Sample records for lungs

  1. Lung dendritic cells imprint T cell lung homing and promote lung immunity through the chemokine receptor CCR4

    PubMed Central

    Strassner, James P.

    2013-01-01

    T cell trafficking into the lung is critical for lung immunity, but the mechanisms that mediate T cell lung homing are not well understood. Here, we show that lung dendritic cells (DCs) imprint T cell lung homing, as lung DC–activated T cells traffic more efficiently into the lung in response to inhaled antigen and at homeostasis compared with T cells activated by DCs from other tissues. Consequently, lung DC–imprinted T cells protect against influenza more effectively than do gut and skin DC–imprinted T cells. Lung DCs imprint the expression of CCR4 on T cells, and CCR4 contributes to T cell lung imprinting. Lung DC–activated, CCR4-deficient T cells fail to traffic into the lung as efficiently and to protect against influenza as effectively as lung DC–activated, CCR4-sufficient T cells. Thus, lung DCs imprint T cell lung homing and promote lung immunity in part through CCR4. PMID:23960189

  2. Impacts of Exercise on Prognostic Biomarkers in Lung Cancer Patients

    ClinicalTrials.gov

    2016-02-18

    Extensive Stage Small Cell Lung Cancer; Healthy, no Evidence of Disease; Limited Stage Small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  3. Docetaxel, Cisplatin, Pegfilgrastim, and Erlotinib Hydrochloride in Treating Patients With Stage IIIB or Stage IV Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2018-02-01

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Non-small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  4. Sirolimus and Auranofin in Treating Patients With Advanced or Recurrent Non-Small Cell Lung Cancer or Small Cell Lung Cancer

    ClinicalTrials.gov

    2017-08-28

    Extensive Stage Small Cell Lung Carcinoma; Lung Adenocarcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  5. Gefitinib in Treating Patients With Stage IB, II, or IIIA Non-small Cell Lung Cancer That Was Completely Removed by Surgery

    ClinicalTrials.gov

    2014-12-19

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer

  6. S0536: Cetuximab, Paclitaxel, Carboplatin, and Bevacizumab in Treating Patients With Advanced Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2015-08-11

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  7. Radiation Therapy, Chemotherapy, and Soy Isoflavones in Treating Patients With Stage IIIA-IIIB Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2017-05-23

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  8. Methoxyamine, Pemetrexed Disodium, Cisplatin, and Radiation Therapy in Treating Patients With Stage IIIA-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-04-24

    Non-Squamous Non-Small Cell Lung Carcinoma; Stage III Large Cell Lung Carcinoma AJCC v7; Stage III Lung Adenocarcinoma AJCC v7; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Large Cell Lung Carcinoma AJCC v7; Stage IIIA Lung Adenocarcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Large Cell Lung Carcinoma AJCC v7; Stage IIIB Lung Adenocarcinoma AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Large Cell Lung Carcinoma AJCC v7; Stage IV Lung Adenocarcinoma AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  9. Chemotherapy and Radiation Therapy With or Without Metformin Hydrochloride in Treating Patients With Stage III Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-04-30

    Adenosquamous Lung Carcinoma; Bronchioloalveolar Carcinoma; Large Cell Lung Carcinoma; Lung Adenocarcinoma; Non-Small Cell Lung Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer

  10. Study of Ponatinib in Patients With Lung Cancer Preselected Using Different Candidate Predictive Biomarkers

    ClinicalTrials.gov

    2018-01-17

    Adenocarcinoma of the Lung; Extensive Stage Small Cell Lung Cancer; Limited Stage Small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  11. Combination Chemotherapy, Radiation Therapy, and Gefitinib in Treating Patients With Stage III Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-06-04

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  12. Adult Lung Spheroid Cells Contain Progenitor Cells and Mediate Regeneration in Rodents With Bleomycin-Induced Pulmonary Fibrosis.

    PubMed

    Henry, Eric; Cores, Jhon; Hensley, M Taylor; Anthony, Shirena; Vandergriff, Adam; de Andrade, James B M; Allen, Tyler; Caranasos, Thomas G; Lobo, Leonard J; Cheng, Ke

    2015-11-01

    Lung diseases are devastating conditions and ranked as one of the top five causes of mortality worldwide according to the World Health Organization. Stem cell therapy is a promising strategy for lung regeneration. Previous animal and clinical studies have focused on the use of mesenchymal stem cells (from other parts of the body) for lung regenerative therapies. We report a rapid and robust method to generate therapeutic resident lung progenitors from adult lung tissues. Outgrowth cells from healthy lung tissue explants are self-aggregated into three-dimensional lung spheroids in a suspension culture. Without antigenic sorting, the lung spheroids recapitulate the stem cell niche and contain a natural mixture of lung stem cells and supporting cells. In vitro, lung spheroid cells can be expanded to a large quantity and can form alveoli-like structures and acquire mature lung epithelial phenotypes. In severe combined immunodeficiency mice with bleomycin-induced pulmonary fibrosis, intravenous injection of human lung spheroid cells inhibited apoptosis, fibrosis, and infiltration but promoted angiogenesis. In a syngeneic rat model of pulmonary fibrosis, lung spheroid cells outperformed adipose-derived mesenchymal stem cells in reducing fibrotic thickening and infiltration. Previously, lung spheroid cells (the spheroid model) had only been used to study lung cancer cells. Our data suggest that lung spheroids and lung spheroid cells from healthy lung tissues are excellent sources of regenerative lung cells for therapeutic lung regeneration. The results from the present study will lead to future human clinical trials using lung stem cell therapies to treat various incurable lung diseases, including pulmonary fibrosis. The data presented here also provide fundamental knowledge regarding how injected stem cells mediate lung repair in pulmonary fibrosis. ©AlphaMed Press.

  13. Image-Guided Hypofractionated Radiation Therapy With Stereotactic Body Radiation Therapy Boost and Combination Chemotherapy in Treating Patients With Stage II-III Non-Small Cell Lung Cancer That Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2017-06-12

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  14. Lung Cancer—Patient Version

    Cancer.gov

    The two main types of lung cancer are non-small cell lung cancer and small cell lung cancer. Smoking causes most lung cancers, but nonsmokers can also develop lung cancer. Start here to find information on lung cancer treatment, causes and prevention, screening, research, and statistics on lung cancer.

  15. Low-Dose Acetylsalicylic Acid in Treating Patients With Stage I-III Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2017-06-29

    Adenocarcinoma of the Lung; Recurrent Non-small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  16. Enhanced Quitline Intervention in Smoking Cessation for Patients With Non-Metastatic Lung Cancer

    ClinicalTrials.gov

    2017-05-25

    Limited Stage Small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Tobacco Use Disorder

  17. Genetic Testing in Screening Patients With Stage IB-IIIA Non-Small Cell Lung Cancer That Has Been or Will Be Removed by Surgery (The ALCHEMIST Screening Trial)

    ClinicalTrials.gov

    2018-06-29

    Large Cell Lung Carcinoma; Lung Adenocarcinoma; Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage IB Squamous Cell Lung Carcinoma AJCC v7; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage II Squamous Cell Lung Carcinoma AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIA Squamous Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Squamous Cell Lung Carcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Squamous Cell Lung Carcinoma AJCC v7

  18. Veliparib With or Without Radiation Therapy, Carboplatin, and Paclitaxel in Patients With Stage III Non-small Cell Lung Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-06-01

    Large Cell Lung Carcinoma; Lung Adenocarcinoma; Lung Adenocarcinoma, Mixed Subtype; Minimally Invasive Lung Adenocarcinoma; Squamous Cell Lung Carcinoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7

  19. [The value of bedside lung ultrasound in emergency-plus protocol for the assessment of lung consolidation and atelectasis in critical patients].

    PubMed

    Wang, Xiao-ting; Liu, Da-wei; Zhang, Hong-min; He, Huai-wu; Liu, Ye; Chai, Wen-zhao; Du, Wei

    2012-12-01

    To investigate the effect of the bedside lung ultrasound in emergency(BLUE)-plus lung ultrasound protocol on lung consolidation and atelectasis of critical patients. All patients who need to receive mechanical ventilation for more than 48 hours in ICU from June 2010 to December 2011 in Peking Union Medical College Hospital were included in the study. BLUE-plus and BLUE lung ultrasound, bedside X-ray, lung CT examination were performed on all patients at the same time. The condition of lung consolidation and atelectasis discovered by BLUE-plus lung ultrasound protocol was recorded and compared with bedside X-ray or lung CT. The difference in assessment of lung consolidation and atelectasis between BLUE-plus lung ultrasound protocol and BLUE protocol was compared. A total of 78 patients were finally enrolled in the study. The lung CT found 70 cases (89.74%) had different degrees of lung consolidation and atelectasis. The sensitivity, specificity and diagnostic accuracy of lung consolidation and atelectasis by the bedside chest X-ray were 31.29%, 75.00% and 38.46%, respectively. BLUE-plus lung ultrasound protocol found 68 cases with lung consolidation and atelectasis, and its sensitivity, specificity, and diagnostic accuracy were 95.71%, 87.50% and 94.87%, respectively, which were significantly higher than those of lung CT. BLUE protocol found 48 cases of lung consolidation and atelectasis, and its sensitivity, specificity, and diagnostic accuracy were 65.71%, 75.00% and 66.67%, respectively. The position of lung consolidation and atelectasis which hadn't been found by BLUE protocol was mainly proved to be located in the basement of lung by lung CT. The incidence of lung consolidation and atelectasis in critical patients who received mechanical ventilation is high. The BLUE-plus lung ultrasound protocol has a relatively higher sensitivity, specificity and diagnostic accuracy for consolidation and atelectasis, which can find majority of consolidation and atelectasis. As BLUE-plus lung ultrasound is a bedside noninvasive method allowing immediate assessment of most lung consolidation and atelectasis, it will be likely the alternative of the CT and play a key role in assessment of lung consolidation and atelectasis.

  20. What Is Lung Cancer?

    MedlinePlus

    ... Shareable Graphics Infographics “African-American Men and Lung Cancer” “Lung Cancer Is the Biggest Cancer Killer in Both ... starts in the lungs, it is called lung cancer. Lung cancer begins in the lungs and may spread ...

  1. Oxidative lung injury correlates with one-lung ventilation time during pulmonary lobectomy: a study of exhaled breath condensate and blood.

    PubMed

    García-de-la-Asunción, José; García-del-Olmo, Eva; Perez-Griera, Jaume; Martí, Francisco; Galan, Genaro; Morcillo, Alfonso; Wins, Richard; Guijarro, Ricardo; Arnau, Antonio; Sarriá, Benjamín; García-Raimundo, Miguel; Belda, Javier

    2015-09-01

    During lung lobectomy, the operated lung is collapsed and hypoperfused; oxygen deprivation is accompanied by reactive hypoxic pulmonary vasoconstriction. After lung lobectomy, ischaemia present in the collapsed state is followed by expansion-reperfusion and lung injury attributed to the production of reactive oxygen species. The primary objective of this study was to investigate the time course of several markers of oxidative stress simultaneously in exhaled breath condensate and blood and to determine the relationship between oxidative stress and one-lung ventilation time in patients undergoing lung lobectomy. This single-centre, observational, prospective study included 28 patients with non-small-cell lung cancer who underwent lung lobectomy. We measured the levels of hydrogen peroxide, 8-iso-PGF2α, nitrites plus nitrates and pH in exhaled breath condensate (n = 25). The levels of 8-iso-PGF2α and nitrites plus nitrates were also measured in blood (n = 28). Blood samples and exhaled breath condensate samples were collected from all patients at five time points: preoperatively; during one-lung ventilation, immediately before resuming two-lung ventilation; immediately after resuming two-lung ventilation; 60 min after resuming two-lung ventilation and 180 min after resuming two-lung ventilation. Both exhaled breath condensate and blood exhibited significant and simultaneous increases in oxidative-stress markers immediately before two-lung ventilation was resumed. However, all these values underwent larger increases immediately after resuming two-lung ventilation. In both exhaled breath condensate and blood, marker levels significantly and directly correlated with the duration of one-lung ventilation immediately before resuming two-lung ventilation and immediately after resuming two-lung ventilation. Although pH significantly decreased in exhaled breath condensate immediately after resuming two-lung ventilation, these pH values were inversely correlated with the duration of one-lung ventilation. During lung lobectomy, the operated lung is collapsed and oxidative injury occurs, with the levels of markers of oxidative stress increasing simultaneously in exhaled breath condensate and blood during one-lung ventilation. These increases were larger after resuming two-lung ventilation. Increases immediately before resuming two-lung ventilation and immediately after resuming two-lung ventilation were directly correlated with the duration of one-lung ventilation. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  2. Bortezomib in Treating Patients With Stage IIIB or Stage IV Lung Cancer

    ClinicalTrials.gov

    2014-08-04

    Adenocarcinoma of the Lung; Bronchoalveolar Cell Lung Cancer; Non-small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  3. Combination Chemotherapy, Radiation Therapy, and Bevacizumab in Treating Patients With Newly Diagnosed Stage III Non-small Cell Lung Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-03-22

    Adenosquamous Lung Carcinoma; Large Cell Lung Carcinoma; Lung Adenocarcinoma; Minimally Invasive Lung Adenocarcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7

  4. Docetaxel With Either Cetuximab or Bortezomib as First-Line Therapy in Treating Patients With Stage III or Stage IV Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-06-03

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Large Cell Lung Cancer; Malignant Pleural Effusion; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  5. Fludeoxyglucose F-18-PET in Planning Lung Cancer Radiation Therapy

    ClinicalTrials.gov

    2018-04-19

    Stage I Lung Cancer; Stage I Non-Small Cell Lung Cancer AJCC v7; Stage IA Non-Small Cell Lung Carcinoma AJCC v7; Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage II Lung Cancer; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7

  6. Isolating and Testing Circulating Tumor DNA and Soluble Immune Markers During the Course of Treatment for Lung Cancer

    ClinicalTrials.gov

    2018-01-08

    Lung Cancer; Lung Neoplasms; Cancer of Lung; Cancer of the Lung; Neoplasms, Lung; Neoplasms, Pulmonary; Pulmonary Cancer; Pulmonary Neoplasms; Carcinoma, Non-small-cell Lung; Adenocarcinoma; Squamous Cell Carcinoma

  7. Nivolumab, Cisplatin, and Pemetrexed Disodium or Gemcitabine Hydrochloride in Treating Patients With Stage I-IIIA Non-small Cell Lung Cancer That Can Be Removed by Surgery

    ClinicalTrials.gov

    2018-03-02

    Non-Squamous Non-Small Cell Lung Carcinoma; Stage I Non-Small Cell Lung Cancer; Stage IA Non-Small Cell Lung Carcinoma; Stage IB Non-Small Cell Lung Carcinoma; Stage II Non-Small Cell Lung Cancer; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer

  8. Classification algorithm of lung lobe for lung disease cases based on multislice CT images

    NASA Astrophysics Data System (ADS)

    Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Mishima, M.; Ohmatsu, H.; Tsuchida, T.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2011-03-01

    With the development of multi-slice CT technology, to obtain an accurate 3D image of lung field in a short time is possible. To support that, a lot of image processing methods need to be developed. In clinical setting for diagnosis of lung cancer, it is important to study and analyse lung structure. Therefore, classification of lung lobe provides useful information for lung cancer analysis. In this report, we describe algorithm which classify lungs into lung lobes for lung disease cases from multi-slice CT images. The classification algorithm of lung lobes is efficiently carried out using information of lung blood vessel, bronchus, and interlobar fissure. Applying the classification algorithms to multi-slice CT images of 20 normal cases and 5 lung disease cases, we demonstrate the usefulness of the proposed algorithms.

  9. Lung disease - resources

    MedlinePlus

    Resources - lung disease ... The following organizations are good resources for information on lung disease : American Lung Association -- www.lung.org National Heart, Lung, and Blood Institute -- www.nhlbi.nih.gov ...

  10. TG4010 and Nivolumab in Patients With Lung Cancer

    ClinicalTrials.gov

    2018-03-01

    Recurrent Non-Small Cell Lung Carcinoma; Stage I Non-Small Cell Lung Cancer; Stage II Non-Small Cell Lung Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  11. Effects of positive end-expiratory pressure titration and recruitment maneuver on lung inflammation and hyperinflation in experimental acid aspiration-induced lung injury.

    PubMed

    Ambrosio, Aline M; Luo, Rubin; Fantoni, Denise T; Gutierres, Claudia; Lu, Qin; Gu, Wen-Jie; Otsuki, Denise A; Malbouisson, Luiz M S; Auler, Jose O C; Rouby, Jean-Jacques

    2012-12-01

    In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. Forty-seven pigs were randomly allocated in seven groups: (1) controls spontaneously breathing; (2) without lung injury, PEEP 5 cm H2O; (3) without lung injury, PEEP titration; (4) without lung injury, PEEP titration + recruitment maneuver; (5) with lung injury, PEEP 5 cm H2O; (6) with lung injury, PEEP titration; and (7) with lung injury, PEEP titration + recruitment maneuver. Acute lung injury was induced by intratracheal instillation of hydrochloric acid. PEEP titration was performed by incremental and decremental PEEP from 5 to 20 cm H2O for optimizing arterial oxygenation. Three recruitment maneuvers (pressure of 40 cm H2O maintained for 20 s) were applied to the assigned groups at each PEEP level. Proportion of lung inflammation, hemorrhage, edema, and alveolar wall disruption were recorded on each histological field. Mean alveolar area was measured in the aerated lung regions. Acid aspiration increased mean alveolar area and produced alveolar wall disruption, lung edema, alveolar hemorrhage, and lung inflammation. PEEP titration significantly improved arterial oxygenation but simultaneously increased lung inflammation in juxta-diaphragmatic lung regions. Recruitment maneuver during PEEP titration did not induce additional increase in lung inflammation and alveolar hyperinflation. In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.

  12. Metachronous Lung Cancer: Clinical Characteristics and Effects of Surgical Treatment.

    PubMed

    Rzechonek, Adam; Błasiak, Piotr; Muszczyńska-Bernhard, Beata; Pawełczyk, Konrad; Pniewski, Grzegorz; Ornat, Maciej; Grzegrzółka, Jędrzej; Brzecka, Anna

    2018-01-01

    The occurrence of a second lung tumor after surgical removal of lung cancer usually indicates a lung cancer metastasis, but sometimes a new lesion proves to be a new primary lung cancer, i.e., metachronous lung cancer. The goal of the present study was to conduct a clinical evaluation of patients with metachronous lung cancer and lung cancer metastasis, and to compare the early and distant outcomes of surgical treatment in both cancer types. There were 26 age-matched patients with lung cancer metastases and 23 patients with metachronous lung cancers, who underwent a second lung cancer resection. We evaluated the histological type of a resected cancer, the extent of thoracosurgery, the frequency of early postoperative complications, and the probability of 5-year survival after the second operation. The findings were that metachronous lung cancer was adenocarcinoma in 52% of patients, with a different histopathological pattern from that of the primary lung cancer in 74% of patients. In both cancer groups, mechanical resections were the most common surgery type (76% of all cases), with anatomical resections such as segmentectomy, lobectomy, or pneumectomy being much rarer conducted. The incidence of early postoperative complications in metachronous lung cancer and lung cancer metastasis (30% vs. 31%, respectively) and the probability of 5-year survival after resection of either cancer tumor (60.7% vs. 50.9%, respectively) were comparable. In conclusion, patients undergoing primary lung cancer surgery require a long-term follow-up due to the risk of metastatic or metachronous lung cancer. The likelihood of metachronous lung cancer and pulmonary lung cancer metastases, the incidence of postoperative complications, and the probability of 5-year survival after resection of metachronous lung cancer or lung cancer metastasis are similar.

  13. Differential lung ventilation via tracheostomy using two endotracheal tubes in an infant: a case report.

    PubMed

    Demirkol, Demet; Ataman, Yasemin; Gündoğdu, Gökhan

    2017-09-08

    This case report presents differential lung ventilation in an infant. The aim is to define an alternative technique for performing differential lung ventilation in children. To the best of our knowledge, this is the first report of this kind. A 4.2-kg, 2.5-month-old Asian boy was referred to our facility with refractory hypoxemia and hypercarbia due to asymmetric lung disease with atelectasis of the left lung and hyperinflation of the right lung. He was unresponsive to conventional ventilator strategies; different ventilator settings were required. To perform differential lung ventilation, two separate single-lumen endotracheal tubes were inserted into the main bronchus of each lung by tracheotomy; the tracheal tubes were attached to discrete ventilators. The left lung was ventilated with a lung salvage strategy using high-frequency oscillatory ventilation, and the right lung was ventilated with a lung-protective strategy using pressure-regulated volume control mode. Differential lung ventilation was performed successfully with this technique without complications. Differential lung ventilation may be a lifesaving procedure in select patients who have asymmetric lung disease. Inserting two single-lumen endotracheal tubes via tracheotomy for differential lung ventilation can be an effective and safe alternative method.

  14. Phase I IGART Study Using Active Breathing Control and Simultaneous Boost for Patients With NSCLC

    ClinicalTrials.gov

    2015-03-18

    Adenocarcinoma of the Lung; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  15. S0819: Carboplatin and Paclitaxel With or Without Bevacizumab and/or Cetuximab in Treating Patients With Stage IV or Recurrent Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2017-10-03

    Recurrent Large Cell Lung Carcinoma; Recurrent Lung Adenocarcinoma; Recurrent Squamous Cell Lung Carcinoma; Stage IV Large Cell Lung Carcinoma; Stage IV Lung Adenocarcinoma; Stage IV Squamous Cell Lung Carcinoma

  16. Lung flooding enables efficient lung sonography and tumour imaging in human ex vivo and porcine in vivo lung cancer model

    PubMed Central

    2013-01-01

    Background Sonography has become the imaging technique of choice for guiding intraoperative interventions in abdominal surgery. Due to artefacts from residual air content, however, videothoracoscopic and open intraoperative ultrasound-guided thermoablation of lung malignancies are impossible. Lung flooding is a new method that allows complete ultrasound imaging of lungs and their tumours. Methods Fourteen resected tumourous human lung lobes were examined transpleurally with B-mode ultrasound before (in atelectasis) and after lung flooding with isotonic saline solution. In two swine, the left lung was filled with 15 ml/kg isotonic saline solution through the left side of a double-lumen tube. Lung tumours were simulated by transthoracic ultrasound-guided injection of 5 ml of purified bovine serum albumin in glutaraldehyde, centrally into the left lower lung lobe. The rate of tumour detection, the severity of disability caused by residual gas, and sonomorphology of the lungs and tumours were assessed. Results The ex vivo tumour detection rate was 100% in flooded human lung lobes and 43% (6/14) in atelectatic lungs. In all cases of atelectasis, sonographic tumour imaging was impaired by residual gas. Tumours and atelectatic tissue were isoechoic. In 28% of flooded lungs, a little residual gas was observed that did not impair sonographic tumour imaging. In contrast to tumours, flooded lung tissue was hyperechoic, homogeneous, and of fine-grained structure. Because of the bronchial wall three-laminar structure, sonographic differentiation of vessels and bronchi was possible. In all cases, malignant tumours in the flooded lung appeared well-demarcated from the lung parenchyma. Adenocarcinoma, squamous, and large cell carcinomas were hypoechoic. Bronchioloalveolar cell carcinoma was slightly hyperechoic. Transpleural sonography identifies endobronchial tumour growth and bronchial wall destruction. With transthoracic sonography, the flooded animal lung can be completely examined in vivo. There is no residual gas, which interferes with ultrasound. Pulmonary vessels and bronchi are clearly differentiated. Simulated lung lesions can easily be detected inside the lung lobe. Conclusions Lung flooding enables complete lung sonography and tumour detection. We have developed a novel method that efficiently uses ultrasound for guiding intraoperative interventions in open and endoscopic lung surgery. PMID:23841910

  17. SU-E-J-87: Ventilation Weighting Effect On Mean Doses of Both Side Lungs for Patients with Advanced Stage Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, H; Xia, P; Yu, N

    Purpose: To study ventilation weighting effect on radiation doses to both side lungs for patients with advanced stage lung cancer. Methods: Fourteen patients with advanced stage lung cancer were included in this retrospective study. Proprietary software was developed to calculate the lung ventilation map based on 4DCT images acquired for radiation therapy. Two phases of inhale (0%) and exhale (50%) were used for the lung ventilation calculations. For each patient, the CT images were resampled to the same dose calculation resolution of 3mmx3mmx3mm. The ventilation distribution was then normalized by the mean value of the ventilation. The ventilation weighted dosemore » was calculated by applying linearly weighted ventilation to the dose of each pixel. The lung contours were automatically delineated from patient CT image with lung window, excluding the tumor and high density tissues. For contralateral and ipsilateral lungs, the mean lung doses from the original plan and ventilation weighted mean lung doses were compared using two tail t-Test. Results: The average of mean dose was 6.1 ±3.8Gy for the contralateral lungs, and 26.2 ± 14.0Gy for the ipsilateral lungs. The average of ventilation weighted dose was 6.3± 3.8Gy for the contralateral lungs and 24.6 ± 13.1Gy for the ipsilateral lungs. The statistics analysis shows the significance of the mean dose increase (p<0.015) for the contralateral lungs and decrease (p<0.005) for the ipsilateral lungs. Conclusion: Ventilation weighted doses were greater than the un-weighted doses for contralateral lungs and smaller for ipsilateral lungs. This Result may be helpful to understand the radiation dosimetric effect on the lung function and provide planning guidance for patients with advance stage lung cancer.« less

  18. EF5 in Measuring Tumor Hypoxia in Patients With Stage I-III Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2015-04-10

    Stage IA Non-Small Cell Lung Carcinoma; Stage IB Non-Small Cell Lung Carcinoma; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer

  19. Frequency and number of ultrasound lung rockets (B-lines) using a regionally based lung ultrasound examination named vet BLUE (veterinary bedside lung ultrasound exam) in dogs with radiographically normal lung findings.

    PubMed

    Lisciandro, Gregory R; Fosgate, Geoffrey T; Fulton, Robert M

    2014-01-01

    Lung ultrasound is superior to lung auscultation and supine chest radiography for many respiratory conditions in human patients. Ultrasound diagnoses are based on easily learned patterns of sonographic findings and artifacts in standardized images. By applying the wet lung (ultrasound lung rockets or B-lines, representing interstitial edema) versus dry lung (A-lines with a glide sign) concept many respiratory conditions can be diagnosed or excluded. The ultrasound probe can be used as a visual stethoscope for the evaluation of human lungs because dry artifacts (A-lines with a glide sign) predominate over wet artifacts (ultrasound lung rockets or B-lines). However, the frequency and number of wet lung ultrasound artifacts in dogs with radiographically normal lungs is unknown. Thus, the primary objective was to determine the baseline frequency and number of ultrasound lung rockets in dogs without clinical signs of respiratory disease and with radiographically normal lung findings using an 8-view novel regionally based lung ultrasound examination called Vet BLUE. Frequency of ultrasound lung rockets were statistically compared based on signalment, body condition score, investigator, and reasons for radiography. Ten left-sided heart failure dogs were similarly enrolled. Overall frequency of ultrasound lung rockets was 11% (95% confidence interval, 6-19%) in dogs without respiratory disease versus 100% (95% confidence interval, 74-100%) in those with left-sided heart failure. The low frequency and number of ultrasound lung rockets observed in dogs without respiratory disease and with radiographically normal lungs suggests that Vet BLUE will be clinically useful for the identification of canine respiratory conditions. © 2014 American College of Veterinary Radiology.

  20. Lung Transplantation

    MedlinePlus

    A lung transplant removes a person's diseased lung and replaces it with a healthy one. The healthy lung comes from ... lung during a transplant. Other people get two. Lung transplants are used for people who are likely to ...

  1. Lung surgery - discharge

    MedlinePlus

    ... Read More Bronchiectasis Chronic obstructive pulmonary disease Lung cancer Lung cancer - non-small cell Lung cancer - small cell ... team. Related MedlinePlus Health Topics COPD Emphysema Lung Cancer Lung Diseases Pleural Disorders Browse the Encyclopedia A.D. ...

  2. Significance of single lung transplantation in the current situation of severe donor shortage in Japan.

    PubMed

    Miyoshi, Ryo; Chen-Yoshikawa, Toyofumi F; Hijiya, Kyoko; Motoyama, Hideki; Aoyama, Akihiro; Menju, Toshi; Sato, Toshihiko; Sonobe, Makoto; Date, Hiroshi

    2016-02-01

    Although bilateral lung transplantation is the procedure of choice internationally, single lung transplantation is preferred in Japan because of the severe donor shortage except in cases of contraindications to single lung transplantation. This study aimed to evaluate the clinical characteristics of single lung transplant recipients and outcomes of this procedure at one of the largest lung transplant centers in Japan. Between April 2002 and May 2015, 57 cadaveric lung transplantations (33 single and 24 bilateral) were performed in Kyoto University Hospital. The clinical characteristics of the lung transplant recipients and outcomes of these procedures, including overall survival and postoperative complications, were investigated. Overall, the 1-, 3-, and 5-year survival rates were 86, 77, and 72 %, respectively, with a median follow-up period of 1.9 years. There was no significant difference in survival between patients who underwent single lung transplantations and those who underwent bilateral lung transplantations (p = 0.92). The median waiting time was significantly shorter for single lung transplant patients than for bilateral lung transplant patients (p = 0.02). Native lung complications were seen in 14 out of 33 patients (42 %) who underwent single lung transplantation. There was no significant difference in survival between patients with and without postoperative native lung complications. Single lung transplantation has been performed with acceptable outcomes in our institution. In the current situation of severe donor shortage in Japan, single lung transplantation can remain the first choice of treatment except in cases of contraindications to single lung transplantation.

  3. Static inflation attenuates ischemia/reperfusion injury in an isolated rat lung in situ.

    PubMed

    Kao, Shang Jyh; Wang, David; Yeh, Diana Yu-Wung; Hsu, Kang; Hsu, Yung Hsiang; Chen, Hsing I

    2004-08-01

    Ischemia (I)/reperfusion (R) lung injury is an important clinical issue in lung transplantation. In the present study, we observed the effects of lung static inflation, different perfusates, and ventilatory gas with nitrogen or oxygen on the I/R-induced pulmonary damage. A total of 96 male Sprague-Dawley rats were used. The lung was isolated in situ. In an isolated lung, the capillary filtration coefficient (Kfc), lung weight gain (LWG), lung weight (LW)/body weight (BW) ratio, and protein concentration in BAL fluid (PCBAL) were measured or calculated to evaluate the degree of lung injury. Histologic examinations with hematoxylin-eosin staining were performed. I/R caused lung injury, as reflected by increases in Kfc, LWG, LW/BW, and PCBAL. The histopathologic picture revealed the presence of hyaline membrane formation and the infiltration of inflammatory cells. These values were significantly attenuated by static lung inflation. The I/R lung damage appeared to be less in the lung perfused with whole blood than in the lung perfused with an isotonic solution. Therapy with ventilatory air (ie, nitrogen or oxygen) did not alter the I/R lung damage. The data suggest that lung inflation is protective to I/R injury, irrespective of the type of ventilatory air used for treatment. The preservation of the lung for transplantation is better kept at a static inflation state and perfused with whole blood instead of an isotonic physiologic solution.

  4. Overview of Clinical Lung Transplantation

    PubMed Central

    Yeung, Jonathan C.; Keshavjee, Shaf

    2014-01-01

    Since the first successful lung transplant 30 years ago, lung transplantation has rapidly become an established standard of care to treat end-stage lung disease in selected patients. Advances in lung preservation, surgical technique, and immunosuppression regimens have resulted in the routine performance of lung transplantation around the world for an increasing number of patients, with wider indications. Despite this, donor shortages and chronic lung allograft dysfunction continue to prevent lung transplantation from reaching its full potential. With research into the underlying mechanisms of acute and chronic lung graft dysfunction and advances in personalized diagnostic and therapeutic approaches to both the donor lung and the lung transplant recipient, there is increasing confidence that we will improve short- and long-term outcomes in the near future. PMID:24384816

  5. Ex vivo lung perfusion.

    PubMed

    Reeb, Jeremie; Cypel, Marcelo

    2016-03-01

    Lung transplantation is an established life-saving therapy for patients with end-stage lung disease. Unfortunately, greater success in lung transplantation is hindered by a shortage of lung donors and the relatively poor early-, mid-, and long-term outcomes associated with severe primary graft dysfunction. Ex vivo lung perfusion has emerged as a modern preservation technique that allows for a more accurate lung assessment and improvement in lung quality. This review outlines the: (i) rationale behind the method; (ii) techniques and protocols; (iii) Toronto ex vivo lung perfusion method; (iv) devices available; and (v) clinical experience worldwide. We also highlight the potential of ex vivo lung perfusion in leading a new era of lung preservation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Lung cancer

    MedlinePlus

    Cancer - lung ... lung cancer than of breast, colon, and prostate cancers combined. Lung cancer is more common in older adults. It ... Horn L, Eisenberg R, Gius D, et al. Cancer of the lung: non-small cell lung cancer and small cell ...

  7. Lung metastases

    MedlinePlus

    Metastases to the lung; Metastatic cancer to the lung; Lung cancer - metastases ... Metastatic tumors in the lungs are cancers that developed at other places in the body (or other parts of the lungs). They then spread through the bloodstream or lymphatic ...

  8. The concept of "baby lung".

    PubMed

    Gattinoni, Luciano; Pesenti, Antonio

    2005-06-01

    The "baby lung" concept originated as an offspring of computed tomography examinations which showed in most patients with acute lung injury/acute respiratory distress syndrome that the normally aerated tissue has the dimensions of the lung of a 5- to 6-year-old child (300-500 g aerated tissue). The respiratory system compliance is linearly related to the "baby lung" dimensions, suggesting that the acute respiratory distress syndrome lung is not "stiff" but instead small, with nearly normal intrinsic elasticity. Initially we taught that the "baby lung" is a distinct anatomical structure, in the nondependent lung regions. However, the density redistribution in prone position shows that the "baby lung" is a functional and not an anatomical concept. This provides a rational for "gentle lung treatment" and a background to explain concepts such as baro- and volutrauma. From a physiological perspective the "baby lung" helps to understand ventilator-induced lung injury. In this context, what appears dangerous is not the V(T)/kg ratio but instead the V(T)/"baby lung" ratio. The practical message is straightforward: the smaller the "baby lung," the greater is the potential for unsafe mechanical ventilation.

  9. Intersections of lung progenitor cells, lung disease and lung cancer.

    PubMed

    Kim, Carla F

    2017-06-30

    The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials. Copyright ©ERS 2017.

  10. Lung volumes and emphysema in smokers with interstitial lung abnormalities.

    PubMed

    Washko, George R; Hunninghake, Gary M; Fernandez, Isis E; Nishino, Mizuki; Okajima, Yuka; Yamashiro, Tsuneo; Ross, James C; Estépar, Raúl San José; Lynch, David A; Brehm, John M; Andriole, Katherine P; Diaz, Alejandro A; Khorasani, Ramin; D'Aco, Katherine; Sciurba, Frank C; Silverman, Edwin K; Hatabu, Hiroto; Rosas, Ivan O

    2011-03-10

    Cigarette smoking is associated with emphysema and radiographic interstitial lung abnormalities. The degree to which interstitial lung abnormalities are associated with reduced total lung capacity and the extent of emphysema is not known. We looked for interstitial lung abnormalities in 2416 (96%) of 2508 high-resolution computed tomographic (HRCT) scans of the lung obtained from a cohort of smokers. We used linear and logistic regression to evaluate the associations between interstitial lung abnormalities and HRCT measurements of total lung capacity and emphysema. Interstitial lung abnormalities were present in 194 (8%) of the 2416 HRCT scans evaluated. In statistical models adjusting for relevant covariates, interstitial lung abnormalities were associated with reduced total lung capacity (-0.444 liters; 95% confidence interval [CI], -0.596 to -0.292; P<0.001) and a lower percentage of emphysema defined by lung-attenuation thresholds of -950 Hounsfield units (-3%; 95% CI, -4 to -2; P<0.001) and -910 Hounsfield units (-10%; 95% CI, -12 to -8; P<0.001). As compared with participants without interstitial lung abnormalities, those with abnormalities were more likely to have a restrictive lung deficit (total lung capacity <80% of the predicted value; odds ratio, 2.3; 95% CI, 1.4 to 3.7; P<0.001) and were less likely to meet the diagnostic criteria for chronic obstructive pulmonary disease (COPD) (odds ratio, 0.53; 95% CI, 0.37 to 0.76; P<0.001). The effect of interstitial lung abnormalities on total lung capacity and emphysema was dependent on COPD status (P<0.02 for the interactions). Interstitial lung abnormalities were positively associated with both greater exposure to tobacco smoke and current smoking. In smokers, interstitial lung abnormalities--which were present on about 1 of every 12 HRCT scans--were associated with reduced total lung capacity and a lesser amount of emphysema. (Funded by the National Institutes of Health and the Parker B. Francis Foundation; ClinicalTrials.gov number, NCT00608764.).

  11. Effects of budesonide on the lung functions, inflammation and apoptosis in a saline-lavage model of acute lung injury.

    PubMed

    Mokra, D; Kosutova, P; Balentova, S; Adamkov, M; Mikolka, P; Mokry, J; Antosova, M; Calkovska, A

    2016-12-01

    Diffuse alveolar injury, edema, and inflammation are fundamental signs of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Whereas the systemic administration of corticosteroids previously led to controversial results, this study evaluated if corticosteroids given intratracheally may improve lung functions and reduce edema formation, migration of cells into the lung and their activation in experimentally-induced ALI. In oxygen-ventilated rabbits, ALI was induced by repetitive saline lung lavage, until PaO2 decreased to < 26.7 kPa in FiO 2 1.0. Then, one group of animals was treated with corticosteroid budesonide (Pulmicort susp inh, AstraZeneca; 0.25 mg/kg) given intratracheally by means of inpulsion regime of high-frequency jet ventilation, while another group was non-treated, and both groups were oxygen-ventilated for following 5 hours. Another group of animals served as healthy controls. After sacrifice of animals, left lung was saline-lavaged and protein content was measured and cells in the lavage fluid were determined microscopically. Right lung tissue was used for estimation of edema formation (expressed as wet/dry weight ratio), for histomorphological investigation, immunohistochemical determination of apoptosis of lung cells, and for determination of markers of inflammation and lung injury (IL-1β, IL-6, IL-8, TNF-α, IFNγ, esRAGE, caspase-3) by ELISA methods. Levels of several cytokines were estimated also in plasma. Repetitive lung lavage worsened gas exchange, induced lung injury, inflammation and lung edema and increased apoptosis of lung epithelial cells. Budesonide reduced lung edema, cell infiltration into the lung and apoptosis of epithelial cells and decreased concentrations of proinflammatory markers in the lung and blood. These changes resulted in improved ventilation. Concluding, curative intratracheal treatment with budesonide alleviated lung injury, inflammation, apoptosis of lung epithelial cells and lung edema and improved lung functions in a lavage model of ALI. These findings suggest a potential of therapy with inhaled budesonide also for patients with ARDS.

  12. Diesel exhaust particle promotes tumor lung metastasis via the induction of BLT1-mediated neutrophilic lung inflammation.

    PubMed

    Li, Wenjing; Liu, Ting; Xiong, Yingluo; Lv, Jiaoyan; Cui, Xinyi; He, Rui

    2018-06-05

    BLT1, the primary functional receptor of Leukotriene B4 (LTB4), is involved in tissue inflammation by mediating leukocyte recruitment, and recently LTB4-dependent inflammation was reported to promote lung tumor growth. Exposure to diesel exhaust particle (DEP), the major component of particulate matter 2.5 (PM 2.5 ), can elicit lung inflammation, which may increase the risk of lung cancer. However, it remains unknown about the critical factors mediating DEP-induced lung inflammation and the subsequent effect on tumor metastasis. In this study, we found that DEP exposure led to acute lung inflammation, characterized by abundant infiltration of neutrophils and elevated lung levels in LTB4, as well as several pro-inflammatory cytokines and chemokines, including IL-1β, IL-6, TNF-α, CXCL1/2. Furthermore, DEP exposure promoted lung metastasis of 3LL and 4T1 cells. BLT1 blockade by its specific antagonist U75302 significantly inhibited neutrophilic lung inflammation following DEP exposure. Importantly, BLT1 blockade before the onset of inflammation significantly reduced DEP-enhanced lung metastasis, which was associated with greatly decreased infiltrating neutrophils in lungs. Interestingly, BLT1 blockade after the occurrence of lung metastases had no effect on the magnitude of lung metastasis, suggesting that inhibition of BLT1-mediated lung inflammation was insufficient to suppress established metastatic tumor. Administration of BLT2 inhibitor LY255283 fails to inhibit DEP-induced lung inflammation and tumor metastasis. Collectively, our results demonstrate that DEP exposure causes BLT1-mediated lung neutrophilic inflammation, which is critical for tumor lung metastasis, and suggest that interruption of the LTB4-BLT1 axis could be useful for preventing PM 2.5 -induced inflammation and subsequent susceptible to lung metastasis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Experience with the first 50 ex vivo lung perfusions in clinical transplantation.

    PubMed

    Cypel, Marcelo; Yeung, Jonathan C; Machuca, Tiago; Chen, Manyin; Singer, Lianne G; Yasufuku, Kazuhiro; de Perrot, Marc; Pierre, Andrew; Waddell, Thomas K; Keshavjee, Shaf

    2012-11-01

    Normothermic ex vivo lung perfusion is a novel method to evaluate and improve the function of injured donor lungs. We reviewed our experience with 50 consecutive transplants after ex vivo lung perfusion. A retrospective study using prospectively collected data was performed. High-risk brain death donor lungs (defined as Pao(2)/Fio(2) <300 mm Hg or lungs with radiographic or clinical findings of pulmonary edema) and lungs from cardiac death donors were subjected to 4 to 6 hours of ex vivo lung perfusion. Lungs that achieved stable airway and vascular pressures and Pao(2)/Fio(2) greater than 400 mm Hg during ex vivo lung perfusion were transplanted. The primary end point was the incidence of primary graft dysfunction grade 3 at 72 hours after transplantation. End points were compared with lung transplants not treated with ex vivo lung perfusion (controls). A total of 317 lung transplants were performed during the study period (39 months). Fifty-eight ex vivo lung perfusion procedures were performed, resulting in 50 transplants (86% use). Of these, 22 were from cardiac death donors and 28 were from brain death donors. The mean donor Pao(2)/Fio(2) was 334 mm Hg in the ex vivo lung perfusion group and 452 mm Hg in the control group (P = .0001). The incidence of primary graft dysfunction grade 3 at 72 hours was 2% in the ex vivo lung perfusion group and 8.5% in the control group (P = .14). One patient (2%) in the ex vivo lung perfusion group and 7 patients (2.7%) in the control group required extracorporeal lung support for primary graft dysfunction (P = 1.00). The median time to extubation, intensive care unit stay, and hospital length of stay were 2, 4, and 20 days, respectively, in the ex vivo lung perfusion group and 2, 4, and 23 days, respectively, in the control group (P > .05). Thirty-day mortality (4% in the ex vivo lung perfusion group and 3.5% in the control group, P = 1.00) and 1-year survival (87% in the ex vivo lung perfusion group and 86% in the control group, P = 1.00) were similar in both groups. Transplantation of high-risk donor lungs after 4 to 6 hours of ex vivo lung perfusion is safe, and outcomes are similar to those of conventional transplants. Ex vivo lung perfusion improved our center use of donor lungs, accounting for 20% of our current lung transplant activity. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  14. Quantitative CT characterization of pediatric lung development using routine clinical imaging

    PubMed Central

    Stein, Jill M.; Walkup, Laura L.; Brody, Alan S.; Fleck, Robert J.

    2016-01-01

    Background The use of quantitative CT analysis in children is limited by lack of normal values of lung parenchymal attenuation. These characteristics are important because normal lung development yields significant parenchymal attenuation changes as children age. Objective To perform quantitative characterization of normal pediatric lung parenchymal X-ray CT attenuation under routine clinical conditions in order to establish a baseline comparison to that seen in pathological lung conditions. Materials and methods We conducted a retrospective query of normal CT chest examinations in children ages 0–7 years from 2004 to 2014 using standard clinical protocol. During these examinations semi-automated lung parenchymal segmentation was performed to measure lung volume and mean lung attenuation. Results We analyzed 42 CT examinations in 39 children, ages 3 days to 83 months (mean ± standard deviation [SD] = 42±27 months). Lung volume ranged 0.10–1.72 liters (L). Mean lung attenuation was much higher in children younger than 12 months, with values as high as −380 Hounsfield units (HU) in neonates (lung volume 0.10 L). Lung volume decreased to approximately −650 HU by age 2 years (lung volume 0.47 L), with subsequently slower exponential decrease toward a relatively constant value of −860 HU as age and lung volume increased. Conclusion Normal lung parenchymal X-ray CT attenuation decreases with increasing lung volume and age; lung attenuation decreases rapidly in the first 2 years of age and more slowly thereafter. This change in normal lung attenuation should be taken into account as quantitative CT methods are translated to pediatric pulmonary imaging. PMID:27576458

  15. Survival Benefit of Lung Transplantation in the Modern Era of Lung Allocation.

    PubMed

    Vock, David M; Durheim, Michael T; Tsuang, Wayne M; Finlen Copeland, C Ashley; Tsiatis, Anastasios A; Davidian, Marie; Neely, Megan L; Lederer, David J; Palmer, Scott M

    2017-02-01

    Lung transplantation is an accepted and increasingly employed treatment for advanced lung diseases, but the anticipated survival benefit of lung transplantation is poorly understood. To determine whether and for which patients lung transplantation confers a survival benefit in the modern era of U.S. lung allocation. Data on 13,040 adults listed for lung transplantation between May 2005 and September 2011 were obtained from the United Network for Organ Sharing. A structural nested accelerated failure time model was used to model the survival benefit of lung transplantation over time. The effects of patient, donor, and transplant center characteristics on the relative survival benefit of transplantation were examined. Overall, 73.8% of transplant recipients were predicted to achieve a 2-year survival benefit with lung transplantation. The survival benefit of transplantation varied by native disease group (P = 0.062), with 2-year expected benefit in 39.2 and 98.9% of transplants occurring in those with obstructive lung disease and cystic fibrosis, respectively, and by lung allocation score at the time of transplantation (P < 0.001), with net 2-year benefit in only 6.8% of transplants occurring for lung allocation score less than 32.5 and in 99.9% of transplants for lung allocation score exceeding 40. A majority of adults undergoing transplantation experience a survival benefit, with the greatest potential benefit in those with higher lung allocation scores or restrictive native lung disease or cystic fibrosis. These results provide novel information to assess the expected benefit of lung transplantation at an individual level and to enhance lung allocation policy.

  16. Left-Right Asymmetry in Spectral Characteristics of Lung Sounds Detected Using a Dual-Channel Auscultation System in Healthy Young Adults.

    PubMed

    Tsai, Jang-Zern; Chang, Ming-Lang; Yang, Jiun-Yue; Kuo, Dar; Lin, Ching-Hsiung; Kuo, Cheng-Deng

    2017-06-07

    Though lung sounds auscultation is important for the diagnosis and monitoring of lung diseases, the spectral characteristics of lung sounds have not been fully understood. This study compared the spectral characteristics of lung sounds between the right and left lungs and between healthy male and female subjects using a dual-channel auscultation system. Forty-two subjects aged 18-22 years without smoking habits and any known pulmonary diseases participated in this study. The lung sounds were recorded from seven pairs of auscultation sites on the chest wall simultaneously. We found that in four out of seven auscultation pairs, the lung sounds from the left lung had a higher total power (P T ) than those from the right lung. The P T of male subjects was higher than that of female ones in most auscultation pairs. The ratio of inspiration power to expiration power (R I/E ) of lung sounds from the right lung was greater than that from the left lung at auscultation pairs on the anterior chest wall, while this phenomenon was reversed at auscultation pairs on the posterior chest wall in combined subjects, and similarly in both male and female subjects. Though the frequency corresponding to maximum power density of lung sounds (F MPD ) from the left and right lungs was not significantly different, the frequency that equally divided the power spectrum of lung sounds (F 50 ) from the left lung was significantly smaller than that from the right lung at auscultation site on the anterior and lateral chest walls, while it was significantly larger than that of from the right lung at auscultation site on the posterior chest walls. In conclusion, significant differences in the P T , F MPD , F 50 , and R I/E between the left and right lungs at some auscultation pairs were observed by using a dual-channel auscultation system in this study. Structural differences between the left and the right lungs, between the female and male subjects, and between anterior and posterior lungs might account for the observed differences in the spectral characteristics of lung sounds. The dual-channel auscultation system might be useful for future development of digital stethoscopes and power spectral analysis of lung sounds in patients with various kinds of cardiopulmonary diseases.

  17. Left–Right Asymmetry in Spectral Characteristics of Lung Sounds Detected Using a Dual-Channel Auscultation System in Healthy Young Adults

    PubMed Central

    Tsai, Jang-Zern; Chang, Ming-Lang; Yang, Jiun-Yue; Kuo, Dar; Lin, Ching-Hsiung; Kuo, Cheng-Deng

    2017-01-01

    Though lung sounds auscultation is important for the diagnosis and monitoring of lung diseases, the spectral characteristics of lung sounds have not been fully understood. This study compared the spectral characteristics of lung sounds between the right and left lungs and between healthy male and female subjects using a dual-channel auscultation system. Forty-two subjects aged 18–22 years without smoking habits and any known pulmonary diseases participated in this study. The lung sounds were recorded from seven pairs of auscultation sites on the chest wall simultaneously. We found that in four out of seven auscultation pairs, the lung sounds from the left lung had a higher total power (PT) than those from the right lung. The PT of male subjects was higher than that of female ones in most auscultation pairs. The ratio of inspiration power to expiration power (RI/E) of lung sounds from the right lung was greater than that from the left lung at auscultation pairs on the anterior chest wall, while this phenomenon was reversed at auscultation pairs on the posterior chest wall in combined subjects, and similarly in both male and female subjects. Though the frequency corresponding to maximum power density of lung sounds (FMPD) from the left and right lungs was not significantly different, the frequency that equally divided the power spectrum of lung sounds (F50) from the left lung was significantly smaller than that from the right lung at auscultation site on the anterior and lateral chest walls, while it was significantly larger than that of from the right lung at auscultation site on the posterior chest walls. In conclusion, significant differences in the PT, FMPD, F50, and RI/E between the left and right lungs at some auscultation pairs were observed by using a dual-channel auscultation system in this study. Structural differences between the left and the right lungs, between the female and male subjects, and between anterior and posterior lungs might account for the observed differences in the spectral characteristics of lung sounds. The dual-channel auscultation system might be useful for future development of digital stethoscopes and power spectral analysis of lung sounds in patients with various kinds of cardiopulmonary diseases. PMID:28590447

  18. Effect of one-lung ventilation on end-tidal carbon dioxide during cardiopulmonary resuscitation in a pig model of cardiac arrest.

    PubMed

    Ryu, Dong Hyun; Jung, Yong Hun; Jeung, Kyung Woon; Lee, Byung Kook; Jeong, Young Won; Yun, Jong Geun; Lee, Dong Hun; Lee, Sung Min; Heo, Tag; Min, Yong Il

    2018-01-01

    Unrecognized endobronchial intubation frequently occurs after emergency intubation. However, no study has evaluated the effect of one-lung ventilation on end-tidal carbon dioxide (ETCO2) during cardiopulmonary resuscitation (CPR). We compared the hemodynamic parameters, blood gases, and ETCO2 during one-lung ventilation with those during conventional two-lung ventilation in a pig model of CPR, to determine the effect of the former on ETCO2. A randomized crossover study was conducted in 12 pigs intubated with double-lumen endobronchial tube to achieve lung separation. During CPR, the animals underwent three 5-min ventilation trials based on a randomized crossover design: left-lung, right-lung, or two-lung ventilation. Arterial blood gases were measured at the end of each ventilation trial. Ventilation was provided using the same tidal volume throughout the ventilation trials. Comparison using generalized linear mixed model revealed no significant group effects with respect to aortic pressure, coronary perfusion pressure, and carotid blood flow; however, significant group effect in terms of ETCO2 was found (P < 0.001). In the post hoc analyses, ETCO2 was lower during the right-lung ventilation than during the two-lung (P = 0.006) or left-lung ventilation (P < 0.001). However, no difference in ETCO2 was detected between the left-lung and two-lung ventilations. The partial pressure of arterial carbon dioxide (PaCO2), partial pressure of arterial oxygen (PaO2), and oxygen saturation (SaO2) differed among the three types of ventilation (P = 0.003, P = 0.001, and P = 0.001, respectively). The post hoc analyses revealed a higher PaCO2, lower PaO2, and lower SaO2 during right-lung ventilation than during two-lung or left-lung ventilation. However, the levels of these blood gases did not differ between the left-lung and two-lung ventilations. In a pig model of CPR, ETCO2 was significantly lower during right-lung ventilation than during two-lung ventilation. However, interestingly, ETCO2 during left-lung ventilation was comparable to that during two-lung ventilation.

  19. A Phase I Study of iPS Cell Generation From Patients With COPD

    ClinicalTrials.gov

    2018-03-20

    Thoracic Diseases; Respiratory Tract Diseases; Cancer of Lung; Cancer of the Lung; Lung Cancer; Lung Diseases, Obstructive; COPD; Pulmonary Emphysema; Neoplasms, Lung; Neoplasms, Pulmonary; Pulmonary Cancer; Pulmonary Neoplasms; Carcinoma, Non-Small-Cell Lung; Carcinoma, Small Cell

  20. RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer

    PubMed Central

    Rao, Shuan; Sigl, Verena; Wimmer, Reiner Alois; Novatchkova, Maria; Jais, Alexander; Wagner, Gabriel; Handschuh, Stephan; Uribesalgo, Iris; Hagelkruys, Astrid; Kozieradzki, Ivona; Tortola, Luigi; Nitsch, Roberto; Cronin, Shane J.; Orthofer, Michael; Branstetter, Daniel; Canon, Jude; Rossi, John; D'Arcangelo, Manolo; Botling, Johan; Micke, Patrick; Fleur, Linnea La; Edlund, Karolina; Bergqvist, Michael; Ekman, Simon; Lendl, Thomas; Popper, Helmut; Takayanagi, Hiroshi; Kenner, Lukas; Hirsch, Fred R.; Dougall, William

    2017-01-01

    Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRasG12D in mouse lung epithelial cells markedly impairs the progression of KRasG12D-driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRasG12D-driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer. PMID:29118048

  1. Local control of metastatic lung tumors treated with SBRT of 48 Gy in four fractions: in comparison with primary lung cancer.

    PubMed

    Hamamoto, Yasushi; Kataoka, Masaaki; Yamashita, Motohiro; Shinkai, Tetsu; Kubo, Yoshiro; Sugawara, Yoshifumi; Inoue, Takeshi; Sakai, Shinya; Aono, Shoji; Takahashi, Tadaaki; Semba, Takatoshi; Uwatsu, Kotaro

    2010-02-01

    The optimal dose of stereotactic body radiotherapy (SBRT) for metastatic lung tumors has not been clarified. Local control rates of metastatic lung tumors treated with SBRT of 48 Gy in four fractions, which is one of the common dose schedules for Stage I primary lung cancer in Japan, were examined. Between 2006 and 2008, 12 metastatic lung tumors (colorectal cancer, 7; others, 5) in 10 patients and 56 lesions of Stage I primary lung cancer (T1, 43; T2, 13) in 52 patients were treated with SBRT of 48 Gy in four fractions at the isocenter. Two-year overall survival rates were 86% for patients with metastatic lung tumors and 96% for patients with Stage I primary lung cancer (P = 0.4773). One- and 2-year local control rates were 48% and 25% for metastatic lung tumors, and 91% and 88% for Stage I primary lung cancer, respectively (P < 0.0001). The local control rates after SBRT of 48 Gy in four fractions were significantly worse in metastatic lung tumors compared with Stage I primary lung cancer. In SBRT, metastatic lung tumors should be clearly differentiated from primary lung cancer and should be given higher doses.

  2. Clinical review: Bedside lung ultrasound in critical care practice

    PubMed Central

    Bouhemad, Bélaïd; Zhang, Mao; Lu, Qin; Rouby, Jean-Jacques

    2007-01-01

    Lung ultrasound can be routinely performed at the bedside by intensive care unit physicians and may provide accurate information on lung status with diagnostic and therapeutic relevance. This article reviews the performance of bedside lung ultrasound for diagnosing pleural effusion, pneumothorax, alveolar-interstitial syndrome, lung consolidation, pulmonary abscess and lung recruitment/derecruitment in critically ill patients with acute lung injury. PMID:17316468

  3. PET-Adjusted Intensity Modulated Radiation Therapy and Combination Chemotherapy in Treating Patients With Stage II-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-05-24

    Metastatic Malignant Neoplasm in the Brain; Recurrent Non-Small Cell Lung Carcinoma; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  4. [Lung transplantation: supply and demand in France].

    PubMed

    Stern, M; Souilamas, R; Tixier, D; Mal, H

    2008-10-01

    For a decade lung transplantation has suffered from a lack of donor organs which aroused a national debate and led to planned action in collaboration with The French National Agency for Transplantation. Analysis of the stages of the process from potential donor to lung transplantation identified lung procurement as the main priority. An increase in the number of potential lung donors and revision of the acceptance criteria led to a doubling of the annual rate of lung transplantation in less than two years. In the near future we may solve the problem of donor family refusals and establish scientifically based criteria for lung acceptance to increase the rate of lung transplantation. Transplantation from non heart-beating donors and the reconditioning of ex vivo non acceptable lungs might supply additional organs to fulfill demand in the long term. The rate of lung transplantation activity in France doubled as the result of a dramatic increase of donor lung proposals. The current improvement in the results of lung transplantation might create new demands and generate future difficulties in the supply of donor lungs. New approaches, such as transplantation from non heart-beating donors and reconditioning ex vivo non acceptable lungs, should be examined in the near future.

  5. The Murine Lung Microbiome Changes During Lung Inflammation and Intranasal Vancomycin Treatment

    PubMed Central

    Barfod, Kenneth Klingenberg; Vrankx, Katleen; Mirsepasi-Lauridsen, Hengameh Chloé; Hansen, Jitka Stilund; Hougaard, Karin Sørig; Larsen, Søren Thor; Ouwenhand, Arthur C.; Krogfelt, Karen Angeliki

    2015-01-01

    Most microbiome research related to airway diseases has focused on the gut microbiome. This is despite advances in culture independent microbial identification techniques revealing that even healthy lungs possess a unique dynamic microbiome. This conceptual change raises the question; if lung diseases could be causally linked to local dysbiosis of the local lung microbiota. Here, we manipulate the murine lung and gut microbiome, in order to show that the lung microbiota can be changed experimentally. We have used four different approaches: lung inflammation by exposure to carbon nano-tube particles, oral probiotics and oral or intranasal exposure to the antibiotic vancomycin. Bacterial DNA was extracted from broncho-alveolar and nasal lavage fluids, caecum samples and compared by DGGE. Our results show that: the lung microbiota is sex dependent and not just a reflection of the gut microbiota, and that induced inflammation can change lung microbiota. This change is not transferred to offspring. Oral probiotics in adult mice do not change lung microbiome detectible by DGGE. Nasal vancomycin can change the lung microbiome preferentially, while oral exposure does not. These observations should be considered in future studies of the causal relationship between lung microbiota and lung diseases. PMID:26668669

  6. What You Need to Know about Lung Cancer

    MedlinePlus

    ... Publications Reports What You Need To Know About™ Lung Cancer This booklet is about lung cancer. Learning about medical care for your cancer can ... The anatomy of the lungs and basics about lung cancer Treatment for lung cancer, including taking part in ...

  7. Pulmonary Rehabilitation in Improving Lung Function in Patients With Locally Advanced Non-Small Cell Lung Cancer Undergoing Chemoradiation

    ClinicalTrials.gov

    2017-04-12

    Cachexia; Fatigue; Pulmonary Complications; Radiation Toxicity; Recurrent Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  8. Stereotactic Body Radiation Therapy Followed by Surgery in Treating Patients With Stage I-IIIA Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2017-12-28

    Stage I Non-Small Cell Lung Cancer AJCC v7; Stage IA Non-Small Cell Lung Carcinoma AJCC v7; Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7

  9. Survival Benefit of Lung Transplantation in the Modern Era of Lung Allocation

    PubMed Central

    Tsuang, Wayne M.; Copeland, C. Ashley Finlen; Tsiatis, Anastasios A.; Davidian, Marie; Neely, Megan L.; Lederer, David J.; Palmer, Scott M.

    2017-01-01

    Rationale: Lung transplantation is an accepted and increasingly employed treatment for advanced lung diseases, but the anticipated survival benefit of lung transplantation is poorly understood. Objectives: To determine whether and for which patients lung transplantation confers a survival benefit in the modern era of U.S. lung allocation. Methods: Data on 13,040 adults listed for lung transplantation between May 2005 and September 2011 were obtained from the United Network for Organ Sharing. A structural nested accelerated failure time model was used to model the survival benefit of lung transplantation over time. The effects of patient, donor, and transplant center characteristics on the relative survival benefit of transplantation were examined. Measurements and Main Results: Overall, 73.8% of transplant recipients were predicted to achieve a 2-year survival benefit with lung transplantation. The survival benefit of transplantation varied by native disease group (P = 0.062), with 2-year expected benefit in 39.2 and 98.9% of transplants occurring in those with obstructive lung disease and cystic fibrosis, respectively, and by lung allocation score at the time of transplantation (P < 0.001), with net 2-year benefit in only 6.8% of transplants occurring for lung allocation score less than 32.5 and in 99.9% of transplants for lung allocation score exceeding 40. Conclusions: A majority of adults undergoing transplantation experience a survival benefit, with the greatest potential benefit in those with higher lung allocation scores or restrictive native lung disease or cystic fibrosis. These results provide novel information to assess the expected benefit of lung transplantation at an individual level and to enhance lung allocation policy. PMID:27779905

  10. Evaluation of Neonatal Lung Volume Growth by Pulmonary Magnetic Resonance Imaging in Patients with Congenital Diaphragmatic Hernia.

    PubMed

    Schopper, Melissa A; Walkup, Laura L; Tkach, Jean A; Higano, Nara S; Lim, Foong Yen; Haberman, Beth; Woods, Jason C; Kingma, Paul S

    2017-09-01

    To evaluate postnatal lung volume in infants with congenital diaphragmatic hernia (CDH) and determine if a compensatory increase in lung volume occurs during the postnatal period. Using a novel pulmonary magnetic resonance imaging method for imaging neonatal lungs, the postnatal lung volumes in infants with CDH were determined and compared with prenatal lung volumes obtained via late gestation magnetic resonance imaging. Infants with left-sided CDH (2 mild, 9 moderate, and 1 severe) were evaluated. The total lung volume increased in all infants, with the contralateral lung increasing faster than the ipsilateral lung (mean ± SD: 4.9 ± 3.0 mL/week vs 3.4 ± 2.1 mL/week, P = .005). In contrast to prenatal studies, the volume of lungs of infants with more severe CDH grew faster than the lungs of infants with more mild CDH (Spearman's ρ=-0.086, P = .01). Although the contralateral lung volume grew faster in both mild and moderate groups, the majority of total lung volume growth in moderate CDH came from increased volume of the ipsilateral lung (42% of total lung volume increase in the moderate group vs 32% of total lung volume increase in the mild group, P = .09). Analysis of multiple clinical variables suggests that increased weight gain was associated with increased compensatory ipsilateral lung volume growth (ρ = 0.57, P = .05). These results suggest a potential for postnatal catch-up growth in infants with pulmonary hypoplasia and suggest that weight gain may increase the volume growth of the more severely affected lung. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Characterization of the seven-day course of pulmonary response following unilateral lung acid injury in rats.

    PubMed

    Setzer, Florian; Schmidt, Barbara; Hueter, Lars; Schwarzkopf, Konrad; Sänger, Jörg; Schreiber, Torsten

    2018-01-01

    Aspiration of gastric acid is an important cause of acute lung injury. The time course of the pulmonary response to such an insult beyond the initial 48 hours is incompletely characterized. The purpose of this study was to comprehensively describe the pulmonary effects of focal lung acid injury over a seven day period in both directly injured and not directly injured lung tissue. Male Wistar rats underwent left-endobronchial instillation with hydrochloric acid and were sacrificed at 4, 24, 48, 96 or 168 h after the insult. Healthy non-injured animals served as controls. We assessed inflammatory cell counts and cytokine levels in right and left lung lavage fluid and blood, arterial oxygen tension, alterations in lung histology, lung wet-to-dry weight ratio and differential lung perfusion. Lung acid instillation induced an early strong inflammatory response in the directly affected lung, peaking at 4-24 hours, with only partial resolution after 7 days. A less severe response with complete resolution after 4 days was seen in the opposite lung. Alveolar cytokine levels, with exception of IL-6, only partially reflected the localization of lung injury and the time course of the functional and histologic alterations. Alveolar leucocyte subpopulations exhibited different time courses in the acid injured lung with persistent elevation of alveolar lymphocytes and macrophages. After acid instillation there was an early transient decrease in arterial oxygen tension and lung perfusion was preferentially distributed to the non-injured lung. These findings provide a basis for further research in the field of lung acid injury and for studies exploring effects of mechanical ventilation on injured lungs. Incomplete recovery in the directly injured lung 7 days after acid instillation suggests that increased vulnerability and susceptibility to further noxious stimuli are still present at that time.

  12. Lung transplantation and interstitial lung disease.

    PubMed

    Alalawi, Raed; Whelan, Timothy; Bajwa, Ravinder S; Hodges, Tony N

    2005-09-01

    Interstitial lung disease includes a heterogeneous group of disorders that leads to respiratory insufficiency and death in a significant number of patients. Lung transplantation is a therapeutic option in select candidates. The indications, transplant procedure options, and outcomes continue to evolve. Various recipient comorbidities influence the choice of procedure in patients with interstitial lung disease. Single lung transplants are used as the procedure of choice and bilateral transplants are reserved for patients with suppurative lung disease and patients with pulmonary hypertension. Issues unique to patients with interstitial lung disease affect the morbidity, mortality and recurrence of the disease. Lung transplantation is an effective therapy for respiratory failure in interstitial lung disease with survival following transplant being similar to that achieved in transplant recipients with other diseases.

  13. LungMAP: The Molecular Atlas of Lung Development Program

    PubMed Central

    Ardini-Poleske, Maryanne E.; Ansong, Charles; Carson, James P.; Corley, Richard A.; Deutsch, Gail H.; Hagood, James S.; Kaminski, Naftali; Mariani, Thomas J.; Potter, Steven S.; Pryhuber, Gloria S.; Warburton, David; Whitsett, Jeffrey A.; Palmer, Scott M.; Ambalavanan, Namasivayam

    2017-01-01

    The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users. PMID:28798251

  14. Effects of vascular flow and PEEP in a multiple hit model of lung injury in isolated perfused rabbit lungs.

    PubMed

    Piacentini, Enrique; López-Aguilar, Josefina; García-Martín, Carolina; Villagrá, Ana; Saenz-Valiente, Alicia; Murias, Gastón; Fernández-Segoviano, Pilar; Hotchkiss, John R; Blanch, Lluis

    2008-07-01

    High vascular flow aggravates lung damage in animal models of ventilator-induced lung injury. Positive end-expiratory pressure (PEEP) can attenuate ventilator-induced lung injury, but its continued effectiveness in the setting of antecedent lung injury is unclear. The objective of the present study was to evaluate whether the application of PEEP diminishes lung injury induced by concurrent high vascular flow and high alveolar pressures in normal lungs and in a preinjury lung model. Two series of experiments were performed. Fifteen sets of isolated rabbit lungs were randomized into three groups (n = 5): low vascular flow/low PEEP; high vascular flow/low PEEP, and high vascular flow/high PEEP. Subsequently, the same protocol was applied in an additional 15 sets of isolated rabbit lungs in which oleic acid was added to the vascular perfusate to produce mild to moderate lung injury. All lungs were ventilated with peak airway pressure of 30 cm H2O for 30 minutes. Outcome measures included frequency of gross structural failure, pulmonary hemorrhage, edema formation, changes in static compliance, pulmonary vascular resistance, and pulmonary ultrafiltration coefficient. In the context of high vascular flow, application of a moderate level of PEEP reduced pulmonary rupture, edema formation, and lung hemorrhage. The protective effects of PEEP were not observed in lungs concurrently injured with oleic acid. Under these experimental conditions, PEEP attenuates lung injury in the setting of high vascular flow. The protective effect of PEEP is lost in a two-hit model of lung injury.

  15. Lung dose and the potential risk of death in postoperative radiation therapy for non-small cell lung cancer: A study using the method of stratified grouping.

    PubMed

    Heo, Jaesung; Noh, O Kyu; Kim, Hwan-Ik; Chun, Mison; Cho, Oyeon; Park, Rae Woong; Yoon, Dukyong; Oh, Young-Taek

    2018-04-19

    Postoperative radiation therapy may have a detrimental effect on survival in patients with non-small cell lung cancer. We investigated the association of the lung radiation dose with the risk of death in patients treated with postoperative radiation therapy. We analyzed 178 patients with non-small cell lung cancer who received postoperative radiation therapy. The mean lung dose was calculated from dose-volume data, and we categorized patients into the high and low lung dose groups using 2 different methods; (1) simple grouping using the median lung dose of all patients, and (2) stratified grouping using the median lung dose of each subgroup sharing the same confounders. We compared clinical variables, and survival between the high and low lung dose groups. In the simple grouping, there were no significant differences in survivals between the high and low lung dose groups. After stratification, the overall survival of low lung dose group was significantly longer than that of high lung dose group (5-year survival, 60.1% vs. 35.3%, p = 0.039). On multivariable analyses, the lung dose remained a significant prognostic factor for overall survival (hazard ratio, HR = 2.08, p = 0.019). The lung dose was associated with the risk of death in patients with non-small cell lung cancer having the same confounders. Further studies evaluating the risk of death according to the lung dose will be helpful to administer more precise and individualized postoperative radiation therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Developing Optimal Parameters for Hyperpolarized Noble Gas and Inert Fluorinated Gas MRI of Lung Disorders

    ClinicalTrials.gov

    2018-06-21

    Lung Transplant; Lung Resection; Lung Cancer; Asthma; Cystic Fibrosis; Chronic Obstructive Pulmonary Disease; Emphysema; Mesothelioma; Asbestosis; Pulmonary Embolism; Interstitial Lung Disease; Pulmonary Fibrosis; Bronchiectasis; Seasonal Allergies; Cold Virus; Lung Infection; Pulmonary Hypertension; Pulmonary Dysplasia; Obstructive Sleep Apnea

  17. Sirolimus and Gold Sodium Thiomalate in Treating Patients With Advanced Squamous Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2012-12-13

    Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  18. Technetium-fibrinogen lung scanning in canine lung contusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, E.; Khaw, B.A.; Strauss, H.W.

    1984-07-01

    To detect experimentally induced acute lung contusion in anesthetized dogs, serial radionuclide images of the lung were recorded following intravenous infusion of 99mTc-labelled human fibrinogen (Tc-HF). The accumulation of Tc-HF in canine lungs was serially quantitated for up to 20 hours after lung contusion. A contusion (number1) was produced in one lung, Tc-HF was injected IV after 15 minutes, and 75 minutes later a contralateral lung contusion (number2) was produced in a series of 14 dogs. At autopsy the excised lungs were scanned, sectioned, and counted for radioactivity. Radiolabelled fibrinogen accumulated within 2-4 minutes of contusion number2 and remained stablemore » over the next 20 hours in 14 dogs; contusion number1 was barely visible in four dogs. Lung Tc-HF activity in the central region of contusion number2 remained sixfold higher than in normal lung tissue. These data suggest that following lung contusion, fibrinogen deposition occurs rapidly and remains stable over a 20-hour interval of observation.« less

  19. Palliative Care Intervention in Improving Symptom Control and Quality of Life in Patients With Stage II-IV Non-small Cell Lung Cancer and Their Family Caregivers

    ClinicalTrials.gov

    2017-10-16

    Caregiver; Psychological Impact of Cancer and Its Treatment; Recurrent Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  20. Evaluation of diagnostic value of four tumor markers in bronchoalveolar lavage fluid of peripheral lung cancer.

    PubMed

    Li, Jian; Chen, Ping; Mao, Chao-Ming; Tang, Xing-Ping; Zhu, Li-Rong

    2014-06-01

    The diagnostic role of carcinoembryonic antigen (CEA), squamous cell carcinoma (SCC) antigen, Cyfra 21-1 and neuron-specific enolase (NSE) in the bronchoalveolar lavage fluid (BALF) for lung cancer is still controversial. The aim of this study was to evaluate the diagnostic value of these four tumor markers in BALF for peripheral lung cancer. We measured and compared the levels of CEA, SCC, Cyfra21-1 and NSE in BALF in 42 patients with peripheral lung cancer and 22 patients with benign lung disease. In the patients with peripheral lung cancer, the BAL was separately performed in the bronchus of the tumor-bearing lung and in the corresponding bronchus of the opposite healthy lung. The levels of CEA, SCC, Cyfra21-1 and NSE were significantly elevated in BALF from the tumor-bearing lung compared with the opposite healthy lung in the lung cancer patients (P < 0.001) or the benign lung disease patients (P < 0.005). The diagnostic sensitivities of Cyfra21-1 (86 and 76%), with a specificity of 91%, were the highest among the four tumor markers for the tumor-bearing lung versus the opposite healthy lung and benign lung disease. The combination of Cyfra21-1 and CEA increased the sensitivity to 93 and 86 percent, respectively. The assay of these tumor markers in BALF may be used as a diagnostic tool to complement a cytological examination in the diagnosis of peripheral lung cancer. © 2013 Wiley Publishing Asia Pty Ltd.

  1. [A new medical education using a lung sound auscultation simulator called "Mr. Lung"].

    PubMed

    Yoshii, Chiharu; Anzai, Takashi; Yatera, Kazuhiro; Kawajiri, Tatsunori; Nakashima, Yasuhide; Kido, Masamitsu

    2002-09-01

    We developed a lung sound auscultation simulator "Mr. Lung" in 2001. To improve the auscultation skills of lung sounds, we utilized this new device in our educational training facility. From June 2001 to March 2002, we used "Mr. Lung" for our small group training in which one hundred of the fifth year medical students were divided into small groups from which one group was taught every other week. The class consisted of ninety-minute training periods for auscultation of lung sounds. At first, we explained the classification of lung sounds, and then auscultation tests were performed. Namely, students listened to three cases of abnormal or adventitious lung sounds on "Mr. Lung" through their stethoscopes. Next they answered questions corresponding to the portion and quality of the sounds. Then, we explained the correct answers and how to differentiate lung sounds on "Mr. Lung". Additionally, at the beginning and the end of the lecture, five degrees of self-assessment for the auscultation of the lung sounds were performed. The ratio of correct answers for lung sounds were 36.9% for differences between bilateral lung sounds, 52.5% for coarse crackles, 34.1% for fine crackles, 69.2% for wheezes, 62.1% for rhonchi and 22.2% for stridor. Self-assessment scores were significantly higher after the class than before. The ratio of correct lung sound answers was surprisingly low among medical students. We believe repetitive auscultation of the simulator to be extremely helpful for medical education.

  2. Pulmonary preservation studies: effects on endothelial function and pulmonary adenine nucleotides.

    PubMed

    Paik, Hyo Chae; Hoffmann, Steven C; Egan, Thomas M

    2003-02-27

    Lung transplantation is an effective therapy plagued by a high incidence of early graft dysfunction, in part because of reperfusion injury. The optimal preservation solution for lung transplantation is unknown. We performed experiments using an isolated perfused rat lung model to test the effect of lung preservation with three solutions commonly used in clinical practice. Lungs were retrieved from Sprague-Dawley rats and flushed with one of three solutions: modified Euro-Collins (MEC), University of Wisconsin (UW), or low potassium dextran and glucose (LPDG), then stored cold for varying periods before reperfusion with Earle's balanced salt solution using the isolated perfused rat lung model. Outcome measures were capillary filtration coefficient (Kfc), wet-to-dry weight ratio, and lung tissue levels of adenine nucleotides and cyclic AMP. All lungs functioned well after 4 hr of storage. By 6 hr, UW-flushed lungs had a lower Kfc than LPDG-flushed lungs. After 8 hr of storage, only UW-flushed lungs had a measurable Kfc. Adenine nucleotide levels were higher in UW-flushed lungs after prolonged storage. Cyclic AMP levels correlated with Kfc in all groups. Early changes in endothelial permeability seemed to be better attenuated in lungs flushed with UW compared with LPDG or MEC; this was associated with higher amounts of adenine nucleotides. MEC-flushed lungs failed earlier than LPDG-flushed or UW-flushed lungs. The content of the solution may be more important for lung preservation than whether the ionic composition is intracellular or extracellular.

  3. Lung scintigraphy in differential diagnosis of peripheral lung cancer and community-acquired pneumonia

    NASA Astrophysics Data System (ADS)

    Krivonogov, Nikolay G.; Efimova, Nataliya Y.; Zavadovsky, Konstantin W.; Lishmanov, Yuri B.

    2016-08-01

    Ventilation/perfusion lung scintigraphy was performed in 39 patients with verified diagnosis of community-acquired pneumonia (CAP) and in 14 patients with peripheral lung cancer. Ventilation/perfusion ratio, apical-basal gradients of ventilation (U/L(V)) and lung perfusion (U/L(P)), and alveolar capillary permeability of radionuclide aerosol were determined based on scintigraphy data. The study demonstrated that main signs of CAP were increases in ventilation/perfusion ratio, perfusion and ventilation gradient on a side of the diseased lung, and two-side increase in alveolar capillary permeability rate for radionuclide aerosol. Unlike this, scintigraphic signs of peripheral lung cancer comprise an increase in ventilation/perfusion ratio over 1.0 on a side of the diseased lung with its simultaneous decrease on a contralateral side, normal values of perfusion and ventilation gradients of both lungs, and delayed alveolar capillary clearance in the diseased lung compared with the intact lung.

  4. [Current state and development of artificial lungs].

