Science.gov

Sample records for lwr accident conditions

  1. ORNL studies of fission product release under LWR accident conditions

    SciTech Connect

    Osborne, M.F.; Lorenz, R.A.; Collins, J.L.

    1991-01-01

    High burnup Zircaloy-clad UO{sub 2} fuel specimens have been heated to study the release of fission products in tests simulating LWR accident conditions. The dominant variable was found to be temperature, with atmosphere, time, and burnup also being significant variables. Comparison of data from tests in steam and hydrogen, at temperatures of 2000 to 2700 K, have shown that the releases of the most volatile species (Kr, Xe, I, and Cs) are relatively insensitive to atmosphere. The releases of the less-volatile species (Sr, Mo, Ru, Sb, Te, Ba, and Eu), however, may vary by orders of magnitude depending on atmosphere. In addition, the atmosphere may drastically affect the mode and extent of fuel destruction.

  2. Enhanced Accident Tolerant LWR Fuels: Metrics Development

    SciTech Connect

    Shannon Bragg-Sitton; Lori Braase; Rose Montgomery; Chris Stanek; Robert Montgomery; Lance Snead; Larry Ott; Mike Billone

    2013-09-01

    The Department of Energy (DOE) Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) is conducting research and development on enhanced Accident Tolerant Fuels (ATF) for light water reactors (LWRs). This mission emphasizes the development of novel fuel and cladding concepts to replace the current zirconium alloy-uranium dioxide (UO2) fuel system. The overall mission of the ATF research is to develop advanced fuels/cladding with improved performance, reliability and safety characteristics during normal operations and accident conditions, while minimizing waste generation. The initial effort will focus on implementation in operating reactors or reactors with design certifications. To initiate the development of quantitative metrics for ATR, a LWR Enhanced Accident Tolerant Fuels Metrics Development Workshop was held in October 2012 in Germantown, MD. This paper summarizes the outcome of that workshop and the current status of metrics development for LWR ATF.

  3. Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions

    NASA Astrophysics Data System (ADS)

    Ott, L. J.; Robb, K. R.; Wang, D.

    2014-05-01

    Following the severe accidents at the Japanese Fukushima Daiichi Nuclear Power Station in 2011, the US Department of Energy initiated research and development on the enhancement of the accident tolerance of light water reactors by the development of fuels/cladding that, in comparison with the standard UO2/Zircaloy (Zr) system, can tolerate loss of active cooling in the core for a considerably longer time period while maintaining or improving the fuel performance during normal operations. Analyses are presented that illustrate the impact of these new candidate fuel/cladding materials on the fuel performance at normal operating conditions and on the reactor system under DB and BDB accident conditions.

  4. Hydrogen-control systems for severe LWR accident conditions - a state-of-technology report

    SciTech Connect

    Hilliard, R K; Postma, A K; Jeppson, D W

    1983-03-01

    This report reviews the current state of technology regarding hydrogen safety issues in light water reactor plants. Topics considered in this report relate to control systems and include combustion prevention, controlled combustion, minimization of combustion effects, combination of control concepts, and post-accident disposal. A companion report addresses hydrogen generation, distribution, and combustion. The objectives of the study were to identify the key safety issues related to hydrogen produced under severe accident conditions, to describe the state of technology for each issue, and to point out ongoing programs aimed at resolving the open issues.

  5. Iodine chemical forms in LWR severe accidents

    SciTech Connect

    Weber, C.F.; Beahm, E.C.; Kress, T.S.

    1991-01-01

    Calculated data from seven severe accident sequences in light water reactor plants were used to assess the chemical forms of iodine in containment. In most of the calculations for the seven sequences, iodine entering containment from the reactor coolant system was almost entirely in the form of CsI with very small contributions of I or HI. The largest fraction of iodine in forms other than CsI was a total of 3.2% as I plus HI. Within the containment, the CsI will deposit onto walls and other surfaces, as well as in water pools, largely in the form of iodide (I{sup {minus}}). The radiation-induced conversion of I{sup {minus}} in water pools into I{sub 2} is strongly dependent on pH. In systems where the pH was controlled above 7, little additional elemental iodine would be produced in the containment atmosphere. When the pH falls below 7, it may be assumed that it is not being controlled and large fractions of iodine as I{sub 2} within the containment atmosphere may be produced. 17 refs., 5 tabs.

  6. Iodine chemical forms in LWR severe accidents

    SciTech Connect

    Beahm, E.C.; Weber, C.F.; Kress, T.S.; Parker, G.W.

    1991-01-01

    Calculated data from seven severe accident sequences in light-water reactor plants were used to assess the chemical forms of iodine in containment. In most of the calculations for the seven sequences, iodine entering containment from the reactor coolant system was almost entirely in the form of CsI with very small contributions of I or HI. The largest fraction of iodine in forms other than CsI was a total of 3.2% as I plus HI. Within the containment, the CsI will deposit onto walls and other surfaces, as well as in water pools, largely in the form of iodide (I{sup {minus}}). The radiation induced conversion of I{sup {minus}} in water pools into I{sub 2} is strongly dependent on pH. In systems where the pH was controlled above 7, little additional elemental iodine would be produced in the containment atmosphere. When the pH falls below 7, it may be assumed that it is not being controlled, and large fractions of iodine as I{sub 2} within the containment atmosphere may be produced. 16 refs.

  7. Simulated Fission Gas Behavior in Silicide Fuel at LWR Conditions

    SciTech Connect

    Miao, Yinbin; Mo, Kun; Yacout, Abdellatif; Harp, Jason

    2016-09-15

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions needs to be well-understood. However, existing experimental post-irradiation examination (PIE) data are limited to the research reactor conditions, which involve lower fuel temperature compared to LWR conditions. This lack of appropriate experimental data significantly affects the development of fuel performance codes that can precisely predict the microstructure evolution and property degradation at LWR conditions, and therefore evaluate the qualification of U3Si2 as an AFT for LWRs. Considering the high cost, long timescale, and restrictive access of the in-pile irradiation experiments, this study aims to utilize ion irradiation to simulate the inpile behavior of the U3Si2 fuel. Both in situ TEM ion irradiation and ex situ high-energy ATLAS ion irradiation experiments were employed to simulate different types of microstructure modifications in U3Si2. Multiple PIE techniques were used or will be used to quantitatively analyze the microstructure evolution induced by ion irradiation so as to provide valuable reference for the development of fuel performance code prior to the availability of the in-pile irradiation data.

  8. Enhanced Accident Tolerant LWR Fuels National Metrics Workshop Report

    SciTech Connect

    Lori Braase

    2013-01-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), in collaboration with the nuclear industry, has been conducting research and development (R&D) activities on advanced Light Water Reactor (LWR) fuels for the last few years. The emphasis for these activities was on improving the fuel performance in terms of increased burnup for waste minimization and increased power density for power upgrades, as well as collaborating with industry on fuel reliability. After the events at the Fukushima Nuclear Power Plant in Japan in March 2011, enhancing the accident tolerance of LWRs became a topic of serious discussion. In the Consolidated Appropriations Act, 2012, Conference Report 112-75, the U.S. Congress directed DOE-NE to: • Give “priority to developing enhanced fuels and cladding for light water reactors to improve safety in the event of accidents in the reactor or spent fuel pools.” • Give “special technical emphasis and funding priority…to activities aimed at the development and near-term qualification of meltdown-resistant, accident-tolerant nuclear fuels that would enhance the safety of present and future generations of light water reactors.” • Report “to the Committee, within 90 days of enactment of this act, on its plan for development of meltdown-resistant fuels leading to reactor testing and utilization by 2020.” Fuels with enhanced accident tolerance are those that, in comparison with the standard UO2-zirconium alloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, and operational transients, as well as design-basis and beyond design-basis events. The overall draft strategy for development and demonstration is comprised of three phases: Feasibility Assessment and Down-selection; Development and Qualification; and

  9. Determination of optimal LWR containment design, excluding accidents more severe than Class 8

    SciTech Connect

    Cave, L.; Min, T.K.

    1980-04-01

    Information is presented concerning the restrictive effect of existing NRC requirements; definition of possible targets for containment; possible containment systems for LWR; optimization of containment design for class 3 through class 8 accidents (PWR); estimated costs of some possible containment arrangements for PWR relative to the standard dry containment system; estimated costs of BWR containment.

  10. Review of literature on the TMI accident and correlation to the LWR Safety Technology Program

    SciTech Connect

    Miller, W.J.

    1980-05-01

    This report is the result of approximately two man-months of effort devoted to assimilating and comprehending significant publicly available material related to Three Mile Island Unit 2 and events during and subsequent to the accident experienced on March 28, 1979. Those events were then correlated with the Preliminary LWR Safety Technology Program Plan (Preliminary Program Plan) prepared for the US Department of Energy by Sandia National Lab. This report is being submitted simultaneously with the SAI report entitled Preliminary Prioritization of Tasks in the Draft LWR Safety Technology Program Plan.

  11. Review of cladding-coolant interactions during LWR accident transients

    SciTech Connect

    Hobson, D.O.

    1980-01-01

    Some of the coolant-cladding interactions that can take place during the design basis loss-of-coolant accident and the Three Mile Island loss-of-coolant accident are analyzed. The physical manifestations of the interactions are quite similar, but the time sequences involved can cause very different end results. These results are described and a listing is given of the main research programs that are involved in coolant-cladding interaction research.

  12. Rate Theory Modeling and Simulation of Silicide Fuel at LWR Conditions

    SciTech Connect

    Miao, Yinbin; Ye, Bei; Hofman, Gerard; Yacout, Abdellatif; Gamble, Kyle; Mei, Zhi-Gang

    2016-08-29

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions needs to be well understood. In this report, rate theory model was developed based on existing experimental data and density functional theory (DFT) calculations so as to predict the fission gas behavior in U3Si2 at LWR conditions. The fission gas behavior of U3Si2 can be divided into three temperature regimes. During steady-state operation, the majority of the fission gas stays in intragranular bubbles, whereas the dominance of intergranular bubbles and fission gas release only occurs beyond 1000 K. The steady-state rate theory model was also used as reference to establish a gaseous swelling correlation of U3Si2 for the BISON code. Meanwhile, the overpressurized bubble model was also developed so that the fission gas behavior at LOCA can be simulated. LOCA simulation showed that intragranular bubbles are still dominant after a 70 second LOCA, resulting in a controllable gaseous swelling. The fission gas behavior of U3Si2 at LWR conditions is benign according to the rate theory prediction at both steady-state and LOCA conditions, which provides important references to the qualification of U3Si2 as a LWR fuel material with excellent fuel performance and enhanced accident tolerance.

  13. Fuel-rod temperature transients during LWR degraded-core accidents

    SciTech Connect

    Briscoe, F; Rivard, J B; Young, M F

    1982-01-01

    Heat transfer models of fuel rods and coolant have been developed in support of LWR damaged fuel studies underway at Sandia National Laboratories for the NRC. A one-dimensional, full-length model simulates a PWR fuel rod; a two-dimensional, 0.5 m model simulates 9-rod bundle experiments to be performed in the Annular Core Research Reactor. The models include zircaloy oxidation, heat transfer by convecting steam/hydrogen flow, and radiation between surfaces through an absorbing/emitting gas. Characteristics of the one-dimensional reactor fuel rod model for two types of accident sequence are reported, as well as comparisons with MARCH code results.

  14. Development of LWR Fuels with Enhanced Accident Tolerance

    SciTech Connect

    Lahoda, Edward J.; Boylan, Frank A.

    2015-10-30

    Significant progress was made on the technical, licensing, and business aspects of the Westinghouse Electric Company’s Enhanced Accident Tolerant Fuel (ATF) by the Westinghouse ATF team. The fuel pellet options included waterproofed U15N and U3Si2 and the cladding options SiC composites and zirconium alloys with surface treatments. Technology was developed that resulted in U3Si2 pellets with densities of >94% being achieved at the Idaho National Laboratory (INL). The use of U3Si2 will represent a 15% increase in U235 loadings over those in UO₂ fuel pellets. This technology was then applied to manufacture pellets for 6 test rodlets which were inserted in the Advanced Test Reactor (ATR) in early 2015 in zirconium alloy cladding. The first of these rodlets are expected to be removed in about 2017. Key characteristics to be determined include verification of the centerline temperature calculations, thermal conductivity, fission gas release, swelling and degree of amorphization. Waterproofed UN pellets have achieved >94% density for a 32% U3Si2/68% UN composite pellet at Texas A&M University. This represents a U235 increase of about 31% over current UO2 pellets. Pellets and powders of UO2, UN, and U3Si2the were tested by Westinghouse and Los Alamos National Laboratory (LANL) using differential scanning calorimetry to determine what their steam and 20% oxygen corrosion temperatures were as compared to UO2. Cold spray application of either the amorphous steel or the Ti2AlC was successful in forming an adherent ~20 micron coating that remained after testing at 420°C in a steam autoclave. Tests at 1200°C in 100% steam on coatings for Zr alloy have not been successful, possibly due to the low density of the coatings which allowed steam transport to the base zirconium metal. Significant modeling and testing

  15. Rate Theory Modeling and Simulations of Silicide Fuel at LWR Conditions

    SciTech Connect

    Miao, Yinbin; Ye, Bei; Mei, Zhigang; Hofman, Gerard; Yacout, Abdellatif

    2015-12-10

    Uranium silicide (U3Si2) fuel has higher thermal conductivity and higher uranium density, making it a promising candidate for the accident-tolerant fuel (ATF) used in light water reactors (LWRs). However, previous studies on the fuel performance of U3Si2, including both experimental and computational approaches, have been focusing on the irradiation conditions in research reactors, which usually involve low operation temperatures and high fuel burnups. Thus, it is important to examine the fuel performance of U3Si2 at typical LWR conditions so as to evaluate the feasibility of replacing conventional uranium dioxide fuel with this silicide fuel material. As in-reactor irradiation experiments involve significant time and financial cost, it is appropriate to utilize modeling tools to estimate the behavior of U3Si2 in LWRs based on all those available research reactor experimental references and state-of-the-art density functional theory (DFT) calculation capabilities at the early development stage. Hence, in this report, a comprehensive investigation of the fission gas swelling behavior of U3Si2 at LWR conditions is introduced. The modeling efforts mentioned in this report was based on the rate theory (RT) model of fission gas bubble evolution that has been successfully applied for a variety of fuel materials at devious reactor conditions. Both existing experimental data and DFT-calculated results were used for the optimization of the parameters adopted by the RT model. Meanwhile, the fuel-cladding interaction was captured by the coupling of the RT model with simplified mechanical correlations. Therefore, the swelling behavior of U3Si2 fuel and its consequent interaction with cladding in LWRs was predicted by the rate theory modeling, providing valuable information for the development of U3Si2 fuel as an accident

  16. Status report on assessment of environmentally assisted fatigue for LWR extended service conditions

    SciTech Connect

    Mohanty, S.; Soppet, W. K.; Majumdar, S.; Natesan, K.

    2014-07-09

    This report provides an update on an earlier assessment of environmentally assisted fatigue for light water reactor (LWR) materials under extended service conditions. This report is a deliverable in September 2013, under the work package for environmentally assisted fatigue in the Light Water Reactor Sustainability (LWRS) program. The overall objective of this LWRS project is to assess the degradation by environmentally assisted cracking/fatigue of LWR materials, such as various alloy base metals and their welds used in reactor coolant system piping. This effort is to support the U.S. Department of Energy LWRS program for developing tools to predict the aging/failure mechanism and to correspondingly predict the remaining life of LWR components for anticipated 60-80 year operation.

  17. Systematic technology evaluation program for SiC/SiC composite-based accident-tolerant LWR fuel cladding and core structures: Revision 2015

    SciTech Connect

    Katoh, Yutai; Terrani, Kurt A.

    2015-08-01

    Fuels and core structures in current light water reactors (LWR’s) are vulnerable to catastrophic failure in severe accidents as unfortunately evidenced by the March 2011 Fukushima Dai-ichi Nuclear Power Plant Accident. This vulnerability is attributed primarily to the rapid oxidation kinetics of zirconium alloys in a water vapor environment at very high temperatures. Zr alloys are the primary material in LWR cores except for the fuel itself. Therefore, alternative materials with reduced oxidation kinetics as compared to zirconium alloys are sought to enable enhanced accident-tolerant fuels and cores.

  18. System analysis with improved thermo-mechanical fuel rod models for modeling current and advanced LWR materials in accident scenarios

    NASA Astrophysics Data System (ADS)

    Porter, Ian Edward

    A nuclear reactor systems code has the ability to model the system response in an accident scenario based on known initial conditions at the onset of the transient. However, there has been a tendency for these codes to lack the detailed thermo-mechanical fuel rod response models needed for accurate prediction of fuel rod failure. This proposed work will couple today's most widely used steady-state (FRAPCON) and transient (FRAPTRAN) fuel rod models with a systems code TRACE for best-estimate modeling of system response in accident scenarios such as a loss of coolant accident (LOCA). In doing so, code modifications will be made to model gamma heating in LWRs during steady-state and accident conditions and to improve fuel rod thermal/mechanical analysis by allowing axial nodalization of burnup-dependent phenomena such as swelling, cladding creep and oxidation. With the ability to model both burnup-dependent parameters and transient fuel rod response, a fuel dispersal study will be conducted using a hypothetical accident scenario under both PWR and BWR conditions to determine the amount of fuel dispersed under varying conditions. Due to the fuel fragmentation size and internal rod pressure both being dependent on burnup, this analysis will be conducted at beginning, middle and end of cycle to examine the effects that cycle time can play on fuel rod failure and dispersal. Current fuel rod and system codes used by the Nuclear Regulatory Commission (NRC) are compilations of legacy codes with only commonly used light water reactor materials, Uranium Dioxide (UO2), Mixed Oxide (U/PuO 2) and zirconium alloys. However, the events at Fukushima Daiichi and Three Mile Island accident have shown the need for exploration into advanced materials possessing improved accident tolerance. This work looks to further modify the NRC codes to include silicon carbide (SiC), an advanced cladding material proposed by current DOE funded research on accident tolerant fuels (ATF). Several

  19. Stability of SiC-Matrix Microencapsulated Fuel Constituents at Relevant LWR Conditions

    SciTech Connect

    Terrani, Kurt A; Katoh, Yutai; Leonard, Keith J; Perez-Bergquist, Alex G; Silva, Chinthaka M; Snead, Lance Lewis

    2014-01-01

    This paper addresses certain key feasibility issues facing the application of SiC-matrix microencapsulated fuels for light water reactor application. Issues addressed are the irradiation stability of the SiC-based nano-powder ceramic matrix under LWR-relevant irradiation conditions, the presence or extent of reaction of the SiC matrix with zirconium-based cladding, the stability of the inner and outer pyrolytic graphite layers of the microencapsulated (TRISO) particle at this uncharacteristically low irradiation temperature, and the state of the particle-matrix interface following irradiation which could possibly effect thermal transport. In the process of determining these feasibility issues microstructural evolution and change in dimension and thermal conductivity was studied. As a general finding the SiC matrix was found to be quite stable with behavior similar to that of CVD SiC. In magnitude the irradiation-induced swelling of the matrix material was slightly higher and irradiation-degraded thermal conductivity was slightly lower as compared to CVD SiC. No significant reaction of this SiC-based nano-powder ceramic matrix material with Zircaloy was observed. Irradiation of the TRISO in the 320-360 C range to a maximum dose of 7.7 1025 n/m2 (E > 0.1 MeV) did not have significant negative impact on the constituent layers of the TRISO fuel. At the highest dose studied layer structure and interface integrity remained essentially unchanged with good apparent thermal transport through the microsphere to the surrounding matrix.

  20. Stability of SiC-matrix microencapsulated fuel constituents at relevant LWR conditions

    NASA Astrophysics Data System (ADS)

    Snead, L. L.; Terrani, K. A.; Katoh, Y.; Silva, C.; Leonard, K. J.; Perez-Bergquist, A. G.

    2014-05-01

    This paper addresses certain key feasibility issues facing the application of SiC-matrix microencapsulated fuels for light water reactor application. Issues addressed are the irradiation stability of the SiC-based nano-powder ceramic matrix under LWR-relevant irradiation conditions, the presence or extent of reaction of the SiC matrix with zirconium-based cladding, the stability of the inner and outer pyrolytic graphite layers of the TRISO coating system at this uncharacteristically low irradiation temperature, and the state of the particle-matrix interface following irradiation which could possibly affect thermal transport. In the process of determining these feasibility issues microstructural evolution and change in dimension and thermal conductivity was studied. As a general finding the SiC matrix was found to be quite stable with behavior similar to that of CVD SiC. In magnitude the irradiation-induced swelling of the matrix material was slightly higher and irradiation-degraded thermal conductivity was slightly lower as compared to CVD SiC. No significant reaction of this SiC-based nano-powder ceramic matrix material with Zircaloy was observed. Irradiation of the sample in the 320-360 °C range to a maximum dose of 7.7 × 1025 n/m2 (E > 0.1 MeV) did not have significant negative impact on the constituent layers of the TRISO coating system. At the highest dose studied, layer structure and interface integrity remained essentially unchanged with good apparent thermal transport through the microsphere to the surrounding matrix.

  1. Preliminary Modeling of Accident Tolerant Fuel Concepts under Accident Conditions

    SciTech Connect

    Gamble, Kyle A.; Hales, Jason D.

    2016-12-01

    The catastrophic events that occurred at the Fukushima-Daiichi nuclear power plant in 2011 have led to widespread interest in research of alternative fuels and claddings that are proposed to be accident tolerant. Thus, the United States Department of Energy through its NEAMS (Nuclear Energy Advanced Modeling and Simulation) program has funded an Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The ATF HIP is funded for a three-year period. The purpose of the HIP is to perform research into two potential accident tolerant concepts and provide an in-depth report to the Advanced Fuels Campaign (AFC) describing the behavior of the concepts, both of which are being considered for inclusion in a lead test assembly scheduled for placement into a commercial reactor in 2022. The initial focus of the HIP is on uranium silicide fuel and iron-chromium-aluminum (FeCrAl) alloy cladding. Utilizing the expertise of three national laboratory participants (INL, LANL, and ANL) a comprehensive mulitscale approach to modeling is being used including atomistic modeling, molecular dynamics, rate theory, phase-field, and fuel performance simulations. In this paper, we present simulations of two proposed accident tolerant fuel systems: U3Si2 fuel with Zircaloy-4 cladding, and UO2 fuel with FeCrAl cladding. The simulations investigate the fuel performance response of the proposed ATF systems under Loss of Coolant and Station Blackout conditions using the BISON code. Sensitivity analyses are completed using Sandia National Laboratories’ DAKOTA software to determine which input parameters (e.g., fuel specific heat) have the greatest influence on the output metrics of interest (e.g., fuel centerline temperature). Early results indicate that each concept has significant advantages as well as areas of concern. Further work is required prior to formulating the proposition report for the Advanced Fuels Campaign.

  2. The effect of fuel thermal conductivity on the behavior of LWR cores during loss-of-coolant accidents

    SciTech Connect

    Terrani, Kurt A.; Wang, Dean; Ott, Larry J.; Montgomery, Robert O.

    2014-05-01

    The effect of variation in thermal conductivity of light water reactor fuel elements on core response during loss-of-coolant accident scenarios is examined. Initially, a simplified numerical analysis is utilized to determine the time scales associated with dissipation of stored energy from the fuel into the coolant once the fission reaction is stopped. The analysis is then followed by full reactor system thermal-hydraulics analysis of a typical boiling and pressurized water reactor subjected to a large break loss-of-coolant accident scenario using the TRACE code. Accordingly, sensitivity analyses to examine the effect of an increase in fuel thermal conductivity, up to 500%, on fuel temperature evolution during these transients are performed. Given the major differences in thermal-hydraulics design aspects of boiling and pressurized water reactors, different fuel and temperature responses during the simulated loss-of-coolant transients are observed.

  3. Integrated Computational Modeling of Water Side Corrosion in Zirconium Metal Clad Under Nominal LWR Operating Conditions

    NASA Astrophysics Data System (ADS)

    Aryanfar, Asghar; Thomas, John; Van der Ven, Anton; Xu, Donghua; Youssef, Mostafa; Yang, Jing; Yildiz, Bilge; Marian, Jaime

    2016-11-01

    A mesoscopic chemical reaction kinetics model to predict the formation of zirconium oxide and hydride accumulation light-water reactor (LWR) fuel clad is presented. The model is designed to include thermodynamic information from ab initio electronic structure methods as well as parametric information in terms of diffusion coefficients, thermal conductivities and reaction constants. In contrast to approaches where the experimentally observed time exponents are captured by the models by design, our approach is designed to be predictive and to provide an improved understanding of the corrosion process. We calculate the time evolution of the oxide/metal interface and evaluate the order of the chemical reactions that are conducive to a t 1/3 dependence. We also show calculations of hydrogen cluster accumulation as a function of temperature and depth using spatially dependent cluster dynamics. Strategies to further cohesively integrate the different elements of the model are provided.

  4. Main contributions of the KfK nuclear safety project in the LWR safety area

    SciTech Connect

    Kuczera, B.

    1986-01-01

    The Nuclear Safety Project (PNS) was established at the Kernforschungszentrum Karlsruhe (KfK) in 1972. At that time, nuclear energy in the Federal Republic of Germany was in a transition phase proceeding from light water reactor (LWR) demonstration plants (300 MW(e)) to commercial size plants of 1200 to 1300 MW(e) which are standard units today. Simultaneously, general questions about LWR safety and reliability as well as questions on risk-oriented features became more pronounced in the public discussion. As a consequence, various already existing LWR safety activities were brought together and combined in the organizational framework of the PNS. The overriding objectives of PNS research and development (R and D) effort were at the quantification of safety margins of reactor systems and components, and the improvement of existing safety systems to avoid accident occurrence and to minimize accident consequences. In close cooperation with governmental authorities, manufacturers, and utilities, an R and D program was developed, comprised of four main areas: 1) dynamic behavior of reactor components; 2) fuel element behavior under accident conditions; 3) core meltdown accident analyses; and 4) retention of radioactive fission products and limitation of severe accident consequences. An overview on the KfK contribution to LWR safety research is given. It deals in a comprehensive matter with results obtained in the areas listed above.

  5. Potential-pH diagrams for alloy-water systems under LWR conditions

    NASA Astrophysics Data System (ADS)

    Cubicciotti, Daniel

    Potential-pH diagrams, which present the regions of stability of metallic species with water, are generally known as Pourbaix diagrams. They are especially useful to corrosion scientists because the diagrams indicate the areas of potential and pH in which oxides of the metal are stable and thus the regions in which an oxide corrosion layer can form on the metal, protecting it from corrosion. Potential-pH diagrams are generally available for the metallic elements, even at high temperature (up to about 600 K). But rarely is a pure metal used as a construction material. Stainless steel, which is an alloy of iron, chromium, and nickel plus some trace elements, is often used as a construction material for water systems because of its good corrosion resistance. The oxides in equilibrium with the water-Fe-Cr-Ni system are generally mixed metal oxides. In this paper, Pourbaix diagrams for this system are calculated from thermodynamic values at room temperature and at typical LWR (light water reactor) temperature. Diagrams for the ancilliary systems Fe-Cr-water, Fe-Ni-water and Cr-Ni-water are also given.

  6. LWR improvement in EUV resist process

    NASA Astrophysics Data System (ADS)

    Koh, Chawon; Kim, Hyun-Woo; Kim, Sumin; Na, Hai-Sub; Park, Chang-Min; Park, Cheolhong; Cho, Kyoung-Yong

    2011-04-01

    Extreme ultraviolet lithography (EUVL) is the most effective way to print sub-30 nm features. The roughness of both the resist sidewall (line width roughness [LWR]) and resist top must be overcome soon for EUVL to be implemented. Currently, LWR can vary by about 1 nm according to the recipe used. We have characterized two promising techniques to improve LWR, an EUV rinse/TBAH process and an implant process, and demonstrated their efficacy. After cleaning inspection (ACI), LWR was improved with both the rinse and implant processes. After development inspection (ADI), LWR improved (0.12 nm, 2.4%) and ACI LWR improved (0.1 nm, 2.0% improvement) after using the EUV rinse process. ADI and ACI LWR improvement (0.45 nm, 9.1%, and 0.3 nm, 6.9%, respectively) was demonstrated with the EUV rinse/TBAH process. ADI LWR improvement (0.5 nm, 8.1%) and ACI LWR improvement (-0.5 nm, -16.9%) were characterized with the implant process. Critical dimension (CD) showed similar changes through pitch after the EUV rinse or TBAH process, but the degree of change depended on the initial pattern size giving CD difference of 2 nm between 30 nm HP and 50 nm HP after the implant process. For this technique, the dependence of CD change on pattern size must be minimized. Further extensive studies with rinse or implant are strongly encouraged for continued LWR improvement and real process implementation in EUVL. Demonstrating <2.2 nm LWR after pattern transfer is important in EUVL and needs to be pursued using various technical approaches. Initial resist LWR is important in assessing LWR improvements with additional process techniques. An initial EUV LWR < ~5.0 nm is required to properly assess the validity of the technique. Further study is required to improve ADI LWR and maintain better LWR after etch with advanced EUV rinse materials. Defects also need to be confirmed following the EUV rinse and TBAH developer. Further developing the implant process should focus on LWR improvement at low

  7. LWR spent fuel reduction by the removal of U and the compact storage of Pu with FP for long-term nuclear sustainability

    SciTech Connect

    Fukasawa, T.; Hoshino, K.; Takano, M.; Sato, S.; Shimazu, Y.

    2013-07-01

    Fast breeder reactors (FBR) nuclear fuel cycle is needed for long-term nuclear sustainability while preventing global warming and maximum utilizing the limited uranium (U) resources. The 'Framework for Nuclear Energy Policy' by the Japanese government on October 2005 stated that commercial FBR deployment will start around 2050 under its suitable conditions by the successive replacement of light water reactors (LWR) to FBR. Even after Fukushima Daiichi Nuclear Power Plant accident which made Japanese tendency slow down the nuclear power generation activities, Japan should have various options for energy resources including nuclear, and also consider the delay of FBR deployment and increase of LWR spent fuel (LWR-SF) storage amounts. As plutonium (Pu) for FBR deployment will be supplied from LWR-SF reprocessing and Japan will not possess surplus Pu, the authors have developed the flexible fuel cycle initiative (FFCI) for the transition from LWR to FBR. The FFCI system is based on the possibility to stored recycled materials (U, Pu)temporarily for a suitable period according to the FBR deployment rate to control the Pu demand/supply balance. This FFCI system is also effective after the Fukushima accident for the reduction of LWR-SF and future LWR-to-FBR transition. (authors)

  8. Uranium mononitride as a potential commercial LWR fuel

    SciTech Connect

    Xu, P.; Yan, J.; Lahoda, E. J.; Ray, S.

    2012-07-01

    This paper evaluated uranium mononitride (UN) as a potential replacement for 5% enriched UO{sub 2} fuel in Generation III and III+ commercial light water reactors (LWRs). Significant improvement in LWR performance depends on developing and implementing changes in the nuclear fuel used in these reactors. Compared to UO{sub 2}, UN offers several advantages such as higher uranium loading and better thermal conductivity. In this paper, the thermal safety margin of UN was evaluated at both normal and accident conditions using a readily available coupled CFD model developed for the US DOE CASL program. One of the prime technical challenges in utilization of UN as LWR fuel is the water compatibility because pure phase UN is not stable in water at 350 deg. C. The water corrosion resistance of UN and the corrosion mechanism were reviewed and mitigation methods were proposed. (authors)

  9. 10 CFR 71.73 - Hypothetical accident conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.73 Hypothetical accident conditions. (a) Test procedures. Evaluation for hypothetical accident conditions is to be based on sequential application of the...

  10. 10 CFR 71.73 - Hypothetical accident conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.73 Hypothetical accident conditions. (a) Test procedures. Evaluation for hypothetical accident conditions is to be based on sequential application of the...

  11. 10 CFR 71.73 - Hypothetical accident conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.73 Hypothetical accident conditions. (a) Test procedures. Evaluation for hypothetical accident conditions is to be based on sequential application of the...

  12. 10 CFR 71.73 - Hypothetical accident conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.73 Hypothetical accident conditions. (a) Test procedures. Evaluation for hypothetical accident conditions is to be based on sequential application of the...

  13. 10 CFR 71.73 - Hypothetical accident conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.73 Hypothetical accident conditions. (a) Test procedures. Evaluation for hypothetical accident conditions is to be based on sequential application of the...

  14. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 1: Plenary sessions; Pressure vessel research; BWR strainer blockage and other generic safety issues; Environmentally assisted degradation of LWR components; Update on severe accident code improvements and applications

    SciTech Connect

    Monteleone, S.

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following information: (1) plenary sessions; (2) pressure vessel research; (3) BWR strainer blockage and other generic safety issues; (4) environmentally assisted degradation of LWR components; and (5) update on severe accident code improvements and applications. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  15. Advanced Models of LWR Pressure Vessel Embrittlement for Low Flux-HighFluence Conditions

    SciTech Connect

    Odette, G. Robert; Yamamoto, Takuya

    2013-06-17

    Neutron embrittlement of reactor pressure vessels (RPVs) is an unresolved issue for light water reactor life extension, especially since transition temperature shifts (TTS) must be predicted for high 80-year fluence levels up to approximately 1,020 n/cm{sup 2}, far beyond the current surveillance database. Unfortunately, TTS may accelerate at high fluence, and may be further amplified by the formation of late blooming phases that result in severe embrittlement even in low-copper (Cu) steels. Embrittlement by this mechanism is a potentially significant degradation phenomenon that is not predicted by current regulatory models. This project will focus on accurately predicting transition temperature shifts at high fluence using advanced physically based, empirically validated and calibrated models. A major challenge is to develop models that can adjust test reactor data to account for flux effects. Since transition temperature shifts depend on synergistic combinations of many variables, flux-effects cannot be treated in isolation. The best current models systematically and significantly under-predict transition temperature at high fluence, although predominantly for irradiations at much higher flux than actual RPV service. This project will integrate surveillance, test reactor and mechanism data with advanced models to address a number of outstanding RPV embrittlement issues. The effort will include developing new databases and preliminary models of flux effects for irradiation conditions ranging from very low (e.g., boiling water reactor) to high (e.g., accelerated test reactor). The team will also develop a database and physical models to help predict the conditions for the formation of Mn-Ni-Si late blooming phases and to guide future efforts to fully resolve this issue. Researchers will carry out other tasks on a best-effort basis, including prediction of transition temperature shift attenuation through the vessel wall, remediation of embrittlement by annealing

  16. a Study of the Interferences with the On-Line Radioiodine Measurement Under Nuclear Accident Conditions

    NASA Astrophysics Data System (ADS)

    Tseng, Tung-Tse

    In this research the interferences with the on -line detection of radioiodines, under nuclear accident conditions, were studied. The special tool employed for this research is the developed on-line radioiodine monitor (the Penn State Radioiodine Monitor), which is capable of detecting low levels of radioiodine on-line in air containing orders of magnitude higher levels of radioactive noble gases. Most of the data reported in this thesis were collected during a series of experiments called "Source -Term Experiment Program (STEP)." The experiments were conducted at the Argonne National Laboratory's TREAT reactor located at the Idaho National Engineering Laboratory (INEL). In these tests, fission products were released from the Light Water Reactor (LWR) test fuels as a result of simulating a reactor accident. The Penn State Monitor was then used to sample the fission products accumulated in a large container which simulated the reactor containment building. The test results proved that the Penn State Monitor was not affected significantly by the passage of large amounts of noble gases through the system. Also, it confirmed the predicted results that the operation of conventional on-line radioiodine detectors would, under nuclear accident conditions, be seriously impaired by the passage of high concentrations of radioactive noble gases through such systems. This work also demonstrated that under conditions of high noble gas concentrations and low radioiodine concentrations, the formation of noble-gas-decayed alkali metals can seriously interfere with the on-line detection of radioiodine, especially during the 24 hours immediately after the accident. The decayed alkali metal particulates were also found to be much more penetrating than the ordinary type of particulates, since a large fraction (15%) of the particulates were found to penetrate through the commonly used High Efficiency Particulate Air (HEPA) filter (rated >99.97% for 0.3 (mu)m particulate). Also, a

  17. Reactivity Insertion Accident (RIA) Capability Status in the BISON Fuel Performance Code

    SciTech Connect

    Williamson, Richard L.; Folsom, Charles Pearson; Pastore, Giovanni; Veeraraghavan, Swetha

    2016-05-01

    One of the Challenge Problems being considered within CASL relates to modelling and simulation of Light Water Reactor LWR) fuel under Reactivity Insertion Accident (RIA) conditions. BISON is the fuel performance code used within CASL for LWR fuel under both normal operating and accident conditions, and thus must be capable of addressing the RIA challenge problem. This report outlines required BISON capabilities for RIAs and describes the current status of the code. Information on recent accident capability enhancements, application of BISON to a RIA benchmark exercise, and plans for validation to RIA behavior are included.

  18. Full-length fuel rod behavior under severe accident conditions

    SciTech Connect

    Lombardo, N J; Lanning, D D; Panisko, F E

    1992-12-01

    This document presents an assessment of the severe accident phenomena observed from four Full-Length High-Temperature (FLHT) tests that were performed by the Pacific Northwest Laboratory (PNL) in the National Research Universal (NRU) reactor at Chalk River, Ontario, Canada. These tests were conducted for the US Nuclear Regulatory Commission (NRC) as part of the Severe Accident Research Program. The objectives of the test were to simulate conditions and provide information on the behavior of full-length fuel rods during hypothetical, small-break, loss-of-coolant severe accidents, in commercial light water reactors.

  19. Graphite Oxidation Simulation in HTR Accident Conditions

    SciTech Connect

    El-Genk, Mohamed

    2012-10-19

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  20. Evaluation of current regulations and real accident conditions

    SciTech Connect

    Fischer, L.E.; Kimura, C.Y.; Witte, M.C.

    1985-04-05

    In order to improve estimates of the effectiveness of current regulatory standards, a program was initiated by the US Nuclear Regulatory Commission (NRC) to have the Lawrence Livermore Laboratory (LLNL) evaluate regulatory standards against real world accident conditions. This paper presents the results of the evaluation performed for the hypothetical 30-foot drop onto an unyielding surface and real world impact conditions which might be experienced by a spent fuel cask being transported by a truck. The results of the evaluations performed for other pertinent accident conditions for truck and train transport will be documented at the conclusion of the program. 10 refs., 8 figs., 3 tabs.

  1. The TOPAZ II space reactor response under accident conditions

    SciTech Connect

    Voss, S.S.

    1993-12-31

    The TOPAZ II is a single-cell thermionic space reactor power system developed by the Russians during the period of time from {approximately}1969 to 1989. The TOPAZ II has never been flight demonstrated, but the system was extensively tested on the ground. As part of the development and test program, the response of the TOPAZ II under accident conditions was analyzed and characterized. The US TOPAZ II team has been working closely with the Russian specialists to understand the TOPAZ II system, its operational characteristics, and its response under potential accident conditions. The purpose of the technical exchange is to enable a potential launch of a TOPAZ II by the US. The information is required to integrate the system with a US spacecraft and to support the safety review process. The purpose of this paper is to provide a brief overview of the system and its response under actual and postulated accident conditions.

  2. Predictions of structural integrity of steam generator tubes under normal operating, accident, and severe accident conditions

    SciTech Connect

    Majumdar, S.

    1996-09-01

    Available models for predicting failure of flawed and unflawed steam generator tubes under normal operating, accident, and severe accident conditions are reviewed. Tests conducted in the past, though limited, tended to show that the earlier flow-stress model for part-through-wall axial cracks overestimated the damaging influence of deep cracks. This observation is confirmed by further tests at high temperatures as well as by finite element analysis. A modified correlation for deep cracks can correct this shortcoming of the model. Recent tests have shown that lateral restraint can significantly increase the failure pressure of tubes with unsymmetrical circumferential cracks. This observation is confirmed by finite element analysis. The rate-independent flow stress models that are successful at low temperatures cannot predict the rate sensitive failure behavior of steam generator tubes at high temperatures. Therefore, a creep rupture model for predicting failure is developed and validated by tests under varying temperature and pressure loading expected during severe accidents.

  3. The TOPAZ 2 space reactor response under accident conditions

    NASA Astrophysics Data System (ADS)

    Voss, S. S.

    The TOPAZ 2 is a single-cell thermionic space reactor power system developed by the U.S.S.R. during the period of time from approximately 1969 to 1989. The TOPAZ 2 was never flight demonstrated, but the system was extensively tested on the ground. As part of the development and test program, the response of the TOPAZ 2 under accident conditions was analyzed and characterized. The U.S. TOPAZ 2 team has been working closely with the Russian specialists to understand the TOPAZ 2 system, its operational characteristics, and its response under potential accident conditions. The purpose of the technical exchange is to enable a potential launch of a TOPAZ 2 by the U.S. The information is required to integrate the system with a U.S. spacecraft and to support the safety review process. The purpose of this paper is to provide a brief overview of the system and its response under actual and postulated accident conditions.

  4. Predictions of structural integrity of steam generator tubes under normal operating, accident, an severe accident conditions

    SciTech Connect

    Majumdar, S.

    1997-02-01

    Available models for predicting failure of flawed and unflawed steam generator tubes under normal operating, accident, and severe accident conditions are reviewed. Tests conducted in the past, though limited, tended to show that the earlier flow-stress model for part-through-wall axial cracks overestimated the damaging influence of deep cracks. This observation was confirmed by further tests at high temperatures, as well as by finite-element analysis. A modified correlation for deep cracks can correct this shortcoming of the model. Recent tests have shown that lateral restraint can significantly increase the failure pressure of tubes with unsymmetrical circumferential cracks. This observation was confirmed by finite-element analysis. The rate-independent flow stress models that are successful at low temperatures cannot predict the rate-sensitive failure behavior of steam generator tubes at high temperatures. Therefore, a creep rupture model for predicting failure was developed and validated by tests under various temperature and pressure loadings that can occur during postulated severe accidents.

  5. LWR codes capability to address SFR BDBA scenarios: Modeling of the ABCOVE tests

    SciTech Connect

    Herranz, L. E.; Garcia, M.; Morandi, S.

    2012-07-01

    The sound background built-up in LWR source term analysis in case of a severe accident, make it worth to check the capability of LWR safety analysis codes to model accident SFR scenarios, at least in some areas. This paper gives a snapshot of such predictability in the area of aerosol behavior in containment. To do so, the AB-5 test of the ABCOVE program has been modeled with 3 LWR codes: ASTEC, ECART and MELCOR. Through the search of a best estimate scenario and its comparison to data, it is concluded that even in the specific case of in-containment aerosol behavior, some enhancements would be needed in the LWR codes and/or their application, particularly with respect to consideration of particle shape. Nonetheless, much of the modeling presently embodied in LWR codes might be applicable to SFR scenarios. These conclusions should be seen as preliminary as long as comparisons are not extended to more experimental scenarios. (authors)

  6. Investigation of air cleaning system response to accident conditions

    SciTech Connect

    Andrae, R.W.; Bolstad, J.W.; Foster, R.D.; Gregory, W.S.; Horak, H.L.; Idar, E.S.; Martin, R.A.; Ricketts, C.I.; Smith, P.R.; Tang, P.K.

    1980-01-01

    Air cleaning system response to the stress of accident conditions are being investigated. A program overview and hghlight recent results of our investigation are presented. The program includes both analytical and experimental investigations. Computer codes for predicting effects of tornados, explosions, fires, and material transport are described. The test facilities used to obtain supportive experimental data to define structural integrity and confinement effectiveness of ventilation system components are described. Examples of experimental results for code verification, blower response to tornado transients, and filter response to tornado and explosion transients are reported.

  7. Experimental database of E110 claddings exposed to accident conditions

    NASA Astrophysics Data System (ADS)

    Perez-Feró, Erzsébet; Győri, Csaba; Matus, Lajos; Vasáros, László; Hózer, Zoltán; Windberg, Péter; Maróti, László; Horváth, Márta; Nagy, Imre; Pintér-Csordás, Anna; Novotny, Tamás

    2010-02-01

    An experimental database of E110 alloy has been developed on the basis of about 600 separate and combined effect tests of the Hungarian Academy of Sciences KFKI Atomic Energy Research Institute. It contains the data of oxidation, ballooning, tensile and compression tests, the results of post-test investigations, photos, figures, information concerning the test conditions and the corresponding English-language publications. The aim of this database is to give adequate information on the E110 cladding behaviour (oxidation, hydrogen uptake, mechanical performance) under accident conditions and to provide valuable experimental data for model development and code validation. This database is a part of the International Fuel Performance Experimental Database. It is accessible on-line, via the internet. This paper gives an overview of the experiments, the test facilities and conditions involved in the database. It presents the most important results and consequences and introduces the directory structure of the database.

  8. Hypothetical accident conditions thermal analysis of the 5320 package

    SciTech Connect

    Hensel, S.J.; Gromada, R.J.

    1995-12-31

    An axisymmetric model of the 5320 package was created to perform hypothetical accident conditions (HAC) thermal calculations. The analyses assume the 5320 package contains 359 grams of plutonium-238 (203 Watts) in the form of an oxide powder at a minimum density of 2.4 g/cc or at a maximum density of 11.2 g/cc. The solution from a non-solar 100 F ambient steady-state analysis was used as the initial conditions for the fire transient. A 30 minute 1,475 F fire transient followed by cooling via natural convection and thermal radiation to a 100 F non-solar environment was analyzed to determine peak component temperatures and vessel pressures. The 5320 package was considered to be horizontally suspended within the fire during the entire transient.

  9. Fully Ceramic Microencapsulated Fuel Development for LWR Applications

    SciTech Connect

    Snead, Lance Lewis; Besmann, Theodore M; Terrani, Kurt A; Voit, Stewart L

    2012-01-01

    The concept, fabrication, and key feasibility issues of a new fuel form based on the microencapsulated (TRISO-type) fuel which has been specifically engineered for LWR application and compacted within a SiC matrix will be presented. This fuel, the so-called fully ceramic microencapsulated fuel is currently undergoing development as an accident tolerant fuel for potential UO2 replacement in commercial LWRs. While the ability of this fuel to facilitate normal LWR cycle performance is an ongoing effort within the program, this will not be a focus of this paper. Rather, key feasibility and performance aspects of the fuel will be presented including the ability to fabricate a LWR-specific TRISO, the need for and route to a high thermal conductivity and fully dense matrix that contains neutron poisons, and the performance of that matrix under irradiation and the interaction of the fuel with commercial zircaloy clad.

  10. Risk Assessment of Oil Pipeline Accidents in Special Climatic Conditions

    NASA Astrophysics Data System (ADS)

    Vtorushina, A. N.; Anishchenko, Y. V.; Nikonova, E. D.

    2017-05-01

    The present study identifies the main accidents’ factors and causes for oil pipeline located in Siberia and operated in special climatic conditions. Various types of pipeline accident scenarios were modeled. It is showed that the most dangerous scenarios are oil spills fire and oil vapor explosion due to the loss of piping integrity (rupture) of the pipeline’s section, laying on marshlands and oil spill on the water surface due to the loss of piping integrity (puncture). The most probable scenario is oil spills fire due to the loss of piping integrity (puncture) of the pipeline’s section, laying on dry lands and marshlands. To estimate the scenarios «event tree analysis» is used. Also such risk indexes as individual, societal, public and potential risks were determined.

  11. Electrical equipment performance under severe accident conditions (BWR/Mark 1 plant analysis): Summary report

    SciTech Connect

    Bennett, P.R.; Kolaczkowski, A.M.; Medford, G.T.

    1986-09-01

    The purpose of the Performance Evaluation of Electrical Equipment during Severe Accident States Program is to determine the performance of electrical equipment, important to safety, under severe accident conditions. In FY85, a method was devised to identify important electrical equipment and the severe accident environments in which the equipment was likely to fail. This method was used to evaluate the equipment and severe accident environments for Browns Ferry Unit 1, a BWR/Mark I. Following this work, a test plan was written in FY86 to experimentally determine the performance of one selected component to two severe accident environments.

  12. Behavior of Zr1%Nb Fuel Cladding under Accident Conditions

    SciTech Connect

    Perez-Fero, E.; Hozer, Z.; Windberg, P.; Nagy, I.; Vimi, A.; Ver, N.; Matus, L.; Kunstar, M.; Novotny, T.; Horvath, M.; Gyori, Cs.

    2007-07-01

    The behavior of the VVER fuel (E110) cladding under accident conditions has been investigated at the AEKI in order to study the role of oxidation and hydrogen uptake on the cladding embrittlement and to understand the phenomena that took place during the Paks-2 cleaning tank incident (2003). The test programme covered small scale tests and large scale tests with electrically heated 7-rod bundles in the CODEX (Core Degradation Experiment) facility. Since a hydrogen rich atmosphere could have been formed in the closed tank, the experiments were carried out in hydrogen-steam mixture. According to the results of the small scale tests, a former correlation for the ductile-brittle transitions of E110 in pure steam remained valid in hydrogen rich steam atmosphere as well. During the large scale tests the main conditions of the incident were reconstructed. The test characterized the high temperature oxidation and embrittlement of zirconium in hydrogen rich steam. The observed cladding failure phenomena and the extent of the damage of the test bundle in the quenching phase were very similar to those of the VVER assemblies in the incident. The simulation of the cleaning tank incident provided detailed information on the most probable scenario of the incident. (authors)

  13. Shipping container response to severe highway and railway accident conditions: Main report

    SciTech Connect

    Fischer, L.E.; Chou, C.K.; Gerhard, M.A.; Kimura, C.Y.; Martin, R.W.; Mensing, R.W.; Mount, M.E.; Witte, M.C.

    1987-02-01

    This report describes a study performed by the Lawrence Livermore National Laboratory to evaluate the level of safety provided under severe accident conditions during the shipment of spent fuel from nuclear power reactors. The evaluation is performed using data from real accident histories and using representative truck and rail cask models that likely meet 10 CFR 71 regulations. The responses of the representative casks are calculated for structural and thermal loads generated by severe highway and railway accident conditions. The cask responses are compared with those responses calculated for the 10 CFR 71 hypothetical accident conditions. By comparing the responses it is determined that most highway and railway accident conditions fall within the 10 CFR 71 hypothetical accident conditions. For those accidents that have higher responses, the probabilities anf potential radiation exposures of the accidents are compared with those identified by the assessments made in the ''Final Environmental Statement on the Transportation of Radioactive Material by Air and other Modes,'' NUREG-0170. Based on this comparison, it is concluded that the radiological risks from spent fuel under severe highway and railway accident conditions as derived in this study are less than risks previously estimated in the NUREG-0170 document.

  14. [The functional condition of patients following a cerebrovascular accident].

    PubMed

    Azevêdo da Costa, F; Araujo da Silva, D L; da Rocha, V M

    Most patients who suffer a cerebrovascular accident (CVA) belong to the adult-elderly age group. Thus, such patients are likely to display a certain degree of functional compromise as a result of the natural process of aging, regardless of whether they have suffered a CVA or not. AIM. To examine the functional condition of patients with CVA, as well as that of healthy individuals who have never suffered a stroke. An analytical cross-sectional study was conducted with a control group made up of 82 individuals -41 of whom were CVA patients (G1) and 41 were individuals with no history of CVA (G2)-. These subjects were paired according to sex, age and educational level. The sample was predominantly made up of females (60%), who were married (70%), with ischaemic CVA (70%), in the right hemisphere of the brain (56%) and with a primary education (36%). The prevalence rate of patients with severe functional impairment was 58.53%, whereas in the control group there were no subjects with this level of deficiency. A relationship was found to exist (p < 0.05) between the functional condition and the variables age and causation of CVA for G1, and also between the functional condition and the variable age for the individuals in G2, which indicates that functional compromise is greater in more elderly subjects. Findings suggest that the functional compromise of patients with CVA is higher than that of individuals with no history of CVA with the same sex, age and educational level. This clearly shows that there is an association between CVA and functional impairment in these patients.

  15. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    SciTech Connect

    Clayton, Dwight A.; Poore, III, Willis P.

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Mark I plant for those instrumentation systems considered most important for accident management purposes.

  16. The modelling of fuel volatilisation in accident conditions

    NASA Astrophysics Data System (ADS)

    Manenc, H.; Mason, P. K.; Kissane, M. P.

    2001-04-01

    For oxidising conditions, at high temperatures, the pressure of uranium vapour species at the fuel surface is predicted to be high. These vapour species can be transported away from the fuel surface, giving rise to significant amounts of volatilised fuel, as has been observed during small-scale experiments and taken into account in different models. Hence, fuel volatilisation must be taken into account in the conduct of a simulated severe accident such as the Phebus FPT-4 experiment. A large-scale in-pile test is designed to investigate the release of fission products and actinides from irradiated UO 2 fuel in a debris bed and molten pool configuration. Best estimate predictions for fuel volatilisation were performed before the test. This analysis was used to assess the maximum possible loading of filters collecting emissions and the consequences for the filter-change schedule. Following successful completion of the experiment, blind post-test analysis is being performed; boundary conditions for the calculations are based on the preliminary post-test analysis with the core degradation code ICARE2 [J.C. Crestia, G. Repetto, S. Ederli, in: Proceedings of the Fourth Technical Seminar on the PHEBUS FP Programme, Marseille, France, 20-22 March 2000]. The general modelling approach is presented here and then illustrated by the analysis of fuel volatilisation in Phebus FPT4 (for which results are not yet available). Effort was made to reduce uncertainties in the calculations by improving the understanding of controlling physical processes and by using critically assessed thermodynamic data to determine uranium vapour pressures. The analysis presented here constitutes a preliminary, blind, post-test estimate of fuel volatilised during the test.

  17. Identification of traffic accident risk-prone areas under low-light conditions

    NASA Astrophysics Data System (ADS)

    Ivan, K.; Haidu, I.; Benedek, J.; Ciobanu, S. M.

    2015-09-01

    Besides other non-behavioural factors, low-light conditions significantly influence the frequency of traffic accidents in an urban environment. This paper intends to identify the impact of low-light conditions on traffic accidents in the city of Cluj-Napoca, Romania. The dependence degree between light and the number of traffic accidents was analysed using the Pearson correlation, and the relation between the spatial distribution of traffic accidents and the light conditions was determined by the frequency ratio model. The vulnerable areas within the city were identified based on the calculation of the injury rate for the 0.5 km2 areas uniformly distributed within the study area. The results show a strong linear correlation between the low-light conditions and the number of traffic accidents in terms of three seasonal variations and a high probability of traffic accident occurrence under the above-mentioned conditions at the city entrances/exits, which represent vulnerable areas within the study area. Knowing the linear dependence and the spatial relation between the low light and the number of traffic accidents, as well as the consequences induced by their occurrence, enabled us to identify the areas of high traffic accident risk in Cluj-Napoca.

  18. Identification of traffic accident risk-prone areas under low lighting conditions

    NASA Astrophysics Data System (ADS)

    Ivan, K.; Haidu, I.; Benedek, J.; Ciobanu, S. M.

    2015-02-01

    Besides other non-behavioural factors, the low lighting conditions significantly influence the frequency of the traffic accidents in the urban environment. This paper intends to identify the impact of low lighting conditions on the traffic accidents in the city of Cluj-Napoca. The dependence degree between lighting and the number of traffic accidents was analyzed by the Pearson's correlation and the relation between the spatial distribution of traffic accidents and the lighting conditions was determined by the frequency ratio model. The vulnerable areas within the city were identified based on the calculation of the injured persons rate for the 0.5 km2 equally-sized areas uniformly distributed within the study area. The results have shown a strong linear dependence between the low lighting conditions and the number of traffic accidents in terms of three seasonal variations and a high probability of traffic accidents occurrence under the above-mentioned conditions, at the city entrances-exits, which represent also vulnerable areas within the study area. Knowing the linear dependence and the spatial relation between the low lighting and the number of traffic accidents, as well as the consequences induced by their occurrence enabled us to identify the high traffic accident risk areas in the city of Cluj-Napoca.

