Sample records for lycium barbarum polysaccharides

  1. Lycium Barbarum: A Traditional Chinese Herb and A Promising Anti-Aging Agent

    PubMed Central

    Gao, Yanjie; Wei, Yifo; Wang, Yuqing; Gao, Fang; Chen, Zhigang

    2017-01-01

    Lycium barbarum has been used in China for more than 2,000 years as a traditional medicinal herb and food supplement. Lycium barbarum contains abundant Lycium barbarum polysaccharides (LBPs), betaine, phenolics, carotenoids (zeaxanthin and β-carotene), cerebroside, 2-O-β-d-glucopyranosyl-l-ascorbic acid (AA-2βG), β-sitosterol, flavonoids and vitamins (in particular, riboflavin, thiamine, and ascorbic acid). LBPs are the primary active components of Lycium barbarum. In this review, we discuss the pharmacological activities of LBPs and other major components. They have been reported to mediate significant anti-aging effects, through antioxidant, immunoregulative, anti-apoptotic activities and reducing DNA damage. Thus, the basic scientific evidence for anti-aging effects of LBPs is already available. However, additional studies are needed to understand mechanisms by which LBPs mediate anti-aging properties. Novel findings from such studies would likely pave the way for the clinical application of traditional chinese medicine Lycium barbarum in modern evidence-based medicine. PMID:29344416

  2. Simultaneous determination of molecular weights and contents of water-soluble polysaccharides and their fractions from Lycium barbarum collected in China.

    PubMed

    Wu, Ding-Tao; Lam, Shing-Chung; Cheong, Kit-Leong; Wei, Feng; Lin, Peng-Cheng; Long, Ze-Rong; Lv, Xiao-Jie; Zhao, Jing; Ma, Shuang-Cheng; Li, Shao-Ping

    2016-09-10

    Molecular weights and contents of water-soluble polysaccharides and their fractions in fifty batches of fruits of Lycium barbarum (wolfberry) collected from different regions of China, including Qinghai, Ningxia, Inner Mongolia, Xinjiang, and Gansu, were simultaneously determined using high performance size exclusion chromatography (HPSEC) coupled with multi angle laser light scattering (MALLS) and refractive index detector (RID) with the refractive index increment (dn/dc). Results showed that HPSEC chromatograms and molecular weight distributions of polysaccharides in L. barbarum collected from different regions of China were similar. Furthermore, the average contents of each polysaccharide fraction (peaks 1, 2, and 3) in crude polysaccharides of L. barbarum collected from Ningxia were similar with those of Inner Mongolia, Xinjiang, and Gansu, respectively. However, significant difference was found between polysaccharides in L. barbarum collected from Ningxia and Qinghai. Moreover, the average amounts of total polysaccharide fractions (peaks 1, 2, and 3) in the raw material of L. barbarum collected from Ningxia were significantly higher than that of Qinghai. These results may contribute to the rational usage of L. barbarum produced in China, and are beneficial for the improvement of their quality control. Results suggested that HPSEC-MALLS-RID with the dn/dc method could be used as a routine method for the quality evaluation of polysaccharides from natural resources and their products. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Protective effect of Lycium Barbarum polysaccharides on dextromethorphan-induced mood impairment and neurogenesis suppression.

    PubMed

    Po, Kevin Kai-Ting; Leung, Joseph Wai-Hin; Chan, Jackie Ngai-Man; Fung, Timothy Kai-Hang; Sánchez-Vidaña, Dalinda Isabel; Sin, Emily Lok-Lam; So, Kwok-Fai; Lau, Benson Wui-Man; Siu, Andrew Man-Hong

    2017-09-01

    Dextromethorphan (DXM) is one of the common drugs abused by adolescents. It is the active ingredient found in cough medicine which is used for suppressing cough. High dosage of DXM can induce euphoria, dissociative effects and even hallucinations. Chronic use of DXM may also lead to depressive-related symptoms. Lycium barbarum, commonly known as wolfberry, has been used as a traditional Chinese medicine for the treatment of ageing-related neurodegenerative diseases. A recent study has shown the potential beneficial effect of Lycium barbarum to reduce depression-like behavior. In the present study, we investigated the role of Lycium barbarum polysaccharide (LBP) to alleviate DXM-induced emotional distress. Sprague Dawley rats were divided into 4 groups (n=6 per group), including the normal control (vehicles only), DXM-treated group (40 mg/kg DXM), LBP-treated group (1 mg/kg LBP) and DXM+ LBP-treated group (40 mg/kg DXM and 1 mg/kg LBP). After two-week treatment, the DXM-treated group showed increased depression-like and social anxiety-like behaviors in the forced swim test and social interaction test respectively. On the other hand, the adverse behavioral effects induced by DXM were reduced by LBP treatment. Histological results showed that LBP treatment alone did not promote hippocampal neurogenesis when compared to the normal control, but LBP could lessen the suppression of hippocampal neurogenesis induced by DXM. The findings provide insights for the potential use of wolfberry as an adjunct treatment option for alleviating mood disturbances during rehabilitation of cough syrup abusers. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Fingerprinting profile of polysaccharides from Lycium barbarum using multiplex approaches and chemometrics

    USDA-ARS?s Scientific Manuscript database

    Techniques including ultraviolet-visible spectra (UV), high performance size-exclusion chromatography (HPSEC), fourier-transform infrared spectroscopy (FT-IR) and pre-column derivatization high-performance liquid chromatography (PCD-HPLC) were used in the fingerprinting analysis of Lycium barbarum p...

  5. Green reduction of graphene oxide via Lycium barbarum extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Dandan, E-mail: houdandan114@163.com; Liu, Qinfu, E-mail: lqf@cumtb.edu.cn; Cheng, Hongfei, E-mail: h.cheng@cumtb.edu.cn

    The synthesis of graphene from graphene oxide (GO) usually involves toxic reducing agents that are harmful to human health and the environment. Here, we report a facile approach for effective reduction of GO, for the first time, using Lycium barbarum extract as a green and natural reducing agent. The morphology and de-oxidation efficiency of the reduced graphene were characterized and results showed that Lycium barbarum extract can effectively reduce GO into few layered graphene with a high carbon to oxygen ratio (6.5), comparable to that of GO reduced by hydrazine hydrate (6.6). The possible reduction mechanism of GO may bemore » due to the active components existing in Lycium barbarum fruits, which have high binding affinity to the oxygen containing groups to form their corresponding oxides and other by-products. This method avoided the use of any nocuous chemicals, thus facilitating the mass production of graphene and graphene-based bio-materials. - Graphical abstract: Schematic illustration of the preparation of reduced graphene by Lycium barbarum extract. - Highlights: • The Lycium barbarum extract was used for the reduction of graphene oxide. • The obtained few layered graphene exhibited high carbon to oxygen ratio. • This approach can be applied in the preparation of graphene-based bio-materials.« less

  6. Green reduction of graphene oxide via Lycium barbarum extract

    NASA Astrophysics Data System (ADS)

    Hou, Dandan; Liu, Qinfu; Cheng, Hongfei; Zhang, Hao; Wang, Sen

    2017-02-01

    The synthesis of graphene from graphene oxide (GO) usually involves toxic reducing agents that are harmful to human health and the environment. Here, we report a facile approach for effective reduction of GO, for the first time, using Lycium barbarum extract as a green and natural reducing agent. The morphology and de-oxidation efficiency of the reduced graphene were characterized and results showed that Lycium barbarum extract can effectively reduce GO into few layered graphene with a high carbon to oxygen ratio (6.5), comparable to that of GO reduced by hydrazine hydrate (6.6). The possible reduction mechanism of GO may be due to the active components existing in Lycium barbarum fruits, which have high binding affinity to the oxygen containing groups to form their corresponding oxides and other by-products. This method avoided the use of any nocuous chemicals, thus facilitating the mass production of graphene and graphene-based bio-materials.

  7. Lycium barbarum polysaccharide protects human keratinocytes against UVB-induced photo-damage.

    PubMed

    Li, Huaping; Li, Zhenjie; Peng, Liqian; Jiang, Na; Liu, Qing; Zhang, Erting; Liang, Bihua; Li, Runxiang; Zhu, Huilan

    2017-02-01

    Ultraviolet B (UVB) irradiation plays a key role in skin damage, which induces oxidative and inflammatory damages, thereby causing photoaging or photocarcinogenesis. Lycium barbarum polysaccharide (LBP), the most biologically active fraction of wolfberry, possesses significant antioxidative and anti-inflammatory effects on multiple tissues. In the present study, the photoprotective effects and potential underlying molecular mechanisms of LBP against UVB-induced photo-damage were investigated in immortalized human keratinocytes (HaCaT cells). The data indicated that pretreatment with LBP significantly attenuated UVB-induced decrease in cell viability, increase in ROS production and DNA damage. LBP also significantly suppressed UVB-induced p38 MAPK activation, and subsequently reversed caspase-3 activation and MMP-9 expression. Notably, LBP was found to induce Nrf2 nuclear translocation and increase the expression of Nrf2-dependent ARE target genes. Furthermore, the protective effects of LBP were abolished by siRNA-mediated Nrf2 silencing. These results showed that the antioxidant LBP could partially protect against UVB irradiation-induced photo-damage through activation of Nrf2/ARE pathway, thereby scavenging ROS and reducing DNA damage, and subsequently suppressing UVB-induced p38 MAP pathway. Thus, LBP can be potentially used for skincare against oxidative damage from environmental insults.

  8. The Protective Effects of Lycium Barbarum Polysaccharides on Transient Retinal Ischemia

    PubMed Central

    Yang, Di; Li, Suk-Yee; Yeung, Chung-Man; Yu, Wing-Yan; Chang, Raymond Chuen-Chung; So, Kwok-Fai; Wong, David; Lo, Amy C. Y.

    2011-01-01

    Retinal ischemia/reperfusion (I/R) injury leads to irreversible neuronal death, glial activation, retinal swelling and oxidative stress. It is a common feature in various ocular diseases, such as glaucoma, diabetic retinopathy and amaurosis fugax. In the present study, we aimed to evaluate the effects of Lycium Barbarum Polysaccharides (LBP) in a murine retinal I/R model. Mice were orally treated with either vehicle (PBS) or LBP (1mg/kg) daily for 1 week before induction of retinal ischemia. Retinae were collected after 2 hours ischemia and 22 hours reperfusion. Paraffin-embedded sections were prepared for immunohistochemical analyses. Significantly fewer viable cells were found in vehicle-treated retinae comparing to LBP group. This finding was further confirmed by TUNEL assay where significantly fewer apoptotic cells were identified in LBP-treated retinae. Additionally, retinal swelling induced by retinal I/R injury in the vehicle-treated group was not observed in LBP-treated group. Moreover, intense GFAP immunoreactivity and IgG extravasation were observed in vehicle-treated group but not in LBP treated group. The results showed that pre-treatment with LBP was protective in retinal I/R injury via reducing neuronal death, apoptosis, retinal swelling, GFAP activation and blood vessel leakage. LBP may be used as a preventive agent for retinal ischemia diseases.

  9. In Vitro Protective Effects of Lycium barbarum Berries Cultivated in Umbria (Italy) on Human Hepatocellular Carcinoma Cells.

    PubMed

    Ceccarini, M R; Vannini, S; Cataldi, S; Moretti, M; Villarini, M; Fioretti, B; Albi, E; Beccari, T; Codini, M

    2016-01-01

    Lycium barbarum is a famous plant in the traditional Chinese medicine. The plant is known to have health-promoting bioactive components. The properties of Lycium barbarum berries cultivated in Umbria (Italy) and their effect on human hepatocellular carcinoma cells (HepG2) have been investigated in this work. The obtained results demonstrated that the Lycium barbarum berries from Umbria region display high antioxidant properties evaluated by total phenolic content and ORAC method, on hydrophilic and lipophilic fractions. Moreover, on HepG2 cell line Lycium barbarum berries extract did not change cell viability analyzed by MTT and Trypan blue exclusion assay and did not induce genotoxic effect analyzed by comet assay. Furthermore, it was demonstrated, for the first time, that the berries extract showed a protective effect on DNA damage, expressed as antigenotoxic activity in vitro . Finally, Lycium barbarum berries extract was able to modulate the expression of genes involved in oxidative stress, proliferation, apoptosis, and cancer. In particular, downexpression of genes involved in tumor migration and invasion (CCL5), in increased risk of metastasis and antiapoptotic signal (DUSP1), and in carcinogenesis (GPx-3 and PTGS1), together with overexpression of tumor suppressor gene (MT3), suggested that Umbrian Lycium barbarum berries could play a protective role against hepatocellular carcinoma.

  10. Application of SCAR (sequence characterized amplified region) analysis to authenticate Lycium barbarum (wolfberry) and its adulterants.

    PubMed

    Sze, Stephen Cho-Wing; Song, Ju-Xian; Wong, Ricky Ngok-Shun; Feng, Yi-Bin; Ng, Tzi-Bun; Tong, Yao; Zhang, Kalin Yan-Bo

    2008-09-01

    Fructus Lycii (Gouqizi) is well known in Chinese herbal medicine for its restorative function of benefiting the liver and kidney, replenishing vital essence and improving eyesight. However, ten species and varieties of Lycium have benn found to be substitutes or adulterants of Lycium barbarum (wolfberry) in commercial markets in the Hong Kong Special Administrative Region and in China generally. L. barbarum cv. 'Tianjinense' and Lycium chinense var. potaninii are the most common examples. It is difficult to differentiate among the Lycium species by traditional morphological and histological analyses. An easy and reliable approach based on SCAR (sequence characterized amplified region) analysis was developed in the present study to differentiate L. barbarum from other Lycium species. Two characteristic bands of approx. 700 and 650 bp were detected on the RAPD (random amplification of polymorphic DNA) profiles generated from samples of L. barbarum and L. chinense var. potaninii using the primer OPC-7. They were isolated and sequenced. Two primer sets, based on the sequences, could amplify a single specific band in samples of L. barbarum respectively, whereas no bands were detected in samples of L. chinense var. potaninii. The results confirmed that the SCAR technique can be employed for authenticating L. barbarum and its adulterants.

  11. Effects of Lycium barbarum Polysaccharides on Apoptosis, Cellular Adhesion, and Oxidative Damage in Bone Marrow Mononuclear Cells of Mice Exposed to Ionizing Radiation Injury

    PubMed Central

    Zhou, Jing; Pang, Hua; Li, Wenbo; Liu, Qiong; Xu, Lu; Liu, Qian; Liu, Ying

    2016-01-01

    Lycium barbarum has been used for more than 2500 years as a traditional herb and food in China. We investigated the effects of Lycium barbarum polysaccharides (LBP) on apoptosis, oxidative damage, and expression of adhesion molecules in bone marrow mononuclear cells (BMNC) of mice injured by ionizing radiation. Kunming mice were exposed to X-rays; then mice in the LBP groups were continuously injected with various concentrations of LBP intraperitoneally for 14 days. Mice in the control group were continuously injected with normal saline (NS) by the same route for 14 days. A normal group was set up. After 1, 7, and 14 days of treatment, mice were killed and BMNC were extracted. Cell cycle, apoptosis, and the expression of adhesion molecules CD44 and CD49d were detected by flow cytometry. The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were identified by colorimetric analyses. LBP significantly decreased the percentage of G0/G1 phase, apoptosis, MDA level, and expression of CD44 and CD49d and distinctly increased the activity of SOD. LBP showed a protective effect on BMNC against ionizing radiation-induced apoptosis and oxidative damage and altered the expression of adhesion molecule. PMID:27314019

  12. Lycium barbarum polysaccharide protects against oxygen glucose deprivation/reoxygenation-induced apoptosis and autophagic cell death via the PI3K/Akt/mTOR signaling pathway in primary cultured hippocampal neurons.

    PubMed

    Yu, Yang; Wu, Xiuquan; Pu, Jingnan; Luo, Peng; Ma, Wenke; Wang, Jiu; Wei, Jialiang; Wang, Yuanxin; Fei, Zhou

    2018-01-01

    Lycium barbarum polysaccharide (LBP) is the main active ingredient of Lycium barbarum, which exhibits several beneficial effects, including neuroprotection, anti-aging and anti-oxidation. However, the mechanism by which LBP protects against cerebral ischemia/reperfusion-induced injury remains obscure. In this study, we found that LBP pretreatment greatly attenuated oxygen glucose deprivation/reperfusion (OGD/R) injury in primary cultured hippocampal neurons. LBP also suppressed OGD/R-induced lactate dehydrogenase (LDH) leakage, and ameliorated oxidative stress. In addition, LBP significantly reduced OGD/R-induced apoptosis and autophagic cell death. LBP caused the down-regulation of cleaved Caspase-3/Caspase-3, LC3II/LC3I and Beclin 1, as well as up-regulation of Bcl-2/Bax and p62. Furthermore, mechanistic studies indicated that LBP pretreatment increased p-Akt and p-mTOR levels after OGD/R. In summary, our results indicated that LBP protects against OGD/R-induced neuronal injury in primary hippocampal neurons by activating the PI3K/Akt/mTOR signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Determination of eight pesticides in Lycium barbarum by LC-MS/MS and dietary risk assessment.

    PubMed

    Fu, Yan; Yang, Ting; Zhao, Jian; Zhang, Liang; Chen, Ruoxia; Wu, Yinliang

    2017-03-01

    A LC-MS/MS method for determination of eight pesticides (triadimefon, sulfoxaflor, flusilazole, tebuconazole, difenoconazole, amitraz, azoxystrobin, and thiophanate-methyl) in Lycium barbarum was established. The samples were extracted with acetonitrile, and then cleaned up by primary secondary amine. The extracts were diluted with 0.1% formic acid in water. The results showed that at the fortified levels of 0.01-10mg/kg, the average recoveries of these pesticides ranged from 82.1% to 96.2% with the relative standard deviations lower than 7%. The half-lives of eight pesticides were 1.3-5.0days in Lycium barbarum fruits. The pre-harvest interval of all pesticides mentioned above were investigated. Tebuconazole (14days), sulfoxaflor (14days) and flusilazole (28days) have longer pre-harvest interval than the others which have 7days. The dietary risks, assessed as hazard quotients, were far below 100%. The results showed that the eight pesticides applied to Lycium barbarum were comparably safe for the consumer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Determination of Betaine in Lycium Barbarum L. by High Performance Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Liu, Haixing; Wang, Chunyan; Peng, Xuewei

    2017-12-01

    This paper presents the determination of betaine content in Lycium barbarum L. by high performance capillary electrophoresis (HPCE) method. The borax solution was chosen as buffer solution, and its concentration was 40 mmol at a constant voltage of 20kV and injecting pressure time of 10s at 20°C. Linearity was kept in the concent ration range of 0.0113∼1.45mg of betaine with correlation coefficient of 0.9. The recovery was in the range of 97.95%∼126% (n=4). The sample content of betaine was 29.3mg/g and RSD 6.4% (n=6). This method is specific, simple and rapid and accurate, which is suitable for the detection of the content of betaine in Lycium barbarum L.

  15. [Effects of covering on growth potential and chlorophyll content of hardwood cutting of Lycium barbarum].

    PubMed

    Zhang, Ju-qiong; Lin, Hai-ming; Lin, Nan

    2011-07-01

    To study the effect of plastic film covering, straw covering, plastic film covering in greenhouse and no-covering cutting on growth and Chlorophyll content of Lycium barbarum hardwood cutting seedlings. Single factor randomized block design method was used in this research. The effect of different covering treatments on germination rate, seedling rate and growth potential were all plastic film covering in greenhouse > plastic film covering > straw covering > no-covering cutting. Chlorophyll a, Chlorophyll b, Chlorophyll a + b content and Ca/Cb were significantly different with different coverings in different periods. The optimal covering on hardwood cutting of Lycium barbarum is plastic film covering in greenhouse. Both plastic film and straw covering are better than no-covering cutting.

  16. Simple nanoliposomes encapsulating Lycium barbarum polysaccharides as adjuvants improve humoral and cellular immunity in mice.

    PubMed

    Bo, Ruonan; Sun, Yaqin; Zhou, Shuzhen; Ou, Ning; Gu, Pengfei; Liu, Zhenguang; Hu, Yuanliang; Liu, Jiaguo; Wang, Deyun

    2017-01-01

    The success of subunit vaccines has been hampered by the problems of weak or short-term immunity and the lack of availability of nontoxic, potent adjuvants. It would be desirable to develop safe and efficient adjuvants with the aim of improving the cellular immune response against the target antigen. In this study, the targeting and sustained release of simple nanoliposomes containing Lycium barbarum polysaccharides (LBP) as an efficacious immune adjuvant to improve immune responses were explored. LBP liposome (LBPL) with high entrapment efficiency (86%) were obtained using a reverse-phase evaporation method and then used to encapsulate the model antigen, ovalbumin (OVA). We demonstrated that the as-synthesized liposome loaded with OVA and LBP (LBPL-OVA) was stable for 45 days and determined the encapsulation stability of OVA at 4°C and 37°C and the release profile of OVA from LBPL-OVA was investigated in pH 7.4 and pH 5.0. Further in vivo investigation showed that the antigen-specific humoral response was correlated with antigen delivery to the draining lymph nodes. The LBPL-OVA were also associated with high levels of uptake by key dendritic cells in the draining lymph nodes and they efficiently stimulated CD4 + and CD8 + T cell proliferation in vivo, further promoting antibody production. These features together elicited a significant humoral and celluar immune response, which was superior to that produced by free antigen alone.

  17. Effects of Lycium barbarum extract on production and immunomodulatory activity of the extracellular polysaccharopeptides from submerged fermentation culture of Coriolus versicolor.

    PubMed

    Lin, Fang-Yi; Lai, Yiu-Kay; Yu, Hao-Chen; Chen, Nan-Yin; Chang, Chi-Yue; Lo, Hui-Chen; Hsu, Tai-Hao

    2008-09-15

    Polysaccharopeptides (PSPs) from Coriolus versicolor have been used as immunomodulatory and anticancer agents. However, most studies have concentrated on the mycelial PSPs and not those in the fermented broth. On the other hand, Lycium barbarum fruit has been used as a traditional Chinese herbal medicine for two millennia. Its extract contains various nutrients, minerals, and also polysaccharide-protein complexes, which are proven to be bioactive. Herein we report the effects of L. barbarum fruit extract on the mycelial growth and extracellular PSP (ePSP) production of C. versicolor LH1 by using a submerged fermentation process in 20l fermenters. Fermentation production of C. versicolor biomass and its ePSP were augmented in the presence of L. barbarum extract. The ePSP such obtained differs from those obtained with normal culture medium in terms of simple sugar composition and protein content but shows similar overall chemical structures as analyzed by Fourier transformed infrared spectroscopy. Moreover, the ePSP from C. versicolor cultured with supplementary L. barbarum extract exhibits significant immunomodulatory activity as judged by its effects on the production of nitric oxide and several cytokines by murine RAW264.7 macrophages. Copyright © 2008 Elsevier Ltd. All rights reserved.

  18. Integrated method of thermosensitive triblock copolymer-salt aqueous two phase extraction and dialysis membrane separation for purification of lycium barbarum polysaccharide.

    PubMed

    Wang, Yun; Hu, Xiaowei; Han, Juan; Ni, Liang; Tang, Xu; Hu, Yutao; Chen, Tong

    2016-03-01

    A polymer-salt aqueous two-phase system (ATPS) consisting of thermosensitive copolymer ethylene-oxide-b-propylene-oxide-b-ethylene-oxide (EOPOEO) and NaH2PO4 was employed in deproteinization for lycium barbarum polysaccharide (LBP). The effects of salt type and concentration, EOPOEO concentration, amount of crude LBP solution and temperature were studied. In the primary extraction process, LBP was preferentially partitioned to the bottom (salt-rich) phase with high recovery ratio of 96.3%, while 94.4% of impurity protein was removed to the top (EOPOEO-rich) phase. Moreover, the majority of pigments could be discarded to top phase. After phase-separation, the LBP in the bottom phase was further purified by dialysis membrane to remove salt and other small molecular impurities. The purity of LBP was enhanced to 64%. Additionally, the FT-IR spectrum was used to identify LBP. EOPOEO was recovered by a temperature-induced separation, and reused in a new ATPS. An ideal extraction and recycle result were achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Lycium barbarum Polysaccharides Protect Rat Corneal Epithelial Cells against Ultraviolet B-Induced Apoptosis by Attenuating the Mitochondrial Pathway and Inhibiting JNK Phosphorylation.

    PubMed

    Du, Shaobo; Han, Biao; Li, Kang; Zhang, Xuan; Sha, Xueli; Gao, Lan

    2017-01-01

    Lycium barbarum polysaccharides (LBPs) have been shown to play a key role in protecting the eyes by reducing the apoptosis induced by certain types of damage. However, it is not known whether LBPs can protect damaged corneal cells from apoptosis. Moreover, no reports have focused on the role of LBPs in guarding against ultraviolet B- (UVB-) induced apoptosis. The present study aimed to investigate the protective effect and underlying mechanism of LBPs against UVB-induced apoptosis in rat corneal epithelial (RCE) cells. The results showed that LBPs significantly prevented the loss of cell viability and inhibited cell apoptosis induced by UVB in RCE cells. LBPs also inhibited UVB-induced loss of mitochondrial membrane potential, downregulation of Bcl-2 , and upregulation of Bax and caspase-3. Finally, LBPs attenuated the phosphorylation of c-Jun NH 2 -terminal kinase (JNK) triggered by UVB. In summary, LBPs protect RCE cells against UVB-induced damage and apoptosis, and the underlying mechanism involves the attenuation of the mitochondrial apoptosis pathway and the inhibition of JNK phosphorylation.

  20. Lycium barbarum polysaccharide protects against LPS-induced ARDS by inhibiting apoptosis, oxidative stress, and inflammation in pulmonary endothelial cells.

    PubMed

    Chen, Lan; Li, Wen; Qi, Di; Wang, Daoxin

    2018-04-01

    Acute respiratory distress syndrome (ARDS) is a heterogenous syndrome characterised by diffuse alveolar damage, with an increase in lung endothelial and epithelial permeability. Lycium barbarum polysaccharide (LBP), the most biologically active fraction of wolfberry, possesses antiapoptotic and antioxidative effects in distinct situations. In the present study, the protective effects and potential molecular mechanisms of LBP against lipopolysaccharide (LPS)-induced ARDS were investigated in the mice and in the human pulmonary microvascular endothelial cells (HPMECs). The data indicated that pretreatment with LBP significantly attenuated LPS-induced lung inflammation and pulmonary oedema in vivo. LBP significantly reversed LPS-induced decrease in cell viability, increase in apoptosis and oxidative stress via inhibiting caspase-3 activation and intracellular reactive oxygen species (ROS) production in vitro. Moreover, the scratch assay verified that LBP restored the dysfunction of endothelial cells (ECs) migration induced by LPS stimulation. Furthermore, LBP also significantly suppressed LPS-induced NF-κB activation, and subsequently reversed the release of cytochrome c. These results showed the antiapoptosis and antioxidant LBP could partially protect against LPS-induced ARDS through promoting the ECs survival and scavenging ROS via inhibition of NF-κB signalling pathway. Thus, LBP could be potentially used for ARDS against pulmonary inflammation and pulmonary oedema.

  1. Treatment of d-galactose induced mouse aging with Lycium barbarum polysaccharides and its mechanism study.

    PubMed

    Tang, Tao; He, Bixiu

    2013-01-01

    We evaluated the effects of Lycium barbarum polysaccharides LBP) on D-galactose aging model mouse, and explored its possible mechanism. Kunming mice were randomly divided into the control group, the model group, the high-dose LBP group, and the low-dose LBP group. Except the control group, D-galactose was used for modelling. The drug was administrated when modelling. Mouse behavioural, learning and memory changes were observed, and the contents of lipid peroxidation (LPO), lipofuscin (LF) and monoamine oxidase B (MAO-B) in mouse brain tissue and the weight of immune organs were measured after 6 weeks. Compared with the control group, mouse weight gain in the model group reduced significantly. Compared with model group, after mice drank LBP, the times of electric shock was less than aging mice (in which, the high-dose LBP group, P<0.05), and electric shock incubation period was longer (P<0.01). On Day 45 after modelling and drug administration, the contents of LPO, LF and MAO-B in mouse brain tissue in the model group increased significantly, while those in the drug administration groups decreased significantly. The thymus index in the aging model group decreased significantly; the thymus index and the spleen index in the high-dose LBP group and the low-dose LBP group rebounded significantly (P<0.01). We concluded that LBP has an anti-aging effect on D-galactose induced aging model mouse, and its mechanism may be related with the alleviation of glucose metabolism disorder and the resistance of the generation of lipid peroxide and other substances, which damage cell membrane lipid.

  2. Lycium barbarum polysaccharide encapsulated Poly lactic-co-glycolic acid Nanofibers: cost effective herbal medicine for potential application in peripheral nerve tissue engineering.

    PubMed

    Wang, Jing; Tian, Lingling; He, Liumin; Chen, Nuan; Ramakrishna, Seeram; So, Kwok-Fai; Mo, Xiumei

    2018-06-06

    Nerve regeneration is a serious clinical challenge following peripheral nerve injury. Lycium barbarum polysaccharide (LBP) is the major component of wolfberry extract, which has been shown to be neuroprotective and promising in nerve recovery in many studies. Electrospun nanofibers, especially core-shell structured nanofibers being capable of serving as both drug delivery system and tissue engineering scaffolds, are well known to be suitable scaffolds for regeneration of peripheral nerve applications. In this study, LBP was incorporated into core-shell structured nanofibrous scaffolds via coaxial electrospinning. Alamar blue assays were performed to investigate the proliferation of both PC12 and Schwann cells cultured on the scaffolds. The neuronal differentiation of PC12 cells was evaluated by NF200 expression with immunostaining and morphology changes observed by SEM. The results indicated that the released LBP dramatically enhanced both proliferation and neuronal differentiation of PC12 cells induced by NGF. Additionally, the promotion of Schwann cells myelination and neurite outgrowth of DRG neurons were also observed on LBP loaded scaffolds by LSCM with immunostaining. In summary, LBP, as a drug with neuroprotection, encapsulated into electrospun nanofibers could be a potential candidate as tissue engineered scaffold for peripheral nerve regeneration.

  3. Antioxidant effects of Lycium barbarum polysaccharides on photoreceptor degeneration in the light-exposed mouse retina.

    PubMed

    Tang, Liujiu; Bao, Shuyin; Du, Yu; Jiang, Zengyan; Wuliji, A O; Ren, Xiang; Zhang, Chenghong; Chu, Haiying; Kong, Li; Ma, Haiying

    2018-04-20

    We assessed the neuroprotective effects of Lycium barbarum Polysaccharides (LBP) on photoreceptor degeneration and the mechanisms involved in oxidative stress in light-exposed mouse retinas. Mice were given a gavage of LBP (150 mg/kg or 300 mg/kg) or phosphate buffered saline (PBS) for 7 days before exposure to light (5000 lx for 24 h). We found that LBP significantly improved the electroretinography (ERG) amplitudes of the a- and b-waves that had been attenuated by light exposure. In addition, changes caused by light exposure including photoreceptor cell loss, nuclear condensation, an increased number of mitochondria vacuoles, outer membrane disc swelling and cristae fractures were distinctly ameliorated by LBP. LBP treatment also significantly prevented the generation of reactive oxygen species (ROS) compared with PBS treatment. The levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and thioredoxin reductase (TrxR1) mRNA were decreased in PBS-treated mice compared with controls but increased remarkably in LBP-treated mice. The mRNA levels of the DNA repair gene Poly (ADP-ribose) polymerase (PARP14) was increased in PBS-treated mice but decreased significantly in the LBP-treated mice. Our findings indicate that pretreatment with LBP effectively protected photoreceptor cells against light-induced retinal damage probably through the up-regulation of the antioxidative genes Nrf2 and TrxR1, the elimination of oxygen free radicals, and the subsequent reduction in the mitochondrial reaction to oxidative stress and enhancement in antioxidant capacity. In addition, the decreased level of PARP14 mRNA in LBP-treated mice also indicated a protective effect of LBP on delaying photoreceptor in the light-damaged retina. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. [Study on membrane type leaf water evaporation inhibitors for improving effect of preventing diseases and pest controlling of Lycium barbarum].

    PubMed

    Wang, Dan-Dan; Lv, Zhe; Xu, Chang-Qing; Liu, Sai; Chen, Jun; Peng, Xiao; Wu, Yan

    2018-01-01

    Through indoor and field comparative experiments, the properties of membrane type leaf evaporation inhibitors and its effects on photosynthesis of Lycium barbarum and compatibility and synergistic of pesticide were studied. The evaporation inhibitors and L. barbarum were chosen to investigate the suppression of water evaporation and the compatibility with pesticides. The effect of evaporation inhibitors on photosynthesis of L. barbarum leaves was determined by the chlorophyll fluorescence imaging system. The results showed that water evaporation of L. barbarum leaves of different leaf age were evidently suppressed after treated with evaporation inhibitor. The inhibitor was well compatible with pesticide and effectively improved the pesticide efficacy,and had no significant effect on chlorophyll fluorescence parameters. It is concluded that the evaporation inhibitor has good compatibility with the pesticide, and has remarkable effect of restraining moisture evaporation, which make it can be used for reducing the dosage and improving the efficacy of the pesticide in the field of L. barbarum. Copyright© by the Chinese Pharmaceutical Association.

  5. Lycium barbarum Polysaccharide Promotes Nigrostriatal Dopamine Function by Modulating PTEN/AKT/mTOR Pathway in a Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Murine Model of Parkinson's Disease.

    PubMed

    Wang, Xiaohong; Pang, Lei; Zhang, Yanqing; Xu, Jiang; Ding, Dongyi; Yang, Tianli; Zhao, Qian; Wu, Fan; Li, Fei; Meng, Haiwei; Yu, Duonan

    2018-04-01

    To investigate the effects of Lycium barbarum polysaccharide (LBP) on pathological symptoms and behavioral deficits in a Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. The therapeutic effects of LBP were monitored with an Open field test, a Rotarod test and a Morris water maze test. We also investigated the mechanisms with qRT-PCR and Western blotting analyses. After a relatively short-term LBP treatment, the total distance and walking time of PD mice significantly increased. The staying duration on the rod of PD mice increased in the Rotarod test. LBP can up-regulate levels of SOD2, CAT and GPX1 and inhibit the abnormal aggregation of α-synuclein induced by MPTP. LBP treatment can also up-regulate the phosphorylation of AKT and mTOR, and may play its protective role by activating the PTEN/AKT/mTOR signaling axis. These results suggest that LBP can effectively alleviate the degeneration in the nigrostriatal system induced by MPTP treatment. It may be a potential candidate for the treatment of Parkinson's disease.

  6. Lycium barbarum polysaccharides improve CCl4-induced liver fibrosis, inflammatory response and TLRs/NF-kB signaling pathway expression in wistar rats.

    PubMed

    Gan, Fang; Liu, Qing; Liu, Yunhuan; Huang, Da; Pan, Cuiling; Song, Suquan; Huang, Kehe

    2018-01-01

    Lycium barbarum polysaccharides (LBPs) have multiple biological and pharmacological functions, including antioxidant, anti-inflammatory and anticancer activities. This research was conducted to evaluate whether LBPs could alleviate carbon tetrachloride (CCl 4 )-induced liver fibrosis and the underlying signaling pathway mechanism. Fifty male wistar rats were randomly allocated to five groups (n=10): control, CCl 4 and CCl 4 with 400, 800 or 1600mg/kg LBPs, respectively. Each wistar rat from each group was used for blood and tissue collections at the end of experiment. The results showed that CCl 4 induced liver fibrosis as demonstrated by increasing histopathological damage, α-smooth muscle actin expression, aspartate transaminase activities, alkaline phosphatase activities and alanine aminotransferase activities. LBPs supplementation alleviated CCl 4 -induced liver fibrosis as demonstrated by reversing the above parameters. In addition, CCl 4 treatment induced the oxidative injury, increased the mRNA levels of tumor necrosis factor-α, monocyte chemoattractant protein-1 and interleukin-1β, and up-regulated the protein expressions of toll-like receptor 4 (TLR4), TLR2, myeloid differentiation factor 88, nuclear factor-kappa B (NF-kB) and p-p65. LBPs supplementation alleviated CCl 4 -induced oxidative injury, inflammatory response and TLRs/NF-kB signaling pathway expression by reversing the above some parameters. These results suggest that the alleviating effects of LBPs on CCl 4 -induced liver fibrosis in wistar rats may be through inhibiting the TLRs/NF-kB signaling pathway expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma.

    PubMed

    Chan, Hiu-Chi; Chang, Raymond Chuen-Chung; Koon-Ching Ip, Angel; Chiu, Kin; Yuen, Wai-Hung; Zee, Sze-Yong; So, Kwok-Fai

    2007-01-01

    Glaucoma is one of the major neurological disorders in eye leading to irreversible blindness in elderly. Increase in intraocular pressure (IOP) has been considered to be the major risk factor for the progressive loss of retinal ganglion cells (RGCs) in retina. While attenuation of IOP has been a major pharmaceutical target, reduction of IOP cannot prevent progressive loss of RGCs. In this regard, urgent need for alternative treatment has to be investigated. Anti-aging medicinal herb Lycium barbarum L. has been used for centuries in Eastern World to protect the eyes and maintain good health. Using an ocular hypertension (OH) model in rat by laser photocoagulation of episcleral and limbal veins, we attempted to investigate whether L. barbarum can promote RGCs survival against elevated IOP. Oral administration of L. barbarum in Sprague-Dawley rats (250-280 g) significantly reduced the loss of RGCs, although elevated IOP was not significantly altered. Rats fed with the 1 mg/kg extract could nearly totally escape from pressure-induced loss of RGCs. In conclusion, this is the first in vivo report showing the therapeutic function of L. barbarum against neurodegeneration in the retina of rat OH model. The results demonstrate that this extract may be a potential candidate for the development of neuroprotective drug against the loss of RGCs in glaucoma.

  8. Lycium barbarum Polysaccharides Protect against Trimethyltin Chloride-Induced Apoptosis via Sonic Hedgehog and PI3K/Akt Signaling Pathways in Mouse Neuro-2a Cells.

    PubMed

    Zhao, Wanyun; Pan, Xiaoqi; Li, Tao; Zhang, Changchun; Shi, Nian

    2016-01-01

    Trimethyltin chloride (TMT) is a classic neurotoxicant that can cause severe neurodegenerative diseases. Some signaling pathways involving cell death play pivotal roles in the central nervous system. In this study, the role of Sonic Hedgehog (Shh) and PI3K/Akt pathways in TMT-induced apoptosis and protective effect of Lycium barbarum polysaccharides (LBP) on mouse neuro-2a (N2a) cells were investigated. Results showed that TMT treatment significantly enhanced apoptosis, upregulated proapoptotic Bax, downregulated antiapoptotic Bcl-2 expression, and increased caspase-3 activity in a dose-dependent manner in N2a cells. TMT induced oxidative stress in cells, performing reactive oxygen species (ROS) and malondialdehyde (MDA) excessive generation, and superoxide dismutase (SOD) activity reduction. TMT significantly decreased phosphorylated glycogen synthase kinase-3β (GSK-3β) and inhibited Shh and PI3K/Akt pathways. However, the addition of LBP upregulated GSK-3β phosphorylation, activated Shh and PI3K/Akt pathways, and eventually reduced apoptosis and oxidative stress caused by TMT. The interaction between Shh and PI3K/Akt pathways was clarified by specific PI3K inhibitor LY294002 or Shh inhibitor GDC-0449. Moreover, LY294002 and GDC-0449 pretreatment both induced phosphorylated GSK-3β downregulation and significantly promoted apoptosis induced by TMT. These results suggest that LBP could reduce TMT-induced N2a cells apoptosis by regulating GSK-3β phosphorylation, Shh, and PI3K/Akt signaling pathways.

  9. Lycium barbarum Polysaccharides Protect against Trimethyltin Chloride-Induced Apoptosis via Sonic Hedgehog and PI3K/Akt Signaling Pathways in Mouse Neuro-2a Cells

    PubMed Central

    Zhao, Wanyun; Pan, Xiaoqi; Li, Tao; Zhang, Changchun; Shi, Nian

    2016-01-01

    Trimethyltin chloride (TMT) is a classic neurotoxicant that can cause severe neurodegenerative diseases. Some signaling pathways involving cell death play pivotal roles in the central nervous system. In this study, the role of Sonic Hedgehog (Shh) and PI3K/Akt pathways in TMT-induced apoptosis and protective effect of Lycium barbarum polysaccharides (LBP) on mouse neuro-2a (N2a) cells were investigated. Results showed that TMT treatment significantly enhanced apoptosis, upregulated proapoptotic Bax, downregulated antiapoptotic Bcl-2 expression, and increased caspase-3 activity in a dose-dependent manner in N2a cells. TMT induced oxidative stress in cells, performing reactive oxygen species (ROS) and malondialdehyde (MDA) excessive generation, and superoxide dismutase (SOD) activity reduction. TMT significantly decreased phosphorylated glycogen synthase kinase-3β (GSK-3β) and inhibited Shh and PI3K/Akt pathways. However, the addition of LBP upregulated GSK-3β phosphorylation, activated Shh and PI3K/Akt pathways, and eventually reduced apoptosis and oxidative stress caused by TMT. The interaction between Shh and PI3K/Akt pathways was clarified by specific PI3K inhibitor LY294002 or Shh inhibitor GDC-0449. Moreover, LY294002 and GDC-0449 pretreatment both induced phosphorylated GSK-3β downregulation and significantly promoted apoptosis induced by TMT. These results suggest that LBP could reduce TMT-induced N2a cells apoptosis by regulating GSK-3β phosphorylation, Shh, and PI3K/Akt signaling pathways. PMID:27143997

  10. Effects of Lycium barbarum aqueous and ethanol extracts on high-fat-diet induced oxidative stress in rat liver tissue.

    PubMed

    Cui, BoKang; Liu, Su; Lin, XiaoJun; Wang, Jun; Li, ShuHong; Wang, QiBo; Li, ShengPing

    2011-11-01

    This study evaluated the protective effects of aqueous extract of Lycium barbarum (LBAE) and ethanol extract of Lycium barbarum (LBEE) on blood lipid levels, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities and liver tissue antioxidant enzyme activities in rats fed a high fat diet (HF). The rats were randomly divided into seven groups of ten rats each and fed a different diet for eight weeks as follows: One group (NC group) was fed a standard diet, one group was fed a high-fat diet (HF group), one group was fed a high-fat diet and orally fed with 20 mg/kg b.w. simvastatin (HF + simvastatin group), and the other group was fed the high fat diet and orally fed with 50 mg/kg b.w. or 100 mg/kg b.w. LBAE (HF + LBAE), or 50 mg/kg b.w. or 100 mg/kg b.w. LBEE (HF + LBEE), respectively. After eight weeks, the HF diet caused deleterious metabolic effects. Rats fed the HF diet alone showed increased hepatocellular enzyme activities in plasma, a significant decline in antioxidant enzyme activities, and elevated liver lipid peroxidation indices. LBAE and LBEE administration significantly reduced liver damage and oxidative changes, and brought back the antioxidants and lipids towards normal levels. These data suggest that these antioxidants protect against toxicity parameters in HF rats.

  11. The genus Lycium as food and medicine: A botanical, ethnobotanical and historical review.

    PubMed

    Yao, Ruyu; Heinrich, Michael; Weckerle, Caroline S

    2018-02-15

    Lycium is widely distributed in the arid to semi-arid environments of North and South America, Africa, and Eurasia. In recent years, Lycium barbarum and L. chinense have been advertised as "superfood" with healthy properties. Despite of its popularity, there is a lack of an integrated and critical appraisal of the existing evidence for the use of Lycium. There is a need to understand: 1) Which species were used and how the uses of Lycium developed spatially and over time, 2) how uses differ among regions with different culture backgrounds, and 3) how traditional and current therapeutic and preventive health claims correlate with pharmacological findings. Information was retrieved from floras, taxonomic, botanical, and ethnobotanical databases, research articles, recent editions of historical Chinese herbals over the last 2000 years, and pharmacopoeias. Of totally 97 species, 31 have recorded uses as food and/or medicine worldwide. Usually the fruits are used. While 85% of the Lycium species occur in the Americas and Africa, 26% of them are used, but 9 out of 14 species in Eurasia. In China, seven species and two varieties of the genus Lycium occur, of which four species have been used by different ethnic groups. Only L. barbarum and L. chinense have been transformed into globally traded commodities. In China, based on the name ", their use can be traced back over the last two millennia. Lycium fruits for anti-aging, improving eyesight and nourishment were documented already in 500C.E. (Mingyi Bielu). Recent findings explain the pharmacological foundations of the traditional uses. Especially polysaccharides, zeaxanthin dipalmitate, vitamins, betaine, and mixed extracts were reported to be responsible for anti-aging, improving eyesight, and anti-fatigue effects. The integration of historical, ethnobotanical, botanical, phytochemical and pharmacological data has enabled a detailed understanding of Lycium and its wider potential. It highlights that the focus so far has

  12. [Risk assessment and control strategies of pests in Lycium barbarum fields under different managements].

    PubMed

    Zhao, Zi-Hua; Zhang, Rong; He, Da-Han; Wang, Fang; Zhang, Ting-Ting; Zhang, Zong-Shan

    2009-04-01

    In the risk assessment of pests, both the community structure and the environmental factors should be considered at the same time, because of their mutual effects on the outbreak of disaster pests. This paper established a comprehensive assessment system, including 2 sub-systems, 5 respects, and 14 indices. In the meanwhile, risk assessment indices and experience formula were used to analyze the risk degree of pests in Lycium barbarum fields under different managements. It was found that using risk assessment indices and experience formula could obtain similar results. In abandoned field, Aceria palida, Aphis sp., and Paratrioza sinica were the frequent disaster pests, Lema decempunctata, Neoceratitis asiatica, Jaapiella sp., and Phthorimaea sp. were the incidental disaster pests, and Psylliodes obscurofaciata and Phthorimaea sp. were general pests. In organic field, the frequent disaster pests were the same species as those in abandoned field, while P. indicus, Jaapiella sp. and Phthorimaea sp. were the incidental disaster pests. In chemical control field, A. palida, Aphis sp., P. sinica, and P. indicus were the frequent disaster pests, while Jaapiella sp. and Phthorimaea sp. were the incidental disaster pests. Optimal 5 separations most fitted the division of pest sub-communities in L. barbarum fields, which were infancy period (from March 28 to April 15), outbreak I period (from April 15 to July 18), dormancy period (from July 18 to September 8), outbreak II period (from September 8 to October 15), and recession period (after October 15). The matrix of correlation coefficient showed that the dynamics of pests in L. barbarum fields under different managements were significantly correlated with each other, suggesting that the dynamics of pest populations was similar in different L. barbarum fields, which had two population establishment stages and one exponential growth stage in every year. The optimal controlling stages were from late infancy period to early and

  13. Low-temperature headspace-trap gas chromatography with mass spectrometry for the determination of trace volatile compounds from the fruit of Lycium barbarum L.

    PubMed

    Chen, Fangjiao; Su, Yue; Zhang, Fang; Guo, Yinlong

    2015-02-01

    The total saccharides content of Lycium barbarum L. is very high, and a high temperature would result in saccharide decomposition and the emergence of a large amount of water. Moreover, the volatile compounds from the fruit of L. barbarum L. are rather low in concentration. Hence, it is difficult for a conventional headspace method to study the volatile compounds from the fruit of L. barbarum L. Since headspace-trap gas chromatography with mass spectrometry is an excellent method for trace analysis, a headspace-trap gas chromatography with mass spectrometry method based on low-temperature (30°C) enrichment and multiple headspace extraction was developed to explore the volatile compounds from the fruit of L. barbarum L. The headspace of the sample was extracted in 17 cycles at 30°C. Each time, the compounds extracted were concentrated in the trap (Tenax TA and Tenax GR, 1:1). Finally, all the volatile compounds were delivered into the gas chromatograph after thermal desorption. With the method described above, a total of 57 compounds were identified. The identification was completed by mass spectral search, retention index, and accurate mass measurement. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Protective effects of Lycium barbarum polysaccharide on male sexual dysfunction and fertility impairments by activating hypothalamic pituitary gonadal axis in streptozotocin-induced type-1 diabetic male mice.

    PubMed

    Shi, Guang-Jiang; Zheng, Jie; Wu, Jing; Qiao, Hai-Qi; Chang, Qing; Niu, Yang; Sun, Tao; Li, Yu-Xiang; Yu, Jian-Qiang

    2017-09-30

    Diabetes-associated male sexual dysfunction and fertility impairments are both common clinical complications with limited therapeutic options; hence it seriously affects the quality of life of the patients, in particular, the patients of reproductive age. Lycium barbarum polysaccharide (LBP) has long being believed to maintain and to promote reproductive functions in the traditional medical practice in China. The current study was to investigate if LBP may contribute to recovery of male sexual dysfunction and fertility impairments in diabetic individuals. The effects of LBP on sexual behaviors and histological changes of testis were studied in the type-1 diabetes male mice induced by intra-peritoneal (i.p.) injection of streptozotocin (STZ). After oral administration of LBP (10, 20 or 40 mg/kg), sildenafil citrate (SC, 5 mg/kg) or saline for 62 consecutive days, the typical abnormal changes in the sperm parameters, in relative weight of reproductive organs and in morphology of testis were observed in diabetic mice. LBP treatment of the diabetic mice considerably reversed those changes and Johnsen's testicular score, serum testosterone (T), follicular stimulating hormone (FSH) and luteinizing hormone (LH) level were also increased to different degrees. Moreover, our data have also shown that a marked improvement in sexual behavior and fertility level after administration of LBP (40 mg/kg) compared to the diabetic group. These results suggested that LBP can exert functional recovery of male sexual dysfunction and fertility damages induced by diabetes in male mice, which is likely to be mediated through regulating the hypothalamus- pituitary-gonadal axis endocrine activity.

  15. Lybatides from Lycium barbarum Contain An Unusual Cystine-stapled Helical Peptide Scaffold.

    PubMed

    Tan, Wei Liang; Wong, Ka H; Lei, Jian; Sakai, Naoki; Tan, Hong Wei; Hilgenfeld, Rolf; Tam, James P

    2017-07-12

    Cysteine-rich peptides (CRPs) of 2-6 kDa are generally thermally and proteolytically stable because of their multiple cross-bracing disulfide bonds. Here, we report the discovery and characterization of two novel cystine-stapled CRPs, designated lybatide 1 and 2 (lyba1 and lyba2), from the cortex of Lycium barbarum root. Lybatides, 32 to 33 amino acids in length, are hyperstable and display a novel disulfide connectivity with a cysteine motif of C-C-C-C-CC-CC which contains two pairs of adjacent cysteines (-CC-CC). X-ray structure analysis revealed the presence of a single cystine-stabilized (α + π)-helix in lyba2, a rare feature of CRPs. Together, our results suggest that lybatides, one of the smallest four-disulfide-constrained plant CRPs, is a new family of CRPs. Additionally, this study provides new insights into the molecular diversity of plant cysteine-rich peptides and the unusual lybatide scaffold could be developed as a useful template for peptide engineering and therapeutic development.

  16. Protective effects of Lycium barbarum polysaccharides against carbon tetrachloride-induced hepatotoxicity in precision-cut liver slices in vitro and in vivo in common carp (Cyprinus carpio L.).

    PubMed

    Liu, Yingjuan; Cao, Liping; Du, Jinliang; Jia, Rui; Wang, Jiahao; Xu, Pao; Yin, Guojun

    2015-03-01

    The protective effects of Lycium barbarum polysaccharides (LBPs) against carbon tetrachloride-induced hepatotoxicity in common carp were investigated in vitro and in vivo. Precision-cut liver slices (PCLSs) were employed as an in vitro model system. LBPs (0.1, 0.3 and 0.6 mg/ml) was added to PCLSs culture system before (pre-treatment), after (post-treatment) and both before and after (pre- and post-treatment) the exposure of PCLSs to 12 mM CCl4. The supernatants and PCLSs were collected for biochemical analyses. Results showed that LBPs inhibited the elevations of the marker enzymes (GOT, GPT, LDH and AKP) and MDA induced by CCl4 in all LBPs treatments and it also enhanced the suppressed antioxidant enzymes (SOD, CAT, GSH-Px, GST) and GSH, in the pre-treatment and pre- and post-treatment. In vivo, fish were fed diets containing LBPs at 0.1, 0.5 and 1% for 60 d before an intraperitoneal injection of 30% CCl4 in olive oil at a volume of 0.05 ml/10 g body weight. At 72 h post-injection, blood and liver samples were taken for biochemical analyses. Results showed that LBPs at 0.5 and 1% significantly reduced the levels of GOT, GPT and LDH in the serum; the decreases of the antioxidant enzymes and the increase of MDA in the liver tissue were inhibited markedly. Moreover, LBPs even at lower concentration exerted a potent DPPH scavenging activity. Overall results prove the hepatoprotective and antioxidant effects of LBPs and support the use of LBPs as a hepatoprotective agent in fish. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. [Resources of Lycium species and related research progress].

    PubMed

    Dong, Jing-Zhou; Yang, Jun-Jun; Wang, Ying

    2008-09-01

    Solanaceae Lycium speices are deciduous shrubs. In ancient Chinese medicine works, Lycium plants are described to work well in nourshing liver and kidney, enhancing eyesight, enriching blood, invigorating sex, reducing rheumatism and so on. More of their functions such as immunity improvement, anti-oxydation, anti-aging, anti-cancer, growth stumulation, hemopoiesis enhancing, incretion regulating, blood sugar reducing, bearing improvement and many other new functions are conformed in modern clinic researches. Lycium is also widely used in brewing, beverage and many other products. The world Lycium-related researches are mostly on Lycium species genesis and evolution, sexual evolution, active ingredient separation and pharmacological effects. The future research direction is indicated in this article, molecular evolution and systematics rather than traditional taxonomy will do better in explanation of present global distribution of Lycium species; comparative genomics research on Lycium will be a whole new way to deep gene resources exploration; relationship of genetic diversity and active ingredient variation on L. barbarum and L. chinense will lay theory basis for new germplasm development, breeding, cultivation and production regionalization.

  18. Polysaccharides from Wolfberry Prevents Corticosterone-Induced Inhibition of Sexual Behavior and Increases Neurogenesis

    PubMed Central

    Lau, Benson Wui-Man; Lee, Jada Chia-Di; Li, Yue; Fung, Sophia Man-Yuk; Sang, Yan-Hua; Shen, Jiangang; Chang, Raymond Chuen-Chung; So, Kwok-Fai

    2012-01-01

    Lycium barbarum, commonly known as wolfberry, has been used as a traditional Chinese medicine for the treatment of infertility and sexual dysfunction. However, there is still a scarcity of experimental evidence to support the pro-sexual effect of wolfberry. The aim of this study is to determine the effect of Lycium barbarum polysaccharides (LBP) on male sexual behavior of rats. Here we report that oral feeding of LBP for 21 days significantly improved the male copulatory performance including increase of copulatory efficiency, increase of ejaculation frequency and shortening of ejaculation latency. Furthermore, sexual inhibition caused by chronic corticosterone was prevented by LBP. Simultaneously, corticosterone suppressed neurogenesis in subventricular zone and hippocampus in adult rats, which could be reversed by LBP. The neurogenic effect of LBP was also shown in vitro. Significant correlation was found between neurogenesis and sexual performance, suggesting that the newborn neurons are associated with reproductive successfulness. Blocking neurogenesis in male rats abolished the pro-sexual effect of LBP. Taken together, these results demonstrate the pro-sexual effect of LBP on normal and sexually-inhibited rats, and LBP may modulate sexual behavior by regulating neurogenesis. PMID:22523540

  19. Changes in extra-virgin olive oil added with Lycium barbarum L. carotenoids during frying: Chemical analyses and metabolomic approach.

    PubMed

    Blasi, F; Rocchetti, G; Montesano, D; Lucini, L; Chiodelli, G; Ghisoni, S; Baccolo, G; Simonetti, M S; Cossignani, L

    2018-03-01

    In this work, an Italian extra-virgin olive oil (EVOO) sample and the same sample added with a carotenoid-rich nutraceutical extract from Lycium barbarum L. (EVOOCar) were subjected to a frying process to comparatively assess chemical and physical changes and heat stability. Oxidation progress was monitored by measuring oil quality changes such as peroxide value, free acidity, K232, K268, and fatty acid composition as well as minor compound content, phenols, α-tocopherol, and carotenoids. An UHPLC/QTOF-MS metabolomics approach discriminated the two oil samples based on their chemical changes during frying, identifying also the phenolic classes most exposed to statistically significant variations. Partial least square discriminant analysis and volcano analysis were applied together to identify the most significant markers allowing group separation. The decrease in total phenolic content was lower in EVOOCar than in EVOO during frying. Monounsaturated and polyunsaturated fatty acids showed a significant percentage loss, 3.7% and 17.2%, respectively, in EVOO after 180min frying at 180°C, while they remained constant or slightly changed in EVOOCar. Zeaxanthin added to the oil rapidly decreased during the frying process. These findings showed that the addition of a carotenoid extract from L. barbarum can help to improve the oxidative stability of extra-virgin olive oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Activation of the Nrf2/HO-1 Antioxidant Pathway Contributes to the Protective Effects of Lycium Barbarum Polysaccharides in the Rodent Retina after Ischemia-Reperfusion-Induced Damage

    PubMed Central

    Chang, Raymond Chuen-Chung; So, Kwok-Fai; Brecha, Nicholas C.; Pu, Mingliang

    2014-01-01

    Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are protective to retina after ischemia-reperfusion (I/R). The antioxidant response element (ARE)–mediated antioxidant pathway plays an important role in maintaining the redox status of the retina. Heme oxygenase-1 (HO-1), combined with potent AREs in its promoter, is a highly effective therapeutic target for the protection against neurodegenerative diseases, including I/R-induced retinal damage. The aim of our present study was to investigate whether the protective effect of LBP after I/R damage was mediated via activation of the Nrf2/HO-1-antioxidant pathway in the retina. Retinal I/R was induced by an increase in intraocular pressure to 130 mm Hg for 60 minutes. Prior to the induction of ischemia, rats were orally treated with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. For specific experiments, zinc protoporphyrin (ZnPP, 20 mg/kg), an HO-1 inhibitor, was intraperitoneally administered at 24 h prior to ischemia. The protective effects of LBP were evaluated by quantifying ganglion cell and amacrine cell survival, and by measuring cell apoptosis in the retinal layers. In addition, HO-1 expression was examined using Western blotting and immunofluorescence analyses. Cytosolic and nuclear Nrf2 was measured using immunofluorescent staining. LBP treatment significantly increased Nrf2 nuclear accumulation and HO-1 expression in the retina after I/R injury. Increased apoptosis and a decrease in the number of viable cells were observed in the ganglion cell layer (GCL) and inner nuclear layer (INL) in the I/R retina, which were reversed by LBP treatment. The HO-1 inhibitor, ZnPP, diminished the LBP treatment-induced protective effects in the retina after I/R. Taken together, these results suggested that LBP partially exerted its beneficial neuroprotective effects via the activation of Nrf2 and an increase in HO-1 protein expression. PMID:24400114

  1. Lycium Barbarum (Wolfberry) Reduces Secondary Degeneration and Oxidative Stress, and Inhibits JNK Pathway in Retina after Partial Optic Nerve Transection

    PubMed Central

    Li, Hongying; Liang, Yuxiang; Chiu, Kin; Yuan, Qiuju; Lin, Bin; Chang, Raymond Chuen-Chung; So, Kwok-Fai

    2013-01-01

    Our group has shown that the polysaccharides extracted from Lycium barbarum (LBP) are neuroprotective for retinal ganglion cells (RGCs) in different animal models. Protecting RGCs from secondary degeneration is a promising direction for therapy in glaucoma management. The complete optic nerve transection (CONT) model can be used to study primary degeneration of RGCs, while the partial optic nerve transection (PONT) model can be used to study secondary degeneration of RGCs because primary degeneration of RGCs and secondary degeneration can be separated in location in the same retina in this model; in other situations, these types of degeneration can be difficult to distinguish. In order to examine which kind of degeneration LBP could delay, both CONT and PONT models were used in this study. Rats were fed with LBP or vehicle daily from 7 days before surgery until sacrifice at different time-points and the surviving numbers of RGCs were evaluated. The expression of several proteins related to inflammation, oxidative stress, and the c-jun N-terminal kinase (JNK) pathways were detected with Western-blot analysis. LBP did not delay primary degeneration of RGCs after either CONT or PONT, but it did delay secondary degeneration of RGCs after PONT. We found that LBP appeared to exert these protective effects by inhibiting oxidative stress and the JNK/c-jun pathway and by transiently increasing production of insulin-like growth factor-1 (IGF-1). This study suggests that LBP can delay secondary degeneration of RGCs and this effect may be linked to inhibition of oxidative stress and the JNK/c-jun pathway in the retina. PMID:23894366

  2. Antioxidant, Antimicrobial Effects and Phenolic Profile of Lycium barbarum L. Flowers.

    PubMed

    Mocan, Andrei; Vlase, Laurian; Vodnar, Dan Cristian; Gheldiu, Ana-Maria; Oprean, Radu; Crișan, Gianina

    2015-08-17

    L. barbarum L. is a widely-accepted nutraceutical presenting highly advantageous nutritive and antioxidant properties. Its flowers have been previously described as a source of diosgenin, β-sitosterol and lanosterol that can be further pharmaceutically developed, but no other data regarding their composition is available. The purpose of this work was to investigate the chemical constituents, antioxidant and antimicrobial activities of L. barbarum flowers, as an alternative resource of naturally-occurring antioxidant compounds. The free radical scavenging activity of the ethanolic extract was tested by TEAC, two enzymatic assays with more physiological relevance and EPR spectroscopy. The presence of several phenolic compounds, such as chlorogenic, p-coumaric and ferulic acids, but also isoquercitrin, rutin and quercitrin, was assessed by an HPLC/MS method. The antioxidant assays revealed that the extract exhibited a moderate antioxidant potential. The antimicrobial activity was mild against Gram-positive bacteria and lacking against Escherichia coli. These findings complete the scarce existing data and offer new perspectives for further pharmaceutical valorization of L. barbarum flowers.

  3. Quality Variation of Goji (Fruits of Lycium spp.) in China: A Comparative Morphological and Metabolomic Analysis

    PubMed Central

    Yao, Ruyu; Heinrich, Michael; Zou, Yuanfeng; Reich, Eike; Zhang, Xiaolei; Chen, Yu; Weckerle, Caroline S.

    2018-01-01

    Goji (fruits of Lycium barbarum L. and L. chinense Mill.) has been used in China as food and medicine for millennia, and globally has been consumed increasingly as a healthy food. Ningxia, with a semi-arid climate, always had the reputation of producing best goji quality (daodi area). Recently, the increasing market demand pushed the cultivation into new regions with different climates. We therefore ask: How does goji quality differ among production areas of various climatic regions? Historical records are used to trace the spread of goji production in China over time. Quality measurements of 51 samples were correlated with the four main production areas in China: monsoon (Hebei), semi-arid (Ningxia, Gansu, and Inner Mongolia), plateau (Qinghai) and arid regions (Xinjiang). We include morphological characteristics, sugar and polysaccharide content, antioxidant activity, and metabolomic profiling to compare goji among climatic regions. Goji cultivation probably began in the East (Hebei) of China around 100 CE and later shifted westward to the semi-arid regions. Goji from monsoon, plateau and arid regions differ according to its fruit morphology, whereas semi-arid goji cannot be separated from the other regions. L. chinense fruits, which are exclusively cultivated in Hebei (monsoon), are significantly lighter, smaller and brighter in color, while the heaviest and largest fruits (L. barbarum) stem from the plateau. The metabolomic profiling separates the two species but not the regions of cultivation. Lycium chinense and samples from the semi-arid regions have significantly (p < 0.01) lower sugar contents and L. chinense shows the highest antioxidant activity. Our results do not justify superiority of a specific production area over other areas. Instead it will be essential to distinguish goji from different regions based on the specific morphological and chemical traits with the aim to understand what its intended uses are. PMID:29535631

  4. Preparation of carotenoid extracts and nanoemulsions from Lycium barbarum L. and their effects on growth of HT-29 colon cancer cells

    NASA Astrophysics Data System (ADS)

    Hsu, H. J.; Huang, R. F.; Kao, T. H.; Inbaraj, B. S.; Chen, B. H.

    2017-03-01

    Lycium barbarum L., a traditional Chinese herb widely used in Asian countries, has been demonstrated to be protective against chronic diseases such as age-related macular degeneration. The objectives of this study were to determine the carotenoid content in L. barbarum by high-performance liquid chromatography-mass spectrometry, followed by preparation of a carotenoid nanoemulsion to evaluate the mechanism of inhibition on HT-29 colon cancer cells. The highest extraction yield of carotenoids was attained by employing a solvent system of hexane-ethanol-acetone (1:1:1, v/v/v). Nine carotenoids, including neoxanthin (4.47 μg g-1), all-trans-zeaxanthin and its cis-isomers (1666.3 μg g-1), all-trans-β-cryptoxanthin (51.69 μg g-1), all-trans-β-carotene and its cis-isomers (20.11 μg g-1), were separated within 45 min and quantified using a YMC C30 column and a gradient mobile phase of methanol-water (9:1, v/v) (A) and methylene chloride (B). A highly stable carotenoid nanoemulsion composed of CapryolTM 90, Transcutol®HP, Tween 80 and deionized water was prepared with a mean particle size of 15.1 nm. Characterization of zeaxanthin standard, blank nanoemulsion, carotenoid extract and carotenoid nanoemulsion by differential scanning calorimetry curves and Fourier transform infrared spectra revealed a good dispersion of zeaxanthin-dominated carotenoid extract with no significant chemical change after incorporation into nanoemulsion. The in vitro release kinetic study showed a higher release profile at pH 5.2 than at physiological pH 7.4, suggesting a rapid release of carotenoids in the acidic environment (pH 4.5-6.5) characteristic of tumors. Both the carotenoid nanoemulsion and the extract were effective at inhibiting growth of HT-29 colon cancer cells, with an IC50 of 4.5 and 4.9 μg ml-1, respectively. Also, both treatments could up-regulate p53 and p21 expression and down-regulate CDK2, CDK1, cyclin A and cyclin B expression and arrest the cell cycle at G2/M. The

  5. Neuroprotective effect of Lycium barbarum on retina of Royal College of Surgeons (RCS) rats: a preliminary study.

    PubMed

    Ni, Tongshang; Wei, Guangwei; Yin, Xuntao; Liu, Xianghe; Liu, Dianwei

    2013-01-01

    Hereditary retinal dystrophy usually leads to blindness. Using Royal College of Surgeons (RCS) rats as a hereditary retinal dystrophy model, we investigated the possible neuroprotective effects of the aqueous extract of dried Lycium barbarum (LBA). Sixty postnatal RCS rats were selected and randomly divided into a control group (CG, thirty rats) and an experimental group (EG). Ten days after birth, EG rats were treated by 1 mg/kg of LBA per day, and CG rats were normally fed. These rats were killed at postnatal day (P) 25, P35 and P50, and retinal tissue was prepared for analysis. Photoreceptor cells were assessed by hematoxylin and eosin (HE) staining, TUNEL detection and Caspase-2 protein expression. We found that in rats at P25, the outer nuclear layer (ONL) of EG was thicker and more photoreceptor cells survived. Meanwhile, the TUNEL expression in EG was obviously reduced compared with CG. The Caspase-2 positive cells were found in the ganglion cell layer and inner nuclear layer in both CG and EG at 25-50 postnatal days, but the expression in EG rats was significantly lower than in CG at P25. The results demonstrated that LBA might have a neuroprotective role on the retinal tissue of RCS rats at the early stage by protecting photoreceptors and inhibiting apoptosis involving Caspase-2 protein.

  6. Identification and validation of reference genes for quantitative real-time PCR normalization and its applications in lycium.

    PubMed

    Zeng, Shaohua; Liu, Yongliang; Wu, Min; Liu, Xiaomin; Shen, Xiaofei; Liu, Chunzhao; Wang, Ying

    2014-01-01

    Lycium barbarum and L. ruthenicum are extensively used as traditional Chinese medicinal plants. Next generation sequencing technology provides a powerful tool for analyzing transcriptomic profiles of gene expression in non-model species. Such gene expression can then be confirmed with quantitative real-time polymerase chain reaction (qRT-PCR). Therefore, use of systematically identified suitable reference genes is a prerequisite for obtaining reliable gene expression data. Here, we calculated the expression stability of 18 candidate reference genes across samples from different tissues and grown under salt stress using geNorm and NormFinder procedures. The geNorm-determined rank of reference genes was similar to those defined by NormFinder with some differences. Both procedures confirmed that the single most stable reference gene was ACNTIN1 for L. barbarum fruits, H2B1 for L. barbarum roots, and EF1α for L. ruthenicum fruits. PGK3, H2B2, and PGK3 were identified as the best stable reference genes for salt-treated L. ruthenicum leaves, roots, and stems, respectively. H2B1 and GAPDH1+PGK1 for L. ruthenicum and SAMDC2+H2B1 for L. barbarum were the best single and/or combined reference genes across all samples. Finally, expression of salt-responsive gene NAC, fruit ripening candidate gene LrPG, and anthocyanin genes were investigated to confirm the validity of the selected reference genes. Suitable reference genes identified in this study provide a foundation for accurately assessing gene expression and further better understanding of novel gene function to elucidate molecular mechanisms behind particular biological/physiological processes in Lycium.

  7. Speciation analysis and bioaccessibility evaluation of trace elements in goji berries (Lycium Barbarum, L.).

    PubMed

    Wojcieszek, Justyna; Kwiatkowski, Piotr; Ruzik, Lena

    2017-04-07

    Goji berries (Lycium Barbarum, L.) are known for their nutritional potential as a great source of trace metals (e.g., copper, zinc and manganese) which are present in the form of highly bioaccessible compounds. In order to assess the bioaccessibility of trace elements and to identify compounds responsible for better bioaccessibility of copper and zinc, an in vitro simulation of gastrointestinal digestion was used in this study. The total content of trace metals was evaluated using sample digestion followed by inductively coupled plasma mass spectrometry. Bioaccessibility of trace elements was estimated by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry. These analytical methods were used to analyse samples of goji berries to determine the highest amount of elements. For total trace metal content in goji berries, Zn had the highest level of the three studied (10.6μgg -1 ), while the total content of manganese and copper was 9.9μgg -1 and 6.1μgg -1 , respectively. Additionally, the analysed metals were found to be highly bioaccessible to the human body (about 56% for Mn, 72% for Cu and 64% for Zn in the gastric extract and approximately 35% for Mn, 23% for Cu and 31% for Zn in the case of gastrointestinal extract). To obtain information about metal complexes present in goji berries, extraction treatment using different solutions (ionic liquid, HEPES, SDS, Tris-HCl, ammonium acetate, water) was performed. Enzymatic treatment using pectinase and hemicellulase was also checked. Extracts of berries were analysed by SEC-ICP-MS and μHPLC-ESI-MS/MS techniques. The ionic liquid and pectinase extraction helped efficiently extract copper (seven compounds) and zinc (four compounds) complexes. Compounds identified in goji berries are most likely to be responsible for better bioaccessibility of those elements to the human organism. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Functional analysis of multiple carotenogenic genes from Lycium barbarum and Gentiana lutea L. for their effects on beta-carotene production in transgenic tobacco.

    PubMed

    Ji, Jing; Wang, Gang; Wang, Jiehua; Wang, Ping

    2009-02-01

    Carotenoids are red, yellow and orange pigments, which are widely distributed in nature and are especially abundant in yellow-orange fruits and vegetables and dark green leafy vegetables. Carotenoids are essential for photosynthesis and photoprotection in plant life and also have different beneficial effects in humans and animals (van den Berg et al. 2000). For example, beta-carotene plays an essential role as the main dietary source of vitamin A. To obtain further insight into beta-carotene biosynthesis in two important economic plant species, Lycium barbarum and Gentiana lutea L., and to investigate and prioritize potential genetic engineering targets in the pathway, the effects of five carotenogenic genes from these two species, encoding proteins including geranylgeranyl diphosphate synthase, phytoene synthase and delta-carotene desaturase gene, lycopene beta-cyclase, lycopene epsilon-cyclase were functionally analyzed in transgenic tobacco (Nicotiana tabacum) plants. All transgenic tobacco plants constitutively expressing these genes showed enhanced beta-carotene contents in their leaves and flowers to different extents. The addictive effects of co-ordinate expression of double transgenes have also been investigated.

  9. Anti-inflammatory and anti-angiogenic effects of flavonoids isolated from Lycium barbarum Linnaeus on human umbilical vein endothelial cells.

    PubMed

    Wu, Wen-Bin; Hung, Dian-Kun; Chang, Fung-Wei; Ong, Eng-Thaim; Chen, Bing-Huei

    2012-10-01

    Anti-inflammatory and anti-angiogenic effects of flavonoids isolated from Lycium barbarum fruits, a traditional Chinese medicine, on human umbilical vein endothelial cells (HUVECs) were investigated. Initially, flavonoids were extracted with 80% ethanol and separated using a Cosmosil 140 C18-OPN column, with the acidic fraction eluted with deionized water being composed of chlorogenic acid, caffeoyl quinic acid, caffeic acid and p-coumaric acid and the neutral fraction eluted with methanol composed of quercetin-diglycoside, rutin and kaempferol-O-rutinoside. Flavonoid extract was effective in inhibiting expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1) induced by TNF-α in HUVECs. The RT-PCR analysis indicated that ICAM-1 mRNA induced by TNF-α was inhibited by flavonoid extract. The flavonoid extract attenuated TNF-α-induced IκB phosphorylation as well as NF-κB, p65 and p50 translocation from cytosol to nucleus, through inhibition on TNF-α- and H(2)O(2)-induced intracellular reactive oxygen species (ROS) production. For the anti-angiogenic study, the flavonoid extract inhibited vascular endothelial growth factor (VEGF)-induced cell proliferation and migration in HUVECs, as well as angiogenesis. However, the flavonoid extract did not inhibit VEGF signaling. Surprisingly, HUVECs adhesion to the extracellular matrix was compromised and adhesion-induced signaling was retarded by the flavonoid extract.

  10. Quality control of goji (fruits of Lycium barbarum L. and L. chinense Mill.): A value chain analysis perspective.

    PubMed

    Yao, Ruyu; Heinrich, Michael; Wang, Zigui; Weckerle, Caroline S

    2018-06-14

    Goji (fruits of Lycium barbarum L. and L. chinense Mill., Solanaceae) have been used as a traditional food and medicine for hundreds of years in Asian countries and are now consumed globally. Quality of herbal medicines is critical for safe use and has been shown to be affected by value chains. Using a value chain (VC) framework, we aim at understanding the influence of different VC types on goji quality and revenue of stakeholders. Participant observation and semi-structured interviews were conducted during five months of fieldwork in the main production areas in China with a total of 65 stakeholders. Quality of goji, behaviour and financial performance of stakeholders was documented and analysed for different VCs. Ten different types of VCs were identified. VCs with vertical integration and horizontal collaboration were found to have a more coherent quality control and better goji quality as well as improved stakeholders' financial performance. Vertical integration at different levels was found for independent farmer-based VCs, horizontal collaboration was found in the cooperative-based VCs. Full vertically integrated VCs were found in large-scale production. Goji quality and stakeholders' revenues are linked with different types of VCs which mirror stakeholders' behaviour driven by target markets. Considering their positive influence on quality and revenues, well-developed vertically integrated value chains are likely to become more important in the near future. Copyright © 2018. Published by Elsevier B.V.

  11. Lycium barbarum Extracts Protect the Brain from Blood-Brain Barrier Disruption and Cerebral Edema in Experimental Stroke

    PubMed Central

    Yang, Di; Li, Suk-Yee; Yeung, Chung-Man; Chang, Raymond Chuen-Chung; So, Kwok-Fai; Wong, David; Lo, Amy C. Y.