    PubMed

    Mei, Zaoxian; Sun, Xin; Wu, Qi

    2010-12-01

    The artificial lung is a technical device for providing life support; it will be put in use when the natural lungs are failing and are not able to maintain sufficient oxygenation of the body's organ systems. From the viewpoint of long-term development, the artificial lung should be permanently implanted in the body, so that it will substitute for the human pulmonary function partially or completely. In this paper, four artificial lung technologies were expounded with reference to the development and research process of artificial lung. They were extracorporeal membrane oxygenation, intravascular artificial lung, implantable artificial lung, and pumpless extracorporeal lung assist. In this paper were described the structure of the four kinds of artificial lung, the working principle, and their advantages, disadvantages and indications. The prospect of artificial lung was evaluated in the light of the data from the existing animal experiments and from the clinical experience of the centers.

  5. Lung scintigraphy in differential diagnosis of peripheral lung cancer and community-acquired pneumonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krivonogov, Nikolay G., E-mail: kng@cardio-tomsk.ru; Efimova, Nataliya Y., E-mail: efimova@cardio-tomsk.ru; Zavadovsky, Konstantin W.

    Ventilation/perfusion lung scintigraphy was performed in 39 patients with verified diagnosis of community-acquired pneumonia (CAP) and in 14 patients with peripheral lung cancer. Ventilation/perfusion ratio, apical-basal gradients of ventilation (U/L(V)) and lung perfusion (U/L(P)), and alveolar capillary permeability of radionuclide aerosol were determined based on scintigraphy data. The study demonstrated that main signs of CAP were increases in ventilation/perfusion ratio, perfusion and ventilation gradient on a side of the diseased lung, and two-side increase in alveolar capillary permeability rate for radionuclide aerosol. Unlike this, scintigraphic signs of peripheral lung cancer comprise an increase in ventilation/perfusion ratio over 1.0 on amore » side of the diseased lung with its simultaneous decrease on a contralateral side, normal values of perfusion and ventilation gradients of both lungs, and delayed alveolar capillary clearance in the diseased lung compared with the intact lung.« less

  6. [Lung transplantation.].

    PubMed

    Guðmundsson, G

    2000-09-01

    Lung transplantation is an option in the treatment of end stage lung diseases, excluding lung cancer, that lead to short life expectancy and poor quality of life. Now they are mostly limited by shortage of donor organs and longterm complications. They are used for various lung diseases such as pulmonary vascular diseases, fibrosing diseases, chronic obstructive pulmonary diseases and diseases that cause chronic infections. Depending on the indication it is possible to perform heart and lung transplantation, single lung or double lung transplantation.Indications, contraindications, surgical methods, immunosuppression, complications and outcomes will be discussed. Survival is not as good as for other solid organ transplantation. Measurement of pulmonary function and quality of life improve with lung transplantation. Bronchiolitis obliterans is the most common complication and is the most limiting factor. A few Icelanders have undergone lung transplantation, most of them in Gothenburg, Sweden. The future of lung transplantation depends on limiting the incidence of bronchiolitis obliterans and finding more organ donors.

  7. Erlotinib Hydrochloride With or Without Carboplatin and Paclitaxel in Treating Patients With Stage III-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-06-01

    Adenosquamous Lung Carcinoma; Lung Adenocarcinoma; Malignant Pericardial Effusion; Malignant Pleural Effusion; Minimally Invasive Lung Adenocarcinoma; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  8. 75 FR 66772 - National Heart, Lung, and Blood Institute; Notice of Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Heart, Lung, and..., Director, National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and... Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, National...

  9. How to optimize the lung donor.

    PubMed

    Sales, Gabriele; Costamagna, Andrea; Fanelli, Vito; Boffini, Massimo; Pugliese, Francesco; Mascia, Luciana; Brazzi, Luca

    2018-02-01

    Over the last two decades, lung transplantation emerged as the standard of care for patients with advanced and terminal lung disease. Despite the increment in lung transplantation rates, in 2016 the overall mortality while on waiting list in Italy reached 10%, whereas only 39% of the wait-list patients were successfully transplanted. A number of approaches, including protective ventilatory strategy, accurate management of fluid balance, and administration of a hormonal resuscitation therapy, have been reported to improve lung donor performance before organ retrieval. These approaches, in conjunction with the use of ex-vivo lung perfusion technique contributed to expand the lung donor pool, without affecting the harvest of other organs and the outcomes of lung recipients. However, the efficacy of issues related to the ex-vivo lung perfusion technique, such as the optimal ventilation strategy, the ischemia-reperfusion induced lung injury management, the prophylaxis of germs transmission from donor to recipient and the application of targeted pharmacologic therapies to treat specific donor lung injuries are still to be explored. The main objective of the present review is to summarize the "state-of-art" strategies to optimize the donor lungs and to present the actual role of ex-vivo lung perfusion in the process of lung transplant. Moreover, different approaches about the technique reported in literature and several issues that are under investigation to treat specific donor lung injury will be discussed.

  10. RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer.

    PubMed

    Rao, Shuan; Sigl, Verena; Wimmer, Reiner Alois; Novatchkova, Maria; Jais, Alexander; Wagner, Gabriel; Handschuh, Stephan; Uribesalgo, Iris; Hagelkruys, Astrid; Kozieradzki, Ivona; Tortola, Luigi; Nitsch, Roberto; Cronin, Shane J; Orthofer, Michael; Branstetter, Daniel; Canon, Jude; Rossi, John; D'Arcangelo, Manolo; Botling, Johan; Micke, Patrick; Fleur, Linnea La; Edlund, Karolina; Bergqvist, Michael; Ekman, Simon; Lendl, Thomas; Popper, Helmut; Takayanagi, Hiroshi; Kenner, Lukas; Hirsch, Fred R; Dougall, William; Penninger, Josef M

    2017-10-15

    Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRas G12D in mouse lung epithelial cells markedly impairs the progression of KRas G12D -driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRas G12D -driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer. © 2017 Rao et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Redistribution of pulmonary blood flow during unilateral hypoxia in prone and supine dogs

    NASA Technical Reports Server (NTRS)

    Mann, C. M.; Domino, K. B.; Walther, S. M.; Glenny, R. W.; Polissar, N. L.; Hlastala, M. P.

    1998-01-01

    We used fluorescent-labeled microspheres in pentobarbital-anesthetized dogs to study the effects of unilateral alveolar hypoxia on the pulmonary blood flow distribution. The left lung was ventilated with inspired O2 fraction of 1.0, 0.09, or 0.03 in random order; the right lung was ventilated with inspired O2 fraction of 1.0. The lungs were removed, cleared of blood, dried at total lung capacity, then cubed to obtain approximately 1,500 small pieces of lung ( approximately 1.7 cm3). The coefficient of variation of flow increased (P < 0.001) in the hypoxic lung but was unchanged in the hyperoxic lung. Most (70-80%) variance in flow in the hyperoxic lung was attributable to structure, in contrast to only 30-40% of the variance in flow in the hypoxic lung (P < 0.001). When adjusted for the change in total flow to each lung, 90-95% of the variance in the hyperoxic lung was attributable to structure compared with 70-80% in the hypoxic lung (P < 0.001). The hilar-to-peripheral gradient, adjusted for change in total flow, decreased in the hypoxic lung (P = 0.005) but did not change in the hyperoxic lung. We conclude that hypoxic vasoconstriction alters the regional distribution of flow in the hypoxic, but not in the hyperoxic, lung.

  12. Stages of Small Cell Lung Cancer

    MedlinePlus

    ... Lung Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key ...

  13. WE-AB-202-04: Statistical Evaluation of Lung Function Using 4DCT Ventilation Imaging: Proton Therapy VS IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Q; Zhang, M; Chen, T

    Purpose: Variation in function of different lung regions has been ignored so far for conventional lung cancer treatment planning, which may lead to higher risk of radiation induced lung disease. 4DCT based lung ventilation imaging provides a novel yet convenient approach for lung functional imaging as 4DCT is taken as routine for lung cancer treatment. Our work aims to evaluate the impact of accounting for spatial heterogeneity in lung function using 4DCT based lung ventilation imaging for proton and IMRT plans. Methods: Six patients with advanced stage lung cancer of various tumor locations were retrospectively evaluated for the study. Protonmore » and IMRT plans were designed following identical planning objective and constrains for each patient. Ventilation images were calculated from patients’ 4DCT using deformable image registration implemented by Velocity AI software based on Jacobian-metrics. Lung was delineated into two function level regions based on ventilation (low and high functional area). High functional region was defined as lung ventilation greater than 30%. Dose distribution and statistics in different lung function area was calculated for patients. Results: Variation in dosimetric statistics of different function lung region was observed between proton and IMRT plans. In all proton plans, high function lung regions receive lower maximum dose (100.2%–108.9%), compared with IMRT plans (106.4%–119.7%). Interestingly, three out of six proton plans gave higher mean dose by up to 2.2% than IMRT to high function lung region. Lower mean dose (lower by up to 14.1%) and maximum dose (lower by up to 9%) were observed in low function lung for proton plans. Conclusion: A systematic approach was developed to generate function lung ventilation imaging and use it to evaluate plans. This method hold great promise in function analysis of lung during planning. We are currently studying more subjects to evaluate this tool.« less

  14. Lung Cancer and Lung Transplantation.

    PubMed

    Brand, Timothy; Haithcock, Benjamin

    2018-02-01

    Lung transplantation remains a viable option for patients with endstage pulmonary disease. Despite removing the affected organ and replacing both lungs, the risk of lung malignancies still exists. Regardless of the mode of entry, lung cancer affects the prognosis in these patients and diligence is required. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Live Imaging of the Lung

    PubMed Central

    Looney, Mark R.; Bhattacharya, Jahar

    2015-01-01

    Live lung imaging has spanned the discovery of capillaries in the frog lung by Malpighi to the current use of single and multiphoton imaging of intravital and isolated perfused lung preparations incorporating fluorescent molecular probes and transgenic reporter mice. Along the way, much has been learned about the unique microcirculation of the lung, including immune cell migration and the mechanisms by which cells at the alveolar-capillary interface communicate with each other. In this review, we highlight live lung imaging techniques as applied to the role of mitochondria in lung immunity, mechanisms of signal transduction in lung compartments, studies on the composition of alveolar wall liquid, and neutrophil and platelet trafficking in the lung under homeostatic and inflammatory conditions. New applications of live lung imaging and the limitations of current techniques are discussed. PMID:24245941

  16. [Application of the computer-based respiratory sound analysis system based on Mel-frequency cepstral coefficient and dynamic time warping in healthy children].

    PubMed

    Yan, W Y; Li, L; Yang, Y G; Lin, X L; Wu, J Z

    2016-08-01

    We designed a computer-based respiratory sound analysis system to identify pediatric normal lung sound. To verify the validity of the computer-based respiratory sound analysis system. First we downloaded the standard lung sounds from the network database (website: http: //www.easyauscultation.com/lung-sounds-reference-guide) and recorded 3 samples of abnormal loud sound (rhonchi, wheeze and crackles) from three patients of The Department of Pediatrics, the First Affiliated Hospital of Xiamen University. We regarded such lung sounds as"reference lung sounds". The"test lung sounds"were recorded from 29 children form Kindergarten of Xiamen University. we recorded lung sound by portable electronic stethoscope and valid lung sounds were selected by manual identification. We introduced Mel-frequency cepstral coefficient (MFCC) to extract lung sound features and dynamic time warping (DTW) for signal classification. We had 39 standard lung sounds, recorded 58 test lung sounds. This computer-based respiratory sound analysis system was carried out in 58 lung sound recognition, correct identification of 52 times, error identification 6 times. Accuracy was 89.7%. Based on MFCC and DTW, our computer-based respiratory sound analysis system can effectively identify healthy lung sounds of children (accuracy can reach 89.7%), fully embodies the reliability of the lung sounds analysis system.

  17. WHAT MAKES A GOOD PEDIATRIC TRANSPLANT LUNG: INSIGHTS FROM IN VIVO LUNG MORPHOMETRY WITH HYPERPOLARIZED 3HE MRI (WHAT MAKES A GOOD PEDIATRIC TRANSPLANT LUNG)

    PubMed Central

    Fishman, Emily F.; Quirk, James D.; Sweet, Stuart C.; Woods, Jason C.; Gierada, David S.; Conradi, Mark S.; Siegel, Marilyn J.; Yablonskiy, Dmitriy A.

    2016-01-01

    Background Obtaining information on transplanted lung microstructure is an important part of the current care for monitoring transplant recipients. However, until now this information was only available from invasive lung biopsy. The objective of this study was to evaluate the use of an innovative non-invasive technique in vivo lung morphometry with hyperpolarized 3He MRI - to characterize lung microstructure in the pediatric lung transplant population. This technique yields quantitative measurements of acinar airways’ (alveolar ducts and sacs) parameters, such as acinar airways radii and alveolar depth. Methods Six pediatric lung transplant recipients with cystic fibrosis underwent in vivo lung morphometry MRI, pulmonary function testing, and quantitative CT. Results We found a strong correlation between lung lifespan and alveolar depth - patients with more shallow alveoli were likely to have a negative outcome sooner than those with larger alveolar depth. Combining morphometric results with CT we also determined mean alveolar wall thickness and found substantial increases in this parameter in some patients that negatively correlated with DLCO. Conclusion In vivo lung morphometry uniquely provides previously unavailable information on lung microstructure that may be predictive of a negative outcome and has a potential to aid in lung selection for transplantation. PMID:28120553

  18. A biomechanical analysis of common lunge tasks in badminton.

    PubMed

    Kuntze, Gregor; Mansfield, Neil; Sellers, William

    2010-01-01

    The lunge is regularly used in badminton and is recognized for the high physical demands it places on the lower limbs. Despite its common occurrence, little information is available on the biomechanics of lunging in the singles game. A video-based pilot study confirmed the relatively high frequency of lunging, approximately 15% of all movements, in competitive singles games. The biomechanics and performance characteristics of three badminton-specific lunge tasks (kick, step-in, and hop lunge) were investigated in the laboratory with nine experienced male badminton players. Ground reaction forces and kinematic data were collected and lower limb joint kinetics calculated using an inverse dynamics approach. The step-in lunge was characterized by significantly lower mean horizontal reaction force at drive-off and lower mean peak hip joint power than the kick lunge. The hop lunge resulted in significantly larger mean reaction forces during loading and drive-off phases, as well as significantly larger mean peak ankle joint moments and knee and ankle joint powers than the kick or step-in lunges. These findings indicate that, within the setting of this investigation, the step-in lunge may be beneficial for reducing the muscular demands of lunge recovery and that the hop lunge allows for higher positive power output, thereby presenting an efficient lunging method.

  19. Closed-loop mechanical ventilation for lung injury: a novel physiological-feedback mode following the principles of the open lung concept.

    PubMed

    Schwaiberger, David; Pickerodt, Philipp A; Pomprapa, Anake; Tjarks, Onno; Kork, Felix; Boemke, Willehad; Francis, Roland C E; Leonhardt, Steffen; Lachmann, Burkhard

    2018-06-01

    Adherence to low tidal volume (V T ) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the "open lung approach" (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low V T -ventilation for 6 h in severely lung injured pigs. Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.

  20. The regional association between bronchiectasis and lung cancer in chest CT.

    PubMed

    Kim, Yeon Wook; Lee, Chang-Hoon; Jin, Kwang-Nam; Lee, Jung-Kyu; Heo, Eun Young; Park, Sung Soo; Chung, Hee Soon; Kim, Deog Kyeom

    2016-11-15

    Limited studies have examined the association between lung cancer and bronchiectasis (BE). This study evaluated the regional association between BE and lung cancer by analyzing the lobar location of lung cancer in patients with underlying BE. This clustered multi-level study enrolled patients who had underlying BE and were newly diagnosed with lung cancer between January 1, 2010 and May 30, 2013 in two referral hospitals in South Korea. By analyzing the presence of lung cancer and underlying BE as event variables at the level of lung lobes on chest computed tomography (CT), we evaluated the association of BE and lung cancer by the locations of the diseases. Eighty-one patients with BE and combined lung cancer were enrolled. Within 486 lung lobes of the patients, combined BE and lung cancer in the same lobe was found in 11 lobes (2.3 %). Using the general estimating equation assuming BE as a risk factor of lung cancer, the results indicated that the prevalence of lung cancer was significantly lower in the lobes with pre-existing BE (β = -1.09, p-value = 0.001). Regionally, pre-existing BE was associated with a lower risk of the occurrence of lung cancer in the same lobe.

  1. Treatment Options by Stage (Small Cell Lung Cancer)

    MedlinePlus

    ... Lung Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key ...

  2. Lung Diseases

    MedlinePlus

    ... 000 times. People with lung disease have difficulty breathing. Millions of people in the U.S. have lung ... pneumonia and tuberculosis, lung cancer, and many other breathing problems. Some lung diseases can lead to respiratory ...

  3. LungMAP: The Molecular Atlas of Lung Development Program.

    PubMed

    Ardini-Poleske, Maryanne E; Clark, Robert F; Ansong, Charles; Carson, James P; Corley, Richard A; Deutsch, Gail H; Hagood, James S; Kaminski, Naftali; Mariani, Thomas J; Potter, Steven S; Pryhuber, Gloria S; Warburton, David; Whitsett, Jeffrey A; Palmer, Scott M; Ambalavanan, Namasivayam

    2017-11-01

    The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users. Copyright © 2017 the American Physiological Society.

  4. Ex Vivo Lung Perfusion: Establishment and Operationalization in Iran.

    PubMed

    Shafaghi, Shadi; Abbasi Dezfuli, Azizollah; Ansari Aval, Zahra; Sheikhy, Kambiz; Farzanegan, Behrooz; Mortaz, Esmaeil; Emami, Habib; Aigner, Clemens; Hosseini-Baharanchi, Fatemeh Sadat; Najafizadeh, Katayoun

    2017-02-01

    Although the number of lung transplants is limited because of general shortage of organ donors, ex vivo lung perfusion is a novel method with 2 main benefits, including better evaluation of lung potential and recovery of injured lungs. The main aim of this study was to establish and operationalize ex vivo lung perfusion as the first experience in Iran. This was a prospective operational research study on 5 cases, including 1 pig from Vienna Medical University and 4 patients from Masih Daneshvari Hospital. All organ donations from brain dead donors were evaluated according to lung transplant or ex vivo lung perfusion criteria from May 2013 to July 2015 in Tehran, Iran. If a donor did not have any sign of severe chest trauma or pneumonia but had poor oxygenation due to possible atelectasis or neurogenic pulmonary edema, their lungs were included for ex vivo lung perfusion. A successful trend in the difference between the pulmonary arterial Po2 and the left atrial Po2 was observed, as well as an increasing pattern in other functional parameters, including dynamic lung compliance and a decreasing trend in pulmonary vascular resistance. These initial trials indicate that ex vivo lung perfusion can lead to remarkable progress in lung transplant in Iran. They also provide several important pieces of guidance for successful ex vivo lung perfusion, including the necessity of following standard lung retrieval procedures and monitoring temperature and pressure precisely. The development of novel methods can provide opportunities for further research studies on lungs of deceased donors and lead to undiscovered findings. By keeping this science up to date in Iran and developing such new and creative methods, we can reveal effective strategies to promote the quality of donor lungs to support patients on transplant wait lists.

  5. GLI pathogenesis-related 1 functions as a tumor-suppressor in lung cancer.

    PubMed

    Sheng, Xiumei; Bowen, Nathan; Wang, Zhengxin

    2016-03-18

    GLI pathogenesis-related 1 (GLIPR1) was originally identified in glioblastomas and its expression was also found to be down-regulated in prostate cancer. Functional studies revealed both growth suppression and proapoptotic activities for GLIPR1 in multiple cancer cell lines. GLIPR1's role in lung cancer has not been investigated. Protein arginine methyltransferase 5 (PRMT5) is a protein arginine methyltransferase and forms a stoichiometric complex with the WD repeat domain 77 (WDR77) protein. Both PRMT5 and WDR77 are essential for growth of lung epithelial and cancer cells. But additional gene products that interact genetically or biochemichally with PRMT5 and WDR77 in the control of lung cancer cell growth are not characterized. DNA microarray and immunostaining were used to detect GLIPR1 expression during lung development and lung tumorigenesis. GLIPR1 expression was also analyzed in the TCGA lung cancer cohort. The consequence of GLIPR1 on growth of lung cancer cells in the tissue culture and lung tumor xenografts in the nude mice was observed. We found that GLIPR1 expression is negatively associated with PRMT5/WDR77. GLIPR1 is absent in growing epithelial cells at the early stages of mouse lung development and highly expressed in the adult lung. Expression of GLIPR1 was down-regulated during lung tumorigenesis and its expression suppressed growth of lung cancer cells in the tissue culture and lung tumor xenografts in mice. GLIPR1 regulates lung cancer growth through the V-Erb-B avian erythroblastic leukemia viral oncogene homolog 3 (ErbB3). This study reveals a novel pathway that PRMT5/WDR77 regulates GLIPR1 expression to control lung cancer cell growth and GLIPR1 as a potential therapeutic agent for lung cancer.

  6. Ascorbate attenuates pulmonary emphysema by inhibiting tobacco smoke and Rtp801-triggered lung protein modification and proteolysis.

    PubMed

    Gupta, Indranil; Ganguly, Souradipta; Rozanas, Christine R; Stuehr, Dennis J; Panda, Koustubh

    2016-07-19

    Cigarette smoking causes emphysema, a fatal disease involving extensive structural and functional damage of the lung. Using a guinea pig model and human lung cells, we show that oxidant(s) present in tobacco smoke not only cause direct oxidative damage of lung proteins, contributing to the major share of lung injury, but also activate Rtp801, a key proinflammatory cellular factor involved in tobacco smoke-induced lung damage. Rtp801 triggers nuclear factor κB and consequent inducible NOS (iNOS)-mediated overproduction of NO, which in combination with excess superoxide produced during Rtp801 activation, contribute to increased oxido-nitrosative stress and lung protein nitration. However, lung-specific inhibition of iNOS with a iNOS-specific inhibitor, N6-(1-iminoethyl)-L-lysine, dihydrochloride (L-NIL) solely restricts lung protein nitration but fails to prevent or reverse the major tobacco smoke-induced oxidative lung injury. In comparison, the dietary antioxidant, ascorbate or vitamin C, can substantially prevent such damage by inhibiting both tobacco smoke-induced lung protein oxidation as well as activation of pulmonary Rtp801 and consequent iNOS/NO-induced nitration of lung proteins, that otherwise lead to increased proteolysis of such oxidized or nitrated proteins by endogenous lung proteases, resulting in emphysematous lung damage. Vitamin C also restricts the up-regulation of matrix-metalloproteinase-9, the major lung protease involved in the proteolysis of such modified lung proteins during tobacco smoke-induced emphysema. Overall, our findings implicate tobacco-smoke oxidant(s) as the primary etiopathogenic factor behind both the noncellular and cellular damage mechanisms governing emphysematous lung injury and demonstrate the potential of vitamin C to accomplish holistic prevention of such damage.

  7. Bronchoscopy in the investigation of outpatients with hemoptysis at a lung cancer clinic.

    PubMed

    Arooj, Parniya; Bredin, Emily; Henry, Michael T; Khan, Kashif A; Plant, Barry J; Murphy, Desmond M; Kennedy, Marcus P

    2018-06-01

    In the investigation of lung cancer, current practice in many healthcare systems would support bronchoscopy regardless of CT findings in patients with hemoptysis. We sought to identify the cause, the diagnostic yield of CT and bronchoscopy and the requirement for bronchoscopy in at risk patients with hemoptysis with a normal CT scan through our rapid access lung cancer clinic (RALC). Initially, a chart review was performed on all patients with hemoptysis (2011-2012) and thereafter a prospective analysis was performed (2013-2016). Our analysis represents the largest study to date in outpatients with hemoptysis. In our retrospective study, 155 patients reported hemoptysis. Causes were lower respiratory tract infections (RTIs) (47%) and lung cancer (16%). Our prospective study included 182 patients. The causes of hemoptysis were RTIs (50%) and lung cancer (18%). There were no false negative CT-scans for lung cancer. 47/57 present with lung cancer underwent bronchoscopy and 43/47 were positive for lung cancer (92%). Patients with hemoptysis and lung cancer have a higher stage of malignancy with a predominance of squamous cell lung carcinoma. Smoking status, the duration of hemoptysis or description of hemoptysis were not predictive of lung cancer however lung cancer was not identified in patients age <50. One sixth of patients presenting with hemoptysis to our lung cancer clinic had lung cancer. No patient identified with cancer related haemoptysis had a CT negative for lung cancer and a combination of bronchoscopy plus endobronchial ultrasound trans-bronchial needle aspiration (EBUS-TBNA) in those patients with a CT suspicious of lung cancer is 92% sensitive for lung cancer causing hemoptysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Predicting Survival within the Lung Cancer Histopathological Hierarchy Using a Multi-Scale Genomic Model of Development

    PubMed Central

    Liu, Hongye; Kho, Alvin T; Kohane, Isaac S; Sun, Yao

    2006-01-01

    Background The histopathologic heterogeneity of lung cancer remains a significant confounding factor in its diagnosis and prognosis—spurring numerous recent efforts to find a molecular classification of the disease that has clinical relevance. Methods and Findings Molecular profiles of tumors from 186 patients representing four different lung cancer subtypes (and 17 normal lung tissue samples) were compared with a mouse lung development model using principal component analysis in both temporal and genomic domains. An algorithm for the classification of lung cancers using a multi-scale developmental framework was developed. Kaplan–Meier survival analysis was conducted for lung adenocarcinoma patient subgroups identified via their developmental association. We found multi-scale genomic similarities between four human lung cancer subtypes and the developing mouse lung that are prognostically meaningful. Significant association was observed between the localization of human lung cancer cases along the principal mouse lung development trajectory and the corresponding patient survival rate at three distinct levels of classical histopathologic resolution: among different lung cancer subtypes, among patients within the adenocarcinoma subtype, and within the stage I adenocarcinoma subclass. The earlier the genomic association between a human tumor profile and the mouse lung development sequence, the poorer the patient's prognosis. Furthermore, decomposing this principal lung development trajectory identified a gene set that was significantly enriched for pyrimidine metabolism and cell-adhesion functions specific to lung development and oncogenesis. Conclusions From a multi-scale disease modeling perspective, the molecular dynamics of murine lung development provide an effective framework that is not only data driven but also informed by the biology of development for elucidating the mechanisms of human lung cancer biology and its clinical outcome. PMID:16800721

  9. Effects of HIFU induced cavitation on flooded lung parenchyma.

    PubMed

    Wolfram, Frank; Dietrich, Georg; Boltze, Carsten; Jenderka, Klaus Vitold; Lesser, Thomas Günther

    2017-01-01

    High intensity focused ultrasound (HIFU) has gained clinical interest as a non-invasive local tumour therapy in many organs. In addition, it has been shown that lung cancer can be targeted by HIFU using One-Lung Flooding (OLF). OLF generates a gas free saline-lung compound in one lung wing and therefore acoustic access to central lung tumours. It can be assumed that lung parenchyma is exposed to ultrasound intensities in the pre-focal path and in cases of misguiding. If so, cavitation might be induced in the saline fraction of flooded lung and cause tissue damage. Therefore this study was aimed to determine the thresholds of HIFU induced cavitation and tissue erosion in flooded lung. Resected human lung lobes were flooded ex-vivo. HIFU (1,1 MHz) was targeted under sonographic guidance into flooded lung parenchyma. Cavitation events were counted using subharmonic passive cavitation detection (PCD). B-Mode imaging was used to detect cavitation and erosion sonographically. Tissue samples out of the focal zone were analysed histologically. In flooded lung, a PCD and a sonographic cavitation detection threshold of 625  Wcm - 2 ( p r  = 4, 3  MPa ) and 3.600  Wcm - 2 ( p r  = 8, 3  MPa ) was found. Cavitation in flooded lung appears as blurred hyperechoic focal region, which enhances echogenity with insonation time. Lung parenchyma erosion was detected at intensities above 7.200  Wcm - 2 ( p r  = 10, 9  MPa ). Cavitation occurs in flooded lung parenchyma, which can be detected passively and by B-Mode imaging. Focal intensities required for lung tumour ablation are below levels where erosive events occur. Therefore focal cavitation events can be monitored and potential risk from tissue erosion in flooded lung avoided.

  10. Ascorbate attenuates pulmonary emphysema by inhibiting tobacco smoke and Rtp801-triggered lung protein modification and proteolysis

    PubMed Central

    Gupta, Indranil; Ganguly, Souradipta; Rozanas, Christine R.; Stuehr, Dennis J.

    2016-01-01

    Cigarette smoking causes emphysema, a fatal disease involving extensive structural and functional damage of the lung. Using a guinea pig model and human lung cells, we show that oxidant(s) present in tobacco smoke not only cause direct oxidative damage of lung proteins, contributing to the major share of lung injury, but also activate Rtp801, a key proinflammatory cellular factor involved in tobacco smoke-induced lung damage. Rtp801 triggers nuclear factor κB and consequent inducible NOS (iNOS)-mediated overproduction of NO, which in combination with excess superoxide produced during Rtp801 activation, contribute to increased oxido-nitrosative stress and lung protein nitration. However, lung-specific inhibition of iNOS with a iNOS-specific inhibitor, N6-(1-iminoethyl)-L-lysine, dihydrochloride (L-NIL) solely restricts lung protein nitration but fails to prevent or reverse the major tobacco smoke-induced oxidative lung injury. In comparison, the dietary antioxidant, ascorbate or vitamin C, can substantially prevent such damage by inhibiting both tobacco smoke-induced lung protein oxidation as well as activation of pulmonary Rtp801 and consequent iNOS/NO-induced nitration of lung proteins, that otherwise lead to increased proteolysis of such oxidized or nitrated proteins by endogenous lung proteases, resulting in emphysematous lung damage. Vitamin C also restricts the up-regulation of matrix-metalloproteinase-9, the major lung protease involved in the proteolysis of such modified lung proteins during tobacco smoke-induced emphysema. Overall, our findings implicate tobacco-smoke oxidant(s) as the primary etiopathogenic factor behind both the noncellular and cellular damage mechanisms governing emphysematous lung injury and demonstrate the potential of vitamin C to accomplish holistic prevention of such damage. PMID:27382160

  11. Strategies for safe donor expansion: donor management, donations after cardiac death, ex-vivo lung perfusion.

    PubMed

    Cypel, Marcelo; Keshavjee, Shaf

    2013-10-01

    The number of patients listed for lung transplantation largely exceeds the number of available transplantable organs because of both a shortage of organ donors and a low utilization rate of lungs from those donors. Two major innovations in recent years include the use of lungs from donations after cardiac death (DCD) and the use of ex-vivo lung perfusion (EVLP) to assess and improve injured donor lungs. DCD lung transplants now account for about 20% of lung transplants in many centres and outcomes after transplantation have been excellent with this source of donation. Clinical experience using EVLP has shown the method to be well tolerated and allow for reassessment and improvement in function from high-risk donor lungs. When these lungs were transplanted, low rates of primary graft dysfunction were achieved and long-term survival was comparable with standard transplantation. Preclinical studies have shown a great potential of EVLP as a platform for the delivery of novel therapies to repair injured donor lungs. A significant increase on the number of available lungs for transplantation is expected in the coming years with the wider use of DCD lungs and with organ-specific ex-vivo treatment strategies.

  12. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.

    PubMed

    Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R

    2016-01-19

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.

  13. Identification of Prognostic Biomarkers for Progression of Invasive Squamous Cell Carcinoma

    ClinicalTrials.gov

    2017-10-09

    Carcinoma, Squamous Cell; Carcinoma, Squamous; Squamous Cell Carcinoma; Lung Neoplasms; Cancer of Lung; Cancer of the Lung; Lung Cancer; Neoplasms, Lung; Neoplasms, Pulmonary; Pulmonary Cancer; Pulmonary Neoplasms

  14. Lung mass density analysis using deep neural network and lung ultrasound surface wave elastography.

    PubMed

    Zhou, Boran; Zhang, Xiaoming

    2018-05-23

    Lung mass density is directly associated with lung pathology. Computed Tomography (CT) evaluates lung pathology using the Hounsfield unit (HU) but not lung density directly. We have developed a lung ultrasound surface wave elastography (LUSWE) technique to measure the surface wave speed of superficial lung tissue. The objective of this study was to develop a method for analyzing lung mass density of superficial lung tissue using a deep neural network (DNN) and synthetic data of wave speed measurements with LUSWE. The synthetic training dataset of surface wave speed, excitation frequency, lung mass density, and viscoelasticity from LUSWE (788,000 in total) was used to train the DNN model. The DNN was composed of 3 hidden layers of 1024 neurons for each layer and trained for 10 epochs with a batch size of 4096 and a learning rate of 0.001 with three types of optimizers. The test dataset (4000) of wave speeds at three excitation frequencies (100, 150, and 200 Hz) and shear elasticity of superficial lung tissue was used to predict the lung density and evaluate its accuracy compared with predefined lung mass densities. This technique was then validated on a sponge phantom experiment. The obtained results showed that predictions matched well with test dataset (validation accuracy is 0.992) and experimental data in the sponge phantom experiment. This method may be useful to analyze lung mass density by using the DNN model together with the surface wave speed and lung stiffness measurements. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Lung Cancer Screening

    MedlinePlus

    ... healthy people with a high risk of lung cancer. Lung cancer screening is recommended for older adults who ... last 15 years. What you can expect During lung cancer screening During an LDCT scan of the lungs, ...

  16. Rheumatoid lung disease

    MedlinePlus

    Lung disease - rheumatoid arthritis; Rheumatoid nodules; Rheumatoid lung ... Lung problems are common in rheumatoid arthritis. They often cause no symptoms. The cause of lung disease associated with rheumatoid arthritis is unknown. Sometimes, the medicines used to ...

  17. A Comparison of FLT to FDG PET/CT in the Early Assessment of Chemotherapy Response in Stage IB-IIIA Resectable NSCLC

    ClinicalTrials.gov

    2017-01-27

    Recurrent Non-Small Cell Lung Carcinoma; Stage IB Non-Small Cell Lung Carcinoma; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  18. Identification of TRA2B-DNAH5 fusion as a novel oncogenic driver in human lung squamous cell carcinoma

    PubMed Central

    Li, Fei; Fang, Zhaoyuan; Zhang, Jian; Li, Chen; Liu, Hongyan; Xia, Jufeng; Zhu, Hongwen; Guo, Chenchen; Qin, Zhen; Li, Fuming; Han, Xiangkun; Wang, Yuetong; Feng, Yan; Wang, Ye; Zhang, Wenjing; Wang, Zuoyun; Jin, Yujuan; Sun, Yihua; Wei, Wenyi; Zeng, Rong; Chen, Haiquan; Ji, Hongbin

    2016-01-01

    Lung squamous cell carcinoma (SCC) is one of the major subtypes of lung cancer. Our current knowledge of oncogenic drivers in this specific subtype of lung cancer is largely limited compared with lung adenocarcinoma (ADC). Through exon array analyses, molecular analyses and functional studies, we here identify the TRA2B-DNAH5 fusion as a novel oncogenic driver in lung SCC. We found that this gene fusion occurs exclusively in lung SCC (3.1%, 5/163), but not in lung ADC (0/119). Through mechanistic studies, we further revealed that this TRA2B-DNAH5 fusion promotes lung SCC malignant progression through regulating a SIRT6-ERK1/2-MMP1 signaling axis. We show that inhibition of ERK1/2 activation using selumetinib efficiently inhibits the growth of lung SCC with TRA2B-DNAH5 fusion expression. These findings improve our current knowledge of oncogenic drivers in lung SCC and provide a potential therapeutic strategy for lung SCC patients with TRA2B-DNAH5 fusion. PMID:27670699

  19. Coming to terms with tissue engineering and regenerative medicine in the lung

    PubMed Central

    Tschumperlin, Daniel J.; Stenmark, Kurt R.

    2015-01-01

    Lung diseases such as emphysema, interstitial fibrosis, and pulmonary vascular diseases cause significant morbidity and mortality, but despite substantial mechanistic understanding, clinical management options for them are limited, with lung transplantation being implemented at end stages. However, limited donor lung availability, graft rejection, and long-term problems after transplantation are major hurdles to lung transplantation being a panacea. Bioengineering the lung is an exciting and emerging solution that has the ultimate aim of generating lung tissues and organs for transplantation. In this article we capture and review the current state of the art in lung bioengineering, from the multimodal approaches, to creating anatomically appropriate lung scaffolds that can be recellularized to eventually yield functioning, transplant-ready lungs. Strategies for decellularizing mammalian lungs to create scaffolds with native extracellular matrix components vs. de novo generation of scaffolds using biocompatible materials are discussed. Strengths vs. limitations of recellularization using different cell types of various pluripotency such as embryonic, mesenchymal, and induced pluripotent stem cells are highlighted. Current hurdles to guide future research toward achieving the clinical goal of transplantation of a bioengineered lung are discussed. PMID:26254424

  20. Interstitial Lung Diseases

    MedlinePlus

    Interstitial lung disease is the name for a large group of diseases that inflame or scar the lungs. The inflammation and ... is responsible for some types of interstitial lung diseases. Specific types include Black lung disease among coal ...

  1. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  2. The physiological basis and clinical significance of lung volume measurements.

    PubMed

    Lutfi, Mohamed Faisal

    2017-01-01

    From a physiological standpoint, the lung volumes are either dynamic or static. Both subclasses are measured at different degrees of inspiration or expiration; however, dynamic lung volumes are characteristically dependent on the rate of air flow. The static lung volumes/capacities are further subdivided into four standard volumes (tidal, inspiratory reserve, expiratory reserve, and residual volumes) and four standard capacities (inspiratory, functional residual, vital and total lung capacities). The dynamic lung volumes are mostly derived from vital capacity. While dynamic lung volumes are essential for diagnosis and follow up of obstructive lung diseases, static lung volumes are equally important for evaluation of obstructive as well as restrictive ventilatory defects. This review intends to update the reader with the physiological basis, clinical significance and interpretative approaches of the standard static lung volumes and capacities.

  3. Optical imaging of tissue mitochondrial redox state in intact rat lungs in two models of pulmonary oxidative stress

    PubMed Central

    Sepehr, Reyhaneh; Staniszewski, Kevin; Maleki, Sepideh; Jacobs, Elizabeth R.; Audi, Said

    2012-01-01

    Abstract. Ventilation with enhanced fractions of O2 (hyperoxia) is a common and necessary treatment for hypoxemia in patients with lung failure, but prolonged exposure to hyperoxia causes lung injury. Ischemia-reperfusion (IR) injury of lung tissue is common in lung transplant or crush injury to the chest. These conditions are associated with apoptosis and decreased survival of lung tissue. The objective of this work is to use cryoimaging to evaluate the effect of exposure to hyperoxia and IR injury on lung tissue mitochondrial redox state in rats. The autofluorescent mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are electron carriers in ATP generation. These intrinsic fluorophores were imaged for rat lungs using low-temperature fluorescence imaging (cryoimaging). Perfused lungs from four groups of rats were studied: normoxia (control), control perfused with an mitochondrial complex IV inhibitor (potassium cyanide, KCN), rats exposed to hyperoxia (85% O2) for seven days, and from rats subjected to lung IR in vivo 24 hours prior to study. Each lung was sectioned sequentially in the transverse direction, and the images were used to reconstruct a three-dimensional (3-D) rendering. In KCN perfused lungs the respiratory chain was more reduced, whereas hyperoxic and IR lung tissue have a more oxidized respiratory chain than control lung tissue, consistent with previously measured mitochondrial dysfunction in both hyperoxic and IR lungs. PMID:22559688

  4. Effect of Maternal Electroacupuncture on Perinatal Nicotine Exposure-Induced Lung Phenotype in Offspring.

    PubMed

    Ji, Bo; Zhao, Guo-Zhen; Sakurai, Reiko; Cao, Yu; Zhang, Zi-Jian; Wang, Dan; Yan, Ming-Na; Rehan, Virender K

    2016-08-01

    Pregnant women exposed to tobacco smoke predispose the offspring to many adverse consequences including an altered lung development and function. There is no effective therapeutic intervention to block the effects of smoke exposure on the developing lung. Clinical and animal studies demonstrate that acupuncture can modulate a variety of pathophysiological processes, including those involving the respiratory system; however, whether acupuncture affects the lung damage caused by perinatal smoke exposure is not known. To determine the effect of acupuncture on perinatal nicotine exposure on the developing lung, pregnant rat dams were administered (1) saline, (2) nicotine, or (3) nicotine + electroacupuncture (EA). Nicotine was administered (1 mg/kg subcutaneously) once a day and EA was applied to both "Zusanli" (ST 36) points. Both interventions were administered from gestational day 6 to postnatal day 21 (PND21), following which pups were sacrificed. Lungs, blood, and brain were collected to examine markers of lung injury, repair, and hypothalamic pituitary adrenal (HPA) axis. Concomitant EA application blocked nicotine-induced changes in lung morphology, lung peroxisome proliferator-activated receptor γ and wingless-int signaling, two key lung developmental signaling pathways, hypothalamic pituitary adrenal axis (hypothalamic corticotropic releasing hormone and lung glucocorticoid receptor levels), and plasma β-endorphin levels. Electroacupuncture blocks the nicotine-induced changes in lung developmental signaling pathways and the resultant myogenic lung phenotype, known to be present in the affected offspring. We conclude that EA is a promising novel intervention against the smoke exposed lung damage to the developing lung.

  5. Lung donor treatment protocol in brain dead-donors: A multicenter study.

    PubMed

    Miñambres, Eduardo; Pérez-Villares, Jose Miguel; Chico-Fernández, Mario; Zabalegui, Arturo; Dueñas-Jurado, Jose María; Misis, Maite; Mosteiro, Fernando; Rodriguez-Caravaca, Gil; Coll, Elisabeth

    2015-06-01

    The shortage of lung donors for transplantation is the main limitation among patients awaiting this type of surgery. We previously demonstrated that an intensive lung donor-treatment protocol succeeded in increasing the lung procurement rate. We aimed to validate our protocol for centers with or without lung transplant programs. A quasi-experimental study was performed to compare lung donor rate before (historical group, 2010 to 2012) and after (prospective group, 2013) the application of a lung management protocol for donors after brain death (DBDs) in six Spanish hospitals. Lung donor selection criteria remained unchanged in both periods. Outcome measures for lung recipients were early survival and primary graft dysfunction (PGD) rates. A total of 618 DBDs were included: 453 in the control period and 165 in the protocol period. Donor baseline characteristics were similar in both periods. Lung donation rate in the prospective group was 27.3%, more than twice that of the historical group (13%; p < 0.001). The number of lungs retrieved, grafts transplanted, and transplants performed more than doubled over the study period. No differences in early recipients' survival between groups were observed (87.6% vs. 84.5%; p = 0.733) nor in the rate of PGD. Implementing our intensive lung donor-treatment protocol increases lung procurement rates. This allows more lung transplants to be performed without detriment to either early survival or PGD rate. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  6. Epidemiology of Lung Cancer

    PubMed Central

    Brock, Malcolm V.; Ford, Jean G.; Samet, Jonathan M.; Spivack, Simon D.

    2013-01-01

    Background: Ever since a lung cancer epidemic emerged in the mid-1900s, the epidemiology of lung cancer has been intensively investigated to characterize its causes and patterns of occurrence. This report summarizes the key findings of this research. Methods: A detailed literature search provided the basis for a narrative review, identifying and summarizing key reports on population patterns and factors that affect lung cancer risk. Results: Established environmental risk factors for lung cancer include smoking cigarettes and other tobacco products and exposure to secondhand tobacco smoke, occupational lung carcinogens, radiation, and indoor and outdoor air pollution. Cigarette smoking is the predominant cause of lung cancer and the leading worldwide cause of cancer death. Smoking prevalence in developing nations has increased, starting new lung cancer epidemics in these nations. A positive family history and acquired lung disease are examples of host factors that are clinically useful risk indicators. Risk prediction models based on lung cancer risk factors have been developed, but further refinement is needed to provide clinically useful risk stratification. Promising biomarkers of lung cancer risk and early detection have been identified, but none are ready for broad clinical application. Conclusions: Almost all lung cancer deaths are caused by cigarette smoking, underscoring the need for ongoing efforts at tobacco control throughout the world. Further research is needed into the reasons underlying lung cancer disparities, the causes of lung cancer in never smokers, the potential role of HIV in lung carcinogenesis, and the development of biomarkers. PMID:23649439

  7. [Survey and analysis of awareness of lung cancer prevention and control in a LDCT lung cancer screening project in Tianjin Dagang Oilfield of China].

    PubMed

    Ren, Guanhua; Ye, Jianfei; Fan, Yaguang; Wang, Jing; Sun, Zhijuan; Jia, Hui; Du, Xinxin; Hou, Chaohua; Wang, Ying; Zhao, Yongcheng; Zhou, Qinghua

    2014-02-01

    It has been proven that increase of the awareness level of lung cancer prevention and control could enhance participation of lung cancer screening of lung cancer high risk group. The aim of this study is to investigate the awareness level of lung cancer prevention and control and the effect of individual characteristics on lung cancer awareness, and to provide evidence for comprehensive lung cancer prevention in high risk areas of lung cancer. Staffs of Tianjin Dagang Oil Field who participate low dose CT (LDCT) lung cancer screening by cluster sampling or according to voluntary principle were surveyed, data of lung cancer awareness were collected by questionnaire. A total of 1,633 valid questionnaires were collected. The average age of respondents was 60.08±6.58. Most participants were males (82.2%) while female only accounted for 17.8%. The proportions of awareness about lung cancer in China, risk factors, screening methods and the knowledge of health examination were 64.5%, 77.1%, 43.7%, 49.6% respectively. Result of multiple logistic regression analysis showed that education level, smoking (pack-year), age, prior tuberculosis were the influencing factors of lung cancer awareness with adjusted Ors for education and age level as of 0.567 (95%CI: 0.439-0.733) and 1.373 (95%CI: 1.084-1.739) respectively. 80.3% of the participants can accept health examination once a year, while the ability to pay the medical expenses was not high. The influencing factors of health examination willingness were gender, age, income, the knowledge of lung cancer. Education level and smoking affect the awareness of lung cancer prevention and control, health education for lung cancer should be conducted especially in population with low education level. Comprehensive lung cancer control in high risk areas should combined lung cancer screening, tobacco control and health education.

  8. Predictive equations for lung volumes from computed tomography for size matching in pulmonary transplantation.

    PubMed

    Konheim, Jeremy A; Kon, Zachary N; Pasrija, Chetan; Luo, Qingyang; Sanchez, Pablo G; Garcia, Jose P; Griffith, Bartley P; Jeudy, Jean

    2016-04-01

    Size matching for lung transplantation is widely accomplished using height comparisons between donors and recipients. This gross approximation allows for wide variation in lung size and, potentially, size mismatch. Three-dimensional computed tomography (3D-CT) volumetry comparisons could offer more accurate size matching. Although recipient CT scans are universally available, donor CT scans are rarely performed. Therefore, predicted donor lung volumes could be used for comparison to measured recipient lung volumes, but no such predictive equations exist. We aimed to use 3D-CT volumetry measurements from a normal patient population to generate equations for predicted total lung volume (pTLV), predicted right lung volume (pRLV), and predicted left lung volume (pLLV), for size-matching purposes. Chest CT scans of 400 normal patients were retrospectively evaluated. 3D-CT volumetry was performed to measure total lung volume, right lung volume, and left lung volume of each patient, and predictive equations were generated. The fitted model was tested in a separate group of 100 patients. The model was externally validated by comparison of total lung volume with total lung capacity from pulmonary function tests in a subset of those patients. Age, gender, height, and race were independent predictors of lung volume. In the test group, there were strong linear correlations between predicted and actual lung volumes measured by 3D-CT volumetry for pTLV (r = 0.72), pRLV (r = 0.72), and pLLV (r = 0.69). A strong linear correlation was also observed when comparing pTLV and total lung capacity (r = 0.82). We successfully created a predictive model for pTLV, pRLV, and pLLV. These may serve as reference standards and predict donor lung volume for size matching in lung transplantation. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  9. Registry of the Japanese Society of Lung and Heart-Lung Transplantation: the official Japanese lung transplantation report 2008.

    PubMed

    Shiraishi, Takeshi; Okada, Yoshinori; Sekine, Yasuo; Chida, Masayuki; Bando, Toru; Minami, Masato; Oto, Takahiro; Nagayasu, Takeshi; Date, Hiroshi; Kondo, Takashi

    2009-08-01

    The year 2008 marked the 10th anniversary of the Japanese lung transplantation program started in accordance with the Japanese Organ Transplant Law, which took effect in 1997. A total of 105 lung transplantations, including 39 deceased-donor transplants and 66 living-related transplants, had been performed as of the end of 2007. This article is the 2008 official report of the Japanese Society of Lung and Heart-Lung Transplantation. It summarizes the data for clinical lung transplantation during the period 1998-2007 and discusses the current status of Japanese lung transplantation. The overall 5-year survival rate was 67.0%: including 53.4% and 74.6% for deceased-donor lung transplantation and living-donor lobar lung transplantation groups, respectively. The total operation-related and 1-month mortality rates after surgery were 3.8% and 10.4%, respectively. These data are better, or at least acceptable, in comparison with the international registry data.

  10. Wnt/β-catenin pathway mediates (−)-Epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jianyun; Jiang, Ye; Yang, Xue

    Cancer stem cells (CSCs) play essential role in the progression of many tumors. Wnt/β-catenin pathway is crucial in maintaining the stemness of CSCs. (−)-Epigallocatechin-3-gallate (EGCG), the major bioactive component in green tea, has been shown to possess anti-cancer activity. To date, the interventional effect of EGCG on lung CSCs has not been elucidated yet. In the present study, tumorsphere formation assay was used to enrich lung CSCs from A549 and H1299 cells. We revealed that Wnt/β-catenin pathway was activated in lung CSCs, and downregulation of β-catenin, abolished lung CSCs traits. Our study further illustrated that EGCG effectively diminished lung CSCs activitymore » by inhibiting tumorsphere formation, decreasing lung CSCs markers, suppressing proliferation and inducing apoptosis. Moreover, We showed that EGCG downregulated Wnt/β-catenin activation, while upregulation of Wnt/β-catenin dampened the inhibitory effects of EGCG on lung CSCs. Taken together, these results demonstrated the role of Wnt/β-catenin pathway in regulating lung CSCs traits and EGCG intervention of lung CSCs. Findings from this study could provide new insights into the molecular mechanisms of lung CSCs intervention. - Highlights: • EGCG inhibited lung CSCs activity. • EGCG inhibited lung CSCs activity via Wnt/β-catenin pathway suppression. • EGCG may prove to be a potential therapeutic agent for lung cancer.« less

  11. Triple synchronous primary lung cancer: a case report and review of the literature.

    PubMed

    Kashif, Muhammad; Ayyadurai, Puvanalingam; Thanha, Luong; Khaja, Misbahuddin

    2017-09-01

    Multiple primary lung cancer may present in synchronous or metachronous form. Synchronous multiple primary lung cancer is defined as multiple lung lesions that develop at the same time, whereas metachronous multiple primary lung cancer describes multiple lung lesions that develop at different times, typically following treatment of the primary lung cancer. Patients with previously treated lung cancer are at risk for developing metachronous lung cancer, but with the success of computed tomography and positron emission tomography, the ability to detect both synchronous and metachronous lung cancer has increased. We present a case of a 63-year-old Hispanic man who came to our hospital for evaluation of chest pain, dry cough, and weight loss. He had recently been diagnosed with adenocarcinoma in the right upper lobe, with a poorly differentiated carcinoma favoring squamous cell cancer based on bronchoalveolar lavage of the right lower lobe for which treatment was started. Later, bronchoscopy incidentally revealed the patient to have an endobronchial lesion that turned out to be mixed small and large cell neuroendocrine lung cancer. Our patient had triple synchronous primary lung cancers that histologically were variant primary cancers. Triple synchronous primary lung cancer management continues to be a challenge. Our patient's case suggests that multiple primary lung cancers may still occur at a greater rate than can be detected by high-resolution computed tomography.

  12. Absence of Gal epitope prolongs survival of swine lungs in an ex vivo model of hyperacute rejection

    PubMed Central

    Nguyen, Bao-Ngoc H.; Azimzadeh, Agnes M.; Schroeder, Carsten; Buddensick, Thomas; Zhang, Tianshu; Laaris, Amal; Cochrane, Megan; Schuurman, Henk-Jan; Sachs, David H.; Allan, James S.; Pierson, Richard N.

    2012-01-01

    Background Galactosyl transferase gene knock-out (GalTKO) swine offer a unique tool to evaluate the role of the Gal antigen in xenogenic lung hyperacute rejection. Methods We perfused GalTKO miniature swine lungs with human blood. Results were compared with those from previous studies using wild-type and human decay-accelerating factor-transgenic (hDAF+/+) pig lungs. Results GalTKO lungs survived 132 ± 52 min compared to 10 ± 9 min for wild-type lungs (P = 0.001) and 45 ± 60 min for hDAF+/+ lungs (P = 0.18). GalTKO lungs displayed stable physiologic flow and pulmonary vascular resistance (PVR) until shortly before graft demise, similar to autologous perfusion, and unlike wild-type or hDAF+/+ lungs. Early (15 and 60 min) complement (C3a) and platelet activation and intrapulmonary platelet deposition were significantly diminished in GalTKO lungs relative to wild-type or hDAF+/+ lungs. However, GalTKO lungs adsorbed cytotoxic anti-non-Gal antibody and elaborated high levels of thrombin; their demise was associated with increased PVR, capillary congestion, intravascular thrombi and strong CD41 deposition not seen at earlier time points. Conclusions In summary, GalTKO lungs are substantially protected from injury but, in addition to anti-non-Gal antibody and complement, platelet adhesion and non-physiologic intravascular coagulation contribute to Gal-independent lung injury mechanisms. PMID:21496117

  13. Geranylgeranyl Diphosphate Synthase Modulates Fetal Lung Branching Morphogenesis Possibly through Controlling K-Ras Prenylation.

    PubMed

    Jia, Wen-Jun; Jiang, Shan; Tang, Qiao-Li; Shen, Di; Xue, Bin; Ning, Wen; Li, Chao-Jun

    2016-06-01

    G proteins play essential roles in regulating fetal lung development, and any defects in their expression or function (eg, activation or posttranslational modification) can lead to lung developmental malformation. Geranylgeranyl diphosphate synthase (GGPPS) can modulate protein prenylation that is required for protein membrane-anchoring and activation. Here, we report that GGPPS regulates fetal lung branching morphogenesis possibly through controlling K-Ras prenylation during fetal lung development. GGPPS was continuously expressed in lung epithelium throughout whole fetal lung development. Specific deletion of geranylgeranyl diphosphate synthase 1 (Ggps1) in lung epithelium during fetal lung development resulted in neonatal respiratory distress syndrome-like disease. The knockout mice died at postnatal day 1 of respiratory failure, and the lungs showed compensatory pneumonectasis, pulmonary atelectasis, and hyaline membranes. Subsequently, we proved that lung malformations in Ggps1-deficient mice resulted from the failure of fetal lung branching morphogenesis. Further investigation revealed Ggps1 deletion blocked K-Ras geranylgeranylation and extracellular signal-related kinase 1 or 2/mitogen-activated protein kinase signaling, which in turn disturbed fibroblast growth factor 10 regulation on fetal lung branching morphogenesis. Collectively, our data suggest that GGPPS is essential for maintaining fetal lung branching morphogenesis, which is possibly through regulating K-Ras prenylation. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Regeneration of the lung: Lung stem cells and the development of lung mimicking devices.

    PubMed

    Schilders, Kim A A; Eenjes, Evelien; van Riet, Sander; Poot, André A; Stamatialis, Dimitrios; Truckenmüller, Roman; Hiemstra, Pieter S; Rottier, Robbert J

    2016-04-23

    Inspired by the increasing burden of lung associated diseases in society and an growing demand to accommodate patients, great efforts by the scientific community produce an increasing stream of data that are focused on delineating the basic principles of lung development and growth, as well as understanding the biomechanical properties to build artificial lung devices. In addition, the continuing efforts to better define the disease origin, progression and pathology by basic scientists and clinicians contributes to insights in the basic principles of lung biology. However, the use of different model systems, experimental approaches and readout systems may generate somewhat conflicting or contradictory results. In an effort to summarize the latest developments in the lung epithelial stem cell biology, we provide an overview of the current status of the field. We first describe the different stem cells, or progenitor cells, residing in the homeostatic lung. Next, we focus on the plasticity of the different cell types upon several injury-induced activation or repair models, and highlight the regenerative capacity of lung cells. Lastly, we summarize the generation of lung mimics, such as air-liquid interface cultures, organoids and lung on a chip, that are required to test emerging hypotheses. Moreover, the increasing collaboration between distinct specializations will contribute to the eventual development of an artificial lung device capable of assisting reduced lung function and capacity in human patients.

  15. Open lung biopsy

    MedlinePlus

    Biopsy - open lung ... An open lung biopsy is done in the hospital using general anesthesia . This means you will be asleep and ... The open lung biopsy is done to evaluate lung problems seen on x-ray or CT scan .

  16. Nintedanib Compared With Placebo in Treating Against Radiation-Induced Pneumonitis in Patients With Non-small Cell Lung Cancer That Cannot Be Removed by Surgery and Are Undergoing Chemoradiation Therapy

    ClinicalTrials.gov

    2017-07-08

    Radiation-Induced Pneumonitis; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  17. A Study of the Safety and Tolerability of Inhaled SNSP113 in Healthy Subjects and Subjects With Stable Cystic Fibrosis

    ClinicalTrials.gov

    2017-10-12

    Lung Diseases; Pulmonary Disease; Cystic Fibrosis; Cystic Fibrosis Lung; Cystic Fibrosis Pulmonary Exacerbation; Cystic Fibrosis With Exacerbation; Respiratory Tract Disease; Pulmonary Inflammation; Multi-antibiotic Resistance; Antibiotic Resistant Infection; Lung Infection; Lung Infection Pseudomonal; Lung; Infection, Atypical Mycobacterium; Burkholderia Infections; Burkholderia Cepacia Infection; Lung Inflammation

  18. Peripleural lung disease detection based on multi-slice CT images

    NASA Astrophysics Data System (ADS)

    Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.

    2015-03-01

    With the development of multi-slice CT technology, obtaining accurate 3D images of lung field in a short time become possible. To support that, a lot of image processing methods need to be developed. Detection peripleural lung disease is difficult due to its existence out of lung region, because lung extraction is often performed based on threshold processing. The proposed method uses thoracic inner region extracted by inner cavity of bone as well as air region, covers peripleural lung diseased cases such as lung nodule, calcification, pleural effusion and pleural plaque. We applied this method to 50 cases including 39 peripleural lung diseased cases. This method was able to detect 39 peripleural lung disease with 2.9 false positive per case.

  19. Unilateral donor lung dysfunction does not preclude successful contralateral single lung transplantation.

    PubMed

    Puskas, J D; Winton, T L; Miller, J D; Scavuzzo, M; Patterson, G A

    1992-05-01

    Single lung transplantation remains limited by a severe shortage of suitable donor lungs. Potential lung donors are often deemed unsuitable because accepted criteria (both lungs clear on the chest roentgenogram, arterial oxygen tension greater than 300 mm Hg with an inspired oxygen fraction of 1.0, a positive end-expiratory pressure of 5 cm H2O, and no purulent secretions) do not distinguish between unilateral and bilateral pulmonary disease. Many adequate single lung grafts may be discarded as a result of contralateral aspiration or pulmonary trauma. We have recently used intraoperative unilateral ventilation and perfusion to assess single lung function in potential donors with contralateral lung disease. In the 11-month period ending October 1, 1990, we performed 18 single lung transplants. In four of these cases (22%), the donor chest roentgenogram or bronchoscopic examination demonstrated significant unilateral lung injury. Donor arterial oxygen tension, (inspired oxygen fraction 1.0; positive end-expiratory pressure 5 cm H2O) was below the accepted level in each case (246 +/- 47 mm Hg, mean +/- standard deviation). Through the sternotomy used for multiple organ harvest, the pulmonary artery to the injured lung was clamped. A double-lumen endotracheal tube or endobronchial balloon occlusion catheter was used to permit ventilation of the uninjured lung alone. A second measurement of arterial oxygen tension (inspired oxygen fraction 1.0; positive end-expiratory pressure 5 cm H2O) revealed excellent unilateral lung function in all four cases (499.5 +/- 43 mm Hg; p less than 0.0004). These single lung grafts (three right, one left) were transplanted uneventfully into four recipients (three with pulmonary fibrosis and one with primary pulmonary hypertension). Lung function early after transplantation was adequate in all patients. Two patients were extubated within 24 hours. There were two late deaths, one caused by rejection and Aspergillus infection and the other caused by cytomegalovirus 6 months after transplantation. Two patients are alive and doing well. We conclude that assessment of unilateral lung function in potential lung donors is indicated in selected cases, may be quickly and easily performed, and may significantly increase the availability of single lung grafts.

  20. Cartography of Pathway Signal Perturbations Identifies Distinct Molecular Pathomechanisms in Malignant and Chronic Lung Diseases

    PubMed Central

    Arakelyan, Arsen; Nersisyan, Lilit; Petrek, Martin; Löffler-Wirth, Henry; Binder, Hans

    2016-01-01

    Lung diseases are described by a wide variety of developmental mechanisms and clinical manifestations. Accurate classification and diagnosis of lung diseases are the bases for development of effective treatments. While extensive studies are conducted toward characterization of various lung diseases at molecular level, no systematic approach has been developed so far. Here we have applied a methodology for pathway-centered mining of high throughput gene expression data to describe a wide range of lung diseases in the light of shared and specific pathway activity profiles. We have applied an algorithm combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity deregulation states in lung diseases and malignancies, and a Self Organizing Maps algorithm for classification and clustering of the pathway activity profiles. The analysis results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung cancers were characterized by pathways implicated in cell proliferation, metabolism, while non-malignant lung diseases were characterized by deregulations in pathways involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast to lung malignancies, chronic lung diseases had relatively heterogeneous pathway deregulation profiles. We identified three groups of interstitial lung diseases and showed that the development of characteristic pathological processes, such as fibrosis, can be initiated by deregulations in different signaling pathways. In conclusion, this paper describes the pathobiology of lung diseases from systems viewpoint using pathway centered high-dimensional data mining approach. Our results contribute largely to current understanding of pathological events in lung cancers and non-malignant lung diseases. Moreover, this paper provides new insight into molecular mechanisms of a number of interstitial lung diseases that have been studied to a lesser extent. PMID:27200087

  1. Overexpression of TRIM25 in Lung Cancer Regulates Tumor Cell Progression.

    PubMed

    Qin, Ying; Cui, He; Zhang, Hua

    2016-10-01

    Lung cancer is one of the most common causes of cancer-related deaths worldwide. Although great efforts and progressions have been made in the study of the lung cancer in the recent decades, the mechanism of lung cancer formation remains elusive. To establish effective therapeutic methods, new targets implied in lung cancer processes have to be identified. Tripartite motif-containing 25 has been associated with ovarian and breast cancer and is thought to positively promote cell growth by targeting the cell cycle. However, whether tripartite motif-containing 25 has a function in lung cancer development remains unknown. In this study, we found that tripartite motif-containing 25 was overexpressed in human lung cancer tissues. Expression of tripartite motif-containing 25 in lung cancer cells is important for cell proliferation and migration. Knockdown of tripartite motif-containing 25 markedly reduced proliferation of lung cancer cells both in vitro and in vivo and reduced migration of lung cancer cells in vitro Meanwhile, tripartite motif-containing 25 silencing also increased the sensitivity of doxorubicin and significantly increased death and apoptosis of lung cancer cells by doxorubicin were achieved with knockdown of tripartite motif-containing 25. We also observed that tripartite motif-containing 25 formed a complex with p53 and mouse double minute 2 homolog (MDM2) in both human lung cancer tissues and in lung cancer cells and tripartite motif-containing 25 silencing increased the expression of p53. These results provide evidence that tripartite motif-containing 25 contributes to the pathogenesis of lung cancer probably by promoting proliferation and migration of lung cancer cells. Therefore, targeting tripartite motif-containing 25 may provide a potential therapeutic intervention for lung cancer. © The Author(s) 2015.

  2. Comprehensive evaluation of lung allograft function in infants after lung and heart-lung transplantation.

    PubMed

    Hayes, Don; Naguib, Aymen; Kirkby, Stephen; Galantowicz, Mark; McConnell, Patrick I; Baker, Peter B; Kopp, Benjamin T; Lloyd, Eric A; Astor, Todd L

    2014-05-01

    Limited data exist on methods to evaluate allograft function in infant recipients of lung and heart-lung transplants. At our institution, we developed a procedural protocol in coordination with pediatric anesthesia where infants were sedated to perform infant pulmonary function testing, computed tomography imaging of the chest, and flexible fiberoptic bronchoscopy with transbronchial biopsies. A retrospective review was performed of children aged younger than 1 year who underwent lung or heart-lung transplantation at our institution to assess the effect of this procedural protocol in the evaluation of infant lung allografts. Since 2005, 5 infants have undergone thoracic transplantation (3 heart-lung, 2 lung). At time of transplant, the mean ± standard deviation age was 7.2 ± 2.8 months (range, 3-11 months). Of 24 procedural sessions performed to evaluate lung allografts, 83% (20 of 24) were considered surveillance where the patients were completely asymptomatic. Of the surveillance procedures, 80% were performed as an outpatient, whereas 20% were done as inpatients during the lung or heart-lung transplant post-operative period before discharge home. Sedation was performed with propofol alone (23 of 24) or in addition to ketamine (1 of 24) infusion; mean sedation time was 141 ± 39 minutes (range, 70-214) minutes. Of the 16 outpatient procedures, patients were discharged after 14 (88%) on the same day, and after 2 (12%) were admitted for observation, with 1 being due to transportation issues and the other due to fever during the observation period. A comprehensive procedural protocol to evaluate allograft function in infant lung and heart-lung transplant recipients was performed safely as an outpatient. Copyright © 2014 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  3. Application of a neutral community model to assess structuring of the human lung microbiome.

    PubMed

    Venkataraman, Arvind; Bassis, Christine M; Beck, James M; Young, Vincent B; Curtis, Jeffrey L; Huffnagle, Gary B; Schmidt, Thomas M

    2015-01-20

    DNA from phylogenetically diverse microbes is routinely recovered from healthy human lungs and used to define the lung microbiome. The proportion of this DNA originating from microbes adapted to the lungs, as opposed to microbes dispersing to the lungs from other body sites and the atmosphere, is not known. We use a neutral model of community ecology to distinguish members of the lung microbiome whose presence is consistent with dispersal from other body sites and those that deviate from the model, suggesting a competitive advantage to these microbes in the lungs. We find that the composition of the healthy lung microbiome is consistent with predictions of the neutral model, reflecting the overriding role of dispersal of microbes from the oral cavity in shaping the microbial community in healthy lungs. In contrast, the microbiome of diseased lungs was readily distinguished as being under active selection. We also assessed the viability of microbes from lung samples by cultivation with a variety of media and incubation conditions. Bacteria recovered by cultivation from healthy lungs represented species that comprised 61% of the 16S rRNA-encoding gene sequences derived from bronchoalveolar lavage samples. Neutral distribution of microbes is a distinguishing feature of the microbiome in healthy lungs, wherein constant dispersal of bacteria from the oral cavity overrides differential growth of bacteria. No bacterial species consistently deviated from the model predictions in healthy lungs, although representatives of many of the dispersed species were readily cultivated. In contrast, bacterial populations in diseased lungs were identified as being under active selection. Quantification of the relative importance of selection and neutral processes such as dispersal in shaping the healthy lung microbiome is a first step toward understanding its impacts on host health. Copyright © 2015 Venkataraman et al.

  4. The clinical and prognostic value of polo-like kinase 1 in lung squamous cell carcinoma patients: immunohistochemical analysis

    PubMed Central

    Li, Hefei; Sun, Zhenqing; Guo, Qiang; Shi, Hongyun; Jia, Youchao

    2017-01-01

    Polo-like kinase 1 (PLK1) has been suggested to serve as an oncogene in most human cancers. The aim of our study is to present more evidence about the clinical and prognostic value of PLK1 in lung squamous cell carcinoma patients. The status of PLK1 was observed in lung adenocarcinoma, lung squamous cell carcinoma, and normal lung tissues through analyzing microarray dataset (GEO accession numbers: GSE1213 and GSE 3627). PLK1 mRNA and protein expressions were detected in lung squamous cell carcinoma and normal lung tissues by using quantitative real-time PCR (qRT-PCR) and immunohistochemistry. In our results, the levels of PLK1 in lung squamous cell carcinoma tissues were higher than that in lung adenocarcinoma tissues. Compared with paired adjacent normal lung tissues, the PLK1 expression was increased in lung squamous cell carcinoma tissues. Furthermore, high expression of PLK1 protein was correlated with differentiated degree, clinical stage, tumor size, lymph node metastasis, and distant metastasis. The univariate and multivariate analyses showed PLK1 protein high expression was an unfavorable prognostic biomarker for lung squamous cell carcinoma patients. In conclusion, high expression of PLK1 is associated with the aggressive progression and poor prognosis in lung squamous cell carcinoma patients. PMID:28724602

  5. Lung regeneration by fetal lung tissue implantation in a mouse pulmonary emphysema model.

    PubMed

    Uyama, Koh; Sakiyama, Shoji; Yoshida, Mitsuteru; Kenzaki, Koichiro; Toba, Hiroaki; Kawakami, Yukikiyo; Okumura, Kazumasa; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira

    2016-01-01

    The mortality and morbidity of chronic obstructive pulmonary disease are high. However, no radical therapy has been developed to date. The purpose of this study was to evaluate whether fetal mouse lung tissue can grow and differentiate in the emphysematous lung. Fetal lung tissue from green fluorescent protein C57BL/6 mice at 16 days' gestation was used as donor material. Twelve-month-old pallid mice were used as recipients. Donor lungs were cut into small pieces and implanted into the recipient left lung by performing thoracotomy under anesthesia. The recipient mice were sacrificed at day 7, 14, and 28 after implantation and used for histological examination. Well-developed spontaneous pulmonary emphysema was seen in 12-month-old pallid mice. Smooth and continuous connection between implanted fetal lung tissue and recipient lung was recognized. Air space expansion and donor tissue differentiation were observed over time. We could clearly distinguish the border zones between injected tissue and native tissue by the green fluorescence of grafts. Fetal mouse lung fragments survived and differentiated in the emphysematous lung of pallid mice. Implantation of fetal lung tissue in pallid mice might lead to further lung regeneration research from the perspective of respiratory and exercise function. J. Med. Invest. 63: 182-186, August, 2016.

  6. The protective effect of dexmedetomidine in a rat ex vivo lung model of ischemia-reperfusion injury.

    PubMed

    Zhou, Yan; Zhou, Xinqiao; Zhou, Wenjuan; Pang, Qingfeng; Wang, Zhiping

    2018-01-01

    To investigate the effect of dexmedetomidine (Dex) in a rat ex vivo lung model of ischemia-reperfusion injury. An IL-2 ex vivo lung perfusion system was used to establish a rat ex vivo lung model of ischemia-reperfusion injury. Drugs were added to the perfusion solution for reperfusion. Lung injury was assessed by histopathological changes, airway pressure (Res), lung compliance (Compl), perfusion flow (Flow), pulmonary venous oxygen partial pressure (PaO2), and lung wet/dry (W/D) weight ratio. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), 78 kDa glucose-regulated protein (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP) were measured, respectively. The introduction of Dex attenuated the post-ischemia-reperfusion lung damage and MDA level, improved lung histology, W/D ratio, lung injury scores and SOD activity. Decreased mRNA and protein levels of GRP78 and CHOP compared with the IR group were observed after Dex treatment. The effect of Dex was dosage-dependence and a high dose of Dex (10 nM) was shown to confer the strongest protective effect against lung damage (P<0.05). Yohimbine, an α2 receptor antagonist, significantly reversed the protective effect of Dex in lung tissues (P<0.05). Dex reduced ischemia-reperfusion injury in rat ex vivo lungs.

  7. SOX5 predicts poor prognosis in lung adenocarcinoma and promotes tumor metastasis through epithelial-mesenchymal transition

    PubMed Central

    Chen, Xin; Fu, Yufei; Xu, Hongfei; Teng, Peng; Xie, Qiong; Zhang, Yiran; Yan, Caochong; Xu, Yiqiao; Li, Chunqi; Zhou, Jianying; Ni, Yiming; Li, Weidong

    2018-01-01

    Lung cancer is the leading cause of cancer-related death worldwide. Epithelial-mesenchymal transition (EMT) promotes lung cancer progression and metastasis, especially in lung adenocarcinoma. Sex determining region Y-box protein 5 (SOX5) is known to stimulate the progression of various cancers. Here, we used immunohistochemical analysis to reveal that SOX5 levels were increased in 90 lung adenocarcinoma patients. The high SOX5 expression in lung adenocarcinoma and non-tumor counterparts correlated with the patients’ poor prognosis. Inhibiting SOX5 expression attenuated metastasis and progression in lung cancer cells, while over-expressing SOX5 accelerated lung adenocarcinoma progression and metastasis via EMT. An in vivo zebrafish xenograft cancer model also showed SOX5 knockdown was followed by reduced lung cancer cell proliferation and metastasis. Our results indicate SOX5 promotes lung adenocarcinoma tumorigenicity and can be a novel diagnosis and prognosis marker of the disease. PMID:29541384

  8. Involvement of MicroRNAs in Lung Cancer Biology and Therapy

    PubMed Central

    Liu, Xi; Sempere, Lorenzo F.; Guo, Yongli; Korc, Murray; Kauppinen, Sakari; Freemantle, Sarah J.; Dmitrovsky, Ethan

    2011-01-01

    MicroRNAs (miRNAs) are a class of small RNAs that regulate gene expression. Expression profiles of specific miRNAs have improved cancer diagnosis and classification and even provided prognostic information in many human cancers, including lung cancer. Tumor suppressive and oncogenic miRNAs were uncovered in lung carcinogenesis. The biological functions of these miRNAs in lung cancer were recently validated in well characterized cellular, murine transgenic as well as transplantable lung cancer models and in human paired normal-malignant lung tissue banks and tissue arrays. Tumor suppressive and oncogenic miRNAs that were identified in lung cancer will be reviewed here. Emphasis is placed on highlighting those functionally validated miRNAs that are not only biomarkers of lung carcinogenesis, but also candidate pharmacologic targets. How these miRNA findings advance an understanding of lung cancer biology and could improve lung cancer therapy are discussed in this article. PMID:21420030

  9. Effects of alpha-tocopherol treatment on newborn rat lung development and injury in hyperoxia.

    PubMed

    Bucher, J R; Roberts, R J

    1982-01-01

    The efficacy of alpha-tocopherol treatment to influence the pattern or extent of lung injury resulting during exposure of newborn rats to hyperoxia was assessed following six-day exposures to FIO2 0.21, 0.4, and greater than 0.95. Alpha-Tocopherol treatment was found incapable of preventing the developmental arrest of the lung that occurs during hyperoxic exposure, shown by assessments of wet lung weights, lung DNA, lung volumes, and the progress of secondary septal and capillary development. However alpha-tocopherol treatment was found effective in preventing the hyperoxic-induced lessening of lung compliance and in preventing the deterioration of gas exchange capacity in the lung of the hyperoxic-exposed newborn rat. These findings suggest alpha-tocopherol treatment may not be capable of preventing major alterations in lung morphology in infants with chronic lung disease may be lessened by preserving gas exchange capabilities.

  10. Influence of quartz exposure on lung cancer types in cases of lymph node-only silicosis and lung silicosis in German uranium miners.

    PubMed

    Mielke, Stefan; Taeger, Dirk; Weitmann, Kerstin; Brüning, Thomas; Hoffmann, Wolfgang

    2018-05-04

    Inhaled crystalline quartz is a carcinogen. Analyses show differences in the distribution of lung cancer types depending on the status of silicosis. Using 2,524 lung tumor cases from the WISMUT autopsy repository database, silicosis was differentiated into cases without silicosis in lung parenchyma and its lymph nodes, with lymph node-only silicosis, or with lung silicosis including lymph node silicosis. The proportions of adenocarcinoma, squamous cell carcinoma, and small-cell lung carcinoma mortality for increasing quartz exposures were estimated in a multinomial logistic regression model. The relative proportions of the lung cancer subtypes in lymph node-only silicosis were more similar to lung silicosis than without any silicosis. The results support the hypothesis that quartz-related carcinogenesis in case of lymph node-only silicosis is more similar to that in lung silicosis than in without silicosis.

  11. Utilization of the organ care system as ex-vivo lung perfusion after cold storage transportation.

    PubMed

    Mohite, P N; Maunz, O; Popov, A-F; Zych, B; Patil, N P; Simon, A R

    2015-11-01

    The Organ Care System (OCS) allows perfusion and ventilation of the donor lungs under physiological conditions. Ongoing trials to compare preservation with OCS Lung with standard cold storage do not include donor lungs with suboptimal gas exchange and donor lungs treated with OCS following cold storage transportation. We present a case of a 48-yr-old man who received such lungs after cold storage transportation treated with ex-vivo lung perfusion utilizing OCS. © The Author(s) 2015.

  12. Indirect measurement of lung density and air volume from electrical impedance tomography (EIT) data.

    PubMed

    Nebuya, Satoru; Mills, Gary H; Milnes, Peter; Brown, Brian H

    2011-12-01

    This paper describes a method for estimating lung density, air volume and changes in fluid content from a non-invasive measurement of the electrical resistivity of the lungs. Resistivity in Ω m was found by fitting measured electrical impedance tomography (EIT) data to a finite difference model of the thorax. Lung density was determined by comparing the resistivity of the lungs, measured at a relatively high frequency, with values predicted from a published model of lung structure. Lung air volume can then be calculated if total lung weight is also known. Temporal changes in lung fluid content will produce proportional changes in lung density. The method was implemented on EIT data, collected using eight electrodes placed in a single plane around the thorax, from 46 adult male subjects and 36 adult female subjects. Mean lung densities (±SD) of 246 ± 67 and 239 ± 64 kg m(-3), respectively, were obtained. In seven adult male subjects estimates of 1.68 ± 0.30, 3.42 ± 0.49 and 4.40 ± 0.53 l in residual volume, functional residual capacity and vital capacity, respectively, were obtained. Sources of error are discussed. It is concluded that absolute differences in lung density of about 30% and changes over time of less than 30% should be detected using the current technology in normal subjects. These changes would result from approximately 300 ml increase in lung fluid. The method proposed could be used for non-invasive monitoring of total lung air and fluid content in normal subjects but needs to be assessed in patients with lung disease.

