly aerated, normally aerated and hyperaerated; defined based on the attenuation in Hounsfield Units) were determined for the entire lung from all 5 mm thick CT-images, 59 (55-66) per animal. An interpolation technique validated for use in humans was then applied to calculate qCTA results for lung volumes and masses from only 10, 12, and 14 selected CT-images per scan. The time required for both procedures was recorded. Results were compared statistically using the Bland-Altman approach. The bias ± 2 SD for total lung volume calculated from interpolation of 10, 12, and 14 CT-images was -1.2 ± 5.8%, 0.1 ± 3.5%, and 0.0 ± 2.5%, respectively. The corresponding results for total lung mass were -1.1 ± 5.9%, 0.0 ± 3.5%, and 0.0 ± 3.0%. The average time for analysis of one thoracic CT-scan using the interpolation method was 1.5-2 h compared to 8 h for analysis of all images of one complete thoracic CT-scan. The calculation of pulmonary qCTA data by interpolation from 12 CT-images was applicable for equine lung CT-scans and reduced the time required for analysis by 75%. Copyright © 2014 Elsevier Ltd. All rights reserved.
Heusch, Philipp; Köhler, Jens; Wittsack, Hans-Joerg; Heusner, Till A; Buchbender, Christian; Poeppel, Thorsten D; Nensa, Felix; Wetter, Axel; Gauler, Thomas; Hartung, Verena; Lanzman, Rotem S
2013-11-01
To assess the feasibility of non-Gaussian DWI as part of a FDG-PET/MRI protocol in patients with histologically proven non-small cell lung cancer. 15 consecutive patients with histologically proven NSCLC (mean age 61 ± 11 years) were included in this study and underwent whole-body FDG-PET/MRI following whole-body FDG-PET/CT. As part of the whole-body FDG-PET/MRI protocol, an EPI-sequence with 5 b-values (0, 100, 500, 1000 and 2000 s/mm(2)) was acquired for DWI of the thorax during free-breathing. Volume of interest (VOI) measurements were performed to determine the maximum and mean standardized uptake value (SUV(max); SUV(mean)). A region of interest (ROI) was manually drawn around the tumor on b=0 images and then transferred to the corresponding parameter maps to assess ADC(mono), D(app) and K(app). To assess the goodness of the mathematical fit R(2) was calculated for monoexponential and non-Gaussian analysis. Spearman's correlation coefficients were calculated to compare SUV values and diffusion coefficients. A Student's t-test was performed to compare the monoexponential and non-Gaussian diffusion fitting (R(2)). T staging was equal between FDG-PET/CT and FDG-PET/MRI in 12 of 15 patients. For NSCLC, mean ADC(mono) was 2.11 ± 1.24 × 10(-3) mm(2)/s, Dapp was 2.46 ± 1.29 × 10(-3) mm(2)/s and mean Kapp was 0.70 ± 0.21. The non-Gaussian diffusion analysis (R(2)=0.98) provided a significantly better mathematical fitting to the DWI signal decay than the monoexponetial analysis (R(2)=0.96) (p<0.001). SUV(max) and SUV(mean) of NSCLC was 13.5 ± 7.6 and 7.9 ± 4.3 for FDG-PET/MRI. ADC(mono) as well as Dapp exhibited a significant inverse correlation with the SUV(max) (ADC(mono): R=-0.67; p<0.01; Dapp: R=-0.69; p<0.01) as well as with SUV(mean) assessed by FDG-PET/MRI (ADC(mono): R=-0.66; p<0.01; Dapp: R=-0.69; p<0.01). Furthermore, Kapp exhibited a significant correlation with SUV(max) (R=0.72; p<0.05) and SUV(mean) as assessed by FDG-PET/MRI (R=0.71; p<0.005). Simultaneous PET and non-Gaussian diffusion acquisitions are feasible. Non-Gaussian diffusion parameters show a good correlation with SUV and might provide additional information beyond monoexponential ADC, especially as non-Gaussian diffusion exhibits better mathematical fitting to the decay of the diffusion signal than monoexponential DWI. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Kindvall, Simon Sven Ivan; Diaz, Sandra; Svensson, Jonas; Wollmer, Per; Olsson, Lars E
2017-01-01
Oxygen enhanced pulmonary MRI is a promising modality for functional lung studies and has been applied to a wide range of pulmonary conditions. The purpose of this study was to characterize the oxygen enhancement effect in the lungs of healthy, never-smokers, in light of a previously established relationship between oxygen enhancement and diffusing capacity of carbon monoxide in the lung (DL,CO) in patients with lung disease. In 30 healthy never-smoking volunteers, an inversion recovery with gradient echo read-out (Snapshot-FLASH) was used to quantify the difference in longitudinal relaxation rate, while breathing air and 100% oxygen, ΔR1, at 1.5 Tesla. Measurements were performed under multiple tidal inspiration breath-holds. In single parameter linear models, ΔR1 exhibit a significant correlation with age (p = 0.003) and BMI (p = 0.0004), but not DL,CO (p = 0.33). Stepwise linear regression of ΔR1 yields an optimized model including an age-BMI interaction term. In this healthy, never-smoking cohort, age and BMI are both predictors of the change in MRI longitudinal relaxation rate when breathing oxygen. However, DL,CO does not show a significant correlation with the oxygen enhancement. This is possibly because oxygen transfer in the lung is not diffusion limited at rest in healthy individuals. This work stresses the importance of using a physiological model to understand results from oxygen enhanced MRI.
Cohen, A J; King, T E; Gilman, L B; Magill-Solc, C; Miller, Y E
1998-11-01
Idiopathic diffuse hyperplasia of pulmonary neuroendocrine cells (IDHPNC) is a clinicopathological entity characterized by a diffuse hyperplasia of neuroendocrine cells involving distal bronchi and bronchioles. The pathogenesis of this syndrome remains unknown. The hyperplastic neuroendocrine (NE) cells contain multiple neuropeptides, including the bombesinlike peptides (BLP), which are likely important in the pathogenesis of the disorder by stimulating proliferation of fibroblasts in a paracrine fashion and the NE cells themselves in an autocrine manner. Neutral endopeptidase (NEP) is a cell-surface enzyme that hydrolyzes BLP and other bioactive peptides. Low or undetectable NEP is present in many primary lung cancers and cell lines. Low NEP expression could increase neuropeptide-induced autocrine effects by increasing local levels of neuropeptides. We hypothesized that IDHPNC was associated with low or absent NEP expression. NEP expression was assayed in patients with IDHPNC (n = 3) and was compared with expression in patients with idiopathic pulmonary fibrosis (n = 5), hypersensitivity pneumonitis (n = 5), and normal lung (n = 4) using immunohistochemistry, ELISA, activity assay, and Western blot analysis. By these assays, NEP expression was highest in lungs affected by IDHPNC. NEP mRNA, as assessed in IDHPNC lung tissue by RT-PCR, was the expected size and free of mutation between bp 238-2437. Therefore, IDHPNC is unlikely to be the result of a defect in NEP expression. The apparent increase in NEP expression in lung tissue from patients with IDHPNC may reflect a compensatory increase that partly counteracts abundant neuropeptides, including BLP, present in this disorder.