    2012-01-01

    Background and Purpose Ischemic stroke is a destructive cerebrovascular disease and a leading cause of death. Yet, no ideal neuroprotective agents are available, leaving prevention an attractive alternative. The extracts from the fruits of Lycium barbarum (LBP), a Chinese anti-aging medicine and food supplement, showed neuroprotective function in the retina when given prophylactically. We aim to evaluate the protective effects of LBP pre-treatment in an experimental stroke model. Methods C57BL/6N male mice were first fed with either vehicle (PBS) or LBP (1 or 10 mg/kg) daily for 7 days. Mice were then subjected to 2-hour transient middle cerebral artery occlusion (MCAO) by the intraluminal method followed by 22-hour reperfusion upon filament removal. Mice were evaluated for neurological deficits just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, immunohistochemical analysis, and Western blot experiments. Evans blue (EB) extravasation was determined to assess blood-brain barrier (BBB) disruption after MCAO. Results LBP pre-treatment significantly improved neurological deficits as well as decreased infarct size, hemispheric swelling, and water content. Fewer apoptotic cells were identified in LBP-treated brains by TUNEL assay. Reduced EB extravasation, fewer IgG-leaky vessels, and up-regulation of occludin expression were also observed in LBP-treated brains. Moreover, immunoreactivity for aquaporin-4 and glial fibrillary acidic protein were significantly decreased in LBP-treated brains. Conclusions Seven-day oral LBP pre-treatment effectively improved neurological deficits, decreased infarct size and cerebral edema as well as protected the brain from BBB disruption, aquaporin-4 up-regulation, and glial activation. The present study suggests that LBP may be used as a prophylactic neuroprotectant in patients at high risk for ischemic stroke. PMID:22438957

  12. The Anti-Oxidant and Antitumor Properties of Plant Polysaccharides.

    PubMed

    Jiao, Rui; Liu, Yingxia; Gao, Hao; Xiao, Jia; So, Kwok Fai

    2016-01-01

    Oxidative stress has been increasingly recognized as a major contributing factor in a variety of human diseases, from inflammation to cancer. Although certain parts of signaling pathways are still under investigation, detailed molecular mechanisms for the induction of diseases have been elucidated, especially the link between excessive oxygen reactive species (ROS) damage and tumorigenesis. Emerging evidence suggests anti-oxidant therapy can play a key role in treating those diseases. Among potential drug resources, plant polysaccharides are natural anti-oxidant constituents important for human health because of their long history in ethnopharmacology, wide availability and few side effects upon consumption. Plant polysaccharides have been shown to possess anti-oxidant, anti-inflammation, cell viability promotion, immune-regulation and antitumor functions in a number of disease models, both in laboratory studies and in the clinic. In this paper, we reviewed the research progress of signaling pathways involved in the initiation and progression of oxidative stress- and cancer-related diseases in humans. The natural sources, structural properties and biological actions of several common plant polysaccharides, including Lycium barbarum, Ginseng, Zizyphus Jujuba, Astragalus lentiginosus, and Ginkgo biloba are discussed in detail, with emphasis on their signaling pathways. All of the mentioned common plant polysaccharides have great potential to treat oxidative stress and cancinogenic disorders in cell models, animal disease models and clinical cases. ROS-centered pathways (e.g. mitochondrial autophagy, MAPK and JNK) and transcription factor-related pathways (e.g. NF-[Formula: see text]B and HIF) are frequently utilized by these polysaccharides with or without the further involvement of inflammatory and death receptor pathways. Some of the polysaccharides may also influence tumorigenic pathways, such as Wnt and p53 to play their anti-tumor roles. In addition, current

  13. Short-term treatments with high CO2 and low O2 concentrations on quality of fresh goji berries (Lycium barbarum L.) during cold storage.

    PubMed

    Kafkaletou, Mina; Christopoulos, Miltiadis V; Tsantili, Eleni

    2017-12-01

    Goji berries (Lycium barbarum L.) are functional fruits but are usually marketed as a dried product. The aim of this study was to investigate the storability of fresh goji berries treated with high CO 2 and low O 2 concentrations before air storage at 1 °C for 21 days. Berries harvested without stems were exposed to air (controls) or subjected for 2 days at 1 °C to the following controlled atmosphere (CA) treatments: 21% O 2 + 0% CO 2 (21+0), 5% O 2 + 15% CO 2 (5+15), 10% O 2 + 10% CO 2 (10+10) and 20% O 2 + 20% CO 2 (20+20). During 14 days of storage, all treatments decreased weight loss, while treatments 5+15 and 20+20 prevented fungal decay. No fermentation was observed. The treatments did not affect color changes, decreases in soluble sugars and increases in total soluble solids, titratable acidity, ascorbic acid, total carotenoids, total phenolics and ferric-reducing antioxidant power (FRAP) during storage, apart from the marginally reduced FRAP by treatment 20+20 on day 7. Treatments 5+15, 10+10 and 20+20 resulted in residual decreases in respiration rates and pH values early during storage. After 14 days of storage, panelists rated the CA-treated samples as sweet, with good acceptance. Treatments 5+15 and 20+20 showed the best results after 14 days of storage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Hot water-extracted Lycium barbarum and Rehmannia glutinosa inhibit proliferation and induce apoptosis of hepatocellular carcinoma cells

    PubMed Central

    Chao, Jane C-J; Chiang, Shih-Wen; Wang, Ching-Chiung; Tsai, Ya-Hui; Wu, Ming-Shun

    2006-01-01

    AIM: To investigate the effect of hot water-extracted Lycium barbarum (LBE) and Rehmannia glutinosa (RGE) on cell proliferation and apoptosis in rat and/or human hepatocellular carcinoma (HCC) cells. METHODS: Rat (H-4-II-E) and human HCC (HA22T/VGH) cell lines were incubated with various concentrations (0-10 g/L) of hot water-extracted LBE and RGE. After 6-24 h incubation, cell proliferation (n = 6) was measured by a colorimetric method. The apoptotic cells (n = 6) were detected by flow cytometry. The expression of p53 protein (n = 3) was determined by SDS-PAGE and Western blotting. RESULTS: Crude LBE (2-5 g/L) and RGE (2-10 g/L) dose-dependently inhibited proliferation of H-4-II-E cells by 11% (P < 0.05) to 85% (P < 0.01) after 6-24 h treatment. Crude LBE at a dose of 5 g/L suppressed cell proliferation of H-4-II-E cells more effectively than crude RGE after 6-24 h incubation (P < 0.01). Crude LBE (2-10 g/L) and RGE (2-5 g/L) also dose-dependently inhibited proliferation of HA22T/VGH cells by 14%-43% (P < 0.01) after 24 h. Crude LBE at a dose of 10 g/L inhibited the proliferation of HA22T/VGH cells more effectively than crude RGE (56.8% ± 1.6% vs 70.3% ± 3.1% of control, P = 0.0003 < 0.01). The apoptotic cells significantly increased in H-4-II-E cells after 24 h treatment with higher doses of crude LBE (2-5 g/L) and RGE (5-10 g/L) (P < 0.01). The expression of p53 protein in H-4-II-E cells was 119% and 143% of the control group compared with the LBE-treated (2, 5 g/L) groups, and 110% and 132% of the control group compared with the RGE -treated (5, 10 g/L) groups after 24 h. CONCLUSION: Hot water-extracted crude LBE (2-5 g/L) and RGE (5-10 g/L) inhibit proliferation and stimulate p53-mediated apoptosis in HCC cells. PMID:16874858

  15. A diet formula of Puerariae radix, Lycium barbarum, Crataegus pinnatifida, and Polygonati rhizoma alleviates insulin resistance and hepatic steatosis in CD-1 mice and HepG2 cells.

    PubMed

    Liu, Jia; Zhang, HongJuan; Ji, BaoPing; Cai, ShengBao; Wang, RuoJun; Zhou, Feng; Yang, JunSi; Liu, HuiJun

    2014-05-01

    According to the principles of traditional Chinese medicine, medicinal and edible herbs exhibit holistic effects through their actions on multiple target organs. Four herbs, Puerariae radix, Lycium barbarum, Crataegus pinnatifida, and Polygonati rhizoma, were selected and combined to create a new herbal formula (PLCP). The protective effects of both the aqueous extract (AE) and ethanol extract (EE) of PLCP against insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD) were evaluated in both high fat and high fructose diet-fed mice. Active fractions and constituents were screened in HepG2 cells with IR or an over-accumulation of triglycerides, and were further identified by high-performance liquid chromatography/electrospray ionization/mass spectrometry. The results indicate that the AE did not improve (p > 0.05) glucose tolerance after three weeks, whereas EE showed a promising effect throughout the experiment. Medium and high doses of EE were found to reduce fasting blood glucose at week 9 by 21.1% and 24.4%, respectively. In addition, their efficacies for alleviating IR were comparable with that of metformin. Compared with AE, EE effectively improved hyperlipidemia, antioxidant status, and NAFLD. In contrast, metformin did not alleviate hyperlipidemia (p > 0.05) or NAFLD in the mice model. Results from the cell-based study indicate that the protective effects of EE were possibly due to the actions from puerarin, 3'-methoxypuerarin, daidzin, daidzein, and ononin.

  16. Validated method for the analysis of goji berry, a rich source of zeaxanthin dipalmitate.

    PubMed

    Karioti, Anastasia; Bergonzi, Maria Camilla; Vincieri, Franco F; Bilia, Anna Rita

    2014-12-31

    In the present study an HPLC-DAD method was developed for the determination of the main carotenoid, zeaxanthin dipalmitate, in the fruits of Lycium barbarum. The aim was to develop and optimize an extraction protocol to allow fast, exhaustive, and repeatable extraction, suitable for labile carotenoid content. Use of liquid N2 allowed the grinding of the fruit. A step of ultrasonication with water removed efficiently the polysaccharides and enabled the exhaustive extraction of carotenoids by hexane/acetone 50:50. The assay was fast and simple and permitted the quality control of a large number of commercial samples including fruits, juices, and a jam. The HPLC method was validated according to ICH guidelines and satisfied the requirements. Finally, the overall method was validated for precision (% RSD ranging between 3.81 and 4.13) and accuracy at three concentration levels. The recovery was between 94 and 107% with RSD values <2%, within the acceptable limits, especially if the difficulty of the matrix is taken into consideration.

  17. Diffusion Profiles of Health Beneficial Components from Goji Berry (Lyceum barbarum) Marinated in Alcohol and Their Antioxidant Capacities as Affected by Alcohol Concentration and Steeping Time

    PubMed Central

    Song, Yang; Xu, Baojun

    2013-01-01

    The fruit (goji berry) of Lycium barbarum, a traditional Chinese medicine, has been widely used in health diets due to its potential role in the prevention of chronic diseases. One of the most popular applications of goji berry is to make goji wine in China by steeping goji berry in grain liquor. However, how the steeping process affects antioxidant capacities and phytochemicals of goji berry is not yet fully understood. Therefore, to provide scientific data for the utilization of goji berry in the nutraceutical industry, the diffusion rate of betaine, β-carotene, phenolic compounds in goji berry and their antioxidant capacities affected by alcohol concentration and steeping time were determined by UV-Visible spectrophotometer. The results showed that low alcohol concentration (15% or 25%) would promote the diffusion of betaine and increase antioxidant activity, while high concentration (55% or 65%) would generally increase the diffusion of flavonoids and reduce antioxidant activity. The steeping time had no significant effect on the diffusion of phenolic compounds and antioxidant activities. However, all goji berry wine steeped for 14 days with different alcohol concentrations exhibited the highest betaine concentration. Current findings provide useful information for the nutraceutical industries to choose proper steeping time and alcohol concentration to yield desired health promotion components from goji. PMID:28239094

  18. Effect of gamma irradiation on microbial decontamination, and chemical and sensory characteristic of lycium fruit

    NASA Astrophysics Data System (ADS)

    Wen, Hsiao-Wei; Chung, Hsiao-Ping; Chou, Fong-In; Lin, I.-hsin; Hsieh, Po-Chow

    2006-05-01

    Lycium fruit, popular traditional Chinese medicine and food supplement generally is ingested uncooked, was exposed to several doses of gamma irradiation (0-14 kGy) to evaluate decontamination efficiency, changes in chemical composition, and changes in sensory characteristic. In this study, lycium fruit specimens contained microbial counts of 3.1×10 3-1.7×10 5 CFU/g and 14 kGy was sufficient for microbial decontamination. Before irradiation, the main microbe isolated from lycium fruit was identified as a strain of yeast, Cryptococcus laurentii. After 10 kGy of irradiation, a Gram-positive spore-forming bacterium, Bacillus cereus, was the only survivor. The first 90% reduction (LD 90) of C. laurentii and B. cereus was approximately 0.6 and 6.5 kGy, respectively, the D 10 doses of C. laurentii and B. cereus was approximately 0.6 and 1.7 kGy, respectively. After 14 kGy irradiation, except the vitamin C content, other chemical composition (e.g., crude protein, β-carotene, riboflavin, fructose, etc.) and the sensory characteristic of lycium fruit specimens did not have significant changes. In conclusion, 14 kGy is the optimal decontamination dose for lycium fruit for retention of its sensory quality and extension of shelf life.

  19. Bioactive compounds and antioxidant activity of wolfberry infusion

    PubMed Central

    Sun, Yujing; Rukeya, Japaer; Tao, Wenyang; Sun, Peilong; Ye, Xingqian

    2017-01-01

    An infusion of the wolfberry (Lycium barbarum L.) is a traditional Asian herbal tea. This is the most commonly consumed form of dried wolfberry worldwide, yet little scientific information on wolfberry infusions is available. We investigated the effects of making infusions with hot water on the color, the content of bioactive compounds (polysaccharides, polyphenols, flavonoids and carotenoids) and the antioxidant ability of wolfberry infusions. The contents of bioactive compounds and the antioxidant activity of a wolfberry infusion increased with increased infusion temperature and time. Total polysaccharides content (TPOC), total polyphenols (TPC), total flavonoids (TFC) and total carotenoids contents (TCC) were important for determining the antioxidant capacity of wolfberry infusions with the contribution to antioxidant activity in the order TPC > TFC > TCC > TPOC. Hierarchical cluster analysis indicated preparation conditions of 100 °C for 1~3 h, 90 °C for 2~3 h and 80 °C for 2.5~3 h were equivalent as regards the value of TPC, TPOC, TFC, TCC, FRAP, DPPH and ABTS. The results of this study suggest the length of time of making a wolfberry infusion in actual real life practice is too short and different dietary habits associated with the intake of wolfberry infusion might provide the same bioactive nutrients. PMID:28102295

  20. [Effect of NaHCO3 stress on uptake and transportation of Na+, K+ and Ca2+ in three shrub species].

    PubMed

    Mao, Gui-Lian; Li, Guo-Qi; Xu, Xing; Zhang, Xin-Xue

    2014-03-01

    We detected absorption and transportation of ions in the leaves of Atriplex nummularia, Atriplex canescens and Lycium barbarum under NaHCO3 stress (300 mmol x L(-1)) by using atomic absorption spectrophotometry and non-invasive ion flux measurement. The results showed that leaves of the A. nummularia, A. canescens and L. barbarum exhibited a high capacity to induce the Na+ accumulation when compared with that of control. The higher the concentration of NaHCO3 treatment, the more Na+ accumulated in the leaves of the three plants under experimental condition. L. barbarum showed a higher Na+ efflux in the mesophyll cells, whereas A. nummularia and A. canescens showed a relative lower efflux. A lower K+ content and a higher Na+/K+ ratio were detected in leaves of A. nummularia and L. barbarum. However, a higher K+ content and a lower Na+/K+ ratio were seen in leaves of A. canescens. Due to induction of Ca2+ efflux under the NaHCO3 treatment, a lower Ca2+ content and a higher Na+/Ca2+ ratio were observed in L. barbarum. On the contrary, a higher Ca2+ influx was observed in A. nummularia and A. canescens. These results suggested that the three shrubs species had different Na+ segmentation strategies. The accumulation of Na+ inhibited Ca2+ absorption in leaves of L. barbarum, while in the A. nummularia and A. canescens, Ca2+ influx induced [Ca2+]cyt which preserved a less-depolarized PM and then inhibited K efflux. The maintaining of cellular K+/Na+ homeostasis in A. nummularia and A. canescens might be achieved by the induction of [Ca2+]cyt under the NaHCO3 treatment.

  1. Fasting plasma zeaxanthin response to Fructus barbarum L. (wolfberry; Kei Tze) in a food-based human supplementation trial.

    PubMed

    Cheng, Chung Yuen; Chung, Wai Yuen; Szeto, Yim Tong; Benzie, Iris F F

    2005-01-01

    Age-related macular degeneration (AMD) is a common disorder that causes irreversible loss of central vision. Increased intake of foods containing zeaxanthin may be effective in preventing AMD because the macula accumulates zeaxanthin and lutein, oxygenated carotenoids with antioxidant and blue light-absorbing properties. Lycium barbarum L. is a small red berry known as Fructus lycii and wolfberry in the West, and Kei Tze and Gou Qi Zi in Asia. Wolfberry is rich in zeaxanthin dipalmitate, and is valued in Chinese culture for being good for vision. The aim of this study, which was a single-blinded, placebo-controlled, human intervention trial of parallel design, was to provide data on how fasting plasma zeaxanthin concentration changes as a result of dietary supplementation with whole wolfberries. Fasting blood was collected from healthy, consenting subjects; fourteen subjects took 15 g/d wolfberry (estimated to contain almost 3 mg zeaxanthin) for 28 d. Repeat fasting blood was collected on day 29. Age- and sex-matched controls (n 13) took no wolfberry. Responses in the two groups were compared using the Mann-Whitney test. After supplementation, plasma zeaxanthin increased 2.5-fold: mean values on day 1 and 29 were 0.038 (sem 0.003) and 0.096 (sem 0.009) micromol/l (P<0.01), respectively, for the supplementation group; and 0.038 (sem 0.003) and 0.043 (sem 0.003) micromol/l (P>0.05), respectively, for the control group. This human supplementation trial shows that zeaxanthin in whole wolfberries is bioavailable and that intake of a modest daily amount markedly increases fasting plasma zeaxanthin levels. These new data will support further study of dietary strategies to maintain macular pigment density.

  2. The effect of the halophytic shrub Lycium ruthenium (Mutt) on selected soil properties of a desert ecosystem in central Iran

    Treesearch

    Gholam Ali Jalali; Hossein Akbarian; Charles Rhoades; Hamed Yousefzadeh

    2012-01-01

    We compared soil properties beneath naturally-occurring patches of Lycium ruthenicum Murray (fam. Solanaceae) to evaluate the shrub’s potential to improve the fertility of saline soils. Soil pH, total nitrogen and carbon and extractable potassium, magnesium and phosphorus were respectively significantly higher in the A and B horizons of Lycium shrub patches...

  3. Traditional Chinese herbal extracts inducing autophagy as a novel approach in therapy of nonalcoholic fatty liver disease

    PubMed Central

    Liu, Cong; Liao, Jia-Zhi; Li, Pei-Yuan

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver diseases around the world due to the modern sedentary and food-abundant lifestyle, which is characterized by excessive fat accumulation in the liver related with causes other than alcohol abuse. It is widely acknowledged that insulin resistance, dysfunctional lipid metabolism, endoplasmic reticulum stress, oxidative stress, inflammation, and apoptosis/necrosis may all contribute to NAFLD. Autophagy is a protective self-digestion of intracellular organelles, including lipid droplets (lipophagy), in response to stress to maintain homeostasis. Lipophagy is another pathway for lipid degradation besides lipolysis. It is reported that impaired autophagy also contributes to NAFLD. Some studies have suggested that the histological characteristics of NAFLD (steatosis, lobular inflammation, and peri-sinusoid fibrosis) might be improved by treatment with traditional Chinese herbal extracts, while autophagy may be induced. This review will provide insights into the characteristics of autophagy in NAFLD and the related role/mechanisms of autophagy induced by traditional Chinese herbal extracts such as resveratrol, Lycium barbarum polysaccharides, dioscin, bergamot polyphenol fraction, capsaicin, and garlic-derived S-allylmercaptocysteine, which may inhibit the progression of NAFLD. Regulation of autophagy/lipophagy with traditional Chinese herbal extracts may be a novel approach for treating NAFLD, and the molecular mechanisms should be elucidated further in the near future. PMID:28373762

  4. Lycium europaeum fruit extract: antiproliferative activity on A549 human lung carcinoma cells and PC12 rat adrenal medulla cancer cells and assessment of its cytotoxicity on cerebellum granule cells.

    PubMed

    Ghali, Wafa; Vaudry, David; Jouenne, Thierry; Marzouki, Mohamed Nejib

    2015-01-01

    Cancer is a major worldwide health problem and one of the leading causes of death either in developed or developing countries. Plant extracts and derivatives have always been used for various disease treatments and many anticancer agents issued from plants and vegetables are clinically recognized and used all over the world. Lycium europaeum (Solanaceae) also called "wolfberry" was known since ancient times in the Mediterranean area as a medicinal plant and used in several traditional remedies. The Lycium species capacity of reducing the incidence of cancer and also of halting or reserving the growth of cancer was reported by traditional healers. In this study, the antiproliferative capacity, protective properties, and antioxidant activity of the hydro-alcoholic fruit extract of Lycium europaeum were investigated. Results showed that Lycium extract exhibits the ability to reduce cancer cell viability, inhibits proliferation, and induces apoptosis in A549 human lung cancer cells and PC12 rat adrenal medulla cancer cells, in a concentration- and time-dependent manner. Cytotoxic effect on normal rat cerebellum granule cells was assessed to be nonsignificant. Results also showed that Lycium fruit extract protected lipids, proteins, and DNA against oxidative stress damages induced by H2O2 via scavenging reactive oxygen species.

  5. [Advances in research on relationships among Lycium species and origin of cultivated Lycium in China].

    PubMed

    Qian, Dan; Ji, Rui-Feng; Gao, Wei; Huang, Lu-Qi

    2017-09-01

    The Lycium genus consists of consist of 7 species and 3 variety which are main distributed in Northwest region in China, the cultivated Goji berry appeared about 1 000 years ago. The phylogeny of the wild Goji berry and the domestication of cultivated Goji berry are important scientific and practical value due to the medicinal and economic value. In this paper, a new advances achieved in studies on the phylogeny of wild Goji berry is summarized. The origin of cultivated Goji berry includes when, where, how and ancestral specie were reviewed. The current situation of cultivation and existing problems were summarized. We considered that through mutations and artificial selections, wild ancestors were domesticated to current cultivar groups. To find direct evidence for the origin of cultivated Goji berry, we must rely on genetic analysis in addition to morphological characters. To make full use of the Goji berry germplasm resources, the investigation and mining on wild Goji berry resource should be strengthened in the future. Copyright© by the Chinese Pharmaceutical Association.

  6. Sodium relations in desert plants. V. Cation balance when grown in solution culture and in the field in three species of Lycium from the northern Mojave desert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashcroft, R.T.; Wallace, A.

    1976-07-01

    Three species of Lycium (wolfberry or desert thorn) are indicators of saline conditions of the soils of the northern Mojave Desert on which they grow and range from a halophyte (Lycium shockleyi Gray) to a partial halophyte (Lycium pallidum Miers) to a nonhalophyte (Lycium andersonii Gray). Each species was grown in nutrient solutions with varying Na levels to determine if the differential responses to cations in the field were reproducible in the glasshouse. The differences in Na, K, and Ca contents of leaves of L. andersonii, L. pallidum, and L. shockleyi grown in nutrient solution with varying cation levels weremore » similar to those for plants grown in the field. L. shockleyi accumulated large quantities of Na in leaves when supplied irrespective of the level of Na or of K and Ca in the nutrient substrate. Root and leaf analyses indicate that L. andersonii is a poor accumulator of Na and that the other two Lycium species transport Na to shoots rather than retain it in roots. A high level of NaCl in the nutrient substrate resulted in increased total cations in all three species; in L. shockleyi the increase was the result of an increased Na, but in L. andersonii it was due to increased Ca. There was no relationship in total cation contents of the plants with total contents of N + P + Cl (me basis as ions are absorbed by plants). In whole plants collected from the field, high cation concentrations in leaves were related to differential distribution among plant parts for the three species so that leaf differences were compensated for without differences on the whole plant basis.« less

  7. Comparative photosynthetic production of Mojave Desert shrubs. [Ambrosia dumosa, Lycium andersonii, L. pallidum, Larrea tridentata, Krameria parvifolia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberg, S.A.; Kleinkopf, G.E.; Wallace, A.

    Transpirational and net photosynthetic rates of several species of desert shrubs were measured as a function of season and environmental variables at the Nevada Test Site in the northern Mojave Desert. Drought-deciduous species, Ambrosia dumosa (Grey) Payne, Lycium andersonii Grey, and Lycium pallidum Miers, had higher maximum rates and greater water loss than the evergreen, Larrea tridentata Munz, and summer green, Krameria parvifolia Benth., species. Moisture status was the most critical factor determining gas exchange rates and affected temperature optima and acclimation as the season progressed. Because of a dry spring season, the drought-deciduous species became dormant in late May-earlymore » June; the other two species exhibited by mid-June a small positive CO/sub 2/ uptake during the morning period. Desert plant species, with few exceptions, are extremely labile and exhibit large variability and different adaptive strategies.« less

  8. Frequency distribution of lithium in leaves of Lycium andersonii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romney, E.M.; Wallace, A.; Kinnear, J.

    1977-01-01

    Lycium andersonii A. Gray is an accumulator of Li. Assays were made of 200 samples of it collected from six different locations within the Northern Mojave Desert. Mean concentrations of Li varied from location to location and tended not to follow log/sub e/ normal distribution, and to follow a normal distribution only poorly. There was some negative skewness to the log/sub e/ distribution which did exist. The results imply that the variation in accumulation of Li depends upon native supply of Li. Possibly the Li supply and the ability of L. andersonii plants to accumulate it are both log/sub e/more » normally distributed. The mean leaf concentration of Li in all locations was 29 ..mu..g/g, but the maximum was 166 ..mu..g/g.« less

  9. A milk-based wolfberry preparation prevents prenatal stress-induced cognitive impairment of offspring rats, and inhibits oxidative damage and mitochondrial dysfunction in vitro.

    PubMed

    Feng, Zhihui; Jia, Haiqun; Li, Xuesen; Bai, Zhuanli; Liu, Zhongbo; Sun, Lijuan; Zhu, Zhongliang; Bucheli, Peter; Ballèvre, Olivier; Wang, Junkuan; Liu, Jiankang

    2010-05-01

    Lycium barbarum (Fructus Lycii, Wolfberry, or Gouqi) belongs to the Solanaceae. The red-colored fruits of L. barbarum have been used for a long time as an ingredient in Chinese cuisine and brewing, and also in traditional Chinese herbal medicine for improving health. However, its effects on cognitive function have not been well studied. In the present study, prevention of a milk-based wolfberry preparation (WP) on cognitive dysfunction was tested in a prenatal stress model with rats and the antioxidant mechanism was tested by in vitro experiments. We found that prenatal stress caused a significant decrease in cognitive function (Morris water maze test) in female offspring. Pretreatment of the mother rats with WP significantly prevented the prenatal stress-induced cognitive dysfunction. In vitro studies showed that WP dose-dependently scavenged hydroxyl and superoxide radicals (determined by an electron spin resonance spectrometric assay), and inhibited FeCl(2)/ascorbic acid-induced dysfunction in brain tissue and tissue mitochondria, including increases in reactive oxygen species and lipid peroxidation and decreases in the activities of complex I, complex II, and glutamate cysteine ligase. These results suggest that dietary supplementation with WP may be an effective strategy for preventing the brain oxidative mitochondrial damage and cognitive dysfunction associated with prenatal stress.

  10. Pyrrole Alkaloids with Potential Cancer Chemopreventive Activity Isolated from a Goji Berry-Contaminated Commercial Sample of African Mango

    PubMed Central

    2015-01-01

    Bioassay-guided fractionation of a commercial sample of African mango (Irvingia gabonensis) that was later shown to be contaminated with goji berry (Lycium sp.) led to the isolation of a new pyrrole alkaloid, methyl 2-[2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl]propanoate, 1, along with seven known compounds, 2–8. The structures of the isolated compounds were established by analysis of their spectroscopic data. The new compound 1g showed hydroxyl radical-scavenging activity with an ED50 value of 16.7 μM, whereas 4-[formyl-5-(methoxymethyl)-1H-pyrrol-1-yl]butanoic acid (2) was active in both the hydroxyl radical-scavenging (ED50 11.9 μM) and quinone reductase-induction [CD (concentration required to double QR activity) 2.4 μM)] assays used. The isolated compounds were shown to be absent in a taxonomically authenticated African mango sample but present in three separate authentic samples of goji berry (Lycium barbarum) using LC-MS and 1H NMR fingerprinting analysis, including one sample that previously showed inhibitory activity in vivo in a rat esophageal cancer model induced with N-nitrosomethylbenzylamine. Additionally, microscopic features characteristic of goji berry were observed in the commercial African mango sample. PMID:24792835

  11. Identification of new pyrrole alkaloids from the fruits of Lycium chinense.

    PubMed

    Youn, Ui Joung; Lee, Joo Yun; Kil, Yun-Seo; Han, Ah-Reum; Chae, Chong Hak; Ryu, Shi Yong; Seo, Eun-Kyoung

    2016-03-01

    Three new minor pyrrole alkaloids, 3-[2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl]pentanedioic acid (1), (2R)-[2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl]-1-methoxy-1-oxobutanoic acid (2), and methyl (2R)-[2-formyl-5-(methoxymethyl)-1H-pyrrol-1-yl]-4-methylpentanoate (3) were isolated from the fruits of Lycium chinense Miller (Solanaceae), along with the known compound, methyl (2R)-[2-formyl-5-(methoxymethyl)-1H-pyrrol-1-yl]-3-(phenyl)propanoate (4). The structures of 1-4 were elucidated by analysis of their 1D- and 2D-NMR and HRMS data. The absolute configurations of 2-4, possessing a stereogenic center in each structure, were determined by comparison of their experimental electronic circular dichroism (ECD) with those of calculated ECD values.

  12. [Preliminary studies on critical control point of traceability system in wolfberry].

    PubMed

    Liu, Sai; Xu, Chang-Qing; Li, Jian-Ling; Lin, Chen; Xu, Rong; Qiao, Hai-Li; Guo, Kun; Chen, Jun

    2016-07-01

    As a traditional Chinese medicine, wolfberry (Lycium barbarum) has a long cultivation history and a good industrial development foundation. With the development of wolfberry production, the expansion of cultivation area and the increased attention of governments and consumers on food safety, the quality and safety requirement of wolfberry is higher demanded. The quality tracing and traceability system of production entire processes is the important technology tools to protect the wolfberry safety, and to maintain sustained and healthy development of the wolfberry industry. Thus, this article analyzed the wolfberry quality management from the actual situation, the safety hazard sources were discussed according to the HACCP (hazard analysis and critical control point) and GAP (good agricultural practice for Chinese crude drugs), and to provide a reference for the traceability system of wolfberry. Copyright© by the Chinese Pharmaceutical Association.

  13. Three new lignanamides from the root of Lycium chinense with anti-inflammatory activity.

    PubMed

    Chen, Fang; Huang, Xiao-Jun; Liang, Qiu-Ping; Huang, Yuan-Peng; Lan, Ting; Zhou, Guang-Xiong

    2018-05-30

    Three new lignanamides, that is, a new lignanamide (1), and a pair of enantiomers (2a and 2b) were isolated from the EtOAc-soluble fraction of an EtOH extract of the root of Lycium chinense. The structures of these new compounds, including their absolute configuration, were established on the basis of HR-ESI-MS, NMR spectroscopic data and quantum chemical ECD calculations. Compound 2a showed significant anti-inflammatory activity in LPS-induced RAW 264.7 macrophages with the IC 50 value of 10.77 ± 2.14 μM, comparing to that of positive control quercetin (17.21 ± 0.50 μM).

  14. Anti-inflammatory Activity of Berry Fruits in Mice Model of Inflammation is Based on Oxidative Stress Modulation

    PubMed Central

    Nardi, Geisson Marcos; Farias Januario, Adriana Graziele; Freire, Cassio Geremia; Megiolaro, Fernanda; Schneider, Kétlin; Perazzoli, Marlene Raimunda Andreola; Do Nascimento, Scheley Raap; Gon, Ana Cristina; Mariano, Luísa Nathália Bolda; Wagner, Glauber; Niero, Rivaldo; Locatelli, Claudriana

    2016-01-01

    Background: Many fruits have been used as nutraceuticals because the presence of bioactive molecules that play biological activities. Objective: The present study was designed to compare the anti-inflammatory and antioxidant effects of methanolic extracts of Lycium barbarum (GOJI), Vaccinium macrocarpon (CRAN) and Vaccinium myrtillus (BLUE). Materials and Methods: Mices were treated with extracts (50 and 200 mg/kg, p.o.), twice a day through 10 days. Phytochemical analysis was performed by high-performance liquid chromatography. Antioxidant activity was determine by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, reducing power, lipid peroxidation thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and catalase (CAT) activity. Anti-inflammatory activity was evaluated by paw edema followed by determination of myeloperoxidase (MPO) and TBARS. Results: High amount of phenolic compounds, including rutin, were identified in all berries extracts. However, quercetin was observed only in BLUE and CRAN. GOJI presents higher scavenging activity of DPPH radical and reducing power than BLUE and CRAN. The extracts improved antioxidant status in liver; BLUE showed the largest reduction (75.3%) in TBARS when compared to CRAN (70.7%) and GOJI (65.3%). Nonetheless, CAT activity was lower in BLUE group. However, hepatic concentrations of GSH were higher in animals treated with GOJI rather than CRAN and BLUE. Despite all fruits caused a remarkable reduction in paw edema and TBARS, only BLUE and CRAN were able to reduce MPO. Conclusion: These results suggest that quercetin, rutin, or other phenolic compound found in these berry fruits extracts could produce an anti-inflammatory response based on modulation of oxidative stress in paw edema model. SUMMARY Within fruits broadly consumed because of its nutraceuticals properties include, Lycium barbarum (Goji berry), Vaccinium myrtillus (Blueberry or Bilberry) and Vaccinium macrocarpon (Cranberry)The objectives of this

  15. In vivo anti-radiation activities of the Ulva pertusa polysaccharides and polysaccharide-iron(III) complex.

    PubMed

    Shi, Jinming; Cheng, Cuilin; Zhao, Haitian; Jing, Jing; Gong, Ning; Lu, Weihong

    2013-09-01

    Polysaccharides with different molecular weights were extracted from Ulva pertusa and fractionated by ultrafiltration. Iron(III) complex of the low molecular-weight U. pertusa polysaccharides were synthesized. Atomic absorption spectrum showed that the iron content of iron(III)-polysaccharide complex was 27.4%. The comparison between U. pertusa polysaccharides and their iron(III) complex showed that iron chelating altered the structural characteristics of the polysaccharides. The bioactivity analysis showed that polysaccharide with low molecular weight was more effective than polysaccharide with high molecular weight in protecting mice from radiation induced damages on bone marrow cells and immune system. Results also proved that the anti-radiation and anti-oxidative activity of iron(III) complex of low molecular-weight polysaccharides were not less than that of low molecular-weight polysaccharides. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Method for producing capsular polysaccharides

    NASA Technical Reports Server (NTRS)

    Richards, Gil F. (Inventor); Kern, Roger G. (Inventor); Petersen, Gene R. (Inventor)

    1994-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  17. Relationship of small washes to the distribution of Lycium andersonii and Larrea tridentata at a site in the northern Mojave Desert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, A.; Romney, E.M.; Hunter, R.B.

    1980-01-01

    At a site near Rock Valley, Nevada, dominated by volcanic rocks, both Larrea tridentata (Sesse and Moc. ex DC.) Cov. And Lycium andersonii A. Gray were restricted in distribution. Larrea tridentata did not grow in the many small washes in the area, but L. andersonii grew only in the washes. Ambrosia dumosa (A. Gray) Payne was more dense and more dominant in wash areas than in nonwash areas.

  18. Chemical Modification of Polysaccharides

    PubMed Central

    Cumpstey, Ian

    2013-01-01

    This review covers methods for modifying the structures of polysaccharides. The introduction of hydrophobic, acidic, basic, or other functionality into polysaccharide structures can alter the properties of materials based on these substances. The development of chemical methods to achieve this aim is an ongoing area of research that is expected to become more important as the emphasis on using renewable starting materials and sustainable processes increases in the future. The methods covered in this review include ester and ether formation using saccharide oxygen nucleophiles, including enzymatic reactions and aspects of regioselectivity; the introduction of heteroatomic nucleophiles into polysaccharide chains; the oxidation of polysaccharides, including oxidative glycol cleavage, chemical oxidation of primary alcohols to carboxylic acids, and enzymatic oxidation of primary alcohols to aldehydes; reactions of uronic-acid-based polysaccharides; nucleophilic reactions of the amines of chitosan; and the formation of unsaturated polysaccharide derivatives. PMID:24151557

  19. Mediating chemical reactions using polysaccharides

    NASA Astrophysics Data System (ADS)

    Tyler, Lauren E.

    We have studied the NaBH4-mediated hydrogenation of select alkenes catalyzed by polysaccharide-stabilized nanoparticles. We compared the catalytic properties of Ni-based nanoparticles or Au/Co-based nanoparticles on the hydrogenation of cinnamic acid, cinnamide, cinnamyl alcohol, and ethyl cinnamate. We evaluated the possibility that the type of stabilizing polysaccharide surrounding the nanoparticle may affect the selectivity towards the alkene compounds that undergo the hydrogenation reaction. We found that the hydrogenation of cinnamide or ethyl cinnamate proceeded readily to 100% completion independent of the type of polysaccharide stabilizing the nanoparticle. However, the extent of the hydrogenation of cinnamyl alcohol and cinnamic acid varied greatly depending on the type of polysaccharide stabilizing the nanoparticle. In the course of these studies, we observed that some polysaccharides by themselves promoted the hydrolysis of ethyl cinnamate. Thus, we have raised the hypothesis that some polysaccharides may act as "esterases" and explored the interaction between select polysaccharides and a variety of ester compounds.

  20. Polysaccharide-Modified Synthetic Polymeric Biomaterials

    PubMed Central

    Baldwin, Aaron D.; Kiick, Kristi L.

    2010-01-01

    This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. PMID:20091875

  1. Biochemical And Genetic Modification Of Polysaccharides

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Petersen, Gene R.; Richards, Gil F.

    1993-01-01

    Bacteriophages producing endopolysaccharase-type enzymes used to produce, isolate, and purify high yields of modified polysaccharides from polysaccharides produced by, and incorporated into capsules of, certain bacteria. Bacteriophages used in conversion of native polysaccharide materials into polymers of nearly uniform high molecular weight or, alternatively, into highly pure oligosaccharides. Also used in genetic selection of families of polysaccharides structurally related to native polysaccharide materials, but having altered properties. Resulting new polysaccharides and oligosaccharides prove useful in variety of products, including pharmaceutical chemicals, coating materials, biologically active carbohydrates, and drag-reducing additives for fluids.

  2. [Chinese medicinal monomer and compound for 60Co-gamma-induced spermatogenic disturbance in mice].

    PubMed

    Zhang, Wei-xing; Wang, Hua-li; Wang, Rui; Li, Rui; He, Wei; Zhang, Tian-biao

    2010-05-01

    To explore the effects of the monomer and compound of the Chinese herbal drugs resveratrol, lycium barbarum polysaccharide (LBP) and icariin on 60Co-gamma-induced spermatogenic disturbance in mice based on the theory of modern Chinese medicine. A total of 105 male Kunming mice were randomly divided into seven groups, with 15 in each. Group A were normally raised and Groups B, C, D, E, F and G irradiated by 60Co-gamma 6 Gy followed by 60Co-gamma 4 Gy at the interval of 7 days. A week later, Groups C, D, E, F and G received intragastrically the suspension of resveratrol, resveratrol + LBP, resveratrol + icariin, resveratrol + LBP + icariin and resveratrol + LBP + icariin + L-carnitine, respectively, at the dose of 80 mg/(kg x d) for 60 days. The general condition, physical signs and body weight changes of the mice were recorded, and 24 hours after the intragastric medication, their testes were harvested to obtain the testicular weight and indexes, the levels of FSH, LH, T and E2 determined by ELISA, the T/E2 ratio calculated, and the histology of the testis tissues observed under the microscope. The testicular indexes of the mice were decreased by radiation-induced damage, but restored to some extent after intragastric medication, especially in Groups E, F and G. The levels of FSH, LH and T were obviously improved by LBP. The T level and testis weight were increased by Icariin. The level of T/E2 was elevated in Groups E, F and G. The best results were achieved in Group F, which exhibited almost complete recovery from reproductive endocrine disorder and spermatogenic damage. The Chinese medicinal monomer is effective for 60Co-gamma-induced spermatogenic disturbance in mice, and the compound suspension of resveratrol + LBP + icariin produces the best result.

  3. Polysaccharides and food processing.

    PubMed

    Pilnik, W; Rombouts, F M

    1985-10-01

    The rôle of polysaccharides during processing and for the quality of foods is discussed. Starch is the most important energy source for man. Most other polysaccharides are not metabolized for energy, but play an important rôle as dietary fibres. Pectins, alginates, carrageenans, and galactomannans are discussed as functional food additives in relation to their structure and their rheological behaviour, stability and interactions. Endogenous polysaccharides of fruits and vegetables and in products derived from them are responsible for such phenomena as texture (changes), press yields, ease of filtration and clarification, cloud stability, and mouth feel. To achieve desirable properties, the action of endogenous enzymes on polysaccharides must be inactivated and/or exogenous enzymes added as processing aids. This is also true for overcoming haze phenomena in clear juices or to break down undesirable microbial polysaccharides. Dough properties for bread baking can be improved by enzymic breakdown of a restrictive pentoglycan network. Network formation may come about by oxidative coupling of phenol rings of ferulic acid bound to hemicelluloses by ester links. Gels may be made by inducing oxidative coupling in natural or synthetic systems. Stagnation in development of new polysaccharide food additives is ascribed to difficulties in obtaining government approval for food use.

  4. Uronic polysaccharide degrading enzymes.

    PubMed

    Garron, Marie-Line; Cygler, Miroslaw

    2014-10-01

    In the past several years progress has been made in the field of structure and function of polysaccharide lyases (PLs). The number of classified polysaccharide lyase families has increased to 23 and more detailed analysis has allowed the identification of more closely related subfamilies, leading to stronger correlation between each subfamily and a unique substrate. The number of as yet unclassified polysaccharide lyases has also increased and we expect that sequencing projects will allow many of these unclassified sequences to emerge as new families. The progress in structural analysis of PLs has led to having at least one representative structure for each of the families and for two unclassified enzymes. The newly determined structures have folds observed previously in other PL families and their catalytic mechanisms follow either metal-assisted or Tyr/His mechanisms characteristic for other PL enzymes. Comparison of PLs with glycoside hydrolases (GHs) shows several folds common to both classes but only for the β-helix fold is there strong indication of divergent evolution from a common ancestor. Analysis of bacterial genomes identified gene clusters containing multiple polysaccharide cleaving enzymes, the Polysaccharides Utilization Loci (PULs), and their gene complement suggests that they are organized to process completely a specific polysaccharide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Polysaccharide-based antibiofilm surfaces.

    PubMed

    Junter, Guy-Alain; Thébault, Pascal; Lebrun, Laurent

    2016-01-01

    Surface treatment by natural or modified polysaccharide polymers is a promising means to fight against implant-associated biofilm infections. The present review focuses on polysaccharide-based coatings that have been proposed over the last ten years to impede biofilm formation on material surfaces exposed to bacterial contamination. Anti-adhesive and bactericidal coatings are considered. Besides classical hydrophilic coatings based on hyaluronic acid and heparin, the promising anti-adhesive properties of the algal polysaccharide ulvan are underlined. Surface functionalization by antimicrobial chitosan and derivatives is extensively surveyed, in particular chitosan association with other polysaccharides in layer-by-layer assemblies to form both anti-adhesive and bactericidal coatings. Bacterial contamination of surfaces, leading to biofilm formation, is a major problem in fields as diverse as medicine, first, but also food and cosmetics. Many prophylactic strategies have emerged to try to eliminate or reduce bacterial adhesion and biofilm formation on surfaces of materials exposed to bacterial contamination, in particular implant materials. Polysaccharides are widely distributed in nature. A number of these natural polymers display antibiofilm properties. Hence, surface treatment by natural or modified polysaccharides is a promising means to fight against implant-associated biofilm infections. The present manuscript is an in-depth look at polysaccharide-based antibiofilm surfaces that have been proposed over the last ten years. This review, which is a novelty compared to published literature, will bring well documented and updated information to readers of Acta Biomaterialia. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Computer simulation and experimental study of the polysaccharide-polysaccharide interaction in the bacteria Azospirillum brasilense Sp245

    NASA Astrophysics Data System (ADS)

    Arefeva, Oksana A.; Kuznetsov, Pavel E.; Tolmachev, Sergey A.; Kupadze, Machammad S.; Khlebtsov, Boris N.; Rogacheva, Svetlana M.

    2003-09-01

    We have studied the conformational properties and molecular dynamics of polysaccharides by using molecular modeling methods. Theoretical and experimental results of polysaccharide-polysaccharide interactions are described.

  7. Characterization and profiling of phenolic amides from Cortex Lycii by ultra-high performance liquid chromatography coupled with LTQ-Orbitrap mass spectrometry.

    PubMed

    Zhang, Jingxian; Guan, Shuhong; Sun, Jianghao; Liu, Tian; Chen, Pei; Feng, Ruihong; Chen, Xin; Wu, Wanying; Yang, Min; Guo, De-An

    2015-01-01

    Cortex Lycii, the root bark of Lycium chinense Mill. or Lycium barbarum L., is a frequently used traditional Chinese medicine. Phytochemical studies have shown that phenolic amides are not only characteristic compounds but also abundant ones in this plant. In the present study, an effective method was developed for structural characterization of phenolic amides from Cortex Lycii by ultra-high performance liquid chromatography coupled with linear ion trap Orbitrap tandem mass spectrometry. The fragmentation of 14 compounds including six cinnamic acid amides, six neolignanamides, and two lignanamides were studied systematically for the first time. It was found that, in the positive ion mode, neutral loss of the tyramide moiety (137 Da) or N-(4-aminobutyl)acetamide moiety (130 Da) were characteristic for these compounds. At least 54 phenolic amides were detected in the extract and 48 of them were characterized, among which 14 known compounds were identified unambiguously by comparing the retention time and mass spectra with those of reference compounds, and 34 components were tentatively identified based on the fragmentation patterns, exact mass, UV spectra, as well as retention time. Fifteen compounds were characterized as potential new ones. Additionally, the developed method was applied to analyze eight batches of samples collected from the northwest of China, and it was found that cinnamic acid amides were the main type of phenolic amides in Cortex Lycii. In conclusion, the identification of these chemicals provided essential data for further phytochemical studies, metabolites identification, and the quality control of Cortex Lycii.

  8. Effects of washing on mineral composition of leaf samples of Lycium andersonii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, A.; Romney, E.M.; Hunter, R.B.

    1982-07-01

    Leaves of Lycium andersonii A. Gray from 20 different shrubs from the northern Mojave Desert were collected. Half of each sample was washed in 1/10 N HCl followed with deionized water before analysis in triplicate by optical emission spectrometry, and the other half was analyzed unwashed. Washed samples contained 12, 35, 33, 40, 55, 47, 57, 8, 8, 9, and 20 percent, respectivey, less calcium, zinc, copper, iron, aluminum, silicon, titanium, strontium, barium, lithium, and lead than did unwashed leaves. The losses probably exceed contamination for some elements, because the results differed in some respects from those obtained for citrus.more » Statisticaly significant differences were not obtained for other elements analyzed. Even though 40 to 57 percent of the iron, aluminum, silicon, and titanium was washed from the leaves, cluster analyses grouped the four elements into a common cluster whether or not the leaves had been washed. Washing resulted in a lower coefficient of variation for some of the elements compared with unwashed leaves.« less

  9. Polysaccharide-Based Micelles for Drug Delivery

    PubMed Central

    Zhang, Nan; Wardwell, Patricia R.; Bader, Rebecca A.

    2013-01-01

    Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date. PMID:24300453

  10. Cytochemical Localization of Polysaccharides in Dendrobium officinale and the Involvement of DoCSLA6 in the Synthesis of Mannan Polysaccharides

    PubMed Central

    He, Chunmei; Wu, Kunlin; Zhang, Jianxia; Liu, Xuncheng; Zeng, Songjun; Yu, Zhenming; Zhang, Xinghua; Teixeira da Silva, Jaime A.; Deng, Rufang; Tan, Jianwen; Luo, Jianping; Duan, Jun

    2017-01-01

    Dendrobium officinale is a precious traditional Chinese medicinal plant because of its abundant polysaccharides found in stems. We determined the composition of water-soluble polysaccharides and starch content in D. officinale stems. The extracted water-soluble polysaccharide content was as high as 35% (w/w). Analysis of the composition of monosaccharides showed that the water-soluble polysaccharides were dominated by mannose, to a lesser extent glucose, and a small amount of galactose, in a molar ratio of 223:48:1. Although starch was also found, its content was less than 10%. This result indicated that the major polysaccharides in D. officinale stems were non-starch polysaccharides, which might be mannan polysaccharides. The polysaccharides formed granules and were stored in plastids similar to starch grains, were localized in D. officinale stems by semi-thin and ultrathin sections. CELLULOSE SYNTHASE-LIKE A (CSLA) family members encode mannan synthases that catalyze the formation of mannan polysaccharides. To determine whether the CSLA gene from D. officinale was responsible for the synthesis of mannan polysaccharides, 35S:DoCSLA6 transgenic lines were generated and characterized. Our results suggest that the CSLA family genes from D. officinale play an important role in the biosynthesis of mannan polysaccharides. PMID:28261235

  11. Enzymatic method for improving the injectability of polysaccharides

    DOEpatents

    Griffith, William L.; Compere, Alicia L.; Holleman, James W.

    1982-01-01

    A method for enhancing the ability of polysaccharides in aqueous solution to flow through a porous medium comprises contacting the polysaccharides with an endoenzyme capable of hydrolyzing at least one of the linkages of the sugar units of the polysaccharides and maintaining the polysaccharides in contact with the enzyme under hydrolysis conditions for a time sufficient to decrease the tendency of the polysaccharides to plug the porous medium yet insufficient to decrease the viscosity of the aqueous polysaccharides by more than 25%. The partially hydrolyzed polysaccharides are useful as thickening agents for flooding water used to recover oil from oil-containing subterranean formations.

  12. Polysaccharide Degradation

    NASA Astrophysics Data System (ADS)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  13. Structurally altered capsular polysaccharides produced by mutant bacteria

    NASA Technical Reports Server (NTRS)

    Petersen, Gene R. (Inventor); Kern, Roger G. (Inventor); Richards, Gil F. (Inventor)

    1995-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  14. Polysaccharide components from the scape of Musa paradisiaca: main structural features of water-soluble polysaccharide component.

    PubMed

    Anjaneyalu, Y V; Jagadish, R L; Raju, T S

    1997-06-01

    Polysaccharide components present in the pseudo-stem (scape) of M. paradisiaca were purified from acetone powder of the scape by delignification followed by extraction with aqueous solvents into water soluble polysaccharide (WSP), EDTA-soluble polysaccharide (EDTA-SP), alkali-soluble polysaccharide (ASP) and alkali-insoluble polysaccharide (AISP) fractions. Sugar compositional analysis showed that WSP and EDTA-SP contained only D-Glc whereas ASP contained D-Glc, L-Ara and D-Xyl in approximately 1:1:10 ratio, respectively, and AISP contained D-Glc, L-Ara and D-Xyl in approximately 10:1:2 ratio, respectively. WSP was further purified by complexation with iso-amylalcohol and characterized by specific rotation, IR spectroscopy, Iodine affinity, ferricyanide number, blue value, hydrolysis with alpha-amylase and glucoamylase, and methylation linkage analysis, and shown to be a amylopectin type alpha-D-glucan.

  15. Advances on Bioactive Polysaccharides from Medicinal Plants.

    PubMed

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.

  16. Structural analysis of cell wall polysaccharides using PACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortimer, Jennifer C.

    The plant cell wall is composed of many complex polysaccharides. The composition and structure of the polysaccharides affect various cell properties including cell shape, cell function and cell adhesion. Many techniques to characterize polysaccharide structure are complicated, requiring expensive equipment and specialized operators e.g. NMR, MALDI-MS. PACE (Polysaccharide Analysis using Carbohydrate gel Electrophoresis) uses a simple, rapid technique to analyze polysaccharide quantity and structure (Goubet et al. 2002). Whilst the method here describes xylan analysis, it can be applied (by use of the appropriate glycosyl hydrolase) to any cell wall polysaccharide.

  17. Marine Polysaccharides in Pharmaceutical Applications: An Overview

    PubMed Central

    Laurienzo, Paola

    2010-01-01

    The enormous variety of polysaccharides that can be extracted from marine plants and animal organisms or produced by marine bacteria means that the field of marine polysaccharides is constantly evolving. Recent advances in biological techniques allow high levels of polysaccharides of interest to be produced in vitro. Biotechnology is a powerful tool to obtain polysaccharides from a variety of micro-organisms, by controlling the growth conditions in a bioreactor while tailoring the production of biologically active compounds. Following an overview of the current knowledge on marine polysaccharides, with special attention to potential pharmaceutical applications and to more recent progress on the discovering of new polysaccharides with biological appealing characteristics, this review will focus on possible strategies for chemical or physical modification aimed to tailor the final properties of interest. PMID:20948899

  18. Protein and alkaloid patterns of the floral nectar in some solanaceous species.

    PubMed

    Kerchner, András; Darók, Judit; Bacskay, Ivett; Felinger, Attila; Jakab, Gábor; Farkas, Ágnes

    2015-09-01

    The family Solanaceae includes several melliferous plants, which tend to produce copious amounts of nectar. Floral nectar is a chemically complex aqueous solution, dominated by sugars, but minor components such as amino acids, proteins, flavonoids and alkaloids are present as well. This study aimed at analysing the protein and alkaloid profile of the nectar in seven solanaceous species. Proteins were examined with SDS-PAGE and alkaloids were analyzed with HPLC. The investigation of protein profile revealed significant differences in nectar-protein patterns not only between different plant genera, but also between the three Nicotiana species investigated. SDS-PAGE suggested the presence of several Nectarin proteins with antimicrobial activity in Nicotiana species. The nectar of all tobacco species contained the alkaloid nicotine, N. tabacum having the highest nicotine content. The nectar of Brugmansia suaveolens, Datura stramonium, Hyoscyamus niger and Lycium barbarum contained scopolamine, the highest content of which was measured in B. suaveolens. The alkaloid concentrations in the nectars of most solanaceous species investigated can cause deterrence in honeybees, and the nectar of N. rustica and N. tabacum can be considered toxic for honeybees.

  19. Anti-diabetic effects of the ethanol extract of a functional formula diet in mice fed with a fructose/fat-rich combination diet.

    PubMed

    Cheng, Qian; Zhang, Xiaofeng; Wang, Ou; Liu, Jia; Cai, Shengbao; Wang, Ruojun; Zhou, Feng; Ji, Baoping

    2015-01-01

    Rhizoma dioscorea, Lycium barbarum, Prunella vulgaris and hawthorn are well known in both traditional food and folk medicine. Each of these plants reportedly possesses beneficial effects in the treatment of diabetes. In this study an anti-diabetic health-promoting diet was formulated by mixing the herbs in a ratio of 6:4:2:3, and the anti-diabetic effect and underlying mechanism were elucidated in vivo. Compared with the model control group, the formula, especially its ethanol extract (EF), could improve glucose intolerance and normalize the lipid profile. The mechanisms responsible for the amelioration of glucose and lipid metabolism in mice were an increase in peripheral and hepatic insulin sensitivity, a decrease in serum free fatty acid level, enhanced hepatic glucokinase activity and glycogen content and improved serum antioxidant activity. Hepatic histopathological examination also showed that EF administration markedly decreased fatty deposits in the liver of mice. The results of the present study demonstrated that the prepared functional formula diet is a potent alternative as an anti-diabetic health-promoting diet. © 2014 Society of Chemical Industry.

  20. Polysaccharide structure of tetrasporic red seaweed Tichocarpus crinitus.

    PubMed

    Byankina Barabanova, A O; Sokolova, E V; Anastyuk, S D; Isakov, V V; Glazunov, V P; Volod'ko, A V; Yakovleva, I M; Solov'eva, T F; Yermak, I M

    2013-10-15

    Sulfated polysaccharide isolated from tetrasporic plants of Tichocarpus crinitus was investigated. The polysaccharide was isolated by two methods: with water extraction at 80 °C (HT) and with a mild alkaline extraction (AE). The extracted polysaccharides were presented by non-gelling ones only, while galactose and 3,6-AG were the main monosaccharides, at the same time amount of 3,6-AG in AE polysaccharides was the similar to that of HT. According to methods of spectroscopy and mass spectrometry, the polysaccharide from tetrasporic T. crinitus contains main blocks of 1,3-linked β-D-galactopyranosyl-2,4-disulfates and 1,4-linked 3,6-anhydro-α-D-galactopyranosyl while 6-sulfated 4-linked galactopyranosyl resudies are randomly distributed along the polysaccharide chain. The alkaline treatment of HT polysaccharide results in obtaining polysaccharide with regular structure that composed of alternating 1,3-linked β-D-galactopyranosyl-2,4-disulfates and 1,4-linked 3,6-anhydro-α-D-galactopyranosyl residues. Native polysaccharide (HT) possessed both high anticoagulant and antiplatelet activity measured by fibrin clotting and platelet aggregation induced by collagen. This activity could be connected with peculiar chemical structure of HT polysaccharide which has high sulfation degree and contains also 3,6-anhydrogalactose in the polymer chain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Study on extraction process and activity of plant polysaccharides

    NASA Astrophysics Data System (ADS)

    Ma, Xiaogen; Wang, Xiaojing; Fan, Shuangli; Chen, Jiezhong

    2017-10-01

    Recent studies have shown that plant polysaccharides have many pharmacological activities, such as hypoglycemic, anti-inflammatory and tumor inhibition. The pharmacological activities of plant polysaccharides were summarized. The extraction methods of plant polysaccharides were discussed. Finally, the extraction process of Herba Taraxaci polysaccharides was optimized by ultrasonic assisted extraction. Through single factor experiments and orthogonal experiment to optimize the optimum extraction process from dandelion polysaccharide, optimum conditions of dandelion root polysaccharide by ultrasonic assisted extraction method for ultrasonic power 320W, temperature 80°C, extraction time 40min, can get higher dandelion polysaccharide extract.

  2. Polysaccharide-based nanocomposites and their applications

    PubMed Central

    Zheng, Yingying; Monty, Jonathan; Linhardt, Robert J.

    2014-01-01

    Polysaccharide nanocomposites have become increasingly important materials over the past decade. Polysaccharides offer a green alternative to synthetic polymers in the preparation of soft nanomaterials. They have also been used in composites with hard nanomaterials, such as metal nanoparticles and carbon-based nanomaterials. This mini review describes methods for polysaccharide nanocomposite preparation and reviews the various types and diverse applications for these novel materials. PMID:25498200

  3. α-Amylase-assisted extraction of polysaccharides from Panax ginseng.

    PubMed

    Sun, Lin; Wu, Di; Ning, Xin; Yang, Guang; Lin, Ziheng; Tian, Meihong; Zhou, Yifa

    2015-04-01

    In this paper, α-amylase-assisted extraction was used to isolate the polysaccharide that remained in hot water-extracted ginseng. The yield of the polysaccharide was 9.0%, almost equal to that of the hot water-extracted polysaccharide. Using anion exchange and gel permeation chromatography, the polysaccharide was fractionated into a neutral polysaccharide fraction and six pectic fractions. The neutral fraction accounted for 76% of the polysaccharide and contained both amylopectin and amylose. The pectic polysaccharide fractions were identified to be arabinogalactan, type-I rhamnogalacturonan and homogalacturonan-type pectin by high-performance liquid chromatography, Fourier transform-infrared and nuclear magnetic resonance analysis. Structural and lymphocyte proliferation activity results showed that these polysaccharides were different from those extracted by hot water, indicating that ginseng contains complex polysaccharides with diverse structures, which results in its diverse pharmacological activities. The α-amylase-assisted extraction is a novel method for preparing ginseng polysaccharides and could be applied toward the further study and exploration of ginseng. These findings provide technical and theoretical support for ginseng pharmacology. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Structural modification of polysaccharides: A biochemical-genetic approach

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Petersen, Gene R.

    1991-01-01

    Polysaccharides have a wide range of industrial and biomedical applications. An industry trend is underway towards the increased use of bacteria to produce polysaccharides. Long term goals of this work are the adaptation and enhancement of saccharide properties for electronic and optic applications. In this report we illustrate the application of enzyme-bearing bacteriophage on strains of the enteric bacterium Klebsiella pneumoniae, which produces a polysaccharide with the relatively rare rheological property of drag-reduction. This has resulted in the production of new polysaccharides with enhanced rheological properties. Our laboratory is developing techniques for processing and structurally modifying bacterial polysaccharides and oligosaccharides which comprise their basic polymeric repeat units. Our research has focused on bacteriophage which produce specific polysaccharide degrading enzymes. This has lead to the development of enzymes generated by bacteriophage as tools for polysaccharide modification and purification. These enzymes were used to efficiently convert the native material to uniform-sized high molecular weight polymers, or alternatively into high-purity oligosaccharides. Enzyme-bearing bacteriophage also serve as genetic selection tools for bacteria that produce new families of polysaccharides with modified structures.

  5. Unexplored possibilities of all-polysaccharide composites.

    PubMed

    Simkovic, Ivan

    2013-06-20

    Composites made solely from polysaccharides are mostly ecological because they can degrade without leaving behind ecologically harmful residues, in contrast to composites which contain synthetic polymers. Herein, the following groups of all-polysaccharide composites (APCs) are discussed: an all-cellulose group that includes cotton composites, cellulose combined with other polysaccharides, as well as those based on chitin/chitosan, heparin, hyaluronan, xylan, glucomannan, pectin, xyloglucan, arabinan, starch, carrageenan, alginate, galactan as one of the components in combination with other polysaccharides. They can be used in medical, paper, food, packing, textile, electronic, mechanical engineering and other applications. The composites were tested for absorptivity, biodegradability, crystallinity, rheology, and mechanical, optical, separation, gelling, pasting, film-forming, adhesive, antimicrobial properties, as well as water vapor permeability, water repellency, dye uptake, and fire-retardancy. Except for food applications, composites based on more than two types of polysaccharides have rarely been used and many possible combinations remain unexplored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Polysaccharide Nanosystems for Future Progress in Cardiovascular Pathologies

    PubMed Central

    Silva, Amanda Karine Andriola; Letourneur, Didier; Chauvierre, Cédric

    2014-01-01

    Natural polysaccharides have received a lot of attention in the biomedical field. Indeed, sources of polysaccharides, extracted or produced from plants, bacteria, fungi or algae, are diverse and renewable. Moreover, recent progresses in polysaccharide chemistry and nanotechnologies allow elaborating new dedicated nanosystems. Polysaccharide-based nanosystems may be designed for interacting in several biological processes. In particular, the atherothrombotic pathology is highly concerned by polysaccharide-mediated recognition. Atherothrombotic diseases, regardless of the anatomical localization, remain the main causes of morbidity and mortality in the industrialized world. This review intends to provide an overview on polysaccharide-based nanosystems as drug delivery systems and targeted contrast agents for molecular imaging with an emphasis on the treatment and imaging of cardiovascular pathologies. PMID:24723980

  7. Formation and functional properties of protein-polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels.

    PubMed

    Le, Xuan T; Rioux, Laurie-Eve; Turgeon, Sylvie L

    2017-01-01

    Protein and polysaccharide mixed systems have been actively studied for at least 50years as they can be assembled into functional particles or gels. This article reviews the properties of electrostatic gels, a recently discovered particular case of associative protein-polysaccharide mixtures formed through associative electrostatic interaction under appropriate solution conditions (coupled gel). This review highlights the factors influencing gel formation such as protein-polysaccharide ratio, biopolymer structural characteristics, final pH, ionic strength and total solid concentration. For the first time, the functional properties of protein-polysaccharide coupled gels are presented and discussed in relationship to individual protein and polysaccharide hydrogels. One of their outstanding characteristics is their gel water retention. Up to 600g of water per g of biopolymer may be retained in the electrostatic gel network compared to a protein gel (3-9g of water per g of protein). Potential applications of the gels are proposed to enable the food and non-food industries to develop new functional products with desirable attributes or new interesting materials to incorporate bioactive molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Extraction, characterisation and antioxidant activity of Allium sativum polysaccharide.

    PubMed

    Cheng, Hao; Huang, Gangliang

    2018-07-15

    Extraction and antioxidant activity of polysaccharide from Allium sativum were investigated. The crude polysaccharide was obtained by the hot-water extraction method. The molecular weight of polysaccharide deproteinized with CaCl 2 was 7.35×10 3 . It indicated that polysaccharide from Allium sativum consisted of three monosaccharides, namely fructose, glucose, and galactose by HPLC. The polysaccharide had the β-glycosidic bond. Moreover, it was proved that the polysaccharide had the potential scavenging ability to superoxide anions and hydroxyl radicals. So, it should be a potential antioxidant. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Effect of polysaccharide admixtures on expression of multiple polysaccharide-degrading enzymes in Microbulbifer strain CMC-5.

    PubMed

    Jonnadula, RaviChand; Imran, Md; Poduval, Preethi B; Ghadi, Sanjeev C

    2018-03-01

    Microbulbifer strain CMC-5 produces agarase, alginate lyase, xylanase, carboxymethyl cellulase and carrageenase. The extracellular production of the above carbohydrases was investigated by growing Microbulbifer strain CMC-5 in a sea water based medium containing homologous/heterologous polysaccharides as a single substrate or as a combination of mixed assorted substrate. Presence of singular homologous polysaccharides in the growth medium induces respective carbohydrase at high levels. Any two polysaccharides in various combinations produced high level of homologous carbohydrase and low level of other heterologous carbohydrase. All five carbohydrases were consistently produced by strain CMC-5, when carboxymethyl cellulose was included as one of the substrate in dual substrate combination, or in presence of mix blends of all five polysaccharides. Interestingly, thalli of Gracilaria sp. that contain agar and cellulose predominantly in their cell wall induces only agarase expression in strain CMC-5.

  10. Hypolipidemic effects of crude green tea polysaccharide on rats, and structural features of tea polysaccharides isolated from the crude polysaccharide.

    PubMed

    Nakamura, Michiko; Miura, Sayaka; Takagaki, Akiko; Nanjo, Fumio

    2017-05-01

    Crude tea polysaccharide (crude TPS) was prepared from instant green tea by ethanol precipitation followed by ultrafiltration membrane treatment and its effects on blood lipid, liver lipid, and fecal lipid levels were examined with Sprague-Dawley rats fed a high-fat diet. Although crude TPS showed no effects on the serum lipid levels, it suppressed the liver lipid accumulation and increased the fecal excretion of dietary fat. Then, the structural features of crude TPS were investigated. After separation of crude TPS by DEAE-cellulose and gel-filtration column chromatography, two kinds of neutral tea polysaccharides (NTPS-LP and NTPS-HH) and an acidic polysaccharide (ATPS-MH) were obtained. According to monosaccharide composition, methylation, and NMR analyses, NTPS-LP, NPTS-HH, and ATPS-MH were presumed to be starch, arabinogalactan with β-1,3-linked galactosyl backbone blanched at position 6 and with 1,5-linked arabinofuranosyl residues, and α-1,4-linked galacturonic acid backbone with arabinogalactan region, respectively.

  11. Effects of selenizing angelica polysaccharide and selenizing garlic polysaccharide on immune function of murine peritoneal macrophage.

    PubMed

    Gao, Zhenzhen; Liu, Kuanhui; Tian, Weijun; Wang, Hongchao; Liu, Zhenguang; Li, Youying; Li, Entao; Liu, Cui; Li, Xiuping; Hou, Ranran; Yue, Chanjuan; Wang, Deyun; Hu, Yuanliang

    2015-07-01

    The effects of two selenizing polysaccharides (sCAP2 and sGPS6) on immune function of murine peritoneal macrophages taking two non-selenizing polysaccharides (CAP and GPS) and modifier Na2SeO3 as control. In vitro test, the changes of selenizing polysaccharides, non-selenizing polysaccharides and Na2SeO3 on murine macrophages function were evaluated by phagocytosis and nitric oxide (NO) secretion tests. In vivo test, the mice were injected respectively with 0.2, 0.4 and 0.6 mg of sCAP2, sGPS6, CAP and GPS, or Na2SeO3 80 μg or normal saline 0.4 mL. The peritoneal macrophages were collected and cultured to determine the contents of TNF-α, IL-6 and IL-10 in supernatants by enzyme-linked immunosorbent assay. The results showed that sCAP2 and sGPS6 could significantly promote the phagocytosis and secretion of NO and three cytokines of macrophages in comparison with CAP and GPS. sCAP2 possessed the strongest activity. This indicates that selenylation modification can further improve the immune-enhancing activity of polysaccharide, and sCAP2 could be as a new immunopotentiator. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Lycium chinense leaves extract ameliorates diabetic nephropathy by suppressing hyperglycemia mediated renal oxidative stress and inflammation.

    PubMed

    Olatunji, Opeyemi Joshua; Chen, Hongxia; Zhou, Yifeng

    2018-06-01

    Diabetic nephropathy is one of the most serious and most frequently encountered diabetic complication, accounting for the highest cause of end-stage renal disease. This present study was aimed at exploring the protective/attenuative effect of Lycium chinense leaf extract (MELC) on streptozotocin induced diabetic nephropathy in experimental Sprague Dawley rats. The oral administration of diabetic rats with MELC markedly ameliorated renal dysfunction as observed in the significant reduction in the serum levels of creatinine, blood urea nitrogen (BUN), albumin and TGF-β1 as compared to the untreated diabetic control rats. In addition, the elevated levels of renal oxidative stress markers and pro-inflammatory parameters (GSH, SOD, CAT, MDA, TNF-α, IL-6 and IL-1β) were significantly reduced in MELC treated diabetic rats. The results obtained in this study suggests that L. chinense leaf might have the potential as possible pharmacological agent against diabetic nephropathy by suppressing renal oxidative stress and inflammation. Copyright © 2018. Published by Elsevier Masson SAS.

  13. In vitro prebiotic effects of seaweed polysaccharides

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolin; Sun, Yuhao; Hu, Linfeng; Liu, Song; Yu, Huahua; Xing, Rong'e.; Li, Rongfeng; Wang, Xueqin; Li, Pengcheng

    2017-09-01

    Although prebiotic activities of alginate and agar oligosaccharides isolated from seaweeds have been reported, it remains unknown whether seaweed polysaccharides have prebiotic activity. In this study, we isolated polysaccharides from four species of seaweeds, such as Grateloupia filicina (GFP), Eucheuma spinosum (ESP), Ulva pertusa (UPP), and Ascophyllum nodosum (ANP), and characterized their structures and prebiotic effects in vitro. The results showed that these polysaccharides were different in total sugar and sulfate contents as well as monosaccharide composition. GFP and ESP significantly promoted bifidobacterium proliferation and 0.1% ESP and 0.4% GFP resulted in the highest proliferation rates of beneficial bacteria, whereas UPP and ANP inhibited the growth of beneficial bacteria at all tested concentrations (0.1%-0.5%). The different behaviors of the four seaweed-originated polysaccharides might be reflected by differences in monosaccharide composition and structure. Therefore, polysaccharides isolated from GFP and ESP could be utilized as prebiotics. However, more studies must be carried out in vivo.

  14. Preparation Methods and Antioxidant Activities of Polysaccharides and Their Derivatives.

    PubMed

    Mei, Xinya; Yi, Chengkun; Huang, Gangliang

    2017-01-01

    In recent years, the antioxidant effects of polysaccharides have become a hot spot in the field of polysaccharide research. Herein, the action mechanisms of polysaccharide antioxidation and scavenging free radicals were analyzed. The research progresses on the preparation methods and antioxidant properties of polysaccharides and their derivatives were summarized. Investigating the antioxidant activities of polysaccharides and their derivatives can find useful polysaccharides and their derivatives, which have great potential as natural antioxidants used in functional foods or medicines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Bioactive polysaccharides and gut microbiome (abstract)

    USDA-ARS?s Scientific Manuscript database

    Many polysaccharides have shown the ability to reduce plasma cholesterol or postprandial glycemia. Viscosity in the small intestine seems to be required to slow glucose uptake. Cereal mixed linkage beta-glucans, psyllium, glucomannans, and other polysaccharides also seem to require higher molecula...

  16. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function

    PubMed Central

    Limoli, Dominique H.; Jones, Christopher J.; Wozniak, Daniel J.

    2015-01-01

    Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides can provide structure to biofilms, allowing stratification of the bacterial community and establishing gradients of nutrients and waste products. This can be advantageous for the bacteria by establishing a heterogeneous population that is prepared to endure stresses created by the rapidly changing environments that many bacteria encounter. The diverse range of polysaccharide structures, properties, and roles highlight the importance of this matrix constituent to the successful adaptation of bacteria to nearly every niche. Here, we present an overview of the current knowledge regarding the diversity and benefits that polysaccharide production provides to bacterial communities within biofilms. PMID:26185074

  17. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function.

    PubMed

    Limoli, Dominique H; Jones, Christopher J; Wozniak, Daniel J

    2015-06-01

    Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides can provide structure to biofilms, allowing stratification of the bacterial community and establishing gradients of nutrients and waste products. This can be advantageous for the bacteria by establishing a heterogeneous population that is prepared to endure stresses created by the rapidly changing environments that many bacteria encounter. The diverse range of polysaccharide structures, properties, and roles highlight the importance of this matrix constituent to the successful adaptation of bacteria to nearly every niche. Here, we present an overview of the current knowledge regarding the diversity and benefits that polysaccharide production provides to bacterial communities within biofilms.

  18. Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha

    PubMed Central

    Schepetkin, Igor A.; Xie, Gang; Kirpotina, Liliya N.; Klein, Robyn A.; Jutila, Mark A.; Quinn, Mark T.

    2008-01-01

    Opuntia polyacantha (prickly pear cactus) has been used extensively for its nutritional properties; however, less is known regarding medicinal properties of Opuntia tissues. In the present study, we extracted polysaccharides from O. polyacantha and used size-exclusion chromatography to fractionate the crude polysaccharides into four polysaccharide fractions (designated as Opuntia polysaccharides C-I to C-IV). The average Mr of fractions C-I through C-IV was estimated to be 733, 550, 310, and 168 kDa, respectively, and sugar composition analysis revealed that Opuntia polysaccharides consisted primarily of galactose, galacturonic acid, xylose, arabinose, and rhamnose. Analysis of the effects of Opuntia polysaccharides on human and murine macrophages demonstrated that all four fractions had potent immunomodulatory activity, inducing production of reactive oxygen species, nitric oxide, tumor necrosis factor α, and interleukin 6. Furthermore, modulation of macrophage function by Opuntia polysaccharides was mediated, at least in part, through activation of nuclear factor κB. Together, our results provide a molecular basis to explain a portion of the beneficial therapeutic properties of extracts from O. polyacantha and support the concept of using Opuntia polysaccharides as an immunotherapeutic adjuvant. PMID:18597716

  19. Immunomodulatory dietary polysaccharides: a systematic review of the literature

    PubMed Central

    2010-01-01

    Background A large body of literature suggests that certain polysaccharides affect immune system function. Much of this literature, however, consists of in vitro studies or studies in which polysaccharides were injected. Their immunologic effects following oral administration is less clear. The purpose of this systematic review was to consolidate and evaluate the available data regarding the specific immunologic effects of dietary polysaccharides. Methods Studies were identified by conducting PubMed and Google Scholar electronic searches and through reviews of polysaccharide article bibliographies. Only articles published in English were included in this review. Two researchers reviewed data on study design, control, sample size, results, and nature of outcome measures. Subsequent searches were conducted to gather information about polysaccharide safety, structure and composition, and disposition. Results We found 62 publications reporting statistically significant effects of orally ingested glucans, pectins, heteroglycans, glucomannans, fucoidans, galactomannans, arabinogalactans and mixed polysaccharide products in rodents. Fifteen controlled human studies reported that oral glucans, arabinogalactans, heteroglycans, and fucoidans exerted significant effects. Although some studies investigated anti-inflammatory effects, most studies investigated the ability of oral polysaccharides to stimulate the immune system. These studies, as well as safety and toxicity studies, suggest that these polysaccharide products appear to be largely well-tolerated. Conclusions Taken as a whole, the oral polysaccharide literature is highly heterogenous and is not sufficient to support broad product structure/function generalizations. Numerous dietary polysaccharides, particularly glucans, appear to elicit diverse immunomodulatory effects in numerous animal tissues, including the blood, GI tract and spleen. Glucan extracts from the Trametes versicolor mushroom improved survival and

  20. Solution NMR spectroscopy of food polysaccharides

    USDA-ARS?s Scientific Manuscript database

    Many polysaccharides are allowed for direct food use, where they serve a number of useful functions. In addition to possibly being a source of calories, a food polysaccharide may be a dietary fiber, bulking agent, crystallization inhibitor, thickener, encapsulant, gelling agent, foam and emulsion s...