  13. Lung transplantation with lungs from older donors: recipient and surgical factors affect outcomes.

    PubMed

    Shigemura, Norihisa; Horai, Tetsuya; Bhama, Jay K; D'Cunha, Jonathan; Zaldonis, Diana; Toyoda, Yoshiya; Pilewski, Joseph M; Luketich, James D; Bermudez, Christian A

    2014-10-27

    A shortage of donors has compelled the use of extended-criteria donor organs in lung transplantation. The purpose of this study was to evaluate the impact of using older donors on outcomes after lung transplantation using current protocols. From January 2003 to August 2009, 593 lung transplants were performed at our institution. We compared 87 patients (14.7%) who received lungs from donors aged 55 years or older with 506 patients who received lungs from donors less than 55 years old. We also examined risk factors for mortality in recipients of lungs from older donors. The incidence of major complications including severe primary graft dysfunction and early mortality rates were similar between the groups. However, posttransplant peak FEV1 was lower in the patients who received lungs from older donors (71.7% vs. 80.7%, P<0.05). In multivariate analysis, recipient pulmonary hypertension (transpulmonary pressure gradient >20 mm Hg) and prolonged intraoperative cardiopulmonary bypass were significant risk factors for mortality in the recipients of lungs from older donors. This large, single-center experience demonstrated that transplanting lungs from donors older than 55 years did not yield worse short- or long-term outcomes as compared with transplanting lungs from younger donors. However, transplanting lungs from older donors into recipients with pulmonary hypertension or recipients who required prolonged cardiopulmonary bypass increased the risk for mortality. Although lungs from older donors should not be excluded because of donor age alone, surgeons should carefully consider their patient selection criteria and surgical plans when transplanting lungs from older donors.

  14. Fully automated calculation of cardiothoracic ratio in digital chest radiographs

    NASA Astrophysics Data System (ADS)

    Cong, Lin; Jiang, Luan; Chen, Gang; Li, Qiang

    2017-03-01

    The calculation of Cardiothoracic Ratio (CTR) in digital chest radiographs would be useful for cardiac anomaly assessment and heart enlargement related disease indication. The purpose of this study was to develop and evaluate a fully automated scheme for calculation of CTR in digital chest radiographs. Our automated method consisted of three steps, i.e., lung region localization, lung segmentation, and CTR calculation. We manually annotated the lung boundary with 84 points in 100 digital chest radiographs, and calculated an average lung model for the subsequent work. Firstly, in order to localize the lung region, generalized Hough transform was employed to identify the upper, lower, and outer boundaries of lung by use of Sobel gradient information. The average lung model was aligned to the localized lung region to obtain the initial lung outline. Secondly, we separately applied dynamic programming method to detect the upper, lower, outer and inner boundaries of lungs, and then linked the four boundaries to segment the lungs. Based on the identified outer boundaries of left lung and right lung, we corrected the center and the declination of the original radiography. Finally, CTR was calculated as a ratio of the transverse diameter of the heart to the internal diameter of the chest, based on the segmented lungs. The preliminary results on 106 digital chest radiographs showed that the proposed method could obtain accurate segmentation of lung based on subjective observation, and achieved sensitivity of 88.9% (40 of 45 abnormalities), and specificity of 100% (i.e. 61 of 61 normal) for the identification of heart enlargements.

  15. Influence of Pulmonary Rehabilitation on Lung Function Changes After the Lung Resection for Primary Lung Cancer in Patients with Chronic Obstructive Pulmonary Disease.

    PubMed

    Mujovic, Natasa; Mujovic, Nebojsa; Subotic, Dragan; Ercegovac, Maja; Milovanovic, Andjela; Nikcevic, Ljubica; Zugic, Vladimir; Nikolic, Dejan

    2015-11-01

    Influence of physiotherapy on the outcome of the lung resection is still controversial. Study aim was to assess the influence of physiotherapy program on postoperative lung function and effort tolerance in lung cancer patients with chronic obstructive pulmonary disease (COPD) that are undergoing lobectomy or pneumonectomy. The prospective study included 56 COPD patients who underwent lung resection for primary non small-cell lung cancer after previous physiotherapy (Group A) and 47 COPD patients (Group B) without physiotherapy before lung cancer surgery. In Group A, lung function and effort tolerance on admission were compared with the same parameters after preoperative physiotherapy. Both groups were compared in relation to lung function, effort tolerance and symptoms change after resection. In patients with tumors requiring a lobectomy, after preoperative physiotherapy, a highly significant increase in FEV1, VC, FEF50 and FEF25 of 20%, 17%, 18% and 16% respectively was registered with respect to baseline values. After physiotherapy, a significant improvement in 6-minute walking distance was achieved. After lung resection, the significant loss of FEV1 and VC occurred, together with significant worsening of the small airways function, effort tolerance and symptomatic status. After the surgery, a clear tendency existed towards smaller FEV1 loss in patients with moderate to severe, when compared to patients with mild baseline lung function impairment. A better FEV1 improvement was associated with more significant loss in FEV1. Physiotherapy represents an important part of preoperative and postoperative treatment in COPD patients undergoing a lung resection for primary lung cancer.

  16. Noninvasive assessment of peroxidative lung damage by HIPDM lung scanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miniati, M.; Borrelli, E.; Monti, S.

    1991-03-15

    The basic compound iodobenzyl-propanediamine (HIPDM), when given intravenously, is extracted by the lungs whence it is effluxed at a slow exponential rate. In humans (normal non smokers), the mean residence time ({bar t}) of 123I-HIPDM, assessed by external detection, averages 7.2 {plus minus} 1.1 hrs. Persistence of HIPDM in lungs is significantly increased in asymptomatic smokers and, to a greater extent, in patients with ARDS. Since production of free oxygen radicals reportedly occurs as a consequence of smoke exposure and in the course of acute lung injury, the authors hypothesized that the prolonged persistence of HIPDM in the lungs ofmore » smokers and of patients with ARDS might reflect a peroxidative damage of lung tissue. They tested this hypothesis in rabbits since their baseline HIPDM lung clearance is similar to that of nonsmoking humans. In rabbits, acute lung injury was induced by phorbol myristate acetate. Three hrs after PMA administration, the animals received an i.v. bolus of {sup 131}I-HIPDM. Radioactivity over the chest was recorded for 2 hrs by gamma camera and HIPDM mean residence time in the lungs was computed. Thereafter, the animals were sacrificed and their lungs were removed to measure wet/dry weight ratio as index of lung edema and malondialdehyde (MDA) content as index of lipid peroxidation. HIPDM mean residence time was positively correlated with MDA level in lung tissue, but not with wet/dry weight ratio. Noninvasive assessment of HIPDM lung kinetics may then serve as specific in vivo marker of peroxidative lung injury.« less

  17. Staging of Lung Cancer

    MedlinePlus

    ... LUNG CANCER MINI-SERIES #2 Staging of Lung Cancer Once your lung cancer is diagnosed, staging tells you and your health care provider about ... at it under a microscope. The stages of lung cancer are listed as I, II, III, and IV ...

  18. Navitoclax and Vistusertib in Treating Patients With Relapsed Small Cell Lung Cancer and Other Solid Tumors

    ClinicalTrials.gov

    2018-06-15

    Metastatic Malignant Solid Neoplasm; Recurrent Malignant Solid Neoplasm; Recurrent Small Cell Lung Carcinoma; Stage III Small Cell Lung Carcinoma AJCC v7; Stage IIIA Small Cell Lung Carcinoma AJCC v7; Stage IIIB Small Cell Lung Carcinoma AJCC v7; Stage IV Small Cell Lung Carcinoma AJCC v7; Unresectable Solid Neoplasm

  19. Nivolumab After Surgery and Chemotherapy in Treating Patients With Stage IB-IIIA Non-small Cell Lung Cancer (An ALCHEMIST Treatment Trial)

    ClinicalTrials.gov

    2018-06-28

    Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7

  20. Osimertinib in Treating Participants With Stage I-IIIA EGFR-mutant Non-small Cell Lung Cancer Before Surgery

    ClinicalTrials.gov

    2018-04-27

    EGFR (Epidermal Growth Factor Receptor) Exon 19 Deletion Mutation; EGFR NP_005219.2:p.L858R; EGFR NP_005219.2:p.T790M; Stage I Non-Small Cell Lung Cancer AJCC (American Joint Committee on Cancer) v7; Stage IA Non-Small Cell Lung Carcinoma AJCC v7; Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7

  1. Interplay between the lung microbiome and lung cancer.

    PubMed

    Mao, Qixing; Jiang, Feng; Yin, Rong; Wang, Jie; Xia, Wenjie; Dong, Gaochao; Ma, Weidong; Yang, Yao; Xu, Lin; Hu, Jianzhong

    2018-02-28

    The human microbiome confers benefits or disease susceptibility to the human body through multiple pathways. Disruption of the symbiotic balance of the human microbiome is commonly found in systematic diseases such as diabetes, obesity, and chronic gastric diseases. Emerging evidence has suggested that dysbiosis of the microbiota may also play vital roles in carcinogenesis at multiple levels, e.g., by affecting metabolic, inflammatory, or immune pathways. Although the impact of the gut microbiome on the digestive cancer has been widely explored, few studies have investigated the interplay between the microbiome and lung cancer. Some recent studies have shown that certain microbes and microbiota dysbiosis are correlated with development of lung cancer. In this mini-review, we briefly summarize current research findings describing the relationship between the lung microbiome and lung cancer. We further discuss the potential mechanisms through which the lung microbiome may play a role in lung carcinogenesis and impact lung cancer treatment. A better knowledge of the interplay between the lung microbiome and lung cancer may promote the development of innovative strategies for early prevention and personalized treatment in lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Precision cut lung slices as an efficient tool for in vitro lung physio-pharmacotoxicology studies.

    PubMed

    Morin, Jean-Paul; Baste, Jean-Marc; Gay, Arnaud; Crochemore, Clément; Corbière, Cécile; Monteil, Christelle

    2013-01-01

    1.We review the specific approaches for lung tissue slices preparation and incubation systems and the research application fields in which lung slices proved to be a very efficient alternative to animal experimentation for biomechanical, physiological, pharmacological and toxicological approaches. 2.Focus is made on air-liquid interface dynamic organ culture systems that allow direct tissue exposure to complex aerosol and that best mimic in vivo lung tissue physiology. 3.A compilation of research applications in the fields of vascular and airway reactivity, mucociliary transport, polyamine transport, xenobiotic biotransformation, chemicals toxicology and complex aerosols supports the concept that precision cut lung slices are a very efficient tool maintaining highly differentiated functions similar to in vivo lung organ when kept under dynamic organ culture. They also have been successfully used for lung gene transfer efficiency assessment, for lung viral infection efficiency assessment, for studies of tissue preservation media and tissue post-conditioning to optimize lung tissue viability before grafting. 4.Taken all together, the reviewed studies point to a great interest for precision cut lung slices as an efficient and valuable alternative to in vivo lung organ experimentation.

  3. [Enterococcus faecium lung abscess: one case report and literature review].

    PubMed

    Fang, Xiang-Qun; Liu, You-Ning

    2010-02-01

    to study the diagnosis and treatment of enterococcus faecium lung abscess. a retrospective analysis of one case of Enterococcus faecium lung abscess and literature review was conducted. this patient suffered from cough and sputum over 6 months and complicated with hemoptysis over 3 months. Pulmonary embolism and lung cancer were suspected initially. After 2 times of CT-guided percutaneous transthoracic needle aspiration biopsy the diagnosis of pneumonia was made in other hospitals. However, the consolidation in the lung progressed and cavity appeared although antibiotic therapy was conducted. After admission to our hospital, CT-guided percutaneous transthoracic needle aspiration biopsy was made and the lung tissue was sent for bacterial culture. Enterococcus faecium was cultured and it was susceptible to vancomycin, teicoplanin and linezolid. The disease improved significantly after treatment with these 3 antibiotics in turn. In addition, 13 cases of enterococcus pneumonia or lung abscess were reviewed, including 3 cases of enterococcus faecium lung abscess. enterococcus faecium is rarely a pathogen for lung abscess. The diagnosis of enterococcus faecium lung abscess could be confirmed by lung biopsy and bacterial culture of lung tissue which could also provide the susceptibility of antibiotics and guide the antibiotic therapy.

  4. Lung cancer mimicking lung abscess formation on CT images.

    PubMed

    Taira, Naohiro; Kawabata, Tsutomu; Gabe, Atsushi; Ichi, Takaharu; Kushi, Kazuaki; Yohena, Tomofumi; Kawasaki, Hidenori; Yamashiro, Toshimitsu; Ishikawa, Kiyoshi

    2014-01-01

    Male, 64 FINAL DIAGNOSIS: Lung pleomorphic carcinoma Symptoms: Cough • fever - Clinical Procedure: - Specialty: Oncology. Unusual clinical course. The diagnosis of lung cancer is often made based on computed tomography (CT) image findings if it cannot be confirmed on pathological examinations, such as bronchoscopy. However, the CT image findings of cancerous lesions are similar to those of abscesses.We herein report a case of lung cancer that resembled a lung abscess on CT. We herein describe the case of 64-year-old male who was diagnosed with lung cancer using surgery. In this case, it was quite difficult to distinguish between the lung cancer and a lung abscess on CT images, and a lung abscess was initially suspected due to symptoms, such as fever and coughing, contrast-enhanced CT image findings showing a ring-enhancing mass in the right upper lobe and the patient's laboratory test results. However, a pathological diagnosis of lung cancer was confirmed according to the results of a rapid frozen section biopsy of the lesion. This case suggests that physicians should not suspect both a lung abscesses and malignancy in cases involving masses presenting as ring-enhancing lesions on contrast-enhanced CT.

  5. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice.

    PubMed

    Rosen, Chava; Shezen, Elias; Aronovich, Anna; Klionsky, Yael Zlotnikov; Yaakov, Yasmin; Assayag, Miri; Biton, Inbal Eti; Tal, Orna; Shakhar, Guy; Ben-Hur, Herzel; Shneider, David; Vaknin, Zvi; Sadan, Oscar; Evron, Shmuel; Freud, Enrique; Shoseyov, David; Wilschanski, Michael; Berkman, Neville; Fibbe, Willem E; Hagin, David; Hillel-Karniel, Carmit; Krentsis, Irit Milman; Bachar-Lustig, Esther; Reisner, Yair

    2015-08-01

    Repair of injured lungs represents a longstanding therapeutic challenge. We show that human and mouse embryonic lung tissue from the canalicular stage of development (20-22 weeks of gestation for humans, and embryonic day 15-16 (E15-E16) for mouse) are enriched with progenitors residing in distinct niches. On the basis of the marked analogy to progenitor niches in bone marrow (BM), we attempted strategies similar to BM transplantation, employing sublethal radiation to vacate lung progenitor niches and to reduce stem cell competition. Intravenous infusion of a single cell suspension of canalicular lung tissue from GFP-marked mice or human fetal donors into naphthalene-injured and irradiated syngeneic or SCID mice, respectively, induced marked long-term lung chimerism. Donor type structures or 'patches' contained epithelial, mesenchymal and endothelial cells. Transplantation of differentially labeled E16 mouse lung cells indicated that these patches were probably of clonal origin from the donor. Recipients of the single cell suspension transplant exhibited marked improvement in lung compliance and tissue damping reflecting the energy dissipation in the lung tissues. Our study provides proof of concept for lung reconstitution by canalicular-stage human lung cells after preconditioning of the pulmonary niche.

  6. Inactivation of LLC1 gene in nonsmall cell lung cancer

    PubMed Central

    Hong, Kyeong-Man; Yang, Sei-Hoon; Chowdhuri, Sinchita R.; Player, Audrey; Hames, Megan; Fukuoka, Junya; Meerzaman, Daoud; Dracheva, Tatiana; Sun, Zhifu; Yang, Ping; Jen, Jin

    2007-01-01

    Serial analysis of gene expression studies led us to identify a previously unknown gene, c20orf85, that is present in the normal lung epithelium, but absent or downregulated in most primary non-small cell lung cancers and lung cancer cell lines. We named this gene LLC1 for Low in Lung Cancer 1. LLC1 is located on chromosome 20q13.3 and has a 70% GC content in the promoter region. It has 4 exons and encodes a protein containing 137 amino acids. By in situ hybridization, we observed that LLC1 message is localized in normal lung bronchial epithelial cells, but absent in 13 of 14 lung adenocarcinoma and 9 out of 10 lung squamous carcinoma samples. Methylation at CpG sites of the LLC1 promoter was frequently observed in lung cancer cell lines and in a fraction of primary lung cancer tissues. Treatment with 5-aza deoxycytidine resulted in a reduced methylation of the LLC1 promoter concomitant with the increase of LLC1 expression. These results suggest that inactivation of LLC1 by means of promoter methylation is a frequent event in nonsmall cell lung cancer and may play a role in lung tumorigenesis. PMID:17304513

  7. Protein regulator of cytokinesis-1 expression: prognostic value in lung squamous cell carcinoma patients

    PubMed Central

    Zhan, Ping; Xi, Guang-Min; Liu, Hong-Bing; Liu, Ya-Fang; Xu, Wu-Jian; Zhu, Qingqing; Zhou, Ze-Jun; Miao, Ying-Ying; Wang, Xiao-Xia; Jin, Jia-Jia

    2017-01-01

    Background Protein regulator of cytokinesis-1 (PRC1) has been shown to participate in the completion of cytokinesis, and it is dysregulated in cancer processes. However, its relevance in lung squamous cell carcinoma (SCC) remained largely unknown. We aimed to study the expression pattern of PRC1 and assess its clinical significance in lung SCC. Methods PRC1 protein expression in human lung SCC and adjacent normal lung tissues was detected by immunohistochemistry. PRC1 expression was assessed in association with clinicopathological features and clinical outcomes of lung SCC patients. Results In lung SCC tissues, PRC1 protein expression was significantly higher than those in paired normal lung tissues. The lung SCC patients with PRC1 overexpression had an advanced pathological stage (TNM stage), positive lymph node metastasis, and a shorter overall survival (OS) time more frequently than patients with low PRC1 expression. Additional, PRC1 expression was also shown to be poor as a prognostic factor for OS in patients with lung SCC. Conclusions Our study indicated that aberrant expression of PRC1 may point to biochemical recurrence in lung SCC. This highlights its potential as a valuable prognostic marker for lung SCC. PMID:28840006

  8. Quantification of heterogeneity in lung disease with image-based pulmonary function testing.

    PubMed

    Stahr, Charlene S; Samarage, Chaminda R; Donnelley, Martin; Farrow, Nigel; Morgan, Kaye S; Zosky, Graeme; Boucher, Richard C; Siu, Karen K W; Mall, Marcus A; Parsons, David W; Dubsky, Stephen; Fouras, Andreas

    2016-07-27

    Computed tomography (CT) and spirometry are the mainstays of clinical pulmonary assessment. Spirometry is effort dependent and only provides a single global measure that is insensitive for regional disease, and as such, poor for capturing the early onset of lung disease, especially patchy disease such as cystic fibrosis lung disease. CT sensitively measures change in structure associated with advanced lung disease. However, obstructions in the peripheral airways and early onset of lung stiffening are often difficult to detect. Furthermore, CT imaging poses a radiation risk, particularly for young children, and dose reduction tends to result in reduced resolution. Here, we apply a series of lung tissue motion analyses, to achieve regional pulmonary function assessment in β-ENaC-overexpressing mice, a well-established model of lung disease. The expiratory time constants of regional airflows in the segmented airway tree were quantified as a measure of regional lung function. Our results showed marked heterogeneous lung function in β-ENaC-Tg mice compared to wild-type littermate controls; identified locations of airway obstruction, and quantified regions of bimodal airway resistance demonstrating lung compensation. These results demonstrate the applicability of regional lung function derived from lung motion as an effective alternative respiratory diagnostic tool.

  9. Joint Kinetics and Kinematics During Common Lower Limb Rehabilitation Exercises.

    PubMed

    Comfort, Paul; Jones, Paul Anthony; Smith, Laura Constance; Herrington, Lee

    2015-10-01

    Unilateral body-weight exercises are commonly used to strengthen the lower limbs during rehabilitation after injury, but data comparing the loading of the limbs during these tasks are limited. To compare joint kinetics and kinematics during 3 commonly used rehabilitation exercises. Descriptive laboratory study. Laboratory. A total of 9 men (age = 22.1 ± 1.3 years, height = 1.76 ± 0.08 m, mass = 80.1 ± 12.2 kg) participated. Participants performed the single-legged squat, forward lunge, and reverse lunge with kinetic data captured via 2 force plates and 3-dimensional kinematic data collected using a motion-capture system. Peak ground reaction forces, maximum joint angles, and peak sagittal-joint moments. We observed greater eccentric and concentric peak vertical ground reaction forces during the single-legged squat than during both lunge variations (P ≤ .001). Both lunge variations demonstrated greater knee and hip angles than did the single-legged squat (P < .001), but we observed no differences between lunges (P > .05). Greater dorsiflexion occurred during the single-legged squat than during both lunge variations (P < .05), but we noted no differences between lunge variations (P = .70). Hip-joint moments were greater during the forward lunge than during the reverse lunge (P = .003) and the single-legged squat (P = .011). Knee-joint moments were greater in the single-legged squat than in the reverse lunge (P < .001) but not greater in the single-legged squat than in the forward lunge (P = .41). Ankle-joint moments were greater during the single-legged squat than during the forward lunge (P = .002) and reverse lunge (P < .001). Appropriate loading progressions for the hip should begin with the single-legged squat and progress to the reverse lunge and then the forward lunge. In contrast, loading progressions for the knee and ankle should begin with the reverse lunge and progress to the forward lunge and then the single-legged squat.

  10. Mind-mapping for lung cancer: Towards a personalized therapeutics approach

    PubMed Central

    Mollberg, N; Surati, M; Demchuk, C; Fathi, R; Salama, AK; Husain, AN; Hensing, T; Salgia, R

    2011-01-01

    There will be over 220,000 people diagnosed with lung cancer and over 160,000 dying of lung cancer this year alone in the United States. In order to arrive at better control, prevention, diagnosis, and therapeutics for lung cancer, we must be able to personalize the approach towards lung cancer. Mind-mapping has existed for centuries for physicians to properly think about various “flows” of personalized medicine. We include here the epidemiology, diagnosis, histology, and treatment of lung cancer—specifically, non-small cell lung cancer. As we have new molecular signatures for lung cancer, this is further detailed. This review is not meant to be a comprehensive review, but rather its purpose is to highlight important aspects of lung cancer diagnosis, management, and personalized treatment options. PMID:21337123

  11. Immunoregulation of Bone Marrow-Derived Mesenchymal Stem Cells on the Chronic Cigarette Smoking-Induced Lung Inflammation in Rats

    PubMed Central

    Li, Xiaoyan; Wang, Junyan; Cao, Jing; Ma, Lijuan; Xu, Jianying

    2015-01-01

    Impact of bone mesenchymal stem cell (BMSC) transfusion on chronic smoking-induced lung inflammation is poorly understood. In this study, a rat model of smoking-related lung injury was induced and the rats were treated with vehicle or BMSCs for two weeks. Different subsets of CD4+ T cells, cytokines, and anti-elastin in the lungs as well as the lung injury were characterized. Serum and lung inducible nitric oxide synthase (iNOS) and STAT5 phosphorylation in lymphocytes from lung tissue were also analyzed. Results indicated that transfusion of BMSCs significantly reduced the chronic smoking-induced lung injury, inflammation, and levels of lung anti-elastin in rats. The frequency of Th1 and Th17 cells and the levels of IL-2, IL-6, IFN-γ, TNF-α, IL-17, IP-10, and MCP-1 increased, but the frequency of Tregs and IL-10 decreased. Transfusion of BMSCs significantly modulated the imbalance of immune responses by mitigating chronic smoking-increased Th1 and Th17 responses, but enhancing Treg responses in the lungs of rats. Transfusion of BMSCs limited chronic smoking-related reduction in the levels of serum and lung iNOS and mitigated smoking-induced STAT5 phosphorylation in lymphocytes from lung tissue. BMSCs negatively regulated smoking-induced autoimmune responses in the lungs of rats and may be promising for the intervention of chronic smoking-related lung injury. PMID:26665150

  12. A Multicenter Study on Long-Term Outcomes After Lung Transplantation Comparing Donation After Circulatory Death and Donation After Brain Death.

    PubMed

    van Suylen, V; Luijk, B; Hoek, R A S; van de Graaf, E A; Verschuuren, E A; Van De Wauwer, C; Bekkers, J A; Meijer, R C A; van der Bij, W; Erasmus, M E

    2017-10-01

    The implementation of donation after circulatory death category 3 (DCD3) was one of the attempts to reduce the gap between supply and demand of donor lungs. In the Netherlands, the total number of potential lung donors was greatly increased by the availability of DCD3 lungs in addition to the initial standard use of donation after brain death (DBD) lungs. From the three lung transplant centers in the Netherlands, 130 DCD3 recipients were one-to-one nearest neighbor propensity score matched with 130 DBD recipients. The primary end points were primary graft dysfunction (PGD), posttransplant lung function, freedom from chronic lung allograft dysfunction (CLAD), and overall survival. PGD did not differ between the groups. Posttransplant lung function was comparable after bilateral lung transplantation, but seemed worse after DCD3 single lung transplantation. The incidence of CLAD (p = 0.17) nor the freedom from CLAD (p = 0.36) nor the overall survival (p = 0.40) were significantly different between both groups. The presented multicenter results are derived from a national context where one third of the lung transplantations are performed with DCD3 lungs. We conclude that the long-term outcome after lung transplantation with DCD3 donors is similar to that of DBD donors and that DCD3 donation can substantially enlarge the donor pool. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  13. [The registry report of Japanese lung transplantation--2009].

    PubMed

    2010-07-01

    To scrutinize the status of lung transplantation in Japan, the Japanese Society of Lung and Heart-Lung Transplantation started to collect and present registry data from 2005. This is the 5th official registry report of Japanese lung transplantation. The data of cadaveric lung transplantation and living-donor lobar transplantation performed by the end of 2008 were registered to the database and analyzed with respect to the number of transplants, recipient survival rates, recipient functional and working status, and cause of death after transplantation. Survival rates were calculated by the Kaplan-Meier method. Fifty-three (30 single and 23 bilateral) cadaveric lung transplantations and 77 living-donor lobar transplantations were performed by the end of 2008. Five-year survival rates of cadaveric single and bilateral lung transplantations were 61.9% and 62.5%, respectively, which were both superior to those in the International Registry (47.1% and 55.0%, respectively). Five-year and 10-year survival rates of living-donor lobar transplantation were excellent at 79.9% and 77.0%, respectively. The functional status of >80% of recipients was restored to Hugh-Jones I or II after transplantation. Infection was the leading cause of death after lung transplantation. The results of Japanese lung transplantation are so far satisfactory although we should note the small number of lung transplant cases in Japan. The Japanese Society of Lung and Heart-Lung Transplantation will continue to present the annual report of Japanese lung transplantation.

  14. Ex vivo lung perfusion: a comprehensive review of the development and exploration of future trends.

    PubMed

    Roman, Marius A; Nair, Sukumaran; Tsui, Steven; Dunning, John; Parmar, Jasvir S

    2013-09-01

    There is a critical mismatch between the number of donor lungs available and the demand for lungs for transplantation. This has created unacceptably high waiting-list mortality for lung transplant recipients. Currently (2012) in the United Kingdom, there are 216 patients on the lung transplant waiting list and 17 on heart and lung transplant list. The waiting times for suitable lungs average 412 days, with an increasing mortality and morbidity among the patients on the lung transplant list. Ex vivo lung perfusion (EVLP) has emerged as a technique for the assessment, resuscitation, and potential repair of suboptimal donor lungs. This is a rapidly developing field with significant clinical implications. In this review article, we critically appraise the background developments that have led to our current clinical practice. In particular, we focus on the human and animal experience, the different perfusion-ventilation strategies, and the impact of different perfusates and leukocyte filters. Finally, we examine EVLP as a potential research tool. This will provide insight into EVLP and its future development in the field of clinical lung transplantation.

  15. Effect of Ergothioneine on Acute Lung Injury and Inflammation in Cytokine Insufflated Rats

    PubMed Central

    Repine, John E.; Elkins, Nancy D.

    2012-01-01

    Objective The Acute Respiratory Distress Syndrome (ARDS), the most severe form of Acute Lung Injury (ALI), is a highly-fatal, diffuse non-cardiogenic edematous lung disorder. The pathogenesis of ARDS is unknown but lung inflammation and lung oxidative stress are likely contributing factors. Since no specific pharmacologic intervention exists for ARDS, our objective was to determine the effect of treatment with ergothioneine---a safe agent with multiple anti-inflammatory and antioxidant properties on the development of lung injury and inflammation in rats insufflated with cytokines found in lung lavages of ARDS patients. Method Sprague-Dawley rats (3-10/group) were given 15 mg/kg or 150 mg/kg L-ergothioneine intravenously 1 hour before or 18 hours after cytokine (IL-1 and IFNγ) insufflation. Lung injury (lavage LDH levels) and lung inflammation (lavage neutrophil numbers) were measured 24 hours after cytokine insufflation. Results Ergothioneine pre- and post- treatment generally decreased lung injury and lung inflammation in cytokine insufflated rats. Conclusion Ergothioneine should be considered for additional testing as a potential therapy for treating and preventing ARDS. PMID:22197759

  16. When does the lung die? Kfc, cell viability, and adenine nucleotide changes in the circulation-arrested rat lung.

    PubMed

    Jones, D R; Becker, R M; Hoffmann, S C; Lemasters, J J; Egan, T M

    1997-07-01

    Lungs harvested from cadaveric circulation-arrested donors may increase the donor pool for lung transplantation. To determine the degree and time course of ischemia-reperfusion injury, we evaluated the effect of O2 ventilation on capillary permeability [capillary filtration coefficient (Kfc)], cell viability, and total adenine nucleotide (TAN) levels in in situ circulation-arrested rat lungs. Kfc increased with increasing postmortem ischemic time (r = 0.88). Lungs ventilated with O2 1 h postmortem had similar Kfc and wet-to-dry ratios as controls. Nonventilated lungs had threefold (P < 0.05) and sevenfold (P < 0.0001) increases in Kfc at 30 and 60 min postmortem compared with controls. Cell viability decreased in all groups except for 30-min postmortem O2-ventilated lungs. TAN levels decreased with increasing ischemic time, particularly in nonventilated lungs. Loss of adenine nucleotides correlated with increasing Kfc values (r = 0.76). This study indicates that lungs retrieved 1 h postmortem may have normal Kfc with preharvest O2 ventilation. The relationship between Kfc and TAN suggests that vascular permeability may be related to lung TAN levels.

  17. Lung transplantation: overall approach regarding its major aspects

    PubMed Central

    de Camargo, Priscila Cilene León Bueno; Teixeira, Ricardo Henrique de Oliveira Braga; Carraro, Rafael Medeiros; Campos, Silvia Vidal; Afonso, José Eduardo; Costa, André Nathan; Fernandes, Lucas Matos; Abdalla, Luis Gustavo; Samano, Marcos Naoyuki; Pêgo-Fernandes, Paulo Manuel

    2015-01-01

    ABSTRACT Lung transplantation is a well-established treatment for patients with advanced lung disease. The evaluation of a candidate for transplantation is a complex task and involves a multidisciplinary team that follows the patient beyond the postoperative period. Currently, the mean time on the waiting list for lung transplantation in the state of São Paulo, Brazil, is approximately 18 months. For Brazil as a whole, data from the Brazilian Organ Transplant Association show that, in 2014, there were 67 lung transplants and 204 patients on the waiting list for lung transplantation. Lung transplantation is most often indicated in cases of COPD, cystic fibrosis, interstitial lung disease, non-cystic fibrosis bronchiectasis, and pulmonary hypertension. This comprehensive review aimed to address the major aspects of lung transplantation: indications, contraindications, evaluation of transplant candidates, evaluation of donor candidates, management of transplant recipients, and major complications. To that end, we based our research on the International Society for Heart and Lung Transplantation guidelines and on the protocols used by our Lung Transplant Group in the city of São Paulo, Brazil. PMID:26785965

  18. Contribution of Fetal, but Not Adult, Pulmonary Mesothelium to Mesenchymal Lineages in Lung Homeostasis and Fibrosis.

    PubMed

    von Gise, Alexander; Stevens, Sean M; Honor, Leah B; Oh, Jin Hee; Gao, Chi; Zhou, Bin; Pu, William T

    2016-02-01

    The lung is enveloped by a layer of specialized epithelium, the pulmonary mesothelium. In other organs, mesothelial cells undergo epithelial-mesenchymal transition and contribute to organ stromal cells. The contribution of pulmonary mesothelial cells (PMCs) to the developing lung has been evaluated with differing conclusions. PMCs have also been indirectly implicated in lung fibrosis in the progressive, fatal lung disease idiopathic pulmonary fibrosis. We used fetal or postnatal genetic pulse labeling of PMCs to assess their fate in murine development, normal lung homeostasis, and models of pulmonary fibrosis. We found that most fetal PMC-derived mesenchymal cells (PMCDCs) expressed markers of pericytes and fibroblasts, only a small minority expressed smooth muscle markers, and none expressed endothelial cell markers. Postnatal PMCs did not contribute to lung mesenchyme during normal lung homeostasis or in models of lung fibrosis. However, fetal PMCDCs were abundant and actively proliferating within fibrotic regions in lung fibrosis models, suggesting that they actively participate in the fibrotic process. These data clarify the role of fetal and postnatal PMCDCs in lung development and disease.

  19. Treatment of acute lung injury by targeting MG53-mediated cell membrane repair

    PubMed Central

    Lieber, Gissela; Nishi, Miyuki; Yan, Rosalie; Wang, Zhen; Yao, Yonggang; Li, Yu; Whitson, Bryan A.; Duann, Pu; Li, Haichang; Zhou, Xinyu; Zhu, Hua; Takeshima, Hiroshi; Hunter, John C.; McLeod, Robbie L.; Weisleder, Noah; Zeng, Chunyu; Ma, Jianjie

    2014-01-01

    Injury to lung epithelial cells has a role in multiple lung diseases. We previously identified mitsugumin 53 (MG53) as a component of the cell membrane repair machinery in striated muscle cells. Here we show that MG53 also has a physiological role in the lung and may be used as a treatment in animal models of acute lung injury. Mice lacking MG53 show increased susceptibility to ischemia-reperfusion and over-ventilation induced injury to the lung when compared with wild type mice. Extracellular application of recombinant human MG53 (rhMG53) protein protects cultured lung epithelial cells against anoxia/reoxygenation-induced injuries. Intravenous delivery or inhalation of rhMG53 reduces symptoms in rodent models of acute lung injury and emphysema. Repetitive administration of rhMG53 improves pulmonary structure associated with chronic lung injury in mice. Our data indicate a physiological function for MG53 in the lung and suggest that targeting membrane repair may be an effective means for treatment or prevention of lung diseases. PMID:25034454

  20. Production and Assessment of Decellularized Pig and Human Lung Scaffolds

    PubMed Central

    Niles, Jean; Riddle, Michael; Vargas, Gracie; Schilagard, Tuya; Ma, Liang; Edward, Kert; La Francesca, Saverio; Sakamoto, Jason; Vega, Stephanie; Ogadegbe, Marie; Mlcak, Ronald; Deyo, Donald; Woodson, Lee; McQuitty, Christopher; Lick, Scott; Beckles, Daniel; Melo, Esther; Cortiella, Joaquin

    2013-01-01

    The authors have previously shown that acellular (AC) trachea-lung scaffolds can (1) be produced from natural rat lungs, (2) retain critical components of the extracellular matrix (ECM) such as collagen-1 and elastin, and (3) be used to produce lung tissue after recellularization with murine embryonic stem cells. The aim of this study was to produce large (porcine or human) AC lung scaffolds to determine the feasibility of producing scaffolds with potential clinical applicability. We report here the first attempt to produce AC pig or human trachea-lung scaffold. Using a combination of freezing and sodium dodecyl sulfate washes, pig trachea-lungs and human trachea-lungs were decellularized. Once decellularization was complete we evaluated the structural integrity of the AC lung scaffolds using bronchoscopy, multiphoton microscopy (MPM), assessment of the ECM utilizing immunocytochemistry and evaluation of mechanics through the use of pulmonary function tests (PFTs). Immunocytochemistry indicated that there was loss of collagen type IV and laminin in the AC lung scaffold, but retention of collagen-1, elastin, and fibronectin in some regions. MPM scoring was also used to examine the AC lung scaffold ECM structure and to evaluate the amount of collagen I in normal and AC lung. MPM was used to examine the physical arrangement of collagen-1 and elastin in the pleura, distal lung, lung borders, and trachea or bronchi. MPM and bronchoscopy of trachea and lung tissues showed that no cells or cell debris remained in the AC scaffolds. PFT measurements of the trachea-lungs showed no relevant differences in peak pressure, dynamic or static compliance, and a nonrestricted flow pattern in AC compared to normal lungs. Although there were changes in content of collagen I and elastin this did not affect the mechanics of lung function as evidenced by normal PFT values. When repopulated with a variety of stem or adult cells including human adult primary alveolar epithelial type II cells both pig and human AC scaffolds supported cell attachment and cell viability. Examination of scaffolds produced using a variety of detergents indicated that detergent choice influenced human immune response in terms of T cell activation and chemokine production. PMID:23638920

  1. Production and assessment of decellularized pig and human lung scaffolds.

    PubMed

    Nichols, Joan E; Niles, Jean; Riddle, Michael; Vargas, Gracie; Schilagard, Tuya; Ma, Liang; Edward, Kert; La Francesca, Saverio; Sakamoto, Jason; Vega, Stephanie; Ogadegbe, Marie; Mlcak, Ronald; Deyo, Donald; Woodson, Lee; McQuitty, Christopher; Lick, Scott; Beckles, Daniel; Melo, Esther; Cortiella, Joaquin

    2013-09-01

    The authors have previously shown that acellular (AC) trachea-lung scaffolds can (1) be produced from natural rat lungs, (2) retain critical components of the extracellular matrix (ECM) such as collagen-1 and elastin, and (3) be used to produce lung tissue after recellularization with murine embryonic stem cells. The aim of this study was to produce large (porcine or human) AC lung scaffolds to determine the feasibility of producing scaffolds with potential clinical applicability. We report here the first attempt to produce AC pig or human trachea-lung scaffold. Using a combination of freezing and sodium dodecyl sulfate washes, pig trachea-lungs and human trachea-lungs were decellularized. Once decellularization was complete we evaluated the structural integrity of the AC lung scaffolds using bronchoscopy, multiphoton microscopy (MPM), assessment of the ECM utilizing immunocytochemistry and evaluation of mechanics through the use of pulmonary function tests (PFTs). Immunocytochemistry indicated that there was loss of collagen type IV and laminin in the AC lung scaffold, but retention of collagen-1, elastin, and fibronectin in some regions. MPM scoring was also used to examine the AC lung scaffold ECM structure and to evaluate the amount of collagen I in normal and AC lung. MPM was used to examine the physical arrangement of collagen-1 and elastin in the pleura, distal lung, lung borders, and trachea or bronchi. MPM and bronchoscopy of trachea and lung tissues showed that no cells or cell debris remained in the AC scaffolds. PFT measurements of the trachea-lungs showed no relevant differences in peak pressure, dynamic or static compliance, and a nonrestricted flow pattern in AC compared to normal lungs. Although there were changes in content of collagen I and elastin this did not affect the mechanics of lung function as evidenced by normal PFT values. When repopulated with a variety of stem or adult cells including human adult primary alveolar epithelial type II cells both pig and human AC scaffolds supported cell attachment and cell viability. Examination of scaffolds produced using a variety of detergents indicated that detergent choice influenced human immune response in terms of T cell activation and chemokine production.

  2. Transplantation after ex vivo lung perfusion: A midterm follow-up.

    PubMed

    Wallinder, Andreas; Riise, Gerdt C; Ricksten, Sven-Erik; Silverborn, Martin; Dellgren, Göran

    2016-11-01

    A large proportion of donor lungs are discarded due to known or presumed organ dysfunction. Ex vivo lung perfusion (EVLP) has proven its value as a tool for discrimination between reversible and irreversible donor lung pathology. However, the long-term outcome after transplantation of lungs after EVLP is essentially unknown. We report short-term and midterm outcomes of recipients who received transplants of EVLP-evaluated lungs. Single-center results of recipients of lungs with prior EVLP were compared with consecutive recipients of non-EVLP lungs (controls) during the same period. Short-term follow-up included time to extubation, time in the intensive care unit, and the presence of primary graft dysfunction at 72 hours postoperatively. Mortality and incidence of chronic lung allograft dysfunction were monitored for up to 4 years after discharge. During a 4-year period, 32 pairs of initially rejected donor lungs underwent EVLP. After EVLP, 22 double lungs and 5 single lungs were subsequently transplanted. During this period, 145 patients received transplants of conventional donor lungs that did not have EVLP and constituted the control group. Median time to extubation was 7 hours in the EVLP group and 6 hours in the non-EVLP control group (p = 0.45). Median intensive care unit stay was 4 days vs. 3 days, respectively (p = 0.15). Primary graft dysfunction grade > 1 was present in 14% in the EVLP group and in 12% in the non-EVLP group at 72 hours after transplant. Survival at 1 year was 92% in the EVLP group and 79% in the non-EVLP group. Cumulative survival and freedom from retransplantation or chronic rejection were also comparable between the 2 groups (p = 0.43) when monitored up to 4 years. Selected donor lungs rejected for transplantation can be used after EVLP. This technique is effective for selection of transplantable donor lungs. Patients who received lungs evaluated under EVLP have short-term and midterm outcomes comparable to recipients of non-EVLP donor lungs. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  3. Regional physiology of ARDS.

    PubMed

    Gattinoni, Luciano; Tonetti, Tommaso; Quintel, Michael

    2017-12-28

    The acute respiratory distress (ARDS) lung is usually characterized by a high degree of inhomogeneity. Indeed, the same lung may show a wide spectrum of aeration alterations, ranging from completely gasless regions, up to hyperinflated areas. This inhomogeneity is normally caused by the presence of lung edema and/or anatomical variations, and is deeply influenced by the gravitational forces.For any given airway pressure generated by the ventilator, the pressure acting directly on the lung (i.e., the transpulmonary pressure or lung stress) is determined by two main factors: 1) the ratio between lung elastance and the total elastance of the respiratory system (which has been shown to vary widely in ARDS patients, between 0.2 and 0.8); and 2) the lung size. In severe ARDS, the ventilatable parenchyma is strongly reduced in size ('baby lung'); its resting volume could be as low as 300 mL, and the total inspiratory capacity could be reached with a tidal volume of 750-900 mL, thus generating lethal stress and strain in the lung. Although this is possible in theory, it does not explain the occurrence of ventilator-induced lung injury (VILI) in lungs ventilated with much lower tidal volumes. In fact, the ARDS lung contains areas acting as local stress multipliers and they could multiply the stress by a factor ~ 2, meaning that in those regions the transpulmonary pressure could be double that present in other parts of the same lung. These 'stress raisers' widely correspond to the inhomogenous areas of the ARDS lung and can be present in up to 40% of the lung.Although most of the literature on VILI concentrates on the possible dangers of tidal volume, mechanical ventilation in fact delivers mechanical power (i.e., energy per unit of time) to the lung parenchyma, which reacts to it according to its anatomical structure and pathophysiological status. The determinants of mechanical power are not only the tidal volume, but also respiratory rate, inspiratory flow, and positive end-expiratory pressure (PEEP). In the end, decreasing mechanical power, increasing lung homogeneity, and avoiding reaching the anatomical limits of the 'baby lung' should be the goals for safe ventilation in ARDS.

  4. Amiodarone causes acute oxidant lung injury in ventilated and perfused rabbit lungs.

    PubMed

    Kennedy, T P; Gordon, G B; Paky, A; McShane, A; Adkinson, N F; Peters, S P; Friday, K; Jackman, W; Sciuto, A M; Gurtner, G H

    1988-07-01

    Amiodarone (ADR), a new antiarrhythmic drug for life-threatening cardiac arrhythmias, causes pneumonitis or lung fibrosis in a sizeable minority of patients. The cause of lung damage is not known. We have shown that infusion of 10 mg amiodarone into the inflow circuit of ventilated and perfused rabbit lungs causes immediate increase in pulmonary artery pressure (mean +/- SEM) (from 13.6 +/- 1.2 to 40.6 +/- 9.5 mm Hg, p less than 0.01) and pulmonary edema with marked increase in the pulmonary generation of thromboxane and leukotrienes C4 and/or D4. Albumin (2 g%) in the perfusate prevents any increase in lung perfusion pressure or edema formation. When lung perfusion pressure increase is blocked with the combined cyclooxygenase and lipoxygenase inhibitor enolicam sodium (CG5391B, 35 microM in perfusate), significant lung edema still occurs after amiodarone, indicating that amiodarone causes increased alveolar-capillary membrane permeability. Addition of catalase (100 U/ml) or superoxide dismutase and catalase (100 U/ml each) to perfusate fails to protect from amiodarone lung injury. Immediate infusion of amiodarone (10 mg) into lungs ventilated with room air (ADR + RA) causes an increase in lung weight gain from baseline (delta W) of 5.7 +/- 1.5 g/min. Compared with ADR + RA, ventilation of lungs with 4% O2 (delta W = 0.7 +/- 0.3 g/min, p less than 0.05), pretreatment of rabbits for 3 days with butylated hydroxyanisole (BHA, 100 mg/kg/day i.p., delta W = 0.05 +/- 0.02 g/min, p less than 0.01), pretreatment of rabbits for 3 days with vitamin E (Vit E, 300 U/day orally, delta W = 0.6 +/- 0.2 g/min, p less than 0.05), or addition of N-acetylcysteine to the lung perfusate (NAC, 5 mM, delta W = 0.1 +/- 0.08 g/min, p less than 0.01) all protect from lung edema formation after amiodarone. Amiodarone (100 mg) also caused a marked increase in luminol-enhanced lung chemiluminescence, lung production of superoxide anion (O2-), and tissue levels of lung glutathione disulfide. These results suggest that amiodarone causes lung injury by an oxidant mechanism.

  5. Association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury after intensity-modulated radiotherapy in lung cancer: a retrospective analysis.

    PubMed

    Chen, Jinmei; Hong, Jinsheng; Zou, Xi; Lv, Wenlong; Guo, Feibao; Hong, Hualan; Zhang, Weijian

    2015-11-01

    The aim of this study was to investigate the association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury (RILI) after intensity-modulated radiotherapy (IMRT) for lung cancer. The normal lung relative volumes receiving greater than 5, 10, 20 and 30 Gy (V5-30) mean lung dose (MLD), and absolute volumes spared from greater than 5, 10, 20 and 30 Gy (AVS5-30) for the bilateral and ipsilateral lungs of 83 patients were recorded. Any association of clinical factors and dose-volume parameters with Grade ≥2 RILI was analyzed. The median follow-up was 12.3 months; 18 (21.7%) cases of Grade 2 RILI, seven (8.4%) of Grade 3 and two (2.4%) of Grade 4 were observed. Univariate analysis revealed the located lobe of the primary tumor. V5, V10, V20, MLD of the ipsilateral lung, V5, V10, V20, V30 and MLD of the bilateral lung, and AVS5 and AVS10 of the ipsilateral lung were associated with Grade ≥2 RILI (P < 0.05). Multivariate analysis indicated AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI (P = 0.010, OR = 0.272, 95% CI: 0.102-0.729). Receiver operating characteristic curves indicated Grade ≥2 RILI could be predicted using AVS5 of the ipsilateral lung (area under curve, 0.668; cutoff value, 564.9 cm(3); sensitivity, 60.7%; specificity, 70.4%). The incidence of Grade ≥2 RILI was significantly lower with AVS5 of the ipsilateral lung ≥564.9 cm(3) than with AVS5 < 564.9 cm(3) (P = 0.008). Low-dose irradiation relative volumes and MLD of the bilateral or ipsilateral lung were associated with Grade ≥2 RILI, and AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI for lung cancer after IMRT. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  6. Scribble is required for normal epithelial cell–cell contacts and lumen morphogenesis in the mammalian lung

    PubMed Central

    Yates, Laura L.; Schnatwinkel, Carsten; Hazelwood, Lee; Chessum, Lauren; Paudyal, Anju; Hilton, Helen; Romero, M. Rosario; Wilde, Jonathan; Bogani, Debora; Sanderson, Jeremy; Formstone, Caroline; Murdoch, Jennifer N.; Niswander, Lee A.; Greenfield, Andy; Dean, Charlotte H.

    2013-01-01

    During lung development, proper epithelial cell arrangements are critical for the formation of an arborized network of tubes. Each tube requires a lumen, the diameter of which must be tightly regulated to enable optimal lung function. Lung branching and lumen morphogenesis require close epithelial cell–cell contacts that are maintained as a result of adherens junctions, tight junctions and by intact apical–basal (A/B) polarity. However, the molecular mechanisms that maintain epithelial cohesion and lumen diameter in the mammalian lung are unknown. Here we show that Scribble, a protein implicated in planar cell polarity (PCP) signalling, is necessary for normal lung morphogenesis. Lungs of the Scrib mouse mutant Circletail (Crc) are abnormally shaped with fewer airways, and these airways often lack a visible, ‘open’ lumen. Mechanistically we show that Scrib genetically interacts with the core PCP gene Vangl2 in the developing lung and that the distribution of PCP pathway proteins and Rho mediated cytoskeletal modification is perturbed in ScribCrc/Crc lungs. However A/B polarity, which is disrupted in Drosophila Scrib mutants, is largely unaffected. Notably, we find that Scrib mediates functions not attributed to other PCP proteins in the lung. Specifically, Scrib localises to both adherens and tight junctions of lung epithelia and knockdown of Scrib in lung explants and organotypic cultures leads to reduced cohesion of lung epithelial cells. Live imaging of Scrib knockdown lungs shows that Scrib does not affect bud bifurcation, as previously shown for the PCP protein Celsr1, but is required to maintain epithelial cohesion. To understand the mechanism leading to reduced cell–cell association, we show that Scrib associates with β-catenin in embryonic lung and the sub-cellular distribution of adherens and tight junction proteins is perturbed in mutant lung epithelia. Our data reveal that Scrib is required for normal lung epithelial organisation and lumen morphogenesis by maintaining cell–cell contacts. Thus we reveal novel and important roles for Scrib in lung development operating via the PCP pathway, and in regulating junctional complexes and cell cohesion. PMID:23195221

  7. Micro-imaging of the Mouse Lung via MRI

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    Quantitative measurement of lung microstructure is of great significance in assessment of pulmonary disease, particularly in the earliest stages. Conventional stereological assessment of ex-vivo fixed tissue specimens under the microscope has a long and successful tradition and is regarded as a gold standard, but the invasive nature limits its applications and the practicality of use in longitudinal studies. The technique for diffusion MRI-based 3He lung morphometry was previously developed and validated for human lungs, and was recently extended to ex-vivo mouse lungs. The technique yields accurate, quantitative information about the microstructure and geometry of acinar airways. In this dissertation, the 3He lung morphometry technique is for the first time successfully implemented for in-vivo studies of mice. It can generate spatially-resolved maps of parameters that reveal the microstructure of mouse lung. Results in healthy mice indicate excellent agreement between in-vivo morphometry via 3He MRI and microscopic morphometry after sacrifice. The implementation and validation of 3He morphometry in healthy mice open up new avenues for application of the technique as a precise, noninvasive, in-vivo biomarker of changes in lung microstructure, within various mouse models of lung disease. We have applied 3He morphometry to the Sendai mouse model of lung disease. Specifically, the Sendai-virus model of chronic obstructive lung disease has demonstrated an innate immune response in mouse airways that exhibits similarities to the chronic airway inflammation in human COPD and asthma, but the effect on distal lung parenchyma had not been investigated. We imaged the time course and regional distribution of mouse lung microstructural changes in vivo after Sendai virus (SeV) infection with 1H and 3He diffusion MRI. 1H MR images detected the SeV-induced pulmonary inflammation in vivo and 3He lung morphometry showed modest increase in alveolar duct radius distal to airway inflammation, particularly in the lung periphery, indicating airspace enlargement after virus infection. Another important application of the imaging technique is the study of lung regeneration in a pneumonectomy (PNX) model. Partial resection of the lung by unilateral PNX is a robust model of compensatory lung growth. It is typically studied by postmortem morphometry in which longitudinal assessment in the same animal cannot be achieved. Here we successfully assess the microstructural changes and quantify the compensatory lung growth in vivo in the PNX mouse model via 1H and hyperpolarized 3He diffusion MRI. Our results show complete restoration in lung volume and total alveolar number with enlargement of alveolar size, which is consistent with prior histological studies conducted in different animals at various time points. This dissertation demonstrates that 3He lung morphometry has good sensitivity in quantifying small microstructural changes in the mouse lung and can be applied to a variety of mouse pulmonary models. Particularly, it has great potential to become a valuable tool in understanding the time course and the mechanism of lung growth in individual animals and may provide insight into post-natal lung growth and lung regeneration.

  8. Ex Vivo Adenoviral Vector Gene Delivery Results in Decreased Vector-associated Inflammation Pre- and Post–lung Transplantation in the Pig

    PubMed Central

    Yeung, Jonathan C; Wagnetz, Dirk; Cypel, Marcelo; Rubacha, Matthew; Koike, Terumoto; Chun, Yi-Min; Hu, Jim; Waddell, Thomas K; Hwang, David M; Liu, Mingyao; Keshavjee, Shaf

    2012-01-01

    Acellular normothermic ex vivo lung perfusion (EVLP) is a novel method of donor lung preservation for transplantation. As cellular metabolism is preserved during perfusion, it represents a potential platform for effective gene transduction in donor lungs. We hypothesized that vector-associated inflammation would be reduced during ex vivo delivery due to isolation from the host immune system response. We compared ex vivo with in vivo intratracheal delivery of an E1-, E3-deleted adenoviral vector encoding either green fluorescent protein (GFP) or interleukin-10 (IL-10) to porcine lungs. Twelve hours after delivery, the lung was transplanted and the post-transplant function assessed. We identified significant transgene expression by 12 hours in both in vivo and ex vivo delivered groups. Lung function remained excellent in all ex vivo groups after viral vector delivery; however, as expected, lung function decreased in the in vivo delivered adenovirus vector encoding GFP (AdGFP) group with corresponding increases in IL-1β levels. Transplanted lung function was excellent in the ex vivo transduced lungs and inferior lung function was seen in the in vivo group after transplantation. In summary, ex vivo delivery of adenoviral gene therapy to the donor lung is superior to in vivo delivery in that it leads to less vector-associated inflammation and provides superior post-transplant lung function. PMID:22453765

  9. Airway pressure release ventilation during ex vivo lung perfusion attenuates injury.

    PubMed

    Mehaffey, J Hunter; Charles, Eric J; Sharma, Ashish K; Money, Dustin T; Zhao, Yunge; Stoler, Mark H; Lau, Christine L; Tribble, Curtis G; Laubach, Victor E; Roeser, Mark E; Kron, Irving L

    2017-01-01

    Critical organ shortages have resulted in ex vivo lung perfusion gaining clinical acceptance for lung evaluation and rehabilitation to expand the use of donation after circulatory death organs for lung transplantation. We hypothesized that an innovative use of airway pressure release ventilation during ex vivo lung perfusion improves lung function after transplantation. Two groups (n = 4 animals/group) of porcine donation after circulatory death donor lungs were procured after hypoxic cardiac arrest and a 2-hour period of warm ischemia, followed by a 4-hour period of ex vivo lung perfusion rehabilitation with standard conventional volume-based ventilation or pressure-based airway pressure release ventilation. Left lungs were subsequently transplanted into recipient animals and reperfused for 4 hours. Blood gases for partial pressure of oxygen/inspired oxygen fraction ratios, airway pressures for calculation of compliance, and percent wet weight gain during ex vivo lung perfusion and reperfusion were measured. Airway pressure release ventilation during ex vivo lung perfusion significantly improved left lung oxygenation at 2 hours (561.5 ± 83.9 mm Hg vs 341.1 ± 136.1 mm Hg) and 4 hours (569.1 ± 18.3 mm Hg vs 463.5 ± 78.4 mm Hg). Likewise, compliance was significantly higher at 2 hours (26.0 ± 5.2 mL/cm H 2 O vs 15.0 ± 4.6 mL/cm H 2 O) and 4 hours (30.6 ± 1.3 mL/cm H 2 O vs 17.7 ± 5.9 mL/cm H 2 O) after transplantation. Finally, airway pressure release ventilation significantly reduced lung edema development on ex vivo lung perfusion on the basis of percentage of weight gain (36.9% ± 14.6% vs 73.9% ± 4.9%). There was no difference in additional edema accumulation 4 hours after reperfusion. Pressure-directed airway pressure release ventilation strategy during ex vivo lung perfusion improves the rehabilitation of severely injured donation after circulatory death lungs. After transplant, these lungs demonstrate superior lung-specific oxygenation and dynamic compliance compared with lungs ventilated with standard conventional ventilation. This strategy, if implemented into clinical ex vivo lung perfusion protocols, could advance the field of donation after circulatory death lung rehabilitation to expand the lung donor pool. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  10. Non-invasive determination of absolute lung resistivity in adults using electrical impedance tomography.

    PubMed

    Zhang, Jie; Patterson, Robert

    2010-08-01

    Lung resistivity is a physiological parameter that describes the electrical characteristics of the lungs. Lung composition changes due to changes in the lung tissues, fluid and air volume. Various diseases that can cause a change in lung composition may be monitored by measuring lung resistivity. Currently, there is no accepted non-invasive method to measure lung resistivity. In this study, we presented a method and framework to non-invasively determine lung resistivity using electrical impedance tomography (EIT). By comparing actual measurements from subjects with data from a 3D human thorax model, an EIT image can be reconstructed to show a resistivity difference between the model and the subject. By adjusting the lung resistivity in the model, the resistivity difference in the lung regions can be reduced to near zero. This resistivity value then is the estimation of the lung resistivity of the subject. Using the proposed method, the lung resistivities of four normal adult males (43 +/- 13 years, 78 +/- 10 kg) in the supine position at air volumes starting at functional residual capacity (FRC--end expiration) and increasing in 0.5 l steps to 1.5 l were studied. The averaged lung resistivity changes 12.59%, from 1406 Omega cm to 1583 Omega cm, following the inspiration of 1.5 l air from FRC. The coefficients of variation (CV) of precision for the four subjects are less than 10%. The experiment was repeated five times at each air volume on a subject to test the reproducibility. The CVs are less than 3%. The results show that it is feasible to determine absolute lung resistivity using an EIT-based method.

  11. Fetal Onset of Aberrant Gene Expression Relevant to Pulmonary Carcinogenesis in Lung Adenocarcinoma Development Induced by In Utero Arsenic Exposure

    PubMed Central

    Shen, Jun; Liu, Jie; Xie, Yaxiong; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2009-01-01

    Arsenic is a human pulmonary carcinogen. Our work indicates that in utero arsenic exposure in mice can induce or initiate lung cancer in female offspring. To define early molecular changes, pregnant C3H mice were given 85 ppm arsenic in drinking water from days 8 to 18 of gestation and expression of selected genes in the fetal lung or in lung tumors developing in adults was examined. Transplacental arsenic exposure increased estrogen receptor-α (ER-α) transcript and protein levels in the female fetal lung. An overexpression of various estrogen-regulated genes also occurred, including trefoil factor-3, anterior gradient-2, and the steroid metabolism genes 17-β-hydroxysteroid dehydrogenase type 5 and aromatase. The insulin growth factor system, which can be influenced by ER and has been implicated in the pulmonary oncogenic process, was activated in fetal lung after gestational arsenic exposure. in utero arsenic exposure also induced overexpression of α-fetoprotein, epidermal growth factor receptor, L-myc, and metallothionein-1 in fetal lung, all of which are associated with lung cancer. Lung adenoma and adenocarcinoma from adult female mice exposed to arsenic in utero showed widespread, intense nuclear ER-α expression. In contrast, normal adult lung and diethylnitrosamine-induced lung adenocarcinoma showed little evidence of ER-α expression. Thus, transplacental arsenic exposure at a carcinogenic dose produced aberrant estrogen-linked pulmonary gene expression. ER-α activation was specifically associated with arsenic-induced lung adenocarcinoma and adenoma but not with nitrosamine-induced lung tumors. These data provide evidence that arsenic-induced aberrant ER signaling could disrupt early life stage genetic programing in the lung leading eventually to lung tumor formation much later in adulthood. PMID:17077188

  12. Fetal onset of aberrant gene expression relevant to pulmonary carcinogenesis in lung adenocarcinoma development induced by in utero arsenic exposure.

    PubMed

    Shen, Jun; Liu, Jie; Xie, Yaxiong; Diwan, Bhalchandra A; Waalkes, Michael P

    2007-02-01

    Arsenic is a human pulmonary carcinogen. Our work indicates that in utero arsenic exposure in mice can induce or initiate lung cancer in female offspring. To define early molecular changes, pregnant C3H mice were given 85 ppm arsenic in drinking water from days 8 to 18 of gestation and expression of selected genes in the fetal lung or in lung tumors developing in adults was examined. Transplacental arsenic exposure increased estrogen receptor-alpha (ER-alpha) transcript and protein levels in the female fetal lung. An overexpression of various estrogen-regulated genes also occurred, including trefoil factor-3, anterior gradient-2, and the steroid metabolism genes 17-beta-hydroxysteroid dehydrogenase type 5 and aromatase. The insulin growth factor system, which can be influenced by ER and has been implicated in the pulmonary oncogenic process, was activated in fetal lung after gestational arsenic exposure. In utero arsenic exposure also induced overexpression of alpha-fetoprotein, epidermal growth factor receptor, L-myc, and metallothionein-1 in fetal lung, all of which are associated with lung cancer. Lung adenoma and adenocarcinoma from adult female mice exposed to arsenic in utero showed widespread, intense nuclear ER-alpha expression. In contrast, normal adult lung and diethylnitrosamine-induced lung adenocarcinoma showed little evidence of ER-alpha expression. Thus, transplacental arsenic exposure at a carcinogenic dose produced aberrant estrogen-linked pulmonary gene expression. ER-alpha activation was specifically associated with arsenic-induced lung adenocarcinoma and adenoma but not with nitrosamine-induced lung tumors. These data provide evidence that arsenic-induced aberrant ER signaling could disrupt early life stage genetic programing in the lung leading eventually to lung tumor formation much later in adulthood.

  13. Blood and lung microRNAs as biomarkers of pulmonary tumorigenesis in cigarette smoke-exposed mice

    PubMed Central

    Izzotti, Alberto; Balansky, Roumen; Ganchev, Gancho; Iltcheva, Marietta; Longobardi, Mariagrazia; Pulliero, Alessandra; Geretto, Marta; Micale, Rosanna T.; La Maestra, Sebastiano; Miller, Mark Steven; Steele, Vernon E.; De Flora, Silvio

    2016-01-01

    Cigarette smoke (CS) is known to dysregulate microRNA expression profiles in the lungs of mice, rats, and humans, thereby modulating several pathways involved in lung carcinogenesis and other CS-related diseases. We designed a study aimed at evaluating (a) the expression of 1135 microRNAs in the lung of Swiss H mice exposed to mainstream CS during the first 4 months of life and thereafter kept in filtered air for an additional 3.5 months, (b) the relationship between lung microRNA profiles and histopathological alterations in the lung, (c) intergender differences in microRNA expression, and (d) the comparison with microRNA profiles in blood serum. CS caused multiple histopathological alterations in the lung, which were almost absent in sham-exposed mice. An extensive microRNA dysregulation was detected in the lung of CS-exposed mice. Modulation of microRNA profiles was specifically related to the histopathological picture, no effect being detected in lung fragments with non-neoplastic lung diseases (emphysema or alveolar epithelial hyperplasia), whereas a close association occurred with the presence and multiplicity of preneoplastic lesions (microadenomas) and benign lung tumors (adenomas). Three microRNAs regulating estrogen and HER2-dependent mechanisms were modulated in the lung of adenoma-bearing female mice. Blood microRNAs were also modulated in mice affected by early neoplastic lesions. However, there was a poor association between lung microRNAs and circulating microRNAs, which can be ascribed to an impaired release of mature microRNAs from the damaged lung. Studies in progress are evaluating the feasibility of analyzing blood microRNAs as a molecular tool for lung cancer secondary prevention. PMID:27713172

  14. MRI and CT lung biomarkers: Towards an in vivo understanding of lung biomechanics.

    PubMed

    Young, Heather M; Eddy, Rachel L; Parraga, Grace

    2017-09-29

    The biomechanical properties of the lung are necessarily dependent on its structure and function, both of which are complex and change over time and space. This makes in vivo evaluation of lung biomechanics and a deep understanding of lung biomarkers, very challenging. In patients and animal models of lung disease, in vivo evaluations of lung structure and function are typically made at the mouth and include spirometry, multiple-breath gas washout tests and the forced oscillation technique. These techniques, and the biomarkers they provide, incorporate the properties of the whole organ system including the parenchyma, large and small airways, mouth, diaphragm and intercostal muscles. Unfortunately, these well-established measurements mask regional differences, limiting their ability to probe the lung's gross and micro-biomechanical properties which vary widely throughout the organ and its subcompartments. Pulmonary imaging has the advantage in providing regional, non-invasive measurements of healthy and diseased lung, in vivo. Here we summarize well-established and emerging lung imaging tools and biomarkers and how they may be used to generate lung biomechanical measurements. We review well-established and emerging lung anatomical, microstructural and functional imaging biomarkers generated using synchrotron x-ray tomographic-microscopy (SRXTM), micro-x-ray computed-tomography (micro-CT), clinical CT as well as magnetic resonance imaging (MRI). Pulmonary imaging provides measurements of lung structure, function and biomechanics with high spatial and temporal resolution. Imaging biomarkers that reflect the biomechanical properties of the lung are now being validated to provide a deeper understanding of the lung that cannot be achieved using measurements made at the mouth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Immersing lungs in hydrogen-rich saline attenuates lung ischaemia-reperfusion injury.

    PubMed

    Takahashi, Mamoru; Chen-Yoshikawa, Toyofumi F; Saito, Masao; Tanaka, Satona; Miyamoto, Ei; Ohata, Keiji; Kondo, Takeshi; Motoyama, Hideki; Hijiya, Kyoko; Aoyama, Akihiro; Date, Hiroshi

    2017-03-01

    Anti-oxidant effects of hydrogen have been reported in studies examining ischaemia-reperfusion injury (IRI). In this study, we evaluated the therapeutic efficacy of immersing lungs in hydrogen-rich saline on lung IRI. Lewis rats were divided into three groups: (i) sham, (ii) normal saline and (iii) hydrogen-rich saline. In the first experiment, the left thoracic cavity was filled with either normal saline or hydrogen-rich saline for 1 h. Then, we measured the hydrogen concentration in the left lung using a sensor gas chromatograph ( N = 3 per group). In the second experiment, lung IRI was induced by occlusion of the left pulmonary hilum for 1 h, followed by reperfusion for 3 h. During the ischaemic period, the left thoracic cavity was filled with either normal saline or hydrogen-rich saline. After reperfusion, we assessed lung function, histological changes and cytokine production ( N = 5-7 per group). Immersing lungs in hydrogen-rich saline resulted in an elevated hydrogen concentration in the lung (6.9 ± 2.9 μmol/1 g lung). After IRI, pulmonary function (pulmonary compliance and oxygenation levels) was significantly higher in the hydrogen-rich saline group than in the normal saline group ( P  < 0.05). Similarly, pro-inflammatory cytokine levels (interleukin-1β and interleukin-6) in the left lung were significantly lower in the hydrogen-rich saline group than in the normal saline group ( P  < 0.05). Immersing lungs in hydrogen-rich saline delivered hydrogen into the lung and consequently attenuated lung IRI. Hydrogen-rich solution appears to be a promising approach to managing lung IRI. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  16. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer

    PubMed Central

    2012-01-01

    Background G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. Methods The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Results Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. Conclusion The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression. PMID:23273253

  17. Controlled lung reperfusion to reduce pulmonary ischaemia/reperfusion injury after cardiopulmonary bypass in a porcine model.

    PubMed

    Slottosch, Ingo; Liakopoulos, Oliver; Kuhn, Elmar; Deppe, Antje; Lopez-Pastorini, Alberto; Schwarz, David; Neef, Klaus; Choi, Yeong-Hoon; Sterner-Kock, Anja; Jung, Kristina; Mühlfeld, Christian; Wahlers, Thorsten

    2014-12-01

    Ischaemia/reperfusion (I/R) injury of the lungs contributes to pulmonary dysfunction after cardiac surgery with cardiopulmonary bypass (CPB), leading to increased morbidity and mortality of patients. This study investigated the value of controlled lung reperfusion strategies on lung ischaemia-reperfusion injury in a porcine CPB model. Pigs were subjected to routine CPB for 120 min with 60 min of blood cardioplegic cardiac arrest (CCA). Following CCA, the uncontrolled reperfusion (UR, n = 6) group was conventionally weaned from CPB. Two groups underwent controlled lung reperfusion strategies (CR group: controlled reperfusion conditions, n = 6; MR group: controlled reperfusion conditions and modified reperfusate, n = 6) via the pulmonary artery before CPB weaning. Sham-operated pigs (n = 7) served as controls. Animals were followed up until 4 h after CPB. Pulmonary function, haemodynamics, markers of inflammation, endothelial injury and oxidative stress as well as morphological lung alterations were analysed. CPB (UR group) induced deterioration of pulmonary function (lung mechanics, oxygenation index and lung oedema). Also, controlled lung reperfusion groups (CR and MR) presented with pulmonary dysfunction after CPB. However, compared with UR, controlled lung reperfusion strategies (CR and MR) improved lung mechanics and reduced markers of oxidative stress, but without alteration of haemodynamics, oxygenation, inflammation, endothelial injury and lung morphology. Both controlled reperfusion groups were similar without relevant differences. Controlled lung reperfusion strategies attenuated a decrease in lung mechanics and an increase in oxidative stress, indicating an influence on CPB-related pulmonary injury. However, they failed to avoid completely CPB-related lung injury, implying the need for additional strategies given the multifactorial pathophysiology of postoperative pulmonary dysfunction. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  18. Intratracheal Administration of Small Interfering RNA Targeting Fas Reduces Lung Ischemia-Reperfusion Injury.

    PubMed

    Del Sorbo, Lorenzo; Costamagna, Andrea; Muraca, Giuseppe; Rotondo, Giuseppe; Civiletti, Federica; Vizio, Barbara; Bosco, Ornella; Martin Conte, Erica L; Frati, Giacomo; Delsedime, Luisa; Lupia, Enrico; Fanelli, Vito; Ranieri, V Marco

    2016-08-01

    Lung ischemia-reperfusion injury is the main cause of primary graft dysfunction after lung transplantation and results in increased morbidity and mortality. Fas-mediated apoptosis is one of the pathologic mechanisms involved in the development of ischemia-reperfusion injury. We hypothesized that the inhibition of Fas gene expression in lungs by intratracheal administration of small interfering RNA could reduce lung ischemia-reperfusion injury in an ex vivo model reproducing the procedural sequence of lung transplantation. Prospective, randomized, controlled experimental study. University research laboratory. C57/BL6 mice weighing 28-30 g. Ischemia-reperfusion injury was induced in lungs isolated from mice, 48 hours after treatment with intratracheal small interfering RNA targeting Fas, control small interfering RNA, or vehicle. Isolated lungs were exposed to 6 hours of cold ischemia (4°C), followed by 2 hours of warm (37°C) reperfusion with a solution containing 10% of fresh whole blood and mechanical ventilation with constant low driving pressure. Fas gene expression was significantly silenced at the level of messenger RNA and protein after ischemia-reperfusion in lungs treated with small interfering RNA targeting Fas compared with lungs treated with control small interfering RNA or vehicle. Silencing of Fas gene expression resulted in reduced edema formation (bronchoalveolar lavage protein concentration and lung histology) and improvement in lung compliance. These effects were associated with a significant reduction of pulmonary cell apoptosis of lungs treated with small interfering RNA targeting Fas, which did not affect cytokine release and neutrophil infiltration. Fas expression silencing in the lung by small interfering RNA is effective against ischemia-reperfusion injury. This approach represents a potential innovative strategy of organ preservation before lung transplantation.

  19. The diagnosis of neonatal pulmonary atelectasis using lung ultrasonography.

    PubMed

    Liu, Jing; Chen, Shui-Wen; Liu, Fang; Li, Qiu-Ping; Kong, Xiang-Yong; Feng, Zhi-Chun

    2015-04-01

    Ultrasonography has been used for the diagnosis of many kinds of lung conditions, but few studies have investigated ultrasound for the diagnosis of neonatal pulmonary atelectasis (NAP). In this study, we evaluated the usefulness of lung ultrasonography for the diagnosis of NPA. From May 2012 to December 2013, 80 neonates with NPA and 50 neonates without lung disease were enrolled in this study. Each lung of every infant was divided into the anterior, lateral, and posterior regions by the anterior and posterior axillary lines. Each region was scanned carefully with the probe perpendicular or parallel to the ribs. The ultrasound findings were confirmed by chest radiograph (CXR) or CT scan. Sixty of the 80 patients with signs of NPA on lung ultrasound also had signs of NPA on CXR (termed focal-type atelectasis), and the other 20 patients had signs of NPA on chest CT scan while there were no abnormal findings on CXR (termed occult lung atelectasis). In patients with NPA, the main ultrasound findings were large areas of lung consolidation with clearly demarcated borders, air bronchograms, pleural line abnormalities, and absence of A-lines, as well as the presence of lung pulse and absence of lung sliding on real-time ultrasound. The sensitivity of lung ultrasonography for the diagnosis of NPA was 100%, whereas the sensitivity of CXR was 75%. Large areas of lung consolidation with clearly demarcated borders were only observed in patients with NPA. Lung ultrasonography is an accurate and reliable method for diagnosing NPA; most importantly, it can find those occult lung atelectasis that could not be detected on CXR. Routine lung ultrasonography is a useful method of diagnosing or excluding NPA in neonates.

  20. Initial observations of cell-mediated drug delivery to the deep lung.

    PubMed

    Kumar, Arun; Glaum, Mark; El-Badri, Nagwa; Mohapatra, Shyam; Haller, Edward; Park, Seungjoo; Patrick, Leslie; Nattkemper, Leigh; Vo, Dawn; Cameron, Don F

    2011-01-01

    Using current methodologies, drug delivery to small airways, terminal bronchioles, and alveoli (deep lung) is inefficient, especially to the lower lungs. Urgent lung pathologies such as acute respiratory distress syndrome (ARDS) and post-lung transplantation complications are difficult to treat, in part due to the methodological limitations in targeting the deep lung with high efficiency drug distribution to the site of pathology. To overcome drug delivery limitations inhibiting the optimization of deep lung therapy, isolated rat Sertoli cells preloaded with chitosan nanoparticles were use to obtain a high-density distribution and concentration (92%) of the nanoparticles in the lungs of mice by way of the peripheral venous vasculature rather than the more commonly used pulmonary route. Additionally, Sertoli cells were preloaded with chitosan nanoparticles coupled with the anti-inflammatory compound curcumin and then injected intravenously into control or experimental mice with deep lung inflammation. By 24 h postinjection, most of the curcumin load (∼90%) delivered in the injected Sertoli cells was present and distributed throughout the lungs, including the perialveloar sac area in the lower lungs. This was based on the high-density, positive quantification of both nanoparticles and curcumin in the lungs. There was a marked positive therapeutic effect achieved 24 h following curcumin treatment delivered by this Sertoli cell nanoparticle protocol (SNAP). Results identify a novel and efficient protocol for targeted delivery of drugs to the deep lung mediated by extratesticular Sertoli cells. Utilization of SNAP delivery may optimize drug therapy for conditions such as ARDS, status asthmaticus, pulmonary hypertension, lung cancer, and complications following lung transplantation where the use of high concentrations of anti-inflammatory drugs is desirable, but often limited by risks of systemic drug toxicity.

  1. Exaggerated Acute Lung Injury and Impaired Antibacterial Defenses During Staphylococcus aureus Infection in Rats with the Metabolic Syndrome

    PubMed Central

    Feng, Xiaomei; Maze, Mervyn; Koch, Lauren G.; Britton, Steven L.; Hellman, Judith

    2015-01-01

    Rats with Metabolic Syndrome (MetaS) have a dysregulated immune response to the aseptic trauma of surgery. We hypothesized that rats with MetaS would have dysregulated inflammation, increased lung injury, and less effective antibacterial defenses during Staphylococcus (S.) aureus sepsis as compared to rats without MetaS. Low capacity runner (LCR; a model of MetaS) and high capacity runner (HCR) rats were challenged intravenously with S. aureus bacteria. After 48 h, inflammatory mediators and bacteria were quantified in the blood, bronchoalveolar lavage fluid (BALF), and lung homogenates. Lungs were analyzed histologically. BALF protein and lung wet-dry ratios were quantified to assess for vascular leak. Endpoints were compared in infected LCR vs HCR rats. LCR rats had higher blood and lung S. aureus counts, as well as higher levels of IL-6 in plasma, lungs and BALF, MIP-2 in plasma and lung, and IL-17A in lungs. Conversely, LCR rats had lower levels of IL-10 in plasma and lungs. Although lactate levels, and liver and renal function tests were similar between groups, LCR rats had higher BALF protein and lung wet-dry ratios, and more pronounced acute lung injury histologically. During S. aureus bacteremia, as compared with HCR rats, LCR (MetaS) rats have heightened pro-inflammatory responses, accompanied by increased acute lung injury and vascular leak. Notably, despite an augmented pro-inflammatory phenotype, LCR rats have higher bacterial levels in their blood and lungs. The MetaS state may exacerbate lung injury and vascular leak by attenuating the inflammation-resolving response, and by weakening antimicrobial defenses. PMID:25978669

  2. Single versus bilateral lung transplantation for idiopathic pulmonary fibrosis: a ten-year institutional experience.

    PubMed

    Meyers, B F; Lynch, J P; Trulock, E P; Guthrie, T; Cooper, J D; Patterson, G A

    2000-07-01

    Between July 1988 and July 1998, we performed 433 lung transplants. Forty-five patients had idiopathic pulmonary fibrosis, and operations for these patients included 32 single lung transplants and 13 bilateral sequential lung transplants. This study reviews this experience and compares single lung transplantation and bilateral lung transplantation for pulmonary fibrosis. We performed a retrospective review, including inpatient hospital charts, outpatient clinic records, and telephone contact with patients to verify current health status. Perioperative mortality was 4 (8.9%) patients. One patient underwent redo bilateral lung transplantation for reperfusion injury and graft failure after single lung transplantation. The median hospitalization was 22 days. Actuarial survival at 1 and 5 years was 75.5% and 53.5%, respectively, which was not significantly different from our survival for all recipients (85.5% and 56.4%, respectively). Seventeen (41%) of 41 operative survivors have died. Late causes of death included obliterative bronchiolitis with respiratory failure (9), malignancy (3), and cytomegalovirus pneumonitis (2). Hospital mortality was 3 (9.4%) of 32 after single lung transplantation and 1 (7.7%) of 13 after bilateral lung transplantation. There was no difference between single and bilateral lung transplantation with regard to hospital stay. Four (12.5%) of the 32 patients undergoing single lung transplantation required tracheostomy, whereas 3 (23%) of 13 recipients undergoing bilateral lung transplantation required tracheostomy. Single or bilateral lung transplantations offer viable therapy for patients with pulmonary fibrosis. We demonstrate no benefit of bilateral over single lung transplantation for patients with this diagnosis. Survival after transplantation appears better than that of historic control subjects receiving standard medical care at other institutions.