NASA Astrophysics Data System (ADS)
Patra Yosandha, Fiet; Adi, Kusworo; Edi Widodo, Catur
2017-06-01
In this research, calculation process of the lung cancer volume of target based on computed tomography (CT) thorax images was done. Volume of the target calculation was done in purpose to treatment planning system in radiotherapy. The calculation of the target volume consists of gross tumor volume (GTV), clinical target volume (CTV), planning target volume (PTV) and organs at risk (OAR). The calculation of the target volume was done by adding the target area on each slices and then multiply the result with the slice thickness. Calculations of area using of digital image processing techniques with active contour segmentation method. This segmentation for contouring to obtain the target volume. The calculation of volume produced on each of the targets is 577.2 cm3 for GTV, 769.9 cm3 for CTV, 877.8 cm3 for PTV, 618.7 cm3 for OAR 1, 1,162 cm3 for OAR 2 right, and 1,597 cm3 for OAR 2 left. These values indicate that the image processing techniques developed can be implemented to calculate the lung cancer target volume based on CT thorax images. This research expected to help doctors and medical physicists in determining and contouring the target volume quickly and precisely.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weili; Department of Radiation Oncology, the Fourth Affiliated Hospital, China Medical University, Shenyang; Xu, Yaping
2013-08-01
Purpose: This study aimed to compare lung dose–volume histogram (DVH) parameters such as mean lung dose (MLD) and the lung volume receiving ≥20 Gy (V20) of commonly used definitions of normal lung in terms of tumor/target subtraction and to determine to what extent they differ in predicting radiation pneumonitis (RP). Methods and Materials: One hundred lung cancer patients treated with definitive radiation therapy were assessed. The gross tumor volume (GTV) and clinical planning target volume (PTV{sub c}) were defined by the treating physician and dosimetrist. For this study, the clinical target volume (CTV) was defined as GTV with 8-mm uniformmore » expansion, and the PTV was defined as CTV with an 8-mm uniform expansion. Lung DVHs were generated with exclusion of targets: (1) GTV (DVH{sub G}); (2) CTV (DVH{sub C}); (3) PTV (DVH{sub P}); and (4) PTV{sub c} (DVH{sub Pc}). The lung DVHs, V20s, and MLDs from each of the 4 methods were compared, as was their significance in predicting radiation pneumonitis of grade 2 or greater (RP2). Results: There are significant differences in dosimetric parameters among the various definition methods (all Ps<.05). The mean and maximum differences in V20 are 4.4% and 12.6% (95% confidence interval 3.6%-5.1%), respectively. The mean and maximum differences in MLD are 3.3 Gy and 7.5 Gy (95% confidence interval, 1.7-4.8 Gy), respectively. MLDs of all methods are highly correlated with each other and significantly correlated with clinical RP2, although V20s are not. For RP2 prediction, on the receiver operating characteristic curve, MLD from DVH{sub G} (MLD{sub G}) has a greater area under curve of than MLD from DVH{sub C} (MLD{sub C}) or DVH{sub P} (MLD{sub P}). Limiting RP2 to 30%, the threshold is 22.4, 20.6, and 18.8 Gy, for MLD{sub G}, MLD{sub C}, and MLD{sub P}, respectively. Conclusions: The differences in MLD and V20 from various lung definitions are significant. MLD from the GTV exclusion method may be more accurate in predicting clinical significant radiation pneumonitis.« less
Kloth, C; Thaiss, W M; Hetzel, J; Ditt, H; Grosse, U; Nikolaou, K; Horger, M
2016-07-01
To assess the impact of endobronchial coiling on the segment bronchus cross-sectional area and volumes in patients with lung emphysema using quantitative chest-CT measurements. Thirty patients (female = 15; median age = 65.36 years) received chest-CT before and after endobronchial coiling for lung volume reduction (LVR) between January 2010 and December 2014. Thin-slice (0.6 mm) non-enhanced image data sets were acquired both at end-inspiration and end-expiration using helical technique and 120 kV/100-150 mAs. Clinical response was defined as an increase in the walking distance (Six-minute walk test; 6MWT) after LVR-therapy. Additionally, pulmonary function test (PFT) measurements were used for clinical correlation. In the treated segmental bronchia, the cross-sectional lumen area showed significant reduction (p < 0.05) in inspiration and tendency towards enlargement in expiration (p > 0.05). In the ipsilateral lobes, the lumina showed no significant changes. In the contralateral lung, we found tendency towards increased cross-sectional area in inspiration (p = 0.06). Volumes of the treated segments correlated with the treated segmental bronchial lumina in expiration (r = 0.80, p < 0.001). Clinical correlation with changes in 6MWT/PFT showed a significant decrease of the inspiratory volume of the treated lobe in responders only. Endobronchial coiling causes significant decrease in the cross-sectional area of treated segment bronchi in inspiration and a slight increase in expiration accompanied by a volume reduction. • Endobronchial coiling has indirect impact on cross-sectional area of treated segment bronchi • Volume changes of treated lobes correlate with changes in bronchial cross-sectional area • Coil-induced effects reflect their stabilizing and stiffening impact on lung parenchyma • Endobronchial coiling reduces bronchial collapsing compensating the loss of elasticity.
Aging-Related Systemic Manifestations in COPD Patients and Cigarette Smokers
Boyer, Laurent; Marcos, Elisabeth; Margarit, Laurent; Le Corvoisier, Philippe; Vervoitte, Laetitia; Hamidou, Leila; Frih, Lamia; Audureau, Etienne; Covali-Noroc, Ala; Andujar, Pascal; Saakashvili, Zakaria; Lino, Anne; Ghaleh, Bijan; Hue, Sophie; Derumeaux, Geneviève; Housset, Bruno; Dubois-Randé, Jean-Luc; Boczkowski, Jorge; Maitre, Bernard; Adnot, Serge
2015-01-01
Rationale Chronic obstructive pulmonary disease (COPD) is often associated with age-related systemic abnormalities that adversely affect the prognosis. Whether these manifestations are linked to the lung alterations or are independent complications of smoking remains unclear. Objectives To look for aging-related systemic manifestations and telomere shortening in COPD patients and smokers with minor lung destruction responsible for a decline in the diffusing capacity for carbon monoxide (DLCO) corrected for alveolar volume (KCO). Methods Cross-sectional study in 301 individuals (100 with COPD, 100 smokers without COPD, and 101 nonsmokers without COPD). Measurements and Main Results Compared to control smokers, patients with COPD had higher aortic pulse-wave velocity (PWV), lower bone mineral density (BMD) and appendicular skeletal muscle mass index (ASMMI), and shorter telomere length (TL). Insulin resistance (HOMA-IR) and glomerular filtration rate (GFR) were similar between control smokers and COPD patients. Smokers did not differ from nonsmokers for any of these parameters. However, smokers with normal spirometry but low KCO had lower ASMMI values compared to those with normal KCO. Moreover, female smokers with low KCO, had lower BMD and shorter TL compared to those with normal KCO. Conclusions Aging-related abnormalities in patients with COPD are also found in smokers with minor lung dysfunction manifesting as a KCO decrease. Decreased KCO might be useful, particularly among women, for identifying smokers at high risk for aging-related systemic manifestations and telomere shortening. PMID:25785739
Lung volumes and maximal respiratory pressures in collegiate swimmers and runners.