  19. Overview of the U.S. DOE Accident Tolerant Fuel Development Program

    SciTech Connect

    Jon Carmack; Frank Goldner; Shannon M. Bragg-Sitton; Lance L. Snead

    2013-09-01

    The United States Fuel Cycle Research and Development Advanced Fuels Campaign has been given the responsibility to conduct research and development on enhanced accident tolerant fuels with the goal of performing a lead test assembly or lead test rod irradiation in a commercial reactor by 2022. The Advanced Fuels Campaign has defined fuels with enhanced accident tolerance as those that, in comparison with the standard UO2-Zircaloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations and operational transients, as well as design-basis and beyond design-basis events. This paper provides an overview of the FCRD Accident Tolerant Fuel program. The ATF attributes will be presented and discussed. Attributes identified as potentially important to enhance accident tolerance include reduced hydrogen generation (resulting from cladding oxidation), enhanced fission product retention under severe accident conditions, reduced cladding reaction with high-temperature steam, and improved fuel-cladding interaction for enhanced performance under extreme conditions. To demonstrate the enhanced accident tolerance of candidate fuel designs, metrics must be developed and evaluated using a combination of design features for a given LWR design, potential improvements to that design, and the design of an advanced fuel/cladding system. The aforementioned attributes provide qualitative guidance for parameters that will be considered for fuels with enhanced accident tolerance. It may be unnecessary to improve in all attributes and it is likely that some attributes or combination of attributes provide meaningful gains in accident tolerance, while others may provide only marginal benefits. Thus, an initial step in program implementation will be the development of quantitative

  20. MCNP LWR Core Generator

    SciTech Connect

    Fischer, Noah A.

    2012-08-14

    The reactor core input generator allows for MCNP input files to be tailored to design specifications and generated in seconds. Full reactor models can now easily be created by specifying a small set of parameters and generating an MCNP input for a full reactor core. Axial zoning of the core will allow for density variation in the fuel and moderator, with pin-by-pin fidelity, so that BWR cores can more accurately be modeled. LWR core work in progress: (1) Reflectivity option for specifying 1/4, 1/2, or full core simulation; (2) Axial zoning for moderator densities that vary with height; (3) Generating multiple types of assemblies for different fuel enrichments; and (4) Parameters for specifying BWR box walls. Fuel pin work in progress: (1) Radial and azimuthal zoning for generating further unique materials in fuel rods; (2) Options for specifying different types of fuel for MOX or multiple burn assemblies; (3) Additional options for replacing fuel rods with burnable poison rods; and (4) Control rod/blade modeling.

  1. Chemistry of fission product iodine under nuclear reactor accident conditions

    SciTech Connect

    Malinauskas, A.P.; Bell, J.T.

    1986-01-01

    The radioisotopes of iodine are generally acknowledged to be the species whose release into the biosphere as a result of a nuclear reactor accident is of the greatest concern. In the course of its release, the fission product is subjected to differing chemical environments; these can alter the physicochemical form of the fission product and thus modify the manner and extent to which release occurs. Both the chemical environments which are characteristic of reactor accidents and their effect in determining physical and chemical form of fission product iodine have been studied extensively, and are reviewed in this report. 76 refs.

  2. Accident Conditions versus Regulatory Test for NRC-Approved UF6 Packages

    SciTech Connect

    MILLS, G. SCOTT; AMMERMAN, DOUGLAS J.; LOPEZ, CARLOS

    2003-01-01

    The Nuclear Regulatory Commission (NRC) approves new package designs for shipping fissile quantities of UF{sub 6}. Currently there are three packages approved by the NRC for domestic shipments of fissile quantities of UF{sub 6}: NCI-21PF-1; UX-30; and ESP30X. For approval by the NRC, packages must be subjected to a sequence of physical tests to simulate transportation accident conditions as described in 10 CFR Part 71. The primary objective of this project was to relate the conditions experienced by these packages in the tests described in 10 CFR Part 71 to conditions potentially encountered in actual accidents and to estimate the probabilities of such accidents. Comparison of the effects of actual accident conditions to 10 CFR Part 71 tests was achieved by means of computer modeling of structural effects on the packages due to impacts with actual surfaces, and thermal effects resulting from test and other fire scenarios. In addition, the likelihood of encountering bodies of water or sufficient rainfall to cause complete or partial immersion during transport over representative truck routes was assessed. Modeled effects, and their associated probabilities, were combined with existing event-tree data, plus accident rates and other characteristics gathered from representative routes, to derive generalized probabilities of encountering accident conditions comparable to the 10 CFR Part 71 conditions. This analysis suggests that the regulatory conditions are unlikely to be exceeded in real accidents, i.e. the likelihood of UF{sub 6} being dispersed as a result of accident impact or fire is small. Moreover, given that an accident has occurred, exposure to water by fire-fighting, heavy rain or submersion in a body of water is even less probable by factors ranging from 0.5 to 8E-6.

  3. Potential behavior of depleted uranium penetrators under shipping and bulk storage accident conditions

    SciTech Connect

    Mishima, J.; Parkhurst, M.A.; Scherpelz, R.I.

    1985-03-01

    An investigation of the potential hazard from airborne releases of depleted uranium (DU) from the Army's M829 munitions was conducted at the Pacific Northwest Laboratory. The study included: (1) assessing the characteristics of DU oxide from an April 1983 burn test, (2) postulating conditions of specific accident situations, and (3) reviewing laboratory and theoretical studies of oxidation and airborne transport of DU from accidents. Results of the experimental measurements of the DU oxides were combined with atmospheric transport models and lung and kidney exposure data to help establish reasonable exclusion boundaries to protect personnel and the public at an accident site. 121 references, 44 figures, 30 tables.

  4. TREAT Neutronics Analysis of Water-Loop Concept Accommodating LWR 9-rod Bundle

    SciTech Connect

    Hill, Connie M.; Woolstenhulme, Nicolas E.; Parry, James R.; Bess, John D.; Housley, Gregory K.

    2016-09-01

    Abstract. Simulation of a variety of transient conditions has been successfully achieved in the Transient Reactor Test (TREAT) facility during operation between 1959 and 1994 to support characterization and safety analysis of nuclear fuels and materials. A majority of previously conducted tests were focused on supporting sodium-cooled fast reactor (SFR) designs. Experiments evolved in complexity. Simulation of thermal-hydraulic conditions expected to be encountered by fuels and materials in a reactor environment was realized in the development of TREAT sodium loop experiment vehicles. These loops accommodated up to 7-pin fuel bundles and served to simulate more closely the reactor environment while safely delivering large quantities of energy into the test specimen. Some of the immediate TREAT restart operations will be focused on testing light water reactor (LWR) accident tolerant fuels (ATF). Similar to the sodium loop objectives, a water loop concept, developed and analyzed in the 1990’s, aimed at achieving thermal-hydraulic conditions encountered in commercial power reactors. The historic water loop concept has been analyzed in the context of a reactivity insertion accident (RIA) simulation for high burnup LWR 2-pin and 3-pin fuel bundles. Findings showed sufficient energy could be deposited into the specimens for evaluation. Similar results of experimental feasibility for the water loop concept (past and present) have recently been obtained using MCNP6.1 with ENDF/B-VII.1 nuclear data libraries. The old water loop concept required only two central TREAT core grid spaces. Preparation for future experiments has resulted in a modified water loop conceptual design designated the TREAT water environment recirculating loop (TWERL). The current TWERL design requires nine TREAT core grid spaces in order to place the water recirculating pump under the TREAT core. Due to the effectiveness of water moderation, neutronics analysis shows that removal of seven additional

  5. Correlations for fission product release from N Reactor fuel under high-temperature accident conditions

    SciTech Connect

    Birney, K.R.; Bechtold, D.B.; McCall, T.B.

    1988-03-01

    Empirical correlations were derived for fission product release from metallic uranium alloy 601 N Reactor fuel during postulated accident conditions in which the fuel nears, reaches, or exceeds the melting temperature. The correlations were based on a sparse data base from fuel melted in an inert or steam atmosphere. The empirical correlations are presented for use in subsequent deterministic analyses of N Reactor behavior during hypothetical severe accidents beyond the design basis. 20 refs., 4 figs., 4 tabs.

  6. Relationship between work-related accidents and hot weather conditions in Tuscany (central Italy).

    PubMed

    Morabito, Marco; Cecchi, Lorenzo; Crisci, Alfonso; Modesti, Pietro Amedeo; Orlandini, Simone

    2006-07-01

    Nowadays, no studies have been published on the relationship between meteorological conditions and work-related mortality and morbidity in Italy. The aim of this study was to evaluate the relationship between hot weather conditions and hospital admissions due to work-related accidents in Tuscany (central Italy) over the period 1998-2003. Apparent temperature (AT) values were calculated to evaluate human weather discomfort due to hot conditions and then tested for work accident differences using non-parametric procedures. Present findings showed that hot weather conditions might represent a risk factor for work-related accidents in Italy during summer. In particular early warming days during June, characterized by heat discomfort, are less tolerated by workers than warming days of the following summer months. The peak of work-related accidents occurred on days characterized by high, but not extreme, thermal conditions. Workers maybe change their behaviour when heat stress increases, reducing risks by adopting preventive measures. Results suggested that days with an average daytime AT value ranged between 24.8 degrees C and 27.5 degrees C were at the highest risk of work-related accidents. In conclusion, present findings might represent the first step for the development of a watch/warning system for workers that might be used by employers for planning work activities.

  7. Steady Heat Removal Test by BWR Drywell Cooler under Accident Management Conditions

    SciTech Connect

    Yokobori, Seiichi; Tobimatsu, Toshimi; Akinaga, Makoto; Fukasawa, Masanori; Nagasaka, Hideo

    2002-07-01

    This paper deals with the heat removal performance of the BWR drywell local cooler (DWC) applied as a Japanese phase-II accident management. Separated effect tests were conducted using a single DWC unit of a typical BWR plant under severe accident (SA) condition. It was demonstrated that noncondensable gas mixture with nitrogen and helium was constantly vented from the DWC casing and the favorable steam condensation rate was maintained even under the highest assumed gas condition. The DWC was found to be promising even under wide range of SA conditions. (authors)

  8. Extending dry storage of spent LWR fuel for 100 years.

    SciTech Connect

    Einziger, R. E.

    1998-12-16

    Because of delays in closing the back end of the fuel cycle in the U.S., there is a need to extend dry inert storage of spent fuel beyond its originally anticipated 20-year duration. Many of the methodologies developed to support initial licensing for 20-year storage should be able to support the longer storage periods envisioned. This paper evaluates the applicability of existing information and methodologies to support dry storage up to 100 years. The thrust of the analysis is the potential behavior of the spent fuel. In the USA, the criteria for dry storage of LWR spent fuel are delineated in 10 CFR 72 [1]. The criteria fall into four general categories: maintain subcriticality, prevent the release of radioactive material above acceptable limits, ensure that radiation rates and doses do not exceed acceptable levels, and maintain retrievability of the stored radioactive material. These criteria need to be considered for normal, off-normal, and postulated accident conditions. The initial safety analysis report submitted for licensing evaluated the fuel's ability to meet the requirements for 20 years. It is not the intent to repeat these calculations, but to look at expected behavior over the additional 80 years, during which the temperatures and radiation fields are lower. During the first 20 years, the properties of the components may change because of elevated temperatures, presence of moisture, effects of radiation, etc. During normal storage in an inert atmosphere, there is potential for the cladding mechanical properties to change due to annealing or interaction with cask materials. The emissivity of the cladding could also change due to storage conditions. If there is air leakage into the cask, additional degradation could occur through oxidation in breached rods, which could lead to additional fission gas release and enlargement of cladding breaches. Air in-leakage could also affect cover gas conductivity, cladding oxidation, emissivity changes, and

  9. TECHNICAL BASIS FOR THE NUCLEAR CRITICALITY REPRESENTATIVE ACCIDENT & ASSOCIATED REPRESENTED HAZARDOUS CONDITIONS

    SciTech Connect

    GOETZ, T.G.

    2003-06-17

    This document was developed to support the documented safety analysis (DSA) and describes the process and basis for assigning risk bins for the nuclear criticality representative accident and associated hazardous conditions. Revision 1 incorporates ORP IRT comments to enhance the technical presentation and also makes editorial changes. This technical basis document was developed to support the documented safety analysis (DSA), and describes the risk binning process and the technical basis for assigning risk bins for the nuclear criticality representative accident and associated hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the frequency and consequence.

  10. Preliminary Investigation of Candidate Materials for Use in Accident Resistant Fuel

    SciTech Connect

    Jason M. Harp; Paul A. Lessing; Blair H. Park; Jakeob Maupin

    2013-09-01

    As part of a Collaborative Research and Development Agreement (CRADA) with industry, Idaho National Laboratory (INL) is investigating several options for accident resistant uranium compounds including silicides, and nitrides for use in future light water reactor (LWR) fuels. This work is part of a larger effort to create accident tolerant fuel forms where changes to the fuel pellets, cladding, and cladding treatment are considered. The goal fuel form should have a resistance to water corrosion comparable to UO2, have an equal to or larger thermal conductivity than uranium dioxide, a melting temperature that allows the material to stay solid under power reactor conditions, and a uranium loading that maintains or improves current LWR power densities. During the course of this research, fuel fabricated at INL will be characterized, irradiated at the INL Advanced Test Reactor, and examined after irradiation at INL facilities to help inform industrial partners on candidate technologies.

  11. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  12. Arrival condition of spent fuel after storage, handling, and transportation

    SciTech Connect

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

  13. Historical civilian nuclear accident based Nuclear Reactor Condition Analyzer

    NASA Astrophysics Data System (ADS)

    McCoy, Kaylyn Marie

    There are significant challenges to successfully monitoring multiple processes within a nuclear reactor facility. The evidence for this observation can be seen in the historical civilian nuclear incidents that have occurred with similar initiating conditions and sequences of events. Because there is a current lack within the nuclear industry, with regards to the monitoring of internal sensors across multiple processes for patterns of failure, this study has developed a program that is directed at accomplishing that charge through an innovation that monitors these systems simultaneously. The inclusion of digital sensor technology within the nuclear industry has appreciably increased computer systems' capabilities to manipulate sensor signals, thus making the satisfaction of these monitoring challenges possible. One such manipulation to signal data has been explored in this study. The Nuclear Reactor Condition Analyzer (NRCA) program that has been developed for this research, with the assistance of the Nuclear Regulatory Commission's Graduate Fellowship, utilizes one-norm distance and kernel weighting equations to normalize all nuclear reactor parameters under the program's analysis. This normalization allows the program to set more consistent parameter value thresholds for a more simplified approach to analyzing the condition of the nuclear reactor under its scrutiny. The product of this research provides a means for the nuclear industry to implement a safety and monitoring program that can oversee the system parameters of a nuclear power reactor facility, like that of a nuclear power plant.

  14. Study of light water reactor containments under important severe accident conditions

    SciTech Connect

    Hofmayer, C.H.; Pratt, W.T.; Bagchi, G.; Noonan, V.S.

    1985-01-01

    The US Nuclear Regulatory Commission has sponsored studies to develop a ''LEAKAGE-BEFORE-FAILURE'' model for use in severe accident risk assessments to provide a means of accounting for significant containment leakage prior to reaching the containment threshold pressure. Six containment types have been studied (large dry, subatmospheric, ice condenser, Mark I, II, and III). Potential leak paths through major containment penetration assemblies were investigated and upper-bound estimates of leak areas established. These leak areas may result from increasing internal pressure and degradation of nonmetallic seal materials due to severe accident conditions. This paper describes the approach and summarizes the results and conclusions of this study.

  15. Irradiation Planning for Fully-Ceramic Micro-encsapsulated fuel in ATR at LWR-relevant conditions: year-end report on FY-2011

    SciTech Connect

    Abderrafi M. Ougouag; R. Sonat Sen; Michael A. Pope; Brian Boer

    2011-09-01

    This report presents the estimation of required ATR irradiation levels for the DB-FCM fuel design (fueled with Pu and MAs). The fuel and assembly designs are those considered in a companion report [R. S. Sen et al., FCR&D-2011- 00037 or INL/EXT-11-23269]. These results, pertaining to the DB-FCM fuel, are definitive in as much as the design of said fuel is definitive. In addition to the work performed, as required, for DB-FCM fuel, work has started in a preliminary fashion on single-cell UO2 and UN fuels. These latter activities go beyond the original charter of this project and although the corresponding work is incomplete, significant progress has been achieved. However, in this context, all that has been achieved is only preliminary because the corresponding fuel designs are neither finalized nor optimized. In particular, the UO2 case is unlikely to result in a viable fuel design if limited to enrichment at or under 20 weight % in U-235. The UN fuel allows reasonable length cycles and is likely to make an optimal design possible. Despite being limited to preliminary designs and offering only preliminary conclusions, the irradiation planning tasks for UO2 and UN fuels that are summarized in this report are useful to the overall goal of devising and deploying FCM-LWR fuel since the methods acquired and tested in this project and the overall procedure for planning will be available for planning tests for the finalized fuel design. Indeed, once the fuel design is finalized and the expected burnup level is determined, the methodology that has been assembled will allow the prompt finalization of the neutronic planning of the irradiation experiment and would provide guidance on the expected experimental performance of the fuel. Deviations from the expected behavior will then have to be analyzed and the outcome of the analysis may be corrections or modifications for the assessment models as well as, possibly, fuel design modifications, and perhaps even variation of

  16. The Mechanical Response of Advanced Claddings during Proposed Reactivity Initiated Accident Conditions

    SciTech Connect

    Cinbiz, Mahmut N; Brown, Nicholas R; Terrani, Kurt A; Lowden, Rick R; ERDMAN III, DONALD L

    2017-01-01

    This study investigates the failure mechanisms of advanced nuclear fuel cladding of FeCrAl at high-strain rates, similar to design basis reactivity initiated accidents (RIA). During RIA, the nuclear fuel cladding was subjected to the plane-strain to equibiaxial tension strain states. To achieve those accident conditions, the samples were deformed by the expansion of high strength Inconel alloy tube under pre-specified pressure pulses as occurring RIA. The mechanical response of the advanced claddings was compared to that of hydrided zirconium-based nuclear fuel cladding alloy. The hoop strain evolution during pressure pulses were collected in situ; the permanent diametral strains of both accident tolerant fuel (ATF) claddings and the current nuclear fuel alloys were determined after rupture.

  17. Release of fission gas during transient heating of LWR fuel

    SciTech Connect

    Gehl, S.M.

    1982-05-01

    The direct electrical heating technique was used to study fission-gas release and mechanical behavior of irradiated light-water reactor (LWR) fuels during thermal transients. An empirical correlation between fission-gas release and transient temperature history was developed for power-cooling mismatch (PCM) and anticipated transients. Gas release during the refill portion of a design-basis loss of cooling accident was estimated to be less than 1%. Fission-gas release during PCM accidents was found to be controlled by intergranular microcracking and the interlinkage of tunnels on grain edges. For high-gas-release transients, the fractional gas release was shown to be equal to the fractional coverage of grain boundaries by microcracks. Temperature calculations indicated that microcracking causes a significant decrease in the fuel thermal conductivity.

  18. Analysis of concrete containment structures under severe accident loading conditions

    SciTech Connect

    Porter, V.L.

    1993-12-31

    One of the areas of current interest in the nuclear power industry is the response of containment buildings to internal pressures that may exceed design pressure levels. Evaluating the response of structures under these conditions requires computing beyond design load to the ultimate load of the containment. For concrete containments, this requirement means computing through severe concrete cracking and into the regime of wide-spread plastic rebar and/or tendon response. In this regime of material response, an implicit code can have trouble converging. This paper describes some of the author`s experiences with Version 5.2 of ABAQUS Standard and the ABAQUS concrete model in computing the axisymmetric response of a prestressed concrete containment to ultimate global structural failure under high internal pressures. The effects of varying the tension stiffening parameter in the concrete material model and variations of the parameters for the CONTROLS option are discussed.

  19. PRESSURE INTEGRITY OF 3013 CONTAINER UNDER POSTULATED ACCIDENT CONDITIONS

    SciTech Connect

    Rawls, G.

    2010-02-01

    A series of tests was carried out to determine the threshold for deflagration-to-detonation transition (DDT), structural loading, and structural response of the Department of Energy 3013 storage systems for the case of an accidental explosion of evolved gas within the storage containers. Three experimental fixtures were used to examine the various issues and three mixtures consisting of either stoichiometric hydrogen-oxygen, stoichiometric hydrogen-oxygen with added nitrogen, or stoichiometric hydrogen-oxygen with an added nitrogen-helium mixture were tested. Tests were carried out as a function of initial pressure from 1 to 3.5 bar and initial temperature from room temperature to 150 C. The elevated temperature tests resulted in a slight increase in the threshold pressure for DDT. The elevated temperature tests were performed to ensure the test results were bounding. Because the change was not significant the elevated temperature data are not presented in the paper. The explosions were initiated with either a small spark or a hot surface. Based on the results of these tests under the conditions investigated, it can be concluded that DDT of a stoichiometric hydrogen-oxygen mixture (and mixtures diluted with nitrogen and helium) within the 3013 containment system does not pose a threat to the structural integrity of the outer container.

  20. Assessment of potential doses to workers during postulated accident conditions at the Waste Isolation Pilot Plant

    SciTech Connect

    Hoover, M.D.; Farrell, R.F.; Newton, G.J.

    1995-12-01

    The recent 1995 WIPP Safety Analysis Report (SAR) Update provided detailed analyses of potential radiation doses to members of the public at the site boundary during postulated accident scenarios at the U.S. Department of Energy`s Waste Isolation Pilot Plant (WIPP). The SAR Update addressed the complete spectrum of potential accidents associated with handling and emplacing transuranic waste at WIPP, including damage to waste drums from fires, punctures, drops, and other disruptions. The report focused on the adequacy of the multiple layers of safety practice ({open_quotes}defense-in-depth{close_quotes}) at WIPP, which are designed to (1) reduce the likelihood of accidents and (2) limit the consequences of those accidents. The safeguards which contribute to defense-in-depth at WIPP include a substantial array of inherent design features, engineered controls, and administrative procedures. The SAR Update confirmed that the defense-in-depth at WIPP is adequate to assure the protection of the public and environment. As a supplement to the 1995 SAR Update, we have conducted additional analyses to confirm that these controls will also provide adequate protection to workers at the WIPP. The approaches and results of the worker dose assessment are summarized here. In conformance with the guidance of DOE Standard 3009-94, we emphasize that use of these evaluation guidelines is not intended to imply that these numbers constitute acceptable limits for worker exposures under accident conditions. However, in conjunction with the extensive safety assessment in the 1995 SAR Update, these results indicate that the Carlsbad Area Office strategy for the assessment of hazards and accidents assures the protection of workers, members of the public, and the environment.

  1. Estimation of maximum temperature in a package subjected to hypothetical-accident thermal-test conditions

    SciTech Connect

    Shah, V.L.

    1996-05-01

    A simple reading-the-graph procedure has been developed to provide a quick estimate of maximum temperature in a package during hypothetical-accident thermal-test conditions. The procedure, based on applying the analytical solutions of a transient thermal-diffusion equation for temperatures in a semi-infinite solid and in an infinitely long circular cylinder subjected to step surface temperature boundary conditions, is applicable to all packages, with or without an internal heat source, that are protected by rectangular or cylindrical thermal insulating overpacks. Simple to follow, the procedure provides a conservative estimate of package maximum temperatures during hypothetical-accident thermal-test conditions. To demonstrate its applicability, the procedure is applied to the Mound 9859 tritium trap package and two values of the thermal diffusivity of the insulation in the overpack.

  2. Microstructure and hydrothermal corrosion behavior of NITE-SiC with various sintering additives in LWR coolant environments

    DOE PAGES

    Parish, Chad M.; Terrani, Kurt A.; Kim, Young -Jin; ...

    2016-11-28

    Nano-infiltration and transient eutectic phase (NITE) sintering was developed for fabrication of nuclear grade SiC composites. We produced monolithic SiC ceramics using NITE sintering, as candidates for accident-tolerant fuels in light-water reactors (LWRs). In this work, we exposed three different NITE chemistries (yttria-alumina [YA], ceria-zirconia-alumina [CZA], and yttria-zirconia-alumina [YZA]) to autoclave conditions simulating LWR coolant loops. The YZA was most corrosion resistant, followed by CZA, with YA being worst. High-resolution elemental analysis using scanning transmission electron microscopy (STEM) X-ray mapping combined with multivariate statistical analysis (MVSA) datamining helped explain the differences in corrosion. YA-NITE lost all Al from the corrodedmore » region and the ytttria reformed into blocky precipitates. The CZA material lost all Al from the corroded area, and the YZA – which suffered the least corrosion –retained some Al in the corroded region. Lastly, the results indicate that the YZA-NITE SiC is most resistant to hydrothermal corrosion in the LWR environment.« less

  3. Microstructure and hydrothermal corrosion behavior of NITE-SiC with various sintering additives in LWR coolant environments

    SciTech Connect

    Parish, Chad M.; Terrani, Kurt A.; Kim, Young -Jin; Koyanagi, Takaaki; Katoh, Yutai

    2016-11-28

    Nano-infiltration and transient eutectic phase (NITE) sintering was developed for fabrication of nuclear grade SiC composites. We produced monolithic SiC ceramics using NITE sintering, as candidates for accident-tolerant fuels in light-water reactors (LWRs). In this work, we exposed three different NITE chemistries (yttria-alumina [YA], ceria-zirconia-alumina [CZA], and yttria-zirconia-alumina [YZA]) to autoclave conditions simulating LWR coolant loops. The YZA was most corrosion resistant, followed by CZA, with YA being worst. High-resolution elemental analysis using scanning transmission electron microscopy (STEM) X-ray mapping combined with multivariate statistical analysis (MVSA) datamining helped explain the differences in corrosion. YA-NITE lost all Al from the corroded region and the ytttria reformed into blocky precipitates. The CZA material lost all Al from the corroded area, and the YZA – which suffered the least corrosion –retained some Al in the corroded region. Lastly, the results indicate that the YZA-NITE SiC is most resistant to hydrothermal corrosion in the LWR environment.

  4. HIGH TEMPERATURE THERMAL AND STRUCTURAL MATERIAL PROPERTIES FOR METALS USED IN LWR VESSELS

    SciTech Connect

    J.L. Rempe; D.L. Knudson; J. E. Daw; J. C. Crepeau

    2008-06-01

    Because of the impact that melt relocation and vessel failure may have on subsequent progression and associated consequences of a Light Water Reactor (LWR) accident, it is important to accurately predict heating and relocation of materials within the reactor vessel, heat transfer to and from the reactor vessel, and the potential for failure of the vessel and structures within it. Accurate predictions of such phenomena require high temperature thermal and structural properties. However, a review of vessel and structural steel material properties used in severe accident analysis codes reveals that the required high temperature material properties are extrapolated with little, if any, data above 1000 K. To reduce uncertainties in predictions relying upon extrapolated high temperature data, Idaho National Laboratory (INL) obtained high data for two metals used in LWR vessels: SA 533 Grade B, Class 1 (SA533B1) low alloy steel, which is used to fabricate most US LWR reactor vessels; and Type 304 Stainless Steel SS304, which is used in LWR vessel piping, penetration tubes, and internal structures. This paper summarizes the new data, and compares it to existing data.

  5. Potential for containment leak paths through electrical penetration assemblies under severe accident conditions. [PWR; BWR

    SciTech Connect

    Sebrell, W.

    1983-07-01

    The leakage behavior of containments beyond design conditions and knowledge of failure modes is required for evaluation of mitigation strategies for severe accidents, risk studies, emergency preparedness planning, and siting. These studies are directed towards assessing the risk and consequences of severe accidents. An accident sequence analysis conducted on a Boiling Water Reactor (BWR), Mark I (MK I), indicated very high temperatures in the dry-well region, which is the location of the majority of electrical penetration assemblies. Because of the high temperatures, it was postulated in the ORNL study that the sealants would fail and all the electrical penetration assemblies would leak before structural failure would occur. Since other containments had similar electrical penetration assemblies, it was concluded that all containments would experience the same type of failure. The results of this study, however, show that this conclusion does not hold for PWRs because in the worst accident sequence, the long time containment gases stabilize to 350/sup 0/F. BWRs, on the other hand, do experience high dry-well temperatures and have a higher potential for leakage.

  6. Causal Factors and Adverse Conditions of Aviation Accidents and Incidents Related to Integrated Resilient Aircraft Control

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Sandifer, Carl E.; Jones, Sharon Monica

    2010-01-01

    The causal factors of accidents from the National Transportation Safety Board (NTSB) database and incidents from the Federal Aviation Administration (FAA) database associated with loss of control (LOC) were examined for four types of operations (i.e., Federal Aviation Regulation Part 121, Part 135 Scheduled, Part 135 Nonscheduled, and Part 91) for the years 1988 to 2004. In-flight LOC is a serious aviation problem. Well over half of the LOC accidents included at least one fatality (80 percent in Part 121), and roughly half of all aviation fatalities in the studied time period occurred in conjunction with LOC. An adverse events table was updated to provide focus to the technology validation strategy of the Integrated Resilient Aircraft Control (IRAC) Project. The table contains three types of adverse conditions: failure, damage, and upset. Thirteen different adverse condition subtypes were gleaned from the Aviation Safety Reporting System (ASRS), the FAA Accident and Incident database, and the NTSB database. The severity and frequency of the damage conditions, initial test conditions, and milestones references are also provided.

  7. Estimate of radionuclide release characteristics into containment under severe accident conditions. Final report

    SciTech Connect

    Nourbakhsh, H.P.

    1993-11-01

    A detailed review of the available light water reactor source term information is presented as a technical basis for development of updated source terms into the containment under severe accident conditions. Simplified estimates of radionuclide release and transport characteristics are specified for each unique combination of the reactor coolant and containment system combinations. A quantitative uncertainty analysis in the release to the containment using NUREG-1150 methodology is also presented.

  8. Shipping container response to severe highway and railway accident conditions: Appendices

    SciTech Connect

    Fischer, L.E.; Chou, C.K.; Gerhard, M.A.; Kimura, C.Y.; Martin, R.W.; Mensing, R.W.; Mount, M.E.; Witte, M.C.

    1987-02-01

    Volume 2 contains the following appendices: Severe accident data; truck accident data; railroad accident data; highway survey data and bridge column properties; structural analysis; thermal analysis; probability estimation techniques; and benchmarking for computer codes used in impact analysis. (LN)

  9. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    SciTech Connect

    Paul A. Demkowicz; David V. Laug; Dawn M. Scates; Edward L. Reber; Lyle G. Roybal; John B. Walter; Jason M. Harp; Robert N. Morris

    2012-10-01

    The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 degrees C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated fission gas monitoring system, as well as preliminary system calibration results.

  10. Dose evaluation in criticality accident conditions using transient critical facilities fueled with a fissile solution.

    PubMed

    Nakamura, T; Tonoike, K; Miyoshi, Y

    2004-01-01

    Neutron dose measurement and evaluation techniques in criticality accident conditions using a thermo luminescence dosemeter (TLD) was studied at the Transient Experiment Critical Facility (TRACY) of Japan Atomic Energy Research Institute (JAERI). In the present approach, the absorbed dose is derived from the ambient dose equivalent measured with a TLD, using the appropriate conversion factor given by computation. Using this technique, the neutron dose around the SILENE reactor of the Institute for Radioprotection and Nuclear Safety (IRSN) of France was measured in the Accident Dosimetry Intercomparison Exercise (June 10-21, 2002) organized by OECD/NEA and IRSN. In this exercise, the gamma dose was also measured with a TLD. In this report, measurements and evaluation results at TRACY and SILENE are presented.

  11. Analysis 320 coal mine accidents using structural equation modeling with unsafe conditions of the rules and regulations as exogenous variables.

    PubMed

    Zhang, Yingyu; Shao, Wei; Zhang, Mengjia; Li, Hejun; Yin, Shijiu; Xu, Yingjun

    2016-07-01

    Mining has been historically considered as a naturally high-risk industry worldwide. Deaths caused by coal mine accidents are more than the sum of all other accidents in China. Statistics of 320 coal mine accidents in Shandong province show that all accidents contain indicators of "unsafe conditions of the rules and regulations" with a frequency of 1590, accounting for 74.3% of the total frequency of 2140. "Unsafe behaviors of the operator" is another important contributory factor, which mainly includes "operator error" and "venturing into dangerous places." A systems analysis approach was applied by using structural equation modeling (SEM) to examine the interactions between the contributory factors of coal mine accidents. The analysis of results leads to three conclusions. (i) "Unsafe conditions of the rules and regulations," affect the "unsafe behaviors of the operator," "unsafe conditions of the equipment," and "unsafe conditions of the environment." (ii) The three influencing factors of coal mine accidents (with the frequency of effect relation in descending order) are "lack of safety education and training," "rules and regulations of safety production responsibility," and "rules and regulations of supervision and inspection." (iii) The three influenced factors (with the frequency in descending order) of coal mine accidents are "venturing into dangerous places," "poor workplace environment," and "operator error."

  12. Effect of welding conditions on transformation and properties of heat-affected zones in LWR (light-water reactor) vessel steels

    SciTech Connect

    Lundin, C.D.; Mohammed, S. . Welding Research and Engineering)

    1990-11-01

    The continuous cooling transformation behavior (CCT) and isothermal transformation (IT) behavior were determined for SA-508 and SA-533 materials for conditions pertaining to standard heat treatment and for the coarse-grained region of the heat-affected zone (HAZ). The resulting diagrams help to select welding conditions that produce the most favorable microconstituent for the development of optimum postweld heat treatment (PWHT) toughness levels. In the case of SA-508 and SA-533, martensite responds more favorably to PWHT than does bainite. Bainite is to be avoided for the optimum toughness characteristics of the HAZ. The reheat cracking tendency for both steels was evaluated by metallographic studies of simulated HAZ structures subjected to PWHT cycles and simultaneous restraint. Both SA-533, Grade B, Class 1, and SA-508, Class 2, cracked intergranularly. The stress rupture parameter (the product of the stress for a rupture life of 10 min and the corresponding reduction of area) calculated for both steels showed that SA-508, Class 2, was more susceptible to reheat cracking than SA-533, Grade B, Class 1. Cold cracking tests (Battelle Test and University of Tennessee modified hydrogen susceptibility test) indicated that a higher preheat temperature is required for SA-508, Class 2, to avoid cracking than is required for SA-533, Grade B, Class 1. Further, the Hydrogen Susceptibility Test showed that SA-508, Class 2, is more susceptible to hydrogen embrittlement than is SA-533, Grade B, Class 1.

  13. Status report of advanced cladding modeling work to assess cladding performance under accident conditions

    SciTech Connect

    B.J. Merrill; Shannon M. Bragg-Sitton

    2013-09-01

    Scoping simulations performed using a severe accident code can be applied to investigate the influence of advanced materials on beyond design basis accident progression and to identify any existing code limitations. In 2012 an effort was initiated to develop a numerical capability for understanding the potential safety advantages that might be realized during severe accident conditions by replacing Zircaloy components in light water reactors (LWRs) with silicon carbide (SiC) components. To this end, a version of the MELCOR code, under development at the Sandia National Laboratories in New Mexico (SNL/NM), was modified by replacing Zircaloy for SiC in the MELCOR reactor core oxidation and material properties routines. The modified version of MELCOR was benchmarked against available experimental data to ensure that present SiC oxidation theory in air and steam were correctly implemented in the code. Additional modifications have been implemented in the code in 2013 to improve the specificity in defining components fabricated from non-standard materials. An overview of these modifications and the status of their implementation are summarized below.

  14. Role of Winter Weather Conditions and Slipperiness on Tourists’ Accidents in Finland

    PubMed Central

    Lépy, Élise; Rantala, Sinikka; Huusko, Antti; Nieminen, Pentti; Hippi, Marjo; Rautio, Arja

    2016-01-01

    (1) Background: In Finland, slippery snowy or icy ground surface conditions can be quite hazardous to human health during wintertime. We focused on the impacts of the variability in weather conditions on tourists’ health via documented accidents during the winter season in the Sotkamo area. We attempted to estimate the slipping hazard in a specific context of space and time focusing on the weather and other possible parameters, responsible for fluctuations in the numbers of injuries/accidents; (2) Methods: We used statistical distributions with graphical illustrations to examine the distribution of visits to Kainuu Hospital by non-local patients and their characteristics/causes; graphs to illustrate the distribution of the different characteristics of weather conditions; questionnaires and interviews conducted among health care and safety personnel in Sotkamo and Kuusamo; (3) Results: There was a clear seasonal distribution in the numbers and types of extremity injuries of non-local patients. While the risk of slipping is emphasized, other factors leading to injuries are evaluated; and (4) Conclusions: The study highlighted the clear role of wintery weather conditions as a cause of extremity injuries even though other aspects must also be considered. Future scenarios, challenges and adaptive strategies are also discussed from the viewpoint of climate change. PMID:27537899

  15. Role of Winter Weather Conditions and Slipperiness on Tourists' Accidents in Finland.

    PubMed

    Lépy, Élise; Rantala, Sinikka; Huusko, Antti; Nieminen, Pentti; Hippi, Marjo; Rautio, Arja

    2016-08-15

    (1) BACKGROUND: In Finland, slippery snowy or icy ground surface conditions can be quite hazardous to human health during wintertime. We focused on the impacts of the variability in weather conditions on tourists' health via documented accidents during the winter season in the Sotkamo area. We attempted to estimate the slipping hazard in a specific context of space and time focusing on the weather and other possible parameters, responsible for fluctuations in the numbers of injuries/accidents; (2) METHODS: We used statistical distributions with graphical illustrations to examine the distribution of visits to Kainuu Hospital by non-local patients and their characteristics/causes; graphs to illustrate the distribution of the different characteristics of weather conditions; questionnaires and interviews conducted among health care and safety personnel in Sotkamo and Kuusamo; (3) RESULTS: There was a clear seasonal distribution in the numbers and types of extremity injuries of non-local patients. While the risk of slipping is emphasized, other factors leading to injuries are evaluated; and (4) CONCLUSIONS: The study highlighted the clear role of wintery weather conditions as a cause of extremity injuries even though other aspects must also be considered. Future scenarios, challenges and adaptive strategies are also discussed from the viewpoint of climate change.

  16. Evaluation Metrics Applied to Accident Tolerant Fuels

    SciTech Connect

    Shannon M. Bragg-Sitton; Jon Carmack; Frank Goldner

    2014-10-01

    The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and have yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. One of the current missions of the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) is to develop nuclear fuels and claddings with enhanced accident tolerance for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+). Accident tolerance became a focus within advanced LWR research upon direction from Congress following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal of ATF development is to identify alternative fuel system technologies to further enhance the safety, competitiveness and economics of commercial nuclear power. Enhanced accident tolerant fuels would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The U.S. DOE is supporting multiple teams to investigate a number of technologies that may improve fuel system response and behavior in accident conditions, with team leadership provided by DOE national laboratories, universities, and the nuclear industry. Concepts under consideration offer both evolutionary and revolutionary changes to the current nuclear fuel system. Mature concepts will be tested in the Advanced Test Reactor at Idaho National Laboratory beginning in Summer 2014 with additional concepts being

  17. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    SciTech Connect

    Brown, G. S.; Cashwell, J. W.; Apple, M. L.

    1991-01-01

    Shipments of radioactive material (RAM) constitute but a small fraction of the total hazardous materials shipped in the United States each year. Public perception, however, of the potential consequences of a release from a transportation package containing RAM has resulted in significant regulation of transport operations, both to ensure the integrity of a package in accident conditions and to place operational constraints on the shipper. Much of this attention has focused on shipments of spent nuclear fuel and high level wastes which, although comprising a very small number of total shipments, constitute a majority of the total curies transported on an annual basis. This report discusses the shipment of these highly radioactive materials.

  18. Temporal Change of Environmental Contamination Conditions in Five Years after the Fukushima Accident

    NASA Astrophysics Data System (ADS)

    Saito, Kimiaki

    2017-09-01

    The temporal change of environmental contamination conditions after the Fukushima accident have been clarified based on large-scale environmental monitoring data repeatedly obtained in the 80 km zone. The decreasing tendency of air dose rates was confirmed to obviously depend on land uses. In human-related diverse environments the air dose rates have decreased much faster than the physical decay of radiocesium. The horizontal movement of radiocesium in undisturbed fields were found to be generally quite small, though it has gradually penetrated into the deeper parts of the ground.

  19. Hypothetical accident condition thermal analysis and testing of a Type B drum package

    SciTech Connect

    Hensel, S.J.; Alstine, M.N. Van; Gromada, R.J.

    1995-07-01

    A thermophysical property model developed to analytically determine the thermal response of cane fiberboard when exposed to temperatures and heat fluxes associated with the 10 CFR 71 hypothetical accident condition (HAC) has been benchmarked against two Type B drum package fire test results. The model 9973 package was fire tested after a 30 ft. top down drop and puncture, and an undamaged model 9975 package containing a heater (21W) was fire tested to determine content heat source effects. Analysis results using a refined version of a previously developed HAC fiberboard model compared well against the test data from both the 9973 and 9975 packages.

  20. DYNAMIC ANALYSIS OF HANFORD UNIRRADIATED FUEL PACKAGE SUBJECTED TO SEQUENTIAL LATERAL LOADS IN HYPOTHETICAL ACCIDENT CONDITIONS

    SciTech Connect

    Wu, T

    2008-04-30

    Large fuel casks present challenges when evaluating their performance in the Hypothetical Accident Conditions (HAC) specified in the Code of Federal Regulations Title 10 part 71 (10CFR71). Testing is often limited by cost, difficulty in preparing test units and the limited availability of facilities which can carry out such tests. In the past, many casks were evaluated without testing by using simplified analytical methods. This paper presents a numerical technique for evaluating the dynamic responses of large fuel casks subjected to sequential HAC loading. A nonlinear dynamic analysis was performed for a Hanford Unirradiated Fuel Package (HUFP) [1] to evaluate the cumulative damage after the hypothetical accident Conditions of a 30-foot lateral drop followed by a 40-inch lateral puncture as specified in 10CFR71. The structural integrity of the containment vessel is justified based on the analytical results in comparison with the stress criteria, specified in the ASME Code, Section III, Appendix F [2], for Level D service loads. The analyzed cumulative damages caused by the sequential loading of a 30-foot lateral drop and a 40-inch lateral puncture are compared with the package test data. The analytical results are in good agreement with the test results.

  1. Oxidation of SiC cladding under Loss of Coolant Accident (LOCA) conditions in LWRs

    SciTech Connect

    Lee, Y.; Yue, C.; Arnold, R. P.; McKrell, T. J.; Kazimi, M. S.

    2012-07-01

    An experimental assessment of Silicon Carbide (SiC) cladding oxidation rate in steam under conditions representative of Loss of Coolant Accidents (LOCA) in light water reactors (LWRs) was conducted. SiC oxidation tests were performed with monolithic alpha phase tubular samples in a vertical quartz tube at a steam temperature of 1140 deg. C and steam velocity range of 1 to 10 m/sec, at atmospheric pressure. Linear weight loss of SiC samples due to boundary layer controlled reaction of silica scale (SiO{sub 2} volatilization) was experimentally observed. The weight loss rate increased with increasing steam flow rate. Over the range of test conditions, SiC oxidation rates were shown to be about 3 orders of magnitude lower than the oxidation rates of zircaloy 4. A SiC volatilization correlation for developing laminar flow in a vertical channel is formulated. (authors)

  2. Insights on fission products behaviour in nuclear severe accident conditions by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Geiger, E.; Bès, R.; Martin, Ph; Pontillon, Y.; Ducros, G.; Solari, P. L.

    2016-04-01

    Many research programs have been carried out aiming to understand the fission products behaviour during a Nuclear Severe Accident. Most of these programs used highly radioactive irradiated nuclear fuel, which requires complex instrumentation. Moreover, the radioactive character of samples hinders an accurate chemical characterisation. In order to overcome these difficulties, SIMFUEL stand out as an alternative to perform complementary tests. A sample made of UO2 doped with 11 fission products was submitted to an annealing test up to 1973 K in reducing atmosphere. The sample was characterized before and after the annealing test using SEM-EDS and XAS at the MARS beam-line, SOLEIL Synchrotron. It was found that the overall behaviour of several fission products (such as Mo, Ba, Pd and Ru) was similar to that observed experimentally in irradiated fuels and consistent with thermodynamic estimations. The experimental approach presented in this work has allowed obtaining information on chemical phases evolution under nuclear severe accident conditions, that are yet difficult to obtain using irradiated nuclear fuel samples.

  3. Containment performance of prototypical reactor containments subjected to severe accident conditions

    SciTech Connect

    Klamerus, E.W.; Bohn, M.P.; Wesley, D.A.; Krishnaswamy, C.N.

    1996-12-01

    In SECY-90-016, the NTRC proposed a safety goal of a conditional containment failure probability (CCFP) of 0.1 and the alternative acceptance criteria allowed for steel containments, which specifies that the stresses should not exceed ASNE Level C allowables for severe accident pressures and temperatures. In this work, the need for an equivalent criterion for concrete containments was studied. Six surrogate containments were designed and analyzed in order to compare the margins between design pressure, pressure resulting in exceedance of Level C (or yield) stress limits, and ultimate pressure. For comparability, each containment has an identical internal volume and design pressure. Results from the analysis showed margins to yield are comparable and display a similar margin for both steel and concrete containments. In addition, the margin to failure, although slightly higher in the steel containments, were also comparable. Finally, a CCFP for code design was determined based on general membrane behavior and imposing an upper bound severe accident curve developed in the DCH studies. The resulting CCFP`s were less then 0.02 (or 2%) for all the surrogate containments studied, showing that these containment designs all achieved the NRC safety goal.

  4. Nuclear waste shipping container response to severe accident conditions, A brief critique of the modal study

    SciTech Connect

    Audin, L.

    1990-12-01

    The Modal Study (NUREG/CR-4829) attempts to upgrade the analysis of spent nuclear fuel transportation accidents, and to verify the validity of the present regulatory scheme of cask performance standards as a means to minimize risk. While an improvement over many prior efforts in this area (such as NUREG-0170), it unfortunately fails to create a realistic simulation either of a shipping cask, the severe conditions to which it could be subjected, or the potential damage to the spent fuel cargo during an accident. There are too many deficiencies in its analysis to allow acceptance of its results for the presumed cask design, and many pending changes in new containers, cargoes and shipping patterns will limit applicability of the Modal Study to future shipments. In essence, the Modal Study is a good start, but is too simplistic, incomplete, outdated and open to serious question to be used as the basis for any present-day environmental or risk assessment of spent fuel transportation. It needs to be redone, with peer review during its production and experimental verification of its assumptions, before it has any relevance to the shipments planned to Yucca Mountain. Finally, it must be expanded into a full risk assessment by inputing its radiological release fractions and probabilities into a valid dispersal simulation to properly determine the impact of its results. 51 refs.

  5. Neutronics and Fuel Performance Evaluation of Accident Tolerant Fuel under Normal Operation Conditions

    SciTech Connect

    Xu Wu; Piyush Sabharwall; Jason Hales

    2014-07-01

    This report details the analysis of neutronics and fuel performance analysis for enhanced accident tolerance fuel, with Monte Carlo reactor physics code Serpent and INL’s fuel performance code BISON, respectively. The purpose is to evaluate two of the most promising candidate materials, FeCrAl and Silicon Carbide (SiC), as the fuel cladding under normal operating conditions. Substantial neutron penalty is identified when FeCrAl is used as monolithic cladding for current oxide fuel. From the reactor physics standpoint, application of the FeCrAl alloy as coating layer on surface of zircaloy cladding is possible without increasing fuel enrichment. Meanwhile, SiC brings extra reactivity and the neutron penalty is of no concern. Application of either FeCrAl or SiC could be favorable from the fuel performance standpoint. Detailed comparison between monolithic cladding and hybrid cladding (cladding + coating) is discussed. Hybrid cladding is more practical based on the economics evaluation during the transition from current UO2/zircaloy to Accident Tolerant Fuel (ATF) system. However, a few issues remain to be resolved, such as the creep behavior of FeCrAl, coating spallation, inter diffusion with zirconium, etc. For SiC, its high thermal conductivity, excellent creep resistance, low thermal neutron absorption cross section, irradiation stability (minimal swelling) make it an excellent candidate materials for future nuclear fuel/cladding system.

  6. Corrigendum to "Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions" [J. Nucl. Mater. 448 (2014) 520-533

    NASA Astrophysics Data System (ADS)

    Ott, L. J.; Robb, K. R.; Wang, D.

    2015-06-01

    In Section 5.2, certain material properties for "FeCrAl oxide" were not modeled based on "stainless steel oxide" as indicated in the text. Instead, the "FeCrAl oxide" material properties were modeled using the default properties in MELCOR for "zirconium oxide". The properties affected are the FeCrAl oxide density, specific heat, enthalpy, thermal conductivity, melting point, and latent heat of fusion. Table 5.1 and Figs. 5.1a-d from Section 5.2 have been corrected below. As discussed below, the overall conclusions of the paper remain unchanged.

  7. Experimental results from containment piping bellows subjected to severe accident conditions: Results from bellows tested in corroded conditions. Volume 2

    SciTech Connect

    Lambert, L.D.; Parks, M.B.

    1995-10-01

    Bellows are an integral part of the containment pressure boundary in nuclear power plants. They are used at piping penetrations to allow relative movement between piping and the containment wall, while minimizing the load imposed on the piping and wall. Piping bellows are primarily used in steel containments; however, they have received limited use in some concrete (reinforced and prestressed) containments. In a severe accident they may be subjected to pressure and temperature conditions that exceed the design values, along with a combination of axial and lateral deflections. A test program to determine the leak-tight capacity of containment penetration bellows is being conducted at Sandia National Laboratories under the sponsorship of the US Nuclear Regulatory Commission. Several different bellows geometries, representative of actual containment bellows, have been subjected to extreme deflections along with pressure and temperature loads. The bellows geometries and loading conditions are described along with the testing apparatus and procedures. A total of nineteen bellows have been tested. Thirteen bellows were tested in ``like-new`` condition (results reported in Volume 1), and six were tested in a corroded condition. The tests showed that bellows in ``like-new`` condition are capable of withstanding relatively large deformations, up to, or near, the point of full compression or elongation, before developing leakage, while those in a corroded condition did not perform as well, depending on the amount of corrosion. The corroded bellows test program and results are presented in this report.

  8. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    NASA Astrophysics Data System (ADS)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  9. A model for nonvolatile fission product release during reactor accident conditions

    SciTech Connect

    Lewis, B.J.; Andre, B.; Ducros, G.; Maro, D.

    1996-10-01

    An analytical model has been developed to describe the release kinetics of nonvolatile fission products (e.g., molybdenum, cerium, ruthenium, and barium) from uranium dioxide fuel under severe reactor accident conditions. This treatment considers the rate-controlling process of release in accordance with diffusional transport in the fuel matrix and fission product vaporization from the fuel surface into the surrounding gas atmosphere. The effect of the oxygen potential in the gas atmosphere on the chemical form and volatility of the fission product is considered. A correlation is also developed to account for the trapping effects of antimony and tellurium in the Zircaloy cladding. This model interprets the release behavior of fission products observed in Commissariat a l`Energie Atomique experiments conducted in the HEVA/VERCORS facility at high temperature in a hydrogen and steam atmosphere.

  10. Probabilistic dose assessment of normal operations and accident conditions for an assured isolation facility in Texas

    NASA Astrophysics Data System (ADS)

    Arno, Matthew Gordon

    Texas is investigating building a long-term waste storage facility, also known as an Assured Isolation Facility. This is an above-ground low-level radioactive waste storage facility that is actively maintained and from which waste may be retrieved. A preliminary, scoping-level analysis has been extended to consider more complex scenarios of radiation streaming and skyshine by using the computer code Monte Carlo N-Particle (MCNP) to model the facility in greater detail. Accidental release scenarios have been studied in more depth to better assess the potential dose to off-site individuals. Using bounding source term assumptions, the projected radiation doses and dose rates are estimated to exceed applicable limits by an order of magnitude. By altering the facility design to fill in the hollow cores of the prefabricated concrete slabs used in the roof over the "high-gamma rooms," where the waste with the highest concentration of gamma emitting radioactive material is stored, dose rates outside the facility decrease by an order of magnitude. With the modified design, the annual dose at the site fenceline is estimated at 86 mrem, below the 100 mrem annual limit for exposure of the public. Within the site perimeter, the dose rates are lowered sufficiently such that it is not necessary to categorize many workers and contractor personnel as radiation workers, saving on costs as well as being advisable under ALARA principles. A detailed analysis of bounding accidents incorporating information on the local meteorological conditions indicate that the maximum committed effective dose equivalent from the passage of a plume of material released in an accident at any of the cities near the facility is 59 :rem in the city of Eunice, NM based on the combined day and night meteorological conditions. Using the daytime meteorological conditions, the maximum dose at any city is 7 :rem, also in the city of Eunice. The maximum dose at the site boundary was determined to be 230 mrem

  11. Generation IV benchmarking of TRISO fuel performance models under accident conditions: Modeling input data

    SciTech Connect

    Collin, Blaise P.

    2014-09-01

    This document presents the benchmark plan for the calculation of particle fuel performance on safety testing experiments that are representative of operational accidental transients. The benchmark is dedicated to the modeling of fission product release under accident conditions by fuel performance codes from around the world, and the subsequent comparison to post-irradiation experiment (PIE) data from the modeled heating tests. The accident condition benchmark is divided into three parts: the modeling of a simplified benchmark problem to assess potential numerical calculation issues at low fission product release; the modeling of the AGR-1 and HFR-EU1bis safety testing experiments; and, the comparison of the AGR-1 and HFR-EU1bis modeling results with PIE data. The simplified benchmark case, thereafter named NCC (Numerical Calculation Case), is derived from ''Case 5'' of the International Atomic Energy Agency (IAEA) Coordinated Research Program (CRP) on coated particle fuel technology [IAEA 2012]. It is included so participants can evaluate their codes at low fission product release. ''Case 5'' of the IAEA CRP-6 showed large code-to-code discrepancies in the release of fission products, which were attributed to ''effects of the numerical calculation method rather than the physical model''[IAEA 2012]. The NCC is therefore intended to check if these numerical effects subsist. The first two steps imply the involvement of the benchmark participants with a modeling effort following the guidelines and recommendations provided by this document. The third step involves the collection of the modeling results by Idaho National Laboratory (INL) and the comparison of these results with the available PIE data. The objective of this document is to provide all necessary input data to model the benchmark cases, and to give some methodology guidelines and recommendations in order to make all results suitable for comparison with each other. The participants should read this document

  12. GEN-IV BENCHMARKING OF TRISO FUEL PERFORMANCE MODELS UNDER ACCIDENT CONDITIONS MODELING INPUT DATA

    SciTech Connect

    Collin, Blaise Paul

    2016-09-01

    This document presents the benchmark plan for the calculation of particle fuel performance on safety testing experiments that are representative of operational accidental transients. The benchmark is dedicated to the modeling of fission product release under accident conditions by fuel performance codes from around the world, and the subsequent comparison to post-irradiation experiment (PIE) data from the modeled heating tests. The accident condition benchmark is divided into three parts: • The modeling of a simplified benchmark problem to assess potential numerical calculation issues at low fission product release. • The modeling of the AGR-1 and HFR-EU1bis safety testing experiments. • The comparison of the AGR-1 and HFR-EU1bis modeling results with PIE data. The simplified benchmark case, thereafter named NCC (Numerical Calculation Case), is derived from “Case 5” of the International Atomic Energy Agency (IAEA) Coordinated Research Program (CRP) on coated particle fuel technology [IAEA 2012]. It is included so participants can evaluate their codes at low fission product release. “Case 5” of the IAEA CRP-6 showed large code-to-code discrepancies in the release of fission products, which were attributed to “effects of the numerical calculation method rather than the physical model” [IAEA 2012]. The NCC is therefore intended to check if these numerical effects subsist. The first two steps imply the involvement of the benchmark participants with a modeling effort following the guidelines and recommendations provided by this document. The third step involves the collection of the modeling results by Idaho National Laboratory (INL) and the comparison of these results with the available PIE data. The objective of this document is to provide all necessary input data to model the benchmark cases, and to give some methodology guidelines and recommendations in order to make all results suitable for comparison with each other. The participants should read

  13. Aging, condition monitoring, and loss-of-coolant accident (LOCA) tests of class 1E electrical cables

    SciTech Connect

    Jacobus, M.J. )

    1992-11-01

    This report describes the results of aging, condition monitoring, and accident testing of ethylene propylene rubber (EPR) cables. Three sets of cables were aged for up to 9 months under simultaneous thermal ([approx equal]100[degrees]C) and radiation ([approx equal]0.10 kGy/hr) conditions. A sequential accident consisting of high dose rate irradiation ([approx equal]6 kGy/hr) and high temperature steam followed the aging. Also exposed to the accident conditions was a fourth set of cables, which were unaged. The test results indicate that most properly installed EPR cables should be able to survive an accident after 60 years for total aging doses of at least 150--200 kGy and for moderate ambient temperatures on the order of 45--55[degrees]C (potentially higher or lower, depending on material specific activation energies and total radiation doses). Mechanical measurements (primarily elongation, modulus, and density) were more effective than electrical measurements for monitoring age-related degradation.