  1. Modulating surface rheology by electrostatic protein/polysaccharide interactions.

    PubMed

    Ganzevles, Renate A; Zinoviadou, Kyriaki; van Vliet, Ton; Cohen, Martien A; de Jongh, Harmen H

    2006-11-21

    There is a large interest in mixed protein/polysaccharide layers at air-water and oil-water interfaces because of their ability to stabilize foams and emulsions. Mixed protein/polysaccharide adsorbed layers at air-water interfaces can be prepared either by adsorption of soluble protein/polysaccharide complexes or by sequential adsorption of complexes or polysaccharides to a previously formed protein layer. Even though the final protein and polysaccharide bulk concentrations are the same, the behavior of the adsorbed layers can be very different, depending on the method of preparation. The surface shear modulus of a sequentially formed beta-lactoglobulin/pectin layer can be up to a factor of 6 higher than that of a layer made by simultaneous adsorption. Furthermore, the surface dilatational modulus and surface shear modulus strongly (up to factors of 2 and 7, respectively) depend on the bulk -lactoglobulin/pectin mixing ratio. On the basis of the surface rheological behavior, a mechanistic understanding of how the structure of the adsorbed layers depends on the protein/polysaccharide interaction in bulk solution, mixing ratio, ionic strength, and order of adsorption to the interface (simultaneous or sequential) is derived. Insight into the effect of protein/polysaccharide interactions on the properties of adsorbed layers provides a solid basis to modulate surface rheological behavior.

  2. Effect of the Polyphenol Rich Ethyl Acetate Fraction from the Leaves of Lycium chinenseMill. on Oxidative Stress, Dyslipidemia, and Diabetes Mellitus in Streptozotocin-Nicotinamide Induced Diabetic Rats.

    PubMed

    Olatunji, Opeyemi J; Chen, Hongxia; Zhou, Yifeng

    2017-10-01

    Lycium chinenseMill., popularly known as boxthorn, is a plant that is traditionally used for treating night sweat, cough, inflammation and diabetes mellitus. However, the leaves have received little or no attention despite their potentials as a potent therapeutic agent. This study was aimed at investigating the hypoglycemic and hypolipidemic effects of the polyphenols-rich ethyl acetate fraction from the leaves of Lycium chinenseMill. on streptozotocin-nicotinamide induced diabetic rats. The ethyl acetate fraction (LFE) was selected and orally gavaged at 100, 200, and 400 mg/kg dose to streptozotocin (STZ)-nicotinamide induced diabetic rats. The rats' body weight, fasting blood glucose (FBG), lipid profile and oxidative stress markers were evaluated after the treatment period. Treatment with LFE resulted in a significant decrease in the FBG level, altered lipid profiles, and reduced the activities of the enzymes alkaline phosphatase (ALP), aspartate transaminase (AST), alanine transaminase (ALT) in the treated diabetic rats. Furthermore, LFE significantly elevated the antioxidant status (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities) and reducing malondialdehyde (MDA) levels in the treated rats. The present study has revealed that L. chinenseMill. possess anti-hyperglycemic and anti-hyperlipidemic properties which is mediated through modulation of oxidative stress and polyphenolics might be responsible for the action. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  3. Use of fluorescent ANTS to examine the BBB-permeability of polysaccharide

    PubMed Central

    Christopher, Kevin; Makani, Vishruti; Judy, Wesley; Lee, Erica; Chiaia, Nicolas; Kim, Dong Shik; Park, Joshua

    2015-01-01

    Recently, some polysaccharides showed therapeutic potentials for the treatment of neurodegenerative diseases while the most important property, their permeability to the blood brain barrier (BBB) that sheathes the brain and spinal cord, is not yet determined. The determination has been delayed by the difficulty in tracking a target polysaccharide among endogenous polysaccharides in animal. We developed an easy way to examine the BBB-permeability and, possibly, tissue distribution of a target polysaccharide in animal. We tagged a polysaccharide with fluorescent 8-aminonaphthalene-1,3,6-trisulfonic acid disodium salt (ANTS) for tracking. We also developed a simple method to separate ANTS-tagged polysaccharide from unconjugated free ANTS using 75% ethanol. After ANTS-polysaccharide was intra-nasally administered into animals, we could quantify the amounts of ANTS-polysaccharide in the brain and the serum by fluorocytometry. We could also separate free ANTS-polysaccharide from serum proteins using trichloroacetic acid (TCA) and 75% ethanol. Our method will help to track a polysaccharide in animal easily. • ANTS-labeling is less tedious than but as powerful as radiolabeling for tracking a target polysaccharide in animal. • Our simple method can separate structurally intact ANTS-polysaccharide from animal serum and tissues. • This method is good for the fluorometry-based measurement of ANTS-conjugated macromolecules in tissues. PMID:25914873

  4. Enzymatic method for improving the injectability of polysaccharides. [US Patent Application

    DOEpatents

    Griffith, W.L.; Compere, A.L.; Holleman, J.W.

    A method for enhancing the ability of polysaccharides in aqueous solution to flow through a porous medium comprises contacting the polysaccharides with an endoenzyme capable of hydrolyzing at least one of the linkages of the sugar units of the polysaccharides and maintaining the polysaccharides in contact with the enzyme under hydrolysis conditions for a time sufficient to decrease the tendency of the polysaccharides to plug the porous medium yet insufficient to decrease the viscosity of the aqueous polysaccharides by more than 25%. The partially hydrolyzed polysaccharides are useful as thickening agents for flooding water used to recover oil from oil-containing subterranean formations.

  5. Immune cell activation and cytokine release after stimulation of whole blood with pneumococcal C-polysaccharide and capsular polysaccharides.

    PubMed

    Sundberg-Kövamees, Marianne; Grunewald, Johan; Wahlström, Jan

    2016-11-01

    Streptococcus pneumonia is a major cause of morbidity and mortality in children and adults worldwide. Lack of fully effective pneumococcal vaccines is a problem. Streptococcus pneumoniae exposes on its surface C-polysaccharide (cell wall polysaccharide, CWPS) and serospecific capsular polysaccharides, used in pneumococcal vaccines. We investigated the effect of CWPS and individual capsular polysaccharides, with regard to activation of subsets of immune cells of healthy controls. Three different capsular polysaccharides, CWPS and LPS were used for in vitro stimulation of whole blood. Cell activation (CD69 expression) was assessed in CD4+ and CD4- T cells, NK-like T cells, NK cells and monocytes by flow cytometry. Cytokine levels in supernatants were quantified by Cytometric Bead Array (CBA). CWPS and the capsules activated immune cell subsets, but to different degrees. NK cells and NK-like T cells showed the strongest activation, followed by monocytes. Among the three capsules, capsule type 23 induced the strongest activation and cytokine release, followed by type 9 and type 3. This study increases the understanding of how the human immune system reacts to pneumococcal vaccine components. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. The Selenylation Modification of Epimedium Polysaccharide and Isatis Root Polysaccharide and the Immune-enhancing Activity Comparison of Their Modifiers.

    PubMed

    Li, Xiuping; Hou, Ranran; Yue, Chanjuan; Liu, Jie; Gao, Zhenzhen; Chen, Jin; Lu, Yu; Wang, Deyun; Liu, Cui; Hu, Yuanliang

    2016-05-01

    Epimedium polysaccharide (EPS) and isatis root polysaccharide (IRPS) were extracted, purified, and selenizingly modified by nitric acid-sodium selenite method to obtain nine selenizing EPSs (sEPSs), sEPS1-sEPS9 and nine selenizing IRPSs (sIRPSs), sIRPS1-sIRPS9, respectively. Their effects on chicken peripheral lymphocyte proliferation in vitro were compared by MTT assay. The results showed that selenium polysaccharides at appropriate concentration could promote lymphocyte proliferation more significantly than unmodified polysaccharides, sEPS5 and sIRPS5 with stronger actions were picked out and injected into the chickens vaccinated with Newcastle disease vaccine in vivo tests. The peripheral lymphocyte proliferation and serum antibody titer were determined. The results showed that sEPS5 and sIRPS5 could elevate serum antibody titer and promote lymphocyte proliferation more significantly than unmodified polysaccharides, sEPS5 possessed the strongest efficacy. These results indicate that selenylation modification can significantly enhance the immune-enhancing activity of EPS and IRPS, and sEPS5 can be as a new-type immunopotentiator of chickens.

  7. Rheology of interfacial protein-polysaccharide composites

    NASA Astrophysics Data System (ADS)

    Fischer, P.

    2013-05-01

    The morphology and mechanical properties of protein adsorption layers can significantly be altered by the presence of surfactants, lipids, particles, other proteins, and polysaccharides. In food emulsions, polysaccharides are primarily considered as bulk thickener but can under appropriate environmental conditions stabilize or destabilize the protein adsorption layer and, thus, the entire emulsion system. Despite their ubiquitous usage as stabilization agent, relatively few investigations focus on the interfacial rheology of composite protein/polysaccharide adsorption layers. The manuscript provides a brief review on both main stabilization mechanisms, thermodynamic phase separation and electrostatic interaction and discusses the rheological response in light of the environmental conditions such as ionic strength and pH.

  8. Chemical analysis of Agaricus blazei polysaccharides and effect of the polysaccharides on IL-1beta mRNA expression in skin of burn wound-treated rats.

    PubMed

    Sui, ZhiFu; Yang, RongYa; Liu, Biao; Gu, TingMin; Zhao, Zhili; Shi, Dongfang; Chang, DongQing

    2010-08-01

    Agaricus blazei polysaccharides were analyzed by GC-MS. Results indicated that the polysaccharides contained glucose (93.87%), mannose (3.54%), and arabinose (2.25%). The compositional analysis was completed by the methylation data. These data indicated that Agaricus blazei polysaccharides are glucans. Compared to model rats, rats fed with Agaricus blazei polysaccharides showed a decrease of ratio of IL-1beta/beta-actin and IL-1beta level in skin of burn wound. Recovery rate of wound skin increased with increasing dose of polysaccharides. The results indicated that Agaricus blazei polysaccharides could be useful in promote burn wound healing. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Immune Recognition of Fungal Polysaccharides.

    PubMed

    Snarr, Brendan D; Qureshi, Salman T; Sheppard, Donald C

    2017-08-28

    The incidence of fungal infections has dramatically increased in recent years, in large part due to increased use of immunosuppressive medications, as well as aggressive medical and surgical interventions that compromise natural skin and mucosal barriers. There are relatively few currently licensed antifungal drugs, and rising resistance to these agents has led to interest in the development of novel preventative and therapeutic strategies targeting these devastating infections. One approach to combat fungal infections is to augment the host immune response towards these organisms. The polysaccharide-rich cell wall is the initial point of contact between fungi and the host immune system, and therefore, represents an important target for immunotherapeutic approaches. This review highlights the advances made in our understanding of the mechanisms by which the immune system recognizes and interacts with exopolysaccharides produced by four of the most common fungal pathogens: Aspergillus fumigatus , Candida albicans , Cryptococcus neoformans , and Histoplasma capsulatum . Work to date suggests that inner cell wall polysaccharides that play an important structural role are the most conserved across diverse members of the fungal kingdom, and elicit the strongest innate immune responses. The immune system senses these carbohydrates through receptors, such as lectins and complement proteins. In contrast, a greater diversity of polysaccharides is found within the outer cell walls of pathogenic fungi. These glycans play an important role in immune evasion, and can even induce anti-inflammatory host responses. Further study of the complex interactions between the host immune system and the fungal polysaccharides will be necessary to develop more effective therapeutic strategies, as well as to explore the use of immunosuppressive polysaccharides as therapeutic agents to modulate inflammation.

  10. Identification of Neoceratitis asiatica (Becker) (Diptera: Tephritidae) based on morphological characteristics and DNA barcode.

    PubMed

    Guo, Shaokun; He, Jia; Zhao, Zihua; Liu, Lijun; Gao, Liyuan; Wei, Shuhua; Guo, Xiaoyu; Zhang, Rong; Li, Zhihong

    2017-12-12

    Neoceratitis asiatica (Becker), which especially infests wolfberry (Lycium barbarum L.), could cause serious economic losses every year in China, especially to organic wolfberry production. In some important wolfberry plantings, it is difficult and time-consuming to rear the larvae or pupae to adults for morphological identification. Molecular identification based on DNA barcode is a solution to the problem. In this study, 15 samples were collected from Ningxia, China. Among them, five adults were identified according to their morphological characteristics. The utility of mitochondrial DNA (mtDNA) cytochrome c oxidase I (COI) gene sequence as DNA barcode in distinguishing N. asiatica was evaluated by analysing Kimura 2-parameter distances and phylogenetic trees. There were significant differences between intra-specific and inter-specific genetic distances according to the barcoding gap analysis. The uncertain larval and pupal samples were within the same cluster as N. asiatica adults and formed sister cluster to N. cyanescens. A combination of morphological and molecular methods enabled accurate identification of N. asiatica. This is the first study using DNA barcode to identify N. asiatica and the obtained DNA sequences will be added to the DNA barcode database.

  11. Formation of a Soluble Amylopectin-Like Polysaccharide in Potato Tubers 1

    PubMed Central

    Frydman, Rosalia B.; Cardini, Carlos E.

    1967-01-01

    When potato sprouts or potato tuber slices were incubated with 0.1 m glucose 1-phosphate, a soluble amylopectin-like polysaccharide was excreted to the medium. This polysaccharide was found to be a very good primer for phosphorylase and a poor one for starch synthetase. Beside the formation of this extracellular polysaccharide, a more branched intracellular polysaccharide could be isolated. This polysaccharide was an excellent primer for starch synthetase. Fructose 6-phosphate, glucose 6-phosphate, fructose 1,6-diphosphate, glucose or sucrose could not substitute for glucose 1-phosphate. 2,4-Dinitrophenol or nitrogen did not affect the excretion of the polysaccharide. Some properties of these 2 polysaccharides are described. PMID:16656546

  12. Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes

    PubMed Central

    Rytioja, Johanna; Hildén, Kristiina; Yuzon, Jennifer; Hatakka, Annele; de Vries, Ronald P.

    2014-01-01

    SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation. PMID:25428937

  13. Interaction of antimicrobial peptides with bacterial polysaccharides from lung pathogens.

    PubMed

    Herasimenka, Yury; Benincasa, Monica; Mattiuzzo, Maura; Cescutti, Paola; Gennaro, Renato; Rizzo, Roberto

    2005-07-01

    The interaction of two cathelicidin antimicrobial peptides, LL-37 and SMAP-29, with three bacterial polysaccharides, respectively, produced by Pseudomonas aeruginosa, Burkholderia cepacia and Klebsiella pneumoniae, was investigated to identify possible mechanisms adopted by lung pathogens to escape the action of innate immunity effectors. In vitro assays indicated that the antibacterial activity of both peptides was inhibited to a variable extent by the three polysaccharides. Circular dichroism experiments showed that these induced an alpha-helical conformation in the two peptides, with the polysaccharides from K. pneumoniae and B. cepacia showing, respectively, the highest and the lowest effect. Fluorescence measurements also indicated the presence of peptide-polysaccharide interactions. A model is proposed in which the binding of peptides to the polysaccharide molecules induces, at low polysaccharide to peptide ratios, a higher order of aggregation, due to peptide-peptide interactions. Overall, these results suggest that binding of the peptides by the polysaccharides produced by lung pathogens can contribute to the impairment of peptide-based innate defenses of airway surface.

  14. Visualization of bacterial polysaccharides by scanning transmission electron microscopy.

    PubMed

    Wolanski, B S; McAleer, W J; Hilleman, M R

    1983-04-01

    Highly purified capsular polysaccharides of Neisseria meningitidis groups A, B, and C have been visualized by high resolution Scanning Transmission Electron Microscopy (STEM). Spheroidal macromolecules approximately 200 A in diameter are characteristic of the Meningococcus A and C polysaccharides whereas filaments that are 400-600 A in length are found in Meningococcus B polysaccharide preparations. Filaments are occasionally found associated with the spheroidal Meningococcus A and C polysaccharides and it is proposed that these structures are composed of a long (1-4 microns) filament or filaments that are arranged in spheroidal molecules or micelles of high molecular weight. The Meningococcus B polysaccharide, by contrast, is a short flexuous filament or strand of relatively low molecular weight. A relationship between morphology and antigenicity is proposed.

  15. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications.

    PubMed

    Manivasagan, Panchanathan; Oh, Junghwan

    2016-01-01

    Research on marine polysaccharide-based nanomaterials is emerging in nanobiotechnological fields such as drug delivery, gene delivery, tissue engineering, cancer therapy, wound dressing, biosensors, and water treatment. Important properties of the marine polysaccharides include biocompatibility, biodegradability, nontoxicity, low cost, and abundance. Most of the marine polysaccharides are derived from natural sources such as fucoidan, alginates, carrageenan, agarose, porphyran, ulvan, mauran, chitin, chitosan, and chitooligosaccharide. Marine polysaccharides are very important biological macromolecules that widely exist in marine organisms. Marine polysaccharides exhibit a vast variety of structures and are still under-exploited and thus should be considered as a novel source of natural products for drug discovery. An enormous variety of polysaccharides can be extracted from marine organisms such as algae, crustaceans, and microorganisms. Marine polysaccharides have been shown to have a variety of biological and biomedical properties. Recently, research and development of marine polysaccharide-based nanomaterials have received considerable attention as one of the major resources for nanotechnological applications. This review highlights the recent research on marine polysaccharide-based nanomaterials for biotechnological and biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Chemical studies on the polysaccharides of Salicornia brachiata.

    PubMed

    Sanandiya, Naresh D; Siddhanta, A K

    2014-11-04

    A group of 12 polysaccharide extracts were prepared from the tips, stem and roots of an Indian halophyte Salicornia brachiata Roxb. obtained by sequential extractions with cold water (CW), hot water (HW), aqueous ammonium oxalate (OX) and aqueous sodium hydroxide (ALK) solutions. Monosaccharide composition analysis revealed that all the polysaccharide extract samples consisted primarily of rhamnose, arabinose, mannose, galactose, glucose, whereas ribose and xylose were present only in some of the extracts. All the extracts exhibited low apparent viscosity (1.47-2.02 cP) and sulphate and contained no prominent toxic metal ions. Fucose was detected only in OX extract of the roots. These polysaccharides were found to be heterogeneous and highly branched (glycoside linkage analysis, size-exclusion chromatography, (13)C-NMR, FT-IR, circular dichroism and optical rotation data). Physico-chemical analyses of these polysaccharides including uronic acid, sulphate and protein contents were also carried out. This constitutes the first report on the profiling of Salicornia polysaccharides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Polysaccharides in fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis.

    PubMed

    Kiho, T; Hui, J; Yamane, A; Ukai, S

    1993-12-01

    Crude polysaccharides were obtained from a hot-water extract and alkaline extracts of the cultural mycelium of Cordyceps sinensis. They showed significant activity in normal mice and streptozotocin-induced diabetic mice as a result of intraperitoneal (i.p.) injection. A crude polysaccharide (CS-OHEP) obtained from 5% sodium hydroxide extract slightly lowered the plasma glucose level in normal mice by oral (p.o.) administration. A neutral polysaccharide (CS-F30) exhibited higher hypoglycemic activity than its crude polysaccharide (CS-OHEP), exhibited by i.p. injection, and it significantly lowered the glucose level by p.o. administration (50 mg/kg). However, it hardly affected the plasma insulin level in normal mice. CS-F30 ([alpha]D + 21 degrees in water) is composed of galactose, glucose and mannose (molar percent, 62:28:10), and its molecular weight is about 45000.

  18. Sealing effect of a polysaccharide nanosheet for murine cecal puncture.

    PubMed

    Fujie, Toshinori; Kinoshita, Manabu; Shono, Satoshi; Saito, Akihiro; Okamura, Yosuke; Saitoh, Daizoh; Takeoka, Shinji

    2010-07-01

    Recent developments in nanobiotechnology have led us to develop a method of producing a free-standing polymer nanosheet composed of polysaccharides (ie, polysaccharide nanosheet) with a thickness of tens of nanometers. Owing to its enormous aspect ratio, the polysaccharide nanosheet is semi-absorbent and has a physical adhesive strength 7.5-fold greater than that of conventional films of >1 microm thickness. Herein, we have investigated the therapeutic sealing effect of this polysaccharide nanosheet on murine cecal puncture as a wound dressing material. Murine cecum was punctured and then overlapped with the polysaccharide nanosheet. Thereafter, we evaluated its sealing effect on bacterial peritonitis as well as the protection offered by the polysaccharide nanosheet against bacterial permeability using an in vitro transmembrane assay. The 39-nm-thick polysaccharide nanosheet overlapped tightly the perforated cecum. No adhering agents were required because of the ability of the polysaccharide nanosheet to adhere to the tissue surface by physical adsorption (eg, van der Waals interaction). Sealing the perforated cecum with the polysaccharide nanosheet increased survival rate without postoperative adhesion by comparison with untreated mice (90 vs 30%; P < .01). These data were supported by the improvement in peritonitis related to bacterial counts, white blood cell counts, and the serum tumor necrosis factor level. Moreover, using an in vitro transmembrane assay, we showed that the polysaccharide nanosheet inhibited effectively bacterial penetration. We have demonstrated the potential clinical benefits of the nanosheet-type biomaterial that can be used for repairing a cecal colotomy without chemical bonding agents. Copyright 2010 Mosby, Inc. All rights reserved.

  19. Phosphorylation of psyllium seed polysaccharide and its characterization.

    PubMed

    Rao, Monica R P; Warrier, Deepa U; Gaikwad, Snehal R; Shevate, Prachi M

    2016-04-01

    Psyllium is widely used as a medicinally active natural polysaccharide for treating conditions like constipation, diarrhea, and irritable bowel syndrome, inflammatory bowel disease, ulcerative colitis and colon cancer. Studies have been performed to characterize and modify the polysaccharide obtained from psyllium seed husk and to evaluate its use as a pharmaceutical excipient, but no studies have been performed to evaluate the properties of the polysaccharide present in psyllium seeds. The present study focuses on phosphorylation of psyllium seed polysaccharide (PPS) using sodium tri-meta phosphate as the cross-linking agent. The modified phosphorylated psyllium seed polysaccharide was then evaluated for physicochemical properties, rheological properties, spectral analysis, thermal analysis, crosslinking density and acute oral toxicity studies. The modified polysaccharide (PhPPS) has a high swelling index due to which it can be categorized as a hydrogel. The percent increase in swelling of PhPPS as compared to PPS was found to be 90.26%. The PPS & PhPPS mucilages of all strengths were found to have shear thinning properties. These findings are suggestive of the potential use of PhPPS as gelling & suspending agent. PhPPS was found to have a mucoadhesive property which was comparable with carbopol. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Differential regulation of polysaccharide-specific antibody responses to isolated polysaccharides, conjugate vaccines, and intact Gram-positive versus Gram-negative extracellular bacteria.

    PubMed

    Snapper, Clifford M

    2016-06-24

    Bacterial capsular polysaccharides are major virulence factors and are key targets in a number of licensed anti-bacterial vaccines. Their major characteristics are their large molecular weight and expression of repeating antigenic epitopes that mediate multivalent B cell receptor cross-linking. In addition, since the majority of these antigens cannot associate with MHC-II they fail to recruit CD4+ T cell help and are referred to as T cell-independent antigens. In this review I will discuss a series of studies from my laboratory that have underscored the importance of understanding polysaccharide-specific antibody responses within the context in which the PS is expressed (i.e. in isolation, as a component of conjugate vaccines, and expressed naturally by intact bacteria). We have shown that multivalent B cell receptor crosslinking, as mediated by polysaccharides, uniquely determines the qualitative response of the B cell to subsequent stimuli, but by itself is insufficient to induce antibody secretion or class switching. For these latter events to occur, second signals must act in concert with primary signals derived from the B cell receptor. The co-expression of polysaccharide and protein within intact bacteria promotes recruitment of CD4+ T cell help for the associated PS-specific IgG response, in contrast to isolated polysaccharides. Further, the particulate nature of extracellular bacteria confers properties to the polysaccharide-specific IgG response that makes it distinct immunologically from soluble conjugate vaccines. Finally, the underlying biochemical and/or structural differences that distinguish Gram-positive and Gram-negative bacteria appear to play critical roles in differentially regulating the associated polysaccharide-specific IgG responses to these groups of pathogens. These studies have a number of implications for the understanding and future design of polysaccharide-based vaccines. Published by Elsevier Ltd.

  1. Characterization of polysaccharides from Ganoderma spp. using saccharide mapping.

    PubMed

    Wu, Ding-Tao; Xie, Jing; Hu, De-Jun; Zhao, Jing; Li, Shao-Ping

    2013-09-12

    Polysaccharides from Ganoderma spp. and their adulterants were firstly investigated and compared using saccharide mapping, enzymatic (endo-1,3-β-D-glucanase and pectinase) digestion followed by polysaccharide analysis using carbohydrate gel electrophoresis analysis. The results showed that both 1,3-β-D-glucosidic and 1,4-α-D-galactosiduronic linkages were existed in Lingzhi (Ganoderma lucidum and Ganoderma sinense), and the similarity of polysaccharides from G. lucidum and G. sinense was high, which may contribute to rational use of Lingzhi. Different species of Ganoderma and their adulterants can be differentiated based on the saccharide mapping, which is helpful to well understand the structural characters of polysaccharides from different species of Ganoderma and to improve the quality control of polysaccharides in Lingzhi. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class.

    PubMed

    Lemieszek, Marta; Rzeski, Wojciech

    2012-01-01

    Basidiomycete mushrooms represent a valuable source of biologically active compounds with anticancer properties. This feature is primarily attributed to polysaccharides and their derivatives. The anticancer potential of polysaccharides is linked to their origin, composition and chemical structure, solubility and method of isolation. Moreover, their activity can be significantly increased by chemical modifications. Anticancer effects of polysaccharides can be expressed indirectly (immunostimulation) or directly (cell proliferation inhibition and/or apoptosis induction). Among the wide range of polysaccharides with documented anticancer properties, lentinan, polysaccharide-K (PSK) and schizophyllan deserve special attention. These polysaccharides for many years have been successfully applied in cancer treatment and their mechanism of action is the best known.

  3. Chemical characteristics and anti-proliferation activities of Ganoderma tsugae polysaccharides.

    PubMed

    Chien, Rao-Chi; Yen, Ming-Tsung; Tseng, Yu-Hsiu; Mau, Jeng-Leun

    2015-09-05

    Polysaccharides were extracted by hot-water and hot-alkali from four forms of Ganoderma tsugae including mature and baby Ling chih, mycelium and filtrate. Different profiles of proximate composition and monosaccharide constituents, and element contents were found in the extracted polysaccharides from different extractions and different forms. The molecular weight distributions of polysaccharides were 2.8×10(4)-6.5×10(5)Da and their infrared spectra were comparable. The hot-alkali extracted polysaccharides exhibited better anti-proliferation on IMR32 cells than the hot-water extracted polysaccharides, which were in turn more effective than the hot-water extracts. Besides, most hot-water extracts and both extracted polysaccharides exhibited an anti-proliferation effect on Hep G2 cells. However, the hot-water extracts showed less effective in anti-proliferation of IMR32 and Hep G2 cells. Based on the anti-tumor effects, both polysaccharides could be prepared for use in the formulation of nutraceuticals and functional foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Anticancer polysaccharides from natural resources: a review of recent research.

    PubMed

    Zong, Aizhen; Cao, Hongzhi; Wang, Fengshan

    2012-11-06

    Taking into account the rising trend of the incidence of cancers of various organs, effective therapies are urgently needed to control human malignancies. However, almost all of the chemotherapy drugs currently on the market cause serious side effects. Fortunately, several previous studies have shown that some non-toxic biological macromolecules, including polysaccharides and polysaccharide-protein complexes, possess anti-cancer activities or can increase the efficacy of conventional chemotherapy drugs. Based on these encouraging observations, a great deal of effort has been focused on discovering anti-cancer polysaccharides and complexes for the development of effective therapeutics for various human cancers. This review focuses on the advancements in the anti-cancer efficacy of various natural polysaccharides and polysaccharide complexes in the past 5 years. Most polysaccharides were tested using model systems, while several involved clinical trials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Rheologically interesting polysaccharides from yeasts

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Nelson, G. A.; Cathey, C. A.; Fuller, G. G.

    1989-01-01

    We have examined the relationships between primary, secondary, and tertiary structures of polysaccharides exhibiting the rheological property of friction (drag) reduction in turbulent flows. We found an example of an exopolysaccharide from the yeast Cryptococcus laurentii that possessed high molecular weight but exhibited lower than expected drag reducing activity. Earlier correlations by Hoyt showing that beta 1 --> 3, beta 2 --> 4, and alpha 1 --> 3 linkages in polysaccharides favored drag reduction were expanded to include correlations to secondary structure. The effect of sidechains in a series of gellan gums was shown to be related to sidechain length and position. Disruption of secondary structure in drag reducing polysaccharides reduced drag reducing activity for some but not all exopolysaccharides. The polymer from C. laurentii was shown to be more stable than xanthan gum and other exopolysaccharides under the most vigorous of denaturing conditions. We also showed a direct relationship between extensional viscosity measurements and the drag reducing coefficient for four exopolysaccharides.

  6. Aqueous two-phase assisted by ultrasound for the extraction of anthocyanins from Lycium ruthenicum Murr.

    PubMed

    Qin, Benlin; Liu, Xuecong; Cui, Haiming; Ma, Yue; Wang, Zimin; Han, Jing

    2017-10-21

    In this study, an efficient ultrasound-assisted aqueous two-phase extraction method was used for the extraction of anthocyanins from Lycium ruthenicum Murr. An ethanol/ammonium sulfate system was chosen for the aqueous two-phase system due to its fine partitioning and recycling behaviors. Single-factor experiments were conducted to determine the optimized composition of the system, and the response surface methodology was used for the further optimization of the ultrasound-assisted aqueous two-phase extraction. The optimal conditions were as follows: a salt concentration of 20%, an ethanol concentration of 25%, an extraction time of 33.7 min, an extraction temperature of 25°C, a liquid/solid ratio of 50:1 w/w, pH value of 3.98, and an ultrasound power of 600 W. Under the above conditions, the yields of anthocyanins reached 4.71 mg/g dry sample. For the further purification, D-101 resin was used, and the purity of anthocyanins reached 25.3%. In conclusion, ultrasound-assisted aqueous two-phase extraction was an efficient, ecofriendly, and economical method, and it may be a promising technique for extracting bioactive components from plants.

  7. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity.

    PubMed

    Chen, Yun; Yao, Fangke; Ming, Ke; Wang, Deyun; Hu, Yuanliang; Liu, Jiaguo

    2016-12-13

    Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  8. Blend-modification of soy protein/lauric acid edible films using polysaccharides.

    PubMed

    Pan, Hongyang; Jiang, Bo; Chen, Jie; Jin, Zhengyu

    2014-05-15

    Different types of polysaccharides (propyleneglycol alginate (PGA), pectin, carrageenan and aloe polysaccharide) were incorporated into soy protein isolate (SPI)/lauric acid (La) films using a co-drying process or by direct addition to form biodegradable composite films with modified water vapour permeability (WVP) and mechanical properties. The WVP of SPI/La/polysaccharide films decreased when polysaccharides were added using the co-drying process, regardless of the type of polysaccharide. The tensile strength of SPI/La film was increased by the addition of polysaccharides, and the percentage elongation at break was increased by incorporating PGA using the co-drying process. Regarding oxygen-barrier performance, no notable differences were observed between the SPI/La and SPI/La/polysaccharide films. The most significant improvement was observed by blending PGA, with the co-dried preparation exhibiting better properties than the direct-addition preparation. Scanning electron microscopy (SEM) revealed that the microstructures of the films are the basis for the differences in the barrier and mechanical properties of the modified blends of SPI, polysaccharides and La. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Aureobasidium pullulans morphology: two adapted polysaccharide stains.

    PubMed

    Oller, Anna R

    2005-12-01

    Morphological stages of Aureobasidium pullulans were investigated utilizing different media ingredients and were visualized by bright-field microscopy. A polysaccharide stain was developed to stain chlamydospores, cell walls, hyphae, and conidia, since current staining techniques do not reveal subcellular details to identify fungi, especially those that exhibit polysaccharide secretions.

  10. Intestinal microbiota are involved in the immunomodulatory activities of longan polysaccharide.

    PubMed

    Zhang, Jiachao; Yang, Guangmei; Wen, Yazhou; Liu, Sixin; Li, Congfa; Yang, Ruili; Li, Wu

    2017-11-01

    It is difficult for polysaccharides to be directly absorbed through the intestine, which implies other utilization mechanisms involved in the bioactivity performance of polysaccharide. In this study, the multi-omics approach was applied to investigate the impacts of longan polysaccharide on mouse intestinal microbiome and the interaction between the polysaccharide-derived microbiome and host immune system. According to the result, the longan polysaccharide showed a significant improvement in the typical intestinal immunity index of mice. Meanwhile, at the taxonomy level, the intestinal microbiota from the control group and polysaccharide group were highly distinct in organismal structure. At the functional level, a significant decline in the microbial metabolites of pyruvate, butanoate fructose and mannose in the control group was found. Additionally, a significant increase was observed in the succinic acid and the short-chain fatty acid, including acetic acid, propionic acid and butyric acid, in the polysaccharide group. Furthermore, the multi-omic based network analysis indicated that the intake of longan polysaccharide resulted in the changes of the intestinal microbiota as well as the gut metabolites, which led to the enhancement of host's immune function under the stress conditions. These results indicated the polysaccharide-derived changes in intestinal microbiota were involved in the immunomodulatory activities. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Pneumococcal polysaccharide vaccine - what you need to know

    MedlinePlus

    ... taken in its entirety from the CDC Pneumococcal Polysaccharide Vaccine Information Statement (VIS): www.cdc.gov/vaccines/ ... statements/ppv.html CDC review information for Pneumococcal Polysaccharide VIS: Page last reviewed: April 24, 2015 Page ...

  12. Immobilized phosphorylase for synthesis of polysaccharides from glucose

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1972-01-01

    Continuous processes for enzymatic production of carbohydrates from glucose are discussed. Key reactant in process is identified as phosphorylase which catalyzes reversible formation or degradation of polysaccharide. Chemical compounds and reactions to synthesize polysaccharides are analyzed.

  13. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery.

    PubMed

    Zhang, Lin; Sang, Yuan; Feng, Jing; Li, Zhaoming; Zhao, Aili

    2016-08-01

    Oral colon-targeted drug delivery has attracted many researchers because of its distinct advantages of increasing the bioavailability of the drug at the target site and reducing the side effects. Polysaccharides that are precisely activated by the physiological environment of the colon hold greater promise for colon targeting. Considerable research efforts have been directed towards developing polysaccharide-based micro/nanocarriers. Types of polysaccharides for colon targeting and in vitro/in vivo assessments of polysaccharide-based carriers for oral colon-targeted drug delivery are summarised. Polysaccharide-based microspheres have gained increased importance not just for the delivery of the drugs for the treatment of local diseases associated with the colon (colon cancer, inflammatory bowel disease (IBD), amoebiasis and irritable bowel syndrome (IBS)), but also for it's potential for the delivery of anti-rheumatoid arthritis and anti-chronic stable angina drugs. Besides, Polysaccharide-based micro/nanocarriers such as microbeads, microcapsules, microparticles, nanoparticles, nanogels and nanospheres are also introduced in this review.

  14. Multiple fingerprinting analyses in quality control of Cassiae Semen polysaccharides.

    PubMed

    Cheng, Jing; He, Siyu; Wan, Qiang; Jing, Pu

    2018-03-01

    Quality control issue overshadows potential health benefits of Cassiae Semen due to the analytic limitations. In this study, multiple-fingerprint analysis integrated with several chemometrics was performed to assess the polysaccharide quality of Cassiae Semen harvested from different locations. FT-IR, HPLC, and GC fingerprints of polysaccharide extracts from the authentic source were established as standard profiles, applying to assess the quality of foreign sources. Analyses of FT-IR fingerprints of polysaccharide extracts using either Pearson correlation analysis or principal component analysis (PCA), or HPLC fingerprints of partially hydrolyzed polysaccharides with PCA, distinguished the foreign sources from the authentic source. However, HPLC or GC fingerprints of completely hydrolyzed polysaccharides couldn't identify all foreign sources and the methodology using GC is quite limited in determining the monosaccharide composition. This indicates that FT-IR/HPLC fingerprints of non/partially-hydrolyzed polysaccharides, respectively, accompanied by multiple chemometrics methods, might be potentially applied in detecting and differentiating sources of Cassiae Semen. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms.

    PubMed

    Zhang, Lan; Hu, Yu; Duan, Xiaoyu; Tang, Tingting; Shen, Yingbin; Hu, Bin; Liu, Aiping; Chen, Hong; Li, Cheng; Liu, Yuntao

    2018-07-01

    Water-soluble polysaccharides were extracted from the caps and stipes of thirteen boletus mushrooms representing five different species collected in Southwest China. Investigations of their structures and antioxidant activities allowed an evaluation of structure-function relationships. The polysaccharides were composed mainly of the monosaccharides arabinose, xylose, mannose, glucose and galactose. Most samples displayed a broad molecular weight range, with significant differences observed between the molecular weight ranges of the polysaccharides from the caps and the stipes. FT-IR spectral analysis of the polysaccharides revealed that most of polysaccharides from boletus mushrooms (except Boletus edulis) contained a pyranose ring. The antioxidant activities of the polysaccharides in stipes showed a significant correlation with their monosaccharide composition, and were also related to their molecular weight and anomeric configuration. Suillellus luridus collected in Pingwu, Mianyang, Sichuan, China had remarkably superior antioxidant activity and might be developed as a natural antioxidant. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Correlation Between Chain Architecture and Hydration Water Structure in Polysaccharides

    NASA Astrophysics Data System (ADS)

    Grossutti, Michael; Dutcher, John

    The physical properties of confined water can differ dramatically from those of bulk water. Hydration water associated with polysaccharides provides a particularly important example of confined water, with differences in polysaccharide structure providing different spatially confined environments for water adsorption. We have used attenuated total reflection infrared (ATR-IR) spectroscopy to investigate the structure of hydration water in films of three different polysaccharides under controlled relative humidity (RH) conditions. We compare the results obtained for films of highly branched, monodisperse phytoglycogen nanoparticles to those obtained for two unbranched polysaccharides, hyaluronic acid (HA) and chitosan. We find similarities between water structuring in the two linear polysaccharides, and significant differences for phytoglycogen. In particular, the phytoglycogen nanoparticles exhibited high network water connectivity, and a large increase in the fraction of multimer water clusters with increasing RH, whereas the water structure for HA and chitosan was found to be insensitive to changes in RH. These measurements provide unique insight into the relationship between the chain architecture and hydration of polysaccharides.

  17. Studies on water soluble polysaccharides from Pithecellobium dulce (Roxb.) Benth. seeds.

    PubMed

    Bagchi, S; Kumar, K Jayaram

    2016-03-15

    In this existing experimental work, water soluble PDP polysaccharides were secluded from Pithecellobium dulce (Roxb.) Benth. seeds. The physicochemical properties were analyzed in terms of swelling power, solubility, pH and water holding capacity. Micromeretic studies proved the polysaccharide may be used a potential pharmaceutical adjuvant. The polysaccharide was characterized by FT-IR, SEM, TGA and NMR techniques. Methylation analysis confirmed that the polysaccharide is composed of Arabinose (Araf) units. The chemical shifts of anomeric proton region were found in the region of 4.4-5.5ppm. Thermogravimetric analysis showed that PDP polysaccharide was thermally stable. The in vitro antioxidant capacities of the polysaccharide were investigated in terms of scavenging of hydroxyl radicals, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radicals, hydrogen peroxide (H2O2) and reducing power assay. The polysaccharide fractions showed activity in a concentration dependent manner which was comparable to the standard, ascorbic acid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. [Gravity resistance, another graviresponse in plants--function of anti-gravitational polysaccharides].

    PubMed

    Hoson, Takayuki; Wakabayashi, Kazuyuki; Soga, Kouichi

    2003-08-01

    The involvement of anti-gravitational polysaccharides in gravity resistance, one of two major gravity responses in plants, was discussed. In dicotyledons, xyloglucans are the only cell wall polysaccharides, whose level, molecular size, and metabolic turnover were modified under both hypergravity and microgravity conditions, suggesting that xyloglucans act as anti-gravitational polysaccharides. In monocotyledonous Poaceae, (1-->3),(1-->4)-beta glucans, instead of xyloglucans, were shown to play a role as anti-gravitational polysaccharides. These polysaccharides are also involved in plant responses to other environmental factors, such as light and temperature, and to some phytohormones, such as auxin and ethylene. Thus, the type of anti-gravitational polysaccharides is different between dicotyledons and Poaceae, but such polysaccharides are universally involved in plant responses to environmental and hormonal signals. In gravity resistance, the gravity signal may be received by the plasma membrane mechanoreceptors, transformed and transduced within each cell, and then may modify the processes of synthesis and secretion of the anti-gravitational polysaccharides and the cell wall enzymes responsible for their degradation, as well as the apoplastic pH, leading to the cell wall reinforcement. A series of events inducing gravity resistance are quite independent of those leading to gravitropism.

  19. Polysaccharides Isolated from Açaí Fruit Induce Innate Immune Responses

    PubMed Central

    Holderness, Jeff; Schepetkin, Igor A.; Freedman, Brett; Kirpotina, Liliya N.; Quinn, Mark T.; Hedges, Jodi F.; Jutila, Mark A.

    2011-01-01

    The Açaí (Acai) fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease. PMID:21386979

  20. Mapping the polysaccharide degradation potential of Aspergillus niger

    PubMed Central

    2012-01-01

    Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger. PMID:22799883

  1. Mapping the polysaccharide degradation potential of Aspergillus niger.

    PubMed

    Andersen, Mikael R; Giese, Malene; de Vries, Ronald P; Nielsen, Jens

    2012-07-16

    The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger.

  2. Hot-compressed water extraction of polysaccharides from soy hulls.

    PubMed

    Liu, Hua-Min; Wang, Fei-Yun; Liu, Yu-Lan

    2016-07-01

    The polysaccharides of soy hulls were extracted by hot-compressed water at temperatures of 110 from 180°C and various treatment times (10-150min) in a batch system. It was determined that a moderate temperature and short time are suitable for the preparation of polysaccharides. The structure of xylan and the inter- and intra-chain hydrogen bonding of cellulose fibrils in the soy hulls were not significantly broken down. The polysaccharides obtained were primarily composed of α-L-arabinofuranosyl units, 4-O-methyl-glucuronic acid units and α-D-galactose units attached with substituted units. A sugar analysis indicated that arabinose was the major component, constituting 35.6-46.9% of the polysaccharide products extracted at 130°C, 140°C, and 150°C. This investigation contributes to the knowledge of the polysaccharides of soy by-products, which can reduce the environmental impact of waste from the food industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Bacillus subtilis biofilm induction by plant polysaccharides.

    PubMed

    Beauregard, Pascale B; Chai, Yunrong; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2013-04-23

    Bacillus subtilis is a plant-beneficial Gram-positive bacterium widely used as a biofertilizer. However, relatively little is known regarding the molecular processes underlying this bacterium's ability to colonize roots. In contrast, much is known about how this bacterium forms matrix-enclosed multicellular communities (biofilms) in vitro. Here, we show that, when B. subtilis colonizes Arabidopsis thaliana roots it forms biofilms that depend on the same matrix genes required in vitro. B. subtilis biofilm formation was triggered by certain plant polysaccharides. These polysaccharides served as a signal for biofilm formation transduced via the kinases controlling the phosphorylation state of the master regulator Spo0A. In addition, plant polysaccharides are used as a source of sugars for the synthesis of the matrix exopolysaccharide. The bacterium's response to plant polysaccharides was observed across several different strains of the species, some of which are known to have beneficial effects on plants. These observations provide evidence that biofilm genes are crucial for Arabidopsis root colonization by B. subtilis and provide insights into how matrix synthesis may be triggered by this plant.

  4. Extraction, purification and antioxidant activities of the polysaccharides from maca (Lepidium meyenii).

    PubMed

    Zha, Shenghua; Zhao, Qingsheng; Chen, Jinjin; Wang, Liwei; Zhang, Guifeng; Zhang, Hong; Zhao, Bing

    2014-10-13

    Water-soluble polysaccharides were separated from maca (Lepidium meyenii) aqueous extract (MAE). The crude polysaccharides were deproteinized by Sevag method. During the preparation process of maca polysaccharides, amylase and glucoamylase effectively removed starch in maca polysaccharides. Four Lepidium meyenii polysaccharides (LMPs) were obtained by changing the concentration of ethanol in the process of polysaccharide precipitation. All of the LMPs were composed of rhamnose, arabinose, glucose and galactose. Antioxidant activity tests revealed that LMP-60 showed good capability of scavenging hydroxyl free radical and superoxide radical at 2.0mg/mL, the scavenging rate was 52.9% and 85.8%, respectively. Therefore, the results showed that maca polysaccharides had a high antioxidant activity and could be explored as the source of bioactive compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Detection of Inulin, a Prebiotic Polysaccharide, in Maple Syrup.

    PubMed

    Sun, Jiadong; Ma, Hang; Seeram, Navindra P; Rowley, David C

    2016-09-28

    Maple syrup is a widely consumed plant-derived natural sweetener produced by concentrating xylem sap collected from certain maple (Acer) species. During thermal evaporation of water, natural phytochemical components are concentrated in maple syrup. The polymeric components from maple syrup were isolated by ethanol precipitation, dialysis, and anion exchange chromatography and structurally characterized by glycosyl composition analysis, glycosyl linkage analysis, and nuclear magnetic resonance spectroscopy. Among the maple syrup polysaccharides, one neutral polysaccharide was characterized as inulin with a broad molecular weight distribution, representing the first isolation of this prebiotic carbohydrate from a xylem sap. In addition, two acidic polysaccharides with structural similarity were identified as arabinogalactans derived from rhamnogalacturonan type I pectic polysaccharides.

  6. The Antiviral Activities and Mechanisms of Marine Polysaccharides: An Overview

    PubMed Central

    Wang, Wei; Wang, Shi-Xin; Guan, Hua-Shi

    2012-01-01

    Recently, the studies on the antiviral activities of marine natural products, especially marine polysaccharides, are attracting more and more attention all over the world. Marine-derived polysaccharides and their lower molecular weight oligosaccharide derivatives have been shown to possess a variety of antiviral activities. This paper will review the recent progress in research on the antiviral activities and the mechanisms of these polysaccharides obtained from marine organisms. In particular, it will provide an update on the antiviral actions of the sulfated polysaccharides derived from marine algae including carrageenans, alginates, and fucans, relating to their structure features and the structure–activity relationships. In addition, the recent findings on the different mechanisms of antiviral actions of marine polysaccharides and their potential for therapeutic application will also be summarized in detail. PMID:23235364

  7. Polysaccharide production by lactic acid bacteria: from genes to industrial applications.

    PubMed

    Zeidan, Ahmad A; Poulsen, Vera Kuzina; Janzen, Thomas; Buldo, Patrizia; Derkx, Patrick M F; Øregaard, Gunnar; Neves, Ana Rute

    2017-08-01

    The ability to produce polysaccharides with diverse biological functions is widespread in bacteria. In lactic acid bacteria (LAB), production of polysaccharides has long been associated with the technological, functional and health-promoting benefits of these microorganisms. In particular, the capsular polysaccharides and exopolysaccharides have been implicated in modulation of the rheological properties of fermented products. For this reason, screening and selection of exocellular polysaccharide-producing LAB has been extensively carried out by academia and industry. To further exploit the ability of LAB to produce polysaccharides, an in-depth understanding of their biochemistry, genetics, biosynthetic pathways, regulation and structure-function relationships is mandatory. Here, we provide a critical overview of the latest advances in the field of glycosciences in LAB. Surprisingly, the understanding of the molecular processes involved in polysaccharide synthesis is lagging behind, and has not accompanied the increasing commercial value and application potential of these polymers. Seizing the natural diversity of polysaccharides for exciting new applications will require a concerted effort encompassing in-depth physiological characterization of LAB at the systems level. Combining high-throughput experimentation with computational approaches, biochemical and structural characterization of the polysaccharides and understanding of the structure-function-application relationships is essential to achieve this ambitious goal. © FEMS 2017.

  8. Sulfated Polysaccharides in Marine Sponges: Extraction Methods and Anti-HIV Activity

    PubMed Central

    Esteves, Ana I. S.; Nicolai, Marisa; Humanes, Madalena; Goncalves, Joao

    2011-01-01

    The extraction, fractionation and HIV-1 inhibition potential of polysaccharides extracted from three species of marine sponges, Erylus discophorus, Cliona celata and Stelletta sp., collected in the Northeastern Atlantic, is presented in this work. The anti-HIV activity of 23 polysaccharide pellets and three crude extracts was tested. Crude extracts prepared from Erylus discophorus specimens were all highly active against HIV-1 (90 to 95% inhibition). Cliona celata pellets showed low polysaccharide content (bellow 38.5%) and almost no anti-HIV activity (<10% inhibition). Stelletta sp. pellets, although quite rich in polysaccharide (up to 97.3%), showed only modest bioactivity (<36% HIV-1 inhibition). Erylus discophorus pellets were among the richest in terms of polysaccharide content (up to 98%) and the most active against HIV-1 (up to 95% inhibition). Chromatographic fractionation of the polysaccharide pellet obtained from a specimen of Erylus discophorus (B161) yielded only modestly active fractions. However, we could infer that the active molecule is most probably a high molecular weight sulfated polysaccharide (>2000 kDa), whose mechanism is possibly preventing viral attachment and entry (fusion inhibitor). PMID:21339952

  9. Chemical Functionalization of Polysaccharides-Towards Biocompatible Hydrogels for Biomedical Applications.

    PubMed

    Kirschning, Andreas; Dibbert, Nick; Dräger, Gerald

    2018-01-26

    Hydrogels have emerged as a highly interdisciplinary topic as they play a significant role for a vast number of applications. They have been studied extensively as materials for contact lenses, wound dressing and as filler material in soft-tissue augmentation, in which classical polymer backbones such as hydroxyethylmethacrylate (HEMA) are typically employed. More recently, polysaccharides have received attention, particularly in the fields of regenerative medicine and tissue engineering, as ideal candidate materials for artificial extracellular matrices (ECM). The polysaccharides of choice are dextran, alginate, chitosan, hyaluronic acid and pullulan and in order to obtain suitable hydrogels from these polysaccharides, controlled chemical functionalization is of critical importance. This short review summarizes recent developments in the chemical derivatization of polysaccharides to pave the way for crosslinking and to decorate individual polysaccharide chains with bioactive ligands. The report covers convergent and divergent protocols for crosslinking, as well strategies for bisfunctionalization of polysaccharides. Additionally, information on biological properties and biomedical applications are covered. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Correlation Between Chain Architecture and Hydration Water Structure in Polysaccharides.

    PubMed

    Grossutti, Michael; Dutcher, John R

    2016-03-14

    The physical properties of confined water can differ dramatically from those of bulk water. Hydration water associated with polysaccharides provides a particularly interesting example of confined water, because differences in polysaccharide structure provide different spatially confined environments for water sorption. We have used attenuated total reflection infrared (ATR-IR) spectroscopy to investigate the structure of hydration water in films of three different polysaccharides under controlled relative humidity (RH) conditions. We compare the results obtained for films of highly branched, dendrimer-like phytoglycogen nanoparticles to those obtained for two unbranched polysaccharides, hyaluronic acid (HA), and chitosan. We find similarities between the water structuring in the two linear polysaccharides and significant differences for phytoglycogen. In particular, the results suggest that the high degree of branching in phytoglycogen leads to a much more well-ordered water structure (low density, high connectivity network water), indicating the strong influence of chain architecture on the structuring of water. These measurements provide unique insight into the relationship between the structure and hydration of polysaccharides, which is important for understanding and exploiting these sustainable nanomaterials in a wide range of applications.

  11. Proteomic analysis of scallop hepatopancreatic extract provides insights into marine polysaccharide digestion.

    PubMed

    Lyu, Qianqian; Jiao, Wenqian; Zhang, Keke; Bao, Zhenmin; Wang, Shi; Liu, Weizhi

    2016-12-16

    Marine polysaccharides are used in a variety of applications, and the enzymes that degrade these polysaccharides are of increasing interest. The main food source of herbivorous marine mollusks is seaweed, and several polysaccharide-degrading enzymes have been extracted from mollusk digestive glands (hepatopancreases). Here, we used a comprehensive proteomic approach to examine the hepatopancreatic proteins of the Zhikong scallop (Chlamys farreri). We identified 435 proteins, the majority of which were lysosomal enzymes and carbohydrate and protein metabolism enzymes. However, several new enzymes related to polysaccharide metabolism were also identified. Phylogenetic and structural analyses of these enzymes suggest that these polysaccharide-degrading enzymes may have a variety of potential substrate specificities. Taken together, our study characterizes several novel polysaccharide-degrading enzymes in the scallop hepatopancreas and provides an enhanced view of these enzymes and a greater understanding of marine polysaccharide digestion.

  12. Polysaccharides purified from wild Cordyceps activate FGF2/FGFR1c signaling

    NASA Astrophysics Data System (ADS)

    Zeng, Yangyang; Han, Zhangrun; Yu, Guangli; Hao, Jiejie; Zhang, Lijuan

    2015-02-01

    Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor (FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when exposed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chinese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also from Cordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1c signaling-dependent BaF3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccharides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.

  13. Navicula sp. Sulfated Polysaccharide Gels Induced by Fe(III): Rheology and Microstructure

    PubMed Central

    Fimbres-Olivarría, Diana; López-Elías, José Antonio; Carvajal-Millán, Elizabeth; Márquez-Escalante, Jorge Alberto; Martínez-Córdova, Luis Rafael; Miranda-Baeza, Anselmo; Enríquez-Ocaña, Fernando; Valdéz-Holguín, José Eduardo; Brown-Bojórquez, Francisco

    2016-01-01

    A sulfated polysaccharide extracted from Navicula sp. presented a yield of 4.4 (% w/w dry biomass basis). Analysis of the polysaccharide using gas chromatography showed that this polysaccharide contained glucose (29%), galactose (21%), rhamnose (10%), xylose (5%) and mannose (4%). This polysaccharide presented an average molecular weight of 107 kDa. Scanning electron microscopy (SEM) micrographs showed that the lyophilized Navicula sp. polysaccharide is an amorphous solid with particles of irregular shapes and sharp angles. The polysaccharide at 1% (w/v) solution in water formed gels in the presence of 0.4% (w/v) FeCl3, showing elastic and viscous moduli of 1 and 0.7 Pa, respectively. SEM analysis performed on the lyophilized gel showed a compact pore structure, with a pore size of approximately 150 nm. Very few studies on the gelation of sulfated polysaccharides using trivalent ions exist in the literature, and, to the best of our knowledge, this study is the first to describe the gelation of sulfated polysaccharides extracted from Navicula sp. PMID:27483255

  14. Navicula sp. Sulfated Polysaccharide Gels Induced by Fe(III): Rheology and Microstructure.

    PubMed

    Fimbres-Olivarría, Diana; López-Elías, José Antonio; Carvajal-Millán, Elizabeth; Márquez-Escalante, Jorge Alberto; Martínez-Córdova, Luis Rafael; Miranda-Baeza, Anselmo; Enríquez-Ocaña, Fernando; Valdéz-Holguín, José Eduardo; Brown-Bojórquez, Francisco

    2016-07-30

    A sulfated polysaccharide extracted from Navicula sp. presented a yield of 4.4 (% w/w dry biomass basis). Analysis of the polysaccharide using gas chromatography showed that this polysaccharide contained glucose (29%), galactose (21%), rhamnose (10%), xylose (5%) and mannose (4%). This polysaccharide presented an average molecular weight of 107 kDa. Scanning electron microscopy (SEM) micrographs showed that the lyophilized Navicula sp. polysaccharide is an amorphous solid with particles of irregular shapes and sharp angles. The polysaccharide at 1% (w/v) solution in water formed gels in the presence of 0.4% (w/v) FeCl₃, showing elastic and viscous moduli of 1 and 0.7 Pa, respectively. SEM analysis performed on the lyophilized gel showed a compact pore structure, with a pore size of approximately 150 nm. Very few studies on the gelation of sulfated polysaccharides using trivalent ions exist in the literature, and, to the best of our knowledge, this study is the first to describe the gelation of sulfated polysaccharides extracted from Navicula sp.

  15. Antiviral activity of polysaccharide extract from Laminaria japonica against respiratory syncytial virus.

    PubMed

    Cao, Yin-Guang; Hao, Yu; Li, Zhi-Hui; Liu, Shun-Tao; Wang, Le-Xin

    2016-12-01

    This study was designed to investigate the inhibition activity of polysaccharide extract from Laminaria japonica against RSV. The polysaccharide from Laminaria japonica was isolated by ethanol precipitation. HEK293 cells were infected with RVS, and the antiviral activity of polysaccharide extract against RSV in host cells was tested. By using ELISA and western blot assay, the expression level of IFN-α and IRF3 and their functional roles in polysaccharide-mediated antiviral activity against RSV were investigated. The polysaccharide extract from Laminaria japonica had low toxicity to HEK293 cell. The TC50 to HEK293 cells was up to 1.76mg/mL. Furthermore, the EC50 of polysaccharide extract to RSV was 5.27μg/mL, and TI was 334. The polysaccharide extract improved IRF-3 expression which promoted the level of IFN-α. Polysaccharide extract from Laminaria japonica elicits antiviral activity against RSV by up-regulation of IRF3 signaling-mediated IFN-α production. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Maca polysaccharides: A review of compositions, isolation, therapeutics and prospects.

    PubMed

    Li, Yujuan; Xu, Fangxue; Zheng, Mengmeng; Xi, Xiaozhi; Cui, Xiaowei; Han, Chunchao

    2018-05-01

    Maca polysaccharides, some of the major bioactive substances in Lepidium meyenii (Walp.) (Maca), have various biological properties, including anti-oxidant, anti-fatigue, anti-tumor, and immunomodulatory effects, as well as hepatoprotective activity and regulation function. Although many therapeutics depend on multiple structures of maca polysaccharides in addition to providing sufficient foundations for maca polysaccharide products in industrial applications, the relationships between the pharmacological effects and structures have not been established. Therefore, this article summarizes the extraction and purification methods, compositions, pharmacological effects, prospects and industrial applications of maca polysaccharides. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Lycium barbarum Reduces Abdominal Fat and Improves Lipid Profile and Antioxidant Status in Patients with Metabolic Syndrome

    PubMed Central

    de Souza Zanchet, Mayara Zagonel; Nardi, Geisson Marcos; de Oliveira Souza Bratti, Letícia; Filippin-Monteiro, Fabíola Branco

    2017-01-01

    Natural antioxidants present in fruits have attracted considerable interest due to their presumed safety and potential nutritional value. Even though antioxidant activities of many fruits have been reported, the effects of phytochemicals of goji berry (GB) in patients with metabolic syndrome have not been investigated. In this study, we examined anthropometric and biochemical parameters in patients with metabolic syndrome after the consumption of GB. The patients were divided into two groups, control (C) and supplemented (S), and followed up for 45 days. Participants were individually instructed to carry out a healthy diet, but additionally, an inclusion of 14 g of the natural form of goji berry in the diet during 45 days for the S group was proposed. After 45 days of study, a significant reduction in transaminases as well as an improvement in lipid profile in the S group was observed. Likewise, a significant reduction in the waist circumference of the S group was observed when compared with that of the C group, and increased glutathione and catalase levels associated with a reduction of lipid peroxidation. These results suggest that this is an effective dietary supplement for the prevention of cardiovascular diseases in individuals with metabolic syndrome. PMID:28685012

  18. Extraction, characterization and antioxidant activities of Se-enriched tea polysaccharides.

    PubMed

    Wang, Yuanfeng; Li, Yongfu; Liu, Yangyang; Chen, Xueqing; Wei, Xinlin

    2015-01-01

    Se-polysaccharides from Se-enriched tea leaves were purified by DEAE-sepharose fast flow gel column (2.5×60cm) and three polysaccharide fractions (Se-TPS1, Se-TPS2, and Se-TPS3) were isolated and purified with yields of 6.5, 37.14, and 8.57%, respectively. The average sizes of Se-TPS1 and Se-TPS2 were determined by HPGPC system, with molecular weights of 1.1×10(5) and 2.4×10(5)Da, respectively. Se-TPS3 was a polysaccharide polymer with two peaks with molecular weights of 9.2×10(5) and 2.5×10(5)Da. Monosaccharide components analysis by ion chromatography revealed Se-polysaccharides were acidic polysaccharoses and different from each other in monosaccharide kinds and molar ratio. Elements of Se, C, H, N, S, and 14 kinds of mineral elements were analyzed by AFS, EA, and ICP-AES, respectively. Spectral analysis (IR and UV) indicated Se-polysaccharides were typical glycoproteins. Morphological analyses of the samples were determined by SEM and AFM. In addition, the DPPH and superoxide radicals scavenging activities were also discussed to assess antioxidant activities of the samples, and Se-polysaccharides showed higher antioxidant activities compared to the ordinary polysaccharides. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Molecular weight determination and correlation analysis of Dalbergia sissoo polysaccharide with constituent oligosaccharides.

    PubMed

    Kumar, Vineet; Rana, Vikas; Soni, P L

    2013-01-01

    Mucilaginous polysaccharide extracted from Dalbergia sissoo Roxb. leaves has a number of medicinal applications. Molecular weight studies and correlation analysis of the structure of polysaccharide with oligosaccharides can be helpful for further utilisation, modification and structure-activity relationship for biological applications. To determine molecular weight of medicinally important polysaccharide. To establish an unequivocal correlation of the polysaccharide monosugars with constituting oligosaccharides and glucuronic acid content based on gas-liquid chromatography (GLC) with the spectrophotometric method. Complete and partial hydrolytic studies of pure polysaccharide yielded constituting monosugars and oligosaccharides. The ratio of sugars in polysaccharide and oligosaccharides was studied by preparation of alditol acetates and analysed using GLC. The uronic acid content was studied by GLC analysis and spectrophotometry. Molecular weight of the polysaccharide was determined using the viscometric method. Dalbergia sissoo leaves yielded 14.0% pure polysaccharide, containing 15.7% of glucuronic acid. Complete hydrolysis and GLC analysis of alditol acetate derivatives of reduced and unreduced monosugars indicated the presence of L-rhamnose, D-glucuronic acid, D-galactose and D-glucose in 1.00:1.00:2.00:2.33 molar ratios. Partial hydrolysis followed by monosugar analysis of oligosaccharides established the monosugar ratio in complete agreement with polysaccharide, thereby corroborating the sugar ratio. Similar uronic acid content was obtained by GLC and spectrophotometry. The polysaccharide had an average molecular weight of 1.5 × 10⁵  Da. The study has established an obvious correlation of the structure of polysaccharide with oligosaccharides, leading to unambiguous identification of monosaccharides, which normally is not studied conclusively while reporting the polysaccharide structure. The molecular weight of the polysaccharide was determined

  20. Value of allohaemagglutinins in the diagnosis of a polysaccharide antibody deficiency

    PubMed Central

    Schaballie, H; Vermeulen, F; Verbinnen, B; Frans, G; Vermeulen, E; Proesmans, M; De Vreese, K; Emonds, MP; De Boeck, K; Moens, L; Picard, C; Bossuyt, X; Meyts, I

    2015-01-01

    Polysaccharide antibody deficiency is characterized by a poor or absent antibody response after vaccination with an unconjugated pneumococcal polysaccharide vaccine. Allohaemagglutinins (AHA) are antibodies to A or B polysaccharide antigens on the red blood cells, and are often used as an additional or alternative measure to assess the polysaccharide antibody response. However, few studies have been conducted to establish the clinical significance of AHA. To investigate the value of AHA to diagnose a polysaccharide antibody deficiency, pneumococcal polysaccharide antibody titres and AHA were studied retrospectively in 180 subjects in whom both tests had been performed. Receiver operating characteristic curves for AHA versus the pneumococcal vaccine response as a marker for the anti-polysaccharide immune response revealed an area under the curve between 0·5 and 0·573. Sensitivity and specificity of AHA to detect a polysaccharide antibody deficiency, as diagnosed by vaccination response, were low (calculated for cut-off 1/4–1/32). In subjects with only low pneumococcal antibody response, the prevalence of bronchiectasis was significantly higher than in subjects with only low AHA (45·5 and 1·3%, respectively) or normal pneumococcal antibody response and AHA (2·4%). A logistic regression model showed that low pneumococcal antibody response but not AHA was associated with bronchiectasis (odds ratio 46·2). The results of this study do not support the routine use of AHA to assess the polysaccharide antibody response in patients with suspected immunodeficiency, but more studies are warranted to clarify the subject further. PMID:25516411

  1. Extraction, purification, characterization and antioxidant activities of polysaccharides from Cistanche tubulosa.

    PubMed

    Zhang, Wiejie; Huang, Jing; Wang, Wei; Li, Qian; Chen, Yao; Feng, Weiwei; Zheng, Daheng; Zhao, Ting; Mao, Guanghua; Yang, Liuqing; Wu, Xiangyang

    2016-12-01

    An efficient ultrasonic-cellulase-assisted extraction (UCE) of Cistanche tubulosa polysaccharide (CTP) was established. The response surface methodology based on Box-Behnken Design was employed to further optimize extraction conditions. After quaternary ammonium salt precipitation, the polysaccharide of C. tubulosa was characterized by different techniques. The results showed that a maximum polysaccharide yield of 22.31±0.45% was achieved at a pH of 5.2 for 31.5min at 54.1°C. Compared to hot water extraction, the yield of CTP in UCE and polysaccharide content increased to 44.96% and 70.13±2.19%, respectively. There was no marked difference among polysaccharides extracted using different methods from the infrared spectrum. Ultrasonic-cellulase-assisted extraction polysaccharide showed a fibrous structure from scanning electron microscopy and was composed of rhamnose, mannose, glucose, and galactose in a molar ratio of 2.18:1:28.29:1.43 by gas chromatography. The circular dichroism results indicated that polysaccharides had a maximum positive peak around 210nm with different peak values. The thermogravimetric analysis and differential scanning calorimetry were used to test the thermostability of CTP. Besides, CTP demonstrated appreciable antioxidant potential on antioxidant experiments in vitro. The results suggested that UCE is an effective method for CTP extraction and its polysaccharide showed appreciable antioxidant activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Galactosaminogalactan, a New Immunosuppressive Polysaccharide of Aspergillus fumigatus

    PubMed Central

    Simenel, Catherine; Coddeville, Bernadette; van Vliet, Sandra J.; van Kooyk, Yvette; Bozza, Silvia; Moretti, Silvia; Schwarz, Flavio; Trichot, Coline; Aebi, Markus; Delepierre, Muriel; Elbim, Carole; Romani, Luigina; Latgé, Jean-Paul

    2011-01-01

    A new polysaccharide secreted by the human opportunistic fungal pathogen Aspergillus fumigatus has been characterized. Carbohydrate analysis using specific chemical degradations, mass spectrometry, 1H and 13C nuclear magnetic resonance showed that this polysaccharide is a linear heterogeneous galactosaminogalactan composed of α1-4 linked galactose and α1-4 linked N-acetylgalactosamine residues where both monosacharides are randomly distributed and where the percentage of galactose per chain varied from 15 to 60%. This polysaccharide is antigenic and is recognized by a majority of the human population irrespectively of the occurrence of an Aspergillus infection. GalNAc oligosaccharides are an essential epitope of the galactosaminogalactan that explains the universal antibody reaction due to cross reactivity with other antigenic molecules containing GalNAc stretches such as the N-glycans of Campylobacter jejuni. The galactosaminogalactan has no protective effect during Aspergillus infections. Most importantly, the polysaccharide promotes fungal development in immunocompetent mice due to its immunosuppressive activity associated with disminished neutrophil infiltrates. PMID:22102815

  3. Scutellaria polysaccharide inhibits the infectivity of Newcastle disease virus to chicken embryo fibroblast.

    PubMed

    Xiaona, Zhao; Jianzhu, Liu

    2014-03-15

    To select the antiviral active site of Scutellaria polysaccharide (SPS), safe concentrations of crude total Scutellaria polysaccharide (SPS(t)) and fractional polysaccharide SPS₅₀, SPS₆₀, SPS₇₀ and SPS₈₀ on chicken embryo fibroblast (CEF) were first compared using the MTT method. Then, SPS(t), SPS₅₀, SPS₆₀, SPS₇₀, and SPS₈₀ at five concentrations within the safe concentration, together with Newcastle disease virus (NDV), were added to the cultivating system of CEF in three models: pre-addition of polysaccharide, post-addition of polysaccharide, and simultaneous addition of polysaccharides and NDV after mixing. The effects of SPS on the cellular infectivity of NDV (A₅₇₀ value and the highest viral inhibitory rate) were compared using the MTT method. At appropriate concentrations, the five polysaccharides could significantly inhibit the infectivity of NDV on CEF. Among the five polysaccharide groups, the SPS₈₀ group exhibited the highest viral inhibitory rate in the three sample-addition modes. This finding indicates that SPS₈₀ possesses the best efficacy as a component of antiviral polysaccharide drug. © 2013 Society of Chemical Industry.

  4. [Analysis of thickening polysaccharides by the improved diethyldithioacetal derivatization method].

    PubMed

    Akiyama, Takumi; Yamazaki, Takeshi; Tanamoto, Kenichi

    2011-01-01

    The identification test for thickening polysaccharides containing neutral saccharides and uronic acids was investigated by GC analysis of constituent monosaccharides. The reported method, in which monosaccharides were converted to diethyldithioacetal derivatives with ethanethiol followed by trimethylsilylation, was improved in terms of operability and reproducibility of GC/MS analysis. The suitability of the improved diethyldithioacetal derivatization method was determined for seven thickening polysaccharides, i.e., carob bean gum, guar gum, karaya gum, gum arabic, gum ghatti, tragacanth gum and peach gum. The samples were acid-hydrolyzed to form monosaccharides. The hydrolysates were derivatized and analyzed with GC/FID. Each sugar derivative was detected as a single peak and was well separated from others on the chromatograms. The amounts of constituent monosaccharides in thickening polysaccharides were successfully estimated. Seven polysaccharides were distinguished from each other on the basis of constituent monosaccharides. Further examination of the time period of hydrolysis of polysaccharides using peach gum showed that the optimal times were not the same for all monosaccharides. A longer time was needed to hydrolyze glucuronic acid than neutral saccharides. The findings suggest that hydrolysis time may sometimes affect the analytical results on composition of constituent monosaccharides in polysaccharides.

  5. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities.

    PubMed

    Xu, Shu-Ying; Huang, Xuesong; Cheong, Kit-Leong

    2017-12-13

    Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.

  6. THE ANTIBODY-FORMATION BY POLYSACCHARIDS

    PubMed Central

    Nishimura, Shoji

    1929-01-01

    1. By complement fixation tests, it has been clearly demonstrated that the sera of rabbits immunized with inulin, soluble starch and dextrine contain specific antibodies. 2. All these immune sera gave a negative precipitation reaction. 3. The kind of dextrine which has a construction very near to starch has an antigenic property, but those in a state of further decomposition do not give rise to antibodies. 4. All the three kinds of polysaccharids have power to produce antibodies without any vehicle. Dextrine is the only one of the three that gives rise to immune bodies more readily when pig serum is added to it. 5. Regarded as antigens, inulin stood first and soluble starch and dextrine next in order. 6. All three kinds of polysaccharids that were employed gave a negative protein color reaction. All of them, however, contained nitrogen. It has been proved that the large portion of the nitrogen contained in the soluble starch is derived from its protein contents. 7. It is suggested that in the production of immune bodies by these three kinds of polysaccharids, proteins might play the part of the vehicle. This is, however, still to be determined. PMID:19869634

  7. THE ANTIBODY-FORMATION BY POLYSACCHARIDS.

    PubMed

    Nishimura, S

    1929-09-30

    1. By complement fixation tests, it has been clearly demonstrated that the sera of rabbits immunized with inulin, soluble starch and dextrine contain specific antibodies. 2. All these immune sera gave a negative precipitation reaction. 3. The kind of dextrine which has a construction very near to starch has an antigenic property, but those in a state of further decomposition do not give rise to antibodies. 4. All the three kinds of polysaccharids have power to produce antibodies without any vehicle. Dextrine is the only one of the three that gives rise to immune bodies more readily when pig serum is added to it. 5. Regarded as antigens, inulin stood first and soluble starch and dextrine next in order. 6. All three kinds of polysaccharids that were employed gave a negative protein color reaction. All of them, however, contained nitrogen. It has been proved that the large portion of the nitrogen contained in the soluble starch is derived from its protein contents. 7. It is suggested that in the production of immune bodies by these three kinds of polysaccharids, proteins might play the part of the vehicle. This is, however, still to be determined.

  8. Structural Characterization of Mannan Cell Wall Polysaccharides in Plants Using PACE.

    PubMed

    Pidatala, Venkataramana R; Mahboubi, Amir; Mortimer, Jenny C

    2017-10-16

    Plant cell wall polysaccharides are notoriously difficult to analyze, and most methods require expensive equipment, skilled operators, and large amounts of purified material. Here, we describe a simple method for gaining detailed polysaccharide structural information, including resolution of structural isomers. For polysaccharide analysis by gel electrophoresis (PACE), plant cell wall material is hydrolyzed with glycosyl hydrolases specific to the polysaccharide of interest (e.g., mannanases for mannan). Large format polyacrylamide gels are then used to separate the released oligosaccharides, which have been fluorescently labeled. Gels can be visualized with a modified gel imaging system (see Table of Materials). The resulting oligosaccharide fingerprint can either be compared qualitatively or, with replication, quantitatively. Linkage and branching information can be established using additional glycosyl hydrolases (e.g., mannosidases and galactosidases). Whilst this protocol describes a method for analyzing glucomannan structure, it can be applied to any polysaccharide for which characterized glycosyl hydrolases exist. Alternatively, it can be used to characterize novel glycosyl hydrolases using defined polysaccharide substrates.

  9. Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment.

    PubMed

    Ballesteros, Lina F; Cerqueira, Miguel A; Teixeira, José A; Mussatto, Solange I

    2015-01-01

    Spent coffee grounds (SCG), obtained during the processing of coffee powder with hot water to make soluble coffee, are the main coffee industry residues and retain approximately seventy percent of the polysaccharides present in the roasted coffee beans. The purpose of this study was to extract polysaccharides from SCG by using an alkali pretreatment with sodium hydroxide at 25°C, and determine the chemical composition, as well as the antioxidant and antimicrobial properties of the extracted polysaccharides. Galactose (60.27%mol) was the dominant sugar in the recovered polysaccharides, followed by arabinose (19.93%mol), glucose (15.37%mol) and mannose (4.43%mol). SCG polysaccharides were thermostable, and presented a typical carbohydrate pattern. Additionally, they showed good antioxidant activity through different methods and presented high antimicrobial percent inhibition against Phoma violacea and Cladosporium cladosporioides (41.27% and 54.60%, respectively). These findings allow identifying possible applications for these polysaccharides in the food industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing.

    PubMed

    Runavot, Jean-Luc; Guo, Xiaoyuan; Willats, William G T; Knox, J Paul; Goubet, Florence; Meulewaeter, Frank

    2014-01-01

    Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non-cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being removed during bleaching and scouring. However, some forms of pectin are more resistant than others. Xylan and xyloglucan are affected in later processing steps and to a lesser extent, whereas callose showed a strong resistance to the chemical processing steps. This study shows that non-cellulosic polysaccharides are differently impacted by the treatments used in cotton textile processing with some hemicelluloses and callose being resistant to these harsh treatments.

  11. Synthesis, characterization and evaluation of thiolated tamarind seed polysaccharide as a mucoadhesive polymer.

    PubMed

    Kaur, Harmanmeet; Yadav, Shikha; Ahuja, Munish; Dilbaghi, Neeraj

    2012-11-06

    In the present study, thiol-functionalization of tamarind seed polysaccharide was carried out by esterification with thioglycolic acid. Thiol-functionalization was confirmed by SH stretch in Fourier-transformed infra-red spectra at 2586 cm(-1). It was found to possess 104.5 mM of thiol groups per gram. The results of differential scanning calorimetry and X-ray diffraction study indicate increase in crystallinity. Polymer compacts of thiolated tamarind seed polysaccharide required 6.85-fold greater force to detach from the mucin coated membrane than that of tamarind seed polysaccharide. Comparative evaluation of Carbopol-based metronidazole gels containing thiolated tamarind seed polysaccharide with gels containing tamarind seed polysaccharide for mucoadhesive strength using chicken ileum by modified balance method revealed higher mucoadhesion of gels containing thiolated tamarind seed polysaccharide. Further, the gels containing tamarind seed polysaccharide and thiolated tamarind seed polysaccharide released the drug by Fickian-diffusion following the first-order and Higuchi's-square root release kinetics, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Pneumococcal Capsular Polysaccharide Immunity in the Elderly

    PubMed Central

    Ferreira, Daniela M.; Gordon, Stephen B.; Rylance, Jamie

    2017-01-01

    ABSTRACT Immunity to pneumococcal infections is impaired in older people, and current vaccines are poorly protective against pneumococcal disease in this population. Naturally acquired immunity to pneumococcal capsular polysaccharides develops during childhood and is robust in young adults but deteriorates with advanced age. In particular, antibody levels and function are reduced in older people. Pneumococcal vaccines are recommended for people >65 years old. However, the benefits of polysaccharide and protein-conjugated vaccines in this population are small, because of both serotype replacement and incomplete protection against vaccine serotype pneumococcal disease. In this review, we overview the immune mechanisms by which naturally acquired and vaccine-induced pneumococcal capsular polysaccharide immunity declines with age, including altered colonization dynamics, reduced opsonic activity of antibodies (particularly IgM), and impaired mucosal immunity. PMID:28424198

  13. Polysaccharide-Based Membranes in Food Packaging Applications.

    PubMed

    Ferreira, Ana R V; Alves, Vítor D; Coelhoso, Isabel M

    2016-04-13

    Plastic packaging is essential nowadays. However, the huge environmental problem caused by landfill disposal of non-biodegradable polymers in the end of life has to be minimized and preferentially eliminated. The solution may rely on the use of biopolymers, in particular polysaccharides. These macromolecules with film-forming properties are able to produce attracting biodegradable materials, possibly applicable in food packaging. Despite all advantages of using polysaccharides obtained from different sources, some drawbacks, mostly related to their low resistance to water, mechanical performance and price, have hindered their wider use and commercialization. Nevertheless, with increasing attention and research on this field, it has been possible to trace some strategies to overcome the problems and recognize solutions. This review summarizes some of the most used polysaccharides in food packaging applications.