Cordain, L; Tucker, A; Moon, D; Stager, J M
1990-03-01
To determine whether respiratory muscle strength is related to pulmonary volume differences in athletes and nonathletes, 11 intercollegiate female swimmers, 11 female cross-country runners, and two nonathletic control groups, matched to the athletes in height and age, were evaluated for pulmonary parameters including maximal inspiratory pressure (PImax) and maximal expiratory pressure (PEmax). Swimmers exhibited larger (p less than .05) vital capacities (VC), residual lung volumes (RV), inspiratory capacities (IC), and functional residual capacities (FRC) than both the runners or the controls but no difference (p greater than .05) in either PImax or inspiratory flow (FIV 25%-75%). Timed expiratory volumes (FEV 0.5 and FEV 1.0) were significantly (p less than .05) lower in the swimmers than in the controls. These data suggest that an adaptational growth may be responsible, in part, for the augmented static lung volumes demonstrated in swimmers.
Correlation between alveolar ventilation and electrical properties of lung parenchyma.
Roth, Christian J; Ehrl, Andreas; Becher, Tobias; Frerichs, Inéz; Schittny, Johannes C; Weiler, Norbert; Wall, Wolfgang A
2015-06-01
One key problem in modern medical imaging is linking measured data and actual physiological quantities. In this article we derive such a link between the electrical bioimpedance of lung parenchyma, which can be measured by electrical impedance tomography (EIT), and the magnitude of regional ventilation, a key to understanding lung mechanics and developing novel protective ventilation strategies. Two rat-derived three-dimensional alveolar microstructures obtained from synchrotron-based x-ray tomography are each exposed to a constant potential difference for different states of ventilation in a finite element simulation. While the alveolar wall volume remains constant during stretch, the enclosed air volume varies, similar to the lung volume during ventilation. The enclosed air, serving as insulator in the alveolar ensemble, determines the resulting current and accordingly local tissue bioimpedance. From this we can derive a relationship between lung tissue bioimpedance and regional alveolar ventilation. The derived relationship shows a linear dependence between air content and tissue impedance and matches clinical data determined from a ventilated patient at the bedside.
Optical properties of tissue, experimental results
NASA Astrophysics Data System (ADS)
Beek, Johan F.
1993-08-01
The effective attenuation coefficient of piglet lung was measured in vitro at 632.8 nm. Interstial fibres with isotropic tips were used to measure the fluence rate as a function of the distance from an isotropic light source. In vitro measurements at 632.8 nm on a lung that was insufflated with oxygen from 50 to 150 ml showed that the effective attenuation coefficient decreases as a function of the volume of air in the lung (at 50 ml /Jeff = 0.297 + 0.011 mnf1, at 100 ml lice 0.150 ± 0.007 mm-1, and at 150 ml /Jeff= 0.1136 + 0.015 mm-1). A single in vitro measurement at 790 nm at an insufflated lung volume of 100 ml gave a comparable result (ii ie = 0.175 + 0.004 mm-1). A ff decrease in effective attenuation coefficient with an ncrease in lung volume was explained by Mie-theory. The effective attenuation coefficient, calculated with 11, and g from Mie-theory, showed a deviation < 22% from the measured in vitro values.
Walter, Joan E; Heuvelmans, Marjolein A; Bock, Geertruida H de; Yousaf-Khan, Uraujh; Groen, Harry J M; Aalst, Carlijn M van der; Nackaerts, Kristiaan; Ooijen, Peter M A van; Koning, Harry J de; Vliegenthart, Rozemarijn; Oudkerk, Matthijs
2018-04-16
New nodules after baseline are regularly found in low-dose CT lung cancer screening and have a high lung cancer probability. It is unknown whether morphological and location characteristics can improve new nodule risk stratification by size. Solid non-calcified nodules detected during incidence screening rounds of the randomised controlled Dutch-Belgian lung cancer screening (NELSON) trial and registered as new or previously below detection limit (15 mm 3 ) were included. A multivariate logistic regression analysis with lung cancer as outcome was performed, including previously established volume cut-offs (<30 mm 3 , 30-<200 mm 3 and ≥200 mm 3 ) and nodule characteristics (location, distribution, shape, margin and visibility <15 mm 3 in retrospect). Overall, 1280 new nodules were included with 73 (6%) being lung cancer. Of nodules ≥30 mm 3 at detection and visible <15 mm 3 in retrospect, 22% (6/27) were lung cancer. Discrimination based on volume cut-offs (area under the receiver operating characteristic curve (AUC): 0.80, 95% CI 0.75 to 0.84) and continuous volume (AUC: 0.82, 95% CI 0.77 to 0.87) was similar. After adjustment for volume cut-offs, only location in the right upper lobe (OR 2.0, P=0.012), central distribution (OR 2.4, P=0.001) and visibility <15 mm 3 in retrospect (OR 4.7, P=0.003) remained significant predictors for lung cancer. The Hosmer-Lemeshow test (P=0.75) and assessment of bootstrap calibration curves indicated adequate model fit. Discrimination based on the continuous model probability (AUC: 0.85, 95% CI 0.81 to 0.89) was superior to volume cut-offs alone, but when stratified into three risk groups (AUC: 0.82, 95% CI 0.78 to 0.86), discrimination was similar. Contrary to morphological nodule characteristics, growth-independent characteristics may further improve volume-based new nodule lung cancer prediction, but in a three-category stratification approach, this is limited. ISRCTN63545820; pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Reiss, Lucy Kathleen; Kowallik, Anke; Uhlig, Stefan
2011-01-01
Introduction Mechanical ventilation (MV) of mice is increasingly required in experimental studies, but the conditions that allow stable ventilation of mice over several hours have not yet been fully defined. In addition, most previous studies documented vital parameters and lung mechanics only incompletely. The aim of the present study was to establish experimental conditions that keep these parameters within their physiological range over a period of 6 h. For this purpose, we also examined the effects of frequent short recruitment manoeuvres (RM) in healthy mice. Methods Mice were ventilated at low tidal volume VT = 8 mL/kg or high tidal volume VT = 16 mL/kg and a positive end-expiratory pressure (PEEP) of 2 or 6 cmH2O. RM were performed every 5 min, 60 min or not at all. Lung mechanics were followed by the forced oscillation technique. Blood pressure (BP), electrocardiogram (ECG), heart frequency (HF), oxygen saturation and body temperature were monitored. Blood gases, neutrophil-recruitment, microvascular permeability and pro-inflammatory cytokines in bronchoalveolar lavage (BAL) and blood serum as well as histopathology of the lung were examined. Results MV with repetitive RM every 5 min resulted in stable respiratory mechanics. Ventilation without RM worsened lung mechanics due to alveolar collapse, leading to impaired gas exchange. HF and BP were affected by anaesthesia, but not by ventilation. Microvascular permeability was highest in atelectatic lungs, whereas neutrophil-recruitment and structural changes were strongest in lungs ventilated with high tidal volume. The cytokines IL-6 and KC, but neither TNF nor IP-10, were elevated in the BAL and serum of all ventilated mice and were reduced by recurrent RM. Lung mechanics, oxygenation and pulmonary inflammation were improved by increased PEEP. Conclusions Recurrent RM maintain lung mechanics in their physiological range during low tidal volume ventilation of healthy mice by preventing atelectasis and reduce the development of pulmonary inflammation. PMID:21935418