  14. Technical report on LWR design decision methodology. Phase I

    SciTech Connect

    1980-03-01

    Energy Incorporated (EI) was selected by Sandia Laboratories to develop and test on LWR design decision methodology. Contract Number 42-4229 provided funding for Phase I of this work. This technical report on LWR design decision methodology documents the activities performed under that contract. Phase I was a short-term effort to thoroughly review the curret LWR design decision process to assure complete understanding of current practices and to establish a well defined interface for development of initial quantitative design guidelines.

  15. Thermochemistry of Ruthenium Oxyhydroxide Species and Their Impact on Volatile Speciations in Severe Nuclear Accident Conditions.

    PubMed

    Miradji, Faoulat; Virot, François; Souvi, Sidi; Cantrel, Laurent; Louis, Florent; Vallet, Valérie

    2016-02-04

    Literature thermodynamic data of ruthenium oxyhydroxides reveal large uncertainties in some of the standard enthalpies of formation, motivating the use of high-level relativistic correlated quantum chemical methods to reduce the level of discrepancies. Reaction energies leading to the formation of all possible oxyhydroxide species RuOx(OH)y(H2O)z have been calculated for a series of reactions combining DFT (TPSSh-5%HF) geometries and partition functions, CCSD(T) energies extrapolated to the complete basis set limits. The highly accurate ab initio thermodynamic data were used as input data of thermodynamic equilibrium computations to derive the speciation of gaseous ruthenium species in the temperature, pressure and concentration conditions of severe nuclear accidents occurring in pressurized water reactors. At temperatures lower than 1000 K, gaseous ruthenium tetraoxide is the dominating species, between 1000 and 2000 K ruthenium trioxide becomes preponderant, whereas at higher temperatures gaseous ruthenium oxide, dioxide and even Ru in gaseous phase are formed. Although earlier studies predicted the formation of oxyhydroxides in significant quantities, the use of highly accurate ab initio thermodynamic data for ruthenium gaseous species leads to a more reliable inventory of gaseous ruthenium species in which gaseous oxyhydroxide ruthenium molecules are formed only in negligible amounts.

  16. Simulation of the transient processes of load rejection under different accident conditions in a hydroelectric generating set

    NASA Astrophysics Data System (ADS)

    Guo, W. C.; Yang, J. D.; Chen, J. P.; Peng, Z. Y.; Zhang, Y.; Chen, C. C.

    2016-11-01

    Load rejection test is one of the essential tests that carried out before the hydroelectric generating set is put into operation formally. The test aims at inspecting the rationality of the design of the water diversion and power generation system of hydropower station, reliability of the equipment of generating set and the dynamic characteristics of hydroturbine governing system. Proceeding from different accident conditions of hydroelectric generating set, this paper presents the transient processes of load rejection corresponding to different accident conditions, and elaborates the characteristics of different types of load rejection. Then the numerical simulation method of different types of load rejection is established. An engineering project is calculated to verify the validity of the method. Finally, based on the numerical simulation results, the relationship among the different types of load rejection and their functions on the design of hydropower station and the operation of load rejection test are pointed out. The results indicate that: The load rejection caused by the accident within the hydroelectric generating set is realized by emergency distributing valve, and it is the basis of the optimization for the closing law of guide vane and the calculation of regulation and guarantee. The load rejection caused by the accident outside the hydroelectric generating set is realized by the governor. It is the most efficient measure to inspect the dynamic characteristics of hydro-turbine governing system, and its closure rate of guide vane set in the governor depends on the optimization result in the former type load rejection.

  17. Aging, condition monitoring, and loss-of-coolant accident (LOCA) tests of Class 1E electrical cables: Summary of results

    SciTech Connect

    Jacobus, M.J.

    1991-12-01

    This paper summarizes the results of aging, condition monitoring, and accident testing of Class 1E cables used in nuclear power generating stations. Three sets of cables were aged for up to 9 months under simultaneous thermal ({approx_equal} 100{degrees}C) and radiation ({approx_equal}0.10 kGy/hr) conditions. After the aging, the cables were exposed to a simulated accident consisting of high dose rate irradiation ({approx_equal}6 kGy/hr) followed by a high temperature steam exposure. A fourth set of cables, which were unaged, were also exposed to the accident conditions. The cables that were aged for 3 months and then accident tested were subsequently exposed to a high temperature steam fragility test (up to 400{degrees}C), while the cables that were aged for 6 months and then accident tested were subsequently exposed to a 1000-hour submergence test in a chemical solution. The results of the tests indicate that the feasibility of life extension of many popular nuclear power plant cable products is promising and that mechanical measurements (primarily elongation, modulus, and density) were more effective than electrical measurements for monitoring age-related degradation. In the high temperature steam test, ethylene propylene rubber (EPR) cable materials generally survived to higher temperatures than crosslinked polyolefin (XLPO) cable materials. In dielectric testing after the submergence testing, the XLPO materials performed better than the EPR materials. This paper presents some recent experimental data that are not yet available elsewhere and a summary of findings from the entire experimental program.

  18. Aging, condition monitoring, and loss-of-coolant accident (LOCA) tests of Class 1E electrical cables: Summary of results

    SciTech Connect

    Jacobus, M.J.

    1991-01-01

    This paper summarizes the results of aging, condition monitoring, and accident testing of Class 1E cables used in nuclear power generating stations. Three sets of cables were aged for up to 9 months under simultaneous thermal ({approx equal} 100{degrees}C) and radiation ({approx equal}0.10 kGy/hr) conditions. After the aging, the cables were exposed to a simulated accident consisting of high dose rate irradiation ({approx equal}6 kGy/hr) followed by a high temperature steam exposure. A fourth set of cables, which were unaged, were also exposed to the accident conditions. The cables that were aged for 3 months and then accident tested were subsequently exposed to a high temperature steam fragility test (up to 400{degrees}C), while the cables that were aged for 6 months and then accident tested were subsequently exposed to a 1000-hour submergence test in a chemical solution. The results of the tests indicate that the feasibility of life extension of many popular nuclear power plant cable products is promising and that mechanical measurements (primarily elongation, modulus, and density) were more effective than electrical measurements for monitoring age-related degradation. In the high temperature steam test, ethylene propylene rubber (EPR) cable materials generally survived to higher temperatures than crosslinked polyolefin (XLPO) cable materials. In dielectric testing after the submergence testing, the XLPO materials performed better than the EPR materials. This paper presents some recent experimental data that are not yet available elsewhere and a summary of findings from the entire experimental program.

  19. Effect of material heat treatment on fatigue crack initiation in austenitic stainless steels in LWR environments.

    SciTech Connect

    Chopra, O. K.; Alexandreanu, B.; Shack, W. J.; Energy Technology

    2005-07-31

    The ASME Boiler and Pressure Vessel Code provides rules for the design of Class 1 components of nuclear power plants. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify design curves for applicable structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. The existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. Under certain environmental and loading conditions, fatigue lives of austenitic stainless steels (SSs) can be a factor of 20 lower in water than in air. This report presents experimental data on the effect of heat treatment on fatigue crack initiation in austenitic Type 304 SS in LWR coolant environments. A detailed metallographic examination of fatigue test specimens was performed to characterize the crack morphology and fracture morphology. The key material, loading, and environmental parameters and their effect on the fatigue life of these steels are also described. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves for austenitic SSs as a function of material, loading, and environmental parameters. Two methods for incorporating the effects of LWR coolant environments into the ASME Code fatigue evaluations are presented.

  20. Varenicline and risk of psychiatric conditions, suicidal behaviour, criminal offending, and transport accidents and offences: population based cohort study.

    PubMed

    Molero, Yasmina; Lichtenstein, Paul; Zetterqvist, Johan; Gumpert, Clara Hellner; Fazel, Seena

    2015-06-02

    To examine associations between varenicline and the incidence of a range of adverse outcomes. Population based cohort study using within person analyses to control for confounding by indication. Whole population of Sweden. 7,917,436 people aged 15 and over, of whom 69,757 were treated with varenicline between 2006 and 2009. Incidence of new psychiatric conditions, suicidal behaviour, suspected and convicted criminal offending, transport accidents, and suspected and convicted traffic offences. In the whole population, 337,393 new psychiatric conditions were diagnosed during follow-up. In addition, 507,823 suspected and 338,608 convicted crimes, 40,595 suicidal events, 124,445 transport accidents, and 99,895 suspected and 57,068 convicted traffic crimes were recorded. Within person analyses showed that varenicline was not associated with significant hazards of suicidal behaviour, criminal offending, transport accidents, traffic offences, or psychoses. However, varenicline was associated with a small increase in the risk of anxiety conditions (hazard ratio 1.23, 95% confidence interval 1.01 to 1.51) and mood conditions (1.31, 1.06 to 1.63), which was only seen in people with pre-existing psychiatric disorders. Concerns that varenicline is associated with an increased risk of many adverse outcomes, including suicidality and accidents, are not supported in this observational study. The small increase in risk of two psychiatric conditions in people with pre-existing psychiatric disorders needs to be confirmed using other research designs. © Molero et al 2015.

  1. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    SciTech Connect

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables.

  2. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics

    SciTech Connect

    Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

    2014-02-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, “metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly

  3. Multilevel transport solution of LWR reactor cores

    SciTech Connect

    Jose Ignacio Marquez Damian; Cassiano R.E. de Oliveira; HyeonKae Park

    2008-09-01

    This work presents a multilevel approach for the solution of the transport equation in typical LWR assemblies and core configurations. It is based on the second-order, even-parity formulation of the transport equation, which is solved within the framework provided by the finite element-spherical harmonics code EVENT. The performance of the new solver has been compared with that of the standard conjugate gradient solver for diffusion and transport problems on structured and unstruc-tured grids. Numerical results demonstrate the potential of the multilevel scheme for realistic reactor calculations.

  4. Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study

    SciTech Connect

    Kristine Barrett; Shannon Bragg-Sitton

    2012-09-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system that would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.

  5. Feasibility of performing criticality experiments with spent LWR fuel

    SciTech Connect

    Bierman, S.R.

    1988-02-01

    Criticality experiments can be performed with irradiated LWR fuel under very well defined and controlled conditions to provide data sutiable for verifying calculational models. Two facilities currently exist in which such experiments could be performed. Furthermore, the experiments can be performed in a timely manner and for a relatively reasonable cost. It is expected the cost will be greater than those normally incurred for similar experiments with unirradiated fuel because of the handling problems created by the high radiation fields. Although the cost will of course depend on the scoper of the experimental programs, current estimates indicate the costs will be less or comparable to a similar level of effort in other activities with irradiated fuel (e.g., Dry Rod Consolation Project). 2 figs.

  6. A flammability and combustion model for integrated accident analysis. [Advanced light water reactors

    SciTech Connect

    Plys, M.G.; Astleford, R.D.; Epstein, M. )

    1988-01-01

    A model for flammability characteristics and combustion of hydrogen and carbon monoxide mixtures is presented for application to severe accident analysis of Advanced Light Water Reactors (ALWR's). Flammability of general mixtures for thermodynamic conditions anticipated during a severe accident is quantified with a new correlation technique applied to data for several fuel and inertant mixtures and using accepted methods for combining these data. Combustion behavior is quantified by a mechanistic model consisting of a continuity and momentum balance for the burned gases, and considering an uncertainty parameter to match the idealized process to experiment. Benchmarks against experiment demonstrate the validity of this approach for a single recommended value of the flame flux multiplier parameter. The models presented here are equally applicable to analysis of current LWR's. 21 refs., 16 figs., 6 tabs.

  7. Technical program to study the benefits of nonlinear analysis methods in LWR component designs. Technical report TR-3723-1

    SciTech Connect

    Raju, P. P.

    1980-05-01

    This report summarizes the results of the study program to assess the benefits of nonlinear analysis methods in Light Water Reactor (LWR) component designs. The current study reveals that despite its increased cost and other complexities, nonlinear analysis is a practical and valuable tool for the design of LWR components, especially under ASME Level D service conditions (faulted conditions) and it will greatly assist in the evaluation of ductile fracture potential of pressure boundary components. Since the nonlinear behavior is generally a local phenomenon, the design of complex components can be accomplished through substructuring isolated localized regions and evaluating them in detail using nonlinear analysis methods.

  8. Assessment on Integrity of BWR Internals Against Impact Load by Water Hammer Under Conditions of Reactivity Initiated Accidents

    SciTech Connect

    Azuma, Mie; Taniguchi, Atsushi; Hotta, Akitoshi; Ohta, Takeshi

    2005-03-15

    The integrity of the reactor pressure vessel (RPV) head and reactor internals was assessed by means of fluid and fluid-structural coupled analyses to evaluate the water hammer phenomenon arising from postulated high burnup fuel failure under reactivity initiated accident (RIA) conditions. The fluid viscosity effect on the water column burst as well as the complex three-dimensional flow paths caused by a core shroud and standpipes were considered in this study. It is shown that fluid viscosity becomes an influential factor to dissipate impacting kinetic energy. Integrity of the RPV head and the shroud head was ensured with a sufficient level of margin even under these excessively conservative RIA conditions.

  9. Hungarian surveillance of germinal mutations. Lack of detectable increase in indicator conditions caused by germinal mutations following the Chernobyl accident.

    PubMed

    Czeizel, A

    1989-07-01

    The Hungarian surveillance of germinal mutations is based on three indicator conditions seen in offspring, i.e., 15 sentinel anomalies, Down syndrome and component anomaly pairs of unidentified multiple congenital anomalies. It is an "opportunistic program," because the necessary data are available from the Hungarian Congenital Malformation Registry. This system is described and the criteria of a good registry are summarized. The analysis of indicator conditions caused by germinal mutations did not reveal any measurable mutagenic effects in Hungary following the accident at the Chernobyl nuclear power plant. The pros and cons of germinal mutation surveillance are discussed.

  10. Phased Development of Accident Tolerant Fue

    SciTech Connect

    Bragg-Sitton, Shannon M.; Carmack, W. Jon

    2016-09-01

    The United States Department of Energy (U.S. DOE) Advanced Fuels Campaign (AFC) has adopted a three-phase approach for the development and eventual commercialization of enhanced, accident tolerant fuel (ATF) for light water reactors (LWRs). Extending from 2012 to 2016, AFC is currently coming to the end of Phase 1 research that has entailed Feasibility Assessment and Prioritization for a large number of proposed fuel systems (fuel and cladding) that could provide improved performance under accident conditions. Phase 1 activities will culminate with a prioritization of concepts for both near-term and long-term development based on the available experimental data and modeling predictions. This process will provide guidance to DOE on what concepts should be prioritized for investment in Phase 2 Development/Qualification activities based on technical performance improvements and probability of meeting the aggressive schedule to insert a lead fuel rod (LFR) in a commercial power reactor by 2022. While Phase 1 activities include small-scale fabrication work, materials characterization, and limited irradiation of samples, Phase 2 will require development teams to expand to industrial fabrication methods, conduct irradiation tests under more prototypic reactor conditions (i.e. in contact with reactor primary coolant at LWR conditions and in-pile transient testing), conduct additional characterization and post-irradiation examination, and develop a fuel performance code for the candidate ATF. Phase 2 will culminate in the insertion of an LFR (or lead fuel assembly) in a commercial power reactor. The Phase 3 Commercialization work will extend past 2022. Following post-irradiation examination of LFRs, partial-core reloads will be demonstrated. The commercialization phase will further entail the establishment of commercial fabrication capabilities and the transition of LWR cores to the new fuel. The three development phases described roughly correspond to the technology

  11. Computational Assessment of the GT-MHR Graphite Core Support Structural Integrity in Air-Ingress Accident Condition

    SciTech Connect

    Jong B. Lim; Eung S. Kim; Chang H. Oh; Richard R. Schultz; David A. Petti

    2008-10-01

    The objective of this project was to perform stress analysis for graphite support structures of the General Atomics’ 600 MWth GT-MHR prismatic core design using ABAQUS ® (ver. 6.75) to assess their structural integrity in air-ingress accident conditions where the structure weakens over time due to oxidation damages. The graphite support structures of prismatic type GT-MHR was analyzed based on the change of temperature, burn-off and corrosion depth during the accident period predicted by GAMMA, a multi-dimensional gas multi-component mixture analysis code developed in the Republic of Korea (ROK)/United States (US) International –Nuclear Engineering Research Initiative (I-NERI) project. Both the loading and thermal stresses were analyzed, but the thermal stress was not significant, leaving the loading stress to be the major factor. The mechanical strengths are exceeded between 11 to 11.5 days after loss-of-coolant-accident (LOCA), corresponding to 5.5 to 6 days after the start of natural convection.

  12. How propeller suction is the dominant factor for ship accidents at shallow water conditions

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Alpar, Bedri; Ozeren, Sinan

    2017-04-01

    The laminar flow comes to the fore with the disappearance of the several other directions in the internal displacements in the water current. Due to the dominant speed direction during the straightforward motion of the ship, the underwater hull is associated with the continuous flow of laminar currents. The open marine environment acts as a compressible liquid medium because of the presence of many variables about water volume overflow boundaries where the ship is associated. Layers of water rising over the sea surface due to ship's body and the propeller's water push provides loss of liquid lifting force for the ship. These situations change the well-known sea-floor morphology and reliable depth limits, and lead to probable accidents. If the ship block coefficient for the front side is 0.7 or higher, the "squat" will be more on the bow, because the associated factor "displacement volume" causes to the low-pressure environment due to large and rapid turbulence. Thus, the bow sinks further, which faced with liquid's weaker lift force. The vessels Gerardus Mercator, Queen Elizabeth and Costa Concordia had accidents because of unified reasons of squat, fast water mass displacement by hull push and propeller suction interaction. In the case of water mass displacement from the bow side away, that accident occurred in 2005 by the vessel Gerardus Mercator with excessive longitudinal trim angularity in the shallow water. The vessel Costa Concordia (2012), voluminous water displaced from the rear left side was an important factor because of the sharp manoeuvre of that the captain made before the accident. Observations before the accident indicate that full-speed sharp turn provided listed position for the ship from left (port side) in the direction of travel before colliding and then strike a rock on the sloping side of the seabed. The reason why the ship drifted to the left depends mainly the water discharge occurred at the left side of the hull during left-hand rudder

  13. Short communication on "In-situ TEM ion irradiation investigations on U3Si2 at LWR temperatures"

    DOE PAGES

    Miao, Yinbin; Harp, Jason; Mo, Kun; ...

    2016-11-21

    Here, the radiation-induced amorphization of U3Si2 was investigated by in-situ transmission electron microscopy using 1 MeV Kr ion irradiation. Both arc-melted and sintered U3Si2 specimens were irradiated at room temperature to confirm the similarity in their responses to radiation. The sintered specimens were then irradiated at 350 °C and 550 °C up to 7.2 × 1015 ions/cm2 to examine their amorphization behavior under light water reactor (LWR) conditions. U3Si2 remains crystalline under irradiation at LWR temperatures. Oxidation of the material was observed at high irradiation doses.

  14. Short Communication on "In-situ TEM ion irradiation investigations on U3Si2 at LWR temperatures"

    NASA Astrophysics Data System (ADS)

    Miao, Yinbin; Harp, Jason; Mo, Kun; Bhattacharya, Sumit; Baldo, Peter; Yacout, Abdellatif M.

    2017-02-01

    The radiation-induced amorphization of U3Si2 was investigated by in-situ transmission electron microscopy using 1 MeV Kr ion irradiation. Both arc-melted and sintered U3Si2 specimens were irradiated at room temperature to confirm the similarity in their responses to radiation. The sintered specimens were then irradiated at 350 °C and 550 °C up to 7.2 × 1015 ions/cm2 to examine their amorphization behavior under light water reactor (LWR) conditions. U3Si2 remains crystalline under irradiation at LWR temperatures. Oxidation of the material was observed at high irradiation doses.

  15. Calculation evaluation of multiplying properties of LWR with thorium fuel

    NASA Astrophysics Data System (ADS)

    Shamanin, I. V.; Grachev, V. M.; Knyshev, V. V.; Bedenko, S. V.; Novikova, N. G.

    2017-01-01

    The results of multiplying properties design research of the unit cell and LWR fuel assembly with the high temperature gas-cooled thorium reactor fuel pellet are presented in the work. The calculation evaluation showed the possibility of using thorium in LWR effectively. In this case the amount of fissile isotope is 2.45 times smaller in comparison with the standard loading of LWR. The research and numerical experiments were carried out using the verified accounting code of the program MCU5, modern libraries of evaluated nuclear data and multigroup approximations.

  16. PWR-related integral safety experiments in the PKL 111 test facility SBLOCA under beyond-design-basis accident conditions

    SciTech Connect

    Weber, P.; Umminger, K.J.; Schoen, B.

    1995-09-01

    The thermal hydraulic behavior of a PWR during beyond-design-basis accident scenarios is of vital interest for the verification and optimization of accident management procedures. Within the scope of the German reactor safety research program experiments were performed in the volumetrically scaled PKL 111 test facility by Siemens/KWU. This highly instrumented test rig simulates a KWU-design PWR (1300 MWe). In particular, the latest tests performed related to a SBLOCA with additional system failures, e.g. nitrogen entering the primary system. In the case of a SBLOCA, it is the goal of the operator to put the plant in a condition where the decay heat can be removed first using the low pressure emergency core cooling system and then the residual heat removal system. The experimental investigation presented assumed the following beyond-design-basis accident conditions: 0.5% break in a cold leg, 2 of 4 steam generators (SGs) isolated on the secondary side (feedwater- and steam line-valves closed), filled with steam on the primary side, cooldown of the primary system using the remaining two steam generators, high pressure injection system only in the two loops with intact steam generators, if possible no operator actions to reach the conditions for residual heat removal system activation. Furthermore, it was postulated that 2 of the 4 hot leg accumulators had a reduced initial water inventory (increased nitrogen inventory), allowing nitrogen to enter the primary system at a pressure of 15 bar and nearly preventing the heat transfer in the SGs ({open_quotes}passivating{close_quotes} U-tubes). Due to this the heat transfer regime in the intact steam generators changed remarkably. The primary system showed self-regulating system effects and heat transfer improved again (reflux-condenser mode in the U-tube inlet region).

  17. Flooding of a large, passive, pressure-tube LWR

    SciTech Connect

    Hejzlar, P.; Todreas, N.E.; Driscoll, M.J.

    1995-09-01

    A reactor concept has been developed which can survive LOCA without scram and without replenishing primary coolant inventory. The proposed concept is a pressure tube type reactor similar to CANDU reactors, but differing in three key aspects: (1) a solid SiC-coated graphite fuel matrix is used in place of fuel pin bundles, (2) the heavy water coolant in the pressure tubes is replaced by light water, and (3) the calandria tank contains a low pressure gas instead of heavy water moderator. The gas displaces the light water from the calandria during normal operation, while during loss of coolant or loss of heat sink accidents, it allows passive calandria flooding. This paper describes the thermal hydraulic characteristics of the gravity driven calandria flooding process. Flooding the calandria space with light water is a unique and very important feature of the proposed pressure-tube LWR concept. The flooding of the top row of fuel channels must be accomplished fast enough so that none of the critical components of the fuel channel exceed their design limits. The flooding process has been modeled and shown to be rapid enough to maintain all components within their design limits. Two other considerations are important. The thermal shock experienced by the calandria and pressure tubes has been evaluated and shown to be within acceptable bounds. Finally, although complete flooding renders the reactor deeply subcritical, various steam/water densities can be hypothesized to be present during the flooding process which could cause reactivity to increase from the initially voided calandria case. One such hypothesis which leads to the maximum possible density of the steam/water mixture in the still unflooded calandria space is entrainment from the free surface. It is shown that the steam/water mixture density yielding the maximum reactivity peak cannot be achieved by entrainment because it exceeds thermohydraulically attainable densities of steam/water by an order of magnitude.

  18. Options for Burning LWR SNF in LIFE Engine

    SciTech Connect

    Farmer, J

    2008-09-09

    We have pursued two processes in parallel for the burning of LWR SNF in the LIFE engine: (1) solid fuel option and (2) liquid fuel option. Approaches with both are discussed. The assigned Topical Report on liquid fuels is attached.

  19. Interface requirements to couple thermal hydraulics codes to severe accident codes: ICARE/CATHARE

    SciTech Connect

    Camous, F.; Jacq, F.; Chatelard, P.

    1997-07-01

    In order to describe with the same code the whole sequence of severe LWR accidents, up to the vessel failure, the Institute of Protection and Nuclear Safety has performed a coupling of the severe accident code ICARE2 to the thermalhydraulics code CATHARE2. The resulting code, ICARE/CATHARE, is designed to be as pertinent as possible in all the phases of the accident. This paper is mainly devoted to the description of the ICARE2-CATHARE2 coupling.

  20. Formation and characterization of fission-product aerosols under postulated HTGR accident conditions

    SciTech Connect

    Tang, I.N.; Munkelwitz, H.R.

    1982-07-01

    The paper presents the results of an experimental investigation on the formation mechanism and physical characterization of simulated nuclear aerosols that could likely be released during an HTGR core heat-up accident. Experiments were carried out in a high-temperature flow system consisting essentially of an inductively heated release source, a vapor deposition tube, and a filter assembly for collecting particulate matter. Simulated fission products Sr and Ba as oxides are separately impregnated in H451 graphite wafers and released at elevated temperatures into a dry helium flow. In the presence of graphite, the oxides are quantitatively reduced to metals, which subsequently vaporize at temperatures much lower than required for the oxides alone to vaporize in the absence of graphite. A substantial fraction of the released material is associated with particulate matter, which is collected on filters located downstream at ambient temperature. The release and transport of simulated fission product Ag as metal are also investigated.

  1. Radiolysis of cesium iodide solutions in conditions prevailing in a pressurized water reactor severe accident

    SciTech Connect

    Lucas, M. )

    1988-08-01

    Measurements were made of I/sub 2/ formed when aqueous cesium iodide (CsI) solutions were exposed to two temperatures, 43 and 95/sup 0/C, with irradiation. Iodine partition coefficients were obtained from the experiments. The parameters varied were dose, CsI concentration, and Cs/sub 2/CO/sub 3/ concentration, in the presence of air-carbon dioxide and air-carbon dioxide-hydrogen mixtures, to provide information to calculate the form in which iodine released from fuel as CsI in a reactor accident might reach the environment. In a series of experiments, a two-compartment cell was used to trap the gaseous iodine produced. In this case, it was found that the quantity of gaseous iodine produced increased approximately linearly with the dose (at the dose rate used).

  2. Reactor Safety Gap Evaluation of Accident Tolerant Components and Severe Accident Analysis

    SciTech Connect

    Farmer, Mitchell T.; Bunt, R.; Corradini, M.; Ellison, Paul B.; Francis, M.; Gabor, John D.; Gauntt, R.; Henry, C.; Linthicum, R.; Luangdilok, W.; Lutz, R.; Paik, C.; Plys, M.; Rabiti, Cristian; Rempe, J.; Robb, K.; Wachowiak, R.

    2015-01-31

    The overall objective of this study was to conduct a technology gap evaluation on accident tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist, given the current state of light water reactor (LWR) severe accident research, and additionally augmented by insights obtained from the Fukushima accident. The ultimate benefit of this activity is that the results can be used to refine the Department of Energy’s (DOE) Reactor Safety Technology (RST) research and development (R&D) program plan to address key knowledge gaps in severe accident phenomena and analyses that affect reactor safety and that are not currently being addressed by the industry or the Nuclear Regulatory Commission (NRC).

  3. [Assessment of the suitability of workers based on the Swiss Law on Accident Insurance--declaration of unsuitability / declaration of conditional suitability].

    PubMed

    Jost, M; Rast, H

    2007-08-01

    In order to prevent the development or aggravation of an occupational disease or an occupational accident risk lying in an individual employee the Swiss National Accident Insurance Fund (Suva) based on the Swiss Law on Accident Insurance is entitled to prohibit certain activities that have proven to be hazardous to the individual (declaration of "unsuitability" (DOU) or rarely declaration of conditional suitability). Occupational skin and respiratory diseases are the most frequent disorders, and flour; cement, isocyanates and hairdressing substances the most important occupational factors requiring a DOU. This measure also provides financial security to the employee for up to 4 years by the accident insurer in cooperation with the unemployment insurance. For retraining and occupational rehabilitation a special state insurance, the Invalidity insurance is responsible.

  4. Accident investigation

    NASA Technical Reports Server (NTRS)

    Brunstein, A. I.

    1979-01-01

    Aircraft accident investigations are discussed with emphasis on those accidents that involved weather as a contributing factor. The organization of the accident investigation board for air carrier accidents is described along with the hearings, and formal report preparation. Statistical summaries of the investigations of general aviation accidents are provided.

  5. Creep failure of a reactor pressure vessel lower head under severe accident conditions

    SciTech Connect

    Pilch, M.M.; Ludwigsen, J.S.; Chu, T.Y.; Rashid, Y.R.

    1998-08-01

    A severe accident in a nuclear power plant could result in the relocation of large quantities of molten core material onto the lower head of he reactor pressure vessel (RPV). In the absence of inherent cooling mechanisms, failure of the RPV ultimately becomes possible under the combined effects of system pressure and the thermal heat-up of the lower head. Sandia National Laboratories has performed seven experiments at 1:5th scale simulating creep failure of a RPV lower head. This paper describes a modeling program that complements the experimental program. Analyses have been performed using the general-purpose finite-element code ABAQUS-5.6. In order to make ABAQUS solve the specific problem at hand, a material constitutive model that utilizes temperature dependent properties has been developed and attached to ABAQUS-executable through its UMAT utility. Analyses of the LHF-1 experiment predict instability-type failure. Predicted strains are delayed relative to the observed strain histories. Parametric variations on either the yield stress, creep rate, or both (within the range of material property data) can bring predictions into agreement with experiment. The analysis indicates that it is necessary to conduct material property tests on the actual material used in the experimental program. The constitutive model employed in the present analyses is the subject of a separate publication.

  6. United States Department of Energy severe accident research following the Fukushima Daiichi accidents

    SciTech Connect

    Farmer, M. T.; Corradini, M.; Rempe, J.; Reister, R.; Peko, D.

    2016-11-02

    The U.S. Department of Energy (DOE) has played a major role in the U.S. response to the events at Fukushima Daiichi. During the first several weeks following the accident, U.S. assistance efforts were guided by results from a significant and diverse set of analyses. In the months that followed, a coordinated analysis activity aimed at gaining a more thorough understanding of the accident sequence was completed using laboratory-developed, system-level best-estimate accident analysis codes, while a parallel analysis was conducted by U.S. industry. A comparison of predictions for Unit 1 from these two studies indicated significant differences between MAAP and MELCOR results for key plant parameters, such as in-core hydrogen production. On that basis, a crosswalk was completed to determine the key modeling variations that led to these differences. In parallel with these activities, it became clear that there was a need to perform a technology gap evaluation on accident-tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist given the current state of light water reactor (LWR) severe accident research and augmented by insights from Fukushima. In addition, there is growing international recognition that data from Fukushima could significantly reduce uncertainties related to severe accident progression, particularly for boiling water reactors. On these bases, a group of U. S. experts in LWR safety and plant operations was convened by the DOE Office of Nuclear Energy (DOE-NE) to complete technology gap analysis and Fukushima forensics data needs identification activities. The results from these activities were used as the basis for refining DOE-NE's severe accident research and development (R&D) plan. Finally, this paper provides a high-level review of DOE-sponsored R&D efforts in these areas, including planned activities on accident-tolerant components and accident analysis methods.

  7. United States Department of Energy severe accident research following the Fukushima Daiichi accidents

    DOE PAGES

    Farmer, M. T.; Corradini, M.; Rempe, J.; ...

    2016-11-02

    The U.S. Department of Energy (DOE) has played a major role in the U.S. response to the events at Fukushima Daiichi. During the first several weeks following the accident, U.S. assistance efforts were guided by results from a significant and diverse set of analyses. In the months that followed, a coordinated analysis activity aimed at gaining a more thorough understanding of the accident sequence was completed using laboratory-developed, system-level best-estimate accident analysis codes, while a parallel analysis was conducted by U.S. industry. A comparison of predictions for Unit 1 from these two studies indicated significant differences between MAAP and MELCORmore » results for key plant parameters, such as in-core hydrogen production. On that basis, a crosswalk was completed to determine the key modeling variations that led to these differences. In parallel with these activities, it became clear that there was a need to perform a technology gap evaluation on accident-tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist given the current state of light water reactor (LWR) severe accident research and augmented by insights from Fukushima. In addition, there is growing international recognition that data from Fukushima could significantly reduce uncertainties related to severe accident progression, particularly for boiling water reactors. On these bases, a group of U. S. experts in LWR safety and plant operations was convened by the DOE Office of Nuclear Energy (DOE-NE) to complete technology gap analysis and Fukushima forensics data needs identification activities. The results from these activities were used as the basis for refining DOE-NE's severe accident research and development (R&D) plan. Finally, this paper provides a high-level review of DOE-sponsored R&D efforts in these areas, including planned activities on accident-tolerant components and accident analysis methods.« less

  8. Advanced multiphysics coupling for LWR fuel performance analysis

    DOE PAGES

    Hales, J. D.; Tonks, M. R.; Gleicher, F. N.; ...

    2015-10-01

    Even the most basic nuclear fuel analysis is a multiphysics undertaking, as a credible simulation must consider at a minimum coupled heat conduction and mechanical deformation. The need for more realistic fuel modeling under a variety of conditions invariably leads to a desire to include coupling between a more complete set of the physical phenomena influencing fuel behavior, including neutronics, thermal hydraulics, and mechanisms occurring at lower length scales. This paper covers current efforts toward coupled multiphysics LWR fuel modeling in three main areas. The first area covered in this paper concerns thermomechanical coupling. The interaction of these two physics,more » particularly related to the feedback effect associated with heat transfer and mechanical contact at the fuel/clad gap, provides numerous computational challenges. An outline is provided of an effective approach used to manage the nonlinearities associated with an evolving gap in BISON, a nuclear fuel performance application. A second type of multiphysics coupling described here is that of coupling neutronics with thermomechanical LWR fuel performance. DeCART, a high-fidelity core analysis program based on the method of characteristics, has been coupled to BISON. DeCART provides sub-pin level resolution of the multigroup neutron flux, with resonance treatment, during a depletion or a fast transient simulation. Two-way coupling between these codes was achieved by mapping fission rate density and fast neutron flux fields from DeCART to BISON and the temperature field from BISON to DeCART while employing a Picard iterative algorithm. Finally, the need for multiscale coupling is considered. Fission gas production and evolution significantly impact fuel performance by causing swelling, a reduction in the thermal conductivity, and fission gas release. The mechanisms involved occur at the atomistic and grain scale and are therefore not the domain of a fuel performance code. However, it is

  9. Advanced multiphysics coupling for LWR fuel performance analysis

    SciTech Connect

    Hales, J. D.; Tonks, M. R.; Gleicher, F. N.; Spencer, B. W.; Novascone, S. R.; Williamson, R. L.; Pastore, G.; Perez, D. M.

    2015-10-01

    Even the most basic nuclear fuel analysis is a multiphysics undertaking, as a credible simulation must consider at a minimum coupled heat conduction and mechanical deformation. The need for more realistic fuel modeling under a variety of conditions invariably leads to a desire to include coupling between a more complete set of the physical phenomena influencing fuel behavior, including neutronics, thermal hydraulics, and mechanisms occurring at lower length scales. This paper covers current efforts toward coupled multiphysics LWR fuel modeling in three main areas. The first area covered in this paper concerns thermomechanical coupling. The interaction of these two physics, particularly related to the feedback effect associated with heat transfer and mechanical contact at the fuel/clad gap, provides numerous computational challenges. An outline is provided of an effective approach used to manage the nonlinearities associated with an evolving gap in BISON, a nuclear fuel performance application. A second type of multiphysics coupling described here is that of coupling neutronics with thermomechanical LWR fuel performance. DeCART, a high-fidelity core analysis program based on the method of characteristics, has been coupled to BISON. DeCART provides sub-pin level resolution of the multigroup neutron flux, with resonance treatment, during a depletion or a fast transient simulation. Two-way coupling between these codes was achieved by mapping fission rate density and fast neutron flux fields from DeCART to BISON and the temperature field from BISON to DeCART while employing a Picard iterative algorithm. Finally, the need for multiscale coupling is considered. Fission gas production and evolution significantly impact fuel performance by causing swelling, a reduction in the thermal conductivity, and fission gas release. The mechanisms involved occur at the atomistic and grain scale and are therefore not the domain of a fuel performance code. However, it is possible to use

  10. Thermal conductivity of heterogeneous LWR MOX fuels

    NASA Astrophysics Data System (ADS)

    Staicu, D.; Barker, M.

    2013-11-01

    It is generally observed that the thermal conductivity of LWR MOX fuel is lower than that of pure UO2. For MOX, the degradation is usually only interpreted as an effect of the substitution of U atoms by Pu. This hypothesis is however in contradiction with the observations of Duriez and Philiponneau showing that the thermal conductivity of MOX is independent of the Pu content in the ranges 3-15 and 15-30 wt.% PuO2 respectively. Attributing this degradation to Pu only implies that stoichiometric heterogeneous MOX can be obtained, while we show that any heterogeneity in the plutonium distribution in the sample introduces a variation in the local stoichiometry which in turn has a strong impact on the thermal conductivity. A model quantifying this effect is obtained and a new set of experimental results for homogeneous and heterogeneous MOX fuels is presented and used to validate the proposed model. In irradiated fuels, this effect is predicted to disappear early during irradiation. The 3, 6 and 10 wt.% Pu samples have a similar thermal conductivity. Comparison of the results for this homogeneous microstructure with MIMAS (heterogeneous) fuel of the same composition showed no difference for the Pu contents of 3, 5.9, 6, 7.87 and 10 wt.%. A small increase of the thermal conductivity was obtained for 15 wt.% Pu. This increase is of about 6% when compared to the average of the values obtained for 3, 6 and 10 wt.% Pu. For comparison purposes, Duriez also measured the thermal conductivity of FBR MOX with 21.4 wt.% Pu with O/M = 1.982 and a density close to 95% TD and found a value in good agreement with the estimation obtained using the formula of Philipponneau [8] for FBR MOX, and significantly lower than his results corresponding to the range 3-15 wt.% Pu. This difference in thermal conductivity is of about 20%, i.e. higher than the measurement uncertainties.Thus, a significant difference was observed between FBR and PWR MOX fuels, but was not explained. This difference

  11. Study of Air Ingress Across the Duct During the Accident Conditions

    SciTech Connect

    Hassan, Yassin

    2013-05-06

    The goal of this project is to study the fundamental physical phenomena associated with air ingress in very high temperature reactors (VHTRs). Air ingress may occur due to a rupture of primary piping and a subsequent breach in the primary pressure boundary in helium-cooled and graphite-moderated VHTRs. Significant air ingress is a concern because it introduces potential to expose the fuel, graphite support rods, and core to a risk of severe graphite oxidation. Two of the most probable air ingress scenarios involve rupture of a control rod or fuel access standpipe, and rupture in the main coolant pipe on the lower part of the reactor pressure vessel. Therefore, establishing a fundamental understanding of air ingress phenomena is critical in order to rationally evaluate safety of existing VHTRs and develop new designs that minimize these risks. But despite this importance, progress toward development these predictive capabilities has been slowed by the complex nature of the underlying phenomena. The combination of inter-diffusion among multiple species, molecular diffusion, natural convection, and complex geometries, as well as the multiple chemical reactions involved, impose significant roadblocks to both modeling and experiment design. The project team will employ a coordinated experimental and computational effort that will help gain a deeper understanding of multiphased air ingress phenomena. This project will enhance advanced modeling and simulation methods, enabling calculation of nuclear power plant transients and accident scenarios with a high degree of confidence. The following are the project tasks: Perform particle image velocimetry measurement of multiphase air ingresses; and, Perform computational fluid dynamics analysis of air ingress phenomena.

  12. Criticality safety assessment of a TRIGA reactor spent-fuel pool under accident conditions

    SciTech Connect

    Glumac, B; Ravnik, M.; Logar, M.

    1997-02-01

    Additional criticality safety analysis of a pool-type storage for TRIGA spent fuel at the Jozef Stefan Institute in Ljubljana, Slovenia, is presented. Previous results have shown that subcriticality is not guaranteed for some postulated accidents (earthquake with subsequent fuel rack disintegration resulting in contact fuel pitch) under the assumption that the fuel rack is loaded with fresh 12 wt% standard fuel. To mitigate this deficiency, a study was done on replacing a certain number of fuel elements in the rack with cadmium-loaded absorber rods. The Monte Carlo computer code MCNP4A with an ENDF/B-V library and detailed three-dimensional geometrical model of the spent-fuel rack was used for this purpose. First, a minimum critical number of fuel elements was determined for contact pitch, and two possible geometries of rack disintegration were considered. Next, it was shown that subcriticality can be ensured when pitch is decreased from a rack design pitch of 8 cm to contact, if a certain number of fuel elements (8 to 20 out of 70) are replaced by absorber rods, which are uniformly mixed into the lattice. To account for the possibility that random mixing of fuel elements and absorber rods can occur during rack disintegration and result in a supercritical configuration, a probabilistic study was made to sample the probability density functions for random absorber rod lattice loadings. Results of the calculations show that reasonably low probabilities for supercriticality can be achieved (down to 10{sup {minus}6} per severe earthquake, which would result in rack disintegration and subsequent maximum possible pitch decrease) even in the case where fresh 12 wt% standard TRIGA fuel would be stored in the spent-fuel pool.

  13. Thermodynamic evaluation of the solidification phase of molten core-concrete under estimated Fukushima Daiichi nuclear power plant accident conditions

    NASA Astrophysics Data System (ADS)

    Kitagaki, Toru; Yano, Kimihiko; Ogino, Hideki; Washiya, Tadahiro

    2017-04-01

    The solidification phases of molten core-concrete under the estimated molten core-concrete interaction (MCCI) conditions in the Fukushima Daiichi Nuclear Power Plant Unit 1 were predicted using the thermodynamic equilibrium calculation tool, FactSage 6.2, and the NUCLEA database in order to contribute toward the 1F decommissioning work and to understand the accident progression via the analytical results for the 1F MCCI products. We showed that most of the U and Zr in the molten core-concrete forms (U,Zr)O2 and (Zr,U)SiO4, and the formation of other phases with these elements is limited. However, the formation of (Zr,U)SiO4 requires a relatively long time because it involves a change in the crystal structure from fcc-(U,Zr)O2 to tet-(U,Zr)O2, followed by the formation of (Zr,U)SiO4 by reaction with SiO2. Therefore, the formation of (Zr,U)SiO4 is limited under quenching conditions. Other common phases are the oxide phases, CaAl2Si2O8, SiO2, and CaSiO3, and the metallic phases of the Fe-Si and Fe-Ni alloys. The solidification phenomenon of the crust under quenching conditions and that of the molten pool under thermodynamic equilibrium conditions in the 1F MCCI progression are discussed.

  14. Recent condition of Fukushima-Daiichi nuclear plant accident in Japan

    NASA Astrophysics Data System (ADS)

    Ohnishi, Takeo

    2012-07-01

    Japanese government pronounced that the second step had been succeeded in the cooling down of the reactors on the middle of Dec 2011 at Fukushima-Daiichi nuclear power plant. In future, government aims to take out fuels from 4 reactors and shields their units. The nuclear power plants in Japan are gradually decreasing, because the checking for them has been performed and the permission of the re-start of them are difficult to be gained. On January 1st 2012, only 7 units are operating in Japan, though the about 54 units were set before the accident. At the end of December 2011, most radiations are emitted from cesium. The radioactivity in air and land around the plant was daily reported in newspaper. Government often gave the information about some RI-contamination in foods. They were taken off from the markets. At now stage, the most important project is the decontamination of radioactive materials from houses, schools, public facilities and industries. Government will newly classify three evacuation areas from April 2012. At the end of March, evacuees under 20 mSv/year possibly can go back their homes (evacuation-free area). The environmental doses will be depressed by decontamination under 10 mSv/year. At the range of 20-50 mSv, people will be controlled to live these area, they can go back their houses temporally (evacuation area). Over 50 mSv/year, however, people can go back house until 5 years at least (prohibited area). In new radiation limitation for a risk of human health, government made 100 mSv and 20 mSv for life span for one year, respectively. The aim of decontamination was set up to 10 mSv for 1 year and 5 mSv for next stage. A target at school is under1 mSv for children. Government accepted a new severe limitation per1 Kg at four groups; milk of baby (100 Bq) and milk (100 Bq), drinking water (10 Bq) and food (100 Bq). Tokyo electric Power Company and government should pay the sufficient compensation to evacuees. In future, they should keep health

  15. Activity ratios in soil contaminated by the source of different reactor condition in the FDNPP accident

    NASA Astrophysics Data System (ADS)

    Satou, Yukihiko; Sueki, Keisuke; Sasa, Kimikazu; Matsunaka, Tetsuya; Shibayama, Nao; Takahashi, Tsutomu; Kinoshita, Norikazu

    2014-05-01

    The Fukushima Dai-ichi Nuclear power plant (FDNPP) accident caused radioactive contamination on the surface soil at Fukushima and its adjacent prefectures. Substantial contamination has been found in the northwestern area from the FDNPP, according to the airborne monitoring and ground base survey by the Japanese government. Activity ratios would have characteristic information on emission sources because each relevant reactor had different amount of radionuclide and different activity ratio. The ratios can be used to clarify more detailed source and process in the contamination. We have addressed to consider them in Namie town, northwestern region from the FDNPP. This study focused on the gamma-ray emitting radionuclides of 134Cs, 137Cs, and 110mAg. The activities were decay-corrected as of 11th March, 2011 when all nuclear reactors scrammed. Data of activity ratios by our results and the Japanese official report classified the investigated northwestern region into 3 groups. Ratios of 0.02 for 110mAg/137Cs and 0.90 for 134Cs/137Cs were observed in the northern region of 15 km inside from the FDNPP. On the other hand, two kinds of 110mAg/137Cs ratios of 0.005 and 0.002 were distributed broadly in the region 60 km away from the plant. The 134Cs/137Cs ratio was 0.98 there. The activity ratios of 110mAg/137Cs and 134Cs/137Cs in the northern region from the FDNPP correspond to those of nuclear fuel in Unit 1 according to estimation using the ORIGEN code. The 134Cs/137Cs in the northwestern area from FDNPP agrees with that of Unit 2 and 3. The 110mAg/137Cs ratios of 0.005 and0.002 are 1/5 - 1/10 of the Unit 2 and 3. Official report has announced that discharges of the radionuclides from Unit 2 and 3 occurred on 14th March, 2011. It is known that contamination in the northwestern region from the FDNPP took place on 15th March, 2011. Plausible species for silver in reactor core, metal, and halide etc. have higher boiling point than those species for cesium. The core would

  16. Accidents waiting to happen: the contribution of latent conditions to patient safety

    PubMed Central

    Lowe, C M

    2006-01-01

    Poor design of elements in a healthcare system produce the latent conditions which result in patient safety incidents. A better understanding of these elements and specific healthcare design challenges will result in improved patient safety. PMID:17142613

  17. Assessment of light water reactor accident management programs and experience

    SciTech Connect

    Hammersley, R.J.

    1992-03-01

    The objective of this report is to provide an assessment of the current light water reactor experience regarding accident management programs and associated technology developments. This assessment for light water reactor (LWR) designs is provided as a resource and reference for the development of accident management capabilities for the production reactors at the Savannah River Site. The specific objectives of this assessment are as follows: 1. Perform a review of the NRC, utility, and industry (NUMARC, EPRI) accident management programs and implementation experience. 2. Provide an assessment of the problems and opportunities in developing an accident management program in conjunction or following the Individual Plant Examination process. 3. Review current NRC, utility, and industry technological developments in the areas of computational tools, severe accident predictive tools, diagnostic aids, and severe accident training and simulation.

  18. MODELLING OF FUEL BEHAVIOUR DURING LOSS-OF-COOLANT ACCIDENTS USING THE BISON CODE

    SciTech Connect

    Pastore, G.; Novascone, S. R.; Williamson, R. L.; Hales, J. D.; Spencer, B. W.; Stafford, D. S.

    2015-09-01

    This work presents recent developments to extend the BISON code to enable fuel performance analysis during LOCAs. This newly developed capability accounts for the main physical phenomena involved, as well as the interactions among them and with the global fuel rod thermo-mechanical analysis. Specifically, new multiphysics models are incorporated in the code to describe (1) transient fission gas behaviour, (2) rapid steam-cladding oxidation, (3) Zircaloy solid-solid phase transition, (4) hydrogen generation and transport through the cladding, and (5) Zircaloy high-temperature non-linear mechanical behaviour and failure. Basic model characteristics are described, and a demonstration BISON analysis of a LWR fuel rod undergoing a LOCA accident is presented. Also, as a first step of validation, the code with the new capability is applied to the simulation of experiments investigating cladding behaviour under LOCA conditions. The comparison of the results with the available experimental data of cladding failure due to burst is presented.

  19. FASTGRASS: A mechanistic model for the prediction of Xe, I, Cs, Te, Ba, and Sr release from nuclear fuel under normal and severe-accident conditions

    SciTech Connect

    Rest, J.; Zawadzki, S.A. )

    1992-09-01

    The primary physical/chemical models that form the basis of the FASTGRASS mechanistic computer model for calculating fission-product release from nuclear fuel are described. Calculated results are compared with test data and the major mechanisms affecting the transport of fission products during steady-state and accident conditions are identified.

  20. Creation of Computational Benchmarks for LEU and MOX Fuel Assemblies Under Accident Conditions

    SciTech Connect

    Pavlovitchev, A M; Kalashnikov, A G; Kalugin, M A; Lazarenko, A P; Maiorov, L V; Sidorenko, V D

    1999-11-01

    The result of VVER-1000 computational benchmarks, calculations obtained with the use of various Russian codes (such as MCU-RFFI/A, TVS-M and WIMS-ABBN) are presented. List of benchmarks includes LEU and MOX cells with fresh and spent fuel under various conditions (for calculation of kinetic parameters, Doppler coefficient, reactivity effect of decreasing the water density). Calculations results are compared with each other and results of this comparison are discussed.

  1. Determination of transient radial-azimuthal temperature distributions in fuel bundles under loss-of-coolant-accident conditions

    SciTech Connect

    Saltos, N.T.; Christensen, R.N.; Aldemir, T.

    1988-10-01

    A methodology is presented to determine the transient temperature distributions in fuel bundles under loss-of-coolant accident (LOCA) conditions using a recently developed variational technique for the solution of radial-azimuthal heat conduction in the fuel rods and the modified view factor concept proposed by Uchida and Nakamure to model the radiative heat transfer between the rods. The variational technique is based on the Lebron-Labermont restricted variational principle and represents the temperature distribution in the rods at a given time during the LOCA via parabolic and circular trial functions in the radial and azimuthal directions, respectively. The methodology is implemented to a 4 x 4 boiling water reactor fuel bundle under typical LOCA conditions to investigate the effects of changes in rod heat transfer characteristics and simplifying modeling assumptions on predicted rod temperature distributions. The results show that these effects depend on the rod location in the assembly and LOCA phase under consideration and indicate that same degree of modelling detail may not be necessary for all the rods in the bundle at all times during the LOCA.

  2. TRUMP-BD: A computer code for the analysis of nuclear fuel assemblies under severe accident conditions

    SciTech Connect

    Lombardo, N.J.; Marseille, T.J.; White, M.D.; Lowery, P.S.

    1990-06-01

    TRUMP-BD (Boil Down) is an extension of the TRUMP (Edwards 1972) computer program for the analysis of nuclear fuel assemblies under severe accident conditions. This extension allows prediction of the heat transfer rates, metal-water oxidation rates, fission product release rates, steam generation and consumption rates, and temperature distributions for nuclear fuel assemblies under core uncovery conditions. The heat transfer processes include conduction in solid structures, convection across fluid-solid boundaries, and radiation between interacting surfaces. Metal-water reaction kinetics are modeled with empirical relationships to predict the oxidation rates of steam-exposed Zircaloy and uranium metal. The metal-water oxidation models are parabolic in form with an Arrhenius temperature dependence. Uranium oxidation begins when fuel cladding failure occurs; Zircaloy oxidation occurs continuously at temperatures above 13000{degree}F when metal and steam are available. From the metal-water reactions, the hydrogen generation rate, total hydrogen release, and temporal and spatial distribution of oxide formations are computed. Consumption of steam from the oxidation reactions and the effect of hydrogen on the coolant properties is modeled for independent coolant flow channels. Fission product release from exposed uranium metal Zircaloy-clad fuel is modeled using empirical time and temperature relationships that consider the release to be subject to oxidation and volitization/diffusion ( bake-out'') release mechanisms. Release of the volatile species of iodine (I), tellurium (Te), cesium (Ce), ruthenium (Ru), strontium (Sr), zirconium (Zr), cerium (Cr), and barium (Ba) from uranium metal fuel may be modeled.

  3. [The rehabilitation under alpine conditions of the participants in the cleanup of the accident at the Chernobyl Atomic Electric Power Station who are ill with chronic bronchitis].

    PubMed

    Brimkulov, N N; Abdulina, A A; Davletalieva, N E; Bakirova, A N; Karamuratov, A; Mirrakhimov, M M

    1996-01-01

    24 patients exposed to low-dose radiation after the Chernobyl accident were examined before and after 24-day treatment of chronic bronchitis in the high-altitude rehabilitation center (3200 m above the sea level) in Tien Shan. Sanogenic alpine climate improved the patients' general condition, physical performance and lung ventilation, corrected compromised immunity. After high-altitude adaptation tracheobronchial inflammation alleviated, cytologic composition and surface activity of bronchoalveolar fluid returned to normal. Therefore, high-altitude treatment of Chernobyl accident victims with chronic bronchitis is effective and can be recommended for such patients.

  4. In-reactor performance of LWR-type tritium targe rods

    SciTech Connect

    Lanning, D.D.; Paxton, M.M.; Crumbaugh, L.

    1992-06-01

    Pacific Northwest Laboratory (PNL) has conducted several one-year irradiation tests of light-water reactor (LWR)-type tritium target rods. This report discusses these tests which have been sponsored by DOE`s Office of New Production Reactors. The first test, designated water capsule-I (WC-1), was conducted in the Advanced Test Reactor (ATR) at DOE`s Idaho National Engineering Laboratory from November 1989 to December 1990. The test vehicle contained a single four-foot target rod within a pressurized water capsule. The capsule maintained the rod at PWR-type water temperature and pressure conditions.

  5. Behavior of U3Si2 Fuel and FeCrAl Cladding under Normal Operating and Accident Reactor Conditions

    SciTech Connect

    Gamble, Kyle Allan Lawrence; Hales, Jason Dean; Barani, Tommaso; Pizzocri, Davide; Pastore, Giovanni

    2016-09-01

    As part of the Department of Energy's Nuclear Energy Advanced Modeling and Simulation program, an Accident Tolerant Fuel High Impact Problem was initiated at the beginning of fiscal year 2015 to investigate the behavior of \\usi~fuel and iron-chromium-aluminum (FeCrAl) claddings under normal operating and accident reactor conditions. The High Impact Problem was created in response to the United States Department of Energy's renewed interest in accident tolerant materials after the events that occurred at the Fukushima Daiichi Nuclear Power Plant in 2011. The High Impact Problem is a multinational laboratory and university collaborative research effort between Idaho National Laboratory, Los Alamos National Laboratory, Argonne National Laboratory, and the University of Tennessee, Knoxville. This report primarily focuses on the engineering scale research in fiscal year 2016 with brief summaries of the lower length scale developments in the areas of density functional theory, cluster dynamics, rate theory, and phase field being presented.

  6. Feasibility study of superconducting power cables for DC electric railway feeding systems in view of thermal condition at short circuit accident

    NASA Astrophysics Data System (ADS)

    Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru

    2016-12-01

    A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.