  14. Polysaccharide-Based Membranes in Food Packaging Applications

    PubMed Central

    Ferreira, Ana R. V.; Alves, Vítor D.; Coelhoso, Isabel M.

    2016-01-01

    Plastic packaging is essential nowadays. However, the huge environmental problem caused by landfill disposal of non-biodegradable polymers in the end of life has to be minimized and preferentially eliminated. The solution may rely on the use of biopolymers, in particular polysaccharides. These macromolecules with film-forming properties are able to produce attracting biodegradable materials, possibly applicable in food packaging. Despite all advantages of using polysaccharides obtained from different sources, some drawbacks, mostly related to their low resistance to water, mechanical performance and price, have hindered their wider use and commercialization. Nevertheless, with increasing attention and research on this field, it has been possible to trace some strategies to overcome the problems and recognize solutions. This review summarizes some of the most used polysaccharides in food packaging applications. PMID:27089372

  15. Molecular cloning and identification of a flavanone 3-hydroxylase gene from Lycium chinense, and its overexpression enhances drought stress in tobacco.

    PubMed

    Song, Xinyu; Diao, Jinjin; Ji, Jing; Wang, Gang; Guan, Chunfeng; Jin, Chao; Wang, Yurong

    2016-01-01

    Flavonoids, as plant secondary metabolites, are widespread throughout the plant kingdom and involved in many physiological and biochemical processes. Drought resistance is attributed to flavonoids with respect to protective functions in the cell wall and membranes. The flavanone 3-hydroxylase (F3H) gene which encodes flavanone 3-hydroxylase, is essential in flavonoids biosynthetic pathway. Lycium chinense (L. chinense) is a deciduous woody perennial halophyte that grows under a large variety of environmental conditions and survives under extreme drought stress. A novel cDNA sequence coding a F3H gene in Lycium chinense (LcF3H, GenBank: KJ636468.1) was isolated. The open reading frame of LcF3H comprised 1101 bp encoding a polypeptide of 366 amino acids with a molecular weight of about 42 kDa and an isoelectric point of 5.32. The deduced LcF3H protein showed high identities with other plant F3Hs, and the conserved motifs were found in LcF3H at similar positions like other F3Hs. The recombinant protein converted naringen into dihydrokaempferol in vitro. Since studies have shown that amongst flavonoids, flavan-3-ols (catechin and epicatechin) have direct free radical scavenging activity to maintain the normal physiological function of cells in vivo, these data support the possible relationship between the oxidative damage and the regulation of LcF3H gene expression in L. chinense under drought stress. In order to better understand the biotechnological potential of LcF3H, gene overexpression was conducted in tobacco. The content of flavan-3-ols and the tolerance to drought stress were increased in LcF3H overexpressing tobacco. Analysis of transgenic tobacco lines also showed that antioxidant enzyme activities were increased meanwhile the malondialdehyde (MDA) content and the content of H2O2 were reduced comparing to nontransformed tobacco plants. Furthermore, the photosynthesis rate was less decreased in the transgenetic plants. These results suggest that LcF3H

  16. Biophysical functionality in polysaccharides: from Lego-blocks to nano-particles.

    PubMed

    Cesàro, Attilio; Bellich, Barbara; Borgogna, Massimiliano

    2012-04-01

    The objective of the paper is to show the very important biophysical concepts that have been developed with polysaccharides. In particular, an attempt will be made to relate "a posteriori" the fundamental aspects, both experimental and theoretical, with some industrial applications of polysaccharide-based materials. The overview of chain conformational aspects includes relationships between topological features and local dynamics, exemplified for some naturally occurring carbohydrate polymers. Thus, by using simulation techniques and computational studies, the physicochemical properties of aqueous solutions of polysaccharides are interpreted. The relevance of conformational disorder-order transitions, chain aggregation, and phase separation to the underlying role of the ionic contribution to these processes is discussed. We stress the importance of combining information from analysis of experimental data with that from statistical-thermodynamic models for understanding the conformation, size, and functional stability of industrially important polysaccharides. The peculiar properties of polysaccharides in industrial applications are summarized for the particularly important example of nanoparticles production, a field of growing relevance and scientific interest.

  17. Immobilized polysaccharide derivatives: chiral packing materials for efficient HPLC resolution.

    PubMed

    Ikai, Tomoyuki; Yamamoto, Chiyo; Kamigaito, Masami; Okamoto, Yoshio

    2007-01-01

    Polysaccharide-based chiral packing materials (CPMs) for high-performance liquid chromatography have frequently been used not only to determine the enantiomeric excess of chiral compounds but also to preparatively resolve a wide range of racemates. However, these CPMs can be used with only a limited number of solvents as mobile phases because some organic solvents, such as tetrahydrofuran, chloroform, and so on, dissolve or swell the polysaccharide derivatives coated on a support, e.g., silica gel, and destroy their packed columns. The limitation of mobile phase selection is sometimes a serious problem for the efficient analytical and preparative resolution of enantiomers. This defect can be resolved by the immobilization of the polysaccharide derivatives onto silica gel. Efficient immobilizations have been attained through the radical copolymerization of the polysaccharide derivatives bearing small amounts of polymerizable residues and also through the polycondensation of the polysaccharide derivatives containing a few percent of 3-(triethoxysilyl)propyl residue. (c) 2007 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  18. Protective Effect of Lycium ruthenicum Murr. Against Radiation Injury in Mice

    PubMed Central

    Duan, Yabin; Chen, Fan; Yao, Xingchen; Zhu, Junbo; Wang, Cai; Zhang, Juanling; Li, Xiangyang

    2015-01-01

    The protective effect of Lycium ruthenicum Murr. against radiation injury was examined in mice. Kunming mice were randomly divided into a control group, model group, positive drug group and L. ruthenicum high dose (8 g/kg), L. ruthenicum middle dose (4 g/kg), L. ruthenicum low dose (2 g/kg) treatment groups, for which doses were administered the third day, seventh day and 14th day after irradiation. L. ruthenicum extract was administered orally to the mice in the three treatment groups and normal saline was administered orally to the mice in the control group and model group for 14 days. The positive group was treated with amifostine (WR-2721) at 30 min before irradiation. Except for the control group, the groups of mice received a 5 Gy quantity of X-radiation evenly over their whole body at one time. Body weight, hemogram, thymus and spleen index, DNA, caspase-3, caspase-6, and P53 contents were observed at the third day, seventh day, and 14th day after irradiation. L. ruthenicum could significantly increase the total red blood cell count, hemoglobin count and DNA contents (p < 0.05). The spleen index recovered significantly by the third day and 14th day after irradiation (p < 0.05). L. ruthenicum low dose group showed a significant reduction in caspase-3 and caspase-6 of serum in mice at the third day, seventh day, and 14th day after irradiation and L. ruthenicum middle dose group experienced a reduction in caspase-6 of serum in mice by the seventh day after irradiation. L. ruthenicum could decrease the expression of P53. The results showed that L. ruthenicum had protective effects against radiation injury in mice. PMID:26193298

  19. Immunochemistry of the Group-Specific Polysaccharide of Nocardia brasiliensis

    PubMed Central

    Estrada-Parra, Sergio; Zamora, Abel; Bojalil, L. F.

    1965-01-01

    Estrada-Parra, Sergio (Escuela Nacional de Ciencias Biológicas, México, D.F., México), Abel Zamora, and L. F. Bojalil. Immunochemistry of the group-specific polysaccharide of Nocardia brasiliensis. J. Bacteriol. 90:571–574. 1965.—The group-specific polysaccharide of Nocardia brasiliensis was further purified, yielding an amorphous white material with the following characteristics: [α]D20 = + 48; nitrogen, 0.5%; phosphorus, 0.1%; and ash as sodium, 0.8%. The polymer is made of d-arabinose and d-galactose in a molar ratio of 3:1, and no other sugars were detected. Mild hydrolysis liberates mainly arabinose. The polysaccharide consumes 3.46 μmoles of periodate per mg of polymer in 15 days at 4 C (this value remains constant after 4 more days). Oxidation results in destruction of two of the arabinose, with the formation of two glycerols after borohydride reduction and hydrolysis. The polysaccharide oxidized by periodate and reduced under mild acid hydrolysis at 20 C yields glycerol and a polymer formed by galactose and arabinose (in a ratio of 1:1) which is resistant to a second oxidation. Therefore, the polysaccharide is probably formed by a main chain of glactose linked 1,3 and arabinose linked 1,2 or 1,3 or both, and nonreducing side chains of arabofuranose residues. The intact polysaccharide cross-reacts with sera from patients with active tuberculosis, and this, as well as the homologous reaction, is abolished by oxidation with periodate. PMID:16562050

  20. The Potential of Brittle Star Extracted Polysaccharide in Promoting Apoptosis via Intrinsic Signaling Pathway.

    PubMed

    Baharara, Javad; Amini, Elaheh

    2015-01-01

    Anti-cancer potential of marine natural products such as polysaccharides represented therapeutic potential in oncological researches. In this study, total polysaccharide from brittle star [Ophiocoma erinaceus (O. erinaceus)] was extracted and chemopreventive efficacy of Persian Gulf brittle star polysaccharide was investigated in HeLa human cervical cancer cells. To extract polysaccharide, dried brittle stars were ground and extracted mechanically. Then, detection of polysaccharide was performed by phenol sulfuric acid, Ultra Violet (UV)-sulfuric acid method and FTIR. The anti proliferative activity of isolated polysaccharide was examined by MTT assay and evaluation of cell death was done through morphological cell changes; Propodium Iodide staining, fluorescence microscopy and caspase-3, -9 enzymatic measurements. To assess its underlying mechanism, expression of Bax, Bcl-2 was evaluated. The polysaccharide detection methods demonstrated isolation of crude polysaccharide from Persian Gulf brittle star. The results revealed that O. erinaceus polysaccharide suppressed the proliferation of HeLa cells in a dose and time dependent manner. Morphological observation of DAPI and Acridine Orange/Propodium Iodide staining was documented by typical characteristics of apoptotic cell death. Flow cytometry analyses exhibited the accumulation of treated cells in sub-G1 region. Additionally, polysaccharide extracted induced intrinsic apoptosis via up-regulation of caspase-3, caspase-9 and Bax along with down-regulation of Bcl-2 in HeLa cells. Taken together, the apoptosis inducing effect of brittle star polysaccharide via intrinsic pathway confirmed the anti tumor potential of marine polysaccharide. Therefore, these findings proposed new insight into anti cancer properties of brittle star polysaccharide as a promising agent in cervical cancer treatment.

  1. Molecular Assembly of Polysaccharide-Based Microcapsules and Their Biomedical Applications.

    PubMed

    Feng, Xiyun; Du, Cuiling; Li, Junbai

    2016-08-01

    Advanced multifunctional microcapsules have revealed great potential in biomedical applications owing to their tunable size, shape, surface properties, and stimuli responsiveness. Polysaccharides are one of the most acceptable biomaterials for biomedical applications because of their outstanding virtues such as biocompatibility, biodegradability, and low toxicity. Many efforts have been devoted to investigating novel molecular design and efficient building blocks for polysaccharide-based microcapsules. In this Personal Account, we first summarize the common features of polysaccharides and the main principles of the design and fabrication of polysaccharide-based microcapsules, and further discuss their applications in biomedical areas and perspectives for future research. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Toll-like receptor 4-related immunostimulatory polysaccharides: Primary structure, activity relationships, and possible interaction models.

    PubMed

    Zhang, Xiaorui; Qi, Chunhui; Guo, Yan; Zhou, Wenxia; Zhang, Yongxiang

    2016-09-20

    Toll-like receptor (TLR) 4 is an important polysaccharide receptor; however, the relationships between the structures and biological activities of TLR4 and polysaccharides remain unknown. Many recent findings have revealed the primary structure of TLR4/MD-2-related polysaccharides, and several three-dimensional structure models of polysaccharide-binding proteins have been reported; and these models provide insights into the mechanisms through which polysaccharides interact with TLR4. In this review, we first discuss the origins of polysaccharides related to TLR4, including polysaccharides from higher plants, fungi, bacteria, algae, and animals. We then briefly describe the glucosidic bond types of TLR4-related heteroglycans and homoglycans and describe the typical molecular weights of TLR4-related polysaccharides. The primary structures and activity relationships of polysaccharides with TLR4/MD-2 are also discussed. Finally, based on the existing interaction models of LPS with TLR4/MD-2 and linear polysaccharides with proteins, we provide insights into the possible interaction models of polysaccharide ligands with TLR4/MD-2. To our knowledge, this review is the first to summarize the primary structures and activity relationships of TLR4-related polysaccharides and the possible mechanisms of interaction for TLR4 and TLR4-related polysaccharides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Unusual monosaccharides: components of O-antigenic polysaccharides of microorganisms

    NASA Astrophysics Data System (ADS)

    Kochetkov, Nikolai K.

    1996-09-01

    The data on new monosaccharides detected in O-antigenic polysaccharides of Gram-negative bacteria have been surveyed. The results of isolation and structure determination of these unusual monosaccharides have been arranged and described systematically. The NMR spectroscopy techniques are shown to be promising for the O-antigenic polysaccharides structure determination. The information about fine structure of monosaccharides which constitute the base of important class of microbial polysaccharides, is of great significance for applied studies, first of all, the design and synthesis of biologically active substances. The bibliography includes 216 references.

  4. Rising from the Sea: Correlations between Sulfated Polysaccharides and Salinity in Plants

    PubMed Central

    Aquino, Rafael S.; Grativol, Clicia; Mourão, Paulo A. S.

    2011-01-01

    High salinity soils inhibit crop production worldwide and represent a serious agricultural problem. To meet our ever-increasing demand for food, it is essential to understand and engineer salt-resistant crops. In this study, we evaluated the occurrence and function of sulfated polysaccharides in plants. Although ubiquitously present in marine algae, the presence of sulfated polysaccharides among the species tested was restricted to halophytes, suggesting a possible correlation with salt stress or resistance. To test this hypothesis, sulfated polysaccharides from plants artificially and naturally exposed to different salinities were analyzed. Our results revealed that the sulfated polysaccharide concentration, as well as the degree to which these compounds were sulfated in halophytic species, were positively correlated with salinity. We found that sulfated polysaccharides produced by Ruppia maritima Loisel disappeared when the plant was cultivated in the absence of salt. However, subjecting the glycophyte Oryza sativa Linnaeus to salt stress did not induce the biosynthesis of sulfated polysaccharides but increased the concentration of the carboxylated polysaccharides; this finding suggests that negatively charged cell wall polysaccharides might play a role in coping with salt stress. These data suggest that the presence of sulfated polysaccharides in plants is an adaptation to high salt environments, which may have been conserved during plant evolution from marine green algae. Our results address a practical biological concept; additionally, we suggest future strategies that may be beneficial when engineering salt-resistant crops. PMID:21552557

  5. Rising from the sea: correlations between sulfated polysaccharides and salinity in plants.

    PubMed

    Aquino, Rafael S; Grativol, Clicia; Mourão, Paulo A S

    2011-04-28

    High salinity soils inhibit crop production worldwide and represent a serious agricultural problem. To meet our ever-increasing demand for food, it is essential to understand and engineer salt-resistant crops. In this study, we evaluated the occurrence and function of sulfated polysaccharides in plants. Although ubiquitously present in marine algae, the presence of sulfated polysaccharides among the species tested was restricted to halophytes, suggesting a possible correlation with salt stress or resistance. To test this hypothesis, sulfated polysaccharides from plants artificially and naturally exposed to different salinities were analyzed. Our results revealed that the sulfated polysaccharide concentration, as well as the degree to which these compounds were sulfated in halophytic species, were positively correlated with salinity. We found that sulfated polysaccharides produced by Ruppia maritima Loisel disappeared when the plant was cultivated in the absence of salt. However, subjecting the glycophyte Oryza sativa Linnaeus to salt stress did not induce the biosynthesis of sulfated polysaccharides but increased the concentration of the carboxylated polysaccharides; this finding suggests that negatively charged cell wall polysaccharides might play a role in coping with salt stress. These data suggest that the presence of sulfated polysaccharides in plants is an adaptation to high salt environments, which may have been conserved during plant evolution from marine green algae. Our results address a practical biological concept; additionally, we suggest future strategies that may be beneficial when engineering salt-resistant crops.

  6. Polysaccharide enhances Radix Saposhnikoviae efficacy through inhibiting chromones decomposition in intestinal tract.

    PubMed

    Yang, Jing-Ming; Jiang, Hua; Dai, Hong-Liang; Wang, Zi-Wei; Jia, Gui-Zhi; Meng, Xiang-Cai

    2016-09-06

    Vegetative but not reproductive stage of Saposhnikovia divaricate (Turxz.) schischk possesses pharmacological activities. However, our recent study showed that reproductive S. divaricate supplemented with polysaccharide showed evidently elevated pharmacological activities and increased cimifugin content in rat serum. The aims of present study were to assess the influence of polysaccharides on the chromones pharmacological activities in Radix Saposhnikoviae (RS), the dried root of vegetative stage of S. divaricate, and to explore the underlying mechanisms. Only cimifugin was detected in the plasma of chromone treated animals and RS polysaccharide significantly increased the plasma content of cimifugin. It was shown that neither cimifugin absorption nor glycoside components transformation in simulated digestive fluid was affected by RS polysaccharide. However, a significant promotion of transformation of cimifugin to more stable prime-O-glucosylcimifugin (PGCN) by RS polysaccharide, and a protective effect of polysaccharide on chromone components were observed in small intestine solutions. Meanwhile, RS polysaccharide produced a significant elevation of cimifugin and PGCN concentration in vivo. Based on these findings, we concluded that RS polysaccharide could greatly increase the content of cimifugin, which might be related to its degradation-proof effect on cimifugin, via transforming cimifugin to comparatively more stable PGCN and spatial structure protection.

  7. Polysaccharide production by a reduced pigmentation mutant of Aureobasidium pullulans NYS-1.

    PubMed

    West, T P; Strohfus, B

    2001-08-01

    To isolate a reduced pigmentation mutant of Aureobasidium pullulans NYS-1 and characterize its cellular pigmentation plus its polysaccharide and biomass production relative to carbon source. Cellular pigmentation, polysaccharide levels and biomass production by the isolated mutant NYSRP-1 were analysed relative to carbon source. Cellular pigmentation of the mutant was lower than its parent strain using either carbon source. The mutant elaborated higher polysaccharide levels on sucrose than on corn syrup. The pullulan content of the polysaccharide synthesized and biomass production by the mutant rose as the carbon source concentration was increased. It is feasible to isolate a reduced pigmentation mutant from strain NYS-1 that exhibits elevated polysaccharide production using corn syrup as a carbon source. The mutant provides an advantage for commercial pullulan production because of its reduced pigmentation and enhanced polysaccharide synthesis.

  8. Quality evaluation of six bioactive constituents in goji berry based on capillary electrophoresis field amplified sample stacking.

    PubMed

    Wang, Wei-Feng; Yang, Jun-Li; Shi, Yan-Ping

    2018-04-27

    Goji berry, fruits of the plant Lycium barbarum L., has long been used as traditional medicine and functional food in China. In this work, a simple and easy-operation on-line concentration capillary electrophoresis (CE) for detection flavonoids in goji berry was developed by coupling of field amplified sample stacking (FASS) with an electroosmotic (EOF) pump driving water removal process. Due to the EOF pump and electrokinetic injection showing different influence on the concentration, the analytes injection condition should be systemically studied. Thereafter, the verification of the analytes injection conditions was achieved using response surface experimental design. Under the optimum conditions, 86-271 folds sensitivity enhancement upon normal capillary zone electrophoresis (CZE, 50 mbar × 5 s) were achieved for six flavonoids, and the detection limits ranged from 0.35 to 1.82 ng/mL; the LOQ ranged from 1.20 to 6.01 ng/mL. Eventually, the proposed method was applied to detect flavonoids in 30 goji berry samples from different habitats of China; and the results indicated that the flavonoids were rich in the eluent of 30-60% methanol, which provided a reference for extraction of goji berry flavonoids. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Aloe arborescens Polysaccharides: In Vitro Immunomodulation and Potential Cytotoxic Activity.

    PubMed

    Nazeam, Jilan A; Gad, Haidy A; Esmat, Ahmed; El-Hefnawy, Hala M; Singab, Abdel-Naser B

    2017-05-01

    Different polysaccharides were isolated from the leaves of Aloe arborescens using the gradient power of hydrogen followed by antitumor and immunomodulatory assay. The total polysaccharide content of different fractions, water-soluble polysaccharide (WAP), acid-soluble polysaccharide (ACP), and alkaline-soluble polysaccharide (ALP), was estimated using a phenol-sulfuric acid spectrophotometric method. WAP possessed a higher content of mannose and glucose than either ACP or ALP. In vitro antitumor activity was investigated in three different cancer cell lines, and in vitro immunomodulatory potential was assessed through phagocytosis and lymphocyte transformation assay. The results showed that WAP and ALP exhibited the most significant cytotoxicity against HepG2 human liver cancer cells, with IC 50 values of 26.14 and 21.46 μg/mL, respectively. In contrast, ALP was able to enhance lymphocyte transformation, whereas WAP had the most potent phagocytic activity. Molecular weight, total sugar and uronic acid content, Fourier transform-infrared analysis, and linkage type of bioactive polysaccharides were investigated. These findings revealed that the potential antitumor activity of the natural agents WAP and ALP was through an immunomodulation mechanism, which verifies the use of the plant as adjuvant supplement for cancer patients suffering immunosuppression during chemotherapy.

  10. Enzyme-catalyzed modifications of polysaccharides and poly(ethylene glycol)

    USDA-ARS?s Scientific Manuscript database

    Polysaccharides are used extensively in various industrial applications, such as food, adhesives, coatings, construction, paper, pharmaceuticals, and personal care. Many polysaccharide structures need to be modified in order to improve their end-use properties; these are mostly done through chemica...

  11. Structural Characterization of Mannan Cell Wall Polysaccharides in Plants Using PACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pidatala, Venkataramana R.; Mahboubi, Amir; Mortimer, Jenny C.

    Plant cell wall polysaccharides are notoriously difficult to analyze, and most methods require expensive equipment, skilled operators, and large amounts of purified material. Here, we describe a simple method for gaining detailed polysaccharide structural information, including resolution of structural isomers. For polysaccharide analysis by gel electrophoresis (PACE), plant cell wall material is hydrolyzed with glycosyl hydrolases specific to the polysaccharide of interest (e.g., mannanases for mannan). Large format polyacrylamide gels are then used to separate the released oligosaccharides, which have been fluorescently labeled. Gels can be visualized with a modified gel imaging system (see Table of Materials). The resulting oligosaccharidemore » fingerprint can either be compared qualitatively or, with replication, quantitatively. Linkage and branching information can be established using additional glycosyl hydrolases (e.g., mannosidases and galactosidases). Whilst this protocol describes a method for analyzing glucomannan structure, it can be applied to any polysaccharide for which characterized glycosyl hydrolases exist. Alternatively, it can be used to characterize novel glycosyl hydrolases using defined polysaccharide substrates.« less

  12. Structural Characterization of Mannan Cell Wall Polysaccharides in Plants Using PACE

    DOE PAGES

    Pidatala, Venkataramana R.; Mahboubi, Amir; Mortimer, Jenny C.

    2017-10-16

    Plant cell wall polysaccharides are notoriously difficult to analyze, and most methods require expensive equipment, skilled operators, and large amounts of purified material. Here, we describe a simple method for gaining detailed polysaccharide structural information, including resolution of structural isomers. For polysaccharide analysis by gel electrophoresis (PACE), plant cell wall material is hydrolyzed with glycosyl hydrolases specific to the polysaccharide of interest (e.g., mannanases for mannan). Large format polyacrylamide gels are then used to separate the released oligosaccharides, which have been fluorescently labeled. Gels can be visualized with a modified gel imaging system (see Table of Materials). The resulting oligosaccharidemore » fingerprint can either be compared qualitatively or, with replication, quantitatively. Linkage and branching information can be established using additional glycosyl hydrolases (e.g., mannosidases and galactosidases). Whilst this protocol describes a method for analyzing glucomannan structure, it can be applied to any polysaccharide for which characterized glycosyl hydrolases exist. Alternatively, it can be used to characterize novel glycosyl hydrolases using defined polysaccharide substrates.« less

  13. Separation of water-soluble polysaccharides from Cyclocarya paliurus by ultrafiltration process.

    PubMed

    Xie, Jian-Hua; Shen, Ming-Yue; Nie, Shao-Ping; Zhao, Qiang; Li, Chang; Xie, Ming-Yong

    2014-01-30

    In this study, ultrafiltration membrane process was employed to separate polysaccharides from Cyclocarya paliurus (Batal.) Iljinskaja (C. paliurus) to simulate industrial production. Meanwhile, the molecular weight distribution of C. paliurus polysaccharides was investigated by gel permeation chromatography. Four fractions were obtained and named as CPPS-A, CPPS-B, CPPS-C and CPPS-D, respectively. CPPS-A and CPPS-B contained approximately 69.5% and 12.7% of polysaccharides, whose molecular weight were in the range of 100-300 kDa and 120 kDa, respectively. CPPS-C was comprised of two polysaccharides with average molecular weight of 40 kDa and 15 kDa. Results showed that ultrafiltration resulted in the removal of parts of small molecule weight polysaccharides, the increase of proportion of high molecule weight ones and the obvious improvement of quality of products. Compared with ethanol precipitation and gel permeation chromatography techniques, ultrafiltration showed many advantages, and also provided theoretical support for industrial manufacturing of C. paliurus polysaccharides in separation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Polysaccharide Microarray Technology for the Detection of Burkholderia Pseudomallei and Burkholderia Mallei Antibodies

    DTIC Science & Technology

    2006-04-27

    polysaccharide microarray platform was prepared by immobilizing Burkholderia pseudomallei and Burkholderia mallei polysaccharides . This... polysaccharide array was tested with success for detecting B. pseudomallei and B. mallei serum (human and animal) antibodies. The advantages of this microarray... Polysaccharide microarrays; Burkholderia pseudomallei; Burkholderia mallei; Glanders; Melioidosis1. Introduction There has been a great deal of emphasis on the

  15. Comparison of antioxidant and antiproliferation activities of polysaccharides from eight species of medicinal mushrooms.

    PubMed

    Chen, Peiying; Yong, Yangyang; Gu, Yifan; Wang, Zeliang; Zhang, Shizhu; Lu, Ling

    2015-01-01

    Polysaccharides from mushrooms including Pleurotus eryngii, P. ostreatus, P. nebrodensis, Lentinus edodes, Hypsizygus marmoreus, Flammulina velutipes, Ganoderma lucidum, and Hericium erinaceus were isolated by water extraction and alcohol precipitation. Our results suggest that all tested polysaccharides have the significant antioxidant capacities of scavenging free radicals (1,1-diphenyl-2-picrylhydrazyl and hydroxyl radicals). Among them, the H. erinaceus polysaccharide exhibits the highest 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity, whereas the L. edodes polysaccharide shows the strongest scavenging ability for hydroxyl radicals. Furthermore, using the MCF-7 breast cancer cell line and HeLa cells, all 8 selected polysaccharides are able to inhibit the proliferation of tumor cells, but the strength of inhibition varied depending on the mushroom species and the concentration used. Notably, G. lucidum polysaccharide shows the highest inhibition activity on MCF-7 cells. By comparison, H. erinaceus polysaccharide has the strongest inhibitory effect on HeLa cells. Moreover, high-performance liquid chromatography with a carbohydrate analysis column showed significant differences in polysaccharide components among these mushrooms. Thus our data suggest that the different species of mushrooms have the variable functions because of their own specific polysaccharide components. The 8 mushroom polysaccharides have the potential to be used as valuable functional food additives or sources of therapeutic agents for antioxidant and cancer treatments, especially polysaccharides from H. erinaceus, L. edodes, and G. lucidum.

  16. The structure of mushroom polysaccharides and their beneficial role in health.

    PubMed

    Huang, Xiaojun; Nie, Shaoping

    2015-10-01

    Mushroom is a kind of fungus that has been popular for its special flavour and renowned biological values. The polysaccharide contained in mushroom is regarded as one of the primary bioactive constituents and is beneficial for health. The structural features and bioactivities of mushroom polysaccharides have been studied extensively. It is believed that the diverse biological bioactivities of polysaccharides are closely related to their structure or conformation properties. In this review, the structural characteristics, conformational features and bioactivities of several mushroom polysaccharides are summarized, and their beneficial mechanisms and the relationships between their structure and bioactivities are also discussed.

  17. Structural studies of the O-specific polysaccharide(s) from the lipopolysaccharide of Azospirillum brasilense type strain Sp7.

    PubMed

    Sigida, Elena N; Fedonenko, Yuliya P; Shashkov, Alexander S; Zdorovenko, Evelina L; Konnova, Svetlana A; Ignatov, Vladimir V; Knirel, Yuriy A

    2013-10-18

    Lipopolysaccharide was obtained by phenol-water extraction from dried bacterial cells of Azospirillum brasilense type strain Sp7. Mild acid hydrolysis of the lipopolysaccharide followed by GPC on Sephadex G-50 resulted in a polysaccharide mixture, which was studied by composition and methylation analyses, Smith degradation and (1)H and (13)C NMR spectroscopy. The following polysaccharide structures were established, where italics indicate a non-stoichiometric (∼40%) 2-O-methylation of l-rhamnose. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Biosynthesis of plant cell wall polysaccharides.

    PubMed

    Gibeaut, D M; Carpita, N C

    1994-09-01

    The cell wall is the principal structural element of plant form. Cellulose, long crystals of several dozen glucan chains, forms the microfibrillar foundation of plant cell walls and is synthesized at the plasma membrane. Except for callose, all other noncellulosic components are secreted to the cell surface and form a porous matrix assembled around the cellulose microfibrils. These diverse noncellulosic polysaccharides and proteins are made in the endomembrane system. Many questions about the biosynthesis and modification within the Golgi apparatus and integration of cell components at the cell surface remain unanswered. The lability of synthetic complexes upon isolation is one reason for slow progress. However, with new methods of membrane isolation and analysis of products in vitro, recent advances have been made in purifying active synthases from plasma membrane and Golgi apparatus. Likely synthase polypeptides have been identified by affinity-labeling techniques, but we are just beginning to understand the unique features of the coordinated assembly of complex polysaccharides. Nevertheless, such progress renews hope that the first gene of a synthase for a wall polysaccharide from higher plants is within our grasp.

  19. Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents.

    PubMed

    Debele, Tilahun Ayane; Mekuria, Shewaye Lakew; Tsai, Hsieh-Chih

    2016-11-01

    Polysaccharide-based nanoparticles have fascinated attention as a vesicle of different pharmaceutical agents due to their unique multi-functional groups in addition to their physicochemical properties, including biocompatibility and biodegradability. The existence of multi-functional groups on the polysaccharide backbone permits facile chemical or biochemical modification to synthesize polysaccharide based nanoparticles with miscellaneous structures. Polysaccharide-based nanogels have high water content, large surface area for multivalent bioconjugation, tunable size, and interior network for the incorporation of different pharmaceutical agents. These unique properties offer great potential for the utilization of polysaccharide-based nanogels in the drug delivery systems. Hence, this review describes chemistry of certain common polysaccharides, several methodologies used to synthesize polysaccharide nanoparticles and primarily focused on the polysaccharide (or polysaccharide derivative) based nanogels as the carrier of pharmaceutical agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Matrix polyelectrolyte capsules based on polysaccharide/MnCO₃ hybrid microparticle templates.

    PubMed

    Wei, Qingrong; Ai, Hua; Gu, Zhongwei

    2011-06-15

    An efficient strategy for biomacromolecule encapsulation based on spontaneous deposition into polysaccharide matrix-containing capsules is introduced in this study. First, hybrid microparticles composed of manganese carbonate and ionic polysaccharides including sodium hyaluronate (HA), sodium alginate (SA) and dextran sulfate sodium (DS) with narrow size distribution were synthesized to provide monodisperse templates. Incorporation of polysaccharide into the hybrid templates was successful as verified by thermogravimetric analysis (TGA) and confocal laser scanning microscopy (CLSM). Matrix polyelectrolyte microcapsules were fabricated through layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolytes (PEs) onto the hybrid particles, followed by removal of the inorganic part of the cores, leaving polysaccharide matrix inside the capsules. The loading and release properties of the matrix microcapsules were investigated using myoglobin as a model biomacromolecule. Compared to matrix-free capsules, the matrix capsules had a much higher loading capacity up to four times; the driving force is mostly due to electrostatic interactions between myoglobin and the polysaccharide matrix. From our observations, for the same kind of polysaccharide, a higher amount of polysaccharide inside the capsules usually led to better loading capacity. The release behavior of the loaded myoglobin could be readily controlled by altering the environmental pH. These matrix microcapsules may be used as efficient delivery systems for various charged water-soluble macromolecules with applications in biomedical fields. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Defective anti-polysaccharide IgG vaccine responses in IgA deficient mice

    USDA-ARS?s Scientific Manuscript database

    IgA deficient patients often show defects in antibody responses following immunization with polysaccharide vaccines. We now show that IgA-/- mice exhibit specific defects in IgG antibody responses to various polysaccharide vaccines, but not protein vaccines. Defects in anti-polysaccharide IgG resp...

  2. Structural characterization of alkali-soluble polysaccharides from Panax ginseng C. A. Meyer

    PubMed Central

    Ji, Li; Jie, Zhenjing; Ying, Xin; Yue, Qi; Zhou, Yifa

    2018-01-01

    Panax ginseng C. A. Meyer (ginseng) has been widely used as a herb and functional food in the world. Polysaccharides are the main active components of ginseng. In this paper, the polysaccharides were sequentially extracted by 50 mM Na2CO3, 1 M KOH and 4 M KOH from ginseng roots treated sequentially with hot water, α-amylase and ethylenediaminetetraacetic acid extraction. Na2CO3-soluble ginseng polysaccharide (NGP) was fractionated into one neutral and three acidic fractions by anion exchange and gel permeation chromatography. Fourier transform infrared, NMR and methylation analysis indicated acidic fractions in NGP were highly branched rhamnogalacturonan-I domains, with  → 4)-α-GalpA-(1 → 2)-α-Rhap-(1 → disaccharide repeating units as backbone and β-1,4-galactan, α-1,5/1,3,5-arabinan and type II arabinogalactan as side chains. 1-KGP (1 M KOH-soluble ginseng polysaccharide) and 4-KGP (4 M KOH-soluble ginseng polysaccharide) were mainly composed of hemicellulose besides starch-like polysaccharides and minor pectin. Antibody detection, enzymic hydrolysis, high performance anion exchange chromatography and methylation analysis demonstrated xylan was the major component in 1-KGP, while xyloglucan was predominant in 4-KGP. Comparing the polysaccharides obtained by different solvent extractions, we have a comprehensive understanding about total ginseng polysaccharides. PMID:29657770

  3. Characterization of polysaccharides with marked inhibitory effect on lipid accumulation in Pleurotus eryngii.

    PubMed

    Chen, Jingjing; Yong, Yangyang; Xing, Meichun; Gu, Yifan; Zhang, Zhao; Zhang, Shizhu; Lu, Ling

    2013-09-12

    Mushrooms have a great potential for the production of useful bioactive metabolites. To explore the bioactive compounds from edible mushrooms for interfering with the development of macrophage-derived foam cells, which is recognized as the hallmark of early atherosclerosis, eight types of mushrooms polysaccharides had been selected to be tested. Consequently, different mushrooms polysaccharides displayed diverse component profiles. Of polysaccharides that we tested, the Pleurotus eryngii polysaccharide had the strongest inhibitory effect on lipid accumulation. Furthermore, through fractionation of DEAE-52 and Sephadex G-100, the polysaccharide from P. eryngii had been successfully purified and identified. By the analysis of IR, GC, and HPLC, the purified polysaccharide was estimated to be 30-38 kDa for the average molecular weight with the monosaccharide composition mainly composed of D-types of mannose, glucose and galactose. Findings presented in this report firstly provide direct evidence, which links the purified polysaccharide moiety with the biological function in foam-cell model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls

    PubMed Central

    Sun, Yuliang; Juzenas, Kevin

    2017-01-01

    Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585

  5. O-sulfated bacterial polysaccharides with low anticoagulant activity inhibit metastasis.

    PubMed

    Borgenström, Marjut; Wärri, Anni; Hiilesvuo, Katri; Käkönen, Rami; Käkönen, Sanna; Nissinen, Liisa; Pihlavisto, Marjo; Marjamäki, Anne; Vlodavsky, Israel; Naggi, Annamaria; Torri, Giangiacomo; Casu, Benito; Veromaa, Timo; Salmivirta, Markku; Elenius, Klaus

    2007-07-01

    Heparin-like polysaccharides possess the capacity to inhibit cancer cell proliferation, angiogenesis, heparanase-mediated cancer cell invasion, and cancer cell adhesion to vascular endothelia via adhesion receptors, such as selectins. The clinical applicability of the antitumor effect of such polysaccharides, however, is compromised by their anticoagulant activity. We have compared the potential of chemically O-sulfated and N,O-sulfated bacterial polysaccharide (capsular polysaccharide from E. COLI K5 [K5PS]) species to inhibit metastasis of mouse B16-BL6 melanoma cells and human MDA-MB-231 breast cancer cells in two in vivo models. We demonstrate that in both settings, O-sulfated K5PS was a potent inhibitor of metastasis. Reducing the molecular weight of the polysaccharide, however, resulted in lower antimetastatic capacity. Furthermore, we show that O-sulfated K5PS efficiently inhibited the invasion of B16-BL6 cells through Matrigel and also inhibited the in vitro activity of heparanase. Moreover, treatment with O-sulfated K5PS lowered the ability of B16-BL6 cells to adhere to endothelial cells, intercellular adhesion molecule-1, and P-selectin, but not to E-selectin. Importantly, O-sulfated K5PSs were largely devoid of anticoagulant activity. These findings indicate that O-sulfated K5PS polysaccharide should be considered as a potential antimetastatic agent.

  6. Carboxymethylated degraded polysaccharides from Enteromorpha prolifera: Preparation and in vitro antioxidant activity.

    PubMed

    Shi, Mei-Jia; Wei, Xiaoyi; Xu, Jie; Chen, Bing-Jie; Zhao, De-Yin; Cui, Shuai; Zhou, Tao

    2017-01-15

    In order to improve the bioactivities of the polysaccharide from Enteromorpha prolifera (PE), crude PE (Mw 1400kDa) was degraded to low molecular weight polysaccharide (44kDa) in the presence of hydrogen peroxide/ascorbic acid, followed by carboxymethylation. The reaction conditions for carboxymethylation of degraded polysaccharide (DPE) were optimized by Response Surface Methodology. The carboxymethyled degraded polysaccharide (CDPE) obtained under optimized conditions, with a degree of carboxymethylation of 0.849, was characterized by FT-IR and (13)C NMR. The molecular weight of CDPE was measured to be 53.7kDa. CDPE was evaluated for its antioxidant activity by determining the ability to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl and superoxide anion radicals, and by determining the ferric reducing power. The antioxidant activity of CDPE was found to be greatly improved in comparison with degraded polysaccharide (DPE) and crude polysaccharide from Enteromorpha prolifera (PE). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Optimization of polysaccharides extraction from watermelon rinds: Structure, functional and biological activities.

    PubMed

    Romdhane, Molka Ben; Haddar, Anissa; Ghazala, Imen; Jeddou, Khawla Ben; Helbert, Claire Boisset; Ellouz-Chaabouni, Semia

    2017-02-01

    In the present work, optimization of hot water extraction, structural characteristics, functional properties, and biological activities of polysaccharides extracted from watermelon rinds (WMRP) were investigated. The physicochemical characteristics and the monosaccharide composition of these polysaccharides were then determined using chemical composition analysis, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and gas chromatography-flame ionization detection (GC-FID). SEM images showed that extracted polysaccharides had a rough surface with many cavities. GC-FID results proved that galactose was the dominant sugar in the extracted polysaccharides, followed by arabinose, glucose, galacturonic acid, rhamnose, mannose, xylose and traces of glucuronic acid. The findings revealed that WMRP displayed excellent antihypertensive and antioxidant activities. Those polysaccharides had also a protection effect against hydroxyl radical-induced DNA damage. Functional properties of extracted polysaccharides were also evaluated. WMRP showed good interfacial dose-dependent proprieties. Overall, the results suggested that WMRP presents a promising natural source of antioxidants and antihypertensive agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Isolation and antiviral activity of water-soluble Cynomorium songaricum Rupr. polysaccharides.

    PubMed

    Tuvaanjav, Suvdmaa; Shuqin, Han; Komata, Masashi; Ma, Chunjie; Kanamoto, Taisei; Nakashima, Hideki; Yoshida, Takashi

    2016-01-01

    The plant, Cynomorium songaricum Rupr., is used as a traditional medicine in China and Mongolia. In the present study, two new water-soluble polysaccharides isolated from C. songaricum Rupr. were purified by successive Sephadex G-75 and G-50 column chromatographies and then characterized by high resolution NMR and IR spectroscopies. The molecular weights of two polysaccharides were determined by an aqueous GPC to be [Formula: see text] = 3.7 × 10(4) and 1.0 × 10(4), respectively. In addition, it was found that the polysaccharide with the larger molecular weight was an acidic polysaccharide. It was found that the iodine-starch reaction of both isolated polysaccharides was negative and the methylation analysis gave 2, 4, 6-tri-O-methyl alditol acetate as a main product. NMR and IR measurements and sugar analysis revealed that both polysaccharides had a (1 → 3)-α-d-glucopyranosidic main chain with a small number of branches. After sulfation, the sulfated C. songaricum Rupr. polysaccharides were found to have a potent inhibitory effect on HIV infection of MT-4 cells at a 50% effective concentration of 0.3-0.4 μg/ml, a concentration that has almost the same high activity as standard dextran and curdlan sulfates, EC50 = 0.35 and 0.14 μg/ml, respectively. The 50% cytotoxic concentration was low, CC50>1000 μg/ml. In addition, the interaction between the sulfated polysaccharides and poly-l-lysine as a model protein compound was investigated by a surface plasmon resonance to reveal the anti-HIV mechanism.

  9. Sustainability, polysaccharide science, and bio-economy.

    PubMed

    ten Bos, René; van Dam, Jan E G

    2013-03-01

    At the opening of the 2nd EPNOE conference the role and responsibility of polysaccharide scientists was reflected upon and placed in the context of actual global issues like the transition process towards "sustainable bio-economy". Difficulties in the chain of communication between the different parties involved and towards the wider public was addressed. The need for change in the relations between science and the public and to go beyond the horizon of the specialization was discussed. It was stated that polysaccharide science is one of the key sciences in those transitions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review.

    PubMed

    Ahmadi, Azin; Zorofchian Moghadamtousi, Soheil; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.

  11. Extraction, Structural Characterization, and Potential Antioxidant Activity of the Polysaccharides from Four Seaweeds

    PubMed Central

    He, Jinzhe; Xu, Yaoyang; Chen, Hongbo; Sun, Peilong

    2016-01-01

    Four seaweed polysaccharides were extracted from Sarcodia ceylonensis, Ulva lactuca L., Gracilaria lemaneiformis, and Durvillaea antarctica, respectively, by microwave-assisted extraction. The effect of three significant variables (extraction time, extraction temperature, and the ratio of water to raw material) on the process for extracting polysaccharides was investigated, along with the optimization of the extraction using the response surface method (RSM) with a Box–Behnken design. The polysaccharide structure, monosaccharide composition, degree of sulfation, and molecular weight (MW) distribution were analyzed by infrared (IR) spectrometry, gas chromatography (GC), and high-performance gel permeation chromatography (HPGPC). IR spectrometry showed that Sarcodia ceylonensis polysaccharide (SCP), Ulva lactuca L. polysaccharide (ULLP), and Durvillaea antarctica polysaccharide (DAP) were all sulfated polysaccharides and, except Gracilaria lemaneiformis polysaccharide (GLP), all belong to β-pyranosidic polysaccharides. The average molecular weight (MW) of SCP, ULLP, GLP, and DAP was 466, 404, 591, and 482 kDa, respectively. The quantitative and comparative results with external standards indicated that the main monosaccharide in SCP and ULLP was mannose; and GLP and DAP were mainly composed of galactose and glucose, respectively. Then the in vitro antioxidant activity of all of the polysaccharides was evaluated using different assays—2,2–azino –bis (3-ethylbenzthiazoline-6- sulfonate) (ABTS), hydroxyl radical, nitrite scavenging capacity, and reducing power—and the relationship between their antioxidant activity and chemical characteristics were also examined. ULLP presented the highest ABTS radical scavenging activity; ULLP, SCP and DAP also showed a strong effect on the ABTS radical scavenging activity. SCP and ULLP exhibited excellent hydroxyl radical scavenging activities, about 83.33% ± 2.31% and 80.07% ± 2.17%, respectively, at 4 mg/mL. The

  12. Extraction, Structural Characterization, and Potential Antioxidant Activity of the Polysaccharides from Four Seaweeds.

    PubMed

    He, Jinzhe; Xu, Yaoyang; Chen, Hongbo; Sun, Peilong

    2016-11-28

    Four seaweed polysaccharides were extracted from Sarcodia ceylonensis , Ulva lactuca L., Gracilaria lemaneiformis , and Durvillaea antarctica , respectively, by microwave-assisted extraction. The effect of three significant variables (extraction time, extraction temperature, and the ratio of water to raw material) on the process for extracting polysaccharides was investigated, along with the optimization of the extraction using the response surface method (RSM) with a Box-Behnken design. The polysaccharide structure, monosaccharide composition, degree of sulfation, and molecular weight ( M W ) distribution were analyzed by infrared (IR) spectrometry, gas chromatography (GC), and high-performance gel permeation chromatography (HPGPC). IR spectrometry showed that Sarcodia ceylonensis polysaccharide (SCP), Ulva lactuca L. polysaccharide (ULLP), and Durvillaea antarctica polysaccharide (DAP) were all sulfated polysaccharides and, except Gracilaria lemaneiformis polysaccharide (GLP), all belong to β-pyranosidic polysaccharides. The average molecular weight ( M W ) of SCP, ULLP, GLP, and DAP was 466, 404, 591, and 482 kDa, respectively. The quantitative and comparative results with external standards indicated that the main monosaccharide in SCP and ULLP was mannose; and GLP and DAP were mainly composed of galactose and glucose, respectively. Then the in vitro antioxidant activity of all of the polysaccharides was evaluated using different assays-2,2-azino -bis (3-ethylbenzthiazoline-6- sulfonate) (ABTS), hydroxyl radical, nitrite scavenging capacity, and reducing power-and the relationship between their antioxidant activity and chemical characteristics were also examined. ULLP presented the highest ABTS radical scavenging activity; ULLP, SCP and DAP also showed a strong effect on the ABTS radical scavenging activity. SCP and ULLP exhibited excellent hydroxyl radical scavenging activities, about 83.33% ± 2.31% and 80.07% ± 2.17%, respectively, at 4 mg/mL. The reducing

  13. Size resolved airborne particulate polysaccharides in summer high Arctic

    NASA Astrophysics Data System (ADS)

    Leck, C.; Gao, Q.; Mashayekhy Rad, F.; Nilsson, U.

    2013-04-01

    Size-resolved aerosol samples for subsequent determination of polysaccharides (monosaccharides in combined form) were collected in air over the central Arctic Ocean during the biologically most active period between the late summer melt season and into the transition to autumn freeze-up. The analysis was carried out using liquid chromatography coupled with highly selective and sensitive tandem mass spectrometry. Polysaccharides were detected in all sizes ranging from 0.035 to 10 μm in diameter with distinct features of heteropolysaccharides, enriched in xylose, glucose + mannose as well as a substantial fraction of deoxysugars. Polysaccharides containing deoxysugars showed a bimodal structure with about 60% of their mass found in the Aitken mode over the pack ice area. Pentose (xylose) and hexose (glucose + mannose) showed a weaker bimodal character and were largely found in the coarse mode in addition to a minor fraction apportioned in the sub-micrometer size range. The concentration of total hydrolysable neutral sugars (THNS) in the samples collected varied over 3 orders of magnitude (1 to 692 pmol m-3) in the super-micrometer size fraction and to a lesser extent in sub-micrometer particles (4 to 88 pmol m-3). Lowest THNS concentrations were observed in air masses that had spent more than 5 days over the pack ice. Within the pack ice area, about 53% (by mass) of the total mass of polysaccharides were found in sub-micrometer particles. The relative abundance of sub-micrometer polysaccharides was closely related to the length of time that the air mass spent over pack ice, with highest fraction (> 90%) observed for > 7 days of advection. The ambient aerosol particles collected onboard ship showed similar monosaccharide composition, compared to particles generated experimentally in situ at the open lead site. This supports the existence of a primary source of particulate polysaccharides from open leads by bubble bursting at the air-sea interface. We speculate that

  14. Production of capsular polysaccharide from Escherichia coli K4 for biotechnological applications.

    PubMed

    Cimini, Donatella; Restaino, Odile Francesca; Catapano, Angela; De Rosa, Mario; Schiraldi, Chiara

    2010-02-01

    The production of industrially relevant microbial polysaccharides has recently gained much interest. The capsular polysaccharide of Escherichia coli K4 is almost identical to chondroitin, a commercially valuable biopolymer that is so far obtained from animal tissues entailing complex and expensive extraction procedures. In the present study, the production of capsular polysaccharide by E. coli K4 was investigated taking into consideration a potential industrial application. Strain physiology was first characterized in shake flask experiments to determine the optimal culture conditions for the growth of the microorganism and correlate it to polysaccharide production. Results show that the concentration of carbon source greatly affects polysaccharide production, while the complex nitrogen source is mainly responsible for the build up of biomass. Small-scale batch processes were performed to further evaluate the effect of the initial carbon source concentration and of growth temperatures on polysaccharide production, finally leading to the establishment of the medium to use in following fermentation experiments on a bigger scale. The fed-batch strategy next developed on a 2-L reactor resulted in a maximum cell density of 56 g(cww)/L and a titre of capsular polysaccharide equal to 1.4 g/L, approximately ten- and fivefold higher than results obtained in shake flask and 2-L batch experiments, respectively. The release kinetics of K4 polysaccharide into the medium were also explored to gain insight into the mechanisms underlying a complex aspect of the strain physiology.

  15. Antioxidant and anticoagulant activity of sulfated polysaccharide from Gracilaria debilis (Forsskal).

    PubMed

    Sudharsan, Sadhasivam; Subhapradha, Namasivayam; Seedevi, Palaniappan; Shanmugam, Vairamani; Madeswaran, Perumal; Shanmugam, Annaian; Srinivasan, Alagiri

    2015-11-01

    Sulfated polysaccharide was isolated from Gracilaria debilis and purified through gel chromatography and their molecular weight was determined through AGE and PAGE. The total sugars in the crude, fractionated and purified polysaccharide were estimated as 52.65%, 59.70% and 67.60%, respectively. The ash and moisture content of crude and purified polysaccharide was found to be 14.2% and 23.5% and the polysaccharide was free from protein contamination. The sulfate and uronic acid contents in the crude, fractionated and purified were estimated as 14.08%, 15.33% and 16.01% and 10.12%, 13.56%, 16.70%. The elemental composition including carbon (crude - 23.12%, purified - 21.05%), hydrogen (crude - 3.4%, purified - 4.13%) and nitrogen (crude - 1.22%, purified - 0.56%) were also analyzed. The anticoagulant activity of the sulfated polysaccharide through APTT and PT was estimated at 14.11 and 8.23IU/mg. The purified polysaccharide with the molecular mass of 20kDa showed highest antioxidant activity (38.57%, 43.48% and 38.88%) in all the assays tested such as DPPH hydroxyl radical, superoxide radical, hydroxyl radical scavenging activities and the structural property was analyzed through FT-IR and (1)H NMR spectrum. The results together suggest that the isolated low molecular weight sulfated polysaccharide will demonstrate as a enormously available alternative natural source of antioxidant for industrial uses. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Isolation and partial characterization of immunostimulating polysaccharides from Imperata cylindrica.

    PubMed

    Pinilla, V; Luu, B

    1999-08-01

    The water-soluble crude extract prepared from Imperata cylindrica (Beauv.) was investigated for its immunomodulating activity. A set of polysaccharides with high molecular weights has been isolated by fractionation using gel filtration and anion-exchange chromatography. Each step of purification was monitored by bioassays. The presence of six monosaccharides has been established by chemical analysis. Quantitative analysis showed that the ratio of these monosaccharides differed from one polysaccharide to another. The crude extract as well as some of the purified polysaccharides enhance the proliferation of murine splenocytes.

  17. Chemical Composition and Antioxidant Activities of Three Polysaccharide Fractions from Pine Cones

    PubMed Central

    Xu, Ren-Bo; Yang, Xin; Wang, Jing; Zhao, Hai-Tian; Lu, Wei-Hong; Cui, Jie; Cheng, Cui-Lin; Zou, Pan; Huang, Wei-Wei; Wang, Pu; Li, Wen-Jing; Hu, Xing-Long

    2012-01-01

    The traditional method of gas chromatography-mass spectrometry for monosaccharide component analysis with pretreatment of acetylation is described with slight modifications and verified in detail in this paper. It was then successfully applied to the quantitative analysis of component monosaccharides in polysaccharides extracted from the pine cones. The results demonstrated that the three pine cone polysaccharides all consisted of ribose, rhamnose, arabinose, xylose, mannose, glucose and galactose in different molar ratios. According to the recovery experiment, the described method was proved accurate and practical for the analysis of pine cone polysaccharides, meeting the need in the field of chemical analysis of Pinus plants. Furthermore; the chemical characteristics, such as neutral sugar, uronic acids, amino acids, molecular weights, and antioxidant activities of the polysaccharides were investigated by chemical and instrumental methods. The results showed that the chemical compositions of the polysaccharides differed from each other, especially in the content of neutral sugar and uronic acid. In the antioxidant assays, the polysaccharide fractions exhibited effective scavenging activities on ABTS radical and hydroxyl radical, with their antioxidant capabilities decreasing in the order of PKP > PAP > PSP. Therefore, although the polysaccharide fractions had little effect on superoxide radical scavenging, they still have potential to be developed as natural antioxidant agents in functional foods or medicine. PMID:23203063

  18. Defective anti-polysaccharide IgG vaccine responses in IgA deficient mice.

    PubMed

    Furuya, Yoichi; Kirimanjeswara, Girish S; Roberts, Sean; Racine, Rachael; Wilson-Welder, Jennifer; Sanfilippo, Alan M; Salmon, Sharon L; Metzger, Dennis W

    2017-09-05

    We report that IgA -/- mice exhibit specific defects in IgG antibody responses to various polysaccharide vaccines (Francisella tularensis LPS and Pneumovax), but not protein vaccines such as Fluzone. This defect further included responses to polysaccharide-protein conjugate vaccines (Prevnar and Haemophilus influenzae type b-tetanus toxoid vaccine). In agreement with these findings, IgA -/- mice were protected from pathogen challenge with protein- but not polysaccharide-based vaccines. Interestingly, after immunization with live bacteria, IgA +/+ and IgA -/- mice were both resistant to lethal challenge and their IgG anti-polysaccharide antibody responses were comparable. Immunization with live bacteria, but not purified polysaccharide, induced production of serum B cell-activating factor (BAFF), a cytokine important for IgG class switching; supplementing IgA -/- cell cultures with BAFF enhanced in vitro polyclonal IgG production. Taken together, these findings show that IgA deficiency impairs IgG class switching following vaccination with polysaccharide antigens and that live bacterial immunization can overcome this defect. Since IgA deficient patients also often show defects in antibody responses following immunization with polysaccharide vaccines, our findings could have relevance to the clinical management of this population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Immobilized-type chiral packing materials for HPLC based on polysaccharide derivatives.

    PubMed

    Ikai, Tomoyuki; Yamamoto, Chiyo; Kamigaito, Masami; Okamoto, Yoshio

    2008-11-01

    The polysaccharide-based chiral packing materials (CPMs) for high-performance liquid chromatography (HPLC) have been recognized as the most powerful ones for the analyzing and preparative separating of the chiral compounds. These CPMs have been conventionally prepared by coating polysaccharide derivatives on a silica gel support. This means that the solvents, which swell or dissolve the derivatives on the silica gel and reduce the performance of the chiral columns, do not allow to be applied as components of the eluents. Therefore, the polysaccharide-based CPMs can be used with a rather limited number of eluents. In order to enhance the versatility of the eluent selection for more practical and economical chromatographic enantioseparations, the polysaccharide derivatives must be immobilized onto the silica gel. This review summarizes our latest studies on the development of the immobilized-type CPMs via the radical copolymerization and the polycondensation of the polysaccharide derivatives bearing small amounts of vinyl groups and alkoxysilyl groups, respectively.

  20. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities.

    PubMed

    Ferreira, Isabel C F R; Heleno, Sandrina A; Reis, Filipa S; Stojkovic, Dejan; Queiroz, Maria João R P; Vasconcelos, M Helena; Sokovic, Marina

    2015-06-01

    Ganoderma genus comprises one of the most commonly studied species worldwide, Ganoderma lucidum. However, other Ganoderma species have been also reported as important sources of bioactive compounds. Polysaccharides are important contributors to the medicinal properties reported for Ganoderma species, as demonstrated by the numerous publications, including reviews, on this matter. Yet, what are the chemical features of Ganoderma polysaccharides that have bioactivity? In the present manuscript, the chemical features of Ganoderma polysaccharides with reported antioxidant, antitumor and antimicrobial activities (the most studied worldwide) are analyzed in detail. The composition of sugars (homo- versus hetero-glucans and other polysaccharides), type of glycosidic linkages, branching patterns, and linkage to proteins are discussed. Methods for extraction, isolation and identification are evaluated and, finally, the bioactivity of polysaccharidic extracts and purified compounds are discussed. The integration of data allows deduction of structure-activity relationships and gives clues to the chemical aspects involved in Ganoderma bioactivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Influence of polysaccharides on wine protein aggregation.

    PubMed

    Jaeckels, Nadine; Meier, Miriam; Dietrich, Helmut; Will, Frank; Decker, Heinz; Fronk, Petra

    2016-06-01

    Polysaccharides are the major high-molecular weight components of wines. In contrast, proteins occur only in small amounts in wine, but contribute to haze formation. The detailed mechanism of aggregation of these proteins, especially in combination with other wine components, remains unclear. This study demonstrates the different aggregation behavior between a buffer and a model wine system by dynamic light scattering. Arabinogalactan-protein, for example, shows an increased aggregation in the model wine system, while in the buffer system a reducing effect is observed. Thus, we could show the importance to examine the behavior of wine additives under conditions close to reality, instead of simpler buffer systems. Additional experiments on melting points of wine proteins reveal that only some isoforms of thaumatin-like proteins and chitinases are involved in haze formation. We can confirm interactions between polysaccharides and proteins, but none of these polysaccharides is able to prevent haze in wine. Copyright © 2016. Published by Elsevier Ltd.

  2. Neisseria meningitidis serogroup A capsular polysaccharide acetyltransferase, methods and compositions

    DOEpatents

    Stephens, David S [Stone Mountain, GA; Gudlavalleti, Seshu K [Kensington, MD; Tzeng, Yih-Ling [Atlanta, GA; Datta, Anup K [San Diego, CA; Carlson, Russell W [Athens, GA

    2011-02-08

    Provided are methods for recombinant production of an O-acetyltransferase and methods for acetylating capsular polysaccharides, especially those of a Serogroup A Neisseria meningitidis using the recombinant O-acetyltransferase, and immunogenic compositions comprising the acetylated capsular polysaccharide.

  3. Preparation of Bioactive Polysaccharide Nanoparticles with Enhanced Radical Scavenging Activity and Antimicrobial Activity.

    PubMed

    Qin, Yang; Xiong, Liu; Li, Man; Liu, Jing; Wu, Hao; Qiu, Hongwei; Mu, Hongyan; Xu, Xingfeng; Sun, Qingjie

    2018-05-02

    Because of their biocompatibility and biodegradability in vivo, natural polysaccharides are effective nanocarriers for delivery of active ingredients or drugs. Moreover, bioactive polysaccharides, such as tea, Ganoderma lucidum, and Momordica charantia polysaccharides (TP, GLP, and MCP), have antibacterial, antioxidant, antitumor, and antiviral properties. In this study, tea, Ganoderma lucidum, and Momordica charantia polysaccharide nanoparticles (TP-NPs, GLP-NPs, and MCP-NPs) were prepared via the nanoprecipitation approach. When the ethanol to water ratio was 10:1, the diameter of the spherical polysaccharide nanoparticles was the smallest, and the mean particle size of the TP-NPs, GLP-NPs, and MCP-NPs was 99 ± 15, 95 ± 7, and 141 ± 9 nm, respectively. When exposed to heat, increased ionic strength and pH levels, the nanoparticles exhibited superior stability and higher activity than the corresponding polysaccharides. In physiological conditions (pH 7.4), the nanoparticles underwent different protein adsorption capacities in the following order: MCP-NPs> TP-NPs> GLP-NPs. Moreover, the 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical, and superoxide anion radical scavenging rates of the nanoparticles were increased by 9-25% as compared to the corresponding polysaccharides. Compared to the bioactive polysaccharides, the nanoparticles enhanced antimicrobial efficacy markedly and exhibited long-acting antibacterial activity.

  4. Utilizing whey protein isolate and polysaccharide complexes to stabilize aerated dairy gels.

    PubMed

    O'Chiu, Emily; Vardhanabhuti, Bongkosh

    2017-05-01

    Heated soluble complexes of whey protein isolate (WPI) with polysaccharides may be used to modify the properties of aerated dairy gels, which could be formulated into novel-textured high-protein desserts. The objective of this study was to determine the effect of polysaccharide charge density and concentration within a WPI-polysaccharide complex on the physical properties of aerated gels. Three polysaccharides having different degrees of charge density were chosen: low-methoxyl pectin, high-methoxyl type D pectin, and guar gum. Heated complexes were prepared by heating the mixed dispersions (8% protein, 0 to 1% polysaccharide) at pH 7. To form aerated gels, 2% glucono-δ-lactone was added to the dispersions of skim milk powder and heated complex and foam was generated by whipping with a handheld frother. The foam set into a gel as the glucono-δ-lactone acidified to a final pH of 4.5. The aerated gels were evaluated for overrun, drainage, gel strength, and viscoelastic properties. Without heated complexes, stable aerated gels could not be formed. Overrun of aerated gel decreased (up to 73%) as polysaccharide concentration increased from 0.105 to 0.315% due to increased viscosity, which limited air incorporation. A negative relationship was found between percent drainage and dispersion viscosity. However, plotting of drainage against dispersion viscosity separated by polysaccharide type revealed that drainage decreased most in samples with high-charge-density, low-methoxyl pectin followed by those with low-charge-density, high-methoxyl type D pectin. Aerated gels with guar gum (no charge) did not show improvement to stability. Rheological results showed no significant difference in gelation time among samples; therefore, stronger interactions between WPI and high-charge-density polysaccharide were likely responsible for increased stability. Stable dairy aerated gels can be created from WPI-polysaccharide complexes. High-charge-density polysaccharides, at

  5. [Correlation analysis of major agronomic characters and the polysaccharide contents in Dendrobium officinale].

    PubMed

    Zhang, Lei; Zheng, Xi-Long; Qiu, Dao-Shou; Cai, Shi-Ke; Luo, Huan-Ming; Deng, Rui-Yun; Liu, Xiao-Jin

    2013-10-01

    In order to provide theoretical and technological basis for the germplasm innovation and variety breeding in Dendrobium officinale, a study of the correlation between polysaccharide content and agronomic characters was conducted. Based on the polysaccharide content determination and the agronomic characters investigation of 30 copies (110 individual plants) of Dendrobium officinale germplasm resources, the correlation between polysaccharide content and agronomic characters was analyzed via path and correlation analysis. Correlation analysis results showed that there was a significant negative correlation between average spacing and polysaccharide content, the correlation coefficient was -0.695. And the blade thickness was positively correlated with the polysaccharide content, but the correlation was not significant. The path analysis results showed that the stem length was the maximum influence factor to the polysaccharide, and it was positive effect, the direct path coefficient was 1.568. According to thess results, the polysaccharide content can be easily and intuitively estimated by the agronomic characters investigating data in the germpalsm resources screening and variety breeding. Therefore, it is a visual and practical technology guidance in quality variety breeding of Dendrobium officinale.

  6. Improvement of antioxidant and moisture-preserving activities of Sargassum horneri polysaccharide enzymatic hydrolyzates.

    PubMed

    Shao, Ping; Chen, Xiaoxiao; Sun, Peilong

    2015-03-01

    In the previous study, we have found that polysaccharides isolated from Sargassum horneri exhibited bioactivities. The aim of this study was to investigate the antioxidant and moisture-preserving activities of molecular weight alteration of Sargassum horneri polysaccharide in vitro. For this purpose, the homogeneous active polysaccharide SHP was isolated from Sargassum horneri, and response surface methodology was employed to optimize the enzymatic degradation conditions to get SHP-derived fragments with different molecular weight. Results proved that the polysaccharide is capable of scavenging both ABTS and DPPH radicals in vitro. The study revealed that the polysaccharides had strong moisture-absorption and -retention capacities as compared to propanediol and glycerin. Furthermore, these data demonstrated that molecular weight had a certain effect on antioxidant activities and strong moisture-retention capacities of the polysaccharide from Sargassum horneri. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Screening of polysaccharides from tamarind, fenugreek and jackfruit seeds as pharmaceutical excipients.

    PubMed

    Nayak, Amit Kumar; Pal, Dilipkumar; Santra, Kousik

    2015-08-01

    The paper describes the isolation and screening of plant polysaccharides namely tamarind seed polysaccharide (TSP), fenugreek seed mucilage (FSM) and jackfruit seed starch (JFSS) from tamarind (Tamarindus indica L.) seeds, fenugreek (Trigonella foenum-graecum L.) seeds and jackfruit (Artocarpus heterophyllus L.) seeds, respectively. The yields of isolated dried TSP, FSM and JFSS were 47.00%, 17.36% and 18.86%, respectively. Various physicochemical properties like colour, odour, taste, solubility in water, pH and viscosity of these isolated plant polysaccharides were assessed. Isolated polysaccharide samples were subjected to some phytochemical identification tests. FTIR and (1)H NMR analyses of isolated polysaccharides were performed, which suggest the presence of sugar residues. Isolated TSP, FSM and JFSS can be used as pharmaceutical excipients in various pharmaceutical formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Properties of the polysaccharide and mucopeptide components of the cell wall of Lactobacillus casei

    PubMed Central

    Hall, Elizabeth A.; Knox, K. W.

    1965-01-01

    1. The polysaccharide and mucopeptide components of the cell wall of Lactobacillus casei have been separated by mild conditions of acid hydrolysis. 2. Removal of the polysaccharide renders the mucopeptide susceptible to lysozyme. 3. The mucopeptide and polysaccharide components have been analysed and the results compared with those obtained previously. 4. The polysaccharides responsible for group specificity have a terminal reducing N-acetylgalactosamine residue substituted on C(3) by the adjacent sugar; estimation of this component gave an indication of the molecular weight of the polysaccharides. 5. Evidence has been obtained for the presence of rhamnosyl-(1→3)-N-acetylgalactosamine among the products of acid hydrolysis of the group B polysaccharide. ImagesFig. 2. PMID:5837778

  9. The Modulation of Adaptive Immune Responses by Bacterial Zwitterionic Polysaccharides

    PubMed Central

    Stephen, Tom Li; Groneck, Laura; Kalka-Moll, Wiltrud Maria

    2010-01-01

    The detection of pathogen-derived molecules as foreign particles by adaptive immune cells triggers T and B lymphocytes to mount protective cellular and humoral responses, respectively. Recent immunological advances elucidated that proteins and some lipids are the principle biological molecules that induce protective T cell responses during microbial infections. Polysaccharides are important components of microbial pathogens and many vaccines. However, research concerning the activation of the adaptive immune system by polysaccharides gained interest only recently. Traditionally, polysaccharides were considered to be T cell-independent antigens that did not directly activate T cells or induce protective immune responses. Here, we review several recent advances in “carbohydrate immunobiology”. A group of bacterial polysaccharides that are known as “zwitterionic polysaccharides (ZPSs)” were recently identified as potent immune modulators. The immunomodulatory effect of ZPSs required antigen processing and presentation by antigen presenting cells, the activation of CD4 T cells and subpopulations of CD8 T cells and the modulation of host cytokine responses. In this review, we also discuss the potential use of these unique immunomodulatory ZPSs in new vaccination strategies against chronic inflammatory conditions, autoimmunity, infectious diseases, allergies and asthmatic conditions. PMID:21234388

  10. Extraction, purification and elicitor activities of polysaccharides from Chrysanthemum indicum.

    PubMed

    Du, Ningning; Tian, Wei; Zheng, Dongfang; Zhang, Xinyi; Qin, Pinyan

    2016-01-01

    Polysaccharides isolated from Chrysanthemum indicum were studied for their pathogen-derived resistance against Sclerotium rolfsii sacc in Atractylodis maceocephalae koidz. The total sugar content and monosaccharide analysis were determined by phenol-sulfuric acid method and gas chromatography, and infrared spectroscopy performed for simple structure information. The activities of CAT and POD as protective enzymes in A. maceocephalae leaves were evaluated. The purified polysaccharides exhibited strong CAT and POD activities in inoculated with S. rolfsii in A. macrocephala leaves, attained the maximum value 568.3 Ug(-1)min(-1) and 604.4 Ug(-1)min(-1)respectively. Whereas, when compared with the control plants, 20mg/ml purified polysaccharides exhibited the strongest CAT and POD activities. Notably, the treatments of A. macepcephalae seedlings with C. indicum polysaccharides (CIP) decreased disease index development caused by S. rolfsii. The disease index after 10 days was significantly reduced when the seedlings treated with 20mg/ml CIP, 4.41 compared to the control plants 32.00. Given together, these results indicated that purified polysaccharides derived from C. indicum may be useful as a natural inducer. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Maca polysaccharides: Extraction optimization, structural features and anti-fatigue activities.

    PubMed

    Li, Yujuan; Xin, Yizhou; Xu, Fangxue; Zheng, Mengmeng; Xi, Xiaozhi; Cui, Xiaowei; Cao, Hui; Guo, Hong; Han, Chunchao

    2018-08-01

    The maca polysaccharides optimal extraction conditions were obtained by using response surface methodology (RSM) method and the anti-fatigue activity of maca polysaccharides (MCP) was explored. The maca polysaccharides extract yield of RSM could reach 9.97 mg/g by using the model predicts, and the total sugar and protein purity were 61.00% and 4.46% with the further isolation process, respectively. And the monosaccharide compositions obtained by gas chromatograph (GC) were composed of rhamnose (rha), glucose (glc), galactose (gal) with the ratio of 2.34:10.21:1.00. Furthermore, the anti-fatigue activity was evaluated by the swimming parameter, biochemistry parameters (liver glycogen (LG), blood urea nitrogen (BUN), and lactic acid (LD)), the result indicated that the low-dose maca polysaccharides group had the significant anti-fatigue activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Ultrasonic extraction, antioxidant and anticancer activities of novel polysaccharides from Chuanxiong rhizome.

    PubMed

    Hu, Jie; Jia, Xuejing; Fang, Xiaobin; Li, Peng; He, Chengwei; Chen, Meiwan

    2016-04-01

    Ultrasonic-assisted extraction technology was employed to prepare Ligusticum chuanxiong Hort polysaccharide. Single factor test and orthogonal experimental design were used to optimize the extraction conditions. The results showed that the optimal extraction conditions consisted of ultrasonic temperature of 80°C, ultrasonic time of 40 min and water to raw material ratio of 30 mL/g. Three novel polysaccharides fractions, LCX0, LCX1 and LCX2, were isolated and purified from the crude polysaccharides using DEAE-52 cellulose and Sephadex G-100 column chromatography. The molecular weight and monosaccharide composition of three LCX polysaccharides fractions were analyzed with gel permeation chromatography (GPC) and HPLC analysis, respectively. Furthermore, the antioxidant and in vitro anticancer activities of the polysaccharides were investigated. Compared with LCX0, LCX2 and LCX1 showed relative higher antioxidant activity and inhibitory activity to the growth of HepG2, SMMC7721, A549 and HCT-116 cells. It is suggested that the novel polysaccharides from rhizome of L. chuanxiong could be promising bioactive macromolecules for biomedical use. Copyright © 2016. Published by Elsevier B.V.

  13. Physicochemical characteristics and biological activities of polysaccharide fractions from Phellinus baumii cultured with different methods.

    PubMed

    Li, Tingting; Yang, Yan; Liu, Yanfang; Zhou, Shuai; Yan, Meng Qiu; Wu, Di; Zhang, Jingsong; Tang, Chuanhong

    2015-11-01

    Nine polysaccharide fractions were obtained from the fruiting bodies, submerged mycelia, and solid state fermented products of Phellinus baumii using different concentrations of ethanol precipitation. The chemical characteristics and in vitro immunological activities of the nine polysaccharide fractions were compared and studied. Results indicated that the fractions precipitated with 50% ethanol had higher yields of polysaccharides and submerged mycelia contributed to high extraction yields of polysaccharides and possessed higher polysaccharide contents. HPSEC-MALLS-RI analysis showed that the molecular weight (Mw) of polysaccharide fractions from these three materials decreased with the increasing of precipitated ethanol concentration. The Mw of fruiting body polysaccharide fractions ranged from 1.98×10(4)Da to 1.89×10(6)Da. Large-molecular-weight polysaccharides (from 2.11×10(6)Da to 2.01×10(7)Da) were found in submerged mycelia. Some lower-molecular-weight polysaccharide components were found in solid fermented products. Different culture methods contributed to significant differences in monosaccharide components and molar ratios. The 50% ethanol precipitated fractions exhibited more complexity on monosaccharide compositions comparing with fractions precipitated with 30% and 70% ethanol. Polysaccharide fractions derived from submerged mycelia exhibited higher macrophages stimulation activities. Submerged culture was found to be a suitable method to prepare active polysaccharides because of its short culture span and reasonable cost. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula.

    PubMed

    Burg, Ariela; Oshrat, Levy-Ontman

    2015-10-20

    Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides' antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains' interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca(2+) had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides' stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites.