  3. Substance P receptor blockade decreases stretch-induced lung cytokines and lung injury in rats.

    PubMed

    Brégeon, Fabienne; Steinberg, Jean Guillaume; Andreotti, Nicolas; Sabatier, Jean-Marc; Delpierre, Stéphane; Ravailhe, Sylvie; Jammes, Yves

    2010-04-15

    Overdistension of lung tissue during mechanical ventilation causes cytokine release, which may be facilitated by the autonomic nervous system. We used mechanical ventilation to cause lung injury in rats, and studied how cervical section of the vagus nerve, or substance P (SP) antagonism, affected the injury. The effects of 40 or 25 cmH(2)O high airway pressure injurious ventilation (HV(40) and HV(25)) were studied and compared with low airway pressure ventilation (LV) and spontaneous breathing (controls). Lung mechanics, lung weight, gas exchange, lung myeloperoxidase activity, lung concentrations of interleukin (IL)-1 beta and IL-6, and amounts of lung SP were measured. Control rats were intact, others were bivagotomized, and in some animals we administered the neurokinin-1 (NK-1) receptor blocking agent SR140333. We first determined the durations of HV(40) and HV(25) that induced the same levels of lung injury and increased lung contents of IL-1 beta and IL-6. They were 90 min and 120 min, respectively. Both HV(40) and HV(25) increased lung SP, IL-1 beta and IL-6 levels, these effects being markedly reduced by NK-1 receptor blockade. Bivagotomy reduced to a lesser extent the HV(40)- and HV(25)-induced increases in SP but significantly reduced cytokine production. Neither vagotomy nor NK-1 receptor blockade prevented HV(40)-induced lung injury but, in the HV(25) group, they made it possible to maintain lung injury indices close to those measured in the LV group. This study suggests that both neuronal and extra-neuronal SP might be involved in ventilator-induced lung inflammation and injury. NK-1 receptor blockade could be a pharmacological tool to minimize some adverse effects of mechanical ventilation.

  4. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer.

    PubMed

    Jala, Venkatakrishna Rao; Radde, Brandie N; Haribabu, Bodduluri; Klinge, Carolyn M

    2012-12-28

    G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression.

  5. [Lung Abscess with Acute Empyema Which Improved after Performing by Video Assissted Thoracic Surgery( Including Pneumonotomy and Lung Abscess Drainage);Report of a Case].

    PubMed

    Gabe, Atsushi; Nagamine, Naoji

    2017-05-01

    We herein report the case of a patient demonstrating a lung abscess with acute empyema which improved after performing pnemumonotomy and lung abscess drainage. A 60-year-old male was referred to our hospital to receive treatment for a lung abscess with acute empyema. At surgery, the lung parenchyma was slightly torn with pus leakage. After drainage of lung abscess by enlarging the injured part, curettage in the thoracic cavity and decortication were performed. The postoperative course was uneventful. Direct drainage of an abscess into the thoracic cavity is thought to be a choice for the treatment of lung abscesses.

  6. The lung may play a role in the pathogenesis of rheumatoid arthritis

    PubMed Central

    Demoruelle, M Kristen; Solomon, Joshua J; Fischer, Aryeh; Deane, Kevin D

    2015-01-01

    Multiple studies have identified strong associations between the lung and rheumatoid arthritis (RA). Such studies identify a high prevalence of lung disease, both airways and parenchymal disease, in subjects with clinically classifiable RA. It has been suggested that lung disease in RA results from targeting of the lung from circulating autoimmunity or other factors such as medications. However, findings that lung disease, specifically inflammatory airways disease, and lung generation of autoimmunity can be present before the onset of joint symptoms suggest that immune reactions in the lung may be involved in the initial development of RA-related autoimmunity. Herein we review these issues in detail, as well as outline a potential research agenda to understand the natural history of lung involvement in RA and its relation to the overall pathogenesis of RA. PMID:26089988

  7. Adherence to Survivorship Care Guidelines in Health Care Providers for Non-Small Cell Lung Cancer and Colorectal Cancer Survivor Care

    ClinicalTrials.gov

    2017-04-05

    Adenocarcinoma of the Lung; Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Squamous Cell Lung Cancer; Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  8. Comparative Effects of Volutrauma and Atelectrauma on Lung Inflammation in Experimental Acute Respiratory Distress Syndrome

    PubMed Central

    Güldner, Andreas; Braune, Anja; Ball, Lorenzo; Silva, Pedro L.; Samary, Cynthia; Insorsi, Angelo; Huhle, Robert; Rentzsch, Ines; Becker, Claudia; Oehme, Liane; Andreeff, Michael; Vidal Melo, Marcos F.; Winkler, Tilo; Pelosi, Paolo; Rocco, Patricia R. M.; Kotzerke, Jörg; de Abreu, Marcelo Gama

    2016-01-01

    Objective Volutrauma and atelectrauma promote ventilator-induced lung injury, but their relative contribution to inflammation in ventilator-induced lung injury is not well established. The aim of this study was to determine the impact of volutrauma and atelectrauma on the distribution of lung inflammation in experimental acute respiratory distress syndrome. Design Laboratory investigation. Setting University-hospital research facility. Subjects Ten pigs (five per group; 34.7–49.9 kg) Interventions Animals were anesthetized and intubated, and saline lung lavage was performed. Lungs were separated with a double-lumen tube. Following lung recruitment and decremental positive end-expiratory pressure trial, animals were randomly assigned to 4 hours of ventilation of the left (ventilator-induced lung injury) lung with tidal volume of approximately 3 mL/kg and 1) high positive end-expiratory pressure set above the level where dynamic compliance increased more than 5% during positive end-expiratory pressure trial (volutrauma); or 2) low positive end-expiratory pressure to achieve driving pressure comparable with volutrauma (atelectrauma). The right (control) lung was kept on continuous positive airway pressure of 20 cm H2O, and Co2 was partially removed extracorporeally. Measurements and Main Results Regional lung aeration, specific [18F]fluorodeoxyglucose uptake rate, and perfusion were assessed using computed and positron emission tomography. Volutrauma yielded higher [18F]fluorodeoxyglucose uptake rate in the ventilated lung compared with atelectrauma (median [interquartile range], 0.017 [0.014–0.025] vs 0.013 min−1 [0.010–0.014min−1]; p < 0.01), mainly in central lung regions. Volutrauma yielded higher [18F]fluorodeoxyglucose uptake rate in ventilator-induced lung injury versus control lung (0.017 [0.014–0.025] vs 0.011 min−1 [0.010–0.016min−1]; p < 0.05), whereas atelectrauma did not. Volutrauma decreased blood fraction at similar perfusion and increased normally as well as hyper-aerated lung compartments and tidal hyperaeration. Atelectrauma yielded higher poorly and nonaerated lung compartments, and tidal recruitment. Driving pressure increased in atelectrauma. Conclusions In this model of acute respiratory distress syndrome, volutrauma promoted higher lung inflammation than atelectrauma at comparable low tidal volume and lower driving pressure, suggesting that static stress and strain are major determinants of ventilator-induced lung injury. PMID:27035236

  9. Meta-analysis of the independent and cumulative effects of multiple genetic modifications on pig lung xenograft performance during ex vivo perfusion with human blood

    PubMed Central

    Harris, Donald G.; Quinn, Kevin J.; French, Beth M.; Schwartz, Evan; Kang, Elizabeth; Dahi, Siamak; Phelps, Carol J.; Ayares, David L.; Burdorf, Lars; Azimzadeh, Agnes M.; Pierson, Richard N.

    2014-01-01

    Background Genetically modified pigs are a promising potential source of lung xenografts. Ex-vivo xenoperfusion is an effective platform for testing the effect of new modifications, but typical experiments are limited by testing of a single genetic intervention and small sample sizes. The purpose of this study was to analyze the individual and aggregate effects of donor genetic modifications on porcine lung xenograft survival and injury in an extensive pig lung xenoperfusion series. Methods Data from 157 porcine lung xenoperfusion experiments using otherwise unmodified heparinized human blood were aggregated as either continuous or dichotomous variables. Lungs were wild type in 17 perfusions (11% of the study group), while 31 lungs (20% of the study group) had 1 genetic modification, 40 lungs (39%) had 2, and 47 lungs (30%) had 3 or more modifications. The primary endpoint was functional lung survival to 4 hours of perfusion. Secondary analyses evaluated previously identified markers associated with known lung xenograft injury mechanisms. In addition to comparison among all xenografts grouped by survival status, a subgroup analysis was performed of lungs incorporating the GalTKO.hCD46 genotype. Results Each increase in the number of genetic modifications was associated with additional prolongation of lung xenograft survival. Lungs that exhibited survival to 4 hours generally had reduced platelet activation and thrombin generation. GalTKO and the expression of hCD46, HO-1, hCD55 or hEPCR were associated with improved survival. hTBM, HLA-E, and hCD39 were associated with no significant effect on the primary outcome. Conclusion This meta-analysis of an extensive lung xenotransplantation series demonstrates that increasing the number of genetic modifications targeting known xenogeneic lung injury mechanisms is associated with incremental improvements in lung survival. While more detailed mechanistic studies are needed to explore the relationship between gene expression and pathway-specific injury, and explore why some genes apparently exhibit neutral (hTBM, HLA-E) or inconclusive (CD39) effects, GalTKO, hCD46, HO-1, hCD55, and hEPCR modifications were associated with significant lung xenograft protection. This analysis supports the hypothesis that multiple genetic modifications targeting different known mechanisms of xenograft injury will be required to optimize lung xenograft survival. PMID:25470239

  10. Genome wide responses of murine lungs to dietary α-tocopherol

    PubMed Central

    Oommen, Saji; Vasu, Vihas T.; Leonard, Scott W.; Traber, Maret G.; Cross, Carroll E.; Gohil, Kishorchandra

    2009-01-01

    α-tocopherol (α-T) may affect biological processes by modulating mRNA concentrations. This study screened the responses of ~15,000 lung mRNAs to dietary α-T in mice. The lung was chosen as the target organ because it is subjected to cyclical variations in oxidant and inflammatory stressors and α-T has been implicated in their modulations. The analysis identified ~400 mRNAs sensitive to α-T status of lungs determined by dietary α-T. The female lung transcriptome appears to be more sensitive to the α-T status than that of the male lungs. Here, we focus on the induction of 13 cytoskeleton genes by dietary α-T because they were similarly induced in the male and the female lungs. Their inductions were confirmed by quantitative-real-time-polymerase chain reaction (qRT-PCR). Immunohistochemical analyses of three of the encoded proteins suggest that they are expressed in lung vasculature and alveolar regions. The data suggest that the lung α-T status may modulate cytoarchitecture of lungs. PMID:17164183

  11. Genomic Medicine and Lung Diseases

    PubMed Central

    Center, David M.; Schwartz, David A.; Solway, Julian; Gail, Dorothy; Laposky, Aaron D.

    2012-01-01

    The recent explosion of genomic data and technology points to opportunities to redefine lung diseases at the molecular level; to apply integrated genomic approaches to elucidate mechanisms of lung pathophysiology; and to improve early detection, diagnosis, and treatment of lung diseases. Research is needed to translate genomic discoveries into clinical applications, such as detecting preclinical disease, predicting patient outcomes, guiding treatment choices, and most of all identifying potential therapeutic targets for lung diseases. The Division of Lung Diseases in the National Heart, Lung, and Blood Institute convened a workshop, “Genomic Medicine and Lung Diseases,” to discuss the potential for integrated genomics and systems approaches to advance 21st century pulmonary medicine and to evaluate the most promising opportunities for this next phase of genomics research to yield clinical benefit. Workshop sessions included (1) molecular phenotypes, molecular biomarkers, and therapeutics; (2) new technology and opportunity; (3) integrative genomics; (4) molecular anatomy of the lung; (5) novel data and information platforms; and (6) recommendations for exceptional research opportunities in lung genomics research. PMID:22652029

  12. siRNA delivery targeting to the lung via agglutination-induced accumulation and clearance of cationic tetraamino fullerene.

    PubMed

    Minami, Kosuke; Okamoto, Koji; Doi, Kent; Harano, Koji; Noiri, Eisei; Nakamura, Eiichi

    2014-05-12

    The efficient treatment of lung diseases requires lung-selective delivery of agents to the lung. However, lung-selective delivery is difficult because the accumulation of micrometer-sized carriers in the lung often induces inflammation and embolization-related toxicity. Here we demonstrate a lung-selective delivery system of small interfering RNA (siRNA) by controlling the size of carrier vehicle in blood vessels. The carrier is made of tetra(piperazino)fullerene epoxide (TPFE), a water-soluble cationic tetraamino fullerene. TPFE and siRNA form sub-micrometer-sized complexes in buffered solution and these complexes agglutinate further with plasma proteins in the bloodstream to form micrometer-sized particles. The agglutinate rapidly clogs the lung capillaries, releases the siRNA into lung cells to silence expression of target genes, and is then cleared rapidly from the lung after siRNA delivery. We applied our delivery system to an animal model of sepsis, indicating the potential of TPFE-based siRNA delivery for clinical applications.

  13. siRNA delivery targeting to the lung via agglutination-induced accumulation and clearance of cationic tetraamino fullerene

    NASA Astrophysics Data System (ADS)

    Minami, Kosuke; Okamoto, Koji; Doi, Kent; Harano, Koji; Noiri, Eisei; Nakamura, Eiichi

    2014-05-01

    The efficient treatment of lung diseases requires lung-selective delivery of agents to the lung. However, lung-selective delivery is difficult because the accumulation of micrometer-sized carriers in the lung often induces inflammation and embolization-related toxicity. Here we demonstrate a lung-selective delivery system of small interfering RNA (siRNA) by controlling the size of carrier vehicle in blood vessels. The carrier is made of tetra(piperazino)fullerene epoxide (TPFE), a water-soluble cationic tetraamino fullerene. TPFE and siRNA form sub-micrometer-sized complexes in buffered solution and these complexes agglutinate further with plasma proteins in the bloodstream to form micrometer-sized particles. The agglutinate rapidly clogs the lung capillaries, releases the siRNA into lung cells to silence expression of target genes, and is then cleared rapidly from the lung after siRNA delivery. We applied our delivery system to an animal model of sepsis, indicating the potential of TPFE-based siRNA delivery for clinical applications.

  14. Effect of shape and size of lung and chest wall on stresses in the lung

    NASA Technical Reports Server (NTRS)

    Vawter, D. L.; Matthews, F. L.; West, J. B.

    1975-01-01

    To understand better the effect of shape and size of lung and chest wall on the distribution of stresses, strains, and surface pressures, we analyzed a theoretical model using the technique of finite elements. First we investigated the effects of changing the chest wall shape during expansion, and second we studied lungs of a variety of inherent shapes and sizes. We found that, in general, the distributions of alveolar size, mechanical stresses, and surface pressures in the lungs were dominated by the weight of the lung and that changing the shape of the lung or chest wall had relatively little effect. Only at high states of expansion where the lung was very stiff did changing the shape of the chest wall cause substantial changes. Altering the inherent shape of the lung generally had little effect but the topographical differences in stresses and surface pressures were approximately proportional to lung height. The results are generally consistent with those found in the dog by Hoppin et al (1969).

  15. Pediatric Lung Transplantation.

    PubMed

    Sweet, Stuart C

    2017-06-01

    Pediatric lung transplant is a viable option for treatment of end-stage lung disease in children, with > 100 pediatric lung transplants reported to the Registry of the International Society of Heart and Lung Transplantation each year. Long-term success is limited by availability of donor organs, debilitation as a result of chronic disease, impaired mucus clearance resulting from both surgical and pharmacologic interventions, increased risk for infection resulting from immunosuppression, and most importantly late complications, such as chronic lung allograft dysfunction. Opportunities for investigation and innovation remain in all of these domains: (1) Ex vivo lung perfusion is a promising technology with the potential for increasing the lung donor pool, (2) evolving extracorporeal support strategies coupled with effective rehabilitation will effectively bridge critically ill patients to transplant, and most importantly, (3) research efforts intended to increase our understanding of the underlying mechanisms of chronic lung allograft dysfunction will ultimately lead to the development of effective therapies to prevent or treat the variety of chronic lung allograft dysfunction presentations. Copyright © 2017 by Daedalus Enterprises.

  16. [THE ROLE OF ESTROGENS IN THE CARCINOGENESIS OF LUNG CANCER].

    PubMed

    Uchikova, E; Uchikov, A; Dimitrakova, E; Uchikov, P

    2016-01-01

    Morbidity and mortality from lung cancer has dramatically increased in women as compared to men over the past few years. Historically, smoking has been considered the major risk factor for lung cancer regardless of gender. Several recent lines of evidence implicate gender differences in the observed differences in prevalence and histologic type which cannot be explained based on the carcinogenic action of nicotine. Several recent studies underscore the importance of reproductive and hormonal factors in the carcinogenesis of lung cancer Lung cancer morbidity and mortality in Bulgaria was 16.2/100000 women and 14.6/ 100000 women, resp. Lung cancer morbidity in Europe was 39/100000 women. Lung cancer is extremely sensitive to estrogens. The latter act directly or as effect modifiers for the relationship between smoking and lung cancer. Further research examining the relationship between serum estrogen levels and the estrogen receptor expression in normal and tumor lung tissue samples can help elucidate the importance of reproductive and hormonal (exogenous and endogenous) factors in the carcinogenesis of lung cancer.

  17. Extracellular matrix in lung development, homeostasis and disease

    DOE PAGES

    Zhou, Yong; Horowitz, Jeffrey C.; Naba, Alexandra; ...

    2018-03-08

    Here, the lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECMmore » in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.« less

  18. Extracellular matrix in lung development, homeostasis and disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yong; Horowitz, Jeffrey C.; Naba, Alexandra

    Here, the lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECMmore » in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.« less

  19. siRNA delivery targeting to the lung via agglutination-induced accumulation and clearance of cationic tetraamino fullerene

    PubMed Central

    MINAMI, Kosuke; OKAMOTO, Koji; DOI, Kent; HARANO, Koji; NOIRI, Eisei; NAKAMURA, Eiichi

    2014-01-01

    The efficient treatment of lung diseases requires lung-selective delivery of agents to the lung. However, lung-selective delivery is difficult because the accumulation of micrometer-sized carriers in the lung often induces inflammation and embolization-related toxicity. Here we demonstrate a lung-selective delivery system of small interfering RNA (siRNA) by controlling the size of carrier vehicle in blood vessels. The carrier is made of tetra(piperazino)fullerene epoxide (TPFE), a water-soluble cationic tetraamino fullerene. TPFE and siRNA form sub-micrometer-sized complexes in buffered solution and these complexes agglutinate further with plasma proteins in the bloodstream to form micrometer-sized particles. The agglutinate rapidly clogs the lung capillaries, releases the siRNA into lung cells to silence expression of target genes, and is then cleared rapidly from the lung after siRNA delivery. We applied our delivery system to an animal model of sepsis, indicating the potential of TPFE-based siRNA delivery for clinical applications. PMID:24814863

  20. Localization of lung fields in HRCT images using a deep convolution neural network

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Agarwala, Sunita; Dhara, Ashis Kumar; Mukhopadhyay, Sudipta; Nandi, Debashis; Garg, Mandeep; Khandelwal, Niranjan; Kalra, Naveen

    2018-02-01

    Lung field segmentation is a prerequisite step for the development of a computer-aided diagnosis system for interstitial lung diseases observed in chest HRCT images. Conventional methods of lung field segmentation rely on a large gray value contrast between lung fields and surrounding tissues. These methods fail on lung HRCT images with dense and diffused pathology. An efficient prepro- cessing could improve the accuracy of segmentation of pathological lung field in HRCT images. In this paper, a convolution neural network is used for localization of lung fields in HRCT images. The proposed method provides an optimal bounding box enclosing the lung fields irrespective of the presence of diffuse pathology. The performance of the proposed algorithm is validated on 330 lung HRCT images obtained from MedGift database on ZF and VGG networks. The model achieves a mean average precision of 0.94 with ZF net and a slightly better performance giving a mean average precision of 0.95 in case of VGG net.

  1. Extracellular matrix in lung development, homeostasis and disease

    DOE PAGES

    Zhou, Yong; Horowitz, Jeffrey C.; Naba, Alexandra; ...

    2018-03-08

    The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this paper, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM inmore » normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. Finally, we identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.« less

  2. Lung transplantation after allogeneic marrow transplantation in pediatric patients: the Memorial Sloan-Kettering experience.

    PubMed

    Heath, J A; Kurland, G; Spray, T L; Kernan, N A; Small, T N; Brochstein, J A; Gillio, A P; Boklan, J; O'Reilly, R J; Boulad, F

    2001-12-27

    Chronic lung disease and pulmonary failure are complications that can occur after bone marrow transplantation (BMT) and are associated with severe morbidity and mortality. We report on four patients who developed chronic, progressive, and irreversible lung disease 1 to 3 years after allogeneic BMT in childhood. These patients had chronic graft-versus-host disease (n=3) or radiation-related pulmonary fibrosis (n=1). Three patients underwent double lung transplants and one patient underwent a single lung transplant 2 to 14 years after BMT. All four patients tolerated the lung transplantation procedure well and showed significant clinical improvement with normalization of pulmonary function tests by 1 year posttransplant. One patient died from infectious complications 3 years after lung transplantation, and one patient died after chronic rejection of the transplanted lungs 6 years posttransplant. Two patients remain alive without significant respiratory impairment 2 and 7 years after lung transplantation. We conclude that lung transplantation offers a viable therapeutic option for patients who develop respiratory failure secondary to BMT.

  3. Double- and single-lung transplantation: an analysis of twenty years of OPTN/UNOS registry data.

    PubMed

    Cai, Junchao

    2007-01-01

    1. Within the past 2 decades, the annual number of lung transplants, especially double-lung transplants, has steadily increased every year and exceeded 1,400 in the last 2 years. 2. Overall 1-, 5-, and 10-year graft survival rates for double-lung transplant recipients were 79.5%, 50.6%, and 30.4% respectively; those for left-lung transplant recipients were 76.0%, 41.8%, and 17.1%; and for right-lung transplant recipients were 78.3%, 44.8%, and 19.2%. 3. The improvement in long-term graft survival in the most recent transplant era was mainly due to improved one-year survival, more precisely, due to the increased early outcome within the first 2-3 months after transplantation. 4. A negative association between HLA mismatch and graft survival is statistically significant in both double and left-lung transplants. 5. Female COPD and ATD single-lung recipients had high long-term graft survival when they received right-lung transplants. While for male single-lung recipients, CF patients had better graft survival when they received left lung transplants; but PPH patients had higher graft survival when receiving right-lung transplants. This association between recipient gender and/or different original diseases and graft survival requires further investigation.

  4. The European initiative for quality management in lung cancer care.

    PubMed

    Blum, Torsten G; Rich, Anna; Baldwin, David; Beckett, Paul; De Ruysscher, Dirk; Faivre-Finn, Corinne; Gaga, Mina; Gamarra, Fernando; Grigoriu, Bogdan; Hansen, Niels C G; Hubbard, Richard; Huber, Rudolf Maria; Jakobsen, Erik; Jovanovic, Dragana; Konsoulova, Assia; Kollmeier, Jens; Massard, Gilbert; McPhelim, John; Meert, Anne-Pascale; Milroy, Robert; Paesmans, Marianne; Peake, Mick; Putora, Paul-Martin; Scherpereel, Arnaud; Schönfeld, Nicolas; Sitter, Helmut; Skaug, Knut; Spiro, Stephen; Strand, Trond-Eirik; Taright, Samya; Thomas, Michael; van Schil, Paul E; Vansteenkiste, Johan F; Wiewrodt, Rainer; Sculier, Jean-Paul

    2014-05-01

    Lung cancer is the commonest cause of cancer-related death worldwide and poses a significant respiratory disease burden. Little is known about the provision of lung cancer care across Europe. The overall aim of the Task Force was to investigate current practice in lung cancer care across Europe. The Task Force undertook four projects: 1) a narrative literature search on quality management of lung cancer; 2) a survey of national and local infrastructure for lung cancer care in Europe; 3) a benchmarking project on the quality of (inter)national lung cancer guidelines in Europe; and 4) a feasibility study of prospective data collection in a pan-European setting. There is little peer-reviewed literature on quality management in lung cancer care. The survey revealed important differences in the infrastructure of lung cancer care in Europe. The European guidelines that were assessed displayed wide variation in content and scope, as well as methodological quality but at the same time there was relevant duplication. The feasibility study demonstrated that it is, in principle, feasible to collect prospective demographic and clinical data on patients with lung cancer. Legal obligations vary among countries. The European Initiative for Quality Management in Lung Cancer Care has provided the first comprehensive snapshot of lung cancer care in Europe.

  5. Expression of pleiotrophin in small cell lung cancer.

    PubMed

    Wang, H Q; Wang, J

    2015-01-01

    Pleiotrophin (PTN) is a kind of heparin binding growth factor closely related to tumor progression. This study aimed to discuss the significance of the expression of PTN in benign and malignant lung cancer tissues, especially small cell lung cancer. Lung cancer samples were collected for study and lung tissue samples with benign lesions were taken as controls. The expression of PTN was detected using tissue chip combined with the immunohistochemical method, and the differences of small cell lung cancer with non-small cell lung cancer and benign lesion tissue were compared. It was found that PTN expression was mainly located in the cytoplasm and membrane of cells; PTN expression in the lung cancer group was higher than that in the control group (p < 0.01), and PTN expression in the small cell cancer group was higher than that in the squamous carcinoma group and glandular cancer group (p < 0.05). In addition, PTN expression quantity in patients with lung cancer were in close correlation with TNM staging, pathological type and tumor differentiation degree (p < 0.05). PTN was found to express abnormally high in lung cancer, especially small cell lung cancer tissue. PTN is most likely to be a new tumor marker for diagnosis and prognosis of lung cancer.

  6. Mutational analysis of multiple lung cancers: Discrimination between primary and metastatic lung cancers by genomic profile.

    PubMed

    Goto, Taichiro; Hirotsu, Yosuke; Mochizuki, Hitoshi; Nakagomi, Takahiro; Shikata, Daichi; Yokoyama, Yujiro; Oyama, Toshio; Amemiya, Kenji; Okimoto, Kenichiro; Omata, Masao

    2017-05-09

    In cases of multiple lung cancers, individual tumors may represent either a primary lung cancer or both primary and metastatic lung cancers. Treatment selection varies depending on such features, and this discrimination is critically important in predicting prognosis. The present study was undertaken to determine the efficacy and validity of mutation analysis as a means of determining whether multiple lung cancers are primary or metastatic in nature. The study involved 12 patients who underwent surgery in our department for multiple lung cancers between July 2014 and March 2016. Tumor cells were collected from formalin-fixed paraffin-embedded tissues of the primary lesions by using laser capture microdissection, and targeted sequencing of 53 lung cancer-related genes was performed. In surgically treated patients with multiple lung cancers, the driver mutation profile differed among the individual tumors. Meanwhile, in a case of a solitary lung tumor that appeared after surgery for double primary lung cancers, gene mutation analysis using a bronchoscopic biopsy sample revealed a gene mutation profile consistent with the surgically resected specimen, thus demonstrating that the tumor in this case was metastatic. In cases of multiple lung cancers, the comparison of driver mutation profiles clarifies the clonal origin of the tumors and enables discrimination between primary and metastatic tumors.

  7. Double lung transplants have significantly improved survival compared with single lung transplants in high lung allocation score patients.

    PubMed

    Black, Matthew C; Trivedi, Jaimin; Schumer, Erin M; Bousamra, Michael; van Berkel, Victor

    2014-11-01

    Historically, double lung transplantation survival rates are higher than those of single lung transplantation, but in critically ill patients a single lung transplant, with less associated operative morbidity, could afford a better outcome. This article evaluates how survival is affected in patients who have a high lung allocation score (LAS) and receive a single versus a double lung transplant. The UNOS Thoracic Transplant Database for lung transplants from January 2005 to June 2012 was used for analysis. Propensity matching was used to minimize differences between the high and low LAS groups and between single and double lung transplants in the high LAS group. Within this database, there were 8,778 patients, of whom 8,050 had an LAS less than 75 and 728 had an LAS greater than or equal to 75. Kaplan-Meier survival curves stratified by high and low LAS, and by single versus double lung transplants, showed a marked decrease in survival (p<0.001) in those with a high LAS who received a single lung transplant when compared with those with a high LAS who received a double lung transplant. This was a much greater difference in survival than was present in the low LAS patient population. Despite a higher operative morbidity, patients who had a high LAS did substantially better in terms of survival if two lungs were transplanted rather than only one, with a larger difference in survival than for patients with a lower LAS. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Registry of the Japanese society of lung and heart-lung transplantation: the official Japanese lung transplantation report 2012.

    PubMed

    Oto, Takahiro; Okada, Yoshinori; Bando, Toru; Minami, Masato; Shiraishi, Takeshi; Nagayasu, Takeshi; Chida, Masayuki; Okumura, Meinoshin; Date, Hiroshi; Miyoshi, Shinichiro; Kondo, Takashi

    2013-04-01

    The Japanese Organ Transplant Law was amended, and the revised law took effect in July 2010 to overcome extreme donor shortage and to increase the availability of donor organs from brain-dead donors. It is now possible to procure organs from children. The year 2011 was the first year that it was possible to examine the results of this first extensive revision of the Japanese Organ Transplant Law, which took effect in 1997. Currently, seven transplant centers, including Tohoku, Dokkyo, Kyoto, Osaka, Okayama, Fukuoka and Nagasaki Universities, are authorized to perform lung transplantation in Japan, and by the end of 2011, a total of 239 lung transplants had been performed. The number of transplants per year and the ratio of brain-dead donor transplants increased dramatically after the revision of the Japanese Organ Transplant Law. The survival rates for lung transplant recipients registered with the Japanese Society for Lung and Heart-lung Transplantation were 93.3 % at 1 month, 91.5 % at 3 months, 86.3 % at 1 year, 79.0 % at 3 years, and 73.1 % at 5 years. The survival curves for brain-dead donor and living-donor lung transplantation were similar. The survival outcomes for both brain-dead and living-donor lung transplants were better than those reported by the International Society for Heart and Lung Transplantation. However, donor shortage remains a limitation of lung transplantation in Japan. The lung transplant centers in Japan should continue to make a special effort to save critically ill patients waiting for lung transplantation.

  9. Role of the Lung Microbiome in the Pathogenesis of Chronic Obstructive Pulmonary Disease.

    PubMed

    Wang, Lei; Hao, Ke; Yang, Ting; Wang, Chen

    2017-09-05

    The development of culture-independent techniques for microbiological analysis shows that bronchial tree is not sterile in either healthy or chronic obstructive pulmonary disease (COPD) individuals. With the advance of sequencing technologies, lung microbiome has become a new frontier for pulmonary disease research, and such advance has led to better understanding of the lung microbiome in COPD. This review aimed to summarize the recent advances in lung microbiome, its relationships with COPD, and the possible mechanisms that microbiome contributed to COPD pathogenesis. Literature search was conducted using PubMed to collect all available studies concerning lung microbiome in COPD. The search terms were "microbiome" and "chronic obstructive pulmonary disease", or "microbiome" and "lung/pulmonary". The papers in English about lung microbiome or lung microbiome in COPD were selected, and the type of articles was not limited. The lung is a complex microbial ecosystem; the microbiome in lung is a collection of viable and nonviable microbiota (bacteria, viruses, and fungi) residing in the bronchial tree and parenchymal tissues, which is important for health. The following types of respiratory samples are often used to detect the lung microbiome: sputum, bronchial aspirate, bronchoalveolar lavage, and bronchial mucosa. Disordered bacterial microbiome is participated in pathogenesis of COPD; there are also dynamic changes in microbiota during COPD exacerbations. Lung microbiome may contribute to the pathogenesis of COPD by manipulating inflammatory and/or immune process. Normal lung microbiome could be useful for prophylactic or therapeutic management in COPD, and the changes of lung microbiome could also serve as biomarkers for the evaluation of COPD.

  10. Trauma of lung due to impact load.

    PubMed

    Yen, R T; Fung, Y C; Liu, S Q

    1988-01-01

    A quantitative evaluation of lung injury due to impact loading is of general interest. Hemorrhage and edema are the usual sequelae to traumatic pulmonary impact. To gain some quantitative understanding of the phenomena, we perfused excised rabbit lung with Macrodex at isogravimetric condition and monitored lung weight continuously after impact. It is shown that a factor of importance is the rigidity of the surface on which the lung rests. The rate of lung weight increase is smaller if the lung was 'freely' supported on a soft cloth, more if it was supported on a rigid plate. This suggests the influence of stress wave reflection. The critical condition correlates with the initial velocity of impact at the surface of the lung, or with the maximum deflection. For a freely supported lung, the rate of lung weight increase was 22% of the initial total lung weight per h after impact when the impact velocity was 11.5 ms-1, 30% when the velocity was 13.2 ms-1, several 100% at 13.5 ms-1, signaling massive lung injury. Since the velocity of sound in rabbit lung is 33.3 ms-1 when the inflation (transpulmonary) pressure is 10 cm H2O, the critical velocity of 13.5 ms-1 corresponds to a Mach number of 0.4. The maximum surface displacement of the lung is almost linearly proportional to the initial velocity of impact. The exact cause of edema and hemorrhage is unknown; we hypothesize that it is due to tensile stress in the alveolar wall caused by the impact.

  11. The ameliorative effect of silibinin against radiation-induced lung injury: protection of normal tissue without decreasing therapeutic efficacy in lung cancer.

    PubMed

    Son, Yeonghoon; Lee, Hae June; Rho, Jin Kyung; Chung, Soo Young; Lee, Chang Geun; Yang, Kwangmo; Kim, Sung Ho; Lee, Minyoung; Shin, In Sik; Kim, Joong Sun

    2015-07-05

    Silibinin has been known for its role in anti-cancer and radio-protective effect. Radiation therapy for treating lung cancer might lead to late-phase pulmonary inflammation and fibrosis. Thus, this study aimed to investigate the effects of silibinin in radiation-induced lung injury with a mouse model. In this study, we examined the ability of silibinin to mitigate lung injury in, and improve survival of, C57BL/6 mice given 13 Gy thoracic irradiation and silibinin treatments orally at 100 mg/kg/day for seven days after irradiation. In addition, Lewis lung cancer (LLC) cells were injected intravenously in C57BL/6 mice to generate lung tumor nodules. Lung tumor-bearing mice were treated with lung radiation therapy at 13 Gy and with silibinin at a dose of 100 mg/day for seven days after irradiation. Silibinin was shown to increase mouse survival, to ameliorate radiation-induced hemorrhage, inflammation and fibrosis in lung tissue, to reduce the number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) and to reduce inflammatory cell infiltration in the respiratory tract. In LLC tumor injected mice, lung tissue from mice treated with both radiation and silibinin showed no differences compared to lung tissue from mice treated with radiation alone. Silibinin treatment mitigated the radiation-induced lung injury possibly by reducing inflammation and fibrosis, which might be related with the improved survival rate. Silibinin might be a useful agent for lung cancer patients as a non-toxic complementary approach to alleviate the side effects by thorax irradiation.

  12. Lung Metastases in Neuroblastoma at Initial Diagnosis: A Report from the International Neuroblastoma Risk Group (INRG) Project

    PubMed Central

    DuBois, Steven G.; London, Wendy B.; Zhang, Yang; Matthay, Katherine K.; Monclair, Tom; Ambros, Peter F.; Cohn, Susan L.; Pearson, Andrew; Diller, Lisa

    2009-01-01

    Background Neuroblastoma is the most common extracranial pediatric solid cancer. Lung metastasis is rarely detected in children with newly diagnosed neuroblastoma. We aimed to describe the incidence, clinical characteristics, and outcome of patients with lung metastasis at initial diagnosis using a large international database. Procedure The subset of patients from the International Neuroblastoma Risk Group database with INSS stage 4 neuroblastoma and known data regarding lung metastasis at diagnosis was selected for analysis. Clinical and biological characteristics were compared between patients with and without lung metastasis. Survival for patients with and without lung metastasis was estimated by Kaplan-Meier methods. Cox proportional hazards methods were used to determine the independent prognostic value of lung metastasis at diagnosis. Results Of the 2,808 patients with INSS stage 4 neuroblastoma diagnosed between 1990 and 2002, 100 patients (3.6%) were reported to have lung metastasis at diagnosis. Lung metastasis was more common among patients with MYCN amplified tumors, adrenal primary tumors, or elevated lactate dehydrogenase (LDH) levels (p < 0.02 in each case). Five-year overall survival ± standard error for patients with lung metastasis was 34.5% ± 6.8% compared to 44.7% ± 1.3% for patients without lung metastasis (p=0.0002). However, in multivariable analysis, the presence of lung metastasis was not independently predictive of outcome. Conclusions Lung metastasis at initial diagnosis of neuroblastoma is associated with MYCN amplification and elevated LDH levels. Although lung metastasis at diagnosis was not independently predictive of outcome in this analysis, it remains a useful prognostic marker of unfavorable outcome. PMID:18649370

  13. Lung deformations and radiation-induced regional lung collapse in patients treated with stereotactic body radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diot, Quentin, E-mail: quentin.diot@ucdenver.edu; Kavanagh, Brian; Vinogradskiy, Yevgeniy

    2015-11-15

    Purpose: To differentiate radiation-induced fibrosis from regional lung collapse outside of the high dose region in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Lung deformation maps were computed from pre-treatment and post-treatment computed tomography (CT) scans using a point-to-point translation method. Fifty anatomical landmarks inside the lung (vessel or airway branches) were matched on planning and follow-up scans for the computation process. Two methods using the deformation maps were developed to differentiate regional lung collapse from fibrosis: vector field and Jacobian methods. A total of 40 planning and follow-ups CT scans were analyzed for 20more » lung SBRT patients. Results: Regional lung collapse was detected in 15 patients (75%) using the vector field method, in ten patients (50%) using the Jacobian method, and in 12 patients (60%) by radiologists. In terms of sensitivity and specificity the Jacobian method performed better. Only weak correlations were observed between the dose to the proximal airways and the occurrence of regional lung collapse. Conclusions: The authors presented and evaluated two novel methods using anatomical lung deformations to investigate lung collapse and fibrosis caused by SBRT treatment. Differentiation of these distinct physiological mechanisms beyond what is usually labeled “fibrosis” is necessary for accurate modeling of lung SBRT-induced injuries. With the help of better models, it becomes possible to expand the therapeutic benefits of SBRT to a larger population of lung patients with large or centrally located tumors that were previously considered ineligible.« less

  14. Regulation of lung branching morphogenesis by bombesin-like peptides and neutral endopeptidase.

    PubMed

    Aguayo, S M; Schuyler, W E; Murtagh, J J; Roman, J

    1994-06-01

    The expression of bombesin-like peptides (BLPs) by pulmonary neuroendocrine cells is transiently upregulated during lung development. A functional role for BLPs is supported by their ability to stimulate lung growth and maturation both in vitro and in vivo during the late stages of lung development. In addition, the cell membrane-associated enzyme CD10/neutral endopeptidase 24.11 (CD10/NEP), which inactivates BLPs and other regulatory peptides, is also expressed by developing lungs and modulates the stimulatory effects of BLPs on lung growth and maturation. We hypothesized that, in addition to expressing BLPs and CD10/NEP, embryonic lungs must express BLP receptors, and that BLPs may also regulate processes that occur during early lung development such as branching morphogenesis. Using reverse transcriptase-polymerase chain reaction and oligonucleotide primers designed for amplifying a BLP receptor originally isolated from Swiss 3T3 mouse fibroblasts, we found that embryonic mouse lungs express a similar BLP receptor mRNA during the pseudoglandular stage of lung development when branching morphogenesis take place. Subsequently, we evaluated the effects of ligands for this BLP receptor using embryonic mouse lungs in an in vitro model of lung branching morphogenesis. We found that, in comparison with control lungs, treatment with bombesin (1 to 100 nM) resulted in a modest increase in clefts or branching points. In contrast, embryonic mouse lungs treated with the BLP analog [Leu13-psi(CH2NH)Leu14]bombesin (1 microM), which also binds to this BLP receptor but has predominantly antagonistic effects, demonstrated fewer branching points.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis

    PubMed Central

    Yates, Laura L.; Schnatwinkel, Carsten; Murdoch, Jennifer N.; Bogani, Debora; Formstone, Caroline J.; Townsend, Stuart; Greenfield, Andy; Niswander, Lee A.; Dean, Charlotte H.

    2010-01-01

    The lungs are generated by branching morphogenesis as a result of reciprocal signalling interactions between the epithelium and mesenchyme during development. Mutations that disrupt formation of either the correct number or shape of epithelial branches affect lung function. This, in turn, can lead to congenital abnormalities such as cystadenomatoid malformations, pulmonary hypertension or lung hypoplasia. Defects in lung architecture are also associated with adult lung disease, particularly in cases of idiopathic lung fibrosis. Identifying the signalling pathways which drive epithelial tube formation will likely shed light on both congenital and adult lung disease. Here we show that mutations in the planar cell polarity (PCP) genes Celsr1 and Vangl2 lead to disrupted lung development and defects in lung architecture. Lungs from Celsr1Crsh and Vangl2Lp mouse mutants are small and misshapen with fewer branches, and by late gestation exhibit thickened interstitial mesenchyme and defective saccular formation. We observe a recapitulation of these branching defects following inhibition of Rho kinase, an important downstream effector of the PCP signalling pathway. Moreover, epithelial integrity is disrupted, cytoskeletal remodelling perturbed and mutant endoderm does not branch normally in response to the chemoattractant FGF10. We further show that Celsr1 and Vangl2 proteins are present in restricted spatial domains within lung epithelium. Our data show that the PCP genes Celsr1 and Vangl2 are required for foetal lung development thereby revealing a novel signalling pathway critical for this process that will enhance our understanding of congenital and adult lung diseases and may in future lead to novel therapeutic strategies. PMID:20223754

  16. Bioengineered Lungs: A Challenge and An Opportunity.

    PubMed

    Farré, Ramon; Otero, Jordi; Almendros, Isaac; Navajas, Daniel

    2018-01-01

    Lung biofabrication is a new tissue engineering and regenerative development aimed at providing organs for potential use in transplantation. Lung biofabrication is based on seeding cells into an acellular organ scaffold and on culturing them in an especial purpose bioreactor. The acellular lung scaffold is obtained by decellularizing a non-transplantable donor lung by means of conventional procedures based on application of physical, enzymatic and detergent agents. To avoid immune recipient's rejection of the transplanted bioengineered lung, autologous bone marrow/adipose tissue-derived mesenchymal stem cells, lung progenitor cells or induced pluripotent stem cells are used for biofabricating the bioengineered lung. The bioreactor applies circulatory perfusion and mechanical ventilation with physiological parameters to the lung during biofabrication. These physical stimuli to the organ are translated into the stem cell local microenvironment - e.g. shear stress and cyclic stretch - so that cells sense the physiological conditions in normally functioning mature lungs. After seminal proof of concept in a rodent model was published in 2010, the hypothesis that lungs can be biofabricated is accepted and intense research efforts are being devoted to the topic. The current experimental evidence obtained so far in animal tests and in ex vivo human bioengineered lungs suggests that the date of first clinical tests, although not immediate, is coming. Lung bioengineering is a disrupting concept that poses a challenge for improving our basic science knowledge and is also an opportunity for facilitating lung transplantation in future clinical translation. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. High Positive End-Expiratory Pressure Renders Spontaneous Effort Noninjurious.

    PubMed

    Morais, Caio C A; Koyama, Yukiko; Yoshida, Takeshi; Plens, Glauco M; Gomes, Susimeire; Lima, Cristhiano A S; Ramos, Ozires P S; Pereira, Sérgio M; Kawaguchi, Naomasa; Yamamoto, Hirofumi; Uchiyama, Akinori; Borges, João B; Vidal Melo, Marcos F; Tucci, Mauro R; Amato, Marcelo B P; Kavanagh, Brian P; Costa, Eduardo L V; Fujino, Yuji

    2018-05-15

    In acute respiratory distress syndrome (ARDS), atelectatic solid-like lung tissue impairs transmission of negative swings in pleural pressure (Ppl) that result from diaphragmatic contraction. The localization of more negative Ppl proportionally increases dependent lung stretch by drawing gas either from other lung regions (e.g., nondependent lung [pendelluft]) or from the ventilator. Lowering the level of spontaneous effort and/or converting solid-like to fluid-like lung might render spontaneous effort noninjurious. To determine whether spontaneous effort increases dependent lung injury, and whether such injury would be reduced by recruiting atelectatic solid-like lung with positive end-expiratory pressure (PEEP). Established models of severe ARDS (rabbit, pig) were used. Regional histology (rabbit), inflammation (positron emission tomography; pig), regional inspiratory Ppl (intrabronchial balloon manometry), and stretch (electrical impedance tomography; pig) were measured. Respiratory drive was evaluated in 11 patients with ARDS. Although injury during muscle paralysis was predominantly in nondependent and middle lung regions at low (vs. high) PEEP, strong inspiratory effort increased injury (indicated by positron emission tomography and histology) in dependent lung. Stronger effort (vs. muscle paralysis) caused local overstretch and greater tidal recruitment in dependent lung, where more negative Ppl was localized and greater stretch was generated. In contrast, high PEEP minimized lung injury by more uniformly distributing negative Ppl, and lowering the magnitude of spontaneous effort (i.e., deflection in esophageal pressure observed in rabbits, pigs, and patients). Strong effort increased dependent lung injury, where higher local lung stress and stretch was generated; effort-dependent lung injury was minimized by high PEEP in severe ARDS, which may offset need for paralysis.

  18. Bronchoscopy

    MedlinePlus

    Fiberoptic bronchoscopy; Lung cancer - bronchoscopy; Pneumonia - bronchoscopy; Chronic lung disease - bronchoscopy ... from sarcoidosis or rheumatoid arthritis may be found. Lung cancer , or cancer in the area between the lungs. ...

  19. Collapsed Lung: MedlinePlus Health Topic

    MedlinePlus

    ... tube insertion - slideshow Collapsed lung (pneumothorax) Hemothorax Lung surgery Pneumothorax - slideshow Pneumothorax - infants Related Health Topics Chest Injuries and Disorders Lung Diseases Pleural Disorders ...

  20. Microarray Meta-Analysis Identifies Acute Lung Injury Biomarkers in Donor Lungs That Predict Development of Primary Graft Failure in Recipients

    PubMed Central

    Haitsma, Jack J.; Furmli, Suleiman; Masoom, Hussain; Liu, Mingyao; Imai, Yumiko; Slutsky, Arthur S.; Beyene, Joseph; Greenwood, Celia M. T.; dos Santos, Claudia

    2012-01-01

    Objectives To perform a meta-analysis of gene expression microarray data from animal studies of lung injury, and to identify an injury-specific gene expression signature capable of predicting the development of lung injury in humans. Methods We performed a microarray meta-analysis using 77 microarray chips across six platforms, two species and different animal lung injury models exposed to lung injury with or/and without mechanical ventilation. Individual gene chips were classified and grouped based on the strategy used to induce lung injury. Effect size (change in gene expression) was calculated between non-injurious and injurious conditions comparing two main strategies to pool chips: (1) one-hit and (2) two-hit lung injury models. A random effects model was used to integrate individual effect sizes calculated from each experiment. Classification models were built using the gene expression signatures generated by the meta-analysis to predict the development of lung injury in human lung transplant recipients. Results Two injury-specific lists of differentially expressed genes generated from our meta-analysis of lung injury models were validated using external data sets and prospective data from animal models of ventilator-induced lung injury (VILI). Pathway analysis of gene sets revealed that both new and previously implicated VILI-related pathways are enriched with differentially regulated genes. Classification model based on gene expression signatures identified in animal models of lung injury predicted development of primary graft failure (PGF) in lung transplant recipients with larger than 80% accuracy based upon injury profiles from transplant donors. We also found that better classifier performance can be achieved by using meta-analysis to identify differentially-expressed genes than using single study-based differential analysis. Conclusion Taken together, our data suggests that microarray analysis of gene expression data allows for the detection of “injury" gene predictors that can classify lung injury samples and identify patients at risk for clinically relevant lung injury complications. PMID:23071521

  1. Mechanical ventilation drives pneumococcal pneumonia into lung injury and sepsis in mice: protection by adrenomedullin.

    PubMed

    Müller-Redetzky, Holger C; Will, Daniel; Hellwig, Katharina; Kummer, Wolfgang; Tschernig, Thomas; Pfeil, Uwe; Paddenberg, Renate; Menger, Michael D; Kershaw, Olivia; Gruber, Achim D; Weissmann, Norbert; Hippenstiel, Stefan; Suttorp, Norbert; Witzenrath, Martin

    2014-04-14

    Ventilator-induced lung injury (VILI) contributes to morbidity and mortality in acute respiratory distress syndrome (ARDS). Particularly pre-injured lungs are susceptible to VILI despite protective ventilation. In a previous study, the endogenous peptide adrenomedullin (AM) protected murine lungs from VILI. We hypothesized that mechanical ventilation (MV) contributes to lung injury and sepsis in pneumonia, and that AM may reduce lung injury and multiple organ failure in ventilated mice with pneumococcal pneumonia. We analyzed in mice the impact of MV in established pneumonia on lung injury, inflammation, bacterial burden, hemodynamics and extrapulmonary organ injury, and assessed the therapeutic potential of AM by starting treatment at intubation. In pneumococcal pneumonia, MV increased lung permeability, and worsened lung mechanics and oxygenation failure. MV dramatically increased lung and blood cytokines but not lung leukocyte counts in pneumonia. MV induced systemic leukocytopenia and liver, gut and kidney injury in mice with pneumonia. Lung and blood bacterial burden was not affected by MV pneumonia and MV increased lung AM expression, whereas receptor activity modifying protein (RAMP) 1-3 expression was increased in pneumonia and reduced by MV. Infusion of AM protected against MV-induced lung injury (66% reduction of pulmonary permeability p < 0.01; prevention of pulmonary restriction) and against VILI-induced liver and gut injury in pneumonia (91% reduction of AST levels p < 0.05, 96% reduction of alanine aminotransaminase (ALT) levels p < 0.05, abrogation of histopathological changes and parenchymal apoptosis in liver and gut). MV paved the way for the progression of pneumonia towards ARDS and sepsis by aggravating lung injury and systemic hyperinflammation leading to liver, kidney and gut injury. AM may be a promising therapeutic option to protect against development of lung injury, sepsis and extrapulmonary organ injury in mechanically ventilated individuals with severe pneumonia.

  2. Comparison of lung protective ventilation strategies in a rabbit model of acute lung injury.

    PubMed

    Rotta, A T; Gunnarsson, B; Fuhrman, B P; Hernan, L J; Steinhorn, D M

    2001-11-01

    To determine the impact of different protective and nonprotective mechanical ventilation strategies on the degree of pulmonary inflammation, oxidative damage, and hemodynamic stability in a saline lavage model of acute lung injury. A prospective, randomized, controlled, in vivo animal laboratory study. Animal research facility of a health sciences university. Forty-six New Zealand White rabbits. Mature rabbits were instrumented with a tracheostomy and vascular catheters. Lavage-injured rabbits were randomized to receive conventional ventilation with either a) low peak end-expiratory pressure (PEEP; tidal volume of 10 mL/kg, PEEP of 2 cm H2O); b) high PEEP (tidal volume of 10 mL/kg, PEEP of 10 cm H2O); c) low tidal volume with PEEP above Pflex (open lung strategy, tidal volume of 6 mL/kg, PEEP set 2 cm H2O > Pflex); or d) high-frequency oscillatory ventilation. Animals were ventilated for 4 hrs. Lung lavage fluid and tissue samples were obtained immediately after animals were killed. Lung lavage fluid was assayed for measurements of total protein, elastase activity, tumor necrosis factor-alpha, and malondialdehyde. Lung tissue homogenates were assayed for measurements of myeloperoxidase activity and malondialdehyde. The need for inotropic support was recorded. Animals that received a lung protective strategy (open lung or high-frequency oscillatory ventilation) exhibited more favorable oxygenation and lung mechanics compared with the low PEEP and high PEEP groups. Animals ventilated by a lung protective strategy also showed attenuation of inflammation (reduced tracheal fluid protein, tracheal fluid elastase, tracheal fluid tumor necrosis factor-alpha, and pulmonary leukostasis). Animals treated with high-frequency oscillatory ventilation had attenuated oxidative injury to the lung and greater hemodynamic stability compared with the other experimental groups. Both lung protective strategies were associated with improved oxygenation, attenuated inflammation, and decreased lung damage. However, in this small-animal model of acute lung injury, an open lung strategy with deliberate hypercapnia was associated with significant hemodynamic instability.

  3. The lung tissue microbiota of mild and moderate chronic obstructive pulmonary disease.

    PubMed

    Pragman, Alexa A; Lyu, Tianmeng; Baller, Joshua A; Gould, Trevor J; Kelly, Rosemary F; Reilly, Cavan S; Isaacson, Richard E; Wendt, Chris H

    2018-01-09

    Oral taxa are often found in the chronic obstructive pulmonary disease (COPD) lung microbiota, but it is not clear if this is due to a physiologic process such as aspiration or experimental contamination at the time of specimen collection. Microbiota samples were obtained from nine subjects with mild or moderate COPD by swabbing lung tissue and upper airway sites during lung lobectomy. Lung specimens were not contaminated with upper airway taxa since they were obtained surgically. The microbiota were analyzed with 16S rRNA gene qPCR and 16S rRNA gene hypervariable region 3 (V3) sequencing. Data analyses were performed using QIIME, SourceTracker, and R. Streptococcus was the most common genus in the oral, bronchial, and lung tissue samples, and multiple other taxa were present in both the upper and lower airways. Each subject's own bronchial and lung tissue microbiota were more similar to each other than were the bronchial and lung tissue microbiota of two different subjects (permutation test, p = 0.0139), indicating more within-subject similarity than between-subject similarity at these two lung sites. Principal coordinate analysis of all subject samples revealed clustering by anatomic sampling site (PERMANOVA, p = 0.001), but not by subject. SourceTracker analysis found that the sources of the lung tissue microbiota were 21.1% (mean) oral microbiota, 8.7% nasal microbiota, and 70.1% unknown. An analysis using the neutral theory of community ecology revealed that the lung tissue microbiota closely reflects the bronchial, oral, and nasal microbiota (immigration parameter estimates 0.69, 0.62, and 0.74, respectively), with some evidence of ecologic drift occurring in the lung tissue. This is the first study to evaluate the mild-moderate COPD lung tissue microbiota without potential for upper airway contamination of the lung samples. In our small study of subjects with COPD, we found oral and nasal bacteria in the lung tissue microbiota, confirming that aspiration is a source of the COPD lung microbiota.

  4. Recommendations for dose calculations of lung cancer treatment plans treated with stereotactic ablative body radiotherapy (SABR)

    NASA Astrophysics Data System (ADS)

    Devpura, S.; Siddiqui, M. S.; Chen, D.; Liu, D.; Li, H.; Kumar, S.; Gordon, J.; Ajlouni, M.; Movsas, B.; Chetty, I. J.

    2014-03-01

    The purpose of this study was to systematically evaluate dose distributions computed with 5 different dose algorithms for patients with lung cancers treated using stereotactic ablative body radiotherapy (SABR). Treatment plans for 133 lung cancer patients, initially computed with a 1D-pencil beam (equivalent-path-length, EPL-1D) algorithm, were recalculated with 4 other algorithms commissioned for treatment planning, including 3-D pencil-beam (EPL-3D), anisotropic analytical algorithm (AAA), collapsed cone convolution superposition (CCC), and Monte Carlo (MC). The plan prescription dose was 48 Gy in 4 fractions normalized to the 95% isodose line. Tumors were classified according to location: peripheral tumors surrounded by lung (lung-island, N=39), peripheral tumors attached to the rib-cage or chest wall (lung-wall, N=44), and centrally-located tumors (lung-central, N=50). Relative to the EPL-1D algorithm, PTV D95 and mean dose values computed with the other 4 algorithms were lowest for "lung-island" tumors with smallest field sizes (3-5 cm). On the other hand, the smallest differences were noted for lung-central tumors treated with largest field widths (7-10 cm). Amongst all locations, dose distribution differences were most strongly correlated with tumor size for lung-island tumors. For most cases, convolution/superposition and MC algorithms were in good agreement. Mean lung dose (MLD) values computed with the EPL-1D algorithm were highly correlated with that of the other algorithms (correlation coefficient =0.99). The MLD values were found to be ~10% lower for small lung-island tumors with the model-based (conv/superposition and MC) vs. the correction-based (pencil-beam) algorithms with the model-based algorithms predicting greater low dose spread within the lungs. This study suggests that pencil beam algorithms should be avoided for lung SABR planning. For the most challenging cases, small tumors surrounded entirely by lung tissue (lung-island type), a Monte-Carlo-based algorithm may be warranted.

  5. The Predictive Values of Lesion Size, F-18 FDG Avidity and I-131 Avidity for the Clinical Outcome of I-131 Treatment in Patients with Metastatic Differentiated Thyroid Carcinoma Only in the Lung.

    PubMed

    Choi, Joon Ho; Byun, Byung Hyun; Lim, Ilhan; Moon, Hansol; Park, Jihyun; Chang, Kyoung Jin; Kim, Byung Il; Choi, Chang Woon; Lim, Sang Moo

    2018-04-01

    We aimed to evaluate the prognostic values of radiography, F-18 FDG PET, and I-131 whole body scans in patients with lung-only metastasis from differentiated thyroid carcinoma (DTC). Between 1998 and 2013, we included 31 patients (F: 26, M: 5) with lung-only metastasis from DTC who had been treated with I-131 and underwent PET. Lung metastasis was categorized according to the size (macronodular ≥1.0 cm vs. micronodular <1.0 cm), FDG avidity (avid vs. non-avid), and I-131 avidity (avid vs. non-avid). Progression-free survival (PFS) was evaluated for each patient. Among 31 patients, seven (23%) had macronodular lung metastasis, 26 (84%) had FDG avid lung metastasis, and 16 (52%) had I-131 avid lung metastasis. During the median follow-up period of 9.4 y, median PFS was 6.1 y. Based on Kaplan-Meier analysis, macronodular lung metastasis ( p  = 0.017) and I-131 non-avid lung metastasis ( p  = 0.059) were significantly associated with worse outcomes, but FDG avid lung metastasis was not ( p  = 0.135). Patients with FDG non-avid lung metastasis did not experience disease progression during follow-up, while 11 of 26 patients (42%) experienced disease progression. Based on univariate analysis, the hazard ratio for a poor prognosis was 3.78 ( p  = 0.029) for macronodular lung metastasis and 3.29 ( p  = 0.079) for I-131 non-avid lung metastasis. Macronodular and I-131 non-avid lung metastasis were associated with a poor prognosis in lung-only metastasis from DTC. Although FDG avid lung metastasis may be associated with a poor prognosis, a larger-scale study is needed.

  6. Setting individualized positive end-expiratory pressure level with a positive end-expiratory pressure decrement trial after a recruitment maneuver improves oxygenation and lung mechanics during one-lung ventilation.

    PubMed

    Ferrando, Carlos; Mugarra, Ana; Gutierrez, Andrea; Carbonell, Jose Antonio; García, Marisa; Soro, Marina; Tusman, Gerardo; Belda, Francisco Javier

    2014-03-01

    We investigated whether individualized positive end-expiratory pressure (PEEP) improves oxygenation, ventilation, and lung mechanics during one-lung ventilation compared with standardized PEEP. Thirty patients undergoing thoracic surgery were randomly allocated to the study or control group. Both groups received an alveolar recruitment maneuver at the beginning and end of one-lung ventilation. After the alveolar recruitment maneuver, the control group had their lungs ventilated with a 5 cm·H2O PEEP, while the study group had their lungs ventilated with an individualized PEEP level determined by a PEEP decrement trial. Arterial blood samples, lung mechanics, and volumetric capnography were recorded at multiple timepoints throughout the procedure. The individualized PEEP values in study group were higher than the standardized PEEP values (10 ± 2 vs 5 cm·H2O; P < 0.001). In both groups, arterial oxygenation decreased when bilateral-lung ventilation was switched to one-lung ventilation and increased after the alveolar recruitment maneuver. During one-lung ventilation, oxygenation was maintained in the study group but decreased in the control group. After one-lung ventilation, arterial oxygenation was significantly higher in the study group (306 vs 231 mm·Hg, P = 0.007). Static compliance decreased in both groups when bilateral-lung ventilation was switched to one-lung ventilation. Static compliance increased significantly only in the study group (P < 0.001) after the alveolar recruitment maneuver and optimal PEEP adjustment. The alveolar recruitment maneuver did not decrease cardiac index in any patient. During one-lung ventilation, the improvements in oxygenation and lung mechanics after an alveolar recruitment maneuver were better preserved by ventilation by using individualized PEEP with a PEEP decrement trial than with a standardized 5 cm·H2O of PEEP.

  7. Intratracheal IL-6 protects against lung inflammation in direct, but not indirect, causes of acute lung injury in mice.

    PubMed

    Bhargava, Rhea; Janssen, William; Altmann, Christopher; Andrés-Hernando, Ana; Okamura, Kayo; Vandivier, R William; Ahuja, Nilesh; Faubel, Sarah

    2013-01-01

    Serum and bronchoalveolar fluid IL-6 are increased in patients with acute respiratory distress syndrome (ARDS) and predict prolonged mechanical ventilation and poor outcomes, although the role of intra-alveolar IL-6 in indirect lung injury is unknown. We investigated the role of endogenous and exogenous intra-alveolar IL-6 in AKI-mediated lung injury (indirect lung injury), intraperitoneal (IP) endotoxin administration (indirect lung injury) and, for comparison, intratracheal (IT) endotoxin administration (direct lung injury) with the hypothesis that IL-6 would exert a pro-inflammatory effect in these causes of acute lung inflammation. Bronchoalveolar cytokines (IL-6, CXCL1, TNF-α, IL-1β, and IL-10), BAL fluid neutrophils, lung inflammation (lung cytokines, MPO activity [a biochemical marker of neutrophil infiltration]), and serum cytokines were determined in adult male C57Bl/6 mice with no intervention or 4 hours after ischemic AKI (22 minutes of renal pedicle clamping), IP endotoxin (10 µg), or IT endotoxin (80 µg) with and without intratracheal (IT) IL-6 (25 ng or 200 ng) treatment. Lung inflammation was similar after AKI, IP endotoxin, and IT endotoxin. BAL fluid IL-6 was markedly increased after IT endotoxin, and not increased after AKI or IP endotoxin. Unexpectedly, IT IL-6 exerted an anti-inflammatory effect in healthy mice characterized by reduced BAL fluid cytokines. IT IL-6 also exerted an anti-inflammatory effect in IT endotoxin characterized by reduced BAL fluid cytokines and lung inflammation; IT IL-6 had no effect on lung inflammation in AKI or IP endotoxin. IL-6 exerts an anti-inflammatory effect in direct lung injury from IT endotoxin, yet has no role in the pathogenesis or treatment of indirect lung injury from AKI or IP endotoxin. Since intra-alveolar inflammation is important in the pathogenesis of direct, but not indirect, causes of lung inflammation, IT anti-inflammatory treatments may have a role in direct, but not indirect, causes of ARDS.

  8. Lung needle biopsy

    MedlinePlus

    ... may be due to any of the following: Bacterial, viral, or fungal lung infection Cancerous cells ( lung cancer , mesothelioma) Pneumonia Risks Sometimes, a collapsed lung ( pneumothorax ) occurs after ...

  9. Lung surgery

    MedlinePlus

    ... Lung tissue removal; Pneumonectomy; Lobectomy; Lung biopsy; Thoracoscopy; Video-assisted thoracoscopic surgery; VATS ... do surgery on your lungs are thoracotomy and video-assisted thoracoscopic surgery (VATS). Robotic surgery may also ...

  10. Lung Cancer Screening (PDQ®)—Health Professional Version

    Cancer.gov

    Lung cancer screening with low-dose spiral CT scans has been shown to decrease the risk of dying from lung cancer in heavy smokers. Screening with chest x-ray or sputum cytology does not reduce lung cancer mortality. Get detailed information about lung cancer screening in this clinician summary.

  11. VARIATION OF LUNG DEPOSITION OF MICRON SIZE PARTICLES WITH LUNG VOLUME AND BREATHING PATTERN

    EPA Science Inventory

    Lung volume and breathing pattern are the source of inter-and intra-subject variability of lung deposition of inhaled particles. Controlling these factors may help optimize delivery of aerosol medicine to the target site within the lung. In the present study we measured total lu...

  12. Anetumab Ravtansine and Atezolizumab in Treating Participants With Advanced Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-06-12

    Mesothelin Positive; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  13. Vaccine Therapy and Sargramostim With or Without Docetaxel in Treating Patients With Metastatic Lung Cancer or Metastatic Colorectal Cancer

    ClinicalTrials.gov

    2014-03-28

    Extensive Stage Small Cell Lung Cancer; Recurrent Colon Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Rectal Cancer; Recurrent Small Cell Lung Cancer; Stage IV Colon Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Rectal Cancer

  14. Optimizing Ventilation Distribution and Gas Exchange in Combat-Related Lung Injury Using Multifrequency Oscillation

    DTIC Science & Technology

    2017-10-01

    gas exchange in the acute respiratory distress syndrome (ARDS) and other forms of combat-related lung injury, while simultaneously preserving mechanical...civilian populations with ARDS. 15. SUBJECT TERMS Acute lung injury, Acute respiratory distress syndrome , Blast lung injury, Combat-related lung injury...REFERENCES 18 10.0 APPENDICES 19 Page 4 1.0 INTRODUCTION Respiratory failure from acute lung injury, now termed the acute respiratory distress syndrome

  15. Structural basis for pulmonary functional imaging.

    PubMed

    Itoh, H; Nakatsu, M; Yoxtheimer, L M; Uematsu, H; Ohno, Y; Hatabu, H

    2001-03-01

    An understanding of fine normal lung morphology is important for effective pulmonary functional imaging. The lung specimens must be inflated. These include (a) unfixed, inflated lung specimen, (b) formaldehyde fixed lung specimen, (c) fixed, inflated dry lung specimen, and (d) histology specimen. Photography, magnified view, radiograph, computed tomography, and histology of these specimens are demonstrated. From a standpoint of diagnostic imaging, the main normal lung structures consist of airways (bronchi and bronchioles), alveoli, pulmonary vessels, secondary pulmonary lobules, and subpleural pulmonary lymphatic channels. This review summarizes fine radiologic normal lung morphology as an aid to effective pulmonary functional imaging.

  16. S-1-induced lung injury combined with pneumocystis pneumonia

    PubMed Central

    Yano, Shuichi

    2013-01-01

    Pulmonary injuries due to S-1 have been reported, and these reports have shown an increase in lung cancer following the increased usage of S-1 in treating lung cancer. We report the first case of lung injury due to S-1 in combination with pneumocystis pneumonia (PCP), because the radiological findings and clinical courses were compatible with S-1-induced lung injury combined with PCP. We should consider that S-1 might induce lung injuries which might occur with PCP, especially with a history of drug-induced or radiation-induced lung injuries. PMID:23386491

  17. Mechanisms of Graft Rejection and Immune Regulation after Lung Transplant.

    PubMed

    Gauthier, Jason M; Li, Wenjun; Hsiao, Hsi-Min; Takahashi, Tsuyoshi; Arefanian, Saeed; Krupnick, Alexander S; Gelman, Andrew E; Kreisel, Daniel

    2017-09-01

    Outcomes after lung transplant lag behind those of other solid-organ transplants. A better understanding of the pathways that contribute to rejection and tolerance after lung transplant will be required to develop new therapeutic strategies that take into account the unique immunological features of lungs. Mechanistic immunological investigations in an orthotopic transplant model in the mouse have shed new light on immune responses after lung transplant. Here, we highlight that interactions between immune cells within pulmonary grafts shape their fate. These observations set lungs apart from other organs and help provide the conceptual framework for the development of lung-specific immunosuppression.

  18. Survivorship Care Planning in Patients With Colorectal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-12-16

    Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  19. Multidisciplinary lung cancer meetings: improving the practice of radiation oncology and facing future challenges.

    PubMed

    Campbell, Belinda A; Ball, David; Mornex, Françoise

    2015-02-01

    Clinical guidelines widely recognize the importance of multidisciplinary meetings (MDM) in the optimal care of lung cancer patients. The published literature suggest that dedicated Lung Cancer MDM lead to increased treatment utilization rates and improved survival outcomes for patients with lung cancer. For radiation oncologists, Lung Cancer MDM have been proven to support evidence-based practice and improve the utilization of radiotherapy. Lung Cancer MDM also allow for education and promotion of specialty radiotherapy services. The fast pace of modern medicine is also presenting new challenges for the multidisciplinary lung cancer team, and technological advances are likely to lead to new changes in the structure of traditional Lung Cancer MDM. © 2015 Asian Pacific Society of Respirology.

  20. Estimation of regional lung expansion via 3D image registration

    NASA Astrophysics Data System (ADS)

    Pan, Yan; Kumar, Dinesh; Hoffman, Eric A.; Christensen, Gary E.; McLennan, Geoffrey; Song, Joo Hyun; Ross, Alan; Simon, Brett A.; Reinhardt, Joseph M.

    2005-04-01

    A method is described to estimate regional lung expansion and related biomechanical parameters using multiple CT images of the lungs, acquired at different inflation levels. In this study, the lungs of two sheep were imaged utilizing a multi-detector row CT at different lung inflations in the prone and supine positions. Using the lung surfaces and the airway branch points for guidance, a 3D inverse consistent image registration procedure was used to match different lung volumes at each orientation. The registration was validated using a set of implanted metal markers. After registration, the Jacobian of the deformation field was computed to express regional expansion or contraction. The regional lung expansion at different pressures and different orientations are compared.

  1. Morphometric and histological analysis of the lungs of Syrian golden hamsters.

    PubMed Central

    Kennedy, A R; Desrosiers, A; Terzaghi, M; Little, J B

    1978-01-01

    Hamster lung morphometry and histology have been studied in an attempt to determine differences between hamster and human lungs which may have relevance for lung carcinogenesis studies. Morphometric measurements were made on fresh lungs, lung casts, and histological sections. Cell type and frequency measurements were determined from frozen, paraffin, 1 micron plastic (glycol methacrylate) and electron microscopic sections. A standard terminology for hamster lung histology is established, and differences between hamster and human lung morphometry and histology are discussed. Images Fig. 2 Fig. 3 Fig. 4 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 Fig. 20 Fig. 21 Fig. 22 PMID:640957

  2. Incidental lung volume reduction following fulminant pulmonary hemorrhage in a patient with severe emphysema.

    PubMed

    Hetzel, Juergen; Spengler, Werner; Horger, Marius; Boeckeler, Michael

    2015-06-01

    Endoscopic lung volume reduction is an emerging technique meant to improve lung function parameters, quality of life, and exercise tolerance in patients with severe lung emphysema. This is the first report of lung volume reduction by autologous blood in a patient with non-bullous lung emphysema. A 74-year-old woman with heterogeneous lung emphysema developed accidentally diffuse lobar bleeding immediately after valve placement. Due to persistent hemorrhage, the valves had to be removed shortly thereafter. Despite extraction of the valves, respiratory function of the patient improved rapidly indicated also by a drop in the COPD assessment test questionnaire, 3 months later. This was consistent with both improvement of lung function tests and six-minute walking test.

  3. Neonatal lungs--can absolute lung resistivity be determined non-invasively?

    PubMed

    Brown, B H; Primhak, R A; Smallwood, R H; Milnes, P; Narracott, A J; Jackson, M J

    2002-07-01

    The electrical resistivity of lung tissue can be related to the structure and composition of the tissue and also to the air content. Conditions such as pulmonary oedema and emphysema have been shown to change lung resistivity. However, direct access to the lungs to enable resistivity to be measured is very difficult. We have developed a new method of using electrical impedance tomographic (EIT) measurements on a group of 142 normal neonates to determine the absolute resistivity of lung tissue. The methodology involves comparing the measured EIT data with that from a finite difference model of the thorax in which lung tissue resistivity can be changed. A mean value of 5.7 +/- 1.7 omega(m) was found over the frequency range 4 kHz to 813 kHz. This value is lower than that usually given for adult lung tissue but consistent with the literature on the composition of the neonatal lung and with structural modelling.

  4. Differential diagnosis and cancer staging of a unique case with multiple nodules in the lung - lung adenocarcinoma, metastasis of colon adenocarcinoma, and colon adenocarcinoma metastasizing to lung adenocarcinoma.

    PubMed

    Bai, Yun; Qiu, Jianxing; Shang, Xueqian; Liu, Ping; Zhang, Ying; Wang, Ying; Xiong, Yan; Li, Ting

    2015-05-01

    Lung cancer is the most common cancer in the world. Despite this, there have been few cases of simultaneous primary and metastatic cancers in the lung reported, let alone coexisting with tumor-to-tumor metastasis. Herein, we describe an extremely unusual case. A 61-year-old man with a history of colon adenocarcinoma was revealed as having three nodules in the lung 11 months after colectomy. The nodule in the left upper lobe was primary lung adenocarcinoma, the larger one in the right upper lobe was a metastasis of colon adenocarcinoma, and the smaller one in the right upper lobe was colon adenocarcinoma metastasizing to lung adenocarcinoma. Our paper focused on the differential diagnosis and cancer staging of this unique case, and discussed the uncommon phenomenon of the lung acting as a recipient in tumor-to-tumor metastasis.

  5. Donor Lung Procurement by Surgical Fellow with an Expectation of High Rate of Lung Utilisation.

    PubMed

    Smail, Hassiba; Saxena, Pankaj; Wallinder, Andreas; Lin, Enjarn; Snell, Gregory I; Hobson, Jamie; Zimmet, Adam D; Marasco, Silvana F; McGiffin, David C

    2017-12-22

    There is an ever increasing demand for donor lungs in patients waiting for transplantation. Lungs of many potential donors will be rejected if the standard criteria for donor assessment are followed. We have expanded our donor lung pool by accepting marginal donors and establishing a donation after circulatory death program. We have achieved comparable results using marginal donors and accepting donor lungs following donation after circulatory death. We present our assessment and technical guidelines on lung procurement taking into consideration an increasingly complex cohort of lung donors. These guidelines form the basis of the lung procurement training program involving surgical Fellows at the Alfred Hospital in Melbourne, Australia. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  6. Diffuse Alveolar Damage: A Common Phenomenon in Progressive Interstitial Lung Disorders

    PubMed Central

    Kaarteenaho, Riitta; Kinnula, Vuokko L.

    2011-01-01

    It has become obvious that several interstitial lung diseases, and even viral lung infections, can progress rapidly, and exhibit similar features in their lung morphology. The final histopathological feature, common in these lung disorders, is diffuse alveolar damage (DAD). The histopathology of DAD is considered to represent end stage phenomenon in acutely behaving interstitial pneumonias, such as acute interstitial pneumonia (AIP) and acute exacerbations of idiopathic pulmonary fibrosis (IPF). Acute worsening and DAD may occur also in patients with nonspecific interstitial pneumonias (NSIPs), and even in severe viral lung infections where there is DAD histopathology in the lung. A better understanding of the mechanisms underlying the DAD reaction is needed to clarify the treatment for these serious lung diseases. There is an urgent need for international efforts for studying DAD-associated lung diseases, since the prognosis of these patients has been and is still dismal. PMID:21637367

  7. The Lung Microbiome After Lung Transplantation

    PubMed Central

    Becker, Julia B.; Poroyko, Valeriy

    2014-01-01

    Summary Lung transplantation survival remains significantly impacted by infections and the development of chronic rejection manifesting as bronchiolitis obliterans syndrome (BOS). Traditional microbiologic data has provided insight into the role of infections in BOS. Now, new non-culture-based techniques have been developed to characterize the entire population of microbes resident on the surfaces of the body, also known as the human microbiome. Early studies have identified that lung transplant patients have a different lung microbiome and have demonstrated the important finding that the transplant lung microbiome changes over time. Furthermore, both unique bacterial populations and longitudinal changes in the lung microbiome have now been suggested to play a role in the development of BOS. In the future, this technology will need to be combined with functional assays and assessment of the immune responses in the lung to help further explain the microbiome’s role in the failing lung allograft. PMID:24601662

  8. [Horseshoe lung with normal pulmonary venous return].