  7. Aging, condition monitoring, and loss-of-coolant accident (LOCA) tests of class 1E electrical cables. Ethylene propylene rubber cables, Volume 2

    SciTech Connect

    Jacobus, M.J.

    1992-11-01

    This report describes the results of aging, condition monitoring, and accident testing of ethylene propylene rubber (EPR) cables. Three sets of cables were aged for up to 9 months under simultaneous thermal ({approx_equal}100{degrees}C) and radiation ({approx_equal}0.10 kGy/hr) conditions. A sequential accident consisting of high dose rate irradiation ({approx_equal}6 kGy/hr) and high temperature steam followed the aging. Also exposed to the accident conditions was a fourth set of cables, which were unaged. The test results indicate that most properly installed EPR cables should be able to survive an accident after 60 years for total aging doses of at least 150--200 kGy and for moderate ambient temperatures on the order of 45--55{degrees}C (potentially higher or lower, depending on material specific activation energies and total radiation doses). Mechanical measurements (primarily elongation, modulus, and density) were more effective than electrical measurements for monitoring age-related degradation.

  8. Experimental results from containment piping bellows subjected to severe accident conditions. Volume 1, Results from bellows tested in `like-new` conditions

    SciTech Connect

    Lambert, L.D.; Parks, M.B.

    1994-09-01

    Bellows are an integral part of the containment pressure boundary in nuclear power plants. They are used at piping penetrations to allow relative movement between piping and the containment wall, while minimizing the load imposed on the piping and wall. Piping bellows are primarily used in steel containments; however, they have received limited use in some concrete (reinforced and prestressed) containments. In a severe accident they may be subjected to pressure and temperature conditions that exceed the design values, along with a combination of axial and lateral deflections. A test program to determine the leak-tight capacity of containment penetration bellows is being conducted under the sponsorship of the US Nuclear Regulatory Commission at Sandia National Laboratories. Several different bellows geometries, representative of actual containment bellows, have been subjected to extreme deflections along with pressure and temperature loads. The bellows geometries and loading conditions are described along with the testing apparatus and procedures. A total of thirteen bellows have been tested, all in the `like-new` condition. (Additional tests are planned of bellows that have been subjected to corrosion.) The tests showed that bellows are capable of withstanding relatively large deformations, up to, or near, the point of full compression or elongation, before developing leakage. The test data is presented and discussed.

  9. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions

    NASA Astrophysics Data System (ADS)

    Park, Dong Jun; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2016-12-01

    This study investigates protective coatings for improving the high temperature oxidation resistance of Zr fuel claddings for light water nuclear reactors. FeCrAl alloy and Cr layers were deposited onto Zr plates and tubes using cold spraying. For the FeCrAl/Zr system, a Mo layer was introduced between the FeCrAl coating and the Zr matrix to prevent inter-diffusion at high temperatures. Both the FeCrAl and Cr coatings improved the oxidation resistance compared to that of the uncoated Zr alloy when exposed to a steam environment at 1200 °C. The ballooning behavior and mechanical properties of the coated cladding samples were studied under simulated loss-of-coolant accident conditions. The coated samples showed higher burst temperatures, lower circumferential strain, and smaller rupture openings compared to the uncoated Zr. Although 4-point bend tests of the coated samples showed a small increase in the maximum load, ring compression tests of a sectioned sample showed increased ductility.

  10. Cloud conditions for low atmospheric electricity during disturbed period after the Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Yatagai, Akiyo; Yamauchi, Masatoshi; Ishihara, Masahito; Watanabe, Akira; Murata, Ken T.

    2016-04-01

    The vertical (downward) component of the atmospheric electric field, or potential gradient (PG) under cloud generally reflects the electric charge distribution in the cloud. The PG data at Kakioka, 150 km southwest of the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) suggested that this relation can be modified when the radioactive dust was floating in the air, and the exact relation between the weather and this modification could lead to new insight in plasma physics in the wet atmosphere. Unfortunately the detailed weather data was not available above Kakioka (only the precipitation data was available). Therefore, estimation of the cloud condition during March 2011 was strongly needed. We have developed various meteorological information links (http://www.chikyu.ac.jp/akiyo/firis/) and original radar and precipitation data will be released from the page. Here we present various radar images that we have prepared for March 2011. We prepared three-dimensional radar reflectivity of the C-band radar of JMA in every 10 minutes over all Kanto Plain centered at Tokyo and Fukushima prefecture centered at Sendai. We have released images of each altitude (1km interval) for 15th - 16thand 21th March (http://sc-web.nict.go.jp/fukushima/). The vertical structure of the rainfall is almost the same at 4km with the surface and sporadic high precipitation is observed at 6 km height for 15-16th. While, generally precipitation pattern that is similar to the surface is observed at 5km height on 21th. On the other hand, an X-band radar centered at Fukushima university is also used to know more localized raindrop patterns at zenith angle of 4 degree. We prepared 10-minutes/120m mesh precipitation patterns for March 15th, 16th, 17th, 18th, 20th, 21th, 22th and 23th. Quantitative estimate is difficult from this X-band radar, but localized structure, especially for the rain-band along Nakadori (middle valley in Fukushima prefecture), that is considered to determine the highly

  11. Ion irradiation testing of Improved Accident Tolerant Cladding Materials

    SciTech Connect

    Anderoglu, Osman; Tesmer, Joseph R.; Maloy, Stuart A.

    2014-01-14

    This report summarizes the results of ion irradiations conducted on two FeCrAl alloys (named as ORNL A&B) for improving the accident tolerance of LWR nuclear fuel cladding. After irradiation with 1.5 MeV protons to ~0.5 to ~1 dpa and 300°C nanoindentations were performed on the cross-sections along the ion range. An increase in hardness was observed in both alloys. Microstructural analysis shows radiation induced defects.

  12. Modeling and Analysis of UN TRISO Fuel for LWR Application Using the PARFUME Code

    SciTech Connect

    Blaise Collin

    2014-08-01

    The Idaho National Laboraroty (INL) PARFUME (particle fuel model) code was used to assess the overall fuel performance of uranium nitride (UN) tristructural isotropic (TRISO) ceramic fuel under irradiation conditions typical of a Light Water Reactor (LWR). The dimensional changes of the fuel particle layers and kernel were calculated, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn up. These material properties have large uncertainties at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, a large experimental effort would be needed to establish material properties, including kernel and PyC swelling rates, under these conditions before definitive conclusions can be drawn on the behavior of UN TRISO fuel in LWRs.

  13. Estimates of early containment loads from core melt accidents. Draft report for comment

    SciTech Connect

    1985-12-01

    The thermal-hydraulic processes and corium debris-material interactions that can result from core melting in a severe accident have been studied to evaluate the potential effect of such phenomena on containment integrity. Pressure and temperature loads associated with representative accident sequences have been estimated for the six various LWR containment types used within the United States. Summaries distilling the analyses are presented and an interpretation of the results provided. 13 refs., 68 figs., 39 tabs.

  14. Probabilities of Ground Impact Conditions of the New Horizons Spacecraft and RTG for Near Launch Pad Accidents

    NASA Astrophysics Data System (ADS)

    McGrath, Brian E.; Frostbutter, Dave A.; Chang, Yale

    2007-01-01

    As part of the Pluto New Horizons mission's safety effort, assessment of accidental ground impacts of the spacecraft (SC) and its components, including the radioisotope thermoelectric generator (RTG), near the launch pad are of particular interest as they determine the severity of the mechanical insult to the hardware. Two configurations are studied: the SC with RTG joined to the third stage STAR™ 48B solid rocket motor [Launch Vehicle (LV) payload], and the RTG joined to the RTG mounting fixture but separated from the SC after an at-altitude destruct action. The objective of the analyses conducted is to determine the probabilities of impact orientation and average impact velocity of these configurations for a near launch pad accident These are of interest because of the possibility that the STAR 48B solid rocket motor could impact on top of the RTG, and because the RTG/RTG mounting fixture impact orientations probabilities and velocities directly affect the mechanical response of the internal GPHS modules. The probabilities of impact orientation and impact velocity of the LV payload as a function of mission elapsed time at thrust termination are determined using a six degree of freedom motion simulation computer program coupled with a Monte Carlo method. The motion simulation accounts for the LV payload aerodynamic properties, mass properties, and the initial flight conditions (αt, γ, V, q and r). Baseline conditions for position, direction, velocity and angular rates, are obtained from the mission timeline information for the Atlas V 551 launch vehicle. The results from this new and unique approach contributed information to safety assessments for the launch approval process. As the environments associated with the RTG/RTG mounting fixture impact orientations probabilities and velocities were less severe than earlier assumptions, this contributed to a reduction in the estimated risk for the Pluto mission.

  15. Enhanced Accident Tolerant Fuels for LWRS - A Preliminary Systems Analysis

    SciTech Connect

    Gilles Youinou; R. Sonat Sen

    2013-09-01

    The severe accident at Fukushima Daiichi nuclear plants illustrates the need for continuous improvements through developing and implementing technologies that contribute to safe, reliable and cost-effective operation of the nuclear fleet. Development of enhanced accident tolerant fuel contributes to this effort. These fuels, in comparison with the standard zircaloy – UO2 system currently used by the LWR industry, should be designed such that they tolerate loss of active cooling in the core for a longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, and design-basis events. This report presents a preliminary systems analysis related to most of these concepts. The potential impacts of these innovative LWR fuels on the front-end of the fuel cycle, on the reactor operation and on the back-end of the fuel cycle are succinctly described without having the pretension of being exhaustive. Since the design of these various concepts is still a work in progress, this analysis can only be preliminary and could be updated as the designs converge on their respective final version.

  16. Accident liability.

    PubMed Central

    Kuné, J B

    1985-01-01

    The idea of accident proneness, which originated in the early 1900s, has proved to be ineffectual as an operational concept. Discrete econometric methods may be useful to find out which factors are at work in the process that leads to accidents and whether there are individuals who are more liable to accidents than others. PMID:3986144

  17. On the effect of accident conditions on the molten core debris relocation into lower head of a PWR vessel

    NASA Astrophysics Data System (ADS)

    An, Xuegao

    From 1975 to present, it has been found that the primary risk to the public health and safety from nuclear power reactors lies in ``beyond design basis'' accidents. During such severe accidents, melting of the reactor core may lead to a loss of primary system integrity, or even containment failure, which will allow escape of significant amounts of radioactive material to the environment. It is very important to understand the mechanism of reactor core degradation during a severe accident. In this study, the damage progression of the reactor core and the slumping mechanism of molten material to the lower head of the reactor vessel were examined through simulation of severe accident scenarios that lead to large-scale core damage. The calculations were carried out using the computer code SCDAP/RELAP5. Different modeling parameters or models were used in calculations by version MOD3.2. The cladding oxidation shell ``durability'' parameter, which can control the timing of fuel clad failure, was varied. The heat flux model of steady-state natural convection of the molten pool was changed. The ultimate strength of the crust supporting the molten pool was doubled. These changes were made to examine the effects on the calculated core damage, and the molten pool expansion and its slumping. Different accident scenarios were simulated. The HPI/makeup flow rates were changed. The timing of opening and closing the PORV was considered. Reflood by restart of coolant pump 2B was also studied. Finally, the size of the PORV opening was also changed. The effects of these accident scenarios on accident progression and core damage process were studied. From the calculated results, it was concluded that the accurate modeling of core damage phenomena was very important to the prediction of the later stage of an accident. According to code MOD3.2, the molten material in a pool slumped to the lower head of the reactor vessel when the juncture of the top and side crusts failed after the

  18. Improving the safety of LWR power plants. Final report

    SciTech Connect

    Not Available

    1980-04-01

    This report documents the results of the Study to identify current, potential research issues and efforts for improving the safety of Light Water Reactor (LWR) power plants. This final report describes the work accomplished, the results obtained, the problem areas, and the recommended solutions. Specifically, for each of the issues identified in this report for improving the safety of LWR power plants, a description is provided in detail of the safety significance, the current status (including information sources, status of technical knowledge, problem solution and current activities), and the suggestions for further research and development. Further, the issues are ranked for action into high, medium, and low priority with respect to primarily (a) improved safety (e.g. potential reduction in public risk and occupational exposure), and secondly (b) reduction in safety-related costs (improving or maintaining level of safety with simpler systems or in a more cost-effective manner).

  19. Equipment designs for the spent LWR fuel dry storage demonstration

    SciTech Connect

    Steffen, R.J.; Kurasch, D.H.; Hardin, R.T.; Schmitten, P.F.

    1980-01-01

    In conjunction with the Spent Fuel Handling and Packaging Program (SFHPP) equipment has been designed, fabricated and successfully utilized to demonstrate the packaging and interim dry storage of spent LWR fuel. Surface and near surface storage configurations containing PWR fuel assemblies are currently on test and generating baseline data. Specific areas of hardware design focused upon include storage cell components and the support related equipment associated with encapsulation, leak testing, lag storage, and emplacement operations.

  20. Code System to Predict LWR Reflood Heat Transfer.

    SciTech Connect

    KIRCHNER, WALTER L.

    1999-04-27

    Version: 00 REFLUX calculates the temperature-time history of a representative fuel rod during the reflood stage of a hypothetical loss-of-coolant accident (LOCA). The logic used fo selection of the appropriate flow regime for analysis of the cladding temperature transient is based on the axial position with regard to the continuous liquid level (based on a mass balance), a liquid carry-over criterion (derived from a force balance on a drop suspended in a vapor stream), and the local cladding surface temperature. A generalized boiling curve is constructed, and the local flow and clad conditions determine the applicable heat transfer coefficient.

  1. Compatibility/Stability Issues in the Use of Nitride Kernels in LWR TRISO Fuel

    SciTech Connect

    Armstrong, Beth L; Besmann, Theodore M

    2012-02-01

    The stability of the SiC layer in the presence of free nitrogen will be dependent upon the operating temperatures and resulting nitrogen pressures whether it is at High Temperature Gas-Cooled Reactor (HTGR) temperatures of 1000-1400 C (coolant design dependent) or LWR temperatures that range from 500-700 C. Although nitrogen released in fissioning will form fission product nitrides, there will remain an overpressure of nitrogen of some magnitude. The nitrogen can be speculated to transport through the inner pyrolytic carbon layer and contact the SiC layer. The SiC layer may be envisioned to fail due to resulting nitridation at the elevated temperatures. However, it is believed that these issues are particularly avoided in the LWR application. Lower temperatures will result in significantly lower nitrogen pressures. Lower temperatures will also substantially reduce nitrogen diffusion rates through the layers and nitriding kinetics. Kinetics calculations were performed using an expression for nitriding silicon. In order to further address these concerns, experiments were run with surrogate fuel particles under simulated operating conditions to determine the resulting phase formation at 700 and 1400 C.

  2. Understanding EUV mask blank surface roughness induced LWR and associated roughness requirement

    SciTech Connect

    Yan, Pei-Yang; Zhang, Guojing; Gullickson, Eric M.; Goldberg, Kenneth A.; Benk, Markus P.

    2015-03-01

    Extreme ultraviolet lithography (EUVL) mask multi-layer (ML) blank surface roughness specification historically comes from blank defect inspection tool requirement. Later, new concerns on ML surface roughness induced wafer pattern line width roughness (LWR) arise. In this paper, we have studied wafer level pattern LWR as a function of EUVL mask surface roughness via High-NA Actinic Reticle Review Tool. We found that the blank surface roughness induced LWR at current blank roughness level is in the order of 0.5nm 3σ for NA=0.42 at the best focus. At defocus of ±40nm, the corresponding LWR will be 0.2nm higher. Further reducing EUVL mask blank surface roughness will increase the blank cost with limited benefit in improving the pattern LWR, provided that the intrinsic resist LWR is in the order of 1nm and above.

  3. Gaseous swelling of U 3 Si 2 during steady-state LWR operation: A rate theory investigation

    DOE PAGES

    Miao, Yinbin; Gamble, Kyle A.; Andersson, David; ...

    2017-07-25

    Rate theory simulations of fission gas behavior in U3Si2 are reported for light water reactor (LWR) steady-state operation scenarios. We developed a model of U3Si2 and implemented into the GRASS-SST code based on available research reactor post-irradiation examination (PIE) data, and density functional theory (DFT) calculations of key material properties. Simplified peripheral models were also introduced to capture the fuel-cladding interaction. The simulations identified three regimes of U3Si2 swelling behavior between 390 K and 1190 K. Under typical steady-state LWR operating conditions where U3Si2 temperature is expected to be below 1000 K, intragranular bubbles are dominant and fission gas ismore » retained in those bubbles. The consequent gaseous swelling is low and associated degradation in the fuel thermal conductivity is also limited. Those predictions of U3Si2 performance during steady-state operations in LWRs suggest that this fuel material is an appropriate LWR candidate fuel material. Fission gas behavior models established based on this work are being coupled to the thermo-mechanical simulation of the fuel behavior using the BISON fuel performance multi-dimensional finite element code.« less

  4. Gaseous Swelling of U3Si2 during Steady-State LWR Operation: A Rate Theory Invesitgation

    DOE PAGES

    Miao, Yinbin; Gamble, Kyle A.; Andersson, David; ...

    2017-10-01

    Rate theory simulations of fission gas behavior in U3Si2 are reported for light water reactor (LWR) steady-state operation scenarios. A model of U3Si2 was developed and implemented into the GRASS-SST code based on available research reactor post-irradiation examination (PIE) data, and density functional theory (DFT) calculations of key material properties. Simplified peripheral models were also introduced to capture the fuel-cladding interaction. The simulations identified three regimes of U3Siz swelling behavior between 390 K and 1190 K. Under typical steady-state LWR operating conditions where U3Si2 temperature is expected to be below 1000 K, intragranular bubbles are dominant and fission gas ismore » retained in those bubbles . The consequent gaseous swelling is low and associated degradation in the fuel thermal conductivity is also limited. Those predictions of U3Si2 performance during steady-state operations in LWRs suggest that this fuel material is an appropriate LWR candidate fuel material. Fission gas behavior models established based on this work are being coupled to the thermo-mechanical simulation of the fuel behavior using the BISON fuel performance multi-dimensional finite element code.« less

  5. CFD Simulations of a Flow Mixing and Heat Transfer Enhancement in an Advanced LWR Nuclear Fuel Assembly

    SciTech Connect

    In, Wang-Kee; Chun, Tae-Hyun; Shin, Chang-Hwan; Oh, Dong-Seok

    2007-07-01

    A computational fluid dynamics (CFD) analysis has been performed to investigate a flow-mixing and heat-transfer enhancement caused by a mixing-vane spacer in a LWR fuel assembly which is a rod bundle. This paper presents the CFD simulations of a flow mixing and heat transfer in a fully heated 5x5 array of a rod bundle with a split-vane and hybrid-vane spacer. The CFD prediction at a low Reynolds number of 42,000 showed a reasonably good agreement of the initial heat transfer enhancement with the measured one for a partially heated experiment using a similar spacer structure. The CFD simulation also predicted the decay rate of a normalized Nusselt number downstream of the split-vane spacer which agrees fairly well with those of the experiment and the correlation. The CFD calculations for the split vane and hybrid vane at the LWR operating conditions(Re = 500,000) predicted hot fuel spots in a streaky structure downstream of the spacer, which occurs due to the secondary flow occurring in an opposite direction near the fuel rod. However, the split-vane and hybrid-vane spacers are predicted to significantly enhance the overall heat transfer of a LWR nuclear fuel assembly. (authors)

  6. 49 CFR 195.54 - Accident reports.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Accident reports. 195.54 Section 195.54... PIPELINE Annual, Accident, and Safety-Related Condition Reporting § 195.54 Accident reports. (a) Each operator that experiences an accident that is required to be reported under § 195.50 must, as soon...

  7. 49 CFR 195.54 - Accident reports.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Accident reports. 195.54 Section 195.54... PIPELINE Annual, Accident, and Safety-Related Condition Reporting § 195.54 Accident reports. (a) Each operator that experiences an accident that is required to be reported under § 195.50 must, as soon...

  8. 49 CFR 195.54 - Accident reports.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Accident reports. 195.54 Section 195.54... PIPELINE Annual, Accident, and Safety-Related Condition Reporting § 195.54 Accident reports. (a) Each operator that experiences an accident that is required to be reported under § 195.50 must, as soon...

  9. 49 CFR 195.54 - Accident reports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Accident reports. 195.54 Section 195.54... PIPELINE Annual, Accident, and Safety-Related Condition Reporting § 195.54 Accident reports. (a) Each operator that experiences an accident that is required to be reported under § 195.50 shall as soon...

  10. 49 CFR 195.54 - Accident reports.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Accident reports. 195.54 Section 195.54... PIPELINE Annual, Accident, and Safety-Related Condition Reporting § 195.54 Accident reports. (a) Each operator that experiences an accident that is required to be reported under § 195.50 must, as soon...

  11. Measurements and sensitivities of LWR in poly spacers

    NASA Astrophysics Data System (ADS)

    Ayal, Guy; Shauly, Eitan; Levi, Shimon; Siany, Amit; Adan, Ofer; Shacham-Diamand, Yosi

    2010-03-01

    LER and LWR have long been considered a primary issue in process development and monitoring. Development of a low power process flavors emphasizes the effect of LER, LWR on different aspects of the device. Gate level performance, particularly leakage current at the front end of line, resistance and reliability in the back-end layers. Traditionally as can be seen in many publications, for the front end of line the focus is mainly on Poly and Active area layers. Poly spacers contribution to the gate leakage, for example, is rarely discussed. Following our research done on sources of gate leakage, we found leakage current (Ioff) in some processes to be highly sensitive to changes in the width of the Poly spacers - even more strongly to the actual Poly gate CDs. Therefore we decided to measure Poly spacers LWR, its correlation to the LWR in the poly, and its sensitivity to changes in layout and OPC. In our last year publication, we defined the terms LLER (Local Line Edge Roughness) and LLWR (Local Line Width Roughness). The local roughness is measured as the 3-sigma value of the line edge/width in a 5-nm segment around the measurement point. We will use these terms in this paper to evaluate the Poly roughness impact on Poly spacer's roughness. A dedicated test chip was designed for the experiments, having various transistors layout configurations with different densities to cover the all range of process design rules. Applied Materials LER and LWR innovative algorithms were used to measure and characterize the spacer roughness relative to the distance from the active edges and from other spaces. To accurately measure all structures in a reasonable time, the recipes were automatically generated from CAD. On silicon, after poly spacers generation, the transistors no longer resemble the Poly layer CAD layout, their morphology is different compared with Photo/Etch traditional structures , and dimensions vary significantly. In this paper we present metrology and

  12. Critical processes and parameters in the development of accident tolerant fuels drop-in capsule irradiation tests

    DOE PAGES

    Barrett, K. E.; Ellis, K. D.; Glass, C. R.; ...

    2015-12-01

    The goal of the Accident Tolerant Fuel (ATF) program is to develop the next generation of Light Water Reactor (LWR) fuels with improved performance, reliability, and safety characteristics during normal operations and accident conditions and with reduced waste generation. An irradiation test series has been defined to assess the performance of proposed ATF concepts under normal LWR operating conditions. The Phase I ATF irradiation test series is planned to be performed as a series of drop-in capsule tests to be irradiated in the Advanced Test Reactor (ATR) operated by the Idaho National Laboratory (INL). Design, analysis, and fabrication processes formore » ATR drop-in capsule experiment preparation are presented in this paper to demonstrate the importance of special design considerations, parameter sensitivity analysis, and precise fabrication and inspection techniques for figure innovative materials used in ATF experiment assemblies. A Taylor Series Method sensitivity analysis approach was used to identify the most critical variables in cladding and rodlet stress, temperature, and pressure calculations for design analyses. The results showed that internal rodlet pressure calculations are most sensitive to the fission gas release rate uncertainty while temperature calculations are most sensitive to cladding I.D. and O.D. dimensional uncertainty. The analysis showed that stress calculations are most sensitive to rodlet internal pressure uncertainties, however the results also indicated that the inside radius, outside radius, and internal pressure were all magnified as they propagate through the stress equation. This study demonstrates the importance for ATF concept development teams to provide the fabricators as much information as possible about the material properties and behavior observed in prototype testing, mock-up fabrication and assembly, and chemical and mechanical testing of the materials that may have been performed in the concept development phase

  13. Critical processes and parameters in the development of accident tolerant fuels drop-in capsule irradiation tests

    SciTech Connect

    Barrett, K. E.; Ellis, K. D.; Glass, C. R.; Roth, G. A.; Teague, M. P.; Johns, J.

    2015-12-01

    The goal of the Accident Tolerant Fuel (ATF) program is to develop the next generation of Light Water Reactor (LWR) fuels with improved performance, reliability, and safety characteristics during normal operations and accident conditions and with reduced waste generation. An irradiation test series has been defined to assess the performance of proposed ATF concepts under normal LWR operating conditions. The Phase I ATF irradiation test series is planned to be performed as a series of drop-in capsule tests to be irradiated in the Advanced Test Reactor (ATR) operated by the Idaho National Laboratory (INL). Design, analysis, and fabrication processes for ATR drop-in capsule experiment preparation are presented in this paper to demonstrate the importance of special design considerations, parameter sensitivity analysis, and precise fabrication and inspection techniques for figure innovative materials used in ATF experiment assemblies. A Taylor Series Method sensitivity analysis approach was used to identify the most critical variables in cladding and rodlet stress, temperature, and pressure calculations for design analyses. The results showed that internal rodlet pressure calculations are most sensitive to the fission gas release rate uncertainty while temperature calculations are most sensitive to cladding I.D. and O.D. dimensional uncertainty. The analysis showed that stress calculations are most sensitive to rodlet internal pressure uncertainties, however the results also indicated that the inside radius, outside radius, and internal pressure were all magnified as they propagate through the stress equation. This study demonstrates the importance for ATF concept development teams to provide the fabricators as much information as possible about the material properties and behavior observed in prototype testing, mock-up fabrication and assembly, and chemical and mechanical testing of the materials that may have been performed in the concept development phase. Special

  14. Response of spent LWR fuel to extreme environments

    SciTech Connect

    Sandoval, R.P.; Burian, R.J.; Kok, K.D.; DiSalvo, R.; Balmert, M.E.; Freeman-Kelly, R.; Fentiman, A.W.

    1986-01-01

    The research reported in this paper addresses the radiological source term which could arise when irradiated fuel in transport from a commercial light water reactor is exposed to the extreme environments postulated for some transportation accidents, specifically those involving a fire. The release of spent fuel radionuclides to the environment requires a breach of both the cask and the fuel rod cladding. Past research has given significant emphasis to evaluating the response of the shipping cask to mechanical and/or thermal loads from hypothetical accidents. Less consideration has been given to evaluating the response of the fuel rods to these environments. In this paper, the response of the fuel rods to an extreme thermal event was experimentally evaluated and the quantity of solid fuel material that could be released from the fuel rods to the cask cavity was estimated. Briefly, the objectives of this study were as follows: (1) Identify those conditions within a transportation cask which might produce fuel-rod cladding failure, emphasizing conditions associated with fires, and (2) Determine by experiment and analysis the nature of the source term so produced. The release of radionuclides from coolant or deposits on the outer surfaces of the fuel assembly was not addressed in this study. 6 figs., 2 figs.

  15. Preclosure radiological safety analysis for accident conditions of the potential Yucca Mountain Repository: Underground facilities; Yucca Mountain Site Characterization Project

    SciTech Connect

    Ma, C.W.; Sit, R.C.; Zavoshy, S.J.; Jardine, L.J.; Laub, T.W.

    1992-06-01

    This preliminary preclosure radiological safety analysis assesses the scenarios, probabilities, and potential radiological consequences associated with postulated accidents in the underground facility of the potential Yucca Mountain repository. The analysis follows a probabilistic-risk-assessment approach. Twenty-one event trees resulting in 129 accident scenarios are developed. Most of the scenarios have estimated annual probabilities ranging from 10{sup {minus}11}/yr to 10{sup {minus}5}/yr. The study identifies 33 scenarios that could result in offsite doses over 50 mrem and that have annual probabilities greater than 10{sup {minus}9}/yr. The largest offsite dose is calculated to be 220 mrem, which is less than the 500 mrem value used to define items important to safety in 10 CFR 60. The study does not address an estimate of uncertainties, therefore conclusions or decisions made as a result of this report should be made with caution.

  16. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions. Revision 1

    SciTech Connect

    Heams, T J; Williams, D A; Johns, N A; Mason, A; Bixler, N E; Grimley, A J; Wheatley, C J; Dickson, L W; Osborn-Lee, I; Domagala, P; Zawadzki, S; Rest, J; Alexander, C A; Lee, R Y

    1992-12-01

    The VICTORIA model of radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident is described. It has been developed by the USNRC to define the radionuclide phenomena and processes that must be considered in systems-level models used for integrated analyses of severe accident source terms. The VICTORIA code, based upon this model, predicts fission product release from the fuel, chemical reactions involving fission products, vapor and aerosol behavior, and fission product decay heating. Also included is a detailed description of how the model is implemented in VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided.

  17. Experience in Organization of Urgent Medical Care in Large-Scale Accident Conditions at Nuclear Power Stations

    DTIC Science & Technology

    2001-05-01

    approximately 340 Gwt) which is 17% of the worldwide electricity production level. The Chernobyl Nuclear Disaster with its long-term medico-biological...population to avoid or minimize the risk of their exposure. In October 1986, after the Chernobyl Nuclear Disaster the Federal Center of Radiation...period of their cooperation the Urgent Medical Care Department and the Rapid Response Teams visited the following sites of accidents: "* Chernobyl (a fire

  18. Bicycle accidents in childhood.

    PubMed

    Nixon, J; Clacher, R; Pearn, J; Corcoran, A

    1987-05-16

    The results of a 10 year study of bicycle fatalities and an eight year study of serious non-fatalities are reported for urban Brisbane (population 1,000,000). There were 845 serious non-fatal bicycle accidents and 46 fatalities during the study. Boys were involved in 86% of accidents. Boys have an accident rate of 134.21 per 100,000 population at risk and a fatality rate of 5.06 per 100,000 at risk. Serious bicycle accidents have increased by 50% in this decade; but considering fatal cases alone, no secular trend was evident over the 10 year period of the study. This suggests that an increase in the overall rate of bicycle accidents has been in part compensated by less serious injuries. In 70% of fatalities children had head injuries, and 87% of fatalities followed a collision between a cyclist and a motor vehicle or a train. Bicycle accidents on the roads most commonly occur to boys aged between 12 and 14 years on a straight road at "mid-block" between 3 and 5 pm in clear weather conditions and in daylight. It is concluded that injuries and fatalities after bicycle accidents can be reduced by protecting children's heads, separating child cyclists from other road traffic, or educating and training both cyclists and other road users in safe behaviour. The compulsory use of helmets and the restriction of access to the roads by child cyclists to reduce injuries are, however, still controversial in many areas.

  19. Investigation of valve failure problems in LWR power plants

    SciTech Connect

    1980-04-01

    An analysis of component failures from information in the computerized Nuclear Safety Information Center (NSIC) data bank shows that for both PWR and BWR plants the component category most responsible for approximately 19.3% of light water reactor (LWR) power plant shutdowns. This investigation by Burns and Roe, Inc. shows that the greatest cause of shutdowns in LWRs due to valve failures is leakage from valve stem packing. Both BWR plants and PWR plants have stem leakage problems (BWRs, 21% and PWRs, 34%).

  20. Hydrogen mixing study (HMS) in LWR type containments

    SciTech Connect

    Travis, J.R.

    1983-01-01

    A numerical technique has been developed for calculating the full three-dimensional time-dependent Navier-Stokes equations with multiple speies transport. The method is a modified form of the Implicit Continuous-fluid Eulerian (ICE) technique to solve the governing equations for low Mach number flows where pressure waves and local variations in compression and expansion are not significant. Large density variations, due to thermal and species concentration gradients, are accounted for without the restrictions of the classical Boussinesq approximation. Calculations of the EPRI/HEDL standard problems verify the feasibility of using this finite-difference technique for analyzing hydrogen mixing within LWR containments.

  1. Integrity of neutron-absorbing components of LWR fuel systems

    SciTech Connect

    Bailey, W.J.; Berting, F.M.

    1991-03-01

    A study of the integrity and behavior of neutron-absorbing components of light-water (LWR) fuel systems was performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE). The components studies include control blades (cruciforms) for boiling-water reactors (BWRs) and rod cluster control assemblies for pressurized-water reactors (PWRs). The results of this study can be useful for understanding the degradation of neutron-absorbing components and for waste management planning and repository design. The report includes examples of the types of degradation, damage, or failures that have been encountered. Conclusions and recommendations are listed. 84 refs.

  2. A Model for Assessment of Failure of LWR Fuel during an RIA

    SciTech Connect

    Liu, Wenfeng; Kazimi, Mujid S.

    2007-07-01

    This paper presents a model for Pellet-Cladding Mechanical Interaction (PCMI) failure of LWR fuel during an RIA. The model uses the J-integral as a driving parameter to characterize the failure potential during PCMI. The model is implemented in the FRAPTRAN code and is validated by CABRI and NSRR simulated RIA test data. Simulation of PWR and BWR conditions are conducted by FRAPTRAN to evaluate the fuel failure potential using this model. Model validation and simulation results are compared with the strain-based failure model of PNNL and the SED/CSED model of EPRI. Our fracture mechanics model has good capability to differentiate failure from non-failure cases. The results reveal significant effects of power pulse width: a wider pulse width generally increases the threshold for fuel failure. However, this effect is less obvious for highly corroded cladding. (authors)

  3. Influence of radiation on formation of fission product aerosols during LWR degraded core accidents

    SciTech Connect

    Chuang, C.F.; Im, K.H.; Ahluwalia, R.K.

    1984-01-01

    Purpose of this paper is to construct a model for estimating the number density of ions produced by the high radiation levels in reactor core and upper plenum and to use this estimate to determine the effect of ions on the formation of fission product aerosols.

  4. BNL program in support of LWR degraded-core accident analysis

    SciTech Connect

    Ginsberg, T.; Greene, G.A.

    1982-01-01

    Two major sources of loading on dry watr reactor containments are steam generatin from core debris water thermal interactions and molten core-concrete interactions. Experiments are in progress at BNL in support of analytical model development related to aspects of the above containment loading mechanisms. The work supports development and evaluation of the CORCON (Muir, 1981) and MARCH (Wooton, 1980) computer codes. Progress in the two programs is described in this paper. 8 figures.

  5. Material Performance of Fully-Ceramic Micro-Encapsulated Fuel under Selected LWR Design Basis Scenarios: Final Report

    SciTech Connect

    B. Boer; R. S. Sen; M. A. Pope; A. M. Ougouag

    2011-09-01

    The extension to LWRs of the use of Deep-Burn coated particle fuel envisaged for HTRs has been investigated. TRISO coated fuel particles are used in Fully-Ceramic Microencapsulated (FCM) fuel within a SiC matrix rather than the graphite of HTRs. TRISO particles are well characterized for uranium-fueled HTRs. However, operating conditions of LWRs are different from those of HTRs (temperature, neutron energy spectrum, fast fluence levels, power density). Furthermore, the time scales of transient core behavior during accidents are usually much shorter and thus more severe in LWRs. The PASTA code was updated for analysis of stresses in coated particle FCM fuel. The code extensions enable the automatic use of neutronic data (burnup, fast fluence as a function of irradiation time) obtained using the DRAGON neutronics code. An input option for automatic evaluation of temperature rise during anticipated transients was also added. A new thermal model for FCM was incorporated into the code; so-were updated correlations (for pyrocarbon coating layers) suitable to estimating dimensional changes at the high fluence levels attained in LWR DB fuel. Analyses of the FCM fuel using the updated PASTA code under nominal and accident conditions show: (1) Stress levels in SiC-coatings are low for low fission gas release (FGR) fractions of several percent, as based on data of fission gas diffusion in UO{sub 2} kernels. However, the high burnup level of LWR-DB fuel implies that the FGR fraction is more likely to be in the range of 50-100%, similar to Inert Matrix Fuels (IMFs). For this range the predicted stresses and failure fractions of the SiC coating are high for the reference particle design (500 {micro}mm kernel diameter, 100 {micro}mm buffer, 35 {micro}mm IPyC, 35 {micro}mm SiC, 40 {micro}mm OPyC). A conservative case, assuming 100% FGR, 900K fuel temperature and 705 MWd/kg (77% FIMA) fuel burnup, results in a 8.0 x 10{sup -2} failure probability. For a 'best-estimate' FGR fraction

  6. Nuclear accidents

    SciTech Connect

    Mobley, J.A.

    1982-05-01

    A nuclear accident with radioactive contamination can happen anywhere in the world. Because expert nuclear emergency teams may take several hours to arrive at the scene, local authorities must have a plan of action for the hours immediately following an accident. The site should be left untouched except to remove casualties. Treatment of victims includes decontamination and meticulous wound debridement. Acute radiation syndrome may be an overwhelming sequela.

  7. LWR and defectivity improvement on EUV track system

    NASA Astrophysics Data System (ADS)

    Harumoto, Masahiko; Stokes, Harold; Thouroude, Yan; Kaneyama, Koji; Pieczulewski, Charles; Asai, Masaya

    2016-03-01

    EUV lithography (EUVL) is well known to be a strong candidate for next generation, single exposure sub-30nm halfpitch lithography.[1] Furthermore, high-NA EUV exposure tool(s) released two years ago gave a strong impression by finer pattern results. On the other hand, it seems that the coat-develop track process remains very similar and in many aspects returns to KrF or ArF dry process fundamentals, but in practice a 26-32nm pitch patterning coat develop track process also has challenges with EUV resists. As access to EUV lithography exposures has become more readily available over the last five (5) years, several challenges and accomplishments in the track process have been reported, such as the improvement of ultra-thin film coating, CD uniformity, defectivity, line width roughness (LWR), and so on.[2-8] The coat-develop track process has evolved along with novel materials and metrology capability. Line width roughness (LWR) control and defect reduction are demonstrated utilizing the SOKUDO DUO coat-develop track system with ASML NXE:3100 and NXE:3300 exposures in the IMEC (Leuven, Belgium) cleanroom environment. Additionally, we will show the latest lithographic results obtained by novel processing approaches in the EUV coat develop track system.

  8. FMDP reactor alternative summary report: Volume 4, Evolutionary LWR alternative

    SciTech Connect

    1996-09-01

    Significant quantities of weapons-usable fissile materials [primarily plutonium and highly enriched uranium (HEU)] have become surplus to national defense needs both in the United States and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety, and health (ES&H) consequences if surplus fissile materials are not properly managed. The purpose of this report is to provide schedule, cost, and technical information that will be used to support the Record of Process (ROD). Following the screening process, DOE/MD via its national laboratories initiated a more detailed analysis activity to further evaluate each of the ten plutonium disposition alternatives that survived the screening process. Three ``Alternative Teams,`` chartered by DOE and comprised of technical experts from across the DOE national laboratory complex, conducted these analyses. One team was chartered for each of the major disposition classes (borehole, immobilization, and reactors). During the last year and a half, the Fissile Materials Disposition Program (FMDP) Reactor Alternative Team (RxAT) has conducted extensive analyses of the cost, schedule, technical maturity, S&S, and other characteristics of reactor-based plutonium disposition. The results of the RxAT`s analyses of the existing LWR, CANDU, and partially complete LWR alternatives are documented in Volumes 1-3 of this report. This document (Volume 4) summarizes the results of these analyses for the ELWR-based plutonium disposition option.

  9. Severe Accident Test Station Activity Report

    SciTech Connect

    Pint, Bruce A.; Terrani, Kurt A.

    2015-06-01

    Enhancing safety margins in light water reactor (LWR) severe accidents is currently the focus of a number of international R&D programs. The current UO2/Zr-based alloy fuel system is particularly susceptible since the Zr-based cladding experiences rapid oxidation kinetics in steam at elevated temperatures. Therefore, alternative cladding materials that offer slower oxidation kinetics and a smaller enthalpy of oxidation can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident. In the U.S. program, the high temperature steam oxidation performance of accident tolerant fuel (ATF) cladding solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012. This report summarizes the capabilities of the SATS and provides an overview of the oxidation kinetics of several candidate cladding materials. A suggested baseline for evaluating ATF candidates is a two order of magnitude reduction in the steam oxidation resistance above 1000ºC compared to Zr-based alloys. The ATF candidates are categorized based on the protective external oxide or scale that forms during exposure to steam at high temperature: chromia, alumina, and silica. Comparisons are made to literature and SATS data for Zr-based alloys and other less-protective materials.

  10. Platoon Interactions and Real-World Traffic Simulation and Validation Based on the LWR-IM

    PubMed Central

    Ng, Kok Mun; Reaz, Mamun Bin Ibne

    2016-01-01

    Platoon based traffic flow models form the underlying theoretical framework in traffic simulation tools. They are essentially important in facilitating efficient performance calculation and evaluation in urban traffic networks. For this purpose, a new platoon-based macroscopic model called the LWR-IM has been developed in [1]. Preliminary analytical validation conducted previously has proven the feasibility of the model. In this paper, the LWR-IM is further enhanced with algorithms that describe platoon interactions in urban arterials. The LWR-IM and the proposed platoon interaction algorithms are implemented in the real-world class I and class II urban arterials. Another purpose of the work is to perform quantitative validation to investigate the validity and ability of the LWR-IM and its underlying algorithms to describe platoon interactions and simulate performance indices that closely resemble the real traffic situations. The quantitative validation of the LWR-IM is achieved by performing a two-sampled t-test on queues simulated by the LWR-IM and real queues observed at these real-world locations. The results reveal insignificant differences of simulated queues with real queues where the p-values produced concluded that the null hypothesis cannot be rejected. Thus, the quantitative validation further proved the validity of the LWR-IM and the embedded platoon interactions algorithm for the intended purpose. PMID:26731745

  11. Platoon Interactions and Real-World Traffic Simulation and Validation Based on the LWR-IM.

    PubMed

    Ng, Kok Mun; Reaz, Mamun Bin Ibne

    2016-01-01

    Platoon based traffic flow models form the underlying theoretical framework in traffic simulation tools. They are essentially important in facilitating efficient performance calculation and evaluation in urban traffic networks. For this purpose, a new platoon-based macroscopic model called the LWR-IM has been developed in [1]. Preliminary analytical validation conducted previously has proven the feasibility of the model. In this paper, the LWR-IM is further enhanced with algorithms that describe platoon interactions in urban arterials. The LWR-IM and the proposed platoon interaction algorithms are implemented in the real-world class I and class II urban arterials. Another purpose of the work is to perform quantitative validation to investigate the validity and ability of the LWR-IM and its underlying algorithms to describe platoon interactions and simulate performance indices that closely resemble the real traffic situations. The quantitative validation of the LWR-IM is achieved by performing a two-sampled t-test on queues simulated by the LWR-IM and real queues observed at these real-world locations. The results reveal insignificant differences of simulated queues with real queues where the p-values produced concluded that the null hypothesis cannot be rejected. Thus, the quantitative validation further proved the validity of the LWR-IM and the embedded platoon interactions algorithm for the intended purpose.

  12. [Genomic instability after exposure to radiation at low doses (in the 10-kilometer zone of the accident at the Chernobyl Atomic Electric Power Station and under laboratory conditions)].

    PubMed

    Pelevina, I I; Gotlib, V Ia; Kudriashova, O V; Serebrianyĭ, A M; Afanas'ev, G G

    1996-01-01

    The results of series investigations of late effects after Chernobyl accident are discussed. Genomic instability induced by chronic irradiation of cultural cells in Chernobyl zone and in laboratory conditions have been studied. It was shown that low level prolonged irradiation result in increase of frequency of cells with micronuclei, giant cells, enhancement of radiosensitivity in descendents of early irradiated cells. Chronic low doses irradiation doesn't induce the adaptive response. Comparative investigation of adaptive response in blood lymphocytes of people (adults and children) living in Moscow and in regions polluted with radionuclides (5-40 ci/km2) after Chernobyl disaster have been conducted. In population from contaminated areas the frequency of individuals with definite adaptive response is decreased and there are individuals with increasing radiosensitivity after irradiation in conditioned dose. Chronic irradiation during living on contaminated areas don't induce the adaptive response.

  13. Characteristics Data Base: Programmer's guide to the LWR Quantities Data Base

    SciTech Connect

    Jones, K.E. ); Moore, R.S. )

    1990-08-01

    The LWR Quantities Data Base is a menu-driven PC data base developed as part of OCRWM's waste, technical data base on the characteristics of potential repository wastes, which also includes non-LWR spent fuel, high-level and other materials. This programmer's guide completes the documentation for the LWR Quantities Data Base, the user's guide having been published previously. The PC data base itself may be requested from the Oak Ridge National Laboratory, using the order form provided in Volume 1 of publication DOE/RW-0184.

  14. TRENDS (Transport and Retention of Nuclides in Dominant Sequences): A code for modeling iodine behavior in containment during severe accidents

    SciTech Connect

    Weber, C.F.; Beahm, E.C.; Kress, T.S.; Daish, S.R.; Shockley, W.E.

    1989-01-01

    The ultimate aim of a description of iodine behavior in severe LWR accidents is a time-dependent accounting of iodine species released into containment and to the environment. Factors involved in the behavior of iodine can be conveniently divided into four general categories: (1) initial release into containment, (2) interaction of iodine species in containment not directly involving water pools, (3) interaction of iodine species in, or with, water pools, and (4) interaction with special systems such as ice condensers or gas treatment systems. To fill the large gaps in knowledge and to provide a means for assaying the iodine source term, this program has proceeded along two paths: (1) Experimental studies of the chemical behavior of iodine under containment conditions. (2) Development of TRENDS (Transport and Retention of Nuclides in Dominant Sequences), a computer code for modeling the behavior of iodine in containment and its release from containment. The main body of this report consists of a description of TRENDS. These two parts to the program are complementary in that models within TRENDS use data that were produced in the experimental program; therefore, these models are supported by experimental evidence that was obtained under conditions expected in severe accidents. 7 refs., 1 fig., 2 tabs.

  15. Sensitivity analysis of FeCrAl cladding and U3Si2 fuel under accident conditions

    SciTech Connect

    Gamble, Kyle Allan Lawrence; Hales, Jason Dean

    2016-08-01

    The purpose of this milestone report is to highlight the results of sensitivity analyses performed on two accident tol- erant fuel concepts: U3Si2 fuel and FeCrAl cladding. The BISON fuel performance code under development at Idaho National Laboratory was coupled to Sandia National Laboratories’ DAKOTA software to perform the sensitivity anal- yses. Both Loss of Coolant (LOCA) and Station blackout (SBO) scenarios were analyzed using main effects studies. The results indicate that for FeCrAl cladding the input parameters with greatest influence on the output metrics of interest (fuel centerline temperature and cladding hoop strain) during the LOCA were the isotropic swelling and fuel enrichment. For U3Si2 the important inputs were found to be the intergranular diffusion coefficient, specific heat, and fuel thermal conductivity. For the SBO scenario, Young’s modulus was found to be influential in FeCrAl in addition to the isotropic swelling and fuel enrichment. Contrarily to the LOCA case, the specific heat of U3Si2 was found to have no effect during the SBO. The intergranular diffusion coefficient and fuel thermal conductivity were still found to be of importance. The results of the sensitivity analyses have identified areas where further research is required including fission gas behavior in U3Si2 and irradiation swelling in FeCrAl. Moreover, the results highlight the need to perform the sensitivity analyses on full length fuel rods for SBO scenarios.

  16. Synthesis of VERCORS and Phebus data in severe accident codes and applications.

    SciTech Connect

    Gauntt, Randall O.

    2010-04-01

    The Phebus and VERCORS data have played an important role in contemporary understanding and modeling of fission product release and transport from damaged LWR fuel. The data from these test programs have allowed improvement of MELCOR modeling of release and transport processes for both low enrichment uranium fuel as well as high burnup and MOX fuels. The following paper describes the derivation, testing and incorporation of improved radionuclide release models into the MELCOR severe accident code.

  17. Irradiation effects on thermal properties of LWR hydride fuel

    NASA Astrophysics Data System (ADS)

    Terrani, Kurt; Balooch, Mehdi; Carpenter, David; Kohse, Gordon; Keiser, Dennis; Meyer, Mitchell; Olander, Donald

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH1.6) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  18. LIFE vs. LWR: End of the Fuel Cycle

    SciTech Connect

    Farmer, J C; Blink, J A; Shaw, H F

    2008-10-02

    The worldwide energy consumption in 2003 was 421 quadrillion Btu (Quads), and included 162 quads for oil, 99 quads for natural gas, 100 quads for coal, 27 quads for nuclear energy, and 33 quads for renewable sources. The projected worldwide energy consumption for 2030 is 722 quads, corresponding to an increase of 71% over the consumption in 2003. The projected consumption for 2030 includes 239 quads for oil, 190 quads for natural gas, 196 quads for coal, 35 quads for nuclear energy, and 62 quads for renewable sources [International Energy Outlook, DOE/EIA-0484, Table D1 (2006) p. 133]. The current fleet of light water reactors (LRWs) provides about 20% of current U.S. electricity, and about 16% of current world electricity. The demand for electricity is expected to grow steeply in this century, as the developing world increases its standard of living. With the increasing price for oil and gasoline within the United States, as well as fear that our CO2 production may be driving intolerable global warming, there is growing pressure to move away from oil, natural gas, and coal towards nuclear energy. Although there is a clear need for nuclear energy, issues facing waste disposal have not been adequately dealt with, either domestically or internationally. Better technological approaches, with better public acceptance, are needed. Nuclear power has been criticized on both safety and waste disposal bases. The safety issues are based on the potential for plant damage and environmental effects due to either nuclear criticality excursions or loss of cooling. Redundant safety systems are used to reduce the probability and consequences of these risks for LWRs. LIFE engines are inherently subcritical, reducing the need for systems to control the fission reactivity. LIFE engines also have a fuel type that tolerates much higher temperatures than LWR fuel, and has two safety systems to remove decay heat in the event of loss of coolant or loss of coolant flow. These features of

  19. Thermal Properties of Structural Materials Used in LWR Vessels

    SciTech Connect

    J. E. Daw; J. L. Rempe; D. L. Knudson

    2011-01-01

    High temperature material property data for structural materials used in existing Light Water Reactors (LWRs) are limited. Often, extrapolated values recommended in the literature differ significantly. To reduce uncertainties in predictions relying upon extrapolated data for LWR vessel and penetration materials, high temperature tests were completed on SA533 Grade B, Class 1 (SA533B1) low alloy steel, Stainless Steel 304 (SS304), and Inconel 600 using material property measurement systems available in the High Temperature Test Laboratory (HTTL) at the Idaho National Laboratory (INL). Properties measured include thermal expansion, specific heat capacity, and thermal diffusivity for temperatures up to 1200 °C. From these results, thermal conductivity and density were calculated. Results show that, in some cases, previously recommended values for these materials differ significantly from measured values at high temperatures.

  20. Bicycle accidents in childhood.

    PubMed Central

    Nixon, J; Clacher, R; Pearn, J; Corcoran, A

    1987-01-01

    The results of a 10 year study of bicycle fatalities and an eight year study of serious non-fatalities are reported for urban Brisbane (population 1,000,000). There were 845 serious non-fatal bicycle accidents and 46 fatalities during the study. Boys were involved in 86% of accidents. Boys have an accident rate of 134.21 per 100,000 population at risk and a fatality rate of 5.06 per 100,000 at risk. Serious bicycle accidents have increased by 50% in this decade; but considering fatal cases alone, no secular trend was evident over the 10 year period of the study. This suggests that an increase in the overall rate of bicycle accidents has been in part compensated by less serious injuries. In 70% of fatalities children had head injuries, and 87% of fatalities followed a collision between a cyclist and a motor vehicle or a train. Bicycle accidents on the roads most commonly occur to boys aged between 12 and 14 years on a straight road at "mid-block" between 3 and 5 pm in clear weather conditions and in daylight. It is concluded that injuries and fatalities after bicycle accidents can be reduced by protecting children's heads, separating child cyclists from other road traffic, or educating and training both cyclists and other road users in safe behaviour. The compulsory use of helmets and the restriction of access to the roads by child cyclists to reduce injuries are, however, still controversial in many areas. PMID:3109611

  1. Validating the BISON fuel performance code to integral LWR experiments

    DOE PAGES

    Williamson, R. L.; Gamble, K. A.; Perez, D. M.; ...

    2016-03-24

    BISON is a modern finite element-based nuclear fuel performance code that has been under development at the Idaho National Laboratory (INL) since 2009. The code is applicable to both steady and transient fuel behavior and has been used to analyze a variety of fuel forms in 1D spherical, 2D axisymmetric, or 3D geometries. Code validation is underway and is the subject of this study. A brief overview of BISON’s computational framework, governing equations, and general material and behavioral models is provided. BISON code and solution verification procedures are described, followed by a summary of the experimental data used to datemore » for validation of Light Water Reactor (LWR) fuel. Validation comparisons focus on fuel centerline temperature, fission gas release, and rod diameter both before and following fuel-clad mechanical contact. Comparisons for 35 LWR rods are consolidated to provide an overall view of how the code is predicting physical behavior, with a few select validation cases discussed in greater detail. Our results demonstrate that 1) fuel centerline temperature comparisons through all phases of fuel life are very reasonable with deviations between predictions and experimental data within ±10% for early life through high burnup fuel and only slightly out of these bounds for power ramp experiments, 2) accuracy in predicting fission gas release appears to be consistent with state-of-the-art modeling and with the involved uncertainties and 3) comparison of rod diameter results indicates a tendency to overpredict clad diameter reduction early in life, when clad creepdown dominates, and more significantly overpredict the diameter increase late in life, when fuel expansion controls the mechanical response. In the initial rod diameter comparisons they were unsatisfactory and have lead to consideration of additional separate effects experiments to better understand and predict clad and fuel mechanical behavior. Results from this study are being used to

  2. Validating the BISON fuel performance code to integral LWR experiments

    SciTech Connect

    Williamson, R. L.; Gamble, K. A.; Perez, D. M.; Novascone, S. R.; Pastore, G.; Gardner, R. J.; Hales, J. D.; Liu, W.; Mai, A.

    2016-03-24

    BISON is a modern finite element-based nuclear fuel performance code that has been under development at the Idaho National Laboratory (INL) since 2009. The code is applicable to both steady and transient fuel behavior and has been used to analyze a variety of fuel forms in 1D spherical, 2D axisymmetric, or 3D geometries. Code validation is underway and is the subject of this study. A brief overview of BISON’s computational framework, governing equations, and general material and behavioral models is provided. BISON code and solution verification procedures are described, followed by a summary of the experimental data used to date for validation of Light Water Reactor (LWR) fuel. Validation comparisons focus on fuel centerline temperature, fission gas release, and rod diameter both before and following fuel-clad mechanical contact. Comparisons for 35 LWR rods are consolidated to provide an overall view of how the code is predicting physical behavior, with a few select validation cases discussed in greater detail. Our results demonstrate that 1) fuel centerline temperature comparisons through all phases of fuel life are very reasonable with deviations between predictions and experimental data within ±10% for early life through high burnup fuel and only slightly out of these bounds for power ramp experiments, 2) accuracy in predicting fission gas release appears to be consistent with state-of-the-art modeling and with the involved uncertainties and 3) comparison of rod diameter results indicates a tendency to overpredict clad diameter reduction early in life, when clad creepdown dominates, and more significantly overpredict the diameter increase late in life, when fuel expansion controls the mechanical response. In the initial rod diameter comparisons they were unsatisfactory and have lead to consideration of additional separate effects experiments to better understand and predict clad and fuel mechanical behavior. Results from this study are being used to define

  3. [Travel and accidents].

    PubMed

    Cha, Olivier

    2015-04-01

    Traumatic pathologies are the most frequent medical events to be observed among French travellers. Accidents on the public highway by lack of respect of the fundamental rules of road security, particularly abroad, traffic conditions in bad repair in numerous emergent countries, usually the destination of mass tourism and underdeveloped organization of health care and local urgency help. Sports activities are also a source of accidents. A good physical training is essential. Drowning is a real plague, especially among children due to a lack of vigilance. Preventive measures are simple, keep them constantly in mind and apply them carefully so as to have beautiful memories of our trip back home.

  4. 49 CFR 195.50 - Reporting accidents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Reporting accidents. 195.50 Section 195.50 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Annual, Accident, and Safety-Related Condition Reporting § 195.50 Reporting accidents. An...