Wennberg, Berit M; Baumann, Pia; Gagliardi, Giovanna; Nyman, Jan; Drugge, Ninni; Hoyer, Morten; Traberg, Anders; Nilsson, Kristina; Morhed, Elisabeth; Ekberg, Lars; Wittgren, Lena; Lund, Jo-Åsmund; Levin, Nina; Sederholm, Christer; Lewensohn, Rolf; Lax, Ingmar
2011-05-01
In SBRT of lung tumours no established relationship between dose-volume parameters and the incidence of lung toxicity is found. The aim of this study is to compare the LQ model and the universal survival curve (USC) to calculate biologically equivalent doses in SBRT to see if this will improve knowledge on this relationship. Toxicity data on radiation pneumonitis grade 2 or more (RP2+) from 57 patients were used, 10.5% were diagnosed with RP2+. The lung DVHs were corrected for fractionation (LQ and USC) and analysed with the Lyman- Kutcher-Burman (LKB) model. In the LQ-correction α/β = 3 Gy was used and the USC parameters used were: α/β = 3 Gy, D(0) = 1.0 Gy, [Formula: see text] = 10, α = 0.206 Gy(-1) and d(T) = 5.8 Gy. In order to understand the relative contribution of different dose levels to the calculated NTCP the concept of fractional NTCP was used. This might give an insight to the questions of whether "high doses to small volumes" or "low doses to large volumes" are most important for lung toxicity. NTCP analysis with the LKB-model using parameters m = 0.4, D(50) = 30 Gy resulted for the volume dependence parameter (n) with LQ correction n = 0.87 and with USC correction n = 0.71. Using parameters m = 0.3, D(50) = 20 Gy n = 0.93 with LQ correction and n = 0.83 with USC correction. In SBRT of lung tumours, NTCP modelling of lung toxicity comparing models (LQ,USC) for fractionation correction, shows that low dose contribute less and high dose more to the NTCP when using the USC-model. Comparing NTCP modelling of SBRT data and data from breast cancer, lung cancer and whole lung irradiation implies that the response of the lung is treatment specific. More data are however needed in order to have a more reliable modelling.
Dostál, P; Senkeřík, M; Pařízková, R; Bareš, D; Zivný, P; Zivná, H; Cerný, V
2010-01-01
Hypothermia was shown to attenuate ventilator-induced lung injury due to large tidal volumes. It is unclear if the protective effect of hypothermia is maintained under less injurious mechanical ventilation in animals without previous lung injury. Tracheostomized rats were randomly allocated to non-ventilated group (group C) or ventilated groups of normothermia (group N) and mild hypothermia (group H). After two hours of mechanical ventilation with inspiratory fraction of oxygen 1.0, respiratory rate 60 min(-1), tidal volume 10 ml x kg(-1), positive end-expiratory pressure (PEEP) 2 cm H2O or immediately after tracheostomy in non-ventilated animals inspiratory pressures were recorded, rats were sacrificed, pressure-volume (PV) curve of respiratory system constructed, bronchoalveolar lavage (BAL) fluid and aortic blood samples obtained. Group N animals exhibited a higher rise in peak inspiratory pressures in comparison to group H animals. Shift of the PV curve to right, higher total protein and interleukin-6 levels in BAL fluid were observed in normothermia animals in comparison with hypothermia animals and non-ventilated controls. Tumor necrosis factor-alpha was lower in the hypothermia group in comparison with normothermia and non-ventilated groups. Mild hypothermia attenuated changes in respiratory system mechanics and modified cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation in animals without previous lung injury.
The effect of latent adenovirus 5 infection on cigarette smoke-induced lung inflammation.
Vitalis, T Z; Kern, I; Croome, A; Behzad, H; Hayashi, S; Hogg, J C
1998-03-01
The aim of this study was to test the hypothesis that latent adenovirus (Ad) 5 infection increases the lung inflammation that follows a single acute exposure to cigarette smoke. A recently developed model of latent adenoviral infection in guinea-pigs was used. Twelve animals were infected with Ad5 (10(8) plaque-forming units) and 12 animals were sham-infected. Thirty five days later six Ad5-infected and six sham-infected animals were exposed to the smoke from five cigarettes. The remaining animals were used as controls for both infection and smoking. As markers of inflammation, the volume fraction of macrophages, T-lymphocytes, neutrophils and eosinophils were measured by quantitative histology. We found that latent Ad5-infection alone, doubled the number of macrophages in the lung parenchyma and that smoking alone, doubled the volume fraction of neutrophils in the airway wall and the volume fraction of macrophages in the lung parenchyma. Neither viral infection nor smoking, alone, had an effect on T-lymphocytes or eosinophils. However, the combination of viral infection and smoking doubled the T-lymphocyte helper cells and quadrupled the volume fraction of macrophages in the lung parenchyma. We conclude that in guinea-pigs, latent adenovirus 5 infection increases the inflammation that follows a single acute exposure to cigarette smoke, by increasing the volume fraction of macrophages and T-lymphocyte helper cells.
Kumar, Gaurav; Rawat, Sheh; Puri, Abhishek; Sharma, Manoj Kumar; Chadha, Pranav; Babu, Anand Giri; Yadav, Girigesh
2012-01-01
Multimodality therapy for esophageal cancer can cause various kinds of treatment-related sequelae, especially pulmonary toxicities. This prospective study aims to investigate the clinical and dosimetric parameters predicting lung injury in patients undergoing radiation therapy for esophageal cancer. Forty-five esophageal cancer patients were prospectively analyzed. The pulmonary toxicities (or sequelae) were evaluated by comparing chest X-ray films, pulmonary function tests and symptoms caused by pulmonary damage before and after treatment. All patients were treated with either three-dimensional radiotherapy (3DCRT) or with intensity-modulated radiotherapy (IMRT). The planning dose volume histogram was used to compute the lung volumes receiving more than 5, 10, 20 and 30 Gy (V5, V10, V20, V30) and mean lung dose. V20 was larger in the IMRT group than in the 3DCRT group (p = 0.002). V20 (>15%) and V30 (>20%) resulted in a statistically significant increase in the occurrence of chronic pneumonitis (p = 0.03) and acute pneumonitis (p = 0.007), respectively. The study signifies that a larger volume of lung receives lower doses because of multiple beam arrangement and a smaller volume of lung receives higher doses because of better dose conformity in IMRT plans. Acute pneumonitis correlates more with V30 values, whereas chronic pneumonitis was predominantly seen in patients with higher V20 values.