    PubMed

    Gondra Sangroniz, A; Elorz Lambarri, J; Villar Alvarez, M A; Lecumberri Cortes, I; Ayala Curiel, J

    2010-09-01

    Horseshoe lung is a rare congenital anomaly characterised by a midline isthmus of pulmonary parenchyma connecting the posterior basal segments of the lungs behind the heart in conjunction with unilateral pulmonary hypoplasia. Of all cases, 80% are associated with scimitar syndrome, consisting of right anomalous pulmonary venous drainage, pulmonary hypoplasia of the right lung and systemic arterial perfusion to some lung areas. A six year old girl who had recurrent lower respiratory infections since birth. Chest Rx, angioCT and MR showed: hypoplasia of the right lung, dextrocardia and pulmonary isthmus bridging both lungs behind the pericardium. The right hypoplastic lung had little systemic supply coming from the abdominal aorta. The right pulmonary artery was hypoplastic. The right pulmonary venous drainage was normal. We present a case of horseshoe lung without abnormal venous drainage. 2010 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  9. Amebic lung abscess with coexisting lung adenocarcinoma: a unusual case of amebiasis.

    PubMed

    Zhu, Hailong; Min, Xiangyang; Li, Shuai; Feng, Meng; Zhang, Guofeng; Yi, Xianghua

    2014-01-01

    Amebic lung abscess with concurrent lung cancer, but without either a liver abscess or amebic colitis, is extremely uncommon. Here, we report a 70-year-old man presenting with pulmonary amebiasis and coexisting lung adenocarcinoma. During his first-time hospitalization, the diagnosis of lung amebiasis was confirmed by morphological observation and PCR in formalin-fixed and paraffin-embedded sediments of pleural effusion. Almost four months later, the patient was readmitted to hospital for similar complaints. On readmission, lung adenocarcinoma was diagnosed by liquid-based sputum cytology and thought to be delayed because coexisting amebic lung abscess. This case demonstrated that sediments of pleural effusion may be used for further pathological examination after routine cytology has shown negative results. At the same time, we concluded that lung cancer may easily go undetected in the patients with pulmonary amebiasis and repetitive evaluation by cytology and imaging follow-up are useful to find potential cancer.

  10. Amebic lung abscess with coexisting lung adenocarcinoma: a unusual case of amebiasis

    PubMed Central

    Zhu, Hailong; Min, Xiangyang; Li, Shuai; Feng, Meng; Zhang, Guofeng; Yi, Xianghua

    2014-01-01

    Amebic lung abscess with concurrent lung cancer, but without either a liver abscess or amebic colitis, is extremely uncommon. Here, we report a 70-year-old man presenting with pulmonary amebiasis and coexisting lung adenocarcinoma. During his first-time hospitalization, the diagnosis of lung amebiasis was confirmed by morphological observation and PCR in formalin-fixed and paraffin-embedded sediments of pleural effusion. Almost four months later, the patient was readmitted to hospital for similar complaints. On readmission, lung adenocarcinoma was diagnosed by liquid-based sputum cytology and thought to be delayed because coexisting amebic lung abscess. This case demonstrated that sediments of pleural effusion may be used for further pathological examination after routine cytology has shown negative results. At the same time, we concluded that lung cancer may easily go undetected in the patients with pulmonary amebiasis and repetitive evaluation by cytology and imaging follow-up are useful to find potential cancer. PMID:25550881

  11. [Clinical value of serum TPS, CEA, Pro-GRP and CYFRA21-1 in patients with lung cancer].

    PubMed

    Wang, Jinghui; Shi, Guangli; Zhang, Shucai; Wang, Qunhui; Yang, Xinjie; Li, Xi; Wang, Haiyong; Zhang, Hui; Song, Changxing

    2010-05-01

    Serum tumor markers play important roles in diagnosis, response and prognosis monitoring for lung cancer. The clinical significance of serum level of tissue polypeptide specific antigen (TPS) was investigated in diagnosis, response monitoring and prognosis in patients with lung cancer, compared with carcinoembryonic antigen (CEA), precursor of gastrin-releasing peptide (Pro-GRP) and cytokeratin-19-fragments (CYFRA21-1). Blood samples of eighty-two patients with lung cancer before treatment and some after chemotherapy were measured by ELISA for four tumor markers. Compared with lung benign diseases group and health control group, the positive rates and levels of TPS, CEA and Pro-GRP in patients with lung cancer were higher, with statistically significant difference. TPS in extensive-small cell lung cancer was significant higher than that in limited-small cell lung cancer. The positive rates and levels of TPS, CEA and Pro-GRP in patients after treatment had significant decreases compared with before treatment. TPS was an independent prognostic factor of non-small cell lung cancer. TPS is valuable to diagnosis, response monitoring for patients with lung cancer, moreover, it maybe a useful factor of prognosis of non-small cell lung cancer.

  12. A completely automated processing pipeline for lung and lung lobe segmentation and its application to the LIDC-IDRI data base

    NASA Astrophysics Data System (ADS)

    Blaffert, Thomas; Wiemker, Rafael; Barschdorf, Hans; Kabus, Sven; Klinder, Tobias; Lorenz, Cristian; Schadewaldt, Nicole; Dharaiya, Ekta

    2010-03-01

    Automated segmentation of lung lobes in thoracic CT images has relevance for various diagnostic purposes like localization of tumors within the lung or quantification of emphysema. Since emphysema is a known risk factor for lung cancer, both purposes are even related to each other. The main steps of the segmentation pipeline described in this paper are the lung detector and the lung segmentation based on a watershed algorithm, and the lung lobe segmentation based on mesh model adaptation. The segmentation procedure was applied to data sets of the data base of the Image Database Resource Initiative (IDRI) that currently contains over 500 thoracic CT scans with delineated lung nodule annotations. We visually assessed the reliability of the single segmentation steps, with a success rate of 98% for the lung detection and 90% for lung delineation. For about 20% of the cases we found the lobe segmentation not to be anatomically plausible. A modeling confidence measure is introduced that gives a quantitative indication of the segmentation quality. For a demonstration of the segmentation method we studied the correlation between emphysema score and malignancy on a per-lobe basis.

  13. Long-term outcomes and management of lung transplant recipients.

    PubMed

    Costa, Joseph; Benvenuto, Luke J; Sonett, Joshua R

    2017-06-01

    Lung transplantation is an established treatment for patients with end-stage lung disease. Improvements in immunosuppression and therapeutic management of infections have resulted in improved long-term survival and a decline in allograft rejection. Allograft rejection continues to be a serious complication following lung transplantation, thereby leading to acute graft failure and, subsequently, chronic lung allograft dysfunction (CLAD). Bronchiolitis obliterans syndrome (BOS), the most common phenotype of CLAD, is the leading cause of late mortality and morbidity in lung recipients, with 50% having developed BOS within 5 years of lung transplantation. Infections in lung transplant recipients are also a significant complication and represent the most common cause of death within the first year. The success of lung transplantation depends on careful management of immunosuppressive regimens to reduce the rate of rejection, while monitoring recipients for infections and complications to help identify problems early. The long-term outcomes and management of lung transplant recipients are critically based on modulating natural immune response of the recipient to prevent acute and chronic rejection. Understanding the immune mechanisms and temporal correlation of acute and chronic rejection is thus critical in the long-term management of lung recipients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Role of natural killer cells in lung cancer.

    PubMed

    Aktaş, Ozge Nur; Öztürk, Ayşe Bilge; Erman, Baran; Erus, Suat; Tanju, Serhan; Dilege, Şükrü

    2018-06-01

    One of the key immune cells involved in the pathogenesis of lung cancer is natural killer (NK) cells and these cells are novel targets for therapeutic applications in lung cancer. The purpose of this review is to summarize the current literature on lung cancer pathogenesis with a focus on the interaction between NK cells and smoking, how these factors are related to the pathogenesis of lung cancer and how NK cell-based immunotherapy effect lung cancer survival. The relevant literature from PubMed and Medline databases is reviewed in this article. The cytolytic potential of NK cells are reduced in lung cancer and increasing evidence suggests that improving NK cell functioning may induce tumor regression. Recent clinical trials on NK cell-based novel therapies such as cytokines including interleukin (IL)-15, IL-12 and IL-2, NK-92 cell lines and allogenic NK cell immunotherapy showed promising results with less adverse effects on the lung cancer survival. The NK cell targeting strategy has not yet been approved for lung cancer treatment. More clinical studies focusing on the role of NK cells in lung cancer pathogenesis are warranted to develop novel NK cell-based therapeutic approaches for the treatment of lung cancer.

  15. Wnt/β-catenin pathway mediates (-)-Epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells.

    PubMed

    Zhu, Jianyun; Jiang, Ye; Yang, Xue; Wang, Shijia; Xie, Chunfeng; Li, Xiaoting; Li, Yuan; Chen, Yue; Wang, Xiaoqian; Meng, Yu; Zhu, Mingming; Wu, Rui; Huang, Cong; Ma, Xiao; Geng, Shanshan; Wu, Jieshu; Zhong, Caiyun

    2017-01-01

    Cancer stem cells (CSCs) play essential role in the progression of many tumors. Wnt/β-catenin pathway is crucial in maintaining the stemness of CSCs. (-)-Epigallocatechin-3-gallate (EGCG), the major bioactive component in green tea, has been shown to possess anti-cancer activity. To date, the interventional effect of EGCG on lung CSCs has not been elucidated yet. In the present study, tumorsphere formation assay was used to enrich lung CSCs from A549 and H1299 cells. We revealed that Wnt/β-catenin pathway was activated in lung CSCs, and downregulation of β-catenin, abolished lung CSCs traits. Our study further illustrated that EGCG effectively diminished lung CSCs activity by inhibiting tumorsphere formation, decreasing lung CSCs markers, suppressing proliferation and inducing apoptosis. Moreover, We showed that EGCG downregulated Wnt/β-catenin activation, while upregulation of Wnt/β-catenin dampened the inhibitory effects of EGCG on lung CSCs. Taken together, these results demonstrated the role of Wnt/β-catenin pathway in regulating lung CSCs traits and EGCG intervention of lung CSCs. Findings from this study could provide new insights into the molecular mechanisms of lung CSCs intervention. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Update on medical complications involving the lungs.

    PubMed

    Zaas, David W

    2009-10-01

    Lung transplant is now an accepted treatment for end-stage lung disease with improving survival and an increasing number of transplants being performed every year. Recognition of the common medical complications after lung transplant is important for timely diagnosis and treatment. This review will highlight the clinical presentation, diagnosis, and treatment of several noninfectious pulmonary complications that are encountered in lung transplant recipients. The review focuses on several broad areas of medical complications after lung transplant, including native lung complications, malignancies, venous thromboembolism, drug toxicity, and pleural disease. Each of these problems is a significant cause of morbidity and mortality after lung transplant. We review the recent publications in these areas that have identified improved ways to diagnose and treat these complications. Despite its relatively short history, the field of lung transplantation has made significant progress over the past 25 years. The medical advances surrounding lung transplant are not only related to the surgical procedure and immunosuppression, but also to the ability of physicians to diagnose and treat the common complications after transplant. Improvements in the diagnosis and management of these posttransplant medical complications will hopefully lead to even greater survival after lung transplantation in the future.

  17. Lung Focused Resuscitation at a Specialized Donor Care Facility Improves Lung Procurement Rates.

    PubMed

    Chang, Stephanie H; Kreisel, Daniel; Marklin, Gary F; Cook, Lindsey; Hachem, Ramsey; Kozower, Benjamin D; Balsara, Keki R; Bell, Jennifer M; Frederiksen, Christine; Meyers, Bryan F; Patterson, G Alexander; Puri, Varun

    2018-05-01

    Lung procurement for transplantation occurs in approximately 20% of brain dead donors and is a major impediment to wider application of lung transplantation. We investigated the effect of lung protective management at a specialized donor care facility on lung procurement rates from brain dead donors. Our local organ procurement organization instituted a protocol of lung protective management at a freestanding specialized donor care facility in 2008. Brain dead donors from 2001 to 2007 (early period) were compared with those from 2009 to 2016 (current period) for lung procurement rates and other solid-organ procurement rates using a prospectively maintained database. An overall increase occurred in the number of brain dead donors during the study period (early group, 791; late group, 1,333; p < 0.0001). The lung procurement rate (lung donors/all brain dead donors) improved markedly after the introduction of lung protective management (early group, 157 of 791 [19.8%]; current group, 452 of 1,333 [33.9%]; p < 0.0001). The overall organ procurement rate (total number of organs procured/donor) also increased during the study period (early group, 3.5 organs/donor; current group, 3.8 organs/donor; p = 0.006). Lung protective management in brain dead donors at a specialized donor care facility is associated with higher lung utilization rates compared with conventional management. This strategy does not adversely affect the utilization of other organs in a multiorgan donor. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study.

    PubMed

    Needham, Dale M; Colantuoni, Elizabeth; Mendez-Tellez, Pedro A; Dinglas, Victor D; Sevransky, Jonathan E; Dennison Himmelfarb, Cheryl R; Desai, Sanjay V; Shanholtz, Carl; Brower, Roy G; Pronovost, Peter J

    2012-04-05

    To evaluate the association of volume limited and pressure limited (lung protective) mechanical ventilation with two year survival in patients with acute lung injury. Prospective cohort study. 13 intensive care units at four hospitals in Baltimore, Maryland, USA. 485 consecutive mechanically ventilated patients with acute lung injury. Two year survival after onset of acute lung injury. 485 patients contributed data for 6240 eligible ventilator settings, as measured twice daily (median of eight eligible ventilator settings per patient; 41% of which adhered to lung protective ventilation). Of these patients, 311 (64%) died within two years. After adjusting for the total duration of ventilation and other relevant covariates, each additional ventilator setting adherent to lung protective ventilation was associated with a 3% decrease in the risk of mortality over two years (hazard ratio 0.97, 95% confidence interval 0.95 to 0.99, P=0.002). Compared with no adherence, the estimated absolute risk reduction in two year mortality for a prototypical patient with 50% adherence to lung protective ventilation was 4.0% (0.8% to 7.2%, P=0.012) and with 100% adherence was 7.8% (1.6% to 14.0%, P=0.011). Lung protective mechanical ventilation was associated with a substantial long term survival benefit for patients with acute lung injury. Greater use of lung protective ventilation in routine clinical practice could reduce long term mortality in patients with acute lung injury. Clinicaltrials.gov NCT00300248.

  19. Plasticity of lung development in the amphibian, Xenopus laevis

    PubMed Central

    Rose, Christopher S.; James, Brandon

    2013-01-01

    Summary Contrary to previous studies, we found that Xenopus laevis tadpoles raised in normoxic water without access to air can routinely complete metamorphosis with lungs that are either severely stunted and uninflated or absent altogether. This is the first demonstration that lung development in a tetrapod can be inhibited by environmental factors and that a tetrapod that relies significantly on lung respiration under unstressed conditions can be raised to forego this function without adverse effects. This study compared lung development in untreated, air-deprived (AD) and air-restored (AR) tadpoles and frogs using whole mounts, histology, BrdU labeling of cell division and antibody staining of smooth muscle actin. We also examined the relationship of swimming and breathing behaviors to lung recovery in AR animals. Inhibition and recovery of lung development occurred at the stage of lung inflation. Lung recovery in AR tadpoles occurred at a predictable and rapid rate and correlated with changes in swimming and breathing behavior. It thus presents a new experimental model for investigating the role of mechanical forces in lung development. Lung recovery in AR frogs was unpredictable and did not correlate with behavioral changes. Its low frequency of occurrence could be attributed to developmental, physical and behavioral changes, the effects of which increase with size and age. Plasticity of lung inflation at tadpole stages and loss of plasticity at postmetamorphic stages offer new insights into the role of developmental plasticity in amphibian lung loss and life history evolution. PMID:24337117

  20. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion.

    PubMed

    Yang, Y X; Teo, S-K; Van Reeth, E; Tan, C H; Tham, I W K; Poh, C L

    2015-08-01

    Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors' proposed approach. A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors' proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.

  1. Audit of the autoantibody test, EarlyCDT®-lung, in 1600 patients: an evaluation of its performance in routine clinical practice.

    PubMed

    Jett, James R; Peek, Laura J; Fredericks, Lynn; Jewell, William; Pingleton, William W; Robertson, John F R

    2014-01-01

    EarlyCDT(®)-Lung may enhance detection of early stage lung cancer by aiding physicians in assessing high-risk patients through measurement of biological markers (i.e., autoantibodies). The test's performance characteristics in routine clinical practice were evaluated by auditing clinical outcomes of 1613 US patients deemed at high risk for lung cancer by their physician, who ordered the EarlyCDT-Lung test for their patient. Clinical outcomes for all 1613 patients who provided HIPAA authorization are reported. Clinical data were collected from each patient's treating physician. Pathology reports when available were reviewed for diagnostic classification. Staging was assessed on histology, otherwise on imaging. Six month follow-up for the positives/negatives was 99%/93%. Sixty-one patients (4%) were identified with lung cancer, 25 of whom tested positive by EarlyCDT-Lung (sensitivity=41%). A positive EarlyCDT-Lung test on the current panel was associated with a 5.4-fold increase in lung cancer incidence versus a negative. Importantly, 57% (8/14) of non-small cell lung cancers detected as positive (where stage was known) were stage I or II. EarlyCDT-Lung has been extensively tested and validated in case-control settings and has now been shown in this audit to perform in routine clinical practice as predicted. EarlyCDT-Lung may be a complementary tool to CT for detection of early lung cancer. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Lipase member H is a novel secreted protein selectively upregulated in human lung adenocarcinomas and bronchioloalveolar carcinomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Yasuhiro; Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology; Yoshida, Yukihiro

    2014-01-24

    Highlights: • Most of the adenocarcinomas and bronchioloalveolar carcinomas were LIPH-positive. • LIPH is necessary for the proliferation of lung cancer cells in vitro. • A high level of LIPH in serum is correlated with better survival in early phase lung-cancer patients after surgery. - Abstract: Lung cancer is one of the most frequent causes of cancer-related death worldwide. However, molecular markers for lung cancer have not been well established. To identify novel genes related to lung cancer development, we surveyed publicly available DNA microarray data on lung cancer tissues. We identified lipase member H (LIPH, also known as mPA-PLA1)more » as one of the significantly upregulated genes in lung adenocarcinoma. LIPH was expressed in several adenocarcinoma cell lines when they were analyzed by quantitative real-time polymerase chain reaction (qPCR), western blotting, and sandwich enzyme-linked immunosorbent assay (ELISA). Immunohistochemical analysis detected LIPH expression in most of the adenocarcinomas and bronchioloalveolar carcinomas tissue sections obtained from lung cancer patients. LIPH expression was also observed less frequently in the squamous lung cancer tissue samples. Furthermore, LIPH protein was upregulated in the serum of early- and late-phase lung cancer patients when they were analyzed by ELISA. Interestingly, high serum level of LIPH was correlated with better survival in early phase lung cancer patients after surgery. Thus, LIPH may be a novel molecular biomarker for lung cancer, especially for adenocarcinoma and bronchioloalveolar carcinoma.« less

  3. Attenuation of Lipopolysaccharide-Induced Lung Vascular Stiffening by Lipoxin Reduces Lung Inflammation

    PubMed Central

    Meng, Fanyong; Mambetsariev, Isa; Tian, Yufeng; Beckham, Yvonne; Meliton, Angelo; Leff, Alan; Gardel, Margaret L.; Allen, Michael J.; Birukov, Konstantin G.

    2015-01-01

    Reversible changes in lung microstructure accompany lung inflammation, although alterations in tissue micromechanics and their impact on inflammation remain unknown. This study investigated changes in extracellular matrix (ECM) remodeling and tissue stiffness in a model of LPS-induced inflammation and examined the role of lipoxin analog 15-epi-lipoxin A4 (eLXA4) in the reduction of stiffness-dependent exacerbation of the inflammatory process. Atomic force microscopy measurements of live lung slices were used to directly measure local tissue stiffness changes induced by intratracheal injection of LPS. Effects of LPS on ECM properties and inflammatory response were evaluated in an animal model of LPS-induced lung injury, live lung tissue slices, and pulmonary endothelial cell (EC) culture. In vivo, LPS increased perivascular stiffness in lung slices monitored by atomic force microscopy and stimulated expression of ECM proteins fibronectin, collagen I, and ECM crosslinker enzyme, lysyl oxidase. Increased stiffness and ECM remodeling escalated LPS-induced VCAM1 and ICAM1 expression and IL-8 production by lung ECs. Stiffness-dependent exacerbation of inflammatory signaling was confirmed in pulmonary ECs grown on substrates with high and low stiffness. eLXA4 inhibited LPS-increased stiffness in lung cross sections, attenuated stiffness-dependent enhancement of EC inflammatory activation, and restored lung compliance in vivo. This study shows that increased local vascular stiffness exacerbates lung inflammation. Attenuation of local stiffening of lung vasculature represents a novel mechanism of lipoxin antiinflammatory action. PMID:24992633

  4. Plasticity of lung development in the amphibian, Xenopus laevis.

    PubMed

    Rose, Christopher S; James, Brandon

    2013-12-15

    Contrary to previous studies, we found that Xenopus laevis tadpoles raised in normoxic water without access to air can routinely complete metamorphosis with lungs that are either severely stunted and uninflated or absent altogether. This is the first demonstration that lung development in a tetrapod can be inhibited by environmental factors and that a tetrapod that relies significantly on lung respiration under unstressed conditions can be raised to forego this function without adverse effects. This study compared lung development in untreated, air-deprived (AD) and air-restored (AR) tadpoles and frogs using whole mounts, histology, BrdU labeling of cell division and antibody staining of smooth muscle actin. We also examined the relationship of swimming and breathing behaviors to lung recovery in AR animals. Inhibition and recovery of lung development occurred at the stage of lung inflation. Lung recovery in AR tadpoles occurred at a predictable and rapid rate and correlated with changes in swimming and breathing behavior. It thus presents a new experimental model for investigating the role of mechanical forces in lung development. Lung recovery in AR frogs was unpredictable and did not correlate with behavioral changes. Its low frequency of occurrence could be attributed to developmental, physical and behavioral changes, the effects of which increase with size and age. Plasticity of lung inflation at tadpole stages and loss of plasticity at postmetamorphic stages offer new insights into the role of developmental plasticity in amphibian lung loss and life history evolution.

  5. Joint Kinetics and Kinematics During Common Lower Limb Rehabilitation Exercises

    PubMed Central

    Comfort, Paul; Jones, Paul Anthony; Smith, Laura Constance; Herrington, Lee

    2015-01-01

    Context  Unilateral body-weight exercises are commonly used to strengthen the lower limbs during rehabilitation after injury, but data comparing the loading of the limbs during these tasks are limited. Objective  To compare joint kinetics and kinematics during 3 commonly used rehabilitation exercises. Design  Descriptive laboratory study. Setting  Laboratory. Patients or Other Participants  A total of 9 men (age = 22.1 ± 1.3 years, height = 1.76 ± 0.08 m, mass = 80.1 ± 12.2 kg) participated. Intervention(s)  Participants performed the single-legged squat, forward lunge, and reverse lunge with kinetic data captured via 2 force plates and 3-dimensional kinematic data collected using a motion-capture system. Main Outcome Measure(s)  Peak ground reaction forces, maximum joint angles, and peak sagittal-joint moments. Results  We observed greater eccentric and concentric peak vertical ground reaction forces during the single-legged squat than during both lunge variations (P ≤ .001). Both lunge variations demonstrated greater knee and hip angles than did the single-legged squat (P < .001), but we observed no differences between lunges (P > .05). Greater dorsiflexion occurred during the single-legged squat than during both lunge variations (P < .05), but we noted no differences between lunge variations (P = .70). Hip-joint moments were greater during the forward lunge than during the reverse lunge (P = .003) and the single-legged squat (P = .011). Knee-joint moments were greater in the single-legged squat than in the reverse lunge (P < .001) but not greater in the single-legged squat than in the forward lunge (P = .41). Ankle-joint moments were greater during the single-legged squat than during the forward lunge (P = .002) and reverse lunge (P < .001). Conclusions  Appropriate loading progressions for the hip should begin with the single-legged squat and progress to the reverse lunge and then the forward lunge. In contrast, loading progressions for the knee and ankle should begin with the reverse lunge and progress to the forward lunge and then the single-legged squat. PMID:26418958

  6. SU-F-R-31: Identification of Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induced Lung Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, W; Riyahi, S; Lu, W

    Purpose: Normal lung CT texture features have been used for the prediction of radiation-induced lung disease (radiation pneumonitis and radiation fibrosis). For these features to be clinically useful, they need to be relatively invariant (robust) to tumor size and not correlated with normal lung volume. Methods: The free-breathing CTs of 14 lung SBRT patients were studied. Different sizes of GTVs were simulated with spheres placed at the upper lobe and lower lobe respectively in the normal lung (contralateral to tumor). 27 texture features (9 from intensity histogram, 8 from grey-level co-occurrence matrix [GLCM] and 10 from grey-level run-length matrix [GLRM])more » were extracted from [normal lung-GTV]. To measure the variability of a feature F, the relative difference D=|Fref -Fsim|/Fref*100% was calculated, where Fref was for the entire normal lung and Fsim was for [normal lung-GTV]. A feature was considered as robust if the largest non-outlier (Q3+1.5*IQR) D was less than 5%, and considered as not correlated with normal lung volume when their Pearson correlation was lower than 0.50. Results: Only 11 features were robust. All first-order intensity-histogram features (mean, max, etc.) were robust, while most higher-order features (skewness, kurtosis, etc.) were unrobust. Only two of the GLCM and four of the GLRM features were robust. Larger GTV resulted greater feature variation, this was particularly true for unrobust features. All robust features were not correlated with normal lung volume while three unrobust features showed high correlation. Excessive variations were observed in two low grey-level run features and were later identified to be from one patient with local lung diseases (atelectasis) in the normal lung. There was no dependence on GTV location. Conclusion: We identified 11 robust normal lung CT texture features that can be further examined for the prediction of radiation-induced lung disease. Interestingly, low grey-level run features identified normal lung diseases. This work was supported in part by the National Cancer Institute Grants R01CA172638.« less

  7. [Effects of sodium aescinate on the apoptosis-related genes in lung injury induced by intestinal ischemia reperfusion in rats].

    PubMed

    Wang, Yan-Lei; Jing, You-Ling; Cai, Qing-Yan; Cui, Guo-Jin; Zhang, Yi-Bing; Zhang, Feng-Yu

    2012-03-01

    To investigate the relationship between apoptosis-related genes and lung injury induced by intestinal ischemia reperfusion and to explore the effects and its possible mechanism of sodium aescinate. Rat model of intestinal I/R injury was established with clamping of the superior mesenteric artery for 60 min and then clamping was relieved for 60 min. Twenty-four SD rats were randomly divided into three groups with eight rats in each: sham group, intestinal ischemia/reperfusion group (I/R group) and sodium aescinate group (SA + I/R group). Lung wet/dry weight ratio, lung coefficient and Superoxide dismutase (SOD), malondialdehyde (MDA) in plasma and lung tissue were measured, as well as the expression levels of Bcl-2 and Bax proteins in lung tissue were examined using immunohistochemical method. Compared with sham group, lung wet/dry weight ratio, lung coefficient and MDA in plasma and lung tissue were significantly increased, and while the activity of SOD in plasma and lung tissue were decreased significantly in I/R group. At the same time, the protein expression level of Bcl-2 and Bax were significantly increased. But Bax protein expression was much greater than that of Bcl-2, the ratio of Bcl-2 to Bax was decreased significantly in I/R group than that in sham group. Compared with I/R group, lung wet/dry weight ratio, lung coefficient and MDA in plasma and lung tissue were significantly decreased, and while the activity of SOD in serum and lung tissue were significantly increased in SA + I/R group. At the same time, Bax protein expression was significantly decreased, both Bcl-2 protein expression and the ratio of Bcl-2 to Bax were significantly increased in SA + I/R group than that in I/R group. Lung injury induced by intestinal ischemia reperfusion is correlated with abnormal expression levels of Bcl-2 and Bax protein which is caused by oxidative injury. Sodium aescinate can protect the lung injury induced by intestinal ischemia/reperfusion (I/R), which may be mediated by inhibiting lipid peroxidation, upregulating Bcl-2 gene protein expression, improving the ratio of Bcl-2/ Bax to inhibit lung apoptosis.

  8. Acute native lung hyperinflation is not associated with poor outcomes after single lung transplant for emphysema.

    PubMed

    Weill, D; Torres, F; Hodges, T N; Olmos, J J; Zamora, M R

    1999-11-01

    Single-lung transplantation for emphysema may be complicated by acute native lung hyperinflation (ANLH) with hemodynamic and ventilatory compromise. Some groups advocate the routine use of independent lung ventilation, double-lung transplant, or right-lung transplant with or without contralateral lung volume reduction surgery in high-risk patients. The goal of this study was to determine the incidence of ANLH and identify its potential predictors. We reviewed 51 consecutive single-lung transplants for emphysema. Symptomatic ANLH was defined as mediastinal shift and diaphragmatic flattening on chest x-ray with hemodynamic or respiratory failure requiring cardiopressor agents or independent lung ventilation. Preoperative and postoperative physiologic and hemodynamic data were analyzed from both recipients and donors. Sixteen patients developed radiographic ANLH; 8 were symptomatic, 2 severely so. We could not identify high-risk patients before transplant by pulmonary function tests, predicted donor total lung capacity (TLC)/actual recipient TLC ratio, pulmonary artery pressures, or the side transplanted. There was a trend toward an increased incidence of symptomatic ANLH in patients with bullous emphysema on chest computed tomography, but this was accounted for primarily by patients with alpha1-antitrypsin deficiency (4/13 vs 4/38 with chronic obstructive pulmonary disease, P = 0.10). No patient required cardiopulmonary bypass or inhaled nitric oxide intraoperatively. Patients with acute native lung hyperinflation did not have increased reperfusion edema as measured by chest x-ray score or PaO2/F(I)O2 ratio. Compared to patients without ANLH, symptomatic patients had longer ventilator times (64.9+/-14.6 hours vs 40.4+/-3.9, P = 0.02, ANOVA) and longer lengths of stay (19.3+/-2.1 days vs 13.7+/-1.3, P = 0.07), but 30-day survival was 100%. Two symptomatic patients required independent lung ventilation or inhaled nitric oxide; the others were managed with decreased minute ventilation, early extubation, and cardiopressor agents. No patient required early lung volume reduction surgery or retransplantation. Acute native lung hyperinflation had no effect on FEV1 or 6-minute walk results at 1 year; survival at 1, 2, or 3 years; or the rate of acute rejection, infection, or bronchiolitis obliterans syndrome greater than grade 2. Acute native lung hyperinflation is common radiographically but is rarely clinically severe. Although there was a trend toward an increase in symptomatic ANLH in patients with bullous emphysema, a high-risk group could not be identified preoperatively. Our results do not support the routine use of bilateral lung transplant, the exclusive use of right single-lung transplant, simultaneous lung volume reduction surgery, or independent lung ventilation for patients with emphysema. Management strategies should be employed that limit overdistension of the native lung and lead to early extubation.

  9. Evaluation of a semiautomated lung mass calculation technique for internal dosimetry applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busse, Nathan; Erwin, William; Pan, Tinsu

    2013-12-15

    Purpose: The authors sought to evaluate a simple, semiautomated lung mass estimation method using computed tomography (CT) scans obtained using a variety of acquisition techniques and reconstruction parameters for mass correction of medical internal radiation dose-based internal radionuclide radiation absorbed dose estimates.Methods: CT scans of 27 patients with lung cancer undergoing stereotactic body radiation therapy treatment planning with PET/CT were analyzed retrospectively. For each patient, free-breathing (FB) and respiratory-gated 4DCT scans were acquired. The 4DCT scans were sorted into ten respiratory phases, representing one complete respiratory cycle. An average CT reconstruction was derived from the ten-phase reconstructions. Mid expiration breath-holdmore » CT scans were acquired in the same session for many patients. Deep inspiration breath-hold diagnostic CT scans of many of the patients were obtained from different scanning sessions at similar time points to evaluate the effect of contrast administration and maximum inspiration breath-hold. Lung mass estimates were obtained using all CT scan types, and intercomparisons made to assess lung mass variation according to scan type. Lung mass estimates using the FB CT scans from PET/CT examinations of another group of ten male and ten female patients who were 21–30 years old and did not have lung disease were calculated and compared with reference lung mass values. To evaluate the effect of varying CT acquisition and reconstruction parameters on lung mass estimation, an anthropomorphic chest phantom was scanned and reconstructed with different CT parameters. CT images of the lungs were segmented using the OsiriX MD software program with a seed point of about −850 HU and an interval of 1000. Lung volume, and mean lung, tissue, and air HUs were recorded for each scan. Lung mass was calculated by assuming each voxel was a linear combination of only air and tissue. The specific gravity of lung volume was calculated using the formula (lung HU − air HU)/(tissue HU − air HU), and mass = specific gravity × total volume × 1.04 g/cm{sup 3}.Results: The range of calculated lung masses was 0.51–1.29 kg. The average male and female lung masses during FB CT were 0.80 and 0.71 kg, respectively. The calculated lung mass varied across the respiratory cycle but changed to a lesser degree than did lung volume measurements (7.3% versus 15.4%). Lung masses calculated using deep inspiration breath-hold and average CT were significantly larger (p < 0.05) than were some masses calculated using respiratory-phase and FB CT. Increased voxel size and smooth reconstruction kernels led to high lung mass estimates owing to partial volume effects.Conclusions: Organ mass correction is an important component of patient-specific internal radionuclide dosimetry. Lung mass calculation necessitates scan-based density correction to account for volume changes owing to respiration. The range of lung masses in the authors’ patient population represents lung doses for the same absorbed energy differing from 25% below to 64% above the dose found using reference phantom organ masses. With proper management of acquisition parameters and selection of FB or midexpiration breath hold scans, lung mass estimates with about 10% population precision may be achieved.« less

  10. Molecular mechanisms underlying variations in lung function: a systems genetics analysis

    PubMed Central

    Obeidat, Ma’en; Hao, Ke; Bossé, Yohan; Nickle, David C; Nie, Yunlong; Postma, Dirkje S; Laviolette, Michel; Sandford, Andrew J; Daley, Denise D; Hogg, James C; Elliott, W Mark; Fishbane, Nick; Timens, Wim; Hysi, Pirro G; Kaprio, Jaakko; Wilson, James F; Hui, Jennie; Rawal, Rajesh; Schulz, Holger; Stubbe, Beate; Hayward, Caroline; Polasek, Ozren; Järvelin, Marjo-Riitta; Zhao, Jing Hua; Jarvis, Deborah; Kähönen, Mika; Franceschini, Nora; North, Kari E; Loth, Daan W; Brusselle, Guy G; Smith, Albert Vernon; Gudnason, Vilmundur; Bartz, Traci M; Wilk, Jemma B; O’Connor, George T; Cassano, Patricia A; Tang, Wenbo; Wain, Louise V; Artigas, María Soler; Gharib, Sina A; Strachan, David P; Sin, Don D; Tobin, Martin D; London, Stephanie J; Hall, Ian P; Paré, Peter D

    2016-01-01

    Summary Background Lung function measures reflect the physiological state of the lung, and are essential to the diagnosis of chronic obstructive pulmonary disease (COPD). The SpiroMeta-CHARGE consortium undertook the largest genome-wide association study (GWAS) so far (n=48 201) for forced expiratory volume in 1 s (FEV1) and the ratio of FEV1 to forced vital capacity (FEV1/FVC) in the general population. The lung expression quantitative trait loci (eQTLs) study mapped the genetic architecture of gene expression in lung tissue from 1111 individuals. We used a systems genetics approach to identify single nucleotide polymorphisms (SNPs) associated with lung function that act as eQTLs and change the level of expression of their target genes in lung tissue; termed eSNPs. Methods The SpiroMeta-CHARGE GWAS results were integrated with lung eQTLs to map eSNPs and the genes and pathways underlying the associations in lung tissue. For comparison, a similar analysis was done in peripheral blood. The lung mRNA expression levels of the eSNP-regulated genes were tested for associations with lung function measures in 727 individuals. Additional analyses identified the pleiotropic effects of eSNPs from the published GWAS catalogue, and mapped enrichment in regulatory regions from the ENCODE project. Finally, the Connectivity Map database was used to identify potential therapeutics in silico that could reverse the COPD lung tissue gene signature. Findings SNPs associated with lung function measures were more likely to be eQTLs and vice versa. The integration mapped the specific genes underlying the GWAS signals in lung tissue. The eSNP-regulated genes were enriched for developmental and inflammatory pathways; by comparison, SNPs associated with lung function that were eQTLs in blood, but not in lung, were only involved in inflammatory pathways. Lung function eSNPs were enriched for regulatory elements and were over-represented among genes showing differential expression during fetal lung development. An mRNA gene expression signature for COPD was identified in lung tissue and compared with the Connectivity Map. This in-silico drug repurposing approach suggested several compounds that reverse the COPD gene expression signature, including a nicotine receptor antagonist. These findings represent novel therapeutic pathways for COPD. Interpretation The system genetics approach identified lung tissue genes driving the variation in lung function and susceptibility to COPD. The identification of these genes and the pathways in which they are enriched is essential to understand the pathophysiology of airway obstruction and to identify novel therapeutic targets and biomarkers for COPD, including drugs that reverse the COPD gene signature in silico. Funding The research reported in this article was not specifically funded by any agency. See Acknowledgments for a full list of funders of the lung eQTL study and the Spiro-Meta CHARGE GWAS. PMID:26404118

  11. Structure and epitope distribution of heparan sulfate is disrupted in experimental lung hypoplasia: a glycobiological epigenetic cause for malformation?

    PubMed

    Thompson, Sophie M; Connell, Marilyn G; van Kuppevelt, Toin H; Xu, Ruoyan; Turnbull, Jeremy E; Losty, Paul D; Fernig, David G; Jesudason, Edwin C

    2011-06-14

    Heparan sulfate (HS) is present on the surface of virtually all mammalian cells and is a major component of the extracellular matrix (ECM), where it plays a pivotal role in cell-cell and cell-matrix cross-talk through its large interactome. Disruption of HS biosynthesis in mice results in neonatal death as a consequence of malformed lungs, indicating that HS is crucial for airway morphogenesis. Neonatal mortality (~50%) in newborns with congenital diaphragmatic hernia (CDH) is principally associated with lung hypoplasia and pulmonary hypertension. Given the importance of HS for lung morphogenesis, we investigated developmental changes in HS structure in normal and hypoplastic lungs using the nitrofen rat model of CDH and semi-synthetic bacteriophage ('phage) display antibodies, which identify distinct HS structures. The pulmonary pattern of elaborated HS structures is developmentally regulated. For example, the HS4E4V epitope is highly expressed in sub-epithelial mesenchyme of E15.5 - E17.5 lungs and at a lower level in more distal mesenchyme. However, by E19.5, this epitope is expressed similarly throughout the lung mesenchyme.We also reveal abnormalities in HS fine structure and spatiotemporal distribution of HS epitopes in hypoplastic CDH lungs. These changes involve structures recognised by key growth factors, FGF2 and FGF9. For example, the EV3C3V epitope, which was abnormally distributed in the mesenchyme of hypoplastic lungs, is recognised by FGF2. The observed spatiotemporal changes in HS structure during normal lung development will likely reflect altered activities of many HS-binding proteins regulating lung morphogenesis. Abnormalities in HS structure and distribution in hypoplastic lungs can be expected to perturb HS:protein interactions, ECM microenvironments and crucial epithelial-mesenchyme communication, which may contribute to lung dysmorphogenesis. Indeed, a number of epitopes correlate with structures recognised by FGFs, suggesting a functional consequence of the observed changes in HS in these lungs. These results identify a novel, significant molecular defect in hypoplastic lungs and reveals HS as a potential contributor to hypoplastic lung development in CDH. Finally, these results afford the prospect that HS-mimetic therapeutics could repair defective signalling in hypoplastic lungs, improve lung growth, and reduce CDH mortality.

  12. Structure and epitope distribution of heparan sulfate is disrupted in experimental lung hypoplasia: a glycobiological epigenetic cause for malformation?

    PubMed Central

    2011-01-01

    Background Heparan sulfate (HS) is present on the surface of virtually all mammalian cells and is a major component of the extracellular matrix (ECM), where it plays a pivotal role in cell-cell and cell-matrix cross-talk through its large interactome. Disruption of HS biosynthesis in mice results in neonatal death as a consequence of malformed lungs, indicating that HS is crucial for airway morphogenesis. Neonatal mortality (~50%) in newborns with congenital diaphragmatic hernia (CDH) is principally associated with lung hypoplasia and pulmonary hypertension. Given the importance of HS for lung morphogenesis, we investigated developmental changes in HS structure in normal and hypoplastic lungs using the nitrofen rat model of CDH and semi-synthetic bacteriophage ('phage) display antibodies, which identify distinct HS structures. Results The pulmonary pattern of elaborated HS structures is developmentally regulated. For example, the HS4E4V epitope is highly expressed in sub-epithelial mesenchyme of E15.5 - E17.5 lungs and at a lower level in more distal mesenchyme. However, by E19.5, this epitope is expressed similarly throughout the lung mesenchyme. We also reveal abnormalities in HS fine structure and spatiotemporal distribution of HS epitopes in hypoplastic CDH lungs. These changes involve structures recognised by key growth factors, FGF2 and FGF9. For example, the EV3C3V epitope, which was abnormally distributed in the mesenchyme of hypoplastic lungs, is recognised by FGF2. Conclusions The observed spatiotemporal changes in HS structure during normal lung development will likely reflect altered activities of many HS-binding proteins regulating lung morphogenesis. Abnormalities in HS structure and distribution in hypoplastic lungs can be expected to perturb HS:protein interactions, ECM microenvironments and crucial epithelial-mesenchyme communication, which may contribute to lung dysmorphogenesis. Indeed, a number of epitopes correlate with structures recognised by FGFs, suggesting a functional consequence of the observed changes in HS in these lungs. These results identify a novel, significant molecular defect in hypoplastic lungs and reveals HS as a potential contributor to hypoplastic lung development in CDH. Finally, these results afford the prospect that HS-mimetic therapeutics could repair defective signalling in hypoplastic lungs, improve lung growth, and reduce CDH mortality. PMID:21672206

  13. Usage of density analysis based on micro-CT for studying lung injury associated with burn-blast combined injury.

    PubMed

    Chang, Yang; Zhang, Dong-Hai; Hu, Quan; Liu, Ling-Ying; Yu, Yong-Hui; Chai, Jia-Ke

    2018-02-12

    Burn-blast combined injury is a kind of injury caused by heat and blast at the same time. The lung injury after burn-blast combined injuries is of primary importance, and investigation of lung injury is needed in the clinical care of patients. Computed tomography (CT) is one of the standard tools used to observe the anatomical basis and pathophysiology of acute lung injury. We applied a method of fast 3D (three-dimensional) reconstruction to calculate the density value of the lung injury by CT analysis. Blast-injury group (BL group), burn-injury group (B group), burn-blast combined injury group (BBL group), and sham control group (C group) were established. Each group had 16 rats. The three-dimensional images of the lung tissue were obtained at 6h, 24h, and 48h according to the CT value. The average density of the whole lung, left lung, and right lung were measured. The lung tissues were paraffin-embedded and HE stained. Smith scoring was performed according to the pathological findings. In the BBL group, the density of the lung tissue was higher than those of the BL group and B group (P<0.01). The lung tissue density values at 24h after injury were higher than those at 6h and 48h after injury (P<0.01). Pathological results confirmed the changes of density analysis of the lung tissue. The results have indicated that density analysis through a CT scan can be used as a way to evaluate lung injury in a burn-blast injury. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.

  14. Connective tissue-activating peptide III: a novel blood biomarker for early lung cancer detection.

    PubMed

    Yee, John; Sadar, Marianne D; Sin, Don D; Kuzyk, Michael; Xing, Li; Kondra, Jennifer; McWilliams, Annette; Man, S F Paul; Lam, Stephen

    2009-06-10

    There are no reliable blood biomarkers to detect early lung cancer. We used a novel strategy that allows discovery of differentially present proteins against a complex and variable background. Mass spectrometry analyses of paired pulmonary venous-radial arterial blood from 16 lung cancer patients were applied to identify plasma proteins potentially derived from the tumor microenvironment. Two differentially expressed proteins were confirmed in 64 paired venous-arterial blood samples using an immunoassay. Twenty-eight pre- and postsurgical resection peripheral blood samples and two independent, blinded sets of plasma from 149 participants in a lung cancer screening study (49 lung cancers and 100 controls) and 266 participants from the National Heart Lung and Blood Institute Lung Health Study (45 lung cancer and 221 matched controls) determined the accuracy of the two protein markers to detect subclinical lung cancer. Connective tissue-activating peptide III (CTAP III)/ neutrophil activating protein-2 (NAP-2) and haptoglobin were identified to be significantly higher in venous than in arterial blood. CTAP III/NAP-2 levels decreased after tumor resection (P = .01). In two independent population cohorts, CTAP III/NAP-2 was significantly associated with lung cancer and improved the accuracy of a lung cancer risk prediction model that included age, smoking, lung function (FEV(1)), and an interaction term between FEV(1) and CTAP III/NAP-2 (area under the curve, 0.84; 95% CI, 0.77 to 0.91) compared to CAPIII/NAP-2 alone. We identified CTAP III/NAP-2 as a novel biomarker to detect preclinical lung cancer. The study underscores the importance of applying blood biomarkers as part of a multimodal lung cancer risk prediction model instead of as stand-alone tests.

  15. Flow-controlled expiration: a novel ventilation mode to attenuate experimental porcine lung injury.

    PubMed

    Goebel, U; Haberstroh, J; Foerster, K; Dassow, C; Priebe, H-J; Guttmann, J; Schumann, S

    2014-09-01

    Whereas the effects of various inspiratory ventilatory modifications in lung injury have extensively been studied, those of expiratory ventilatory modifications are less well known. We hypothesized that the newly developed flow-controlled expiration (FLEX) mode provides a means of attenuating experimental lung injury. Experimental acute respiratory distress syndrome was induced by i.v. injection of oleic acid in 15 anaesthetized and mechanically ventilated pigs. After established lung injury ([Formula: see text]ratio <27 kPa), animals were randomized to either a control group receiving volume-controlled ventilation (VCV) or a treatment group receiving VCV with additional FLEX (VCV+FLEX). At predefined times, lung mechanics and oxygenation were assessed. At the end of the experiment, the pigs were killed, and bronchoalveolar fluid and lung biopsies were taken. Expression of inflammatory cytokines was analysed in lung tissue and bronchoalveolar fluid. Lung injury score was determined on the basis of stained tissue samples. Compared with the control group (VCV; n=8), the VCV+FLEX group (n=7) demonstrated greater dynamic lung compliance and required less PEEP at comparable [Formula: see text] (both P<0.05), had lower regional lung wet-to-dry ratios and lung injury scores (both P<0.001), and showed less thickening of alveolar walls (an indicator of interstitial oedema) and de novo migration of macrophages into lung tissue (both P<0.001). The newly developed FLEX mode is able to attenuate experimental lung injury. FLEX could provide a novel means of lung-protective ventilation. © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. β-cryptoxanthin restores nicotine-reduced lung SIRT1 to normal levels and inhibits nicotine-promoted lung tumorigenesis and emphysema in A/J mice.

    PubMed

    Iskandar, Anita R; Liu, Chun; Smith, Donald E; Hu, Kang-Quan; Choi, Sang-Woon; Ausman, Lynne M; Wang, Xiang-Dong

    2013-04-01

    Nicotine, a large constituent of cigarette smoke, is associated with an increased risk of lung cancer, but the data supporting this relationship are inconsistent. Here, we found that nicotine treatment not only induced emphysema but also increased both lung tumor multiplicity and volume in 4-nitrosamino-1-(3-pyridyl)-1-butanone (NNK)-initiated lung cancer in A/J mice. This tumor-promoting effect of nicotine was accompanied by significant reductions in survival probability and lung Sirtuin 1 (SIRT1) expression, which has been proposed as a tumor suppressor. The decreased level of SIRT1 was associated with increased levels of AKT phosphorylation and interleukin (il)-6 mRNA but decreased tumor suppressor p53 and retinoic acid receptor (RAR)-β mRNA levels in the lungs. Using this mouse model, we then determined whether β-cryptoxanthin (BCX), a xanthophyll that is strongly associated with a reduced risk of lung cancer in several cohort studies, can inhibit nicotine-induced emphysema and lung tumorigenesis. We found that BCX supplementation at two different doses was associated with reductions of the nicotine-promoted lung tumor multiplicity and volume, as well as emphysema in mice treated with both NNK and nicotine. Moreover, BCX supplementation restored the nicotine-suppressed expression of lung SIRT1, p53, and RAR-β to that of the control group, increased survival probability, and decreased the levels of lung il-6 mRNA and phosphorylation of AKT. The present study indicates that BCX is a preventive agent against emphysema and lung cancer with SIRT1 as a potential target. In addition, our study establishes a relevant animal lung cancer model for studying tumor growth within emphysematous microenvironments.

  17. Lung Cancer Risk Prediction Model Incorporating Lung Function: Development and Validation in the UK Biobank Prospective Cohort Study.

    PubMed

    Muller, David C; Johansson, Mattias; Brennan, Paul

    2017-03-10

    Purpose Several lung cancer risk prediction models have been developed, but none to date have assessed the predictive ability of lung function in a population-based cohort. We sought to develop and internally validate a model incorporating lung function using data from the UK Biobank prospective cohort study. Methods This analysis included 502,321 participants without a previous diagnosis of lung cancer, predominantly between 40 and 70 years of age. We used flexible parametric survival models to estimate the 2-year probability of lung cancer, accounting for the competing risk of death. Models included predictors previously shown to be associated with lung cancer risk, including sex, variables related to smoking history and nicotine addiction, medical history, family history of lung cancer, and lung function (forced expiratory volume in 1 second [FEV1]). Results During accumulated follow-up of 1,469,518 person-years, there were 738 lung cancer diagnoses. A model incorporating all predictors had excellent discrimination (concordance (c)-statistic [95% CI] = 0.85 [0.82 to 0.87]). Internal validation suggested that the model will discriminate well when applied to new data (optimism-corrected c-statistic = 0.84). The full model, including FEV1, also had modestly superior discriminatory power than one that was designed solely on the basis of questionnaire variables (c-statistic = 0.84 [0.82 to 0.86]; optimism-corrected c-statistic = 0.83; p FEV1 = 3.4 × 10 -13 ). The full model had better discrimination than standard lung cancer screening eligibility criteria (c-statistic = 0.66 [0.64 to 0.69]). Conclusion A risk prediction model that includes lung function has strong predictive ability, which could improve eligibility criteria for lung cancer screening programs.

  18. Relationship of the functional movement screen in-line lunge to power, speed, and balance measures.

    PubMed

    Hartigan, Erin H; Lawrence, Michael; Bisson, Brian M; Torgerson, Erik; Knight, Ryan C

    2014-05-01

    The in-line lunge of the Functional Movement Screen (FMS) evaluates lateral stability, balance, and movement asymmetries. Athletes who score poorly on the in-line lunge should avoid activities requiring power or speed until scores are improved, yet relationships between the in-line lunge scores and other measures of balance, power, and speed are unknown. (1) Lunge scores will correlate with center of pressure (COP), maximum jump height (MJH), and 36.6-meter sprint time and (2) there will be no differences between limbs on lunge scores, MJH, or COP. Descriptive laboratory study. Level 3. Thirty-seven healthy, active participants completed the first 3 tasks of the FMS (eg, deep squat, hurdle step, in-line lunge), unilateral drop jumps, and 36.6-meter sprints. A 3-dimensional motion analysis system captured MJH. Force platforms measured COP excursion. A laser timing system measured 36.6-m sprint time. Statistical analyses were used to determine whether a relationship existed between lunge scores and COP, MJH, and 36.6-m speed (Spearman rho tests) and whether differences existed between limbs in lunge scores (Wilcoxon signed-rank test), MJH, and COP (paired t tests). Lunge scores were not significantly correlated with COP, MJH, or 36.6-m sprint time. Lunge scores, COP excursion, and MJH were not statistically different between limbs. Performance on the FMS in-line lunge was not related to balance, power, or speed. Healthy participants were symmetrical in lunging measures and MJH. Scores on the FMS in-line lunge should not be attributed to power, speed, or balance performance without further examination. However, assessing limb symmetry appears to be clinically relevant.

  19. Alveolar Macrophages Drive Hepatocellular Carcinoma Lung Metastasis by Generating Leukotriene B4.

    PubMed

    Nosaka, Takuto; Baba, Tomohisa; Tanabe, Yamato; Sasaki, Soichiro; Nishimura, Tatsunori; Imamura, Yoshiaki; Yurino, Hideaki; Hashimoto, Shinichi; Arita, Makoto; Nakamoto, Yasunari; Mukaida, Naofumi

    2018-03-01

    Macrophages in lungs can be classified into two subpopulations, alveolar macrophages (AMs) and interstitial macrophages (IMs), which reside in the alveolar and interstitial spaces, respectively. Accumulating evidence indicates the involvement of IMs in lung metastasis, but the roles of AMs in lung metastasis still remain elusive. An i.v. injection of a mouse hepatocellular carcinoma (HCC) cell line, BNL, caused lung metastasis foci with infiltration of AMs and IMs. Comprehensive determination of arachidonic acid metabolite levels revealed increases in leukotrienes and PGs in lungs in this metastasis model. A 5-lipoxygenase (LOX) inhibitor but not a cyclooxygenase inhibitor reduced the numbers of metastatic foci, particularly those of a larger size. A major 5-LOX metabolite, LTB 4 , augmented in vitro cell proliferation of human HCC cell lines as well as BNL cells. Moreover, in this lung metastasis course, AMs exhibited higher expression levels of the 5-LOX and LTB 4 than IMs. Consistently, 5-LOX-expressing AMs increased in the lungs of human HCC patients with lung metastasis, compared with those without lung metastasis. Furthermore, intratracheal clodronate liposome injection selectively depleted AMs but not IMs, together with reduced LTB 4 content and metastatic foci numbers in this lung metastasis process. Finally, IMs in mouse metastatic foci produced CCL2, thereby recruiting blood-borne, CCR2-expressing AMs into lungs. Thus, AMs can be recruited under the guidance of IM-derived CCL2 into metastatic lungs and can eventually contribute to the progression of lung metastasis by providing a potent arachidonic acid-derived tumor growth promoting mediator, LTB 4 . Copyright © 2018 by The American Association of Immunologists, Inc.

  20. Qualitative and quantitative interpretation of computed tomography of the lungs in healthy neonatal foals.

    PubMed

    Lascola, Kara M; O'Brien, Robert T; Wilkins, Pamela A; Clark-Price, Stuart C; Hartman, Susan K; Mitchell, Mark A

    2013-09-01

    To qualitatively describe lung CT images obtained from sedated healthy equine neonates (≤ 14 days of age), use quantitative analysis of CT images to characterize attenuation and distribution of gas and tissue volumes within the lungs, and identify differences between lung characteristics of foals ≤ 7 days of age and foals > 7 days of age. 10 Standardbred foals between 2.5 and 13 days of age. Foals were sedated with butorphanol, midazolam, and propofol and positioned in sternal recumbency for thoracic CT. Image analysis software was used to exclude lung from nonlung structures. Lung attenuation was measured in Hounsfield units (HU) for analysis of whole lung and regional changes in attenuation and lung gas and tissue components. Degree of lung attenuation was classified as follows: hyperinflated or emphysema, -1,000 to -901 HU; well aerated, -900 to -501 HU; poorly aerated, -500 to -101 HU; and nonaerated, > -100 HU. Qualitative evidence of an increase in lung attenuation and patchy alveolar patterns in the ventral lung region were more pronounced in foals ≤ 7 days of age than in older foals. Quantitative analysis revealed that mean ± SD lung attenuation was greater in foals ≤ 7 days of age (-442 ± 28 HU) than in foals > 7 days of age (-521 ± 24 HU). Lung aeration and gas volumes were lower than in other regions ventrally and in the mid lung region caudal to the heart. CONCLUSIONS AND CLINICAL RELEVANCE-Identified radiographic patterns and changes in attenuation were most consistent with atelectasis and appeared more severe in foals ≤ 7 days of age than in older neonatal foals. Recognition of these changes may have implications for accurate CT interpretation in sedated neonatal foals with pulmonary disease.

  1. Surgical and survival outcomes of lung cancer patients with intratumoral lung abscesses.

    PubMed

    Yamanashi, Keiji; Okumura, Norihito; Takahashi, Ayuko; Nakashima, Takashi; Matsuoka, Tomoaki

    2017-05-26

    Intratumoral lung abscess is a secondary lung abscess that is considered to be fatal. Therefore, surgical procedures, although high-risk, have sometimes been performed for intratumoral lung abscesses. However, no studies have examined the surgical outcomes of non-small cell lung cancer patients with intratumoral lung abscesses. The aim of this study was to investigate the surgical and survival outcomes of non-small cell lung cancer patients with intratumoral lung abscesses. Eleven consecutive non-small cell lung cancer patients with intratumoral lung abscesses, who had undergone pulmonary resection at our institution between January 2007 and December 2015, were retrospectively analysed. The post-operative prognoses were investigated and prognostic factors were evaluated. Ten of 11 patients were male and one patient was female. The median age was 64 (range, 52-80) years. Histopathologically, 4 patients had Stage IIA, 2 patients had Stage IIB, 2 patients had Stage IIIA, and 3 patients had Stage IV tumors. The median operative time was 346 min and the median amount of bleeding was 1327 mL. The post-operative morbidity and mortality rates were 63.6% and 0.0%, respectively. Recurrence of respiratory infections, including lung abscesses, was not observed in all patients. The median post-operative observation period was 16.1 (range, 1.3-114.5) months. The 5-year overall survival rate was 43.3%. No pre-operative, intra-operative, or post-operative prognostic factors were identified in the univariate analyses. Surgical procedures for advanced-stage non-small cell lung cancer patients with intratumoral lung abscesses, although high-risk, led to satisfactory post-operative mortality rates and acceptable prognoses.

  2. Quantitative computed tomography of lung parenchyma in patients with emphysema: analysis of higher-density lung regions

    NASA Astrophysics Data System (ADS)

    Lederman, Dror; Leader, Joseph K.; Zheng, Bin; Sciurba, Frank C.; Tan, Jun; Gur, David

    2011-03-01

    Quantitative computed tomography (CT) has been widely used to detect and evaluate the presence (or absence) of emphysema applying the density masks at specific thresholds, e.g., -910 or -950 Hounsfield Unit (HU). However, it has also been observed that subjects with similar density-mask based emphysema scores could have varying lung function, possibly indicating differences of disease severity. To assess this possible discrepancy, we investigated whether density distribution of "viable" lung parenchyma regions with pixel values > -910 HU correlates with lung function. A dataset of 38 subjects, who underwent both pulmonary function testing and CT examinations in a COPD SCCOR study, was assembled. After the lung regions depicted on CT images were automatically segmented by a computerized scheme, we systematically divided the lung parenchyma into different density groups (bins) and computed a number of statistical features (i.e., mean, standard deviation (STD), skewness of the pixel value distributions) in these density bins. We then analyzed the correlations between each feature and lung function. The correlation between diffusion lung capacity (DLCO) and STD of pixel values in the bin of -910HU <= PV < -750HU was -0.43, as compared with a correlation of -0.49 obtained between the post-bronchodilator ratio (FEV1/FVC) measured by the forced expiratory volume in 1 second (FEV1) dividing the forced vital capacity (FVC) and the STD of pixel values in the bin of -1024HU <= PV < -910HU. The results showed an association between the distribution of pixel values in "viable" lung parenchyma and lung function, which indicates that similar to the conventional density mask method, the pixel value distribution features in "viable" lung parenchyma areas may also provide clinically useful information to improve assessments of lung disease severity as measured by lung functional tests.

  3. Negative pressure ventilation decreases inflammation and lung edema during normothermic ex-vivo lung perfusion.

    PubMed

    Aboelnazar, Nader S; Himmat, Sayed; Hatami, Sanaz; White, Christopher W; Burhani, Mohamad S; Dromparis, Peter; Matsumura, Nobutoshi; Tian, Ganghong; Dyck, Jason R B; Mengel, Michael; Freed, Darren H; Nagendran, Jayan

    2018-04-01

    Normothermic ex-vivo lung perfusion (EVLP) using positive pressure ventilation (PPV) and both acellular and red blood cell (RBC)-based perfusate solutions have increased the rate of donor organ utilization. We sought to determine whether a negative pressure ventilation (NPV) strategy would improve donor lung assessment during EVLP. Thirty-two pig lungs were perfused ex vivo for 12 hours in a normothermic state, and were allocated equally to 4 groups according to the mode of ventilation (positive pressure ventilation [PPV] vs NPV) and perfusate composition (acellular vs RBC). The impact of ventilation strategy on the preservation of 6 unutilized human donor lungs was also evaluated. Physiologic parameters, cytokine profiles, lung injury, bullae and edema formation were compared between treatment groups. Perfused lungs demonstrated acceptable oxygenation (partial pressure of arterial oxygen/fraction of inspired oxygen ratio >350 mm Hg) and physiologic parameters. However, there was less generation of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interleukin-8) in human and pig lungs perfused, irrespective of perfusate solution used, when comparing NPV with PPV (p < 0.05), and a reduction in bullae formation with an NPV modality (p = 0.02). Pig lungs developed less edema with NPV (p < 0.01), and EVLP using an acellular perfusate solution had greater edema formation, irrespective of ventilation strategy (p = 0.01). Interestingly, human lungs perfused with NPV developed negative edema, or "drying" (p < 0.01), and lower composite acute lung injury (p < 0.01). Utilization of an NPV strategy during extended EVLP is associated with significantly less inflammation, and lung injury, irrespective of perfusate solution composition. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  4. Derivation of therapeutic lung spheroid cells from minimally invasive transbronchial pulmonary biopsies.

    PubMed

    Dinh, Phuong-Uyen C; Cores, Jhon; Hensley, M Taylor; Vandergriff, Adam C; Tang, Junnan; Allen, Tyler A; Caranasos, Thomas G; Adler, Kenneth B; Lobo, Leonard J; Cheng, Ke

    2017-06-30

    Resident stem and progenitor cells have been identified in the lung over the last decade, but isolation and culture of these cells remains a challenge. Thus, although these lung stem and progenitor cells provide an ideal source for stem-cell based therapy, mesenchymal stem cells (MSCs) remain the most popular cell therapy product for the treatment of lung diseases. Surgical lung biopsies can be the tissue source but such procedures carry a high risk of mortality. In this study we demonstrate that therapeutic lung cells, termed "lung spheroid cells" (LSCs) can be generated from minimally invasive transbronchial lung biopsies using a three-dimensional culture technique. The cells were then characterized by flow cytometry and immunohistochemistry. Angiogenic potential was tested by in-vitro HUVEC tube formation assay. In-vivo bio- distribution of LSCs was examined in athymic nude mice after intravenous delivery. From one lung biopsy, we are able to derive >50 million LSC cells at Passage 2. These cells were characterized by flow cytometry and immunohistochemistry and were shown to represent a mixture of lung stem cells and supporting cells. When introduced systemically into nude mice, LSCs were retained primarily in the lungs for up to 21 days. Here, for the first time, we demonstrated that direct culture and expansion of human lung progenitor cells from pulmonary tissues, acquired through a minimally invasive biopsy, is possible and straightforward with a three-dimensional culture technique. These cells could be utilized in long-term expansion of lung progenitor cells and as part of the development of cell-based therapies for the treatment of lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).

  5. Biological and statistical approaches to predicting human lung cancer risk from silica.

    PubMed

    Kuempel, E D; Tran, C L; Bailer, A J; Porter, D W; Hubbs, A F; Castranova, V

    2001-01-01

    Chronic inflammation is a key step in the pathogenesis of particle-elicited fibrosis and lung cancer in rats, and possibly in humans. In this study, we compute the excess risk estimates for lung cancer in humans with occupational exposure to crystalline silica, using both rat and human data, and using both a threshold approach and linear models. From a toxicokinetic/dynamic model fit to lung burden and pulmonary response data from a subchronic inhalation study in rats, we estimated the minimum critical quartz lung burden (Mcrit) associated with reduced pulmonary clearance and increased neutrophilic inflammation. A chronic study in rats was also used to predict the human excess risk of lung cancer at various quartz burdens, including mean Mcrit (0.39 mg/g lung). We used a human kinetic lung model to link the equivalent lung burdens to external exposures in humans. We then computed the excess risk of lung cancer at these external exposures, using data of workers exposed to respirable crystalline silica and using Poisson regression and lifetable analyses. Finally, we compared the lung cancer excess risks estimated from male rat and human data. We found that the rat-based linear model estimates were approximately three times higher than those based on human data (e.g., 2.8% in rats vs. 0.9-1% in humans, at mean Mcrit lung burden or associated mean working lifetime exposure of 0.036 mg/m3). Accounting for variability and uncertainty resulted in 100-1000 times lower estimates of human critical lung burden and airborne exposure. This study illustrates that assumptions about the relevant biological mechanism, animal model, and statistical approach can all influence the magnitude of lung cancer risk estimates in humans exposed to crystalline silica.

  6. Family history and lung cancer risk: international multicentre case-control study in Eastern and Central Europe and meta-analyses.

    PubMed

    Lissowska, Jolanta; Foretova, Lenka; Dabek, Joanna; Zaridze, David; Szeszenia-Dabrowska, Neonila; Rudnai, Peter; Fabianova, Eleonora; Cassidy, Adrian; Mates, Dana; Bencko, Vladimir; Janout, Vladimir; Hung, Rayjean J; Brennan, Paul; Boffetta, Paolo

    2010-07-01

    Lung cancer is the most common neoplastic disease in Eastern and Central Europe. The role of hereditary factors in lung carcinogenesis is not fully understood. Family history (FH) of lung cancer and other tobacco-related cancers might be a strong predictor of the lung cancer risk. We investigated family history of cancer among first-degree relatives of 2,861 patients with lung cancer and 3,118 controls from the Czech Republic, Hungary, Poland, Romania, Russia, Slovakia, and United Kingdom within the IARC Multicenter Case-Control Study. Odds ratios (ORs) and 95% CI were calculated using logistic regression, adjusting for age, gender, study center, education, tobacco smoking, and number of first-degree relatives. In addition, we conducted a meta-analysis of 41 studies on FH of cancer and lung cancer risk. Positive FH of lung cancer increased risk of lung cancer with OR of 1.63 (95%CI: 1.31-2.01), and having two or more affected relatives with lung cancer further increased the risk of lung cancer with OR 3.60 (95%CI: 1.56-8.31). Among subjects aged less than 50, the OR for FH of lung cancer was 2.08 (95%CI: 1.18-3.63). The associations were generally stronger for squamous cell carcinoma and large cell carcinoma subtypes. Heterogeneity in results was not found with respect to smoking status and gender. A significant association was not observed for FH of other smoking-related tumors. The results of meta-analysis were consistent with that of our study with regard to young onset, non-smokers and histology. FH of lung cancer is a predictor of an increased risk of lung cancer, especially in subjects aged less than 50.

  7. Utility of Lung Ultrasonography for Detection of Pleural Adhesions in Dogs.

    PubMed

    Uemura, Akiko; Fukayama, Toshiharu; Tanaka, Takashi; Tanaka, Ryou

    2018-05-01

    To assess lung respiratory movement ("lung sliding") in dogs using B-mode ultrasonography (US) and to develop a method that assesses adhesions between the parietal pleura and the lung. Seventeen male beagles were anesthetized, and respiratory management was performed with intermittent positive pressure ventilation. Lung-sliding assessments and adhesion examinations were performed with lung US under general anesthesia before and 2 weeks after thoracotomy. Lung sliding was scored on a 4-level scale based on the percentage of the area that showed lung sliding (3, an area of roughly ≥80% of the intercostal space; 2, about 50% of the area of the intercostal space; 1, a small area of the intercostal space; or 0, movement absent); scores of 0, 1, and 2 indicated adhesions, whereas a score of 3 indicated no adhesions. The animals were then euthanized, and necropsy was performed to examine pleural adhesions. Lung US and necropsy findings were compared. The median lung-sliding score for the 12 sites with pleural adhesions on necropsy was 1.5, whereas it was 3.0 for the 532 sites without pleural adhesions. The lung-sliding score was significantly lower in the group with adhesions (P < .0001). Adhesion sites detected on necropsy were in accordance with the sites that had decreased lung-sliding scores. Lung US could detect pleural adhesions with sensitivity of 100.0% and specificity of 87.8%. Examination of lung sliding by thoracic US has high diagnostic value for detecting canine pleural adhesions and is useful in predicting adhesion sites before thoracic surgery in healthy dogs. © 2017 by the American Institute of Ultrasound in Medicine.

  8. Lung cancer-A global perspective.

    PubMed

    McIntyre, Amanda; Ganti, Apar Kishor

    2017-04-01

    Lung cancer is the leading cause of cancer deaths worldwide. While tobacco exposure is responsible for the majority of lung cancers, the incidence of lung cancer in never smokers, especially Asian women, is increasing. There is a global variation in lung cancer biology with EGFR mutations being more common in Asian patients, while Kras mutation is more common in Caucasians. This review will focus on the global variations in lung cancer and its treatment. © 2017 Wiley Periodicals, Inc.

  9. Crizotinib in Treating Patients With Stage IB-IIIA Non-small Cell Lung Cancer That Has Been Removed by Surgery and ALK Fusion Mutations (An ALCHEMIST Treatment Trial)

    ClinicalTrials.gov

    2017-12-07

    ALK Gene Rearrangement; ALK Gene Translocation; ALK Positive; Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundar, Isaac K.; Hwang, Jae-Woong; Wu, Shaoping

    Research highlights: {yields} Vitamin D deficiency is linked to accelerated decline in lung function. {yields} Levels of vitamin D receptor (VDR) are decreased in lungs of patients with COPD. {yields} VDR knock-out mouse showed increased lung inflammation and emphysema. {yields} This was associated with decline in lung function and increased MMPs. {yields} VDR knock-out mouse model is useful for studying the mechanisms of lung diseases. -- Abstract: Deficiency of vitamin D is associated with accelerated decline in lung function. Vitamin D is a ligand for nuclear hormone vitamin D receptor (VDR), and upon binding it modulates various cellular functions. Themore » level of VDR is reduced in lungs of patients with chronic obstructive pulmonary disease (COPD) which led us to hypothesize that deficiency of VDR leads to significant alterations in lung phenotype that are characteristics of COPD/emphysema associated with increased inflammatory response. We found that VDR knock-out (VDR{sup -/-}) mice had increased influx of inflammatory cells, phospho-acetylation of nuclear factor-kappaB (NF-{kappa}B) associated with increased proinflammatory mediators, and up-regulation of matrix metalloproteinases (MMPs) MMP-2, MMP-9, and MMP-12 in the lung. This was associated with emphysema and decline in lung function associated with lymphoid aggregates formation compared to WT mice. These findings suggest that deficiency of VDR in mouse lung can lead to an early onset of emphysema/COPD because of chronic inflammation, immune dysregulation, and lung destruction.« less

  11. Transpleural ventilation of explanted human lungs

    PubMed Central

    Choong, Cliff K; Macklem, Peter T; Pierce, John A; Lefrak, Stephen S; Woods, Jason C; Conradi, Mark S; Yablonskiy, Dimitry A; Hogg, James C; Chino, Kimiaki; Cooper, Joel D

    2007-01-01

    Background The hypothesis that ventilation of emphysematous lungs would be enhanced by communication with the parenchyma through holes in the pleural surface was tested. Methods Fresh human lungs were obtained from patients with emphysema undergoing lung transplantation. Control human lungs were obtained from organ donors whose lungs, for technical reasons, were not considered suitable for implantation. Lungs were ventilated through the bronchial tree or transpleurally via a small hole communicating with the underlying parenchyma over which a flanged silicone tube had been cemented to the surface of the lung (spiracle). Measurements included flow‐volume‐time curves during passive deflation via each pathway; volume of trapped gas recovered from lungs via spiracles when no additional gas was obtainable passively from the airways; and magnetic resonance imaging assessment of spatial distribution of hyperpolarised helium (3He) administered through either the airways or spiracles. Results In emphysematous lungs, passively expelled volumes at 20 s were 94% greater through spiracles than via the airways. Following passive deflation from the airways, an average of 1.07 litres of trapped gas volume was recoverable via spiracles. Regions were ventilated by spiracles that were less well ventilated via bronchi. Conclusions Because of the extensive collateral ventilation present in emphysematous lungs, direct communication with the lung parenchyma through non‐anatomical pathways has the potential to improve the mechanics of breathing and hence ventilation. PMID:17412776

  12. Kinetics of badminton lunges in four directions.

    PubMed

    Hong, Youlian; Wang, Shao Jun; Lam, Wing Kai; Cheung, Jason Tak Man

    2014-02-01

    The lunge is the most fundamental skill in badminton competitions. Fifteen university-level male badminton players performed lunge maneuvers in four directions, namely, right-forward, left-forward, right-backward, and left-backward, while wearing two different brands of badminton shoes. The test compared the kinetics of badminton shoes in performing typical lunge maneuvers. A force plate and an insole measurement system measured the ground reaction forces and plantar pressures. These measurements were compared across all lunge maneuvers. The left-forward lunge generated significantly higher first vertical impact force (2.34 ± 0.52 BW) than that of the right-backward (2.06 ± 0.60 BW) and left-backward lunges (1.78 ± 0.44 BW); higher second vertical impact force (2.44 ± 0.51 BW) than that of the left-backward lunge (2.07 ± 0.38 BW); and higher maximum anterior-posterior shear force (1.48 ± 0.36 BW) than that of the left-backward lunge (1.18 ± 0.38 BW). Compared with other lunge directions, the left-forward lunge showed higher mean maximum vertical impact anterior-posterior shear forces and their respective maximum loading rates, and the plantar pressure at the total foot and heel regions. Therefore, the left-forward lunge is a critical maneuver for badminton biomechanics and related footwear research because of the high loading magnitude generated during heel impact.

  13. Expression of Iroquois genes is up-regulated during early lung development in the nitrofen-induced pulmonary hypoplasia.

    PubMed

    Doi, Takashi; Lukošiūtė, Aušra; Ruttenstock, Elke; Dingemann, Jens; Puri, Prem

    2011-01-01

    Iroquois homeobox (Irx) genes have been implicated in the early lung morphogenesis of vertebrates. Irx1-3 and Irx5 gene expression is seen in fetal lung in rodents up to day (D) 18.5 of gestation. Fetal lung in Irx knockdown mice shows loss of mesenchyme and dilated airspaces, whereas nitrofen-induced hypoplastic lung displays thickened mesenchyme and diminished airspaces. We hypothesized that the Irx genes are up-regulated during early lung morphogenesis in the nitrofen-induced hypoplastic lung. Pregnant rats were exposed either to olive oil or nitrofen on D9. Fetal lungs harvested on D15 were divided into control and nitrofen groups; and the lungs harvested on D18 were divided into control, nitrofen without congenital diaphragmatic hernia (CDH[-]), and nitrofen with CDH (CDH[+]). Irx gene expression levels were analyzed by reverse transcriptase polymerase chain reaction. Immunohistochemistry was performed to evaluate protein expression of Irx family. Pulmonary Irx1-3 and Irx5 messenger RNA expression levels were significantly up-regulated in nitrofen group compared with controls at D15. On D15, Irx immunoreactivity was increased in nitrofen-induced hypoplastic lung compared with controls. Overexpression of Irx genes in the early lung development may cause pulmonary hypoplasia in the nitrofen CDH model by inducing lung dysmorphogenesis with thickened mesenchyme and diminished airspaces. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Lung Quality and Utilization in Controlled Donation after Circulatory Determination of Death Donors within the United States

    PubMed Central

    Mooney, Joshua J; Hedlin, Haley; Mohabir, Paul K; Vazquez, Rodrigo; Nguyen, John; Ha, Richard; Chiu, Peter; Patel, Kapilkumar; Zamora, Martin R.; Weill, David; Nicolls, Mark R; Dhillon, Gundeep S

    2016-01-01

    While controlled donation after circulatory determination of death (cDCDD) donors could increase the supply of donor lungs within the United States, the yield of lungs from cDCDD donors remain low compared to donation after neurologic determination of death (DNDD) donors. To explore the reason for low lung yield from cDCDD donors, Scientific Registry of Transplant Recipient data were used to assess the impact of donor lung quality on cDCDD lung utilization by fitting a logistic regression model. The relationship between center volume and cDCDD use was assessed and distance between center and donor hospital was calculated by cDCDD status. Recipient survival was compared using a multivariable Cox regression model. Lung utilization was 2.1% for cDCDD donors and 21.4% for DNDD donors. Being a cDCDD donor decreased lung donation (adjusted OR 0.101, CI 0.085–0.120). A minority of centers have performed cDCDD transplant with higher volume centers generally performing more cDCDD transplants. There was no difference in center to donor distance or recipient survival (adjusted HR 1.03, CI 0.78–1.37) between cDCDD and DNDD transplants. cDCDD lungs are underutilized compared to DNDD lungs after adjusting for lung quality. Increasing transplant center expertise and commitment to cDCDD lung procurement is needed to improve utilization. PMID:26844673

  15. Lack of association between the BIM deletion polymorphism and the risk of lung cancer with and without EGFR mutations.

    PubMed

    Ebi, Hiromichi; Oze, Isao; Nakagawa, Takayuki; Ito, Hidemi; Hosono, Satoyo; Matsuda, Fumihiko; Takahashi, Meiko; Takeuchi, Shinji; Sakao, Yukinori; Hida, Toyoaki; Faber, Anthony C; Tanaka, Hideo; Yatabe, Yasushi; Mitsudomi, Tetsuya; Yano, Seiji; Matsuo, Keitaro

    2015-01-01

    The BIM deletion polymorphism in intron 2 was found in a significant percent of the Asian population. Patients with epidermal growth factor receptor (EGFR) mutant lung cancers harboring this BIM polymorphism have shorter progression free survival and overall response rates to EGFR tyrosine kinase inhibitors. However, the association between the BIM deletion polymorphism and lung cancer risk is unknown. The BIM deletion polymorphism was screened by polymerase chain reaction in 765 lung cancer cases and 942 healthy individuals. Carriers possessing one allele of the BIM polymorphism were observed in 13.0% of control cases and 12.8% of lung cancer cases, similar to incidence rates reported earlier in healthy individuals. Homozygote for the BIM polymorphism was observed in four of 942 healthy controls and three of 765 lung cancer cases. The frequency of the BIM deletion polymorphism in lung cancer patients was not related to age, sex, smoking history, or family history of lung cancer. The BIM deletion polymorphism was found in 30 of 212 patients with EGFR wild type lung cancers and 16 of 120 patients with EGFR mutant lung cancers. The frequency of the BIM polymorphism is similar between cancers with wild type EGFR and mutated EGFR (p = 0.78). The BIM deletion polymorphism was not associated with lung cancer susceptibility. Furthermore, the BIM polymorphism is not associated with EGFR mutant lung cancer.