  5. 49 CFR 195.50 - Reporting accidents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Reporting accidents. 195.50 Section 195.50 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Annual, Accident, and Safety-Related Condition Reporting § 195.50 Reporting accidents. An...

  6. 49 CFR 195.50 - Reporting accidents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Reporting accidents. 195.50 Section 195.50 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Annual, Accident, and Safety-Related Condition Reporting § 195.50 Reporting accidents. An...

  7. 49 CFR 195.50 - Reporting accidents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Reporting accidents. 195.50 Section 195.50 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Annual, Accident, and Safety-Related Condition Reporting § 195.50 Reporting accidents. An...

  8. Rhizopus-associated soft tissue infection in an immunocompetent air-conditioning technician after a road traffic accident: a case report and review of the literature.

    PubMed

    Rabie, Nada B; Althaqafi, Abdulhakeem O

    2012-03-01

    Rhinocerebral or sinopulmonary mucromycosis is a well-recognized human fungal infection found among immunocompromised and diabetic patients. However, the infection is rare among immunocompetent hosts. We are reporting the case of an adult immunocompetent male patient working as an air-conditioning technician. The patient was a victim of a road traffic accident (RTA) and sustained multiple fractures in the proximal part of the left tibia, distal femur, and scapula. Two weeks postoperatively, Rhizopus microspores were isolated from an infected traumatic wound over the distal femur. Surgical debridement was performed, and the patient was started on amphotericin B. Occupational exposure history and workplace environmental sanitation are crucial for the prevention of this potentially fatal yet preventable infection.

  9. Licensing topical report: the measurement and modelling of time-dependent fission product release from failed HTGR fuel particles under accident conditions

    SciTech Connect

    Myers, B.F.; Morrissey, R.E.

    1980-04-01

    The release of fission products from failed fuel particles was measured under simulated accident (core heatup) conditions. A generic model and specific model parameters that describe delayed fission product release from the kernels of failed HTGR fuel particles were developed from the experimental results. The release of fission products was measured from laser-failed BISO ThO/sub 2/ and highly enriched (HEU) TRISO UC/sub 2/ particles that had been irradiated to a range of kernel burnups. The burnups were 0.25, 1.4, and 15.7% FIMA for ThO/sub 2/ particles and 23.5 and 74% FIMA for UC/sub 2/ particles. The fission products measured were nuclides of xenon, iodine, krypton, tellurium, and cesium.

  10. Short communication on "In-situ TEM ion irradiation investigations on U3Si2 at LWR temperatures"

    SciTech Connect

    Miao, Yinbin; Harp, Jason; Mo, Kun; Bhattacharya, Sumit; Baldo, Peter; Yacout, Abdellatif M.

    2016-11-21

    Here, the radiation-induced amorphization of U3Si2 was investigated by in-situ transmission electron microscopy using 1 MeV Kr ion irradiation. Both arc-melted and sintered U3Si2 specimens were irradiated at room temperature to confirm the similarity in their responses to radiation. The sintered specimens were then irradiated at 350 °C and 550 °C up to 7.2 × 1015 ions/cm2 to examine their amorphization behavior under light water reactor (LWR) conditions. U3Si2 remains crystalline under irradiation at LWR temperatures. Oxidation of the material was observed at high irradiation doses.

  11. Estimation of thermal loads on the VVER vessel under conditions of inversion of the stratified molten pool in a severe accident

    NASA Astrophysics Data System (ADS)

    Loktionov, V. D.; Mukhtarov, E. S.

    2016-09-01

    Analysis of the thermal state of molten pools that can be formed on the vessel bottom of the VVER-600 medium-power reactor during a severe anticipated accident with melting of the core is represented. Two types of the molten pool of core materials, with the two-layer and inverse three-layer stratification, are considered. Thermal loads acting on the reactor vessel from the melt are estimated depending on its formation time. Features of the thermal state of the melt in the case of its inverse stratification are analyzed. It is shown that thermal loads on the reactor vessel exceed the critical heat flux (CHF) when forming the two-layer stratified molten pool 10 and 24 h after its shutdown, and the thermal load is close to the corresponding CHF or somewhat exceeds it in 72 h. In the case of the formation of the inverse structure of the melt, one can observe a decrease by more than 2.5 times (in comparison with the two-layer stratified structure) in the thermal load on the reactor vessel in the region of its contact with the upper layer of the steel melt. Analysis of results showed that maximum densities of heat flux to the reactor vessel from the bottom metallic layer with the melt inversion did not exceed corresponding CHFs 24 and 72 h after the reactor shutdown. Because the thermal load on the reactor vessel can be localized in the region of its bottom, where the CHF is relatively small, during the inverse stratification of the melt, there is a need to carry out further in-depth experimental and analytical investigations of conditions for formation of the stratified molten pool and to obtain corrected experimental CHFs for conditions and outlines of cooling the external surface of the VVER-600 vessel in a severe accident.

  12. Predicting LER and LWR in SAQP with 3D virtual fabrication

    NASA Astrophysics Data System (ADS)

    Gu, Jiangjiang (Jimmy); Zhao, Dalong; Allampalli, Vasanth; Faken, Daniel; Greiner, Ken; Fried, David M.

    2016-03-01

    For the first time, process impact on line-edge roughness (LER) and line-width roughness (LWR) in a back-end-of-line (BEOL) self-aligned quadruple patterning (SAQP) flow has been systematically investigated through predictive 3D virtual fabrication. This frequency dependent LER study shows that both deposition and etching effectively reduce high frequency LER, while deposition is much more effective in reducing low frequency LER. Spacer-assisted patterning technology reduces LWR significantly by creating correlated edges, and further LWR improvement can be achieved by optimizing individual process effects on LER. Our study provides a guideline for the understanding and optimization of LER and LWR in advanced technology nodes.

  13. LWR fuel assembly designs for the transmutation of LWR Spent Fuel TRU with FCM and UO{sub 2}-ThO{sub 2} Fuels

    SciTech Connect

    Bae, G.; Hong, S. G.

    2013-07-01

    In this paper, transmutation of transuranic (TRU) nuclides from LWR spent fuels is studied by using LWR fuel assemblies which consist of UO{sub 2}-ThO{sub 2} fuel pins and FCM (Fully Ceramic Microencapsulated) fuel pins. TRU from LWR spent fuel is loaded in the kernels of the TRISO particle fuels of FCM fuel pins. In the FCM fuel pins, the TRISO particle fuels are distributed in SiC matrix having high thermal conductivity. The loading patterns of fuel pins and the fuel compositions are searched to have high transmutation rate and feasible neutronic parameters including pin power peaking, temperature reactivity coefficients, and cycle length. All studies are done only in fuel assembly calculation level. The results show that our fuel assembly designs have good transmutation performances without multi-recycling and without degradation of the safety-related neutronic parameters. (authors)

  14. Weather types and traffic accidents.

    PubMed

    Klaić, Z B

    2001-06-01

    Traffic accident data for the Zagreb area for the 1981-1982 period were analyzed to investigate possible relationships between the daily number of accidents and the weather conditions that occurred for the 5 consecutive days, starting two days before the particular day. In the statistical analysis of low accident days weather type classification developed by Poje was used. For the high accident days a detailed analyses of surface and radiosonde data were performed in order to identify possible front passages. A test for independence by contingency table confirmed that conditional probability of the day with small number of accidents is the highest, provided that one day after it "N" or "NW" weather types occur, while it is the smallest for "N1" and "Bc" types. For the remaining 4 days of the examined periods dependence was not statistically confirmed. However, northern ("N", "NE" and "NW") and anticyclonic ("Vc", "V4", "V3", "V2" and "mv") weather types predominated during 5-days intervals related to the days with small number of accidents. On the contrary, the weather types with cyclonic characteristics ("N1", "N2", "N3", "Bc", "Dol1" and "Dol"), that are generally accompanied by fronts, were the rarest. For 85% days with large number of accidents, which had not been caused by objective circumstances (such as poor visibility, damaged or slippery road etc.), at least one front passage was recorded during the 3-days period, starting one day before the day with large number of accidents.

  15. Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions.

    PubMed

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sato, Tsutomu; Nagao, Seiya; Nagai, Haruyasu

    2012-08-01

    The Fukushima Dai-ichi nuclear power plant accident in Japan, triggered by a big earthquake and the resulting tsunami on 11 March 2011, caused a substantial release of radiocesium ((137)Cs and (134)Cs) and a subsequent contamination of soils in a range of terrestrial ecosystems. Identifying factors and processes affecting radiocesium retention in these soils is essential to predict how the deposited radiocesium will migrate through the soil profile and to other biological components. We investigated vertical distributions of radiocesium and physicochemical properties in soils (to 20 cm depth) at 15 locations under different land-use types (croplands, grasslands, and forests) within a 2 km × 2 km mesh area in Fukushima city. The total (137)Cs inventory deposited onto and into soil was similar (58.4±9.6 kBq m(-2)) between the three different land-use types. However, aboveground litter layer at the forest sites and herbaceous vegetation at the non-forested sites contributed differently to the total (137)Cs inventory. At the forest sites, 50-91% of the total inventory was observed in the litter layer. The aboveground vegetation contribution was in contrast smaller (<35%) at the other sites. Another remarkable difference was found in vertical distribution of (137)Cs in mineral soil layers; (137)Cs penetrated deeper in the forest soil profiles than in the non-forested soil profiles. We quantified (137)Cs retention at surface soil layers, and showed that higher (137)Cs retention can be explained in part by larger amounts of silt- and clay-sized particles in the layers. More importantly, the (137)Cs retention highly and negatively correlated with soil organic carbon content divided by clay content across all land-use types. The results suggest that organic matter inhibits strong adsorption of (137)Cs on clay minerals in surface soil layers, and as a result affects the vertical distribution and thus the mobility of (137)Cs in soil, particularly in the forest ecosystems.

  16. Uniform corrosion of FeCrAl alloys in LWR coolant environments

    SciTech Connect

    Terrani, K. A.; Pint, B. A.; Kim, Y. -J.; Unocic, K. A.; Yang, Y.; Silva, C. M.; Meyer, III, H. M.; Rebak, R. B.

    2016-06-29

    The corrosion behavior of commercial and model FeCrAl alloys and type 310 stainless steel was examined by autoclave tests and compared to Zircaloy-4, the reference cladding materials in light water reactors. The corrosion studies were carried out in three distinct water chemistry environments found in pressurized and boiling water reactor primary coolant loop conditions for up to one year. The structure and morphology of the oxides formed on the surface of these alloys was consistent with thermodynamic predictions. Spinel-type oxides were found to be present after hydrogen water chemistry exposures, while the oxygenated water tests resulted in the formation of very thin and protective hematite-type oxides. Unlike the alloys exposed to oxygenated water tests, the alloys tested in hydrogen water chemistry conditions experienced mass loss as a function of time. This mass loss was the result of net sum of mass gain due to parabolic oxidation and mass loss due to dissolution that also exhibits parabolic kinetics. Finally, the maximum thickness loss after one year of LWR water corrosion in the absence of irradiation was ~2 μm, which is inconsequential for a ~300–500 μm thick cladding.

  17. Uniform corrosion of FeCrAl alloys in LWR coolant environments

    DOE PAGES

    Terrani, K. A.; Pint, B. A.; Kim, Y. -J.; ...

    2016-06-29

    The corrosion behavior of commercial and model FeCrAl alloys and type 310 stainless steel was examined by autoclave tests and compared to Zircaloy-4, the reference cladding materials in light water reactors. The corrosion studies were carried out in three distinct water chemistry environments found in pressurized and boiling water reactor primary coolant loop conditions for up to one year. The structure and morphology of the oxides formed on the surface of these alloys was consistent with thermodynamic predictions. Spinel-type oxides were found to be present after hydrogen water chemistry exposures, while the oxygenated water tests resulted in the formation ofmore » very thin and protective hematite-type oxides. Unlike the alloys exposed to oxygenated water tests, the alloys tested in hydrogen water chemistry conditions experienced mass loss as a function of time. This mass loss was the result of net sum of mass gain due to parabolic oxidation and mass loss due to dissolution that also exhibits parabolic kinetics. Finally, the maximum thickness loss after one year of LWR water corrosion in the absence of irradiation was ~2 μm, which is inconsequential for a ~300–500 μm thick cladding.« less

  18. Uniform corrosion of FeCrAl alloys in LWR coolant environments

    SciTech Connect

    Terrani, K. A.; Pint, B. A.; Kim, Y. -J.; Unocic, K. A.; Yang, Y.; Silva, C. M.; Meyer, III, H. M.; Rebak, R. B.

    2016-06-29

    The corrosion behavior of commercial and model FeCrAl alloys and type 310 stainless steel was examined by autoclave tests and compared to Zircaloy-4, the reference cladding materials in light water reactors. The corrosion studies were carried out in three distinct water chemistry environments found in pressurized and boiling water reactor primary coolant loop conditions for up to one year. The structure and morphology of the oxides formed on the surface of these alloys was consistent with thermodynamic predictions. Spinel-type oxides were found to be present after hydrogen water chemistry exposures, while the oxygenated water tests resulted in the formation of very thin and protective hematite-type oxides. Unlike the alloys exposed to oxygenated water tests, the alloys tested in hydrogen water chemistry conditions experienced mass loss as a function of time. This mass loss was the result of net sum of mass gain due to parabolic oxidation and mass loss due to dissolution that also exhibits parabolic kinetics. Finally, the maximum thickness loss after one year of LWR water corrosion in the absence of irradiation was ~2 μm, which is inconsequential for a ~300–500 μm thick cladding.

  19. Uniform corrosion of FeCrAl alloys in LWR coolant environments

    NASA Astrophysics Data System (ADS)

    Terrani, K. A.; Pint, B. A.; Kim, Y.-J.; Unocic, K. A.; Yang, Y.; Silva, C. M.; Meyer, H. M.; Rebak, R. B.

    2016-10-01

    The corrosion behavior of commercial and model FeCrAl alloys and type 310 stainless steel was examined by autoclave tests and compared to Zircaloy-4, the reference cladding materials in light water reactors. The corrosion studies were carried out in three distinct water chemistry environments found in pressurized and boiling water reactor primary coolant loop conditions for up to one year. The structure and morphology of the oxides formed on the surface of these alloys was consistent with thermodynamic predictions. Spinel-type oxides were found to be present after hydrogen water chemistry exposures, while the oxygenated water tests resulted in the formation of very thin and protective hematite-type oxides. Unlike the alloys exposed to oxygenated water tests, the alloys tested in hydrogen water chemistry conditions experienced mass loss as a function of time. This mass loss was the result of net sum of mass gain due to parabolic oxidation and mass loss due to dissolution that also exhibits parabolic kinetics. The maximum thickness loss after one year of LWR water corrosion in the absence of irradiation was ∼2 μm, which is inconsequential for a ∼300-500 μm thick cladding.

  20. Thermal state of the safety system, reactor, side reflector and shielding of the {open_quote}{open_quote}TOPAZ-2{close_quote}{close_quote} system under conditions of fire caused by a launcher accident at the launch pad

    SciTech Connect

    Grinberg, E.I.; Doschatov, V.V.; Nikolaev, V.S.; Sokolov, N.S.; Usov, V.A.

    1996-03-01

    The paper presents some results of calculational analyses performed to determine thermal state of the TOPAZ II safety system structure, radiation shielding, reactor without the side reflector, rods and inserts of the side reflector under conditions of fire at the launch pad when an accident occurs to a launch vehicle. {copyright} {ital 1996 American Institute of Physics.}

  1. Numerical Analysis of Nucleate Boiling on High Heat-Flux and High Subcooling Condition for Reactivity Initiation Accident

    SciTech Connect

    Heo, S.; Koshizuka, S.; Oka, Y.

    2002-07-01

    This paper shows the numerical simulation study on the growth of the bubble in the transient pool boiling using MPS-MAFL method. The growth process of a bubble with the different initial radii is calculated in a high heat-flux and high subcooling condition expected in nuclear reactor core during RIA. The smaller initial radius is, the earlier the growth starts. The initial bubble radius has little effect on the growth initiation time and the bubble departure radius. (authors)

  2. LWR reactivity/isotopics code for pedagogical and scoping applications

    SciTech Connect

    AbuZaied, G.; Driscoll, M.J.

    1986-01-01

    A program designated BRICC (Burnup Reactivity and Isotopic Composition Computation), has been programmed for use on microcomputers to permit rapid parametric studies of the neutronics of light water reactor (LWR) assemblies. It is currently employed as a teaching tool in a graduate-level subject on nuclear fuel management, and has proven to be of sufficient accuracy to permit its use as a submodule in a more comprehensive program used to evaluate various mechanical spectral shift concepts for pressurized water reactor control. It should also prove useful in teaching reactor physics as it will fill an important gap between hand calculations of inadequate accuracy and state-of-the-art multigroup programs of daunting complexity. The BRICC program combines a minimum adequate set of old-fashioned phenomenological submodels that describe key physics attributed in an integral fashion, thereby providing the student or researcher with convenient mental pictures to serve as the basis for deductive reasoning. The program is short, written in a simplistic version of the Basic language, with many interspersed Remark statements, and is therefore easy to tinker with for various constructive purposes.

  3. Robot Kinematics Identification: KUKA LWR4+ Redundant Manipulator Example

    NASA Astrophysics Data System (ADS)

    Kolyubin, Sergey; Paramonov, Leonid; Shiriaev, Anton

    2015-11-01

    This work is aimed at a comprehensive discussion of algorithms for the kinematic parameters identification of robotic manipulators. We deal with an open-loop geometric calibration task, when a full 6D robot's end-effector pose is measured. Effective solutions of such a task is of high interest in many practical applications, because it can dramatically improve key robot characteristics. On the first step, we select optimal calibration configurations. A comparative analysis of three different algorithms and two observability indexes used for numerical optimization is provided. Afterwards, using the acquired and pre-processed experimental data we identify modified Denavit-Hartenberg parameters of the manipulator. Estimates are obtained resolving original nonlinear forward kinematics relations. Finally, we compare nominal and calibrated geometric parameters and show how much deviations in these parameters affect robot positioning accuracy. To the best of our knowledge, such integrated efforts are new for the KUKA LWR4+ robot and Nikon K610 optical coordinate measuring machine (CMM), which were used in the study. Discussion of practical issues on how to organise the experiment is an additional contribution of this work. The proposed procedure is highly automated and can be implemented to improve manipulator's performance on a periodic basis.

  4. Evaluation of inorganic sorbent treatment for LWR coolant process streams

    SciTech Connect

    Roddy, J.W.

    1984-03-01

    This report presents results of a survey of the literature and of experience at selected nuclear installations to provide information on the feasibility of replacing organic ion exchangers with inorganic sorbents at light-water-cooled nuclear power plants. Radioactive contents of the various streams in boiling water reactors and pressurized water reactors were examined. In addition, the methods and performances of current methods used for controlling water quality at these plants were evaluated. The study also includes a brief review of the physical and chemical properties of selected inorganic sorbents. Some attributes of inorganic sorbents would be useful in processing light water reactor (LWR) streams. The inorganic resins are highly resistant to damage from ionizing radiation, and their exchange capacities are generally equivalent to those of organic ion exchangers. However, they are more limited in application, and there are problems with physical integrity, especially in acidic solutions. Research is also needed in the areas of selectivity and anion removal before inorganic sorbents can be considered as replacements for the synthetic organic resins presently used in LWRs. 11 figures, 14 tables.

  5. Hang-gliding accidents.

    PubMed Central

    Margreiter, R; Lugger, L J

    1978-01-01

    Seventy-five known hang-gliding accidents causing injury to the pilot occurred in the Tyrol during 1973-6. Most occurred in May, June, or September and between 11 am and 3 pm, when unfavourable thermic conditions are most likely. Thirty-four accidents happened during launching, 13 during flight, and 28 during landing, and most were caused by human errors--especially deficient launching technique; incorrect estimation of wind conditions, altitude, and speed; and choice of unfavourable launching and landing sites. Eight pilots were moderately injured, 60 severely (multiply in 24 cases), and seven fatally; fractures of the spine and arms predominated. Six of the 21 skull injuries were fatal. The risk of hang-gliding seems unjustifiably high, and safety precautions and regulations should be adopted to ensure certain standards of training and equipment and to limit flying to favourable sites and times. Images p401-a PMID:624028

  6. The basic problems of bed-fence-covers in hospitals for preventing accidents based on the investigation into the actual conditions: for developing the safer bed-fence-cover for elderly patients.

    PubMed

    Matsuoka, Megumi; Konishi, Teuko; Toyoda, Mitsuko; Maie, Kazuo

    2009-12-01

    The basic problems of bed-fence-covers in hospitals were listed for preventing relevant accidents based on the investigation into actual conditions in a hospital in Kawasaki City. There were many elderly aged patients with dementia, higher brain dysfunction or psychosis in the hospital. They sometimes fell into the gaps of bed-fences, resulting in serious accidents. It was due not only to the structure of the bed-fences, but also to the characteristics of patients. Therefore the authors listed up the problems concerning the accidents to recognize them; (i) as physical conditions, (1) they could not move by themselves because of paralysis or decrease of fitness, (2) they could not feel when they were pinched by the gaps because of decrease of sense, (3) they moved irregularly or violently without their intention, and (ii) as mental conditions, (1) they took dangerous behaviors because of dementias, (2) they could not control their behaviors because of higher brain dysfunctions, (3) they could not control their feelings and moved violently because of mental disorders. The authors intend to develop safer bed-fence-covers to prevent these accidents for the elderly patients.

  7. Radiation accidents

    SciTech Connect

    Saenger, E.L.

    1986-09-01

    It is essential that emergency physicians understand ways to manage patients contaminated by radioactive materials and/or exposed to external radiation sources. Contamination accidents require careful surveys to identify the metabolic pathway of the radionuclides to guide prognosis and treatment. The level of treatment required will depend on careful surveys and meticulous decontamination. There is no specific therapy for the acute radiation syndrome. Prophylactic antibodies are desirable. For severely exposed patients treatment is similar to the supportive care given to patients undergoing organ transplantation. For high-dose extremity injury, no methods have been developed to reverse the fibrosing endarteritis that eventually leads to tissue death so frequently found with this type of injury. Although the Three Mile Island episode of March 1979 created tremendous public concern, there were no radiation injuries. The contamination outside the reactor building and the release of radioiodine were negligible. The accidental fuel element meltdown at Chernobyl, USSR, resulted in many cases of acute radiation syndrome. More than 100,000 people were exposed to high levels of radioactive fallout. The general principles outlined here are applicable to accidents of that degree of severity.

  8. Fission product release and survivability of UN-kernel LWR TRISO fuel

    SciTech Connect

    T. M. Besmann; M. K. Ferber; H.-T. Lin; B. P. Collin

    2014-05-01

    A thermomechanical assessment of the LWR application of TRISO fuel with UN kernels was performed. Fission product release under operational and transient temperature conditions was determined by extrapolation from fission product recoil calculations and limited data from irradiated UN pellets. Both fission recoil and diffusive release were considered and internal particle pressures computed for both 650 and 800 um diameter kernels as a function of buffer layer thickness. These pressures were used in conjunction with a finite element program to compute the radial and tangential stresses generated within a TRISO particle undergoing burnup. Creep and swelling of the inner and outer pyrolytic carbon layers were included in the analyses. A measure of reliability of the TRISO particle was obtained by computing the probability of survival of the SiC barrier layer and the maximum tensile stress generated in the pyrolytic carbon layers from internal pressure and thermomechanics of the layers. These reliability estimates were obtained as functions of the kernel diameter, buffer layer thickness, and pyrolytic carbon layer thickness. The value of the probability of survival at the end of irradiation was inversely proportional to the maximum pressure.

  9. Storage of LWR (light-water-reactor) spent fuel in air

    SciTech Connect

    Thomas, L.E.; Charlot, L.A.; Coleman, J.E. ); Knoll, R.W. )

    1989-12-01

    An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to determine the oxidation response of light-water-reactor (LWR) spent fuels under conditions appropriate to fuel storage in air. The program is designed to investigate several independent variables that might affect the oxidation behavior of spent fuel. Included are temperature (135 to 230{degree}C), fuel burnup (to about 34 MWd/kgM), reactor type (pressurized and boiling water reactors), moisture level in the air, and the presence of a high gamma field. In continuing tests with declad spent fuel and nonirradiated UO{sub 2} specimens, oxidation rates were monitored by weight-gain measurements and the microstructures of subsamples taken during the weighing intervals were characterized by several analytical methods. The oxidation behavior indicated by weight gain and time to form powder will be reported in Volume III of this series. The characterization results obtained from x-ray diffractometry, transmission electron microscopy, scanning electron microscopy, and Auger electron spectrometry of oxidized fuel samples are presented in this report. 28 refs., 21 figs., 3 tabs.

  10. Fission Product Release and Survivability of UN-Kernel LWR TRISO Fuel

    SciTech Connect

    Besmann, Theodore M; Ferber, Mattison K; Lin, Hua-Tay

    2014-01-01

    A thermomechanical assessment of the LWR application of TRISO fuel with UN kernels was performed. Fission product release under operational and transient temperature conditions was determined by extrapolation from range calculations and limited data from irradiated UN pellets. Both fission recoil and diffusive release were considered and internal particle pressures computed for both 650 and 800 m diameter kernels as a function of buffer layer thickness. These pressures were used in conjunction with a finite element program to compute the radial and tangential stresses generated with a TRISO particle as a function of fluence. Creep and swelling of the inner and outer pyrolytic carbon layers were included in the analyses. A measure of reliability of the TRISO particle was obtained by measuring the probability of survival of the SiC barrier layer and the maximum tensile stress generated in the pyrolytic carbon layers as a function of fluence. These reliability estimates were obtained as functions of the kernel diameter, buffer layer thickness, and pyrolytic carbon layer thickness. The value of the probability of survival at the end of irradiation was inversely proportional to the maximum pressure.

  11. Effects of indoor and outdoor cultivation conditions on (137) Cs concentrations in cultivated mushrooms produced after the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Tagami, Keiko; Uchida, Shigeo; Ishii, Nobuyoshi

    2017-01-01

    Radiocesium ((134) Cs and (137) Cs) in mushrooms has been a matter of public concern after the accident at Fukushima Daiichi Nuclear Power Plant. To minimize the internal dose by ingestion of cultivated mushrooms, the Japanese government set a guideline level with respect to the radiocesium concentration in bed-logs and mushroom beds; however, the effects of indoor and outdoor cultivation methods on radiocesium concentrations in cultivated mushrooms were not clear. The effects of indoor and outdoor cultivation on the radiocesium concentrations in mushroom were examined using published food monitoring data. (137) Cs concentration data in Lentinula edodes from the Aizu area in Fukushima Prefecture and seven prefectures outside Fukushima were used for the analysis. No statistically significant (137) Cs concentration differences were found between these two cultivation methods. Using detected (137) Cs data in shiitake, the geometric means from each prefecture were less than one-quarter of the standard limit (100 Bq kg(-1) ) for total radiocesium under both cultivation conditions. It was suspected that re-suspended radiocesium might have been taken up by mushrooms or that radiocesium might have been absorbed into the mushrooms from the soil in the outdoor cultures. However, neither effect was significant for cultivated mushrooms in the areas examined. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Survey of LWR environmental control technology performance and cost

    SciTech Connect

    Heeb, C.M.; Aaberg, R.L.; Cole, B.M.; Engel, R.L.; Kennedy, W.E. Jr.; Lewallen, M.A.

    1980-03-01

    This study attempts to establish a ranking for species that are routinely released to the environment for a projected nuclear power growth scenario. Unlike comparisons made to existing standards, which are subject to frequent revision, the ranking of releases can be used to form a more logical basis for identifying the areas where further development of control technology could be required. This report describes projections of releases for several fuel cycle scenarios, identifies areas where alternative control technologies may be implemented, and discusses the available alternative control technologies. The release factors were used in a computer code system called ENFORM, which calculates the annual release of any species from any part of the LWR nuclear fuel cycle given a projection of installed nuclear generation capacity. This survey of fuel cycle releases was performed for three reprocessing scenarios (stowaway, reprocessing without recycle of Pu and reprocessing with full recycle of U and Pu) for a 100-year period beginning in 1977. The radioactivity releases were ranked on the basis of a relative ranking factor. The relative ranking factor is based on the 100-year summation of the 50-year population dose commitment from an annual release of radioactive effluents. The nonradioactive releases were ranked on the basis of dilution factor. The twenty highest ranking radioactive releases were identified and each of these was analyzed in terms of the basis for calculating the release and a description of the currently employed control method. Alternative control technology is then discussed, along with the available capital and operating cost figures for alternative control methods.

  13. Improved LWR Cladding Performance by EPD Surface Modification Technique

    SciTech Connect

    Corradini, Michael; Sridharan, Kumar

    2012-11-26

    This project will utilize the electro-phoretic deposition technique (EPD) in conjunction with nanofluids to deposit oxide coatings on prototypic zirconium alloy cladding surfaces. After demonstrating that this surface modification is reproducible and robust, the team will subject the modified surface to boiling and corrosion tests to characterize the improved nucleate boiling behavior and superior corrosion performance. The scope of work consists of the following three tasks: The first task will employ the EPD surface modification technique to coat the surface of a prototypic set of zirconium alloy cladding tube materials (e.g. Zircaloy and advanced alloys such as M5) with a micron-thick layer of zirconium oxide nanoparticles. The team will characterize the modified surface for uniformity using optical microscopy and scanning-electron microscopy, and for robustness using standard hardness measurements. After zirconium alloy cladding samples have been prepared and characterized using the EPD technique, the team will begin a set of boiling experiments to measure the heat transfer coefficient and critical heat flux (CHF) limit for each prepared sample and its control sample. This work will provide a relative comparison of the heat transfer performance for each alloy and the surface modification technique employed. As the boiling heat transfer experiments begin, the team will also begin corrosion tests for these zirconium alloy samples using a water corrosion test loop that can mimic light water reactor (LWR) operational environments. They will perform extended corrosion tests on the surface-modified zirconium alloy samples and control samples to examine the robustness of the modified surface, as well as the effect on surface oxidation

  14. Use of accident experience in developing criteria for teleoperator equipment

    SciTech Connect

    Vallario, E.J.; Selby, J.M.

    1985-10-01

    The 1961 SL-1 reactor accident in Idaho and the Recuplex accident at Hanford are reviewed to identify problems common to emergency situations, lessons learned from accidents, criteria for emergency equipment, and recommendations for using robotics to solve problems during emergencies. Teleoperator equipment could be used to assess the extent of the damage and the condition of the reactor, retrieve dosimeters, evacuate and treat accident victims, clean up debris and decontaminate accident areas. 2 refs., 9 figs.

  15. Revised accident source terms for light-water reactors

    SciTech Connect

    Soffer, L.

    1995-02-01

    This paper presents revised accident source terms for light-water reactors incorporating the severe accident research insights gained in this area over the last 15 years. Current LWR reactor accident source terms used for licensing date from 1962 and are contained in Regulatory Guides 1.3 and 1.4. These specify that 100% of the core inventory of noble gases and 25% of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental iodine. These assumptions have strongly affected present nuclear air cleaning requirements by emphasizing rapid actuation of spray systems and filtration systems optimized to retain elemental iodine. A proposed revision of reactor accident source terms and some im implications for nuclear air cleaning requirements was presented at the 22nd DOE/NRC Nuclear Air Cleaning Conference. A draft report was issued by the NRC for comment in July 1992. Extensive comments were received, with the most significant comments involving (a) release fractions for both volatile and non-volatile species in the early in-vessel release phase, (b) gap release fractions of the noble gases, iodine and cesium, and (c) the timing and duration for the release phases. The final source term report is expected to be issued in late 1994. Although the revised source terms are intended primarily for future plants, current nuclear power plants may request use of revised accident source term insights as well in licensing. This paper emphasizes additional information obtained since the 22nd Conference, including studies on fission product removal mechanisms, results obtained from improved severe accident code calculations and resolution of major comments, and their impact upon the revised accident source terms. Revised accident source terms for both BWRS and PWRS are presented.

  16. Technical Development on Burn-up Credit for Spent LWR Fuel

    SciTech Connect

    Gauld, I.C.

    2001-12-26

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.

  17. Achievement of world's best performance in Japanese LWR, through the successful development on fuels and materials

    NASA Astrophysics Data System (ADS)

    Yoshitsugu, Mishima

    1989-12-01

    Research and development on fuel and cladding materials in the past 40 years, which led to the excellent performance of today's Japanese LWR are overviewed. Most of the programs for the development of LWR fuels and Zircaloy cladding tube have been conducted by the author, starting from the metal uranium fuel rod for the research reactor JRR-3, then going on to the domestic production of fuel for the power-demonstration reactor JPDR. LWR fuel fabrication has been successfully performed on these bases together with the research and development work on Zircaloy tube fabrication technology among metal industries. Fundamental works and co-operative studies among specialists from every related field have been effectively combined with the development works among industry, which contributed to the achievement of the world's top level fuel and thus to the excellent performance of 36 LWRs in Japan, today.

  18. Chemical state of tellurium in a degraded LWR core

    NASA Astrophysics Data System (ADS)

    Imoto, S.; Tanabe, T.

    1988-06-01

    Changes of the chemical state of tellurium in the heatup stage of a severe fuel damage accident are estimated thermodynamically. According to equilibrium calculations with the SOLGASMIX-PV code, tellurium exists as cesium telluride, as the element or possibly as PdTe during normal operation. In the heatup stage of an accident, elemental tellurium is absorbed in the Zircaloy cladding by formation of ZrTe x ( x = 1-2). Cesium telluride does not react with Zr even under the low oxygen potentials favoring the {Zr}/{UO 2} reaction. Tellurium is also absorbed in oxygen-stabilized alpha-zirconium. The stability of Cs 2Te in the steam/hydrogen atmosphere is discussed.

  19. Evaluation of Methods for Decladding LWR Fuel for a Pyroprocessing-Based Reprocessing Plant

    DTIC Science & Technology

    1992-10-01

    Liiz 00 zz 00 LAi 0 F-.. 1 0VI V) I. C0 5 7 t AL.11 Fig. 2. Westinghouse PWR fuel assembly. (Source: Westinghouse Electric Company Information...Brochure.) 6 photograph of a Westinghouse PWR fuel assembly. Decladding systems for the LWR- Actinide Recycle (LWR-AR) plant under study will have as a...types, the thickness of the cladding ranges from 0.03 to 0.037 in. 2. Zircaloy-4. This cladding material is used in PWR fuel rods and has as its

  20. Improvements and applications of COBRA-TF for stand-alone and coupled LWR safety analyses

    SciTech Connect

    Avramova, M.; Cuervo, D.

    2006-07-01

    The advanced thermal-hydraulic subchannel code COBRA-TF has been recently improved and applied for stand-alone and coupled LWR core calculations at the Pennsylvania State Univ. in cooperation with AREVA NP GmbH (Germany)) and the Technical Univ. of Madrid. To enable COBRA-TF for academic and industrial applications including safety margins evaluations and LWR core design analyses, the code programming, numerics, and basic models were revised and substantially improved. The code has undergone through an extensive validation, verification, and qualification program. (authors)

  1. Underreporting of maritime accidents to vessel accident databases.

    PubMed

    Hassel, Martin; Asbjørnslett, Bjørn Egil; Hole, Lars Petter

    2011-11-01

    Underreporting of maritime accidents is a problem not only for authorities trying to improve maritime safety through legislation, but also to risk management companies and other entities using maritime casualty statistics in risk and accident analysis. This study collected and compared casualty data from 01.01.2005 to 31.12.2009, from IHS Fairplay and the maritime authorities from a set of nations. The data was compared to find common records, and estimation of the true number of occurred accidents was performed using conditional probability given positive dependency between data sources, several variations of the capture-recapture method, calculation of best case scenario assuming perfect reporting, and scaling up a subset of casualty information from a marine insurance statistics database. The estimated upper limit reporting performance for the selected flag states ranged from 14% to 74%, while the corresponding estimated coverage of IHS Fairplay ranges from 4% to 62%. On average the study results document that the number of unreported accidents makes up roughly 50% of all occurred accidents. Even in a best case scenario, only a few flag states come close to perfect reporting (94%). The considerable scope of underreporting uncovered in the study, indicates that users of statistical vessel accident data should assume a certain degree of underreporting, and adjust their analyses accordingly. Whether to use correction factors, a safety margin, or rely on expert judgment, should be decided on a case by case basis.

  2. FMDP Reactor Alternative Summary Report: Volume 3 - partially complete LWR alternative

    SciTech Connect

    Greene, S.R.; Fisher, S.E.; Bevard, B.B.

    1996-09-01

    The Department of Energy Office of Fissile Materials Disposition (DOE/MD) initiated a detailed analysis activity to evaluate each of ten plutonium disposition alternatives that survived an initial screening process. This document, Volume 3 of a four volume report summarizes the results of these analyses for the partially complete LWR (PCLWR) reactor based plutonium disposition alternative.

  3. European utility requirements: common rules to design next LWR plants in an open electricity market

    SciTech Connect

    Berbey, Pierre

    2004-07-01

    The major European electricity producers want to keep able to build new nuclear power plants and they believe 3. generation LWRs would be the most adapted response to their needs in the first decades of this century. Producing a common European Utility Requirement (EUR) document has been one of the basic tasks towards this objective. In this common frame, standardized and competitive LWR NPPs could be developed and offered to the investors. This idea is now well supported by all the other actors on the European electricity market: vendors, regulators, grid managers, administrations although in the competitive and unified European electricity market that is emerging, the electricity producers' stakes are more and more different from the other electricity business actors'. The next term objectives of the electricity producers involved in EUR are focused on negotiating common rules of the game together with the regulators. This covers the nuclear safety approaches, the conditions requested to connect a plant to a HV grid, as well as the design standards. Discussions are going on between the EUR organization and all the corresponding bodies to develop stabilized and predictable design rules that would meet the constraints of nuclear electricity generation in this new environment. Finally there cannot be competition without competitors. The EUR organization has proven to be the right place to establish trustful relationship between the vendors and their potential customers, through fair assessment of the proposed designs performance vs. the utility needs. This will be continued and developed with the main vendors present in Europe, so as to keep alive a list of 4 to 6 designs 'qualified', i.e. showing an acceptable score of non-compliance vs. EUR. (authors)

  4. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    SciTech Connect

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-06-06

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  5. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-06-01

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  6. Nuclear accident dosimetry intercomparison studies.

    PubMed

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.

  7. Severe accident analysis using dynamic accident progression event trees

    NASA Astrophysics Data System (ADS)

    Hakobyan, Aram P.

    In present, the development and analysis of Accident Progression Event Trees (APETs) are performed in a manner that is computationally time consuming, difficult to reproduce and also can be phenomenologically inconsistent. One of the principal deficiencies lies in the static nature of conventional APETs. In the conventional event tree techniques, the sequence of events is pre-determined in a fixed order based on the expert judgments. The main objective of this PhD dissertation was to develop a software tool (ADAPT) for automated APET generation using the concept of dynamic event trees. As implied by the name, in dynamic event trees the order and timing of events are determined by the progression of the accident. The tool determines the branching times from a severe accident analysis code based on user specified criteria for branching. It assigns user specified probabilities to every branch, tracks the total branch probability, and truncates branches based on the given pruning/truncation rules to avoid an unmanageable number of scenarios. The function of a dynamic APET developed includes prediction of the conditions, timing, and location of containment failure or bypass leading to the release of radioactive material, and calculation of probabilities of those failures. Thus, scenarios that can potentially lead to early containment failure or bypass, such as through accident induced failure of steam generator tubes, are of particular interest. Also, the work is focused on treatment of uncertainties in severe accident phenomena such as creep rupture of major RCS components, hydrogen burn, containment failure, timing of power recovery, etc. Although the ADAPT methodology (Analysis of Dynamic Accident Progression Trees) could be applied to any severe accident analysis code, in this dissertation the approach is demonstrated by applying it to the MELCOR code [1]. A case study is presented involving station blackout with the loss of auxiliary feedwater system for a

  8. Steam Oxidation of FeCrAl and SiC in the Severe Accident Test Station (SATS)

    SciTech Connect

    Pint, Bruce A.; Unocic, Kinga A.; Terrani, Kurt A.

    2015-08-01

    Numerous research projects are directed towards developing accident tolerant fuel (ATF) concepts that will enhance safety margins in light water reactors (LWR) during severe accident scenarios. In the U.S. program, the high temperature steam oxidation performance of ATF solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012 [1-3] and this facility continues to support those efforts in the ATF community. Compared to the current UO2/Zr-based alloy fuel system, alternative cladding materials can offer slower oxidation kinetics and a smaller enthalpy of oxidation that can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident [4-5]. Thus, steam oxidation behavior is a key aspect of the evaluation of ATF concepts. This report summarizes recent work to measure steam oxidation kinetics of FeCrAl and SiC specimens in the SATS.

  9. Severe accident modeling of a PWR core with different cladding materials

    SciTech Connect

    Johnson, S. C.; Henry, R. E.; Paik, C. Y.

    2012-07-01

    The MAAP v.4 software has been used to model two severe accident scenarios in nuclear power reactors with three different materials as fuel cladding. The TMI-2 severe accident was modeled with Zircaloy-2 and SiC as clad material and a SBO accident in a Zion-like, 4-loop, Westinghouse PWR was modeled with Zircaloy-2, SiC, and 304 stainless steel as clad material. TMI-2 modeling results indicate that lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would result if SiC was substituted for Zircaloy-2 as cladding. SBO modeling results indicate that the calculated time to RCS rupture would increase by approximately 20 minutes if SiC was substituted for Zircaloy-2. Additionally, when an extended SBO accident (RCS creep rupture failure disabled) was modeled, significantly lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would be generated by substituting SiC for Zircaloy-2 or stainless steel cladding. Because the rate of SiC oxidation reaction with elevated temperature H{sub 2}O (g) was set to 0 for this work, these results should be considered preliminary. However, the benefits of SiC as a more accident tolerant clad material have been shown and additional investigation of SiC as an LWR core material are warranted, specifically investigations of the oxidation kinetics of SiC in H{sub 2}O (g) over the range of temperatures and pressures relevant to severe accidents in LWR 's. (authors)

  10. Designing an Experimental "Accident"

    ERIC Educational Resources Information Center

    Picker, Lester

    1974-01-01

    Describes an experimental "accident" that resulted in much student learning, seeks help in the identification of nematodes, and suggests biology teachers introduce similar accidents into their teaching to stimulate student interest. (PEB)

  11. A review of irradiation effects on LWR core internal materials - IASCC susceptibility and crack growth rates of austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Chopra, O. K.; Rao, A. S.

    2011-02-01

    Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of light water reactor (LWR) pressure vessels because of their relatively high strength, ductility, and fracture toughness. However, exposure to neutron irradiation for extended periods changes the microstructure (radiation hardening) and microchemistry (radiation-induced segregation) of these steels, and degrades their fracture properties. Irradiation-assisted stress corrosion cracking (IASCC) is another degradation process that affects LWR internal components exposed to neutron radiation. The existing data on irradiated austenitic SSs were reviewed to evaluate the effects of key parameters such as material composition, irradiation dose, and water chemistry on IASCC susceptibility and crack growth rates of these materials in LWR environments. The significance of microstructural and microchemistry changes in the material on IASCC susceptibility is also discussed. The results are used to determine (a) the threshold fluence for IASCC and (b) the disposition curves for cyclic and IASCC growth rates for irradiated SSs in LWR environments.

  12. A review of irradiation effects on LWR core internal materials - IASCC susceptibility and crack growth rates of austenitic stainless steels.

    SciTech Connect

    Chopra, O. K.; Roa, A. S.; Environmental Science Division; U.S. NRC

    2010-12-15

    Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of light water reactor (LWR) pressure vessels because of their relatively high strength, ductility, and fracture toughness. However, exposure to neutron irradiation for extended periods changes the microstructure (radiation hardening) and microchemistry (radiation-induced segregation) of these steels, and degrades their fracture properties. Irradiation-assisted stress corrosion cracking (IASCC) is another degradation process that affects LWR internal components exposed to neutron radiation. The existing data on irradiated austenitic SSs were reviewed to evaluate the effects of key parameters such as material composition, irradiation dose, and water chemistry on IASCC susceptibility and crack growth rates of these materials in LWR environments. The significance of microstructural and microchemistry changes in the material on IASCC susceptibility is also discussed. The results are used to determine (a) the threshold fluence for IASCC and (b) the disposition curves for cyclic and IASCC growth rates for irradiated SSs in LWR environments.

  13. Car accidents determined by stopped cars and traffic flow

    NASA Astrophysics Data System (ADS)

    Yang, Xian-qing; Ma, Yu-qiang

    2002-12-01

    The product of traffic flow and the fraction of stopped cars is proposed to determine the probability Pac for car accidents in the Fukui-Ishibashi model by analysing the necessary conditions of the occurrence of car accidents. Qualitative and quantitative characteristics of the probability Pac can well be explained. A strategy for avoiding car accidents is suggested.

  14. 10 CFR 50.67 - Accident source term.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Accident source term. 50.67 Section 50.67 Energy NUCLEAR... Conditions of Licenses and Construction Permits § 50.67 Accident source term. (a) Applicability. The... to January 10, 1997, who seek to revise the current accident source term used in their design...

  15. 49 CFR 195.52 - Immediate notice of certain accidents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Immediate notice of certain accidents. 195.52... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Annual, Accident, and Safety-Related Condition Reporting § 195.52 Immediate notice of certain accidents. (a) Notice requirements. At the earliest practicable moment...

  16. 49 CFR 195.52 - Immediate notice of certain accidents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Immediate notice of certain accidents. 195.52... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Annual, Accident, and Safety-Related Condition Reporting § 195.52 Immediate notice of certain accidents. (a) Notice requirements. At the earliest practicable moment...

  17. 49 CFR 195.52 - Immediate notice of certain accidents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Immediate notice of certain accidents. 195.52... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Annual, Accident, and Safety-Related Condition Reporting § 195.52 Immediate notice of certain accidents. (a) Notice requirements. At the earliest practicable moment...

  18. 49 CFR 195.52 - Telephonic notice of certain accidents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Telephonic notice of certain accidents. 195.52... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Annual, Accident, and Safety-Related Condition Reporting § 195.52 Telephonic notice of certain accidents. (a) At the earliest practicable moment following discovery of...

  19. 49 CFR 195.52 - Immediate notice of certain accidents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Immediate notice of certain accidents. 195.52... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Annual, Accident, and Safety-Related Condition Reporting § 195.52 Immediate notice of certain accidents. (a) Notice requirements. At the earliest practicable moment...

  20. Accident prevention in radiotherapy

    PubMed Central

    Holmberg, O

    2007-01-01

    In order to prevent accidents in radiotherapy, it is important to learn from accidents that have occurred previously. Lessons learned from a number of accidents are summarised and underlying patterns are looked for in this paper. Accidents can be prevented by applying several safety layers of preventive actions. Categories of these preventive actions are discussed together with specific actions belonging to each category of safety layer. PMID:21614274

  1. Professional experience and traffic accidents/near-miss accidents among truck drivers.

    PubMed

    Girotto, Edmarlon; Andrade, Selma Maffei de; González, Alberto Durán; Mesas, Arthur Eumann

    2016-10-01

    To investigate the relationship between the time working as a truck driver and the report of involvement in traffic accidents or near-miss accidents. A cross-sectional study was performed with truck drivers transporting products from the Brazilian grain harvest to the Port of Paranaguá, Paraná, Brazil. The drivers were interviewed regarding sociodemographic characteristics, working conditions, behavior in traffic and involvement in accidents or near-miss accidents in the previous 12 months. Subsequently, the participants answered a self-applied questionnaire on substance use. The time of professional experience as drivers was categorized in tertiles. Statistical analyses were performed through the construction of models adjusted by multinomial regression to assess the relationship between the length of experience as a truck driver and the involvement in accidents or near-miss accidents. This study included 665 male drivers with an average age of 42.2 (±11.1) years. Among them, 7.2% and 41.7% of the drivers reported involvement in accidents and near-miss accidents, respectively. In fully adjusted analysis, the 3rd tertile of professional experience (>22years) was shown to be inversely associated with involvement in accidents (odds ratio [OR] 0.29; 95% confidence interval [CI] 0.16-0.52) and near-miss accidents (OR 0.17; 95% CI 0.05-0.53). The 2nd tertile of professional experience (11-22 years) was inversely associated with involvement in accidents (OR 0.63; 95% CI 0.40-0.98). An evident relationship was observed between longer professional experience and a reduction in reporting involvement in accidents and near-miss accidents, regardless of age, substance use, working conditions and behavior in traffic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Proceedings of the 2007 LWR Fuel Performance Meeting / TopFuel 2007 'Zero by 2010'

    SciTech Connect

    2007-07-01

    ANS, ENS, AESJ and KNS are jointly organizing the 2007 International LWR Fuel Performance Meeting following the successful ENS TopFuel meeting held during 22-26 October, 2006 in Salamaca, Spain. Merging three premier nuclear fuel design and performance meetings: the ANS LWR Fuel Performance Meeting, the ENS TopFuel and Asian Water Reactor Fuel Performance Meeting (WRFPM) created this international meeting. The meeting will be held annually on a tri-annual rotational basis in USA, Asia, and Europe. The technical scope of the meeting includes all aspects of nuclear fuel from fuel rod to core design as well as performance experience in commercial and test reactors. The meeting excludes front end and back end fuel issues, however, it covers all front and/or back issues that impact fuel designs and performance.

  3. Challenges in the development of high-fidelity LWR core neutronics tools

    SciTech Connect

    Smith, K.; Forget, B.

    2013-07-01

    Modern computing has made possible the solution of extremely large-scale reactor simulations, and the literature has numerous examples of high-resolution methods (often Monte Carlo) applied to full-core reactor problems. However, there are currently no examples in the literature of application of such 'High-Fidelity' or 'First Principles' methods to operating Light Water Reactor (LWR) analysis. This paper seeks to remind code developers, project managers, and analysts of the many important aspects of LWR simulation that must be incorporated to produce truly high-fidelity analysis tools. The authors offer a monetary prize to the first person (or group) that successfully solves a new two-cycle operational PWR depletion benchmark problem using high-fidelity tools and demonstrates acceptable accuracy by comparison with measured operational plant data (open source) provided to the reactor analysis community. (authors)

  4. Study of the effect of amine additives on LWR and LER

    NASA Astrophysics Data System (ADS)

    Houlihan, Francis M.; Rentkiewicz, David; Lin, Guanyang; Rahman, Dalil; Mackenzie, Douglas; Timko, Allen; Kudo, Takanori; Anyadiegwu, Clement; Thiyagarajan, Muthiah; Chiu, Simon; Romano, Andrew; Dammel, Ralph R.; Padmanaban, Munirathna

    2006-03-01

    We will give an account of our investigation on structure property relationships of amines with regards to line width roughness (LWR) and line edge roughness (LER) of a 193 nm alicyclic-acrylate resist. Specifically, we have looked at basicity, molar volume and logD as factors which may have an influence of roughness of 80 nm 1:1 L/S features. For relatively hydrophobic amines (Log D > -1), the lower the hydrophilicity at acidic pH the greater the LER and LWR becomes. Specifically, in this range of Log D, more hydrophobic larger amines, with higher basicity, tend to give worse L/S feature roughness. For amines which are more hydrophilic, the relationship becomes more complex with some amines giving a lower LER while others do not. This appears to be predicated on a delicate balance between basicity, hydrophilicy and size.

  5. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    SciTech Connect

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO{sub 2} fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed.

  6. Evaluation of FSV-1 cask for the transport of LWR irradiated fuel assemblies

    SciTech Connect

    Not Available

    1980-05-01

    The Model FSV-1 spent fuel shipping cask was designed by General Atomic Company (GA) to service the Fort St. Vrain (FSV) nuclear generating station, a High Temperature Gas Reactor (HTGR) owned and operated by Public Service Company of Colorado (PSC). This report presents an evaluation of the suitability of the FSV-1 cask for the transport of irradiated Light Water Reactor (LWR) fuel assemblies from both Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). The FSV-1 cask evaluation parameters covered a wide spectrum of LWR fuel assemblies, based on burnup in Megawatt Days/Metric Ton of Heavy Metal (MWD/MTHM) and years of decay since irradiation. The criteria for suitability included allowable radiation dose rates, cask surface and interior temperatures and the Gross Vehicle Weight (GVW) of the complete shipping system.

  7. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    SciTech Connect

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO[sub 2] fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed.

  8. Draft report: a selection methodology for LWR safety R and D programs and proposals

    SciTech Connect

    Husseiny, A. A.; Ritzman, R. L.

    1980-03-01

    The results of work done to develop a methodology for selecting LWR safety R and D programs and proposals is described. A critical survey of relevant decision analysis methods is provided including the specifics of multiattribute utility theory. This latter method forms the basis of the developed selection methodology. Details of the methodology and its use are provided along with a sample illustration of its application.

  9. Recycle of LWR (Light Water Reactor) actinides to an IFR (Integral Fast Reactor)

    SciTech Connect

    Pierce, R.D.; Ackerman, J.P.; Johnson, G.K.; Mulcahey, T.P.; Poa, D.S.

    1991-01-01

    A large quantity of actinide elements is present in irradiated Light Water Reactor (LWR) fuel that is stored throughout the world. Because of the high fission-to-capture ratio for the transuranium (TRU) elements with the high-energy neutrons in the metal-fueled Integral Fast Reactor (IFR), that reactor can consume these elements effectively. The stored fuel represents a valuable resource for an expanding application of fast power reactors. In addition, removal of the TRU elements from the spent LWR fuel has the potential for increasing the capacity of a high-level waste facility by reducing the heat loads and increasing the margin of safety in meeting licensing requirements. Argonne National Laboratory (ANL) is developing a pyrochemical process, which is compatible with the IFR fuel cycle, for the recovery of TRU elements from LWR fuel. The proposed product is a metallic actinide ingot, which can be introduced into the electrorefining step of the IFR process. The major objective of the LWR fuel recovery process is high TRU element recovery, with decontamination a secondary issue, because fission product removal is accomplished in the IFR process. The extensive pyrochemical processing studies of the 1960s and 1970s provide a basis for the design of possible processes. Two processes were selected for laboratory-scale investigation. One is based on the Salt Transport Process studied at ANL for mixed-oxide fast reactor fuel, and the other is based on the blanket processing studies done for ANL's second Experimental Breeder Reactor (EBR-2). This paper discusses the two processes and is a status report on the experimental studies. 5 refs., 2 figs., 2 tabs.

  10. Mechanism and estimation of fatigue crack initiation in austenitic stainless steels in LWR environments.

    SciTech Connect

    Chopra, O. K.; Energy Technology

    2002-08-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This report provides an overview of fatigue crack initiation in austenitic stainless steels in LWR coolant environments. The existing fatigue {var_epsilon}-N data have been evaluated to establish the effects of key material, loading, and environmental parameters (such as steel type, strain range, strain rate, temperature, dissolved-oxygen level in water, and flow rate) on the fatigue lives of these steels. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves for austenitic stainless steels as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are presented. The influence of reactor environments on the mechanism of fatigue crack initiation in these steels is also discussed.

  11. Effects of LWR coolant environments on fatigue lives of austenitic stainless steels

    SciTech Connect

    Chopra, O.K.; Gavenda, D.J.

    1997-07-01

    The ASME Boiler and Pressure Vessel Code fatigue design curves for structural materials do not explicitly address the effects of reactor coolant environments on fatigue life. Recent test data indicate a significant decrease in fatigue life of pressure vessel and piping materials in light water reactor (LWR) environments. Fatigue tests have been conducted on Types 304 and 316NG stainless steel in air and LWR environments to evaluate the effects of various material and loading variables, e.g., steel type, strain rate, dissolved oxygen (DO) in water, and strain range, on fatigue lives of these steels. The results confirm the significant decrease in fatigue life in water. The environmentally assisted decrease in fatigue life depends both on strain rate and DO content in water. A decrease in strain rate from 0.4 to 0.004%/s decreases fatigue life by a factor of {approx} 8. However, unlike carbon and low-alloy steels, environmental effects are more pronounced in low-DO than in high-DO water. At {approx} 0.004%/s strain rate, reduction in fatigue life in water containing <10 ppb D is greater by a factor of {approx} 2 than in water containing {ge} 200 ppb DO. Experimental results have been compared with estimates of fatigue life based on the statistical model. The formation and growth of fatigue cracks in austenitic stainless steels in air and LWR environments are discussed.