  15. Structural features of the exocellular polysaccharides of Mycobacterium tuberculosis.

    PubMed Central

    Lemassu, A; Daffé, M

    1994-01-01

    The cell envelope which surrounds pathogenic mycobacteria is postulated to be a defence barrier against phagocytic cells and its outermost constituents have a tendency to accumulate in the culture medium. The present work demonstrates that the exocellular material of Mycobacterium tuberculosis contains large amounts of polysaccharides with only traces, if any at all, of lipids. Three types of polysaccharides were purified by anion-exchange and gel-filtration chromatography; all were found to be neutral compounds devoid of acyl substituents. They consisted of D-glucan, D-arabino-D-mannan and D-mannan, which were eluted from gel-filtration columns in positions corresponding to molecular masses of 123, 13 and 4 kDa respectively. Their predominant structural features were determined by the characterization of the per-O-methyl derivatives of enzymic, acetolysis and Smith-degradation products and by 1H- and 13C-n.m.r. spectroscopy of the purified polysaccharides, using mono- and two-dimensional homonuclear chemical-shift correlated spectroscopy and two-dimensional heteronuclear (1H/13C) spectroscopy. The glucan which represented up to 90% of the polysaccharides was composed of repeating units of five or six-->4-alpha-D-Glcp-1--> residues and a -->4-alpha-D-Glcp substituted at position 6 with an alpha-D-Glcp, indicating a glycogen-like highly branched structure not related to the so-called polysaccharide-II previously identified in tuberculin. The arabinomannan consisted of a mannan segment composed of a -->6-alpha-D-Man-1--> core substituted at some positions 2 with an alpha-D-Manp. The arabinan termini of the arabinomannan were found to be extensively capped with mannosyl residues. The possibility that these polysaccharides contribute to the persistence of the tubercle bacillus in the macrophage by molecular mimicry is discussed. PMID:8297342

  16. Structural features of the exocellular polysaccharides of Mycobacterium tuberculosis.

    PubMed

    Lemassu, A; Daffé, M

    1994-01-15

    The cell envelope which surrounds pathogenic mycobacteria is postulated to be a defence barrier against phagocytic cells and its outermost constituents have a tendency to accumulate in the culture medium. The present work demonstrates that the exocellular material of Mycobacterium tuberculosis contains large amounts of polysaccharides with only traces, if any at all, of lipids. Three types of polysaccharides were purified by anion-exchange and gel-filtration chromatography; all were found to be neutral compounds devoid of acyl substituents. They consisted of D-glucan, D-arabino-D-mannan and D-mannan, which were eluted from gel-filtration columns in positions corresponding to molecular masses of 123, 13 and 4 kDa respectively. Their predominant structural features were determined by the characterization of the per-O-methyl derivatives of enzymic, acetolysis and Smith-degradation products and by 1H- and 13C-n.m.r. spectroscopy of the purified polysaccharides, using mono- and two-dimensional homonuclear chemical-shift correlated spectroscopy and two-dimensional heteronuclear (1H/13C) spectroscopy. The glucan which represented up to 90% of the polysaccharides was composed of repeating units of five or six-->4-alpha-D-Glcp-1--> residues and a -->4-alpha-D-Glcp substituted at position 6 with an alpha-D-Glcp, indicating a glycogen-like highly branched structure not related to the so-called polysaccharide-II previously identified in tuberculin. The arabinomannan consisted of a mannan segment composed of a -->6-alpha-D-Man-1--> core substituted at some positions 2 with an alpha-D-Manp. The arabinan termini of the arabinomannan were found to be extensively capped with mannosyl residues. The possibility that these polysaccharides contribute to the persistence of the tubercle bacillus in the macrophage by molecular mimicry is discussed.

  17. Some Physical Properties of Protein Moiety of Alkali-Extracted Tea Polysaccharide Conjugates Were Shielded by Its Polysaccharide.

    PubMed

    Chen, Xiaoqiang; Song, Wei; Zhao, Jin; Zhang, Zhifa; Zhang, Yuntian

    2017-05-31

    Polysaccharide conjugates were alkali-extracted from green tea (TPC-A). Although it contained 11.80% covalently binding proteins, TPC-A could not bind to the Coomassie Brilliant Blue dyes G250 and R250. TPC-A had no expected characteristic absorption peak of protein in the UV-vis spectrum scanning in the range of 200-700 nm. The UV-vis wavelength of 280 nm was not suitable to detect the presence of the protein portion of TPC-A. The zeta potential of TPC-A merely presented the negative charge properties of polysaccharides instead of the acid-base property of its protein section across the entire pH range. Furthermore, TPC-A was more stable when the pH of solution exceeded 4.0. In addition, no precipitation or haze was generated in the TPC-A/(-)-epigallocatechin gallate (EGCG) mixtures during 12 h storage. TPC-A has emulsifying activity, which indicated that its protein moiety formed hydrophobic groups. Thus, it was proposed that some physical properties of TPC-A protein were shielded by its olysaccharide, since the protein moiety was wrapped by its polysaccharide chains.

  18. Evaluation of free radicals scavenging and immunity-modulatory activities of Purslane polysaccharides.

    PubMed

    YouGuo, Chen; ZongJi, Shen; XiaoPing, Chen

    2009-12-01

    In this study, antioxidant and immunity-modulatory activities of Purslane polysaccharide were estimated. The results revealed that in a dose-dependent manner, Purslane polysaccharides could significantly scavenge superoxide anion, 1,1-diphenyl-2-picrylhydrazyl (DPPH(-)), nitric oxide and hydroxyl radicals. Furthermore, the Purslane polysaccharides could still effectively inhibit the red blood cell (RBC) haemolysis, and increase spleen, thymocyte T and B lymphocyte proliferation, it could be concluded that Purslane polysaccharides could be of considerable preventive and therapeutic significance to some free radical associated health problems such as ovarian cancer, by scavenging accumulating free radicals and enhancing immunity functions.

  19. Marine polysaccharides in microencapsulation and application to aquaculture: "from sea to sea".

    PubMed

    Borgogna, Massimiliano; Bellich, Barbara; Cesàro, Attilio

    2011-12-01

    This review's main objective is to discuss some physico-chemical features of polysaccharides as intrinsic determinants for the supramolecular structures that can efficiently provide encapsulation of drugs and other biological entities. Thus, the general characteristics of some basic polysaccharides are outlined in terms of their conformational, dynamic and thermodynamic properties. The analysis of some polysaccharide gelling properties is also provided, including the peculiarity of the charged polysaccharides. Then, the way the basic physical chemistry of polymer self-assembly is made in practice through the laboratory methods is highlighted. A description of the several literature procedures used to influence molecular interactions into the macroscopic goal of the encapsulation is given with an attempt at classification. Finally, a practical case study of specific interest, the use of marine polysaccharide matrices for encapsulation of vaccines in aquaculture, is reported.

  20. Optimization of pressurized liquid extraction by response surface methodology of Goji berry (Lycium barbarum L.) phenolic bioactive compounds.

    PubMed

    Tripodo, Giusy; Ibáñez, Elena; Cifuentes, Alejandro; Gilbert-López, Bienvenida; Fanali, Chiara

    2018-01-03

    Pressurized liquid extraction (PLE) has been used for the first time in this work to extract phenolic compounds from Goji berries according to a multilevel factorial design using response surface methodology. The global yield (% w/dw, weight/dry-weight), total phenolic content (TPC), total flavonoid (TF) and antioxidant activity (determined via ABTS assay, expressed as TEAC value) were used as response variables to study the effects of temperature (50-180°C) and green solvent composition (mixtures of ethanol/water). Phenolic compounds characterization was performed by high performance liquid chromatography-diode array detector-tandem mass spectrometry (HPLC-DAD-MS/MS). The optimum PLE conditions predicted by the model were as follows: 180°C and 86% ethanol in water with a good desirability value of 0.815. The predicted conditions were confirmed experimentally and once the experimental design was validated for commercial fruit samples, the PLE extraction of phenolic compounds from three different varieties of fruit samples (Selvatico mongolo, Bigol, and Polonia) was performed. Nine phenolic compounds were tentatively identified in these extracts, including phenolic acids and their derivatives, and flavonols. The optimized PLE conditions were compared to a conventional solid-liquid extraction, demonstrating that PLE is a useful alternative to extract phenolic compounds from Goji berry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Characteristics of fucose-containing polysaccharides from submerged fermentation of Agaricus blazei Murill.

    PubMed

    Wang, Hsueh-Ting; Yang, Li-Chan; Yu, Hui-Ching; Chen, Miaw-Ling; Wang, Huei-Ju; Lu, Ting-Jang

    2018-04-01

    Fucose is one of important residues of recognition pattern for many immune cells. In this study, we characterized bioactive fucose-containing acidic polysaccharides from submerged fermentation of Agaricus blazei Murill. We obtained the polysaccharides through a cell-based activity-guided strategy, and used carbohydrate recognition monoclonal antibodies based Enzyme-Linked Immuno Sorbent Assay (ELISA) along with methylation and NMR analyses to investigate the structural characteristics of the polysaccharides. The polysaccharides had Mw of 3.5 × 10 5  Da. The major sugars were l-fucose, l-arabinose, d-galactose, d-xylose, and d-galacturonic acid in the molar ratio of 6.4, 15.5, 28.5, 14.7, and 25.0% with a small amount of d-glucose, d-mannose, l-rhamnose, and d-glucuronic acid. Results indicated that the bioactive polysaccharides consisted of a (1,4)-Galp and (1,4)-GalAp back bone; (1,2)-Xyl and (1,2)-Rha might also comprise backbone or constitute side chain; linkage (1,5)-Ara and terminal fucosyl residues were also involved in the polysaccharides. Regarding bioactivity, removal of the terminal l-fucosyl residues reduced the TNF-α cytokine stimulating activity of the polysaccharides in a RAW 264.7 macrophage cell-line test, whereas NF-κB and TLR4 affected the polysaccharide-induced TNF-α production. Copyright © 2017. Published by Elsevier B.V.

  2. Effect of atracylodes rhizome polysaccharide in rats with adenine-induced chronic renal failure.

    PubMed

    Yang, C; Liu, C; Zhou, Q; Xie, Y C; Qiu, X M; Feng, X

    2015-01-01

    The aim of the study was to elucidate the therapeutic effects of Atracylodes rhizome polysaccharide on adenine-induced chronic renal failure in rats. Fifty male Sprague Dawley rats were selected and randomly divided in to 5 groups (n=10 rats per group): The normal control group, the chronic renal failure pathological control group, the dexamethasone treatment group and two Atracylodes rhizome polysaccharide treatment groups, treated with two different concentrations of the polysaccharide, the Atracylodes rhizome polysaccharide high group and the Atracylodes rhizome polysaccharide low group. All the rats, except those in the normal control group were fed adenine-enriched diets, containing 10 g adenine per kg food for 3 weeks. After being fed with adenine, the dexamethasone treatment group, Atracylodes rhizome polysaccharide high group and Atracylodes rhizome polysaccharide low group rats were administered the drug orally for 2 weeks. On day 35, the kidney coefficient of the rats and the serum levels of creatinine, blood urea nitrogen, total protein and hemalbumin were determined. Subsequent to experimentation on a model of chronic renal failure in rats, the preparation was proven to be able to reduce serum levels of creatinine, blood urea nitrogen and hemalbumin levels (P<0.05) and improve renal function. Atracylodes rhizome polysaccharide had reversed the majority of the indices of chronic renal failure in rats.

  3. Microwave-assisted extraction of polysaccharides from Cyphomandra betacea and its biological activities.

    PubMed

    C, Senthil Kumar; M, Sivakumar; K, Ruckmani

    2016-11-01

    Response Surface Methodology (RSM) was used to optimize the parameters for microwave-assisted extraction of polysaccharides from Cyphomandra betacea. The results showed a good fit with a second-order polynomial equation that was statistically acceptable at P<0.05. Optimal conditions for the extraction of polysaccharides were: extraction time, 2h; microwave power, 400W; extraction temperature, 60°C; and ratio of raw material to water 1:40 (g/mL). Under the optimized conditions, the yield of polysaccharides was found to be relatively high (about 36.52%). The in vitro biological activities of antioxidant and antitumor were evaluated. The IC 50 value of polysaccharides was found to be 3mg/mL. The percentage of Cell viability was determined by MTT assay. Our results showed that polysaccharides inhibited proliferation of MCF-7 (Breast carcinoma), A549 (Human lung carcinoma) and HepG2 (Liver carcinoma) with an IC 50 of 0.23mg/mL, 0.17mg/mL and 0.62mg/mL respectively after 48h incubation. Polysaccharides were shown to promote apoptosis as seen in the nuclear morphological examination study using acridine orange (AO) and ethidium bromide (EB) staining. This is the first report on the effects of polysaccharides extracted from Cyphomandra betacea which exhibited stronger antioxidant and antitumor activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. CROSS-REACTIONS OF ANTITYPHOID AND ANTIPARATYPHOID B HORSE SERA WITH VARIOUS POLYSACCHARIDES

    PubMed Central

    Heidelberger, Michael; Cordoba, Felix

    1956-01-01

    A study was made of cross-reactions of synthetic polyglucose and of numerous plant and bacterial gums in an antityphoid and an antiparatyphoid B horse serum. The observed differences permit conclusions to be drawn regarding certain of the linkages likely to be found in the fine structures of each of the corresponding Salmonella polysaccharides:— 1. Cross-reactions of the antityphoid serum with the specific polysaccharide of Type II pneumococcus and with tamarind seed polysaccharide, glycogen and synthetic polyglucose indicate that the acetic acid-degraded O-polysaccharide of S. typhi, strain O 901, may contain part, at least, of its glucose as 1,4,6-branch points or in 1,6-linkage, perhaps adjacent to a terminal, non-reducing, galactopyranose unit. 2. Cross-reactions of both antisera with arabogalactans point to the existence of (probably β-) 1,3-, 1,6-, and/or 1,3,6-linkages of galactose in both the typhoid and paratyphoid B polysaccharides. 3. The differential reactivities of the galactomannans and yeast mannan suggest that the mannose in the typhoid polysaccharide is linked 1,2- or 1,3- with possible non-reducing mannopyranose end groups attached 1,6-. In the paratyphoid B polysaccharide the linkages are probably galacto-oligomannose 1,4-, or 1,4,6-, or the corresponding linkages of mannose alone. PMID:13357691

  5. Ultrasound assisted extraction of polysaccharides from hazelnut skin.

    PubMed

    Yılmaz, Tuncay; Tavman, Şebnem

    2016-03-01

    In this study ultrasound assisted extraction (UAE) of polysaccharides from hazelnut skin has been studied. Optimum sonication time has been evaluated depending on responses such as amount of carbohydrate and dried sample and thermogravimetric analysis. Chemical and structural properties of extracted material have been determined by Fourier transform spectroscopy attenuated-total reflectance (FTIR-ATR) spectroscopy. Pretreated hazelnut skin powders were extracted in distilled water. Mixture was sonicated by ultrasonic processor probe for 15, 30, 45, 60, 90, and 120 min. The results of UAE showed that maximum ethanol insoluble extracts in 60 min and the highest dry matter content could be obtained in 120 min extraction. Although total carbohydrate content of ethanol insoluble dry extract decreased with time, total carbohydrate in ethanol soluble fraction increased. Polysaccharides extracted from hazelnut skin were assumed to be pectic polysaccharide according to the literature survey of FTIR analysis result. Application time of UAE has an important effect on extraction of polysaccharide from hazelnut skin. This affect could be summarized by enhancing extraction yield up to critical level. Decrease of the yield in ethanol insoluble part could be explained by polymer decomposition. Most suitable model was hyperbolic model by having the lowest root mean square error and the highest R(2) values. © The Author(s) 2015.

  6. Composition and antioxidant activities of four polysaccharides extracted from Herba Lophatheri.

    PubMed

    Ge, Qing; Mao, Jian-wei; Guo, Xiao-qing; Zhou, Yi-feng; Gong, Jing-yan; Mao, Shuang-rong

    2013-09-01

    Four polysaccharides (BLF80-A, BLF80-B, BLF80-C and BLF80-D) were isolated by hot-water extraction and purified from the leaves of Herba Lophatheri by DEAE-Sepharose fast flow. Their chemical and physical characteristics were determined and antioxidant activities were investigated on the basis of DPPH radical assay, hydroxyl radical assay and superoxide radical assay. The results showed that four polysaccharides exhibited antioxidant activities in a concentration-dependent manner, and the higher molecular weight, the stronger antioxidant activities of polysaccharides. Besides, the monosaccharide compositions of polysaccharides also influence their antioxidant activities. BLP80-D showed the strongest scavenging ability, followed by BLP80-C, BLP80-B and BLP80-A. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Effect of electrostatic interactions on the ultrafiltration behavior of charged bacterial capsular polysaccharides.

    PubMed

    Hadidi, Mahsa; Buckley, John J; Zydney, Andrew L

    2016-11-01

    Charged polysaccharides are used in the food industry, as cosmetics, and as vaccines. The viscosity, thermodynamics, and hydrodynamic properties of these charged polysaccharides are known to be strongly dependent on the solution ionic strength because of both inter- and intramolecular electrostatic interactions. The goal of this work was to quantitatively describe the effect of these electrostatic interactions on the ultrafiltration behavior of several charged capsular polysaccharides obtained from Streptococcus pneumoniae and used in the production of Pneumococcus vaccines. Ultrafiltration data were obtained using various Biomax™ polyethersulfone membranes with different nominal molecular weight cutoffs. Polysaccharide transmission decreased with decreasing ionic strength primarily because of the expansion of the charged polysaccharide associated with intramolecular electrostatic repulsion. Data were in good agreement with a simple theoretical model based on solute partitioning in porous membranes, with the effective size of the different polysaccharide serotypes evaluated using size exclusion chromatography at the same ionic conditions. These results provide fundamental insights and practical guidelines for exploiting the effects of electrostatic interactions during the ultrafiltration of charged polysaccharides. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1531-1538, 2016. © 2016 American Institute of Chemical Engineers.

  8. Structure analysis and anti-fatigue activity of a polysaccharide from Lepidium meyenii Walp.

    PubMed

    Tang, Yun; Zhu, Zhen-Yuan; Pan, Li-Chao; Sun, Huiqing; Song, Qiao-Ying; Zhang, Yongmin

    2018-03-16

    A polysaccharide was obtained from Lepidium meyenii Walp by hot water extraction and purification by Millipore (100 kD) and Sephadex G-200. The content of polysaccharide was examined to be 89.9% with phenol-sulfuric acid method. Its average molecular weight was estimated to be 2.213 × 10 6  Da by High Performance Gel Permeation Chromatography (HPGPC). Monosaccharide analysis showed that the polysaccharide was composed of arabinose, mannose, glucose and galactose with the molar ratio of 2.134: 1: 2.78: 2.82. After Smith degradation, methylation, infrared spectroscopy and NMR, the primary structure of the polysaccharide was identified. The backbone of the polysaccharide was composed of →4)-β-D-Galp-(1→ and →4)-α-D-Galp-(1→, while the branches were comprised of →6)-β-D-Glup-(1→, →5)- β-D-Araf-(1→, →3,6)-α-D-Manp-(1→, →3)-α-D-Galp-(1→, and α-D-Glup-(1→. The anti-fatigue effect of the polysaccharide was evaluated using exhaustive swimming test and biochemical indexes. The results indicated the polysaccharide has anti-fatigue effect.

  9. [Correlation Between Functional Groups and Radical Scavenging Activities of Acidic Polysaccharides from Dendrobium].

    PubMed

    Liao, Ying; Yuan, Wen-yu; Zheng, Wen-ke; Luo, Ao-xue; Fan, Yi-jun

    2015-11-01

    To compare the radical scavenging activity of five different acidic polysaccharides, and to find the correlation with the functional groups. Alkali extraction method and Stepwise ethanol precipitation method were used to extract and concentrate the five Dendrobium polysaccharides, and to determine the contents of sulfuric acid and uronic acid of each kind of acidic polysaccharides, and the scavenging activity to ABTS+ radical and hydroxyl radical. Functional group structures were examined by FTIR Spectrometer. Five kinds of Dendrobium polysaccharides had different ability of scavenging ABTS+ free radical and hydroxyl free radical. Moreover, the study had shown that five kinds of antioxidant activity of acidic polysaccharides had obvious correlation withuronic acid and sulfuric acid. The antioxidant activity of each sample was positively correlated with the content of uronic acid, and negatively correlated with the content of sulfuric acid. Sulfuric acid can inhibit the antioxidant activity of acidic polysaccharide but uronic acid can enhance the free radical scavenging activity. By analyzing the structure characteristics of five acidic polysaccharides, all samples have similar structures, however, Dendrobium denneanum, Dendrobium devonianum and Dendrobium officinale which had β configuration have higher antioxidant activity than Dendrobium nobile and Dendrobium fimbriatum which had a configuration.

  10. Modulation of surgical fibrosis by microbial zwitterionic polysaccharides

    NASA Astrophysics Data System (ADS)

    Ruiz-Perez, Begonia; Chung, Doo R.; Sharpe, Arlene H.; Yagita, Hideo; Kalka-Moll, Wiltrud M.; Sayegh, Mohamed H.; Kasper, Dennis L.; Tzianabos, Arthur O.

    2005-11-01

    Bacterial carbohydrates have long been considered T cell-independent antigens that primarily induce humoral immune responses. Recently, it has been demonstrated that bacterial capsules that possess a zwitterionic charge motif can activate CD4+ T cells after processing and presentation by antigen-presenting cells. Here we show that these zwitterionic polysaccharides can prevent T helper 1-mediated fibrosis by signaling for the release of IL-10 from CD4+ T cells in vivo. IL-10 production by these T cells and their ability to prevent fibrosis is controlled by the inducible costimulator (ICOS)-ICOS ligand pathway. These data demonstrate that the interaction of the zwitterionic polysaccharides with T cells results in modulation of surgical fibrosis in vivo and suggest a previously undescribed approach to "harnessing" T cell function to prevent inflammatory tissue disorders in humans. IL-10 | microbial polysaccharides | inducible costimulator

  11. Carrageenan: a natural seaweed polysaccharide and its applications.

    PubMed

    Prajapati, Vipul D; Maheriya, Pankaj M; Jani, Girish K; Solanki, Himanshu K

    2014-05-25

    Polysaccharides have been gaining interesting and valuable applications in the food and pharmaceutical fields. As they are derived from the natural source, they are easily available, non-toxic, cheap, biodegradable and biocompatible. Carrageenan is one among them, which fulfills the criteria of polysaccharide; it is a natural carbohydrate (polysaccharide) obtained from edible red seaweeds. The name Carrageenan is derived from the Chondrus crispus species of seaweed (Rhodophyceace) known as Carrageen Moss or Irish Moss, and Carraigin. A demand based on its application has been widely increasing in food and pharmaceutical sectors. Carrageenan has gained wide applications in experimental medicine, pharmaceutical formulations, cosmetics, and food industries. Through keen references of the reported literature on carrageenan, in this review, we have described about carrageenan, its properties, extraction and refining, and its food and pharmaceutical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. [The structure of the glycerophosphate-containing O-specific polysaccharide from Escherichia coli 0130].

    PubMed

    Perepelov, A V; Lu, B; Sebchenkova, S N; Shevelev, S D; Wang, V; Shashkov, A S; Feng, L; Wang, L; Knirel', Iu A

    2007-01-01

    A phosphorylated O-specific polysaccharide was obtained by mild acidic degradation of the lipopolysaccharide from the intestinal bacterium Escherichia coli 0130 and characterized by the methods of chemical analysis, including dephosphorylation, and 1H and 13C NMR spectroscopy. The polysaccharide was shown to be composed of branched tetrasaccharide repeating units containing two N-acetyl-D-galactosamine residues, D-galactose, D-glucose, and glycerophosphate residues (one of each). The polysaccharide has the following structure, which is unique among the known bacterial polysaccharides.

  13. An Ecological Network of Polysaccharide Utilization Among Human Intestinal Symbionts

    PubMed Central

    Rakoff-Nahoum, Seth; Coyne, Michael J.; Comstock, Laurie E.

    2013-01-01

    Summary Background: The human intestine is colonized with trillions of microorganisms important to health and disease. There has been an intensive effort to catalog the species and genetic content of this microbial ecosystem. However, little is known of the ecological interactions between these microbes, a prerequisite to understanding the dynamics and stability of this host-associated microbial community. Here we perform a systematic investigation of public goods-based syntrophic interactions among the abundant human gut bacteria, the Bacteroidales. Results: We find evidence for a rich interaction network based on the breakdown and use of polysaccharides. Species that utilize a particular polysaccharide (producers) liberate polysaccharide breakdown products (PBP) that are consumed by other species unable to grow on the polysaccharide alone (recipients). Cross-species gene addition experiments demonstrate that recipients can grow on a polysaccharide if the producer-derived glycoside hydrolase, responsible for PBP generation, is provided. These producer-derived glycoside hydrolases are public goods transported extracellularly in outer membrane vesicles allowing for the creation of PBP and concomitant recipient growth spatially distant from the producer. Recipients can exploit these ecological interactions and conditionally outgrow producers. Finally, we show that these public good-based interactions occur among Bacteroidales species co-resident within a natural human intestinal community. Conclusions: This study examines public-goods based syntrophic interactions between bacterial members of the critically important gut microbial ecosystem. This polysaccharide-based network likely represents foundational relationships creating organized ecological units within the intestinal microbiota, knowledge of which can be applied to impact human health. PMID:24332541

  14. Ozone treatment of polysaccharides from Arthrocnemum indicum: Physico-chemical characterization and antiproliferative activity.

    PubMed

    Mzoughi, Zeineb; Chakroun, Ibtissem; Hamida, Sarra Ben; Rihouey, Christophe; Mansour, Hedi Ben; Le Cerf, Didier; Majdoub, Hatem

    2017-12-01

    The isolation, purification and ozone depolymerization of polysaccharides from Arthrocnemum indicum as well as the evaluation of their antiproliferative capacities were investigated. The ozone treatment for various reaction times (0, 15, 30, 45 and 60min) was employed as degradation method in order to attain lower molecular weight product with stronger antiproliferative property. According to FTIR, 1 H NMR and UV-vis analysis, the main chain of ozonolytic degraded polysaccharides could be preserved. The monosaccharide composition, which was determined via GC/MS analysis, showed that extracted polysaccharides were of type of arabinan-rich pectic polysaccharides. Macromolecular characteristics as well as intrinsic viscosity of the degraded polysaccharides were performed by size exclusion chromatography before and after ozone treatment. These experiments showed that intrinsic viscosity and molecular weight (Mn and Mw) of degraded samples decreased with increase in reaction time. Furthermore, preliminary antiproliferative tests indicated that degraded polysaccharide for 1h showed even better antiproliferative capacity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Antibacterial and antiviral study of dialdehyde polysaccharides

    NASA Astrophysics Data System (ADS)

    Song, Le

    Concerns for microbial contamination and infection to the general population, especially the spread of drug-resistant microorganisms, have greatly increased. Polymeric biocides have been found to be a feasible strategy to inactivate drug-resistant bacteria. However, current polymeric biocide systems involve multi-step chemical reactions and they are not cost-effective. Desirable antimicrobial systems need to be designed to be environmentally friendly, broad-spectrum effective against microorganisms, flexible for various delivery methods and economically affordable. We demonstrated that dialdehyde polysaccharides (including dialdehyde starch and dialdehdye cellulose) were broad-spectrum polymeric biocides against gram-positive/negative bacteria, bacteriophages and human virus. These polymers can be easily converted from starch and cellulose through one-step periodate oxidation. Destructions of microorganism by dialdehyde polysaccharides have been achieved in aqueous suspension or by solid surface contact. The dialdehdye functions of dialdehdye polysaccharides were found to be the dominant action against microorganism. The reactivity of the dialdehyde functionality was found to be pH-dependent as well as related to the dispersion of dialdehyde polysaccharides. Degradation of dialdehyde starch during cooking was confirmed. Degradation of dialdehyde starch was more liable in alkaline condition. Carboxylic acid and conjugated aldehyde functionalities were the two main degradation products, confirmed from the spectroscopic studies. The pH effect on the polysaccharide structure and the corresponding antimicrobial activity was very complicated. No decisive conclusions could be obtained from this study. Liner inactivation kinetics was found for dialdehyde starch aqueous suspension against bacteria. This linear inactivation kinetics was derived from the pseudo-first chemical reaction between the dialdehyde starch and the bacteria. The established inactivation kinetics was

  16. Aggregation of gluten proteins in model dough after fibre polysaccharide addition.

    PubMed

    Nawrocka, Agnieszka; Szymańska-Chargot, Monika; Miś, Antoni; Wilczewska, Agnieszka Z; Markiewicz, Karolina H

    2017-09-15

    FT-Raman spectroscopy, thermogravimetry and differential scanning calorimetry were used to study changes in structure of gluten proteins and their thermal properties influenced by four dietary fibre polysaccharides (microcrystalline cellulose, inulin, apple pectin and citrus pectin) during development of a model dough. The flour reconstituted from wheat starch and wheat gluten was mixed with the polysaccharides in five concentrations: 3%, 6%, 9%, 12% and 18%. The obtained results showed that all polysaccharides induced similar changes in secondary structure of gluten proteins concerning formation of aggregates (1604cm -1 ), H-bonded parallel- and antiparallel-β-sheets (1690cm -1 ) and H-bonded β-turns (1664cm -1 ). These changes concerned mainly glutenins since β-structures are characteristic for them. The observed structural changes confirmed hypothesis about partial dehydration of gluten network after polysaccharides addition. The gluten aggregation and dehydration processes were also reflected in the DSC results, while the TGA ones showed that gluten network remained thermally stable after polysaccharides addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Pectic polysaccharides from Panax ginseng as the antirotavirus principals in ginseng.

    PubMed

    Baek, Seung-Hoon; Lee, Jin Gyun; Park, Seo Young; Bae, Ok Nam; Kim, Dong-Hyun; Park, Jeong Hill

    2010-08-09

    To evaluate the antidiarrheal effect of ginseng, the active principals of ginseng were studied in vitro model of rotavirus infection, the leading cause of severe diarrhea. Two pectic polysaccharides, named as GP50-dHR (56.0 kDa) and GP50-eHR (77.0 kDa), were purified from hot water extract of ginseng by bioassay-linked fractionation. Both polysaccharides rescued cell viability from rotavirus infection dose-dependently (IC50 are 15 and 10 microg/mL, respectively). Both polysaccharides had common structural features of homogalacturonan backbone with hairy regions of rhamnogalacturonan type I. Arabinose-rich side chains with abundant branch points were unique in GP50-eHR and may contribute to a greater antirotavirus effect of GP50-eHR than GP50-dHR. Because homogalacturonan itself did not show an antirotavirus effect, hairy regions might be functional sites. Of note, the antirotavirus effect of both polysaccharides resulted from inhibiting rotavirus attachment to cells. Together with a wide range of noncytotoxicity, these findings suggest that ginseng polysaccharides are viable therapeutic options for rotavirus diarrhea.

  18. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae

    PubMed Central

    Jiao, Guangling; Yu, Guangli; Zhang, Junzeng; Ewart, H. Stephen

    2011-01-01

    Sulfated polysaccharides and their lower molecular weight oligosaccharide derivatives from marine macroalgae have been shown to possess a variety of biological activities. The present paper will review the recent progress in research on the structural chemistry and the bioactivities of these marine algal biomaterials. In particular, it will provide an update on the structural chemistry of the major sulfated polysaccharides synthesized by seaweeds including the galactans (e.g., agarans and carrageenans), ulvans, and fucans. It will then review the recent findings on the anticoagulant/antithrombotic, antiviral, immuno-inflammatory, antilipidemic and antioxidant activities of sulfated polysaccharides and their potential for therapeutic application. PMID:21566795

  19. Isolation, characterization and investigation of Plantago ovata husk polysaccharide as superdisintegrant.

    PubMed

    Pawar, Harshal; Varkhade, Chhaya

    2014-08-01

    Psyllium husk (Plantago ovata, Family: Plantaginaceae) contains a high proportion of hemicellulose, composed of a xylan backbone linked with arabinose, rhamnose, and galacturonic acid units (arabinoxylans). Polysaccharide was isolated from Psyllium husk using solvent precipitation method. The isolated polysaccharide was evaluated for various physicochemical parameters. The rheological behavior of polysaccharide (1% w/v in water) was studied using Brookfield viscometer. Polysaccharide derived from the husk of P. ovata was investigated as superdisintegrant in the fast dissolving tablets. Valsartan, an antihypertensive drug, was selected as a model drug. The tablets of Valsartan were prepared separately using different concentrations (1, 2.5, 5, 7.5% w/w) of isolated Plantago ovata (P. ovata) husk polysaccharide (Natural) and crospovidone as a synthetic superdisintegrant by direct compression method. The prepared tablets were evaluated for various pre-compression and post-compression parameters. The drug excipient interactions were characterized by FTIR studies. The formulation F4 containing7.5% polysaccharide showed rapid wetting time and disintegration time as compared to formulation prepared using synthetic superdisintegrant at the same concentration level. Hence batch F4 was considered as optimized formulation. The stability studies were performed on formulation F4. The disintegration time and in vitro drug release of the optimized formulation was compared with the marketed formulation (Conventional tablets). Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Characterization of pectic polysaccharides extracted from apple pomace by hot-compressed water.

    PubMed

    Wang, Xin; Lü, Xin

    2014-02-15

    Response surface methodology (RSM) was used to optimize the extraction of pectic polysaccharides from apple pomace by hot-compressed water, by which the optimum levels of the parameters were obtained as follows: extraction temperature 140 °C, extraction time 5 min, S:W ratio 1:14. Compared with commercial pectin, the Mw, galacturonic acid content, DM and protein of the extracted pectic polysaccharides were lower while ash content and neutral sugars were higher. The endothermic transition temperature and fusion heat of the extracted pectic polysaccharides was lower than commercial one according to DSC analysis. For its rheological properties, it was found that the viscosity of the extracted pectic polysaccharides solution was slightly lower than commercial pectin at lower shear rate region while it decreased sharply when the shear rate increased. Besides, both G' and G" moduli of the extracted pectic polysaccharides were lower than the commercial pectin's possibly because of weaker polymer chain interaction, which was also reflected in gel textural properties. However, the extracted pectic polysaccharides showed higher in vitro antioxidant capability and inhibitory effect on HT-29 colon adenocarcinoma cells than commercial pectin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. [In vitro studies on antioxidant and antimicrobial activities of polysaccharide from Lycoris aurea].

    PubMed

    Ru, Qiao-Mei; Pei, Zhen-Ming; Zheng, Hai-Lei

    2008-10-01

    To study the preliminary antioxidant and antimicrobial activities of polysaccharide extracted from Lycoris aurea. The scavenging activities of the polysaccharide in vitro on superoxide radical (O2-*), hydroxyl radical (*OH), alkyl radical (R*) and hydrogen peroxide (H2O2) were investigated by modified chemical systems. Meanwhile, the antimicrobial activities were tested using paper-discagar diffusion method. In general, the antioxidant activities of the polysaccharide were lower compared with Vc. However, the scavenging effects to *OH and H2O2 were parallel to Vc. Meanwhile, polysaccharide from Lycoris aurea had strong antimicrobial activities against Micrococcus luteus, Bacillus pumilus and Staphylococcus aureus. The polysaccharide extracted from L. aurea can scavenge *OH and H2O2 effectively and inhibit Gram-positive bacterias.

  2. O-Acetylation of Plant Cell Wall Polysaccharides

    PubMed Central

    Gille, Sascha; Pauly, Markus

    2011-01-01

    Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA) and the trichome birefringence-like (TBL) proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria, and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation. From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of, e.g., lignocellulosic based biofuel production. PMID:22639638

  3. Immunoregulatory activities of polysaccharides from mung bean.

    PubMed

    Yao, Yang; Zhu, Yingying; Ren, Guixing

    2016-03-30

    Ultrasonic treatment was performed on water-extractable polysaccharides from the seed of mung beans. Purified by anion-exchange and gel filtration chromatography, MWP-1' and MWP-2' were obtained. Average molecular weights (Mws) of MWP-1' and MWP-2' were 68.4 kDa, and 52.4 kDa, respectively. Monosaccharides components analysis indicated that MWP-1' was composed of Rha, Ara, Man and Gal in a molar percent of 0.4:2.6:5.3:0.7. MWP-2' was composed of Ara, Man, Gal and Glc in a molar percent of 0.5:1.4:2.1:0.4. In vitro study showed that both polysaccharides samples were able to stimulate the production of secretory molecules (NO, TNF-α and IL-6) of RAW264.7 murine macrophages in a dosage dependent manner. MWP-2' seemed to be the most potent and induced significantly higher the NO production. These findings suggest that the ultrasonic treatment polysaccharides isolated in our study have immune potentiation effects on macrophages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Polysaccharide microarray technology for the detection of Burkholderia pseudomallei and Burkholderia mallei antibodies.

    PubMed

    Parthasarathy, Narayanan; DeShazer, David; England, Marilyn; Waag, David M

    2006-11-01

    A polysaccharide microarray platform was prepared by immobilizing Burkholderia pseudomallei and Burkholderia mallei polysaccharides. This polysaccharide array was tested with success for detecting B. pseudomallei and B. mallei serum (human and animal) antibodies. The advantages of this microarray technology over the current serodiagnosis of the above bacterial infections were discussed.

  5. Flocculation of colloidal clay by bacterial polysaccharides: effect of macromolecule charge and structure.

    PubMed

    Labille, J; Thomas, F; Milas, M; Vanhaverbeke, C

    2005-04-01

    The molecular mechanism of montmorillonite flocculation by bacterial polysaccharides was investigated, with special emphasis on the effect of carboxylic charges in the macromolecules on the mechanisms of interaction with the clay surface. An indirect way to quantify the energy of interaction was used, by comparing the flocculation ability of variously acidic polysaccharides. Data on tensile strength of aggregates in diluted suspension were collected by timed size measurements in the domain 0.1-600 microm, using laser diffraction. The flow behavior of settled aggregates was studied by rheology measurements. Flocculation of colloidal clay suspension by polysaccharides requires cancelling of the electrostatic repulsions by salts, which allows approach of clay surfaces close enough to be bridged by adsorbing macromolecules. The amount of acidic charges of the polysaccharides, and especially their location in the molecular structure, governs the bridging mechanism and the resulting tensile strength of the aggregates. The exposure of carboxylate groups located on side chains strongly promotes flocculation. In turn, charges located on the backbone of the polysaccharide are less accessible to interaction, and the flocculation ability of such polysaccharides is lowered. Measurements at different pH indicate that adsorption of acidic polysaccharides occurs via electrostatic interactions on the amphoteric edge surface of clay platelets, whereas neutral polysaccharides rather adsorb via weak interactions. Increased tensile strength in diluted aggregates due to strong surface interactions results in proportionally increased viscosity of the concentrated aggregates.

  6. FTIR studies of gluten matrix dehydration after fibre polysaccharide addition.

    PubMed

    Nawrocka, Agnieszka; Krekora, Magdalena; Niewiadomski, Zbigniew; Miś, Antoni

    2018-06-30

    FTIR spectroscopy was used to determine changes in secondary structure, as well as water state, in gluten and model doughs supplemented by four fibre polysaccharides (microcrystalline cellulose, inulin, apple pectin and citrus pectin). The gluten and model doughs were obtained from commercially available wheat gluten and model flour, respectively. The polysaccharides were used in five concentrations: 3%, 6%, 9%, 12% and 18%. Analysis of the FTIR spectra indicated that polysaccharides could be divided into two groups: first - microcrystalline cellulose and inulin, second - apple and citrus pectins that induced opposite structural changes. Changes in secondary structure concern mainly β-sheets and β-turns that form aggregated β-structures, suggesting dehydration of the gluten matrix as a result of competition for water between gluten proteins and polysaccharides. Moreover, the positive band at ca. 1226 cm -1 in the spectra of pectin-modified samples indicates formation of 'ether' type hydrogen bonds between gluten proteins and pectins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Gelator-polysaccharide hybrid hydrogel for selective and controllable dye release.

    PubMed

    Li, Ping; Dou, Xiao-Qiu; Tang, Yi-Tian; Zhu, Shenmin; Gu, Jiajun; Feng, Chuan-Liang; Zhang, Di

    2012-12-01

    In this paper, 1,4-bi(phenylalanine-diglycol)-benzene (PDB) based Low-Molecular-Weight-Gelator (LMWG) hydrogels are modified using hydrophilic polysaccharide (sodium alginate). A set of techniques including Fourier transform infrared (FT-IR) spectroscopy, (1)H Nuclear Magnetic Resonance ((1)H NMR), X-ray powder diffraction (XRD), Ultraviolet-Visible (UV-Vis), and circular dichroism (CD) had confirmed a β-turn arrangement of PDB gelators and a semi-interpenetrating network (semi-IPN), which was formed through hydrogen bonds between LMWG fibers and polysaccharide chains. The evaluation of physicochemical properties of hydrogels indicates that gelator-polysaccharide hybrid hydrogels possess better mechanical and water retention properties than LMWG hydrogels. The release study of dyes (model drug) from both LMWG and hybrid hydrogels was carried out. Compared with PDB based hydrogels, hybrid hydrogels show a selective and controllable release property for certain dyes. The results suggest LMWG-polysaccharide hybrid gels may find potential applications as promising drug delivery vehicles for drug molecules. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Selenylation Modification of Degraded Polysaccharide from Enteromorpha prolifera and Its Biological Activities

    NASA Astrophysics Data System (ADS)

    Lv, Haitao; Duan, Ke; Shan, Hu

    2018-04-01

    Polysaccharide extracted from Enteromorpha prolifera possessed excellent biological activities, but its molecular weight was greatly high which influenced the activity. Organic Se had higher biological activities and was safer than inorganic Se species. In the present study, Enteromorpha polysaccharide was degraded to low molecular weight by free-radical degradation method of H2O2 and ascorbic acid. By single factor and orthogonal experiments, the optimal degradation conditions were reaction time of 2 h, reaction temperature of 50°C, H2O2/ascorbic acid (n/n=1:1) concentration of 15 mmol L-1, and solid-liquid ratio of 1:50 (g mL-1). Then, the degraded polysaccharide was chemically modified to obtain its selenide derivatives by nitric acid-sodium selenite method. The selenium content was 1137.29 μg g-1, while the content of sulfate radical had no change. IR spectra indicated that the selenite ester group was formed. Degraded polysaccharide selenide was characterized and evaluated for antioxidant, antifungal and antibacterial activities. The results showed that degraded polysaccharide selenide had strong capacity of scavenging DPPH and ·OH free radical. It had significant antibacterial properties for Escherichia coli, Bacillus subtilis and Salmonella spp., and it also had significant antifungal properties for Apple anthrax. The result ascertained degradation and selenylation modification did not change the main structure of polysaccharides. It was possible that free-radical degradation was an effective way for enhancing antioxidant activity to decrease molecular weight of polysaccharides.

  9. Activation of intrinsic apoptotic signaling pathway in cancer cells by Cymbopogon citratus polysaccharide fractions.

    PubMed

    Thangam, Ramar; Sathuvan, Malairaj; Poongodi, Arasu; Suresh, Veeraperumal; Pazhanichamy, Kalailingam; Sivasubramanian, Srinivasan; Kanipandian, Nagarajan; Ganesan, Nalini; Rengasamy, Ramasamy; Thirumurugan, Ramasamy; Kannan, Soundarapandian

    2014-07-17

    Essential oils of Cymbopogon citratus were already reported to have wide ranging medical and industrial applications. However, information on polysaccharides from the plant and their anticancer activities are limited. In the present study, polysaccharides from C. citratus were extracted and fractionated by anion exchange and gel filtration chromatography. Two different polysaccharide fractions such as F1 and F2 were obtained, and these fractions were found to have distinct acidic polysaccharides as characterized by their molecular weight and sugar content. NMR spectral analysis revealed the presence of (1→4) linked b-d-Xylofuranose moiety in these polysaccharides. Using these polysaccharide fractions F1 and F2, anti-inflammatory and anticancer activities were evaluated against cancer cells in vitro and the mechanism of action of the polysaccharides in inducing apoptosis in cancer cells via intrinsic pathway was also proposed. Two different reproductive cancer cells such as Siha and LNCap were employed for in vitro studies on cytotoxicity, induction of apoptosis and apoptotic DNA fragmentation, changes in mitochondrial membrane potential, and profiles of gene and protein expression in response to treatment of cells by the polysaccharide fractions. These polysaccharide fractions exhibited potential cytotoxic and apoptotic effects on carcinoma cells, and they induced apoptosis in these cells through the events of up-regulation of caspase 3, down-regulation of bcl-2 family genes followed by cytochrome c release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. [Effects of post-harvest processing and extraction methods on polysaccharides content of Dendrobium officinale].

    PubMed

    Li, Cong; Ning, Li-Dan; Si, Jin-Ping; Wu, Ling-Shang; Liu, Jing-Jing; Song, Xian-Shui; Yu, Qiao-Xian

    2013-02-01

    To reveal the quality variation of polysaccharide in Dendrobium officinale by post-harvest processing and extraction methods, and provide a basis for post-harvest processing and clinical and hygienical applications of Tiepifengdou (Dendrobii Officinalis Caulis). The content of polysaccharides were studied by 4 post-harvest processing methods, i. e. drying by drying closet, drying after scalding by boiling water, drying while twisting, and drying while twisting after scalding by boiling water. And a series of temperatures were set in each processing procedure. An orthogonal test L9 (3(4)) with crushed degrees, solid-liquid ratio, extraction time and extraction times as factors were designed to analyze the dissolution rate of polysaccharides in Tiepifengdou processed by drying while twisting at 80 degrees C. The content of polysaccharides was ranged from 26.59% to 32.70% in different samples processed by different processing methods, among which drying while twisting at 80 degrees C and 100 degrees C respectively were the best. Crushed degree was the most important influence on the dissolution rate of polysaccharides. The dissolution rate of polysaccharides was extremely low when the sample was boiled directly without crushing and sieving. Drying while twisting at 80 degrees C was the best post-harvest processing method, which can help to dry the fresh herbs and improve the accumulation of polysaccharides. Boiling the uncrushed Tiepifengdou for a long time as traditional method could not fully extract polysaccharides, while boiling the crushed Tiepifengdou can efficiently extract polysaccharides.

  11. Recombinant Plants Provide a New Approach to the Production of Bacterial Polysaccharide for Vaccines

    PubMed Central

    Smith, Claire M.; Fry, Stephen C.; Gough, Kevin C.; Patel, Alexandra J. F.; Glenn, Sarah; Goldrick, Marie; Roberts, Ian S.; Andrew, Peter W.

    2014-01-01

    Bacterial polysaccharides have numerous clinical or industrial uses. Recombinant plants could offer the possibility of producing bacterial polysaccharides on a large scale and free of contaminating bacterial toxins and antigens. We investigated the feasibility of this proposal by cloning and expressing the gene for the type 3 synthase (cps3S) of Streptococcus pneumoniae in Nicotinia tabacum, using the pCambia2301 vector and Agrobacterium tumefaciens-mediated gene transfer. In planta the recombinant synthase polymerised plant-derived UDP-glucose and UDP-glucuronic acid to form type 3 polysaccharide. Expression of the cps3S gene was detected by RT-PCR and production of the pneumococcal polysaccharide was detected in tobacco leaf extracts by double immunodiffusion, Western blotting and high-voltage paper electrophoresis. Because it is used a component of anti-pneumococcal vaccines, the immunogenicity of the plant-derived type 3 polysaccharide was tested. Mice immunised with extracts from recombinant plants were protected from challenge with a lethal dose of pneumococci in a model of pneumonia and the immunised mice had significantly elevated levels of serum anti-pneumococcal polysaccharide antibodies. This study provides the proof of the principle that bacterial polysaccharide can be successfully synthesised in plants and that these recombinant polysaccharides could be used as vaccines to protect against life-threatening infections. PMID:24498433

  12. Capture of Pb2+ and Cu2+ Metal Cations by Neisseria meningitidis-type Capsular Polysaccharides.

    PubMed

    Ghimire, Sujan; McCarthy, Pumtiwitt C

    2018-05-05

    Heavy metal pollution of water is a significant environmental and public health concern. Current biological strategies for heavy metal removal from water are performed using microbial biopolymers, including polysaccharides, that are already fully formed. This creates limitations in adapting polysaccharides to increase binding affinity for specific metals. We propose that altering the specificity of polysaccharide-producing enzymes could be beneficial to improving metal capture by modified polysaccharides. We assess binding of Cu 2+ and Pb 2+ metal cations to Neisseria meningitidis -type polysaccharides. All concentrations of metal cations tested were able to completely bind to colominic acid. This polymer is equivalent to the capsular polysaccharide of N. meningitidis serogroup B comprised of a homopolymer of negatively charged sialic acid. There was slightly less binding observed with N. meningitidis serogroup W, which contains repeating units of the neutral sugar galactose and sialic acid. Our work represents the first assessment of the metal-binding properties of these capsular polysaccharides. Future work will seek to optimize metal-binding with Neisseria meningitidis serogroup W polysaccharide.

  13. Ultrasound-assisted extraction of water-soluble polysaccharides from the roots of valerian (Valeriana officinalis L.).

    PubMed

    Hromádková, Z; Ebringerová, A; Valachovic, P

    2002-01-01

    The insoluble plant residues, obtained after preparation of medicinal tinctures from the roots of valerian (Valeriana officinalis L.) by classical and ultrasound-assisted extraction with aqueous ethanol in a pilot plant, were subsequently treated with hot water to isolate the accessible polysaccharide cell wall components. At almost equal amounts of the hot-water extractable material, the yields of the recovered polysaccharides were lower in the ultrasonical experiment. This is due to the fact that a part of accessible polysaccharides were already solubilised by the aqueous ethanol and recoverable from the medicinal tincture. Therefore, the net yield of extracted polysaccharides was enhanced in the ultrasonical procedure. This fact as well as the sugar composition and structural features of the isolated polysaccharides suggest that ultrasonication have attacked the integrity of cell walls, released and degraded its most accessible polysaccharides (pectic polysaccharides and starch) and increased also the extractibility of its less accessible components--xylan, mannan and glucan. The water-soluble polysaccharide fractions from both the conventional and ultrasonical experiments exhibit significant immunostimulatory activities in mitogenic and comitogenic thymocyte tests.

  14. The Extract of Lycium depressum Stocks Enhances Wound Healing in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Naji, Siamak; Zarei, Leila; Pourjabali, Masoumeh; Mohammadi, Rahim

    2017-06-01

    In diabetes, impaired wound healing and other tissue abnormalities are considered major concerns. The aim of the present study was to assess the wound-healing activity of methanolic extracts of the extract of Lycium depressum leaves. A total of 60 healthy male Wistar diabetic rats weighing approximately 160 to 180 g and 7 weeks of age were randomized into 10 groups for incision and excision wound models: sham surgery group (SHAM), including creation of wounds and no treatment; base formulation group (FG) with creation of wounds and application of base formulation ointment; treatment group 1 (TG1) with 1 g of powder extract of the plant material in ointment; treatment group 2 (TG2) with 2 g; and treatment group 4 (TG3) with 4 g of powder extract of the plant material in ointment. A wound was induced by an excision- and incision-based wound model in male rats. The mature green leaves of L depressum were collected and authenticated. Extractions of dried leaves were carried out. For wound-healing activity, the extracts were applied topically in the form of ointment and compared with control groups. The healing of the wound was assessed based on excision, incision, hydroxyproline estimation, and biomechanical and biochemical studies. The extract of L depressum leaves enhanced wound contraction, decreased epithelialization time, increased hydroxyproline content, and improved mechanical indices and histological characteristics in treatment groups compared with SHAM and FG ( P < .05). These findings permit the conclusion the extract of L depressum benefits parameters of wound healing in a diabetes induced model.

  15. Marine Polysaccharides from Algae with Potential Biomedical Applications

    PubMed Central

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa

    2015-01-01

    There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae. PMID:25988519

  16. Harnessing Functionalized Polysaccharides for Medical and Dental Applications

    NASA Astrophysics Data System (ADS)

    Jones, Nathan A.

    Polysaccharides are an important class of biomolecules with many different biological functions and unique properties, thus it is unsurprising that polysaccharides are heavily researched as materials solutions in medicine and dentistry. This dissertation explores the potential of harnessing inherent and well-understood biological properties of polysaccharides, using chemical and materials modification techniques to create clinically useful systems for medical and dental challenges. Engineered polysaccharides systems were prepared and characterized, including starch nanoparticles with control of particle size, charge, loading, and attachment of functional molecules, and glycocalyx-mimetic polymer brushes. These systems were applied as a diagnostic aid for dental caries, as an anti-bacterial treatment, and in targeting tumor-associated macrophages. In the first application, fluorescent cationic (+5.8+/-1.2 mV) starch nanoparticles (size 101+/-56 nm) were prepared to target and adhere to early caries lesions to facilitate optical detection, test lesion activity, and monitor the impact of remineralization treatments in vitro. In the second application, similarly designed starch nanoparticles (size 440+/-58 nm) were loaded with antibacterial copper nanoparticles (6-7nm size, ˜0.35% loading) to create a system which targets bacteria electrostatically and by their enzymatic metabolic processes. This system showed high antibacterial efficacy (3-log and 7-log bacterial reductions for S. aureus and B. subtilis, respectively, for copper nanoparticle dose of 17 mug/ml). The final application demonstrated high positive predictive value (>0.8 for M2 over M1) for cellular binding of glycocalyx-mimetic mannose-coatings with M2-polarized tumor-associated macrophages, with potential applications in cancer diagnostics and therapeutics. These examples highlight the utility of modified polysaccharides in the design of clinically useful systems in medicine and dentistry.

  17. Characterization of EDTA-soluble polysaccharides from the scape of Musa paradisiaca (banana).

    PubMed

    Raju, T S; Jagadish, R L; Anjaneyalu, Y V

    2001-02-01

    The polysaccharide components present in the scape of Musa paradisiaca (banana) were fractionated into water-soluble (WSP), EDTA-soluble (EDTA-SP), alkali-soluble (ASP) and alkali-insoluble (AISP) polysaccharide fractions [Anjaneyalu, Jagadish and Raju (1997) Glycoconj. J. 14, 507-512]. The EDTA-SP was further fractionated by iso-amyl alcohol into EDTA-SP-A and EDTA-SP-B. The homogeneity of these two polysaccharides was established by repeated precipitation with iso-amyl alcohol, gel-filtration chromatography and sedimentation analysis. The polysaccharides were characterized by monosaccharide composition analysis, methylation linkage analysis, iodine affinity, ferricyanide number, blue value, hydrolysis with alpha-amylase, gold-electron microscopy and X-ray diffraction spectroscopy. Data from all of these studies suggest that EDTA-SP-A is a branched amylose-type alpha-D-glucan and that EDTA-SP-B is a highly branched amylopectin-type polymer. The nature of the branching patterns of these polysaccharides suggests that they are unique to M. paradisiaca.

  18. Chemical analysis of a polysaccharide of unripe (green) tomato (Lycopersicon esculentum).

    PubMed

    Chandra, Krishnendu; Ghosh, Kaushik; Ojha, Arnab K; Islam, Syed S

    2009-11-02

    A polysaccharide (PS-I) isolated from the aqueous extract of the unripe (green) tomatoes (Lycopersicon esculentum) consists of D-galactose, D-methyl galacturonate, D-arabinose, L-arabinose, and L-rhamnose. Structural investigation of the polysaccharide was carried out using total acid hydrolysis, methylation analysis, periodate oxidation study, and NMR studies ((1)H, (13)C, DQF-COSY, TOCSY, NOESY, ROESY, HMQC, and HMBC). On the basis of above-mentioned experiments the structure of the repeating unit of the polysaccharide (PS-I) was established as: [structure: see text].

  19. Antioxidant activity of polysaccharide extracted from Ganoderma lucidum using response surface methodology.

    PubMed

    Kan, Yongjun; Chen, Tiqiang; Wu, Yanbin; Wu, Jianguo; Wu, Jinzhong

    2015-01-01

    Superfine grinding technology was applied for polysaccharide extraction from the fruiting bodies of Ganoderma lucidum, and response surface methodology (RSM) was used to optimize the effects of processing parameters on polysaccharide extraction yield. Results showed that the maximum yield of G. lucidum polysaccharides (GLP) was obtained at an optimum condition: extraction time 137 min, extraction temperature 66 ̊C, the ratio of water to material 35 mL/g, and the GLP extracting yield reached 2.44% under this condition. GLP were precipitated into three crude polysaccharides, viz. GLP40, GLP60 and GLP80. The basic characterization of polysaccharides was determined by using HPLC and FT-IR methods. GLP, GLP80, GLP60, and GLP40 were composed of Man, Rib, Glc, Gal and Fuc with the molar ratios of 1.27:0.36:22.89:1.61:0.33, 1.40:0.31:23.02:3.46:0.91, 0.96:0.34:25.76:2.47:0.46, and 2.81:1.42:23.83:1.61:0.33, respectively. The result of FT-IR suggested that the monosaccharide residue of the four polysaccharides was β-pyranoid ring. Moreover, the antioxidant activities of these four polysaccharides were evaluated. The results showed that GLP80 had the best reducing power, DPPH radical scavenging ability and oxygen radical scavenging ability followed by GLP, GLP60 and GLP40. Our results demonstrated that RSM might be a valuable technique for optimizing the efficient extraction of GLP, and G. lucidum could be considered as sources of natural antioxidants and preservatives of food industry. Moreover, polysaccharides, especially GLP80, extracted from the fruiting bodies of G. lucidum, exhibited promising antioxidant activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Jeffrey G.

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. Furthermore, this review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkablemore » ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications.« less

  1. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus

    DOE PAGES

    Gardner, Jeffrey G.

    2016-06-04

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. Furthermore, this review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkablemore » ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications.« less

  2. [Structural characterization of Astragalus polysaccharides using partial acid hydrolysis-hydrophilic interaction liquid chromatography-mass spectrometry].

    PubMed

    Liang, Tu; Fu, Qing; Xin, Huaxia; Li, Fangbing; Jin, Yu; Liang, Xinmiao

    2014-12-01

    Water-soluble polysaccharides from traditional Chinese medicine (TCM) have properties of broad-spectrum treatment and low toxicity, making them as important components in natural medicines and health products. In order to solve the problem of polysaccharides characterization caused by their complex structures, a "bottom-up" approach was developed to complete the characterization of polysaccharides from Astragalus. Firstly, Astragalus pieces were extracted with hot water and then were precipitated by ethanol to obtain Astragalus polysaccharides. Secondly, a partial acid hydrolysis method was carried out and the effects of time, acid concentration and temperature on hydrolysis were investigated. The degree of hydrolysis increased along with the increase of hydrolysis time and acid concentration. The temperature played a great role in the hydrolysis process. No hydrolysis of the polysaccharides occurred at low temperature, while the polysaccharides were almost hydrolyzed to monosaccharide at high temperature. Under the optimum hydrolysis conditions (4 h, 1.5 mol/L trifluoroacetic acid, and 80 °C), Astragalus polysaccharides were hydrolyzed to characteristic oligosaccharide fragments. At last, a hydrophilic liquid chromatography-mass spectrometry method was used for the separation and structural characterization of the polysaccharide hydrolysates. The results showed that the resulting polysaccharides were mainly 1--> 4 linear glucan, and gluco-oligosaccharides with the degrees of polymerization (DP) of 4 - 11 were obtained after partial acid hydrolysis. The significance of this study is that it is the guidance for the characterization of other TCM polysaccharides.

  3. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis.

    PubMed

    Sun, Xin-Zhi; Liao, Ying; Li, Wei; Guo, Li-Mei

    2017-06-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H 2 O 2 ) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H 2 O 2 -induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects.

  4. [Preparation procedures of anti-complementary polysaccharides from Houttuynia cordata].

    PubMed

    Zhang, Juanjuan; Lu, Yan; Chen, Daofeng

    2012-07-01

    To establish and optimize the preparation procedures of the anti-complementary polysaccharides from Houttuynia cordata. Based on the yield and anti-complementary activity in vitro, the conditions of extraction and alcohol precipitating process were optimized by orthogonal tests. The optimal condition of deproteinization was determined according to the results of protein removed and polysaccharide maintained. The best decoloring method was also optimized by orthogonal experimental design. The optimized preparation procedures were given as follows: extract the coarse powder 3 times with 50 times volume of water at 90 degrees C for 2 hours every time, combine the extracts and concentrate appropriately, equivalent to 0.12 g of H. cordata per milliliter. Add 4 times volume of 90% ethanol to the extract, allow to stand for 24 hours to precipitate totally, filter and the precipitate was successfully washed with anhydrous alcohol, acetone and anhydrous ether. Resolve the residue with water, add trichloroacetic acid (TCA) to a concentration of 20% to remove protein. Decoloration was at a concentration of 3% with activated carbon at pH 3.0, 50 degrees C for 50 min. The above procedures above were tested 3 times, resulting in the average yield of polysaccharides at 4.03% (RSD 0.96%), the average concentrations of polysaccharides and protein at 80.97% (RSD 1.5%) and 2.02% (RSD 2.3%), and average CH50 at 0.079 g x L-(-1) (RSD 3.6%). The established and optimized procedures are repeatable and reliable to prepare the anti-complementary polysaccharides with high quality and activity from H. cordata.

  5. Controls of Polysaccharide Chemistry on the Kinetics and Thermodynamics of Heterogeneous Calcium Carbonate Nucleation

    NASA Astrophysics Data System (ADS)

    Giuffre, A. J.; Han, N.; Dove, P. M.

    2011-12-01

    Polysaccharide fibrils control the orientation of calcium carbonate (CaCO3) biominerals. Good examples are found in the multilayered extracellular mucilaginous sheath of green algae and cyanobacteria and in specialized vesicles inside coccolithophorids. More complex organisms such as arthropods and mollusks form biomineralized exoskeletons and shells that consist of insoluble polysaccharides and soluble acid-rich proteins. In these structures, CaCO3 mineral orientation occurs along fibers of the polysaccharide chitin. This raises the question of whether polysaccharide chemistry has specific roles in directing biomineralization. The last three decades of research show that acidic proteins influence CaCO3 polymorph selection, crystallographic orientation, and nucleation and growth rates but little is known about the function of polysaccharides. In fact, polysaccharides are long considered an inert component of organic frameworks. In this experimental investigation, we test the hypothesis that polysaccharides have chemistry-specific influences on calcification by measuring the kinetics of calcite nucleation onto three types of polysaccharide films under controlled solution compositions. Characterized polysaccharides of simple repeating monomer sequences were chosen as model compounds to represent the major carbohydrates seen in microbial and calcifying environments: 1) alginic acid with carboxyl groups, 2) hyaluronic acid with alternating carboxyl and acetylamine groups, and 3) chitosan with amine and acetylamine groups. Biosubstrates were prepared by electrodeposition of these compounds as thin gel-like films onto gold-coated silicon wafers. Using a flow-through cell, heterogeneous nucleation rates of calcite were measured for a suite of supersaturation conditions. These rate data were compared to similar measurements for carboxyl- and hydroxyl-terminated self-assembled monolayers. Calcite nucleation rates onto the three polysaccharides vary by a factor of 400x

  6. Properties of polysaccharides in several seaweeds from Atlantic Canada and their potential anti-influenza viral activities

    NASA Astrophysics Data System (ADS)

    Jiao, Guangling; Yu, Guangli; Wang, Wei; Zhao, Xiaoliang; Zhang, Junzeng; Ewart, Stephen H.

    2012-06-01

    To explore the polysaccharides from selected seaweeds of Atlantic Canada and to evaluate their potential anti-influenza virus activities, polysaccharides were isolated from several Atlantic Canadian seaweeds, including three red algae ( Polysiphonia lanosa, Furcellaria lumbricalis, and Palmaria palmata), two brown algae ( Ascophyllum nodosum and Fucus vesiculosus), and one green alga ( Ulva lactuca) by sequential extraction with cold water, hot water, and alkali solutions. These polysaccharides were analyzed for monosaccharide composition and other general chemical properties, and they were evaluated for anti-influenza virus activities. Total sugar contents in these polysaccharides ranged from 15.4% (in U. lactuca) to 91.4% (in F. lumbricalis); sulfation level was as high as 17.6% in a polysaccharide from U. lactuca, whereas it could not be detected in an alikali-extract from P. palmaria. For polysaccharides from red seaweeds, the main sugar units were sulfated galactans (agar or carrageenan) for P. lanosa, F. lumbricalis, and xylans for P. palmata. In brown seaweeds, the polysaccharides largely contained sulfated fucans, whereas the polysaccharides in green seaweed were mainly composed of heteroglycuronans. Screening for antiviral activity against influenza A/PR/8/34 (H1N1) virus revealed that brown algal polysaccharides were particularly effective. Seaweeds from Atlantic Canada are a good source of marine polysaccharides with potential antiviral properties.

  7. Characterization and bioactivities of a novel polysaccharide obtained from Gracilariopsis lemaneiformis.

    PubMed

    Shi, Chen-Shan; Sang, Ya-Xin; Sun, Gui-Qing; Li, Tian-Ye; Gong, Zheng-Si; Wang, Xiang-Hong

    2017-01-01

    Gracilariopsis lemaneiformis is a type of red alga that contains seaweed polysaccharide agar. In this study, a novel non-agar seaweed polysaccharide fraction named GCP (short of crude polysaccharide obtained from Gracilariopsis lemaneiformis) was isolated from Gracilariopsis lemaneiformis. Structural analysis showed that GCP shows triple helical chain conformation when dissolved in water and has many branches and long side chains. Also, 1→3 linkage is the major linkage and the sugar structures are galactopyranose configurations linked by β-type glycosidic linkages. Two macromolecular substance fractions (GCP-1 and GCP-2) were purified by DEAE Sepharose Fast Flow column chromatography. Moreover, a splenocyte damage assay and splenocyte proliferation assay were used to analyse the bioactivities of GCP, GCP-1 and GCP-2. It was demonstrated that polysaccharides could protect splenocyte damaged by H2O2; GCP-2 shows a greatest protection rate, that is, 92.8%, which significantly enhanced the splenocyte proliferation, and GCP showed the highest proliferation rate, 9.30%. The results suggested that this type of novel non-agar polysaccharide displayed remarkable antioxidant and immunomodulatory activities and early alkali treatment could decrease the activities. It may represent a potential material for health food and clinical medicines.

  8. Polysaccharide Fabrication Platforms and Biocompatibility Assessment as Candidate Wound Dressing Materials

    PubMed Central

    Aduba, Donald C.; Yang, Hu

    2017-01-01

    Wound dressings are critical for wound care because they provide a physical barrier between the injury site and outside environment, preventing further damage or infection. Wound dressings also manage and even encourage the wound healing process for proper recovery. Polysaccharide biopolymers are slowly becoming popular as modern wound dressings materials because they are naturally derived, highly abundant, inexpensive, absorbent, non-toxic and non-immunogenic. Polysaccharide biopolymers have also been processed into biomimetic platforms that offer a bioactive component in wound dressings that aid the healing process. This review primarily focuses on the fabrication and biocompatibility assessment of polysaccharide materials. Specifically, fabrication platforms such as electrospun fibers and hydrogels, their fabrication considerations and popular polysaccharides such as chitosan, alginate, and hyaluronic acid among emerging options such as arabinoxylan are discussed. A survey of biocompatibility and bioactive molecule release studies, leveraging polysaccharide’s naturally derived properties, is highlighted in the text, while challenges and future directions for wound dressing development using emerging fabrication techniques such as 3D bioprinting are outlined in the conclusion. This paper aims to encourage further investigation and open up new, disruptive avenues for polysaccharides in wound dressing material development. PMID:28952482

  9. Optimized Extraction of Polysaccharides from Grateloupia livida (Harv.) Yamada and Biological Activities.

    PubMed

    Ye, Danyan; Jiang, Zebin; Zheng, Fuchun; Wang, Hongmei; Zhang, Yanmei; Gao, Fenfei; Chen, Peihong; Chen, Yicun; Shi, Ganggang

    2015-09-16

    Polysaccharides from Grateloupia livida (Harv.) Yamada (GL) were extracted by a heating circumfluence method. Single-factor experiments were performed for the three parameters: extraction time (X₁), extraction temperature (X₂) and the ratio of water to raw material (X₃) and their test range. From preliminary experimental results, one type of the response surface methodology, the Box-Behnken design was applied for the optimizing polysaccharide extraction conditions. The experimental data obtained were fitted to a second-order polynomial equation. The optimal conditions were extraction time 5 h, extraction temperature 100 °C and ratio of water to raw material 70 mL/g. Under these conditions, the experimental yield was 39.22% ± 0.09%, which well matched the predicted value (39.25%), with 0.9774 coefficient of determination (R²). GL polysaccharides had scavenging activities for DPPH and hydroxyl radicals in vitro. The scavenging rates for both radicals peaked at 20 mg/mL GL concentration. However, the positive standard, VC (ascorbic acid), possessed stronger antioxidant activities than GL polysaccharides. Furthermore, the anticancer activity of GL polysaccharides on HepG2 cell proliferation increased dose- and time-dependently, but the positive standard, 5-fluorouracil (5-fu) showed more significant anticancer activity in this study. Overall, GL polysaccharides may have potential applications in the medical and food industries.

  10. Apoptosis of Hepatocellular Carcinoma Cells Induced by Nanoencapsulated Polysaccharides Extracted from Antrodia Camphorata

    PubMed Central

    Chang, Ke Liang B.; Kong, Zwe-Ling

    2015-01-01

    Antrodia camphorata is a well-known medicinal mushroom in Taiwan and has been studied for decades, especially with focus on anti-cancer activity. Polysaccharides are the major bioactive compounds reported with anti-cancer activity, but the debates on how they target cells still remain. Research addressing the encapsulation of polysaccharides from A. camphorata extract (ACE) to enhance anti-cancer activity is rare. In this study, ACE polysaccharides were nano-encapsulated in chitosan-silica and silica (expressed as ACE/CS and ACE/S, respectively) to evaluate the apoptosis effect on a hepatoma cell line (Hep G2). The results showed that ACE polysaccharides, ACE/CS and ACE/S all could damage the Hep G2 cell membrane and cause cell death, especially in the ACE/CS group. In apoptosis assays, DNA fragmentation and sub-G1 phase populations were increased, and the mitochondrial membrane potential decreased significantly after treatments. ACE/CS and ACE/S could also increase reactive oxygen species (ROS) generation, induce Fas/APO-1 (apoptosis antigen 1) expression and elevate the proteolytic activities of caspase-3, caspase-8 and caspase-9 in Hep G2 cells. Unsurprisingly, ACE/CS induced a similar apoptosis mechanism at a lower dosage (ACE polysaccharides = 13.2 μg/mL) than those of ACE/S (ACE polysaccharides = 21.2 μg/mL) and ACE polysaccharides (25 μg/mL). Therefore, the encapsulation of ACE polysaccharides by chitosan-silica nanoparticles may provide a viable approach for enhancing anti-tumor efficacy in liver cancer cells. PMID:26327534

  11. Polysaccharide from seeds of Plantago asiatica L. affects lipid metabolism and colon microbiota of mouse.

    PubMed

    Hu, Jie-Lun; Nie, Shao-Ping; Wu, Qi-Meng; Li, Chang; Fu, Zhi-Hong; Gong, Joshua; Cui, Steve W; Xie, Ming-Yong

    2014-01-08

    Polysaccharide from the seeds of Plantago asiatica L. was given via oral administration to mice (0.4 g/kg body weight, 30 days) to observe its effects on mouse nutrient metabolism and colon microbiota. It was found the polysaccharide intake could lower the apparent absorption of lipid. Total triglyceride, cholesterol, and atherogenic index in blood serum with total lipid and cholesterol levels in liver of polysaccharide group mice were all significantly lower than those of the control group (p < 0.05). Furthermore, the effect of the polysaccharide intake on mouse colon bacterial communities was investigated. Mice from the polysaccharide group showed a higher colon bacterial diversity than the control group. Bacteroides sp., Eubacterium sp., butyrate-producing bacteria Butyrivibrio sp., and probiotics Bifidobacterium bifidum , Lactobacillus fermentum , and Lactobacillus reuteri in mouse colon were all increased after polysaccharide intake. These indicated that the intake of polysaccharide from P. asiatica L. could be beneficial for lipid metabolism and colon microbiota.

  12. Comparative evaluation of polysaccharides isolated from Astragalus, oyster mushroom, and yacon as inhibitors of α-glucosidase.

    PubMed

    Zhu, Zhen-Yuan; Zhang, Jing-Yi; Chen, Li-Jing; Liu, Xiao-Cui; Liu, Yang; Wang, Wan-Xiao; Zhang, Yong-Min

    2014-04-01

    The incidence of diabetes has increased considerably, and become the third serious chronic disease following cancer and cardiovascular diseases. Though acarbose, metformin, and 1-deoxynojirimycin have good efficacy for clinical application as hypoglycemic drugs, their expensive costs and some degree of side effects have limited their clinical application. Recently, increasing attention has concentrated on the polysaccharides from natural plant and animal sources for diabetes. In order to illustrate the pharmaceutical activity of polysaccharides as natural hypoglycemic agents, polysaccharides isolated from Astragalus, oyster mushroom, and Yacon were evaluated for their inhibitory effects on α-glucosidase. Polysaccharides were extracted and purified from Astragalus, Oyster mushroom, and Yacon with hot water at 90 °C for 3 h, respectively. The total sugar content of the polysaccharide was determined by the phenol-sulfuric acid method. The α-glucosidase inhibitory activity was measured by the glucose oxidase method. The results exhibited that the inhibitory effects on α-glucosidase were in decreasing order, Astragalus > oyster mushroom > Yacon. The α-glucosidase inhibition percentage of Astragalus polysaccharide and oyster mushroom polysaccharide were over 40% at the polysaccharide concentration of 0.4 mg·mL(-1). The IC50 of Astragalus polysaccharide and oyster mushroom polysaccharide were 0.28 and 0.424 mg·mL(-1), respectively. The information obtained from this work is beneficial for the use polysaccharides as a dietary supplement for health foods and therapeutics for diabetes. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  13. [Relativity among starch quantity, polysaccharides content and total alkaloid content of Dendrobium loddigesii].

    PubMed

    Zhu, Hua; Teng, Jianbei; Cai, Yi; Liang, Jie; Zhu, Yilin; Wei, Tao

    2011-12-01

    To find out the relativity among starch quantity, polysaccharides content and total alkaloid content of Dendrobium loddigesii. Microscopy-counting process was applied to starch quantity statistics, sulfuric acid-anthrone colorimetry was used to assay polysaccharides content and bromocresol green colorimetry was used to assay alkaloid content. Pearson product moment correlation analysis, Kendall's rank correlation analysis and Spearman's concordance coefficient analysis were applied to study their relativity. Extremely significant positive correlation was found between starch quantity and polysaccharides content, and significant negative correlation between alkaloid content and starch quantity was discovered, as well was between alkaloid content and polysaccharides content.

  14. Preparation, characterization, and immunogenicity of Haemophilus influenzae type b polysaccharide-protein conjugates

    PubMed Central

    1980-01-01

    A method is presented for covalently bonding Haemophilus influenzae type b capsular polysaccharide (HIB Ps) to several proteins. The method is efficient and relies upon the use of adipic dihydrazide as a spacer between the capsular polysaccharide and the carrier protein. In contrast to the poor immunogenicity of the purified HIB Ps in mice and rabbits, the HIB Ps-protein conjugates induced serum anti-type b antibodies having bactericidal activity at levels shown to be protective in humans when low doses were injected subcutaneously in a saline solution. The antibody response in mice was related to the dose of the conjugates, increased with the number of injections, and could be primed by the previous injection of the carrier protein. The HIB Ps- protein conjugates were immunogenic in three different mouse strains. The importance of the carrier molecule for the enhanced immunogenicity of the HIB Ps-protein conjugates was shown by the failure of HIB Ps hybrids prepared with either the homologous polysaccharide or pneumococcus type 3 polysaccharide to induce antibodie in mice. Rabbits injected with the HIB Ps-protein conjugates emulsified in Freund's adjuvant produced high levels of serum anti-type b antibodies which induced a bactericidal effect upon H. influenzae type b organisms. It is proposed that the HIB Ps component of the polysaccharide protein conjugates has been converted to a thymic-dependent immunogen. This method may be used to prepare protein-polysaccharide conjugates with HIB Ps and other polysaccharides to be considered for human use. PMID:6967514

  15. Isolation and chemical characterization of dissolved and particulate polysaccharides in Mikawa Bay

    NASA Astrophysics Data System (ADS)

    Sakugawa, Hiroshi; Handa, Nobuhiko

    1985-05-01

    Isolation and chemical elucidation of dissolved and particulate polysaccharides in seawater were conducted. The water samples were collected in Mikawa Bay, Japan during a red tide bloom of the dinoflagellate, Prorocentrum minimum. Dissolved polysaccharides were concentrated from 5-101 of seawater with dialysis followed by separation by gel flitration, and isolation by ethanol precipitation. A heteropolysaccharide consisting of glucose, galactose, mannose, xylose, arabinose, fucose and rhamnose and a glucan were isolated from the polysaccharide component having a molecular weight more than 4,000 Dalton and were characterized by several chemical analyses. The heteropolysaccharide is a mucilaginous polysaccharide having a highly branched structure and a molecular weight of 10 4-5 × 10 6 Daltons and probably contains a sulfate half ester: the glucan is a polysaccharide with β-1,3- and 1,6-linkages (chrysolaminaran type). Concentrations of these were respectively ca. 20 and 67 μg l -1 at 1 m, and 2 and 26 μg l -1 at 6 m. A similar heteropolysaccharide was found in the boiling water extract of the particulate matter, while β-glucan was isolated in a much less purified form than the seawater β-glucan. In addition, a large amount of β-1,4 glucan was found in the strong alkali extract of the particulate matter, indicating that this glucan must be a cell wall polysaccharide derived from phytoplankton. These results strongly suggest that the heteropolysaccharide and chrysolaminaran type polysaccharide dissolved in seawater were derived from water soluble carbohydrates of phytoplankton through extracellular release or cell lysis.

  16. In vitro antioxidant activity of polysaccharide from Gardenia jasminoides ellis

    USGS Publications Warehouse

    Fan, Y.; Ge, Z.; Luo, A.