  16. PPARGC1A is upregulated and facilitates lung cancer metastasis.

    PubMed

    Li, Jin-Dong; Feng, Qing-Chuan; Qi, Yu; Cui, Guanghui; Zhao, Song

    2017-10-15

    Lung cancer remains a leading cause of cancer-related mortality, with metastatic progression remaining the single largest cause of lung cancer mortality. Hence it is imperative to determine reliable biomarkers for lung cancer prognosis. We performed quantitative real-time PCR (qRT-PCR) analysis to explore epithelial-mesenchymal transition (EMT) inducers that regulate EMT process in three patients with advanced lung cancer disease. Peroxisome proliferator-activated receptor gamma (PPARGC1A) was uniformly the topmost overexpressed gene in all three human non-small cell lung cancer (NSCLC) patient samples. Further evaluation in human normal lung and metastatic lung cancer cell lines revealed that the expression of PPARGC1A was upregulated in metastatic lung cancer cell lines. Metagenomic analysis revealed direct correlation among PPARGC1A, zinc-finger transcription factor snail homolog 1 (SNAI1), and metastatic lung disease. Upregulation of PPARGC1A transcript expression was independent of a differential upregulation of the upstream AMP-dependent protein kinase (AMPK) activation or steady state expression of the silent mating type information regulation 2 homolog 1 (SIRT1). Xenograft tail vein colonization assays proved that the high expression of PPARGC1A was a prerequisite for metastatic progression of lung cancer to brain. Our results indicate that PPARGC1A might be a potential biomarker for lung cancer prognosis. Copyright © 2017. Published by Elsevier Inc.

  17. New insights into saccular development and vascular formation in lung allografts under the renal capsule

    PubMed Central

    Vu, Thiennu H.; Alemayehu, Yemisrach; Werb, Zena

    2009-01-01

    The study of distal lung morphogenesis and vascular development would be greatly facilitated by an in vitro or ex vivo experimental model. In this study we show that the growth of mouse embryonic day 12.5 lung rudiments implanted underneath the kidney capsules of syngeneic or immunodeficient hosts follows closely lung development in utero. The epithelium develops extensively with both proximal and distal differentiation to the saccular stage. The vasculature also develops extensively. Large blood vessels accompany large airways and capillaries develop within the saccular walls. Interestingly, vessels in the lung grafts develop from endothelial progenitor cells endogenous to the explants and host vessels do not vascularize the grafts independently. This suggests that embryonic lungs possess mechanisms to prevent the inappropriate ingrowth of surrounding vessels. However, vessels in the lung grafts do connect to host vessels, showing that embryonic lungs have the ability to stimulate host angiogenesis and recruit host vessel connections. These data support the hypothesis that the lung vasculature develops by both vasculogenic and angiogenic processes: a vascular network develops in situ in lung mesenchyme, which is then connected to angiogenic processes from central vessels. The lung renal capsule allograft is thus an excellent model to study the development of the pulmonary vasculature and of late fetal lung development that requires a functional blood supply. PMID:12591600

  18. Comparison of sliced lungs with whole lung sets for a torso phantom measured with Ge detectors using Monte Carlo simulations (MCNP).

    PubMed

    Kramer, Gary H; Guerriere, Steven

    2003-02-01

    Lung counters are generally used to measure low energy photons (<100 keV). They are usually calibrated with lung sets that are manufactured from a lung tissue substitute material that contains homogeneously distributed activity; however, it is difficult to verify either the activity in the phantom or the homogeneity of the activity distribution without destructive testing. Lung sets can have activities that are as much as 25% different from the expected value. An alternative method to using whole lungs to calibrate a lung counter is to use a sliced lung with planar inserts. Experimental work has already indicated that this alternative method of calibration can be a satisfactory substitute. This work has extended the experimental study by the use of Monte Carlo simulation to validate that sliced and whole lungs are equivalent. It also has determined the optimum slice thicknesses that separate the planar sources in the sliced lung. Slice thicknesses have been investigated in the range of 0.5 cm to 9.0 cm and at photon energies from 17 keV to 1,000 keV. Results have shown that there is little difference between sliced and whole lungs at low energies providing that the slice thickness is 2.0 cm or less. As the photon energy rises the slice thickness can increase substantially with no degradation on equivalence.

  19. Serial perfusion in native lungs in patients with idiopathic pulmonary fibrosis and other interstitial lung diseases after single lung transplantation.

    PubMed

    Sokai, Akihiko; Handa, Tomohiro; Chen, Fengshi; Tanizawa, Kiminobu; Aoyama, Akihiro; Kubo, Takeshi; Ikezoe, Kohei; Nakatsuka, Yoshinari; Oguma, Tsuyoshi; Hirai, Toyohiro; Nagai, Sonoko; Chin, Kazuo; Date, Hiroshi; Mishima, Michiaki

    2016-04-01

    Lung perfusions after single lung transplantation (SLT) have not been fully clarified in patients with interstitial lung disease (ILD). The present study aimed to investigate temporal changes in native lung perfusion and their associated clinical factors in patients with ILD who have undergone SLT. Eleven patients were enrolled. Perfusion scintigraphy was serially performed up to 12 months after SLT. Correlations between the post-operative perfusion ratio in the native lung and clinical parameters, including pre-operative perfusion ratio and computed tomography (CT) volumetric parameters, were evaluated. On average, the perfusion ratio of the native lung was maintained at approximately 30% until 12 months after SLT. However, the ratio declined more significantly in idiopathic pulmonary fibrosis (IPF) than in other ILDs (p = 0.014). The perfusion ratio before SLT was significantly correlated with that at three months after SLT (ρ = 0.64, p = 0.048). The temporal change of the perfusion ratio in the native lung did not correlate with those of the CT parameters. The pre-operative perfusion ratio may predict the post-operative perfusion ratio of the native lung shortly after SLT in ILD. Perfusion of the native lung may decline faster in IPF compared with other ILDs. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Role of circulating granulocytes in sheep lung injury produced by phorbol myristate acetate.

    PubMed

    Dyer, E L; Snapper, J R

    1986-02-01

    Phorbol myristate acetate (PMA) and endotoxin cause pulmonary granulocyte sequestration and alteration in lung fluid and solute exchange in awake sheep that are felt to be analogous to the adult respiratory distress syndrome in humans. The basic hypothesis that PMA causes lung injury by activating circulating granulocytes has never been tested. The effects of infused PMA on lung mechanics and the cellular constituents of lung lymph have also not been reported. We therefore characterized the effects of intravenous PMA, 5 micrograms/kg, on lung mechanics, pulmonary hemodynamics, lung fluid and solute exchange, pulmonary gas exchange, blood and lymph leukocyte counts, and plasma and lymph cyclooxygenase products of arachidonate metabolism in 10 awake sheep with normal granulocyte counts and after granulocyte depletion with hydroxyurea. PMA significantly altered lung mechanics from base line in both nongranulocyte depleted and granulocyte-depleted sheep. Dynamic compliance decreased by over 50% and resistance to airflow across the lungs increased over threefold acutely following PMA infusion in both sets of experiments. Changes in lung mechanics, pulmonary hemodynamics, lung fluid and solute exchange, pulmonary gas exchange, and plasma and lymph arachidonate metabolites were not significantly affected by greater than 99% depletion of circulating granulocytes. We conclude that the lung injury caused by PMA in chronically instrumented awake sheep probably is not a result of activation of circulating granulocytes.

  1. Lung diffusion testing

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003854.htm Lung diffusion testing To use the sharing features on this page, please enable JavaScript. Lung diffusion testing measures how well the lungs exchange gases. ...

  2. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food...

  3. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  4. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  5. Trametinib, Combination Chemotherapy, and Radiation Therapy in Treating Patients With Stage III Non-small Cell Lung Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-05-23

    KRAS Activating Mutation; Recurrent Non-Small Cell Lung Carcinoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7

  6. 21 CFR 870.4220 - Cardiopulmonary bypass heart-lung machine console.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass heart-lung machine console... Cardiopulmonary bypass heart-lung machine console. (a) Identification. A cardiopulmonary bypass heart-lung machine... heart-lung machine. The console is designed to interface with the basic units used in a gas exchange...

  7. 20 CFR 725.1 - Statutory provisions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Federal Coal Mine Health and Safety Act of 1969, as amended by the Black Lung Benefits Act of 1972, the Federal Mine Safety and Health Amendments Act of 1977, the Black Lung Benefits Reform Act of 1977, the Black Lung Benefits Revenue Act of 1977, the Black Lung Benefits Amendments of 1981, the Black Lung...

  8. 78 FR 40485 - Lung Cancer Patient-Focused Drug Development; Extension of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... patients' perspectives for the two main types of lung cancer (small-cell and non-small cell lung cancer) on..., because of lung cancer? (Examples may include sleeping through the night, climbing stairs, household...] Lung Cancer Patient-Focused Drug Development; Extension of Comment Period AGENCY: Food and Drug...

  9. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  10. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  11. 21 CFR 870.4220 - Cardiopulmonary bypass heart-lung machine console.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cardiopulmonary bypass heart-lung machine console... Cardiopulmonary bypass heart-lung machine console. (a) Identification. A cardiopulmonary bypass heart-lung machine... heart-lung machine. The console is designed to interface with the basic units used in a gas exchange...

  12. 21 CFR 870.4220 - Cardiopulmonary bypass heart-lung machine console.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cardiopulmonary bypass heart-lung machine console... Cardiopulmonary bypass heart-lung machine console. (a) Identification. A cardiopulmonary bypass heart-lung machine... heart-lung machine. The console is designed to interface with the basic units used in a gas exchange...

  13. 21 CFR 870.4220 - Cardiopulmonary bypass heart-lung machine console.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass heart-lung machine console... Cardiopulmonary bypass heart-lung machine console. (a) Identification. A cardiopulmonary bypass heart-lung machine... heart-lung machine. The console is designed to interface with the basic units used in a gas exchange...

  14. 21 CFR 870.4220 - Cardiopulmonary bypass heart-lung machine console.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiopulmonary bypass heart-lung machine console... Cardiopulmonary bypass heart-lung machine console. (a) Identification. A cardiopulmonary bypass heart-lung machine... heart-lung machine. The console is designed to interface with the basic units used in a gas exchange...

  15. Effect of lung resection on pleuro-pulmonary mechanics and fluid balance.

    PubMed

    Salito, C; Bovio, D; Orsetti, G; Salati, M; Brunelli, A; Aliverti, A; Miserocchi, G

    2016-01-15

    The aim of the study was to determine in human patients the effect of lung resection on lung compliance and on pleuro-pulmonary fluid balance. Pre and post-operative values of compliance were measured in anesthetized patients undergoing resection for lung cancer (N=11) through double-lumen bronchial intubation. Lung compliance was measured for 10-12 cm H2O increase in alveolar pressure from 5 cm H2O PEEP in control and repeated after resection. No air leak was assessed and pleural fluid was collected during hospital stay. A significant negative correlation (r(2)=0.68) was found between compliance at 10 min and resected mass. Based on the pre-operative estimated lung weight, the decrease in compliance following lung resection exceeded by 10-15% that expected from resected mass. Significant negative relationships were found by relating pleural fluid drainage flow to the remaining lung mass and to post-operative lung compliance. Following lung re-expansion, data suggest a causative relationship between the decrease in compliance and the perturbation in pleuro-pulmonary fluid balance. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Increased level of annexin A1 in bronchoalveolar lavage fluid as a potential diagnostic indicator for lung cancer.

    PubMed

    Biaoxue, Rong; Xiguang, Cai; Hua, Liu; Tian, Fu; Wenlong, Gao

    2017-03-02

    Annexin A1 has been implicated in various tumor types, but few studies have investigated its involvement in lung cancer. The purpose of this investigation was to quantify the annexin A1 level in bronchoalveolar lavage fluid (BALF) and analyze its usefulness in lung cancer diagnosis. Annexin A1 expression was measured by immunohistochemistry and enzyme immunoassay. The sensitivity and specificity of annexin A1 for distinguishing lung cancer were determined by receiver operator characteristic (ROC) curves. Tumor tissues, BALF and serum of patients with lung cancer contained higher levels of annexin A1 than those of the control group of patients with benign lung diseases. Moreover, an increased level of BALF annexin A1 was closely correlated with lymphatic invasion and malignant progression of lung cancer. The sensitivity and specificity of BALF annexin A1 for distinguishing lung cancer were 94.2% and 90.2%, respectively. Increased annexin A1 in BALF was correlated with lymphatic invasion and malignant progression of lung cancer, suggesting that it could be an indicator for discerning lung cancer and predicting outcome.

  17. [Lung transplantation. State of the art].

    PubMed

    García-Covarrubias, Lisardo; Salerno, Tomas A; Panos, Anthony L; Pham, Si M

    2007-01-01

    Lung transplantation is currently considered an established treatment for some advanced lung diseases. The beginning of experimental lung transplantation dates back to the 1940's when the Soviet Vladimir P. Demikhov performed the first lung transplants in animals. Two decades later, James Hardy performed the first lung transplant in humans. Unfortunately, the beginning of clinical lung transplantation was hampered by technical complications and the excessive toxicity of immunosuppressive drugs. Improvement in the surgical technique along with the development of more effective and less toxic immunosuppressive drugs has led to a better outcome in lunt transplant recipients. Donor selection and management before organ procurement play a key role in the receptor's outcome. Due to the shortage of donors, some institutions are using more liberal selection criteria, reporting satisfactory outcomes. The approach of the lung and heart-lung transplant patient is multidisciplinary and includes the cardiothoracic transplant surgeon, pulmonologist, anesthesiologist, and intensivist, among others. Herein, we review some relevant historical aspects and recent advances in the management of lung transplant recipients, including indications and contraindications, evaluation of donors and recipients, surgical techniques and peripost-operative care.

  18. A neural network approach to lung nodule segmentation

    NASA Astrophysics Data System (ADS)

    Hu, Yaoxiu; Menon, Prahlad G.

    2016-03-01

    Computed tomography (CT) imaging is a sensitive and specific lung cancer screening tool for the high-risk population and shown to be promising for detection of lung cancer. This study proposes an automatic methodology for detecting and segmenting lung nodules from CT images. The proposed methods begin with thorax segmentation, lung extraction and reconstruction of the original shape of the parenchyma using morphology operations. Next, a multi-scale hessian-based vesselness filter is applied to extract lung vasculature in lung. The lung vasculature mask is subtracted from the lung region segmentation mask to extract 3D regions representing candidate pulmonary nodules. Finally, the remaining structures are classified as nodules through shape and intensity features which are together used to train an artificial neural network. Up to 75% sensitivity and 98% specificity was achieved for detection of lung nodules in our testing dataset, with an overall accuracy of 97.62%+/-0.72% using 11 selected features as input to the neural network classifier, based on 4-fold cross-validation studies. Receiver operator characteristics for identifying nodules revealed an area under curve of 0.9476.

  19. Identification of new candidate drugs for lung cancer using chemical-chemical interactions, chemical-protein interactions and a K-means clustering algorithm.

    PubMed

    Lu, Jing; Chen, Lei; Yin, Jun; Huang, Tao; Bi, Yi; Kong, Xiangyin; Zheng, Mingyue; Cai, Yu-Dong

    2016-01-01

    Lung cancer, characterized by uncontrolled cell growth in the lung tissue, is the leading cause of global cancer deaths. Until now, effective treatment of this disease is limited. Many synthetic compounds have emerged with the advancement of combinatorial chemistry. Identification of effective lung cancer candidate drug compounds among them is a great challenge. Thus, it is necessary to build effective computational methods that can assist us in selecting for potential lung cancer drug compounds. In this study, a computational method was proposed to tackle this problem. The chemical-chemical interactions and chemical-protein interactions were utilized to select candidate drug compounds that have close associations with approved lung cancer drugs and lung cancer-related genes. A permutation test and K-means clustering algorithm were employed to exclude candidate drugs with low possibilities to treat lung cancer. The final analysis suggests that the remaining drug compounds have potential anti-lung cancer activities and most of them have structural dissimilarity with approved drugs for lung cancer.

  20. Lung volumes: measurement, clinical use, and coding.

    PubMed

    Flesch, Judd D; Dine, C Jessica

    2012-08-01

    Measurement of lung volumes is an integral part of complete pulmonary function testing. Some lung volumes can be measured during spirometry; however, measurement of the residual volume (RV), functional residual capacity (FRC), and total lung capacity (TLC) requires special techniques. FRC is typically measured by one of three methods. Body plethysmography uses Boyle's Law to determine lung volumes, whereas inert gas dilution and nitrogen washout use dilution properties of gases. After determination of FRC, expiratory reserve volume and inspiratory vital capacity are measured, which allows the calculation of the RV and TLC. Lung volumes are commonly used for the diagnosis of restriction. In obstructive lung disease, they are used to assess for hyperinflation. Changes in lung volumes can also be seen in a number of other clinical conditions. Reimbursement for measurement of lung volumes requires knowledge of current procedural terminology (CPT) codes, relevant indications, and an appropriate level of physician supervision. Because of recent efforts to eliminate payment inefficiencies, the 10 previous CPT codes for lung volumes, airway resistance, and diffusing capacity have been bundled into four new CPT codes.

  1. [Four Cases Report on Primary Lung Adenoid Cystic Carcinoma].

    PubMed

    He, Xilan; Chen, Jianhua

    2017-11-20

    Lung adenoid cystic carcinoma is a kind of rare lung cancer. Diagnosis and treatment is not enough understandable for them. We collected and analyzed 4 cases of lung adenoid cystic carcinoma for broadening the sight of this disease. Retrospectively analysed the 4 cases we collected from Hunan Cancer Hospital Between January 2012 and December 2016. We depicted the pathology, immunohistochemical, epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) arrangement in these cases. And the methods of the diagnosis and treatment were analyzed. Lung adenoid cystic carcinoma is usually located in the airway, EGFR mutation and ALK arrangement is rare in this disease. Generally the metastasis of the lung cancer occurred in the advanced stage. The prognosis is good if the mass could be resected completely. Diagnosis of the lung adenoid cystic carcinoma depends on pathological experiments, surgery is the main treatment in the early stage, radiotherapy and chemotherapy is an advisable therapy in the advanced stage. And the prognosis of this kind of lung cancer is better than small cell lung cancer and non-small cell lung cancer.

  2. Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.

    PubMed

    Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G

    1999-01-01

    The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.

  3. Manipulations of core temperatures in ischemia-reperfusion lung injury in rabbits.

    PubMed

    Chang, Hung; Huang, Kun-Lun; Li, Min-Hui; Hsu, Ching-Wang; Tsai, Shih-Hung; Chu, Shi-Jye

    2008-01-01

    The present study was designed to determine the effect of various core temperatures on acute lung injury induced by ischemia-reperfusion (I/R) in our isolated rabbit lung model. Typical acute lung injury was successfully induced by 30 min of ischemia followed by 90 min of reperfusion observation. The I/R elicited a significant increase in pulmonary arterial pressure, microvascular permeability (measured by using the capillary filtration coefficient, Kfc), Delta Kfc ratio, lung weight gain and the protein concentration of the bronchoalveolar lavage fluid. Mild hypothermia significantly attenuated acute lung injury induced by I/R, all parameters having decreased significantly (p<0.05); conversely, mild hyperthermia did not further exacerbate acute lung injury. These experimental data suggest that mild hypothermia significantly ameliorated acute lung injury induced by ischemia-reperfusion in rabbits.

  4. Heterochrony and early left-right asymmetry in the development of the cardiorespiratory system of snakes.

    PubMed

    van Soldt, Benjamin J; Metscher, Brian D; Poelmann, Robert E; Vervust, Bart; Vonk, Freek J; Müller, Gerd B; Richardson, Michael K

    2015-01-01

    Snake lungs show a remarkable diversity of organ asymmetries. The right lung is always fully developed, while the left lung is either absent, vestigial, or well-developed (but smaller than the right). A 'tracheal lung' is present in some taxa. These asymmetries are reflected in the pulmonary arteries. Lung asymmetry is known to appear at early stages of development in Thamnophis radix and Natrix natrix. Unfortunately, there is no developmental data on snakes with a well-developed or absent left lung. We examine the adult and developmental morphology of the lung and pulmonary arteries in the snakes Python curtus breitensteini, Pantherophis guttata guttata, Elaphe obsoleta spiloides, Calloselasma rhodostoma and Causus rhombeatus using gross dissection, MicroCT scanning and 3D reconstruction. We find that the right and tracheal lung develop similarly in these species. By contrast, the left lung either: (1) fails to develop; (2) elongates more slowly and aborts early without (2a) or with (2b) subsequent development of faveoli; (3) or develops normally. A right pulmonary artery always develops, but the left develops only if the left lung develops. No pulmonary artery develops in relation to the tracheal lung. We conclude that heterochrony in lung bud development contributes to lung asymmetry in several snake taxa. Secondly, the development of the pulmonary arteries is asymmetric at early stages, possibly because the splanchnic plexus fails to develop when the left lung is reduced. Finally, some changes in the topography of the pulmonary arteries are consequent on ontogenetic displacement of the heart down the body. Our findings show that the left-right asymmetry in the cardiorespiratory system of snakes is expressed early in development and may become phenotypically expressed through heterochronic shifts in growth, and changes in axial relations of organs and vessels. We propose a step-wise model for reduction of the left lung during snake evolution.

  5. Daily propranolol prevents prolonged mobilization of hematopoietic progenitor cells in a rat model of lung contusion, hemorrhagic shock, and chronic stress.

    PubMed

    Bible, Letitia E; Pasupuleti, Latha V; Gore, Amy V; Sifri, Ziad C; Kannan, Kolenkode B; Mohr, Alicia M

    2015-09-01

    Propranolol has been shown previously to decrease the mobilization of hematopoietic progenitor cells (HPCs) after acute injury in rodent models; however, this acute injury model does not reflect the prolonged period of critical illness after severe trauma. Using our novel lung contusion/hemorrhagic shock/chronic restraint stress model, we hypothesize that daily administration of propranolol will decrease prolonged mobilization of HPCs without worsening lung healing. Male Sprague-Dawley rats underwent 6 days of restraint stress after undergoing lung contusion or lung contusion/hemorrhagic shock. Restraint stress consisted of a daily 2-hour period of restraint interrupted every 30 minutes by alarms and repositioning. Each day after the period of restraint stress, the rats received intraperitoneal propranolol (10 mg/kg). On day 7, peripheral blood was analyzed for granulocyte-colony stimulating factor (G-CSF) and stromal cell-derived factor 1 via enzyme-linked immunosorbent assay and for mobilization of HPCs using c-kit and CD71 flow cytometry. The lungs were examined histologically to grade injury. Seven days after lung contusion and lung contusion/hemorrhagic shock, the addition of chronic restraint stress significantly increased the mobilization of HPC, which was associated with persistently increased levels of G-CSF and increased lung injury scores. The addition of propranolol to lung contusion/chronic restraint stress and lung contusion/hemorrhagic shock/chronic restraint stress models greatly decreased HPC mobilization and restored G-CSF levels to that of naïve animals without worsening lung injury scores. The daily administration of propranolol after both lung contusion and lung contusion/hemorrhagic shock subjected to chronic restraint stress decreased the prolonged mobilization of HPC from the bone marrow and decreased plasma G-CSF levels. Despite the decrease in mobilization of HPC, lung healing did not worsen. Alleviating chronic stress with propranolol may be a future therapeutic target to improve healing after severe injury. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Airway Pressure Release Ventilation During Ex Vivo Lung Perfusion Attenuates Injury

    PubMed Central

    Mehaffey, J. Hunter; Charles, Eric J.; Sharma, Ashish K.; Money, Dustin; Zhao, Yunge; Stoler, Mark H; Lau, Christine L; Tribble, Curtis G.; Laubach, Victor E.; Roeser, Mark E.; Kron, Irving L.

    2016-01-01

    Objective Critical organ shortages have resulted in Ex Vivo Lung Perfusion (EVLP) gaining clinical acceptance for lung evaluation and rehabilitation to expand the use of Donation after Circulatory Death (DCD) organs for lung transplantation. We hypothesized that an innovative use of airway pressure release ventilation (APRV) during EVLP improves lung function after transplantation. Methods Two groups (n=4 animals/group) of porcine DCD donor lungs were procured after hypoxic cardiac arrest and a 2-hour period of warm ischemia, followed by a 4-hour period of EVLP rehabilitation with either standard conventional volume-based ventilation or pressure-based APRV. Left lungs were subsequently transplanted into recipient animals and reperfused for 4 hours. Blood gases for PaO2/FiO2 ratios, airway pressures for calculation of compliance, and percent wet weight gain during EVLP and reperfusion were measured. Results APRV during EVLP significantly improved left-lung oxygenation at 2-hours (561.5±83.9 vs 341.1±136.1 mmHg) and 4-hours (569.1±18.3 vs 463.5±78.4 mmHg). Similarly, compliance was significantly higher at 2-hours (26.0±5.2 vs 15.0±4.6 mL/cmH2O) and 4-hours (30.6±1.3 vs 17.7±5.9 mL/cmH2O) after transplantation. Finally, APRV significantly reduced lung edema development on EVLP based on percentage weight gain (36.9±14.6 vs 73.9±4.9%). There was no difference in additional edema accumulation 4 hours after reperfusion. Conclusions Pressure-directed APRV ventilation strategy during EVLP improves rehabilitation of severely injured DCD lungs. After transplant these lungs demonstrate superior lung-specific oxygenation and dynamic compliance compared to lungs ventilated with standard conventional ventilation. This strategy, if implemented into clinical EVLP protocols, could advance the field of DCD lung rehabilitation to expand the lung donor pool. PMID:27742245

  7. Trauma-associated lung injury differs clinically and biologically from acute lung injury due to other clinical disorders*

    PubMed Central

    Calfee, Carolyn S.; Eisner, Mark D.; Ware, Lorraine B.; Thompson, B. Taylor; Parsons, Polly E.; Wheeler, Arthur P.; Korpak, Anna; Matthay, Michael A.

    2009-01-01

    Objective Patients with trauma-associated acute lung injury have better outcomes than patients with other clinical risks for lung injury, but the mechanisms behind these improved outcomes are unclear. We sought to compare the clinical and biological features of patients with trauma-associated lung injury with those of patients with other risks for lung injury and to determine whether the improved outcomes of trauma patients reflect their baseline health status or less severe lung injury, or both. Design, Setting, and Patients Analysis of clinical and biological data from 1,451 patients enrolled in two large randomized, controlled trials of ventilator management in acute lung injury. Measurements and Main Results Compared with patients with other clinical risks for lung injury, trauma patients were younger and generally less acutely and chronically ill. Even after adjusting for these baseline differences, trauma patients had significantly lower plasma levels of intercellular adhesion molecule-1, von Willebrand factor antigen, surfactant protein-D, and soluble tumor necrosis factor receptor-1, which are biomarkers of lung epithelial and endothelial injury previously found to be prognostic in acute lung injury. In contrast, markers of acute inflammation, except for interleukin-6, and disordered coagulation were similar in trauma and nontrauma patients. Trauma-associated lung injury patients had a significantly lower odds of death at 90 days, even after adjusting for baseline clinical factors including age, gender, ethnicity, comorbidities, and severity of illness (odds ratio, 0.44; 95% confidence interval, 0.24 – 0.82; p = .01). Conclusions Patients with trauma-associated lung injury are less acutely and chronically ill than other lung injury patients; however, these baseline clinical differences do not adequately explain their improved outcomes. Instead, the better outcomes of the trauma population may be explained, in part, by less severe lung epithelial and endothelial injury. PMID:17944012

  8. Meta-markers for the differential diagnosis of lung cancer and lung disease.

    PubMed

    Kim, Yong-In; Ahn, Jung-Mo; Sung, Hye-Jin; Na, Sang-Su; Hwang, Jaesung; Kim, Yongdai; Cho, Je-Yoel

    2016-10-04

    Misdiagnosis of lung cancer remains a serious problem due to the difficulty of distinguishing lung cancer from other respiratory lung diseases. As a result, the development of serum-based differential diagnostic biomarkers is in high demand. In this study, 198 clinical serum samples from non-cancer lung disease and lung cancer patients were analyzed using nLC-MRM-MS for the levels of seven lung cancer biomarker candidates. When the candidates were assessed individually, only SERPINEA4 showed statistically significant changes in the serum levels. The MRM results and clinical information were analyzed using a logistic regression analysis to select model for the best 'meta-marker', or combination of biomarkers for differential diagnosis. Also, under consideration of statistical interaction, variables having low significance as a single factor but statistically influencing on meta-marker model were selected. Using this probabilistic classification, the best meta-marker was determined to be made up of two proteins SERPINA4 and PON1 with age factor. This meta-marker showed an enhanced differential diagnostic capability (AUC=0.915) for distinguishing the two patient groups. Our results suggest that a statistical model can determine optimal meta-markers, which may have better specificity and sensitivity than a single biomarker and thus improve the differential diagnosis of lung cancer and lung disease patients. Diagnosing lung cancer commonly involves the use of radiographic methods. However, an imaging-based diagnosis may fail to differentiate lung cancer from non-cancerous lung disease. In this study, we examined several serum proteins in the sera of 198 lung cancer and non-cancerous lung disease patients by multiple-reaction monitoring. We then used a combination of variables to generate a meta-marker model that is useful as a differential diagnostic biomarker. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Changes in Functional Lung Regions During the Course of Radiation Therapy and Their Potential Impact on Lung Dosimetry for Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xue; Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan; Frey, Kirk

    2014-05-01

    Purpose: To study changes in functional activity on ventilation (V)/perfusion (Q) single-photon emission computed tomography (SPECT) during radiation therapy (RT) and explore the impact of such changes on lung dosimetry in patients with non-small cell lung cancer (NSCLC). Methods and Materials: Fifteen NSCLC patients with centrally located tumors were enrolled. All patients were treated with definitive RT dose of ≥60 Gy. V/Q SPECT-CT scans were performed prior to and after delivery of 45 Gy of fractionated RT. SPECT images were used to define temporarily dysfunctional regions of lung caused by tumor or other potentially reversible conditions as B3. The functional lung (FL)more » was defined on SPECT by 2 separate approaches: FL1, a threshold of 30% of the maximum uptake of the patient's lung; and FL2, FL1 plus B3 region. The impact of changes in FL between initiation of RT and delivery of 45 Gy on lung dosimetry were analyzed. Results: Fourteen patients (93%) had larger FL2 volumes than FL1 pre-RT (P<.001). Dysfunctional lung became functional in 11 patients (73%) on V SPECT and in 10 patients (67%) on Q SPECT. The dosimetric parameters generated from CT-based anatomical lung had significantly lower values in FL1 than FL2, with a median reduction in the volume of lung receiving a dose of at least 20 Gy (V{sub 20}) of 3%, 5.6%, and mean lung dose of 0.95 and 1.55 on V and Q SPECT respectively. Conclusions: Regional ventilation and perfusion function improve significantly during RT in centrally located NSCLC. Lung dosimetry values vary notably between different definitions of functional lung.« less

  10. Lung Transplant Outcomes in Systemic Sclerosis with Significant Esophageal Dysfunction. A Comprehensive Single-Center Experience

    PubMed Central

    Schwab, Kristin; Saggar, Rajeev; Duffy, Erin; Elashoff, David; Tseng, Chi-Hong; Weigt, Sam; Charan, Deepshikha; Abtin, Fereidoun; Johannes, Jimmy; Derhovanessian, Ariss; Conklin, Jeffrey; Ghassemi, Kevin; Khanna, Dinesh; Siddiqui, Osama; Ardehali, Abbas; Hunter, Curtis; Kwon, Murray; Biniwale, Reshma; Lo, Michelle; Volkmann, Elizabeth; Torres Barba, David; Belperio, John A.; Mahrer, Thomas; Furst, Daniel E.; Kafaja, Suzanne; Clements, Philip; Shino, Michael; Gregson, Aric; Kubak, Bernard; Lynch, Joseph P.; Ross, David

    2016-01-01

    Rationale: Consideration of lung transplantation in patients with systemic sclerosis (SSc) remains guarded, often due to the concern for esophageal dysfunction and the associated potential for allograft injury and suboptimal post–lung transplantation outcomes. Objectives: The purpose of this study was to systematically report our single-center experience regarding lung transplantation in the setting of SSc, with a particular focus on esophageal dysfunction. Methods: We retrospectively reviewed all lung transplants at our center from January 1, 2000 through August 31, 2012 (n = 562), comparing the SSc group (n = 35) to the following lung transplant diagnostic subsets: all non-SSc (n = 527), non-SSc diffuse fibrotic lung disease (n = 264), and a non-SSc matched group (n = 109). We evaluated post–lung transplant outcomes, including survival, primary graft dysfunction, acute rejection, bronchiolitis obliterans syndrome, and microbiology of respiratory isolates. In addition, we defined severe esophageal dysfunction using esophageal manometry and esophageal morphometry criteria on the basis of chest computed tomography images. For patients with SSc referred for lung transplant but subsequently denied (n = 36), we queried the reason(s) for denial with respect to the concern for esophageal dysfunction. Measurements and Main Results: The 1-, 3-, and 5-year post–lung transplant survival for SSc was 94, 77, and 70%, respectively, and similar to the other groups. The remaining post–lung transplant outcomes evaluated were also similar between SSc and the other groups. Approximately 60% of the SSc group had severe esophageal dysfunction. Pre–lung transplant chest computed tomography imaging demonstrated significantly abnormal esophageal morphometry for SSc when compared with the matched group. Importantly, esophageal dysfunction was the sole reason for lung transplant denial in a single case. Conclusions: Relative to other lung transplant indications, our SSc group experienced comparable survival, primary graft dysfunction, acute rejection, bronchiolitis obliterans syndrome, and microbiology of respiratory isolates, despite the high prevalence of severe esophageal dysfunction. Esophageal dysfunction rarely precluded active listing for lung transplantation. PMID:27078625

  11. Biomechanical interpretation of a free-breathing lung motion model

    NASA Astrophysics Data System (ADS)

    Zhao, Tianyu; White, Benjamin; Moore, Kevin L.; Lamb, James; Yang, Deshan; Lu, Wei; Mutic, Sasa; Low, Daniel A.

    2011-12-01

    The purpose of this paper is to develop a biomechanical model for free-breathing motion and compare it to a published heuristic five-dimensional (5D) free-breathing lung motion model. An ab initio biomechanical model was developed to describe the motion of lung tissue during free breathing by analyzing the stress-strain relationship inside lung tissue. The first-order approximation of the biomechanical model was equivalent to a heuristic 5D free-breathing lung motion model proposed by Low et al in 2005 (Int. J. Radiat. Oncol. Biol. Phys. 63 921-9), in which the motion was broken down to a linear expansion component and a hysteresis component. To test the biomechanical model, parameters that characterize expansion, hysteresis and angles between the two motion components were reported independently and compared between two models. The biomechanical model agreed well with the heuristic model within 5.5% in the left lungs and 1.5% in the right lungs for patients without lung cancer. The biomechanical model predicted that a histogram of angles between the two motion components should have two peaks at 39.8° and 140.2° in the left lungs and 37.1° and 142.9° in the right lungs. The data from the 5D model verified the existence of those peaks at 41.2° and 148.2° in the left lungs and 40.1° and 140° in the right lungs for patients without lung cancer. Similar results were also observed for the patients with lung cancer, but with greater discrepancies. The maximum-likelihood estimation of hysteresis magnitude was reported to be 2.6 mm for the lung cancer patients. The first-order approximation of the biomechanical model fit the heuristic 5D model very well. The biomechanical model provided new insights into breathing motion with specific focus on motion trajectory hysteresis.

  12. Survival in patients with metachronous second primary lung cancer.

    PubMed

    Ha, Duc; Choi, Humberto; Chevalier, Cory; Zell, Katrina; Wang, Xiao-Feng; Mazzone, Peter J

    2015-01-01

    Four to 10% of patients with non-small cell lung cancer subsequently develop a metachronous second primary lung cancer. The decision to perform surveillance or screening imaging for patients with potentially cured lung cancer must take into account the outcomes expected when detecting metachronous second primaries. To assess potential survival differences between patients with metachronous second primary lung cancer compared to matched patients with first primary lung cancer. We retrospectively reviewed patients diagnosed with lung cancer at the Cleveland Clinic (2006-2010). Metachronous second primary lung cancer was defined as lung cancer diagnosed after a 4-year, disease-free interval from the first lung cancer, or if there were two different histologic subtypes diagnosed at different times. Patients with first primary lung cancer diagnosed in the same time period served as control subjects. Propensity score matching was performed using age, sex, smoking history, histologic subtype, and collaborative stage, with a 1:3 case-control ratio. Survival analyses were performed by Cox proportional hazards modeling and Kaplan-Meier estimates. Forty-four patients met criteria for having a metachronous second primary lung cancer. There were no statistically significant differences between case subjects and control subjects in prognostic variables. The median survival time and 2-year overall survival rate for the metachronous second primary group, compared with control subjects, were as follows: 11.8 versus 18.4 months (P = 0.18) and 31.0 versus 40.9% (P = 0.28). The survival difference was largest in those with stage I metachronous second primaries (median survival time, 26.8 vs. 60.4 mo, P = 0.09; 2-year overall survival, 56.3 vs. 71.2%, P = 0.28). Patients with stage I metachronous second primary lung cancer may have worse survival than those who present with a first primary lung cancer. This could influence the benefit-risk balance of screening the high-risk cohort with a previously treated lung cancer.

  13. Reproducibility of lung tumor position and reduction of lung mass within the planning target volume using active breathing control (ABC).

    PubMed

    Cheung, Patrick C F; Sixel, Katharina E; Tirona, Romeo; Ung, Yee C

    2003-12-01

    The active breathing control (ABC) device allows for temporary immobilization of respiratory motion by implementing a breath hold at a predefined relative lung volume and air flow direction. The purpose of this study was to quantitatively evaluate the ability of the ABC device to immobilize peripheral lung tumors at a reproducible position, increase total lung volume, and thereby reduce lung mass within the planning target volume (PTV). Ten patients with peripheral non-small-cell lung cancer tumors undergoing radiotherapy had CT scans of their thorax with and without ABC inspiration breath hold during the first 5 days of treatment. Total lung volumes were determined from the CT data sets. Each peripheral lung tumor was contoured by one physician on all CT scans to generate gross tumor volumes (GTVs). The lung density and mass contained within a 1.5-cm PTV margin around each peripheral tumor was calculated using CT numbers. Using the center of the GTV from the Day 1 ABC scan as the reference, the displacement of subsequent GTV centers on Days 2 to 5 for each patient with ABC applied was calculated in three dimensions. With the use of ABC inspiration breath hold, total lung volumes increased by an average of 42%. This resulted in an average decrease in lung mass of 18% within a standard 1.5-cm PTV margin around the GTV. The average (+/- standard deviation) displacement of GTV centers with ABC breath hold applied was 0.3 mm (+/- 1.8 mm), 1.2 mm (+/- 2.3 mm), and 1.1 mm (+/- 3.5 mm) in the lateral direction, anterior-posterior direction, and superior-inferior direction, respectively. Results from this study indicate that there remains some inter-breath hold variability in peripheral lung tumor position with the use of ABC inspiration breath hold, which prevents significant PTV margin reduction. However, lung volumes can significantly increase, thereby decreasing the mass of lung within a standard PTV.

  14. The Effect of Compartmental Asymmetry on the Monitoring of Pulmonary Mechanics and Lung Volumes.

    PubMed

    Keenan, Joseph C; Cortes-Puentes, Gustavo A; Adams, Alexander B; Dries, David J; Marini, John J

    2016-11-01

    Esophageal pressure measurement for computation of transpulmonary pressure (P tp ) has begun to be incorporated into clinical use for evaluating forces across the lungs. Gaps exist in our understanding of how esophageal pressure (and therefore P tp ), a value measured at a single site, responds when respiratory system compartments are asymmetrically affected by whole-lung atelectasis or unilateral injury as well as changes in chest wall compliance. We reasoned that P tp would track with aerated volume changes as estimated by functional residual capacity (FRC) and tidal volume. We examined this hypothesis in the setting of asymmetric lungs and changes in intra-abdominal pressure. This study was conducted in the animal laboratory of a university-affiliated hospital. Models of unilateral atelectasis and unilateral and bilateral lung injury exposed to intra-abdominal hypertension (IAH) in 10 deeply sedated mechanically ventilated swine. Atelectasis was created by balloon occlusion of the left main bronchus. Unilateral lung injury was induced by saline lavage of isolated right lung. Diffuse lung injury was induced by saline lavage of both lungs. The peritoneum was insufflated with air to create a model of pressure-regulated IAH. We measured esophageal pressures, airway pressures, FRC by gas dilution, and oxygenation. FRC was reduced by IAH in normal lungs (P < .001) and both asymmetric lung pathologies (P < .001). P tp at end-expiration was decreased by IAH in bilateral (P = .001) and unilateral lung injury (P = .003) as well as unilateral atelectasis (P = .019). In the setting of both lung injury models, end-expiratory P tp showed a moderate correlation in tracking with FRC. P tp tracks with aerated lung volume in the setting of thoracic asymmetry and changes in intra-abdominal pressure. However, used alone, it cannot distinguish the relative contributions of air-space distention and recruitment of lung units. Copyright © 2016 by Daedalus Enterprises.

  15. Decrease of pulmonary blood flow detected by phase contrast MRI is correlated with a decrease in lung volume and increase of lung fibrosis area determined by computed tomography in interstitial lung disease.

    PubMed

    Tsuchiya, Nanae; Yamashiro, Tsuneo; Murayama, Sadayuki

    2016-09-01

    Lung volume and pulmonary blood flow decrease in patients with interstitial lung disease (ILD). The purpose of this study was to assess the relationship between pulmonary blood flow and lung volume in ILD patients. This research was approved by the institutional review board. Twenty-seven patients (9 men, 18 women; mean age, 59 years; range, 24-79 years) with ILD were included. Blood flow was assessed in the pulmonary trunk and the left and right pulmonary arteries by phase contrast magnetic resonance imaging (MRI). Lung volume and the computed tomography (CT) visual score that indicates the severity of ILD were assessed on the left and right sides by thin-section CT scanning. Lung volume was automatically measured by lung analysis software (VINCENT Ver. 4). The CT visual score was measured by averaging the proportion of abnormal lung area at five anatomic levels. Pearson's correlation coefficient was used to determine the relationship between pulmonary blood flow and lung volume. Pulmonary blood flow showed a significant correlation with lung volume (both: r=0.52, p=0.006; left: r=0.61, p=0.001; right: r=0.54, p=0.004) and CT visual score (both: r=-0.39, p=0.04; left: r=-0.48, p=0.01; right: r=-0.38, p=0.04). Partial correlation analysis, controlled for age, height and weight, showed a significant correlation between pulmonary blood flow and lung volume (both: r=0.43, p=0.03; left: r=0.55, p=0.005; right: r=0.48, p=0.01) and CT visual score (both: r=-0.58, p=0.003; left: r=-0.51, p=0.01; right: r=-0.64, p=0.001). In ILD, reduced pulmonary blood flow is associated with reduced lung volume and increased abnormal lung area. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Measurement of lung function using Electrical Impedance Tomography (EIT) during mechanical ventilation

    NASA Astrophysics Data System (ADS)

    Nebuya, Satoru; Koike, Tomotaka; Imai, Hiroshi; Noshiro, Makoto; Brown, Brian H.; Soma, Kazui

    2010-04-01

    The consistency of regional lung density measurements as estimated by Electrical Impedance Tomography (EIT), in eleven patients supported by a mechanical ventilator, was validated to verify the feasibility of its use in intensive care medicine. There were significant differences in regional lung densities between the normal lung and diseased lungs associated with pneumonia, atelectasis and pleural effusion (Steel-Dwass test, p < 0.05). Temporal changes in regional lung density of patients with atelectasis were observed to be in good agreement with the results of clinical diagnosis. These results indicate that it is feasible to obtain a quantitative value for regional lung density using EIT.

  17. Stages of Non-Small Cell Lung Cancer

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key ...

  18. Angiogenin and vascular endothelial growth factor expression in lungs of lung cancer patients.

    PubMed

    Rozman, Ales; Silar, Mira; Kosnik, Mitja

    2012-12-01

    BACKGROUND.: Lung cancer is the leading cause of cancer deaths. Angiogenesis is crucial process in cancer growth and progression. This prospective study evaluated expression of two central regulatory molecules: angiogenin and vascular endothelial growth factor (VEGF) in patients with lung cancer. PATIENTS AND METHODS.: Clinical data, blood samples and broncho-alveolar lavage (BAL) from 23 patients with primary lung carcinoma were collected. BAL fluid was taken from part of the lung with malignancy, and from corresponding healthy side of the lung. VEGF and angiogenin concentrations were analysed by an enzyme-linked immunosorbent assay. Dilution of bronchial secretions in the BAL fluid was calculated from urea concentration ratio between serum and BAL fluid. RESULTS.: We found no statistical correlation between angiogenin concentrations in serum and in bronchial secretions from both parts of the lung. VEGF concentrations were greater in bronchial secretions in the affected side of the lung than on healthy side. Both concentrations were greater than serum VEGF concentration. VEGF concentration in serum was in positive correlation with tumour size (p = 0,003) and with metastatic stage of disease (p = 0,041). There was correlation between VEGF and angiogenin concentrations in bronchial secretions from healthy side of the lung and between VEGF and angiogenin concentrations in bronchial secretions from part of the lung with malignancy. CONCLUSION.: Angiogenin and VEGF concentrations in systemic, background and local samples of patients with lung cancer are affected by different mechanisms. Pro-angiogenic activity of lung cancer has an important influence on the levels of angiogenin and VEGF.

  19. Angiogenin and vascular endothelial growth factor expression in lungs of lung cancer patients

    PubMed Central

    Rozman, Ales; Silar, Mira; Kosnik, Mitja

    2012-01-01

    Background. Lung cancer is the leading cause of cancer deaths. Angiogenesis is crucial process in cancer growth and progression. This prospective study evaluated expression of two central regulatory molecules: angiogenin and vascular endothelial growth factor (VEGF) in patients with lung cancer. Patients and methods. Clinical data, blood samples and broncho-alveolar lavage (BAL) from 23 patients with primary lung carcinoma were collected. BAL fluid was taken from part of the lung with malignancy, and from corresponding healthy side of the lung. VEGF and angiogenin concentrations were analysed by an enzyme-linked immunosorbent assay. Dilution of bronchial secretions in the BAL fluid was calculated from urea concentration ratio between serum and BAL fluid. Results. We found no statistical correlation between angiogenin concentrations in serum and in bronchial secretions from both parts of the lung. VEGF concentrations were greater in bronchial secretions in the affected side of the lung than on healthy side. Both concentrations were greater than serum VEGF concentration. VEGF concentration in serum was in positive correlation with tumour size (p = 0,003) and with metastatic stage of disease (p = 0,041). There was correlation between VEGF and angiogenin concentrations in bronchial secretions from healthy side of the lung and between VEGF and angiogenin concentrations in bronchial secretions from part of the lung with malignancy. Conclusion. Angiogenin and VEGF concentrations in systemic, background and local samples of patients with lung cancer are affected by different mechanisms. Pro-angiogenic activity of lung cancer has an important influence on the levels of angiogenin and VEGF. PMID:23412843

  20. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y. X.; Van Reeth, E.; Poh, C. L., E-mail: clpoh@ntu.edu.sg

    2015-08-15

    Purpose: Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors’ proposed approach. Methods: A novel hybrid approach based on deformable image registration (DIR) and finite elementmore » method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. Results: The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors’ proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. Conclusions: The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.« less

  1. Patterns of interstitial lung disease during everolimus treatment in patients with metastatic renal cell carcinoma.

    PubMed

    Mizuno, Ryuichi; Asano, Koichiro; Mikami, Shuji; Nagata, Hirohiko; Kaneko, Gou; Oya, Mototsugu

    2012-05-01

    To elucidate the patterns of interstitial lung disease during everolimus treatment in patients with metastatic renal cell carcinoma, we reviewed seven cases of everolimus-induced interstitial lung disease. Seven patients with metastatic renal cell carcinoma, which continued to progress despite treatment with sunitinib or sorafenib, developed interstitial lung disease after treatment with everolimus. Chest X-ray demonstrated diffuse infiltrates in lung fields, and chest computed tomography showed bilateral reticular and ground-glass opacities. Serum levels of lactate dehydrogenase (7/7), C-reactive protein (6/7), pulmonary surfactant associated protein D (1/7) and Krebs von den Lungen 6 (5/7) were elevated. The bronchoalveolar lavage fluid obtained from four patients with Grade 3 interstitial lung disease showed lymphocytosis. The transbronchial lung biopsy specimens showed interstitial lymphocytic infiltration and septal thickening of alveolar walls. In two cases with mild interstitial lung disease, the everolimus therapy was successfully continued. In four cases with Grade 3 interstitial lung disease, the drug was discontinued and steroid therapy was initiated. Pulmonary symptoms and radiological abnormalities resolved within 2 months. Serum Krebs von den Lungen 6 was elevated compared with baseline in all cases with interstitial lung disease. Some patients who developed mild interstitial lung disease during everolimus treatment could continue to receive the treatment. Even when severe interstitial lung disease developed, withdrawal of the drug and short-term use of high-dose steroids resulted in rapid recovery. Prompt recognition of interstitial lung disease exacerbation as well as exclusion of progressive disease or infection is of primary importance.

  2. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells.

    PubMed

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-03-14

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter -223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors.

  3. Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions.

    PubMed

    Maria, Ola M; Maria, Ahmed M; Ybarra, Norma; Jeyaseelan, Krishinima; Lee, Sangkyu; Perez, Jessica; Shalaby, Mostafa Y; Lehnert, Shirley; Faria, Sergio; Serban, Monica; Seuntjens, Jan; El Naqa, Issam

    2016-04-01

    Lung tissue exposure to ionizing irradiation can invariably occur during the treatment of a variety of cancers leading to increased risk of radiation-induced lung disease (RILD). Mesenchymal stem cells (MSCs) possess the potential to differentiate into epithelial cells. However, cell culture methods of primary type II pneumocytes are slow and cannot provide a sufficient number of cells to regenerate damaged lungs. Moreover, effects of ablative radiation doses on the ability of MSCs to differentiate in vitro into lung cells have not been investigated yet. Therefore, an in vitro coculture system was used, where MSCs were physically separated from dissociated lung tissue obtained from either healthy or high ablative doses of 16 or 20 Gy whole thorax irradiated rats. Around 10±5% and 20±3% of cocultured MSCs demonstrated a change into lung-specific Clara and type II pneumocyte cells when MSCs were cocultured with healthy lung tissue. Interestingly, in cocultures with irradiated lung biopsies, the percentage of MSCs changed into Clara and type II pneumocytes cells increased to 40±7% and 50±6% at 16 Gy irradiation dose and 30±5% and 40±8% at 20 Gy irradiation dose, respectively. These data suggest that MSCs to lung cell differentiation is possible without cell fusion. In addition, 16 and 20 Gy whole thorax irradiation doses that can cause varying levels of RILD, induced different percentages of MSCs to adopt lung cell phenotype compared with healthy lung tissue, providing encouraging outlook for RILD therapeutic intervention for ablative radiotherapy prescriptions.

  4. Impact of a lung transplantation donor-management protocol on lung donation and recipient outcomes.

    PubMed

    Angel, Luis F; Levine, Deborah J; Restrepo, Marcos I; Johnson, Scott; Sako, Edward; Carpenter, Andrea; Calhoon, John; Cornell, John E; Adams, Sandra G; Chisholm, Gary B; Nespral, Joe; Roberson, Ann; Levine, Stephanie M

    2006-09-15

    One of the limitations associated with lung transplantation is the lack of available organs. To determine whether a lung donor-management protocol could increase the number of lungs for transplantation without affecting the survival rates of the recipients. We implemented the San Antonio Lung Transplant protocol for managing potential lung donors according to modifications of standard criteria for donor selection and strategies for donor management. We then compared information gathered during a 4-yr period, during which the protocol was used with information gathered during a 4-yr period before protocol implementation. Primary outcome measures were the procurement rate of lungs and the 30-d and 1-yr survival rates of recipients. We reviewed data from 711 potential lung donors. The mean rate of lung procurement was significantly higher (p < 0.0001) during the protocol period (25.5%) than during the pre-protocol period (11.5%), with an estimated risk ratio of 2.2 in favor of the protocol period. More patients received transplants during the protocol period (n = 121) than during the pre-protocol period (n = 53; p < 0.0001). Of 98 actual lung donors during the protocol period, 53 (54%) had initially been considered poor donors; these donors provided 64 (53%) of the 121 lung transplants. The type of donor was not associated with significant differences in recipients' 30-d and 1-yr survival rates or any clinical measures of adequate graft function. The protocol was associated with a significant increase in the number of lung donors and transplant procedures without compromising pulmonary function, length of stay, or survival of the recipients.

  5. Lung transplantation in adults and children: putting lung function into perspective.

    PubMed

    Thompson, Bruce Robert; Westall, Glen Philip; Paraskeva, Miranda; Snell, Gregory Ian

    2014-11-01

    The number of lung transplants performed globally continues to increase year after year. Despite this growing experience, long-term outcomes following lung transplantation continue to fall far short of that described in other solid-organ transplant settings. Chronic lung allograft dysfunction (CLAD) remains common and is the end result of exposure to a multitude of potentially injurious insults that include alloreactivity and infection among others. Central to any description of the clinical performance of the transplanted lung is an assessment of its physiology by pulmonary function testing. Spirometry and the evaluation of forced expiratory volume in 1 s and forced vital capacity, remain core indices that are measured as part of routine clinical follow-up. Spirometry, while reproducible in detecting lung allograft dysfunction, lacks specificity in differentiating the different complications of lung transplantation such as rejection, infection and bronchiolitis obliterans. However, interpretation of spirometry is central to defining the different 'chronic rejection' phenotypes. It is becoming apparent that the maximal lung function achieved following transplantation, as measured by spirometry, is influenced by a number of donor and recipient factors as well as the type of surgery performed (single vs double vs lobar lung transplant). In this review, we discuss the wide range of variables that need to be considered when interpreting lung function testing in lung transplant recipients. Finally, we review a number of novel measurements of pulmonary function that may in the future serve as better biomarkers to detect and diagnose the cause of the failing lung allograft. © 2014 Asian Pacific Society of Respirology.

  6. Can Stem Cells be Used to Generate New Lungs? Ex Vivo Lung Bioengineering with Decellularized Whole Lung Scaffolds

    PubMed Central

    Wagner, Darcy E.; Bonvillain, Ryan W.; Jensen, Todd J.; Girard, Eric D.; Bunnell, Bruce A.; Finck, Christine M.; Hoffman, Andrew M.; Weiss, Daniel J.

    2013-01-01

    For patients with end-stage lung diseases, lung transplantation is the only available therapeutic option. However, the number of suitable donor lungs is insufficient and lung transplants are complicated by significant graft failure and complications of immunosuppressive regimens. An alternative to classic organ replacement is desperately needed. Engineering of bioartificial organs using either natural or synthetic scaffolds is an exciting new potential option for generation of functional pulmonary tissue for human clinical application. Natural organ scaffolds can be generated by decellularization of native tissues; these acellular scaffolds retain the native organ ultrastructure and can be seeded with autologous cells toward the goal of regenerating functional tissues. Several decellularization strategies have been employed for lung, however, there is no consensus on the optimal approach. A variety of cell types have been investigated as potential candidates for effective recellularization of acellular lung scaffolds. Candidate cells that might be best utilized are those which can be easily and reproducibly isolated, expanded in vitro, seeded onto decellularized matrices, induced to differentiate into pulmonary lineage cells, and which survive to functional maturity. Whole lung cell suspensions, endogenous progenitor cells, embryonic and adult stem cells, and induced pluripotent stem (iPS) cells have been investigated for their applicability to repopulate acellular lung matrices. Ideally, patient-derived autologous cells would be used for lung recellularization as they have the potential to reduce the need for post-transplant immunosuppression. Several studies have performed transplantation of rudimentary bioengineered lung scaffolds in animal models with limited, short-term functionality but much further study is needed. PMID:23614471

  7. Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study

    PubMed Central

    Colantuoni, Elizabeth; Mendez-Tellez, Pedro A; Dinglas, Victor D; Sevransky, Jonathan E; Dennison Himmelfarb, Cheryl R; Desai, Sanjay V; Shanholtz, Carl; Brower, Roy G; Pronovost, Peter J

    2012-01-01

    Objective To evaluate the association of volume limited and pressure limited (lung protective) mechanical ventilation with two year survival in patients with acute lung injury. Design Prospective cohort study. Setting 13 intensive care units at four hospitals in Baltimore, Maryland, USA. Participants 485 consecutive mechanically ventilated patients with acute lung injury. Main outcome measure Two year survival after onset of acute lung injury. Results 485 patients contributed data for 6240 eligible ventilator settings, as measured twice daily (median of eight eligible ventilator settings per patient; 41% of which adhered to lung protective ventilation). Of these patients, 311 (64%) died within two years. After adjusting for the total duration of ventilation and other relevant covariates, each additional ventilator setting adherent to lung protective ventilation was associated with a 3% decrease in the risk of mortality over two years (hazard ratio 0.97, 95% confidence interval 0.95 to 0.99, P=0.002). Compared with no adherence, the estimated absolute risk reduction in two year mortality for a prototypical patient with 50% adherence to lung protective ventilation was 4.0% (0.8% to 7.2%, P=0.012) and with 100% adherence was 7.8% (1.6% to 14.0%, P=0.011). Conclusions Lung protective mechanical ventilation was associated with a substantial long term survival benefit for patients with acute lung injury. Greater use of lung protective ventilation in routine clinical practice could reduce long term mortality in patients with acute lung injury. Trial registration Clinicaltrials.gov NCT00300248. PMID:22491953

  8. Pleural plaques and their effect on lung function in Libby vermiculite miners.

    PubMed

    Clark, Kathleen A; Flynn, J Jay; Goodman, Julie E; Zu, Ke; Karmaus, Wilfried J J; Mohr, Lawrence C

    2014-09-01

    Multiple studies have investigated the relationship between asbestos-related pleural plaques (PPs) and lung function, with disparate and inconsistent results. Most use chest radiographs to identify PPs and simple spirometry to measure lung function. High-resolution CT (HRCT) scanning improves the accuracy of PP identification. Complete pulmonary function tests (PFTs), including spirometry, lung volumes, and diffusing capacity of the lung for carbon monoxide, provide a more definitive assessment of lung function. The goal of this study was to determine, using HRCT scanning and complete PFTs, the effect of PPs on lung function in Libby vermiculite miners. The results of HRCT scanning and complete PFTs performed between January 2000 and August 2012 were obtained from the medical records of 166 Libby vermiculite miners. Multivariate regression analyses with Tukey multivariate adjustment were used to assess statistical associations between the presence of PPs and lung function. Adjustments were made for age, BMI, smoking history, duration of employment, and years since last occupational asbestos exposure. Nearly 90% of miners (n = 149) had evidence of PPs on HRCT scan. No significant differences in spirometry results, lung volumes, or diffusing capacity of the lung for carbon monoxide were found between miners with PPs alone and miners with normal HRCT scans. Miners with both interstitial fibrosis and the presence of PPs had a significantly decreased total lung capacity in comparison with miners with normal HRCT scans (P = .02). Age, cumulative smoking history, and BMI were significant covariates that contributed to abnormal lung function. Asbestos-related PPs alone have no significant effect on lung function in Libby vermiculite miners.

  9. Reduced ischemia-reperfusion injury with isoproterenol in non-heart-beating donor lungs.

    PubMed

    Jones, D R; Hoffmann, S C; Sellars, M; Egan, T M

    1997-05-01

    Transplantation of lungs retrieved from non-heart-beating donors could expand the donor pool. Recent studies suggest that the ischemia-reperfusion injury (IRI) to the lung can be attenuated by increasing intracellular cAMP concentrations. The purpose of this study was to determine the effect of IRI on capillary permeability, as measured by Kfc, in lungs retrieved from non-heart-beating donors and reperfused with or without isoproterenol (iso). Using an in situ isolated perfused lung model, lungs were retrieved from non-heart-beating donor rats ventilated with O2 or not at varying intervals after death. The lungs were reperfused with or without iso (10 microM). Kfc, lung viability, and pulmonary hemodynamics were measured, and tissue levels of adenine nucleotides and cAMP were measured by HPLC. Iso-reperfusion decreased Kfc significantly (P < 0.05) compared to non-iso-reperfused groups at all postmortem ischemic times, irrespective of preharvest ventilation status. Pulmonary arterial pressures and resistances increased and venous resistances decreased with iso-reperfusion. Total adenine nucleotide (TAN) levels correlated with Kfc in non-iso-reperfused (r = 0.65) and iso-perfused (r = 0.84) lungs. cAMP levels increased significantly with iso-reperfusion. cAMP levels correlated with Kfc (r = 0.87) in iso-reperfused lungs. Iso-reperfusion of lungs retrieved from non-heart-beating donor rats results in decreased capillary permeability and increased lung tissue cAMP levels. Pharmacologic augmentation of tissue TAN and cAMP levels may further ameliorate the increased capillary permeability seen in lungs retrieved from non-heart-beating donors.

  10. Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets.

    PubMed

    Sun, Xingshen; Olivier, Alicia K; Liang, Bo; Yi, Yaling; Sui, Hongshu; Evans, Turan I A; Zhang, Yulong; Zhou, Weihong; Tyler, Scott R; Fisher, John T; Keiser, Nicholas W; Liu, Xiaoming; Yan, Ziying; Song, Yi; Goeken, J Adam; Kinyon, Joann M; Fligg, Danielle; Wang, Xiaoyan; Xie, Weiliang; Lynch, Thomas J; Kaminsky, Paul M; Stewart, Zoe A; Pope, R Marshall; Frana, Timothy; Meyerholz, David K; Parekh, Kalpaj; Engelhardt, John F

    2014-03-01

    Chronic bacterial lung infections in cystic fibrosis (CF) are caused by defects in the CF transmembrane conductance regulator chloride channel. Previously, we described that newborn CF transmembrane conductance regulator-knockout ferrets rapidly develop lung infections within the first week of life. Here, we report a more slowly progressing lung bacterial colonization phenotype observed in juvenile to adult CF ferrets reared on a layered antibiotic regimen. Even on antibiotics, CF ferrets were still very susceptible to bacterial lung infection. The severity of lung histopathology ranged from mild to severe, and variably included mucus obstruction of the airways and submucosal glands, air trapping, atelectasis, bronchopneumonia, and interstitial pneumonia. In all CF lungs, significant numbers of bacteria were detected and impaired tracheal mucociliary clearance was observed. Although Streptococcus, Staphylococcus, and Enterococcus were observed most frequently in the lungs of CF animals, each animal displayed a predominant bacterial species that accounted for over 50% of the culturable bacteria, with no one bacterial taxon predominating in all animals. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry fingerprinting was used to quantify lung bacteria in 10 CF animals and demonstrated Streptococcus, Staphylococcus, Enterococcus, or Escherichia as the most abundant genera. Interestingly, there was significant overlap in the types of bacteria observed in the lung and intestine of a given CF animal, including bacterial taxa unique to the lung and gut of each CF animal analyzed. These findings demonstrate that CF ferrets develop lung disease during the juvenile and adult stages that is similar to patients with CF, and suggest that enteric bacterial flora may seed the lung of CF ferrets.

  11. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells

    PubMed Central

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-01-01

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter −223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors. PMID:28099148

  12. Challenges in pulmonary fibrosis · 3: Cystic lung disease

    PubMed Central

    Cosgrove, Gregory P; Frankel, Stephen K; Brown, Kevin K

    2007-01-01

    Cystic lung disease is a frequently encountered problem caused by a diverse group of diseases. Distinguishing true cystic lung disease from other entities, such as cavitary lung disease and emphysema, is important given the differing prognostic implications. In this paper the features of the cystic lung diseases are reviewed and contrasted with their mimics, and the clinical and radiographic features of both diffuse (pulmonary Langerhans' cell histiocytosis and lymphangioleiomyomatosis) and focal or multifocal cystic lung disease are discussed. PMID:17726170

  13. Erlotinib Hydrochloride in Treating Patients With Stage IB-IIIA Non-small Cell Lung Cancer That Has Been Completely Removed by Surgery (An ALCHEMIST Treatment Trial)

    ClinicalTrials.gov

    2018-06-29

    ALK Gene Rearrangement; EGFR Exon 19 Deletion Mutation; EGFR NP_005219.2:p.L858R; Stage IB Non-Small Cell Lung Carcinoma AJCC v7; Stage II Non-Small Cell Lung Cancer AJCC v7; Stage IIA Non-Small Cell Lung Carcinoma AJCC v7; Stage IIB Non-Small Cell Lung Carcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7

  14. Genetic Contribution to Non-Squamous, Non-Small Cell Lung Cancer in Non-Smokers.

    PubMed

    Carr, Shamus R; Akerley, Wallace; Cannon-Albright, Lisa

    2018-04-04

    Lung carcinogenesis is strongly influenced by environmental and heritable factors. The genetic contribution to the different histologies is unknown. A population-based computerized genealogy resource linked to a statewide cancer registry of lung cancer cases (n=5408) was analyzed to evaluate the heritable contribution to lung cancer histology in smoking (n=1751) and non-smoking cases (n=818). Statistical methods were used to test for significant excess relatedness of lung cancer cases. Significant excess distant relatedness was observed for all lung cancer histology subgroups analyzed except the small cell lung cancer subset (p=0.213). When smoking and non-smoking histologic subsets of lung cancer were considered, excess relatedness was observed only in non-smoking NSCLC (n=653; p=0.026) and, particularly, in those non-smokers with non-squamous histology (n=561; p=0.036). Sixty one pedigrees were identified which demonstrated a significant excess risk of non-smoking, non-squamous lung cancer cases; and an excess of female cases was observed among the cases in these high-risk pedigrees. This analysis supports a genetic predisposition to lung cancer carcinogenesis in non-smoking, non-squamous NSCLC cases. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  15. A Segmentation Method for Lung Parenchyma Image Sequences Based on Superpixels and a Self-Generating Neural Forest

    PubMed Central

    Liao, Xiaolei; Zhao, Juanjuan; Jiao, Cheng; Lei, Lei; Qiang, Yan; Cui, Qiang

    2016-01-01

    Background Lung parenchyma segmentation is often performed as an important pre-processing step in the computer-aided diagnosis of lung nodules based on CT image sequences. However, existing lung parenchyma image segmentation methods cannot fully segment all lung parenchyma images and have a slow processing speed, particularly for images in the top and bottom of the lung and the images that contain lung nodules. Method Our proposed method first uses the position of the lung parenchyma image features to obtain lung parenchyma ROI image sequences. A gradient and sequential linear iterative clustering algorithm (GSLIC) for sequence image segmentation is then proposed to segment the ROI image sequences and obtain superpixel samples. The SGNF, which is optimized by a genetic algorithm (GA), is then utilized for superpixel clustering. Finally, the grey and geometric features of the superpixel samples are used to identify and segment all of the lung parenchyma image sequences. Results Our proposed method achieves higher segmentation precision and greater accuracy in less time. It has an average processing time of 42.21 seconds for each dataset and an average volume pixel overlap ratio of 92.22 ± 4.02% for four types of lung parenchyma image sequences. PMID:27532214

  16. Elevated expression of WWP2 in human lung adenocarcinoma and its effect on migration and invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; He, Yao; Chen, Shanshan

    Lung cancer has been a hot area of research because of its high incidence and mortality. In this study, WWP2, an E3 ubiquitin ligase, is proposed to be an oncoprotein contributing to lung tumorigenesis. We attempted to determine if WWP2 gene expression is correlated with the development of human lung adenocarcinoma. Real-time PCR and western blotting were used to detect the expression of WWP2 in 65 paired lung adenocarcinoma and adjacent normal lung tissues. We found that WWP2 expression was elevated in lung adenocarcinoma tissues and was correlated with the tumor differentiation stage, TNM stage and presence of lymph nodemore » metastasis. We performed CCK-8 and colony formation assays and found that down-regulation of WWP2 inhibited proliferation in A549 and SPC-A-1 cells. A wound healing assay and trans-well invasion assays showed that down-regulation of WWP2 inhibited the migration and invasion of lung adenocarcinoma cells. It could be predicted from these data that elevated expression of WWP2 may play a role in facilitating the development of lung adenocarcinoma. - Highlights: • Expression of WWP2 is firstly reported in human lung adenocarcinoma. • Function of WWP2 is firstly explored in lung adenocarcinoma cells.« less

  17. Lung cancer: biology and treatment options

    PubMed Central

    Hassan, Omer; Yang, Yi-Wei; Buchanan, Petra

    2015-01-01

    Lung cancer remains the leading cause of cancer mortality in men and women in the U.S. and worldwide. About 90% of lung cancer cases are caused by smoking and the use of tobacco products. However, other factors such as radon gas, asbestos, air pollution exposures, and chronic infections can contribute to lung carcinogenesis. In addition, multiple inherited and acquired mechanisms of susceptibility to lung cancer have been proposed. Lung cancer is divided into two broad histologic classes, which grow and spread differently: small-cell lung carcinomas (SCLC) and non-small cell lung carcinomas (NSCLC). Treatment options for lung cancer include surgery, radiation therapy, chemotherapy, and targeted therapy. Therapeutic-modalities recommendations depend on several factors, including the type and stage of cancer. Despite the improvements in diagnosis and therapy made during the past 25 years, the prognosis for patients with lung cancer is still unsatisfactory. The responses to current standard therapies are poor except for the most localized cancers. However, a better understanding of the biology pertinent to these challenging malignancies, might lead to the development of more efficacious and perhaps more specific drugs. The purpose of this review is to summarize the recent developments in lung cancer biology and its therapeutic strategies, and discuss the latest treatment advances including therapies currently under clinical investigation. PMID:26297204

  18. Lung Function before and Two Days after Open-Heart Surgery.

    PubMed

    Urell, Charlotte; Westerdahl, Elisabeth; Hedenström, Hans; Janson, Christer; Emtner, Margareta

    2012-01-01

    Reduced lung volumes and atelectasis are common after open-heart surgery, and pronounced restrictive lung volume impairment has been found. The aim of this study was to investigate factors influencing lung volumes on the second postoperative day. Open-heart surgery patients (n = 107, 68 yrs, 80% male) performed spirometry both before surgery and on the second postoperative day. The factors influencing postoperative lung volumes and decrease in lung volumes were investigated with univariate and multivariate analyses. Associations between pain (measured by numeric rating scale) and decrease in postoperative lung volumes were calculated with Spearman rank correlation test. Lung volumes decreased by 50% and were less than 40% of the predictive values postoperatively. Patients with BMI >25 had lower postoperative inspiratory capacity (IC) (33 ± 14% pred.) than normal-weight patients (39 ± 15% pred.), (P = 0.04). More pain during mobilisation was associated with higher decreases in postoperative lung volumes (VC: r = 0.33, P = 0.001; FEV(1): r = 0.35, P ≤ 0.0001; IC: r = 0.25, P = 0.01). Patients with high BMI are a risk group for decreased postoperative lung volumes and should therefore receive extra attention during postoperative care. As pain is related to a larger decrease in postoperative lung volumes, optimal pain relief for the patients should be identified.

  19. Lung Function before and Two Days after Open-Heart Surgery

    PubMed Central

    Urell, Charlotte; Westerdahl, Elisabeth; Hedenström, Hans; Janson, Christer; Emtner, Margareta

    2012-01-01

    Reduced lung volumes and atelectasis are common after open-heart surgery, and pronounced restrictive lung volume impairment has been found. The aim of this study was to investigate factors influencing lung volumes on the second postoperative day. Open-heart surgery patients (n = 107, 68 yrs, 80% male) performed spirometry both before surgery and on the second postoperative day. The factors influencing postoperative lung volumes and decrease in lung volumes were investigated with univariate and multivariate analyses. Associations between pain (measured by numeric rating scale) and decrease in postoperative lung volumes were calculated with Spearman rank correlation test. Lung volumes decreased by 50% and were less than 40% of the predictive values postoperatively. Patients with BMI >25 had lower postoperative inspiratory capacity (IC) (33 ± 14% pred.) than normal-weight patients (39 ± 15% pred.), (P = 0.04). More pain during mobilisation was associated with higher decreases in postoperative lung volumes (VC: r = 0.33, P = 0.001; FEV1: r = 0.35, P ≤ 0.0001; IC: r = 0.25, P = 0.01). Patients with high BMI are a risk group for decreased postoperative lung volumes and should therefore receive extra attention during postoperative care. As pain is related to a larger decrease in postoperative lung volumes, optimal pain relief for the patients should be identified. PMID:22924127

  20. An updated review of case-control studies of lung cancer and indoor radon-Is indoor radon the risk factor for lung cancer?

    PubMed

    Sheen, Seungsoo; Lee, Keu Sung; Chung, Wou Young; Nam, Saeil; Kang, Dae Ryong

    2016-01-01

    Lung cancer is a leading cause of cancer-related death in the world. Smoking is definitely the most important risk factor for lung cancer. Radon ((222)Rn) is a natural gas produced from radium ((226)Ra) in the decay series of uranium ((238)U). Radon exposure is the second most common cause of lung cancer and the first risk factor for lung cancer in never-smokers. Case-control studies have provided epidemiological evidence of the causative relationship between indoor radon exposure and lung cancer. Twenty-four case-control study papers were found by our search strategy from the PubMed database. Among them, seven studies showed that indoor radon has a statistically significant association with lung cancer. The studies performed in radon-prone areas showed a more positive association between radon and lung cancer. Reviewed papers had inconsistent results on the dose-response relationship between indoor radon and lung cancer risk. Further refined case-control studies will be required to evaluate the relationship between radon and lung cancer. Sufficient study sample size, proper interview methods, valid and precise indoor radon measurement, wide range of indoor radon, and appropriate control of confounders such as smoking status should be considered in further case-control studies.

  1. Silica-induced Chronic Inflammation Promotes Lung Carcinogenesis in the Context of an Immunosuppressive Microenvironment12

    PubMed Central

    Freire, Javier; Ajona, Daniel; de Biurrun, Gabriel; Agorreta, Jackeline; Segura, Victor; Guruceaga, Elizabeth; Bleau, Anne-Marie; Pio, Ruben; Blanco, David; Montuenga, Luis M

    2013-01-01

    The association between inflammation and lung tumor development has been clearly demonstrated. However, little is known concerning the molecular events preceding the development of lung cancer. In this study, we characterize a chemically induced lung cancer mouse model in which lung cancer developed in the presence of silicotic chronic inflammation. Silica-induced lung inflammation increased the incidence and multiplicity of lung cancer in mice treated with N-nitrosodimethylamine, a carcinogen found in tobacco smoke. Histologic and molecular analysis revealed that concomitant chronic inflammation contributed to lung tumorigenesis through induction of preneoplastic changes in lung epithelial cells. In addition, silica-mediated inflammation generated an immunosuppressive microenvironment in which we observed increased expression of programmed cell death protein 1 (PD-1), transforming growth factor-β1, monocyte chemotactic protein 1 (MCP-1), lymphocyte-activation gene 3 (LAG3), and forkhead box P3 (FOXP3), as well as the presence of regulatory T cells. Finally, the K-RAS mutational profile of the tumors changed from Q61R to G12D mutations in the inflammatory milieu. In summary, we describe some of the early molecular changes associated to lung carcinogenesis in a chronic inflammatory microenvironment and provide novel information concerning the mechanisms underlying the formation and the fate of preneoplastic lesions in the silicotic lung. PMID:23908592

  2. Uncontrolled Donation After Circulatory Determination of Death Donors (uDCDDs) as a Source of Lungs for Transplant

    PubMed Central

    Egan, T. M.; Requard, J. J.

    2017-01-01

    In April 2014, the American Journal of Transplantation published a report on the first lung transplant in the United States recovered from an uncontrolled donation after circulatory determination of death donor (uDCDD), assessed by ex vivo lung perfusion (EVLP). The article identified logistical and ethical issues related to introduction of lung transplant from uDCDDs. In an open clinical trial, we have Food and Drug Administration and Institutional Review Board approval to transplant lungs recovered from uDCDDs judged suitable after EVLP. Through this project and other experiences with lung recovery from uDCDDs, we have identified solutions to many logistical challenges and have addressed ethical issues surrounding lung transplant from uDCDDs that were mentioned in this case report. Here, we discuss those challenges, including issues related to recovery of other solid organs from uDCDDs. Despite logistical challenges, uDCDDs could solve the critical shortage of lungs for transplant. Furthermore, by avoiding the deleterious impact of brain death and days of positive pressure ventilation, and by using opportunities to treat lungs in the decedent or during EVLP, lungs recovered from uDCDDs may ultimately prove to be better than lungs currently being transplanted from conventional brain-dead organ donors. PMID:25873272

  3. Lung Emergencies

    MedlinePlus

    ... The Marfan Foundation Marfan & Related Disorders What is Marfan Syndrome? What are Related Disorders? What are the Signs? ... Emergencies Lung Emergencies Surgeries Lung Emergencies People with Marfan syndrome can be at increased risk of sudden lung ...

  4. Rheumatoid Arthritis: Can It Affect the Lungs?

    MedlinePlus

    Rheumatoid arthritis: Can it affect the lungs? Can rheumatoid arthritis affect your lungs? Answers from April Chang-Miller, M.D. Although rheumatoid arthritis primarily affects joints, it sometimes causes lung disease ...

  5. Malondialdehyde-acetaldehyde (MAA) adducted protein inhalation causes lung injury

    PubMed Central

    Wyatt, T. A.; Kharbanda, K. K.; McCaskill, M. L.; Tuma, D. J.; Yanov, D.; DeVasure, J.; Sisson, J. H.