  12. Pilot-error accidents: male vs female.

    PubMed

    Vail, G J; Ekman, L G

    1986-12-01

    In this study, general aviation accident records from the files of the National Transportation Safety Board (NTSB), have been analysed by gender to observe the number and rate of pilot-error related accidents from 1972 to 1981 inclusive. If both females and males have no difference in performance, then data would have indicated similarities of accident rates and types of injuries. Males had a higher rate of accidents than females, and a higher portion of the male accidents resulted in fatalities or serious injuries than for females. Type of certificate, age, total flight time, flight time in type of aircraft, phase of operation, category of flying, degree of injury, specific cause factors, cause factor miscellaneous acts/conditions were analysed, taking the total number of United States Active Civilian General Aviation Pilots into consideration. The data did indicate a difference in all variables.

  13. Visualization of Traffic Accidents

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Shen, Yuzhong; Khattak, Asad

    2010-01-01

    Traffic accidents have tremendous impact on society. Annually approximately 6.4 million vehicle accidents are reported by police in the US and nearly half of them result in catastrophic injuries. Visualizations of traffic accidents using geographic information systems (GIS) greatly facilitate handling and analysis of traffic accidents in many aspects. Environmental Systems Research Institute (ESRI), Inc. is the world leader in GIS research and development. ArcGIS, a software package developed by ESRI, has the capabilities to display events associated with a road network, such as accident locations, and pavement quality. But when event locations related to a road network are processed, the existing algorithm used by ArcGIS does not utilize all the information related to the routes of the road network and produces erroneous visualization results of event locations. This software bug causes serious problems for applications in which accurate location information is critical for emergency responses, such as traffic accidents. This paper aims to address this problem and proposes an improved method that utilizes all relevant information of traffic accidents, namely, route number, direction, and mile post, and extracts correct event locations for accurate traffic accident visualization and analysis. The proposed method generates a new shape file for traffic accidents and displays them on top of the existing road network in ArcGIS. Visualization of traffic accidents along Hampton Roads Bridge Tunnel is included to demonstrate the effectiveness of the proposed method.

  14. Repository preclosure accident scenarios

    SciTech Connect

    Yook, H.R.; Arbital, J.G.; Keeton, J.M.; Mosier, J.E.; Weaver, B.S.

    1984-09-01

    Waste-handling operations at a spent-fuel repository were investigated to identify operational accidents that could occur. The facility was subdivided, through systems engineering procedures, into individual operations that involve the waste and one specific component of the waste package, in one specific area of the handling facility. From this subdivision approximately 600 potential accidents involving waste package components were identified and then discussed. Supporting descriptive data included for each accident scenario are distance of drop, speed of collision, weight of package component, and weight of equipment involved. The energy of impact associated with each potential accident is calculated to provide a basis for comparison of the relative severities of all the accidents. The results and conclusions suggest approaches to accident consequence mitigation through waste package and facility design. 35 figures, 9 tables.

  15. Geometric and Road Environmental Effects against Total Number of Traffic Accidents in Kendari

    NASA Astrophysics Data System (ADS)

    Kurdin, M. Akbar; Welendo, La; Annisa, Nur

    2017-05-01

    From the large number of traffic accidents that occurred, the carrying of Kendari as the biggest contributor to accidents in the Southeast. The number of accidents in Kendari row since 2011 was recorded at 18 accidents due to the influence of geometric road, in 2012 registered at 13 accident and in 2013 amounted to 6 accidents, with accident data because of the influence Geometric recorded for 3 consecutive years the biggest contributor to accidents because of the influence of geometric is Abeli districts. This study aimed to determine the road which common point of accident-prone (Black spot) in Kecamatan Abeli as accident-prone areas in Kendari, analyze the influence of geometric and road environment against accidents on roads in Kecamatan Abeli, provide alternative treatment based on the causes of accidents on the location of the accident-prone points (blackspot) to reduce the rate of traffic accidents. From the results of a study of 6 curve the accident-prone locations, that the curve I, II, and VI is the “Black Spot” influenced by the amount and condition of traffic accidents, while at the curve II, a traffic accident that occurred also be caused by unsafe geometric where the type of geometric should be changed from Spiral-Spiral type to Spiral-Circle-Spiral type. This indicates geometric effect on the number of accidents.

  16. [Hanggliding accidents. Distribution of injuries and accident analysis].

    PubMed

    Ballmer, F T; Jakob, R P

    1989-12-01

    Paragliding--a relatively new sport to Switzerland--brought 23 patients with 48 injuries (38% lower limb and 29% spinal) within a period of 8 months to the Inselspital University hospital in Berne. The aim of the study in characterizing these injuries is to formulate some guidelines towards prevention. With over 90% of accidents occurring at either take off or landing, emphasis on better training for the beginner is proposed with strict guidelines for the more experienced pilot flying in unfavourable conditions.

  17. Laser accidents: Being Prepared

    SciTech Connect

    Barat, K

    2003-01-24

    The goal of the Laser Safety Officer and any laser safety program is to prevent a laser accident from occurring, in particular an injury to a person's eyes. Most laser safety courses talk about laser accidents, causes, and types of injury. The purpose of this presentation is to present a plan for safety offices and users to follow in case of accident or injury from laser radiation.

  18. Chemical factors affecting fission product transport in severe LMFBR accidents

    SciTech Connect

    Wichner, R.P.; Jolley, R.L.; Gat, U.; Rodgers, B.R.

    1984-10-01

    This study was performed as a part of a larger evaluation effort on LMFBR accident, source-term estimation. Purpose was to provide basic chemical information regarding fission product, sodium coolant, and structural material interactions required to perform estimation of fission product transport under LMFBR accident conditions. Emphasis was placed on conditions within the reactor vessel; containment vessel conditions are discussed only briefly.

  19. Accident mortality among children

    PubMed Central

    Swaroop, S.; Albrecht, R. M.; Grab, B.

    1956-01-01

    The authors present statistics on mortality from accidents, with special reference to those relating to the age-group 1-19 years. For a number of countries figures are given for the proportional mortality from accidents (the number of accident deaths expressed as a percentage of the number of deaths from all causes) and for the specific death-rates, per 100 000 population, from all causes of death, from selected causes, from all causes of accidents, and from various types of accident. From these figures it appears that, in most countries, accidents are becoming relatively increasingly prominent as a cause of death in childhood, primarily because of the conquest of other causes of death—such as infectious and parasitic diseases, which formerly took a heavy toll of children and adolescents—but also to some extent because the death-rate from motor-vehicle accidents is rising and cancelling out the reduction in the rate for other causes of accidental death. In the authors' opinion, further epidemiological investigations into accident causation are required for the purpose of devising quicker and more effective methods of accident prevention. PMID:13383361

  20. [Accidents with the "paraglider"].

    PubMed

    Lang, T H; Dengg, C; Gabl, M

    1988-09-01

    With a collective of 46 patients we show the details and kinds of accidents caused by paragliding. The base for the casuistry of the accidents was a questionnaire which was answered by most of the injured persons. These were questions about the theoretical and practical training, the course of the flight during the different phases, and the subjective point of view of the course of the accident. The patterns of the injuries showed a high incidence of injuries of the spinal column and high risks for the ankles. At the end, we give some advice how to prevent these accidents.

  1. Transport Aircraft Accident Dynamics

    DTIC Science & Technology

    1982-03-01

    SA Contracti’ Report 165850 S,">.AA 11’ýport No. VL)T-FAR-CT-8Z-T0 i0 u; S𔃺/3!D35" *. T -ansport Aircraft Accident Dynamics Reproduced From Srt...City, New Jersey 08405 84 04-. , NASA Contractor Report FAA Report No. Dbr-MA -C7 ,-70 TRANSPORT AIRCRAFT. ACCIDENT DYNAMICS I A. COMINSKY, et al...transport aircraft accidents , the association between structural systems and accident injuries and the identification of typical scenarios. This report

  2. Nature of corrosion films in simulated LWR water. Final report

    SciTech Connect

    Lumsden, J.B.

    1985-06-01

    Passive films on Alloy 600 and Type 304 stainless steel were characterized using surface analysis instruments. The films were formed under conditions suspected of causing cracking in nuclear systems and compared to those formed under conditions where cracking does not occur. Alloy 600 was investigated in the boric acid-lithium hydroxide thiosulfate solution. Susceptibility to stress corrosion cracking was correlated with the occurrence of a film containing sulfide ions. Environmental conditions which produce an oxide film do not cause stress corrosion cracking of Alloy 600 in the system studied. Type 304 stainless steel was investigated in high purity water at 288/sup 0/C having levels of dissolved O/sub 2/ where Type 304 stainless steel is susceptible and not susceptible to stress corrosion cracking. A correlation was found between passive film chemistry and susceptibility to stress corrosion cracking.

  3. TMI-2 accident: core heat-up analysis

    SciTech Connect

    Ardron, K.H.; Cain, D.G.

    1981-01-01

    This report summarizes NSAC study of reactor core thermal conditions during the accident at Three Mile Island, Unit 2. The study focuses primarily on the time period from core uncovery (approximately 113 minutes after turbine trip) through the initiation of sustained high pressure injection (after 202 minutes). The transient analysis is based upon established sequences of events; plant data; post-accident measurements; interpretation or indirect use of instrument responses to accident conditions.

  4. Columbia Accident Investigation Board

    NASA Image and Video Library

    2003-02-13

    Members of the Columbia Accident Investigation Board examine pieces of Columbia debris in the RLV Hangar. The debris was shipped from the collection point at Barksdale Air Force Base, Shreveport, La. As part of the ongoing investigation into the tragic accident that claimed Columbia and her crew of seven, workers will attempt to reconstruct the orbiter inside the RLV.

  5. Farm accidents in children.

    PubMed

    Cameron, D; Bishop, C; Sibert, J R

    1992-07-04

    To examine the problem of accidental injury to children on farms. Prospective county based study of children presenting to accident and emergency departments over 12 months with injuries sustained in a farm setting and nationwide review of fatal childhood farm accidents over the four years April 1986 to March 1990. Accident and emergency departments in Aberystwyth, Carmarthen, Haverfordwest, and Llanelli and fatal accidents in England, Scotland, and Wales notified to the Health and Safety Executive register. Children aged under 16. Death or injury after farm related accidents. 65 accidents were recorded, including 18 fractures. Nine accidents necessitated admission to hospital for a mean of two (range one to four) days. 13 incidents were related to tractors and other machinery; 24 were due to falls. None of these incidents were reported under the statutory notification scheme. 33 deaths were notified, eight related to tractors and allied machinery and 10 related to falling objects. Although safety is improving, the farm remains a dangerous environment for children. Enforcement of existing safety legislation with significant penalties and targeting of safety education will help reduce accident rates further.

  6. Anatomy of an Accident.

    ERIC Educational Resources Information Center

    Mobley, Michael

    1984-01-01

    The findings of industrial safety engineers in the areas of accident causation and prevention are wholly applicable to adventure programs. Adventure education instructors can use safety engineering concepts to assess the risk in a particular activity, understand factors that cause accidents, and intervene to minimize injuries and damages if…

  7. Steam Oxidation Testing in the Severe Accident Test Station

    SciTech Connect

    Pint, Bruce A.; McMurray, Jake W.

    2016-08-01

    Since 2011, Oak Ridge National Laboratory (ORNL) has been conducting high temperature steam oxidation testing of candidate alloys for accident tolerant fuel (ATF) cladding. These concepts are designed to enhance safety margins in light water reactors (LWR) during severe accident scenarios. In the US ATF community, the Severe Accident Test Station (SATS) has been evaluating candidate materials (including coatings) since 2012. Compared to the current UO2/Zr-based alloy fuel system, alternative cladding materials need to offer slower oxidation kinetics and a smaller enthalpy of oxidation in order to significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident. The steam oxidation behavior of candidate materials is a key metric in the evaluation of ATF concepts and also an important input into models. However, prior modeling work of FeCrAl cladding has used incomplete information on the physical properties of FeCrAl. Also, the steam oxidation data being collected at 1200°-1700°C is unique as no prior work has considered steam oxidation of alloys at such high temperatures. In some cases, the results have been difficult to interpret and more fundamental information is needed such as the stability of alumina in flowing steam at 1400°-1500°C. This report summarizes recent work to measure the steam oxidation kinetics of candidate alloys, the evaporation rate of alumina in steam and the development of integral data on FeCrAl compared to conventional Zr-based cladding.

  8. Accidents on hospital wards.

    PubMed Central

    Levene, S; Bonfield, G

    1991-01-01

    Eight hospitals reported 781 non-iatrogenic accidents occurring to patients and visitors under 16 years of age during an 18 month period up to October 1989. Accidents more often involved boys and children aged 3 to 5 years old. Falls from a height, slips, and striking accidents were common by day and falls by night. A total of 41% of accidents to inpatients occurred when parents were present. Only three accidents were serious. Altogether 27% involved beds and cots, and only one consequent injury was more than minor. Data collected routinely in case of medicolegal action can be presented in a form that may facilitate preventative work. Potentially remediable causes for concern include falls from beds and cots and the use of makeshift equipment. PMID:1929510

  9. Prioritization of tasks in the draft LWR safety technology program plan. Final report

    SciTech Connect

    Lim, E. Y.; Miller, W. J.; Parkinson, W. J.; Ritzman, R. L.; vonHerrmann, J. L.; Wood, P. J.

    1980-05-01

    The purpose of this report is to describe both the approach taken and the results produced in the SAI effort to prioritize the tasks in the Sandia draft LWR Safety Technology Program Plan. This work used the description of important safety issues developed in the Reactor Safety Study (2) to quantify the effect of safety improvements resulting from a research and development program on the risk from nuclear power plants. Costs of implementation of these safety improvements were also estimated to allow a presentation of the final results in a value (i.e., risk reduction) vs. impact (i.e., implementation costs) matrix.

  10. Severe accident testing of electrical penetration assemblies

    SciTech Connect

    Clauss, D.B. )

    1989-11-01

    This report describes the results of tests conducted on three different designs of full-size electrical penetration assemblies (EPAs) that are used in the containment buildings of nuclear power plants. The objective of the tests was to evaluate the behavior of the EPAs under simulated severe accident conditions using steam at elevated temperature and pressure. Leakage, temperature, and cable insulation resistance were monitored throughout the tests. Nuclear-qualified EPAs were produced from D. G. O'Brien, Westinghouse, and Conax. Severe-accident-sequence analysis was used to generate the severe accident conditions (SAC) for a large dry pressurized-water reactor (PWR), a boiling-water reactor (BWR) Mark I drywell, and a BWR Mark III wetwell. Based on a survey conducted by Sandia, each EPA was matched with the severe accident conditions for a specific reactor type. This included the type of containment that a particular EPA design was used in most frequently. Thus, the D. G. O'Brien EPA was chosen for the PWR SAC test, the Westinghouse was chosen for the Mark III test, and the Conax was chosen for the Mark I test. The EPAs were radiation and thermal aged to simulate the effects of a 40-year service life and loss-of-coolant accident (LOCA) before the SAC tests were conducted. The design, test preparations, conduct of the severe accident test, experimental results, posttest observations, and conclusions about the integrity and electrical performance of each EPA tested in this program are described in this report. In general, the leak integrity of the EPAs tested in this program was not compromised by severe accident loads. However, there was significant degradation in the insulation resistance of the cables, which could affect the electrical performance of equipment and devices inside containment at some point during the progression of a severe accident. 10 refs., 165 figs., 16 tabs.

  11. [Accidents and injuries at work].

    PubMed

    Standke, W

    2014-06-01

    In the case of an accident at work, the person concerned is insured by law according to the guidelines of the Sozialgesetzbuch VII as far as the injuries have been caused by this accident. The most important source of information on the incident in question is the accident report that has to be sent to the responsible institution for statutory accident insurance and prevention by the employer, if the accident of the injured person is fatal or leads to an incapacity to work for more than 3 days (= reportable accident). Data concerning accidents like these are sent to the Deutsche Gesetzliche Unfallversicherung (DGUV) as part of a random sample survey by the institutions for statutory accident insurance and prevention and are analyzed statistically. Thus the key issues of accidents can be established and used for effective prevention. Although the success of effective accident prevention is undisputed, there were still 919,025 occupational accidents in 2011, with clear gender-related differences. Most occupational accidents involve the upper and lower extremities. Accidents are analyzed comprehensively and the results are published and made available to all interested parties in an effort to improve public awareness of possible accidents. Apart from reportable accidents, data on the new occupational accident pensions are also gathered and analyzed statistically. Thus, additional information is gained on accidents with extremely serious consequences and partly permanent injuries for the accident victims.

  12. Microstructural Evolution of Type 304 and 316 Stainless Steels Under Neutron Irradiation at LWR Relevant Conditions

    NASA Astrophysics Data System (ADS)

    Tan, L.; Stoller, R. E.; Field, K. G.; Yang, Y.; Nam, H.; Morgan, D.; Wirth, B. D.; Gussev, M. N.; Busby, J. T.

    2016-02-01

    Life extension of light water reactors will expose austenitic internal core components to irradiation damage levels beyond 100 displacements per atom (dpa), leading to profound microstructural evolution and consequent degradation of macroscopic properties. Microstructural evolution, including Frank loops, cavities, precipitates, and segregation at boundaries and the resultant radiation hardening in type 304 and 316 stainless steel (SS) variants were studied in this work via experimental characterization and multiple simulation methods. Experimental data for up to 40 heats of type 304SS and 316SS variants irradiated in different reactors to 0.6-120 dpa at 275-375°C were generated from this work or collected from literature reports. These experimental data were then combined with models of Frank loop and cavity evolution, computational thermodynamics and precipitation, and ab initio and rate theory integrated radiation-induced segregation models to provide insights into microstructural evolution and degradation at higher doses.

  13. Microstructural evolution of type 304 and 316 stainless steels under neutron irradiation at LWR relevant conditions

    SciTech Connect

    Tan, Lizhen; Stoller, Roger E.; Field, Kevin G.; Yang, Ying; Morgan, Dane; Wirth, Brian D.; Gussev, Maxim N.; Busby, Jeremy T.; Nam, H.

    2015-12-11

    Extension of light water reactors' useful life will expose austenitic internal core components to irradiation damage levels beyond 100 displacements per atom (dpa), which will lead to profound microstructural evolution and consequent degradation of macroscopic properties. Microstructural evolution, including Frank loops, cavities, precipitates, and segregation at boundaries and the resultant radiation hardening in type 304 and 316 stainless steel (SS) variants, were studied in this work via experimental characterization and multiple simulation methods. Experimental data for up to 40 heats of type 304SS and 316SS variants irradiated in different reactors to 0.6–120 dpa at 275–375°C were either generated from this work or collected from literature reports. These experimental data were then combined with models of Frank loop and cavity evolution, computational thermodynamics and precipitation, and ab initio and rate theory integrated radiation-induced segregation models to provide insights into microstructural evolution and degradation at higher radiation doses.

  14. Microstructural evolution of type 304 and 316 stainless steels under neutron irradiation at LWR relevant conditions

    DOE PAGES

    Tan, Lizhen; Stoller, Roger E.; Field, Kevin G.; ...

    2015-12-11

    Extension of light water reactors' useful life will expose austenitic internal core components to irradiation damage levels beyond 100 displacements per atom (dpa), which will lead to profound microstructural evolution and consequent degradation of macroscopic properties. Microstructural evolution, including Frank loops, cavities, precipitates, and segregation at boundaries and the resultant radiation hardening in type 304 and 316 stainless steel (SS) variants, were studied in this work via experimental characterization and multiple simulation methods. Experimental data for up to 40 heats of type 304SS and 316SS variants irradiated in different reactors to 0.6–120 dpa at 275–375°C were either generated from thismore » work or collected from literature reports. These experimental data were then combined with models of Frank loop and cavity evolution, computational thermodynamics and precipitation, and ab initio and rate theory integrated radiation-induced segregation models to provide insights into microstructural evolution and degradation at higher radiation doses.« less

  15. Bayes classifiers for imbalanced traffic accidents datasets.

    PubMed

    Mujalli, Randa Oqab; López, Griselda; Garach, Laura

    2016-03-01

    Traffic accidents data sets are usually imbalanced, where the number of instances classified under the killed or severe injuries class (minority) is much lower than those classified under the slight injuries class (majority). This, however, supposes a challenging problem for classification algorithms and may cause obtaining a model that well cover the slight injuries instances whereas the killed or severe injuries instances are misclassified frequently. Based on traffic accidents data collected on urban and suburban roads in Jordan for three years (2009-2011); three different data balancing techniques were used: under-sampling which removes some instances of the majority class, oversampling which creates new instances of the minority class and a mix technique that combines both. In addition, different Bayes classifiers were compared for the different imbalanced and balanced data sets: Averaged One-Dependence Estimators, Weightily Average One-Dependence Estimators, and Bayesian networks in order to identify factors that affect the severity of an accident. The results indicated that using the balanced data sets, especially those created using oversampling techniques, with Bayesian networks improved classifying a traffic accident according to its severity and reduced the misclassification of killed and severe injuries instances. On the other hand, the following variables were found to contribute to the occurrence of a killed causality or a severe injury in a traffic accident: number of vehicles involved, accident pattern, number of directions, accident type, lighting, surface condition, and speed limit. This work, to the knowledge of the authors, is the first that aims at analyzing historical data records for traffic accidents occurring in Jordan and the first to apply balancing techniques to analyze injury severity of traffic accidents.

  16. [Severe parachuting accident. Analysis of 122 cases].

    PubMed

    Krauss, U; Mischkowsky, T

    1993-06-01

    Based on a population of 122 severely injured patients the causes of paragliding accidents and the patterns of injury are analyzed. A questionnaire is used to establish a sport-specific profile for the paragliding pilot. The lower limbs (55.7%) and the lower parts of the spine (45.9%) are the most frequently injured parts of the body. There is a high risk of multiple injuries after a single accident because of the tremendous axial power. The standard of equipment is good in over 90% of the cases. Insufficient training and failure to take account of geographical and meteorological conditions are the main determinants of accidents sustained by paragliders, most of whom are young. Nevertheless, 80% of our patients want to continue paragliding. Finally some advice is given on how to prevent paragliding accidents and injuries.

  17. Aging of cast duplex stainless steels in LWR systems

    SciTech Connect

    Chopra, O.K.; Chung, H.M.

    1984-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. The existing data are evaluated to determine the expected embrittlement of cast components during the operating lifetime of reactors and to define the objectives and scope of the investigation. This presentation describes the status of the program. Data for the metallurgical characterization of the various cast stainless steels used in the investigation are presented. Charpy impact tests on short-term aged material indicate that CF-3 stainless steels are less susceptible to embrittlement than CF-8 or CF-8M stainless steels. Microstructural characterization of cast stainless steels that were obtained from Georg Fischer Co. and aged for up to 70,000 h at 300, 350, and 400/sup 0/C reveals the formation of four different types of precipitates that are not ..cap alpha..'. Embrittlement of the ferrite phase is primarily due to pinning of the dislocations by two of these precipitates, designated as Type M and Type X. The ferrite phase is embrittled after approx. 8 y at 300/sup 0/C and shows cleavage fracture. Examination of the fracture surfaces of the impact-test specimens indicates that the toughness of the long-term aged material is determined by the austenite phase. 8 figures, 3 tables.

  18. Persistence of airline accidents.

    PubMed

    Barros, Carlos Pestana; Faria, Joao Ricardo; Gil-Alana, Luis Alberiko

    2010-10-01

    This paper expands on air travel accident research by examining the relationship between air travel accidents and airline traffic or volume in the period from 1927-2006. The theoretical model is based on a representative airline company that aims to maximise its profits, and it utilises a fractional integration approach in order to determine whether there is a persistent pattern over time with respect to air accidents and air traffic. Furthermore, the paper analyses how airline accidents are related to traffic using a fractional cointegration approach. It finds that airline accidents are persistent and that a (non-stationary) fractional cointegration relationship exists between total airline accidents and airline passengers, airline miles and airline revenues, with shocks that affect the long-run equilibrium disappearing in the very long term. Moreover, this relation is negative, which might be due to the fact that air travel is becoming safer and there is greater competition in the airline industry. Policy implications are derived for countering accident events, based on competition and regulation. © 2010 The Author(s). Journal compilation © Overseas Development Institute, 2010.

  19. [A monitoring system for work-related accidents in Piracicaba, São Paulo, Brazil].

    PubMed

    Cordeiro, Ricardo; Vilela, Rodolfo Andrade Gouveia; de Medeiros, Maria Angélica Tavares; Gonçalves, Cláudia Giglio de Oliveira; Bragantini, Clarice Aparecida; Varolla, Antenor J; Celso, Stephan

    2005-01-01

    The authors report on the development of a work accident monitoring system in Piracicaba, São Paulo State, Brazil, with the following characteristics: information feeding the system is obtained in real time directly from accident treatment centers; the system has universal monitoring, covering all work-related accidents in Piracicaba, regardless of the nature of the worker's employment conditions, place of work, or place of residence; health surveillance and promotion of health initiatives are triggered by identification of sentinel events; spatial distribution analysis of work-related accidents is a basic tool in designing accident awareness strategies and accident prevention policies. The system was implemented in November 2003 and by October 2004 had identified 5,320 work-related accidents, or a 3.8% annual proportional incidence of work-related accidents in the municipal area. We illustrate spatial analysis of registered work-related accidents and present a detailed investigation of one example of a serious accident.

  20. Microstructural examination of fatigue accumulation in critical LWR (light water reactor) components: Final report

    SciTech Connect

    Allen, A.J.; Buttle, D.J.; Coleman, C.F.; Smith, F.A.; Smith, R.L.

    1988-01-01

    This report describes a morphological study of the feasibility of measuring the fatigue damage accumulation state of critical light water reactor (LWR) components by microstructural examination. The changes in microstructure associated with fatigue processes are first discussed so that relevant NDE measurement parameters can be identified. (The creep regime is not considered in this report). The candidate NDE techniques are then reviewed in detail under the following headings: positron annihilation, x-ray diffraction, magnetic techniques, the magnetic Barkhausen effect, the magneto acoustic technique, acoustic emission, ultrasonic techniques and finally other miscellaneous techniques applicable to fatigue damage assessment. All the feasible techniques are summarised and rated in a set of comparison tables. A possible programme for the immediate development of the positron annihilation lineshape technique is proposed. It is concluded that the most successful method of measuring the fatigue accumulation in LWR critical components in a way which relates to the intent of the ASME pressure vessel codes, is likely to be the use of several techniques together and the cross-relation of the results obtained by each. Five techniques are highlighted for immediate possible development: 'etching and surface replication', 'positron annihilation lineshapes', 'x-ray diffraction residual stress', 'acoustic emission' and 'ultrasonic surface acoustic waves'.

  1. Utilization of TRISO Fuel with LWR Spent Fuel in Fusion-Fission Hybrid Reactor System

    NASA Astrophysics Data System (ADS)

    Acır, Adem; Altunok, Taner

    2010-10-01

    HTRs use a high performance particulate TRISO fuel with ceramic multi-layer coatings due to the high burn up capability and very neutronic performance. TRISO fuel because of capable of high burn up and very neutronic performance is conducted in a D-T fusion driven hybrid reactor. In this study, TRISO fuels particles are imbedded body-centered cubic (BCC) in a graphite matrix with a volume fraction of 68%. The neutronic effect of TRISO coated LWR spent fuel in the fuel rod used hybrid reactor on the fuel performance has been investigated for Flibe, Flinabe and Li20Sn80 coolants. The reactor operation time with the different first neutron wall loads is 24 months. Neutron transport calculations are evaluated by using XSDRNPM/SCALE 5 codes with 238 group cross section library. The effect of TRISO coated LWR spent fuel in the fuel rod used hybrid reactor on tritium breeding (TBR), energy multiplication (M), fissile fuel breeding, average burn up values are comparatively investigated. It is shown that the high burn up can be achieved with TRISO fuel in the hybrid reactor.

  2. Application of the Reactor Analysis Support Package LWR set-point analysis guidelines

    SciTech Connect

    Engel, R.E.; Sorensen, J.M.; May, R.S.; Doran, K.J.; Trikouros, N.G.; Mozzias, E.S.

    1989-07-01

    Frequently, a situation is encountered in which the technical specification setpoints established by the plant safety analysis are judged to be unacceptable from a plant operational standpoint. This report documents the application of the Electric Power Research Institute (EPRI) Reactor Analysis Support Package (RASP) Light Water Reactor (LWR) setpoint analysis guidelines to provide justification for relaxing the high pressure setpoints at the Oyster Creek Nuclear Generation Station. More Specifically, the plant operation's staff determined that it was desirable to provide increased margin for measurement uncertainties in the high pressure instrument and safety valve setpoints. Previous experience had indicated that there was insufficient margin to justify the desired setpoints using conventional deterministic inputs to the safety analysis and plant performance evaluation process. Therefore, it was determined that the RASP LWR setpoint analysis guidelines, which incorporated the use of a statistical combination of uncertainties methodology, would be used to establish an acceptable set of high pressure setpoints. This report documents the results of applying the RASP setpoint analysis guidelines to provide justification for an acceptable set of high pressure setpoints for the Oyster Creek station. 14 refs., 53 figs., 28 tabs.

  3. EUV resist curing technique for LWR reduction and etch selectivity enhancement

    NASA Astrophysics Data System (ADS)

    Narishige, Kazuki; Katsunuma, Takayuki; Honda, Masanobu; Yatsuda, Koichi

    2012-03-01

    This paper introduces a new technique utilizing a direct current superimposed (DCS) capacitively-coupled plasma (CCP) to enhance the etch selectivity to EUV resist with decreasing line width roughness (LWR). This new technique includes chemical and e-beam curing effects. DCS CCP generates ballistic electrons, which reform the chemical structure of photoresist. This surface modification hardens the photoresist (PR), and enhances the etch selectivity. The PR-hardening technique also improves the tolerance towards stress by polymer. Hence, a polymer becomes applicable to protect photoresist, and the etch selectivity increases even more. As a result, this cure can be processed without consuming the thickness of EUV resist. The mechanism of EUV resist cure is discussed based on the surface analysis. In addition to the basic physics of PR-hardening, this paper shows the benchmark results between DCS CCP and the conventional curing techniques by RIE, such as HBr cure and H2 cure. Several new chemistries were applied to DCS CCP. In consequence, the PR-hardening by DCS CCP achieved a 33% reduction in LWR at pre-etch treatment, and a 30% reduction during under layer etch simultaneously maintaining enough thickness of EUV resist.

  4. Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels

    SciTech Connect

    Chopra, O.K.; Shack, W.J.

    1998-03-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the code specify fatigue design curves for structural materials. While effects of reactor coolant environments are not explicitly addressed by the design curves, test data indicate that the Code fatigue curves may not always be adequate in coolant environments. This report summarizes work performed by Argonne National Laboratory on fatigue of carbon and low-alloy steels in light water reactor (LWR) environments. The existing fatigue S-N data have been evaluated to establish the effects of various material and loading variables such as steel type, dissolved oxygen level, strain range, strain rate, temperature, orientation, and sulfur content on the fatigue life of these steels. Statistical models have been developed for estimating the fatigue S-N curves as a function of material, loading, and environmental variables. The results have been used to estimate the probability of fatigue cracking of reactor components. The different methods for incorporating the effects of LWR coolant environments on the ASME Code fatigue design curves are presented.

  5. High Temperature Steam Oxidation Testing of Candidate Accident Tolerant Fuel Cladding Materials

    SciTech Connect

    Pint, Bruce A.; Terrani, Kurt A; Nelson, Andrew; Parker, Scott; Parkison, Adam

    2013-12-23

    The Fuel Cycle Research and Development (FCRD) program’s Advanced Fuels Campaign has initiated a multifold effort aimed at facilitating development of accident tolerant fuels in order to overcome the inherent shortcomings of light water reactor (LWR) fuels when exposed to beyond design basis accident conditions. The campaign has invested in development of experimental infrastructure within the Department of Energy complex capable of chronicling the performance of a wide range of concepts under prototypic accident conditions. This report summarizes progress made at Oak Ridge National Laboratory (ORNL) and Los Alamos National Laboratory (LANL) in FY13 toward these goals. Alternative fuel cladding materials to Zircaloy for accident tolerance and a significantly extended safety margin requires oxidation resistance to steam or steam-H2 environments at ≥1200°C for short times. At ORNL, prior work focused attention on SiC, FeCr and FeCrAl as the most promising candidates for further development. Also, it was observed that elevated pressure and H2 additions had minor effects on alloy steam oxidation resistance, thus, 1 bar steam was adequate for screening potential candidates. Commercial Fe-20Cr-5Al alloys remain protective up to 1475°C in steam and CVD SiC up to 1700°C in steam. Alloy development has focused on Fe-Cr-Mn-Si-Y and Fe-Cr-Al-Y alloys with the aluminaforming alloys showing more promise. At 1200°C, ferritic binary Fe-Cr alloys required ≥25% Cr to be protective for this application. With minor alloy additions to Fe-Cr, more than 20%Cr was still required, which makes the alloy susceptible to α’ embrittlement. Based on current results, a Fe-15Cr-5Al-Y composition was selected for initial tube fabrication and welding for irradiation experiments in FY14. Evaluations of chemical vapor deposited (CVD) SiC were conducted up to 1700°C in steam. The reaction of H2O with the alumina reaction tube at 1700°C resulted in Al(OH)3

  6. Accident resistant transport container

    DOEpatents

    Anderson, J.A.; Cole, K.K.

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  7. Accident resistant transport container

    DOEpatents

    Andersen, John A.; Cole, James K.

    1980-01-01

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  8. [Multicenter paragliding accident study 1990].

    PubMed

    Lautenschlager, S; Karli, U; Matter, P

    1992-01-01

    During the period from 1.1.90 until 31.12.90, 86 injuries associated with paragliding were analyzed in a prospective study in 12 different Swiss hospitals with reference to causes, patterns, and frequencies. The injuries showed a mean score of over 2 and were classified as severe. Most frequent spine injuries (36%) and lesions of the lower extremity (35%) with a high risk of the ankles were diagnosed. One accident was fatal. 60% of the accidents happened during landing, 26% during launching and 14% during flight. Half of the pilots were affected during their primary training course. Most accidents were caused by inflight error of judgement--especially incorrect estimation of wind conditions--and further the choice of unfavourable landing sites. In contrast to previous injury-reports, only one equipment failure could be noted, but often the equipment was not corresponding with the experience and the weight of the pilot. To reduce the frequency of paragliding-injuries an accurate choice of equipment and an increased attention to environmental factors is mandatory. Furthermore an education-program regarding the attitude and intelligence of the pilot should be included in training courses.

  9. Analysis of Maximum Reasonably Foreseeable Accidents for the Yucca Mountain Draft Environmental Impact Statement (DEIS)

    SciTech Connect

    S.B. Ross; R.E. Best; S.J. Maheras; T.I. McSweeney

    2001-08-17

    Accidents could occur during the transportation of spent nuclear fuel and high-level radioactive waste. This paper describes the risks and consequences to the public from accidents that are highly unlikely but that could have severe consequences. The impact of these accidents would include those to a collective population and to hypothetical maximally exposed individuals (MEIs). This document discusses accidents with conditions that have a chance of occurring more often than 1 in 10 million times in a year, called ''maximum reasonably foreseeable accidents''. Accidents and conditions less likely than this are not considered to be reasonably foreseeable.

  10. Anthropotechnological analysis of industrial accidents in Brazil.

    PubMed Central

    Binder, M. C.; de Almeida, I. M.; Monteau, M.

    1999-01-01

    The Brazilian Ministry of Labour has been attempting to modify the norms used to analyse industrial accidents in the country. For this purpose, in 1994 it tried to make compulsory use of the causal tree approach to accident analysis, an approach developed in France during the 1970s, without having previously determined whether it is suitable for use under the industrial safety conditions that prevail in most Brazilian firms. In addition, opposition from Brazilian employers has blocked the proposed changes to the norms. The present study employed anthropotechnology to analyse experimental application of the causal tree method to work-related accidents in industrial firms in the region of Botucatu, São Paulo. Three work-related accidents were examined in three industrial firms representative of local, national and multinational companies. On the basis of the accidents analysed in this study, the rationale for the use of the causal tree method in Brazil can be summarized for each type of firm as follows: the method is redundant if there is a predominance of the type of risk whose elimination or neutralization requires adoption of conventional industrial safety measures (firm representative of local enterprises); the method is worth while if the company's specific technical risks have already largely been eliminated (firm representative of national enterprises); and the method is particularly appropriate if the firm has a good safety record and the causes of accidents are primarily related to industrial organization and management (multinational enterprise). PMID:10680249

  11. Effects of quenched randomness induced by car accidents on traffic flow in a cellular automata model.

    PubMed

    Yang, Xian-Qing; Ma, Yu-Qiang; Zhao, Yue-Min

    2004-10-01

    In this paper we numerically study the impact of quenched disorder induced by car accidents on traffic flow in the Nagel-Schreckenberg (NS) model. Car accidents occur when the necessary conditions proposed by [J. Phys. A 30, 3329 (1997)

  12. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary

    SciTech Connect

    Shannon Bragg-Sitton

    2014-02-01

    Research and development (R&D) activities on advanced, higher performance Light Water Reactor (LWR) fuels have been ongoing for the last few years. Following the unfortunate March 2011 events at the Fukushima Nuclear Power Plant in Japan, the R&D shifted toward enhancing the accident tolerance of LWRs. Qualitative attributes for fuels with enhanced accident tolerance, such as improved reaction kinetics with steam resulting in slower hydrogen generation rate, provide guidance for the design and development of fuels and cladding with enhanced accident tolerance. A common set of technical metrics should be established to aid in the optimization and down selection of candidate designs on a more quantitative basis. “Metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. This report describes a proposed technical evaluation methodology that can be applied to evaluate the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed toward qualification.

  13. Accident progression event tree analysis for postulated severe accidents at N Reactor

    SciTech Connect

    Wyss, G.D.; Camp, A.L.; Miller, L.A.; Dingman, S.E.; Kunsman, D.M. ); Medford, G.T. )

    1990-06-01

    A Level II/III probabilistic risk assessment (PRA) has been performed for N Reactor, a Department of Energy (DOE) production reactor located on the Hanford reservation in Washington. The accident progression analysis documented in this report determines how core damage accidents identified in the Level I PRA progress from fuel damage to confinement response and potential releases the environment. The objectives of the study are to generate accident progression data for the Level II/III PRA source term model and to identify changes that could improve plant response under accident conditions. The scope of the analysis is comprehensive, excluding only sabotage and operator errors of commission. State-of-the-art methodology is employed based largely on the methods developed by Sandia for the US Nuclear Regulatory Commission in support of the NUREG-1150 study. The accident progression model allows complex interactions and dependencies between systems to be explicitly considered. Latin Hypecube sampling was used to assess the phenomenological and systemic uncertainties associated with the primary and confinement system responses to the core damage accident. The results of the analysis show that the N Reactor confinement concept provides significant radiological protection for most of the accident progression pathways studied.

  14. Tobit analysis of vehicle accident rates on interstate highways.

    PubMed

    Anastasopoulos, Panagiotis Ch; Tarko, Andrew P; Mannering, Fred L

    2008-03-01

    There has been an abundance of research that has used Poisson models and its variants (negative binomial and zero-inflated models) to improve our understanding of the factors that affect accident frequencies on roadway segments. This study explores the application of an alternate method, tobit regression, by viewing vehicle accident rates directly (instead of frequencies) as a continuous variable that is left-censored at zero. Using data from vehicle accidents on Indiana interstates, the estimation results show that many factors relating to pavement condition, roadway geometrics and traffic characteristics significantly affect vehicle accident rates.

  15. Fracture-mechanics data deduced from thermal-shock and related experiments with LWR pressure-vessel material

    SciTech Connect

    Cheverton, R.D.; Canonico, D.A.; Iskander, S.K.; Bolt, S.E.; Holz, P.P.; Nanstad, R.K.; Stelzman, W.J.

    1982-01-01

    Pressurized water reactors (PWRs) are susceptible to certain types of hypothetical accidents that can subject the reactor pressure vessel to severe thermal shock, that is, a rapid cooling of the inner surface of the vessel wall. The thermal-shock loading, coupled with the radiation-induced reduction in the material fracture toughness, introduces the possibility of propagation of preexistent flaws and what at one time were regarded as somewhat unique fracture-oriented conditions. Several postulated reactor accidents have been analyzed to discover flaw behavior trends; seven intermediate-scale thermal-shock experiments with steel cylinders have been conducted; and corresponding materials characterization studies have been performed. Flaw behavior trends and related fracture-mechanics data deduced from these studies are discussed.

  16. [Accidents affecting potato harvesters].

    PubMed

    Hansen, J U

    1993-09-27

    During industrialization in agriculture, many farming machines have been introduced. It is well-known that farming is a dangerous workplace and that farm machinery cause many serious accidents every year. Four cases of accidents with potato harvesters are discussed. In three of four cases the farmers were injured while cleaning the machine without stopping it, which probably was the main cause of the accidents. Farmers are in general not careful enough when using farm machinery. Every year, farmers in Denmark are severely invalided in accidents with potato harvesters. A strategy to lower the accidents is proposed: 1. Information of farmers, farmer schools, machine constructors and importers about mechanisms of injury. 2. A better education of farmers in using potato harvesters (and other farming machines). 3. Better fencing of the potato harvesters. 4. If possibly constructional changes in the potato harvesters so things will not get stuck, or so that the machine will stop if things stuck. 5. Installation of switches on potato harvesters, which can be reached from all positions, stopping the machines immediately, or a remote switch control carried by the farmer.

  17. School accidents in Austria.

    PubMed

    Schalamon, Johannes; Eberl, Robert; Ainoedhofer, Herwig; Singer, Georg; Spitzer, Peter; Mayr, Johannes; Schober, Peter H; Hoellwarth, Michael E

    2007-09-01

    The aim of this study was to obtain information about the mechanisms and types of injuries in school in Austria. Children between 0 and 18 years of age presenting with injuries at the trauma outpatient in the Department of Pediatric Surgery in Graz and six participating hospitals in Austria were evaluated over a 2-year prospective survey. A total of 28,983 pediatric trauma cases were registered. Personal data, site of the accident, circumstances and mechanisms of accident and the related diagnosis were evaluated. At the Department of Pediatric Surgery in Graz 21,582 questionnaires were completed, out of which 2,148 children had school accidents (10%). The remaining 7,401 questionnaires from peripheral hospitals included 890 school accidents (12%). The male/female ratio was 3:2. In general, sport injuries were a predominant cause of severe trauma (42% severe injuries), compared with other activities in and outside of the school building (26% severe injuries). Injuries during ball-sports contributed to 44% of severe injuries. The upper extremity was most frequently injured (34%), followed by lower extremity (32%), head and neck area (26%) and injuries to thorax and abdomen (8%). Half of all school related injuries occur in children between 10 and 13 years of age. There are typical gender related mechanisms of accident: Boys get frequently injured during soccer, violence, and collisions in and outside of the school building and during craft work. Girls have the highest risk of injuries at ball sports other than soccer.

  18. Factors contributing to young moped rider accidents in Denmark.

    PubMed

    Møller, Mette; Haustein, Sonja

    2016-02-01

    Young road users still constitute a high-risk group with regard to road traffic accidents. The crash rate of a moped is four times greater than that of a motorcycle, and the likelihood of being injured in a road traffic accident is 10-20 times higher among moped riders compared to car drivers. Nevertheless, research on the behaviour and accident involvement of young moped riders remains sparse. Based on analysis of 128 accident protocols, the purpose of this study was to increase knowledge about moped accidents. The study was performed in Denmark involving riders aged 16 or 17. A distinction was made between accident factors related to (1) the road and its surroundings, (2) the vehicle, and (3) the reported behaviour and condition of the road user. Thirteen accident factors were identified with the majority concerning the reported behaviour and condition of the road user. The average number of accident factors assigned per accident was 2.7. Riding speed was assigned in 45% of the accidents which made it the most frequently assigned factor on the part of the moped rider followed by attention errors (42%), a tuned up moped (29%) and position on the road (14%). For the other parties involved, attention error (52%) was the most frequently assigned accident factor. The majority (78%) of the accidents involved road rule breaching on the part of the moped rider. The results indicate that preventive measures should aim to eliminate violations and increase anticipatory skills among moped riders and awareness of mopeds among other road users. Due to their young age the effect of such measures could be enhanced by infrastructural measures facilitating safe interaction between mopeds and other road users. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Nonlinear analysis of LWR components: areas of investigation/benefits/recommendations

    SciTech Connect

    Brown, S. J.

    1980-04-01

    The purpose of this study is to identify specific topics of investigation into design procedures, design concepts, methods of analysis, testing practices, and standards which are characterized by nonlinear behavior (both geometric and material) and which are considered to offer some economic and/or technical benefits to the LWR industry (excluding piping). In this study these topics were collected, compiled, and subjectively evaluated as to their potential benefit. The topics considered to have the greatest benefit/impact potential are discussed. The topics of investigation were found to fall basically into three areas: component, code interpretation, and load/failure mechanism. The topics are arbitrarily reorganized into six areas of investigation: Fracture, Fatigue, Vibration/Dynamic/Seismic, Plasticity, Component/Computational Considerations, and Code Interpretation.

  20. 10 CFR 50.68 - Criticality accident requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Criticality accident requirements. 50.68 Section 50.68 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Issuance, Limitations, and Conditions of Licenses and Construction Permits § 50.68 Criticality accident requirements....

  1. 10 CFR 50.68 - Criticality accident requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Criticality accident requirements. 50.68 Section 50.68 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Issuance, Limitations, and Conditions of Licenses and Construction Permits § 50.68 Criticality accident requirements....

  2. 10 CFR 50.68 - Criticality accident requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Criticality accident requirements. 50.68 Section 50.68 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Issuance, Limitations, and Conditions of Licenses and Construction Permits § 50.68 Criticality accident requirements....

  3. 10 CFR 50.68 - Criticality accident requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Criticality accident requirements. 50.68 Section 50.68 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Issuance, Limitations, and Conditions of Licenses and Construction Permits § 50.68 Criticality accident requirements....

  4. 29 CFR 1915.91 - Accident prevention signs and tags.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Accident prevention signs and tags. 1915.91 Section 1915.91 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Working Conditions § 1915.91 Accident prevention signs and tags. The requirements applicable to...

  5. 29 CFR 1915.91 - Accident prevention signs and tags.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Accident prevention signs and tags. 1915.91 Section 1915.91 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Working Conditions § 1915.91 Accident prevention signs and tags. The requirements applicable to...

  6. 29 CFR 1915.91 - Accident prevention signs and tags.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Accident prevention signs and tags. 1915.91 Section 1915.91 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Working Conditions § 1915.91 Accident prevention signs and tags. The requirements applicable to shipyard...

  7. 10 CFR 50.68 - Criticality accident requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Criticality accident requirements. 50.68 Section 50.68 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Issuance, Limitations, and Conditions of Licenses and Construction Permits § 50.68 Criticality accident requirements. (a...

  8. A case study of electrostatic accidents in the process of oil-gas storage and transportation

    NASA Astrophysics Data System (ADS)

    Hu, Yuqin; Wang, Diansheng; Liu, Jinyu; Gao, Jianshen

    2013-03-01

    Ninety nine electrostatic accidents were reviewed, based on information collected from published literature. All the accidents over the last 30 years occurred during the process of oil-gas storage and transportation. Statistical analysis of these accidents was performed based on the type of complex conditions where accidents occurred, type of tanks and contents, and type of accidents. It is shown that about 85% of the accidents occurred in tank farms, gas stations or petroleum refineries, and 96% of the accidents included fire or explosion. The fishbone diagram was used to summarize the effects and the causes of the effects. The results show that three major reasons were responsible for accidents, including improper operation during loading and unloading oil, poor grounding and static electricity on human bodies, which accounted for 29%, 24% and 13% of the accidents, respectively. Safety actions are suggested to help operating engineers to handle similar situations in the future.

  9. Instrumentation availability during severe accidents for a boiling water reactor with a Mark I containment

    SciTech Connect

    Arcieri, W.C.; Hanson, D.J. )

    1992-02-01

    In support of the US Nuclear Regulatory Commission Accident Management Research Program, the availability of instruments to supply accident management information during a broad range of severe accidents is evaluated for a Boiling Water Reactor with a Mark I containment. Results from this evaluation include: (1) the identification of plant conditions that would impact instrument performance and information needs during severe accidents; (2) the definition of envelopes of parameters that would be important in assessing the performance of plant instrumentation for a broad range of severe accident sequences; and (3) assessment of the availability of plant instrumentation during severe accidents.

  10. Injuries are not accidents

    PubMed Central

    Gutiérrez, María Isabel

    2014-01-01

    Injuries are the result of an acute exposure to exhort of energy or a consequence of a deficiency in a vital element that exceeds physiological thresholds resulting threatens life. They are classified as intentional or unintentional. Injuries are considered a global health issue because they cause more than 5 million deaths per year worldwide and they are an important contributor to the burden of disease, especially affecting people of low socioeconomic status in low- and middle-income countries. A common misconception exists where injuries are thought to be the same as accidents; however, accidents are largely used as chance events, without taken in consideration that all these are preventable. This review discusses injuries and accidents in the context of road traffic and emphasizes injuries as preventable events. An understanding of the essence of injuries enables the standardization of terminology in public use and facilitates the development of a culture of prevention among all of us. PMID:25386040

  11. The Fukushima radiation accident: consequences for radiation accident medical management.

    PubMed

    Meineke, Viktor; Dörr, Harald

    2012-08-01

    The March 2011 radiation accident in Fukushima, Japan, is a textbook example of a radiation accident of global significance. In view of the global dimensions of the accident, it is important to consider the lessons learned. In this context, emphasis must be placed on consequences for planning appropriate medical management for radiation accidents including, for example, estimates of necessary human and material resources. The specific characteristics of the radiation accident in Fukushima are thematically divided into five groups: the exceptional environmental influences on the Fukushima radiation accident, particular circumstances of the accident, differences in risk perception, changed psychosocial factors in the age of the Internet and globalization, and the ignorance of the effects of ionizing radiation both among the general public and health care professionals. Conclusions like the need for reviewing international communication, interfacing, and interface definitions will be drawn from the Fukushima radiation accident.

  12. Who by accident? The social morphology of car accidents.

    PubMed

    Factor, Roni; Yair, Gad; Mahalel, David

    2010-09-01

    Prior studies in the sociology of accidents have shown that different social groups have different rates of accident involvement. This study extends those studies by implementing Bourdieu's relational perspective of social space to systematically explore the homology between drivers' social characteristics and their involvement in specific types of motor vehicle accident. Using a large database that merges official Israeli road-accident records with socioeconomic data from two censuses, this research maps the social order of road accidents through multiple correspondence analysis. Extending prior studies, the results show that different social groups indeed tend to be involved in motor vehicle accidents of different types and severity. For example, we find that drivers from low socioeconomic backgrounds are overinvolved in severe accidents with fatal outcomes. The new findings reported here shed light on the social regularity of road accidents and expose new facets in the social organization of death.

  13. Criticality accident alarm system

    SciTech Connect

    Malenfant, R.E.

    1991-01-01

    The American National Standard ANSI/ANS-8.3-1986, Criticality Accident Alarm System provides guidance for the establishment and maintenance of an alarm system to initiate personnel evacuation in the event of inadvertent criticality. In addition to identifying the physical features of the components of the system, the characteristics of accidents of concern are carefully delineated. Unfortunately, this ANSI Standard has led to considerable confusion in interpretation, and there is evidence that the minimum accident of concern'' may not be appropriate. Furthermore, although intended as a guide, the provisions of the standard are being rigorously applied, sometimes with interpretations that are not consistent. Although the standard is clear in the use of absorbed dose in free air of 20 rad, at least one installation has interpreted the requirement to apply to dose in soft tissue. The standard is also clear in specifying the response to both neutrons and gamma rays. An assembly of uranyl fluoride enriched to 5% {sup 235}U was operated to simulate a potential accident. The dose, delivered in a free run excursion 2 m from the surface of the vessel, was greater than 500 rad, without ever exceeding a rate of 20 rad/min, which is the set point for activating an alarm that meets the standard. The presence of an alarm system would not have prevented any of the five major accidents in chemical operations nor is it absolutely certain that the alarms were solely responsible for reducing personnel exposures following the accident. Nevertheless, criticality alarm systems are now the subject of great effort and expense. 13 refs.

  14. Accidents and repatriation.

    PubMed

    Leggat, Peter A; Fischer, Philip R

    2006-01-01

    Accidents and injury contribute greatly to the morbidity and mortality of travellers worldwide, with road traffic accidents being a major contributer. Those travelers with serious illness and injury may need specialised medical evacuation services, which may involve an air ambulance and a specialised medical team. Such aeromedical repatriations require considerable organisation and liaison between the sending and receiving medical services and other interested parties. However, the majority of travellers requiring emergency assistance are stable patients requiring referral for medical or dental attention or special requirements for carriage on scheduled aircraft.

  15. Car accidents in cellular automata models for one-lane traffic flow.

    PubMed

    Moussa, Najem

    2003-09-01

    Conditions for the occurrence of car accidents are introduced in the Nagel-Schreckenberg model. These conditions are based on the thought that a real accident depends on several parameters: an unexpected action of the car ahead (sudden stop or abrupt deceleration), the gap between the two cars, the velocity of the successor car and its delayed reaction time. We discuss then the effect of this delayed reaction time on the probability of traffic accidents. We find that these conditions for the occurrence of car accidents are necessary for modeling realistic accidents.

  16. Car accidents in cellular automata models for one-lane traffic flow

    NASA Astrophysics Data System (ADS)

    Moussa, Najem

    2003-09-01

    Conditions for the occurrence of car accidents are introduced in the Nagel-Schreckenberg model. These conditions are based on the thought that a real accident depends on several parameters: an unexpected action of the car ahead (sudden stop or abrupt deceleration), the gap between the two cars, the velocity of the successor car and its delayed reaction time. We discuss then the effect of this delayed reaction time on the probability of traffic accidents. We find that these conditions for the occurrence of car accidents are necessary for modeling realistic accidents.

  17. Development of Database for Accident Analysis in Indian Mines

    NASA Astrophysics Data System (ADS)

    Tripathy, Debi Prasad; Guru Raghavendra Reddy, K.

    2016-10-01

    Mining is a hazardous industry and high accident rates associated with underground mining is a cause of deep concern. Technological developments notwithstanding, rate of fatal accidents and reportable incidents have not shown corresponding levels of decline. This paper argues that adoption of appropriate safety standards by both mine management and the government may result in appreciable reduction in accident frequency. This can be achieved by using the technology in improving the working conditions, sensitising workers and managers about causes and prevention of accidents. Inputs required for a detailed analysis of an accident include information on location, time, type, cost of accident, victim, nature of injury, personal and environmental factors etc. Such information can be generated from data available in the standard coded accident report form. This paper presents a web based application for accident analysis in Indian mines during 2001-2013. An accident database (SafeStat) prototype based on Intranet of the TCP/IP agreement, as developed by the authors, is also discussed.

  18. Accident tolerant fuels for LWRs: A perspective

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Terrani, K. A.; Gehin, J. C.; Ott, L. J.; Snead, L. L.

    2014-05-01

    The motivation for exploring the potential development of accident tolerant fuels in light water reactors to replace existing Zr alloy clad monolithic (U, Pu) oxide fuel is outlined. The evaluation includes a brief review of core degradation processes under design-basis and beyond-design-basis transient conditions. Three general strategies for accident tolerant fuels are being explored: modification of current state-of-the-art zirconium alloy cladding to further improve oxidation resistance (including use of coatings), replacement of Zr alloy cladding with an alternative oxidation-resistant high-performance cladding, and replacement of the monolithic ceramic oxide fuel with alternative fuel forms.