Lipes, Jed; Bojmehrani, Azadeh; Lellouche, Francois
2012-01-01
Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung injury. We will briefly review the physiologic rationale for low tidal volume ventilation and explore the current evidence for protective ventilation in patients without lung injury. In addition, we will explore some of the potential reasons for its underuse and provide strategies to overcome some of the associated clinical challenges. PMID:22536499
Validation of equations for pleural effusion volume estimation by ultrasonography.
Hassan, Maged; Rizk, Rana; Essam, Hatem; Abouelnour, Ahmed
2017-12-01
To validate the accuracy of previously published equations that estimate pleural effusion volume using ultrasonography. Only equations using simple measurements were tested. Three measurements were taken at the posterior axillary line for each case with effusion: lateral height of effusion ( H ), distance between collapsed lung and chest wall ( C ) and distance between lung and diaphragm ( D ). Cases whose effusion was aspirated to dryness were included and drained volume was recorded. Intra-class correlation coefficient (ICC) was used to determine the predictive accuracy of five equations against the actual volume of aspirated effusion. 46 cases with effusion were included. The most accurate equation in predicting effusion volume was ( H + D ) × 70 (ICC 0.83). The simplest and yet accurate equation was H × 100 (ICC 0.79). Pleural effusion height measured by ultrasonography gives a reasonable estimate of effusion volume. Incorporating distance between lung base and diaphragm into estimation improves accuracy from 79% with the first method to 83% with the latter.
Water Permeability Adjusts Resorption in Lung Epithelia to Increased Apical Surface Liquid Volumes.
Schmidt, Hanna; Michel, Christiane; Braubach, Peter; Fauler, Michael; Neubauer, Daniel; Thompson, Kristin E; Frick, Manfred; Mizaikoff, Boris; Dietl, Paul; Wittekindt, Oliver H
2017-03-01
The apical surface liquid (ASL) layer covers the airways and forms a first line of defense against pathogens. Maintenance of ASL volume by airway epithelia is essential for maintaining lung function. The proteolytic activation of epithelial Na + channels is believed to be the dominating mechanism to cope with increases in ASL volumes. Alternative mechanisms, in particular increases in epithelial osmotic water permeability (P osm ), have so far been regarded as rather less important. However, most studies mainly addressed immediate effects upon apical volume expansion (AVE) and increases in ASL. This study addresses the response of lung epithelia to long-term AVE. NCI-H441 cells and primary human tracheal epithelial cells, both cultivated in air-liquid interface conditions, were used as models for the lung epithelium. AVE was established by adding isotonic solution to the apical surface of differentiated lung epithelia, and time course of ASL volume restoration was assessed by the deuterium oxide dilution method. Concomitant ion transport was investigated in Ussing chambers. We identified a low resorptive state immediately after AVE, which coincided with proteolytic ion transport activation within 10-15 minutes after AVE. The main clearance of excess ASL occurred during a delayed (hours after AVE) high resorptive state, which did not correlate with ion transport activation. Instead, high resorptive state onset coincided with an increase in P osm , which depended on aquaporin up-regulation. In summary, our data demonstrate that, aside from ion transport activation, modulation of P osm is a major mechanism to compensate for long-term AVE in lung epithelia.
Sturm, Robert
2015-11-01
According to epidemiological and experimental studies, inhalation of nanoparticles is commonly believed as a main trigger for several pulmonary dysfunctions and lung diseases. Concerning the transport and deposition of such nano-scale particles in the different structures of the human lungs, some essential questions are still in need of a clarification. Therefore, main objective of the study was the simulation of nanoparticle deposition in the alveolar region of the human respiratory tract (HRT). Respective factors describing the aerodynamic behavior of spherical and non-spherical particles in the inhaled air stream (i.e., Cunningham slip correction factors, dynamic shape factors, equivalent-volume diameters, aerodynamic diameters) were computed. Alveolar deposition of diverse nanomaterials according to several known mechanisms, among which Brownian diffusion and sedimentation play a superior role, was approximated by the use of empirical and analytical formulae. Deposition calculations were conducted with a currently developed program, termed NANODEP, which allows the variation of numerous input parameters with regard to particle geometry, lung morphometry, and aerosol inhalation. Generally, alveolar deposition of nanoparticles concerned for this study varies between 0.1% and 12.4% during sitting breathing and between 2.0% and 20.1% during heavy-exercise breathing. Prolate particles (e.g., nanotubes) exhibit a significant increase in deposition, when their aspect ratio is enhanced. In contrast, deposition of oblate particles (e.g., nanoplatelets) is remarkably declined with any reduction of the aspect ratio. The study clearly demonstrates that alveolar deposition of nanoparticles represents a topic certainly being of superior interest for physicists and respiratory physicians in future.
Abdeyrim, Arikin; Zhang, Yongping; Li, Nanfang; Zhao, Minghua; Wang, Yinchun; Yao, Xiaoguang; Keyoumu, Youledusi; Yin, Ting
2015-07-25
Even through narrowing of the upper-airway plays an important role in the generation of obstructive sleep apnea (OSA), the peripheral airways is implicated in pre-obese and obese OSA patients, as a result of decreased lung volume and increased lung elastic recoil pressure, which, in turn, may aggravate upper-airway collapsibility. A total of 263 male (n = 193) and female (n = 70) subjects who were obese to various degrees without a history of lung diseases and an expiratory flow limitation, but troubled with snoring or suspicion of OSA were included in this cross-sectional study. According to nocturnal-polysomnography the subjects were distributed into OSA and non-OSA groups, and were further sub-grouped by gender because of differences between males and females, in term of, lung volume size, airway resistance, and the prevalence of OSA among genders. Lung volume and respiratory mechanical properties at different-frequencies were evaluated by plethysmograph and an impulse oscillation system, respectively. Functional residual capacity (FRC) and expiratory reserve volume were significantly decreased in the OSA group compared to the non-OSA group among males and females. As weight and BMI in males in the OSA group were greater than in the non-OSA group (90 ± 14.8 kg vs. 82 ± 10.4 kg, p < 0.001; 30.5 ± 4.2 kg/m(2) vs. 28.0 ± 3.0 kg/m(2), p < 0.001), multiple regression analysis was required to adjust for BMI or weight and demonstrated that these lung volumes decreases were independent from BMI and associated with the severity of OSA. This result was further confirmed by the female cohort. Significant increases in total respiratory resistance and decreases in respiratory conductance (Grs) were observed with increasing severity of OSA, as defined by the apnea-hypopnea index (AHI) in both genders. The specific Grs (sGrs) stayed relatively constant between the two groups in woman, and there was only a weak association between AHI and sGrs among man. Multiple-stepwise-regression showed that reactance at 5 Hz was highly correlated with AHI in males and females or hypopnea index in females, independently-highly correlated with peripheral-airway resistance and significantly associated with decreasing FRC. Total respiratory resistance and peripheral airway resistance significantly increase, and its inverse Grs decrease, in obese patients with OSA in comparison with those without OSA, and are independently associated with OSA severity. These results might be attributed to the abnormally increased lung elasticity recoil pressure on exhalation, due to increase in lung elasticity and decreased lung volume in obese OSA.