    2011-01-01

    A water-soluble polysaccharide, GP, was isolated from Gardenia jasminoides Ellis through hot water extraction followed by ethanol precipitation. The in vitro free radicals scavenging tests exhibited that GP has significant scavenging abilities especially for ABTS, DPPH, and hydroxyl radicals, which suggests that the polysaccharide GP is a novel antioxidant. ?? 2011 Academic Journals.

  17. Gelation of soybean protein and polysaccharides delays digestion.

    PubMed

    Hu, Bing; Chen, Qing; Cai, Qimeng; Fan, Yun; Wilde, Peter J; Rong, Zhen; Zeng, Xiaoxiong

    2017-04-15

    Xanthan gum and carrageenan, representing the medium and highly negatively charged polysaccharides, were heated respectively together with soybean protein isolate (SPI) at different biopolymer ratios. Upon mixing with simulated stomach juice (SSJ), the xanthan-SPI and carrageenan-SPI at biopolymer ratios higher than 0.01 leads to self-assembled gelation immediately. Stronger gel is formed under higher biopolymer ratios. Highly negatively charged carrageenan forms a stronger gel than that composed with xanthan gum. SDS-PAGE results show the digestibility of SPI is delayed after incorporation with the polysaccharides, which is enhanced with the increase of the biopolymer mass ratios. And the polysaccharide with higher negative charge has stronger potential in delaying the digestion of SPI. Furthermore, the microstructure of the xanthan-SPI and carrageenan-SPI gel before and after simulated stomach digestion was characterized by scanning electron microscope (SEM), which also confirms that the gel delays the digestion of soybean protein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Split of Chiral Degeneracy in Mechanical and Structural Properties of Oligopeptide-Polysaccharide Biomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taraban, Marc B.; Hyland, Laura L.; Yu, Y. Bruce

    Enantiomeric biomaterials which are mirror images of each other are characterized by chiral degeneracy—identical structural characteristics and bulk material properties. The addition of another chiral component, d-polysaccharide, has been shown to split such degeneracy and result in two distinct biomaterials. Dynamic oscillatory rheometry and small-angle X-ray scattering demonstrate that the natural biochirality combination of l-peptides and d-polysaccharides assembles faster, has higher elastic moduli (G'), and is structurally more beneficial as opposed to the alternative d-peptide and d-polysaccharide combination. Chemical modifications of the OH-groups in α-d-glucose units in d-polysaccharides weaken such splitting of chiral degeneracy. These findings form a basis tomore » design novel biomaterials and provide additional insight on why proteins and polysaccharides have oppoiste chirality in the biological world.« less

  19. Marine Polysaccharides in Microencapsulation and Application to Aquaculture: “From Sea to Sea”

    PubMed Central

    Borgogna, Massimiliano; Bellich, Barbara; Cesàro, Attilio

    2011-01-01

    This review’s main objective is to discuss some physico-chemical features of polysaccharides as intrinsic determinants for the supramolecular structures that can efficiently provide encapsulation of drugs and other biological entities. Thus, the general characteristics of some basic polysaccharides are outlined in terms of their conformational, dynamic and thermodynamic properties. The analysis of some polysaccharide gelling properties is also provided, including the peculiarity of the charged polysaccharides. Then, the way the basic physical chemistry of polymer self-assembly is made in practice through the laboratory methods is highlighted. A description of the several literature procedures used to influence molecular interactions into the macroscopic goal of the encapsulation is given with an attempt at classification. Finally, a practical case study of specific interest, the use of marine polysaccharide matrices for encapsulation of vaccines in aquaculture, is reported. PMID:22363241

  20. Screening of natural polysaccharides extracted from the fruits of Pithecellobium dulce as a pharmaceutical adjuvant.

    PubMed

    S, Preethi; A, Mary Saral

    2016-11-01

    Polysaccharides were extracted from the dried fruiting bodies of Pithecellobium dulce with 20% ethanol by microwave-assisted extraction. The polysaccharides were isolated by ion exchange chromatography and afford three water-soluble polysaccharides PDP-1, PDP-2, and PDP-3. These isolated compounds were subjected to acid hydrolysis, methylation, IR and GC-MS for its compositional analysis and revealed that all the three fractions are heteropolysaccharides. PDP-1 was found to be composed of xylose, mannose, galactose and Rhamnose. PDP-2 and PDP-3 composed of xylose, Rhamnose, glucose, ribose, galactose, and mannose. The micromeretic properties of the extracted polysaccharides possessed a bulk density of 0.69g/ml, 0.65g/ml and 0.71g/ml for PDP-1, PDP-2, and PDP-3 respectively. The Hausner's ratio and Carr's index confirm the good flow property and compressibility of the polysaccharides. The polysaccharides extracted from Pithecellobium dulce fruits were tested for its application as a pharmaceutical adjuvant. The in vitro drug release study suggests that the extracted polysaccharides are potential candidates as a pharmaceutical adjuvant. Furthermore, the three isolated polysaccharides were subjected to its radical scavenging activity using DPPH, phospho molybdenum assay and reducing power assay. The results exhibited that the polysaccharides can be explored as a novel natural antioxidant and can be recommended as a functional food. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium Paraglaciecola hydrolytica S66T Encoded in a Sizeable Polysaccharide Utilization Locus.

    PubMed

    Schultz-Johansen, Mikkel; Bech, Pernille K; Hennessy, Rosanna C; Glaring, Mikkel A; Barbeyron, Tristan; Czjzek, Mirjam; Stougaard, Peter

    2018-01-01

    Marine microbes are a rich source of enzymes for the degradation of diverse polysaccharides. Paraglaciecola hydrolytica S66 T is a marine bacterium capable of hydrolyzing polysaccharides found in the cell wall of red macroalgae. In this study, we applied an approach combining genomic mining with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66 T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes) notably agarases and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme activities targeting furcellaran, a hybrid carrageenan containing both β-carrageenan and κ/β-carrageenan motifs. Some of these enzymes represent a new subfamily within the CAZy classification. From the combined analyses, we propose models for the complete degradation of agar and κ/β-type carrageenan by P. hydrolytica S66 T . The novel enzymes described here may find value in new bio-based industries and advance our understanding of the mechanisms responsible for recycling of red algal polysaccharides in marine ecosystems.

  2. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review.

    PubMed

    Shi, Lei

    2016-11-01

    Polysaccharides play multiple roles and have extensive bioactivities in life process and an immense potential in healthcare, food and cosmetic industries, due to their therapeutic effects and relatively low toxicity. This review describes their major functions involved in antitumor, anti-virus, and anti-inflammatory bioactivities. Due to their enormous structural heterogeneity, the approaches for isolation and purification of polysaccharides are distinct from that of the other macromolecules such as proteins, etc. Yet, to achieve the homogeneity is the initial step for studies of polysaccharide structure, pharmacology, and its structure-activity relationships. According to the experiences accumulated by our lab and the published literatures, this review also introduces the methods widely used in isolation and purification of polysaccharides. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The biosynthesis of polysaccharides. Incorporation of d-[1-14C]glucose and d-[6-14C]glucose into plum-leaf polysaccharides

    PubMed Central

    Andrews, P.; Hough, L.; Picken, J. M.

    1965-01-01

    1. The utilization of specifically labelled d-glucose in the biosynthesis of plum-leaf polysaccharides has been studied. After these precursors had been metabolized in plum leaves, the polysaccharides were isolated from the leaves, and their monosaccharide constituents isolated and purified. 2. Both the specific activities and the distribution of 14C along the carbon chains of the monosaccharides were determined. Significant 14C activity was found in units of d-galactose, d-glucose, d-xylose and l-arabinose, but their specific activities varied widely. The labelling patterns suggest that in the leaves the other monosaccharides all arise directly from d-glucose without any skeletal change in the carbon chain, other than the loss of a terminal carbon atom in the synthesis of pentoses. 3. The results indicated that within the leaf there are various precursor pools for polysaccharide synthesis and that these pools are not in equilibrium with one another. PMID:14342252

  4. Scalable and cleavable polysaccharide nanocarriers for the delivery of chemotherapy drugs.

    PubMed

    Wang, Hao; Dai, Tingting; Li, Shengli; Zhou, Shuyan; Yuan, Xiaojing; You, Jiayi; Wang, Chenglong; Mukwaya, Vincent; Zhou, Guangdong; Liu, Guojun; Wei, Xiaohui; Dou, Hongjing

    2018-05-01

    While polysaccharide-based nanocarriers have been recognized for their crucial roles in tumor theranostics, the industrial-scale production of nanotherapeutics still remains a significant challenge. Most current approaches adopt a postpolymerization self-assembly strategy that follows a separate synthetic step and thus suffers from subgram scale yields and a limited range of application. In this study, we demonstrate the kilogram-scale formation of polysaccharide-polyacrylate nanocarriers at concentrations of up to 5 wt% through a one-pot approach - starting from various acrylate monomers and polysaccharides - that combines aspects of hydrophobicity-induced self-assembly with the free radical graft copolymerization of acrylate monomers from polysaccharide backbones into a single process that is thus denoted as a graft copolymerization induced self-assembly. We also demonstrate that this novel approach is applicable to a broad range of polysaccharides and acrylates. Notably, by choosing a crosslinker that bears a disulfide group and two vinyl capping groups to structurally lock the nanocarriers, the products are rendered cleavable in the reducing environments encountered at tumor sites and thus provide ideal candidates for the construction of anticancer nanotherapeutic systems. In vitro and in vivo studies demonstrated that the use of this nanocarrier for the delivery of doxorubicin hydrochloride (DOX) significantly decreased the side effects of DOX and improved the bio-safety of the chemotherapy accordingly. While polysaccharide-based nanocarriers have been recognized for their crucial roles in tumor theranostics, the industrial-scale production of these nanotherapeutics still remains a significant challenge. Most current approaches adopt a post-polymerization self-assembly strategy which that follows a separate synthetic step, and thus suffers from sub-gram scale yields and a limited range of application. In this study, the hydrophobic effect was combined with

  5. Purification, characterization and immunomodulatory activity of polysaccharides from stem lettuce.

    PubMed

    Nie, Chenzhipeng; Zhu, Peilei; Ma, Shuping; Wang, Mingchun; Hu, Youdong

    2018-05-15

    Stem lettuce has a long history of cultivation in China and possesses high nutritional and medicinal value. In our previous studies, extraction optimization, characterization, and bioactivities of stem lettuce polysaccharides (SLP) were investigated. In this study, SLP were further separated into two purified polysaccharides, SLP-1 and SLP-2, by anion exchange chromatography followed by size exclusion chromatography. SLP-1, with a molecular weight of 90 KDa, was mainly composed of galacturonic acid, galactose and arabinose in a molar ratio of 17.6:41.7:33.9. SLP-2, with a molecular weight of 44 KDa, was mainly composed of mannose, galacturonic acid, galactose and arabinose in a molar ratio of 11.5:69.5:9.3:8.2. In addition, both purified polysaccharides contain sulphate radicals, have triple helical structures and can promote macrophage proliferation without cytotoxicity. SLP-2 was better able to stimulate phagocytic and nitric oxide production than SLP-1. The results suggest that polysaccharides from stem lettuce could be explored as immunomodulatory agents in the field of pharmaceuticals and functional foods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Electrochemical writing on edible polysaccharide films for intelligent food packaging.

    PubMed

    Wu, Si; Wang, Wenqi; Yan, Kun; Ding, Fuyuan; Shi, Xiaowen; Deng, Hongbing; Du, Yumin

    2018-04-15

    Polysaccharide films used as intelligent food packaging possess the advantages of renewability, safety and biodegradability. Printing on the polysaccharidic food packaging is challenging due to the high demand for edible-ink and the need for a suitable printing technique. In this work, we propose an electrochemical method for writing on polysaccharide film. Unlike conventional printing, this electrochemical writing process relies on the pH responsive color change of anthocyanin embedded in the chitosan/agarose hydrogel. By biasing a negative potential to a stainless wire (used as a pen) contacting the surface of the chitosan/agarose/ATH hydrogel, the locally generated pH change induced the color change of ATH and wrote programmed information on the hydrogel. We demonstrate the writing can be temporary in the hydrogel but stable when the hydrogel is dried. We further demonstrate that the written film is applicable for the detection of the spoilage of crucian fish. The reported electrochemical writing process provides a novel method for printing information on polysaccharide film and great potential for intelligent food packaging. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Phenolic compositions and antioxidant attributes of leaves and stems from three inbred varieties of Lycium chinense Miller harvested at various times.

    PubMed

    Liu, Shih-Chuan; Lin, Jau-Tien; Hu, Chao-Chin; Shen, Bo-Yan; Chen, Ting-Yo; Chang, Ya-Ling; Shih, Chia-Huing; Yang, Deng-Jye

    2017-01-15

    Antioxidant components and properties (assayed by scavenging DPPH radicals, TEAC, reducing power, and inhibiting Cu(2+)-induced human LDL oxidation) of leaves and stems from three inbred varieties of Lycium chinense Miller, namely ML01, ML02 and ML02-TY, harvested from January to April were studied. Their flavonoid and phenolic acid compositions were also analyzed by HPLC. For each variety, the leaves and stems collected in higher temperature month had higher contents of total phenol, total flavonoid and condensed tannin. Contents of these components in the samples collected in different months were in the order: April (22.3°C)>March (18.0°C)>January (15.6°C)>February (15.4°C). Antioxidant activities of the leaves and stems for all assays also showed similar trends. The samples from different varieties collected in the same month also possessed different phenolic compositions and contents and antioxidant activities. Their antioxidant activities were significantly correlated with flavonoid and phenolic contents. Copyright © 2016. Published by Elsevier Ltd.

  8. Food-Derived Antioxidant Polysaccharides and Their Pharmacological Potential in Neurodegenerative Diseases

    PubMed Central

    Li, Haifeng; Ding, Fei; Xiao, Lingyun; Shi, Ruona; Wang, Hongyu; Han, Wenjing

    2017-01-01

    Oxidative stress is known to impair architecture and function of cells, which may lead to various chronic diseases, and therefore therapeutic and nutritional interventions to reduce oxidative damages represent a viable strategy in the amelioration of oxidative stress-related disorders, including neurodegenerative diseases. Over the past decade, a variety of natural polysaccharides from functional and medicinal foods have attracted great interest due to their antioxidant functions such as scavenging free radicals and reducing oxidative damages. Interestingly, these antioxidant polysaccharides are also found to attenuate neuronal damages and alleviate cognitive and motor decline in a range of neurodegenerative models. It has recently been established that the neuroprotective mechanisms of polysaccharides are related to oxidative stress-related pathways, including mitochondrial function, antioxidant defense system and pathogenic protein aggregation. Here, we first summarize the current status of antioxidant function of food-derived polysaccharides and then attempt to appraise their anti-neurodegeneration activities. PMID:28753972

  9. Inhibition of α-glucosidase by polysaccharides from the fruit hull of Camellia oleifera Abel.

    PubMed

    Zhang, Sheng; Li, Xiang-Zhou

    2015-01-22

    We isolated and purified polysaccharides from the Camellia oleifera Abel. fruit hull and studied its hypoglycemic potential. Our results revealed six polysaccharides (CFPA-1-5 & CFPB) from the aqueous extract from the defatted C. oleifera fruit hull. Purified polysaccharides (purity >90%) were investigated for the inhibition of α-glucosidase activity in vitro. Two polysaccharides, CFPB and CFPA-3 were present in high concentration in the fruit hull and showed a dose-dependent inhibition of α-glucosidase activity, with IC50 concentrations of 11.80 and 10.95 μg/mL, respectively. This result suggests that polysaccharides (CFP) extracted from the fruit hull of C. oleifera may have potential as functional foods with featuring a hypoglycemic effect. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Sulfated polysaccharides from Loligo vulgaris skin: potential biological activities and partial purification.

    PubMed

    Abdelmalek, Baha Eddine; Sila, Assaâd; Krichen, Fatma; Karoud, Wafa; Martinez-Alvarez, Oscar; Ellouz-Chaabouni, Semia; Ayadi, Mohamed Ali; Bougatef, Ali

    2015-01-01

    The characteristics, biological properties, and purification of sulfated polysaccharides extracted from squid (Loligo vulgaris) skin were investigated. Their chemical and physical characteristics were determined using X-ray diffraction and infrared spectroscopic analysis. Sulfated polysaccharides from squid skin (SPSS) contained 85.06% sugar, 2.54% protein, 1.87% ash, 8.07% sulfate, and 1.72% uronic acid. The antioxidant properties of SPSS were investigated based on DPPH radical-scavenging capacity (IC50 = 19.42 mg mL(-1)), hydrogen peroxide-scavenging activity (IC50 = 0.91 mg mL(-1)), and β-carotene bleaching inhibition (IC50 = 2.79 mg mL(-1)) assays. ACE-inhibitory activity of SPSS was also investigated (IC50 = 0.14 mg mL(-1)). Further antimicrobial activity assays indicated that SPSS exhibited marked inhibitory activity against the bacterial and fungal strains tested. Those polysaccharides did not display hemolytic activity towards bovine erythrocytes. Fractionation by DEAE-cellulose column chromatography showed three major absorbance peaks. Results of this study suggest that sulfated polysaccharides from squid skin are attractive sources of polysaccharides and promising candidates for future application as dietary ingredients.

  11. Anti-fatigue activity of a novel polysaccharide conjugates from Ziyang green tea.

    PubMed

    Chi, Aiping; Li, Hong; Kang, Chenzhe; Guo, Huanhuan; Wang, Yimin; Guo, Fei; Tang, Liang

    2015-09-01

    The aim of this study was to investigate the anti-fatigue activity of polysaccharides from Ziyang green tea. Polysaccharides were isolated from Ziyang green tea and its physicochemical properties were analyzed. Meanwhile, a 4-week weight-loaded swimming test of mice was established and polysaccharides were orally administrated during exercise. The biochemical parameters related to fatigue were determined, such as exhaustive time, blood urea nitrogen (BUN), blood lactate acid (Bla) levels and lactic dehydrogenase (LDH) activity in serum, Superoxide dismutase (SOD), Glutathione peroxidase (GSH-Px) activities, Malondialdehyde (MDA) and glycogen levels in skeletal muscle. The results demonstrated that polysaccharide from Ziyang green tea was a selenium-polysaccharide-protein conjugate (Se-TP), and Se-TP administration significantly prolonged exhaustive time and increased glycogen level and GSH-Px activity in muscle, in addition, markedly decreased BUN, Bla levels and LDH activity in serum and MDA level in muscle. In conclusion, Se-TP treatment can significantly improve exercise-induced fatigue and decrease the oxidative stress induced by the exhaustive exercise. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents.

    PubMed

    Peasura, Napassorn; Laohakunjit, Natta; Kerdchoechuen, Orapin; Wanlapa, Sorada

    2015-11-01

    Ulva intestinalis, a tubular green seaweed, is a rich source of nutrient, especially sulphated polysaccharides. Sulphated polysaccharides from U. intestinalis were extracted with distilled water, 0.1N HCl, and 0.1N NaOH at 80°C for 1, 3, 6, 12, and 24h to study the effect of the extraction solvent and time on their chemical composition and antioxidant activity. Different types of solvents and extraction time had a significant influence on the chemical characteristics and antioxidant activity (p<0.05). Monosaccharide composition and FT-IR spectra analyses revealed that sulphated polysaccharides from all solvent extractions have a typical sugar backbone (glucose, rhamnose, and sulphate attached at C-2 or C-3 of rhamnose). Sulphated polysaccharides extracted with acid exhibited greater antioxidant activity than did those extracted with distilled water and alkali. The results indicated that solvent extraction could be an efficacious method for enhancing antioxidant activity by distinct molecular weight and chemical characteristic of sulphated polysaccharides. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Characterization of serological cross-reactivity between polysaccharide antigens of Streptococcus mutans serotypes c and d.

    PubMed

    Grossi, S; Prakobphol, A; Linzer, R; Campbell, L K; Knox, K W

    1983-03-01

    Immunological assays with antisera prepared against purified Streptococcus mutans serotype c polysaccharide demonstrated that a cross-reacting determinant on c polysaccharide reacted with the wall-associated rhamnose-glucose polysaccharide from S. mutans serotype d. Studies with 60 antisera prepared against chemostat cultures of S. mutans Ingbritt (c) demonstrated that the rhamnose-glucose polysaccharide cross-reactive determinant was consistently expressed on c antigen under a variety of growth conditions.

  14. Bacterial Polysaccharide Co-Polymerases Share a Common Framework for Control of Polymer Length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tocilj,A.; Munger, C.; Proteau, A.

    2008-01-01

    The chain length distribution of complex polysaccharides present on the bacterial surface is determined by polysaccharide co-polymerases (PCPs) anchored in the inner membrane. We report crystal structures of the periplasmic domains of three PCPs that impart substantially different chain length distributions to surface polysaccharides. Despite very low sequence similarities, they have a common protomer structure with a long central alpha-helix extending 100 Angstroms into the periplasm. The protomers self-assemble into bell-shaped oligomers of variable sizes, with a large internal cavity. Electron microscopy shows that one of the full-length PCPs has a similar organization as that observed in the crystal formore » its periplasmic domain alone. Functional studies suggest that the top of the PCP oligomers is an important region for determining polysaccharide modal length. These structures provide a detailed view of components of the bacterial polysaccharide assembly machinery.« less

  15. The Specific Nature of Plant Cell Wall Polysaccharides 1

    PubMed Central

    Nevins, Donald J.; English, Patricia D.; Albersheim, Peter

    1967-01-01

    Polysaccharide compositions of cell walls were assessed by quantitative analyses of the component sugars. Cell walls were hydrolyzed in 2 n trifluoroacetic acid and the liberated sugars reduced to their respective alditols. The alditols were acetylated and the resulting alditol acetates separated by gas chromatography. Quantitative assay of the alditol acetates was accomplished by electronically integrating the detector output of the gas chromatograph. Myo-inositol, introduced into the sample prior to hydrolysis, served as an internal standard. The cell wall polysaccharide compositions of plant varieties within a given species are essentially identical. However, differences in the sugar composition were observed in cell walls prepared from different species of the same as well as of different genera. The fact that the wall compositions of different varieties of the same species are the same indicates that the biosynthesis of cell wall polysaccharides is genetically regulated. The cell walls of various morphological parts (roots, hypocotyls, first internodes and primary leaves) of bean plants were each found to have a characteristic sugar composition. It was found that the cell wall sugar composition of suspension-cultured sycamore cells could be altered by growing the cells on different carbon sources. This demonstrates that the biosynthesis of cell wall polysaccharides can be manipulated without fatal consequences. PMID:16656594

  16. Critical Problems Stalling Progress in Natural Bioactive Polysaccharide Research and Development.

    PubMed

    Han, Quan-Bin

    2018-05-09

    Natural polysaccharides are attracting increasing attention from food and pharmaceutical industries for their wide range of valuable biological activities. However, the poor repeatability of the methods used in sample preparation and chemical characterization is hampering both research and product development. The unstandardized quality, in turn, undermines efforts to understand the mechanism by which they work via oral dose, which is essential to realize the full beneficial potential of polysaccharides. Some scientists believe polysaccharides work by direct gut absorption; however, increasing evidence points to the gut microbiome and intestinal Peyer's patches as holding the keys to how they work.

  17. Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula

    PubMed Central

    Burg, Ariela; Oshrat, Levy-Ontman

    2015-01-01

    Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides’ antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains’ interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca2+ had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides’ stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites. PMID:26492255

  18. Multiple Signals Govern Utilization of a Polysaccharide in the Gut Bacterium Bacteroides thetaiotaomicron.

    PubMed

    Schwalm, Nathan D; Townsend, Guy E; Groisman, Eduardo A

    2016-10-11

    The utilization of simple sugars is widespread across all domains of life. In contrast, the breakdown of complex carbohydrates is restricted to a subset of organisms. A regulatory paradigm for integration of complex polysaccharide breakdown with simple sugar utilization was established in the mammalian gut symbiont Bacteroides thetaiotaomicron, whereby sensing of monomeric fructose regulates catabolism of both fructose and polymeric fructans. We now report that a different regulatory paradigm governs utilization of monomeric arabinose and the arabinose polymer arabinan. We establish that (i) arabinan utilization genes are controlled by a transcriptional activator that responds to arabinan and by a transcriptional repressor that responds to arabinose, (ii) arabinose utilization genes are regulated directly by the arabinose-responding repressor but indirectly by the arabinan-responding activator, and (iii) activation of both arabinan and arabinose utilization genes requires a pleiotropic transcriptional regulator necessary for survival in the mammalian gut. Genomic analysis predicts that this paradigm is broadly applicable to the breakdown of other polysaccharides in both B. thetaiotaomicron and other gut Bacteroides spp. The uncovered mechanism enables regulation of polysaccharide utilization genes in response to both the polysaccharide and its breakdown products. Breakdown of complex polysaccharides derived from "dietary fiber" is achieved by the mammalian gut microbiota. This breakdown creates a critical nutrient source for both the microbiota and its mammalian host. Because the availability of individual polysaccharides fluctuates with variations in the host diet, members of the microbiota strictly control expression of polysaccharide utilization genes. Our findings define a regulatory architecture that controls the breakdown of a polysaccharide by a gut bacterium in response to three distinct signals. This architecture integrates perception of a complex

  19. The Hypoglycemic, Hypolipidemic, and Anti-Diabetic Nephritic Activities of Zeaxanthin in Diet-Streptozotocin-Induced Diabetic Sprague Dawley Rats.

    PubMed

    Kou, Ling; Du, Mingzhao; Zhang, Chaopu; Dai, Zhiyin; Li, Xuan; Zhang, Baohai

    2017-07-01

    Zeaxanthin (ZA), an important compound found in Lycium barbarum, shows various pharmacodynamic effects. In our present study, a high-fat, high-sucrose diet and streptozotocin (STZ)-induced diabetic rat model was used to investigate the antidiabetic activities of ZA. After a 4-week administration of 200 and 400 mg/kg of ZA and 100 mg/kg of metformin hydrochloride, various blood biochemical indexes were detected. ZA strongly normalized the reduced bodyweight and enhanced fasting blood glucose in diabetic rats. The positive data obtained from the oral glucose tolerance test further confirmed its antidiabetic effects. ZA displayed significant hypolipidemic activities indicated by its modulation of serum levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol. The antidiabetic nephropathy of ZA was confirmed by its regulation of pathological kidney structures, urine levels of n-acetyl-β-d-glucosaminidase and albuminuria, and serum levels of urea nitrogen. ZA inhibited the serum levels of inflammatory factors including interleukin-2 (IL-2), IL-6, tumor necrosis factor-α, and nuclear factor kappa B, further confirming its renal protection. Moreover, the serum imbalances in superoxide dismutase, glutathione peroxidase, methane dicarboxylic aldehyde, and catalase were normalized by ZA, suggesting its antioxidant properties. Altogether, ZA produced hypoglycemic, hypolipidemic, and antidiabetic nephritic effects in a diet-STZ-induced diabetic rat model.

  20. Bioactivities and extraction optimization of crude polysaccharides from the fruits and leaves of Rubus chingii Hu.

    PubMed

    Zhang, Tian-Tian; Lu, Chuan-Li; Jiang, Jian-Guo; Wang, Min; Wang, Dong-Mei; Zhu, Wei

    2015-10-05

    Polysaccharides of Rubus chingii Hu fruit and leaf were extracted to compare their antioxidant, anti-inflammatory, and anticancer activities against breast cancer cells MCF-7 and liver cancer cells Bel-7402. Results showed that all the tested bioactivities of polysaccharides from leaf (L-Ps) were better than those of polysaccharides from fruit (F-Ps). Response surface methodology was then used to optimize the extraction conditions of polysaccharides from leaf. Additionally, polysaccharides from fruit and leaf were characterized and their contents of total sugars, proteins and uronic acid were compared. It was found that polysaccharides from fruit and leaf were similar in IR and UV absorption, but significantly different in contents of total sugars, protein and uronic acid. Their elution profiles of DEAE-Sepharose fast flow column were different too. The main peak of polysaccharides from fruit was eluted with 0.3 mol/l NaCl solution and the main peak of polysaccharides from leaf was eluted with deionized water. The differences between the two polysaccharides may be responsible for their differences in bioactivities. Further studies are required to explore their complete structural characteristics, structure-activity relationship and the mechanism of their activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Role of polysaccharides in food, digestion, and health

    PubMed Central

    Lovegrove, A.; Edwards, C. H.; De Noni, I.; Patel, H.; El, S. N.; Grassby, T.; Zielke, C.; Ulmius, M.; Nilsson, L.; Butterworth, P. J.; Ellis, P. R; Shewry, P. R.

    2017-01-01

    ABSTRACT Polysaccharides derived from plant foods are major components of the human diet, with limited contributions of related components from fungal and algal sources. In particular, starch and other storage carbohydrates are the major sources of energy in all diets, while cell wall polysaccharides are the major components of dietary fiber. We review the role of these components in the human diet, including their structure and distribution, their modification during food processing and effects on functional properties, their behavior in the gastrointestinal tract, and their contribution to healthy diets. PMID:25921546

  2. Role of polysaccharides in food, digestion, and health.

    PubMed

    Lovegrove, A; Edwards, C H; De Noni, I; Patel, H; El, S N; Grassby, T; Zielke, C; Ulmius, M; Nilsson, L; Butterworth, P J; Ellis, P R; Shewry, P R

    2017-01-22

    Polysaccharides derived from plant foods are major components of the human diet, with limited contributions of related components from fungal and algal sources. In particular, starch and other storage carbohydrates are the major sources of energy in all diets, while cell wall polysaccharides are the major components of dietary fiber. We review the role of these components in the human diet, including their structure and distribution, their modification during food processing and effects on functional properties, their behavior in the gastrointestinal tract, and their contribution to healthy diets.

  3. Immunoenhancement of Edible Fungal Polysaccharides (Lentinan, Tremellan, and Pachymaran) on Cyclophosphamide-Induced Immunosuppression in Mouse Model

    PubMed Central

    Zhang, Qian; Cong, Renhuai; Hu, Minghua; Yang, Xiangliang

    2017-01-01

    Fungal polysaccharides display a variety of important biological activities, including anti-inflammatory, antitumor, and immune-stimulating activities. The aim of present study was to investigate the immunomodulatory effect of fungal polysaccharides on cyclophosphamide-induced immunosuppression in mice. Mice were pretreated orally with lentinan, tremellan, pachymaran, or a mixture of the three, respectively. The results showed that pretreatments with polysaccharides significantly increased the thymus index in cyclophosphamide-induced immunosuppression mice. The level of the cytokine IL-10 in sera of cyclophosphamide-induced mice was decreased after pretreatments of polysaccharides. Flow cytometry results showed that pretreatments with polysaccharides enhanced the phagocytosis of peritoneal macrophages in mice. The increased levels of serum antibody IgG and IgM were observed in the groups pretreated with polysaccharides. Our work demonstrated that the treatment of polysaccharides elicited strong immune activity and a protective effect against cyclophosphamide-induced immunosuppression. PMID:29358974

  4. Immunochemical characterization of the "native" type III polysaccharide of group B Streptococcus

    PubMed Central

    1976-01-01

    The type III polysaccharide of -roup B Streptococcus has been isolated and purified by a method that employs washing of intact cells at neutral pH. That the polysaccharide prepared by this procedure is the "native" type III antigen is suggested by its molecular size in excess of 10(6) daltons, its degradation by acid and heat treatment to a fragment with immunologic characteristics of the classical HCl antigen, and its type-specific serologic activity. The type III polysaccharide in native form contains sialic acid, galactose, glucose, glucosamine, heptose, and mannose. It is acidic in nature, is resistant to neuramindiase degradation, contains no O-acetyl groups, and does not share antigenic determinants with capsular type K1 antigen of Escherichia coli or Group B polysaccharide antigen of Neiserria meningitidis. PMID:55450

  5. Conformational studies of the capsular polysaccharide produced by Neisseria meningitidis group A.

    PubMed

    Foschiatti, Michela; Hearshaw, Meredith; Cescutti, Paola; Ravenscroft, Neil; Rizzo, R

    2009-05-12

    The effect of different cations on the conformational and morphological properties of the capsular polysaccharide produced by Neisseria meningitidis group A was investigated. Circular dichroism studies showed that the presence of Na(+), NH4+ or Ca(2+) ions induced different local conformations of the polysaccharide chain through interactions with the phosphodiester group bridging the saccharide residues in the polymer chain. Atomic force microscopy experiments confirmed that the morphology of the polysaccharide chains was different depending on the nature of the counterion. Ammonium ions were associated with the presence of single polymer chains in an elongated conformation, whereas sodium ions favored the folding of the chains into a globular conformation. The addition of calcium ions produced the aggregation of a limited number of globular polysaccharide chains to form a 'toroidal-like' structure.

  6. Chemical Fucosylation of a Polysaccharide: A Semisynthetic Access to Fucosylated Chondroitin Sulfate.

    PubMed

    Laezza, Antonio; Iadonisi, Alfonso; Castro, Cristina De; De Rosa, Mario; Schiraldi, Chiara; Parrilli, Michelangelo; Bedini, Emiliano

    2015-07-13

    Chemical O-glycosylation of polysaccharides is an almost unexplored reaction. This is mainly due to the difficulties in derivatizing such complex biomacromolecules in a quantitative manner and with a fine control of the obtained structural parameters. In this work, chondroitin raw material from a microbial source was chemo- and regioselectively protected to give two polysaccharide intermediates, that acted in turn as glycosyl acceptors in fucosylation reactions. Further manipulations on the fucosylated polysaccharides, including multiple de-O-benzylation and sulfation, furnished for the first time nonanimal sourced fucosylated chondroitin sulfates (fCSs)-polysaccharides obtained so far exclusively from sea cucumbers (Echinoidea, Holothuroidea) and showing several very interesting biological activities. A semisynthetic fCS was characterized from a structural point of view by means of 2D-NMR techniques, and preliminarily assayed in an anticoagulant test.

  7. The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach.

    PubMed

    Brandão, Elsa; Silva, Mafalda Santos; García-Estévez, Ignacio; Williams, Pascale; Mateus, Nuno; Doco, Thierry; de Freitas, Victor; Soares, Susana

    2017-12-01

    Polysaccharides are described to inhibit aggregation between food polyphenols and salivary proteins (SP) and may hence lead to astringency modulation. In this work, the effect of two wine polysaccharides (arabinogalactan proteins-AGPs and rhamnogalacturonan II- RGII) on SP-polyphenol interaction was evaluated. In general, both polysaccharides were effective to inhibit or reduce SP-polyphenol interaction and aggregation. They can act by two different mechanisms (ternary or competitive) depending on the SP-tannin pair. In the case of salivary P-B peptide, AGPs and RGII seem to act by a ternary mechanism, in which they surround this complex, enhancing its solubility. Concerning acidic proline-rich proteins (aPRPs), it was possible to observe both mechanisms, depending on the tannin and the polysaccharide involved. Overall, this work point out for a specific property of wine polysaccharides important to modulate this and other beverages and food astringency perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Characterization of an acidic polysaccharide isolated from the leaves of Corchorus olitorius (Moroheiya).

    PubMed

    Ohtani, K; Okai, K; Yamashita, U; Yuasa, I; Misaki, A

    1995-03-01

    An acidic polysaccharide was isolated from the water-soluble mucilage extracted from dried leaves of Corchorus olitorius, known as Moroheiya in Japan (3.0 g per 100 g). This polysaccharide showed a single peak in a Sepharose CL-6B column, and the specific rotation in H2O at 25 degrees C was +250 degrees. The polysaccharide was rich in uronic acid (65%), and consisted of rhamnose, glucose, galacturonic acid, and glucuronic acid in a molar ratio of 1.0:0.2:0.2:0.9:1.7, in addition to 3.7% of the acetyl group. A methylation analysis, Smith degradation study and fragmentation analysis suggested that this polysaccharide mainly consisted of O-4 substituted galacturonic acid and glucuronic acid, and O-2 substituted rhamnose residues, and that most of the (1-->4)-linked uronic acid residues were substituted at the O-3 position with glucuronic acid residues. This polysaccharide showed proliferative activity toward the murine splenocyte.

  9. Fingerprint analysis of polysaccharides from different Ganoderma by HPLC combined with chemometrics methods.

    PubMed

    Sun, Xiaomei; Wang, Haohao; Han, Xiaofeng; Chen, Shangwei; Zhu, Song; Dai, Jun

    2014-12-19

    A fingerprint analysis method has been developed for characterization and discrimination of polysaccharides from different Ganoderma by high performance liquid chromatography (HPLC) coupled with chemometrics means. The polysaccharides were extracted under ultrasonic-assisted condition, and then partly hydrolyzed with trifluoroacetic acid. Monosaccharides and oligosaccharides in the hydrolyzates were subjected to pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone and HPLC analysis, which will generate unique fingerprint information related to chemical composition and structure of polysaccharides. The peak data were imported to professional software in order to obtain standard fingerprint profiles and evaluate similarity of different samples. Meanwhile, the data were further processed by hierarchical cluster analysis and principal component analysis. Polysaccharides from different parts or species of Ganoderma or polysaccharides from the same parts of Ganoderma but from different geographical regions or different strains could be differentiated clearly. This fingerprint analysis method can be applied to identification and quality control of different Ganoderma and their products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Treatment Characteristics of Polysaccharides and Endotoxin Using Oxygen Plasma Produced by RF Discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitazaki, Satoshi; Hayashi, Nobuya; Goto, Masaaki

    Treatment of polysaccharides and endotoxin were attempted using oxygen plasma produced by RF discharge. Oxygen radicals observed by optical light emission spectra are factors of decomposition of polysaccharides and endotoxin. Fourier transform infrared spectra indicate that most of chemical bonds in the polysaccharides are dissociated after irradiation of the oxygen plasma. Also, the decomposition rate of endotoxin was approximately 90% after irradiation of the oxygen plasma for 180 min.

  11. Treatment Characteristics of Polysaccharides and Endotoxin Using Oxygen Plasma Produced by RF Discharge

    NASA Astrophysics Data System (ADS)

    Kitazaki, Satoshi; Hayashi, Nobuya; Goto, Masaaki

    2010-10-01

    Treatment of polysaccharides and endotoxin were attempted using oxygen plasma produced by RF discharge. Oxygen radicals observed by optical light emission spectra are factors of decomposition of polysaccharides and endotoxin. Fourier transform infrared spectra indicate that most of chemical bonds in the polysaccharides are dissociated after irradiation of the oxygen plasma. Also, the decomposition rate of endotoxin was approximately 90% after irradiation of the oxygen plasma for 180 min.

  12. Safety and Immunogenicity Testing of a Pilot Polysaccharide Vaccine Preparation to Pseudomonas aeruginosa.

    DTIC Science & Technology

    1981-09-01

    8217-NAL." BUR-._,AL)- ’..O,.-,.S.AN--DA. .-D-S.... . . . .A AD___________ Safety and Immunogenicity Testing of a Pilot Polysaccharide Vaccine Preparation...COVERED Safety and Immunogenicity Testing of a Pilot Annual Report Polysaccharide Vaccine Preparation to (16 Aug. 80 - 1 Aug. 81) Pseudomonas...immunogenic or biologically active component of the vaccine. The vaccine is a high molecu- lar weight polysaccharide (PS) material isolated from the outer

  13. Polysaccharides from the South African medicinal plant Artemisia afra: Structure and activity studies.

    PubMed

    Braünlich, Paula Marie; Inngjerdingen, Kari Tvete; Inngjerdingen, Marit; Johnson, Quinton; Paulsen, Berit Smestad; Mabusela, Wilfred

    2018-01-01

    Artemisia afra (Jacq. Ex. Willd), is an indigenous plant in South Africa and other parts of the African continent, where it is used as traditional medicine mostly for respiratory conditions. The objective of this study was to investigate the structural features of the polysaccharides from the leaves of this plant, as well as the biological activities of the polysaccharide fractions against the complement assay. Leaves of Artemisia afra were extracted sequentially with organic solvents (dichloromethane and methanol), 50% aqueous ethanol, and water at 50 and 100°C respectively. The polysaccharide extracts were fractionated by ion exchange chromatography and the resulting fractions were tested for biological activity against the complement fixation assay. Active fractions were further fractionated using gel filtration. Monosaccharide compositions and linkage analyses were determined for the relevant fractions. Polysaccharides were shown to be of the pectin type, and largely contain arabinogalactan, rhamnogalacturonan and homogalacturonan structural features. The presence of arabinogalactan type II features as suggested by methylation analysis was further confirmed by the ready precipitation of the relevant polysaccharides with the Yariv reagent. An unusual feature of some of these polysaccharides was the presence of relatively high levels of xylose as one of its monosaccharide constituents. Purified polysaccharide fractions were shown to possess higher biological activity than the selected standard in the complement assay. Digestion of these polysaccharides with an endo-polygalacturonase enzyme resulted in polymers with lower molecular weights as expected, but still with biological activity which exceeded that of the standard. Thus on the basis of these studies it may be suggested that immunomodulating properties probably contribute significantly to the health-promoting effects of this medicinal plant. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Optimization for ultrasonic-microwave synergistic extraction of polysaccharides from Cornus officinalis and characterization of polysaccharides.

    PubMed

    Yin, Xiulian; You, Qinghong; Jiang, Zhonghai; Zhou, Xinghai

    2016-02-01

    Ultrasonic-microwave synergistic extraction (UMSE) of polysaccharides from Cornus officinalis was optimized by response surface methodology (RSM). The effect of four different factors on the yield of C. officinalis polysaccharides (COP) was studied. RSM results showed that the optimal conditions were extraction time of 31.49823 min, microwave power of 99.39769 W, and water-to-raw material ratio of 28.16273. The COP yield was 11.38±0.31% using the modified optimal conditions, which was consistent with the value predicted by the model. The crude COP was purified by DEAE-Cellulose 52 chromatography and Sephadex G-100 chromatography. Five fractions, namely, crude COP, COP-1, COP-2, COP-3, and COP-4, were obtained. Monosaccharide composition analysis revealed that the COP was composed of glucose, arabinose, fucose, xylose, mannose, and rhamnose. Preliminary structural characterizations of COP were conducted by scanning electron microscopy and Fourier transform infrared spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Preparation of Lentinula edodes polysaccharide-calcium complex and its immunoactivity.

    PubMed

    Cui, Yujiao; Yan, Huidan; Zhang, Xuewu

    2015-01-01

    Polysaccharide is a major bioactive component of mushrooms. In this study, for the first time, starting from a new Lentinula edodes polysaccharide L2, we prepared a novel L2-calcium complex and the process was optimized. Scanning electron microscopy and Fourier Transform infrared spectrometry were used for characterization. The immunostimulating activities of L2 and L2-calcium complex were measured by enhancing the production of two cytokines TNF-α and IL-6 in RAW264.7 cells. While L2-calcium complex significantly stimulates the secretions of TNF-α and IL-6 compared with the control, complex with calcium ion decreased the secretion of them. These facts indicate that calcium ion can modulate immune stimulating activity of Lentinula edodes polysaccharide L2.

  16. Molecular modification of native coffee polysaccharide using subcritical water treatment: Structural characterization, antioxidant, and DNA protecting activities.

    PubMed

    Getachew, Adane Tilahun; Chun, Byung Soo

    2017-06-01

    Polysaccharides are an abundant resource in coffee beans and have proved to show numerous bioactivities. Despite their abundance, their activities are not always satisfactory mostly due to their structure and large molecular size. Molecular modifications of native polysaccharides can overcome this problem. In this study, we used a novel and green method to modify native coffee polysaccharides using subcritical water (SCW) treatment. The SCW treatment was used at the temperature of 180°C-220°C and pressure of 30-60bar. The molecular and structural modification of the polysaccharides was confirmed using several techniques such as FT-IR, UV spectroscopy, XRD, and TGA. The antioxidant activity of the modified polysaccharides was evaluated using several chemical and Saccharomyces cerevisiae-based high throughput assays. The modified polysaccharides showed high antioxidant activities in all tested assays. Moreover, the polysaccharides showed high DNA protection activities. Therefore, SCW could be employed as a green solvent for molecular modification of polysaccharides. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. In vivo anticancer and immunomodulating activities of mannogalactoglucan-type polysaccharides from Lentinus edodes (Berkeley) Singer.

    PubMed

    Jeff, Iteku Bekomo; Fan, Enxue; Tian, Meihong; Song, Chenyang; Yan, Jingmin; Zhou, Yifa

    2016-01-01

    There is considerable interest in the potential of mushrooms in modulating the immune system and/or suppressing tumor growth. Among the studied bioactive compounds in mushrooms, polysaccharides are the most important. Nontoxic fungal polysaccharides have a more important role in immunomodulating and antitumor activities which are related to their effects to act of immune effecter cells such as lymphocytes, macrophages, dendritic cells, and natural killer cells involved in the innate and adaptive immunity. Two mannogalactoglucan-type polysaccharides (WPLE-N-2 and WPLE-A0.5-2), purified from the fruiting bodies of Lentinus edodes, were evaluated for their effects on the cellular immune response of Sarcoma 180 (S-180)-bearing mice. Mice were treated with 100 mg/kg body weight of the polysaccharides for 10 days. Significant tumor regressions of the polysaccharide groups' mice were observed compared to the control group. These polysaccharides could induce an increase in nitrite oxide (NO) production in peritoneal macrophages, significantly increase macrophage phagocytosis of tumor-bearing mice and augment concanavalin (ConA) and lipopolysaccharide (LPS)-induced splenocytes proliferation. Our results indicated that immunomodulating activity occurred through host mediation in response to lymphocyte proliferation, macrophage phagocytosis and induction of NO production while the antitumor activity occurred through direct cytotoxicity. Our findings suggest that mannogalactoglucan-type polysaccharides from L. edodes can be explored as novel potential immunostimulants. Our research provides essential data to a better understanding of L. edodes bioactive compounds, especially polysaccharides. Our results also confirm the key role of β-linkages in the antitumor and immunomodulating effects of polysaccharides.

  18. [Prediction of the potential distribution of Tibetan medicinal Lycium ruthenicum in context of climate change].

    PubMed

    Lin, Li; Jin, Ling; Wang, Zhen-Heng; Cui, Zhi-Jia; Ma, Yi

    2017-07-01

    To predict the suitable distribution patterns of Lycium ruthenicum in the present and future under the background of climate change, and provide reference for the resources sustainable utilization and GAP standardized planting. The software of Maxent and ArcGis was used to predict the potential suitable regions and grades of L. ruthenicum in China based on the 149 distribution information, climate data of contemporary (1950-2000) and future (20-80 decade of 21 century), and considering of three greenhouse gaseous emission scenario. The results showed that:the suitable distribution regions of L. ruthenicum are mainly concentrated in Xinjiang, Qinghai, Gansu, Neimenggu, and Ningxia province in present. In addition, Shaanxi, Shanxi and Xizang are also distribution regions.The suitable distribution area of L. ruthenicum is 284.506 949×104 km2, accounted for 29.6% of the land area of China.The relatively stable area of the suitable regions accounted for 25.2% of the total suitable region area.Under the background of climate change, compared with contemporary, the total area of suitable region is reducing and moderately suitable area is increasing at different degree at the 20, 30, 40, 50, 60, 70, 80 decade of 21 century. Climate change both can change the total area of suitable regions and habitat suitability of L. ruthenicum. It could provide a strategic guidance for protection, development and utilization of L. ruthenicum though the prediction of potential suitable regions distribution of L. ruthenicum based on the mainly factor of climate change. Copyright© by the Chinese Pharmaceutical Association.

  19. Frequency distribution and correlation among mineral elements in Lycium andersonii from the northern Mojave Desert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, A.; Romney, E,M.; Alexander, G.V.

    1980-01-01

    Two hundred samples of leaves of Lycium andersonii A. Gray, each representing one plant and divided among six different locations, were assayed by emission spectrography. Information for 12 different elements is reported in terms of concentrations, frequency distribution, correlations, and some soil characteristics. The objective was to ascertain the nature of variability for mineral elements within a species. Composition varied significantly for all 12 elements among locations, all within about 20 km. At least part of the variation was due to soil characteristics. Samples from Rock Valley were highest in K, Na, and Li, which effect is associated with volcanicmore » outcrop. Samples from Mercury Valley were highest in P, Mg, Ba, and B. At least Mg is related to the soil composition. Correlation coefficients between element pairs were often very different for all 200 samples versus those obtained for individual locations. Some of the values for all 200 samples together proved to be artifacts. The highest correlation was for Ca x Sr (positive) and next was Ca x Mg (also positive). Most correlations were slightly or strongly positive (24 to 32). Only P x Ca, Ca x Na, Ca x B, and Sr x P seemed to be significantly negative of the 32 correlations examined. Frequency distribution patterns where common populations were grouped were often normally distributed. Li, as previously reported, and Na, Cu, Mn,and B and Ba at some locations were not normally distributed. Wide variations in the concentrations of individual elements in leaves of these species were encountered.« less

  20. Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides

    NASA Astrophysics Data System (ADS)

    Dreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, Thomas

    2017-02-01

    Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromolecules when suspended in water. Here we show that birch pollen washing water exhibits also ice-binding properties such as ice shaping and ice recrystallization inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the ice-nucleating as well as the ice-binding molecules are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chemical moieties, but centrifugal filtration indicates differences in molecular size: ice nucleation occurs only in the supernatant of a 100 kDa filter, while ice shaping is strongly enhanced in the filtrate. This finding may suggest that the larger ice-nucleating polysaccharides consist of clusters of the smaller ice-binding polysaccharides, or that the latter are fragments of the ice-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both ice-nucleating as well as ice-binding ability, suggesting a common mechanism of interaction with ice among several boreal pollen with implications for atmospheric processes and antifreeze protection.

  1. Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides

    PubMed Central

    Dreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, Thomas

    2017-01-01

    Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromolecules when suspended in water. Here we show that birch pollen washing water exhibits also ice-binding properties such as ice shaping and ice recrystallization inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the ice-nucleating as well as the ice-binding molecules are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chemical moieties, but centrifugal filtration indicates differences in molecular size: ice nucleation occurs only in the supernatant of a 100 kDa filter, while ice shaping is strongly enhanced in the filtrate. This finding may suggest that the larger ice-nucleating polysaccharides consist of clusters of the smaller ice-binding polysaccharides, or that the latter are fragments of the ice-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both ice-nucleating as well as ice-binding ability, suggesting a common mechanism of interaction with ice among several boreal pollen with implications for atmospheric processes and antifreeze protection. PMID:28157236

  2. Polysaccharides based nanomaterials for targeted anti-cancer drug delivery.

    PubMed

    Dheer, Divya; Arora, Divya; Jaglan, Sundeep; Rawal, Ravindra K; Shankar, Ravi

    2017-01-01

    Polysaccharides, an important class of biological polymers, are effectively bioactive, nontoxic, hydrophilic, biodegradable and offer a wide diversity in structure and properties. These can be easily modified chemically and biochemically to enhance the bioadhesion with biological tissues, better stability and can improve bioavailability of drugs. Most of the chemotherapeutic drugs have a narrow therapeutic index, slow drug delivery systems and poor water solubility that usually proves toxic to human bodies. The inherent biocompatibility of these biopolymers have shown enhancement of solubility of some chemotherapeutic drugs which also leads to the preparation of nanomaterials for the delivery of antibiotics, anticancer, proteins, peptides and nucleic acids using several routes of administration. Recently, synthesis and research on polysaccharides based nanomaterials have gained enormous attention as one of the most applicable resources in nanomedicine area. This review article will provide a specific emphasis on polysaccharides as natural biomaterials for targeted anticancer drug delivery system.

  3. Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae

    PubMed Central

    de Jesus Raposo, Maria Filomena; de Morais, Rui Manuel Santos Costa; de Morais, Alcina Maria Miranda Bernardo

    2013-01-01

    Marine microalgae have been used for a long time as food for humans, such as Arthrospira (formerly, Spirulina), and for animals in aquaculture. The biomass of these microalgae and the compounds they produce have been shown to possess several biological applications with numerous health benefits. The present review puts up-to-date the research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine unicellular algae, which are, most of the times, released into the surrounding medium (exo- or extracellular polysaccharides, EPS). It goes through the most studied activities of sulphated polysaccharides (sPS) or their derivatives, but also highlights lesser known applications as hypolipidaemic or hypoglycaemic, or as biolubricant agents and drag-reducers. Therefore, the great potentials of sPS from marine microalgae to be used as nutraceuticals, therapeutic agents, cosmetics, or in other areas, such as engineering, are approached in this review. PMID:23344113

  4. Microwave superheated water extraction of polysaccharides from spent coffee grounds.

    PubMed

    Passos, Cláudia P; Coimbra, Manuel A

    2013-04-15

    The spent coffee grounds (SCG) are a food industry by-product that can be used as a rich source of polysaccharides. In the present work, the feasibility of microwave superheated water extraction of polysaccharides from SCG was studied. Different ratios of mass of SCG to water, from 1:30 to 1:5 (g:mL) were used for a total volume of 80 mL. Although the amount of material extracted/batch (MAE1) increased with the increase of the concentration of the sample, the amount of polysaccharides achieved a maximum of 0.57 g/batch for 1:10. Glycosidic-linkage composition showed that all extraction conditions allowed to obtain mainly arabinogalactans. When the unextracted insoluble material was re-extracted under the same conditions (MAE2), a further extraction of polysaccharides was observed (0.34 g/batch for 1:10), mainly galactomannans. Also, a high amount of oligosaccharides, mainly derived from galactomannans, can be obtained in MAE2 (0.96 g/batch for 1:10). This technology allows to obtain galactomannans and arabinogalactans in proportions that are dependent on the operating conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Preparation of low molecular weight Sargassum fusiforme polysaccharide and its anticoagulant activity

    NASA Astrophysics Data System (ADS)

    Sun, Yuhao; Chen, Xiaolin; Liu, Song; Yu, Huahua; Li, Rongfeng; Wang, Xueqin; Qin, Yukun; Li, Pengcheng

    2017-10-01

    Heparin has been used as an anticoagulant drug for many years, but it has significant side effects. In the search for good substitutes, low molecular weight (MW) polysaccharides from Sargassum fusiforme have been examined and confirmed to possess biological activities. Here, S. fusiforme polysaccharides (SFP) were extracted and subjected to a hydrogen peroxide (H2O2) oxidation method for the preparation of low-MW SFP (LSFP). The effects of temperature, pH, and H2O2 concentration on the degradation process were also examined. Several LSFP of 36, 9, 5.7, and 2.7 kDa were obtained under different conditions, and their anticoagulant activities studied in vitro. The results showed that SFP and LSFP prolonged activated partial thromboplastin (APTT), prothrombin (PT) and thrombin times (TT) significantly, indicating that these low MW polysaccharides possessed anticoagulant activity in the intrinsic, extrinsic, and common coagulation pathways. As these effects were related to the MW of the polysaccharides in APTT and TT but not in PT, the contents of the monosaccharide fucose and sulfate and the polysaccharide MW could have exerted combined effects. The details of this mechanism require further verification.

  6. Influence of bioactive sulfated polysaccharide-protein complexes on hepatocarcinogenesis, angiogenesis and immunomodulatory activities.

    PubMed

    Matloub, Azza A; Aglan, Hadeer A; Mohamed El Souda, Sahar Salah; Aboutabl, Mona Elsayed; Maghraby, Amany Sayed; Ahmed, Hanaa H

    2016-12-01

    To explore the in vivo anticancer, anti-angiogenesis and immunomodulatory efficacies of the bioactive polysaccharide isolated from cold aqueous extract of Jania rubens (JCEM) and Pterocladia capillacea (PCEM) as well as hot aqueous extract of Enteromorpha intestinalis (EHEM) against hepatocellular carcinoma rat model (HCC) and to study their chemical composition. The sugars and amino acids composition of the bioactive polysaccharides of JCEM, PCEM and EHEM were determined using gas liquid chromatography and amino acid analyzer, respectively. These polysaccharide extracts (20 mg/kg b.wt. for 5 weeks) were assessed on hepatocarcinogenesis in rats and α-fetoprotein (AFP), carcinoembryonic antigen (CEA), glypican-3 (GPC-3), hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) and Ig G levels were evaluated. The GLC analysis of JCEM, PCEM and EHEM polysaccharide revealed the presence of 10, 9 and 10 sugars, in addition the amino acid analyzer enable identification of 16, 15 and 15 amino acids, respectively. These polysaccharide extracts of JCEM, PCEM and EHEM produced significant decrease in serum AFP, CEA, GPC-3, HGF and VEGF compared with untreated HCC group. JCEM, PCEM and EHEM had an immunostimulatory responses by increasing the IgG levels as compared by naïve value (1.23, 1.53 and 1.17 folds), respectively. The bioactive polysaccharides in HCC induced rats improved the humoral immune response. The photomicrographs of liver tissue sections of the groups of HCC treated with polysaccharide extracts of Jania rubens and Enteromorpha intestinalis showed intact histological structure. Moreover, fractions HE1, HE4, HE7 obtained from polysaccharide of EHEM showed moderate cytotoxic activity against HepG2 in vitro with IC 50 73.1, 42.6, 76.2 μg/mL. However, fractions of PCEM and JCEM show no or weak cytotoxicity against HepG2 in vitro where the cytotoxic activity of their crude polysaccharide extract proved synergetic effect. The pronounced

  7. Polysaccharides as Alternative Moisture Retention Agents for Shrimp.

    PubMed

    Torti, Michael J; Sims, Charles A; Adams, Charles M; Sarnoski, Paul J

    2016-03-01

    Phosphates are used as moisture retention agents (MRAs) by the shrimp industry. Although they are effective, phosphates are expensive, need to be listed on a food label, and overuse can often lead to a higher product cost for consumers. Polysaccharides were researched as alternative MRAs. Polysaccharides are usually inexpensive, are considered natural, and can have nutritional benefits. Research was conducted to determine whether polysaccharides yielded similar functional impacts as phosphates. Treatments included a 0.5% fibercolloid solution isolated from citrus peel, an 8% pectin solution, a 0.5% xanthan gum (XG) solution, a 1% carboxymethyl cellulose solution, and conventionally used 4% sodium tripolyphosphate (STP). Experimental treatments were compared to a distilled water control to gauge effectiveness. Freezing, boiling, and oven drying studies were performed to determine how moisture retention in shrimp differed using these different treatments. Water activity was measured to determine any potential differences in shelf life. Solution uptake was also determined to understand how well the treatments enhanced water binding. For moisture loss by freezing, 4% STP and the 0.5% fibercolloid solution functioned the best. The 4% STP treated shrimp lost the least amount of moisture during boiling. The 0.5% fibercolloid and 0.5% XG treatment outperformed phosphates in respect to moisture uptake ability. None of the treatments had a major effect on water activity. All treatments were rated similar in consumer sensory acceptability tests except for pectin, which was rated lower by the sensory panel. Overall, polysaccharides were found to be viable alternatives to phosphates. © 2016 Institute of Food Technologists®

  8. Application of Box-Behnken design for ultrasonic-assisted extraction of polysaccharides from Paeonia emodi.

    PubMed

    Ahmad, Ajaz; Alkharfy, Khalid M; Wani, Tanveer A; Raish, Mohammad

    2015-01-01

    The objective of the present work was to study the ultrasonic assisted extraction and optimization of polysaccharides from Paeonia emodi and evaluation of its anti-inflammatory response. Specifically, the optimization of polysaccharides was carried out using Box-Behnken statistical experimental design. Response surface methodology (RSM) of three factors (extraction temperature, extraction time and liquid solid ratio) was employed to optimize the percentage yield of the polysaccharides. The experimental data were fitted to quadratic response surface models using multiple regression analysis with high coefficient of determination value (R) of 0.9906. The highest polysaccharide yield (8.69%) as per the Derringer's desirability prediction tool was obtained under the optimal extraction condition (extraction temperature 47.03 °C, extraction time 15.68 min, and liquid solid ratio 1.29 ml/g) with a desirability value of 0.98. These optimized values of tested parameters were validated under similar conditions (n = 6), an average of 8.13 ± 2.08% of polysaccharide yield was obtained in an optimized extraction conditions with 93.55% validity. The anti-inflammatory effect of polysaccharides of P. emodi were studied on carrageenan induced paw edema. In vivo results showed that the P. emodi 200mg/kg of polysaccharide extract exhibited strong potential against inflammatory response induced by 1% suspension of carrageenean in normal saline. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Structure features and in vitro hypoglycemic activities of polysaccharides from different species of Maidong.

    PubMed

    Gong, Yajun; Zhang, Jie; Gao, Fei; Zhou, Jiewen; Xiang, Zhinan; Zhou, Chenggao; Wan, Luosheng; Chen, Jiachun

    2017-10-01

    Structures and in vitro hypoglycemic activities of polysaccharides from different species of Maidong were studied. The primary structures of polysaccharides were elucidated on the basis of GC, GC-MS, infrared, NMR and periodate oxidation-Smith degradation. Liriope spicata polysaccharide (LSP), Ophiopogon japonicus polysaccharide (OJP) and Liriope muscari polysaccharide (LMP) were composed of β-fructose and α-glucose. The average molecular weights of LSP, OJP and LMP were 4742, 4925 and 4138Da with polydispersity indexes of 1.1, 1.2 and 1.1, respectively. The backbones of polysaccharides were formed by Fruf-(2→, →2)-Fruf-(6→, →6)-Glcp-(1→ and →1, 2)-Fruf-(6→ with a molar ratio of 5.0:18.2:1.0:5.3 (LSP), 6.8:15.8:1.0:5.8 (OJP), 8.3:12.3:1.0:3.9 (LMP), respectively. The RT-PCR and western blot analysis indicated that LSP, LMP and OJP increased the expression of PI3K, AKT, InsR, PPARγ and decreased the expression of PTP1B in mRNA level and protein level in IR HepG2 cells. Furthermore, glucose consumption was increased after treated with polysaccharides. These results revealed that LSP, OJP and LMP had potential anti-diabetic effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Functional Exploration of the Polysaccharide Lyase Family PL6

    PubMed Central

    Mathieu, Sophie; Henrissat, Bernard; Labre, Flavien; Skjåk-Bræk, Gudmund; Helbert, William

    2016-01-01

    Alginate, the main cell-wall polysaccharide of brown algae, is composed of two residues: mannuronic acid (M-residues) and, its C5-epimer, guluronic acid (G-residues). Alginate lyases define a class of enzymes that cleave the glycosidic bond of alginate by β-elimination. They are classified according to their ability to recognize the distribution of M- and G-residues and are named M-, G- or MG-lyases. In the CAZy database, alginate lyases have been grouped by sequence similarity into seven distinct polysaccharide lyase families. The polysaccharide lyase family PL6 is subdivided into three subfamilies. Subfamily PL6_1 includes three biochemically characterized enzymes (two alginate lyases and one dermatan sulfatase lyase). No characterized enzymes have been described in the two other subfamilies (PL6_2 and PL6_3). To improve the prediction of polysaccharide-lyase activity in the PL6 family, we re-examined the classification of the PL6 family and biochemically characterized a set of enzymes reflecting the diversity of the protein sequences. Our results show that subfamily PL6_1 includes two dermatan sulfates lyases and several alginate lyases that have various substrate specificities and modes of action. In contrast, subfamilies PL6_2 and PL6_3 were found to contain only endo-poly-MG-lyases. PMID:27438604

  11. Co-pyrolysis mechanism of seaweed polysaccharides and cellulose based on macroscopic experiments and molecular simulations.

    PubMed

    Wang, Shuang; Xia, Zhen; Hu, Yamin; He, Zhixia; Uzoejinwa, Benjamin Bernard; Wang, Qian; Cao, Bin; Xu, Shanna

    2017-03-01

    Co-pyrolysis conversion of seaweed (Enteromorpha clathrat and Sargassum fusiforme) polysaccharides and cellulose has been investigated. From the Py-GC/MS results, Enteromorpha clathrata (EN) polysaccharides pyrolysis mainly forms furans; while the products of Sargassum fusiforme (SA) polysaccharides pyrolysis are mainly acid esters. The formation mechanisms of H 2 O, CO 2 , and SO 2 during the pyrolysis of seaweed polysaccharides were analyzed using the thermogravimetric-mass spectrometry. Meanwhile the pyrolysis of seaweed polysaccharide based on the Amber and the ReaxFF force fields, has also been proposed and simulated respectively. The simulation results coincided with the experimental results. During the fast pyrolysis, strong synergistic effects among cellulose and seaweed polysaccharide molecules have been simulated. By comparing the experimental and simulation value, it has been found that co-pyrolysis could increase the number of molecular fragments, increase the pyrolysis conversion rate, and increase gas production rate at the middle temperature range. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Rapid preparation of functional polysaccharides from Pyropia yezoensis by microwave-assistant rapid enzyme digest system.

    PubMed

    Lee, Ji-Hyeok; Kim, Hyung-Ho; Ko, Ju-Young; Jang, Jun-Ho; Kim, Gwang-Hoon; Lee, Jung-Suck; Nah, Jae-Woon; Jeon, You-Jin

    2016-11-20

    This study describes a simple preparation of functional polysaccharides from Pyropia yezoensis using a microwave-assistant rapid enzyme digest system (MAREDS) with various carbohydrases, and evaluates their antioxidative effects. Polysaccharide hydrolysates were prepared using MAREDS under different hydrolytic conditions of the carbohydrases and microwave powers. Polysaccharides less than 10kDa (Low molecular weight polysaccharides, LMWP, ≤10kDa) were efficiently obtained using an ultrafiltration (molecular weight cut-off of 10kDa). MAREDS increases AMG activation via an increased degree of hydrolysis; the best AMG hydrolysate was prepared using a 10:1 ratio of substrate to enzyme for 2h in MAREDS with 400W. LMWP consisted of galactose (27.3%), glucose (64.5%), and mannose (8.3%) from the AMG hydrolysate had stronger antioxidant effects than the high molecular weight polysaccharides (>10kDa). We rapidly prepared functional LMWPs by using MAREDS with carbohydrases, and suggest that LMWP might be potentially a valuable algal polysaccharide antioxidant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Antioxidant activities of polysaccharides from Lentinus edodes and their significance for disease prevention.

    PubMed

    Chen, Huoliang; Ju, Ying; Li, Junjie; Yu, Min

    2012-01-01

    The crude polysaccharide (LEP) was extracted by hot water from the fruiting bodies of Lentinus edodes, and further purified by DEAE-cellulose and Sepharose CL-6B chromatography, giving three polysaccharide fractions coded as LEPA1, LEPB1 and LEPC1. In this study, their chemical and physical characteristics of polysaccharide fractions and antioxidant capacities, including scavenging activity against hydroxyl radicals, superoxide radicals and Fe(2+)-chelating ability, were valuated. The results showed that LEPC1 exhibited significantly antioxidant activity at a concentration-dependent manner. Therefore these results indicated that the water-extractable polysaccharide fraction was a potent antioxidant and could be developed to be new health medicine for fighting against various human diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Photochemistry of Fe(Iii)-Carboxylates in Polysaccharide-Based Materials with Tunable Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Giammanco, Giuseppe E.

    We present the formulation and study of light-responsive materials based on carboxylate-containing polysaccharides. The functional groups in these natural polymers allow for strong interactions with transition metal ions such as Fe(III). The known photochemistry of hydroxycarboxylic acids in natural waters inspired us in exploring the visible light induced photochemistry of the carboxylates in these polysaccharides when coordinated to Fe(III) ions. Described in this dissertation are the design and characterization of the Fe(III)-polysaccharide materials, specifically the mechanistic aspects of the photochemistry and the effects that these reactions have on the structure of the polymer materials. We present a study of the quantitative photochemistry of different polysaccharide systems, where the presence of uronic acids was important for the photoreaction to take place. Alginate (Alg), pectate (Pec), hyaluronic acid (Hya), xanthan gum (Xan), and a polysaccharide extracted from the Noni fruit (NoniPs), were among the natural uronic acid-containing polysaccharide (UCPS) systems we analyzed. Potato starch, lacking of uronate groups, did not present any photochemistry in the presence of Fe(III); however, we were able to induce a photochemical response in this polysaccharide upon chemical manipulation of its functional groups. Important structure-function relationships were drawn from this study. The uronate moiety present in these polysaccharides is then envisioned as a tool to induce response to light in a variety of materials. Following this approach, we report the formulation of materials for controlled drug release, able to encapsulate and release different drug models only upon illumination with visible light. Furthermore, hybrid hydrogels were prepared from UPCS and non-responsive polymers. Different properties of these materials could be tuned by controlling the irradiation time, intensity and location. These hybrid gels were evaluated as scaffolds for tissue

  15. High throughput quantification of capsular polysaccharides for multivalent vaccines using precipitation with a cationic surfactant.

    PubMed

    Noyes, Aaron; Boesch, Austin; Godavarti, Ranga; Titchener-Hooker, Nigel; Coffman, Jonathan; Mukhopadhyay, Tarit

    2013-11-19

    The increasing requirement for multivalent vaccines containing diverse capsular polysaccharides has created an unmet need for a fast and straightforward assay for polysaccharide titer. We describe a novel and robust assay for the quantitation of anionic capsular polysaccharides. The binding of hexadecyltrimethyammonium bromide (Hb) to anionic capsular polysaccharides results in a precipitation reaction wherein the suspension turbidity is proportional to polysaccharide titer. The turbidity can be quickly measured as absorbance across a range of wavelengths that resolve scattering light. Carbohydrates comprised of repeating units of one to seven monosaccharides with phosphodiester groups, uronic acids, and sialic acids all reacted strongly and there does not appear to be specificity with respect to the particular anionic moiety. The assay is compatible with an array of common buffers across a pH range of 3.0-8.75 and with NaCl concentration exceeding 400 mM. Interference from DNA can be eliminated with a short incubation step with DNase. With these treatments, the assay has been employed in samples as complex as fermentation broth. A two-log dynamic range has been established with a mean relative standard deviation less than 10% across this range although inferior performance has been observed in fermentation broth. The precipitation assay enables the rapid quantitation of anionic polysaccharides. The resulting procedure can robustly measure the titer of myriad anionic capsular polysaccharides (CPS) in 96 samples in less than 30 min using low toxicity reagents and routine laboratory equipment. This development will greatly reduce the effort required to measure polysaccharide titer and yield during process development of polysaccharide vaccines. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Identification of a polysaccharide produced by the pyruvate overproducer Candida glabrata CCTCC M202019.

    PubMed

    Luo, Zhengshan; Liu, Song; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2017-06-01

    Candida glabrata has great potential for the accumulation of pyruvate as a preferred strain in pyruvate production by fermentation. However, its substrate conversion rate is relatively low. In this study, a novel polysaccharide containing α-1,4-glucosidic bonds was observed accidentally in screening a high-titer pyruvate strain by atmospheric and room temperature plasma mutagenesis of C. glabrata. Chemical analysis of the partially purified polysaccharide S 4-C10 showed the main components were 1.2% (w/w) protein and 94.2% (w/w) total sugar. Fourier transform infrared and molecular mass distribution analysis indicated that the main component (PSG-2) of S 4-C10 was a small molecular homogeneous protein-bound polysaccharide. Monosaccharide analysis of PSG-2 showed it consisted of glucose, mannose, and fructose. By optimizing the vitamin mix content, 77.6 g L -1 S 4-C10 polysaccharide could be obtained after 72 h fermentation at 30 °C in 500-mL flasks. RT-qPCR analysis showed that transcriptional level of some key genes related to polysaccharide biosynthesis was upregulated compared to that of wild-type strain. By knocking out two most significantly upregulated genes, CAGL0H02695g and CAGL0K10626g, in the wild-type strain, the pyruvate consumption rate was significantly reduced in late pyruvate fermentation phase, while the titer of polysaccharides was reduced by 18.0%. Besides the potential applications of the novel identified polysaccharide, this study provided clues for increasing the conversion ratio of glucose to pyruvate in C. glabrata by further decreasing the accumulation of polysaccharides.

  17. Effects of extraction methods on the antioxidant activities of polysaccharides from Agaricus blazei Murrill.

    PubMed

    Jia, Shaoyi; Li, Feng; Liu, Yong; Ren, Haitao; Gong, Guili; Wang, Yanyan; Wu, Songhai

    2013-11-01

    Five polysaccharides were obtained from Agaricus blazei Murrill (ABM) through different extraction methods including hot water extraction, single enzyme extraction (pectinase, cellulase or papain) and compound enzymes extraction (cellulase:pectinase:papain). Their characteristics such as the polysaccharide yield, polysaccharide content, protein content, infrared spectra were determined, and antioxidant activities were investigated on the basis of hydroxyl radical, DPPH free radical, ABTS free radical and reducing power. The results showed that five extracts exhibited antioxidant activities in a concentration-dependent manner. Compared with other methods, the compound enzymes extraction method was found to present the highest polysaccharides yield (17.44%). Moreover, compound enzymes extracts exhibited the strongest reducing power and highest scavenging rates on hydroxyl radicals, DPPH radicals and ABTS radicals. On the contrary, hot water extraction method had the lowest polysaccharides yield of 11.95%, whose extracts also exhibited the lowest antioxidant activities. Overall, the available data obtained in vitro models suggested that ABM extracts were natural antioxidants and compound enzymes extraction was an appropriate, mild and effective extracting method for obtaining the polysaccharide extracts from Agaricus blazei Murrill (ABM). Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Inhibitory effects of Enteromorpha linza polysaccharide on micronucleus of Allium sativum root cells.

    PubMed

    Zhang, Zhongshan; Wang, Xiaomei; Li, Jingfen; Liu, Chongbin; Zhang, Quanbin

    2016-06-01

    In this study, the antimutagenic function of the polysaccharide from Enteromorpha linza with the micronucleus test of Allium sativum root cells induced by sulfur dioxide and ultraviolet was studied. The concentration-effect relation of the two inducers was firstly evaluated. The results showed that an increase of genotoxicity damage was demonstrated and micronuclei frequency induced by sulfur dioxide and ultraviolet displayed dose dependent increases. All the doses of polysaccharide did affect the micronuclei frequency formation compared with the negative control. And also, the significant increase in inhibition rate of micronuclei frequency was observed with the increase of the dose of polysaccharide. It was showed maximum inhibition of micronuclei frequency cells (71.74% and 66.70%) at a concentration of 200g/mL in three experiments. The low molecular weight polysaccharide showed higher inhibition rate than raw polysaccharide at the higher concentration (50g/mL) in the absence of sulfur dioxide and ultraviolet. It was confirmed to be a good mutant inhibitor. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Physicochemical properties, immunomodulation and antitumor activities of polysaccharide from Pavlova viridis.

    PubMed

    Sun, Liqin; Chu, Jinling; Sun, Zhongliang; Chen, Lihong

    2016-01-01

    Polysaccharides synthesized by microalgae can be used as the functional ingredients of food or drugs. Here, we investigated the physicochemical properties and bioactivities of the polysaccharide from microalgae Pavlova viridis, and indicated the structure-activity relationship. The polysaccharides (PPS0) were degraded with H2O2-vitamin C assisted by ultrasonic waves. The functional group content, monosaccharide composition, and average molecular weight (avg-MW) were detected by chemical or chromatographic method. The immunomodulatory activities were evaluated in vitro by detecting nitric oxide (NO) emission, neutral red uptake and macrophage proliferation. Antitumor activities of degraded fragments were detected using S180-tumor-bearing mouse model by intragastric administration. Degraded polysaccharides PPS1 and PPS2 were obtained at avg-MW of 386.96 and 54.99 kDa. The sulfate group content of polysaccharide was 16%, and the uronic acid content was 5.88 and 8.48%. PPS mainly consisted of fructose, glucose and mannose. All the degraded PPSs could increase phagocytosis and proliferation of macrophages, and stimulated NO emission in a dose-dependently way. PPS2 in Low-MW fragments had the strongest immunoenhancing activities. Different doses of PPS all could inhibit the growth of implanted S180 tumor. At dose of 200 mg/kg/day, the tumor inhibition rate of PPS2 was 57.06%, about 23.6% less than that of CTX-treated group. Different-MW PPS significantly increased lymphocyte proliferation. At 200 mg/L, the proliferation index of PPS2 was 1.37, 2.03 times higher than that of CTX-treated group. The polysaccharides of Pavlova viridis had potential antitumor activities by improving immune response. Moreover, the bioactivities depend on their molecular weight. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. An inventory of factors that affect polysaccharide production by Phaeocystis globosa

    NASA Astrophysics Data System (ADS)

    van Rijssel, M.; Janse, I.; Noordkamp, D. J. B.; Gieskes, W. W. C.