  19. National and regional analysis of road accidents in Spain.

    PubMed

    Tolón-Becerra, A; Lastra-Bravo, X; Flores-Parra, I

    2013-01-01

    In Spain, the absolute fatality figures decreased almost 50 percent between 1998 and 2009. Despite this great effort, road mortality is still of great concern to political authorities. Further progress requires efficient road safety policy based on an optimal set of measures and targets that consider the initial conditions and characteristics in each region. This study attempts to analyze road accidents in Spain and its provinces in time and space during 1998-2009. First, we analyzed daily, monthly, and nationwide (NUTS 0) development of road accidents, the correlation between logarithmic transformations of road accidents and territorial and socioeconomic variables, the causality by simple linear regression of road accidents and territorial and socioeconomic variables, and preliminary frequency by fast Fourier transform. Then we analyzed the annual trend in accidents in the Spanish provinces (NUTS 3) and found a correlation between the logarithmic transformations of the mortality rate, fatalities per fatal accident, and accidents resulting in injuries per inhabitant variables and population, population density, gross domestic product (GDP), length of road network, and area. Finally, causality was analyzed by simple linear regression. The most outstanding results were the negative correlation between mortality rate and population density in Spanish provinces, which has increased over time, and that road accidents in Spain have an approximate periodicity of 57 days. The fast Fourier transform analysis of road accident frequency in Spain was useful in identifying the periodic, harmonic components of accidents and casualties. The periodicity observed both for the period 1998-2009 and by year showed that the highest intensity in road accidents was bimonthly, despite the lower number of accidents and casualties in the spectra of amplitude and power and efforts to reduce the intensity and concentration during off-season travel (summer and December).

  20. Behavior of road accidents: Structural time series approach

    NASA Astrophysics Data System (ADS)

    Junus, Noor Wahida Md; Ismail, Mohd Tahir; Arsad, Zainudin

    2014-12-01

    Road accidents become a major issue in contributing to the increasing number of deaths. Few researchers suggest that road accidents occur due to road structure and road condition. The road structure and condition may differ according to the area and volume of traffic of the location. Therefore, this paper attempts to look up the behavior of the road accidents in four main regions in Peninsular Malaysia by employing a structural time series (STS) approach. STS offers the possibility of modelling the unobserved component such as trends and seasonal component and it is allowed to vary over time. The results found that the number of road accidents is described by a different model. Perhaps, the results imply that the government, especially a policy maker should consider to implement a different approach in ways to overcome the increasing number of road accidents.

  1. Young driver accidents in the UK: the influence of age, experience, and time of day.

    PubMed

    Clarke, David D; Ward, Patrick; Bartle, Craig; Truman, Wendy

    2006-09-01

    Young drivers, especially males, have relatively more accidents than other drivers. Young driver accidents also have somewhat different characteristics to those of other drivers; they include single vehicle accidents involving loss of control; excess speed for conditions; accidents during darkness; accidents on single carriageway rural roads; and accidents while making cross-flow turns (i.e. turning right in the UK, equivalent to a left turn in the US and continental Europe). A sample of over 3000 accident cases was considered from midland British police forces, involving drivers aged 17-25 years, and covering a two year period. Four types of accident were analysed: right-turns; rear-end shunts; loss of control on curves; and accidents in darkness. Loss of control on curves and accidents in darkness were found to be a particular problem for younger drivers. It was found that cross-flow turn accidents showed the quickest improvement with increasing driver experience, whereas accidents occurring in darkness with no street lighting showed the slowest rate of improvement. 'Time of day' analyses suggested that the problems of accidents in darkness are not a matter of visibility, but a consequence of the way young drivers use the roads at night. There appears to be a large number of accidents associated with voluntary risk-taking behaviours of young drivers in 'recreational' driving.

  2. Structural reliability of road accidents reconstruction.

    PubMed

    Wach, Wojciech

    2013-05-10

    Reconstruction of road accidents combines objective and subjective action. The former concerns science, the latter assessment of human behavior in the context of objective findings. It is not uncommon for experts equipped with an arsenal of tools to obtain similar results of calculations, but to present radically different conclusions about the cause of the accident. The use of sophisticated methods of uncertainty analysis does not guarantee improvement in quality of reconstruction, because, increasingly, the most serious source of reduced reliability of reconstruction is problems in logical inference. In the article the structure of uncertainty and reliability of accident reconstruction was described. A definition of reliability of road accident reconstruction based on the theory of conditional probability and Bayesian network, as a function of modeling, data and expert reliability (defined in the text) was proposed. The uncertainty of reconstruction was made dependent only on the uncertainty of the data. This separation makes it possible to conduct a qualitative and quantitative analysis of reconstruction reliability and to analyze its sensitivity to component parameters, independently of the uncertainty analysis. An example of calculation was presented. The proposed formalism constitutes a tool helpful to explain, among other things, the paradox of reliable reconstruction despite its uncertain results or unreliable reconstruction despite high precision of results. This approach is of great importance in the reconstruction of road accidents, which goes far beyond the analysis of a single, homogeneous subsystem.

  3. Car Accidents in the Deterministic and Nondeterministic Nagel-Schreckenberg Models

    NASA Astrophysics Data System (ADS)

    Yang, Xian-Qing; Ma, Yu-Qiang

    In this paper, we study further the probability for the occurrence of car accidents in the Nagel-Schreckenberg model. By considering the braking probability, the conditions for car accidents to occur are modified to obtain accurate results. A universal phenomenological theory will also be presented to describe the probability for car accidents to occur in the deterministic and nondeterministic models, respectively.

  4. Occupational accidents aboard merchant ships

    PubMed Central

    Hansen, H; Nielsen, D; Frydenberg, M

    2002-01-01

    Objectives: To investigate the frequency, circumstances, and causes of occupational accidents aboard merchant ships in international trade, and to identify risk factors for the occurrence of occupational accidents as well as dangerous working situations where possible preventive measures may be initiated. Methods: The study is a historical follow up on occupational accidents among crew aboard Danish merchant ships in the period 1993–7. Data were extracted from the Danish Maritime Authority and insurance data. Exact data on time at risk were available. Results: A total of 1993 accidents were identified during a total of 31 140 years at sea. Among these, 209 accidents resulted in permanent disability of 5% or more, and 27 were fatal. The mean risk of having an occupational accident was 6.4/100 years at sea and the risk of an accident causing a permanent disability of 5% or more was 0.67/100 years aboard. Relative risks for notified accidents and accidents causing permanent disability of 5% or more were calculated in a multivariate analysis including ship type, occupation, age, time on board, change of ship since last employment period, and nationality. Foreigners had a considerably lower recorded rate of accidents than Danish citizens. Age was a major risk factor for accidents causing permanent disability. Change of ship and the first period aboard a particular ship were identified as risk factors. Walking from one place to another aboard the ship caused serious accidents. The most serious accidents happened on deck. Conclusions: It was possible to clearly identify work situations and specific risk factors for accidents aboard merchant ships. Most accidents happened while performing daily routine duties. Preventive measures should focus on workplace instructions for all important functions aboard and also on the prevention of accidents caused by walking around aboard the ship. PMID:11850550

  5. Nuclear fuel in a reactor accident.

    PubMed

    Burns, Peter C; Ewing, Rodney C; Navrotsky, Alexandra

    2012-03-09

    Nuclear accidents that lead to melting of a reactor core create heterogeneous materials containing hundreds of radionuclides, many with short half-lives. The long-lived fission products and transuranium elements within damaged fuel remain a concern for millennia. Currently, accurate fundamental models for the prediction of release rates of radionuclides from fuel, especially in contact with water, after an accident remain limited. Relatively little is known about fuel corrosion and radionuclide release under the extreme chemical, radiation, and thermal conditions during and subsequent to a nuclear accident. We review the current understanding of nuclear fuel interactions with the environment, including studies over the relatively narrow range of geochemical, hydrological, and radiation environments relevant to geological repository performance, and discuss priorities for research needed to develop future predictive models.

  6. Physics in Accident Investigations.

    ERIC Educational Resources Information Center

    Brake, Mary L.

    1981-01-01

    Describes physics formulas which can be used by law enforcement officials to determine the possible velocity of vehicles involved in traffic accidents. These include, among others, the slide to stop-level road, slide to stop-sloping roadway, and slide to stop-two different surfaces formulas. (JN)

  7. Columbia Accident Investigation Report

    NASA Image and Video Library

    2003-11-06

    Bill White, in the Mail Room at KSC, stacks copies of the Columbia Accident Investigation Report, which are being distributed to all employees. The delivery is a prelude to NASA Safety and Mission Success Week Nov. 17-21, during which all employees are being encouraged to consider ways they can support and enhance recommendations for improvement stated in the report.

  8. Columbia Accident Investigation Report

    NASA Image and Video Library

    2003-11-06

    Richard Alonzo, in the Mail Room at KSC, prepares stacks of the Columbia Accident Investigation Report, which are being distributed to all employees. The delivery is a prelude to NASA Safety and Mission Success Week Nov. 17-21, during which all employees are being encouraged to consider ways they can support and enhance recommendations for improvement stated in the report.

  9. Challenger accident after launch

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This photograph of the Space Shuttle Challenger accident January 28, 1986 was taken by a 70mm tracking camera at UCS 15 south of Pad 39B, at 11:39:40.061 est. Notice the smoke trails caused by flying debris. The Kennedy Space Center alternative photo number is 108-KSC-86PC-155.

  10. Challenger accident after launch

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This photograph of the Space Shuttle Challenger accident January 28, 1986 was taken by a 70mm tracking camera at UCS 15 south of Pad 39B, at 11:39:16.061 est. One of the solid rocket boosters can be seen at the top of the view. The Kennedy Space Center alternative photo number is 108-KSC-86PC-147.

  11. Challenger accident after launch

    NASA Technical Reports Server (NTRS)

    1986-01-01

    These photographs of the Space Shuttle Challenger accident January 28, 1986 was taken by a 70mm tracking camera at UCS 15 south of Pad 39B, at 11:39:28.161 EST and 11:39:29.094. Notice the smoke trails caused by flying debris (10177). The Kennedy Space Center alternative photo numbers are 108-KSC-86PC-152 and 153.

  12. Challenger accident after launch

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This photograph of the Space Shuttle Challenger accident January 28, 1986 was taken by a 70mm tracking camera at UCS 15 south of Pad 39B, at 11:39:29.927 est. Notice the smoke trails caused by flying debris. The Kennedy Space Center alternative photo number is 108-KSC-86PC-154.

  13. Challenger accident after launch

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This photograph of the Space Shuttle Challenger accident January 28, 1986 was taken by a 70mm tracking camera at UCS 15 south of Pad 39B, at 11:39:40.861 est. Notice the smoke trails caused by flying debris. The Kennedy Space Center alternative photo number is 108-KSC-86PC-156.

  14. Challenger accident after launch

    NASA Technical Reports Server (NTRS)

    1986-01-01

    These photographs of the Space Shuttle Challenger accident January 28, 1986 were taken by a 70mm tracking camera at UCS 15 south of Pad 39B, at 11:39:16.795 EST and 11:39:19.261 EST. The Kennedy Space Center alternative photo numbers are 108-KSC-86PC-149 and 151

  15. Investigation of shipping accident injury severity and mortality.

    PubMed

    Weng, Jinxian; Yang, Dong

    2015-03-01

    Shipping movements are operated in a complex and high-risk environment. Fatal shipping accidents are the nightmares of seafarers. With ten years' worldwide ship accident data, this study develops a binary logistic regression model and a zero-truncated binomial regression model to predict the probability of fatal shipping accidents and corresponding mortalities. The model results show that both the probability of fatal accidents and mortalities are greater for collision, fire/explosion, contact, grounding, sinking accidents occurred in adverse weather conditions and darkness conditions. Sinking has the largest effects on the increment of fatal accident probability and mortalities. The results also show that the bigger number of mortalities is associated with shipping accidents occurred far away from the coastal area/harbor/port. In addition, cruise ships are found to have more mortalities than non-cruise ships. The results of this study are beneficial for policy-makers in proposing efficient strategies to prevent fatal shipping accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Identification of the impacts of maintenance and testing upon the safety of LWR power plants. Part II. Final report

    SciTech Connect

    Husseiny, A. A.; Sabri, Z. A.; Turnage, J. J.

    1980-04-01

    Information is presented concerning overview of literature relating to radiation exposure and operating experience; details of LWR-MTC3 classification system; histograms for individual BWR facilities depicting frequency of M and T mode and frequency of systems and components involved with M and T problems; histograms for individual PWR facilities depicting frequency of M and T mode and frequency of systems and components involved with M and T problems; and Fortran program for M and T data clustering.

  17. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic

  18. Aircraft accidents : method of analysis

    NASA Technical Reports Server (NTRS)

    1931-01-01

    The revised report includes the chart for the analysis of aircraft accidents, combining consideration of the immediate causes, underlying causes, and results of accidents, as prepared by the special committee, with a number of the definitions clarified. A brief statement of the organization and work of the special committee and of the Committee on Aircraft Accidents; and statistical tables giving a comparison of the types of accidents and causes of accidents in the military services on the one hand and in civil aviation on the other, together with explanations of some of the important differences noted in these tables.

  19. Applying STAMP in Accident Analysis

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy; Daouk, Mirna; Dulac, Nicolas; Marais, Karen

    2003-01-01

    Accident models play a critical role in accident investigation and analysis. Most traditional models are based on an underlying chain of events. These models, however, have serious limitations when used for complex, socio-technical systems. Previously, Leveson proposed a new accident model (STAMP) based on system theory. In STAMP, the basic concept is not an event but a constraint. This paper shows how STAMP can be applied to accident analysis using three different views or models of the accident process and proposes a notation for describing this process.

  20. Some features of traffic accidents

    PubMed Central

    Mackay, G. M.

    1969-01-01

    Some aspects of urban and rural traffic accidents have been studied at the scene of some accidents in Birmingham and the county of Worcestershire. Accidents to pedestrians are essentially an urban problem, occur mainly at low speed, and most of the serious injury comes from the initial contact with the vehicle, rather than from secondary impacts with the road surface. The characteristics of motor-cycle accidents are more varied; in urban areas there are many side impacts, with consequent injury to the lower limbs, while rural collisions are predominantly front on, with a high incidence of head injury. Accidents to car occupants vary according to the environment. PMID:5359948

  1. LIGHT WATER REACTOR ACCIDENT TOLERANT FUELS IRRADIATION TESTING

    SciTech Connect

    Carmack, William Jonathan; Barrett, Kristine Eloise; Chichester, Heather Jean MacLean

    2015-09-01

    The purpose of Accident Tolerant Fuels (ATF) experiments is to test novel fuel and cladding concepts designed to replace the current zirconium alloy uranium dioxide (UO2) fuel system. The objective of this Research and Development (R&D) is to develop novel ATF concepts that will be able to withstand loss of active cooling in the reactor core for a considerably longer time period than the current fuel system while maintaining or improving the fuel performance during normal operations, operational transients, design basis, and beyond design basis events. It was necessary to design, analyze, and fabricate drop-in capsules to meet the requirements for testing under prototypic LWR temperatures in Idaho National Laboratory's Advanced Test Reactor (ATR). Three industry led teams and one DOE team from Oak Ridge National Laboratory provided fuel rodlet samples for their new concepts for ATR insertion in 2015. As-built projected temperature calculations were performed on the ATF capsules using the BISON fuel performance code. BISON is an application of INL’s Multi-physics Object Oriented Simulation Environment (MOOSE), which is a massively parallel finite element based framework used to solve systems of fully coupled nonlinear partial differential equations. Both 2D and 3D models were set up to examine cladding and fuel performance.

  2. SiC MODIFICATIONS TO MELCOR FOR SEVERE ACCIDENT ANALYSIS APPLICATIONS

    SciTech Connect

    Brad J. Merrill; Shannon M Bragg-Sitton

    2013-09-01

    The Department of Energy (DOE) Office of Nuclear Energy (NE) Light Water Reactor (LWR) Sustainability Program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. The Fuels Pathway within this program focuses on fuel system components outside of the fuel pellet, allowing for alteration of the existing zirconium-based clad system through coatings, addition of ceramic sleeves, or complete replacement (e.g. fully ceramic cladding). The DOE-NE Fuel Cycle Research & Development (FCRD) Advanced Fuels Campaign (AFC) is also conducting research on materials for advanced, accident tolerant fuels and cladding for application in operating LWRs. To aide in this assessment, a silicon carbide (SiC) version of the MELCOR code was developed by substituting SiC in place of Zircaloy in MELCOR’s reactor core oxidation and material property routines. The purpose of this development effort is to provide a numerical capability for estimating the safety advantages of replacing Zr-alloy components in LWRs with SiC components. This modified version of the MELCOR code was applied to the Three Mile Island (TMI-2) plant accident. While the results are considered preliminary, SiC cladding showed a dramatic safety advantage over Zircaloy cladding during this accident.

  3. Metrics for the Evaluation of Light Water Reactor Accident Tolerant Fuel

    SciTech Connect

    Shannon M. Bragg-Sitton

    2001-09-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Enhancing the accident tolerance of LWRs became a topic of serious discussion following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal of accident tolerant fuel (ATF) development is to identify alternative fuel system technologies to further enhance the safety, competitiveness, and economics of commercial nuclear power. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance. The U.S. Department of Energy is sponsoring multiple teams to develop ATF concepts within multiple national laboratories, universities, and the nuclear industry. Concepts under investigation offer both evolutionary and revolutionary changes to the current nuclear fuel system. This paper summarizes technical evaluation methodology proposed in the U.S. to aid in the optimization and down-selection of candidate ATF designs. This methodology will continue to be refined via input from the research community and industry, such that it is available to support the planned down-selection of ATF concepts in 2016.

  4. Independent assessment of MELCOR as a severe accident thermal-hydraulic/source term analysis tool

    SciTech Connect

    Madni, I.K.

    1995-11-01

    MELCOR is a fully integrated computer code that models all phases of the progression of severe accidents in light water reactor (LWR) nuclear power plants and is being developed for the US Nuclear Regulatory Commission (NRC) by Sandia National Laboratories. Brookhaven National Laboratory (BNL) has a program with the NRC called MELCOR Verification, Benchmarking, and Applications, the aim of which is to provide independent assessment of MELCOR as a severe accident thermal-hydraulic/source term analysis tool. The scope of this program is to perform quality control verification on all released versions of MELCOR, to benchmark MELCOR against more mechanistic codes and experimental data from severe fuel damage tests, and to evaluate the ability of MELCOR to simulate long-term severe accident transients in commercial LWRs, by applying the code to model both boiling water reactors and pressurized water reactors. Under this program, BNL provided input to the NRC-sponsored MELCOR Peer Review and is currently contributing to the MELCOR Cooperative Assessment Program (MCAP). A summary of MELCOR assessment efforts at BNL and their contribution to NRC goals with respect to MELCOR is presented.

  5. Charcoal Performance under Simulated Accident Conditions.

    DTIC Science & Technology

    1982-06-30

    demonstrated how TEDA impregnations alone will behave. 30 6. REFERENCES (1) "Effects of Weathering on Impregnated Charcoal Perform- ance," Victor R. Deitz, NUREG ...CR-2112, NRL Memo Report 4516 (1981). (2) "Effects of Weathering on Impregnated Charcoal Perform- ance," Victor R. Deitz, NRL Memo Report 4006, NUREG ...Characteristics. 4 i i 42 BIBLIOGRAPHIC DATA SHEET NUREG /CR/2550 9. PERFORMING ORGANIZATION NAME AND MAILING ADDRESS finclud ZIP Cod.) DATE REPORT ISSUED Naval

  6. [Heliogeophysical factors and aviation accidents].

    PubMed

    Komarov, F I; Oraevskiĭ, V N; Sizov, Iu P; Tsirul'nik, L B; Kanonidi, Kh D; Ushakov, I B; Shalimov, P M; Kimlyk, M V; Glukhov, D V

    1998-01-01

    It was shown by two independent methods that there is a certain correlation between the number of aviation accidents and heliogeophysical factors. The statistical and spectral analyses of time series of heliogeomagnetic factors and the number of aviation accidents in 1989-1995 showed that, of 216 accidents, 58% are related to sudden geomagnetic storms. A similar relation was revealed for aviation catastrophes (64% out of 86 accidents) and emergencies (54% out of 130 accidents) that coincided in time with heliogeomagnetic storms. General periodicities of the series were revealed by the method of spectral analysis, namely, cycles of 30, 42, 46, 64, 74, 83, 99, 115, 143, 169, 339 days, which confirms the causative relation between the number of aviation accidents and heliogeomagnetic factors. It is assumed that some aviation accidents that coincided in time with geomagnetic storms, are due to changes in professional abilities of pilots that were in the zone of storms.

  7. 49 CFR 835.11 - Obtaining Board accident reports, factual accident reports, and supporting information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Obtaining Board accident reports, factual accident... Board accident reports, factual accident reports, and supporting information. It is the responsibility... obtain Board accident reports, factual accident reports, and accompanying accident docket files....

  8. 49 CFR 835.11 - Obtaining Board accident reports, factual accident reports, and supporting information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Obtaining Board accident reports, factual accident... Board accident reports, factual accident reports, and supporting information. It is the responsibility... obtain Board accident reports, factual accident reports, and accompanying accident docket files....

  9. 49 CFR 835.11 - Obtaining Board accident reports, factual accident reports, and supporting information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Obtaining Board accident reports, factual accident... Board accident reports, factual accident reports, and supporting information. It is the responsibility... obtain Board accident reports, factual accident reports, and accompanying accident docket files....

  10. 49 CFR 835.11 - Obtaining Board accident reports, factual accident reports, and supporting information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Obtaining Board accident reports, factual accident... Board accident reports, factual accident reports, and supporting information. It is the responsibility... obtain Board accident reports, factual accident reports, and accompanying accident docket files....

  11. 49 CFR 835.11 - Obtaining Board accident reports, factual accident reports, and supporting information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Obtaining Board accident reports, factual accident... Board accident reports, factual accident reports, and supporting information. It is the responsibility... obtain Board accident reports, factual accident reports, and accompanying accident docket files....

  12. Design and Implementation of a Fuzzy Accident Detector

    NASA Astrophysics Data System (ADS)

    Jafari, Shahram; Arabnejad, Mohammad; Rashidi Moakhar, Ali

    A fuzzy accident detector has been proposed in this paper. The implemented controller ensures a reliable margin for the speed of a car. This is done by carefully observing the skills of the driver in controlling the automobile during a critical condition. Since x- and y- accelerations of the automobile change sharply during an accident, such conditions can be detected. The system also updates the speed limits in different locations on the road.

  13. [Skateboard and rollerskate accidents].

    PubMed

    Lohmann, M; Petersen, A O; Pedersen, O D

    1990-05-28

    The increasing popularity of skateboards and rollerskates has resulted in an increased number of contacts with the casualty department in Denmark after accidents. As part of the Danish share in the EHLASS project (European Home and Leisure Surveillance System), 120,000 consecutive contacts with the casualty departments were reviewed. Out of these 516 were due to accidents with skateboards and rollerskates (181/335). A total of 194 of these injuries (38%) were fractures and 80% of these were in the upper limbs. Twenty fractures required reposition under general anaesthesia and two required osteosynthesis. Nine patients were admitted for observation for concussion. One patient had sustained rupture of the spleen and splenectomy was necessary. A total of 44 patients were admitted. None of the 516 patients had employed protective equipment on the injured region. Considerable reduction in the number of injuries could probably be produced by employment of suitable protective equipment.

  14. Sport accidents in childhood.

    PubMed Central

    Sahlin, Y

    1990-01-01

    Injuries among children during sporting activities are common. This study is a one year study including children between five and fourteen years of age who sustained their injuries during sporting activities and were treated at Trondheim Regional and University Hospital. Sport accidents account for 27 per cent of all childhood accidents in this age group. Fifty-three per cent of the injured were boys, and 47 per cent were girls. The boys sustained more severe injuries than the girls. Soccer caused the greatest number of injuries. Horse riding and alpine skiing were the cause of the most severe injuries. A more widespread use of protective guards, better technique and body control, better coaching and not allowing the younger children to take part in technically advanced sporting activities might reduce the number and the severity of the sport injuries in children. PMID:2350666

  15. Severe Accident Test Station Design Document

    SciTech Connect

    Snead, Mary A.; Yan, Yong; Howell, Michael; Keiser, James R.; Terrani, Kurt A.

    2015-09-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  16. Effects on accidents of periodic motor vehicle inspection in Norway.

    PubMed

    Christensen, Peter; Elvik, Rune

    2007-01-01

    An extensive programme of periodic motor vehicle inspection was introduced in Norway after 1995, when the treaty between Norway and the European Union (EU) granting Norway (not a member of the EU) access to the EU inner market took effect (The EEA treaty). This paper evaluates the effects on accidents of periodic inspections of cars. Trucks and buses were not included in the study. Negative binomial regression models were fitted to data on accidents and inspections created by merging data files provided by a major insurance company and by the Public Roads Administration. Technical defects prior to inspection were associated with an increased accident rate. Inspections were found to strongly reduce the number of technical defects in cars. Despite this, no effect of inspections on accident rate were found. This finding is inconsistent with the fact that technical defects appear to increase the accident rate; one would expect the repair of such defects to reduce the accident rate. Potential explanations of the findings in terms of behavioural adaptation among car owners are discussed. It is suggested that car owners adapt driving behaviour to the technical condition of the car and that the effect attributed to technical defects before inspection may in part be the result of a tendency for owners who are less concerned about safety to neglect the technical condition of their cars. These car owners might have had a higher accident rate than other car owners irrespective of the technical condition of the car.

  17. Do alcohol excise taxes affect traffic accidents? Evidence from Estonia.

    PubMed

    Saar, Indrek

    2015-01-01

    This article examines the association between alcohol excise tax rates and alcohol-related traffic accidents in Estonia. Monthly time series of traffic accidents involving drunken motor vehicle drivers from 1998 through 2013 were regressed on real average alcohol excise tax rates while controlling for changes in economic conditions and the traffic environment. Specifically, regression models with autoregressive integrated moving average (ARIMA) errors were estimated in order to deal with serial correlation in residuals. Counterfactual models were also estimated in order to check the robustness of the results, using the level of non-alcohol-related traffic accidents as a dependent variable. A statistically significant (P <.01) strong negative relationship between the real average alcohol excise tax rate and alcohol-related traffic accidents was disclosed under alternative model specifications. For instance, the regression model with ARIMA (0, 1, 1)(0, 1, 1) errors revealed that a 1-unit increase in the tax rate is associated with a 1.6% decrease in the level of accidents per 100,000 population involving drunk motor vehicle drivers. No similar association was found in the cases of counterfactual models for non-alcohol-related traffic accidents. This article indicates that the level of alcohol-related traffic accidents in Estonia has been affected by changes in real average alcohol excise taxes during the period 1998-2013. Therefore, in addition to other measures, the use of alcohol taxation is warranted as a policy instrument in tackling alcohol-related traffic accidents.

  18. Proceedings of the IAEA specialists` meeting on cracking in LWR RPV head penetrations

    SciTech Connect

    Pugh, C.E.; Raney, S.J.

    1996-07-01

    This report contains 17 papers that were presented in four sessions at the IAEA Specialists` meeting on Cracking in LWR RPV Head Penetrations held at ASTM Headquarters in Philadelphia on May 2-3, 1995. The papers are compiled here in the order that presentations were made in the sessions, and they relate to operational observations, inspection techniques, analytical modeling, and regulatory control. The goal of the meeting was to allow international experts to review experience in the field of ensuring adequate performance of reactor pressure vessel (RPV) heads and penetrations. The emphasis was to allow a better understanding of RPV material behavior, to provide guidance supporting reliability and adequate performance, and to assist in defining directions for further investigations. The international nature of the meeting is illustrated by the fact that papers were presented by researchers from 10 countries. There were technical experts present form other countries who participated in discussions of the results presented. This present document incorporates the final version of the papers as received from the authors. The final chapter includes conclusions and recommendations. Individual papers have been cataloged separately.

  19. Review and Prioritization of Technical Issues Related to Burnup Credit for LWR Fuel

    SciTech Connect

    Parks, C V; DeHart, M D; Wagner, John C

    2000-03-13

    This report has been prepared to review relevant background information and provide technical discussion that will help initiate a PIRT (Phenomena Identification and Ranking Tables) process for use of burnup credit in light-water reactor (LWR) spent fuel storage and transport cask applications. The PIRT process will be used by the NRC Office of Nuclear Regulatory Research to help prioritize and guide a coordinated program of research and as a means to obtain input/feedback from industry and other interested parties. The review and discussion in this report are based on knowledge and experience gained from work performed in the United States and other countries. Current regulatory practice and perceived industry needs are also reviewed as a background for prioritizing technical needs that will facilitate safe practice in the use of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation is given. Finally, phenomena that need to be better understood for effective licensing, together with technical issues that require resolution, are presented and discussed in the form of a prioritization ranking and initial draft program plan.

  20. Feasibility study of a plant for LWR used fuel reprocessing by pyrochemical methods

    SciTech Connect

    Bychkov, A.V.; Kormilitsyn, M.V.; Savotchkin, Yu.P.; Sokolovsky, Yu.S.; Baganz, Catherine; Lopoukhine, Serge; Maurin, Guy; Medzadourian, Michel

    2007-07-01

    In 2005, experts from AREVA and RIAR performed a joint research work on the feasibility study of a plant reprocessing 1000 t/y of LWR spent nuclear fuel by the gas-fluoride and pyro-electrochemical techniques developed at RIAR. This work was based on the RIAR experience in development of pyrochemical processes and AREVA experience in designing UNF reprocessing plants. UNF reprocessing pyrochemical processes have been developed at RIAR at laboratory scale and technology for granulated MOX fuel fabrication and manufacturing of vibro-packed fuel rods is developed at pilot scale. The research work resulted in a preliminary feasibility assessment of the reprocessing plant according to the norms and standards applied in France. The study results interpretation must integrate the fact that the different technology steps are at very different stage of development. It appears clearly however that in its present state of development, pyro-electrochemical technology is not adapted to the treatment of an important material flow issuing from thermal reactors. There is probably an economic optimum to be studied for the choice of hydrometallurgical or pyro-electrochemical technology, depending on the area of application. This work is an example of successful and fruitful collaboration between French and Russian specialists. (authors)

  1. Uranium Nitride as LWR TRISO Fuel: Thermodynamic Modeling of U-C-N

    SciTech Connect

    Besmann, Theodore M; Shin, Dongwon

    2012-01-01

    TRISO coated particle fuel is envisioned as a next generation replacement for current urania pellet fuel in LWR applications. To obtain adequate fissile loading the kernel of the TRISO particle will need to be UN. In support of the fuel development effort, an assessment of phase regions of interest in the U-C-N system was undertaken as the fuel will be prepared by the carbothermic reduction of the oxide and it will be in equilibrium with carbon within the TRISO particle. The phase equilibria and thermochemistry of the U-C-N system is reviewed, including nitrogen pressure measurements above various phase fields. Selected measurements were used to fit a first order model of the UC1-xNx phase, represented by the inter-solution of UN and UC. Fit to the data was significantly improved by also adjusting the heat of formation for UN by ~12 kJ/mol and the phase equilbria was best reproduced by also adjusting the heat for U2N3 by +XXX. The determined interaction parameters yielded a slightly positive deviation from ideality, which agrees with lattice parameter measurements which show positive deviation from Vegard s law. The resultant model together with reported values for other phases in the system were used to generate isothermal sections of the U-C-N phase diagram. Nitrogen partial pressures were also computed for regions of interest.

  2. Irradiated test fuel shipment plan for the LWR MOX fuel irradiation test project

    SciTech Connect

    Shappert, L.B.; Dickerson, L.S.; Ludwig, S.B.

    1998-10-16

    This document outlines the responsibilities of DOE, DOE contractors, the commercial carrier, and other organizations participating in a shipping campaign of irradiated test specimen capsules containing mixed-oxide (MOX) fuel from the Idaho National Engineering and Environmental Laboratory (INEEL) to the Oak Ridge National Laboratory (ORNL). The shipments described here will be conducted according to applicable regulations of the US Department of Transportation (DOT), US Nuclear Regulatory Commission (NRC), and all applicable DOE Orders. This Irradiated Test Fuel Shipment Plan for the LWR MOX Fuel Irradiation Test Project addresses the shipments of a small number of irradiated test specimen capsules and has been reviewed and agreed to by INEEL and ORNL (as participants in the shipment campaign). Minor refinements to data entries in this plan, such as actual shipment dates, exact quantities and characteristics of materials to be shipped, and final approved shipment routing, will be communicated between the shipper, receiver, and carrier, as needed, using faxes, e-mail, official shipping papers, or other backup documents (e.g., shipment safety evaluations). Any major changes in responsibilities or data beyond refinements of dates and quantities of material will be prepared as additional revisions to this document and will undergo a full review and approval cycle.

  3. Analysis of fission gas release in LWR fuel using the BISON code

    SciTech Connect

    G. Pastore; J.D. Hales; S.R. Novascone; D.M. Perez; B.W. Spencer; R.L. Williamson

    2013-09-01

    Recent advances in the development of the finite-element based, multidimensional fuel performance code BISON of Idaho National Laboratory are presented. Specifically, the development, implementation and testing of a new model for the analysis of fission gas behavior in LWR-UO2 fuel during irradiation are summarized. While retaining a physics-based description of the relevant mechanisms, the model is characterized by a level of complexity suitable for application to engineering-scale nuclear fuel analysis and consistent with the uncertainties pertaining to some parameters. The treatment includes the fundamental features of fission gas behavior, among which are gas diffusion and precipitation in fuel grains, growth and coalescence of gas bubbles at grain faces, grain growth and grain boundary sweeping effects, thermal, athermal, and transient gas release. The BISON code incorporating the new model is applied to the simulation of irradiation experiments from the OECD/NEA International Fuel Performance Experiments database, also included in the IAEA coordinated research projects FUMEX-II and FUMEX-III. The comparison of the results with the available experimental data at moderate burn-up is presented, pointing out an encouraging predictive accuracy, without any fitting applied to the model parameters.

  4. Opportunities for the LWR ATF materials development program to contribute to the LBE-cooled ADS materials qualification program

    NASA Astrophysics Data System (ADS)

    Gong, Xing; Li, Rui; Sun, Maozhou; Ren, Qisen; Liu, Tong; Short, Michael P.

    2016-12-01

    Accelerator-driven systems (ADS) are a promising approach for nuclear waste disposal. Nevertheless, the principal candidate materials proposed for ADS construction, such as the ferritic/martensitic steel, T91, and austenitic stainless steels, 316L and 15-15Ti, are not fully compatible with the liquid lead-bismuth eutectic (LBE) coolant. Under some operating conditions, liquid metal embrittlement (LME) or liquid metal corrosion (LMC) may occur in these steels when exposed to LBE. These environmentally-induced material degradation effects pose a threat to ADS reactor safety, as failure of the materials could initiate a severe accident, in which fission products are released into the coolant. Meanwhile, parallel efforts to develop accident-tolerant fuels (ATF) in light water reactors (LWRs) could provide both general materials design philosophies and specific material solutions to the ADS program. In this paper, the potential contributions of the ATF materials development program to the ADS materials qualification program are evaluated and discussed in terms of service conditions and materials performance requirements. Several specific areas where coordinated development may benefit both programs, including composite materials and selected coatings, are discussed.

  5. [Chernobyl nuclear power plant accident and Tokaimura criticality accident].

    PubMed

    Takada, Jun

    2012-03-01

    It is clear from inspection of historical incidents that the scale of disasters in a nuclear power plant accident is quite low level overwhelmingly compared with a nuclear explosion in nuclear war. Two cities of Hiroshima and Nagasaki were destroyed by nuclear blast with about 20 kt TNT equivalent and then approximately 100,000 people have died respectively. On the other hand, the number of acute death is 30 in the Chernobyl nuclear reactor accident. In this chapter, we review health hazards and doses in two historical nuclear incidents of Chernobyl and Tokaimura criticality accident and then understand the feature of the radiation accident in peaceful utilization of nuclear power.

  6. General aviation accidents in degraded visibility: a case control study of 72 accidents.

    PubMed

    Groff, Loren S; Price, Jana M

    2006-10-01

    Accidents in degraded visibility continue to account for a disproportionately large number of fatal crashes and fatalities in general aviation (GA). However, the relatively small percentage of these crashes annually suggests that even a small reduction in the number of crashes can result in a large reduction in associated fatalities. This study identified risk factors associated with GA accidents that occur in degraded visibility. Data collected during 72 National Transportation Safety Board investigations of GA accidents were compared with data collected from 135 control flights matched on weather conditions, location, time, and rules of flight. Study variables included pilot demographics, experience, testing and accident histories, and the purpose and length of flights. Initial comparisons were conducted using Chi-square analyses, followed by the development of a logistic regression model. Univariate analyses identified significant differences in pilot age at accident, age at initial certification, certificate level, instrument rating, testing performance, and previous accident involvement. There were also significant differences between groups related to aircraft ownership, purpose of flight, and intended flight length. The logistic regression revealed significant increased risk for pilots initially certified after age 25 [odds ratio (OR) 4.5, 95% confidence interval (CI) 1.9-10.81, without instrument ratings (OR 4.8, 95% CI 1.8-12.8), with prior accidents/incidents (OR 3.1, 95% CI 1.1-8.7), and for intended flights longer than 300 nmi (OR 4.6, 95% CI 1.6-13.8). Certain risk factors (e.g., instrument rating) were consistent with previous research, while others (e.g., age at certification) raise questions for future research.

  7. Severe accident approach - final report. Evaluation of design measures for severe accident prevention and consequence mitigation.

    SciTech Connect

    Tentner, A. M.; Parma, E.; Wei, T.; Wigeland, R.; Nuclear Engineering Division; SNL; INL

    2010-03-01

    An important goal of the US DOE reactor development program is to conceptualize advanced safety design features for a demonstration Sodium Fast Reactor (SFR). The treatment of severe accidents is one of the key safety issues in the design approach for advanced SFR systems. It is necessary to develop an in-depth understanding of the risk of severe accidents for the SFR so that appropriate risk management measures can be implemented early in the design process. This report presents the results of a review of the SFR features and phenomena that directly influence the sequence of events during a postulated severe accident. The report identifies the safety features used or proposed for various SFR designs in the US and worldwide for the prevention and/or mitigation of Core Disruptive Accidents (CDA). The report provides an overview of the current SFR safety approaches and the role of severe accidents. Mutual understanding of these design features and safety approaches is necessary for future collaborations between the US and its international partners as part of the GEN IV program. The report also reviews the basis for an integrated safety approach to severe accidents for the SFR that reflects the safety design knowledge gained in the US during the Advanced Liquid Metal Reactor (ALMR) and Integral Fast Reactor (IFR) programs. This approach relies on inherent reactor and plant safety performance characteristics to provide additional safety margins. The goal of this approach is to prevent development of severe accident conditions, even in the event of initiators with safety system failures previously recognized to lead directly to reactor damage.

  8. Meaning of missing values in eyewitness recall and accident records.

    PubMed

    Uttl, Bob; Kisinger, Kelly

    2010-09-02

    Eyewitness recalls and accident records frequently do not mention the conditions and behaviors of interest to researchers and lead to missing values and to uncertainty about the prevalence of these conditions and behaviors surrounding accidents. Missing values may occur because eyewitnesses report the presence but not the absence of obvious clues/accident features. We examined this possibility. Participants watched car accident videos and were asked to recall as much information as they could remember about each accident. The results showed that eyewitnesses were far more likely to report the presence of present obvious clues than the absence of absent obvious clues even though they were aware of their absence. One of the principal mechanisms causing missing values may be eyewitnesses' tendency to not report the absence of obvious features. We discuss the implications of our findings for both retrospective and prospective analyses of accident records, and illustrate the consequences of adopting inappropriate assumptions about the meaning of missing values using the Avaluator Avalanche Accident Prevention Card.

  9. Meaning of Missing Values in Eyewitness Recall and Accident Records

    PubMed Central

    Uttl, Bob; Kisinger, Kelly

    2010-01-01

    Background Eyewitness recalls and accident records frequently do not mention the conditions and behaviors of interest to researchers and lead to missing values and to uncertainty about the prevalence of these conditions and behaviors surrounding accidents. Missing values may occur because eyewitnesses report the presence but not the absence of obvious clues/accident features. We examined this possibility. Methodology/Principal Findings Participants watched car accident videos and were asked to recall as much information as they could remember about each accident. The results showed that eyewitnesses were far more likely to report the presence of present obvious clues than the absence of absent obvious clues even though they were aware of their absence. Conclusions One of the principal mechanisms causing missing values may be eyewitnesses' tendency to not report the absence of obvious features. We discuss the implications of our findings for both retrospective and prospective analyses of accident records, and illustrate the consequences of adopting inappropriate assumptions about the meaning of missing values using the Avaluator Avalanche Accident Prevention Card. PMID:20824054

  10. Accidents due to falls from roof slabs.

    PubMed

    Rudelli, Bruno Alves; Silva, Marcelo Valerio Alabarce da; Akkari, Miguel; Santili, Claudio

    2013-01-01

    CONTEXT AND OBJECTIVE Falls from the roof slabs of houses are accidents of high potential severity that occur in large Brazilian cities and often affect children and adolescents. The aims of this study were to characterize the factors that predispose towards this type of fall involving children and adolescents, quantify the severity of associated lesions and suggest preventive measures. DESIGN AND SETTING Descriptive observational prospective longitudinal study in two hospitals in the metropolitan region of São Paulo. METHODS Data were collected from 29 cases of falls from roof slabs involving children and adolescents between October 2008 and October 2009. RESULTS Cases involving males were more prevalent, accounting for 84%. The predominant age group was schoolchildren (7 to 12 years old; 44%). Leisure activities were most frequently being practiced on the roof slab at the time of the fall (86%), and flying a kite was the most prevalent game (37.9%). In 72% of the cases, the children were unaccompanied by an adult responsible for them. Severe conditions such as multiple trauma and traumatic brain injuries resulted from 79% of the accidents. CONCLUSION Falls from roof slabs are accidents of high potential severity, and preventive measures aimed towards informing parents and guardians about the dangers and risk factors associated with this type of accident are needed, along with physical protective measures, such as low walls around the slab and gates with locks to restrict free access to these places.

  11. Traffic accidents on expressways: new threat to China.

    PubMed

    Zhao, Jinbao; Deng, Wei

    2012-01-01

    As China is building one of the largest expressway systems in the world, expressway safety problems have become serious concerns to China. This article analyzed the trends in expressway accidents in China from 1995 to 2010 and examined the characteristics of these accidents. Expressway accident data were obtained from the Annual Report for Road Traffic Accidents published by the Ministry of Public Security of China. Expressway mileage data were obtained from the National Statistics Yearbook published by the National Bureau of Statistics of China. Descriptive statistical analyses were conducted based on these data. Expressway deaths increased by 10.2-fold from 616 persons in 1995 to 6300 persons in 2010, and the average annual increase was 17.9 percent over the past 15 years, and the overall other road traffic deaths was -0.33 percent. China's expressway mileage accounted for only 1.85 percent of highway mileage driven in 2010, but expressway deaths made up 13.54 percent of highway traffic deaths. The average annual accident lethality rate [accident deaths/(accident deaths + accident injuries)] for China's expressways was 27.76 percent during the period 1995 to 2010, which was 1.33 times higher than the accident lethality rate of highway traffic accidents. China's government should pay attention to expressway construction and safety interventions during the rapid development period of expressways. Related causes, such as geographic patterns, speeding, weather conditions, and traffic flow composition, need to be studied in the near future. An effective and scientific expressway safety management services system, composed of a speed monitoring system, warning system, and emergency rescue system, should be established in developed and underdeveloped provinces in China to improve safety on expressway.

  12. Transportation accidents/incidents involving radioactive materials (1971--1991)

    SciTech Connect

    Cashwell, C. E.; McClure, J. D.

    1992-01-01

    The Radioactive Materials Incident Report (RMIR) database contains information on transportation-related accidents and incidents involving radioactive materials that have occurred in the United States. The RMIR was developed at Sandia National Laboratories (SNL) to support its research and development program efforts for the US Department of Energy (DOE). This paper will address the following topics: background information on the regulations and process for reporting a hazardous materials transportation incident, overview data of radioactive materials transportation accidents and incidents, and additional information and summary data on how packagings have performed in accident conditions.

  13. [Principles of intervertebral disc assessment in private accident insurance].

    PubMed

    Steinmetz, M; Dittrich, V; Röser, K

    2015-09-01

    Due to the spread of intervertebral disc degeneration, insurance companies and experts are regularly confronted with related assessments of insured persons under their private accident insurance. These claims pose a particular challenge for experts, since, in addition to the clinical assessment of the facts, extensive knowledge of general accident insurance conditions, case law and current study findings is required. Each case can only be properly assessed through simultaneous consideration of both the medical and legal facts. These guidelines serve as the basis for experts and claims.managers with respect to the appropriate individual factual assessment of intervertebral disc degeneration in private accident insurance.

  14. Contributive factors to aviation accidents.

    PubMed

    Fajer, Marcia; Almeida, Ildeberto Muniz de; Fischer, Frida Marina

    2011-04-01

    The objective of the study was to compare the results of aviation accident analyses performed by the Center for Investigation and Prevention of Aviation Accidents (CENIPA) with the method Human Factors Analysis and Classification System (HFACS). The final reports of thirty-six general aviation accidents occurring between 2000 and 2005 in the State of São Paulo, Southeastern Brazil were analyzed and compared. CENIPA reports mentioned 163 contributive factors, while HFACS identified 370 factors. It was concluded that CENIPA reports did not contemplate the organizational factors associated with aviation accidents.

  15. Accidents associated with equipment.

    PubMed

    Heath, M L

    1984-01-01

    Serious accidents in which the possibility of equipment-related hazards are raised have been reported to the Scientific and Technical Branch of the Department of Health and Social Security. The author has examined anonymous summaries of 23 such reports of events which occurred over a 5-year period. The principle cause of catastrophe in seventeen of the incidents was user error involving disconnexion or misconnexion. Faulty systems of equipment management combined in some cases with inadequate pre-anaesthetic checking of apparatus were responsible for the other instances. Appropriate systems of equipment management and checking together with meticulous basic clinical monitoring are recommended as the best safeguards in anaesthetic practice.

  16. Review of the status of validation of the computer codes used in the severe accident source term reassessment study (BMI-2104). [PWR; BWR

    SciTech Connect

    Kress, T. S.

    1985-04-01

    The determination of severe accident source terms must, by necessity it seems, rely heavily on the use of complex computer codes. Source term acceptability, therefore, rests on the assessed validity of such codes. Consequently, one element of NRC's recent efforts to reassess LWR severe accident source terms is to provide a review of the status of validation of the computer codes used in the reassessment. The results of this review is the subject of this document. The separate review documents compiled in this report were used as a resource along with the results of the BMI-2104 study by BCL and the QUEST study by SNL to arrive at a more-or-less independent appraisal of the status of source term modeling at this time.

  17. The Fukushima accident was preventable.

    PubMed

    Synolakis, Costas; Kânoğlu, Utku

    2015-10-28

    The 11 March 2011 tsunami was probably the fourth largest in the past 100 years and killed over 15 000 people. The magnitude of the design tsunami triggering earthquake affecting this region of Japan had been grossly underestimated, and the tsunami hit the Fukushima Dai-ichi nuclear power plant (NPP), causing the third most severe accident in an NPP ever. Interestingly, while the Onagawa NPP was also hit by a tsunami of approximately the same height as Dai-ichi, it survived the event 'remarkably undamaged'. We explain what has been referred to as the cascade of engineering and regulatory failures that led to the Fukushima disaster. One, insufficient attention had been given to evidence of large tsunamis inundating the region earlier, to Japanese research suggestive that large earthquakes could occur anywhere along a subduction zone, and to new research on mega-thrusts since Boxing Day 2004. Two, there were unexplainably different design conditions for NPPs at close distances from each other. Three, the hazard analysis to calculate the maximum probable tsunami at Dai-ichi appeared to have had methodological mistakes, which almost nobody experienced in tsunami engineering would have made. Four, there were substantial inadequacies in the Japan nuclear regulatory structure. The Fukushima accident was preventable, if international best practices and standards had been followed, if there had been international reviews, and had common sense prevailed in the interpretation of pre-existing geological and hydrodynamic findings. Formal standards are needed for evaluating the tsunami vulnerability of NPPs, for specific training of engineers and scientists who perform tsunami computations for emergency preparedness or critical facilities, as well as for regulators who review safety studies. © 2015 The Author(s).

  18. Rear-end accident victims. Importance of understanding the accident.

    PubMed Central

    Sehmer, J. M.

    1993-01-01

    Family physicians regularly treat victims of rear-end vehicle accidents. This article describes how taking a detailed history of the accident and understanding the significance of the physical events is helpful in understanding and anticipating patients' morbidity and clinical course. Eight questions to ask patients are suggested to help physicians understand the severity of injury. PMID:8495140

  19. The effects of aircraft certification rules on general aviation accidents

    NASA Astrophysics Data System (ADS)

    Anderson, Carolina Lenz

    -Square test indicated that there was no significant difference in the number of accidents among the different certification categories when either Controlled Flight into Terrain or Structural Failure was listed as cause. However, there was a significant difference in the frequency of accidents with regard to Loss of Control and Engine Failure accidents. The results of the ANCOVA test indicated that there was no significant difference in the accident rate with regard to Loss of Control, Controlled Flight into Terrain, or Structural Failure accidents. There was, however, a significant difference in Engine Failure accidents between Experimental-Amateur Built and the other categories.The text mining analysis of the narrative causes of Loss of Control accidents indicated that only the Civil Air Regulations 3 category airplanes had clusters of words associated with visual flight into instrument meteorological conditions. Civil Air Regulations 3 airplanes were designed and manufactured prior to the 1960s and in most cases have not been retrofitted to take advantage of newer technologies that could help prevent Loss of Control accidents. The study indicated that General Aviation aircraft certification rules do not have a statistically significant effect on aircraft accidents except for Loss of Control and Engine Failure. According to the literature, government oversight could have become an obstacle in the implementation of safety enhancing equipment that could reduce Loss of Control accidents. Oversight should focus on ensuring that Experimental-Amateur Built aircraft owners perform a functional test that could prevent some of the Engine Failure accidents.

  20. Development of an integrated, unattended assay system for LWR-MOX fuel pellet trays

    SciTech Connect

    Stewart, J.E.; Hatcher, C.R.; Pollat, L.L.

    1994-08-01

    Four identical unattended plutonium assay systems have been developed for use at the new light-water-reactor mixed oxide (LWR-MOX) fuel fabrication facility at Hanau, Germany. The systems provide quantitative plutonium verification for all MOX pellet trays entering or leaving a large, intermediate store. Pellet-tray transport and storage systems are highly automated. Data from the ``I-Point`` (information point) assay systems will be shared by the Euratom and International Atomic Energy Agency (IAEA) Inspectorates. The I-Point system integrates, for the first time, passive neutron coincidence counting (NCC) with electro-mechanical sensing (EMS) in unattended mode. Also, provisions have been made for adding high-resolution gamma spectroscopy. The system accumulates data for every tray entering or leaving the store between inspector visits. During an inspection, data are analyzed and compared with operator declarations for the previous inspection period, nominally one month. Specification of the I-point system resulted from a collaboration between the IAEA, Euratom, Siemens, and Los Alamos. Hardware was developed by Siemens and Los Alamos through a bilateral agreement between the German Federal Ministry of Research and Technology (BMFT) and the US DOE. Siemens also provided the EMS subsystem, including software. Through the USSupport Program to the IAEA, Los Alamos developed the NCC software (NCC COLLECT) and also the software for merging and reviewing the EMS and NCC data (MERGE/REVIEW). This paper describes the overall I-Point system, but emphasizes the NCC subsystem, along with the NCC COLLECT and MERGE/REVIEW codes. We also summarize comprehensive testing results that define the quality of assay performance.

  1. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    SciTech Connect

    DelCul, Guillermo Daniel; Trowbridge, Lee D; Renier, John-Paul; Ellis, Ronald James; Williams, Kent Alan; Spencer, Barry B; Collins, Emory D

    2009-02-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the {sup 235}U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of {sup 238}Pu due to the presence of {sup 236}U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance.

  2. Radiation accident grips Goiania

    SciTech Connect

    Roberts, L.

    1987-11-20

    On 13 September two young scavengers in Goiania, Brazil, removed a stainless steel cylinder from a cancer therapy machine in an abandoned clinic, touching off a radiation accident second only to Chernobyl in its severity. On 18 September they sold the cylinder, the size of a 1-gallon paint can, to a scrap dealer for $25. At the junk yard an employee dismantled the cylinder and pried open the platinum capsule inside to reveal a glowing blue salt-like substance - 1400 curies of cesium-137. Fascinated by the luminescent powder, several people took it home with them. Some children reportedly rubbed in on their bodies like carnival glitter - an eerie image of how wrong things can go when vigilance over radioactive materials lapses. In all, 244 people in Goiania, a city of 1 million in central Brazil, were contaminated. The eventual toll, in terms of cancer or genetic defects, cannot yet be estimated. Parts of the city are cordoned off as radiation teams continue washing down buildings and scooping up radioactive soil. The government is also grappling with the political fallout from the accident.

  3. Explaining the road accident risk: weather effects.

    PubMed

    Bergel-Hayat, Ruth; Debbarh, Mohammed; Antoniou, Constantinos; Yannis, George

    2013-11-01

    This research aims to highlight the link between weather conditions and road accident risk at an aggregate level and on a monthly basis, in order to improve road safety monitoring at a national level. It is based on some case studies carried out in Work Package 7 on "Data analysis and synthesis" of the EU-FP6 project "SafetyNet-Building the European Road Safety Observatory", which illustrate the use of weather variables for analysing changes in the number of road injury accidents. Time series analysis models with explanatory variables that measure the weather quantitatively were used and applied to aggregate datasets of injury accidents for France, the Netherlands and the Athens region, over periods of more than 20 years. The main results reveal significant correlations on a monthly basis between weather variables and the aggregate number of injury accidents, but the magnitude and even the sign of these correlations vary according to the type of road (motorways, rural roads or urban roads). Moreover, in the case of the interurban network in France, it appears that the rainfall effect is mainly direct on motorways--exposure being unchanged, and partly indirect on main roads--as a result of changes in exposure. Additional results obtained on a daily basis for the Athens region indicate that capturing the within-the-month variability of the weather variables and including it in a monthly model highlights the effects of extreme weather. Such findings are consistent with previous results obtained for France using a similar approach, with the exception of the negative correlation between precipitation and the number of injury accidents found for the Athens region, which is further investigated. The outlook for the approach and its added value are discussed in the conclusion. Copyright © 2013. Published by Elsevier Ltd.

  4. Preliminary investigation of the /sup 252/Cf-source-driven noise analysis method of subcriticality measurement in LWR fuel storage and initial loading applications

    SciTech Connect

    King, W.T.; Mihalczo, J.T.; Blakeman, E.D.

    1984-01-01

    The ability of the /sup 252/Cf-source-driven neutron noise analysis method to measure subcriticality has been demonstrated in a variety of experimental configurations of fissile materials. Calculations for an approximately 4-m-dia configuration of light water reactor (LWR) fuel elements indicated the feasibility of measuring the subcriticality of large, loosely coupled arrays of LWR fuel elements by this same method. These analysis suggested application to the initial loading of both pressurized and boiling water reactors, zero-power testing of reactors (such as shutdown margin measurements after initial loading), light water reactor refueling, and safe storage of LWR spent fuel. In the fuel storage application, direct measurement of subcriticality in the actual fuel storage facilities provides the parameter which is directly related to criticality safety.

  5. A Review and Analysis of European Industrial Experience in Handling LWR Spent Fuel and Vitrified High-Level Waste

    SciTech Connect

    Blomeke, J.O.

    2001-07-10

    The industrial facilities that have been built or are under construction in France, the United Kingdom, Sweden, and West Germany to handle light-water reactor (LWR) spent fuel and canisters of vitrified high-level waste before ultimate disposal are described and illustrated with drawings and photographs. Published information on the operating performance of these facilities is also given. This information was assembled for consideration in planning and design of similar equipment and facilities needed for the Federal Waste Management System in the United States.