    2011-01-01

    In addition to cigarette smoking, alcohol exposure is also associated with increased lung infections and decreased mucociliary clearance. However, little research has been conducted on the combination effects of alcohol and cigarette smoke on lungs. Previously, we have demonstrated in a mouse model that the combination of cigarette smoke and alcohol exposure results in the formation of a very stable hybrid malondialdehyde-acetaldehyde (MAA)-adducted protein in the lung. In in vitro studies, MAA-adducted protein stimulates bronchial epithelial cell interleukin-8 via the activation of protein kinase C epsilon (PKCε). We hypothesized that direct MAA-adducted protein exposure in the lungs would mimic such a combination of smoke and alcohol exposure leading to airway inflammation. To test this hypothesis, C57BL/6J female mice were intranasally instilled with either saline, 30 µL of 50 µg/mL BSA-MAA, or unadducted BSA for up to 3 wk. Likewise, human lung surfactant proteins A and D (SPA, SPD) were purified from human pulmonary proteinosis lung lavage fluid and successfully MAA-adducted in vitro. Similar to BSA-MAA, SPD-MAA was instilled into mouse lungs. Lungs were necropsied and assayed for histopathology, PKCε activation, and lung lavage chemokines. In control mice instilled with saline, normal lungs had few inflammatory cells. No significant effects were observed in un-adducted BSA- or SPD-instilled mice. However, when mice were instilled with BSA-MAA or SPD-MAA for 3 wk, a significant peribronchiolar localization of inflammatory cells was observed. Both BSA-MAA and SPD-MAA stimulated increased lung lavage neutrophils and caused a significant elevation in the chemokine, KC, which is a functional homologue to human interleukin-8. Likewise, MAA-adducted protein stimulated the activation of airway and lung slice PKCε. These data support that MAA-adducted protein induces a pro-inflammatory response in the lungs and that lung surfactant protein is a biologically relevant target for malondialdehyde and acetaldehyde adduction. These data further implicate MAA-adduct formation as a potential mechanism for smoke and alcohol induced lung injury. PMID:21958604

  6. Lung inflation with hydrogen during the cold ischemia phase decreases lung graft injury in rats

    PubMed Central

    Liu, Rongfang; Fang, Xianhai; Meng, Chao; Xing, Jingchun; Liu, Jinfeng; Yang, Wanchao

    2015-01-01

    Hydrogen has antioxidant and anti-inflammatory effects on lung ischemia–reperfusion injury when it is inhaled by donor or/and recipient. This study examined the effects of lung inflation with 3% hydrogen during the cold ischemia phase on lung graft function in rats. The donor lung was inflated with 3% hydrogen, 40% oxygen, and 57% nitrogen at 5 mL/kg, and the gas was replaced every 20 min during the cold ischemia phase for 2 h. In the control group, the donor lung was inflated with 40% oxygen and 60% nitrogen at 5 mL/kg. The recipient was euthanized 2 h after orthotropic lung transplantation. The hydrogen concentration in the donor lung during the cold ischemia phase was 1.99–3%. The oxygenation indices in the arterial blood and pulmonary vein blood were improved in the hydrogen group. The inflammation response indices, including lung W/D ratio, the myeloperoxidase activity in the grafts, and the levels of IL-8 and TNF-α in serum, were significantly lower in the hydrogen group (5.2 ± 0.8, 0.76 ± 0.32 U/g, 340 ± 84 pg/mL, and 405 ± 115 pg/mL, respectively) than those in the control group (6.5 ± 0.7, 1.1 ± 0.5 U/g, 443 ± 94 pg/mL, and 657 ± 96 pg/mL, respectively (P < 0.05), and the oxidative stress indices, including the superoxide dismutase activity and the level of malonaldehyde in lung grafts were improved after hydrogen application. Furthermore, the lung injury score determined by histopathology, the cell apoptotic index, and the caspase-3 protein expression in lung grafts were decreased after hydrogen treatment, and the static pressure–volume curve of lung graft was improved by hydrogen inflation. In conclusion, lung inflation with 3% hydrogen during the cold ischemia phase alleviated lung graft injury and improved graft function. PMID:25662956

  7. Neutral endopeptidase: variable expression in human lung, inactivation in lung cancer, and modulation of peptide-induced calcium flux.

    PubMed

    Cohen, A J; Bunn, P A; Franklin, W; Magill-Solc, C; Hartmann, C; Helfrich, B; Gilman, L; Folkvord, J; Helm, K; Miller, Y E

    1996-02-15

    Neutral endopeptidase (NEP; CALLA, CD10, EC 3.4.24.11) is a cell surface endopeptidase that hydrolyses bioactive peptides, including the bombesin-like peptides, as well as other neuropeptides. Bombesin-like peptides and other neuropeptides are autocrine growth factors for both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Low expression of NEP has been reported in SCLC and NSCLC cell lines. NEP inhibition has been shown to increase proliferation in one cell line. To date, NEP expression has not been quantitatively evaluated in normal adult lung, SCLC or NSCLC tumors, paired uninvolved lung from the same patient, or in other pulmonary neoplasms such as mesotheliomas and carcinoids. We examined the expression of NEP in these tissues and human cell lines using immunohistochemistry, flow cytometry, enzyme activity, ELISA, Western blot, and reverse transcription (RT)-PCR. Uninvolved lung tissue from different individuals displayed considerable variation in NEP activity and protein. By immunohistochemistry, NEP expression was detectable in alveolar and airway epithelium, fibroblasts of normal lung, and in mesotheliomas, whereas it was undetectable in most SCLC, adenocarcinoma, squamous cell carcinoma, and carcinoid tumors of the lung. NEP activity and protein levels were lower in all SCLC and adenocarcinoma tumors when compared to adjacent uninvolved lung, often at levels consistent with expression derived from contaminating stroma. NEP expression and activity were reduced or undetectable in most SCLC and lung adenocarcinoma cell lines. NEP mRNA by RT-PCR was not expressed or was in low abundance in the majority of lung cancer cell lines. The majority of lung tumors did not express NEP by RT-PCR as compared with normal adjacent lung. In addition, recombinant NEP abolished, whereas an NEP inhibitor potentiated, the calcium flux generated by neuropeptides in some lung cancer cell lines, demonstrating potential physiological significance for low NEP expression. NEP, therefore, is a signal transduction and possibly a growth modulator for both SCLC and NSCLC, emphasizing the role of neuropeptides in the pathogenesis of the major histological forms of lung cancer.

  8. CT angiography - chest

    MedlinePlus

    ... aortic aneurysm - CTA chest; Venous thromboembolism - CTA lung; Blood clot - CTA lung; Embolus - CTA lung; CT pulmonary angiogram ... angiogram may be done: For symptoms that suggest blood clots in the lungs, such as chest pain, rapid ...

  9. Treatment Options by Stage (Non-Small Cell Lung Cancer)

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small Cell Lung Cancer Go to Health Professional Version Key ...

  10. Too Many Cases, Too Many Deaths: Lung Cancer in African Americans

    MedlinePlus

    ... eliminate this and other health disparities. Read the Report Download the Report Read other Disparities in Lung Health Series reports News & Events News: American Lung Association Announces Lung ...

  11. Risk factors of Lung Cancer in nonsmoker.

    PubMed

    Akhtar, Nahid; Bansal, Jeena Gupta

    Generally, the cause of lung cancer is attributed to tobacco smoking. But many of the new lung cancer cases have been reported in nonsmokers. Apart from smoking; air pollution, environmental exposure, mutations, and single-nucleotide polymorphisms are known to be associated with lung cancer. Improper diet, alcohol consumption, marijuana smoking, estrogen, infections with human papillomavirus (HPV), HIV, and Epstein-Barr virus are suggested to be linked with lung cancer but clear evidences to ascertain their relation is not available. This article provides a comprehensive review of various risk factors and the underlying molecular mechanisms responsible for increasing the incidence of lung cancer. The pathologic, histologic, and genetic differences exist with lung cancer among smokers and nonsmokers. A better understanding of the risk factors, differences in pathology and molecular features of lung cancer in smokers and nonsmokers and the mode of action of various carcinogens will facilitate the prevention and management of lung cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Assessement of angiogenesis reveals blood vessel heterogeneity in lung carcinoma

    PubMed Central

    BIRAU, AMALIA; CEAUSU, RALUCA AMALIA; CIMPEAN, ANCA MARIA; GAJE, PUSA; RAICA, MARIUS; OLARIU, TEODORA

    2012-01-01

    Despite advances in treatment, the prognosis for lung cancer patients remains poor. Angiogenesis appears to be a promising target for lung cancer therapy; however, the clinical significance of vascular changes are not completely understood. The aim of this study was to evaluate the types and morphology of blood vessels in various lung carcinomas. Using double immunostaining, we investigated 39 biopsies from patients admitted with various histological types of lung carcinoma. Tumor blood vessels were quantified separately for CD34/smooth muscle actin and described as either immature, intermediate or mature. Double immunostaining evaluation of the type of blood vessels in lung carcinomas revealed a marked heterogeneity. The immature and intermediate type of vessels were more common in adenocarcinomas (ADCs) and squamous cell carcinomas (SCCs) of the lung. Small cell lung carcinomas revealed a significant correlation between pathological and immature types of blood vessels. Therefore, quantifying the types of tumor vessels in lung carcinomas may be an important element to improve the results of anti-vascular therapy. PMID:23205116

  13. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes

    PubMed Central

    McKay, James D.; Hung, Rayjean J.; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C.; Caporaso, Neil E.; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A.; Qian, David C.; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N.; Bojesen, Stig E.; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C.; Bush, William S.; Tardon, Adonina; Rennert, Gad; Teare, M. Dawn; Field, John K.; Kiemeney, Lambertus A.; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B.; Andrew, Angeline S.; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C.; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S.; Mellemgaard, Anders; Saliba, Walid; Haiman, Christopher A.; Wilkens, Lynne R.; Fernandez-Somoano, Ana; Fernandez-Tardon, Guillermo; van der Heijden, Henricus F.M.; Kim, Jin Hee; Dai, Juncheng; Hu, Zhibin; Davies, Michael PA; Marcus, Michael W.; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C.; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Doherty, Jennifer A.; Barnett, Matt P.; Chen, Chu; Goodman, Gary E.; Cox, Angela; Taylor, Fiona; Woll, Penella; Brüske, Irene; Wichmann, H.-Erich; Manz, Judith; Muley, Thomas R.; Risch, Angela; Rosenberger, Albert; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A.; Tsao, Ming-Sound; Arnold, Susanne M.; Haura, Eric B.; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M.; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J.; Butler, Lesley M.; Koh, Woon-Puay; Gao, Yu-Tang; Houlston, Richard S.; McLaughlin, John; Stevens, Victoria L.; Joubert, Philippe; Lamontagne, Maxime; Nickle, David C.; Obeidat, Ma’en; Timens, Wim; Zhu, Bin; Song, Lei; Kachuri, Linda; Artigas, María Soler; Tobin, Martin D.; Wain, Louise V.; Rafnar, Thorunn; Thorgeirsson, Thorgeir E.; Reginsson, Gunnar W.; Stefansson, Kari; Hancock, Dana B.; Bierut, Laura J.; Spitz, Margaret R.; Gaddis, Nathan C.; Lutz, Sharon M.; Gu, Fangyi; Johnson, Eric O.; Kamal, Ahsan; Pikielny, Claudio; Zhu, Dakai; Lindströem, Sara; Jiang, Xia; Tyndale, Rachel F.; Chenevix-Trench, Georgia; Beesley, Jonathan; Bossé, Yohan; Chanock, Stephen; Brennan, Paul; Landi, Maria Teresa; Amos, Christopher I.

    2017-01-01

    Summary While several lung cancer susceptibility loci have been identified, much of lung cancer heritability remains unexplained. Here, 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated GWAS analysis of lung cancer on 29,266 patients and 56,450 controls. We identified 18 susceptibility loci achieving genome wide significance, including 10 novel loci. The novel loci highlighted the striking heterogeneity in genetic susceptibility across lung cancer histological subtypes, with four loci associated with lung cancer overall and six with lung adenocarcinoma. Gene expression quantitative trait analysis (eQTL) in 1,425 normal lung tissues highlighted RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes, OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer. PMID:28604730

  14. [Lung abscess which needed to be distinguished from lung cancer; report of a case].

    PubMed

    Kamiya, Kazunori; Yoshizu, Akira; Misumi, Yuki; Hida, Naoya; Okamoto, Hiroaki; Yoshida, Sachiko

    2011-12-01

    Differential diagnosis of lung abscess from lung cancer is sometimes difficult. In February 2009, a 57-year-old man consulted our hospital complaining of bloody sputum. Chest computed tomography (CT) demonstrated a 2.5 cm nodule with pleural indentation, spicula and vascular involvement in the right S(3). Bronchofiberscope could not establish a definitive diagnosis. Blood test showed no abnormality. Three months later, progression of the nodule to the adjacent middle lobe was demonstrated by follow-up CT, and F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) showed isotope accumulation in the nodule and hilar lymph node. A diagnosis of lung cancer was suspected and surgery was performed. The diagnosis of possible lung cancer was made by needle biopsy, and the patient underwent right upper lobectomy and partial resection of middle lobe with standard nodal dissection. The final pathological diagnosis was lung abscess. Lung abscess must be kept in mind as a possible differential diagnosis when abnormal shadow suspected of lung cancer is observed.

  15. Ultrasound assessment of lung consolidation and reaeration after pleural effusion drainage in patients with Acute Respiratory Distress Syndrome: a pilot study.

    PubMed

    Chinardet, B; Brisson, H; Arbelot, C; Langeron, O; Rouby, J J; Lu, Q

    2016-01-01

    The aim of the pilot study was to assess by ultrasound changes in dimensions of lung consolidation and reaeration after drainage of large pleural effusion in patients with acute respiratory distress syndrome (ARDS). Lung ultrasound and blood gas were performed before, 2 hours (H2) and 24 hours (H24) after drainage of pleural effusion. Lung ultrasound aeration score was calculated. Cephalocaudal dimension and diaphragmatic transversal area of lung consolidation were measured. Ten patients were studied. Median volume of drained effusion was 675 ml at H2 and 895 at H24. Two hours after drainage, dimension of cephalocaudal consolidation and diaphragmatic transversal area decreased significantly. Lung reaeration after drainage occurred mainly in latero-inferior and postero-superior regions. PaO2/FiO2 increased significantly at H24. Ultrasound is a useful method to assess lung consolidation after pleural effusion drainage. Drainage of pleural effusion may lead to a decrease of lung consolidation and improvement of lung reaeration.

  16. Lung lobe segmentation based on statistical atlas and graph cuts

    NASA Astrophysics Data System (ADS)

    Nimura, Yukitaka; Kitasaka, Takayuki; Honma, Hirotoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi; Mori, Kensaku

    2012-03-01

    This paper presents a novel method that can extract lung lobes by utilizing probability atlas and multilabel graph cuts. Information about pulmonary structures plays very important role for decision of the treatment strategy and surgical planning. The human lungs are divided into five anatomical regions, the lung lobes. Precise segmentation and recognition of lung lobes are indispensable tasks in computer aided diagnosis systems and computer aided surgery systems. A lot of methods for lung lobe segmentation are proposed. However, these methods only target the normal cases. Therefore, these methods cannot extract the lung lobes in abnormal cases, such as COPD cases. To extract lung lobes in abnormal cases, this paper propose a lung lobe segmentation method based on probability atlas of lobe location and multilabel graph cuts. The process consists of three components; normalization based on the patient's physique, probability atlas generation, and segmentation based on graph cuts. We apply this method to six cases of chest CT images including COPD cases. Jaccard index was 79.1%.

  17. Thoracoscopic decortication for the management of trapped lung caused by 14-year pneumothorax: A case report.

    PubMed

    Tian, Yan; Zheng, Wenqi; Zha, Nashunbayaer; Wang, Yufei; Huang, Shaojun; Guo, Zhanlin

    2018-05-26

    Trapped lung is defined by the lung's inability to expand and fill the thoracic cavity because of a restricting "peel" caused by benign or malignant pleural disease. However, trapped lung secondary to pneumothorax is rarely reported. We present a case of trapped lung caused by a pneumothorax that occurred some 14 years before the patient presented to our hospital with a complaint of incapacitating dyspnea. Computed tomography (CT) scans revealed trapping of the right lung with abnormal thickening of the visceral pleura. In view of the patient's history of pneumothorax, we concluded that his dyspnea was attributable mainly to the trapping of his lung by the earlier pneumothorax. We therefore scheduled thoracoscopic decortication, which was successfully completed. The patient's recovery after the operation was uneventful, and seven weeks after surgery the right lung had re-expanded well. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  18. Practical use of advanced mouse models for lung cancer.

    PubMed

    Safari, Roghaiyeh; Meuwissen, Ralph

    2015-01-01

    To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre recombinase activity into pulmonary tissues, and we discuss here the different techniques underlying these applications. Concomitant with Cre/Flp recombinase-based models are the tetracycline (Tet)-inducible bitransgenic systems in which presence or absence of doxycycline can turn the expression of a specific oncogene on or off. The use of several Tet-inducible lung cancer models for NSCLC is presented here in which the reversal of oncogene expression led to complete tumor regression and provided us with important insight of how oncogene dependence influence lung cancer survival and growth. As alternative to Tet-inducible models, we discuss the application of reversible expressed, transgenic mutant estrogen receptor (ER) fusion proteins, which are regulated via systemic tamoxifen administration. Most of the various lung cancer models can be combined through the generation of transgenic compound mice so that the use of these somatic mouse models can be even more enhanced for the study of specific molecular pathways that facilitate growth and maintenance of lung cancer. Finally, this description of the practical application and methodology of mouse models for lung cancer should be helpful in assisting researchers to make the best choices and optimal use of (existing) somatic models that suits the specific experimental needs in their study of lung cancer.

  19. Reproducibility of Lobar Perfusion and Ventilation Quantification Using SPECT/CT Segmentation Software in Lung Cancer Patients.

    PubMed

    Provost, Karine; Leblond, Antoine; Gauthier-Lemire, Annie; Filion, Édith; Bahig, Houda; Lord, Martin

    2017-09-01

    Planar perfusion scintigraphy with 99m Tc-labeled macroaggregated albumin is often used for pretherapy quantification of regional lung perfusion in lung cancer patients, particularly those with poor respiratory function. However, subdividing lung parenchyma into rectangular regions of interest, as done on planar images, is a poor reflection of true lobar anatomy. New tridimensional methods using SPECT and SPECT/CT have been introduced, including semiautomatic lung segmentation software. The present study evaluated inter- and intraobserver agreement on quantification using SPECT/CT software and compared the results for regional lung contribution obtained with SPECT/CT and planar scintigraphy. Methods: Thirty lung cancer patients underwent ventilation-perfusion scintigraphy with 99m Tc-macroaggregated albumin and 99m Tc-Technegas. The regional lung contribution to perfusion and ventilation was measured on both planar scintigraphy and SPECT/CT using semiautomatic lung segmentation software by 2 observers. Interobserver and intraobserver agreement for the SPECT/CT software was assessed using the intraclass correlation coefficient, Bland-Altman plots, and absolute differences in measurements. Measurements from planar and tridimensional methods were compared using the paired-sample t test and mean absolute differences. Results: Intraclass correlation coefficients were in the excellent range (above 0.9) for both interobserver and intraobserver agreement using the SPECT/CT software. Bland-Altman analyses showed very narrow limits of agreement. Absolute differences were below 2.0% in 96% of both interobserver and intraobserver measurements. There was a statistically significant difference between planar and SPECT/CT methods ( P < 0.001) for quantification of perfusion and ventilation for all right lung lobes, with a maximal mean absolute difference of 20.7% for the right middle lobe. There was no statistically significant difference in quantification of perfusion and ventilation for the left lung lobes using either method; however, absolute differences reached 12.0%. The total right and left lung contributions were similar for the two methods, with a mean difference of 1.2% for perfusion and 2.0% for ventilation. Conclusion: Quantification of regional lung perfusion and ventilation using SPECT/CT-based lung segmentation software is highly reproducible. This tridimensional method yields statistically significant differences in measurements for right lung lobes when compared with planar scintigraphy. We recommend that SPECT/CT-based quantification be used for all lung cancer patients undergoing pretherapy evaluation of regional lung function. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  20. Mesenchymal stromal cell-derived extracellular vesicles attenuate lung ischemia-reperfusion injury and enhance reconditioning of donor lungs after circulatory death.

    PubMed

    Stone, Matthew L; Zhao, Yunge; Robert Smith, J; Weiss, Mark L; Kron, Irving L; Laubach, Victor E; Sharma, Ashish K

    2017-12-21

    Lung ischemia-reperfusion (IR) injury after transplantation as well as acute shortage of suitable donor lungs are two critical issues impacting lung transplant patients. This study investigates the anti-inflammatory and immunomodulatory role of human mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs) to attenuate lung IR injury and improve of ex-vivo lung perfusion (EVLP)-mediated rehabilitation in donation after circulatory death (DCD) lungs. C57BL/6 wild-type (WT) mice underwent sham surgery or lung IR using an in vivo hilar-ligation model with or without MSCs or EVs. In vitro studies used primary iNKT cells and macrophages (MH-S cells) were exposed to hypoxia/reoxygenation with/without co-cultures with MSCs or EVs. Also, separate groups of WT mice underwent euthanasia and 1 h of warm ischemia and stored at 4 °C for 1 h followed by 1 h of normothermic EVLP using Steen solution or Steen solution containing MSCs or EVs. Lungs from MSCs or EV-treated mice had significant attenuation of lung dysfunction and injury (decreased edema, neutrophil infiltration and myeloperoxidase levels) compared to IR alone. A significant decrease in proinflammatory cytokines (IL-17, TNF-α, CXCL1 and HMGB1) and upregulation of keratinocyte growth factor, prostaglandin E2 and IL-10 occurred in the BAL fluid from MSC or EV-treated mice after IR compared to IR alone. Furthermore, MSCs or EVs significantly downregulated iNKT cell-produced IL-17 and macrophage-produced HMGB1 and TNF-α after hypoxia/reoxygenation. Finally, EVLP of DCD lungs with Steen solution including MSCs or EVs provided significantly enhanced protection versus Steen solution alone. Co-cultures of MSCs or EVs with lung endothelial cells prevents neutrophil transendothelial migration after exposure to hypoxia/reoxygenation and TNF-α/HMGB1 cytomix. These results suggest that MSC-derived EVs can attenuate lung inflammation and injury after IR as well as enhance EVLP-mediated reconditioning of donor lungs. The therapeutic benefits of EVs are in part mediated through anti-inflammatory promoting mechanisms via attenuation of immune cell activation as well as prevention of endothelial barrier integrity to prevent lung edema. Therefore, MSC-derived EVs offer a potential therapeutic strategy to treat post-transplant IR injury as well as rehabilitation of DCD lungs.

  1. Respiratory system mechanics in acute respiratory distress syndrome.

    PubMed

    Kallet, Richard H; Katz, Jeffrey A

    2003-09-01

    Respiratory mechanics research is important to the advancement of ARDS management. Twenty-eight years ago, research on the effects of PEEP and VT indicated that the lungs of ARDS patients did not behave in a manner consistent with homogenously distributed lung injury. Both Suter and colleagues] and Katz and colleagues reported that oxygenation continued to improve as PEEP increased (suggesting lung recruitment), even though static Crs decreased and dead-space ventilation increased (suggesting concurrent lung overdistension). This research strongly suggested that without VT reduction, the favorable effects of PEEP on lung recruitment are offset by lung overdistension at end-inspiration. The implications of these studies were not fully appreciated at that time, in part because the concept of ventilator-associated lung injury was in its nascent state. Ten years later. Gattinoni and colleagues compared measurements of static pressure-volume curves with FRC and CT scans of the chest in ARDS. They found that although PEEP recruits collapsed (primarily dorsal) lung segments, it simultaneously causes overdistension of non-dependent, inflated lung regions. Furthermore, the specific compliance of the aerated, residually healthy lung tissue is essentially normal. The main implication of these findings is that traditional mechanical ventilation practice was injecting excessive volumes of gas into functionally small lungs. Therefore, the emblematic low static Crs measured in ARDS reflects not only surface tension phenomena and recruitment of collapsed airspaces but also overdistension of the remaining healthy lung. The studies reviewed in this article support the concept that lung injury in ARDS is heterogeneously distributed, with resulting disparate mechanical stresses, and indicate the additional complexity from alterations in chest wall mechanics. Most of these studies, however, were published before lung-protective ventilation. Therefore, further studies are needed to refine the understanding of the mechanical effects of lung-protective ventilation. Although low-VT ventilation is becoming a standard of care for ARDS patients, many issues remain unresolved; among them are the role of PEEP and recruitment maneuvers in either preventing or promoting lung injury and the effects of respiratory rate and graded VT reduction on mechanical stress in the lungs. The authors believe that advances in mechanical ventilation that may further improve patient outcomes are likely to come from more sophisticated monitoring capabilities (ie, the ability to measure P1 or perhaps Cslice) than from the creation of new modes of ventilatory support.

  2. Interstitial lung disease - adults - discharge

    MedlinePlus

    ... lung disease Pulmonary alveolar proteinosis Rheumatoid lung disease Sarcoidosis Patient Instructions Eating extra calories when sick - adults ... team. Related MedlinePlus Health Topics Interstitial Lung Diseases Sarcoidosis Browse the Encyclopedia A.D.A.M., Inc. ...

  3. What Are Asbestos-Related Lung Diseases?

    MedlinePlus

    ... Back To Health Topics / Asbestos-Related Lung Diseases Asbestos-Related Lung Diseases Also known as What Is ... as the peritoneum (PER-ih-to-NE-um). Asbestos-Related Lung Diseases Figure A shows the location ...

  4. Etoposide Injection

    MedlinePlus

    ... medications to treat a certain type of lung cancer (small cell lung cancer; SCLC). Etoposide is in a class of medications ... organs where eggs are formed), another type of lung cancer (non-small cell lung cancer; NSCLC), and Kaposi's ...

  5. Being a Living Donor: Risks

    MedlinePlus

    ... bowel Fluid on the lungs Lung, Intestine, and Pancreas Pancreas, intestine, and lung living-donor transplants are very ... care of the live organ donor: lung, liver, pancreas, and intestine data and medical guidelines. Transplantation. 2006 ...

  6. Lungs and Respiratory System

    MedlinePlus

    ... Videos for Educators Search English Español Lungs and Respiratory System KidsHealth / For Teens / Lungs and Respiratory System ... didn't breathe, you couldn't live. Lungs & Respiratory System Basics Each day we breathe about 20, ...

  7. Genetics Home Reference: brain-lung-thyroid syndrome

    MedlinePlus

    ... Twitter Home Health Conditions Brain-lung-thyroid syndrome Brain-lung-thyroid syndrome Printable PDF Open All Close ... Javascript to view the expand/collapse boxes. Description Brain-lung-thyroid syndrome is a group of conditions ...

  8. Metachronous and Synchronous Presentation of Acute Myeloid Leukemia and Lung Cancer

    PubMed Central

    Varadarajan, Ramya; Ford, LaurieAnn; Sait, Sheila NJ; Block, AnneMarie W.; Barcos, Maurice; Wallace, Paul K.; Ramnath, Nithya; Wang, Eunice S.; Wetzler, Meir

    2009-01-01

    Smoking is associated with both acute myeloid leukemia (AML) and lung cancer. We therefore searched our database for concomitant presentation of AML and lung cancer. Among 775 AML cases and 5225 lung cancer cases presenting to Roswell Park Cancer Institute between the years January 1992 and May 2008 we found 12 (1.5% of AML cases; 0.23% of lung cancer cases) cases (seven metachronous and five synchronous) with AML and lung cancer. All but one patient were smokers. There were no unique characteristic of either AML or lung cancer in these patients. Nine patients succumbed to AML, one died from an unrelated cause while undergoing treatment for AML, one died of lung cancer and one patient is alive after allogeneic transplantation for AML. In summary, this study supports the need for effective smoking cessation programs. PMID:19181380

  9. The First Korean Case of Cutaneous Lung Tissue Heterotopia

    PubMed Central

    Jeon, Ga Won; Han, Seong Woo; Jung, Ji Mi; Kang, Mi Seon

    2010-01-01

    Cutaneous lung tissue heterotopia is a very rare disorder where mature lung tissues develop in the skin. This is only the second known report of cutaneous lung tissue heterotopia, with the first by Singer et al. in 1998. A newborn infant had a hemangioma-like, freely movable mass connected to the anterior aspect of the sternal manubrium. Pathologic findings showed mature lung tissues with bronchi, bronchioles, and alveoli through the dermis and subcutis, and it was diagnosed as cutaneous lung tissue heterotopia. Cutaneous lung tissue heterotopia is hypervascular, so grossly it looks like a hemangioma. It can be differentiated from pulmonary sequestration, teratoma, bronchogenic cyst, and branchial cleft cyst by histology and the location of the mass. We describe the clinical, radiologic, and pathologic findings of a cutaneous lung tissue heterotopia, the first reported in Korea. PMID:20808688

  10. A brief review of chronic obstructive pulmonary disease.

    PubMed

    Hogg, James C

    2012-01-01

    A recent study, based on a combination of multidetector computed tomography scanning of an intact specimen with microcomputed tomography and histological analysis of lung tissue samples, reported that the number of terminal bronchioles were reduced from approximately 44,500/lung pair in control (donor) lungs to approximately 4800/lung pair in lungs donated by individuals with very severe (Global initiative for chronic Obstructive Lung Disease stage 4) chronic obstructive pulmonary disease (COPD) treated by lung transplantation. The present short review discusses the hypothesis that a rapid rate of terminal bronchiolar destruction causes the rapid decline in lung function leading to advanced COPD. With respect to why the terminal bronchioles are targeted for destruction, the postulated mechanisms of this destruction and the possibility that new treatments are able to either prevent or reverse the underlying cause of airway obstruction in COPD are addressed.

  11. S1415CD, Trial Assessing CSF Prescribing Effectiveness and Risk (TrACER)

    ClinicalTrials.gov

    2018-03-20

    Febrile Neutropenia; Stage 0 Breast Cancer; Stage 0 Colorectal Cancer; Stage 0 Non-Small Cell Lung Cancer; Stage I Colorectal Cancer; Stage IA Breast Cancer; Stage IA Non-Small Cell Lung Carcinoma; Stage IB Breast Cancer; Stage IB Non-Small Cell Lung Carcinoma; Stage IIA Breast Cancer; Stage IIA Colorectal Cancer; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Breast Cancer; Stage IIB Colorectal Cancer; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIC Colorectal Cancer; Stage IIIA Breast Cancer; Stage IIIA Colorectal Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Breast Cancer; Stage IIIB Colorectal Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIC Breast Cancer; Stage IIIC Colorectal Cancer; Stage IV Breast Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IVA Colorectal Cancer; Stage IVB Colorectal Cancer

  12. Association between smoking and p53 mutation in lung cancer: a meta-analysis.

    PubMed

    Liu, X; Lin, X J; Wang, C P; Yan, K K; Zhao, L Y; An, W X; Liu, X D

    2014-01-01

    To carry out a meta-analysis on the relationship between smoking and p53 gene mutation in lung cancer patients. PubMed, Web of Science, ProQest and Medline were searched by using the key words: 'lung cancer or lung neoplasm or lung carcinoma', 'p53 mutation' and 'smoking'. According to the selection criteria, 15 articles were identified and methodologically analysed by stata 12.0 software package. Crude odds ratios with 95% confidence intervals calculated using the fixed-effects model were used to assess the strength of association between smoking and p53 mutation in lung cancer. In total, 15 articles with 1770 lung cancer patients were identified; 69.6% of the patients were smokers, 30.4% were non-smokers. Overall, smokers with lung cancer had a 2.70-fold (95% confidence interval 2.04-3.59) higher risk for mutation than the non-smokers with lung cancer. In subgroup analyses, the increased risk of p53 mutation in smokers than in non-smokers was found in the non-small cell lung cancer (NSCLC) group (odds ratio = 2.38, 95% confidence interval = 1.71-3.32) and in the NSCLC and SCLC group (odds ratio = 3.82, 95% confidence interval = 2.19-6.69). This meta-analysis strongly suggests that p53 mutation is associated with smoking-induced lung cancer. Smokers with lung cancer had a higher risk for p53 mutation than non-smokers. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  13. A Comparative Study of Rat Lung Decellularization by Chemical Detergents for Lung Tissue Engineering

    PubMed Central

    Tebyanian, Hamid; Karami, Ali; Motavallian, Ebrahim; Aslani, Jafar; Samadikuchaksaraei, Ali; Arjmand, Babak; Nourani, Mohammad Reza

    2017-01-01

    BACKGROUND: Lung disease is the most common cause of death in the world. The last stage of pulmonary diseases is lung transplantation. Limitation and shortage of donor organs cause to appear tissue engineering field. Decellularization is a hope for producing intact ECM in the development of engineered organs. AIM: The goal of the decellularization process is to remove cellular and nuclear material while retaining lung three-dimensional and molecular proteins. Different concentration of detergents was used for finding the best approach in lung decellularization. MATERIAL AND METHODS: In this study, three-time approaches (24, 48 and 96 h) with four detergents (CHAPS, SDS, SDC and Triton X-100) were used for decellularizing rat lungs for maintaining of three-dimensional lung architecture and ECM protein composition which have significant roles in differentiation and migration of stem cells. This comparative study determined that variable decellularization approaches can cause significantly different effects on decellularized lungs. RESULTS: Results showed that destruction was increased with increasing the detergent concentration. Single detergent showed a significant reduction in maintaining of three-dimensional of lung and ECM proteins (Collagen and Elastin). But, the best methods were mixed detergents of SDC and CHAPS in low concentration in 48 and 96 h decellularization. CONCLUSION: Decellularized lung tissue can be used in the laboratory to study various aspects of pulmonary biology and physiology and also, these results can be used in the continued improvement of engineered lung tissue. PMID:29362610

  14. Quantification of lung microstructure with hyperpolarized 3He diffusion MRI

    PubMed Central

    Sukstanskii, Alexander L.; Woods, Jason C.; Gierada, David S.; Quirk, James D.; Hogg, James C.; Cooper, Joel D.; Conradi, Mark S.

    2009-01-01

    The structure and integrity of pulmonary acinar airways and their changes in different diseases are of great importance and interest to a broad range of physiologists and clinicians. The introduction of hyperpolarized gases has opened a door to in vivo studies of lungs with MRI. In this study we demonstrate that MRI-based measurements of hyperpolarized 3He diffusivity in human lungs yield quantitative information on the value and spatial distribution of lung parenchyma surface-to-volume ratio, number of alveoli per unit lung volume, mean linear intercept, and acinar airway radii—parameters that have been used by lung physiologists for decades and are accepted as gold standards for quantifying emphysema. We validated our MRI-based method in six human lung specimens with different levels of emphysema against direct unbiased stereological measurements. We demonstrate for the first time MRI images of these lung microgeometric parameters in healthy lungs and lungs with different levels of emphysema (mild, moderate, and severe). Our data suggest that decreases in lung surface area per volume at the initial stages of emphysema are due to dramatic decreases in the depth of the alveolar sleeves covering the alveolar ducts and sacs, implying dramatic decreases in the lung's gas exchange capacity. Our novel methods are sufficiently sensitive to allow early detection and diagnosis of emphysema, providing an opportunity to improve patient treatment outcomes, and have the potential to provide safe and noninvasive in vivo biomarkers for monitoring drug efficacy in clinical trials. PMID:19661452

  15. Inhibition of Shp2 suppresses mutant EGFR-induced lung tumors in transgenic mouse model of lung adenocarcinoma

    PubMed Central

    Schneeberger, Valentina E.; Ren, Yuan; Luetteke, Noreen; Huang, Qingling; Chen, Liwei; Lawrence, Harshani R.; Lawrence, Nicholas J.; Haura, Eric B.; Koomen, John M.; Coppola, Domenico; Wu, Jie

    2015-01-01

    Epidermal growth factor receptor (EGFR) mutants drive lung tumorigenesis and are targeted for therapy. However, resistance to EGFR inhibitors has been observed, in which the mutant EGFR remains active. Thus, it is important to uncover mediators of EGFR mutant-driven lung tumors to develop new treatment strategies. The protein tyrosine phosphatase (PTP) Shp2 mediates EGF signaling. Nevertheless, it is unclear if Shp2 is activated by oncogenic EGFR mutants in lung carcinoma or if inhibiting the Shp2 PTP activity can suppress EGFR mutant-induced lung adenocarcinoma. Here, we generated transgenic mice containing a doxycycline (Dox)-inducible PTP-defective Shp2 mutant (tetO-Shp2CSDA). Using the rat Clara cell secretory protein (CCSP)-rtTA-directed transgene expression in the type II lung pneumocytes of transgenic mice, we found that the Gab1-Shp2 pathway was activated by EGFRL858R in the lungs of transgenic mice. Consistently, the Gab1-Shp2 pathway was activated in human lung adenocarcinoma cells containing mutant EGFR. Importantly, Shp2CSDA inhibited EGFRL858R-induced lung adenocarcinoma in transgenic animals. Analysis of lung tissues showed that Shp2CSDA suppressed Gab1 tyrosine phosphorylation and Gab1-Shp2 association, suggesting that Shp2 modulates a positive feedback loop to regulate its own activity. These results show that inhibition of the Shp2 PTP activity impairs mutant EGFR signaling and suppresses EGFRL858R-driven lung adenocarcinoma. PMID:25730908

  16. Type XVIII collagen degradation products in acute lung injury

    PubMed Central

    Perkins, Gavin D; Nathani, Nazim; Richter, Alex G; Park, Daniel; Shyamsundar, Murali; Heljasvaara, Ritva; Pihlajaniemi, Taina; Manji, Mav; Tunnicliffe, W; McAuley, Danny; Gao, Fang; Thickett, David R

    2009-01-01

    Introduction In acute lung injury, repair of the damaged alveolar-capillary barrier is an essential part of recovery. Endostatin is a 20 to 28 kDa proteolytic fragment of the basement membrane collagen XVIII, which has been shown to inhibit angiogenesis via action on endothelial cells. We hypothesised that endostatin may have a role in inhibiting lung repair in patients with lung injury. The aims of the study were to determine if endostatin is elevated in the plasma/bronchoalveolar lavage fluid of patients with acute lung injury and ascertain whether the levels reflect the severity of injury and alveolar inflammation, and to assess if endostatin changes occur early after the injurious lung stimuli of one lung ventilation and lipopolysaccharide (LPS) challenge. Methods Endostatin was measured by ELISA and western blotting. Results Endostatin is elevated within the plasma and bronchoalveolar lavage fluid of patients with acute lung injury. Lavage endostatin reflected the degree of alveolar neutrophilia and the extent of the loss of protein selectivity of the alveolar-capillary barrier. Plasma levels of endostatin correlated with the severity of physiological derangement. Western blotting confirmed elevated type XVIII collagen precursor levels in the plasma and lavage and multiple endostatin-like fragments in the lavage of patients. One lung ventilation and LPS challenge rapidly induce increases in lung endostatin levels. Conclusions Endostatin may adversely affect both alveolar barrier endothelial and epithelial cells, so its presence within both the circulation and the lung may have a pathophysiological role in acute lung injury that warrants further evaluation. PMID:19358707

  17. Lung Quality and Utilization in Controlled Donation After Circulatory Determination of Death Within the United States.

    PubMed

    Mooney, J J; Hedlin, H; Mohabir, P K; Vazquez, R; Nguyen, J; Ha, R; Chiu, P; Patel, K; Zamora, M R; Weill, D; Nicolls, M R; Dhillon, G S

    2016-04-01

    Although controlled donation after circulatory determination of death (cDCDD) could increase the supply of donor lungs within the United States, the yield of lungs from cDCDD donors remains low compared with donation after neurologic determination of death (DNDD). To explore the reason for low lung yield from cDCDD donors, Scientific Registry of Transplant Recipient data were used to assess the impact of donor lung quality on cDCDD lung utilization by fitting a logistic regression model. The relationship between center volume and cDCDD use was assessed, and the distance between center and donor hospital was calculated by cDCDD status. Recipient survival was compared using a multivariable Cox regression model. Lung utilization was 2.1% for cDCDD donors and 21.4% for DNDD donors. Being a cDCDD donor decreased lung donation (adjusted odds ratio 0.101, 95% confidence interval [CI] 0.085-0.120). A minority of centers have performed cDCDD transplant, with higher volume centers generally performing more cDCDD transplants. There was no difference in center-to-donor distance or recipient survival (adjusted hazard ratio 1.03, 95% CI 0.78-1.37) between cDCDD and DNDD transplants. cDCDD lungs are underutilized compared with DNDD lungs after adjusting for lung quality. Increasing transplant center expertise and commitment to cDCDD lung procurement is needed to improve utilization. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  18. Radiological characteristics, histological features and clinical outcomes of lung cancer patients with coexistent idiopathic pulmonary fibrosis.

    PubMed

    Khan, K A; Kennedy, M P; Moore, E; Crush, L; Prendeville, S; Maher, M M; Burke, L; Henry, M T

    2015-02-01

    Despite advances in diagnosis and management, the outcomes for both lung cancer and idiopathic pulmonary fibrosis (IPF) are still unfavourable. The pathophysiology and outcomes for patients with concomitant lung cancer and IPF remains unclear. A retrospective analysis was performed of all patients presenting with concomitant IPF and lung cancer to our centre over a 3-year period. Patients with connective tissue disease, asbestos exposure, sarcoidosis, previous thoracic radiation, radiological evidence of fibrosis but no histological confirmation of lung cancer, or the use of medications known to cause pulmonary fibrosis were excluded. We describe clinical, radiological and pathological characteristics of this group. We also report the response to standardized lung cancer therapy in this cohort. Of 637 lung cancer patients, 34 were identified with concomitant IPF (5.3 %) and all were smokers. 85 % had non-small cell lung cancer, 41 % were squamous cell cancers. The majority of tumours were located in the lower lobes, peripheral and present in an area of honeycombing. Despite the fact that approximately 2/3rds of the patients had localised or locally advanced lung cancer, the outcome of therapy for lung cancer was extremely poor regardless of tumour stage or severity of IPF. At our centre, 1/20 patients with lung cancer have concomitant IPF. The majority of these tumours are small in size, peripheral in location and squamous cell carcinoma; in an area of honey combing. The outcome for concomitant lung cancer and IPF regardless of stage or therapy is poor.

  19. Radiation injury in rat lung: I. Prostacyclin (PGI/sub 2/) production, arterial perfusion, and ultrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ts'ao, C.; Ward, W.F.; Port, C.D.

    1983-11-01

    Pulmonary prostacyclin (PGI/sub 2/) production, arterial perfusion, and ultrastructure were correlated in rats sacrificed from 1 day to 6 months after a single exposure of 25 Gy of gamma rays to the right hemithorax. PGI/sub 2/ production by the irradiated lung decreased to approximately half the normal value 1 day after irradiation (P < 0.05), then increased steadily throughout the study. By 6 months postirradiation, the right lung produced two to three times as much PGI/sub 2/ as did either shielded left lung or sham-irradiated lungs (P < 0.05). Perfusion scans revealed hyperemia of the right lung from 1 tomore » 14 days after irradiation. From its peak at 14 days postirradiation, however, perfusion of the irradiated lung decreased steadily, then reached a plateau from 3 to 6 months at less than half that in the shielded left lung. Electron micrographs of the right lung revealed perivascular edema from 1 to 30 days after irradiation. The right lung then exhibited changes typical of radiation pneumonitis followed by progressive interstitial fibrosis. Platelet aggregates were not observed at any time. Thus, decreased PGI/sub 2/ production is an immediate but transient response of the lung to radiation injury. Then from 2 to 6 months after irradiation, the fibrotic, hypoperfused lung produces increasing amounts of the potent vasodilator and antithrombotic agent, PGI/sub 2/. Pulmonary PGI/sub 2/ production and arterial perfusion are inversely correlated for at least 6 months after hemithoracic irradiation.« less

  20. Prevalence, distribution, and progression of radiographic abnormalities in the lungs of cold-stunned Kemp's ridley sea turtles (Lepidochelys kempii): 89 cases (2002-2005).

    PubMed

    Stockman, Jonathan; Innis, Charles J; Solano, Mauricio; O'Sullivan Brisson, Jennifer; Kass, Philip H; Tlusty, Michael F; Weber, E Scott

    2013-03-01

    To evaluate the prevalence, distribution, and progression of radiographic abnormalities in the lungs of cold-stunned Kemp's ridley sea turtles (Lepidochelys kempii) and associations between these abnormalities and body weight, carapace length, and hematologic and plasma biochemical variables. Retrospective case series. 89 cold-stunned juvenile Kemp's ridley sea turtles. Medical records were reviewed. Dorsoventral and horizontal beam craniocaudal radiographs were evaluated for the presence, distribution, and progression of lung abnormalities. Turtles were categorized as having radiographically normal or abnormal lungs; those with abnormalities detected were further categorized according to the distribution of abnormalities (left lung, right lung, or both affected). Body weight, carapace length, and hematologic and plasma biochemical data were compared among categories. 48 of 89 (54%) turtles had radiographic abnormalities of the lungs. Unilateral abnormalities of the right or left lung were detected in 14 (16%) and 2 (2%), respectively; both lungs were affected in 32 (36%). Prevalence of unilateral abnormalities was significantly greater for the right lung than for the left lung. Evaluation of follow-up radiographs indicated clinical improvement over time for most (18/31 [58%]) turtles. Prevalence of bilateral radiographic abnormalities was positively correlated with body weight and carapace length. There was no significant association between radiographic category and hematologic or plasma biochemical variables. Radiographic abnormalities of the lungs were commonly detected in cold-stunned Kemp's ridley turtles. Results of this study may aid clinicians in developing effective diagnostic and treatment plans for these patients.

  1. Lung respiratory rhythm and pattern generation in the bullfrog: role of neurokinin-1 and mu-opioid receptors.

    PubMed

    Davies, B L; Brundage, C M; Harris, M B; Taylor, B E

    2009-07-01

    Location of the lung respiratory rhythm generator (RRG) in the bullfrog brainstem was investigated by examining neurokinin-1 and mu-opioid receptor (NK1R, muOR) colocalization by immunohistochemistry and characterizing the role of these receptors in lung rhythm and episodic pattern generation. NK1R and muOR occurred in brainstems from all developmental stages. In juvenile bullfrogs a distinct area of colocalization was coincident with high-intensity fluorescent labeling of muOR; high-intensity labeling of muOR was not distinctly and consistently localized in tadpole brainstems. NK1R labeling intensity did not change with development. Similarity in colocalization is consistent with similarity in responses to substance P (SP, NK1R agonist) and DAMGO (muOR agonist) when bath applied to bullfrog brainstems of different developmental stages. In early stage tadpoles and juvenile bullfrogs, SP increased and DAMGO decreased lung burst frequency. In juvenile bullfrogs, SP increased lung burst frequency, episode frequency, but decreased number of lung bursts per episode and lung burst duration. In contrast, DAMGO decreased lung burst frequency and burst cycle frequency, episode frequency, and number of lung bursts per episode but increased all other lung burst parameters. Based on these results, we hypothesize that NK1R and muOR colocalization together with a metamorphosis-related increase in muOR intensity marks the location of the lung RRG but not necessarily the lung episodic pattern generator.

  2. Isoproterenol reduces ischemia-reperfusion lung injury despite beta-blockade.

    PubMed

    Takashima, Seiki; Schlidt, Scott A; Koukoulis, Giovanna; Sevala, Mayura; Egan, Thomas M

    2005-06-01

    If lungs could be retrieved from non-heart-beating donors (NHBDs), the shortage of lungs for transplantation could be alleviated. The use of lungs from NHBDs is associated with a mandatory warm ischemic interval, which results in ischemia-reperfusion injury upon reperfusion. In an earlier study, rat lungs retrieved 2-h postmortem from NHBDs had reduced capillary leak measured by filtration coefficient (Kfc) when reperfused with isoproterenol (iso), associated with an increase in lung tissue levels of cyclic AMP (cAMP). The objective was to determine if this decrease in Kfc was because of beta-stimulation, or would persist despite beta-blockade. Donor rats were treated intraperitoneally with beta-blockade (propranolol or pindolol) or carrier, sacrificed, and lungs were retrieved immediately or 2 h postmortem. The lungs were reperfused with or without iso and the beta-blockers in the reperfusate. Outcome measures were Kfc, wet:dry weight ratio (W/D), lung levels of adenine nucleotides and cAMP. Lungs retrieved immediately after death had normal Kfc and W/D. After 2 h of ischemia, Kfc and W/D were markedly elevated in controls (no drug) and lungs reperfused with beta-blockers alone. Isoproterenol-reperfusion decreased Kfc and W/D significantly (P < 0.01) even in the presence of beta-blockade. Lung cAMP levels were increased only with iso in the absence of beta-blockade. The attenuation of ischemia-reperfusion injury because of iso occurs even in the presence of beta-blockade, and may not be a result of beta-stimulated increased cAMP.

  3. miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence.

    PubMed

    Cui, Huachun; Ge, Jing; Xie, Na; Banerjee, Sami; Zhou, Yong; Antony, Veena B; Thannickal, Victor J; Liu, Gang

    2017-02-01

    Cellular senescence has been implicated in diverse pathologies. However, there is conflicting evidence regarding the role of this process in tissue fibrosis. Although dysregulation of microRNAs is a key mechanism in the pathogenesis of lung fibrosis, it is unclear whether microRNAs function by regulating cellular senescence in the disease. In this study, we found that miR-34a demonstrated greater expression in the lungs of patients with idiopathic pulmonary fibrosis and in mice with experimental pulmonary fibrosis, with its primary localization in lung fibroblasts. More importantly, miR-34a was up-regulated significantly in both human and mouse lung myofibroblasts. We found that mice with miR-34a ablation developed more severe pulmonary fibrosis than did wild-type animals after fibrotic lung injury. Mechanistically, we found that miR-34a induced a senescent phenotype in lung fibroblasts because this microRNA increased senescence-associated β-galactosidase activity, enhanced expression of senescence markers, and decreased cell proliferative capacities. Consistently, we found that primary lung fibroblasts from fibrotic lungs of miR-34a-deficient mice had a diminished senescent phenotype and enhanced resistance to apoptosis as compared with those from wild-type animals. We also identified multiple miR-34a targets that likely mediated its activities in inducing senescence in lung fibroblasts. In conclusion, our data suggest that miR-34a functions through a negative feedback mechanism to restrain fibrotic response in the lungs by promoting senescence of pulmonary fibroblasts.

  4. Technology and outcomes assessment in lung transplantation.

    PubMed

    Yusen, Roger D

    2009-01-15

    Lung transplantation offers the hope of prolonged survival and significant improvement in quality of life to patients that have advanced lung diseases. However, the medical literature lacks strong positive evidence and shows conflicting information regarding survival and quality of life outcomes related to lung transplantation. Decisions about the use of lung transplantation require an assessment of trade-offs: do the potential health and quality of life benefits outweigh the potential risks and harms? No amount of theoretical reasoning can resolve this question; empiric data are needed. Rational analyses of these trade-offs require valid measurements of the benefits and harms to the patients in all relevant domains that affect survival and quality of life. Lung transplant systems and registries mainly focus outcomes assessment on patient survival on the waiting list and after transplantation. Improved analytic approaches allow comparisons of the survival effects of lung transplantation versus continued waiting. Lung transplant entities do not routinely collect quality of life data. However, the medical community and the public want to know how lung transplantation affects quality of life. Given the huge stakes for the patients, the providers, and the healthcare systems, key stakeholders need to further support quality of life assessment in patients with advanced lung disease that enter into the lung transplant systems. Studies of lung transplantation and its related technologies should assess patients with tools that integrate both survival and quality of life information. Higher quality information obtained will lead to improved knowledge and more informed decision making.

  5. The safety and efficacy of carboplatin plus nanoparticle albumin-bound paclitaxel in the treatment of non-small cell lung cancer patients with interstitial lung disease.

    PubMed

    Yasuda, Yuichiro; Hattori, Yoshihiro; Tohnai, Rie; Ito, Shoichi; Kawa, Yoshitaka; Kono, Yuko; Urata, Yoshiko; Nogami, Munenobu; Takenaka, Daisuke; Negoro, Shunichi; Satouchi, Miyako

    2018-01-01

    The optimal chemotherapy regimen for non-small cell lung cancer patients with interstitial lung disease is unclear. We therefore investigated the safety and efficacy of carboplatin plus nab-paclitaxel as a first-line regimen for non-small cell lung cancer in patients with interstitial lung disease. We retrospectively reviewed advanced non-small cell lung cancer patients with interstitial lung disease who received carboplatin plus nab-paclitaxel as a first-line chemotherapy regimen at Hyogo Cancer Center between February 2013 and August 2016. interstitial lung disease was diagnosed according to the findings of pretreatment chest high-resolution computed tomography. Twelve patients were included (male, n = 11; female, n = 1). The overall response rate was 67% and the disease control rate was 100%. The median progression free survival was 5.1 months (95% CI: 2.9-8.3 months) and the median overall survival was 14.9 months (95% CI: 4.8-not reached). A chemotherapy-related acute exacerbation of interstitial lung disease was observed in one patient; the extent of this event was Grade 2. There were no treatment-related deaths. Carboplatin plus nab-paclitaxel, as a first-line chemotherapy regimen for non-small cell lung cancer, showed favorable efficacy and safety in patients with preexisting interstitial lung disease. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  6. Automated lung volumetry from routine thoracic CT scans: how reliable is the result?

    PubMed

    Haas, Matthias; Hamm, Bernd; Niehues, Stefan M

    2014-05-01

    Today, lung volumes can be easily calculated from chest computed tomography (CT) scans. Modern postprocessing workstations allow automated volume measurement of data sets acquired. However, there are challenges in the use of lung volume as an indicator of pulmonary disease when it is obtained from routine CT. Intra-individual variation and methodologic aspects have to be considered. Our goal was to assess the reliability of volumetric measurements in routine CT lung scans. Forty adult cancer patients whose lungs were unaffected by the disease underwent routine chest CT scans in 3-month intervals, resulting in a total number of 302 chest CT scans. Lung volume was calculated by automatic volumetry software. On average of 7.2 CT scans were successfully evaluable per patient (range 2-15). Intra-individual changes were assessed. In the set of patients investigated, lung volume was approximately normally distributed, with a mean of 5283 cm(3) (standard deviation = 947 cm(3), skewness = -0.34, and curtosis = 0.16). Between different scans in one and the same patient the median intra-individual standard deviation in lung volume was 853 cm(3) (16% of the mean lung volume). Automatic lung segmentation of routine chest CT scans allows a technically stable estimation of lung volume. However, substantial intra-individual variations have to be considered. A median intra-individual deviation of 16% in lung volume between different routine scans was found. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  7. Clinical review: Lung imaging in acute respiratory distress syndrome patients - an update

    PubMed Central

    2013-01-01

    Over the past 30 years lung imaging has greatly contributed to the current understanding of the pathophysiology and the management of acute respiratory distress syndrome (ARDS). In the past few years, in addition to chest X-ray and lung computed tomography, newer functional lung imaging techniques, such as lung ultrasound, positron emission tomography, electrical impedance tomography and magnetic resonance, have been gaining a role as diagnostic tools to optimize lung assessment and ventilator management in ARDS patients. Here we provide an updated clinical review of lung imaging in ARDS over the past few years to offer an overview of the literature on the available imaging techniques from a clinical perspective. PMID:24238477

  8. Complications of Lung Transplantation: A Roentgenographic Perspective.

    PubMed

    Tejwani, Vickram; Panchabhai, Tanmay S; Kotloff, Robert M; Mehta, Atul C

    2016-06-01

    Lung transplantation is now an established treatment for a broad spectrum of end-stage pulmonary diseases. According to the International Society for Heart and Lung Transplantation Registry, more than 50,000 lung transplants have been performed worldwide, with nearly 11,000 lung transplant recipients alive in the United States. With the increasing application of lung transplantation, pulmonologists must be cognizant of common complications unique to the postlung transplant period and the associated radiologic findings. The aim of this review is to describe clinical manifestations and prototypical radiographic features of both common and rare complications encountered in lung transplant recipients. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  9. Distributed augmented reality with 3-D lung dynamics--a planning tool concept.

    PubMed

    Hamza-Lup, Felix G; Santhanam, Anand P; Imielińska, Celina; Meeks, Sanford L; Rolland, Jannick P

    2007-01-01

    Augmented reality (AR) systems add visual information to the world by using advanced display techniques. The advances in miniaturization and reduced hardware costs make some of these systems feasible for applications in a wide set of fields. We present a potential component of the cyber infrastructure for the operating room of the future: a distributed AR-based software-hardware system that allows real-time visualization of three-dimensional (3-D) lung dynamics superimposed directly on the patient's body. Several emergency events (e.g., closed and tension pneumothorax) and surgical procedures related to lung (e.g., lung transplantation, lung volume reduction surgery, surgical treatment of lung infections, lung cancer surgery) could benefit from the proposed prototype.

  10. Unusual progression and subsequent improvement in cystic lung disease in a child with radiation-induced lung injury

    PubMed Central

    Wolf, Michael S.; Chadha, Ashley D.; Carroll, Clinton M.; Borinstein, Scott C.

    2014-01-01

    Radiation-induced lung disease is a known complication of therapeutic lung irradiation, but the features have not been well described in children. We report the clinical, radiologic and histologic features of interstitial lung disease (ILD) in a 4-year-old child who had previously received lung irradiation as part of successful treatment for metastatic Wilms tumor. Her radiologic abnormalities and clinical symptoms developed in an indolent manner. Clinical improvement gradually occurred with corticosteroid therapy. However, the observed radiologic progression from interstitial and reticulonodular opacities to diffuse cystic lung disease, with subsequent improvement, is striking and has not been previously described in children. PMID:25434733

  11. Development of ferret as a human lung cancer model by injecting4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK)

    USDA-ARS?s Scientific Manuscript database

    Development of new animal lung cancer models that are relevant to human lung carcinogenesis is important for lung cancer research. Previously we have shown the induction of lung tumor in ferrets (Mustela putorius furo) exposed to both tobacco smoke and a tobacco carcinogen (4-(N-methyl-N-nitrosamino...

  12. 26 CFR 1.501(c)(21)-1 - Black lung trusts-certain terms.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 7 2013-04-01 2013-04-01 false Black lung trusts-certain terms. 1.501(c)(21)-1...) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Exempt Organizations § 1.501(c)(21)-1 Black lung trusts... insurer or guarantor of the liabilities of another. (c) Black Lung Acts. The term Black Lung Acts includes...

  13. 26 CFR 1.501(c)(21)-1 - Black lung trusts-certain terms.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 7 2014-04-01 2013-04-01 true Black lung trusts-certain terms. 1.501(c)(21)-1...) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Exempt Organizations § 1.501(c)(21)-1 Black lung trusts... insurer or guarantor of the liabilities of another. (c) Black Lung Acts. The term Black Lung Acts includes...

  14. 26 CFR 1.501(c)(21)-1 - Black lung trusts-certain terms.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 7 2011-04-01 2009-04-01 true Black lung trusts-certain terms. 1.501(c)(21)-1...) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Exempt Organizations § 1.501(c)(21)-1 Black lung trusts... insurer or guarantor of the liabilities of another. (c) Black Lung Acts. The term Black Lung Acts includes...

  15. 26 CFR 1.501(c)(21)-1 - Black lung trusts-certain terms.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 7 2012-04-01 2012-04-01 false Black lung trusts-certain terms. 1.501(c)(21)-1...) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Exempt Organizations § 1.501(c)(21)-1 Black lung trusts... insurer or guarantor of the liabilities of another. (c) Black Lung Acts. The term Black Lung Acts includes...

  16. GTI-2040 and Docetaxel in Treating Patients With Recurrent, Metastatic, or Unresectable Locally Advanced Non-Small Cell Lung Cancer, Prostate Cancer, or Other Solid Tumors

    ClinicalTrials.gov

    2013-01-23

    Recurrent Non-small Cell Lung Cancer; Recurrent Prostate Cancer; Stage III Prostate Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Prostate Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  17. Osimertinib and Navitoclax in Treating Patients With EGFR-Positive Previously Treated Advanced or Metastatic Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-05-23

    EGFR Activating Mutation; EGFR NP_005219.2:p.T790M; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  18. Conservation of small-airway function by tacrolimus/cyclosporine conversion in the management of bronchiolitis obliterans following lung transplantation.

    PubMed

    Revell, M P; Lewis, M E; Llewellyn-Jones, C G; Wilson, I C; Bonser, R S

    2000-12-01

    We studied serial lung function in 11 patients with bronchiolitis obliterans syndrome who were treated with tacrolimus conversion following lung or heart-lung transplantation. Our results show that tacrolimus conversion slows the decline of lung function in bronchiolitis obliterans syndrome. The attenuation continues for at least 1 year following conversion.

  19. Segmentation of the ovine lung in 3D CT Images

    NASA Astrophysics Data System (ADS)

    Shi, Lijun; Hoffman, Eric A.; Reinhardt, Joseph M.

    2004-04-01

    Pulmonary CT images can provide detailed information about the regional structure and function of the respiratory system. Prior to any of these analyses, however, the lungs must be identified in the CT data sets. A popular animal model for understanding lung physiology and pathophysiology is the sheep. In this paper we describe a lung segmentation algorithm for CT images of sheep. The algorithm has two main steps. The first step is lung extraction, which identifies the lung region using a technique based on optimal thresholding and connected components analysis. The second step is lung separation, which separates the left lung from the right lung by identifying the central fissure using an anatomy-based method incorporating dynamic programming and a line filter algorithm. The lung segmentation algorithm has been validated by comparing our automatic method to manual analysis for five pulmonary CT datasets. The RMS error between the computer-defined and manually-traced boundary is 0.96 mm. The segmentation requires approximately 10 minutes for a 512x512x400 dataset on a PC workstation (2.40 GHZ CPU, 2.0 GB RAM), while it takes human observer approximately two hours to accomplish the same task.

  20. Lung transplantation in children. Specific aspects.

    PubMed

    Moreno Galdó, Antonio; Solé Montserrat, Juan; Roman Broto, Antonio

    2013-12-01

    Lung transplantation has become in recent years a therapeutic option for infantswith terminal lung disease with similar results to transplantation in adults.In Spain, since 1996 114 children lung transplants have been performed; this corresponds to3.9% of the total transplant number.The most common indication in children is cystic fibrosis, which represents between 70-80% of the transplants performed in adolescents. In infants common indications areinterstitial lung disease and pulmonary hypertension.In most children a sequential double lung transplant is performed, generally with the help ofextracorporeal circulation. Lung transplantation in children presents special challenges in monitoring and follow-up, especially in infants, given the difficulty in assessing lung function and performing transbronchial biopsies.There are some more specific complications in children like postransplant lymphoproliferative syndrome or a greater severity of respiratory virus infections .After lung transplantation children usually experiment a very important improvement in their quality of life. Eighty eight per cent of children have no limitations in their activity after 3 years of transplantation.According to the registry of the International Society for Heart & Lung Transplantation (ISHLT) survival at 5 years of transplantation is 54% and at 10 years is around 35%. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  1. Animal Models of Fibrotic Lung Disease

    PubMed Central

    Lawson, William E.; Oury, Tim D.; Sisson, Thomas H.; Raghavendran, Krishnan; Hogaboam, Cory M.

    2013-01-01

    Interstitial lung fibrosis can develop as a consequence of occupational or medical exposure, as a result of genetic defects, and after trauma or acute lung injury leading to fibroproliferative acute respiratory distress syndrome, or it can develop in an idiopathic manner. The pathogenesis of each form of lung fibrosis remains poorly understood. They each result in a progressive loss of lung function with increasing dyspnea, and most forms ultimately result in mortality. To better understand the pathogenesis of lung fibrotic disorders, multiple animal models have been developed. This review summarizes the common and emerging models of lung fibrosis to highlight their usefulness in understanding the cell–cell and soluble mediator interactions that drive fibrotic responses. Recent advances have allowed for the development of models to study targeted injuries of Type II alveolar epithelial cells, fibroblastic autonomous effects, and targeted genetic defects. Repetitive dosing in some models has more closely mimicked the pathology of human fibrotic lung disease. We also have a much better understanding of the fact that the aged lung has increased susceptibility to fibrosis. Each of the models reviewed in this report offers a powerful tool for studying some aspect of fibrotic lung disease. PMID:23526222

  2. Endocytic Uptake, Transport and Macromolecular Interactions of Anionic PAMAM Dendrimers within Lung Tissue.

    PubMed

    Morris, Christopher J; Aljayyoussi, Ghaith; Mansour, Omar; Griffiths, Peter; Gumbleton, Mark

    2017-12-01

    Polyamidoamine (PAMAM) dendrimers are a promising class of nanocarrier with applications in both small and large molecule drug delivery. Here we report a comprehensive evaluation of the uptake and transport pathways that contribute to the lung disposition of dendrimers. Anionic PAMAM dendrimers and control dextran probes were applied to an isolated perfused rat lung (IPRL) model and lung epithelial monolayers. Endocytosis pathways were examined in primary alveolar epithelial cultures by confocal microscopy. Molecular interactions of dendrimers with protein and lipid lung fluid components were studied using small angle neutron scattering (SANS). Dendrimers were absorbed across the intact lung via a passive, size-dependent transport pathway at rates slower than dextrans of similar molecular sizes. SANS investigations of concentration-dependent PAMAM transport in the IPRL confirmed no aggregation of PAMAMs with either albumin or dipalmitoylphosphatidylcholine lung lining fluid components. Distinct endocytic compartments were identified within primary alveolar epithelial cells and their functionality in the rapid uptake of fluorescent dendrimers and model macromolecular probes was confirmed by co-localisation studies. PAMAM dendrimers display favourable lung biocompatibility but modest lung to blood absorption kinetics. These data support the investigation of dendrimer-based carriers for controlled-release drug delivery to the deep lung.

  3. American Cancer Society Lung Cancer Screening Guidelines

    PubMed Central

    Wender, Richard; Fontham, Elizabeth T. H.; Barrera, Ermilo; Colditz, Graham A.; Church, Timothy R.; Ettinger, David S.; Etzioni, Ruth; Flowers, Christopher R.; Gazelle, G. Scott; Kelsey, Douglas K.; LaMonte, Samuel J.; Michaelson, James S.; Oeffinger, Kevin C.; Shih, Ya-Chen Tina; Sullivan, Daniel C.; Travis, William; Walter, Louise; Wolf, Andrew M. D.; Brawley, Otis W.; Smith, Robert A.

    2013-01-01

    Findings from the National Cancer Institute’s National Lung Screening Trial established that lung cancer mortality in specific high-risk groups can be reduced by annual screening with low-dose computed tomography. These findings indicate that the adoption of lung cancer screening could save many lives. Based on the results of the National Lung Screening Trial, the American Cancer Society is issuing an initial guideline for lung cancer screening. This guideline recommends that clinicians with access to high-volume, high-quality lung cancer screening and treatment centers should initiate a discussion about screening with apparently healthy patients aged 55 years to 74 years who have at least a 30-pack-year smoking history and who currently smoke or have quit within the past 15 years. A process of informed and shared decision-making with a clinician related to the potential benefits, limitations, and harms associated with screening for lung cancer with low-dose computed tomography should occur before any decision is made to initiate lung cancer screening. Smoking cessation counseling remains a high priority for clinical attention in discussions with current smokers, who should be informed of their continuing risk of lung cancer. Screening should not be viewed as an alternative to smoking cessation. PMID:23315954

  4. Proteasome function is not impaired in healthy aging of the lung.

    PubMed

    Caniard, Anne; Ballweg, Korbinian; Lukas, Christina; Yildirim, Ali Ö; Eickelberg, Oliver; Meiners, Silke

    2015-10-01

    Aging is the progressive loss of cellular function which inevitably leads to death. Failure of proteostasis including the decrease in proteasome function is one hallmark of aging. In the lung, proteasome activity was shown to be impaired in age-related diseases such as chronic obstructive pulmonary disease. However, little is known on proteasome function during healthy aging. Here, we comprehensively analyzed healthy lung aging and proteasome function in wildtype, proteasome reporter and immunoproteasome knockout mice. Wildtype mice spontaneously developed senile lung emphysema while expression and activity of proteasome complexes and turnover of ubiquitinated substrates was not grossly altered in lungs of aged mice. Immunoproteasome subunits were specifically upregulated in the aged lung and the caspase-like proteasome activity concomitantly decreased. Aged knockout mice for the LMP2 or LMP7 immunoproteasome subunits showed no alteration in proteasome activities but exhibited typical lung aging phenotypes suggesting that immunoproteasome function is dispensable for physiological lung aging in mice. Our results indicate that healthy aging of the lung does not involve impairment of proteasome function. Apparently, the reserve capacity of the proteostasis systems in the lung is sufficient to avoid severe proteostasis imbalance during healthy aging.

  5. The number of lung transplants can be safely doubled using extended criteria donors; a single-center review.

    PubMed

    Meers, Caroline; Van Raemdonck, Dirk; Verleden, Geert M; Coosemans, Willy; Decaluwe, Herbert; De Leyn, Paul; Nafteux, Philippe; Lerut, Toni

    2010-06-01

    Relaxing the standard lung donor criteria may significantly increase the reported 15% organ yield but post-transplant recipient outcome should be carefully monitored. Charts from all consecutive deceased organ donors within our hospital network were reviewed over a 2-year period. Reasons for lung refusals and number of lungs transplanted were analysed. Hospital outcome including early recipient survival was compared between standard- and extended criteria donors. Out of 283 referrals, 164 (58%) qualified as donor of any organ. The majority (65.9%) of these effective donors were declined for lung donation because of chest X-ray abnormalities (20%), age >70 years (13%), poor oxygenation (10%), or aspiration (9%). Out of 56 (34.1%) accepted lung donors, 50 transplants were performed at our center, 23 from standard criteria donors versus 27 from extended criteria donors. There were no significant differences in hospital outcome and in early survival between lung recipients from both donor groups. Lung acceptance rate (34.1%) in our donor network is 10-20% higher than reported figures. The number of lung transplants in our center doubled by accepting extended criteria donors. This policy did not negatively influence our results after lung transplantation.

  6. Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury.

    PubMed

    Spieth, Peter M; Carvalho, Alysson R; Pelosi, Paolo; Hoehn, Catharina; Meissner, Christoph; Kasper, Michael; Hübler, Matthias; von Neindorff, Matthias; Dassow, Constanze; Barrenschee, Martina; Uhlig, Stefan; Koch, Thea; de Abreu, Marcelo Gama

    2009-04-15

    Noisy ventilation with variable Vt may improve respiratory function in acute lung injury. To determine the impact of noisy ventilation on respiratory function and its biological effects on lung parenchyma compared with conventional protective mechanical ventilation strategies. In a porcine surfactant depletion model of lung injury, we randomly combined noisy ventilation with the ARDS Network protocol or the open lung approach (n = 9 per group). Respiratory mechanics, gas exchange, and distribution of pulmonary blood flow were measured at intervals over a 6-hour period. Postmortem, lung tissue was analyzed to determine histological damage, mechanical stress, and inflammation. We found that, at comparable minute ventilation, noisy ventilation (1) improved arterial oxygenation and reduced mean inspiratory peak airway pressure and elastance of the respiratory system compared with the ARDS Network protocol and the open lung approach, (2) redistributed pulmonary blood flow to caudal zones compared with the ARDS Network protocol and to peripheral ones compared with the open lung approach, (3) reduced histological damage in comparison to both protective ventilation strategies, and (4) did not increase lung inflammation or mechanical stress. Noisy ventilation with variable Vt and fixed respiratory frequency improves respiratory function and reduces histological damage compared with standard protective ventilation strategies.

  7. Induced hypernatraemia is protective in acute lung injury.

    PubMed

    Bihari, Shailesh; Dixon, Dani-Louise; Lawrence, Mark D; Bersten, Andrew D

    2016-06-15

    Sucrose induced hyperosmolarity is lung protective but the safety of administering hyperosmolar sucrose in patients is unknown. Hypertonic saline is commonly used to produce hyperosmolarity aimed at reducing intra cranial pressure in patients with intracranial pathology. Therefore we studied the protective effects of 20% saline in a lipopolysaccharide lung injury rat model. 20% saline was also compared with other commonly used fluids. Following lipopolysaccharide-induced acute lung injury, male Sprague Dawley rats received either 20% hypertonic saline, 0.9% saline, 4% albumin, 20% albumin, 5% glucose or 20% albumin with 5% glucose, i.v. During 2h of non-injurious mechanical ventilation parameters of acute lung injury were assessed. Hypertonic saline resulted in hypernatraemia (160 (1) mmol/l, mean (SD)) maintained through 2h of ventilation, and in amelioration of lung oedema, myeloperoxidase, bronchoalveolar cell infiltrate, total soluble protein and inflammatory cytokines, and lung histological injury score, compared with positive control and all other fluids (p ≤ 0.001). Lung physiology was maintained (conserved PaO2, elastance), associated with preservation of alveolar surfactant (p ≤ 0.0001). Independent of fluid or sodium load, induced hypernatraemia is lung protective in lipopolysaccharide-induced acute lung injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Parity and risk of lung cancer in women.

    PubMed

    Paulus, Jessica K; Asomaning, Kofi; Kraft, Peter; Johnson, Bruce E; Lin, Xihong; Christiani, David C

    2010-03-01

    Patterns of lung cancer incidence suggest that gender-associated factors may influence lung cancer risk. Given the association of parity with risk of some women's cancers, the authors hypothesized that childbearing history may also be associated with lung cancer. Women enrolled in the Lung Cancer Susceptibility Study at Massachusetts General Hospital (Boston, Massachusetts) between 1992 and 2004 (1,004 cases, 848 controls) were available for analysis of the association between parity and lung cancer risk. Multivariate logistic regression was used to estimate adjusted odds ratios and 95% confidence intervals. After results were controlled for age and smoking history, women with at least 1 child had 0.71 times the odds of lung cancer as women without children (odds ratio = 0.71, 95% confidence interval: 0.52, 0.97). A significant linear trend was found: Lung cancer risk decreased with increasing numbers of children (P < 0.001). This inverse association was stronger in never smokers (P = 0.12) and was limited to women over age 50 years at diagnosis (P = 0.17). Age at first birth was not associated with risk. The authors observed a protective association between childbearing and lung cancer, adding to existing evidence that reproductive factors may moderate lung cancer risk in women.

  9. Changes in breath sound power spectra during experimental oleic acid-induced lung injury in pigs.

    PubMed

    Räsänen, Jukka; Nemergut, Michael E; Gavriely, Noam

    2014-01-01

    To evaluate the effect of acute lung injury on the frequency spectra of breath sounds, we made serial acoustic recordings from nondependent, midlung and dependent regions of both lungs in ten 35- to 45-kg anesthetized, intubated, and mechanically ventilated pigs during development of acute lung injury induced with intravenous oleic acid in prone or supine position. Oleic acid injections rapidly produced severe derangements in the gas exchange and mechanical properties of the lung, with an average increase in venous admixture from 16 ± 12 to 62 ± 16% (P < 0.01), and a reduction in dynamic respiratory system compliance from 25 ± 4 to 14 ± 4 ml/cmH2O (P < 0.01). A concomitant increase in sound power was seen in all lung regions (P < 0.05), predominantly in frequencies 150-800 Hz. The deterioration in gas exchange and lung mechanics correlated best with concurrent spectral changes in the nondependent lung regions. Acute lung injury increases the power of breath sounds likely secondary to redistribution of ventilation from collapsed to aerated parts of the lung and improved sound transmission in dependent, consolidated areas.

  10. Pulmonary adenocarcinoma: A renewed entity in 2011

    PubMed Central

    Kadara, Humam; Kabbout, Mohamed; Wistuba, Ignacio I.

    2014-01-01

    Lung cancer, of which non-small-cell lung cancer comprises the majority, is the leading cause of cancer-related deaths in the United States and worldwide. Lung adenocarcinomas are a major subtype of non-small-cell lung cancers, are increasing in incidence globally in both males and females and in smokers and non-smokers, and are the cause for almost 50% of deaths attributable to lung cancer. Lung adenocarcinoma is a tumour with complex biology that we have recently started to understand with the advent of various histological, transcriptomic, genomic and proteomic technologies. However, the histological and molecular pathogenesis of this malignancy is still largely unknown. This review will describe advances in the molecular pathology of lung adenocarcinoma with emphasis on genomics and DNA alterations of this disease. Moreover, the review will discuss recognized lung adenocarcinoma preneoplastic lesions and current concepts of the early pathogenesis and progression of the disease. We will also portray the field cancerization phenomenon and lineage-specific oncogene expression pattern in lung cancer and how both remerging concepts can be exploited to increase our understanding of lung adenocarcinoma pathogenesis for subsequent development of biomarkers for early detection of adenocarcinomas and possibly personalized prevention. PMID:22040022

  11. Th17/Treg immunoregulation and implications in treatment of sulfur mustard gas-induced lung diseases.

    PubMed

    Iman, Maryam; Rezaei, Ramazan; Azimzadeh Jamalkandi, Sadegh; Shariati, Parvin; Kheradmand, Farrah; Salimian, Jafar

    2017-12-01

    Sulfur mustard (SM) is an extremely toxic gas used in chemical warfare to cause massive lung injury and death. Victims exposed to SM gas acutely present with inhalational lung injury, but among those who survive, some develop obstructive airway diseases referred to as SM-lung syndrome. Pathophysiologically, SM-lung shares many characteristics with smoking-induced chronic obstructive pulmonary disease (COPD), including airway remodeling, goblet cell metaplasia, and obstructive ventilation defect. Some of the hallmarks of COPD pathogenesis, which include dysregulated lung inflammation, neutrophilia, recruitment of interleukin 17A (IL -17A) expressing CD4 + T cells (Th17), and the paucity of lung regulatory T cells (Tregs), have also been described in SM-lung. Areas covered: A literature search was performed using the MEDLINE, EMBASE, and Web of Science databases inclusive of all literature prior to and including May 2017. Expert commentary: Here we review some of the recent findings that suggest a role for Th17 cell-mediated inflammatory changes associated with pulmonary complications in SM-lung and suggest new therapeutic approaches that could potentially alter disease progression with immune modulating biologics that can restore the lung Th17/Treg balance.

  12. Lung abscess following bronchoscopy due to multidrug-resistant Capnocytophaga sputigena adjacent to lung cancer with high PD-L1 expression.