    2000-08-01

    Phaeocystis material contains polysaccharides that are built from at least eight different monosaccharides. Differences have been reported between the carbohydrate composition of different Phaeocystis species, and also between samples taken from Phaeocystis globosa blooms in different areas. In order to elucidate factors that could play a role in determining variation in carbohydrate composition and production, a number of Phaeocystis globosa strains were studied under laboratory conditions. Although there was a clear distinction of a northern and a southern cluster in the Phaeocystis globosa strains based on RAPD analysis, the differences in the composition of the mucopolysaccharides were relatively small. The contribution of glucose, however, ranged from 7-85% of total sugars. A strain that was cultured in seawaters of diverse origin produced polysaccharides of a different composition, suggesting the effect of environmental factors. The presence of bacteria affected neither the amount, nor the composition of the carbohydrates that were produced by Phaeocystis globosa. Glucose is part of both the intracellular polysaccharide pool and of the mucopolysaccharides in the colony matrix. Using specific digestion of the intracellular chrysolaminaran by laminarinase, the distribution of polysaccharides over different pools could be assessed. During growth of an axenic, mucus-producing strain, the portion of glucose present as chrysolaminaran appeared to increase. The polyglucose that was not digested by laminarinase remains unidentified. This study shows that environmental factors rather than strain differences determine differences in the sugar composition of Phaeocystis globosa, especially with respect to the glucose content of the material. A difference in the contribution of glucose could be correlated to the portion of cells in the culture that are not in the colonies. Our study emphasises that for studying polysaccharide dynamics in Phaeocystis globosa it is

  1. Polysaccharides from the Marine Environment with Pharmacological, Cosmeceutical and Nutraceutical Potential.

    PubMed

    Ruocco, Nadia; Costantini, Susan; Guariniello, Stefano; Costantini, Maria

    2016-04-27

    Carbohydrates, also called saccharides, are molecules composed of carbon, hydrogen, and oxygen. They are the most abundant biomolecules and essential components of many natural products and have attracted the attention of researchers because of their numerous human health benefits. Among carbohydrates the polysaccharides represent some of the most abundant bioactive substances in marine organisms. In fact, many marine macro- and microorganisms are good resources of carbohydrates with diverse applications due to their biofunctional properties. By acting on cell proliferation and cycle, and by modulating different metabolic pathways, marine polysaccharides (including mainly chitin, chitosan, fucoidan, carrageenan and alginate) also have numerous pharmaceutical activities, such as antioxidative, antibacterial, antiviral, immuno-stimulatory, anticoagulant and anticancer effects. Moreover, these polysaccharides have many general beneficial effects for human health, and have therefore been developed into potential cosmeceuticals and nutraceuticals. In this review we describe current advances in the development of marine polysaccharides for nutraceutical, cosmeceutical and pharmacological applications. Research in this field is opening new doors for harnessing the potential of marine natural products.

  2. Depolymerization of polysaccharides from Opuntia ficus indica: Antioxidant and antiglycated activities.

    PubMed

    Chaouch, Mohamed Aymen; Hafsa, Jawhar; Rihouey, Christophe; Le Cerf, Didier; Majdoub, Hatem

    2015-08-01

    The extraction, purification and degradation of polysaccharides from Opuntia ficus indica cladodes, as well as the evaluation of their antioxidant and antiglycated activities in vitro were investigated. The optimization of the extraction showed that extraction by ultrasound at 40 °C presented the best carbohydrates yield. The degradation of the extracted polysaccharides was achieved by free radical depolymerization with H2O2 in the presence of copper(II) acetate for various reaction times. Sugar contents were determined by colorimetric assays. The macromolecular characteristics of the different isolated and degraded carbohydrates were carried by size exclusion chromatography (SEC/MALS/VD/DRI). These experiments showed that all samples are polysaccharides, which are probably pectins and that molecular weight (Mw) has decreased from 6,800,000 to 14,000 g/mol after 3 h of depolymerization without changing the structure. Preliminary antioxidant and antiglycated tests indicated that degraded polysaccharides for 2 and 3 h showed even better antioxidant and antiglycated activities. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Analysis of compositional monosaccharides in fungus polysaccharides by capillary zone electrophoresis.

    PubMed

    Hu, Yuanyuan; Wang, Tong; Yang, Xingbin; Zhao, Yan

    2014-02-15

    A rapid analytical method of capillary zone electrophoresis (CZE) was established for the simultaneous separation and determination of 10 monosaccharides (aldoses and uronic acids). The monosaccharides were labeled with 1-phenyl-3-methyl-5-pyrazolone (PMP), and subsequently separated using an uncoated capillary (50 μm i.d. × 58.5 cm) and detected by UV at 245 nm with pH 11.0, 175 mM borate buffer at voltage 20 kV and capillary temperature 25 °C by CZE. The 10 PMP-labeled monosaccharides were rapidly baseline separated within 20 min. The optimized CZE method was successfully applied to the simultaneous separation and identification of the monosaccharide composition in Termitomyces albuminosus polysaccharides (TAPs) and Panus giganteus polysaccharides (PGPs). The quantitative recovery of the component monosaccharides in the fungus polysaccharides was in the range of 92.0-101.0% and the CV value was lower than 3.5%. The results demonstrate that the proposed CZE method is precise and practical for the monosaccharide analysis of fungus polysaccharides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Comparative characterization of physicochemical properties and bioactivities of polysaccharides from selected medicinal mushrooms.

    PubMed

    Su, Chun-Han; Lai, Min-Nan; Lin, Ching-Chuan; Ng, Lean-Teik

    2016-05-01

    Mushroom polysaccharides have been known to possess various pharmacological activities. However, information on their chemical and biological differences between mushrooms remains limited. In this study, we aimed to examine the differences in physicochemical characteristics of polysaccharides prepared from Antrodia cinnamomea (AC-P), Coriolus versicolor (CV-P), Grifola frondosa (GF-P), Ganoderma lucidum (GL-P), and Phellinus linteus (PL-P), followed by evaluating their inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Results showed that under similar conditions of preparation, the monosaccharide composition of polysaccharides varied between different mushrooms, and glucose was the predominant monosaccharide, followed by galactose and mannose. AC-P and GF-P contained the highest amount of (1,3;1,6)-β-D-glucans. The degree of branching of (1,3;1,6)-β-D-glucans in all polysaccharides ranged from 0.21 to 0.26, with the exception of GF-P (0.38). The molecular weights of different polysaccharides showed diverse distributions; AC-P, CV-P, and GF-P contained two major macromolecular populations (< 30 and >200 kDa) and possessed triple-helix conformation, whereas GL-P (10.2 kDa) and PL-P (15.5 kDa) only had a low molecular weight population without triple-helix structure. These polysaccharides showed different inhibitory potency on NO production in LPS-stimulated RAW264.7 cells.

  5. [Separation, purification and primary reverse cholesterol transport study of Cordyceps militaris polysaccharide].

    PubMed

    Guo, Shou-Dong; Cui, Ying-Jie; Wang, Ren-Zhong; Wang, Ren-Yuan; Wu, Wen-Xue; Ma, Teng

    2014-09-01

    The authors designed to separate, purify and determine the monosaccharide composition of the polysaccharide from Cordyceps militaris, and study its effect on reverse cholesterol transport in vivo by isotope tracing assay. Polysaccharides were separate and purify by ion exchange column Q-sepharose Fast Flow and size exclusion column Sephacryl S200HR; the molecular weight and monosaccharide composition of the polysaccharides were determined by high performance gel permeation chromatography and high performance liquid chromatography coming with pre-column derivation, respectively. Finally, three purified polysaccharides CMBW1, CMBW2 and CMYW1 were obtained, their total carbohydrate contents were 87%, 89%, 95%, respectively; their protein contents were 6.5%, 1.3%, 2.8%, respectively; their molecular weights were 772.1, 20.9, 13.2 kDa, respectively; CMBW1 was composed of mannose, glucosamine, rhamnose, glucuronic acid, glucose, galactose and arabinose with a molar ratio of 7.25: 0.17: 1.29: 0.23: 6.30: 11.08: 0.79; CMBW2 was composed of mannose, glucosamine, galactose and arabinose with a molar ratio of 2.40: 0.16: 2.92: 0.24; CMYW1 was composed of mannose, glucosamine, glucuronic acid and glucose with a molar ratio of 0.59: 0.57: 0.45: 25.61. Polysaccharide at 50 mg x kg(-1) could significantly improve the transport of 3H- cholesterol to blood and excretion from feces. All of the three purified polysaccharides CMBW1, CMBW2 and CMYW1 were heteropolysaccharide; and they could improve reverse cholesterol transport in vivo, the underlying mechanisms are being studied.

  6. UHPLC/HR-ESI-MS/MS Profiling of Phenolics from Tunisian Lycium arabicum Boiss. Antioxidant and Anti-lipase Activities' Evaluation.

    PubMed

    Affes, Marwa; Fakhfakh, Jawhar; Daoud, Ines; Brieudes, Vincent; Halabalaki, Maria; El Feki, Abdelfattah; Allouche, Noureddine

    2017-09-01

    This study was performed in the aim to evaluate nine different extracts from Tunisian Lycium arabicum for their total phenolic and total flavonoid contents, phytochemical analyses as well as their antioxidant and anti-lipase activities. The in vitro antioxidant property was investigated using three complementary methods (DPPH, ferric reducing antioxidant power (FRAP), and β-carotene-linoleic acid bleaching assays) while anti-lipase activity was evaluated using 4-methylumbelliferyl oleate method. From all of the tested extracts the most potent found to be the polar MeOH extracts especially those of stems and leaves. In order to investigate the chemical composition of these extracts and possible correlation of their constituents with the observed activities, an UHPLC/HR-ESI-MS/MS analysis was performed. Several compounds belonging to different chemical classes were tentatively identified such as rutin and kampferol rutinoside, the major constituents of the leaves, and N-caffeoyltyramine, lyciumide A, N-dihydrocaffeoyltyramine as well as fatty acids: trihydroxyoctadecadienoic acid and hydroxyoctadecadienoic acid isomers were detected abundantly in the stems. These results showed that the MeOH extracts of stems and leaves of L. arabicum can be considered as a potential source of biological active compounds. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  7. Polysaccharides as cell carriers for tissue engineering: the use of cellulose in vascular wall reconstruction.

    PubMed

    Bačáková, L; Novotná, K; Pařízek, M

    2014-01-01

    Polysaccharides are long carbohydrate molecules of monosaccharide units joined together by glycosidic bonds. These biological polymers have emerged as promising materials for tissue engineering due to their biocompatibility, mostly good availability and tailorable properties. This complex group of biomolecules can be classified using several criteria, such as chemical composition (homo- and heteropolysaccharides), structure (linear and branched), function in the organism (structural, storage and secreted polysaccharides), or source (animals, plants, microorganisms). Polysaccharides most widely used in tissue engineering include starch, cellulose, chitosan, pectins, alginate, agar, dextran, pullulan, gellan, xanthan and glycosaminoglycans. Polysaccharides have been applied for engineering and regeneration of practically all tissues, though mostly at the experimental level. Polysaccharides have been tested for engineering of blood vessels, myocardium, heart valves, bone, articular and tracheal cartilage, intervertebral discs, menisci, skin, liver, skeletal muscle, neural tissue, urinary bladder, and also for encapsulation and delivery of pancreatic islets and ovarian follicles. For these purposes, polysaccharides have been applied in various forms, such as injectable hydrogels or porous and fibrous scaffolds, and often in combination with other natural or synthetic polymers or inorganic nanoparticles. The immune response evoked by polysaccharides is usually mild, and can be reduced by purifying the material or by choosing appropriate crosslinking agents.

  8. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans.

    PubMed

    Friedman, Mendel

    2016-11-29

    More than 2000 species of edible and/or medicinal mushrooms have been identified to date, many of which are widely consumed, stimulating much research on their health-promoting properties. These properties are associated with bioactive compounds produced by the mushrooms, including polysaccharides. Although β-glucans (homopolysaccharides) are believed to be the major bioactive polysaccharides of mushrooms, other types of mushroom polysaccharides (heteropolysaccharides) also possess biological properties. Here we survey the chemistry of such health-promoting polysaccharides and their reported antiobesity and antidiabetic properties as well as selected anticarcinogenic, antimicrobial, and antiviral effects that demonstrate their multiple health-promoting potential. The associated antioxidative, anti-inflammatory, and immunomodulating activities in fat cells, rodents, and humans are also discussed. The mechanisms of action involve the gut microbiota, meaning the polysaccharides act as prebiotics in the digestive system. Also covered here are the nutritional, functional food, clinical, and epidemiological studies designed to assess the health-promoting properties of polysaccharides, individually and as blended mixtures, against obesity, diabetes, cancer, and infectious diseases, and suggestions for further research. The collated information and suggested research needs might guide further studies needed for a better understanding of the health-promoting properties of mushroom polysaccharides and enhance their use to help prevent and treat human chronic diseases.

  9. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans

    PubMed Central

    Friedman, Mendel

    2016-01-01

    More than 2000 species of edible and/or medicinal mushrooms have been identified to date, many of which are widely consumed, stimulating much research on their health-promoting properties. These properties are associated with bioactive compounds produced by the mushrooms, including polysaccharides. Although β-glucans (homopolysaccharides) are believed to be the major bioactive polysaccharides of mushrooms, other types of mushroom polysaccharides (heteropolysaccharides) also possess biological properties. Here we survey the chemistry of such health-promoting polysaccharides and their reported antiobesity and antidiabetic properties as well as selected anticarcinogenic, antimicrobial, and antiviral effects that demonstrate their multiple health-promoting potential. The associated antioxidative, anti-inflammatory, and immunomodulating activities in fat cells, rodents, and humans are also discussed. The mechanisms of action involve the gut microbiota, meaning the polysaccharides act as prebiotics in the digestive system. Also covered here are the nutritional, functional food, clinical, and epidemiological studies designed to assess the health-promoting properties of polysaccharides, individually and as blended mixtures, against obesity, diabetes, cancer, and infectious diseases, and suggestions for further research. The collated information and suggested research needs might guide further studies needed for a better understanding of the health-promoting properties of mushroom polysaccharides and enhance their use to help prevent and treat human chronic diseases. PMID:28231175

  10. Safety of Immunogenicity Testing of a Pilot Polysaccharide Vaccine Preparation to Pseudomonas aeruginosa.

    DTIC Science & Technology

    1980-09-01

    Pilot Polysaccharide Vaccine Preparation to Pseudomonas Aeruginosa .°’. SafGetad uoenct Testin ofaPio.PDsa.ard e(For p ri d 16 August 1979 to 15 August...Immunogenicity Testing of a Pilot Annual Report Polysaccharide Vaccine Preparation to (16 Aug. 79 - 15 Auj. 80) Pseudomonas Aeruginosa 6. PERFORMING ORG. REPORT...qiit polysaccharide (PS) maLerial isolated from Lhe ouit e _l Aace or, cultural supernates of P. ae ruginosa (i) . in it tyl , ; I m W" "des have

  11. Catalytic synthesis and antioxidant activity of sulfated polysaccharide from Momordica charantia L.

    PubMed

    Liu, Xin; Chen, Tong; Hu, Yan; Li, Kexin; Yan, Liushui

    2014-03-01

    Sulfated derivatives of polysaccharide from Momordica charantia L. (MCPS) with different degree of sulfation (DS) were synthesized by chlorosulfonic acid method with ionic liquids as solvent. Fourier transform infrared spectra and 13C nuclear magnetic resonance spectra indicated that C-6 substitution was predominant in MCPS compared with the C-2 position. Compared with the native polysaccharide from Momordica charantia L. (MCP), MCPS exhibited more excellent antioxidant activities in vitro, which indicated that sulfated modification could enhance antioxidant activities of MCP. Furthermore, high DS and moderate molecular weight could improve the antioxidant activities of polysaccharide. Copyright © 2013 Wiley Periodicals, Inc.

  12. Recent progress in the development of polysaccharide conjugates of docetaxel and paclitaxel

    PubMed Central

    Roy, Aniruddha; Bhattacharyya, Mousumi; Ernsting, Mark J.; May, Jonathan P; Li, Shyh-Dar

    2014-01-01

    Taxanes are one of the most potent and broadest spectrum chemotherapeutics used clinically, but also induce significant side effects. Different strategies have been developed to produce a safer taxane formulation. Development of polysaccharide drug conjugates has increased in the recent years due to the demonstrated biocompatibility, biodegradability, safety and low cost of the biopolymers. This review focuses on polysaccharide taxane conjugates and provides an overview on various conjugation strategies and their effect on the efficacy. Detailed analyses on the designing factors of an effective polysaccharide drug conjugate are provided with a discussion on the future direction of this field. PMID:24652678

  13. Rapid End-Group Modification of Polysaccharides for Biomaterial Applications in Regenerative Medicine.

    PubMed

    Bondalapati, Somasekhar; Ruvinov, Emil; Kryukov, Olga; Cohen, Smadar; Brik, Ashraf

    2014-09-15

    Polysaccharides have emerged as important functional materials because of their unique properties such as biocompatibility, biodegradability, and availability of reactive sites for chemical modifications to optimize their properties. The overwhelming majority of the methods to modify polysaccharides employ random chemical modifications, which often improve certain properties while compromising others. On the other hand, the employed methods for selective modifications often require excess of coupling partners, long reaction times and are limited in their scope and wide applicability. To circumvent these drawbacks, aniline-catalyzed oxime formation is developed for selective modification of a variety of polysaccharides through their reducing end. Notably, it is found that for efficient oxime formation, different conditions are required depending on the composition of the specific polysaccharide. It is also shown how our strategy can be applied to improve the physical and functional properties of alginate hydrogels, which are widely used in tissue engineering and regenerative medicine applications. While the randomly and selectively modified alginate exhibits similar viscoelastic properties, the latter forms significantly more stable hydrogel and superior cell adhesive and functional properties. Our results show that the developed conjugation reaction is robust and should open new opportunities for preparing polysaccharide-based functional materials with unique properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Biofilms from Klebsiella pneumoniae: Matrix Polysaccharide Structure and Interactions with Antimicrobial Peptides

    PubMed Central

    Benincasa, Monica; Lagatolla, Cristina; Dolzani, Lucilla; Milan, Annalisa; Pacor, Sabrina; Liut, Gianfranco; Tossi, Alessandro; Cescutti, Paola; Rizzo, Roberto

    2016-01-01

    Biofilm matrices of two Klebsiella pneumoniae clinical isolates, KpTs101 and KpTs113, were investigated for their polysaccharide composition and protective effects against antimicrobial peptides. Both strains were good biofilm producers, with KpTs113 forming flocs with very low adhesive properties to supports. Matrix exopolysaccharides were isolated and their monosaccharide composition and glycosidic linkage types were defined. KpTs101 polysaccharide is neutral and composed only of galactose, in both pyranose and furanose ring configurations. Conversely, KpTs113 polysaccharide is anionic due to glucuronic acid units, and also contains glucose and mannose residues. The susceptibility of the two strains to two bovine cathelicidin antimicrobial peptides, BMAP-27 and Bac7(1–35), was assessed using both planktonic cultures and biofilms. Biofilm matrices exerted a relevant protection against both antimicrobials, which act with quite different mechanisms. Similar protection was also detected when antimicrobial peptides were tested against planktonic bacteria in the presence of the polysaccharides extracted from KpTs101 and KpTs113 biofilms, suggesting sequestering adduct formation with antimicrobials. Circular dichroism experiments on BMAP-27 in the presence of increasing amounts of either polysaccharide confirmed their ability to interact with the peptide and induce an α-helical conformation. PMID:27681920

  15. Biofilms from Klebsiella pneumoniae: Matrix Polysaccharide Structure and Interactions with Antimicrobial Peptides.

    PubMed

    Benincasa, Monica; Lagatolla, Cristina; Dolzani, Lucilla; Milan, Annalisa; Pacor, Sabrina; Liut, Gianfranco; Tossi, Alessandro; Cescutti, Paola; Rizzo, Roberto

    2016-08-10

    Biofilm matrices of two Klebsiella pneumoniae clinical isolates, KpTs101 and KpTs113, were investigated for their polysaccharide composition and protective effects against antimicrobial peptides. Both strains were good biofilm producers, with KpTs113 forming flocs with very low adhesive properties to supports. Matrix exopolysaccharides were isolated and their monosaccharide composition and glycosidic linkage types were defined. KpTs101 polysaccharide is neutral and composed only of galactose, in both pyranose and furanose ring configurations. Conversely, KpTs113 polysaccharide is anionic due to glucuronic acid units, and also contains glucose and mannose residues. The susceptibility of the two strains to two bovine cathelicidin antimicrobial peptides, BMAP-27 and Bac7(1-35), was assessed using both planktonic cultures and biofilms. Biofilm matrices exerted a relevant protection against both antimicrobials, which act with quite different mechanisms. Similar protection was also detected when antimicrobial peptides were tested against planktonic bacteria in the presence of the polysaccharides extracted from KpTs101 and KpTs113 biofilms, suggesting sequestering adduct formation with antimicrobials. Circular dichroism experiments on BMAP-27 in the presence of increasing amounts of either polysaccharide confirmed their ability to interact with the peptide and induce an α-helical conformation.

  16. Synchrotron Microtomography Reveals the Fine Three-Dimensional Porosity of Composite Polysaccharide Aerogels

    PubMed Central

    Ghafar, Abdul; Parikka, Kirsti; Tenkanen, Maija; Suuronen, Jussi-Petteri

    2017-01-01

    This study investigates the impact of ice-templating conditions on the morphological features of composite polysaccharide aerogels in relation to their mechanical behavior and aims to get a better insight into the parameters governing these properties. We have prepared polysaccharide aerogels of guar galactomannan (GM) and tamarind seed xyloglucan (XG) by enzymatic oxidation with galactose oxidase (GaO) to form hydrogels, followed by conventional and unidirectional ice-templating (freezing) methods and lyophilization to form aerogels. Composite polysaccharide aerogels were prepared by incorporating nanofibrillated cellulose (NFC) into polysaccharide solutions prior to enzymatic oxidation and gel formation; such a cross linking technique enabled the homogeneous distribution of the NFC reinforcement into the gel matrix. We conducted phase-enhanced synchrotron X-ray microtomography (XMT) scans and visualized the internal microstructure of the aerogels in three-dimensional (3D) space. Volume-weighted pore-size and pore-wall thickness distributions were quantitatively measured and correlated to the aerogels’ mechanical properties regarding ice-templating conditions. Pore-size distribution and orientation depended on the ice-templating methods and the NFC reinforcement that significantly determined the mechanical and shape-recovery behavior of the aerogels. The results obtained will guide the design of the microporous structure of polysaccharide aerogels with optimal morphology and mechanical behavior for life-sciences applications. PMID:28773235

  17. Optimization of antioxidant and antiglycated activities of polysaccharides from Arthrocnemum indicum leaves.

    PubMed

    Mzoughi, Zeineb; Chaouch, Mohamed Aymen; Hammi, Khaoula Mkadmini; Hafsa, Jawhar; Le Cerf, Didier; Ksouri, Riadh; Majdoub, Hatem

    2018-07-01

    Central composite design was performed to optimize uronic acid rate, esterification degree, total antioxidant ability and antiglycation capacity of carbohydrates from Arthrocnemum indicum leaves. Three independent variables were opted: extraction temperature, time and ratio (solvent/material). The optimal settings were: extraction temperature of 80°C, time of 288min and (solvent/solid) ratio of 40mL/g. Under these settings, uronic acid rate and esterification degree were 49.29%, 30.24%, respectively, whereas total antioxidant activity and antiglycation capacity was 35.81mg ascorbic acid equivalents/g matter and 69.81%, respectively. Colorimetric assays showed that total sugar and uronic acid contents for polysaccharide were 71.78% and 49.24%, respectively. Furthermore, Preliminary structure study was performed via various methods including FT-IR, NMR and UV-vis analysis. SEC analyzes revealed that polysaccharide had an average molecular weight of 2179kDa. Moreover, GC-MS analyzes showed that extracted polysaccharide was a pectic polysaccharide which formed of arabinose, mannose, galactose, rhamnose, glucose and xylose in the molar percentage of 66.68%, 3.93%, 12.71%, 6.31%, 6.08% and 4.29%, respectively. This results revealed that extracted polysaccharide can be employed as source of natural antioxidants and as possible antiglycated agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Fractionation, partial characterization and bioactivity of water-soluble polysaccharides and polysaccharide-protein complexes from Pleurotus geesteranus.

    PubMed

    Zhang, Mei; Zhu, Lin; Cui, Steve W; Wang, Qi; Zhou, Ting; Shen, Hengsheng

    2011-01-01

    Fractionation and purification of mushroom polysaccharides is a critical process for mushroom clinical application. After a hot-water treatment, the crude Pleurotus geesteranus (PG) was further fractionated into four fractions (PG-1, -2, -3, -4) using gradient precipitation with water and ammonia sulphate. By controlling the initial polymer concentration and ratio of solvents, this process produced PG fractions with high chemical uniformity and narrow Mw distribution without free proteins. Structurally, PG-1 and PG-2 are pure homopolysaccharide mainly composed of glucose; and PG-3 and PG-4 are heteropolysaccharide-protein complexes. PG-2, a high M(w) fraction mainly composed of glucose presented significant cytotoxicity at the concentration of 200 and 100 μg/ml to human breast cancer cells. Here, we report a new mushroom polysaccharides extraction and fractionation method, with which we produced four fractions of PG with PG-2 appearing effective anti-tumour activity. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  19. Anticorrosive Microbial Polysaccharides: Structure-Function Relationships

    USDA-ARS?s Scientific Manuscript database

    Water-soluble microbial polysaccharides are often implicated in biofilm formation and are believed to mediate cell-cell aggregation and adhesion to surfaces. Generally, biofilm formation is considered harmful or undesirable, as it leads to increased drag, plugging of pores, dimished heat transfer, ...

  20. Chemical analysis and antioxidant activity in vitro of polysaccharides extracted from Boletus edulis.

    PubMed

    Zhang, Anqiang; Xiao, Nannan; He, Pengfei; Sun, Peilong

    2011-12-01

    Boletus edulis is a well-known delicious mushroom. In this study, three crude polysaccharides (BEPF30, BEPF60 and BEPF80) were isolated from the fruiting bodies of B. edulis with boiling water. Chemical and physical characteristics of the three crude polysaccharides were investigated by the combination of chemical and instrumental analysis methods. Their antioxidant activities were investigated in vitro systems including hydroxyl assay, superoxide radical assay, reducing power and chelating activity. Among these three polysaccharides, BEPF60 showed more significant reducing power and chelating activity; and highest inhibitory effects on superoxide radical and hydroxyl radical. These results indicated that polysaccharides extracted from B. edulis might be employed as ingredients in healthy and functional food to alleviate the oxidative stress. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Structure and genetics of the O-specific polysaccharide of Escherichia coli O27.

    PubMed

    Perepelov, Andrei V; Chen, Tingting; Senchenkova, Sofya N; Filatov, Andrei V; Song, Jingjie; Shashkov, Alexander S; Liu, Bin; Knirel, Yuriy A

    2018-02-01

    The O-specific polysaccharide (O-antigen) is a part of the lipopolysaccharide on the cell surface of Gram-negative bacteria. The O-polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide of Escherichia coli O27 and studied by sugar analysis and Smith degradation along with 1 H and 13 C NMR spectroscopy. The following structure of the branched hexasaccharide repeating unit was established, which is unique among known structures of bacterial polysaccharides:where GlcA is non-stoichiometrically O-acetylated at position 3 (∼22%) or 4 (∼37%). Functions of genes in the O-antigen gene cluster of E. coli O27 were tentatively assigned by comparison with sequences in the available databases and found to be consistent with the O-polysaccharide structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The immunomodulatory activities of licorice polysaccharides (Glycyrrhiza uralensis Fisch.) in CT 26 tumor-bearing mice.

    PubMed

    Ayeka, Peter Amwoga; Bian, YuHong; Githaiga, Peter Mwitari; Zhao, Ying

    2017-12-15

    The increasing use of complementary and alternative medicine (CAM) has kindled the need for scientific evaluation of the mechanism of action of CAMs. Although, licorice, a common ingredient in many Traditional Chinese medicine (TCM) has attracted great attention for its antitumor and immunomodulatory activities, the mechanism of action of its polysaccharides is still unclear. Here we report the immunomodulatory activity of licorice polysaccharides in vivo. The differential anticancer activities of licorice polysaccharides by tumorigenesis and immunomodulation was evaluated in vivo. Six weeks old, 120 CT-26 tumor bearing BALB/c mice, weighing 20 ± 2 g were used. They were randomly divided into six groups, three groups receiving high molecular weight (fraction A), low molecular weight (fraction B) polysaccharides and crude extract (fraction C); positive, negative and normal groups receiving cytoxin, saline and normal diet respectively. Weight of mice and tumors was determined and tumorigenicity assay calculated to determine the anticancer effects. Immunomodulatory potential was determined by immune organ indices, immune cell population and serum cytokine levels using immune organ weight and index, flow cytometry and cytokine/chemokine bead panel kit respectively. Licorice polysaccharides exhibited immunomodulatory activities in CT 26 tumor bearing BALB/c mice. The polysaccharides significantly suppressed tumor growth and increased immune organ index. Furthermore, the immunomodulatory effect was evident with activation of CD4 + and CD8 + immune cells population. The polysaccharides also affected the production of various cytokines, by increasing IL 2, IL 6, IL 7 levels and a decreasing TNFα levels. In summary, licorice polysaccharide especially of low molecular weight exhibit anticancer and immunomodulatory activities by suppressing tumor growth and improving general health of mice. They also augment the thymus/spleen index and population of T lymphocytes

  3. Isolation and characterization of polysaccharides with the antitumor activity from Tuber fruiting bodies and fermentation system.

    PubMed

    Zhao, Wei; Wang, Xiao-Hua; Li, Hong-Mei; Wang, Shi-Hua; Chen, Tao; Yuan, Zhan-Peng; Tang, Ya-Jie

    2014-03-01

    Fifty-two polysaccharides were isolated from the fermentation systems of Tuber melanosporum, Tuber indicum, Tuber sinense, Tuber aestivum and the fruiting bodies of Tuber indicum, Tuber himalayense, Tuber sinense by elution with an activated carbon column. Polysaccharides from Tuber fermentation system exhibited relatively higher in vitro antitumor activity against HepG2, A549, HCT-116, SK-BR-3, and HL-60 cells than those from Tuber fruiting bodies. All polysaccharides were mainly composed of D-mannose, D-glucose, and D-galactose, which suggested that the polysaccharides from Tuber fruiting bodies and fermentation system have identical chemical compositions. The results of antitumor activity and structural identification indicated that the polysaccharide fractions could promote antitumor activity. Tuber polysaccharides from Tuber fermentation system exhibited relatively higher than that from Tuber fruiting bodies. These results confirm the potential of Tuber fermentation mycelia for use as an alternative resource for its fruiting bodies.

  4. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    PubMed

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Structural determination of the capsular polysaccharide produced by Klebsiella pneumoniae serotype K40. NMR studies of the oligosaccharide obtained upon depolymerisation of the polysaccharide with a bacteriophage-associated endoglycanase.

    PubMed

    Cescutti, P; Toffanin, R; Kvam, B J; Paoletti, S; Dutton, G G

    1993-04-01

    The Klebsiella pneumoniae K40 capsular polysaccharide has been isolated and investigated by use of methylation analysis, specific degradations and NMR spectroscopy. The polysaccharide was depolymerised by a bacteriophage-associated endogalactosidase, and the resulting oligosaccharide was characterised by one-dimensional and two-dimensional NMR spectroscopy and direct chemical ionisation MS. The repeating unit of the K40 capsular polysaccharide was shown to be a linear hexasaccharide with the composition-->3)- alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->4)-alpha-D-GlcpA++ +-(1-->2-)- alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->3)-alpha-D-Galp-(1--> (Rha, rhamnose).

  6. Sulfated Polysaccharides in the Freshwater Green Macroalga Cladophora surera Not Linked to Salinity Adaptation

    PubMed Central

    Arata, Paula X.; Alberghina, Josefina; Confalonieri, Viviana; Errea, María I.; Estevez, José M.; Ciancia, Marina

    2017-01-01

    The presence of sulfated polysaccharides in cell walls of seaweeds is considered to be a consequence of the physiological adaptation to the high salinity of the marine environment. Recently, it was found that sulfated polysaccharides were present in certain freshwater Cladophora species and some vascular plants. Cladophora (Ulvophyceae, Chlorophyta) is one of the largest genera of green algae that are able to grow in both, seas and freshwater courses. Previous studies carried out on the water-soluble polysaccharides of the marine species C. falklandica established the presence of sulfated xylogalactoarabinans constituted by a backbone of 4-linked β-L-arabinopyranose units partially sulfated mainly on C3 and also on C2 with partial glycosylation, mostly on C2, with terminal β-D-xylopyranose or β-D-galactofuranose units. Besides, minor amounts of 3-, 6- and/or 3,6-linked β-D-galactan structures, with galactose in the pyranosic form were detected. In this work, the main water soluble cell wall polysaccharides from the freshwater alga Cladophora surera were characterized. It was found that this green alga biosynthesizes sulfated polysaccharides, with a structure similar to those found in marine species of this genus. Calibration of molecular clock with fossil data suggests that colonization of freshwater environments occurred during the Miocene by its ancestor. Therefore, the presence of sulfated polysaccharides in the freshwater green macroalga C. surera could be, in this case, an adaptation to transient desiccation and changes in ionic strength. Retention of sulfated polysaccharides at the cell walls may represent a snapshot of an evolutionary event, and, thus constitutes an excellent model for further studies on the mechanisms of sulfation on cell wall polysaccharides and environmental stress co-evolution. PMID:29181012

  7. Sulfated Polysaccharides in the Freshwater Green Macroalga Cladophora surera Not Linked to Salinity Adaptation.

    PubMed

    Arata, Paula X; Alberghina, Josefina; Confalonieri, Viviana; Errea, María I; Estevez, José M; Ciancia, Marina

    2017-01-01

    The presence of sulfated polysaccharides in cell walls of seaweeds is considered to be a consequence of the physiological adaptation to the high salinity of the marine environment. Recently, it was found that sulfated polysaccharides were present in certain freshwater Cladophora species and some vascular plants. Cladophora (Ulvophyceae, Chlorophyta) is one of the largest genera of green algae that are able to grow in both, seas and freshwater courses. Previous studies carried out on the water-soluble polysaccharides of the marine species C. falklandica established the presence of sulfated xylogalactoarabinans constituted by a backbone of 4-linked β-L-arabinopyranose units partially sulfated mainly on C3 and also on C2 with partial glycosylation, mostly on C2, with terminal β-D-xylopyranose or β-D-galactofuranose units. Besides, minor amounts of 3-, 6- and/or 3,6-linked β-D-galactan structures, with galactose in the pyranosic form were detected. In this work, the main water soluble cell wall polysaccharides from the freshwater alga Cladophora surera were characterized. It was found that this green alga biosynthesizes sulfated polysaccharides, with a structure similar to those found in marine species of this genus. Calibration of molecular clock with fossil data suggests that colonization of freshwater environments occurred during the Miocene by its ancestor. Therefore, the presence of sulfated polysaccharides in the freshwater green macroalga C. surera could be, in this case, an adaptation to transient desiccation and changes in ionic strength. Retention of sulfated polysaccharides at the cell walls may represent a snapshot of an evolutionary event, and, thus constitutes an excellent model for further studies on the mechanisms of sulfation on cell wall polysaccharides and environmental stress co-evolution.

  8. Aldehyde-containing urea-absorbing polysaccharides

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Hsu, G. C.; Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A novel aldehyde containing polymer (ACP) is prepared by reaction of a polysaccharide with periodate to introduce aldehyde groups onto the C2 - C3 carbon atoms. By introduction of ether and ester groups onto the pendant primary hydroxyl solubility characteristics are modified. The ACP is utilized to absorb nitrogen bases such as urea in vitro or in vivo.

  9. Inorganic Phosphate Limitation Modulates Capsular Polysaccharide Composition in Mycobacteria.

    PubMed

    van de Weerd, Robert; Boot, Maikel; Maaskant, Janneke; Sparrius, Marion; Verboom, Theo; van Leeuwen, Lisanne M; Burggraaf, Maroeska J; Paauw, Nanne J; Dainese, Elisa; Manganelli, Riccardo; Bitter, Wilbert; Appelmelk, Ben J; Geurtsen, Jeroen

    2016-05-27

    Mycobacterium tuberculosis is protected by an unusual and highly impermeable cell envelope that is critically important for the successful colonization of the host. The outermost surface of this cell envelope is formed by capsular polysaccharides that play an important role in modulating the initial interactions once the bacillus enters the body. Although the bioenzymatic steps involved in the production of the capsular polysaccharides are emerging, information regarding the ability of the bacterium to modulate the composition of the capsule is still unknown. Here, we study the mechanisms involved in regulation of mycobacterial capsule biosynthesis using a high throughput screen for gene products involved in capsular α-glucan production. Utilizing this approach we identified a group of mutants that all carried mutations in the ATP-binding cassette phosphate transport locus pst These mutants collectively exhibited a strong overproduction of capsular polysaccharides, including α-glucan and arabinomannan, suggestive of a role for inorganic phosphate (Pi) metabolism in modulating capsular polysaccharide production. These findings were corroborated by the observation that growth under low Pi conditions as well as chemical activation of the stringent response induces capsule production in a number of mycobacterial species. This induction is, in part, dependent on σ factor E. Finally, we show that Mycobacterium marinum, a model organism for M. tuberculosis, encounters Pi stress during infection, which shows the relevance of our findings in vivo. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Anticoagulant, antiherpetic and antibacterial activities of sulphated polysaccharide from Indian medicinal plant Tridax procumbens L. (Asteraceae).

    PubMed

    Naqash, Shabeena Yousuf; Nazeer, R A

    2011-10-01

    The sulphated polysaccharide from the widespread Tridax procumbens plant was studied for the anticoagulant, antiherpetic and antibacterial activity. The anticoagulant activity was determined by the activated partial thromboplastin time assay. The sulphated polysaccharide from T. procumbens represented potent anticoagulant reaching the efficacy to heparin and chondroitin sulphate. Moreover, the sulphated polysaccharide extracted from T. procumbens was found non-toxic on Vero cell lines up to the concentration of 200 μg/ml. Sulphated polysaccharide exhibited detectable antiviral effect towards HSV-1 with IC(50) value 100-150 μg/ml. Furthermore, sulphated polysaccharide from T. procumbens was highly inhibitory against the bacterial strains Vibrio alginolyticus and Vibrio harveyi isolated from oil sardine.

  11. Effects of supercritical carbon dioxide sterilization on polysaccharidic membranes for surgical applications.

    PubMed

    Scognamiglio, F; Blanchy, M; Borgogna, M; Travan, A; Donati, I; Bosmans, J W A M; Foulc, M P; Bouvy, N D; Paoletti, S; Marsich, E

    2017-10-01

    Sterilization methods such as ɣ-irradiation, steam sterilization and ethylene oxide gas treatment can have negative effects on molecular structure and properties of polysaccharide-based biomaterials. In this perspective, the use of supercritical carbon dioxide (scCO 2 ) has been proposed as an alternative method for biomaterial sterilization. In this work, chemical, mechanical and biological properties of polysaccharidic membranes for surgical applications were investigated after sterilization by scCO 2 . Four sets of sterilizing conditions were considered and SEC analyses were performed in order to identify the one with lower impact on the polysaccharidic matrix of membranes (alginate). Mechanical tests showed that the resistance of membranes was slightly affected after sterilization. Biological analyses proved the biocompatibility of the sterilized membranes both in vitro and in a preliminary in vivo test. Overall, this study points out that this sterilization technique can be successfully employed to achieve an effective and safe sterilization of polysaccharidic membranes for surgical use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Optimization of enzyme-assisted extraction and characterization of polysaccharides from Hericium erinaceus.

    PubMed

    Zhu, Yang; Li, Qian; Mao, Guanghua; Zou, Ye; Feng, Weiwei; Zheng, Daheng; Wang, Wei; Zhou, Lulu; Zhang, Tianxiu; Yang, Jun; Yang, Liuqing; Wu, Xiangyang

    2014-01-30

    The enzyme-assisted extraction (EAE) of polysaccharides from the fruits of Hericium erinaceus was studied. In this study, response surface methodology and the Box-Behnken design based on single-factor and orthogonal experiments were applied to optimize the EAE conditions. The optimal extraction conditions were as follows: a pH of 5.71, a temperature of 52.03°C and a time of 33.79 min. The optimal extraction conditions resulted in the highest H. erinaceus polysaccharides (HEP) yield, with a value 13.46 ± 0.37%, which represented an increase of 67.72% compared to hot water extraction (HWE). The polysaccharides were characterized by FT-IR, SEM, CD, AFM, and GC. The results showed that HEP was composed of mannose, glucose, xylose, and galactose in a molar ratio of 15.16:5.55:4.21:1. The functional groups of the H. erinaceus polysaccharides extracted by HWE and EAE were fundamentally identical but had apparent conformational changes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. [Complex enzyme combined with ultrasound extraction technology, physicochemical properties and antioxidant activity of Hedysarum polysaccharides].

    PubMed

    Yang, Xiu-Yan; Xue, Zhi-Yuan; Yang, Ya-Fei; Fang, Yao-Yao; Zhou, Xiang-Lin; Zhao, Liang-Gong; Feng, Shi-Lan

    2018-06-01

    In this study, complex enzymes combined with ultrasonic extraction technology(MC) were used, to select optimal extraction combinations by single factor and orthogonal test, with Hedysarum polysaccharides yield and content as the comprehensive indexes. The components, physicochemical properties and antioxidant activity of Hedysarum polysaccharides from complex enzyme combined with ultrasonic extraction(HPS-MC)and the Hedysarum polysaccharides from hot water extraction(HPS-R)were analyzed. The results showed that:complex enzymes had significant effect on the yield and content of Hedysarum polysaccharides, and the ultrasonic power could significantly improve the content of Hedysarum polysaccharides. The optimum technological parameters were as follows: complex enzyme ratio 1:1, ultrasonic power 105 W, ultrasonic time 60 min, and enzymatic hydrolysis pH 5, achieving (14.01±0.64)% and (92.45±1.47)% respectively for the yield and content of Polysaccharides. As compared with HPS-R, the molecular weight, absolute viscosity and protein content of HPS-MC were decreased, while the content of uronic acid was increased. In the antioxidant system, the concentration of polysaccharide was within the range of 1-7 g·L⁻¹; the antioxidant activity of HPS-MC was higher than that of HPS-R, and HPS-MC (80%) with the lowest molecular weight showed a significant dose effect relationship with the increase of the experimental concentration. In conclusion, MC is a simple, convenient, economical and environmentally friendly extraction technology, and the Hedysarum polysaccharides extracted by this method have obvious antioxidant activity. Copyright© by the Chinese Pharmaceutical Association.

  14. Structural characterization and biomedical properties of sulfated polysaccharide from the gladius of Sepioteuthis lessoniana (Lesson, 1831).

    PubMed

    Seedevi, Palaniappan; Moovendhan, Meivelu; Vairamani, Shanmugam; Shanmugam, Annian

    2016-04-01

    Sulfated polysaccharide was extracted from the internal shell (gladius) of Sepioteuthis lessoniana. The sulfated polysaccharide contained 61.3% of carbohydrate, 0.8% of protein, 28.2% of ash and 1.33% of moisture respectively. The elemental composition was analyzed using CHNS/O analyzer. The molecular weight of sulfated polysaccharide determined through PAGE was found to be as 66 kDa. Monosaccharides analysis revealed that sulfated polysaccharide was composed of rhamnose, galactose, xylose and glucose. The structural features of sulfated polysaccharide were analyzed by FT-IR and NMR spectroscopy. Further the sulfated polysaccharide was evaluated for its antibacterial activity against selected human clinical pathogens, namely Staphylococcus aureus, Klebsiella pneumoniae, Salmonella typhi, Vibrio cholerae, Klebsiella oxytoca, Escherichia coli, Salmonella paratyphi, Proteus mirabilis, Vibrio parahaemolyticus and Streptococcus pyogenes using agar well diffusion method. The polysaccharide has showed good antibacterial activity and MIC and MBC have also been evaluated. The anticancer activity was tested against HeLa cell line by MTT assay. The Cytotoxic Concentration (CC50) was observed as 700 μg/ml and the maximum anticancer activity of 62.89% was recorded at 200 μg/ml; whereas, the lowest of 9.87% was observed at 25 μg/ml. In conclusion, the sulfated polysaccharide is an alternate, non-toxic and cheap source of substance that showed good antibacterial and anticancer acitivity. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Structure of the polysaccharides from the lipopolysaccharide of Azospirillum brasilense Jm125A2.

    PubMed

    Sigida, Elena N; Fedonenko, Yuliya P; Shashkov, Alexander S; Zdorovenko, Evelina L; Konnova, Svetlana A; Ignatov, Vladimir V; Knirel, Yuriy A

    2015-10-30

    Two polysaccharides were obtained by mild acid degradation of the lipopolysaccharide of associative nitrogen-fixing bacteria Azospirillum brasilense Jm125A2 isolated from the rhizosphere of a pearl millet. The following structures of the polysaccharides were established by sugar and methylation analyses, Smith degradation, and (1)H and (13)C NMR spectroscopy: [Formula: see text] Structure 1 has been reported earlier for a polysaccharide from A. brasilense S17 (Fedonenko YP, Konnova ON, Zdorovenko EL, Konnova SA, Zatonsky GV, Shaskov AS, Ignatov VV, Knirel YA. Carbohydr Res 2008;343:810-6), whereas to our knowledge structure 2 has not been hitherto found in bacterial polysaccharides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon.

    PubMed Central

    Salyers, A A; Vercellotti, J R; West, S E; Wilkins, T D

    1977-01-01

    Ten Bacteroides species found in the human colon were surveyed for their ability to ferment mucins and plant polysaccharides ("dietary fiber"). A number of strains fermented mucopolysaccharides (heparin, hyaluronate, and chondroitin sulfate) and ovomucoid. Only 3 of the 188 strains tested fermented beef submaxillary mucin, and none fermented porcine gastric mucin. Many of the Bacteroides strains tested were also able to ferment a variety of plant polysaccharides, including amylose, dextran, pectin, gum tragacanth, gum guar, larch arabinogalactan, alginate, and laminarin. Some plant polysaccharides such as gum arabic, gum karaya, gum ghatti and fucoidan, were not utilized by any of the strains tested. The ability to utilize mucins and plant polysaccharides varied considerably among the Bacteroides species tested. PMID:848954

  17. The preliminary study of prebiotic potential of Polish wild mushroom polysaccharides: the stimulation effect on Lactobacillus strains growth.

    PubMed

    Nowak, Renata; Nowacka-Jechalke, Natalia; Juda, Marek; Malm, Anna

    2018-06-01

    According to the vast body of evidence demonstrating that the intestinal microbiota is undoubtedly linked with overall health, including cancer risk, searching for functional foods and novel prebiotic influencing on beneficial bacteria is necessary. The present study aimed to investigate the potential of polysaccharides from 53 wild-growing mushrooms to stimulate the growth of Lactobacillus acidophilus and Lactobacillus rhamnosus and to determine the digestibility of polysaccharide fractions. Mushroom polysaccharides were precipitated with ethanol from aqueous extracts. Determination of growth promoting activity of polysaccharides was performed in U-shaped 96-plates in an ELISA reader in relation to the reference strain of L. acidophilus and two clinical strains of L. rhamnosus. The digestibility of mushroom polysaccharides was investigated in vitro by exposing them to artificial human gastric juice. Obtained results revealed that fungal polysaccharides stimulate the growth of Lactobacillus strains stronger than commercially available prebiotics like inulin or fructooligosaccharides. Moreover, selected polysaccharides were subjected to artificial human gastric juice and remain undigested in more than 90%. Obtained results indicate that mushroom polysaccharides are able to pass through the stomach unchanged, reaching the colon and stimulating the growth of beneficial bacteria. Majority of 53 polysaccharide fractions were analysed for the first time in our study. Overall, our findings suggest that polysaccharide fractions from edible mushrooms might be useful in producing functional foods and nutraceuticals.

  18. Marine Origin Polysaccharides in Drug Delivery Systems

    PubMed Central

    Cardoso, Matias J.; Costa, Rui R.; Mano, João F.

    2016-01-01

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine. PMID:26861358

  19. Marine Origin Polysaccharides in Drug Delivery Systems.

    PubMed

    Cardoso, Matias J; Costa, Rui R; Mano, João F

    2016-02-05

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.

  20. Pumpkin polysaccharide modifies the gut microbiota during alleviation of type 2 diabetes in rats.

    PubMed

    Liu, Guimei; Liang, Li; Yu, Guoyong; Li, Quanhong

    2018-04-24

    Pumpkin polysaccharide is able to alleviate diabetes, but understanding of the underlining mechanism is still limited. In this study, we hypothesized that the alleviating effects of pumpkin polysaccharide is modulated via changes in the gut microbiota and short-chain fatty acid (SCFA) production in type 2 diabetic rats. After the type 2 diabetic model successfully was established, three groups of high-fat diet induced diabetic rats were intragastrically administered pumpkin polysaccharide, metformin, or saline solution respectively. We utilized 16S rRNA gene sequencing and multivariate statistics to analyze the structural and key species of gut microbiota in the type 2 diabetic rats. The results revealed that pumpkin polysaccharide alleviated the type 2 diabetes by improving the insulin tolerance and decreasing the levels of serum glucose (GLU), total cholesterol (TC), and low-density lipoprotein (LDL-C), while increasing the levels of high-density lipoprotein (HDL-C). Simultaneously, pumpkin polysaccharide changed the structure of gut microbiota and had selective enrichment in key species of Bacteroidetes, Prevotella, Deltaproteobacteria, Oscillospira, Veillonellaceae, Phascolarctobacterium, Sutterella, and Bilophila. The correlations between the key species and SCFA production indicated the underlining mechanisms of pumpkin polysaccharide on type 2 diabetes. Copyright © 2018. Published by Elsevier B.V.

  1. [Antivirus effect of polysaccharides of brewer yeast in vitro].

    PubMed

    Li, F; Shi, Y; Guan, X; Zhang, S; Tian, T

    1998-03-01

    The antivirus effect of polysaccharides of brewer yeast from yeast mud on 13 kinds of viruses including DNA and RNA virus along with their mechanisms were studied. The result showed that this effect was remarkable on the infections with poliovirus III, adenovirus III, ECHO6 virus, enterovirus 71, vesicular stomatitis virus, herpesvirus I, II, coxsackie A16 virus and coxsackie B3 virus. The polysaccharides of brewer yeast could also inhibit the development of cytopathic effect(CPE) and protect cultural cells from being infected with the above viruses.

  2. Two Variants of a High-Throughput Fluorescent Microplate Assay of Polysaccharide Endotransglycosylases.

    PubMed

    Kováčová, Kristína; Farkaš, Vladimír

    2016-04-01

    Polysaccharide endotransglycosylases (PETs) are the cell wall-modifying enzymes of fungi and plants. They catalyze random endo-splitting of the polysaccharide donor molecule and transfer of the newly formed reducing sugar residue to the nonreducing end of an acceptor molecule which can be a polysaccharide or an oligosaccharide. Owing to their important role in the cell wall formation, the inhibition of PETs represents an attractive strategy in the fight against fungal infections. We have elaborated two variants of a versatile high-throughput microplate fluorimetric assay that could be used for effective identification of PETs and screening of their inhibitors. Both assays use the respective polysaccharides as the donors and sulforhodamine-labeled oligosaccharides as the acceptors but differ from each other by mode of how the labeled polysaccharide products of transglycosylation are separated from the unreacted oligosaccharide acceptors. In the first variant, the reactions take place in a layer of agar gel laid on the bottoms of the wells of a microtitration plate. After the reaction, the high-Mr transglycosylation products are precipitated with 66 % ethanol and retained within the gel while the low-Mr products and the unreacted acceptors are washed out. In the second variant, the donor polysaccharides are adsorbed to the surface of a microplate well and remain adsorbed there also after becoming labeled in the course of the transglycosylation reaction whereas the unused low-Mr acceptors are washed out. As a proof of versatility, assays of heterologously expressed transglycosylases ScGas1, ScCrh1, and ScCrh2 from the yeast Saccharomyces cerevisiae, CaPhr1 and CaPhr2 from Candida albicans, and of a plant xyloglucan endotransglycosylase (XET) are demonstrated.

  3. The structure-activity relationship between polysaccharides from Sargassum thunbergii and anti-tumor activity.

    PubMed

    Jin, Weihua; Zhang, Wenjing; Liu, Ge; Yao, Jianting; Shan, Tifeng; Sun, Chaomin; Zhang, Quanbin

    2017-12-01

    Polysaccharides derived from Sargassum thunbergii were prepared to investigate the structure-activity relationship between polysaccharides and anti-tumor activity in vitro. Many factors were examined. Overall, STW (polysaccharide extracted by hot water) had the best activity, followed by STJ (polysaccharide extracted by dilute alkali), and then STA (polysaccharide extracted by dilute acid). Location of algae had no effect at 500μg/mL and 1000μg/mL, while STW-QD (algae collected from Qingdao, China) had the best activity, followed by STW-WZ (algae collected from Wenzhou, China) and STW-LJ (algae collected from Lianjiang, China) and then STW-DL (algae collected from Dalian, China) and STW-RC (algae collected from Rongcheng, China) at 250μg/mL. Moreover, molecular weight had no effect at 1000μg/mL, while higher molecular weights were associated with better activities at 250μg/mL and 500μg/mL. Sulfate content had no effect at 1000μg/mL, while anti-tumor activities decreased accompanying with the changes of sulfate content. Uronic acid content was an important factor influencing activity. The fractions of STW showed little anti-tumor activity; however, the mixture of the fractions of STW showed approximately 60% inhibition. Overall, these findings suggested that the anti-tumor activity of polysaccharides required multilateral cooperation and that some of the effective components were lost. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Stimulatory Effects of Polysaccharide Fraction from Solanum nigrum on RAW 264.7 Murine Macrophage Cells

    PubMed Central

    Razali, Faizan Naeem; Ismail, Amirah; Abidin, Nurhayati Zainal; Shuib, Adawiyah Suriza

    2014-01-01

    The polysaccharide fraction from Solanum nigrum Linne has been shown to have antitumor activity by enhancing the CD4+/CD8+ ratio of the T-lymphocyte subpopulation. In this study, we analyzed a polysaccharide extract of S. nigrum to determine its modulating effects on RAW 264.7 murine macrophage cells since macrophages play a key role in inducing both innate and adaptive immune responses. Crude polysaccharide was extracted from the stem of S. nigrum and subjected to ion-exchange chromatography to partially purify the extract. Five polysaccharide fractions were then subjected to a cytotoxicity assay and a nitric oxide production assay. To further analyze the ability of the fractionated polysaccharide extract to activate macrophages, the phagocytosis activity and cytokine production were also measured. The polysaccharide fractions were not cytotoxic, but all of the fractions induced nitric oxide in RAW 264.7 cells. Of the five fractions tested, SN-ppF3 was the least toxic and also induced the greatest amount of nitric oxide, which was comparable to the inducible nitric oxide synthase expression detected in the cell lysate. This fraction also significantly induced phagocytosis activity and stimulated the production of tumor necrosis factor-α and interleukin-6. Our study showed that fraction SN-ppF3 could classically activate macrophages. Macrophage induction may be the manner in which polysaccharides from S. nigrum are able to prevent tumor growth. PMID:25299340

  5. Interactions between soy protein from water-soluble soy extract and polysaccharides in solutions with polydextrose.

    PubMed

    Spada, Jordana C; Marczak, Ligia D F; Tessaro, Isabel C; Cardozo, Nilo S M

    2015-12-10

    This study focuses on the investigation of the interactions between polysaccharides (carrageenan and carboxymethylcellulose--CMC) and soy proteins from the water-soluble soy extract. The influence of pH (2-7) and protein-polysaccharide ratio (5:1-40:1) on the interaction between these polyelectrolytes was investigated in aqueous solutions with 10% of polydextrose and without polydextrose. The studied systems were analyzed in terms of pH-solubility profile of protein, ζ-potential, methylene blue-polysaccharide interactions, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and confocal laser scanning microscopy. Although the mixtures of soy extract with both carrageenan and CMC showed dependency on the pH and protein-polysaccharide ratio, they did not present the same behavior. Both polysaccharides modified the pH-solubility profile of the soy protein, shifting the pH range in which the coacervate is formed to a lower pH region with the decrease of the soy extract-polysaccharide ratio. The samples also presented detectable differences regarding to ζ-potential, DSC, FTIR and microscopy analyses. The complex formation was also detected even in a pH range where both biopolymers were net-negatively charged. The changes promoted by the presence of polydextrose were mainly detected by blue-polysaccharide interactions measures and confocal microscopy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Optimization of cellulase-assisted extraction process and antioxidant activities of polysaccharides from Tricholoma mongolicum Imai.

    PubMed

    Zhao, Yong-Ming; Song, Jin-Hui; Wang, Jin; Yang, Jian-Ming; Wang, Zhi-Bao; Liu, Ying-Hui

    2016-10-01

    Tricholoma mongolicum Imai is a well-known edible and medicinal mushroom which in recent years has attracted increasing attention because of its bioactivities. In this study, water-soluble polysaccharides were extracted from T. mongolicum Imai by cellulase-assisted extraction and their antioxidant activities were investigated. In order to improve the yield of polysaccharides, four variables, cellulase amount (X1 ), pH (X2 ), temperature (X3 ) and extraction time (X4 ), were investigated with a Box-Behnken design. The optimal conditions were predicted to be cellulase amount of 20 g kg(-1) , pH of 4.0, temperature of 50 °C and extraction time of 127 min, with a predicted polysaccharide yield of 190.1 g kg(-1) . The actual yield of polysaccharides under these conditions was 189.6 g kg(-1) , which matched the predicted value well. The crude polysaccharides were purified to obtain four fractions, and characterization of each was carried out. In addition, antioxidant properties of four polysaccharides assessed by 1,1-diphenyl-2-picryldydrazyl (DPPH) and hydroxyl radical-scavenging assays indicated that polysaccharides from T. mongolicum Imai (TMIPs) possessed antioxidant activity in a dose-dependent manner. TMIPs show moderate antioxidant activities in vitro. Therefore it is suggested that TMIPs are potential natural antioxidants for use in functional foods. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. The application of polysaccharide-based nanogels in peptides/proteins and anticancer drugs delivery.

    PubMed

    Zhang, Lin; Pan, Jifei; Dong, Shibo; Li, Zhaoming

    2017-09-01

    Finding adequate carriers for proteins/peptides and anticancer drugs delivery has become an urgent need, owing to the growing number of therapeutic macromolecules and the increasing amount of cancer incidence. Polysaccharide-based nanogels have attracted interest as carriers for proteins/peptides and anticancer drugs because of their characteristic properties like biodegradability, biocompatibility, stimuli-responsive behaviour, softness and swelling to help achieve a controlled, triggered response at the target site. In addition, the groups of the polysaccharide backbone are able to be modified to develop functional nanogels. Some polysaccharides have the intrinsic ability to recognise specific cell types, allowing the design of targeted drug delivery systems through receptor-mediated endocytosis. This review is aimed at describing and exploring the potential of polysaccharides that are used in nanogels which can help to deliver proteins/peptides and anticancer drugs.

  8. Chemical composition of Lycium europaeum fruit oil obtained by supercritical CO2 extraction and evaluation of its antioxidant activity, cytotoxicity and cell absorption.

    PubMed

    Rosa, Antonella; Maxia, Andrea; Putzu, Danilo; Atzeri, Angela; Era, Benedetta; Fais, Antonella; Sanna, Cinzia; Piras, Alessandra

    2017-09-01

    We studied the total phenols and flavonoids, liposoluble antioxidants, fatty acid and triacylglycerol profiles, and oxidative status of oil obtained from Lycium europaeum fruits following supercritical CO 2 extraction (at 30MPa and 40°C). Linoleic (52%), palmitic (18%), oleic (13%), and α-linolenic (6%) were the main oil fatty acids, while trilinolein and palmitodilinolein/oleodilinolein represented the main triacylglycerols. The oil was characterized by high levels of all-trans-zeaxanthin and all-trans-β-carotene (755 and 332μg/g of oil, respectively), α-tocopherol (308μg/g of oil), total phenols (13.6mg gallic acid equivalents/g of oil), and total flavonoids (6.8mg quercetin equivalents/g of oil). The oil showed radical scavenging activities (ABTS and DPPH assays) and inhibited Caco-2 cell growth. Moreover, the incubation of differentiated Caco-2 cells with a non-toxic oil concentration (100μg/mL) induced a significant intracellular accumulation of essential fatty acids. The results qualify L. europaeum oil as a potential source for food/pharmaceutical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effect of charge density of polysaccharides on self-assembled intragastric gelation of whey protein/polysaccharide under simulated gastric conditions.

    PubMed

    Zhang, Sha; Zhang, Zhong; Vardhanabhuti, Bongkosh

    2014-08-01

    This study focuses on the behavior of mixed protein and polysaccharides with different charge densities under simulated gastric conditions. Three types of polysaccharides, namely, guar gum, xanthan gum and carrageenan (neutral, medium negatively, and highly negatively charged, respectively) were selected for heating together with whey protein isolate (WPI) at a biopolymer ratio ranging from 0.01 to 0.1. Upon mixing with simulated gastric fluid (SGF), all WPI-guar gum samples remained soluble, whereas WPI-xanthan gum and WPI-carrageenan at biopolymer ratio higher than 0.01 led to self-assembled intragastric gelation immediately after mixing with SGF. The mechanism behind the intragastric gelation is believed to be the cross-linking between oppositely charged protein and polysaccharides when pH was reduced to below the pI of the protein. Higher biopolymer ratio led to a higher degree of intermolecular interaction, which tends to form stronger gel. More negatively charged carrageenan also formed a stronger gel than xanthan gum. SDS-PAGE results show that the digestibility of protein was not affected by the presence of guar gum as well as xanthan gum and carrageenan at biopolymer ratio lower than 0.02. However, intragastric gel formed by WPI-xanthan gum and WPI-carrageenan at biopolymer ratio higher than 0.02 significantly slows down the digestion rate of protein, which could potentially be used to delay gastric emptying and promote satiety.

  10. Size-resolved atmospheric particulate polysaccharides in the high summer Arctic

    NASA Astrophysics Data System (ADS)

    Leck, C.; Gao, Q.; Mashayekhy Rad, F.; Nilsson, U.

    2013-12-01

    Size-resolved aerosol samples for subsequent quantitative determination of polymer sugars (polysaccharides) after hydrolysis to their subunit monomers (monosaccharides) were collected in surface air over the central Arctic Ocean during the biologically most active summer period. The analysis was carried out by novel use of liquid chromatography coupled with highly selective and sensitive tandem mass spectrometry. Polysaccharides were detected in particle sizes ranging from 0.035 to 10 μm in diameter with distinct features of heteropolysaccharides, enriched in xylose, glucose + mannose as well as a substantial fraction of deoxysugars. Polysaccharides, containing deoxysugar monomers, showed a bimodal size structure with about 70% of their mass found in the Aitken mode over the pack ice area. Pentose (xylose) and hexose (glucose + mannose) had a weaker bimodal character and were largely found with super-micrometer sizes and in addition with a minor sub-micrometer fraction. The concentration of total hydrolysable neutral sugars (THNS) in the samples collected varied over two orders of magnitude (1 to 160 pmol m-3) in the super-micrometer size fraction and to a somewhat lesser extent in sub-micrometer particles (4 to 140 pmol m-3). Lowest THNS concentrations were observed in air masses that had spent more than five days over the pack ice. Within the pack ice area, about 53% of the mass of hydrolyzed polysaccharides was detected in sub-micrometer particles. The relative abundance of sub-micrometer hydrolyzed polysaccharides could be related to the length of time that the air mass spent over pack ice, with the highest fraction (> 90%) observed for > 7 days of advection. The aerosol samples collected onboard ship showed similar monosaccharide composition, compared to particles generated experimentally in situ at the expedition's open lead site. This supports the existence of a primary particle source of polysaccharide containing polymer gels from open leads by bubble

  11. Purification and structural characterization of Chinese yam polysaccharide and its activities.

    PubMed

    Yang, Weifang; Wang, Ying; Li, Xiuping; Yu, Ping

    2015-03-06

    Purification and structural characterization of Chinese yam polysaccharide were investigated and its activities were analyzed. Results indicated that a single component polysaccharide with a molecular weight of 16,619 Da was obtained after hot water extraction with sequential sevage deproteinization, HSCCC and Sephadex G-100 size-exclusion chromatography. The FTIR analysis showed that it had characteristic absorptive peaks and contained uronic acid. The methylation and GC-MS analysis showed that it comprised of glucose and galactose with a molar ratio of 1.52:1, and that it mainly contained 1,3-linked-glc, 1-linked-gal and 1,6-linked-gal glycosidic bonds. (1)H NMR and (13)C NMR spectra analysis showed that there were two α-configurations and one β-configuration, and that β-1,3-glucose, α-1-galactose, α-1,6-galactose might exist in the structure of the purified polysaccharide. The determination of the antioxidative activity showed that it could scavenge hydroxyl and superoxide radicals. The purified polysaccharide displayed a certain inhibitory activity against Escherichia coli, with a MIC of 2.5 mg/mL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Purification, Characterization, and Antioxidant Activity of Polysaccharides Isolated from Cortex Periplocae.

    PubMed

    Wang, Xiaoli; Zhang, Yifei; Liu, Zhikai; Zhao, Mingqin; Liu, Pengfei

    2017-10-31

    In this study, crude Cortex Periplocae polysaccharides (CCPPs) were extracted with water. CCPPs were decolored with AB-8 resin and deproteinated using papain-Sevage methods. Then, they were further purified and separated through DEAE-52 anion exchange chromatography and Sephadex G-100 gel filtration chromatography, respectively. Three main fractions-CPP1, CPP2, and CPP3, (CPPs)-were obtained. The average molecular weights, monosaccharide analysis, surface morphology, and chemical compositions of the CPPs were investigated by high-performance gel permeation chromatography (HPGPC), gas chromatography-mass spectrometry (GC/MS), UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectrum, and nuclear magnetic resonance (NMR). In addition, the antioxidant activities of these three polysaccharides were investigated. The results indicated that all of the CPPs were composed of rhamnose, arabinose, mannose, glucose, and galactose. These three polysaccharides exhibited antioxidant activities in four assays including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) radical, reducing power, and total antioxidant activity in vitro. The data indicated that these three polysaccharides could be utilized as potential natural sources of alternative additives in the functional food, cosmetics, and pharmaceutical industries.

  13. Synthetic and semi-synthetic chondroitin sulfate oligosaccharides, polysaccharides, and glycomimetics.

    PubMed

    Bedini, Emiliano; Parrilli, Michelangelo

    2012-07-15

    Chondroitin sulfate (CS) is a sulfated polysaccharide involved in a myriad of biological processes. Due to the variable sulfation pattern of CS polymer chains, the need to study in detail structure-activity relationships regarding CS biomedical features has provoked much interest in obtaining synthetic CS species. This paper reviews two decades of synthetic and semi-synthetic CS oligosaccharides, polysaccharides, and glycomimetics obtained by chemical, chemoenzymatic, enzymatic, and microbiological-chemical strategies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Production and Characterization of the Slime Polysaccharide of Pseudomonas aeruginosa

    PubMed Central

    Evans, Leigh R.; Linker, Alfred

    1973-01-01

    The slime polysaccharides produced by Pseudomonas aeruginosa isolated from a variety of human infections were investigated. Slime production in culture seemed optimal when adequate amounts of carbohydrate were present and under conditions of either high osmotic pressure or inadequate protein supply. The polysaccharides produced by the organisms were similar to each other, to the slime of Azotobacter vinelandii, and to seaweed alginic acids. They were composed of β-1,4-linked d-mannuronic acid residues and variable amounts of its 5-epimer l-guluronic acid. All bacterial polymers contained o-acetyl groups which are absent in the alginates. The polysaccharides differed considerably in the ratio of mannuronic to guluronic acid content and in the number of o-acetyl groups. The particular composition of the slime was not found to be characteristic for the disease process from which the mucoid variants of P. aeruginosa were obtained. PMID:4200860

  15. Physicochemical properties and cell-based bioactivity of Pu'erh tea polysaccharide conjugates.

    PubMed

    Chen, Xiao-Qiang; Zhang, Zhi-Fa; Gao, Zhi-Ming; Huang, Yi; Wu, Zheng-Qi

    2017-11-01

    Polysaccharide conjugates were prepared from Pu'erh tea and fractionated by DEAE-cellulose DE-52 column chromatography to yield one unexplored polysaccharide-conjugate fraction termed TPC-P with a molecular weight of 251,200Da. DVS (dynamic vapour sorption) result discovered that the humidity condition of long-term preservation for TPC-P is below 70% RH. Although it contained proteins, TPC-P could not bind to the Coomassie Brilliant Blue dyes G250 and R250. The "shoulder-shaped" ultroviolet absorption peak in TPC-P UV-vis scanning spectum ascribe theabrownins that inevitably adsorbed the polysaccharide conjugate. Zeta potential results demonstrated TPC-P aqueous solution merely presented the negative charge properties of polysaccharides instead of acid-base property of its protein section, and had more stability in greater than pH 5.5. No precipitation or haze occurred in the three TPC-P/EGCG aqueous mixtures during their being stored for 12h. The phase separation was observed in aqueous mixtures of TPC-P and type B gelatin. TPC-P possessed the fine stability as a function of temperature heating and cooling between 0 and 55°C. It is proposed that some properties of the covalent binding protein of TPC-P were "shielded" by its polysaccharide chains. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Methylation analysis of polysaccharides: Technical advice.

    PubMed

    Sims, Ian M; Carnachan, Susan M; Bell, Tracey J; Hinkley, Simon F R

    2018-05-15

    Glycosyl linkage (methylation) analysis is used widely for the structural determination of oligo- and poly-saccharides. The procedure involves derivatisation of the individual component sugars of a polysaccharide to partially methylated alditol acetates which are analysed and quantified by gas chromatography-mass spectrometry. The linkage positions for each component sugar can be determined by correctly identifying the partially methylated alditol acetates. Although the methods are well established, there are many technical aspects to this procedure and both careful attention to detail and considerable experience are required to achieve a successful methylation analysis and to correctly interpret the data generated. The aim of this article is to provide the technical details and critical procedural steps necessary for a successful methylation analysis and to assist researchers (a) with interpreting data correctly and (b) in providing the comprehensive data required for reviewers to fully assess the work. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Structural characterization of polysaccharides from bamboo

    NASA Astrophysics Data System (ADS)

    Kamil, Ruzaimah Nik Mohamad; Yusuf, Nur'aini Raman; Yunus, Normawati M.; Yusup, Suzana

    2014-10-01

    The alkaline and water soluble polysaccharides were isolate by sequential extractions with distilled water, 60% ethanol containing 1%, 5% and 8% NaOH. The samples were prepared at 60 °C for 3 h from local bamboo. The functional group of the sample were examined using FTIR analysis. The most precipitate obtained is from using 60% ethanol containing 8% NaOH with yield of 2.6%. The former 3 residues isolated by sequential extractions with distilled water, 60% ethanol containing 1% and 5% NaOH are barely visible after filtering with cellulose filter paper. The FTIR result showed that the water-soluble polysaccharides consisted mainly of OH group, CH group, CO indicates the carbohydrate and sugar chain. The sample weight loss was slightly decreased with increasing of temperature.

  18. The effect of covalently linked RGD peptide on the conformation of polysaccharides in aqueous solutions.

    PubMed

    Bernstein-Levi, Ortal; Ochbaum, Guy; Bitton, Ronit

    2016-01-01

    Covalently modified polysaccharides are routinely used in tissue engineering due to their tailored biofunctionality. Understanding the effect of single-chain level modification on the solution conformation of the single chain, and more importantly on the self-assembly and aggregation of the ensemble of chains is expected to improve our ability to control network topology and the properties of the resulting gels. Attaching an RGD peptide to a polysaccharide backbone is a common procedure used to promote cell adhesion in hydrogel scaffolds. Recently it has been shown that the spatial presentation of the RGD sequences affects the cell behavior; thus, understanding the effects of grafted RGD on the conformational properties of the solvated polysaccharide chains is a prerequisite for rational design of polysaccharide-peptide based biomaterials. Here we investigate the effect of covalently linked G4RGDS on the conformational state of the individual chain and chain assemblies of alginate, chitosan, and hyaluronic acid (HA) in aqueous solutions. Two peptide fractions were studied using small-angle X-ray scattering (SAXS) and rheology. In all cases, upon peptide conjugation structural differences were observed. Analysis of the scattering data shows evidence of clustering for a higher fraction of bound peptide. Moreover for all three polysaccharides the typical shear thinning behavior of the natural polysaccharide solutions is replaced by a Newtonian fluid behavior for the lower fraction conjugated peptide while a more pronounced shear thinning behavior is observed for the higher fraction. These results indicate that the fraction of the bounded peptide, determines the behavior of a polysaccharide-peptide conjugates in solution, regardless of the specific nature of the polysaccharide. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Suppression of umami aftertaste by polysaccharides in soy sauce.

    PubMed

    Imamura, Miho; Matsushima, Kenichiro

    2013-08-01

    Umami is one of 5 basic tastes that make foods savory and palatable. The umami aftertaste is a long-lasting taste sensation that is important for Japanese broth (dashi) utilized for various Japanese foods. Soy sauce is usually added when making dashi-based dishes; however, different soy sauces produce distinct effects on the umami aftertaste. In this study, we attempted to identify the substances that cause the suppression of the umami aftertaste in soy sauce by combining sensory analysis, size fractionation, chemical analysis, and enzymatic treatment. The suppressive substance was revealed to be polysaccharides with molecular weights between 44900 and 49700. The results of acid hydrolysis and enzymatic treatment suggested that the polysaccharides were cellulose. These results indicate that a type of water-soluble cellulose derived from soybean, wheat, or microorganisms has a suppressive effect on the umami aftertaste of soy sauce. Future studies should focus on developing a strategy that regulates the amount of these polysaccharides generated during soy sauce production, to maintain or enhance the umami aftertaste. © 2013 Institute of Food Technologists®

  20. Structural analysis of a homogeneous polysaccharide from Achatina fulica.

    PubMed

    Liu, Jie; Shang, Feineng; Yang, Zengming; Wu, Mingyi; Zhao, Jinhua

    2017-05-01

    Edible snails have been widely used as a health food and medicine in many countries. In our study, a water-soluble polysaccharide (AF-1) was isolated and purified from Achatina fulica by papain enzymolysis, alcohol precipitation and strong anion exchange chromatography. Structureof the polysaccharide was analyzed and characterized by chemical and instrumental methods, such as Fourier transform infrared spectroscopy, high performance liquid chromatography, analysis of monosaccharide composition, methylation analysis, and nuclear magnetic resonance (NMR) spectroscopy ( 1 H, 13 C, COSY, TOCSY, NOESY, HSQC and HMBC). Chemical composition analysis indicated that AF-1 is composed of glucose (Glc) and its average molecular weight is 1710kDa. Structural analysis suggested that AF-1 is mainly consisted of a linear repeating backbone of (1→4) linked α-d-Glc p residues with one branch, α-d-Glc p, attached to the main chain by (1→6) glycosidic bonds at every five main-chain units. Further studies on biological activities of the polysaccharide are currently in progress. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition

    PubMed Central

    Müller, Frank D.; Schink, Christian W.; Hoiczyk, Egbert; Cserti, Emöke; Higgs, Penelope I.

    2011-01-01

    Summary Myxococcus xanthus is a Gram-negative bacterium that differentiates into environmentally resistant spores. Spore differentiation involves septation-independent remodelling of the rod-shaped vegetative cell into a spherical spore and deposition of a thick and compact spore coat outside of the outer membrane. Our analyses suggest that spore coat polysaccharides are exported to the cell surface by the Exo outer membrane polysaccharide export/polysaccharide co-polymerase 2a (OPX/PCP-2a) machinery. Conversion of the capsule-like polysaccharide layer into a compact spore coat layer requires the Nfs proteins which likely form a complex in the cell envelope. Mutants in either nfs, exo, or two other genetic loci encoding homologs of polysaccharide synthesis enzymes, fail to complete morphogenesis from rods to spherical spores and instead produce a transient state of deformed cell morphology before reversion into typical rods. We additionally provide evidence that the cell cytoskeletal protein, MreB, plays an important role in rod to spore morphogenesis and for spore outgrowth. These studies provide evidence that this novel gram-negative differentiation process is tied to cytoskeleton functions and polysaccharide spore coat deposition. PMID:22188356

  2. CHANGES IN THE MORPHOLOGY AND POLYSACCHARIDE CONTENT OF MICROCYSTIS AERUGINOSA (CYANOBACTERIA) DURING FLAGELLATE GRAZING(1).

    PubMed

    Yang, Zhou; Kong, Fanxiang; Shi, Xiaoli; Zhang, Min; Xing, Peng; Cao, Huansheng

    2008-06-01

    To investigate the changes in the morphology and polysaccharide content of Microcystis aeruginosa (Kütz.) Kütz. during flagellate grazing, cultures of M. aeruginosa were exposed to grazing Ochromonas sp. for a period of 9 d under controlled laboratory conditions. M. aeruginosa responded actively to flagellate grazing and formed colonies, most of which were made up of several or dozens of cells, suggesting that flagellate grazing may be one of the biotic factors responsible for colony formation in M. aeruginosa. When colonies were formed, the cell surface ultrastructure changed, and the polysaccharide layer on the surface of the cell wall became thicker. This change indicated that synthesis and secretion of extracellular polysaccharide (EPS) of M. aeruginosa cells increased under flagellate grazing pressure. The contents of soluble extracellular polysaccharide (sEPS), bound extracellular polysaccharide (bEPS), and total polysaccharide (TPS) in colonial cells of M. aeruginosa increased significantly compared with those in single cells. This finding suggested that the increased amount of EPS on the cell surface may play a role in keeping M. aeruginosa cells together to form colonies. © 2008 Phycological Society of America.