  6. Factors associated with road accidents among Brazilian motorcycle couriers.

    PubMed

    da Silva, Daniela Wosiack; de Andrade, Selma Maffei; Soares, Dorotéia Fátima Pelissari de Paula; Mathias, Thais Aidar de Freitas; Matsuo, Tiemi; de Souza, Regina Kazue Tanno

    2012-01-01

    The objective of the study was to identify factors associated with reports of road accidents, among motorcycle couriers in two medium-sized municipalities in southern Brazil. A self-administered questionnaire was answered by motorcycle couriers that had worked for at least 12 months in this profession. The outcomes analyzed were reports on accidents and serious accidents over the 12 months prior to the survey. Bivariate and multivariate analyses by means of logistic regression were carried out to investigate factors that were independently associated with the outcomes. Seven hundred and fifty motorcycle couriers, of mean age 29.5 years (standard deviation = 8.1 ), were included in the study. Young age (18 to 24 years compared to ≥ 25 years, odds ratio [OR] = 1.77) speeding (OR = 1.48), and use of cell phones while driving (OR = 1.43) were factors independently associated with reports of accidents. For serious accidents, there was an association with alternation of work shifts (OR = 1.91) and speeding (OR = 1.67). The characteristics associated with accidents-personal (young age), behavioral (use of cell phones while driving and speeding), and professional (speeding and alternation of work shifts)-reveal the need to adopt wide-ranging strategies to reduce these accidents, including better work conditions for these motorcyclists.

  7. Risks of radioactive material transportation accidents in Oregon.

    PubMed

    Humphries, L L; Dodd, B

    1989-07-01

    As a continuation of previous research on worst case transportation accidents involving radioactive material (Dodd and Humphries 1988a), and protective action guidance for radioactive material transportation accidents (Dodd and Humphries 1988b), this paper describes the risks from such accidents in Oregon. Radioactive material transportation risks are defined in terms of accident consequences multiplied by the accident probabilities and are expressed as latent cancer fatalities (LCFs). For each of 17 different shipment types, five dose contributions are summed and multiplied by the population density and accident probability. The five dose contributors considered are: inhalation, resuspension, cloudshine, groundshine and direct exposure. The variables over which each of these dose contributors are integrated include seven accident severity categories, three population density zones, five regions of the state, as well as many isopleth areas and radionuclides. Allowance is also made for the possible distribution of meteorological conditions in each area. The dose to the public, emergency responders, pedestrians and personnel in other traffic are all considered. It is concluded that the current level of risk is 1.2 X 10(-5) latent cancer fatalities per year in Oregon. This is equivalent to one LCF every 83,000 y. This compares to 1.2 non-radiological fatalities associated from the same shipments.

  8. German aircraft accident statistics, 1930

    NASA Technical Reports Server (NTRS)

    Weitzmann, Ludwig

    1932-01-01

    The investigation of all serious accidents, involving technical defects in the airplane or engine, is undertaken by the D.V.L. in conjunction with the imperial traffic minister and other interested parties. All accidents not clearly explained in the reports are subsequently cleared up.

  9. First Responders and Criticality Accidents

    SciTech Connect

    Valerie L. Putman; Douglas M. Minnema

    2005-11-01

    Nuclear criticality accident descriptions typically include, but do not focus on, information useful to first responders. We studied these accidents, noting characteristics to help (1) first responders prepare for such an event and (2) emergency drill planners develop appropriate simulations for training. We also provide recommendations to help people prepare for such events in the future.

  10. Metrics for the technical performance evaluation of light water reactor accident-tolerant fuel

    DOE PAGES

    Bragg-Sitton, Shannon M.; Todosow, Michael; Montgomery, Robert; ...

    2016-07-11

    The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Enhancing the accident tolerance of light water reactors (LWRs) became a topic of serious discussion following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal for the development of accident-tolerant fuel (ATF) for LWRs is to identify alternative fuel system technologies to further enhance the safety, competitiveness, andmore » economics of commercial nuclear power. Designed for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+), fuels with enhanced accident tolerance would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance. Research and development of ATF in the United States is conducted under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Advanced Fuels Campaign. The DOE is sponsoring multiple teams to develop ATF concepts within multiple national laboratories, universities, and the nuclear industry. Concepts under investigation offer both evolutionary and revolutionary changes to the current nuclear fuel system. This study summarizes the technical evaluation methodology proposed in the United States to aid in the optimization and prioritization of candidate ATF

  11. Metrics for the technical performance evaluation of light water reactor accident-tolerant fuel

    SciTech Connect

    Bragg-Sitton, Shannon M.; Todosow, Michael; Montgomery, Robert; Stanek, Christopher R.; Carmack, W. Jon; Montgomery, Rose

    2016-07-11

    The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Enhancing the accident tolerance of light water reactors (LWRs) became a topic of serious discussion following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal for the development of accident-tolerant fuel (ATF) for LWRs is to identify alternative fuel system technologies to further enhance the safety, competitiveness, and economics of commercial nuclear power. Designed for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+), fuels with enhanced accident tolerance would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance. Research and development of ATF in the United States is conducted under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Advanced Fuels Campaign. The DOE is sponsoring multiple teams to develop ATF concepts within multiple national laboratories, universities, and the nuclear industry. Concepts under investigation offer both evolutionary and revolutionary changes to the current nuclear fuel system. This study summarizes the technical evaluation methodology proposed in the United States to aid in the optimization and prioritization of candidate ATF designs.

  12. Metrics for the technical performance evaluation of light water reactor accident-tolerant fuel

    SciTech Connect

    Bragg-Sitton, Shannon M.; Todosow, Michael; Montgomery, Robert; Stanek, Christopher R.; Carmack, W. Jon; Montgomery, Rose

    2016-07-11

    The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Enhancing the accident tolerance of light water reactors (LWRs) became a topic of serious discussion following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal for the development of accident-tolerant fuel (ATF) for LWRs is to identify alternative fuel system technologies to further enhance the safety, competitiveness, and economics of commercial nuclear power. Designed for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+), fuels with enhanced accident tolerance would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance. Research and development of ATF in the United States is conducted under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Advanced Fuels Campaign. The DOE is sponsoring multiple teams to develop ATF concepts within multiple national laboratories, universities, and the nuclear industry. Concepts under investigation offer both evolutionary and revolutionary changes to the current nuclear fuel system. This study summarizes the technical evaluation methodology proposed in the United States to aid in the optimization and prioritization of candidate ATF designs.

  13. Industrial accidents triggered by lightning.

    PubMed

    Renni, Elisabetta; Krausmann, Elisabeth; Cozzani, Valerio

    2010-12-15

    Natural disasters can cause major accidents in chemical facilities where they can lead to the release of hazardous materials which in turn can result in fires, explosions or toxic dispersion. Lightning strikes are the most frequent cause of major accidents triggered by natural events. In order to contribute towards the development of a quantitative approach for assessing lightning risk at industrial facilities, lightning-triggered accident case histories were retrieved from the major industrial accident databases and analysed to extract information on types of vulnerable equipment, failure dynamics and damage states, as well as on the final consequences of the event. The most vulnerable category of equipment is storage tanks. Lightning damage is incurred by immediate ignition, electrical and electronic systems failure or structural damage with subsequent release. Toxic releases and tank fires tend to be the most common scenarios associated with lightning strikes. Oil, diesel and gasoline are the substances most frequently released during lightning-triggered Natech accidents.

  14. Effects of road lighting: an analysis based on Dutch accident statistics 1987-2006.

    PubMed

    Wanvik, Per Ole

    2009-01-01

    This study estimates the safety effect of road lighting on accidents in darkness on Dutch roads, using data from an interactive database containing 763,000 injury accidents and 3.3 million property damage accidents covering the period 1987-2006. Two estimators of effect are used, and the results are combined by applying techniques of meta-analysis. Injury accidents are reduced by 50%. This effect is larger than the effects found in most of the earlier studies. The effect on fatal accidents is slightly larger than the effect on injury accidents. The effect during twilight is about 2/3 of the effect in darkness. The effect of road lighting is significantly smaller during adverse weather and road surface conditions than during fine conditions. The effects on pedestrian, bicycle and moped accidents are significantly larger than the effects on automobile and motorcycle accidents. The risk of injury accidents was found to increase in darkness. The average increase in risk was estimated to 17% on lit rural roads and 145% on unlit rural roads. The average increase in risk during rainy conditions is about 50% on lit rural roads and about 190% on unlit rural roads. The average increase in risk with respect to pedestrian accidents is about 140% on lit rural roads and about 360% on unlit rural roads.

  15. Transport aircraft accident dynamics

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1982-01-01

    A study was carried out of 112 impact survivable jet transport aircraft accidents (world wide) of 27,700 kg (60,000 lb.) aircraft and up extending over the last 20 years. This study centered on the effect of impact and the follow-on events on aircraft structures and was confined to the approach, landing and takeoff segments of the flight. The significant characteristics, frequency of occurrence and the effect on the occupants of the above data base were studied and categorized with a view to establishing typical impact scenarios for use as a basis of verifying the effectiveness of potential safety concepts. Studies were also carried out of related subjects such as: (1) assessment of advanced materials; (2) human tolerance to impact; (3) merit functions for safety concepts; and (4) impact analysis and test methods.

  16. Predicting cognitive impairment and accident risk.

    PubMed

    Raslear, Thomas G; Hursh, Steven R; Van Dongen, Hans P A

    2011-01-01

    Sleep and cognition are temporally regulated by a homeostatic process generating pressure for sleep as a function of sleep/wake history, and a circadian process generating pressure for wakefulness as a function of time of day. Under normal nocturnal sleep conditions, these two processes are aligned in such a manner as to provide optimal daytime performance and consolidated nighttime sleep. Under conditions of sleep deprivation, shift work or transmeridian travel, the two processes are misaligned, resulting in fatigue and cognitive deficits. Mathematical models of fatigue and performance have been developed to predict these cognitive deficits. Recent studies showing long-term effects on performance of chronic sleep restriction suggest that the homeostatic process undergoes gradual changes that are slow to recover. New developments in mathematical modeling of performance are focused on capturing these gradual changes and their effects on fatigue. Accident risk increases as a function of fatigue severity as well as the duration of exposure to fatigue. Work schedule and accident rate information from an operational setting can thus be used to calibrate a mathematical model of fatigue and performance to predict accident risk. This provides a fatigue risk management tool that helps to direct mitigation resources to where they would have the greatest mitigating effect. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. New Technologies for Weather Accident Prevention

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Watson, James F., Jr.; Daniels, Taumi S.; Martzaklis, Konstantinos S.; Jarrell, Michael A.; Bogue, Rodney K.

    2005-01-01

    Weather is a causal factor in thirty percent of all aviation accidents. Many of these accidents are due to a lack of weather situation awareness by pilots in flight. Improving the strategic and tactical weather information available and its presentation to pilots in flight can enhance weather situation awareness and enable avoidance of adverse conditions. This paper presents technologies for airborne detection, dissemination and display of weather information developed by the National Aeronautics and Space Administration (NASA) in partnership with the Federal Aviation Administration (FAA), National Oceanic and Atmospheric Administration (NOAA), industry and the research community. These technologies, currently in the initial stages of implementation by industry, will provide more precise and timely knowledge of the weather and enable pilots in flight to make decisions that result in safer and more efficient operations.

  18. EPR Severe Accident Threats and Mitigation

    SciTech Connect

    Azarian, G.; Kursawe, H.M.; Nie, M.; Fischer, M.; Eyink, J.; Stoudt, R.H.

    2004-07-01

    Despite the extremely low EPR core melt frequency, an improved defence-in-depth approach is applied in order to comply with the EPR safety target: no stringent countermeasures should be necessary outside the immediate plant vicinity like evacuation, relocation or food control other than the first harvest in case of a severe accident. Design provisions eliminate energetic events and maintain the containment integrity and leak-tightness during the entire course of the accident. Based on scenarios that cover a broad range of physical phenomena and which provide a sound envelope of boundary conditions associated with each containment challenge, a selection of representative loads has been done, for which mitigation measures have to cope with. This paper presents the main critical threats and the approach used to mitigate those threats. (authors)

  19. Less than severe worst case accidents

    SciTech Connect

    Sanders, G.A.

    1996-08-01

    Many systems can provide tremendous benefit if operating correctly, produce only an inconvenience if they fail to operate, but have extreme consequences if they are only partially disabled such that they operate erratically or prematurely. In order to assure safety, systems are often tested against the most severe environments and accidents that are considered possible to ensure either safe operation or safe failure. However, it is often the less severe environments which result in the ``worst case accident`` since these are the conditions in which part of the system may be exposed or rendered unpredictable prior to total system failure. Some examples of less severe mechanical, thermal, and electrical environments which may actually be worst case are described as cautions for others in industries with high consequence operations or products.

  20. Analysis of accidents with organic material in health workers.

    PubMed

    Vieira, Mariana; Padilha, Maria Itayra; Pinheiro, Regina Dal Castel

    2011-01-01

    This retrospective and descriptive study with a quantitative design aimed to evaluate occupational accidents with exposure to biological material, as well as the profile of workers, based on reporting forms sent to the Regional Reference Center of Occupational Health in Florianópolis/SC. Data collection was carried out through a survey of 118 reporting forms in 2007. Data were analyzed electronically. The occurrence of accidents was predominantly among nursing technicians, women and the mean age was 34.5 years. 73% of accidents involved percutaneous exposure, 78% had blood and fluid with blood, 44.91% resulted from invasive procedures. It was concluded that strategies to prevent the occurrence of accidents with biological material should include joint activities between workers and service management and should be directed at improving work conditions and organization.

  1. Accident sequences simulated at the Juragua nuclear power plant

    SciTech Connect

    Carbajo, J.J.

    1998-08-01

    Different hypothetical accident sequences have been simulated at Unit 1 of the Juragua nuclear power plant in Cuba, a plant with two VVER-440 V213 units under construction. The computer code MELCOR was employed for these simulations. The sequences simulated are: (1) a design-basis accident (DBA) large loss of coolant accident (LOCA) with the emergency core coolant system (ECCS) on, (2) a station blackout (SBO), (3) a small LOCA (SLOCA) concurrent with SBO, (4) a large LOCA (LLOCA) concurrent with SBO, and (5) a LLOCA concurrent with SBO and with the containment breached at time zero. Timings of important events and source term releases have been calculated for the different sequences analyzed. Under certain weather conditions, the fission products released from the severe accident sequences may travel to southern Florida.

  2. Economic development, mobility and traffic accidents in Algeria.

    PubMed

    Bougueroua, M; Carnis, L

    2016-07-01

    The aim of this contribution is to estimate the impact of road economic conditions and mobility on traffic accidents for the case of Algeria. Using the cointegration approach and vector error correction model (VECM), we will examine simultaneously short term and long-term impacts between the number of traffic accidents, fuel consumption and gross domestic product (GDP) per capital, over the period 1970-2013. The main results of the estimation show that the number of traffic accidents in Algeria is positively influenced by the GDP per capita in the short and long term. It implies that a higher economic development worsens the road safety situation. However, the new traffic rules adopted in 2009 have an impact on the forecast trend of traffic accidents, meaning efficient public policy could improve the situation. This result calls for a strong political commitment with effective countermeasures for avoiding the further deterioration of road safety record in Algeria.

  3. Effect of alternative aging and accident simulations on polymer properties

    SciTech Connect

    Bustard, L.D.; Chenion, J.; Carlin, F.; Alba, C.; Gaussens, G.; LeMeur, M.

    1985-05-01

    The influence of accident irradiation, steam, and chemical spray exposures on the behavior of twenty-three age-preconditioned polymer sample sets (twenty-one different materials) has been investigated. The test program varied the following conditions: (1) Accident simulations of irradiation and thermodynamic (steam and chemical spray) conditions were performed both sequentially and simultaneously. (2) Accident thermodynamic (steam and chemical spray) exposures were performed both with and without air present during the exposures. (3) Sequential accident irradiations were performed both at 28/sup 0/C and 70/sup 0/C. (4) Age preconditioning was performed both sequentially and simultaneously. (5) Sequential aging irradiations were performed both at 27/sup 0/C and 70/sup 0/C. (6) Sequential aging exposures were performed using two sequences: (1) thermal followed by irradiation and (2) irradiation followed by thermal. We report both general trends applicable to a majority of the tested materials as well as specific results for each polymer. Our data base consists of ultimate tensile properties at the completion of the accident exposure for three XLPO and XLPE, five EPR and EPDM, two CSPE (HYPALON), one CPE, one VAMAC, one polydiallylphtalate, and one PPS material. We also report bend test results at completion of the accident exposures for two TEFZEL materials and permanent set after compression results for three EPR, one VAMAC, one BUNA N, one SILICONE, and one VITON material.

  4. Identification of the impacts of maintenance and testing upon the safety of LWR power plants. Final report

    SciTech Connect

    Husseiny, A. A.; Sabri, Z. A.; Turnage, J. J.

    1980-04-01

    The present study was designed to identify the impact of maintenance and testing (M and T) upon the safety of LWR power plants. The study involved data extraction from various sources reporting safety-related and operation-related nuclear power plant experience. Primary sources reviewed, including Licensee Event Reports (LER's) submitted to the NRC, revealed that only ten percent of events reported could be identified as M and T problems. The collected data were collated in a manner that would allow identification of principal types of problems which are associated with the performance of M and T tasks in LWR power plants. Frequencies of occurrence of events and their general endemic nature were analyzed using data clustering and pattern recognition techniques, as well as chi-square analyses for sparse contingency tables. The results of these analyses identified seven major categories of M and T error modes which were related to individual facilities and reactor type. Data review indicated that few M and T problems were directly related to procedural inadequacies, with the majority of events being attributable to human error.

  5. Impact of implicit effects on uncertainties and sensitivities of the Doppler coefficient of a LWR pin cell

    NASA Astrophysics Data System (ADS)

    Hursin, Mathieu; Leray, Olivier; Perret, Gregory; Pautz, Andreas; Bostelmann, Friederike; Aures, Alexander; Zwermann, Winfried

    2017-09-01

    In the present work, PSI and GRS sensitivity analysis (SA) and uncertainty quantification (UQ) methods, SHARK-X and XSUSA respectively, are compared for reactivity coefficient calculation; for reference the results of the TSUNAMI and SAMPLER modules of the SCALE code package are also provided. The main objective of paper is to assess the impact of the implicit effect, e.g., considering the effect of cross section perturbation on the self-shielding calculation, on the Doppler coefficient SA and UQ. Analyses are done for a Light Water Reactor (LWR) pin cell based on Phase I of the UAM LWR benchmark. The negligence of implicit effects in XSUSA and TSUNAMI leads to deviations of a few percent between the sensitivity profiles compared to SAMPLER and TSUNAMI (incl. implicit effects) except for 238U elastic scattering. The implicit effect is much larger for the SHARK-X calculations because of its coarser energy group structure between 10 eV and 10 keV compared to the applied SCALE libraries. It is concluded that the influence of the implicit effect strongly depends on the energy mesh of the nuclear data library of the neutron transport solver involved in the UQ calculations and may be magnified by the response considered.

  6. A fracture mechanics approach for estimating fatigue crack initiation in carbon and low-alloy steels in LWR coolant environments

    SciTech Connect

    Park, H. B.; Chopra, O. K.

    2000-04-10

    A fracture mechanics approach for elastic-plastic materials has been used to evaluate the effects of light water reactor (LWR) coolant environments on the fatigue lives of carbon and low-alloy steels. The fatigue life of such steel, defined as the number of cycles required to form an engineering-size crack, i.e., 3-mm deep, is considered to be composed of the growth of (a) microstructurally small cracks and (b) mechanically small cracks. The growth of the latter was characterized in terms of {Delta}J and crack growth rate (da/dN) data in air and LWR environments; in water, the growth rates from long crack tests had to be decreased to match the rates from fatigue S-N data. The growth of microstructurally small cracks was expressed by a modified Hobson relationship in air and by a slip dissolution/oxidation model in water. The crack length for transition from a microstructurally small crack to a mechanically small crack was based on studies on small crack growth. The estimated fatigue S-N curves show good agreement with the experimental data for these steels in air and water environments. At low strain amplitudes, the predicted lives in water can be significantly lower than the experimental values.

  7. Extended-burnup LWR (light-water reactor) fuel: The amount, characteristics, and potential effects on interim storage

    SciTech Connect

    Bailey, W.J.

    1989-03-01

    The results of a study on extended-burnup, light-water reactor (LWR) spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory for the US Department of Energy (DOE). The purpose of the study was to collect and evaluate information on the status of in-reactor performance and integrity of extended-burnup LWR fuel and initiate the investigation of the effects of extending fuel burnup on the subsequent handling, interim storage, and other operations (e.g., rod consolidation and shipping) associated with the back end of the fuel cycle. The results of this study will aid DOE and the nuclear industry in assessing the effects on waste management of extending the useful in-reactor life of nuclear fuel. The experience base with extended-burnup fuel is now substantial and projections for future use of extended-burnup fuel in domestic LWRs are positive. The basic performance and integrity of the fuel in the reactor has not been compromised by extending the burnup, and the potential limitations for further extending the burnup are not severe. 104 refs., 15 tabs.

  8. Construction industry accidents in Spain.

    PubMed

    Camino López, Miguel A; Ritzel, Dale O; Fontaneda, Ignacio; González Alcantara, Oscar J

    2008-01-01

    This paper analyzed industrial accidents that take place on construction sites and their severity. Eighteen variables were studied. We analyzed the influence of each of these with respect to the severity and fatality of the accident. This descriptive analysis was grounded in 1,630,452 accidents, representing the total number of accidents suffered by workers in the construction sector in Spain over the period 1990-2000. It was shown that age, type of contract, time of accident, length of service in the company, company size, day of the week, and the remainder of the variables under analysis influenced the seriousness of the accident. IMPACT ON INJURY PREVENTION: The results obtained show that different training was needed, depending on the severity of accidents, for different age, length of service in the company, organization of work, and time when workers work. The research provides an insight to the likely causes of construction injuries in Spain. As a result of the analysis, industries and governmental agencies in Spain can start to provide appropriate strategies and training to the construction workers.

  9. A review of criticality accidents

    SciTech Connect

    Stratton, W R; Smith, D R

    1989-03-01

    Criticality accidents and the characteristics of prompt power excursions are discussed. Forty-one accidental power transients are reviewed. In each case where available, enough detail is given to help visualize the physical situation, the cause or causes of the accident, the history and characteristics of the transient, the energy release, and the consequences, if any, to personnel and property. Excursions associated with large power reactors are not included in this study, except that some information on the major accident at the Chernobyl reactor in April 1986 is provided in the Appendix. 67 refs., 21 figs., 2 tabs.

  10. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    SciTech Connect

    Su'ud, Zaki; Anshari, Rio

    2012-06-06

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.

  11. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Su'ud, Zaki; Anshari, Rio

    2012-06-01

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.

  12. Industrial accidents triggered by flood events: analysis of past accidents.

    PubMed

    Cozzani, Valerio; Campedel, Michela; Renni, Elisabetta; Krausmann, Elisabeth

    2010-03-15

    Industrial accidents triggered by natural events (NaTech accidents) are a significant category of industrial accidents. Several specific elements that characterize NaTech events still need to be investigated. In particular, the damage mode of equipment and the specific final scenarios that may take place in NaTech accidents are key elements for the assessment of hazard and risk due to these events. In the present study, data on 272 NaTech events triggered by floods were retrieved from some of the major industrial accident databases. Data on final scenarios highlighted the presence of specific events, as those due to substances reacting with water, and the importance of scenarios involving consequences for the environment. This is mainly due to the contamination of floodwater with the hazardous substances released. The analysis of process equipment damage modes allowed the identification of the expected release extents due to different water impact types during floods. The results obtained were used to generate substance-specific event trees for the quantitative assessment of the consequences of accidents triggered by floods.

  13. [Prevention of bicycle accidents].

    PubMed

    Zwipp, H; Barthel, P; Bönninger, J; Bürkle, H; Hagemeister, C; Hannawald, L; Huhn, R; Kühn, M; Liers, H; Maier, R; Otte, D; Prokop, G; Seeck, A; Sturm, J; Unger, T

    2015-04-01

    For a very precise analysis of all injured bicyclists in Germany it would be important to have definitions for "severely injured", "seriously injured" and "critically injured". By this, e.g., two-thirds of surgically treated bicyclists who are not registered by the police could become available for a general analysis. Elderly bicyclists (> 60 years) are a minority (10 %) but represent a majority (50 %) of all fatalities. They profit most by wearing a helmet and would be less injured by using special bicycle bags, switching on their hearing aids and following all traffic rules. E-bikes are used more and more (145 % more in 2012 vs. 2011) with 600,000 at the end of 2011 and are increasingly involved in accidents but still have a lack of legislation. So even for pedelecs 45 with 500 W and a possible speed of 45 km/h there is still no legislative demand for the use of a protecting helmet. 96 % of all injured cyclists in Germany had more than 0.5 ‰ alcohol in their blood, 86 % more than 1.1 ‰ and 59 % more than 1.7 ‰. Fatalities are seen in 24.2 % of cases without any collision partner. Therefore the ADFC calls for a limit of 1.1 ‰. Some virtual studies conclude that integrated sensors in bicycle helmets which would interact with sensors in cars could prevent collisions or reduce the severity of injury by stopping the cars automatically. Integrated sensors in cars with opening angles of 180° enable about 93 % of all bicyclists to be detected leading to a high rate of injury avoidance and/or mitigation. Hanging lamps reduce with 35 % significantly bicycle accidents for children, traffic education for children and special trainings for elderly bicyclists are also recommended as prevention tools. As long as helmet use for bicyclists in Germany rates only 9 % on average and legislative orders for using a helmet will not be in force in the near future, coming up campaigns seem to be necessary to be promoted by the Deutscher

  14. Incidence of posttraumatic stress disorder after traffic accidents in Germany.

    PubMed

    Brand, Stephan; Otte, Dietmar; Petri, Maximilian; Decker, Sebastian; Stübig, Timo; Krettek, Christian; Müller, Christian W

    2014-01-01

    Posttraumatic stress disorder (PTSD) is possibly an overlooked diagnosis of victims suffering from traffic accidents sustaining serious to severe injuries. This paper investigates the incidence of PTSD after traffic accidents in Germany. Data from an accident research unit were analyzed in regard to collision details, and preclinical and clinical data. Preclinical data included details on crash circumstances and estimated injury severity as well as data on victims' conditions (e.g. heart rate, blood pressure, consciousness, breath rate). Clinical data included initial assessment in the emergency department, radiographic diagnoses, and basic life parameters comparable to the preclinical data as well as follow-up data on the daily ward. Data were collected in the German-In-Depth Accident Research study, and included gender, type of accident (e.g. type of vehicle, road conditions, rural or urban area), mental disorder, and AIS (Abbreviated Injury Scale) head score. AIS represent a scoring system to measure the injury severity of traffic accident victims. A total 258 out of 32807 data sets were included in this analysis. Data on accident and victims was collected on scene by specialized teams following established algorithms. Besides higher AIS Head scores for male motorcyclists compared to all other subgroups, no significant correlation was found between the mean maximum AIS score and the occurrence of PTSD. Furthermore, there was no correlation between higher AIS head scores, gender, or involvement in road traffic accidents and PTSD. In our study the overall incidence of PTSD after road traffic accidents was very low (0.78% in a total of 32.807 collected data sets) when compared to other published studies. The reason for this very low incidence of PTSD in our patient sample could be seen in an underestimation of the psychophysiological impact of traffic accidents on patients. Patients suffering from direct experiences of traumatic events such as a traffic accident

  15. Structural assessment of accident loads

    SciTech Connect

    Wagenblast, G.R., Westinghouse Hanford

    1996-05-28

    Structural assessments were made for specific accident loads for specific catch, receiver, and storage tanks. The evaluation herein represents level-of-effort order-of-magnitude estimates of limiting loads that would lead to collapse or rupture of the tank and unmitigated loss of confinement for the waste. Structural capacities were established using failure criteria. Compliance with codes such as ACI, ASCE, ASME, RCRA, UBC, WAC, and DOE Orders was `NOT` maintained. Normal code practice is to prevent failure with margins consistent with expected variations in loads and strengths and confidence in analysis techniques. The evaluation herein represent estimates of code limits without code load factors or code strength reduction factors, and loading beyond such a limit is considered as an onset of some failure mode. The exact nature of the failure mode and its relation to a safe condition is a judgment of the analyst. Consequently, these `RESULTS SHALL NOT BE USED TO ESTABLISH OPERATING OR SAFETY LOAD LIMITS FOR THESE TANKS`.

  16. 49 CFR 801.32 - Accident reports.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Accident reports. 801.32 Section 801.32... PUBLIC AVAILABILITY OF INFORMATION Accident Investigation Records § 801.32 Accident reports. (a) The NTSB....S. civil transportation accidents, in accordance with 49 U.S.C. 1131(e). (b) These reports may...

  17. 32 CFR 644.532 - Reporting accidents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Reporting accidents. 644.532 Section 644.532... and Improvements § 644.532 Reporting accidents. Immediately upon receipt of information of an accident... that an accident has occurred, the former using command should be requested to send qualified...

  18. 49 CFR 230.22 - Accident reports.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Accident reports. 230.22 Section 230.22... Requirements § 230.22 Accident reports. In the case of an accident due to failure, from any cause, of a steam... persons, the railroad on whose line the accident occurred shall immediately make a telephone report of...

  19. 32 CFR 644.532 - Reporting accidents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Reporting accidents. 644.532 Section 644.532... and Improvements § 644.532 Reporting accidents. Immediately upon receipt of information of an accident... that an accident has occurred, the former using command should be requested to send qualified...

  20. 29 CFR 1960.29 - Accident investigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Accident investigation. 1960.29 Section 1960.29 Labor... MATTERS Inspection and Abatement § 1960.29 Accident investigation. (a) While all accidents should be investigated, including accidents involving property damage only, the extent of such investigation shall...

  1. 49 CFR 801.32 - Accident reports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Accident reports. 801.32 Section 801.32... PUBLIC AVAILABILITY OF INFORMATION Accident Investigation Records § 801.32 Accident reports. (a) The NTSB....S. civil transportation accidents, in accordance with 49 U.S.C. 1131(e). (b) These reports may...

  2. 49 CFR 845.40 - Accident report.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Accident report. 845.40 Section 845.40... RULES OF PRACTICE IN TRANSPORTATION; ACCIDENT/INCIDENT HEARINGS AND REPORTS Board Reports § 845.40 Accident report. (a) The Board will issue a detailed narrative accident report in connection with...

  3. 49 CFR 845.40 - Accident report.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Accident report. 845.40 Section 845.40... RULES OF PRACTICE IN TRANSPORTATION; ACCIDENT/INCIDENT HEARINGS AND REPORTS Board Reports § 845.40 Accident report. (a) The Board will issue a detailed narrative accident report in connection with...

  4. 49 CFR 801.32 - Accident reports.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Accident reports. 801.32 Section 801.32... PUBLIC AVAILABILITY OF INFORMATION Accident Investigation Records § 801.32 Accident reports. (a) The NTSB....S. civil transportation accidents, in accordance with 49 U.S.C. 1131(e). (b) These reports may...

  5. 22 CFR 102.8 - Reporting accidents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Reporting accidents. 102.8 Section 102.8... Accidents Abroad § 102.8 Reporting accidents. (a) To airline and Civil Aeronautics Administration... probably be the first to be informed of the accident, in which event he will be expected to report...

  6. 29 CFR 1960.29 - Accident investigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 9 2013-07-01 2013-07-01 false Accident investigation. 1960.29 Section 1960.29 Labor... MATTERS Inspection and Abatement § 1960.29 Accident investigation. (a) While all accidents should be investigated, including accidents involving property damage only, the extent of such investigation shall...

  7. 49 CFR 230.22 - Accident reports.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Accident reports. 230.22 Section 230.22... Requirements § 230.22 Accident reports. In the case of an accident due to failure, from any cause, of a steam... persons, the railroad on whose line the accident occurred shall immediately make a telephone report of...

  8. 29 CFR 1960.29 - Accident investigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 9 2011-07-01 2011-07-01 false Accident investigation. 1960.29 Section 1960.29 Labor... MATTERS Inspection and Abatement § 1960.29 Accident investigation. (a) While all accidents should be investigated, including accidents involving property damage only, the extent of such investigation shall...

  9. 22 CFR 102.8 - Reporting accidents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Reporting accidents. 102.8 Section 102.8... Accidents Abroad § 102.8 Reporting accidents. (a) To airline and Civil Aeronautics Administration... probably be the first to be informed of the accident, in which event he will be expected to report...

  10. 49 CFR 845.40 - Accident report.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Accident report. 845.40 Section 845.40... RULES OF PRACTICE IN TRANSPORTATION; ACCIDENT/INCIDENT HEARINGS AND REPORTS Board Reports § 845.40 Accident report. (a) The Board will issue a detailed narrative accident report in connection with...

  11. 22 CFR 102.8 - Reporting accidents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Reporting accidents. 102.8 Section 102.8... Accidents Abroad § 102.8 Reporting accidents. (a) To airline and Civil Aeronautics Administration... probably be the first to be informed of the accident, in which event he will be expected to report...

  12. 49 CFR 801.32 - Accident reports.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Accident reports. 801.32 Section 801.32... PUBLIC AVAILABILITY OF INFORMATION Accident Investigation Records § 801.32 Accident reports. (a) The NTSB....S. civil transportation accidents, in accordance with 49 U.S.C. 1131(e). (b) These reports may...

  13. 49 CFR 845.40 - Accident report.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Accident report. 845.40 Section 845.40... RULES OF PRACTICE IN TRANSPORTATION; ACCIDENT/INCIDENT HEARINGS AND REPORTS Board Reports § 845.40 Accident report. (a) The Board will issue a detailed narrative accident report in connection with...

  14. 49 CFR 845.40 - Accident report.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Accident report. 845.40 Section 845.40... RULES OF PRACTICE IN TRANSPORTATION; ACCIDENT/INCIDENT HEARINGS AND REPORTS Board Reports § 845.40 Accident report. (a) The Board will issue a detailed narrative accident report in connection with...

  15. 32 CFR 644.532 - Reporting accidents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Reporting accidents. 644.532 Section 644.532... and Improvements § 644.532 Reporting accidents. Immediately upon receipt of information of an accident... that an accident has occurred, the former using command should be requested to send qualified...

  16. 29 CFR 1960.29 - Accident investigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 9 2014-07-01 2014-07-01 false Accident investigation. 1960.29 Section 1960.29 Labor... MATTERS Inspection and Abatement § 1960.29 Accident investigation. (a) While all accidents should be investigated, including accidents involving property damage only, the extent of such investigation shall...

  17. 29 CFR 1960.29 - Accident investigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 9 2012-07-01 2012-07-01 false Accident investigation. 1960.29 Section 1960.29 Labor... MATTERS Inspection and Abatement § 1960.29 Accident investigation. (a) While all accidents should be investigated, including accidents involving property damage only, the extent of such investigation shall...

  18. 49 CFR 230.22 - Accident reports.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Accident reports. 230.22 Section 230.22... Requirements § 230.22 Accident reports. In the case of an accident due to failure, from any cause, of a steam... persons, the railroad on whose line the accident occurred shall immediately make a telephone report of...

  19. 22 CFR 102.8 - Reporting accidents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Reporting accidents. 102.8 Section 102.8... Accidents Abroad § 102.8 Reporting accidents. (a) To airline and Civil Aeronautics Administration... probably be the first to be informed of the accident, in which event he will be expected to report...

  20. 22 CFR 102.8 - Reporting accidents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Reporting accidents. 102.8 Section 102.8... Accidents Abroad § 102.8 Reporting accidents. (a) To airline and Civil Aeronautics Administration... probably be the first to be informed of the accident, in which event he will be expected to report...

  1. 49 CFR 801.32 - Accident reports.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Accident reports. 801.32 Section 801.32... PUBLIC AVAILABILITY OF INFORMATION Accident Investigation Records § 801.32 Accident reports. (a) The NTSB....S. civil transportation accidents, in accordance with 49 U.S.C. 1131(e). (b) These reports may...

  2. 28 CFR 301.106 - Repetitious accidents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Repetitious accidents. 301.106 Section 301.106 Judicial Administration FEDERAL PRISON INDUSTRIES, INC., DEPARTMENT OF JUSTICE INMATE ACCIDENT COMPENSATION General § 301.106 Repetitious accidents. If an inmate worker is involved in successive accidents...

  3. 28 CFR 301.106 - Repetitious accidents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Repetitious accidents. 301.106 Section 301.106 Judicial Administration FEDERAL PRISON INDUSTRIES, INC., DEPARTMENT OF JUSTICE INMATE ACCIDENT COMPENSATION General § 301.106 Repetitious accidents. If an inmate worker is involved in successive accidents...

  4. [Orofacial injuries in skateboard accidents].

    PubMed

    Frohberg, U; Bonsmann, M

    1992-04-01

    In a clinical study, 25 accidents involving injuries by a fall with a skateboard were investigated and classified in respect of epidemiology, accident mechanism and injury patterns in the facial region. Accident victims are predominantly boys between 7 and 9 years of age. A multiple trauma involving the teeth and the dental system in general and the soft parts of the face is defined as a characteristic orofacial injury pattern in skateboard accidents. The high proportion of damage to the front teeth poses problems of functional and aesthetic rehabilitation necessitating long-term treatment courses in children and adolescents. Effective prevention of facial injuries may be possible by evolving better facial protection systems and by creating areas of playgrounds where skateboarders can practise safely.

  5. Aircraft accidents : method of analysis

    NASA Technical Reports Server (NTRS)

    1929-01-01

    This report on a method of analysis of aircraft accidents has been prepared by a special committee on the nomenclature, subdivision, and classification of aircraft accidents organized by the National Advisory Committee for Aeronautics in response to a request dated February 18, 1928, from the Air Coordination Committee consisting of the Assistant Secretaries for Aeronautics in the Departments of War, Navy, and Commerce. The work was undertaken in recognition of the difficulty of drawing correct conclusions from efforts to analyze and compare reports of aircraft accidents prepared by different organizations using different classifications and definitions. The air coordination committee's request was made "in order that practices used may henceforth conform to a standard and be universally comparable." the purpose of the special committee therefore was to prepare a basis for the classification and comparison of aircraft accidents, both civil and military. (author)

  6. Chemical Stockpile Disposal Program rapid accident assessment

    SciTech Connect

    Chester, C.V.

    1990-08-01

    This report develops a scheme for the rapid assessment of a release of toxic chemicals resulting from an accident in one of the most chemical weapon demilitarization plants or storage areas. The system uses such inputs as chemical and pressure sensors monitoring the plant and reports of accidents radioed to the Emergency Operations Center by work parties or monitoring personnel. A size of release can be estimated from previous calculations done in the risk analysis, from back calculation from an open-air chemical sensor measurement, or from an estimated percentage of the inventory of agent at the location of the release. Potential consequences of the estimated release are calculated from real-time meteorological data, surrounding population data, and properties of the agent. In addition to the estimated casualties, area coverage and no-death contours vs time would be calculated. Accidents are assigned to one of four categories: community emergencies, which are involve a threat to off-site personnel; on-post emergencies, which involve a threat only to on-site personnel; advisory, which involves a potential for threat to on-site personnel; and chemical occurrence, which can produce an abnormal operating condition for the plant but no immediate threat to on-site personnel. 9 refs., 20 tabs.

  7. Columbia Accident Probe Widens

    NASA Technical Reports Server (NTRS)

    Covault, Craig

    2003-01-01

    The Columbia Accident Investigation Board has identified about a dozen shuttle program safety concerns it will address in its final report, in addition to foam shedding from the Lockheed Martin external tank-believed by many board members to be the direct cause for the loss of Columbia and her crew. As new evidence narrows the location of Columbia's left-wing breach to a lower corner of reinforced carbon-carbon (RCC) Panel 8 and its adjoining T-seal, the board is broadening its penetration of other shuttle safety issues. As the board works in Houston, United Space Alliance technicians here at Kennedy last week sent the first six of 22 RCC panels from the orbiter Atlantis left wing to Vought Aircraft Industries Inc. in Dallas for extensive testing to assess their integrity. The move is a key step toward both returning the shuttle to flight with Atlantis and obtaining more data on RCC panels subjected to fewer flights, and less exposure to the weather, than the older panels used on Columbia.

  8. RENEB accident simulation exercise.

    PubMed

    Brzozowska, Beata; Ainsbury, Elizabeth; Baert, Annelot; Beaton-Green, Lindsay; Barrios, Leonardo; Barquinero, Joan Francesc; Bassinet, Celine; Beinke, Christina; Benedek, Anett; Beukes, Philip; Bortolin, Emanuela; Buraczewska, Iwona; Burbidge, Christopher; De Amicis, Andrea; De Angelis, Cinzia; Della Monaca, Sara; Depuydt, Julie; De Sanctis, Stefania; Dobos, Katalin; Domene, Mercedes Moreno; Domínguez, Inmaculada; Facco, Eva; Fattibene, Paola; Frenzel, Monika; Monteiro Gil, Octávia; Gonon, Géraldine; Gregoire, Eric; Gruel, Gaëtan; Hadjidekova, Valeria; Hatzi, Vasiliki I; Hristova, Rositsa; Jaworska, Alicja; Kis, Enikő; Kowalska, Maria; Kulka, Ulrike; Lista, Florigio; Lumniczky, Katalin; Martínez-López, Wilner; Meschini, Roberta; Moertl, Simone; Moquet, Jayne; Noditi, Mihaela; Oestreicher, Ursula; Orta Vázquez, Manuel Luis; Palma, Valentina; Pantelias, Gabriel; Montoro Pastor, Alegria; Patrono, Clarice; Piqueret-Stephan, Laure; Quattrini, Maria Cristina; Regalbuto, Elisa; Ricoul, Michelle; Roch-Lefevre, Sandrine; Roy, Laurence; Sabatier, Laure; Sarchiapone, Lucia; Sebastià, Natividad; Sommer, Sylwester; Sun, Mingzhu; Suto, Yumiko; Terzoudi, Georgia; Trompier, Francois; Vral, Anne; Wilkins, Ruth; Zafiropoulos, Demetre; Wieser, Albrecht; Woda, Clemens; Wojcik, Andrzej

    2017-01-01

    The RENEB accident exercise was carried out in order to train the RENEB participants in coordinating and managing potentially large data sets that would be generated in case of a major radiological event. Each participant was offered the possibility to activate the network by sending an alerting email about a simulated radiation emergency. The same participant had to collect, compile and report capacity, triage categorization and exposure scenario results obtained from all other participants. The exercise was performed over 27 weeks and involved the network consisting of 28 institutes: 21 RENEB members, four candidates and three non-RENEB partners. The duration of a single exercise never exceeded 10 days, while the response from the assisting laboratories never came later than within half a day. During each week of the exercise, around 4500 samples were reported by all service laboratories (SL) to be examined and 54 scenarios were coherently estimated by all laboratories (the standard deviation from the mean of all SL answers for a given scenario category and a set of data was not larger than 3 patient codes). Each participant received training in both the role of a reference laboratory (activating the network) and of a service laboratory (responding to an activation request). The procedures in the case of radiological event were successfully established and tested.

  9. OSSA - An optimized approach to severe accident management: EPR application

    SciTech Connect

    Sauvage, E. C.; Prior, R.; Coffey, K.; Mazurkiewicz, S. M.

    2006-07-01

    There is a recognized need to provide nuclear power plant technical staff with structured guidance for response to a potential severe accident condition involving core damage and potential release of fission products to the environment. Over the past ten years, many plants worldwide have implemented such guidance for their emergency technical support center teams either by following one of the generic approaches, or by developing fully independent approaches. There are many lessons to be learned from the experience of the past decade, in developing, implementing, and validating severe accident management guidance. Also, though numerous basic approaches exist which share common principles, there are differences in the methodology and application of the guidelines. AREVA/Framatome-ANP is developing an optimized approach to severe accident management guidance in a project called OSSA ('Operating Strategies for Severe Accidents'). There are still numerous operating power plants which have yet to implement severe accident management programs. For these, the option to use an updated approach which makes full use of lessons learned and experience, is seen as a major advantage. Very few of the current approaches covers all operating plant states, including shutdown states with the primary system closed and open. Although it is not necessary to develop an entirely new approach in order to add this capability, the opportunity has been taken to develop revised full scope guidance covering all plant states in addition to the fuel in the fuel building. The EPR includes at the design phase systems and measures to minimize the risk of severe accident and to mitigate such potential scenarios. This presents a difference in comparison with existing plant, for which severe accidents where not considered in the design. Thought developed for all type of plants, OSSA will also be applied on the EPR, with adaptations designed to take into account its favourable situation in that field

  10. Nuclear fuel cycle facility accident analysis handbook

    SciTech Connect

    Ayer, J E; Clark, A T; Loysen, P; Ballinger, M Y; Mishima, J; Owczarski, P C; Gregory, W S; Nichols, B D

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH.

  11. [Accidents of toddlers and youngsters].

    PubMed

    von Nicolai, D

    2002-02-01

    The Public Health Department in Biberach an der Riss developed a questionnaire to investigate the incidence of accidents in children under school-starting age (6 years). This questionnaire was presented to the parents of more than 2,300 prospective first-graders from the town and rural district on the occasion of the pre-school medical examination 2000. As this examination is mandatory for all children starting school, and as the questions were answered by all the parents with very few exceptions (language reasons), a complete survey can be assumed. The investigation confirmed the results of last year: The incidence of children who suffered an accident requiring medical attention before reaching school age is approximately 33 %; boys are predominantly involved. The scene of accidents also changes with increasing age from living quarters to outside areas. The most frequent type of accidents are, of course, falls, resulting especially in injuries to the head and face. Scalds and burns, in particular at the age of 2, occur more frequently in the Biberach district than described in other up-to-date investigations in Germany. For this reason efforts have to be made to reduce this number over the next years. About 11 % of accidents occur in the streets or involve traffic, a result which is also higher in comparison to other investigations. According to the statement of parents, more than two-thirds of accidents are caused by the children themselves, including babies and toddlers. At the time of the accident 40 % of the children were without parental control, and 20 % completely alone.A great number of the accidents could certainly have been prevented. That is why the results of the study should be made available to all those responsible for the care and wellbeing of this age group. The last section of the paper deals with the most urgent needs of action to be implemented in the long run for the sake of the health of our children.

  12. Paragliding accidents in remote areas.

    PubMed

    Fasching, G; Schippinger, G; Pretscher, R

    1997-08-01

    Paragliding is an increasingly popular hobby, as people try to find new and more adventurous activities. However, there is an increased and inherent danger with this sport. For this reason, as well as the inexperience of many operators, injuries occur frequently. This retrospective study centers on the helicopter rescue of 70 individuals in paragliding accidents. All histories were examined, and 43 patients answered a questionnaire. Nineteen (42%) pilots were injured when taking off, 20 (44%) during the flight, and six (13%) when landing. Routine and experience did not affect the prevalence of accident. Analysis of the causes of accident revealed pilot errors in all but three cases. In 34 rescue operations a landing of the helicopter near the site of the accident was possible. Half of the patients had to be rescued by a cable winch or a long rope fixed to the helicopter. Seven (10%) of the pilots suffered multiple trauma, 38 (54%) had injuries of the lower extremities, and 32 (84%) of them sustained fractures. Injuries to the spine were diagnosed in 34 cases with a fracture rate of 85%. One patient had an incomplete paraplegia. Injuries to the head occurred in 17 patients. No paraglider pilot died. The average hospitalization was 22 days, and average time of working inability was 14 weeks. Fourteen (34%) patients suffered from a permanent damage to their nerves or joints. Forty-three percent of the paragliders continued their sport despite the accident; two of them had another accident. An improved training program is necessary to lower the incidence of paragliding accidents. Optimal equipment to reduce injuries in case of accidents is mandatory. The helicopter emergency physician must perform a careful examination, provide stabilization of airways and circulation, give analgesics, splint fractured extremities, and transport the victim on a vacuum mattress to the appropriate hospital.

  13. Chernobyl Accident Fatalities and Causes

    DTIC Science & Technology

    1990-06-01

    TI FLE CY N Defense Nuclear Agency Alexandria, VA 22310-3398 SWES% Ot DNA-TR-89-45 Chernobyl Accident Fatalities and Causes A. Laupa G. H. Anno...0104 Chernobyl Accident Fatalities and Causes PE - 62715H PR - RM 6 AUTHOR(S) TA -RH A. Laupa: G. H. Anno WU - DH026130 7 PERFORMING ORGANIZATION NAME(S...vi 1 INTRODUCTION .......................................... 1I DATA SOURCES ON CHERNOBYL VICTIMS ............... 3 CHERNOBYL

  14. Recent PCB accidents in Finland.

    PubMed Central

    Elo, O; Vuojolahti, P; Janhunen, H; Rantanen, J

    1985-01-01

    Twenty-eight polychlorinated biphenyl (PCB) accidents were recorded during a 1-year period in Finland. They comprised leaks, fires or explosions of capacitors. Some of the explosions and fires gave rise to high concentrations of PCBs in air and of PCBs and tetrachlorodibenzofurans (TCDFs), including 2,3,7,8-TCDF, on surfaces. One large explosion is described in detail, and biomedical data and findings of this case are compared with those of smaller accidents in Finland. PMID:3928359

  15. Vehicle accidents related to sleep: a review

    PubMed Central

    Horne, J.; Reyner, L.

    1999-01-01

    Falling asleep while driving accounts for a considerable proportion of vehicle accidents under monotonous driving conditions. Many of these accidents are related to work--for example, drivers of lorries, goods vehicles, and company cars. Time of day (circadian) effects are profound, with sleepiness being particularly evident during night shift work, and driving home afterwards. Circadian factors are as important in determining driver sleepiness as is the duration of the drive, but only duration of the drive is built into legislation protecting professional drivers. Older drivers are also vulnerable to sleepiness in the mid-afternoon. Possible pathological causes of driver sleepiness are discussed, but there is little evidence that this factor contributes greatly to the accident statistics. Sleep does not occur spontaneously without warning. Drivers falling asleep are unlikely to recollect having done so, but will be aware of the precursory state of increasing sleepiness; probably reaching a state of fighting off sleep before an accident. Self awareness of sleepiness is a better method for alerting the driver than automatic sleepiness detectors in the vehicle. None of these have been proved to be reliable and most have shortcomings. Putative counter measures to sleepiness, adopted during continued driving (cold air, use of car radio) are only effective for a short time. The only safe counter measure to driver sleepiness, particularly when the driver reaches the stage of fighting sleep, is to stop driving, and--for example, take a 30 minute break encompassing a short (< 15 minute) nap or coffee (about 150 mg caffeine), which are very effective particularly if taken together. Exercise is of little use. CONCLUSIONS: More education of employers and employees is needed about planning journeys, the dangers of driving while sleepy, and driving at vulnerable times of the day.   PMID:10472301

  16. Vehicle accidents related to sleep: a review.

    PubMed

    Horne, J; Reyner, L

    1999-05-01

    Falling asleep while driving accounts for a considerable proportion of vehicle accidents under monotonous driving conditions. Many of these accidents are related to work--for example, drivers of lorries, goods vehicles, and company cars. Time of day (circadian) effects are profound, with sleepiness being particularly evident during night shift work, and driving home afterwards. Circadian factors are as important in determining driver sleepiness as is the duration of the drive, but only duration of the drive is built into legislation protecting professional drivers. Older drivers are also vulnerable to sleepiness in the mid-afternoon. Possible pathological causes of driver sleepiness are discussed, but there is little evidence that this factor contributes greatly to the accident statistics. Sleep does not occur spontaneously without warning. Drivers falling asleep are unlikely to recollect having done so, but will be aware of the precursory state of increasing sleepiness; probably reaching a state of fighting off sleep before an accident. Self awareness of sleepiness is a better method for alerting the driver than automatic sleepiness detectors in the vehicle. None of these have been proved to be reliable and most have shortcomings. Putative counter measures to sleepiness, adopted during continued driving (cold air, use of car radio) are only effective for a short time. The only safe counter measure to driver sleepiness, particularly when the driver reaches the stage of fighting sleep, is to stop driving, and--for example, take a 30 minute break encompassing a short (< 15 minute) nap or coffee (about 150 mg caffeine), which are very effective particularly if taken together. Exercise is of little use. More education of employers and employees is needed about planning journeys, the dangers of driving while sleepy, and driving at vulnerable times of the day.

  17. OFFSITE RADIOLOGICAL CONSEQUENCE ANALYSIS FOR THE BOUNDING FLAMMABLE GAS ACCIDENT

    SciTech Connect

    KRIPPS, L.J.

    2005-02-18

    This document quantifies the offsite radiological consequences of the bounding flammable gas accident for comparison with the 25 rem Evaluation Guideline established in DOE-STD-3009, Appendix A. The bounding flammable gas accident is a detonation in a SST. The calculation applies reasonably conservative input parameters in accordance with guidance in DOE-STD-3009, Appendix A. The purpose of this analysis is to calculate the offsite radiological consequence of the bounding flammable gas accident. DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', requires the formal quantification of a limited subset of accidents representing a complete set of bounding conditions. The results of these analyses are then evaluated to determine if they challenge the DOE-STD-3009-94, Appendix A, ''Evaluation Guideline,'' of 25 rem total effective dose equivalent in order to identify and evaluate safety-class structures, systems, and components. The bounding flammable gas accident is a detonation in a single-shell tank (SST). A detonation versus a deflagration was selected for analysis because the faster flame speed of a detonation can potentially result in a larger release of respirable material. A detonation in an SST versus a double-shell tank (DST) was selected as the bounding accident because the estimated respirable release masses are the same and because the doses per unit quantity of waste inhaled are greater for SSTs than for DSTs. Appendix A contains a DST analysis for comparison purposes.

  18. Traffic accidents involving fatigue driving and their extent of casualties.

    PubMed

    Zhang, Guangnan; Yau, Kelvin K W; Zhang, Xun; Li, Yanyan

    2016-02-01

    The rapid progress of motorization has increased the number of traffic-related casualties. Although fatigue driving is a major cause of traffic accidents, the public remains not rather aware of its potential harmfulness. Fatigue driving has been termed as a "silent killer." Thus, a thorough study of traffic accidents and the risk factors associated with fatigue-related casualties is of utmost importance. In this study, we analyze traffic accident data for the period 2006-2010 in Guangdong Province, China. The study data were extracted from the traffic accident database of China's Public Security Department. A logistic regression model is used to assess the effect of driver characteristics, type of vehicles, road conditions, and environmental factors on fatigue-related traffic accident occurrence and severity. On the one hand, male drivers, trucks, driving during midnight to dawn, and morning rush hours are identified as risk factors of fatigue-related crashes but do not necessarily result in severe casualties. Driving at night without street-lights contributes to fatigue-related crashes and severe casualties. On the other hand, while factors such as less experienced drivers, unsafe vehicle status, slippery roads, driving at night with street-lights, and weekends do not have significant effect on fatigue-related crashes, yet accidents associated with these factors are likely to have severe casualties. The empirical results of the present study have important policy implications on the reduction of fatigue-related crashes as well as their severity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Intelligent speed adaptation: accident savings and cost-benefit analysis.

    PubMed

    Carsten, O M J; Tate, F N

    2005-05-01

    The UK External Vehicle Speed Control (EVSC) project has made a prediction of the accident savings with intelligent speed adaptation (ISA), and estimated the costs and benefits of national implementation. The best prediction of accident reduction was that the fitting on all vehicles of a simple mandatory system, with which it would be impossible for vehicles to exceed the speed limit, would save 20% of injury accidents and 37% of fatal accidents. A more complex version of the mandatory system, including a capability to respond to current network and weather conditions, would result in a reduction of 36% in injury accidents and 59% in fatal accidents. The implementation path recommended by the project would lead to compulsory usage in 2019. The cost-benefit analysis carried out showed that the benefit-cost ratios for this implementation strategy were in a range from 7.9 to 15.4, i.e. the payback for the system could be up to 15 times the cost of implementing and running it.

  20. [Road vehicle accidents during travel and their prevention].

    PubMed

    Murat, J E

    1997-01-01

    The number of road vehicle accidents during travel outside Europe and/or under difficult conditions increases about 5% every year. Road accidents account for a third to half of medical evacuations as well as for the most serious injuries. The risk of accidents and their potential gravity may be enhanced by the poor condition of roads and vehicles. Personal factors including fatigue, speed, alcohol, drugs, and poor vision also play a major role. Physicians should warn travelers planning road trips of all these hazards and of any specific local conditions prevailing in certain destinations. Prevention depends on the age of the traveler and on any disabilities that he/she might have. Packing a first aid kit and inspecting safety equipment before the trip and at regular intervals during the trip are indispensable. Knowledge of emergency first aid procedures is highly recommendable. While avoiding excessiveness of any kind, the physician should encourage suitable psychological and material preparation in function of travel plans. This preparation should be aimed at reducing the risk of road accident particularly in developing countries. Counseling can be useful in reducing the risk of road accidents particularly in developing countries.