Spirometry is a painless study of air volume and flow rate within the lungs. Spirometry is frequently used to evaluate lung function in people with obstructive or restrictive lung diseases such as asthma or cystic fibrosis.
NASA Astrophysics Data System (ADS)
Najdahmadi, Avid; Lakey, Jonathan R. T.; Botvinick, Elliot
2018-02-01
Pancreatic islet transplantation is a promising approach of providing insulin in type 1 diabetes. One strategy to protect islets from the host immune system is encapsulation within a porous biocompatible alginate membrane. This encapsulation provides mechanical support to the cells and allows selective diffusion of oxygen, nutrients and insulin while blocking immunoglobulins. These hydrogels form by diffusion of calcium ions into the polymer network and therefore they are highly sensitive to environmental changes and fluctuations in temperature. We investigated the effects of gel concentration, crosslinking time and ambient conditions on material permeability, volume, and rigidity, all of which may change the immunoisolating characteristics of alginate. To measure diffusion coefficient as a method to capture structural changes we studied the diffusion of fluorescently tagged dextrans of different molecular weight into the midplane of alginate microcapsules, the diffusion coefficient is then calculated by fitting observed fluorescence dynamics to the mathematical solution of 1-D diffusion into a sphere. These measurements were performed after incubation in different conditions as well as after an in vivo experiment in six immunocompetent mice for seven days. Additionally, the changes in gel volume after incubation at different temperatures and environmental conditions as well as changes in compression modulus of alginate gels during crosslinking were investigated. Our result show that increase of polymer concentration and crosslinking time leads to a decrease in volume and increase in compression modulus. Furthermore, we found that samples crosslinked and placed in physiological environment, experience an increase in volume. As expected, these volume changes affect diffusion rates of fluorescent dextrans, where volume expansion is correlated with higher calculated diffusion coefficient. This observation is critical to islet protection since higher permeability due to the expansion in vivo may lead to increased permeability to immunoglobulins. Capsules from the in vivo study showed similar volume expansion and increased permeability, indicating our in vitro assay is a good predictor of volume change in vivo.
21 CFR 868.2450 - Lung water monitor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food...
21 CFR 868.2450 - Lung water monitor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...
21 CFR 868.2450 - Lung water monitor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...
21 CFR 868.2450 - Lung water monitor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...
21 CFR 868.2450 - Lung water monitor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...
From the Journal archives: Airway closure and lung volumes in surgical positions.
Grocott, Hilary P
2014-04-01
Douglas B. Craig, W.M. Wahba, Hillary Don Can Anaesth Soc J 1971; 18: 92-9. Surgery and anesthesia expose patients to moderate and sometimes extreme positioning changes that are often unphysiological. The purpose of this article is to highlight and contextualize a seminal study from the Journal archives that explores the effect of several commonly utilized surgical positions (supine, Trendelenburg and lithotomy) and age on basic lung volumes as well as the volume at which small airway closure (AC) (also known as closing volume [CV]) occurs. These factors were examined with the aim of determining which patient position variables could be of clinical significance to gas exchange in the perioperative period. This work showed that supine positioning, when compared with the seated position, results in a decrease of all lung volumes and capacities, including functional residual capacity (FRC) and CV. Trendelenburg positioning further decreases FRC, with no further changes induced by lithotomy positioning. Age is a clinically important factor in AC, occurring within the tidal volume range at a lower age when supine as compared with the seated position. The work of Drs. D. Craig et al. published in the Journal more than 40 years ago was seminal to our understanding of how patient positioning has an important influence on lung volumes and on the age-related relationship between FRC and CV.
Diffuse alveolar hemorrhage due to metastatic angiosarcoma of the lung: A case report
PAN, ZHIJIE; AN, ZHOU; LI, YANYUAN; ZHOU, JIANYING
2015-01-01
Angiosarcoma is a rare, heterogeneous malignant tumor that derives from endothelial cells, and it has aggressive characteristics with a marked tendency for distant metastasis. Diffuse alveolar hemorrhage (DAH) is a catastrophic clinical syndrome, however, it is rare as the presentation of pulmonary angiosarcoma. To increase awareness with regard to angiosarcoma and DAH, the current study presents a case of angiosarcoma that originated from the subcutaneous soft tissue of the mastoid process, but was subject to a delayed diagnosis and rapid invasion into the brain and lung. The metastatic angiosarcoma of the lung presented with DAH as the initial manifestation. The pathological examination of a biopsy of the subcutaneous mass and pulmonary lesions confirmed the diagnosis of angiosarcoma. The patient succumbed to respiratory failure at 1 month post-diagnosis. PMID:26788222
No effect of artificial gravity on lung function with exercise training during head-down bed rest
NASA Astrophysics Data System (ADS)
Su, Longxiang; Guo, Yinghua; Wang, Yajuan; Wang, Delong; Liu, Changting
2016-04-01
The aim of this study is to explore the effectiveness of microgravity simulated by head-down bed rest (HDBR) and artificial gravity (AG) with exercise on lung function. Twenty-four volunteers were randomly divided into control and exercise countermeasure (CM) groups for 96 h of 6° HDBR. Comparisons of pulse rate, pulse oxygen saturation (SpO2) and lung function were made between these two groups at 0, 24, 48, 72, 96 h. Compared with the sitting position, inspiratory capacity and respiratory reserve volume were significantly higher than before HDBR (0° position) (P < 0.05). Vital capacity, expiratory reserve volume, forced vital capacity, forced expiratory volume in 1 s, forced inspiratory vital capacity, forced inspiratory volume in 1 s, forced expiratory flow at 25, 50, and 75%, maximal mid-expiratory flow and peak expiratory flow were all significantly lower than those before HDBR (P < 0.05). Neither control nor CM groups showed significant differences in pulse rate, SpO2, pulmonary volume and pulmonary ventilation function over the HDBR observation time. Postural changes can lead to variation in lung volume and ventilation function, but a HDBR model induced no changes in pulmonary function and therefore should not be used to study AG countermeasures.
te Pas, Arjan B.; Kitchen, Marcus J.; Lee, Katie; Wallace, Megan J.; Fouras, Andreas; Lewis, Robert A.; Yagi, Naoto; Uesugi, Kentaro; Hooper, Stuart B.