  3. Improved Polysaccharide Production by Homologous Co-overexpression of Phosphoglucomutase and UDP Glucose Pyrophosphorylase Genes in the Mushroom Coprinopsis cinerea.

    PubMed

    Zhou, Jiangsheng; Bai, Yang; Dai, Rujuan; Guo, Xiaoli; Liu, Zhong-Hua; Yuan, Sheng

    2018-05-09

    Coprinopsis polysaccharides exhibit hypoglycemic and antioxidant activities. In this report, increases in polysaccharide production by homologous co-overexpression or individual homologous overexpression of phosphoglucomutase and UDP glucose pyrophosphorylase gene in Coprinopsis cinerea, which participate in polysaccharide biosynthesis. The transcription levels of the target genes were upregulated significantly in the oePGM-UGP strain when compared with the oePGM or oeUGP strain. The maximum intracellular polysaccharide content obtained in the oePGM-UGP strain was 1.49-fold higher than that of the WT strain, whereas a slight improvement in polysaccharide production was obtained in the oePGM and oeUGP strains. Extracellular polysaccharide production was enhanced by 75% in the oePGM-UGP strain when compared with that of the WT strain, whereas improvements of 30% and 16% were observed for the oePGM and oeUGP strains, respectively. These results show that multiple interventions in polysaccharide biosynthesis pathways of Basidiomycetes might improve polysaccharide yields when compared with that of single interventions.

  4. Astragalus Polysaccharide Suppresses 6-Hydroxydopamine-Induced Neurotoxicity in Caenorhabditis elegans.

    PubMed

    Li, Haifeng; Shi, Ruona; Ding, Fei; Wang, Hongyu; Han, Wenjing; Ma, Fangli; Hu, Minghua; Ma, Chung Wah; Huang, Zebo

    2016-01-01

    Astragalus membranaceus is a medicinal plant traditionally used in China for a variety of conditions, including inflammatory and neural diseases. Astragalus polysaccharides are shown to reduce the adverse effect of levodopa which is used to treat Parkinson's disease (PD). However, the neuroprotective effect of Astragalus polysaccharides per se in PD is lacking. Using Caenorhabditis elegans models, we investigated the protective effect of astragalan, an acidic polysaccharide isolated from A. membranaceus , against the neurotoxicity of 6-hydroxydopamine (6-OHDA), a neurotoxin that can induce parkinsonism. We show that 6-OHDA is able to degenerate dopaminergic neurons and lead to the deficiency of food-sensing behavior and a shorter lifespan in C. elegans . Interestingly, these degenerative symptoms can be attenuated by astragalan treatment. Astragalan is also shown to alleviate oxidative stress through reducing reactive oxygen species level and malondialdehyde content and increasing superoxide dismutase and glutathione peroxidase activities and reduce the expression of proapoptotic gene egl-1 in 6-OHDA-intoxicated nematodes. Further studies reveal that astragalan is capable of elevating the decreased acetylcholinesterase activity induced by 6-OHDA. Together, our results demonstrate that the protective effect of astragalan against 6-OHDA neurotoxicity is likely due to the alleviation of oxidative stress and regulation of apoptosis pathway and cholinergic system and thus provide an important insight into the therapeutic potential of Astragalus polysaccharide in neurodegeneration.

  5. Physicochemical properties of water-soluble polysaccharides from black cumin seeds.

    PubMed

    Trigui, Ines; Yaich, Héla; Sila, Assaâd; Cheikh-Rouhou, Salma; Bougatef, Ali; Blecker, Christophe; Attia, Hamadi; Ayadi, M A

    2018-06-01

    In the present work, water-soluble polysaccharides were isolated from black cumin seeds. Polysaccharides were characterized by their carbohydrate composition, molecular weight, thermal stability and by FTIR, NMR spectroscopy and X-ray diffraction. The surface, the functional and the antioxidant properties of black cumin water-soluble polysaccharides (BCWSP) were also investigated. BCWSP consisted mainly of galacturonic acid (30.20%), glucuronic acid (17.66%) and neutral sugar (22.99%). BCWSP was composed of high peak molecular weight. The FTIR spectrum obtained for BCWSP showed two most important absorptions, at 1659 and 1085 cm -1 , which corresponded to COO - of uronic acids and pyranose form, respectively. NMR spectroscopy data suggested that the BCWSP is probably a rhamnogalacturonan backbone with galactan and arabinan side chains. X-ray pattern revealed the semi-crystalline behavior of BCWSP. WHC and OHC of BCWSP were relatively high and varied with temperatures. The polysaccharide zeta potential was greatly affected by pH. Results indicated that the decrease of surface tension has influenced foaming and emulsifying capacities. The DPPH radical scavenging activity of the BCWSP was 63.25% at 1 mg/mL. The BCWSP displayed moderate reductive, β carotene bleaching and chelating abilities. Overall, our results suggested that BCWSP could be used as alternative additives in food and non-food products. Copyright © 2017. Published by Elsevier B.V.

  6. Mycelium and polysaccharide production of Agaricus blazei Murrill by submerged fermentation.

    PubMed

    Lin, Jr-Hui; Yang, Shang-Shyng

    2006-04-01

    Over the last decade, Agaricus blazei Murrill has been studied and developed as a novel functional food in Japan, Korea, China, and Taiwan. Due to the low yields, the fruiting bodies of A. blazei Murrill are relatively expensive, and a cheap and stable source of A. blazei Murrill mycelium for commercial purposes is highly desirable. Culture media and conditions were investigated with a view to reducing the cost and improving the mycelium and polysaccharide production of A. blazei Murrill by submerged fermentation. Thirty six isolates of A. blazei Murrill were isolated from 22 fruiting bodies produced in Taiwan, and 16 of them could be successfully cultivated on mannitol-egg yolk-polymyxin medium. The isolates were identified by species-specific polymerase chain reaction (PCR) and optimized for the culture media and conditions by submerged fermentation for mycelium and polysaccharide production. Some properties of polysaccharide extract were also investigated. All of the PCR products with species-specific primers showed high identity and matched the internal transcribed spacer 1 sequences of A. blazei Murrill. The phylogenic tree of A. blazei Murrill isolates generated from random amplified polymorphic DNAs arranged all samples into 3 groups and 2 independent cases. The optimal culture media of mycelium production in submerged fermentation were 5% malt extract, 0.1% yeast extract, and 0.5% peptone at pH 6.0, while the optimal culture conditions were 200 mL medium in 500 mL Hinton flask, shaking at 90 rpm for 3 days and then shifting to 105 rpm for 5 days at 27 degrees C. Each liter of A. blazei Murrill M72 yielded 10.83 +/- 0.24 g dried mycelia weight and each liter of A. blazei Murrill M152 produced 0.251 +/- 0.004 g crude polysaccharide (3.03 +/- 0.05% of dried mycelia weight). Crude polysaccharide of A. blazei Murrill M162 contained 82.27-99.14% of total sugar and less than 1.63% of protein; it had 4 major molecular weight components (274.1, 32.7, 7.5, and 2.1 k

  7. Antidiabetic activity of aqueous extract and non polysaccharide fraction of Cynodon dactylon Pers.

    PubMed

    Jarald, E E; Joshi, S B; Jain, D C

    2008-09-01

    Petroleum ether (60 degrees-80 degrees C), chloroform, acetone, ethanol, aqueous and crude hot water extracts of the whole plant of C. dactylon and the two fractions of aqueous extract were tested for antihyperglycaemic activity in glucose overloaded hyperglycemic rats and in alloxan induced diabetic model at two-dose levels, 200 and 400 mg/kg (po) respectively. The aqueous extract of C. dactylon and the non polysaccharide fraction of aqueous extract were found to exhibit significant antihyperglycaemic activity and only the non polysaccharide fraction was found to produce hypoglycemia in fasted normal rats. Treatment of diabetic rats with aqueous extract and non polysaccharide fraction of the plant decreased the elevated biochemical parameters, glucose, urea, creatinine, serum cholesterol, serum triglyceride, high density lipoprotein, low density lipoprotein, haemoglobin and glycosylated haemoglobin significantly. Comparatively, the non polysaccharide fraction of aqueous extract was found to be more effective than the aqueous extract.

  8. Drying effects on the antioxidant properties of polysaccharides obtained from Agaricus blazei Murrill.

    PubMed

    Wu, Songhai; Li, Feng; Jia, Shaoyi; Ren, Haitao; Gong, Guili; Wang, Yanyan; Lv, Zesheng; Liu, Yong

    2014-03-15

    Three polysaccharides (ABMP-F, ABMP-V, ABMP-A) were obtained from Agaricus blazei Murrill via methods such as freeze drying, vacuum drying and air drying, respectively. Their chemical compositions were examined, and antioxidant activities were investigated on the basis of assay for hydroxyl radical, DPPH radical, ABTS free radical scavenging ability and assay for Fe(2+)-chelating ability. Results showed that the three ABMPs have different physicochemical and antioxidant properties. Compared with air drying and vacuum drying methods, freeze drying method resulted to ABMP with higher neutral sugar, polysaccharide yield, uronic acid content, and stronger antioxidant abilities of hydroxyl radical, DPPH radical, ABTS radical scavenging and Fe(2+)-chelating. As a result, Agaricus blazei Murrill polysaccharides are natural antioxidant and freeze drying method serves as a good choice for the preparation of such polysaccharides and should be used to produce antioxidants for food industry. Copyright © 2014. Published by Elsevier Ltd.

  9. A mini-review of chemical and biological properties of polysaccharides from Momordica charantia.

    PubMed

    Zhang, Fan; Lin, Lihua; Xie, Jianhua

    2016-11-01

    Recently, isolation and characterization of bioactive polysaccharides from natural resources have attracted increasing interest. Momordica charantia L. (M. charantia), belongs to the Curcubitaceae family, which is widely distributed in the tropical and subtropical regions of the world, and has been used as herbal medicine and a vegetable for thousands of years. M. charantia polysaccharides, as major active ingredients of M. charantia, have attracted a great deal of attention because of their various biological activities, such as antitumor, immunomodulation, antioxidant, anti-diabetes, radioprotection, and hepatoprotection. The present review provides the most complete summary of the research progress on the polysaccharides isolated from M. charantia, including the extraction, separation, physical-chemical properties, structural characteristics, and bioactivities during the last ten years. This review also provides a foundation for the further development and application in the field of M. charantia polysaccharides. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effect of phosphorylation on antioxidant activities of pumpkin (Cucurbita pepo, Lady godiva) polysaccharide.

    PubMed

    Song, Yi; Ni, Yuanying; Hu, Xiaosong; Li, Quanhong

    2015-11-01

    Phosphorylated derivatives of pumpkin polysaccharide with different degree of substitution were synthesized using POCl3 and pyridine. Antioxidant activities and cytoprotective effects of unmodified polysaccharide and phosphorylated derivatives were investigated employing various in vitro systems. Results showed that high ratio of POCl3/pyridine could increase the degree of substitution and no remarkable degradation occurred in the phosphorylation process. Characteristic absorption of phosphorylation appeared both in the IR and (31)P NMR spectrum. The df values between 2.27 and 2.55 indicated the relatively expanded conformation of the phosphorylated derivatives. All the phosphorylated polysaccharides exhibited higher antioxidant activities. H2O2-induced oxidative damages on rat thymic lymphocyte were also prevented by the derivatives. In general, phosphorylation could improve the antioxidant activities of pumpkin polysaccharide both in vitro and in a cell system. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Structural, functional and pH sensitive release characteristics of water-soluble polysaccharide from the seeds of Albizia lebbeck L.

    PubMed

    Kumar Varma, Chekuri Ashok; Jayaram Kumar, K

    2017-11-01

    Plant polysaccharides, generally regarded as safe (GRAS), are gaining importance as excipients in drug delivery. Therefore, the current paper presents the studies on structural, functional and drug release study of water soluble polysaccharide (ALPS) from seeds of Albizia lebbeck L. High swelling, water holding capacity, foam stability and lower moisture content suggests its use as additive in food preparations. The apparent molecular weight of polysaccharide was found to be 1.98×10 2 kDa. Monosaccharide composition analysis indicated that ALPS consists of mannose (4.06%), rhamnose (22.79%), glucose (38.9%), galactose (17.84%) and xylose (16.42%). Micromeritic properties revealed that the polysaccharide possess potential for pharmaceutical applications. From the surface charge analysis, ALPS was found to be non-ionic polysaccharide. Morphological study reveals the polysaccharide with irregular particle shape and rough surface. Fourier transformed infrared spectroscopy (FTIR) study confirms the carbohydrate nature of polysaccharide. From the thermogravimetric analysis (TGA) data, the second mass loss (243-340°C) attributed to polysaccharide degradation. The drug release profile reveals the use of polysaccharide for the preparation of pH sensitive pharmaceutical dosage forms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Why Were Polysaccharides Necessary?

    NASA Astrophysics Data System (ADS)

    Tolstoguzov, Vladimir

    2004-12-01

    The main idea of this paper is that the primordial soup may be modelled by food systems whose structure-property relationship is based on non-specific interactions between denatured biopolymers. According to the proposed hypothesis, polysaccharides were the first biopolymers that decreased concentration of salts in the primordial soup, `compatibilised' and drove the joint evolution of proto-biopolymers. Synthesis of macromolecules within the polysaccharide-rich medium could have resulted in phase separation of the primordial soup and concentration of the polypeptides and nucleic acids in the dispersed phase particles. The concentration of proto-biopolymer mixtures favoured their cross-linking in hybrid supermacromolecules of conjugates. The cross-linking of proto-biopolymers could occur by hydrophobic, electrostatic interactions, H-bonds due to freezing aqueous mixed biopolymer dispersions and/or by covalent bonds due to the Maillard reaction. Cross-linking could have increased the local concentration of chemically different proto-biopolymers, fixed their relative positions and made their interactions reproducible. Attractive-repulsive interactions between cross-linked proto-biopolymer chains could develop pairing of the monomer units, improved chemical stability (against hydrolysis) and led to their mutual catalytic activity and coding. Conjugates could probably evolve to the first self-reproduced entities and then to specialized cellular organelles. Phase separation of the primordial soup with concentration of conjugates in the dispersed particles has probably resulted in proto-cells.

  13. Preparation and efficacy assessment of malva nut polysaccharide for skin hydrating products.

    PubMed

    Kanlayavattanakul, M; Fungpaisalpong, K; Pumcharoen, M; Lourith, N

    2017-11-01

    Scaphium scaphigerum or malva nut has long been served in Chinese medicine. However, the use of this herb in modern health care applications has, to date, been rarely reported. Maceration of the herb in water afforded malva nut polysaccharide which was standardized. Safety and skin hydrating efficacy of the polysaccharide and products were evaluated in human volunteers. Malva nut polysaccharide (41.71±0.64%) having 36.58±0.51% total sugar content was isolated, with further analysis quantifying ash, carbohydrate, reducing sugar and moisture contents to be 6.05±0.00, 40.06±1.00, 12.20±0.05 and 12.64±0.31%, respectively. The polysaccharide exhibited swelling and hydrating capacities of 0.46±0.01% and 54.46±0.02g/g, with L*, a* and b* of 52.56±0.04, 9.02±0.06 and 18.42±0.03, respectively, and a viscosity of 1263.00±2.00 cps. Accelerated testing indicated the biopolysaccharide to be stable, resulting in no skin irritation in 15 human volunteers. The skin hydrating efficacy as assessed via a randomized single-blind, placebo-controlled study in 24 volunteers highlighted the superior performance of malva nut over the vehicle (moisture retainment for 70min as examined by Corneometer ® CM 825). A stable skin moisturizing gel containing malva nut was developed and was shown to exhibit improved performance over benchmark tamarind and algae polysaccharide gels (after 180min observation). Malva nut polysaccharide has potential as a key ingredient in skin hydrating products, which should encourage its further development. Copyright © 2017 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  14. Role of natural polysaccharides in radiation formation of PVA hydrogel wound dressing

    NASA Astrophysics Data System (ADS)

    Varshney, Lalit

    2007-02-01

    Radiation processed PVA-polysaccharides hydrogels have been observed to be suitable for producing transparent, flexible, mechanically strong, biocompatible, effective and economical hydrogel dressings. The dressings were formed in single stage irradiation process achieving gel formation and sterilization at 25-30 kGy gamma radiation dose. No synthetic plasticizers and additives were used. Different formulations containing poly-vinylalcohol (PVA) and polysaccharides selected from combinations of agar and carrageenan were used to make the dressings. The selected polysaccharides themselves form thermo-reversible gels and degrade on irradiation. Using concentration of polysaccharides as low as 0.5-2% resulted in increase of tensile strength from 45 g/cm 2 to 411 g/cm 2, elongation from 30% to 410% and water uptake from 25% to 157% with respect to PVA gel without polysaccharides. Besides improving mechanical strength, agar contributes more to elongation and carrageenan to mechanical strength of the gel dressing. PVA formulations containing the polysaccharides show significantly different pre-gel viscosities behaviour. Increasing the concentration of agar in the formulation to about 2% converts the sheet gel to paste gel useful for filling wound cavities. The results indicate that pre irradiation network structure of the formulation plays an important role in determining mechanical properties of the irradiated gel dressing. Formulations containing 7-9% PVA, 0.5-1.5% carrageenan and 0.5-1% agar gave highly effective usable hydrogel dressings. Scanning electron micrographs show highly porous structure of the gel. Clinical trials of wound dressing on human patients established safety and efficacy of the dressing. The dressing has been observed to be useful in treating burns, non-healing ulcers of diabetes, leprosy and other external wounds. The dressings are now being marketed in India under different brand names.

  15. Safety Assessment of Microbial Polysaccharide Gums as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-07-01

    The Cosmetic Ingredient Review Expert Panel assessed the safety of 34 microbial polysaccharide gums for use in cosmetics, finding that these ingredients are safe in cosmetic formulations in the present practices of use and concentration. The microbial polysaccharide gums named in this report have a variety of reported functions in cosmetics, including emulsion stabilizer, film former, binder, viscosity-increasing agent, and skin-conditioning agent. The Panel reviewed available animal and clinical data in making its determination of safety. © The Author(s) 2016.

  16. Structural features of immunostimulatory polysaccharide purified from pectinase hydrolysate of barley leaf.

    PubMed

    Kim, Hoon; Kwak, Bong-Shin; Hong, Hee-Do; Suh, Hyung-Joo; Shin, Kwang-Soon

    2016-06-01

    Four polysaccharide fractions were isolated from young barley leaves treated with or without pectinase followed by ethanol fractionation. Among the polysaccharide fractions, BLE-P isolated from pectinase digested with a high molecular weight had the most enhanced macrophage stimulatory activity, indicating that pectinase digestion of barley leaf is a useful method for enhancement of its activity. BLE-P was further purified by column chromatography to identify the chemical and structural properties. BLE-P-I eluted in void volume fraction showed potent macrophage stimulatory activity. Monosaccharide composition and linkage analysis indicated that at least three kinds of polysaccharide, that is, glucuronoarabinoxylan (GAX; 40-45%), rhamnogalacturonan-I (RG-I) with branching mainly involving a type II arabinogalactan (AG-II) side chain (30-35%), and linear glucan such as starch and cellulose (less than 10%) coexisted in BLE-P-I. Given the association with macrophage stimulatory activity, it is likely that the GAX and to the RG-I polysaccharide branched with an AG-II side chain may be important for expression of the activity in barley leaf. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Preparation and characterisation of the oligosaccharides derived from Chinese water chestnut polysaccharides.

    PubMed

    Wu, Sheng-Jun; Yu, Lin

    2015-08-15

    Hydrogen peroxide (H2O2) is a strong oxidant that cleaves glycosidic bonds in polysaccharides. In this study, the oligosaccharides were prepared by removing the starch from Chinese water chestnuts through hydrolysis using α-amylase and then hydrolysing the remaining polysaccharides with H2O2, during which the oligosaccharide yield was monitored. The yield of oligosaccharide was affected by reaction time, temperature, and H2O2 concentration. Extended reaction times, high temperatures, and high H2O2 concentrations decreased oligosaccharide yield. Under optimum conditions (i.e., reaction time of 4h, reaction temperature of 80°C, and 2.5% H2O2 concentration), the maximum oligosaccharide yield was 3.91%. The oligosaccharides derived from Chinese water chestnuts polysaccharides exhibited strong hydroxyl and 2,2-diphenyl-β-picrylhydrazyl radical scavenging activity when applied at a concentration of 100 μg/mL. The results indicate that the oligosaccharides derived from Chinese water chestnuts polysaccharides possessed good antioxidant properties and can be developed as a new dietary supplement and functional food. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Evaluation of lipopolysaccharide and capsular polysaccharide as subunit vaccines against experimental melioidosis.

    PubMed

    Nelson, Michelle; Prior, Joann L; Lever, M Stephen; Jones, Helen E; Atkins, Timothy P; Titball, Richard W

    2004-12-01

    Burkholderia pseudomallei is the causative agent of melioidosis, which is a major cause of morbidity and mortality in endemic regions. Currently there is no human vaccine against melioidosis. In this study, LPS or capsular polysaccharide was used to immunize BALB/c mice. The different polysaccharide antigens induced antibody responses. Mice vaccinated with LPS developed predominantly IgM and IgG3 responses. Contrastingly, mice vaccinated with capsular polysaccharide developed a predominantly IgG2b response. After immunization, mice were challenged by the intra-peritoneal route and an increased mean time to death was observed compared with unvaccinated controls. Immunization with LPS provided an optimal protective response. Mice challenged by the aerosol route showed a small increase in the mean time to death compared with the unvaccinated controls. The passive transfer of antigen from immunized into naive mice provided protection against a subsequent challenge. This study is the first time antigens protective by active immunization have been identified and suggests that polysaccharides have potential as vaccine candidates against melioidosis.

  19. Biosynthesis of the fungal cell wall polysaccharide galactomannan requires intraluminal GDP-mannose.

    PubMed

    Engel, Jakob; Schmalhorst, Philipp S; Routier, Françoise H

    2012-12-28

    Fungal cell walls frequently contain a polymer of mannose and galactose called galactomannan. In the pathogenic filamentous fungus Aspergillus fumigatus, this polysaccharide is made of a linear mannan backbone with side chains of galactofuran and is anchored to the plasma membrane via a glycosylphosphatidylinositol or is covalently linked to the cell wall. To date, the biosynthesis and significance of this polysaccharide are unknown. The present data demonstrate that deletion of the Golgi UDP-galactofuranose transporter GlfB or the GDP-mannose transporter GmtA leads to the absence of galactofuran or galactomannan, respectively. This indicates that the biosynthesis of galactomannan probably occurs in the lumen of the Golgi apparatus and thus contrasts with the biosynthesis of other fungal cell wall polysaccharides studied to date that takes place at the plasma membrane. Transglycosylation of galactomannan from the membrane to the cell wall is hypothesized because both the cell wall-bound and membrane-bound polysaccharide forms are affected in the generated mutants. Considering the severe growth defect of the A. fumigatus GmtA-deficient mutant, proving this paradigm might provide new targets for antifungal therapy.

  20. Extraction optimization, preliminary characterization and antioxidant activities of polysaccharides from Glycine soja.

    PubMed

    Jing, Changliang; Yuan, Yuan; Tang, Qi; Zou, Ping; Li, Yiqiang; Zhang, Chengsheng

    2017-10-01

    Single-factor experiment and Central Composite Design (CCD) was applied to optimize the ultrasound-assisted extraction (UAE) conditions of polysaccharides from Glycine soja (CGPS), and a preliminary characterization of three polysaccharide fractions (CGPS, GPS-1, and GPS-2) and their antioxidant activities were investigated. Under the optimal conditions: ratio of liquid to solid 42.7mL/g, extraction power 293.7W, extraction temperature 68.9°C, and extraction time 34.7min, the experimental CGPS yield was 6.04mg/g. CGPS was further purified by DEAE-cellulose and Sephadex-100 chromatography to obtain two fractions (GPS-1 and GPS-2), and their monosaccharides compositions were characterized by HPLC. Fourier-transform infrared spectra (FT-IR) indicated the chemical structures of them. Moreover, they exhibited high antioxidant activities in a concentration-dependent manner in vitro. In summary, the present study suggested that UAE was a very effective method to extract polysaccharides from Glycine soja and the polysaccharides could be explored as potential antioxidant agents for medicine and function food. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction

    PubMed Central

    Zhou, Shan-Shan; Xu, Jun; Zhu, He; Wu, Jie; Xu, Jin-Di; Yan, Ru; Li, Xiu-Yang; Liu, Huan-Huan; Duan, Su-Min; Wang, Zhuo; Chen, Hu-Biao; Shen, Hong; Li, Song-Lin

    2016-01-01

    Oral decoctions of traditional Chinese medicines (TCMs) serve for therapeutic and prophylactic management of diseases for centuries. Small molecules and polysaccharides are the dominant chemicals co-occurred in the TCM decoction. Small molecules are well-studied by multidisciplinary elaborations, whereas the role of polysaccharides remains largely elusive. Here we explore a gut microbiota-involved mechanism by which TCM polysaccharides restore the homeostasis of gut microbiota and consequently promote the systemic exposure of concomitant small molecules in the decoction. As a case study, ginseng polysaccharides and ginsenosides in Du-Shen-Tang, the decoction of ginseng, were investigated on an over-fatigue and acute cold stress model. The results indicated that ginseng polysaccharides improved intestinal metabolism and absorption of certain ginsenosides, meanwhile reinstated the perturbed holistic gut microbiota, and particularly enhanced the growth of Lactobacillus spp. and Bacteroides spp., two major metabolic bacteria of ginsenosides. By exploring the synergistic actions of polysaccharides with small molecules, these findings shed new light on scientization and rationalization of the classic TCM decoctions in human health care. PMID:26932472

  2. Characterization and hypoglycemic activity of a β-pyran polysaccharides from bamboo shoot (Leleba oldhami Nakal) shells.

    PubMed

    Zheng, Yafeng; Zhang, Shuai; Wang, Qi; Lu, Xu; Lin, Liangmei; Tian, Yuting; Xiao, Jianbo; Zheng, Baodong

    2016-06-25

    The bamboo shoot (Leleba oldhami Nakal) shell is a by-product during bamboo shoot processing. It is a cheap and available resource for dietary polysaccharides. Herein, a novel polysaccharide BSSP2a was isolated and characterized from the bamboo shoot shell polysaccharides, and it was identified as a homogeneous highly-branched beta type pyran polysaccharide with a molecular weight of 1.63×10(4)kDa, which consisted of arabinose, xylose, mannose, glucose and galactose at a molar ratio of 20.4:4.9:1:3.4:20.6. The crude polysaccharides (BSSP) from the bamboo shoots shell showed hypoglycemic activity on the high fat diet and streptozotocin induced diabetic mice in a dose-dependent manner. The administration of high dose BSSP (400mg/kg) improved body weight loss and serum insulin loss, and significantly decreased the blood glucose level, serum triglycerides as well as total cholesterol levels by 48.7%, 34.8% and 26.5%, respectively. The results highlight the potential of the bamboo shoot shell polysaccharides as a natural anti-diabetic agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction

    NASA Astrophysics Data System (ADS)

    Zhou, Shan-Shan; Xu, Jun; Zhu, He; Wu, Jie; Xu, Jin-Di; Yan, Ru; Li, Xiu-Yang; Liu, Huan-Huan; Duan, Su-Min; Wang, Zhuo; Chen, Hu-Biao; Shen, Hong; Li, Song-Lin

    2016-03-01

    Oral decoctions of traditional Chinese medicines (TCMs) serve for therapeutic and prophylactic management of diseases for centuries. Small molecules and polysaccharides are the dominant chemicals co-occurred in the TCM decoction. Small molecules are well-studied by multidisciplinary elaborations, whereas the role of polysaccharides remains largely elusive. Here we explore a gut microbiota-involved mechanism by which TCM polysaccharides restore the homeostasis of gut microbiota and consequently promote the systemic exposure of concomitant small molecules in the decoction. As a case study, ginseng polysaccharides and ginsenosides in Du-Shen-Tang, the decoction of ginseng, were investigated on an over-fatigue and acute cold stress model. The results indicated that ginseng polysaccharides improved intestinal metabolism and absorption of certain ginsenosides, meanwhile reinstated the perturbed holistic gut microbiota, and particularly enhanced the growth of Lactobacillus spp. and Bacteroides spp., two major metabolic bacteria of ginsenosides. By exploring the synergistic actions of polysaccharides with small molecules, these findings shed new light on scientization and rationalization of the classic TCM decoctions in human health care.

  4. Improved conjugation and purification strategies for the preparation of protein-polysaccharide conjugates.

    PubMed

    Suárez, N; Massaldi, H; Franco Fraguas, L; Ferreira, F

    2008-12-12

    A glycoconjugate constituted by the Streptococcus pneumoniae serotype 14 capsular polysaccharide (CPS14) and bovine serum albumin (BSA) was prepared, and the unique properties of Sephadex LH-20 were used to separate the conjugate from the unconjugated material. The strength of this approach consists in its capacity to produce pure polysaccharide-protein conjugate in good yield and free from unconjugated material, a common residual contaminant of this type of immunobiologicals. The CPS14-BSA conjugate prepared via an improved 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP)-activation technique was characterized chemically and its immunogenicity was evaluated in mice. The purified conjugate, unlike the corresponding polysaccharide, produced a T-cell-dependent response in this species.

  5. The diversity of Klebsiella pneumoniae surface polysaccharides.

    PubMed

    Follador, Rainer; Heinz, Eva; Wyres, Kelly L; Ellington, Matthew J; Kowarik, Michael; Holt, Kathryn E; Thomson, Nicholas R

    2016-08-01

    Klebsiella pneumoniae is considered an urgent health concern due to the emergence of multi-drug-resistant strains for which vaccination offers a potential remedy. Vaccines based on surface polysaccharides are highly promising but need to address the high diversity of surface-exposed polysaccharides, synthesized as O-antigens (lipopolysaccharide, LPS) and K-antigens (capsule polysaccharide, CPS), present in K. pneumoniae . We present a comprehensive and clinically relevant study of the diversity of O- and K-antigen biosynthesis gene clusters across a global collection of over 500 K. pneumoniae whole-genome sequences and the seroepidemiology of human isolates from different infection types. Our study defines the genetic diversity of O- and K-antigen biosynthesis cluster sequences across this collection, identifying sequences for known serotypes as well as identifying novel LPS and CPS gene clusters found in circulating contemporary isolates. Serotypes O1, O2 and O3 were most prevalent in our sample set, accounting for approximately 80 % of all infections. In contrast, K serotypes showed an order of magnitude higher diversity and differ among infection types. In addition we investigated a potential association of O or K serotypes with phylogenetic lineage, infection type and the presence of known virulence genes. K1 and K2 serotypes, which are associated with hypervirulent K. pneumoniae , were associated with a higher abundance of virulence genes and more diverse O serotypes compared to other common K serotypes.

  6. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Clara S.; Fakra, Sirine C.; Edwards, David C.

    2010-06-22

    Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence ({mu}XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolatedmore » from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.« less

  7. The diversity of Klebsiella pneumoniae surface polysaccharides

    PubMed Central

    Heinz, Eva; Wyres, Kelly L.; Ellington, Matthew J.; Kowarik, Michael; Holt, Kathryn E.; Thomson, Nicholas R.

    2016-01-01

    Klebsiella pneumoniae is considered an urgent health concern due to the emergence of multi-drug-resistant strains for which vaccination offers a potential remedy. Vaccines based on surface polysaccharides are highly promising but need to address the high diversity of surface-exposed polysaccharides, synthesized as O-antigens (lipopolysaccharide, LPS) and K-antigens (capsule polysaccharide, CPS), present in K. pneumoniae. We present a comprehensive and clinically relevant study of the diversity of O- and K-antigen biosynthesis gene clusters across a global collection of over 500 K. pneumoniae whole-genome sequences and the seroepidemiology of human isolates from different infection types. Our study defines the genetic diversity of O- and K-antigen biosynthesis cluster sequences across this collection, identifying sequences for known serotypes as well as identifying novel LPS and CPS gene clusters found in circulating contemporary isolates. Serotypes O1, O2 and O3 were most prevalent in our sample set, accounting for approximately 80 % of all infections. In contrast, K serotypes showed an order of magnitude higher diversity and differ among infection types. In addition we investigated a potential association of O or K serotypes with phylogenetic lineage, infection type and the presence of known virulence genes. K1 and K2 serotypes, which are associated with hypervirulent K. pneumoniae, were associated with a higher abundance of virulence genes and more diverse O serotypes compared to other common K serotypes. PMID:28348868

  8. [Studies on separation, purification and structure characteristics of a polysaccharide LTC-II from Pyrola corbieri].

    PubMed

    Mo, Zhengchang; Wu, Lanfang; Yang, Juan; Wang, Daoping

    2011-06-01

    To characterize the structure of polysaccharide LTC-II obtained from Pyrola corbieri. The polysaccharide was extracted from P. corbieri by hot water and ethanol precipitation. Crude polysaccharide was purified by DEAE-Cellulose chromatography and Sephacryl S-300 HR column chromatography. The purity and molecular weight of polysaccharide was determined by gel permeation chromatography. UV, IR, optical rotation, complete acid hydrolysis, periodate oxydation, Smith degradation, partial acid hydrolysis and methylation analysis were applied to determine the structural features. A homogeneous fraction LTC-II was obtained and its relative molecular mass was 22 000 Da. It consisted of arabinose, mannose, glucose, galactose in the molar ratio of 35. 2: 1.0: 13. 4: 4. 2. LTC-II had a backbone consisting glucose, mannose, galactose and mainly contained (1 --> 6)-linkaged glucose. The side chain possessed arabinose, glucose, galactose and mainly contained (1 --> 5)-linkaged arabinose. The terminal sugar were mainly glucose and galactose. Studies on the preliminary characterization of polysaccharide LTC-II from P. corbieri for the first time.

  9. Advances in antitumor polysaccharides from phellinus sensu lato: Production, isolation, structure, antitumor activity, and mechanisms.

    PubMed

    Yan, Jing-Kun; Pei, Juan-Juan; Ma, Hai-Le; Wang, Zhen-Bin; Liu, Yuan-Shuai

    2017-04-13

    Edible and medicinal fungi (mushrooms) are widely applied to functional foods and nutraceutical products because of their proven nutritive and medicinal properties. Phellinus sensu lato is a well-known medicinal mushroom that has long been used in preventing ailments, including gastroenteric dysfunction, diarrhea, hemorrhage, and cancers, in oriental countries, particularly in China, Japan, and Korea. Polysaccharides represent a major class of bioactive molecules in Phellinus s. l., which have notable antitumor, immunomodulatory, and medicinal properties. Polysaccharides that were isolated from fruiting bodies, cultured mycelia, and filtrates of Phellinus s. l. have not only activated different immune responses of the host organism but have also directly suppressed tumor growth and metastasis. Studies suggest that polysaccharides from Phellinus s. l. are promising alternative anticancer agents or synergizers for existing antitumor drugs. This review summarizes the recent development of polysaccharides from Phellinus s. l., including polysaccharide production, extraction and isolation methods, chemical structure, antitumor activities, and mechanisms of action.

  10. Improved antimelanogenesis and antioxidant effects of polysaccharide from Cuscuta chinensis Lam seeds after enzymatic hydrolysis.

    PubMed

    Liu, Zi-Jun; Wang, Ya-Lan; Li, Qi-Ling; Yang, Liu

    2018-01-01

    Cuscuta chinensis polysaccharide (CPS) was extracted using hot water and enzymatically hydrolyzed C. chinensis polysaccharide (ECPS) was produced by the mannase enzymatic hydrolysis process. The purpose of this research was to investigate the antimelanogenic activity of ECPS and CPS in B16F10 melanoma cells. The in vitro antioxidant activity was assessed by their ferric iron reducing power and DPPH free radical scavenging activities. The molecular mass distribution of polysaccharides was determined using SEC-MALLS-RI. CPS was successfully enzymatically degraded using mannase and the weighted average molecular weights of CPS and ECPS were 434.6 kDa and 211.7 kDa. The results of biological activity assays suggested that the enzymatically hydrolyzed polysaccharide had superior antimelanogenic activity and antioxidant effect than the original polysaccharide. ECPS exhibited antimelanogenic activity by down-regulating the expression of tyrosinase, MITF, and TRP-1 without cytotoxic effects in B16F10 melanoma cells. In conclusion, ECPS have the potential to become a skin whitening product.

  11. Overexpression of O-polysaccharide chain length regulators in Gram-negative bacteria using the Wzx-/Wzy-dependent pathway enhances production of defined modal length O-polysaccharide polymers for use as haptens in glycoconjugate vaccines.

    PubMed

    Hegerle, N; Bose, J; Ramachandran, G; Galen, J E; Levine, M M; Simon, R; Tennant, S M

    2018-03-30

    O-polysaccharide (OPS) molecules are protective antigens for several bacterial pathogens, and have broad utility as components of glycoconjugate vaccines. Variability in the OPS chain length is one obstacle towards further development of these vaccines. Introduction of sizing steps during purification of OPS molecules of suboptimal or of mixed lengths introduces additional costs and complexity while decreasing the final yield. The overall goal of this study was to demonstrate the utility of engineering Gram-negative bacteria to produce homogenous O-polysaccharide populations that can be used as the basis of carbohydrate vaccines by overexpressing O-polysaccharide chain length regulators of the Wzx-/Wzy-dependent pathway. The O-polysaccharide chain length regulators wzzB and fepE from Salmonella Typhimurium I77 and wzz2 from Pseudomonas aeruginosa PAO1 were cloned and expressed in the homologous organism or in other Gram-negative bacteria. Overexpression of these Wzz proteins in the homologous organism significantly increased the proportion of long or very long chain O-polysaccharides. The same observation was made when wzzB was overexpressed in Salmonella Paratyphi A and Shigella flexneri, and wzz2 was overexpressed in two other strains of P. aeruginosa. Overexpression of Wzz proteins in Gram-negative bacteria using the Wzx/Wzy-dependant pathway for lipopolysaccharide synthesis provides a genetic method to increase the production of an O-polysaccharide population of a defined size. The methods presented herein represent a cost-effective and improved strategy for isolating preferred OPS vaccine haptens, and could facilitate the further use of O-polysaccharides in glycoconjugate vaccine development. © 2018 The Society for Applied Microbiology.

  12. Decoration of Chondroitin Polysaccharide with Threonine: Synthesis, Conformational Study, and Ice-Recrystallization Inhibition Activity.

    PubMed

    Laezza, Antonio; Casillo, Angela; Cosconati, Sandro; Biggs, Caroline I; Fabozzi, Antonio; Paduano, Luigi; Iadonisi, Alfonso; Novellino, Ettore; Gibson, Matthew I; Randazzo, Antonio; Corsaro, Maria M; Bedini, Emiliano

    2017-08-14

    Several threonine (Thr)- and alanine (Ala)-rich antifreeze glycoproteins (AFGPs) and polysaccharides act in nature as ice recrystallization inhibitors. Among them, the Thr-decorated capsular polysaccharide (CPS) from the cold-adapted Colwellia psychrerythraea 34H bacterium was recently investigated for its cryoprotectant activity. A semisynthetic mimic thereof was here prepared from microbial sourced chondroitin through a four-step strategy, involving a partial protection of the chondroitin polysaccharide as a key step for gaining an unprecedented quantitative amidation of its glucuronic acid units. In-depth NMR and computational analysis suggested a fairly linear conformation for the semisynthetic polysaccharide, for which the antifreeze activity by a quantitative ice recrystallization inhibition assay was measured. We compared the structure-activity relationships for the Thr-derivatized chondroitin and the natural Thr-decorated CPS from C. psychrerythraea.

  13. Reviews on Mechanisms of In Vitro Antioxidant Activity of Polysaccharides

    PubMed Central

    Wang, Junqiao; Hu, Shuzhen; Nie, Shaoping; Yu, Qiang; Xie, Mingyong

    2016-01-01

    It is widely acknowledged that the excessive reactive oxygen species (ROS) or reactive nitrogen species (RNS) induced oxidative stress will cause significant damage to cell structure and biomolecular function, directly or indirectly leading to a number of diseases. The overproduction of ROS/RNS will be balanced by nonenzymatic antioxidants and antioxidant enzymes. Polysaccharide or glycoconjugates derived from natural products are of considerable interest from the viewpoint of potent in vivo and in vitro antioxidant activities recently. Particularly, with regard to the in vitro antioxidant systems, polysaccharides are considered as effective free radical scavenger, reducing agent, and ferrous chelator in most of the reports. However, the underlying mechanisms of these antioxidant actions have not been illustrated systematically and sometimes controversial results appeared among various literatures. To address this issue, we summarized the latest discoveries and advancements in the study of antioxidative polysaccharides and gave a detailed description of the possible mechanisms. PMID:26682009

  14. Polysaccharides from heterocyst and spore envelopes of a blue-green alga. [Anabaena cylindrica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardemil, L.; Wolk, C.P.

    The polysaccharides from the envelopes of heterocysts and spores of Anabaena cylindrica consist of repeating units containing 1 mannosyl and 3 glucosyl residues, all linked by ..beta..(1 ..-->.. 3) glucosidic bonds, with glucose, xylose, galactose, and mannose present in side branches. Degradation of the polysaccharides with specific glycosidases has permitted identification of the linkages to almost all of the branches. When the polysaccharides, from which all but two types of side branches had been cleaved, were digested with a ..beta..(1 ..-->.. 3) endoglucanase, glucose, a tri-, and a pentasaccharide were produced. The oligosaccharide products were identified. The backbones of themore » polysaccharides were sequenced from the reducing terminus by a modified Smith degradation. Analysis with NaB/sup 3/H/sub 4/ at each stage of the degradation showed that the backbones terminate in the sequence Man-Glc-Glc-Glc and are therefore presumed to have the structure (Man-Glc-Glc-Glc)/sub n/, and that they contain an average of from 128 to 150 sugar residues. From the information obtained, the repeating sequences of the original polysaccharides from the two types of differentiated cells of A. cylindrica could be largely deduced and appeared to be identical.« less

  15. Polysaccharides in Lentinus edodes: isolation, structure, immunomodulating activity and future prospective.

    PubMed

    Xu, Xiaofei; Yan, Huidan; Tang, Jian; Chen, Jian; Zhang, Xuewu

    2014-01-01

    Lentinus edodes has been valued as edible and medical resources. Polysaccharides have been known to be the most potent antitumor and immunomodulating substance in Lentinus edodes. In this review, we summarize the current knowledge of the polysaccharides isolated from Lentinus edodes, including extraction and purification methods, chemical structure and chain conformation, the effects on innate and adaptive immunity and their mechanism, relationship between structure and function, and the future prospects.

  16. Selective activation of heparin cofactor II by a sulfated polysaccharide isolated from the leaves of Artemisia princeps.

    PubMed

    Hayakawa, Y; Hayashi, T; Hayashi, T; Niiya, K; Sakuragawa, N

    1995-10-01

    While checking anticoagulant activities in crude fractions from Wakan-Yakus (traditional herbal drugs), we detected antithrombin activity in the polysaccharide fraction of the leaves of Artemisia princeps Pamp. A sulfated polysaccharide purified from the crude fractions by ion-exchange chromatography on DEAE-cellulose and gel filtration on Sepharose 6B potentiated the heparin cofactor II (HC II)-dependent antithrombin activity but not the antithrombin activity of antithrombin III (AT III). The polysaccharide enhanced the HC II-thrombin reaction more than 6000-fold. The apparent second-order rate constant of thrombin inhibition by HC II increased from 3.8 x 10(4) (in the absence of the polysaccharide) to 2.5 x 10(8) M-1 min-1 in the presence of 25-125 micrograms/ml of the polysaccharide. In human plasma, the polysaccharide accelerated the formation of thrombin-HC II complex. The stimulating effect on HC II-dependent antithrombin activity was almost totally abolished by treatment with chondroitinase AC I, heparinase or heparitinase, while chondroitinase ABC or chondroitinase AC II had little or no effect. These results suggest that the polysaccharide is a glycosaminoglycan-like material with properties that are quite distinct from heparin or dermatan sulfate.

  17. NMR analysis of compositional heterogeneity in polysaccharides

    USDA-ARS?s Scientific Manuscript database

    Many copolysaccharides are compositionally heterogeneous, and the composition determined by the usual analytical or spectroscopic methods provides only an average value. For some polysaccharides, the NMR data contain copolymer sequence information, such as diad, triad, and tetrad sequence intensiti...

  18. Development of SPE for recovery of polysaccharides and its application to the determination of monosaccharides composition of the polysaccharide sample of a lactobacillus KLB 58.

    PubMed

    Baik, Yoon Suk; Cheong, Won Jo

    2007-07-01

    A new SPE cartridge has been prepared in this study to purify polysaccharides of high molecular weights. A porous nonpolar styrene-divinylbenzene copolymer phase (Hamilton PRP-1) was used to make the new cartridge. The cartridge was conditioned with methanol, water, and ACN in sequence, and the sample dissolved in a small amount of water was loaded. Impurities of low molecular weights were removed first by elution of 80:20 or 90:10 v/v% ACN/water, and polysaccharides were quantitatively recovered by elution of 50:50 v/v% ACN/water or pure water. The recovery of pure dextran 10000 was 90-95%. The SPE method was applied to purification of the polysaccharide sample of KLB58, a new lactobacillus discovered in Korea. The purified KLB 58 sample (weight recovery after SPE purification; 60%) was hydrolyzed for analysis of composition of monosaccharides. The hydrolysate was found to be composed primarily of fructose, glucose, galactose, rhamnose, mannose with small amounts of fucose and ribose.

  19. Structural analysis of O-polysaccharide chains extracted from different Salmonella Typhimurium strains.

    PubMed

    Micoli, Francesca; Ravenscroft, Neil; Cescutti, Paola; Stefanetti, Giuseppe; Londero, Silvia; Rondini, Simona; Maclennan, Calman A

    2014-02-19

    Salmonella Typhimurium is the major cause of invasive nontyphoidal Salmonella disease in Africa, with high mortality among children and HIV-infected individuals. Currently, no vaccine is available for use in humans. Antibodies directed against the O-polysaccharide of the lipopolysaccharide molecule of Salmonella mediate bacterial killing and are protective, and conjugation of the O-polysaccharide to a carrier protein represents a possible strategy for vaccine development. Here we have purified the O-polysaccharide from six different strains of S. Typhimurium and fully characterized them using analytical methods including HPLC-SEC, HPAEC-PAD, GC, GC-MS, 1D and 2D NMR spectroscopy. All the O-polysaccharide samples showed a similar bimodal molecular mass distribution, but differed with respect to the amount and position of O-acetylation and glucosylation. For some strains, O-acetyl groups were found not only on C-2 of abequose (factor 5 specificity), but also on C-2 and C-3 of rhamnose; glucose was found to be linked 1→4 or 1→6 to galactose in different amounts according to the strain of origin. This structural variability could have an impact on the immunogenicity of corresponding glycoconjugate vaccines and different strains need to be evaluated in order to identify the appropriate source of O-polysaccharide to use for the development of a candidate conjugate vaccine with broad coverage against S. Typhimurium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Preparation, characterization and antioxidant activity of polysaccharide from spent Lentinus edodes substrate.

    PubMed

    Zhu, Hongji; Tian, Li; Zhang, Lei; Bi, Jingxiu; Song, Qianqian; Yang, Hui; Qiao, Jianjun

    2018-06-01

    This study explored the potential of spent Lentinus edodes substrate, a by-product of mushroom industries causing environmental pollution, serving as materials to produce antioxidant polysaccharide. The extraction process of spent Lentinus edodes substrate polysaccharide (SLSP) was optimized and the effects of drying methods on chemical composition, morphological property and antioxidant activity were investigated. Results showed that freeze-dried SLSP (SLSP-F) exhibited the best quality in terms of the polysaccharide yield (13.00%) and antioxidant activity. The EC 50 values of SLSP-F on DPPH, ABTS and superoxide anion radicals was 0.051mg/mL, 0.379mg/mL, 0.719mg/mL, respectively, which was significantly lower than that of freeze-dried Lentinus edodes polysaccharide (LP-F). After purification by Sephadex G-150, the purified SLSP-F (PSP) has a molecular weight of 16.77kDa. Compared with LP-F, PSP has more reducing sugars and uronic acids in chemical composition and higher contents of xylose, glucose and galactose in monosaccharide composition. FT-IR and NMR spectroscopy analysis revealed that PSP has both α and β glycosidic bonds and massive acetyl groups, which is different from LP-F mainly composed of 1, 3 linked α-D-Manp residue with some acetyl groups. The findings provided a reliable approach for the development of antioxidant polysaccharide from spent Lentinus edodes substrate. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Syntheses of new rare earth complexes with carboxymethylated polysaccharides and evaluation of their in vitro antifungal activities.

    PubMed

    Sun, Xiaobo; Jin, Xiaozhe; Pan, Wei; Wang, Jinping

    2014-11-26

    In the present paper, La, Eu and Yb were selected to represent light, middle and heavy rare earths to form complexes with polysaccharides through chelating coordination of carboxyl groups, which were added into polysaccharide chains by means of carboxymethylation. Their antifungal activities against plant pathogenic fungi were evaluated using growth rate method. These rare earth complexes exhibited various antifungal activities against the tested fungi, depending on rare earth elements, polysaccharide types and fungal species. Among these three metal elements (i.e. La, Eu and Yb), Yb formed the complexes with the most effective antifungal properties. Furthermore, the results showed that ligands of carboxymethylated polysaccharides played a key role in promoting cytotoxicity of the rare earth complexes. Carboxymethylated Ganoderma applanatum polysaccharide (CGAP) was found to be the most effective ligand to form complexes with antifungal activities, followed by carboxymethylated lentinan (CLNT) and carboxymethylated Momordica charantia polysaccharide (CMCP). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Characteristics and Antitumor Activity of Morchella esculenta Polysaccharide Extracted by Pulsed Electric Field

    PubMed Central

    Liu, Chao; Sun, Yonghai; Mao, Qian; Guo, Xiaolei; Li, Peng; Liu, Yang; Xu, Na

    2016-01-01

    Polysaccharides from Morchella esculenta have been proven to be functional and helpful for humans. The purpose of this study was to investigate the chemical structure and anti-proliferating and antitumor activities of a Morchella esculenta polysaccharide (MEP) extracted by pulsed electric field (PEF) in submerged fermentation. The endo-polysaccharide was separated and purified by column chromatography and Gel permeation chromatography, and analyzed by gas chromatography. The MEP with an average molecular weight of 81,835 Da consisted of xylose, glucose, mannose, rhamnose and galactose at the ratio of 5.4:5.0:6.5:7.8:72.3. Structure of MEP was further analyzed by Fourier-transform infrared spectroscopy and 1H and 13C liquid-state nuclear magnetic resonance spectroscopy. Apoptosis tests proved that MEP could inhibit the proliferation and growth of human colon cancer HT-29 cells in a time- and dose-dependent manner within 48 h. This study provides more information on chemical structure of anti-proliferating polysaccharides isolated from Morchella esculenta. PMID:27338370

  3. Polysaccharides, oligosaccharides and nitrogenous compounds change during the ageing of Tempranillo and Verdejo sparkling wines.

    PubMed

    Martínez-Lapuente, Leticia; Apolinar-Valiente, Rafael; Guadalupe, Zenaida; Ayestarán, Belén; Pérez-Magariño, Silvia; Williams, Pascale; Doco, Thierry

    2018-01-01

    Verdejo and Tempranillo are traditional varieties for producing still wines; however, they could provide an alternative for the manufacturing of sparkling wines. Sparkling wines were elaborated by the traditional method, followed by ageing on lees for 9 months. A study on the changes that take place in polysaccharides, oligosaccharides and nitrogenous compounds during the ageing on lees of Tempranillo and Verdejo sparkling wines has been undertaken. Mannoproteins and the glucose residue of oligosaccharides were the major carbohydrates detected in all vinification stages. Yeast polysaccharides and glucan-like structures of the oligosaccharides increased after 3 months of ageing. The evolution of yeast polysaccharides and the composition of PRAG-like structure were different among grape varieties. A decrease in amino acids and biogenic amines was observed during the ageing. The contents of polysaccharides, oligosaccharides and nitrogenous compound were significantly higher in Tempranillo than in Verdejo sparkling wines at the end of the ageing period. Polysaccharides and oligosaccharides from yeast were more significant autolysis markers of sparkling wines than the nitrogenous compounds. Our data suggest a potential cultivar effect on the evolution of yeast polysaccharides and on the composition of PRAG, which may influence the physico-chemical and sensory properties of sparkling wines. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Purified polysaccharides of Geoffroea spinosa barks have anticoagulant and antithrombotic activities devoid of hemorrhagic risks.

    PubMed

    Souza, Racquel O S; Assreuy, Ana M S; Madeira, Juliana C; Chagas, Francisco D S; Parreiras, Luane A; Santos, Gustavo R C; Mourão, Paulo A S; Pereira, Maria G

    2015-06-25

    Polysaccharides were extracted from the barks of Geoffroea spinosa, purified using anion exchange chromatography and characterized by chemical and methylation analysis, complemented by infrared and NMR spectroscopies. These polysaccharides were tested for their anticoagulant, antithrombotic and antiplatelet activities and also for their effects on bleeding. Unfractionated polysaccharide contains low levels of protein and high levels of carbohydrate (including hexuronic acid). The purified polysaccharides (fractions FII and FIII) are composed of arabinose (Ara), rhamnose (Rha), hexuronic acid, small amounts of galactose, but no sulfate ester. They have highly complex structure, which was partially characterized. NMR and methylation analysis indicate that the polysaccharides have a core of α-Rhap and branches of 5-linked α-Araf. Residues of 4-linked α-GalpA are also found in the structure. The unfractionated (TPL) and fraction FIII, but not fractions FI and FII, prolonged the activated partial thromboplastin time (aPTT). TPL, FII and FIII inhibited the platelet aggregation induced by ADP. More significantly, both unfractionated and purified fractions exhibited potent antithrombotic effect (31-60%) and the fractions did not modify the bleeding tendency. These plant polysaccharides could be alternative source of new anticoagulant, antiplatelet and antithrombotic compounds devoid of the undesirable risk of hemorrhage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Structural diversity requires individual optimization of ethanol concentration in polysaccharide precipitation.

    PubMed

    Xu, Jun; Yue, Rui-Qi; Liu, Jing; Ho, Hing-Man; Yi, Tao; Chen, Hu-Biao; Han, Quan-Bin

    2014-06-01

    Ethanol precipitation is one of the most widely used methods for preparing natural polysaccharides, in which ethanol concentration significantly affects the precipitate yield, however, is usually set at 70-80%. Whether the standardization of ethanol concentration is appropriate has not been investigated. In the present study, the precipitation yields produced in varied ethanol concentrations (10-90%) were qualitatively and quantitatively evaluated by HPGPC (high-performance gel-permeation chromatography), using two series of standard glucans, namely dextrans and pullulans, as reference samples, and then eight natural samples. The results indicated that the response of a polysaccharide's chemical structure, with diversity in structural features and molecular sizes, to ethanol concentration is the decisive factor in precipitation of these glucans. Polysaccharides with different structural features, even though they have similar molecular weights, exhibit significantly different precipitation behaviors. For a specific glucan, the lower its molecular size, the higher the ethanol concentration needed for complete precipitation. The precipitate yield varied from 10% to 100% in 80% ethanol as the molecular size increased from 1kDa to 270kDa. This paper aims to draw scientists' attention to the fact that, in extracting natural polysaccharides by ethanol precipitation, the ethanol concentration must be individually optimized for each type of material. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Purification, Preliminary Characterization and Hepatoprotective Effects of Polysaccharides from Dandelion Root.

    PubMed

    Cai, Liangliang; Wan, Dongwei; Yi, Fanglian; Luan, Libiao

    2017-08-25

    In this study, purification, preliminary characterization and hepatoprotective effects of water-soluble polysaccharides from dandelion root (DRP) were investigated. Two polysaccharides, DRP1 and DRP2, were isolated from DRP. The two polysaccharides were α-type polysaccharides and didn't contain protein. DRP1, with a molecular weight of 5695 Da, was composed of glucose, galactose and arabinose, whereas DRP2, with molecular weight of 8882 Da, was composed of rhamnose, galacturonic acid, glucose, galactose and arabinose. The backbone of DRP1 was mainly composed of (1→6)-linked-α-d-Glc and (1→3,4)-linked-α-d-Glc. DRP2 was mainly composed of (1→)-linked-α-d-Ara and (1→)-linked-α-d-Glc. A proof-of-concept study was performed to assess the therapeutic potential of DRP1 and DRP2 in a mouse model that mimics acetaminophen (APAP) -induced liver injury (AILI) in humans. The present study shows DRP1 and DRP2 could protect the liver from APAP-induced hepatic injury by activating the Nrf2-Keap1 pathway. These conclusions demonstrate that the DRP1 and DRP2 might be suitable as functional foods and natural drugs in preventing APAP-induced liver injury.

  7. Characterization and in vitro antioxidant activities of polysaccharides from Pleurotus ostreatus.

    PubMed

    Zhang, Yunxia; Dai, Ling; Kong, Xiaowei; Chen, Liangwen

    2012-10-01

    Two polysaccharide fractions (PSPO-1a and PSPO-4a) were isolated from the fruiting bodies of Pleurotus ostreatus using ethanol precipitation, anion-exchange chromatography and gel permeation chromatography. Both fractions were heteropolysaccharide containing protein and uronic acid. PSPO-1a was composed of mannose, glucose, galactose, xylose and rhamnose with a molar ratio of 2.47:0.91:1.00:1.66:3.87. PSPO-4a was composed of only three monosaccharides: rhamnose, mannose and galactose with a molar ratio of 0.92:2.69:1.00. The average molecular weight of PSPO-1a and PSPO-4a determined by HPLC were estimated to be 1.8 × 10(4)Da and 1.1 × 10(6)Da respectively. The in vitro tests revealed that two polysaccharides were natural potential antioxidant. Both polysaccharides presented stronger DPPH radical and superoxide anion radical scavenging activity with increasing concentrations, but less effective on scavenging hydroxyl radical. Compared with PSPO-4a, PSPO-1a was the more effective free-radical scavenger. In conclusion, the two polysaccharides may be useful as a naturally potential antioxidant agent for application in food and medicinal fields. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Comparison of Immunomodulatory Effects of Fresh Garlic and Black Garlic Polysaccharides on RAW 264.7 Macrophages.

    PubMed

    Li, Min; Yan, Yi-Xi; Yu, Qing-Tao; Deng, Yong; Wu, Ding-Tao; Wang, Ying; Ge, Ya-Zhong; Li, Shao-Ping; Zhao, Jing

    2017-03-01

    Garlic has a long history to be used for medicine and food purposes. Black garlic, the fermented product of fresh garlic, is considered with better biological activities, such as antioxidant activity, and is developed as an increasingly popular functional food. Polysaccharides are the major components of fresh and black garlic, and immunomodulatory activity is one major pharmacological effect of polysaccharides. Therefore, chemical characteristics and immunomodulatory effects of polysaccharides from fresh and black garlic are investigated and compared in vitro for the 1st time, in order to reveal their molecular and pharmacological differences. It is demonstrated that the molecular weights of polysaccharides from the 2 sources and molar ratios of monosaccharides after acid hydrolysis are greatly variant. The effects of polysaccharides from 2 sources on RAW 264.7 macrophages functions, including promotion of phagocytosis, release of NO, and expressions of several immune-related cytokines (including interleukin [IL]-6, IL-10, tumor necrosis factor alpha, and interferon gamma), were different from each other. The results indicated that fresh garlic polysaccharide exhibited stronger immunomodulatory activities than that of black garlic. Moreover, it is revealed that fructan might be the bioactive component in garlic and it is indicated that during the fermentation treatment, fructan constituents of garlic has degraded, and basically no immunomodulatory effect can be found in black garlic polysaccharides. © 2017 Institute of Food Technologists®.

  9. Ultrasound-Assisted Extraction May Not Be a Better Alternative Approach than Conventional Boiling for Extracting Polysaccharides from Herbal Medicines.

    PubMed

    Yip, Ka-Man; Xu, Jun; Tong, Wing-Sum; Zhou, Shan-Shan; Yi, Tao; Zhao, Zhong-Zhen; Chen, Hu-Biao

    2016-11-18

    In clinical practice polysaccharides from herbal medicines are conventionally prepared by boiling water extraction (BWE), while ultrasound-assisted extraction (UAE) has often been used instead employed in laboratory research due to its strong extraction ability and efficiency. However, if and how the polysaccharides obtained by UAE and BWE are comparable, and hence whether the UAE-based research is instructive for the actual usage of herbal polysaccharides still requires further evaluation. To address this issue, here we chemically analyzed and compared the UAE- and BWE-obtained polysaccharides from three herbal medicines, i.e., Ginseng Radix, Astragali Radix and Dendrobii Officinalis Caulis. Then, the spike recovery of two series of standard dextran and pullulan by UAE and BWE was tested. The results showed that the polysaccharides from the herbal medicines by UAE were quantitatively and qualitatively different with those by BWE. The powerful extraction ability and polysaccharide degradation caused by ultrasound collectively contributed to these differences. It was then revealed that not only the UAE conditions but also the polysaccharide structures could affect the extraction ability and polysaccharide degradation. Given these, we highly recommended that the effects of UAE on polysaccharides from herbal medicines should be first carefully considered before employing it in relevant chemical and pharmacological analysis.

  10. PolySac3DB: an annotated data base of 3 dimensional structures of polysaccharides.

    PubMed

    Sarkar, Anita; Pérez, Serge

    2012-11-14

    Polysaccharides are ubiquitously present in the living world. Their structural versatility makes them important and interesting components in numerous biological and technological processes ranging from structural stabilization to a variety of immunologically important molecular recognition events. The knowledge of polysaccharide three-dimensional (3D) structure is important in studying carbohydrate-mediated host-pathogen interactions, interactions with other bio-macromolecules, drug design and vaccine development as well as material science applications or production of bio-ethanol. PolySac3DB is an annotated database that contains the 3D structural information of 157 polysaccharide entries that have been collected from an extensive screening of scientific literature. They have been systematically organized using standard names in the field of carbohydrate research into 18 categories representing polysaccharide families. Structure-related information includes the saccharides making up the repeat unit(s) and their glycosidic linkages, the expanded 3D representation of the repeat unit, unit cell dimensions and space group, helix type, diffraction diagram(s) (when applicable), experimental and/or simulation methods used for structure description, link to the abstract of the publication, reference and the atomic coordinate files for visualization and download. The database is accompanied by a user-friendly graphical user interface (GUI). It features interactive displays of polysaccharide structures and customized search options for beginners and experts, respectively. The site also serves as an information portal for polysaccharide structure determination techniques. The web-interface also references external links where other carbohydrate-related resources are available. PolySac3DB is established to maintain information on the detailed 3D structures of polysaccharides. All the data and features are available via the web-interface utilizing the search engine and can

  11. Multiple Effects of Ginseng Berry Polysaccharides: Plasma Cholesterol Level Reduction and Enteric Neoplasm Prevention.

    PubMed

    Wan, Jin-Yi; Huang, Wei-Hua; Zheng, Wei; Park, Chan Woong; Kim, Su Hwan; Seo, Dae Bang; Shin, Kwang-Soon; Zeng, Jinxiang; Yao, Haiqiang; Sava-Segal, Clara; Wang, Chong-Zhi; Yuan, Chun-Su

    2017-01-01

    The root of Asian ginseng (Panax ginseng C.A. Meyer) has been used for centuries in Oriental medicine to improve general well-being and to relieve various medical conditions. It is commonly understood that ginsenosides are responsible for the pharmacological activities of ginseng. Compared to the root of ginseng, studies on the berry are considerably limited. In this study, we evaluated the effects of polysaccharides from Asian ginseng berries on plasma lipid levels, chemically-induced enteric inflammation and neoplasm, and cancer chemoprevention in different experimental models. We tested two polysaccharide preparations: regular ginseng berry polysaccharide extract (GBPE) and ginseng berry polysaccharide portion (GBPP, removed MV [Formula: see text]). We first observed that both oral GBPE and oral GBPP significantly reduced plasma cholesterol and triglycerides levels in a dose-related manner in ob/ob mice, without obvious body weight changes. Then, in AOM/DSS-induced acute colitis mice, GBPE and GBPP significantly ameliorated the increased gut disease activity index and inhibited the reduction of the colon length. Further, the berry polysaccharides significantly suppressed chemically-induced pro-inflammatory cytokine levels. This is consistent with the observation that GBPE and GBPP attenuated tumorigenesis in mice by significantly and dose-dependently reducing tumor load. Finally, in vitro HCT-116 and HT-29 human colon cancer cells were used. While these berry preparations had better antiproliferation effects on the HCT-116 than the HT-29 cells, the GBPE had significantly stronger inhibitory effects than GBPP. The observed in vitro GBPE's effect could contribute to the actions of its small-molecule non-polysaccharide compounds due to their direct antiproliferative activities. Results obtained from the present study suggest that ginseng berry polysaccharides may have a therapeutic role in the management of high lipid levels, enteric inflammation, and colon

  12. Salinity-Induced Anti-Angiogenesis Activities and Structural Changes of the Polysaccharides from Cultured Cordyceps Militaris

    PubMed Central

    Zeng, Yangyang; Han, Zhangrun; Qiu, Peiju; Zhou, Zijing; Tang, Yang; Zhao, Yue; Zheng, Sha; Xu, Chenchen; Zhang, Xiuli; Yin, Pinghe; Jiang, Xiaolu; Lu, Hong; Yu, Guangli; Zhang, Lijuan

    2014-01-01

    Cordyceps is a rare and exotic mushroom that grows out of the head of a mummified caterpillar. Many companies are cultivating Cordyceps to meet the increased demand for its medicinal applications. However, the structures and functions of polysaccharides, one of the pharmaceutical active ingredients in Cordyceps, are difficult to reproduce in vitro. We hypothesized that mimicking the salty environment inside caterpillar bodies might make the cultured fungus synthesize polysaccharides with similar structures and functions to that of wild Cordyceps. By adding either sodium sulfate or sodium chloride into growth media, we observed the salinity-induced anti-angiogenesis activities of the polysaccharides purified from the cultured C. Militaris. To correlate the activities with the polysaccharide structures, we performed the 13C-NMR analysis and observed profound structural changes including different proportions of α and β glycosidic bonds and appearances of uronic acid signals in the polysaccharides purified from the culture after the salts were added. By coupling the techniques of stable 34S-sulfate isotope labeling, aniline- and D5-aniline tagging, and stable isotope facilitated uronic acid-reduction with LC-MS analysis, our data revealed for the first time the existence of covalently linked sulfate and the presence of polygalacuronic acids in the polysaccharides purified from the salt added C. Militaris culture. Our data showed that culturing C. Militaris with added salts changed the biosynthetic scheme and resulted in novel polysaccharide structures and functions. These findings might be insightful in terms of how to make C. Militaris cultures to reach or to exceed the potency of wild Cordyceps in future. PMID:25203294

  13. Polysaccharides from the envelopes of heterocysts and spores of the blue-green algae Anabaena variabilis and Cylindrospermum licheniforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardemil, L.; Wolk, C.P.

    The polysaccharides from the envelopes of heterocysts of Cylindrospermum licheniforme Kutz., and of heterocysts and spores of Anabaena variabilis Kutz., like those from the differentiated cells of Anabaena cylindrica Lemm., have a 1,3-linked backbone consisting of glucosyl and mannosyl residues in a molar ratio of approximately 3:1. As is the case with A. cylindrica the polysaccharides from A. variabilis and from the heterocysts of C. licheniforme have terminal xylosyl and galactosyl residues as side branches. In addition, the polysaccharide from C. licheniforme resembles that from A. cylindrica in having terminal mannosyl residues as side branches (absent from A. variabilis). Themore » polysaccharides from A. variabilis resemble that from A. cylindrica in having glucose-containing side branches (absent from the heterocyst polysaccharide from C. licheniforme), but in contrast to the polysaccharides from the other two species they also have terminal arabinosyl residues as side branches. All of the polysaccharides mentioned appear to be structurally related; we present tentative structures for those not previously investigated. In contrast, the envelope of spores of C. licheniforme contains only a largely 4-linked galactan. The bulk of this envelope is not polysaccharide in nature, and contains aromatic groups.« less

  14. Extraction of polysaccharide from fruits of Cordia dichotoma G. Forst using acid precipitation method and its physicochemical characterization.

    PubMed

    Pawar, Harshal Ashok; Gavasane, Amit Jagannath; Choudhary, Pritam Dinesh

    2018-08-01

    The objective of the present work was to isolate and characterize polysaccharide from fruits of Cordia dichotoma G. Forst. (Family Boraginaceae). Polysaccharide was isolated by using 1% Hydrochloric acid solution. The isolated polysaccharide was tested for physicochemical characteristics such as solubility, pH (1% w/w in water), swelling capacity, loss on drying, ash value, bulk and tapped density, Carr's capacity, Hausner's ratio and angle of repose. Also isolated polysaccharide was characterized by Differential scanning colorimeter (DSC), Estimation of total sugar content, Rheological study and infrared spectroscopy (FT-IR). The isolated mucilage showed positive results for Molisch's test and negative for Ruthenium red test which indicated presence of carbohydrate and gum. The result of physicochemical characteristics reveals that isolated Cordia dichotoma polysaccharide possesses good flow properties. The total polysaccharide content of Cordia dichotoma polymer isolate was found to be 86.24% (w/w). From this study it can be concluded that the polysaccharide isolated from Cordia dichotoma fruits has the required properties and could be used as an excipient for pharmaceutical dosage forms. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Effects of polysaccharide from mycelia of Ganoderma lucidum on intestinal barrier functions of rats.

    PubMed

    Jin, Mingliang; Zhu, Yimin; Shao, Dongyan; Zhao, Ke; Xu, Chunlan; Li, Qi; Yang, Hui; Huang, Qingsheng; Shi, Junling

    2017-01-01

    The intestinal mucosal barriers play essential roles not only in the digestion and absorption of nutrients, but also the innate defense against most intestinal pathogens. In the present study, polysaccharide from the mycelia of Ganoderma lucidum was given via oral administration to rats (100mg/kg body weight, 21days) to investigate its effects on intestinal barrier functions, including the mechanical barrier, immunological barrier and biological barrier function. It was found that the polysaccharide administration could significantly up-regulate the expression of occludin, nuclear factor-κB p65 (NF-κB p65) and secretory immunoglobulin A (SIgA) in ileum, markedly improve the levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), and IL-4, and decrease the level of diamine oxidase (DAO) in serum. Meanwhile, rats from the polysaccharide group showed significant higher microbiota richness in cecum as reflected by the Chao 1 index compared with the control group. Moreover, the polysaccharide decreased the Firmicutes-to-Bacteroidetes ratio. Our results indicated that the polysaccharide from the mycelia of G. lucidum might be used as functional agent to regulate the intestinal barrier functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Structural characterization of an all-aminosugar-containing capsular polysaccharide from Colwellia psychrerythraea 34H

    PubMed Central

    Casillo, Angela; Ståhle, Jonas; Parrilli, Ermenegilda; Sannino, Filomena; Mitchell, Daniel E.; Pieretti, Giuseppina; Gibson, Matthew I.; Marino, Gennaro; Lanzetta, Rosa; Parrilli, Michelangelo; Widmalm, Göran; Tutino, Maria L.; Corsaro, Maria M.

    2017-01-01

    Colwellia psychrerythraea strain 34H, a Gram-negative bacterium isolated from Arctic marine sediments, is considered a model to study the adaptation to cold environments. Recently, we demonstrated that C. psychrerythraea 34H produces two different extracellular polysaccharides, a capsular polysaccharide and a medium released polysaccharide, which confer cryoprotection to the bacterium. In this study, we report the structure of an additional capsular polysaccharide produced by Colwellia grown at a different temperature. The structure was determined using chemical methods, and one- and two-dimensional NMR spectroscopy. The results showed a trisaccharide repeating unit made up of only amino-sugar residues: N-acetyl-galactosamine, 2,4-diacetamido-2,4,6-trideoxy-glucose (bacillosamine), and 2-acetamido-2-deoxyglucuronic acid with the following structure: →4)-β-d-GlcpNAcA-(1→3)-β-d-QuipNAc4NAc-(1→3)-β-d-GalpNAc-(1→. The 3D model, generated in accordance with 1H,1H-NOE NMR correlations and consisting of ten repeating units, shows a helical structure. In contrast with the other extracellular polysaccharides produced from Colwellia at 4 °C, this molecule displays only a low ice recrystallization inhibition activity. PMID:28161737

  17. Extraction of Polysaccharide from Spirulina and Evaluation of Its Activities.

    PubMed

    Wang, Bingyue; Liu, Qian; Huang, Yinghong; Yuan, Yueling; Ma, Qianqian; Du, Manling; Cai, Tiange; Cai, Yu

    2018-01-01

    Polysaccharide of Spirulina platensis (PSP) is a kind of water-soluble polysaccharide extracted from Spirulina platensis . It has been proved to have antitumor, antioxidation, antiaging, and antivirus properties. And it has a promising prospect for wide application. This study aims to identify an extraction process for high-purity polysaccharide in Spirulina (PSP) through a series of optimization methods and then evaluates its initial antiaging activities. Four kinds of extraction methods-hot-water extraction, alkali extraction, ultrasonic-assisted extraction, and freeze-thaw extraction-were compared to find the optimal one, which was further optimized by response surface methodology. PSP was obtained after the crude PSP was deproteinized and depigmented. The antiaging effects of PSP were preliminarily evaluated through in vitro cell experiments. The alkali extraction method was determined as the optimal method, with the optimized extraction process consisting of a solid-liquid ratio of 1 : 50, a pH value of 10.25, a temperature of 89.24°C, and a time of 9.99 h. The final PSP contained 71.65% of polysaccharide and 8.54% of protein. At a concentration of 50  μ g/mL, PSP exerted a significant promoting effect on the proliferation and traumatic fusion of human immortalized epidermal cells HaCaT. An extraction method for high-purity PSP with a high extraction rate was established, and in vitro results suggest antioxidation and antiaging activities.

  18. Polysaccharide Constituents of Three Types of Sea Urchin Shells and Their Anti-Inflammatory Activities

    PubMed Central

    Jiao, Heng; Shang, Xiaohui; Dong, Qi; Wang, Shuang; Liu, Xiaoyu; Zheng, Heng; Lu, Xiaoling

    2015-01-01

    As a source of potent anti-inflammatory traditional medicines, the quantitative chromatographic fingerprints of sea urchin shell polysaccharides were well established via pre-column derivatization high performance liquid chromatography (HPLC) analysis. Based on the quantitative results, the content of fucose and glucose could be used as preliminary distinguishing indicators among three sea urchin shell species. Besides, the anti-inflammatory activities of the polysaccharides from sea urchin shells and their gonads were also determined. The gonad polysaccharide of Anthocidaris crassispina showed the most potent anti-inflammatory activity among all samples tested. PMID:26389925

  19. Polysaccharide Constituents of Three Types of Sea Urchin Shells and Their Anti-Inflammatory Activities.

    PubMed

    Jiao, Heng; Shang, Xiaohui; Dong, Qi; Wang, Shuang; Liu, Xiaoyu; Zheng, Heng; Lu, Xiaoling

    2015-09-16

    As a source of potent anti-inflammatory traditional medicines, the quantitative chromatographic fingerprints of sea urchin shell polysaccharides were well established via pre-column derivatization high performance liquid chromatography (HPLC) analysis. Based on the quantitative results, the content of fucose and glucose could be used as preliminary distinguishing indicators among three sea urchin shell species. Besides, the anti-inflammatory activities of the polysaccharides from sea urchin shells and their gonads were also determined. The gonad polysaccharide of Anthocidaris crassispina showed the most potent anti-inflammatory activity among all samples tested.

  20. Analysis of chemical components of shiitake polysaccharides and its anti-fatigue effect under vibration.

    PubMed

    Li, Xiaoling; Zhang, Hongbo; Xu, Haibo

    2009-11-01

    The shiitake polysaccharides were obtained from shiitake mushroom. Four fractions were isolated from the polysaccharides using a Sephadex G-100 gel column. Chemical components of the two main fractions were determined by thin layer chromatography (TLC), and high performance liquid chromatography (HPLC). F1 was composed of rhamnose, glucose, and mannose. F3 was composed of xylose, mannose, arabinose and galactose. The obtained results still showed that administration of shiitake polysaccharides could improve muscle's comfortability of animals under a long period of vibration. The above findings might be applicable to studies of vibration ergonomics.