    PubMed

    Migiyama, Yohei; Anai, Moriyasu; Kashiwabara, Kosuke; Tomita, Yusuke; Saeki, Sho; Nakamura, Kazuyoshi; Okamoto, Shinichiro; Ichiyasu, Hidenori; Fujii, Kazuhiko; Kohrogi, Hirotsugu

    2018-04-24

    Lung abscess following flexible bronchoscopy is a rare and sometimes fatal iatrogenic complication. Here, we report the first case of a lung abscess caused by multidrug-resistant Capnocytophaga sputigena following bronchoscopy. A 67-year-old man underwent bronchoscopy to evaluate a lung mass. Seven days after transbronchial lung biopsy, he presented with an abscess formation in a lung mass. Empirical antibiotic therapy, including with garenoxacin, ampicillin/sulbactam, clindamycin and cefepime, was ineffective. Percutaneous needle aspiration of lung abscess yielded C. sputigena resistant to multiple antibiotics but remained susceptible to carbapenem. He was successfully treated by the combination therapy with surgery and with approximately 6 weeks of intravenous carbapenem. Finally he was diagnosed with a lung abscess with adenocarcinoma expressing high levels of programmed cell death ligand 1. The emergence of multidrug-resistant Capnocytophaga species is a serious concern for effective antimicrobial therapy. Clinicians should consider multidrug-resistant C. sputigena as a causative pathogen of lung abscess when it is refractory to antimicrobial treatment. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  13. Epidemiology of Lung Cancer.

    PubMed

    Schwartz, Ann G; Cote, Michele L

    2016-01-01

    Lung cancer continues to be one of the most common causes of cancer death despite understanding the major cause of the disease: cigarette smoking. Smoking increases lung cancer risk 5- to 10-fold with a clear dose-response relationship. Exposure to environmental tobacco smoke among nonsmokers increases lung cancer risk about 20%. Risks for marijuana and hookah use, and the new e-cigarettes, are yet to be consistently defined and will be important areas for continued research as use of these products increases. Other known environmental risk factors include exposures to radon, asbestos, diesel, and ionizing radiation. Host factors have also been associated with lung cancer risk, including family history of lung cancer, history of chronic obstructive pulmonary disease and infections. Studies to identify genes associated with lung cancer susceptibility have consistently identified chromosomal regions on 15q25, 6p21 and 5p15 associated with lung cancer risk. Risk prediction models for lung cancer typically include age, sex, cigarette smoking intensity and/or duration, medical history, and occupational exposures, however there is not yet a risk prediction model currently recommended for general use. As lung cancer screening becomes more widespread, a validated model will be needed to better define risk groups to inform screening guidelines.

  14. A unified approach for EIT imaging of regional overdistension and atelectasis in acute lung injury.

    PubMed

    Gómez-Laberge, Camille; Arnold, John H; Wolf, Gerhard K

    2012-03-01

    Patients with acute lung injury or acute respiratory distress syndrome (ALI/ARDS) are vulnerable to ventilator-induced lung injury. Although this syndrome affects the lung heterogeneously, mechanical ventilation is not guided by regional indicators of potential lung injury. We used electrical impedance tomography (EIT) to estimate the extent of regional lung overdistension and atelectasis during mechanical ventilation. Techniques for tidal breath detection, lung identification, and regional compliance estimation were combined with the Graz consensus on EIT lung imaging (GREIT) algorithm. Nine ALI/ARDS patients were monitored during stepwise increases and decreases in airway pressure. Our method detected individual breaths with 96.0% sensitivity and 97.6% specificity. The duration and volume of tidal breaths erred on average by 0.2 s and 5%, respectively. Respiratory system compliance from EIT and ventilator measurements had a correlation coefficient of 0.80. Stepwise increases in pressure could reverse atelectasis in 17% of the lung. At the highest pressures, 73% of the lung became overdistended. During stepwise decreases in pressure, previously-atelectatic regions remained open at sub-baseline pressures. We recommend that the proposed approach be used in collaborative research of EIT-guided ventilation strategies for ALI/ARDS.

  15. A comprehensive computational model of sound transmission through the porcine lung

    PubMed Central

    Dai, Zoujun; Peng, Ying; Henry, Brian M.; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas J.

    2014-01-01

    A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This “subject-specific” model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment. PMID:25190415

  16. A comprehensive computational model of sound transmission through the porcine lung.

    PubMed

    Dai, Zoujun; Peng, Ying; Henry, Brian M; Mansy, Hansen A; Sandler, Richard H; Royston, Thomas J

    2014-09-01

    A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This "subject-specific" model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment.

  17. Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.

    PubMed

    Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P

    2015-10-01

    Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.

  18. Multiple image x-radiography for functional lung imaging

    NASA Astrophysics Data System (ADS)

    Aulakh, G. K.; Mann, A.; Belev, G.; Wiebe, S.; Kuebler, W. M.; Singh, B.; Chapman, D.

    2018-01-01

    Detection and visualization of lung tissue structures is impaired by predominance of air. However, by using synchrotron x-rays, refraction of x-rays at the interface of tissue and air can be utilized to generate contrast which may in turn enable quantification of lung optical properties. We utilized multiple image radiography, a variant of diffraction enhanced imaging, at the Canadian light source to quantify changes in unique x-ray optical properties of lungs, namely attenuation, refraction and ultra small-angle scatter (USAXS or width) contrast ratios as a function of lung orientation in free-breathing or respiratory-gated mice before and after intra-nasal bacterial endotoxin (lipopolysaccharide) instillation. The lung ultra small-angle scatter and attenuation contrast ratios were significantly higher 9 h post lipopolysaccharide instillation compared to saline treatment whereas the refraction contrast decreased in magnitude. In ventilated mice, end-expiratory pressures result in an increase in ultra small-angle scatter contrast ratio when compared to end-inspiratory pressures. There were no detectable changes in lung attenuation or refraction contrast ratio with change in lung pressure alone. In effect, multiple image radiography can be applied towards following optical properties of lung air-tissue barrier over time during pathologies such as acute lung injury.

  19. Target of obstructive sleep apnea syndrome merge lung cancer: based on big data platform.

    PubMed

    Li, Lifeng; Lu, Jingli; Xue, Wenhua; Wang, Liping; Zhai, Yunkai; Fan, Zhirui; Wu, Ge; Fan, Feifei; Li, Jieyao; Zhang, Chaoqi; Zhang, Yi; Zhao, Jie

    2017-03-28

    Based on our hospital database, the incidence of lung cancer diagnoses was similar in obstructive sleep apnea Syndrome (OSAS) and hospital general population; among individual with a diagnosis of lung cancer, the presence of OSAS was associated with an increased risk for mortality. In the gene expression and network-level information, we revealed significant alterations of molecules related to HIF1 and metabolic pathways in the hypoxic-conditioned lung cancer cells. We also observed that GBE1 and HK2 are downstream of HIF1 pathway important in hypoxia-conditioned lung cancer cell. Furthermore, we used publicly available datasets to validate that the late-stage lung adenocarcinoma patients showed higher expression HK2 and GBE1 than early-stage ones. In terms of prognostic features, a survival analysis revealed that the high GBE1 and HK2 expression group exhibited poorer survival in lung adenocarcinoma patients. By analyzing and integrating multiple datasets, we identify molecular convergence between hypoxia and lung cancer that reflects their clinical profiles and reveals molecular pathways involved in hypoxic-induced lung cancer progression. In conclusion, we show that OSAS severity appears to increase the risk of lung cancer mortality.

  20. A review of the lung transplantation programme in Ireland 2005-2007.

    PubMed

    Bartosik, Waldemar; Egan, Jim J; Soo, Alan; Remund, Kaspar F; Nölke, Lars; McCarthy, James F; Wood, Alfred E

    2009-05-01

    Lung transplantation is a recognised surgical option for patients with end stage respiratory disease. We present data relating to the initiation of the Irish lung transplant programme in 2005. Seventeen patients: 7 male and 10 female have undergone lung transplantation. The indications for lung transplantation included COPD (n=8), idiopathic pulmonary fibrosis (n=5), bronchiolitis obliterans (n=2), lymphangioleiomyomatosis (n=1), and cystic fibrosis (n=1). Eleven single lungs transplants were completed, while six patients underwent double sequential lung transplantation. The immunosuppression regimen included basiliximab as induction therapy, with steroids, mycophenolate mofetil nd cyclosporine or tacrolimus. The operative mortality was zero. One patient died at 10 months post double lung transplantation secondary to bronchiolitis obliterans. Primary graft dysfunction was observed in two patients who required ventilatory support for 3 and 5 days respectively. Acute cellular rejection was observed in four patients (grade A2 n=3, grade A3 n=2). The cumulative 1-year survival was 94.1%, which compares favourably to an international standard of 78%. The initiation of a lung transplant programme in Ireland has been successfully undertaken and initially provided results comparable to established lung transplant programs.

  1. Stochastic rat lung dosimetry for inhaled radon progeny: a surrogate for the human lung for lung cancer risk assessment.

    PubMed

    Winkler-Heil, R; Hussain, M; Hofmann, W

    2015-05-01

    Laboratory rats are frequently used in inhalation studies as a surrogate for human exposures. The objective of the present study was therefore to develop a stochastic dosimetry model for inhaled radon progeny in the rat lung, to predict bronchial dose distributions and to compare them with corresponding dose distributions in the human lung. The most significant difference between human and rat lungs is the branching structure of the bronchial tree, which is relatively symmetric in the human lung, but monopodial in the rat lung. Radon progeny aerosol characteristics used in the present study encompass conditions typical for PNNL and COGEMA rat inhalation studies, as well as uranium miners and human indoor exposure conditions. It is shown here that depending on exposure conditions and modeling assumptions, average bronchial doses in the rat lung ranged from 5.4 to 7.3 mGy WLM(-1). If plotted as a function of airway generation, bronchial dose distributions exhibit a significant maximum in large bronchial airways. If, however, plotted as a function of airway diameter, then bronchial doses are much more uniformly distributed throughout the bronchial tree. Comparisons between human and rat exposures indicate that rat bronchial doses are slightly higher than human bronchial doses by about a factor of 1.3, while lung doses, averaged over the bronchial (BB), bronchiolar (bb) and alveolar-interstitial (AI) regions, are higher by about a factor of about 1.6. This supports the current view that the rat lung is indeed an appropriate surrogate for the human lung in case of radon-induced lung cancers. Furthermore, airway diameter seems to be a more appropriate morphometric parameter than airway generations to relate bronchial doses to bronchial carcinomas.

  2. Clinical measures, smoking, radon exposure, and risk of lung cancer in uranium miners.

    PubMed Central

    Finkelstein, M M

    1996-01-01

    OBJECTIVES: Exposure to the radioactive daughters of radon is associated with increased risk of lung cancer in mining populations. An investigation of incidence of lung cancer following a clinical survey of Ontario uranium miners was undertaken to explore whether risk associated with radon is modified by factors including smoking, radiographic silicosis, clinical symptoms, the results of lung function testing, and the temporal pattern of radon exposure. METHODS: Miners were examined in 1974 by a respiratory questionnaire, tests of lung function, and chest radiography. A random selection of 733 (75%) of the original 973 participants was followed up by linkage to the Ontario Mortality and Cancer Registries. RESULTS: Incidence of lung cancer was increased threefold. Risk of lung cancer among miners who had stopped smoking was half that of men who continued to smoke. There was no interaction between smoking and radon exposure. Men with lung function test results consistent with airways obstruction had an increased risk of lung cancer, even after adjustment for cigarette smoking. There was no association between radiographic silicosis and risk of lung cancer. Lung cancer was associated with exposures to radon daughters accumulated in a time window four to 14 years before diagnosis, but there was little association with exposures incurred earlier than 14 years before diagnosis. Among the men diagnosed with lung cancer, the mean and median dose rates were 2.6 working level months (WLM) a year and 1.8 WLM/year in the four to 14 year exposure window. CONCLUSIONS: Risk of lung cancer associated with radon is modified by dose and time from exposure. Risk can be substantially decreased by stopping smoking. PMID:8943835

  3. Lung ultrasonography to diagnose pneumothorax of the newborn.

    PubMed

    Liu, Jing; Chi, Jing-Han; Ren, Xiao-Ling; Li, Jie; Chen, Ya-Juan; Lu, Zu-Lin; Liu, Ying; Fu, Wei; Xia, Rong-Ming

    2017-09-01

    To explore the reliability and accuracy of lung ultrasound for diagnosing neonatal pneumothorax. This study was divided into two phases. (1) In the first phase, from January 2013 to June 2015, 40 patients with confirmed pneumothorax had lung ultrasound examinations performed to identify the sonographic characteristics of neonatal pneumothorax. (2) In the second phase, from July 2015 to August 2016, lung ultrasound was undertaken on 50 newborn infants with severe lung disease who were suspected of having pneumothorax, to evaluate the sonographic accuracy and reliability to diagnose pneumothorax. (1) The main ultrasonic manifestations of pneumothorax are as follows: ① lung sliding disappearance, which was observed in all patients (100%); ② the existence of the pleural line and the A-line, which was also observed in all patients (100%); ③ the lung point, which was found in 75% of the infants with mild-moderate pneumothorax but not found to exist in 25% of the severe pneumothorax patients; ④ the absence of B-lines in the area of the pneumothorax (100% of the pneumothorax patients); and ⑤ no lung consolidation existed in the area of the pneumothorax (100% of the pneumothorax patients). (2) The accuracy and reliability of the lung sonographic signs of lung sliding disappearance as well as the existence of the pleural line and the A-line in diagnosing pneumothorax were as follows: 100% sensitivity, 100% specificity, 100% positive predictive value, and 100% negative predictive value. When the lung point exists, the diagnosis is mild-moderate pneumothorax, whereas if no lung point exists, the diagnosis is severe pneumothorax. Lung ultrasound is accurate and reliable in diagnosing and ruling out neonatal pneumothorax and, in our study, was found to be as accurate as chest X-ray. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Magnetic resonance assessment of parenchymal elasticity in normal and edematous, ventilator-injured lung.

    PubMed

    McGee, Kiaran P; Mariappan, Yogesh K; Hubmayr, Rolf D; Carter, Rickey E; Bao, Zhonghao; Levin, David L; Manduca, Armando; Ehman, Richard L

    2012-08-15

    Magnetic resonance elastography (MRE) is a MR imaging method capable of spatially resolving the intrinsic mechanical properties of normal lung parenchyma. We tested the hypothesis that the mechanical properties of edematous lung exhibit local properties similar to those of a fluid-filled lung at transpulmonary pressures (P(tp)) up to 25 cm H(2)O. Pulmonary edema was induced in anesthetized female adult Sprague-Dawley rats by mechanical ventilation to a pressure of 40 cm H(2)O for ≈ 30 min. Prior to imaging the wet weight of each ex vivo lung set was measured. MRE, high-resolution T(1)-weighted spin echo and T(2)* gradient echo data were acquired at each P(tp) for both normal and injured ex vivo lungs. At P(tp)s of 6 cm H(2)O and greater, the shear stiffness of normal lungs was greater than injured lungs (P ≤ 0.0003). For P(tp)s up to 12 cm H(2)O, shear stiffness was equal to 1.00, 1.07, 1.16, and 1.26 kPa for the injured and 1.31, 1.89, 2.41, and 2.93 kPa for normal lungs at 3, 6, 9, and 12 cm H(2)O, respectively. For injured lungs MRE magnitude signal and shear stiffness within regions of differing degrees of alveolar flooding were calculated as a function of P(tp). Differences in shear stiffness were statistically significant between groups (P < 0.001) with regions of lower magnitude signal being stiffer than those of higher signal. These data demonstrate that when the alveolar space filling material is fluid, MRE-derived parenchymal shear stiffness of the lung decreases, and the lung becomes inherently softer compared with normal lung.

  5. Lung matrix and vascular remodeling in mechanically ventilated elastin haploinsufficient newborn mice

    PubMed Central

    Hilgendorff, Anne; Parai, Kakoli; Ertsey, Robert; Navarro, Edwin; Jain, Noopur; Carandang, Francis; Peterson, Joanna; Mokres, Lucia; Milla, Carlos; Preuss, Stefanie; Alcazar, Miguel Alejandre; Khan, Suleman; Masumi, Juliet; Ferreira-Tojais, Nancy; Mujahid, Sana; Starcher, Barry; Rabinovitch, Marlene

    2014-01-01

    Elastin plays a pivotal role in lung development. We therefore queried if elastin haploinsufficient newborn mice (Eln+/−) would exhibit abnormal lung structure and function related to modified extracellular matrix (ECM) composition. Because mechanical ventilation (MV) has been linked to dysregulated elastic fiber formation in the newborn lung, we also asked if elastin haploinsufficiency would accentuate lung growth arrest seen after prolonged MV of neonatal mice. We studied 5-day-old wild-type (Eln+/+) and Eln+/− littermates at baseline and after MV with air for 8–24 h. Lungs of unventilated Eln+/− mice contained ∼50% less elastin and ∼100% more collagen-1 and lysyl oxidase compared with Eln+/+ pups. Eln+/− lungs contained fewer capillaries than Eln+/+ lungs, without discernible differences in alveolar structure. In response to MV, lung tropoelastin and elastase activity increased in Eln+/+ neonates, whereas tropoelastin decreased and elastase activity was unchanged in Eln+/− mice. Fibrillin-1 protein increased in lungs of both groups during MV, more in Eln+/− than in Eln+/+ pups. In both groups, MV caused capillary loss, with larger and fewer alveoli compared with unventilated controls. Respiratory system elastance, which was less in unventilated Eln+/− compared with Eln+/+ mice, was similar in both groups after MV. These results suggest that elastin haploinsufficiency adversely impacts pulmonary angiogenesis and that MV dysregulates elastic fiber integrity, with further loss of lung capillaries, lung growth arrest, and impaired respiratory function in both Eln+/+ and Eln+/− mice. Paucity of lung capillaries in Eln+/− newborns might help explain subsequent development of pulmonary hypertension previously reported in adult Eln+/− mice. PMID:25539853

  6. Characteristics of Plantar Loads in Maximum Forward Lunge Tasks in Badminton.

    PubMed

    Hu, Xiaoyue; Li, Jing Xian; Hong, Youlian; Wang, Lin

    2015-01-01

    Badminton players often perform powerful and long-distance lunges during such competitive matches. The objective of this study is to compare the plantar loads of three one-step maximum forward lunges in badminton. Fifteen right-handed male badminton players participated in the study. Each participant performed five successful maximum lunges at three directions. For each direction, the participant wore three different shoe brands. Plantar loading, including peak pressure, maximum force, and contact area, was measured by using an insole pressure measurement system. Two-way ANOVA with repeated measures was employed to determine the effects of the different lunge directions and different shoes, as well as the interaction of these two variables, on the measurements. The maximum force (MF) on the lateral midfoot was lower when performing left-forward lunges than when performing front-forward lunges (p = 0.006, 95% CI = -2.88 to -0.04%BW). The MF and peak pressures (PP) on the great toe region were lower for the front-forward lunge than for the right-forward lunge (MF, p = 0.047, 95% CI = -3.62 to -0.02%BW; PP, p = 0.048, 95% CI = -37.63 to -0.16 KPa) and left-forward lunge (MF, p = 0.015, 95% CI = -4.39 to -0.38%BW; PP, p = 0.008, 95% CI = -47.76 to -5.91 KPa). These findings indicate that compared with the front-forward lunge, left and right maximum forward lunges induce greater plantar loads on the great toe region of the dominant leg of badminton players. The differences in the plantar loads of the different lunge directions may be potential risks for injuries to the lower extremities of badminton players.

  7. Characteristics of Plantar Loads in Maximum Forward Lunge Tasks in Badminton

    PubMed Central

    Hu, Xiaoyue; Li, Jing Xian; Hong, Youlian; Wang, Lin

    2015-01-01

    Background Badminton players often perform powerful and long-distance lunges during such competitive matches. The objective of this study is to compare the plantar loads of three one-step maximum forward lunges in badminton. Methods Fifteen right-handed male badminton players participated in the study. Each participant performed five successful maximum lunges at three directions. For each direction, the participant wore three different shoe brands. Plantar loading, including peak pressure, maximum force, and contact area, was measured by using an insole pressure measurement system. Two-way ANOVA with repeated measures was employed to determine the effects of the different lunge directions and different shoes, as well as the interaction of these two variables, on the measurements. Results The maximum force (MF) on the lateral midfoot was lower when performing left-forward lunges than when performing front-forward lunges (p = 0.006, 95% CI = −2.88 to −0.04%BW). The MF and peak pressures (PP) on the great toe region were lower for the front-forward lunge than for the right-forward lunge (MF, p = 0.047, 95% CI = −3.62 to −0.02%BW; PP, p = 0.048, 95% CI = −37.63 to −0.16 KPa) and left-forward lunge (MF, p = 0.015, 95% CI = −4.39 to −0.38%BW; PP, p = 0.008, 95% CI = −47.76 to −5.91 KPa). Conclusions These findings indicate that compared with the front-forward lunge, left and right maximum forward lunges induce greater plantar loads on the great toe region of the dominant leg of badminton players. The differences in the plantar loads of the different lunge directions may be potential risks for injuries to the lower extremities of badminton players. PMID:26367741

  8. HIV infection is associated with an increased risk for lung cancer, independent of smoking.

    PubMed

    Kirk, Gregory D; Merlo, Christian; O' Driscoll, Peter; Mehta, Shruti H; Galai, Noya; Vlahov, David; Samet, Jonathan; Engels, Eric A

    2007-07-01

    Human immunodeficiency virus (HIV)-infected persons have an elevated risk for lung cancer, but whether the increase reflects solely their heavy tobacco use remains an open question. The Acquired Immunodeficiency Syndrome (AIDS) Link to the Intravenous Experience Study has prospectively observed a cohort of injection drug users in Baltimore, Maryland, since 1988, using biannual collection of clinical, laboratory, and behavioral data. Lung cancer deaths were identified through linkage with the National Death Index. Cox proportional hazards regression was used to examine the effect of HIV infection on lung cancer risk, controlling for smoking status, drug use, and clinical variables. Among 2086 AIDS Link to the Intravenous Experience Study participants observed for 19,835 person-years, 27 lung cancer deaths were identified; 14 of the deaths were among HIV-infected persons. All but 1 (96%) of the patients with lung cancer were smokers, smoking a mean of 1.2 packs per day. Lung cancer mortality increased during the highly active antiretroviral therapy era, compared with the pre-highly active antiretroviral therapy period (mortality rate ratio, 4.7; 95% confidence interval, 1.7-16). After adjusting for age, sex, smoking status, and calendar period, HIV infection was associated with increased lung cancer risk (hazard ratio, 3.6; 95% confidence interval, 1.6-7.9). Preexisting lung disease, particularly noninfectious diseases and asthma, displayed trends for increased lung cancer risk. Illicit drug use was not associated with increased lung cancer risk. Among HIV-infected persons, smoking remained the major risk factor; CD4 cell count and HIV load were not strongly associated with increased lung cancer risk, and trends for increased risk with use of highly active antiretroviral therapy were not significant. HIV infection is associated with significantly increased risk for developing lung cancer, independent of smoking status.

  9. Risk factors for radiation pneumonitis after stereotactic radiation therapy for lung tumours: clinical usefulness of the planning target volume to total lung volume ratio.

    PubMed

    Ueyama, Tomoko; Arimura, Takeshi; Takumi, Koji; Nakamura, Fumihiko; Higashi, Ryutaro; Ito, Soichiro; Fukukura, Yoshihiko; Umanodan, Tomokazu; Nakajo, Masanori; Koriyama, Chihaya; Yoshiura, Takashi

    2018-06-01

    To identify risk factors for symptomatic radiation pneumonitis (RP) after stereotactic radiation therapy (SRT) for lung tumours. We retrospectively evaluated 68 lung tumours in 63 patients treated with SRT between 2011 and 2015. RP was graded according to the National Cancer Institute-Common Terminology Criteria for Adverse Events version 4.0. SRT was delivered at 7.0-12.0 Gy per each fraction, once daily, to a total of 48-64 Gy (median, 50 Gy). Univariate analysis was performed to assess patient- and treatment-related factors, including age, sex, smoking index (SI), pulmonary function, tumour location, serum Krebs von den Lungen-6 value (KL-6), dose-volume metrics (V5, V10, V20, V30, V40 and VS5), homogeneity index of the planning target volume (PTV), PTV dose, mean lung dose (MLD), contralateral MLD and V2, PTV volume, lung volume and the PTV/lung volume ratio (PTV/Lung). Performance of PTV/Lung in predicting symptomatic RP was also analysed using receiver operating characteristic (ROC) analysis. The median follow-up period was 21 months. 10 of 63 patients (15.9%) developed symptomatic RP after SRT. On univariate analysis, V10, V20, PTV volume and PTV/Lung were significantly associated with occurrence of RP  ≥Grade 2. ROC curves indicated that symptomatic RP could be predicted using PTV/Lung [area under curve (AUC): 0.88, confidence interval (CI: 0.78-0.95), cut-off value: 1.09, sensitivity: 90.0% and specificity: 72.4%]. PTV/Lung is a good predictor of symptomatic RP after SRT. Advances in knowledge: The cases with high PTV/Lung should be carefully monitored with caution for the occurrence of RP after SRT.

  10. Autophagy in pulmonary macrophages mediates lung inflammatory injury via NLRP3 inflammasome activation during mechanical ventilation

    PubMed Central

    Zhang, Yang; Liu, Gongjian; Dull, Randal O.; Schwartz, David E.

    2014-01-01

    The inflammatory response is a primary mechanism in the pathogenesis of ventilator-induced lung injury. Autophagy is an essential, homeostatic process by which cells break down their own components. We explored the role of autophagy in the mechanisms of mechanical ventilation-induced lung inflammatory injury. Mice were subjected to low (7 ml/kg) or high (28 ml/kg) tidal volume ventilation for 2 h. Bone marrow-derived macrophages transfected with a scrambled or autophagy-related protein 5 small interfering RNA were administered to alveolar macrophage-depleted mice via a jugular venous cannula 30 min before the start of the ventilation protocol. In some experiments, mice were ventilated in the absence and presence of autophagy inhibitors 3-methyladenine (15 mg/kg ip) or trichostatin A (1 mg/kg ip). Mechanical ventilation with a high tidal volume caused rapid (within minutes) activation of autophagy in the lung. Conventional transmission electron microscopic examination of lung sections showed that mechanical ventilation-induced autophagy activation mainly occurred in lung macrophages. Autophagy activation in the lungs during mechanical ventilation was dramatically attenuated in alveolar macrophage-depleted mice. Selective silencing of autophagy-related protein 5 in lung macrophages abolished mechanical ventilation-induced nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation and lung inflammatory injury. Pharmacological inhibition of autophagy also significantly attenuated the inflammatory responses caused by lung hyperinflation. The activation of autophagy in macrophages mediates early lung inflammation during mechanical ventilation via NLRP3 inflammasome signaling. Inhibition of autophagy activation in lung macrophages may therefore provide a novel and promising strategy for the prevention and treatment of ventilator-induced lung injury. PMID:24838752

  11. Inhalation of gas metal arc-stainless steel welding fume promotes lung tumorigenesis in A/J mice.

    PubMed

    Falcone, Lauryn M; Erdely, Aaron; Meighan, Terence G; Battelli, Lori A; Salmen, Rebecca; McKinney, Walter; Stone, Samuel; Cumpston, Amy; Cumpston, Jared; Andrews, Ronnee N; Kashon, Michael; Antonini, James M; Zeidler-Erdely, Patti C

    2017-08-01

    Epidemiologic studies suggest an increased risk of lung cancer with exposure to welding fumes, but controlled animal studies are needed to support this association. Oropharyngeal aspiration of collected "aged" gas metal arc-stainless steel (GMA-SS) welding fume has been shown by our laboratory to promote lung tumor formation in vivo using a two-stage initiation-promotion model. Our objective in this study was to determine whether inhalation of freshly generated GMA-SS welding fume also acts as a lung tumor promoter in lung tumor-susceptible mice. Male A/J mice received intraperitoneal (IP) injections of corn oil or the chemical initiator 3-methylcholanthrene (MCA; 10 µg/g) and 1 week later were exposed by whole-body inhalation to air or GMA-SS welding aerosols for 4 h/d × 4 d/w × 9 w at a target concentration of 40 mg/m 3 . Lung nodules were enumerated at 30 weeks post-initiation. GMA-SS fume significantly promoted lung tumor multiplicity in A/J mice initiated with MCA (16.11 ± 1.18) compared to MCA/air-exposed mice (7.93 ± 0.82). Histopathological analysis found that the increased number of lung nodules in the MCA/GMA-SS group were hyperplasias and adenomas, which was consistent with developing lung tumorigenesis. Metal deposition analysis in the lung revealed a lower deposited dose, approximately fivefold compared to our previous aspiration study, still elicited a significant lung tumorigenic response. In conclusion, this study demonstrates that inhaling GMA-SS welding fume promotes lung tumorigenesis in vivo which is consistent with the epidemiologic studies that show welders may be at an increased risk for lung cancer.

  12. Using Dual Fluorescence Reporting Genes to Establish an In Vivo Imaging Model of Orthotopic Lung Adenocarcinoma in Mice.

    PubMed

    Lai, Cheng-Wei; Chen, Hsiao-Ling; Yen, Chih-Ching; Wang, Jiun-Long; Yang, Shang-Hsun; Chen, Chuan-Mu

    2016-12-01

    Lung adenocarcinoma is characterized by a poor prognosis and high mortality worldwide. In this study, we purposed to use the live imaging techniques and a reporter gene that generates highly penetrative near-infrared (NIR) fluorescence to establish a preclinical animal model that allows in vivo monitoring of lung cancer development and provides a non-invasive tool for the research on lung cancer pathogenesis and therapeutic efficacy. A human lung adenocarcinoma cell line (A549), which stably expressed the dual fluorescence reporting gene (pCAG-iRFP-2A-Venus), was used to generate subcutaneous or orthotopic lung cancer in nude mice. Cancer development was evaluated by live imaging via the NIR fluorescent signals from iRFP, and the signals were verified ex vivo by the green fluorescence of Venus from the gross lung. The tumor-bearing mice received miR-16 nucleic acid therapy by intranasal administration to demonstrate therapeutic efficacy in this live imaging system. For the subcutaneous xenografts, the detection of iRFP fluorescent signals revealed delicate changes occurring during tumor growth that are not distinguishable by conventional methods of tumor measurement. For the orthotopic xenografts, the positive correlation between the in vivo iRFP signal from mice chests and the ex vivo green fluorescent signal from gross lung tumors and the results of the suppressed tumorigenesis by miR-16 treatment indicated that lung tumor size can be accurately quantified by the emission of NIR fluorescence. In addition, orthotopic lung tumor localization can be accurately visualized using iRFP fluorescence tomography in vivo, thus revealing the trafficking of lung tumor cells. We introduced a novel dual fluorescence lung cancer model that provides a non-invasive option for preclinical research via the use of NIR fluorescence in live imaging of lung.

  13. Poster - Thurs Eve-23: Effect of lung density and geometry variation on inhomogeneity correction algorithms: A Monte Carlo dosimetry evaluation.

    PubMed

    Chow, J; Leung, M; Van Dyk, J

    2008-07-01

    This study provides new information on the evaluation of the lung dose calculation algorithms as a function of the relative electron density of lung, ρ e,lung . Doses calculated using the collapsed cone convolution (CCC) and adaptive convolution (AC) algorithm in lung with the Pinnacle 3 system were compared to those calculated using the Monte Carlo (MC) simulation (EGSnrc-based code). Three groups of lung phantoms, namely, "Slab", "Column" and "Cube" with different ρ e,lung (0.05-0.7), positions, volumes and shapes of lung in water were used. 6 and 18MV photon beams with 4×4 and 10×10cm 2 field sizes produced by a Varian 21EX Linac were used in the MC dose calculations. Results show that the CCC algorithm agrees well with AC to within ±1% for doses calculated in the lung phantoms, indicating that the AC, with 3-4 times less computing time required than CCC, is a good substitute for the CCC method. Comparing the CCC and AC with MC, dose deviations are found when ρ e,lung are ⩽0.1-0.3. The degree of deviation depends on the photon beam energy and field size, and is relatively large when high-energy photon beams with small field are used. For the penumbra widths (20%-80%), the CCC and AC agree well with MC for the "Slab" and "Cube" phantoms with the lung volumes at the central beam axis (CAX). However, deviations >2mm occur in the "Column" phantoms, with two lung volumes separated by a water column along the CAX, using the 18MV (4×4cm 2 ) photon beams with ρ e,lung ⩽0.1. © 2008 American Association of Physicists in Medicine.

  14. Cavin1; a Regulator of Lung Function and Macrophage Phenotype

    PubMed Central

    Govender, Praveen; Romero, Freddy; Shah, Dilip; Paez, Jesus; Ding, Shi-Ying; Liu, Libin; Gower, Adam; Baez, Elizabeth; Aly, Sherif Shawky; Pilch, Paul; Summer, Ross

    2013-01-01

    Caveolae are cell membrane invaginations that are highly abundant in adipose tissue, endothelial cells and the lung. The formation of caveolae is dependent on the expression of various structural proteins that serve as scaffolding for these membrane invaginations. Cavin1 is a newly identified structural protein whose deficiency in mice leads to loss of caveolae formation and to development of a lipodystrophic phenotype. In this study, we sought to investigate the functional role of Cavin1 in the lung. Cavin1 deficient mice possessed dramatically altered distal lung morphology and exhibited significant physiological alterations, notably, increased lung elastance. The changes in distal lung architecture were associated with hypercellularity and the accumulation of lung macrophages. The increases in lung macrophages occurred without changes to circulating numbers of mononuclear cells and without evidence for increased proliferation. However, the increases in lung macrophages were associated with higher levels of macrophage chemotactic factors CXCL2 and CCL2 in BAL fluid from Cavin1−/− mice suggesting a possible mechanism by which these cells accumulate. In addition, lung macrophages from Cavin1−/− mice were larger and displayed measurable differences in gene expression when compared to macrophages from wild-type mice. Interestingly, macrophages were also increased in adipose tissue but not in liver, kidney or skeletal muscle from Cavin1−/− mice, and similar tissue specificity for macrophage accumulation was observed in lungs and adipose tissue from Caveolin1−/− mice. In conclusion, this study demonstrates an important role for Cavin1 in lung homeostasis and suggests that caveolae structural proteins are necessary for regulating macrophage number and phenotype in the lung. PMID:23634221

  15. Evaluation of a deformable registration algorithm for subsequent lung computed tomography imaging during radiochemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stützer, Kristin; Haase, Robert; Exner, Florian

    2016-09-15

    Purpose: Rating both a lung segmentation algorithm and a deformable image registration (DIR) algorithm for subsequent lung computed tomography (CT) images by different evaluation techniques. Furthermore, investigating the relative performance and the correlation of the different evaluation techniques to address their potential value in a clinical setting. Methods: Two to seven subsequent CT images (69 in total) of 15 lung cancer patients were acquired prior, during, and after radiochemotherapy. Automated lung segmentations were compared to manually adapted contours. DIR between the first and all following CT images was performed with a fast algorithm specialized for lung tissue registration, requiring themore » lung segmentation as input. DIR results were evaluated based on landmark distances, lung contour metrics, and vector field inconsistencies in different subvolumes defined by eroding the lung contour. Correlations between the results from the three methods were evaluated. Results: Automated lung contour segmentation was satisfactory in 18 cases (26%), failed in 6 cases (9%), and required manual correction in 45 cases (66%). Initial and corrected contours had large overlap but showed strong local deviations. Landmark-based DIR evaluation revealed high accuracy compared to CT resolution with an average error of 2.9 mm. Contour metrics of deformed contours were largely satisfactory. The median vector length of inconsistency vector fields was 0.9 mm in the lung volume and slightly smaller for the eroded volumes. There was no clear correlation between the three evaluation approaches. Conclusions: Automatic lung segmentation remains challenging but can assist the manual delineation process. Proven by three techniques, the inspected DIR algorithm delivers reliable results for the lung CT data sets acquired at different time points. Clinical application of DIR demands a fast DIR evaluation to identify unacceptable results, for instance, by combining different automated DIR evaluation methods.« less

  16. Secreted Phosphoprotein 1 Is a Determinant of Lung Function Development in Mice

    PubMed Central

    Martin, Timothy M.; Concel, Vincent J.; Upadhyay, Swapna; Bein, Kiflai; Brant, Kelly A.; George, Leema; Mitra, Ankita; Thimraj, Tania A.; Fabisiak, James P.; Vuga, Louis J.; Fattman, Cheryl; Kaminski, Naftali; Schulz, Holger; Leikauf, George D.

    2014-01-01

    Secreted phosphoprotein 1 (Spp1) is located within quantitative trait loci associated with lung function that was previously identified by contrasting C3H/HeJ and JF1/Msf mouse strains that have extremely divergent lung function. JF1/Msf mice with diminished lung function had reduced lung SPP1 transcript and protein during the peak stage of alveologenesis (postnatal day [P]14–P28) as compared with C3H/HeJ mice. In addition to a previously identified genetic variant that altered runt-related transcription factor 2 (RUNX2) binding in the Spp1 promoter, we identified another promoter variant in a putative RUNX2 binding site that increased the DNA protein binding. SPP1 induced dose-dependent mouse lung epithelial-15 cell proliferation. Spp1(−/−) mice have decreased specific total lung capacity/body weight, higher specific compliance, and increased mean airspace chord length (Lm) compared with Spp1(+/+) mice. Microarray analysis revealed enriched gene ontogeny categories, with numerous genes associated with lung development and/or respiratory disease. Insulin-like growth factor 1, Hedgehog-interacting protein, wingless-related mouse mammary tumor virus integration site 5A, and NOTCH1 transcripts decreased in the lung of P14 Spp1(−/−) mice as determined by quantitative RT-PCR analysis. SPP1 promotes pneumocyte growth, and mice lacking SPP1 have smaller, more compliant lungs with enlarged airspace (i.e., increased Lm). Microarray analysis suggests a dysregulation of key lung developmental transcripts in gene-targeted Spp1(−/−) mice, particularly during the peak phase of alveologenesis. In addition to its known roles in lung disease, this study supports SPP1 as a determinant of lung development in mice. PMID:24816281

  17. CT analysis of lung density changes in patients undergoing total body irradiation prior to bone marrow transplantation.

    PubMed

    Lee, J Y; Shank, B; Bonfiglio, P; Reid, A

    1984-10-01

    Sequential changes in lung density measured by CT are potentially sensitive and convenient monitors of lung abnormalities following total body irradiation (TBI). Methods have been developed to compare pre- and post-TBI CT of lung. The average local features of a cross-sectional lung slice are extracted from three peripheral regions of interest in the anterior, posterior, and lateral portions of the CT image. Also, density profiles across a specific region may be obtained. These may be compared first for verification of patient position and breathing status and then for changes between pre- and post-TBI. These may also be compared with radiation dose profiles through the lung. A preliminary study on 21 leukemia patients undergoing total body irradiation indicates the following: (a) Density gradients of patients' lungs in the antero-posterior direction show a marked heterogeneity before and after transplantation compared with normal lungs. The patients with departures from normal density gradients pre-TBI correlate with later pulmonary complications. (b) Measurements of average peripheral lung densities have demonstrated that the average lung density in the younger age group is substantially higher: pre-TBI, the average CT number (1,000 scale) is -638 +/- 39 Hounsfield unit (HU) for 0-10 years old and -739 +/- 53 HU for 21-40 years old. (c) Density profiles showed no post-TBI regional changes in lung density corresponding to the dose profile across the lung, so no differentiation of a radiation-specific effect has yet been possible. Computed tomographic density profiles in the antero-posterior direction are successfully used to verify positioning of the CT slice and the breathing level of the lung.

  18. Guanylyl cyclase activation reverses resistive breathing-induced lung injury and inflammation.

    PubMed

    Glynos, Constantinos; Toumpanakis, Dimitris; Loverdos, Konstantinos; Karavana, Vassiliki; Zhou, Zongmin; Magkou, Christina; Dettoraki, Maria; Perlikos, Fotis; Pavlidou, Athanasia; Kotsikoris, Vasilis; Topouzis, Stavros; Theocharis, Stamatios E; Brouckaert, Peter; Giannis, Athanassios; Papapetropoulos, Andreas; Vassilakopoulos, Theodoros

    2015-06-01

    Inspiratory resistive breathing (RB), encountered in obstructive lung diseases, induces lung injury. The soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP) pathway is down-regulated in chronic and acute animal models of RB, such as asthma, chronic obstructive pulmonary disease, and in endotoxin-induced acute lung injury. Our objectives were to: (1) characterize the effects of increased concurrent inspiratory and expiratory resistance in mice via tracheal banding; and (2) investigate the contribution of the sGC/cGMP pathway in RB-induced lung injury. Anesthetized C57BL/6 mice underwent RB achieved by restricting tracheal surface area to 50% (tracheal banding). RB for 24 hours resulted in increased bronchoalveolar lavage fluid cellularity and protein content, marked leukocyte infiltration in the lungs, and perturbed respiratory mechanics (increased tissue resistance and elasticity, shifted static pressure-volume curve right and downwards, decreased static compliance), consistent with the presence of acute lung injury. RB down-regulated sGC expression in the lung. All manifestations of lung injury caused by RB were exacerbated by the administration of the sGC inhibitor, 1H-[1,2,4]oxodiazolo[4,3-]quinoxalin-l-one, or when RB was performed using sGCα1 knockout mice. Conversely, restoration of sGC signaling by prior administration of the sGC activator BAY 58-2667 (Bayer, Leverkusen, Germany) prevented RB-induced lung injury. Strikingly, direct pharmacological activation of sGC with BAY 58-2667 24 hours after RB reversed, within 6 hours, the established lung injury. These findings raise the possibility that pharmacological targeting of the sGC-cGMP axis could be used to ameliorate lung dysfunction in obstructive lung diseases.

  19. LINKING LUNG AIRWAY STRUCTURE TO PULMONARY FUNCTION VIA COMPOSITE BRIDGE REGRESSION

    PubMed Central

    Chen, Kun; Hoffman, Eric A.; Seetharaman, Indu; Jiao, Feiran; Lin, Ching-Long; Chan, Kung-Sik

    2017-01-01

    The human lung airway is a complex inverted tree-like structure. Detailed airway measurements can be extracted from MDCT-scanned lung images, such as segmental wall thickness, airway diameter, parent-child branch angles, etc. The wealth of lung airway data provides a unique opportunity for advancing our understanding of the fundamental structure-function relationships within the lung. An important problem is to construct and identify important lung airway features in normal subjects and connect these to standardized pulmonary function test results such as FEV1%. Among other things, the problem is complicated by the fact that a particular airway feature may be an important (relevant) predictor only when it pertains to segments of certain generations. Thus, the key is an efficient, consistent method for simultaneously conducting group selection (lung airway feature types) and within-group variable selection (airway generations), i.e., bi-level selection. Here we streamline a comprehensive procedure to process the lung airway data via imputation, normalization, transformation and groupwise principal component analysis, and then adopt a new composite penalized regression approach for conducting bi-level feature selection. As a prototype of composite penalization, the proposed composite bridge regression method is shown to admit an efficient algorithm, enjoy bi-level oracle properties, and outperform several existing methods. We analyze the MDCT lung image data from a cohort of 132 subjects with normal lung function. Our results show that, lung function in terms of FEV1% is promoted by having a less dense and more homogeneous lung comprising an airway whose segments enjoy more heterogeneity in wall thicknesses, larger mean diameters, lumen areas and branch angles. These data hold the potential of defining more accurately the “normal” subject population with borderline atypical lung functions that are clearly influenced by many genetic and environmental factors. PMID:28280520

  20. Activation and overexpression of Sirt1 attenuates lung fibrosis via P300.

    PubMed

    Zeng, Zhilin; Cheng, Sheng; Chen, Huilong; Li, Qinghai; Hu, Yinan; Wang, Qi; Zhu, Xianying; Wang, Jun

    2017-05-13

    Persistent fibroblast activation is a predominant feature of idiopathic pulmonary fibrosis (IPF), but the transcriptional and epigenetic mechanisms controlling this process are not well understood. Silent information regulator type-1 (Sirt1) is a member of class Ⅲ histone deacetylase with important regulatory roles in a variety of pathophysiologic processes, but its role in fibrotic lung diseases is not clearly elucidated. Sirt1 expression in lung tissues of IPF patients and in a mouse model of bleomycin (BLM)-induced lung fibrosis were evaluated by immunofluorescence. The function of Sirt1 in BLM-induced lung fibrosis in the mouse model or transforming growth factor β1 (TGF-β1)-mediated lung fibroblast cellular model was investigated by Sirt1 activation, overexpression and knockdown of Sirt1. Finally, the involvement of p300 signaling pathways was assessed. In this study, we found up-regulation of Sirt1 in BLM-induced lung fibrosis, as well as in the lungs of IPF patients, including in the aggregated pulmonary fibroblasts of fibrotic foci. Activation or overexpression of Sirt1 attenuated TGF-β1-mediated lung fibroblast differentiation and activation and diminished the severity of experimental lung fibrosis in mice. Whereas knockdown of Sirt1 promoted the pro-fibrogenic activity of TGF-β1 in lung fibroblasts. A potential mechanism for the role of Sirt1 in lung fibrosis was through regulating the expression of p300. Thus, we characterized Sirt1 as an important regulator of lung fibrosis and provides a proof of principle for activation or overexpression of Sirt1 as a potential novel therapeutic strategy for IPF. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Losartan attenuated lipopolysaccharide-induced lung injury by suppression of lectin-like oxidized low-density lipoprotein receptor-1.

    PubMed

    Deng, Wang; Deng, Yue; Deng, Jia; Wang, Dao-Xin; Zhang, Ting

    2015-01-01

    Recent study has shown that renin-angiotensin system plays an important role in the development of acute lung injury (ALI) with high level of angiotensin II (AngII) generated form AngI catalyzed by angiotensin-converting enzyme. AngII plays a major effect mainly through AT1 receptor. Therefore, we speculate inhibition of AT1 receptor may possibly attenuate the lung injury. Losartan, an antagonist of AT1 receptor for angiotensin II, attenuated lung injury by alleviation of the inflammation response in ALI, but the mechanism of losartan in ALI still remains unclear. Thirty male Sprague-Dawley rats were randomly divided into Control group, ALI group (LPS), and Losartan group (LPS + Losartan). Bronchoalveolar lavage fluid (BALF) and lung tissue were obtained for analysis. The expressions of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), intercellular adhesion molecule-1 (ICAM-1) and caspase-3 were detected by reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting. In ALI group, TNF-α and protein level in BALF, MPO activity in lung tissue, pulmonary edema and lung injury were significantly increased. Losartan significantly reduced LPS-induced increase in TNF-α and protein level in BALF, MPO activity, pulmonary edema and lung injury in LPS-induced lung injury. The mRNA and protein expression levels of LOX-1 were significantly decreased with the administration of losartan in LPS-induced lung injury. Also, losartan blocked the protein levels of caspase-3 and ICAM-1 mediated by LOX-1 in LPS-induced lung injury. Losartan attenuated lung injury by alleviation of the inflammation and cell apoptosis by inhibition of LOX-1 in LPS-induced lung injury.

  2. Losartan attenuated lipopolysaccharide-induced lung injury by suppression of lectin-like oxidized low-density lipoprotein receptor-1

    PubMed Central

    Deng, Wang; Deng, Yue; Deng, Jia; Wang, Dao-Xin; Zhang, Ting

    2015-01-01

    Introduction: Recent study has shown that renin-angiotensin system plays an important role in the development of acute lung injury (ALI) with high level of angiotensin II (AngII) generated form AngI catalyzed by angiotensin-converting enzyme. AngII plays a major effect mainly through AT1 receptor. Therefore, we speculate inhibition of AT1 receptor may possibly attenuate the lung injury. Losartan, an antagonist of AT1 receptor for angiotensin II, attenuated lung injury by alleviation of the inflammation response in ALI, but the mechanism of losartan in ALI still remains unclear. Methods: Thirty male Sprague-Dawley rats were randomly divided into Control group, ALI group (LPS), and Losartan group (LPS + Losartan). Bronchoalveolar lavage fluid (BALF) and lung tissue were obtained for analysis. The expressions of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), intercellular adhesion molecule-1 (ICAM-1) and caspase-3 were detected by reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting. Results: In ALI group, TNF-α and protein level in BALF, MPO activity in lung tissue, pulmonary edema and lung injury were significantly increased. Losartan significantly reduced LPS-induced increase in TNF-α and protein level in BALF, MPO activity, pulmonary edema and lung injury in LPS-induced lung injury. The mRNA and protein expression levels of LOX-1 were significantly decreased with the administration of losartan in LPS-induced lung injury. Also, losartan blocked the protein levels of caspase-3 and ICAM-1 mediated by LOX-1 in LPS-induced lung injury. Conclusions: Losartan attenuated lung injury by alleviation of the inflammation and cell apoptosis by inhibition of LOX-1 in LPS-induced lung injury. PMID:26884836

  3. Lung Phenotype of Juvenile and Adult Cystic Fibrosis Transmembrane Conductance Regulator–Knockout Ferrets

    PubMed Central

    Sun, Xingshen; Olivier, Alicia K.; Liang, Bo; Yi, Yaling; Sui, Hongshu; Evans, Turan I. A.; Zhang, Yulong; Zhou, Weihong; Tyler, Scott R.; Fisher, John T.; Keiser, Nicholas W.; Liu, Xiaoming; Yan, Ziying; Song, Yi; Goeken, J. Adam; Kinyon, Joann M.; Fligg, Danielle; Wang, Xiaoyan; Xie, Weiliang; Lynch, Thomas J.; Kaminsky, Paul M.; Stewart, Zoe A.; Pope, R. Marshall; Frana, Timothy; Meyerholz, David K.; Parekh, Kalpaj

    2014-01-01

    Chronic bacterial lung infections in cystic fibrosis (CF) are caused by defects in the CF transmembrane conductance regulator chloride channel. Previously, we described that newborn CF transmembrane conductance regulator–knockout ferrets rapidly develop lung infections within the first week of life. Here, we report a more slowly progressing lung bacterial colonization phenotype observed in juvenile to adult CF ferrets reared on a layered antibiotic regimen. Even on antibiotics, CF ferrets were still very susceptible to bacterial lung infection. The severity of lung histopathology ranged from mild to severe, and variably included mucus obstruction of the airways and submucosal glands, air trapping, atelectasis, bronchopneumonia, and interstitial pneumonia. In all CF lungs, significant numbers of bacteria were detected and impaired tracheal mucociliary clearance was observed. Although Streptococcus, Staphylococcus, and Enterococcus were observed most frequently in the lungs of CF animals, each animal displayed a predominant bacterial species that accounted for over 50% of the culturable bacteria, with no one bacterial taxon predominating in all animals. Matrix-assisted laser desorption–ionization time-of-flight mass spectrometry fingerprinting was used to quantify lung bacteria in 10 CF animals and demonstrated Streptococcus, Staphylococcus, Enterococcus, or Escherichia as the most abundant genera. Interestingly, there was significant overlap in the types of bacteria observed in the lung and intestine of a given CF animal, including bacterial taxa unique to the lung and gut of each CF animal analyzed. These findings demonstrate that CF ferrets develop lung disease during the juvenile and adult stages that is similar to patients with CF, and suggest that enteric bacterial flora may seed the lung of CF ferrets. PMID:24074402

  4. Lung volume quantified by MRI reflects extracellular-matrix deposition and altered pulmonary function in bleomycin models of fibrosis: effects of SOM230.

    PubMed

    Egger, Christine; Gérard, Christelle; Vidotto, Nella; Accart, Nathalie; Cannet, Catherine; Dunbar, Andrew; Tigani, Bruno; Piaia, Alessandro; Jarai, Gabor; Jarman, Elizabeth; Schmid, Herbert A; Beckmann, Nicolau

    2014-06-15

    Idiopathic pulmonary fibrosis is a progressive and lethal disease, characterized by loss of lung elasticity and alveolar surface area, secondary to alveolar epithelial cell injury, reactive inflammation, proliferation of fibroblasts, and deposition of extracellular matrix. The effects of oropharyngeal aspiration of bleomycin in Sprague-Dawley rats and C57BL/6 mice, as well as of intratracheal administration of ovalbumin to actively sensitized Brown Norway rats on total lung volume as assessed noninvasively by magnetic resonance imaging (MRI) were investigated here. Lung injury and volume were quantified by using nongated or respiratory-gated MRI acquisitions [ultrashort echo time (UTE) or gradient-echo techniques]. Lung function of bleomycin-challenged rats was examined additionally using a flexiVent system. Postmortem analyses included histology of collagen and hydroxyproline assays. Bleomycin induced an increase of MRI-assessed total lung volume, lung dry and wet weights, and hydroxyproline content as well as collagen amount. In bleomycin-treated rats, gated MRI showed an increased volume of the lung in the inspiratory and expiratory phases of the respiratory cycle and a temporary decrease of tidal volume. Decreased dynamic lung compliance was found in bleomycin-challenged rats. Bleomycin-induced increase of MRI-detected lung volume was consistent with tissue deposition during fibrotic processes resulting in decreased lung elasticity, whereas influences by edema or emphysema could be excluded. In ovalbumin-challenged rats, total lung volume quantified by MRI remained unchanged. The somatostatin analog, SOM230, was shown to have therapeutic effects on established bleomycin-induced fibrosis in rats. This work suggests MRI-detected total lung volume as readout for tissue-deposition in small rodent bleomycin models of pulmonary fibrosis. Copyright © 2014 the American Physiological Society.

  5. Quantitative evaluation of native lung hyperinflation after single lung transplantation for emphysema using three-dimensional computed tomography volumetry.

    PubMed

    Motoyama, H; Chen, F; Ohsumi, A; Hijiya, K; Takahashi, M; Ohata, K; Yamada, T; Sato, M; Aoyama, A; Bando, T; Date, H

    2014-04-01

    Although double lung transplantation is performed more frequently for emphysema, single lung transplantation (SLT) continues to be performed owing to limited donor organ availability. Native lung hyperinflation (NLH) is a unique complication following SLT for emphysema. Three-dimensional computed tomography (3D-CT) volumetry has been introduced into the field of lung transplantation, which we used to assess NLH in emphysema patients undergoing SLT. The primary purpose of this study was to confirm the effectiveness of 3D-CT volumetry in the evaluation of NLH following SLT for emphysema. In 5 emphysema patients undergoing SLT at Kyoto University Hospital, 3D-CT volumetry data, pulmonary function test results, and clinical and radiological findings were retrospectively evaluated. Three patients did not develop a significant mediastinal shift, whereas the other 2 patients developed a mediastinal shift. In the 3 patients without a mediastinal shift, 3D-CT volumetry did not show a significant increase in native lung volume. These patients had a history of sternotomy prior to lung transplantation and firm adhesion on the mediastinal side was detected during lung transplantation. One of 2 patients with a mediastinal shift developed severe dyspnea with significantly decreased pulmonary function, and 3D-CT volumetry showed a significant increase in the native lung volume. However, the other patient did not show any dyspnea and his native lung volume decreased postoperatively (preoperatively to 6 months postoperatively: +981 mL and -348 mL, respectively). Although bilateral lung transplantation has become preferable for emphysema patients owing to postoperative NLH with SLT, patients with a history of sternotomy prior to lung transplantation might be good candidates for SLT. 3D-CT volumetry may be a useful method for detection of NLH. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Low-dose computed tomography volumetry for subtyping chronic lung allograft dysfunction.

    PubMed

    Saito, Tomohito; Horie, Miho; Sato, Masaaki; Nakajima, Daisuke; Shoushtarizadeh, Hassan; Binnie, Matthew; Azad, Sassan; Hwang, David M; Machuca, Tiago N; Waddell, Thomas K; Singer, Lianne G; Cypel, Marcelo; Liu, Mingyao; Paul, Narinder S; Keshavjee, Shaf

    2016-01-01

    The long-term success of lung transplantation is challenged by the development of chronic lung allograft dysfunction (CLAD) and its distinct subtypes of bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS). However, the current diagnostic criteria for CLAD subtypes rely on total lung capacity (TLC), which is not always measured during routine post-transplant assessment. Our aim was to investigate the utility of low-dose 3-dimensional computed tomography (CT) lung volumetry for differentiating RAS from BOS. This study was a retrospective evaluation of 63 patients who had developed CLAD after bilateral lung or heart‒lung transplantation between 2006 and 2011, including 44 BOS and 19 RAS cases. Median post-transplant follow-up was 65 months in BOS and 27 months in RAS. The median interval between baseline and the disease-onset time-point for CT volumetry was 11 months in both BOS and RAS. Chronologic changes and diagnostic accuracy of CT lung volume (measured as percent of baseline) were investigated. RAS showed a significant decrease in CT lung volume at disease onset compared with baseline (mean 3,916 ml vs 3,055 ml when excluding opacities, p < 0.0001), whereas BOS showed no significant post-transplant change (mean 4,318 ml vs 4,396 ml, p = 0.214). The area under the receiver operating characteristic curve of CT lung volume for differentiating RAS from BOS was 0.959 (95% confidence interval 0.912 to 1.01, p < 0.0001) and the calculated accuracy was 0.938 at a threshold of 85%. In bilateral lung or heart‒lung transplant patients with CLAD, low-dose CT volumetry is a useful tool to differentiate patients who develop RAS from those who develop BOS. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  7. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action.

    PubMed

    Ionescu, Lavinia; Byrne, Roisin N; van Haaften, Tim; Vadivel, Arul; Alphonse, Rajesh S; Rey-Parra, Gloria J; Weissmann, Gaia; Hall, Adam; Eaton, Farah; Thébaud, Bernard

    2012-12-01

    Mortality and morbidity of acute lung injury and acute respiratory distress syndrome remain high because of the lack of pharmacological therapies to prevent injury or promote repair. Mesenchymal stem cells (MSCs) prevent lung injury in various experimental models, despite a low proportion of donor-derived cell engraftment, suggesting that MSCs exert their beneficial effects via paracrine mechanisms. We hypothesized that soluble factors secreted by MSCs promote the resolution of lung injury in part by modulating alveolar macrophage (AM) function. We tested the therapeutic effect of MSC-derived conditioned medium (CdM) compared with whole MSCs, lung fibroblasts, and fibroblast-CdM. Intratracheal MSCs and MSC-CdM significantly attenuated lipopolysaccharide (LPS)-induced lung neutrophil influx, lung edema, and lung injury as assessed by an established lung injury score. MSC-CdM increased arginase-1 activity and Ym1 expression in LPS-exposed AMs. In vivo, AMs from LPS-MSC and LPS-MSC CdM lungs had enhanced expression of Ym1 and decreased expression of inducible nitric oxide synthase compared with untreated LPS mice. This suggests that MSC-CdM promotes alternative macrophage activation to an M2 "healer" phenotype. Comparative multiplex analysis of MSC- and fibroblast-CdM demonstrated that MSC-CdM contained several factors that may confer therapeutic benefit, including insulin-like growth factor I (IGF-I). Recombinant IGF-I partially reproduced the lung protective effect of MSC-CdM. In summary, MSCs act through a paracrine activity. MSC-CdM promotes the resolution of LPS-induced lung injury by attenuating lung inflammation and promoting a wound healing/anti-inflammatory M2 macrophage phenotype in part via IGF-I.

  8. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action

    PubMed Central

    Ionescu, Lavinia; Byrne, Roisin N.; van Haaften, Tim; Vadivel, Arul; Alphonse, Rajesh S.; Rey-Parra, Gloria J.; Weissmann, Gaia; Hall, Adam; Eaton, Farah

    2012-01-01

    Mortality and morbidity of acute lung injury and acute respiratory distress syndrome remain high because of the lack of pharmacological therapies to prevent injury or promote repair. Mesenchymal stem cells (MSCs) prevent lung injury in various experimental models, despite a low proportion of donor-derived cell engraftment, suggesting that MSCs exert their beneficial effects via paracrine mechanisms. We hypothesized that soluble factors secreted by MSCs promote the resolution of lung injury in part by modulating alveolar macrophage (AM) function. We tested the therapeutic effect of MSC-derived conditioned medium (CdM) compared with whole MSCs, lung fibroblasts, and fibroblast-CdM. Intratracheal MSCs and MSC-CdM significantly attenuated lipopolysaccharide (LPS)-induced lung neutrophil influx, lung edema, and lung injury as assessed by an established lung injury score. MSC-CdM increased arginase-1 activity and Ym1 expression in LPS-exposed AMs. In vivo, AMs from LPS-MSC and LPS-MSC CdM lungs had enhanced expression of Ym1 and decreased expression of inducible nitric oxide synthase compared with untreated LPS mice. This suggests that MSC-CdM promotes alternative macrophage activation to an M2 “healer” phenotype. Comparative multiplex analysis of MSC- and fibroblast-CdM demonstrated that MSC-CdM contained several factors that may confer therapeutic benefit, including insulin-like growth factor I (IGF-I). Recombinant IGF-I partially reproduced the lung protective effect of MSC-CdM. In summary, MSCs act through a paracrine activity. MSC-CdM promotes the resolution of LPS-induced lung injury by attenuating lung inflammation and promoting a wound healing/anti-inflammatory M2 macrophage phenotype in part via IGF-I. PMID:23023971

  9. 6 Common Cancers - Lung Cancer

    MedlinePlus

    ... Bar Home Current Issue Past Issues 6 Common Cancers - Lung Cancer Past Issues / Spring 2007 Table of Contents For ... Desperate Housewives. (Photo ©2005 Kathy Hutchins / Hutchins) Lung Cancer Lung cancer causes more deaths than the next ...

  10. Potential targets for lung squamous cell carcinoma

    Cancer.gov

    Researchers have identified potential therapeutic targets in lung squamous cell carcinoma, the second most common form of lung cancer. The Cancer Genome Atlas (TCGA) Research Network study comprehensively characterized the lung squamous cell carcinoma gen

  11. Lung Microbiota Changes Associated with Chronic Pseudomonas aeruginosa Lung Infection and the Impact of Intravenous Colistimethate Sodium

    PubMed Central

    Collie, David; Glendinning, Laura; Govan, John; Wright, Steven; Thornton, Elisabeth; Tennant, Peter; Doherty, Catherine; McLachlan, Gerry

    2015-01-01

    Background Exacerbations associated with chronic lung infection with Pseudomonas aeruginosa are a major contributor to morbidity, mortality and premature death in cystic fibrosis. Such exacerbations are treated with antibiotics, which generally lead to an improvement in lung function and reduced sputum P. aeruginosa density. This potentially suggests a role for the latter in the pathogenesis of exacerbations. However, other data suggesting that changes in P. aeruginosa sputum culture status may not reliably predict an improvement in clinical status, and data indicating no significant changes in either total bacterial counts or in P. aeruginosa numbers in sputum samples collected prior to pulmonary exacerbation sheds doubt on this assumption. We used our recently developed lung segmental model of chronic Pseudomonas infection in sheep to investigate the lung microbiota changes associated with chronic P. aeruginosa lung infection and the impact of systemic therapy with colistimethate sodium (CMS). Methodology/Principal Findings We collected protected specimen brush (PSB) samples from sheep (n = 8) both prior to and 14 days after establishment of chronic local lung infection with P aeruginosa. Samples were taken from both directly infected lung segments (direct) and segments spatially remote to such sites (remote). Four sheep were treated with daily intravenous injections of CMS between days 7 and 14, and four were treated with a placebo. Necropsy examination at d14 confirmed the presence of chronic local lung infection and lung pathology in every direct lung segment. The predominant orders in lung microbiota communities before infection were Bacillales, Actinomycetales and Clostridiales. While lung microbiota samples were more likely to share similarities with other samples derived from the same lung, considerable within- and between-animal heterogeneity could be appreciated. Pseudomonadales joined the aforementioned list of predominant orders in lung microbiota communities after infection. Whilst treatment with CMS appeared to have little impact on microbial community composition after infection, or the change undergone by communities in reaching that state, when Gram negative organisms (excluding Pseudomonadales) were considered together as a group there was a significant decrease in their relative proportion that was only observed in the sheep treated with CMS. With only one exception the reduction was seen in both direct and remote lung segments. This reduction, coupled with generally increasing or stable levels of Pseudomonadales, meant that the proportion of the latter relative to total Gram negative bacteria increased in all bar one direct and one remote lung segment. Conclusions/Significance The proportional increase in Pseudomonadales relative to other Gram negative bacteria in the lungs of sheep treated with systemic CMS highlights the potential for such therapies to inadvertently select or create a niche for bacteria seeding from a persistent source of chronic infection. PMID:26544950

  12. Active Oxygen Metabolites and Thromboxane in Phorbol Myristate Acetate Toxicity to the Isolated, Perfused Rat Lung.

    NASA Astrophysics Data System (ADS)

    Carpenter, Laurie Jean

    When administered intravenously or intratracheally to rats, rabbits and sheep, phorbol myristate acetate (PMA) produces changes in lung morphology and function are similar to those seen in humans with the adult respiratory distress syndrome (ARDS). Therefore, it is thought that information about the mechanism of ARDS development can be gained from experiments using PMA-treated animals. Currently, the mechanisms by which PMA causes pneumotoxicity are unknown. Results from other studies in rabbits and in isolated, perfused rabbit lungs suggest that PMA-induced lung injury is mediated by active oxygen species from neutrophils (PMN), whereas studies in sheep and rats suggest that PMN are not required for the toxic response. The role of PMN, active oxygen metabolites and thromboxane (TxA_2) in PMA-induced injury to isolated, perfused rat lungs (IPLs) was examined in this thesis. To determine whether PMN were required for PMA to produce toxicity to the IPL, lungs were perfused for 30 min with buffer containing various concentrations of PMA (in the presence or absence of PMN). When concentrations >=q57 ng/ml were added to medium devoid of added PMN, perfusion pressure and lung weight increased. When a concentration of PMA (14-28 ng/ml) that did not by itself cause lungs to accumulate fluid was added to the perfusion medium containing PMN (1 x 10 ^8), perfusion pressure increased, and lungs accumulated fluid. These results indicate that high concentrations of PMA produce lung injury which is independent of PMN, whereas injury induced by lower concentrations is PMN-dependent. To examine whether active oxygen species were involved in mediating lung injury induced by PMA and PMN, lungs were coperfused with the oxygen radical scavengers SOD and/or catalase. Coperfusion with either or both of these enzymes totally protected lungs against injury caused by PMN and PMA. These results suggest that active oxygen species (the hydroxyl radical in particular), mediate lung injury in this model. To determine whether TxA_2 was involved in toxicity induced by PMN and PMA, lungs were coperfused with the cyclooxygenase inhibitor, indomethacin or the thromboxane synthase inhibitor, Dazmegrel. Experiments were also performed using lungs and/or PMN that had been pretreated with aspirin. These drug treatments had little effect, if any, on the pressure increase; however, they protected lungs against edema development. These results suggest that TxA_2 may participate in the pathogenesis of edema by some other mechanism than by increasing vascular pressure. In conclusion, results from studies performed in this thesis suggest that both active oxygen species and thromboxane are involved in toxicity to the isolated rat lung induced by PMA and PMN. How both of these interact to produce lung injury is a question which remains to be answered.

  13. Whole lung lavage with intermittent double lung ventilation. A modified technique for managing pulmonary alveolar proteinosis.

    PubMed

    Ahmed, Raees; Iqbal, Mobeen; Kashef, Sayed H; Almomatten, Mohammed I

    2005-01-01

    Whole lung lavage is still the most effective treatment for pulmonary alveolar proteinosis. We report a 21-year-old male diagnosed with pulmonary alveolar proteinosis by open lung biopsy and who underwent whole lung lavage with a modified technique. He showed significant improvement in clinical and functional parameters. The technique of intermittent double lung ventilation during lavage procedure keeps the oxygen saturation in acceptable limits in patients at risk for severe hypoxemia and allows the procedure to be completed in a single setting.

  14. A Novel Model for Squamous Cell Carcinoma of the Lung | Center for Cancer Research

    Cancer.gov

    In the U.S. lung cancer remains the most deadly cancer type with less than one in five patients alive five years after diagnosis. The majority of lung cancer deaths are due to tobacco smoke, and the squamous cell carcinoma (SCC) subtype of lung cancer is strongly associated with smoking. Researchers have identified a number of mutations in lung SCC tumors but have failed to generate an animal model of lung SCC, which is critical for understanding the biology of the disease and for identifying novel therapeutic targets.

  15. Lung abscess: update on microbiology and management.

    PubMed

    Yazbeck, Moussa F; Dahdel, Maher; Kalra, Ankur; Browne, Alexander S; Pratter, Melvin R

    2014-01-01

    A lung abscess is a circumscribed collection of pus in the lung as a result of a microbial infection, which leads to cavity formation and often a radiographic finding of an air fluid level. Patients with lung abscesses commonly present to their primary care physician or to the emergency department with "nonresolving pneumonia." Although, the incidence of lung abscess has declined since the introduction of antibiotic treatment, it still carries a mortality of up to 10%-20%. This article discusses in detail the up-to-date microbiology and the management of lung abscesses.

  16. Genetically Modified T Cells in Treating Patients With Stage III-IV Non-small Cell Lung Cancer or Mesothelioma

    ClinicalTrials.gov

    2018-06-07

    Advanced Pleural Malignant Mesothelioma; HLA-A*0201 Positive Cells Present; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Pleural Malignant Mesothelioma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage III Pleural Malignant Mesothelioma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Pleural Malignant Mesothelioma AJCC v7; WT1 Positive

  17. Antenatal vitamin A administration attenuates lung hypoplasia by interfering with early instead of late determinants of lung underdevelopment in congenital diaphragmatic hernia.

    PubMed

    Baptista, Maria J; Melo-Rocha, Gustavo; Pedrosa, Carla; Gonzaga, Sílvia; Teles, Antónia; Estevão-Costa, José; Areias, José C; Flake, Alan W; Leite-Moreira, Adelino F; Correia-Pinto, Jorge

    2005-04-01

    Early and late lung underdevelopment in congenital diaphragmatic hernia (CDH) is likely caused by nonmechanical (directly mediated by nitrofen) and mechanical (mediated by thoracic herniation) factors, respectively. The authors investigated if vitamin A enhances lung growth because of effects on both early and late determinants of lung hypoplasia. Twenty-seven pregnant Wistar rats were exposed on embryonic day (E)9.5 to 100 mg of nitrofen or just olive oil. From nitrofen-exposed pregnant rats, 12 were treated at day 9.5 or 18.5 with 15,000 IU of vitamin A. Lungs were harvested at E18, E20, and E22, weighed, and analyzed for DNA and protein contents. Left and/or right lung hypoplasia was estimated by assessment of the ratios of lung to body weight and left to right lung weight. Fetuses were assigned to 5 experimental groups: baseline (exposed neither to nitrofen nor vitamin A), nitrofen (exposed to nitrofen without CDH), CDH (exposed to nitrofen with CDH), nitr+vitA (exposed to nitrofen without CDH and treated with vitamin A), and CDH+vitA (exposed to nitrofen with CDH and treated with vitamin A). Incidence of hernia was significantly reduced in fetuses treated with vitamin A. When vitamin A was administered at E9.5, the authors observed similar effect on lung hypoplasia measured through ratio of lung to body weight at E18 in the nitrofen and CDH groups (nitrofen 1.92% +/- 0.05%, CDH 1.92% +/- 0.04%), whereas lung hypoplasia was attenuated relative to baseline (2.45% +/- 0.05%) in 5% and 4% in nitrofen (nitr+vitA 2.05% +/- 0.03%) and CDH (CDH+vitA 2.08% +/- 0.04%) groups, respectively. At E20, lung hypoplasia was increased in CDH compared with nitrofen groups (nitrofen 2.52% +/- 0.1%, CDH 2.39% +/- 0.05%), whereas vitamin A attenuated lung hypoplasia, in relation to baseline (3.20% +/- 0.07%), 14% in both nitrofen-exposed groups (nitr+vitA 2.96% +/- 0.03%, CDH+vitA 2.83% +/- 0.03%). At E22, lung hypoplasia was significantly higher in CDH group than nitrofen group (nitrofen 2.13% +/- 0.06%, CDH 1.48% +/- 0.03%), whereas lung hypoplasia was attenuated in 9% of both nitrofen-exposed groups (nitr+vitA 2.35% +/- 0.06%, CDH+vitA 1.69% +/- 0.05%) in relation to baseline group (2.38% +/- 0.04%). Administration of vitamin A at E18.5 produced no significant effects on lung growth. The authors conclude from these results that antenatal administration of vitamin A attenuates lung hypoplasia in CDH by interfering with early determinants of lung underdevelopment. This finding may have clinical implications because prenatal diagnosis of human CDH commonly occurs after 16 weeks' gestation when late determinants of lung hypoplasia likely predominate.

  18. Diffusion Lung Imaging with Hyperpolarized Gas MRI

    PubMed Central

    Yablonskiy, Dmitriy A; Sukstanskii, Alexander L; Quirk, James D

    2015-01-01

    Lung imaging using conventional 1H MRI presents great challenges due to low density of lung tissue, lung motion and very fast lung tissue transverse relaxation (typical T2* is about 1-2 ms). MRI with hyperpolarized gases (3He and 129Xe) provides a valuable alternative due to a very strong signal originated from inhaled gas residing in the lung airspaces and relatively slow gas T2* relaxation (typical T2* is about 20-30 ms). Though in vivo human experiments should be done very fast – usually during a single breath-hold. In this review we describe the recent developments in diffusion lung MRI with hyperpolarized gases. We show that a combination of modeling results of gas diffusion in lung airspaces and diffusion measurements with variable diffusion-sensitizing gradients allows extracting quantitative information on the lung microstructure at the alveolar level. This approach, called in vivo lung morphometry, allows from a less than 15-second MRI scan, providing quantitative values and spatial distributions of the same physiological parameters as are measured by means of the “standard” invasive stereology (mean linear intercept, surface-to-volume ratio, density of alveoli, etc.). Besides, the approach makes it possible to evaluate some advanced Weibel parameters characterizing lung microstructure - average radii of alveolar sacs and ducts, as well as the depth of their alveolar sleeves. Such measurements, providing in vivo information on the integrity of pulmonary acinar airways and their changes in different diseases, are of great importance and interest to a broad range of physiologists and clinicians. We also discuss a new type of experiments that are based on the in vivo lung morphometry technique combined with quantitative CT measurements as well as with the Gradient Echo MRI measurements of hyperpolarized gas transverse relaxation in the lung airspaces. Such experiments provide additional information on the blood vessel volume fraction, specific gas volume, the length of acinar airways, and allows evaluation of lung parenchymal and non-parenchymal tissue. PMID:26676342

  19. Heterochrony and Early Left-Right Asymmetry in the Development of the Cardiorespiratory System of Snakes

    PubMed Central

    van Soldt, Benjamin J.; Metscher, Brian D.; Poelmann, Robert E.; Vervust, Bart; Vonk, Freek J.; Müller, Gerd B.; Richardson, Michael K.

    2015-01-01

    Snake lungs show a remarkable diversity of organ asymmetries. The right lung is always fully developed, while the left lung is either absent, vestigial, or well-developed (but smaller than the right). A ‘tracheal lung’ is present in some taxa. These asymmetries are reflected in the pulmonary arteries. Lung asymmetry is known to appear at early stages of development in Thamnophis radix and Natrix natrix. Unfortunately, there is no developmental data on snakes with a well-developed or absent left lung. We examine the adult and developmental morphology of the lung and pulmonary arteries in the snakes Python curtus breitensteini, Pantherophis guttata guttata, Elaphe obsoleta spiloides, Calloselasma rhodostoma and Causus rhombeatus using gross dissection, MicroCT scanning and 3D reconstruction. We find that the right and tracheal lung develop similarly in these species. By contrast, the left lung either: (1) fails to develop; (2) elongates more slowly and aborts early without (2a) or with (2b) subsequent development of faveoli; (3) or develops normally. A right pulmonary artery always develops, but the left develops only if the left lung develops. No pulmonary artery develops in relation to the tracheal lung. We conclude that heterochrony in lung bud development contributes to lung asymmetry in several snake taxa. Secondly, the development of the pulmonary arteries is asymmetric at early stages, possibly because the splanchnic plexus fails to develop when the left lung is reduced. Finally, some changes in the topography of the pulmonary arteries are consequent on ontogenetic displacement of the heart down the body. Our findings show that the left-right asymmetry in the cardiorespiratory system of snakes is expressed early in development and may become phenotypically expressed through heterochronic shifts in growth, and changes in axial relations of organs and vessels. We propose a step-wise model for reduction of the left lung during snake evolution. PMID:25555231

  20. Open lung approach versus standard protective strategies: Effects on driving pressure and ventilatory efficiency during anesthesia - A pilot, randomized controlled trial.

    PubMed

    Ferrando, Carlos; Suarez-Sipmann, Fernando; Tusman, Gerardo; León, Irene; Romero, Esther; Gracia, Estefania; Mugarra, Ana; Arocas, Blanca; Pozo, Natividad; Soro, Marina; Belda, Francisco J

    2017-01-01

    Low tidal volume (VT) during anesthesia minimizes lung injury but may be associated to a decrease in functional lung volume impairing lung mechanics and efficiency. Lung recruitment (RM) can restore lung volume but this may critically depend on the post-RM selected PEEP. This study was a randomized, two parallel arm, open study whose primary outcome was to compare the effects on driving pressure of adding a RM to low-VT ventilation, with or without an individualized post-RM PEEP in patients without known previous lung disease during anesthesia. Consecutive patients scheduled for major abdominal surgery were submitted to low-VT ventilation (6 ml·kg-1) and standard PEEP of 5 cmH2O (pre-RM, n = 36). After 30 min estabilization all patients received a RM and were randomly allocated to either continue with the same PEEP (RM-5 group, n = 18) or to an individualized open-lung PEEP (OL-PEEP) (Open Lung Approach, OLA group, n = 18) defined as the level resulting in maximal Cdyn during a decremental PEEP trial. We compared the effects on driving pressure and lung efficiency measured by volumetric capnography. OL-PEEP was found at 8±2 cmH2O. 36 patients were included in the final analysis. When compared with pre-RM, OLA resulted in a 22% increase in compliance and a 28% decrease in driving pressure when compared to pre-RM. These parameters did not improve in the RM-5. The trend of the DP was significantly different between the OLA and RM-5 groups (p = 0.002). VDalv/VTalv was significantly lower in the OLA group after the RM (p = 0.035). Lung recruitment applied during low-VT ventilation improves driving pressure and lung efficiency only when applied as an open-lung strategy with an individualized PEEP in patients without lung diseases undergoing major abdominal surgery. ClinicalTrials.gov NCT02798133.

Top