2016-01-01
Background: A sustained inflation (SI) facilitates lung aeration, but the most effective pressure and duration are unknown. We investigated the effect of gestational age (GA) and airway liquid volume on the required inflation pressure and SI duration. Methods: Rabbit kittens were delivered at 27, 29, and 30 d gestation, intubated and airway liquid was aspirated. Either no liquid (control) or 30 ml/kg of liquid was returned to the airways. Lung gas volumes were measured by plethysmography and phase-contrast X-ray-imaging. Starting at 22 cmH2O, airway pressure was increased until airflow commenced and pressure was then held constant. The SI was truncated when 20 ml/kg air had entered the lung and ventilation continued with intermittent positive pressure ventilation (iPPV). Results: Higher SI pressures and longer durations were required in 27-d kittens compared to 30-d kittens. During iPPV, 27-d kittens needed higher pressures and had lower functional residual capacity (FRC) compared to 30-d kittens. Adding lung liquid increased SI duration, reduced FRC, and increased resistance and pressures during iPPV in 29- and 30-d kittens. Conclusion: Immature kittens required higher starting pressures and longer SI durations to achieve a set inflation volume. Larger airway liquid volumes adversely affected lung function during iPPV in older but not young kittens. PMID:26991259
The Impact of Sources of Variability on Parametric Response Mapping of Lung CT Scans
Boes, Jennifer L.; Bule, Maria; Hoff, Benjamin A.; Chamberlain, Ryan; Lynch, David A.; Stojanovska, Jadranka; Martinez, Fernando J.; Han, Meilan K.; Kazerooni, Ella A.; Ross, Brian D.; Galbán, Craig J.
2015-01-01
Parametric response mapping (PRM) of inspiration and expiration computed tomography (CT) images improves the radiological phenotyping of chronic obstructive pulmonary disease (COPD). PRM classifies individual voxels of lung parenchyma as normal, emphysematous, or nonemphysematous air trapping. In this study, bias and noise characteristics of the PRM methodology to CT and clinical procedures were evaluated to determine best practices for this quantitative technique. Twenty patients of varying COPD status with paired volumetric inspiration and expiration CT scans of the lungs were identified from the baseline COPD-Gene cohort. The impact of CT scanner manufacturer and reconstruction kernels were evaluated as potential sources of variability in PRM measurements along with simulations to quantify the impact of inspiration/expiration lung volume levels, misregistration, and image spacing on PRM measurements. Negligible variation in PRM metrics was observed when CT scanner type and reconstruction were consistent and inspiration/expiration lung volume levels were near target volumes. CT scanner Hounsfield unit drift occurred but remained difficult to ameliorate. Increasing levels of image misregistration and CT slice spacing were found to have a minor effect on PRM measurements. PRM-derived values were found to be most sensitive to lung volume levels and mismatched reconstruction kernels. As with other quantitative imaging techniques, reliable PRM measurements are attainable when consistent clinical and CT protocols are implemented. PMID:26568983
Bronchoscopic Lung Volume Reduction with Endobronchial Valves in Low-FEV1 Patients.
Darwiche, Kaid; Karpf-Wissel, Rüdiger; Eisenmann, Stephan; Aigner, Clemens; Welter, Stefan; Zarogoulidis, Paul; Hohenforst-Schmidt, Wolfgang; Freitag, Lutz; Oezkan, Filiz
2016-01-01
Bronchoscopic lung volume reduction (BLVR) with valves has been shown to improve lung function, exercise capacity, and quality of life in patients with emphysema, but only few patients with forced expiratory volume in 1 s (FEV1) ≤20% predicted have been included in former studies. Although the procedure can be performed safely, pneumothorax is a frequent complication, which can be critical for these very severely diseased patients. The aim of the study was to assess the safety of BLVR in patients with a very advanced stage of emphysema, as indicated by FEV1 ≤20% predicted. Patients in whom BLVR was performed between January 2013 and August 2015 were included in this analysis if their baseline predicted FEV1 was ≤20%. BLVR, performed only if collateral ventilation was absent, achieved complete occlusion of the target lobe. All patients were closely monitored and were not discharged before the fourth day after BLVR. Twenty patients with FEV1 ≤20% predicted were included in the analysis. Lung volume reduction was achieved in 65% of the cases. Pneumothorax occurred in 4 cases (20%). No patient died. Lung function and exercise tolerance improved after 1 and 3 months, respectively. BLVR with valves can be safely performed in patients with FEV1 ≤20% predicted when close postprocedural monitoring is provided. Improvement in lung function and exercise capacity can be achieved. © 2016 S. Karger AG, Basel.
Felloni, Paul; Duhamel, Alain; Faivre, Jean-Baptiste; Giordano, Jessica; Khung, Suonita; Deken, Valérie; Remy, Jacques; Remy-Jardin, Martine
2017-11-01
The noninvasive approach of lung perfusion generated from dual-energy computed tomography acquisitions has entered clinical practice. The purpose of this study was to analyze the regional distribution of iodine within distal portions of the pulmonary arterial bed on dual-source, dual-energy computed tomography examinations in a cohort of subjects without cardiopulmonary pathologies. The study population included 42 patients without cardiorespiratory disease, enabling quantitative and qualitative analysis of pulmonary blood volume after administration of a 40% contrast agent. Qualitative analysis was based on visual assessment. Quantitative analysis was obtained after semiautomatic division of each lung into 18 areas. The iodine concentration did not significantly differ between the right (R) and left (L) lungs (P = .49), with a mean attenuation of 41.35 Hounsfield units (HU) and 41.14 HU, respectively. Three regional gradients of attenuation were observed between: (a) lung bases and apices (P < .001), linked to the conditions of examination (mean Δ: 6.23 in the R lung; 5.96 in the L lung); (b) posterior and anterior parts of the lung (P < .001) due to gravity (mean Δ: 11.92 in the R lung ; 15.93 in the L lung); and (c) medullary and cortical lung zones (P < .001) (mean Δ: 9.35 in the R lung ; 8.37 in the L lung). The intensity of dependent-nondependent (r = 0.42; P < .001) and corticomedullary (r = 0.58; P < .0001) gradients was correlated to the overall iodine concentration. Distribution of pulmonary blood volume is influenced by physiological gradients and scanning conditions. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Furumiya, Junichi; Nishimura, Hiroyuki; Nakanishi, Akinori; Hashimoto, Yoshiaki
2011-07-01
We report an autopsy case of postmortem ethanol diffusion into the cardiac blood after aspiration of wood chips, although antemortem ethanol consumption was not evident. A man in his twenties, who was loading a truck with small wood chips in a hot, humid storehouse, was accidentally buried in a heap of chips. At the time the body was discovered, 20 h after the accident, rectal temperature was 36°C. Autopsy showed the cause of death to be asphyxia due to obstruction of the airway by aspiration of wood chips. The ethanol and n-propanol levels were significantly higher in the lungs (left, 0.603 and 0.009 mg/g; right, 0.571 and 0.006 mg/g) than in other tissues. A significant difference in ethanol concentration was observed between the left cardiac blood (0.243 mg/g) and the right femoral blood (0.042 mg/g). Low levels of ethanol and n-propanol were detected in the stomach contents (0.105 and 0.001 mg/g, respectively). In order to determine whether aspiration of wood chips affects postmortem ethanol production in the lung, we measured the ethanol and n-propanol levels of homogenized rabbit lung tissue incubated with autoclaved or non-autoclaved wood chips. Levels of ethanol and n-propanol were significantly higher in the homogenates incubated with non-autoclaved chips for 24h. The results of this animal experiment suggested that the ethanol detected in the lung was produced by putrefactive bacteria within the wood chips. After death, the ethanol produced endogenously in the lung appears to have diffused and affected the ethanol concentration of the left cardiac blood. 2011 Elsevier Ireland Ltd. All rights reserved.
Wolf, Michael S.; Chadha, Ashley D.; Carroll, Clinton M.; Borinstein, Scott C.
2014-01-01
Radiation-induced lung disease is a known complication of therapeutic lung irradiation, but the features have not been well described in children. We report the clinical, radiologic and histologic features of interstitial lung disease (ILD) in a 4-year-old child who had previously received lung irradiation as part of successful treatment for metastatic Wilms tumor. Her radiologic abnormalities and clinical symptoms developed in an indolent manner. Clinical improvement gradually occurred with corticosteroid therapy. However, the observed radiologic progression from interstitial and reticulonodular opacities to diffuse cystic lung disease, with subsequent improvement, is striking and has not been previously described in children. PMID:25434733
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, F.; Graduate Program in Biomedical Engineering, University of Western Ontario, London, Ontario N6A 5B9; Svenningsen, S.
Purpose: Pulmonary magnetic-resonance-imaging (MRI) and x-ray computed-tomography have provided strong evidence of spatially and temporally persistent lung structure-function abnormalities in asthmatics. This has generated a shift in their understanding of lung disease and supports the use of imaging biomarkers as intermediate endpoints of asthma severity and control. In particular, pulmonary {sup 1}H MRI can be used to provide quantitative lung structure-function measurements longitudinally and in response to treatment. However, to translate such biomarkers of asthma, robust methods are required to segment the lung from pulmonary {sup 1}H MRI. Therefore, their objective was to develop a pulmonary {sup 1}H MRI segmentationmore » algorithm to provide regional measurements with the precision and speed required to support clinical studies. Methods: The authors developed a method to segment the left and right lung from {sup 1}H MRI acquired in 20 asthmatics including five well-controlled and 15 severe poorly controlled participants who provided written informed consent to a study protocol approved by Health Canada. Same-day spirometry and plethysmography measurements of lung function and volume were acquired as well as {sup 1}H MRI using a whole-body radiofrequency coil and fast spoiled gradient-recalled echo sequence at a fixed lung volume (functional residual capacity + 1 l). We incorporated the left-to-right lung volume proportion prior based on the Potts model and derived a volume-proportion preserved Potts model, which was approximated through convex relaxation and further represented by a dual volume-proportion preserved max-flow model. The max-flow model led to a linear problem with convex and linear equality constraints that implicitly encoded the proportion prior. To implement the algorithm, {sup 1}H MRI was resampled into ∼3 × 3 × 3 mm{sup 3} isotropic voxel space. Two observers placed seeds on each lung and on the background of 20 pulmonary {sup 1}H MR images in a randomized dataset, on five occasions, five consecutive days in a row. Segmentation accuracy was evaluated using the Dice-similarity-coefficient (DSC) of the segmented thoracic cavity with comparison to five-rounds of manual segmentation by an expert observer. The authors also evaluated the root-mean-squared-error (RMSE) of the Euclidean distance between lung surfaces, the absolute, and percent volume error. Reproducibility was measured using the coefficient of variation (CoV) and intraclass correlation coefficient (ICC) for two observers who repeated segmentation measurements five-times. Results: For five well-controlled asthmatics, forced expiratory volume in 1 s (FEV{sub 1})/forced vital capacity (FVC) was 83% ± 7% and FEV{sub 1} was 86 ± 9%{sub pred}. For 15 severe, poorly controlled asthmatics, FEV{sub 1}/FV C = 66% ± 17% and FEV{sub 1} = 72 ± 27%{sub pred}. The DSC for algorithm and manual segmentation was 91% ± 3%, 92% ± 2% and 91% ± 2% for the left, right, and whole lung, respectively. RMSE was 4.0 ± 1.0 mm for each of the left, right, and whole lung. The absolute (percent) volume errors were 0.1 l (∼6%) for each of right and left lung and ∼0.2 l (∼6%) for whole lung. Intra- and inter-CoV (ICC) were <0.5% (>0.91%) for DSC and <4.5% (>0.93%) for RMSE. While segmentation required 10 s including ∼6 s for user interaction, the smallest detectable difference was 0.24 l for algorithm measurements which was similar to manual measurements. Conclusions: This lung segmentation approach provided the necessary and sufficient precision and accuracy required for research and clinical studies.« less
Walls, Justin; Maskrey, Michael; Wood-Baker, Richard; Stedman, Wade
2002-06-01
Arterial haemoglobin saturation during exercise in healthy young women [eight subjects mean (SEM) age 20.8 (1.8) years] was measured to confirm the theory that young women experience exercise-induced arterial hypoxaemia (EIAH) at a lower relative percentage of maximal oxygen uptake (VO(2max)) than has been documented in their male counterparts. To determine if flow limitation [the percentage of the tidal volume ( V(T)) that met or exceeded the boundary established by multiple maximal expiratory manoeuvres] and/or post-exercise lung diffusing capacity are linked to EIAH in women, and to investigate the influence of exercise intensity and duration on post-exercise carbon monoxide lung diffusing capacity ( D(L, CO)), these parameters were measured during and after three exercise tests (incremental test until exhaustion, 5 km run and 5 km run with sprint). All subjects experienced physiologically significant EIAH (a fall of more than 3% in oxygen saturation of arterial blood from levels at rest) and seven subjects experienced flow limitation during the VO(2max) protocol [mean (SD) 12.2 (8.8)% of V(T)]. Even though there was no significant relationship between aerobic capacity and the degree of flow limitation ( r=0.33, P>0.05), the flow limitation was related to absolute ventilation in the subjects studied ( r=0.82, P<0.05). There was no significant relationship between decrements in post exercise D(L, CO) and EIAH ( r=0.05, P>0.05), however there was a strong correlation between the extent of flow limitation (% of V(T)) and EIAH ( r=0.71). Significant decreases in D(L, CO) lasted for up to 16 h after each of the exercise tests ( P<0.05) and lasted for a further 8 h after the maximal test ( P<0.05). Exercise intensity was the main contributing factor to the observed decreases in post-exercise D(L, CO) with the percentage of VO(2max) attained during the various tests being significantly related to the fall in D(L, CO) for 1, 2, 3, 16 and 24 h after exercise ( P<0.05). As the appearance of flow limitation closely coincided with the appearance of EIAH, the results from the present study suggest that flow limitation is a contributing factor to EIAH in women although the exact mechanism remains unclear.